creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering

Designing and Implementing Core
Runtime Libraries for Splash
Programming Framework

Splash Z2ef3 ZeZAIAS ?l2t Hy

TIEtY 2roj=22|o At ¢

August 2019

Graduate School of Electrical and Computer
Engineering
Seoul National University

Jaeho Ahn

Abstract

The paradigm of autonomous machines has shifted with the remarkable
advancement in machine intelligence. To support machine intelligence,
autonomous machines are now equipped with diverse sensors,
heterogeneous multicore processors, and distributed computing nodes
that require complex software architecture to utilize them properly. With
the introduction of new sensors and computing powers, autonomous
machines must now support applications that performs complex
processing on unbounded sequences of stream data produced at real time.
However, with the increase in software complexity it is becoming difficult
for developers to coordinate the multiple streams of data and still meet
the system requirements. To tackle such difficulty, we are currently
developing a graphical programming framework we named Splash.

Splash provides effective programming abstractions that allow the users
to establish multiple stream processing applications effortlessly. Splash
also gives users the ability to specify genuine end to end timing
constraints required by their system. The timing constraints in turn are
automatically monitored for their violations by the Splash framework.

This thesis will introduce the components of the Splash graphical
programming framework and focus on how Splash provides stream

processing capabilities for its applications. The thesis will also introduce

i

the internal workings of Splash’s monitoring capability for end-to-end
system timing constraints. Lastly the thesis will validate Splash
application’s functional correctness and tests its timing constraint
monitoring capability by implementing ACC (Adaptive Cruise Control) and

LKAS (Lane Keeping Assistance System) algorithm using Splash.

Keyword: Stream processing, timing constraints, programming
abstractions, component-based programming
Student Number: 2017-27804

1 3

Table of contents

1. INtrodUuCtioN. ...ttt 1
2. Background...........ccceeeeieeeeerneeneeeeeeniennennsneseesseeessensensensnsnssssneses 5
3. Splash programming language..........c.cccceceeeeeercrcrcerccereencenes 10
4. Splash runtime library ... ooeneeeeeeeeeeeeeeeeeeene 18
5. Validating Splash through experimentation........................... 34
6. Related WOrK........eeiiiiiiirnrcntcccceeeeeeeeeceacnes 39
7. CONCIUSION ...ttt sesssnas 41
Figures
[FIGUIE T] ettt eetete e e essassaeassassssssssaans 11
[FIQUI@ 2] .ottt enesetesssssssssssnsnssasssssssssesans 12
[FIGUIE 3] ceeeeeeeeeeeeeereeeeareeenesaseseeseesasensessssasesessasnseseenasas 21
[FIGUIE 4] .eeeeeeeeeereeetreeeeeareeenesasensesessasensessssssesesssssaseseasasas 29
[FIQUIE 5] ettt eeseteee e s s sassaesasssssssnsans 32
[FIGUIE B] .oeneieiniieeieeeeeeeteceeeceneeneneneteeessssssnsnsnssassssssessessns 33

iii

[FIGUIE 7] ceeeeeeeeeeeeeeeeeeereneeeenseneesaesasenseaesasessessesssssessassasesaesases 35

[FIGUIE 8] .eeeeeeeeeeeeeeeeereneeeesaneeeaesaseneesaesasessesaesssesessasssseseesases 37
[FIGUIE O] .ottt eeneeneensnetesessessesssnsanssassassasssesans 38
[FIGUIE TO] c..eeeieeeeeeieeececeeeeeneenenenetenesessesessssnsensnssnssassssssesans 39

v

1. Introduction

Overtime, the number of autonomous machines that integrated
machine intelligence to their system has increased tremendously. This
integration allowed autonomous machines to achieve new feats of
engineering, requiring diverse domains to come together to utilize the
machine learning capabilities. The domains which are utilized include wide
range of sensors, heterogeneous multi-core processors, and distributed
computing. To efficiently make use of the newly generated sensor data
and available computing powers, the underlying software complexity of
the autonomous machine has increased exponentially. The complexity has
reached a point where maintaining the execution and communication
substrate of the system is becoming extremely difficult, making it harder
for developers to focus on the application core logic.

It is also evident that applications for autonomous machines, especially
for the ones that utilizes machine intelligence, often require processing of
unbounded sequences of sensor data generated at real time[1][2]. To that
end, in order to utilize the data that are produced at real time, and to
make sure the data does not lose its validity, developers must deliver and
process the data in a timely manner. This essentially signifies that the
developers must maintain a thorough check on the system timing
constraints.

To handle the increase in complexity and to satisfy the system timing
constraints, modern autonomous systems require a modular development

process that hides implementation details through abstraction and

1

monitor end-to-end system timing constraints automatically. It must
automate the monitoring process for two reasons. First, validating each
component of its timing constraint is already an arduous process that
often leads to programming faults. Increasing complexity will cause more
timing faults to go unnoticed and cause critical failures to occur at runtime.
Second, the end-to-end timing constraints are a result of different
components of the system interacting with each other, therefore it is
extremely difficult to test for validation separately. Testing for timing
constraints within only isolated processes and data would be meaningless.

To satisfy the above requirements we are developing a graphical
programming framework named Splash. Splash allows users to design
their applications graphically and uses the design result to automatically
establish the communication and execution substrate of the applications.
Splash also allows users to specify the system timing constraints required
during the processing and networking of data using its graphical
programming language. The constraints are then monitored for violations
at runtime, invoking different handlers for different violations.

Splash largely consists of three components. The first component is the
schematic editor that allows the user to design their application
graphically, in the form of a data-flow process network model. The second
component is the code generator, which translates the result of the
schematic editor into executable source codes. The third component is
the Splash runtime library which is a set of libraries implemented to

support the execution of the generated source code.

