Neural Logic: Theory and Implementation

Thesis by

Vasken Bohossian

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1998
(Submitted July 17, 1998)

i

© 1998
Vasken Bohossian

All Rights Reserved

iii

Acknowledgements

I would like to thank my advisor, Professor Jehoshua Bruck, for his guidance and
support throughout my stay at Caltech. He helped me develop my skills as a re-
searcher and taught me how to efficiently communicate my ideas. I would also like to
thank the students of the Paradise group, at Caltech, for many great moments spent
together. Finally, I would like to express my gratitude to Tanya, my grand-mother
Alice, and my parents Zaven and Taki for their encouragement and love.

The research presented in this thesis was supported in part by the NSF Young
Investigator Award CCR-9457811, by the Sloan Research Fellowship, by a grant from
the IBM Almaden Research Center, San Jose, California, and by the center for Neuro-
morphic Systems Engineering as a part of the National Science Foundation Engineer-
ing Research Center Program; and by the California Trade and Commerce Agency,

Office of Strategic Technology.

v

Abstract

Human brains are by far superior to computers in solving hard problems like combi-
natorial optimization and image and speech recognition, although their basic building
blocks are several orders of magnitude slower. This observation has boosted interest
in the field of artificial neural networks [20], [37]. The latter are built by intercon-
necting artificial neurons whose behavior is inspired by that of biological neurons. In
this thesis we consider the Boolean version of an artificial neuron, namely, a Linear
Threshold (LT') element, which computes a neural-like Boolean function of n binary
inputs [32]. An LT element outputs the sign of a weighted sum of its Boolean inputs.
The main issues in the study of networks (circuits) consisting of LT elements, called
LT circuits, include the estimation of their computational capabilities and limitations
and the comparison of their properties with those of traditional Boolean logic circuits
based on AND, OR and NOT gates (called AON circuits). For example, there is a
strong evidence that LT circuits are more efficient than AON circuits in implement-
ing a number of important functions including the addition, product and division of
integers [44], [45].

It is easy to see that an LT element is more powerful than an AON gate, simply
because of the freedom one has in selecting the weights. Indeed, different choices
of weights produce different Boolean functions. As a matter of fact, the number of
n-input Boolean functions that can be implemented by a single LT element is of the
order of 27, [42], [22]. That additional power comes at the cost of added complexity.
Some LT functions require weights that are very different in magnitude, potentially
rendering difficult hardware or software implementations of the correponding LT el-
ements. For that reason, theoretical research in the field of LT circuits has focused
on the weights, in particular the power of LT elements with restricted weights. As
early as 1971, Muroga, [32], proved that any linear threshold element can be imple-
mented with integer weights. That is, by restricting the magnitudes of the weigths to

v
natural numbers, one does not lose any of the power of the original LT element. We
generalize this result to arbitrary subsets of the set of real numbers. For example, we
show that one can restrict the weights to be the squares of integers, and still be able
to realize all LT functions. We ask the following question. What are the conditions
on the subset D € R which guarantee that all LT functions can be implemented with
weights drawn from it?

Another aspect of the complexity of the weights is their growth as the number of
inputs increases. It has been shown [17], [33], [38], [43] that there exist linear threshold
functions that can be implemented by a single threshold element with exponentially
growing weights, but cannot be implemented by a threshold element with smaller :
polynomialy growing weights. In light of that result the above question was dealt
with by defining a class, called ﬁ”, within the set of linear threshold functions : the
class of functions with “small” (i.e. polynomialy growing) weights [43]. We focus on
a single LT element. Our contribution consists in two novel methods for constructing
threshold functions with minimal weights, which allows us to fill up the gap between
polynomial and exponential weight growth by further refining the separation. Namely,
we prove that the class of linear threshold functions with polynomial-size weights can
be divided into subclasses, ﬁ”(d), according to the degree, d, of the polynomial. In
fact, we prove a more general result—that there exists a linear threshold function for
any arbitrary number of inputs and any weight size.

Even though some LT functions require weights that grow exponentially with the
number of input variables, it has been shown recently, in [13], [18], that such func-
tions can be replaced by a two-layer circuit composed of LT gates with polynomially
growing, i.e., small weights. We improve the best known bound on the size of that cir-
cuit, presented in [18] by focusing on a particular function with large coefficients. We
also derive explicit two-layer circuits. Two-layer LT circuits are in general composed
of different linear threshold elements, but for some useful Boolean functions, such
as parity, addition and product, the gates of the first layer are almost identical. To
take advantage of this fact we introduce a new Boolean computing element. Instead

of the sign function, it computes an arbitrary (with polynomialy many transitions)

vi

Boolean function of the weighted sum of its inputs. We call the new computing ele-
ment an LT M element, which stands for Linear Threshold with Multiple transitions.
The advantages of LT M become apparent in the context of VLSI implementation.
Indeed, this new model reduces the layout area of the corresponding symmetric func-
tion from O(n?) to O(n). We present a VLSI implementations of both LT and LT M
elements. Two kinds of elements were fabricated, programmable and hardwired. The
programmable elements use the charge on a floating gate in order to store the values
of the weights.

For many years, the topic of linear threshold logic, has been approached in two
different ways, theory, i.e. computational circuit complexity, [38], [56], and hardware
implementation, [48], [40]. Surprisingly, there has been very little interaction between
those two approaches. As a whole, the present thesis is one step towards establish-
ing a connection between the theory and implementation of threshold circuits. Its
constributions are at three levels. At the theoretical level, new classes of functions
such as ﬁ(d) and LT M are defined and their computational power is estimated. At
the algorithmic level, we show how to convert real weights to weights drawn from
an arbitrary subset of the real numbers, e.g., integer weights, we also show how to
construct LT functions with minimal weights, and finally we present an algorithm
that produces an LT, circuit (circuit composed of gates with small weights), that
computes the comparison function, COM P. We also present LT M circuits comput-
ing useful functions, such as XOR, ADD, PRODUCT'. At the implementation level,
we show the design, layout and testing of the VLSI implementation of LT and LT M.
Establishing a connection between the theoretical and practical aspects of threshold
logic will profit both domains by providing solutions for practical problems and by

defining new theoretical questions inspired by implementation issues.

vii

Contents

Acknowledgements
Abstract

1 Introduction

1.1 LT function: definition and examples
1.2 Weights of a linear threshold element
1.3 Multiple thresholds and VLSI implementation

1.4 Contributions and organization of the thesis

Restricting the weights

2.1 Introduction L

2.2 Motivationo

2.3 Preliminaries and related worko
2.3.1 There are O(2") n-variable LT functions

2.4 Real to integer weights oo
2.4.1 Threshold functions require O(nlog, n) bits per weight
2.4.2 Threshold functions require ©(nlog, n) bits per weight
2.4.3 Converting real to integer weights: An algorithm

2.5 Converting the weights to an arbitrary set of numbers

2.6 Conclusion

Minimal weights

3.1 Imtroduction
3.1.1 Motivation
3.1.2 Organization

3.2 Preliminaries and examples oL

iii

iv

11
14

16
16
17
17
21
22
22
25
25
29
37

3.2.1 Minimizing the weights
3.2.2 {0,1} versus {—=1,1}
3.3 Generalized majority function over {—1,1}
3.3.1 Mathematical setting
3.3.2 Weight vectors
3.3.3 Construction Lo
3.4 Arbitrary threshold function over {0,1}
341 Approach
3.4.2 Basic constructiono

3.4.3 Construction for arbitrary size and number of variables

3.5 Conclusions

Trading weight size for circuit depth

4.1 Introduction
42 LT 9 circuit for comparison Lo
4.3 Computer simulation 0oL
4.4 Generalization to LT, C ﬁdﬂ
4.5 Conclusion L

LTM: linear threshold element with multiple thresholds

5.1 Introduction
5.1.1 Definitions and examples L.
5.1.2 Organization

5.2 LTM constructions

5.3 Classification of LTM

5.4 Proof of the classification theorem
5.4.1 Inclusions
54.2 Separationo

5.5 Conclusions

57
o7
o8
62
63
64

X

6 VLSI implementation: programmable neural logic

6.1 Introduction

6.2 Neural logic versus conventional logic

6.3 Programmable versus hardwired weights

6.4 Implementation and results

6.5 LTM:VLSIlayout

6.6 Conclusion

7 Conclusions

Bibliography

78
78
30
81
82
85
88

90

94

List of Figures

1.1

5.1
5.2
5.3
5.4

9.5

6.1
6.2
6.3
6.4

6.5
6.6

6.7
6.8

Linear Threshold Element y = sgn(—t + X" wiz;)

Schematic representation of LT, SY M and LTM computing elements.
Addition of two 4-bit integers using a single LT'M gate per output bit.

LT circuit of size O(n) versus a single LTM gate.
MADD: addition of three 3-bit integers — X, Y and Z — using a layer
of LTM elemets.

Relationship between classes.

Neural vs. conventional logic. Two circuits computing XOR.
Comparison of two 4-bit integers.
Schematic of a Programmable Linear Threshold Element.
Layout of the linear sum — wqy + 2}21 w;x;. Four threshold elements
are shown, two programmable and two non programmable, the latter
having unit weights. The area shown is 168y x 360u. The chip was
fabricated using the 2u technology available from MOSIS.
Vdd — Threshold versus the number of 1’s in the input.
Advantage of LT'M (right) over LT (left) for symmetric functions. The
weighted sum is implemented only once rather than in each gate of the
first layer.o
High level schematic of an LTM gate.
Layout of a 16-input LT M element. The output consists of a 4-bit
bus addressing a 4-bit memory cell (not shown). The weighted sum
is implemented in the Neuron MOS fashion, as a capacitive sum of
voltages. The chip was fabricated using the 2u technology available
from MOSIS.

67
69
70

72
72

80
82
83

84
85

86
87

xi

List of Tables

1.1 2-variable conjunction, OR(z1,z2) = sgn(—1+ x1 + z2)

1.2 2-variable disjunction, AND(x1,22) = sgn(—2+z1+22)

1.3 3-variable majority, M AJ(x1,x2,z3) = sgn(—2+ 1 + 2+ x3)

1.4 2-variable parity, XOR(x1,z2) # sgn(wo + wiT1 + waTs)

S Ot

Chapter 1 Introduction

Human brains are by far superior to computers in solving hard problems like combi-
natorial optimization and image and speech recognition, although their basic building
blocks are several orders of magnitude slower. This observation has boosted interest
in the field of artificial neural networks [20], [37]. The latter are built by intercon-
necting artificial neurons whose behavior is inspired by that of biological neurons. In
this thesis we consider the Boolean version of an artificial neuron, namely, a Linear
Threshold (LT') element, which computes a neural-like Boolean function of n binary
inputs [32]. An LT element outputs the sign of a weighted sum of its Boolean inputs.
The main issues in the study of networks (circuits) consisting of LT elements, called
LT circuits, include the estimation of their computational capabilities and limitations
and the comparison of their properties with those of traditional Boolean logic circuits
based on AND, OR and NOT gates (called AON circuits). For example, there is a
strong evidence that LT circuits are more efficient than AON circuits in implement-
ing a number of important functions including the addition, product and division of
integers [44], [45].