The Splash runtime library contains set of libraries that is used by the
code generator to compose the executable source codes. The runtime
library is comprised of two components. The first component is a set of
APIs used by the code generator to establish stream connection between
tasks. The first component also initializes the timing constraint monitors
with the configurated values of the schematic editor and sets up the
correct exception handlers for differing timing constraints. It also includes
APIs for mode change capabilities that allows Splash applications to
change its mode of execution at runtime. The second component of the
runtime library establishes background processes that operates through
the entire framework’s runtime. It monitors for the violation of the timing
constraints initialized by the first component of the runtime library and
calls the assigned handlers.

The Splash runtime library is implemented using a distributed
communication middleware called DDS (Data Distribution Service). Splash
utilizes the publisher and subscriber communication model of the
middleware to provide abstraction from the system's topology and
support soft real time communication through its rtps protocol [3].

This thesis focuses on the implementation of the Splash runtime library.
Specifically, it explains how the execution and communication substrate of
the Splash application is implemented and how they are used by the code
generator to establish functionally correct source codes. The thesis will
also introduce the mechanism behind the timing constraint monitoring

capabilities of the runtime library. Lastly, the thesis will demonstrate the

functional correctness and timing constraint monitoring capacity of Splash
by implementing LKAS (Lane Keeping Assistance System) and ACC
(Adaptive Cruise Control) algorithms using Splash. The Splash applications
will be injected with a time complexity error to imitate an engineering

mistake and be tested to see if it can handle the error successfully.

2. Background

2.1 Data Distribution Service

In order to support a real-time and scalable communication capabilities,
the OMG (Object Management Group) has published a distributed
communication middleware standard called DDS (Data Distribution
Service) [4]. To aid in the readers understanding on how exactly DDS was
used to implement the Splash runtime library, this section will briefly

introduce the communication model and key components of DDS.

2.1.1 DDS communication model

DDS uses the publisher and subscriber communication paradigm for its
communication model. The publisher and subscriber communication
paradigm use a virtual global data space called topic which identifies each
path of the data stream. The task that assumes the role as a publisher,
sends data to a specific topic without the knowledge of the receiver. The
task that assumes the role as the subscriber listens to a specific topic and
receives data that are sent through it. Different subscribers that listens to
the same topic receives identical data.

Publisher and subscriber communication model may use an
intermediary broker that connects the publishers and subscribers that
shares a topic. However, the original DDS standard published by the OMG
does not use a broker. DDS instead, allows each publishers and subscribers

to hold the meta data of their connected counter parts. The publishers

5

and subscribers maintain the network location of their counterpart
internally and use the known location to route their data.

DDS standard uses the UDP internet protocol as its main method of
communicating data. On top of the UDP protocol, DDS maintains another
software layer on called the RTPS wire protocol. The RTPS wire protocol
uses the either-wise unreliable UDP protocol to implement a reliable and
scalable data. The RTPS protocol provides DDS with plug and play
connectivity allowing DDS applications to discover newly joining or leaving
members at runtime. The RTPS protocol also creates a subnet out of
participating nodes without the need of a broker allowing generic

machines to form a large scalable network.

2.1.2 Key components and mechanisms

The Data Distribution System is mainly composed of two layers. The
DCPS (Data Centric Publish-Subscribe) layer is the upper layer that
provides the application layer with interfaces that allows easier access to
its networking functionalities. The lower layer is the RTPS (Real Time
Publish and Subscribe) layer, which holds the RTPS wire protocol previous
mentioned in the paper. The RTPS layer provides implementations for the
interfaces of the upper DCPS layer, supporting primary functionalities such
as message passing, discovery, and interoperability. For the purpose of
explaining Splash implementations, this thesis will only cover the DCPS
layer.

The DCPS layer’s key components are as follows: DomainParticipant,

Topic, Publisher, DataWriter, Subscriber, DataReader, Condition, Listener,

6

and, Waitset. The DomainParticipant is a fundamental grouping unit that
allows logical partitioning among DDS applications. Other DDS key
components belong to a single DomainParticipant and each
DomainParticipant is assigned with a Domain number. Different
DomainParticipants can be assigned with the same domain number, and
only the key components that belongs to the DomainParticipant with the
same domain number can interact with each other. A set of
DomainParticipants that shares the same domain number is called the
Domain. A Domain is a logical space that separates DDS applications from
each other, providing component-based programming, as well as fault
tolerance. Before any other component can be created or accessed, a
DomainParticipant must be created.

Same as the publisher and subscriber communication model, DDS DCPS
layer’s topic is a fundamental way of interacting between publishing and
subscribing tasks. It acts as a virtual global data channel that can be used
to publish and subscribe data. A topic is distinguished using a topic name,
and each topic name is unique within a Domain. A topic must also be
assigned with a specific data type that it publishes. A publishing
application must specify a topic when publishing a data, and a subscribing
application requests data via the topic.

A Publisher is a DCPS layer component that disseminates data to all
applications that are subscribing to a specific Topic. While the DataWriter
is used to pass a type specific data to the Publisher. An application uses

the DataWriter to encapsulate and marshal its output so that it can be

tailored to a specific topic. Once that is complete, the data is passed on
to the Publisher. A Publisher can manage multiple DataWriters, but a
DataWriter must only be assigned to a single Publisher. Therefore, a group
of DataWriters can be managed through a single Publisher. Each
DataWriter can be assigned only with a single topic and can output data
to the assigned Topic.

Similarly, a Subscriber is a DCPS layer component that receives data and
passes the data to the correct DataReader. The DataReader takes the data
from the assigned Subscriber, de-marshals it into appropriate data type of
the connected topic and delivers the data to the applications. A Subscriber
can manage multiple DataReaders but DataReaders can only be connected
to a single Subscriber. The DataReader can only be assigned with a single
topic, and therefore can only read data from a single Topic.

A Condition is a component that represents a specific event in the DCPS
layer. Different types of Condition component can be created depending
on the type of event it represents. It is not independently used but must
be attached to a Listener or a WaitSet. The Listener provides asynchronous
call back ability to the applications. The Listener can assign multiple
Condition that are created beforehand, and once a Condition is created
and attached to a Listener, it will monitor for the attached Condition. One
or more Conditions can be attached to the Listener. Once the Condition
is fulfilled, it will asynchronously call upon a handler. The handler can be
a user defined function, or a preset sub-routine provided by the

middleware.

DDS applications use what is called a Simple Discovery Protocol to
discover other communicating applications within a local area network.
The SDP (Simple Discovery Protocol) is broken down into two steps. First
a DDS application uses UDP multicast to announce it-self to its local
network. The announcement is done by multicasting best effort messages
to all local nodes, with message that include a global unique ID and its
own I[P address. The global unique ID identifies each DDS
DomainParticipant; therefore each DDS application must create a
DomainParticipant. =~ Once the announcement is made, all
DomainParticipant within the local network that shares the same domain
number respond and establishes a connection. Since DomainParticipants
act as an entry to all other DDS components, each connected component
shares information on the number of Subscribers, Publishers, DataWriter,
DataReaders, and most importantly what topic they are publishing and
subscribing to. Once the meta information has been exchanged,
DomainParticipants that has matching topics will start to exchange actual

data [5].

3. Splash programming language

Splash provides Schematic editor to allow the users to design their
system graphically using interfaces similar to designing a data -flow
process network model. The schematic editor provides the user with a
graphical programming language which is used to compose the data-flow
process network model. Figure 1 shows the screen view of the schematic
editor. Applications developed using the Splash framework is composed
of series of nodes and edges. Each node acts as an operator that receives
one or more data stream as input, processes them, and output the results.
The Splash framework calls a node a component. A component is further
classified into following types: processing component, source component,
sink component, fusion operator, and a factory. Each component has one
or more ports that acts as a gateway for data to enter and exit. There are
different type of ports and each port are either an input port or an output
port. An output port and an input port are linked together to express the
stream data connection between two components. Figure 2 shows an
example of a data-flow process network model that has been assembled
using the Splash language constructs.

Through the combinations of different language constructs, Splash

10

Figure 1. Splash schematic editor

provides underlying language semantics that collectively serve as a high-
level programming abstraction. There are four underlying semantics and
they are as follows: Basic operational semantics, timing semantics , in-
order delivery semantics, rate-controlled data-driven processing semantics.
This section first explains, each key language construct of the graphical
programming language along with their key functionalities. The section
will then describe each of the underlying semantics that the language

constructs can be used to express.

3.1 Port

A port is the entry and exit for the stream data that flows between
components. There are three types of ports, a stream data port for sending
and receiving stream data, a mode change port for passing mode change
signals, and an event port for passing event signals. For stream ports, each
input and output port is assigned with a data type. The stream data port
can only communicate using the assigned data type.
notepad The mode change port does not require a passing of

11 v

-

Figure 2. Splash application schematics

sophisticated data, but rather needs to send intermittent signal that
notifies the receiver of a mode request. The event port is used to send
and receives event signals that are pre-defined by the Splash framework
therefore its data types are already defined. Both the mode change port
and the event ports are

differentiated from the stream port because, data streams can be periodic
and requires a constant data delivery, while both the mode change signal

and event signals are relayed sparingly.

3.2 Processing component

A processing component represents a user defined operator that
receives one stream data as input and processes them with the user’s
logic. Once the data has been processed, it outputs the processed data
using the attached output port’s interfaces. A processing component can
be attached with multiple stream input ports, and multiple stream output
ports. When a processing component is translated into executable source
codes by the code generator, it provides the users with a skeleton code
that provides programmable area. User can apply their own logic to the

area using the attached ports as input and output interfaces.

12 3

3.3 Source component

A source component receives external signal from machines outside
the Splash system and produces stream data from the result, acting as an
entry to the Splash’s data streams. It does not require an input port
because it will receive signals originating from outside the Splash
application system, but it does require a single output port for relaying
the generated stream data. When translated into executable codes, the
source component provides a user programmable area that allows the

user to establish their own interface with the outside machine.

3.4 Sink component

Similar to the source component a sink component links the internal
Splash system’s stream data to the external machine. It must be attached
with a single input port and receives a single stream of data from another
Splash component. It does not require an output port because it will
produce and output data compatible to the outside machine, using the
machine’ interface. When translated into executable codes, the sink
component provides a user programmable area that allows the user to

establish their own interface with the outside machine.

3.5 Fusion operator

The fusion operator represents an operator that merges multiple

13

stream data into a single stream data output. It is attached with multiple
input ports and a single output port. The fusion operator does not require
any user programmable areas, therefore once it is translated into
executable codes, it only contains automatically generated communication

and execution substrates.

3.6 Factory

A factory is a grouping component that contains other Splash
language constructs. It aids the user with compartmentalizing systems and
acts as a unit for mapping Splash generated source codes, to an OS
process. Each factory is attached with multiple input ports and multiple
output ports that connects its internal language constructs with the outer
constructs. The factory can also be attached with a mode change port in
order to have multiple mode that contains different combinations of the
language constructs. The mode can be changed at runtime, and it is
triggered when a mode change signal is received through the mode

change port.

3.7 Underlying semantics

There are total of four types of underlying semantics that the language
constructs can be used to implement. The first semantic is the basic
operational semantics. The basic operational semantics represent
functionalities that the users require to develop the communicating and

processing part of stream processing applications. The basic operational

14

semantics are further divided into data processing semantics, path control
semantics, and triggering semantics. The data processing semantics allow
users to freely program their own stream processing operations. Path
control semantics allow users to control the inputs and outputs of stream
data and control the connections between the inputs and outputs.
Triggering semantics allow the stream processing operations to be
triggered by data arrival, time, and event.