Neural or linear threshold logic has been approached from two different directions:
theory and implementation. Electronic circuits implementing LT elements have been
proposed as early as the sixties, see [4]. Research in that field is still active today,
see [40]. On the other hand, the more recent theoretical research related to LT
has been conducted within the framework of computational circuit complexity, [38],
[56]. It has been shown that certain Boolean functions such as exclusive-OR (XOR),
can be implemented by a polynomial size LT circuit of constant depth, but require
an exponentially large circuit if one uses the classical AON implementation. XOR
being at the base of many useful functions, such as addition, product and division,
researchers have been motivated to further investigate the power and limitations of

the linear threshold model of computation. That task has proved to be surprisingly

2

difficult. Indeed, the only strong lower bound in the field is related to LT, the class
of functions that can be implemented by a two-layer, polynomial size circuit of LT
elements with small, i.e. polynomial, weights, [14]. In other words, a function was
found, that is not in LT,. If one allows the use of LT elements with arbitrary weights,
i.e. LT,, then no lower bound exists, that is no function has been found that cannot
be implemented by a two layer, polynomial size circuit of LT elements with arbitrary
weights.

There has been very little interaction between the theoretical and practical aspects
of neural logic. The goal of the research presented in this thesis is to take one step
towards bridging the gap between theory and implementation. In the remainder of
this chapter we will address the main ideas presented in the thesis. In Section 1.1 we
define LT, the class of linear threshold functions and present examples of common
Boolean functions implemented using the LT model. Section 1.2 presents the main
ideas related to the study of the weights of LT elements, it introduces the results
presented in chapters 2, 3 and 4. Section 1.3 relates to chapters 5 and 6, it presents
LT M, anew computing element derived from LT, as well as its VLSI implementation.

Finally, in Section 1.4 we summarize the contributions of the thesis.

1.1 LT function: definition and examples

In this section we give a formal definition of the function computed by a linear thresh-
old gate. We show examples of Boolean functions that can be implemented by a single
LT element, in particular, we show how to compute AND, OR, MAJ and COMP,
defined below.

The present thesis focuses on the study of linear threshold circuits, or LT circuits,
which are composed of linear threshold gates. Those have binary inputs and output.

They are mathematically described by a linear threshold function.

Definition 1.1 (Linear Threshold Function)

A linear threshold function of n variables is a Boolean function f : {0,1}" — {0, 1}

Compact
- - Representation
BITl—(::)f : O Welp
Bsz—@— — W,
: —— OUT § § _T
BITn—@— 0Thrashold ; V.Vn

Figure 1.1: Linear Threshold Element y = sgn(—t + Y1, w;z;)
that can be written, for any x € {0,1}" and a fized w € R™*1, as:

f(x) = sgn(F(z)) = 1 for F(z) >0

0 otherwise

where F(z) = w- (1,z) = wo + »_ w;z;
i=1

Figure 1.1 illustrates the idea.

Consider the following examples.

Example 1.1 (LT representation of OR)

A simple Boolean function is the conjunction, OR, of n variables:

0 if(zq,...,z,) = (0,...,0
OR(z1,...,x,) = (@)=)
1 otherwise

It can be implemented by a threshold gate, i.e., for all n, there exists a weight vector,

(wo, ..., wy), such that:

Vz € {0,1}", OR(z1,...,z,) = sgnwo + > _ w;x;)

=1

To implement OR one needs unit weights and a threshold, wy, of -1.

Ty [Ty | =14 21+ 29 | Sgn(—1+ 21 + 22) | OR(z1, 22)
010 —1 0 0
011 0 1 1
10 0 1 1
010 1 1 1

Table 1.1: 2-variable conjunction, OR(xy,z2) = sgn(—1 + z1 + z2)

Ty | T | =24+ 21+ 22 | Sgn(—2+ 21 + 23) | AND(21, 22)
00 -2 0 0
01 —1 0 0
1,0 —1 0 0
00 0 1 1

Table 1.2: 2-variable disjunction, AN D(z1,x2) = sgn(—2 + x1 + x2)

OR(z1,...,Tn) = sgn(—1+ > _ z;)

=1

Table 1.1 shows the case of n = 2.

Example 1.2 (AND € LT)

The disjunction, AND, is also a linear threshold function:
AND(z1,...;z,) = sgn(—n+ > _ x;)
i=1

Table 1.2 shows the case of n = 2.

The majority function, M AJ, is a Boolean function that outputs 1 if half or more

than half of its input variables are 1s.

Example 1.3 (MAJ € LT)

Here follows the definition of the majority function:

1 if S0y 2 > (3]

MAJ(.’L'l, ,mn) =
0 , otherwise

Ty | T2 |23 | =24+ 21 + 22 + 23 | Sgn(—2 + 21 + 22 + 3) | MAJT (21, 22, 3)
00| 0 —2 0 0
0|01 —1 0 0
0110 —1 0 0
0|11 0 1 1
110]0 —1 0 0
11011 0 1 1
1110 0 1 1
1 (11 1 1 1

Table 1.3: 3-variable majority, M AJ(xy, z2,x3) = sgn(—2 + z1 + x5 + x3)

It is a natural candidate for a threshold function; one choice of weights is:

MAJ(zy,...,x,) = sgn(— [g-‘ + éﬂﬁz)

Table 1.3 shows the case of n = 3.

Examples 1.1, 1.2 and 1.3 show Boolean functions that are symmetric. Those
are functions for which the output depends on the number of 1s in the input vector

irrespective of their position. A well known symmetric function is parity, or XOR.

Example 1.4 (XOR ¢ LT)

Here follows the definition of the n-variable parity function:

1 ,if Y7, x; is odd
XOR(z1, ..., n) = s

0 , otherwise

Let n = 2 and suppose that there exist some weights which implement XOR:
w = (wp, Wi, wa)

XOR(z1,22) = sgn(wo + w11 + wazs)

Ty |22 | =2+ 21+ 29+ 23 | XOR(21,29) implies that

00 Wo 0 wo < 0 (1)
011 wo + we 1 wo +wy >0 (2)
110 wo + Wy 1 wo +w; >0 (3)
111 wo + wy + w2 0 wo +w; +we <0 (4)

Table 1.4: 2-variable parity, XOR(z1, x2) # sgn(wo + w1x; + was)

Table 1.4 shows the values of F'(z) as z varies. The values of the function produce a
system of inequalities in w; which has no solution. Indeed equations (1) + (4) produce
2wy + wy + wy + w3 < 0, while equations (2) + (3) produce 2wy + wy + wa + wz > 0.
Therefore XOR ¢ LT for n = 2. That is also the case for arbitrary n. Indeed,
suppose that XOR € LT for some n:

XOR(z1, ..., tn) = sgn(wo + Y_ w;z;)

=1

Then,
XOR(z1,2,0,...,0) = sgn(wy + w11 + waxs)

But XOR(zy,22,0,...,0) = XOR(z1, z2) implying that for n = 2, XOR € LT, which

is not true.

For all symmetric functions that are also linear threshold functions, wy, = ws =
... = wy,. That is quite convenient, because the weights can then be set all to 1. What
happens when the underlying Boolean function is not symmetric? How large are the
weights? The following example shows an LT function that requires the weights to be
different and therefore requires some of them to be large, in comparison with others.

Actually, the weights grow exponentially with the number of input variables.

Example 1.5 (COMP € LT)

The comparison function accepts two integers, X and Y, i.e., their binary represen-

tation, (z1, ..., z,) and (y1, ..., Yn):
X = Z2i_1$i
i=1

Y = Z 2i_1yi
=1

and compares them:

1 ,if X>Y
COMP(21,; e Tny Y1, v Yn) =
0 , otherwise

The LT implementation of COM P is straightforward:

COMP(Z1, ey Ty Y1y -y Yn) = sgn(z 2i=ly, — Z2i_1yi)

=1 i=1

Which translates into the following weight vector:

w=(0,1,2,...,2", —1,-2, .., —2")

1.2 Weights of a linear threshold element

In the present section we introduce the main concepts related to the weights of LT
elements. We show that different sets of weights can produce the same LT function
and define minimal weights. The topics of chapters 2, 3 and 4 are introduced, that is
restricting the weights, constructing functions with minimal weights and converting
a single element with large weights, to a circuit of gates with small weights.

How does one estimate the efficiency of a computing element such as the linear
threshold element? A single LT gate can implement a multitude of distinct Boolean
functions. That is done by varying its weights. Indeed, to each choice of weights cor-
responds a function. While some different sets of weights produce the same Boolean
function, in general two distinct choices for the weights result in two distinct functions.

An LT element with n inputs can implement about 27" distinct Boolean functions, as

8
we will see in Section 2.3.1. This additional power of LT, compared to AON, comes
at the cost of added complexity. One may ask the following question: what is the
information content of a linear threshold gate, in particular, how many bits does one
need in order to store it?
Let us focus on the weights of a single LT element. Note that, given a function

f, the weight vector w is not unique. Different weights implement the same function.

Example 1.6 (Reducing the weights)

The following function

f(z1, ..., q) = sgn(2 — 4x1 + 622 — 225 + 424)

can be written as

f(z1, ...y xq) = sgn(l — 2z1 + 3z — 23 + 224)

because sgn(2a) = sgn(a) holds for any a > 0.

Consider the function

f(z1,...,x5) = sgn(2 — 4x1 + 622 — 23 + 4x4 + T5)

It does not depend on x5 and can therefore be written as

f(z1, ..., x5) = sgn(l — 2z1 + 3x9 — x3 + 224)

because 2 — 4x1 + 6x5 — 2x3 + 4x4 is a multiple of 2 it is either < —2 or > 0. In both
cases, adding x5 cannot change its sign.

A similar idea applies to the following two examples:

f(x1, .., xs) = sgn(—4 + 1 + To + T3 + 424) = T4

fz,...;x3) = sgn(3+ 2z —x2 —x3) =1

9

But, in general, finding smaller or minimal integer weights is a difficult problem
f(z1,...,x3) = sgn(—1 + 2z1 — 3za + 4z3)
To minimize the above weights, one needs to find the function they implement
f(z1, 22, 73) = 1% + T3
and derive the smallest weights that implement that function
f(z1,...,z3) = sgn(—1+ z1 — zy + 2x3)

Example 1.6 shows that different weight vectors can be used to implement the same

LT function. Here follows a formal definition of that idea.

Definition 1.2 (Weight Space)
Given a linear threshold function f, we define W as the set of all weights that satisfy
Definition 1.1, that is

W={W e R":Vz € {0,1}", sgn(wo + En:wlxz) = f(z)}
i=1

We want to study the weights; in particular, we are interested in the following or-

thogonal questions:

1. What happens when one restricts the weights to be only integers, or in general

restricts the weights to an arbitrary subset of R?