The second semantics is the timing semantics. Timing semantics enable
the users with the act of detecting end-to-end timing constraints. In order
to do so, Splash supports two things. First, Splash synchronizes all local
clocks between nodes that are using the Splash framework. Splash utilizes
the precision time protocol daemon provided by the Linux kernel to do
so [6]. Second, Splash maintains a timestamp in each of the data delivered
through the data stream. Each time the source component receives an
external signal, it assigns a timestamp called the birthmark and outputs
the result as a Splash data stream. A birthmark keeps record of the time
the data has been created (entered the Splash application’s system). The
assigned birthmark is maintained through out the data’s entire flow
through the system. When the input data is processed into a new output
data, the output data inherits the input data’s birthmark. If several data
are merged into a single output, the oldest among the different birthmarks
are assigned to the output. With the two functionalities in place, the timing
constraints the users can monitor for violations are as follows. The

freshness constraint configures the amount of time it takes before a

15

generated data is deemed expired, and unviable. The source component
assigns each data that it introduces to the system, a freshness constraint.
Therefore, users assign a freshness constraint using the source component
in the schematic editor. The correlation constraint configures the maximum
difference between the birthmarks, carried by the group of distinct stream
data from different input port. The correlation constraint is used by the
Fusion operator to filter out data that should not be merged together due
to it being too further apart in terms of its birthmarks. Therefore, users
assign a correlation constraint using the Fusion operator in the schematic
editor. The rate constraint configures the numbers of data that should be
produced per second. This is done to ensure a continuous processing of
data and to prevent jitters from occurring on the downstream node. Often
if data is not available within the set constraint, users can provide handlers
that outputs an extrapolation signal that tells the downstream node they
must extrapolate a data at this time. Users assign correlation constraint
using the output stream port.

The third semantics is the in-order delivery semantics. The in-order
delivery semantics guarantees that data items are always delivered in
order of their birthmarks. Since network variations make it difficult to
control the delivery order of transmitting data, the input data are re-
ordered at the input queue of the stream data port. Each time a data is
enqueued to the stream data port, the enqueued data are sorted in non-
decreasing order of their birthmarks.

The last semantics is the rate-controlled data-driven processing

16

semantics. As mentioned earlier, Splash supports three types of triggering
mechanisms for its stream processing operations. Among the three, the
default triggering mechanism is the data triggering semantics. However,
data triggered operations often lead to side effects such as queue
overflows and jitter. This is because if stream processing operations are
triggered each time a data arrives, it will output with irregular rate. If the
data arrival rate is too fast, it can cause a queue overflow at the down
stream input port, if the data arrival rate is too slow it can cause jitters to
occur at the down stream processing operations. To compensate for these
limitations, Splash provides users with what is called a rate controller. A
rate controller is a transparent module that attaches itself to the output
port if the user chooses to. The rate controller guarantees the production
of exactly one data item in each time window with size 1/r where r is the
rate constraint. If there are no data items to be sent within the time
window, the output port will raise a rate constraint violation and call the
registered handler. The user can choose to use the handler to extrapolate
an output or simply send an extrapolation command. When a processing
component receives an extrapolation command it must invoke a function
that performs a extrapolation task that will generate an input instead of

receiving it from the input stream data port.

17

4. Splash runtime library

Splash framework provides the schematic editor to streamline the
development process of stream processing applications by allowing users
to design their programs graphically. The code generator uses the
schematic editor’s output to generate source codes that has been
established with communication and execution substrate. The source
codes also include runtime monitors that detects the violation of the
annotated timing constraints. This section will illustrate how each

language components are implemented in the runtime library.

4.1 Runtime library

The Splash runtime library is a collection of libraries used by the code
generator to implement the functionalities designed by schematic editor.
Therefore, it must contain entities or functions that reflects the different
Splash language construct and their corresponding timing constraints. The
Splash runtime library supports the execution, communication, timing
behavior initialization/monitoring, mode change, and exception handling.
The runtime library is implemented as a series of class definitions, each
representing their corresponding language construct. The Splash library is
implemented using the DDS middleware; therefore, it inherits the
publisher and subscriber communication model. This section will explain

how each language constructs are implemented in the runtime library.

18

4.1.1 Port runtime library

Port attaches itself to a component and becomes the communication
interface for the component language construct. Since Splash uses
publisher and subscriber communication model, it must be able to provide
interfaces for establishing a connection with a specific topic, and to
exchange data through the topic. Two classes, Input port and
Output port is created to be the base class for all other types of port
language construct. Input port and Output port classes are not
directly used but exists as a base implementation for other inheriting
classes.

The Input port class maintains a single FIFO queue for storing input
data and creates two tasks that runs simultaneously. The first task will
receive the input data and store it into the queue while the second task
will generate an asynchronous signal to call a registered handler each time
the data arrives into the queue. The handler will notify the connected
component language construct of the available input data and pass the
input data to the connected component language construct. The first task
utilizes a DDS DataReader to receive data into the queue. The second task
utilizes a DDS Listener to generate an asynchronous interrupt and call a
handler. However, to use the DataReader and the Listener, they must both
be configured with the Topic they will be receiving data from as well as
maintain a connection with a Subscriber. To do so the Input port class

implements a method called attach() which receives a component

19

language construct’s object and a topic name as input parameters. The
method creates an access to a DDS Subscriber that are maintained in the
component language construct’s object, both of which are used to create
the DataReader and the Listener. The passed topic name is used to
subscribe to the configured topic.

The Output port isidentical to the Input port class and maintains
a single FIFO queue for storing transmit ready data. However, while the
Input port class manages two tasks for receiving data and notifying the
connected component language construct, the Output port class only
maintains a single task. The single task transmit data from the queue
whenever a data is available. The connect component language construct
will access the output queue independently to insert the prepared output
data. Thus, the Output port class does not require any Listener but
only maintains a DataWriter. Same as the attach () method of the
Input port class the method receives a component language
construct’s object to access its DDS Publisher as well as the its publishing
topic name.

The attach () method of both Input port and Output port will

20 3

Attached Stream_input_port Attached Stream_output_port

i
| :
Quter signal ’_}___]'ransformed inner signal Inner signal "‘;Lv Transformed outer signal
Lal)

D pe:

Built-in Stream_output_port Built-in Stream_input_port

Figure 3. Factory’s built-in stream data ports

determine what kind of data types the attached Topic will be exchanging.
DDS uses a typed interface, therefore some of the communication
interfaces provided by DDS must know the data type of the exchanged
data before runtime. We utilize the attach () method to configure all
related runtime libraries with the correct data types.