2. Assuming the weights are integers, and given a measure of their size, how to

find a minimal weight vector?

3. Suppose that for a given function, f, the minimal weights are large, i.e., grow
exponentially with the number of inputs, can we implement that function with

a two-layer LT circuit composed of gates with small weights?

10

In the early 1970’s, it was shown that any LT function can be implemented with
weights that are signed integers, [32]. That was done using a non-constructive proof,
i.e. showing that there exists a set of integer weights, without a method of find-
ing them. In Chapter 2 we ask the following questions. How one can restrict the
weights to an arbitrary, given set of numbers, without affecting the power of the re-
sulting element? What are the conditions on that set? Is there an efficient conversion
algorithm?

Chapters 3 and 4 deal with the size of integer weights. We use the L; norm as a

measure of the size of the weights.

Definition 1.3 (Minimal Weight Size)
We define the size of a weight vector as the sum of the absolute values of the weights.

The minimal weight size of a linear threshold function is defined as

5111 = mig(>- o)

The particular vector that achieves the minimum is called a minimal weight vector.

Naturally, S[f] is a function of n.

Many experimental results in the area of neural networks have indicated that the
magnitudes of the coefficients in the linear threshold elements grow very fast with the
size of the inputs and therefore limit the practical use of the network. One natural
question to ask is the following. How limited is the computational power of the net-
work if one limits oneself to threshold elements with only “small” growth in the size
of the coefficients? It has been shown [17], [33], [38], [43] that there exists a function
that can be implemented by a single threshold element with exponentially growing
weights, but cannot be implemented by a threshold element with polynomially grow-
ing weights. In fact, that function is COM P, the comparison function presented in
Example 1.5. In light of that result a subclass of LT was defined, the class of func-
tions with small weights : LT [43]. Large and small stand for exponentially growing
in n, and polynomially growing in n, the number of inputs. How dense is ﬁ”, in

other words, are there functions which can be implemented with weights that grow as

11
a polynomial of degree d, but cannot be realized with smaller weights? That is, can
we divide LT into classes of functions indexed by the degree of polynomial growth
of their weights? Chapter 3 answers that question by introducing an algorithm for
constructing LT functions with a given weight size.

How does one deal with LT functions that require large weights? Siu and Bruck
([43]) proved that LTy C LTsg41. [13] improves the bound to LTy C LTq4.1 by
showing that LT C LT, and generalizing to arbitrary depth. However the method
is complicated and the proofs difficult to follow. [18], presents a simplified version
of the results in [13]. It focuses on showing that LT} C LT,. To some degree it
supersedes the first by presenting a simpler, more intuitive construction. The idea is
to use two operations in order to reduce the weights, divide them by powers of two and
divide them modulo a prime. The resulting “small”-weight gates are connected into
a circuit that produces the correct output if enough primes are used. One can further
simplify the results presented in [13] and [18], by limiting oneself to the simulation
of a particular large weight function : COMP. As a result one gets bounds on the
number of gates in our circuit of the order of O(n*logn), a significant improvement

on the general bound of O(n'?log! n) in [18].

1.3 Multiple thresholds and VLSI implementation

In this section we outline the hardware implementation results described in Chapter
6 and present LT'M a new class of functions related to LT, see Chapter 5.
Implementations of threshold circuits were proposed already in the 60’s and 70’s
[4], [48], [53], and more recently in [28], [39]. To our knowledge, the theoretical results
on threshold circuits have not been linked to any work involving silicon implementa-
tions. Programmable neuron-based hardware has been recently proposed [39], [41].
There are essentially two points at which implementations of LT circuits differ.
The method used to compute the weighted sum, and the manner in which the weights
are stored. We have chosen a sum of currents, each of them corresponding to a

weighted input. Given that we use Boolean inputs, no exact multiplication is needed.

12
One needs only to make sure that a zero current is produced when the input is a
logical 0, and the current is w; for a logical 1. Such a “multiplication” can be done by
a single transistor, the input pin being connected to its gate terminal. An advantage
of this approach is that the storage of the weight and the scaling of the input are tied
together into a single transistor.

But how exactly are the weights stored? There are two approaches to that prob-
lem: hardwired and programmable weights. Hardwired weights are defined at the
moment the circuit is laid-out, and cannot be changed once it is fabricated. There
are many interesting questions related to hardwired weights. Indeed, in most imple-
mentations, different weights correspond to different layouts. Such differences make
the layout of LT circuits a difficult task, because different elements have different
shapes. However, as we saw in the previous section, one can vary the weights of a
given LT element without affecting the function it computes. That last fact can help
in laying out the elements in such a way that they fit together nicely. Programmable
weights, on the other hand, present no such difficulties. All LT elements look the
same. There are many ways to implement programmable weights. One can store
them in a digital RAM, or feed them in through input lines. In Chapter 6 we show
two implementations of the LT element. One using hardwired weights, stored as the
width to length ratio of a transistor, and one using programmable weights, placed as
a non-volatile charge on a floating gate transistor. In the latter case, the values of
the weights can be modified by tunneling or hot-electron injection.

When laying out LT circuits for common L75 functions such as parity, one may
notice that the LT representation is redundant. While in general LT circuits are
composed of distinct threshold elements, in the case of some useful functions, such
as parity, addition and multiplication, the gates of the first layer differ only by their
thresholds. To take advantage of this fact we introduce, in Chapter 5, a new com-
puting element that we call LT M, linear threshold element with multiple thresholds.
It performs the following computation. The weighted sum of its Boolean inputs is
compared to a set of thresholds, rather than a single threshold. Geometrically it can

be viewed as a set of parallel hyperplanes used to dichotomize the hypercube. Here

13
follows the definition of LT M.

Definition 1.4 (Linear Threshold Gate with Multiple Transitions — LT M)
A function f is in LTM if there exists a set of weights w; € Z,1 <1 <n and a
function h : Z — {0, 1} such that

f(X) = h(zn: w;z;) for all X € {0,1}"

=1

The only constraint on h is that it undergoes polynomialy many transitions as its

input scans [— 31y [wil, iy [wil].

Notice that without the constraint on the number of transitions, an LT M gate is
capable of computing any Boolean function. Indeed, given an arbitrary function f,
set w; = 2071 and (X7 27 17;) = f(z1, ..., Tn).

The following example shows how to compute the parity function, XOR, with
a single LT'M element. In Example 1.4 we showed that a single LT element is not

sufficient in order to compute XOR.

Example 1.7 (XOR € LTM)
XOR(X) outputs 1 if | X|, the number of 1’s in X, is odd. Otherwise it outputs 0. To
implement it choose w; = 1 and h(k) = 5(1 — (=1)*) for 0 < k < n. Note that h(k)

needs not be defined for £ < 0 and k£ > n, and has polynomialy many transitions.

Another useful function is the addition of two integers. It can be computed by a
single layer of LT M elements, one per output bit.

The study of LT M was originally motivated by practical considerations, as men-
tioned above, in order to improve the area required for the layout of the parity func-
tion. However, within the theoretical framework of LT, this new computing element
poses many challenging problems. It is easy to see that a single LT'M element is more
powerful than a single LT element. But how powerful is it in comparison with LT5

or ﬁQ?

14
1.4 Contributions and organization of the thesis

Our contributions are at three levels:

(d)

e At the theoretical level, we define new classes of functions such as LT and

LTM and estimate their computational power.

e At the algorithmic level, we show how to convert real weights to weights drawn
from an arbitrary subset of the real numbers, e.g., integer weights, we also show
how to construct LT functions with minimal weights, and finally we present an
algorithm that produces an LT, circuit (circuit composed of gates with small
weights), that computes the comparison function, COMP. We also present
LTM circuits computing useful functions, such as XOR, ADD, PRODUCT.

e At the implementation level, we show the design, layout and testing of the VLSI
implementation of LT and LT M. We designed a programmable LT element

that uses floating gate technology in order to store the values of the weights.

The thesis is organized as follows. In Chapter 2 we show some well known results in
the theory of threshold circuits, in particular, that any linear threshold element can be
implemented with integer weights. Our contribution is a generalization of that result,
to an arbitrary set of real numbers. The conditions that allow any LT function to be
implemented are derived, along with an algorithm for converting the weights. Chapter
3 presents a method for constructing linear threshold functions with minimal weights.
It is used to establish the separation between the classes LT (d), indexed by d. Given
an integer d, the class ﬁ(d) is defined as the set of functions that can be implemented
with weights of O(n?). In Chapter 4 a well known result is presented, i.e., the fact
that a single LT element with large weights can be implemented by a two-layer circuit
composed of LT elements, that is, linear threshold elements with small weights. Our
contribution is the explicit construction of those circuits in the case of the comparison
function, COMP. Chapter 5 introduces LT M, or linear threshold element with
multiple thresholds. It presents constructions for useful Boolean functions, such as

XOR, ADD, PRODUCT, along with an estimation of the power of LT M relative

15
to LT and its derived classes, LT , LT, and LTy. Finally, Chapter 6 describes the
VLSI implementation of LT and LT M. Both hardwired and programmable solutions
are presented. Weights are stored as the charge on a floating gate, and modified by

tunneling and injection of electrons.

16

Chapter 2 Restricting the weights

2.1 Introduction

The present chapter focuses on questions related to the weights of a single LT ele-
ment. Given n, the number of variables of an arbitrary threshold function, how many
bits does one need to reserve in order to store its weights? This question has been
answered in the early 1970s by Muroga, [32], by showing that any LT function can
be implemented with integer weights, and providing a bound to their size. In this

chapter we generalize this idea by answering questions such as:

e What happens if we restrict the magnitudes of the weights to be squares of

integers rather than integers?
e What if we allow only powers of 27

e In general, given D, a subset of the positive real numbers, D € R, define
LT[D] to be the set of LT functions the weights of which have magnitudes

drawn from D.

LT[D] ={f: f(z1,...,xn) = sgn(wy + iwzxz) where |w;| € D}
i=1

What are the conditions on D under which LT[D] = LT (i.e., weights drawn

from D are sufficient in order to implement all LT functions)?

In Section 2.2 we present some motivation for this type of questions. Section 2.3
presents some related work along with proofs and examples. It addresses the following

topics:

e What is the number of LT functions of n variables?

17
e What is the upper bound on the number of bits required to store the weights

of an arbitrary threshold function?
e [s there a function that achieves that bound?

e How to convert arbitrary real weights to integers without changing the function

they implement.

In Section 2.5 we present the main result: the conditions on the set D which guarantee

that it can implement all LT functions.

2.2 Motivation

When dealing with threshold circuits, it is often the case that a particular weight
value appears in many locations, either in the same gate or in different gates of the
circuit. Given a system in which storing a weight value is expensive, one may want
to store the value once, and link the corresponding weights to it rather than store the
same value in many locations. This concept can be applied both to hardware and
software implementations of threshold circuits.