The first class to inherit the Input port and Output port is the
Stream input port and Stream output port class.
Stream input pot and Stream output port implements the
stream data port. Both the Stream input port and
Stream output port class differs from its base class, only from the fact
that both the Stream input port andthe Stream output port has
an additional method called initialize ().Both classes’ initialize ()
method receives an integer value for configuring its queue size. However,
the initialize() method of the Stream output port receives an
additional input parameter for configuring the rate constraint. The
parameter for configuring the rate constraint expresses the amount of the

data the stream output port must produce per second.

21

The second and third class to inherit the base port classes are the
Event port and Mode switch port. Both ports do not require an
initialization method because it does not require a carefully selected
queue size. The Splash runtime library provides a default queue size for
both that can be configured if required. The event port and mode switch
ports will deliver signals scarcely therefore does not utilize an rate
constraint either. If a user finds a data that takes on a characteristic which
borderline between stream data and an event, it is better to use a stream
data port with a proper processing logic. Both classes do have an attach
() method but the data type it assigns to the connected components do
not vary. An Event port has set of define events that it represents as
integers while a Mode switch port only needs to transmit a integer

value to signal a which mode the factory should switch to.

4.1.2 Component runtime library

The component language construct acts as a logical node that
processes inputs and outputs the result. Therefore, one or more port
language constructs are attached to a component language construct to
become its communication interfaces. In order to implement this dynamic
between the component and port language construct, each processing
component must have one or more of the following DDS components:
DomainParticipant, a Subscriber, and a Publisher. As explained in the
background section of this thesis, for a DDS application to discover each

other, a DomainParticipant is required. While a Subscriber or a Publisher

22 3

is required to utilize a DataReader or a DataWriter. This section will explain
how the port runtime libraries and DDS components are used together to

implement component language construct.

A. Factory

Factory component is the largest building block of the Splash
language construct. Factory is viewed as a unit of execution and a
container for all other language constructs except source components and
sink components. A factory component is mapped as a thread to a process
same as other component constructs, but it determines which set of
components run within the process, therefore logically all other
component constructs are mapped to a factory. This design choice was
selected deliberately to utilize the lightweight nature of threads compared
to processes and to make mode changes faster.

Each Factory class will have a DomainParticipant that acts as an
entry way to connect all other DDS substrates used by component
constructs within the Factory. Factory component have stream data
ports and mode change ports to relay data stream and to receive mode
change requests. Consequently, Factory class must also have a Publisher
and a Subscriber. Factory class can be attached with a
Stream input port and a Stream output port object by using
each ports attach () method. However, since a Factory class must
connect an external stream to an internal stream, for each stream input

port connected to the factory, it must also have a corresponding built-in

23

output port. Figure 3 illustrates the implementation of factory stream data
ports. Stream input port attached to a factory component relays the
input data to the corresponding built-in Stream output port and
transmits the data to the internal data stream. The main role of
Stream input port attached to factory component is to relay the
external data stream to an internal one. It becomes vice-versa for
Stream output port attached to the factory component.

Alternative design choice would have been to remove stream data
port from the factory component, and just consider the first component
language construct contained within the factory to be the entry point for
external stream data. However, since component constructs are
implemented as threads, components within the same factory can
communicate using inter thread communication such as pointer passing
to implement pub sub communications [7]. Basic DDS communication
stack employs RTPS protocol and UDP protocol for distributed computing,
which creates unnecessary delay for IPC within the same node. Therefore,
ports that creates an entry and exit to factory component can utilize the
DDS communication stack while ports attached to components within the
factory component can utilize different inter-thread communication to
decrease the communication delay. Currently this optimization is still in
works and components within factory components use the original DDS
communication stack exchange data.

For mode changes, previously discussed Mode switch port is

attached to the factory to receive mode change requests. For each mode,

24

factory maintains a thread pool of different runtime library components.
When a mode change request arrives, all factory stream input port
blocks further input and finishes processing the remaining input data in
its queue. Once the remaining Input data is done processing, the factory
component switches the thread pool, and unblocks the
Stream_input port to restart receiving data. This is where the previous
discussed design choice shines its effectiveness. A method map mode ()
receives an integer and a pointer to an object of a component construct,
that maps component constructs to a mode. Mode switch ports
receive an integer that corresponds to the integer used to configures
modes by the map mode () method, the starting default mode is 1.
Once all internal components been created and the Factory component

executes the run () method to activate the factory.

B. Processing component

A processing component performs user programmed computation on
input data and outputs the results. The Processing component class
have both a Subscriber and a Listener that connects itself to the factory
components DomainParticipant at creation. The
Processing component can be attached with one or more
Stream input port using its Subscriber, therefore it can receive more
than one type of input data. However, it can only operate on one input
data at a time, consequently allowing each Stream input port to have

its own logic that processes the input. For data received in all of the

25

attached stream input port, data are chosen in order of its birthmark
and passed to the matching user logic. Processing component can be
attached with multiple Stream output port as well.
Processing component has a write() function that receives an
output data and topic name as its input parameter. The topic name is
used to determine which Stream output port is used to send the
output data. Using all of the above Processing component class
provides a way for users to program their own processing logic. To do so,
Processing component provides an empty method user function()
for each attached Stream input port. When input data is available,
user function() is invoked by a Stream input port’s listener and
receives input data as its parameter. Developers can use the input data

and the write () method to implement their own logic.

C. Source component and sink component

Source component and sink component connects external device to
the internal Splash data stream. They have similar architectures to the
processing component because source and sink components must also
provide users with programmable areas where they can implement their
own interface with the external device. Since they exist outside the
boundary of a factory component they are implemented as a separate
process not a thread. This is done because, source component and sink
component are not part of mode changes. It is also because multiple

factory components can share a source component or a sink_component,

26

therefore if they are mapped to a process that includes other component
constructs, it will not be able distribute data equally to all factory
components.