The above approach is passive, in the sense that the weights are given, either
resulting from a learning algorithm or simply pre-computed for a given function; only
then does one eliminate duplicate weight values. One more step towards the goal of
saving storage space is to modify certain weights without affecting the corresponding
threshold function, in order to introduce more duplicate weights. In Section 1.2 we
saw that this can be done, since different sets of weights can implement the same
threshold function. In that context, one may ask the following question: given a set

of real numbers, is it sufficient to represent the weights of all LT functions?

2.3 Preliminaries and related work

Different weight can implement the same LT function. One way to characterize a set

of weights is by what we define as their boundary.

18
Definition 2.1 (Weight Boundary)
Let (wo, ..., w,,) be a set of weights, and f the function they implement. Their bound-
ary is the pair (I, h) where:

= max (wg+) wz;
(1 2;:)

n

h= min (wy+ W;T;
o, (wo E;:)

Notice two obvious properties of the boundary (I, h):

e/<0Oand h>0

e for all z € {0,1}", wo + X0, wiz; &)1, h[

For the proofs presented below we will need weights with boundary (—1,1). Given

an arbitrary set of weights, the following algorithm converts them to such a set:

Algorithm 2.1 ((—1,1) Boundary)
Given a set of weights, (ug, ..., u,) with boundary (I, h) define:

2 kAl
L

2ui
h—1
Let us show that the Algorithm 2.1 produces valid weights, i.e., they implement the

w; = foralli, 1<i1<n

same function as the original ones, and that their boundary is indeed (—1,1).

Lemma 2.1 (Converting the weights)

Let (ug, ..., un) be an arbitrary set of weights with boundary (h,l), and f the func-
tion they implement. The new weights, (wo, ..., w,), obtained by Algorithm 2.1 have
boundary (—1,1) and implement the function f.

Proof:
Let f(z) = sgn(ug + X1, u;z;), and define g as the function implemented by the
new weights (wy, ..., wy,), namely g(z) = sgn(wy + X » ; w;x;). We want to show that

g(z) = f(z) for all z. We will look at two cases:

19

e Let = be such that f(z) = 0. Then by the definition of the boundary (I, h)
(Definition 2.1), and the fact that h — > 0:

n
Ug + Z U; T4 S l
=1

h+1 " h
O_i'i_zuzngi

2 htl & > (1—h
L PR <2 (=0
—l<° +Z“¢“”’)—h—l(2)

wo—i—Zw,xz < -1
=1

g(z) =0

e For z such that f(z) =

n
ug + Zule >h
i=1

h+1 & h—1

Ug— —— + zzS—
0 2 ;ux 2

ot)< (159

n
wWo + Zwixi <1
i=1

g(z) =1

We have shown that g = f, and that [wo+ 37, wix;| > 1, which becomes an equality
at the points for which ug + > ; w;z; equals h or [. O

Let us illustrate the above algorithm with an example.

Example 2.1 ((—1,1) Boundary)

Let us consider the following 2-variable LT function:

f(z1,29) = sgn(—1.2 + 0.5z + 1.1z5)

20
The weight vector is (—1.2,0.5,1.1). Let us compute its boundary, (I,h). The

weighted sum assumes the following values

x1 | 2o | —1.240.521 + 1.1z | f(z1,22)
010 —-1.2 0
0|1 —0.1 0
110 —-0.7 0
111 0.4 1

Referring to Definition 2.1:

= max (—1.2+4 0.5zy + 1.1z5) = —0.1
z|f(z)=0

h = |JIEI(li)nil(—1.2 +0.5z1 + 1.1z9) = 04

By Algorithm 2.1, the new weights are:

2 h+1 2 0.4+ (—0.1)
= 7 (- — 12— 22T TN 5y
o h—l(“" 2) 0.4—(—0.1)(2) b
2x0.5
- 2XTY o
W= 0a= (o) 20
2% 1.1
= fX 4y
2= 04— (—01)

The new weight vector assumes the following values:

x1 | 22 | —5.4 4+ 2.0x1 + 4.425 | sgn(—5.4 + 2.0zq + 4.4x5)
0]0 —54 0
0]1 —1.0 0
110 -24 0
111 1.0 1

As expected, the new weights implement the same function, and their boundary is

(—1,1).

21

Let us present a few well known problems related to the study of a single LT

element.

2.3.1 There are O(2") n-variable LT functions

Given the number of variables, n, it is easy to verify that the total number of Boolean
functions is 22". Indeed, a general Boolean function is uniquely specified by its truth
table which is composed of 2" binary entries. How many of those functions are
actually threshold functions? This question was considered in the late 1950s by

various authors. The following bound was derived in [36]:
|LT| < 2"

where |LT| stands for the number of n-variable threshold functions. Later it was

discovered that the best upper bound on |LT| was given by L. Schlafli, [42], in 1850:

n

LT <23 b = gnesniow
i=0 1

The first lower bound on |LT| was published in [54], however [46], which appeared
in the same journal and presents a similar proof, has precedence by submission date.

The lower bound is:

ILT| > 2"

It is only in 1989 that this bound was improved by Zuev, see [58], using results from

[34] and [57], to:

|LT| > o' = i —Otninn)

Recently, the above bound was further improved, see [21] and [23], to:

|LT| > 2n27n10g2 n—0(n)

22

And finally Irmatov proved in [22], that asymptotically:

|LT| > 2n2—nlog2 n+0(n)

thus closing the gap between upper and lower bounds. Since there are around on’
n-variable threshold functions, one can use information theoretical arguments to show
that the total number of bits needed to represent the weights should be at least n?; if
not, some functions could not be differentiated. Furthermore, knowing that different
weight vectors can implement the same function, as we saw in Section 1.2, a good
guess is that the LT representation is not optimal in terms of storage, i.e., one needs

more than n? bits in order to represent the weights.

2.4 Real to integer weights

In this section we show that a function written with an arbitrary set of weights, i.e.,

real weights, can be written with integer weights. We present two arguments

e a non-constructive, existence based, argument, which provides a bound to the

size of the weights,

e a constructive argument, which given a set of weights, converts them to integers,

but does not provide a bound on their size.

2.4.1 Threshold functions require O(nlog,n) bits per weight

As mentioned above, given the estimate on the number of threshold functions, a
single weight would require at least O(n) bits. Because the LT representation is
sparse, the actual number is O(nlog, n), a result shown by Muroga, [32], in the early
1970s. Notice that even though not optimal, the LT representation is quite dense, and
that the difference between O(n?) and O(n?log, n) is rather small and is worth the
computational advantage one gets by using a weighted sum followed by a threshold.

In order to provide more insight on Muroga’s bound, a proof is included below.

23
Theorem 2.1 (O(nlog,n) bits per weight)

For an arbitrary, n-variable LT function, the weights w; satisfy:

|lw;| < O(nlogyn) Y0<i<n

Proof:
Let f be a threshold function, f € LT. Let its weights (uy, ..., u,) be unknown. From

the truth table of f one derives the following system of 2" linear inequalities.

ug + ulxgl) + ... + unxﬁll) > 0
g + w2l o+ L+ u,z?") < 0

Where {z(®*}2" | are the vertices of the hypercube and the direction of the inequality
depends on the value of the function at the corresponding point (the above choice is
arbitrary). Call ([, h) the boundary of the weights (uy,...,u,) and apply Algorithm
2.1 in order to get new weights, (wp, ..., w,) with boundary (—1,1). The system of

inequalities becomes:

wo + wizl” + o+ wep®d > 1 = 2f(z®) -1

wy —+ wlxgzn) + ... + wnxg”) < -1 = zf(x(n+1))_1

Using a well known result, in the theory of linear inequalities, [27], [26], we claim
there exists a subset of n + 1 out of those 2" inequalities, such that if one replaces
the inequality sign by an equality, the solution to the resulting system of equations
solves the system of inequalities as well. Let {2(*)}7X] be the set of points in {0,1}"

corresponding to the selected n + 1 inequalities. We get the following system of

24

equations:

n

Wo + w]Z§1) 4+ ... 4+ wnz(l) = Qf(z(l)) -1

we + wlz§n+1) + ...+ wnz«r(Ln—i—l) — Qf(z(n—l—l))_l

where the right-hand side of the equations, as mentioned above, depends on the

function f. The solution can be found using Cramer’s method:

w; A
Where A is the determinant:
1 0 2
A =
R AR z(n+1)

and A; is the determinant with the 7** column replaced by the right-hand side of the

system of equations:

R RSN { C-10) o B SO O
A =
1 A zi(fi—l) fzH)) —1 zz-(_ﬁrl) o 2t

Notice that the above matrices are composed of 1s, Os and —1s. It is easy to see that

the determinant of such a matrix satisfies the following bound:

A(nxn) < Bn

where the bounding sequence B,, satisfies:

Bn+1 > an

25

which in turn implies that:

A < O(n))

We are interested in the size of the integer weights, so let:

A
w; = |Alw; = %Ai < O(nl) = O(2"&=")

implying that one needs O(nlog,n) bits to store a single weight. O

2.4.2 Threshold functions require O(nlog,n) bits per weight

In Subsection 2.4.1 we proved that at O(nlogn) bits are required to store the weights
of an arbitrary LT function, thus establishing an upper bound on their size. As early
as 1961, a function was found, [33], that requires weights of size O(27), i.e., Q(n)
bits per weight. Only recently, in [17], Hastad presented a function that requires
Q(nlogn) bits per weight, establishing that the above bound is tight, i.e., the size is
O(nlog,n) bits. We saw in Subsection 2.3.1 that there are about 2*° LT functions,
implying that one needs at least n bits of storage per weight. As mentioned, the LT
representation is not optimal in terms of storage; it requires a factor of log n additional
bits in order to store a threshold function. Intuitively, that makes sense since different
weight vectors (e.g., multiples) can implement the same function. Nevertheless, the
LT representation is quite compact, and the extra storage is worth the gain on gets,
in terms of computation complexity. The spectral representation of LT functions is
optimal in terms of storage. Indeed in [9] the author shows that the first n+1 spectral

coefficients uniquely specify the function.

2.4.3 Converting real to integer weights: An algorithm

Before presenting the algorithm along with a proof of its validity, let us look at a few

examples:

26
Example 2.2 (Real to integer weights)

Given the following function:
fi(zq1,xz9) = sgn(—0.5 + 0.2z, + 0.3z3)

an obvious way to get integer weights is to multiply them by a factor of 10, using the

fact that sgn(a) = sgn(10a), producing:
fi(z1, z2) = sgn(—5 + 2z + 3x3)

Let:
fo(z1,22) = sgn(—2.35 + mzq — \/5.’)32)

In this case scaling does not work since there are irrational weights. One way of

dealing with those weights is to use the floor function, | |, producing:
fo(z1,2) = sgn(—3 + 3x1 — 2x2)
In the case of the following function:
f3(z1,z2) = sgn(—0.5+ 0.1z, + ?m)

Neither x10, nor | | give the right answer. One needs to both multiply and take the

floor in order to obtain the correct result, | x10]:
f3(z1,x2) = sgn(—5 + z1 + 4x2)

The above example shows the main idea behind the algorithm for converting real
to integer weights: scale and take the floor of each weight. One needs to prove that for
any weight vector there exists a scaling coefficient, large enough, so that the algorithm

works.