The Source component class maintains a Publisher but does not
require a Subscriber because it receives data from the external device via
the device’s interface. The Subscriber connects to the factory’s
DomainParticipant at creation. Source component can only attach a
single Sstream output port which is used to relay the external data and
publish it to the internal stream. The Source component also provides
a user function() method to allow users to program their own
interface with the external machine. The trigger for the user function()
cannot be invoked by a port but must be done independently by the user.
The Source component will only provide a programmable area that is
mapped to a thread, and output interfaces for the user. The
Source component assigns birthmarks to each data for detecting
freshness constraint. After the Stream output port () is attached the
Source component usesitsown initialize () method to determine
how much freshness constraint we would assign. The initialize()
method will receive integer value as its input parameter for configuring
the freshness constraint. The unit will be in miliseconds.

The Sink component class functions as the exact opposite of the
Source component therefore must have a Subscriber and attach it to
the factory’s DomainParticipant at creation. It also provides programmable

areas for the user to establish connection interface with external device.

27

Since Sink components must receive Splash stream data and relay it to
an external machine, a Stream input port is attached to its Subscriber,
allowing the user programmable method to be triggered by incoming
internal stream data. Sink component also has the same
user function() method as the Source component.
Sink component’s user function() however receives input data as

its parameter, using the attached Stream input ports Listener.

D. Fusion operator

A fusion operator merges multiple input stream into single output stream
therefore, Fusion operator class have both the Publisher and
Subscriber and can attach multiple Stream input port and a single
Stream output port. Fusion operator does not require any user
programmable methods so it does not provide empty methods to the
users. In order to provide varying options to the users, Fusion operator
provides its own initialize () method that configures the optionality
of each attached Stream input port. When data is merged into a
single output, mandatory Stream input port blocks the merging
process until there are available data. Optional Stream input port uses
a default value if there are no available data and does not block the
merging process. The initialize() method also receives an integer
parameter that configures the correlation constraint between the attached

Stream input port. The unit is in milliseconds.

28 1 &

Module example_data_definition
{
struct data_formation_1
{
double trans_data_1;
long trans_data_2;
=
s

Fiaure 4. Example IDL file

4.2 Data types

As mentioned earlier DDS uses typed interfaces, therefore Splash runtime
libraries must be able to pass the user configured data types to the
underlying DDS substrates. To do so, Splash schematic editor produces a
set of IDL (Interface Definition Languages) that is used by the code
generator to create language specific data types. An example IDL file can
be seen in Figure 4. Splash runtime library is implemented as type generic
template interface therefore when it is used by the code generator, the
language specific data types assigned to the runtime library’s template

interfaces.

4.3 Timing constraint monitoring

For each timing constraints monitored by Splash, different language
construct is used to annotate the constraints. The output stream data port
is assigned with the rate constraint and source component is assigned
with freshness constraint. Lastly the fusion operator is assigned with the
correlation constraint. The corresponding runtime library to the language

constructs also implements the mechanism for detecting the timing

* 2]

constraints.

For stream output port class, after its has invoked initialize ()
and attach (), it automatically creates tasks that maintains a timer and
a count of how much data has been issued through the port. Every second
the Stream output port keeps count of the data that has been issued
and checks them against the configurated rate constraint to monitor for
violations. All of monitoring tasks, including rate constraint starts after the
factory component has invoked its run () .

For source components, similar to stream output data port, invokes
initialize() function to configure the freshness constraint. However, the
monitoring for the freshness constraints does not occur on the source
component. The monitoring for the freshness constraints occurs at each
of the input stream data port and output stream data port. Each data
carries a freshness constraint value, therefore, each time a data arrives at
the stream data port, its birthmark is compared against the current time
to calculate its latency so far. It is then compared against the freshness
constraint value to see if it has violated it.

For fusion operators, it also invokes initialize() function to configure its
correlation constraint. For each input stream data port attached to the
fusion operator, fusion operator assigns each port with either mandatory
or optional. For all port deemed mandatory, the fusion operator selects
the oldest data among the input queues. It then checks oldest data from
other input queues and compares them to see if the difference is within

the correlation constraint value. If at the time the mandatory port does

30

not has data in their queues that satisfies the correlation constraint, it
creates a default item for delivery and contains a Boolean that signifies

that the data that has been fused is a default value.

4.4 Programming model

The Splash runtime library is a collection of libraries that is used to
implement applications designed by the schematic editor, therefore they
do not have a context as a runnable process by themselves. The Splash
code generator must take the Splash runtime library and assemble them
into runnable processes. Figure 6 shows a generated source code that
illustrates how the runtime library is assembled to implement a Splash
application.

As mentioned in the runtime library, the factory component is the unit
of execution that chooses which set of component construct threads to
run. Therefore, in Figure 5, before any other runtime library is created, a
(1) Factory object is created. (2) Afterwards, Stream input port and
Stream output port are created to receive stream data. Since some
of Splash runtime library is implemented using template interfaces,
interfaces like Stream input port and Stream output port both

have data types assigned to them. The language specific definitions of the

31 3

#include “../Data_type 1.hpp”

#include “../Data type 11.hpp”

int main(void) {
Factory Example factory;
Stream_ input port<Data 1::Msg> factory input port 1;
gtreamﬁoutputiport<Data74::Msg> factory output port 2;
Input Mode switch port factory input mode port 1;
factory input port 1l.initialize(30);
Eactoryioutputiport72.initialize(lO,ZO);
factory input port 1l.attach(&Example factory,”Factory input topic 17);
Eactory_output_port_Z.attach(&Example_factory,"Factory_output_topic_Z");
factory input mode port l.attach (&Example factory,”Factory input mode switch topic 1”);
Procesing component PC_1 (&Example factory);
Stream input port<Data 5::Msg> pb input port 1;
Stream output port<Data 6::Msg> pb output port 1;
pb_input port 1l.initialize(20); o
pb_output port 1l.initialize(10,40);
pb input port l.attach(&PC 1,”pb 1 input topic”);

pb output port l.attach(&PC 1,”pb 1 output topic”);