27
Algorithm 2.2 (Real to integer weights)

Given a set of real weights (ug, ..., Uy)
1. apply Algorithm 2.1 to get new weights (vo, ..., vy,), with boundary (—1,1)

2. set w; = |(n+ 2)v;]

Lemma 2.2 (Real to integer weights)
The weights produced by Algorithm 2.2 implement the same function as the original
weights. Namely,

f(z) = sgn(uo + Z w;iz;) = sgn(wy + Z w;x;)
i=1 i=1

Proof:

Let (ug, ---, u,) be a set of real weights. We apply Algorithm 2.1 obtaining new weights
(v, ..., Uy). To simplify notation let z denote the extended vector (1,1, z2, ..., Z,) SO
that v-x = vg+ X1 ; v;z;. According to Lemma 2.1, the new weights implement the

same function and have boundary (—1,1), i.e.:

f(z) = sgn(u - z) = sgn(v - z)

|v-x| >1forall z € {0,1}"

We multiply the above inequality by k,
|(kw) - z| > k for all z € {0,1}"
Let |kw] denote the vector (|kwo], ..., [kw,]),
|(kw) -z — |kw]| -z + [kw] - x| > k

|(kw — |kw]) -z + |kw] - 2| > &

28

By the triangle inequality,
|((kw — [kw]) - 2| + |[kw] - x| > k

Lkw] - 2| > & — |(kw — [kw]) - z]
Lkw] - 2 > k= v/n + 1||(kw — [kw])]]
|[kw] -2 > k= vn+1]|(1,..., 1)]]
I[kw] x| >k —vn+1vn+1
kw]-z[> k—n-1

At this point we set £k =n + 2 and get:
[[(n+2)w]-z| >1

How does this imply that the new weights implement the original function f? Given
an arbitrary input vector x one can repeat the above steps, starting with u-x <1 for
the case f(z) =0, or u-x > h for the case f(z) = 1, and deriving |(n+2)w] -z < —1
or [(n+2)w] -z > 1 respectively. Using the absolute value in the proof above allows
one to treat both cases simultaneously. O

Algorithm 2.2 is illustrated by the following example.

Example 2.3 (Using the algorithm)

Let us use the same 2-variable function we used in Example 2.1:
f(z1,29) = sgn(—1.2 + 0.5z + 1.1z5)

We need to apply Algorithm 2.1, which was done in Example 2.1. The new weight
vector v is:

f(z1,22) = sgn(—5.4 + 2.0z1 + 4.425)

29
At this point we multiply the weights by n 4+ 2 = 4 and take the floor:

f(z1,z2) = sgn(—22 + 8z + 17x,)

The new integer weights produce the following table:

x1| T2 | =224 8z1 + 17xo | sgn(—22 + 81 + 17x5)
0]0 —22 0
011 —5 0
110 —14 0
1|1 3 1

As expected the function has not changed. Notice however that the weights obtained
are quite large. In particular, the actual function under consideration is AN D(z1, z3);

it can be implemented with much smaller eights:
f(z,22) = sgn(—=2 + z1 + x2)

In Chapter 3 we address the problem of finding the smallest possible integer weights.

2.5 Converting the weights to an arbitrary set of
numbers

We restrict the absolute value of the weights to a set D, D C R. We call D the

Weight Domain.

Definition 2.2 (LT(D) — The set of LT functions spawned by D)
Given D, a subset of R, we define LT (D) as the set of LT functions that can be

implemented with weights, the absolute value of which is drawn exclusively from D.

30

Formally:

LT(D) = {fCLT:3we R"™, such that f(z) = sgn(wy + X, wiz;) Yz € {0,1}"

and |w;| € D for 0 <i<n}

Our goal is to study the properties of D and their impact on LT(D). Let us first

narrow down the list of candidates for D by eliminating a few obvious cases.

e D is infinite.
Indeed, if D was finite one can find an n, large enough, so that there exists an
n-variable LT function that cannot be implemented with weights drawn from
D simply because the number of distinct weights it requires is larger than the
cardinality of D. Consider for example a function such as COM PARISON, for

which half of the weights are distinct and let the number of variables n > 2|D].

e D is countable.
As mentioned in Section 2.3, LT(N) = LT, that is any LT function can be
implemented using integer weights. Using a set of higher cardinality than N
does not provide any extra functionality. Indeed, if the set contains an interval of
the form]0, [, then the integer weights can be scaled down to fit in it implying
that LT (D) = LT. On the other hand, suppose D = [100,101], the set of
functions it spawns is very limited. It includes OR and a few closely related
functions. In the general case of an uncountable set D, we will focus on the

“best” countable subset of D as the set from which the weights will be drawn.

e D is strictly ordered.
Since D is countable, it can be ordered. Furthermore, all elements of D must be
distinct. It plays the role of an alphabet from which the values of the weights

are drawn.

Since D is countable and ordered, it can be indexed:

D:{di:iEN}anddi<d,~+1 Vi

31

We define a “modified floor” function, d(.) as follows:

d: R — R
d: z — d(z)=4d;

where 7 is such that di <z <di

Example 2.4 (Square and Exponential Weights)
We saw that one can convert real weights to integer ones. Is it possible to convert

the weights to perfect squares, that is:

d;=iforallie N

Consider the 5-variable AN D, defined as:

1 ,ifxlz...:x5:1
AND($1,...,$5) =
0 , otherwise

We saw that it is an LT function, i.e., can be written as

AND(z1,...,x5) = sgn(—5 + z1 + 2 + 23 + T4 + T5)

Can it be written with weights, the norm of which is a perfect square?

AND(zy,...,x5) = sgn(—25 + 4z1 + 4y + 4z3 + 4x4 + 975)

What about powers of 2:
d; =2 forallie N

AND(zy,...,x5) = sgn(—8 + x1 + 2 + 23 + 2x4 + 2x5)

It seems, from Example 2.4, that no matter what the progression of the d; is, AN D
can be implemented with weights drawn from D. That is not true for arbitrary LT
functions. The following theorem shows that if the d; grow polynomially, LT(D) =

LT, but if they are exponential some LT functions cannot be implemented. That is,

32
if D is O(i?%) it can implement all LT functions, but if it is (2°") it cannot. In fact,

we show a slightly more general result, that is some super-polynomial growths are

allowed as well — if d; are O(n'°¢™), LT(D) = LT.

Theorem 2.2 (Restricting the weights)
Let the weights be restricted to an ordered set D = {d;,;i € N}, D C R. Then

1. LT(D) = LT if for any given large constant C € R*, there exists iy, such that
for any i > ig:

C(di+1 — dz) < d;
2. LT(D) C LT if d; is Q(2°™), that is

(K, o, ig) such that for all i > iy, K2* < d;

Proof:
Let us first show part 1. Given the original weight vector, u, with boundary (I, h) we

apply Algorithm 2.1 and obtain new weights, v, with boundary (—1,1):
|v-z| > 1 forall z € {0,1}"
We multiply the above inequality by k,
|(kw) - | > k for all z € {0,1}"

|(kw) - z — d(kw) - z + d(kw) - z| > k

Where d(kw) denotes the vector (d(kwyp), ..., d(kw,)), the function d, being the gen-

eralization of the floor function to the set D, as defined above.

|(kw — d(kw)) - ¢ + d(kw) - x| > k

33

By the triangle inequality,
|(kw — d(kw)) - z| + |d(kw) - z| > k

|d(kw) - x| > k — |(kw — d(kw)) - z|

|[d(kw) - z| > k — i |kw; — d(kw;)|

J=0

where i is such that d(k|wmaez|) = di, Wmas being the weight that maximizes |kw; —

d(kw;)| According to the condition on D, there exists ig such that:
C(diy1 — d;) < d;
for all ¢ > 49, and for any choice of C, let us choose C = wye(n + 1), we get:
Winaz(n + 1)(diz1 — d;) < d;
And since by definition of the function d, d; < kw,,qez:
Winaz(M + 1) (diz1 — d;) < kWinas

k— (’I’L + 1)(dz+1 — dz) >0

Using the latter inequality produces:
|d(kw) - x| > 0

which is enough to show that the new weight vector, d(kw), implements the original
function. Let us look at two examples before presenting the proof for part 2 of the

theorem. 0

34
Example 2.5 (Squares)
Let D be the set defined in Example 2.4 — the set of perfect squares.

D ={1,4,9,16,25,...}

According to Theorem 2.2 all LT functions can be implemented because for any
CeRt
Cldip1—di)=C([i*+2i+1-4*)=C(2i+1) <4

for all ¢ > iy, where

i =20+ VC?+C|+1

Indeed, following the proof of Theorem 2.2:

|d(kw) - 2| > k = (n + 1)(diy1 — di)

becomes
|d(kw) - z| > k— (n+1)(2i + 1)
|d(kw) - | > k— (n+ 1)(2/kWmae + 1)
We choose
k=n+2++vn?+3n+2
and get

|d(kw) - 2| >0
which shows that the new weights implement the original function.

Example 2.6 (Numerical example)

35
Example 2.7 (Powers of 2)

What happens when one tries to use the above proof for powers of 2:
D =1{1,2,4,8,16,...}
Using the notation of Theorem 2.2:
C(dip1 — d;) = C(2" = 2") = C2' = Cd;
The condition:
VC € RY, Fiy/C(diy1 — d;) < d; for all i > i
cannot be satisfied. We cannot use the theorem. Where does the proof fail?
|(kw) - | > k for all z € {0,1}"

(kw) - & — d(kw) - @ + d(kw) - z| > k
|(kw — d(kw)) - z + d(kw) - 2| > k
|(kw — d(kw)) - o[+ |d(kw) - z| > k
|d(kw) - z = k — |(kw — d(kw)) - z]
|d(kw) - 2| > k — (n + 1)(dis1 — d;)

At this point we use the fact that d;y1 —d; = d; < k
|d(kw) - z| > k—(n+ 1)k

|d(kw) - x| > —nk

which does not tell us anything. In other words, our proof does not work, but there

may be another way to prove the result for powers of 2. To guarantee that is not the

36
case, we need a counter-example. Consider the 5-variable LT function with weight

vector (—5,1,1,2,3,4):
f(x1, 22, 23, 24, 75) = sgn(=5 + x1 + T + 223 + 324 + 4z5)
Suppose we found weights to implement it with, that are powers of 2:
f(z1, x2, T3, T4, T5) = sgn(—2%° + 2%z + 27229 + 2% x5 4 2% x4 + 2% 15)

where a; € N. Given the definition of f, we make the following observations with

regards to the relation between the new weights:

F(11100) = 0 but f(11010) =1 == 293 < 2a4
£(10010) = 0 but f(10001) =1 == 294 < 205
£(00001) = 0 but f£(00110) =1 = 295 < 295 4 294

It is easy to see that the above system of inequalities has no integer solutions.

Proof: (continued)

The proof for claim 2, in Theorem 2.2, follows the idea of Example 2.7 above. We want
to find a function which cannot be implemented with weights of the form K2%. The
idea is to construct the function in such a way as to require a fine grain definition
among the weight values, finer than the sequence K2 can provide. We choose a

function for which any set of weights must satisfy

wl<wl+1<...<w|_ <...<’LU|_

H+1]+ 42|+

That guarantees the weights to be different. We also set the function so that

wy + Wi+]| 2 Wi+ 2 |

37
The first set of inequalities implies:
1 1
WS] < gl
which toghether with the second provides the needed contradiction. This was done in
Example 2.7 for the case K = a = 1. How to construct such a function for arbitrary

constants K and a? We use the tools developed in Chapter 5, in particular the

following lemma.

Lemma 2.3 (Constructing functions with dense weights)
Given two constants K and «, there exists a function for which any set of weights

must satisfy

Wi < Wi <o KWy < SWp2)
and
R G
The proof of Lemma 2.3 is given in Section 3.4.3. O

2.6 Conclusion

The main contribution of Chapter 2 is the generalization of a well known result, i.e.,
the fact that any LT function can be implemented with integer weights. We show
that given an arbitrary subset of D C R, one can implement all LT functions with
weights drawn from D, provided that it is dense enough. Roughly, D must have a
polynomial, or super-polynomial growth, but if it grows exponentially, some functions
can no longer be realized. Theorem 2.2 shows the exact conditions on D. The proofs
are constructive, i.e., we show an algorithm for constructing the weights, or construct
a counter example, in the case of a sparse D.

An interesting direction for further investigation is to relate the above results

to linear decision lists. In [49], the authors introduce a two-layer LT circuit which

38
implements a linear decision list. The magintudes of the weights in the second layer

gate are powers of 2.

39

Chapter 3 Minimal weights

3.1 Introduction

The present chapter focuses on the study of a single linear threshold gate with binary
inputs and output as well as integer weights. Such a gate is mathematically described

by a linear threshold function.

Definition 3.1 (Linear Threshold Function) A linear threshold function of n vari-
ables is a Boolean function f : {0,1}™ — {0, 1} that can be written, for any z € {0,1}"

and a fired w € R, as :

f(z) = sgn(F(z)) = 1 , for F(z) >0

0 , otherwise

where F(z) =W - (=1,z) = —wp + »_ w;z;
i=1
As we saw in Chapter 2 any LT function can be realized with integer weights. So in

the rest of this chapter, we will assume without loss of generality that all weights are

integers. Also, notice that a linear threshold function can be implemented as:

f:{-11}" = {0,1}

We will address both the {0,1} and the {—1,1} representations.
Note that, given a function f, the weight vector w is not unique (see Example 3.1

below).

Definition 3.2 (Weight Space) Given a linear threshold function f, we define W
as the set of all weights that satisfy Definition 3.1, that is

W={weZ":Vze{0,1}",sgn(W - (-1,2)) = f(x)}

40

Here follows a measure of the size of the weights.

Definition 3.3 (Minimal Weight Size) We define the size of a weight vector as
the sum of the absolute values of the weights. The minimal weight size of a linear

threshold function is defined as

n

S[f] = min(Y" fur])

i=0
The particular vector that achieves the minimum is called a minimal weight vector.

Naturally, S[f] is a function of n.

3.1.1 Motivation

Why do we care about the size of the weights in threshold circuits?

Threshold circuits have been shown to be surprisingly powerful. For example, in-
teger division can be implemented by a polynomial-size threshold circuit of constant
depth, [5] [44]. Also it is proved in [1] that any function in AC°® can be computed
by depth 3 majority circuits of quasi-polynomial size, in fact, it is true for all of
ACC" [56]. Given the foregoing impressive upper bounds, it is not surprising that
we face difficulties in obtaining lower bounds. In fact, the best general lower bound
for threshold circuits is the result that the Inner-Product-Mod-2 (IP2) requires ex-
ponential size for depth 2 [14]. However, this lower bound assumes that the circuits
involve small weights, and it is not known whether IP2 can be computed by a depth-2
polynomial size threshold circuit with arbitrary weights. Namely, obtaining progress
in lower bounds for threshold circuits seems to be related to the understanding of the
role of large weights.

Hence, it is natural to ask how limited is the computational power of the circuit
if one limits oneself to threshold elements with only “small” growth in the size of the
coefficients? It has been shown [17], [33], [38], [43] that there exist linear threshold
functions that can be implemented by a single threshold element with exponentially

growing weights, S[f] ~ 2", but cannot be implemented by a threshold element

41

with smaller: polynomialy growing weights, S[f] ~ n?, d constant. In light of that
result the above question was dealt with by defining a class within the set of linear
threshold functions: the class of functions with “small” (i.e., polynomialy growing)
weights [43]. Most of the recent research focused on the power of circuits with small
weights, relative to circuits with arbitrary weights [12], [13]. In particular, it showed
that increasing the depth of the circuit by one is sufficient to reduce all the weights to
be of polynomial size. However, these impressive upper bounds still were not helpful
in improving the lower bounds.

In this chapter we take a different approach. Rather than dealing with circuits
we focus on the modest task of studying a single threshold gate. The main contribu-
tion of the present chapter is to further refine the division of small versus arbitrary
weights. We separate the set of functions with small weights into classes indexed by
d, the degree of polynomial growth, and show that all of them are non-empty. In
particular, we develop a technique for proving that a weight vector is minimal. We
use that technique to construct a function of size S[f] = s for an arbitrary s. The
natural future direction is to extend our techniques for constructing minimal weight
threshold functions to circuits of depth 2. This might help in defining explicit func-
tions that cannot be computed by depth-2, polynomial size threshold circuits with

specific weight size.

3.1.2 Organization

Here follows a brief outline of the rest of the chapter. In Section 3.2 we show some
of the difficulties one faces when minimizing the weights as well as how the latter are
affected by the choice of input domain. In Section 3.3 we consider functions defined
over {—1,1}. We limit ourselves to functions with no threshold (generalized majority
function) and we show how to construct such functions with minimal weights. In
Section 3.4 we present another way of constructing minimal functions that allows us

to deal with any threshold function defined over {0, 1}.

42
3.2 Preliminaries and examples

In this section we illustrate some of the difficulties one faces when trying to minimize
the weights of a threshold function. We also show how the input domain (i.e., {0,1}
versus {—1,1}) affects the size of the weights. See [25] for related results.

3.2.1 Minimizing the weights

The main difficulty in analyzing the size of the weights of a threshold element is due
to the fact that a single linear threshold function can be implemented by different

sets of weights as shown in the following example.

Example 3.1 (A Threshold Function with Minimal Weights) Let us consider

the following two sets of weights (weight vectors).
w= (41 25), Fi(z) = —4+ z1 + 222 + 5z3

w' = (8 2 4 10), Fy(z) = —6 + 2x1 + 4z + 1073

They both implement the same threshold function

f(z) = sgn(Fy(z)) = sgn(2F(z)) = sgn(Fi(z))

A closer look reveals that f(X) = sgn(—1 + z3), implying that none of the above

weight vectors has minimal size. Indeed, the minimal one is w” = (1 0 0 1) and

S[fl=2.

To determine if a given set of weights is minimal is in general a difficult problem,
[3], [62]. Our technique consists of constructing weight vectors whose minimality is
easily established. We then show how to modify them, while keeping them minimal,

in order to get to a larger set of functions.

43
3.2.2 {0,1} versus {—1,1}

Suppose we implement the same function over {0,1} and over {—1,1}. How are the

weights affected? Let us look at an example.

Example 3.2 (The OR function)

1. Let z; € {0,1},
OR(z1, .., Tp) = sgn(—1+ x1 + ...z,)

The size of the weights is S =n + 1. Those weights are minimal.
Proof: The weights are integers. Reducing their size implies reseting one or

more of them to 0, which will violate the definition of OR. O

2. Now, let x; € {—1,1},
OR(z1,...,xn) = sgn(n — 2+ x1 + ... + x,)

The size of the weights is S = 2n — 2. Those weights are minimal as well.
Proof: Any weights that implement OR have to be positive. Suppose there exist
weights of size S’ < 2n—2. No weight can be 0, so Y7 w' > n, implying that the
threshold —wy < (2n—2) —n =n—2. Let w, be the smallest weight. Set z; =1
and all other inputs to -1. Y7 w' < —w;(n — 2) so that F(X) < 0 violating the
definition of OR. O

It appears from this example that the {0, 1} implementation has smaller weight size

than the {—1, 1} representation. Is that true in general?

Example 3.3 (The Majority (M AJ) function) Let the number of variables, n,

be odd. The majority function outputs true if more than half of its inputs are true.
o Letz; € {0,1},

n+1
MAJ(z1,...,x,) = sgn(—T +z+ ...+ xp)

44
The size of the weights is S = % We show they are minimal by a proof

similar to case 2, above.

e Now, let x; € {—1,1},
MAJ(zy,...,x,) = sgn(zy + ...x,,)

Those weights are minimal since reducing them would imply reseting one or
more of them to 0, which will violate the definition of M AJ. The size of the

weights is S = n.

This second example shows that in general we cannot tell which implementation {0, 1}

or {—1,1} will produce a function with smaller weights.

3.3 Generalized majority function over {—1,1}

In this section we study the following model:
f : {_17 1} - {07 1}

F(X) = sgné wis)

Notice that there is no threshold; we are looking at a majority function with arbitrary
weights. We address the problem of constructing functions with minimal weights. In
particular, our goal is that for a given number of inputs n and size S, we find a

function.

3.3.1 Mathematical setting

We are interested in constructing functions for which the minimal weight is easily
determined. Finding the minimal weight involves a search; we are therefore interested

in finding functions with a constrained weight spaces. The following tools allows us

45
to put constraints on @. (In the remainder of this section we will explicitly denote

vectors, in order to avoid confusion.)

Definition 3.4 (Root Space of a Boolean Function) A vectorv € {—1,1}" such
that f(0) = f(—7) is called a root of f. We define the root space, R, as the set of all
roots of f.

Definition 3.5 (Root Generator Matrix) For a given weight vector & € W and
a root U € R, the root generator matriz, G = (gi;), is a (n x k)-matriz, with entries in
{—1,0,1}, whose rows § are orthogonal to W and equal to U at all non-zero coordinates,

namely,
1. Gw=0
2. gij =0 or g;; =v; for all i and j.

Example 3.4 (Root Generator Matrix) Suppose that we are given a linear thresh-
old function specified by a weight vector W = (1,1,2,4,1,1,2,4). By inspection we
determine one root v = (1,1,1,1,—1,—1,—1,—1). Notice that w; + wy — wy; = 0
which can be written as §- W = 0, where § = (1,1,0,0,0,0,—1,0) is a row of G.
Set 7= U — 2g. Since § is equal to ¥ at all non-zero coordinates, ¥ € {—1,1}". Also

7 = U-W+g§-w = 0. We have generated a new root: ¥ = (—1,—-1,1,1,—1,—1,1,—1).