Exampleifactory.map(l,&PCil); ...(8)

Example factory.run();

(1)
.(2)

.(3)

. (4)

5)

Figure 5. Runtime library assembled into source code

data types are included in automatically generated header files like
Data type 1.hpp. The factory is also attached with a mode switch port
to receive mode change requests. Mode switch ports do not require
template interfaces because it already knows that it only needs to receive
integer data types. (3) The created stream data ports first use the
initialize() method to configure their queue sizes. The

Stream output port receives additional input parameter for
32 1

#include “../Data_type 1.hpp”

#include “../Data_type 11.hpp”

template <typename t>
void Processing component<t>::user function(t input data,) ... (6)

{
Data 5::Msg Output data;

//user logic here

%rite(&Outputidata, “pb 1 output topic”); (7))

Figure 6. Component construct’s user_function

configuring its rate constraint. Finally the stream data ports use the
attach () method to assign themselves to the factory and to configure
their communicating topic.

(4) After factory component has been created and established with the
necessary ports additional component constructs like the processing
component is created. The processing component receives the factory
components address at creation to register itself to the factory and access
its DomainParticipant. (5) Stream data ports are again created and
attached to the processing component to receive input data and output
the processed results. Figure 6 shows the structure of the empty method
user function that is used by the processing component to operate
on the input data with the user programmed logic. (6) The empty function
receives its input data through the parameter and the variable for the
output data is automatically generated for the user to use when
outputting the result. (7) The processing component’s write () method

receives the topic of the attached stream output port and the output data

33

to transmit the output data using the correct Stream output port.
Back at Figure 5, after every internal component construct has been
created and prepared, (8) the factory then maps other component
construct to a mode using its map () method. After a component construct
has been mapped to a mode, its threads will only execute when the factory
is currently running with its mode. Once every configuration is complete,

the factory invokes its run () to activate itself.

5. Validating Splash through experimentation

This section will validate Splash’s ability to implement a functionally
correct algorithm as well as its capacity to handle timing constraint
violations. The section will first explain the experiment environments set
up. Second the section will describe the application developed using

Splash. Lastly, the section will present the experiments result.

5.1 Experiment environment
The experiment was performed using a driving simulator called PreScan.
PreScan driving simulator is a physics-based simulation platform that is

used by automotive industries for developing

34

e

Ciesired Lateral Distance _B'_‘b
> Dresired Angle
; Lateral Distance | Desired Steering Wheel
Current Lateral Distance Error Colculation Angle Caleulation
jL- o5) 1
— _[é_ [—r—

Dmmas.:mi J.‘ >
Speed Error

Current spm Cakculation

i

Desined Fuel
Injection Caleulation

Desired Brake
Cabculation

LKAS_ACC

Figure 7. ACC LKAS Splash application

advanced driver assist system, vehicle to vehicle communication
application, and other automotive related systems. We used the PreScan
driving simulator to create a virtual vehicle and map that allowed the
vehicle to drive in the map. Figure 8 shows the map that was created to
simulate the driving environment. The simulated vehicle produced sensors
values while the LKAS and ACC algorithm received its sensor data as input.
The LKAS and ACC algorithm processed the received data to produce
control signals that in turn controlled the simulated vehicle. This essentially
created a software-in-the-loop environment. Two computing nodes are
used to accommodate the experiment. First node ran the PreScan
simulator while the second node ran the Splash application. Figure 10

shows the specifications of the two computing nodes.

35 T

5.2 LKAS and ACC application

The application developed using Splash receives lane detection data,
desired speed, current speed, and current gear as input and produce the
desired steering wheel angle. Brake, and fuel injection to adjust the speed
and steering wheel angle of the vehicle. The lane detection data is divided
into lateral distance and desired lateral distance. The lateral distance
detects how far off the current vehicle’s position is from the center line of
the driving lane while the desired lateral distance is the pre-configured
value that is adjusted to provide the right amount of distance. The
algorithm uses the two lateral distances to calculate the desired steering
wheel angle. The algorithm uses the lateral distances and the current
speed to calculate the current brake strength of the vehicle. Finally, the
algorithm uses the desired speed, current speed, and the current gear to
calculate the fuel injection amount of the vehicle. The fuel injection

controls the current target velocity of the vehicle.

5.3 Experiment and result
First to validate Splash application’s functional correctness, we ran the

driving simulation with the Splash LKAS and ACC as its control algorithm.

36

Figure 8. Simulated road and the location of failure

The Simulation was able to cruise through the entire simulated track.
Another experiment was conducted on the Splash’s LKAS ACC
application to verify Splash’s timing constraint violation handling
capability. Through heuristic experimentations it was determined that the
Desired Lateral Distance source tag found in Figure 7 requires 80ms
freshness constraint. During the default cruising of the simulated vehicle,
the freshness constraint of the Desired Lateral Distance source tag was
satisfied for its runtime duration. For experimentation, a fault was
introduced into the Desired Steering Wheel Angle Calculation processing
component to induce freshness constraint violations. The injected fault
was caused by swapping an internally used algorithm at runtime to
another algorithm that did not have sufficient time complexity. The fault
was induced at the white circled location found in Figure 8, because it is
one of the most computationally heavy part of the map due to the
overlapping lane markers on the road. As seen on Figure 9, the output

stream data port of the Desired Steering Wheel Angle Calculation

) Rk ke AT

.

Current latency (ms)

Figure 9. Monitored freshness constraint from output stream data port

processing component detected freshness constraint violations. The result
was vehicle veering off its driving lane. To handle this fault, we set the
freshness constraint handler of the stream data output port to keep count
of the number of violations that has occurred. If a threshold was reached,
it signaled the Speed Error Calculation processing component using an
event port. When the Speed Error Calculation processing component
receives the signal, it goes into safe driving mode and adjusts the target
fuel injection value to decrease the vehicle’s speed incrementally. As a
result, even with the freshness constraint violation occurring, Splash was
able to successfully monitor the violation and invoke a handler to stop a

critical failure from happening.