Lemma 3.1 (Orthogonality of G and W) For a given weight vector « € W and

a root 7 € R, €GT =0 holds for any weight vector @ € W.

—

Proof: For an arbitrary & € W and an arbitrary row, g;, of G, let ¥/ = ¥ — 2g;
By definition of g;, ' € {—1,1}" and ¢ - &/ = 0. That implies f(¢) = f(—¢"): ¢
is a root of f. For any weight vector & € W, sgn(u - v') = sgn(—u - ¥). Therefore,

@ - (U —2g;) = 0 and finally, since ¥- @ = 0, we get @ - g; = 0. O

Lemma 3.2 (Minimality) For a given weight vector W € W and a root ¥ € R if
rank(G) =n —1 (i.e., G has n — 1 independent rows) and |w;| = 1 for some i, then

W is the minimal weight vector.

46
Proof: From Lemma 3.1 any weight vector @ satisfies #GT = 0. rank(G) = n — 1
implies that dim(WW) = 1, i.e., all possible weight vectors are integer multiples of each
other. Since |w;| = 1, all vectors are of the form @ = kw, for k > 1. Therefore, @ has
the smallest size. O

We complete Example 3.4 with an application of Lemma 3.2.

Example 3.5 (Minimality) Given :
@ =(1,1,2,4,1,1,2,4)

7=(1,1,1,1,—-1,-1,—1,-1)

we can construct:

1000 -1 0 0 O
060100 O0-1 0 0
0o10 O O0-1 0
G=0001 0 0 0 -1
1000 O0-1 0 O
1100 O O0-1 0
1110 0 O 0 -1

It is easy to verify that rank(G) = n — 1 = 7 and therefore, by Lemma 3.2, W is
minimal and S[f] = 16.

3.3.2 Weight vectors

In Example 3.5 we saw how, given a weight vector, one can show that it is minimal.
In this section we present an example of a linear threshold function with minimal
weight size, with an arbitrary number of input variables.

We would like to construct a weight vector and show that it is minimal. Let the

number of inputs, n, be even. Let W consist of two identical blocks :

(wl,w2, cey ’wn/g, Wi, W2, ..., ’wn/g)

47
Clearly, v = (1,1, ...,1,—1,—1,...,—1) is a root and G is the corresponding generator

matrix.

oo0oo00..010 0 O OO0O..0-1 0
0 00O

o
o
p—t
o
o
o
o
o
o
|
p—t

3.3.3 Construction

The following theorem states that given an integer s and a number of variables n,

there exists a function of n variables and minimal weight size s.

Theorem 3.1 (Main Result) For any pair (s,n) that satisfies

2% , for n even
1. n<s<

2" 4+ 2% , for n odd

2. s even

there exists a linear threshold function of n variables, f, with minimal weight size

SIf] = .

Proof: Given a pair (s,n), that satisfies the above conditions, we first construct a
weight vector o/ that satisfies > | |w;| = s, then show that it is the minimal weight

vector of the function f(z) = sgn(w - £). The proof is shown only for n even.
CONSTRUCTION.
1. Define (a1, as,...,a,/2) = (1,1,...,1).
2. If Zfﬁ a; < s/2, then increase by one the smallest a; such that a; < 272, (In

the case of a tie, take the w; with smallest index 7).

3. Repeat the previous step until Efﬁ a; = s/2or (ay, as, ...,ay) = (1,1,2,4,...,2272).

48

4. Set W = (a1, a9, ..., Anj2, A1, G2, ..., A /2.)

Because we increase the size by one unit at a time, the algorithm will converge to the
desired result for any integer s that satisfies n < s < 23 . We have a construction for
any valid (s,n) pair. Let us show that « is minimal.

MINIMALITY. Given that @ = (a1, as, ..., Gn/2, 01, G2, ..., aq/2) We find a root 7 =
(1,1,...,1,—1,—1,...,—1) and n/2 rows of the generator matrix G corresponding to
the equations w; = w;;n. To form additional rows note that the first k a;’s are
powers of two (where k depends on s and n). Those can be written as a; = Z;;ll a;
and generate £ — 1 rows. And finally note that all other a;, ¢ > k, are smaller
than 25*1. Hence, they can be written as a binary expansion a; = 5_; oy;a; where
a;;j € {0,1}. There are § — k such weights. G has a total of n — 1 independent rows.
rank(G) = n — 1 and wy = 1; therefore, by Lemma 3.2, @ is minimal and S[f] = s.

O

Example 3.6 (A Function of 10 variables and size 26) We start with
a=(1,1,1,1,1)
We iterate:
(1,1,2,1,1)
(1,1,2,2,1)
(1,1,2,2,2)
(1,1,2,3,2)
(1,1,2,3,3)
(1,1,2,4,3)

(17 17 27 4’ 4)

49

and finally the algorithm converges to

@=(1,1,2,4,5)

We claim that
/u_j - (67 C_i) = (17 1727 47 57 17 1727 47 5)

is minimal. Indeed, 7= (1,1,1,1,1,—-1,—1,—-1,—1,—1) and

10000 -1 0 O O O
01000 O-1 0 0 O
0oo100 O O-1 0 0
0ooo1o0 o0 O O0-1 0
G=|100001 O 0 0O 0 -1
10000 O0-1 0 0 O
11000 O O-1 0 0
11100 O O O-1 0
10010 0 0 0 0 -1

s a matriz of rank 9.

Example 3.7 (Functions with Polynomial Size) This ezample shows an appli-
cation of Theorem 3.1. We define ﬁ(d) as the set of linear threshold functions for
which S[f] < n?. The Theorem states that for any even n there exists a function f of

n variables and minimum weight S[f] = n®. The implication is that for all d, ﬁ(d_l)

—(d
is a proper subset of LT().

3.4 Arbitrary threshold function over {0, 1}

In this section we present a different technique for constructing threshold functions
with minimal weights. It allows us to construct functions with any weight size and

number of variables. We consider functions with input domain {0, 1}, but as men-

50
tioned below, the argument holds for an arbitrary input space {a,b}. In the rest of
this section we will use capital letters to denote vectors, in order to avoid confusion

and differentiate with the previous section.

3.4.1 Approach

The method we use is based on a result from [52]. We assume, without loss of
generality, that the weights are strictly positive integers. Our goal is to minimize
S =30 |w;| = X5 w;. We know from [32] that any other weights, U, implementing
the same function have to be strictly positive. We will show that under certain
conditions on W, >gw; > ¢ u; for any U.

Consider input vectors X and Y for which the following equations hold:
F(X):_w0+zwzxz:0 F(Y):—wo—i—szyZ:_l
1 1

Let them define the rows of a matrix that we call A:

. —1 20 2D 20

-1 XO® -1 1:?) wgz) ez

-1 X® —1 xﬁp) xgp) .oz

A: pu— n

R I

1 -y® 1 -y = L

1 -v@ 1 -y Ly

We allow repetition of rows: we may have X® = X0) = | = X®),

Example 3.8 (The matrix A) Suppose we are given the following weights:

W=(1366332211)

Our goal is to show they are minimal. We need to first construct the matriz A. Here

o1

follows a candidate:

-1 xM -1 0 1 o0 1 0 1 1 1
e -1 X® |-t 1t 0 1 0 1 0 1 1
1 -y® 1 0 -1 0 -1 0 -1 0 -1
1 -Y® 1 -1 0-1 0-1 0-1 0

There are many possible choices for A. The one shown above is not a good one as we

will see. O

Theorem 3.2 (Condition for Minimality) Given a weight vector W, we construct

A as described above. If there exists a > 0, such that A satisfies:

the weight vector W is minimal.

Proof: By definition of the X’s and the Y’s, the matrix A satisfies:

p q

A (wowi wy . wy)T =(00..0011...11)7 (3.1)

Because sgn(0) = 1 and sgn(—1) = 0 any other weight vector, U, implementing the

same function has to verify the above equalities with “>” instead of “=":

p q

A

-~

A-(upuyug . up)' > 00...0011...11)F (3.2)

Let V = U — W, and subtract Equations (3.1) from Inequalities (3.2), we get:

Now suppose A is such that:

AT 10 A= @ ~a0) (3.4)

52
where a is a strictly positive integer. We multiply Inequalities (3.3) by the all 1 vector
from the left and get:

p+q p+q p+q
11..11)-A-(voviva...v,)" >(11..11)-(00...00)"

And since a > 0, w; > 0, u; > 0 for all i =0, ..., n, we know that: >gu; > Y fw; O

Notice that nowhere in the proof did we use the fact that the input domain is
{0,1}. Indeed, the above proof is valid for any input domain {a,b}. As you can see
the proof relies on constructing A so that Equation (3.4) holds. To construct A we

need appropriate X’s and Y’s which in turn depend on the choice W.

3.4.2 Basic construction

In this section we introduce W, the weight vector for the general construction, and

prove it is minimal by finding an appropriate matrix A. Let the threshold, wg, be

arbitrary. We choose wy = |5, w3 = [*05™*], w5 = [**—5—"2], ..., wp—1 = 1, and
Wq; = We;—1 for 2 = 1..n. We choose n so that Y7 ; wa;_1 = wp — 1. Let us look at

an example:

Example 3.9 (wo = 13) Applying the above recursive definition, we get the weight
vector of Example 3.8: W = (13 6 6 3 3 2 2 1 1) Here follow the X and Y -type

93

rows for A.

-1 10101011

sumX;=(-211111122)
-1 01010111
-1 10101100

sumXa=(—211112200)
-101 011100
-1 10110001

sumX3=(-211220011)
-101 110010
-1 1 10000O0O0T1

sumX,=(-222000011)
-1 11000010

1 -1 0 -1 0 -1 0 -1 O
1 606 -1 0 -1 0 -1 0 -1

~

<

sumYi=(2 -1 =1 =1 —1 =1 —1 —1 —1)
We replicate rows and add them in order to get to the all 1 vector. Only odd numbered

columns are shown.

-2 1 1 1 2 0O 0 0 0 1 o 0 0 0 1
-2 1 1 2 0 0O 0 0 1 -1 o 0 o0 1 O
-2 1 2 0 1 0O 0 1 -1 0 o o0 1 0 O
-2 2 0 0 1 0 1 -1 -1 O 0o 1 0 0 O
-2 -1 -1 -1 -1 -2 -1 -1 -1 -1 2 -1 -1 -1 -1

The latter of which add up to the all 2 vector. O

Theorem 3.3 (Minimality of the Construction) For any wy we can construct a
threshold function with minimal weights of size S = 3xwg—2 and number of variables

n = [log, S1.