38 1

-

Computer 1 (PreScan) Computer 2 (Splash)

CPU: Intel® Core™ i7-7700 CPU @ 3.60 | CPU: Intel® Core™ i7-7700 CPU

GHZ @4.20GHZ

Main memory: 64GB Main Memory: 63 GB

0S:Windows 10 OS: Linux ihawk 3.10.el7.x86_64
Simulator: PreScan Version 8.5.0 DDS: Vortex OpenSplice DDS v6.7.18

Figure 10. Experiment specifications

6. Related Work

There has been many graphical programming frameworks similar to
Splash. Popular examples include RTMaps, Simulink, and
Ptolemy[8][9][10]. The example frameworks are also based on component
based programming that include data-flow process network model as
programming interface. The example frameworks are also geared towards
providing useful extension that aid developers in testing and examining
system requirements.

RTMaps is developed to tackle multisensory challenges that allows
engineers to track the flow of data. RTMaps also supports time as a first-
class entity meaning, each data will be marked with a time stamp. Similar
to Splash, RTMaps can handle freshness and correlation constraints,
however it does not support detection for rate constraints. It also does
not support in-order delivery for all of its operators but must rely on select

few to deliver them in order.

39 .

Simulink is developed to support myriad of engineering needs that
ranges from simple signal transmission to deep learning support through
multiple sensor fusion. Despite its versatile functionalities, what it lacks is
its support for real time stream processing. It does not support timing
constraint annotation in its operators therefore must rely on user
implemented functions. It also does not support data-driven programming,
and can rely only on time step driven execution, limiting the possible areas
for parallel processing.

Lastly, Ptolemy Il is a framework geared towards academic researches
and verifying system models. Ptolemy offers varieties of support for
imperative programing such as mode changes and exception handling,
however Ptolemy Il also lacks support for real time stream processing. It

does not have support for correlation constraints or rate constraints.

40

7. Conclusion

This thesis presented the graphical programming framework named
Splash geared towards developing stream processing applications for
autonomous machines. The thesis introduced the key components of the
Splash framework and illustrated each of the framework’s language
constructs. The thesis especially focused on the language implementation
of the Splash runtime library and how it comes together to compose a
functionality correct executable source code.
At the end, ACC and LKAS application was developed using Splash. To
verify its functional correctness a driving simulator ran a cruising
simulation using the Splash application as its control logic. The Splash
application was also injected with a fault to test against freshness
constraint violations. Splash was able successfully detect the freshness
constraint violations and handle the fault by making the vehicle go into a
safer driving mode.

For future work, Splash can improve by implementing an inter-thread
communication interface between inter-factory component constructs.
The interface must stay the same as much as it can in order to provide an

effective abstraction.

41

References

[1] Siegel, Joshua E., et al. "Real-time Deep Neural Networks for internet-enabled
arc-fault detection." Engineering Applications of Artificial Intelligence 74 (2018):
35-42.

[2] Cui, Yanling, et al. "Towards Adaptive Sensory Data Fusion for Detecting
Highway Traffic Conditions in Real Time." DSFAA. Springer, Cham, 2018.

[3] The Real-time Publish-Subscribe Protocol (RTPS) DDS Interoperability Wire
Protocol Specification version 2.3, http://www.omg.org/spec/DDSI-RTPS/2.3,
document number ptc/2018-09-3

[4] The Data Distribution Service Version 1.4, https://www.omg.org/spec/DDS/1.4/,
document number formal/2015-04-10

[5] An, Kyoungho, et al. "Content-based filtering discovery protocol (CFDP):
scalable and efficient OMG DDS discovery protocol." Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems. ACM, 2014

[6] http://manpages.ubuntu.com/manpages/bionic/man8/ptpd.8.html

[7] ROS, “Nodelet”, http://wiki.ros.org/nodelet

[8] N. d. Lac, C. Delaunay and G. Michel, “RTMaps: real time, multisensor, advanced
prototyping software,” National Workshop on Control Architectures of Robots,
2008. [

[9] “Simulink,”[Online].Available:
https://www.mathworks.com/help/simulink/index.html.

[10] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs
and Y. Xiong, “Taming heterogeneity - the Ptolemy approach,” Proceedings of the

IEEE, 2003

42

Abstract

M22 dAM R HRE 227t RE0 Oel LEHHA A[A-2 A

of el 7HX7E o2 HolH AEEE =¥otn AL 27 AgdS
SEA7I= A0l O{HYR| 2 ULt 0|2 Oof2{ZS SHESH7| ?loi R2
= @ Splashgt= Jefi® Z=J24d =2 I3 E WE SOICh

Splash= AMEXAH7F o2 AEZ X2l S8 Z=1H

mjo
k>

a7

e g QAR FAsiEl Z2O2fae M-It LS Splashe ARR

—

_I

Xt7F A|AB0A 2738H= end to end timing constraint 2 X|@5t7| 2
S AIZHE Mef Atetel EHX|2b M2l 7|52 MIELICH

2 a9 =20ME Splash d2fE Zzzfd =gl {39
78 245 2745 Splash?t MS5t= £2EE XE| 7|50 S8 &
LICt O] =22 3t end to end timing constraint C$F Splashe| 2 L|H
d 759 WE s%HE AN DX 20| =&2 Splash &
T2OHO| 7|aX F&HE ABStA SplashE AHE35H0] ACC (Adaptive
Cruise Control) % LKAS (Lane Keeping Assistance System) € 112|&52
H5H0] AlZHE HMeF Atgtel U EHE 7|52 ASEUCL

43 .
1

Im <A

_Jot

44

	1. Introduction
	2. Background
	3. Splash programming language
	4. Splash runtime library
	5. Validating Splash through experimentation
	6. Related work
	7. Conclusion

<startpage>7
1. Introduction 1
2. Background 5
3. Splash programming language 10
4. Splash runtime library 18
5. Validating Splash through experimentation 34
6. Related work 39
7. Conclusion 41
</body>