54
Proof: We are going to construct A, show that it satisfies 1A = al, and apply

Theorem 3.2. Only two Y-type vectors are needed for the construction of A:

1 -1 0 -1 0 .. -1 0
1 0 -1 0 -1 .. 0 -1
They add up to (2 —1 ... —1). The X-type vectors, summed two by two, add up

to two possible forms:
-2 1 ..120 ..00

or

-2 1 ..1 20 .. 01

By repeating and adding those partial sums one can get to the all 1 vector. How
do we do that? We produce the (0, ...,0,1) vector by adding two ¥ and two X-type

vectors.
2 -1 ... -1 -1

-2 1 .. 1 2

Let us denote by S;, i = 1..n, the singleton vector (0, ...0,1,0,...,0), where the 1 is in
the ** position. We use induction to show that we can get to all S; by adding up X
and Y-type vectors. Indeed, suppose we have obtained all S; for j =1,...,7 — 1. We
can produce S; by adding two X and two Y-type vectors:

2-1-1 -1 -1 .. -1 -1 -1 -1
-2 1 . 1 20 . 0 0 O
o o . o0 o001 o . 0 O
o o . o 00 1 0 . O
0 O 0 00 O 0 1
Once we have all S; vectors, we add them up three times to (2 —1 ... —1) in order

to get to the all 2 vector. O

95

3.4.3 Construction for arbitrary size and number of variables

In this section we show how to split a weight in order to get an additional variable.
We also prove that adding one or two variables with unit weight results in a minimal

function as well.

Lemma 3.3 (Splitting a Weight) Let W = (wq,ws, ...,w,) be minimal. Then

W = (wo, a, b, wy, Ws, ..., Wpi1) where a +b = wy is also minimal.
Proof: Construct A while duplicating the second column. O

Lemma 3.4 (Adding an input with unit weight) Let W = (wo,wy,...,w,) be

minimal. Then W = (wg, wy, wa, W3, ..., Wyy1) where wy11 = 1 is also minimal.

Proof: Suppose it is not minimal, implying there exists a better choice for W; let
us call it W’. There are two possibilities. Either w;_ ; = 0 or some of the w; for
t < n + 1 is smaller than the corresponding w;. In the latter case, we set x,.1 = 0
and obtain the original function implemented with smaller weights, contradicting the
hypothesis. Now suppose w;,,; = 0, implying that f does not depend on z,.;. That
in turn implies Y g w;z; > 0 or >§ w;z; < —2 for all inputs X. We can reduce wy by
1, implying the original function was not minimal. O
Using those two lemmas, the construction of functions with arbitrary size and
number of variables is straightforward. In fact, we can do more than that: we can
implement functions with rigid weight structure. Let us illustrate that idea by proving
Lemma 2.3.
Proof of Lemma 2.3:
Given two strictly positive constants K and «, we need to construct a weight vector
for which

w < W < ... < ’LU|_H_%J+1 < ... < wl_H—%J-H

VO] =]

56
The case of @« = 1 was dealth with in Example 2.7. Let the weight vector be of the

form

1 2
(—2°,1,1,2,4,...,2°.1,1,2,4, ... 2P w,w+1,...,w + {J +1,...,w+ {J +1
- -

where p is chosen so that 2P > Wiis2 |41 and w is an integer large enough. The same
way as we prove this vector to be minimal, we show that for any other weights the

above two requirements are met. O

3.5 Conclusions

We presented two techniques for constructing minimal weight threshold functions
of arbitrary weight size and number of inputs. We considered both the {0,1} and
{—1,1} input domains. Using these techniques we further refined the separation
between polynomialy and exponentially growing weights. The natural open problem
is to find out if these new techniques are useful in extending the existing lower bounds

[14] on circuit size to functions with arbitrary weights.

o7

Chapter 4 Trading weight size for circuit
depth

4.1 Introduction

Many experimental results in the area of neural networks have indicated that the
magnitudes of the coefficients in the linear threshold elements grow very fast with
the size of the inputs and therefore limit the practical use of the network. One
natural question to ask is the following. How limited is the computational power
of the network if one limits oneself to threshold elements with only “small” growth
in the size of the coefficients? The present chapter focuses on the implementation
of LT functions that require large weights. Instead of using a single LT gate with
large weights, we use a two layer circuit composed of LT gates with small weights.
Large and small stand for exponentially growing in n, and polynomially growing in
n, respectively, in the number of inputs.

It has been shown [17], [33], [38], [43] that there exists a function that can be
implemented by a single threshold element with exponentially growing weights, but
cannot be implemented by a threshold element with polynomially growing weights.
In light of that result a subclass of LT was defined, the class of functions with small
weights: LT [43]. Siu and Bruck ([43]) proved that LTy C LT2441. [13] improves the
bound to LTy C ﬁd.'.l by showing that LT C ﬁz and generalizing to arbitrary
depth. However, the method is complicated and the proofs difficult to follow. [18]
presents a simplified version of the results in [13]. It focuses on showing that LT} C
ﬁ}. To some degree it supersedes the first by presenting a simpler, more intuitive
construction. The idea is to use two operations in order to reduce the weights, divide
them by powers of two and divide them modulo a prime. The resulting “small”-weight

gates are connected into a circuit that produces the correct output if enough primes

58
are used.

We have further simplified the results presented in [13] and [18], by limiting our-
selves to the simulation of a particular large weight function: COMPARISON. Asa
result we get bounds on the number of gates in our circuit of the order of O(nlogn),
a significant improvement on the general bound of O(n'?log'' n) in [18]. We also ran
a computer simulation of the circuit and determined the minimal circuits for up to
22 variables. We show the results of the simulation and finally mention applications

and directions for further research.

4.2 LT, circuit for comparison

Consider the COMPARISON function of two n-bit numbers. Let X; = (z1, z3,...,Z2n 1),
Xy = (x9,24,...,%2,) € {0,1}". The integer values represented by X; and X, are
equal to 7, x9; 128 1 and 37, ;28 1, respectively. The COMPARISON function

is defined as

1 Xi>X,
C(X1,X2) =
0 otherwise.

In other words,

C(Xl,Xz) = SgH[Xl—XQ]

sgn Z2i_1($2i—1 — Zg;)| -

=1

The COMPARISON function has the interesting property that it belongs to LT}, but
not to LT;. Using tools from harmonic analysis, it is shown in [43] that COMPARI-
SON is in LT5. We provide an explicit construction of an LT circuit for COMPARI-
SON using the method described in [18]. An explicit construction for COMPARISON
was presented in [2].

Note that the value of COMPARISON can be determined by examining the
highest-order bit position in which X; and X, differ. If this bit is 1 in X; and 0
in X5, then C(X;,X,) = 1. Else, C(X;,X3) = 0. (In the event that X; = X5, by

59
definition C'(X;, X5) =0.)
Let F(X) = Y, 28 Y(x9;_1—y;). The first step is to form a sequence of functions
F,(X) by repeatedly dividing all weights of magnitude greater than 1 in half and
setting weights of magnitude 1 to zero. We begin with Fy(X) = F(X). After n steps,

the division process yields a function which is identically zero.

Fy = o1 —29+213— 234+ + 2" "9y — 2" '3y,
Fi = z3—z4+ - +2" 200 1 — 2" 2oy

Foi = Zop1—2om
F, =0

Note that each division is equivalent to left-shifting both X; and Xj.
Lemma 1. For the linear combination F(X) and the corresponding sequence of

left-shifted linear combinations F;(X), 0 <[< n, as defined above,

F(X)>0 & 31: F(X)=1.

Proof. For each X € {0,1}?", there exists some ¢, such that for all [> ¢, F;(X) = 0.
Now consider the maximum error introduced by shifting. We see that

max max |Fy(X) —2- F.1(X)] = 1,

xe{0,1}2n 1>0

since at most two variables (representing the “low-order bits” with weights 1 and -1)
are eliminated with each shift. Hence if |F(X)| is non-zero, then there exists some [
such that |F;(X)| = 1. Note that if F(X) is positive then all F;(X) are positive or
zero, and if F'(X) is negative then all F;(X) are negative or zero. The result follows.

O

Let X7 = (x1,23,...,%on 1), Xo = (Z2,Z4,...,T2,) € {0,1}". Define the “test”

60
function for each 0 <[< n as follows.
1 if {(X)=1

T(X) =
0 otherwise.

Lemma 1 may be expressed as

F(X)>0 < \n/T,(X):1

Although trivial in itself, Lemma 1 becomes useful when we introduce the idea of
computing modulo prime numbers. For what follows, we define the modulus operation
to return values in a symmetric interval centered at zero: i.e., for an integer Z and a
positive integer k , let Z mod (2k—1) = ¢, where t € [k, k] and t = Z (mod 2k — 1).

Given a prime p, define a “test” operation modulo p for each 0 <[< n as follows.

1 if F(X)modp=1
p,l(

0 otherwise.

For a given X € {0,1}*" and a given prime p, suppose that we compute T, ;(X)
for all functions F;(X) in the sequence. This would not be sufficient, since the test
operation modulo a prime p does not necessarily give the correct answer. However,
the following lemma tells us that if we repeat the process for enough prime numbers,
say r many, then we will obtain the correct answer most of the time.

Lemma 2. Let p; < ps < --- be consecutive primes greater than 3. Let s be
the minimum integer which satisfies p1ps - - - p, > 2" — 1. Then for every integer Z,

where |Z]| < 2" — 1,

Z e [-1,1] = Zmodp; € [-1,1] for all primes > 3,

Z ¢[-1,1] = Z mod p; € [-1,1] for less than 3 - s many primes > 3.

Proof. The first statement is trivial. The second follows directly from the Chinese

Remainder Theorem (see [18]). Note that s = O(nlogn). O

61
For a given X € {0,1}?" and a set of primes py,ps,...,p,, suppose that we have

an array of elements which compute 7, ;(X) for 1 <i<rand 0 <[<n,ie.,

TP1,0 (X) Tpl,l(X) o Tpl Re (X)
TPZ,O(X) sz,l(X) T TPNZ(X)
Tp’r‘ao(X) Tp’f‘71(X) U Tpr,n(X)

Define a “false” positive to be the event that an element returns a 1 when F(X) <

0. Define a “true” positive to be the event that an element returns a 1 when F(X) > 0.

e When F(X) > 0, Lemma 1 tells us that there is at least one true positive per

row. Hence in total there are at least r true positives in the array.

e When F(X) < 0, Lemma 2 tells us that there are always fewer than 3 - s false
positives per column. Hence in total, there are less than 3 - s - n false positives

in the array.

If we choose r = 3 s-n, then the number of elements returning 1’s in the case where
F(X) < 0 will always be less than r, whereas the number returning 1’s in the case
where F(X) > 0 will always be greater than or equal to . The key here is that
the upper bound on the number of false positives is independent of the number of
rows, whereas the lower bound on the number of true positives is independent of the

number of columns.

To obtain a circuit for COMPARISON, we can simply connect the test elements as
inputs to an LT gate and set the threshold of the gate to ». The question remaining
is how to realize the test elements using a single layer of thresholds gates with small

weights.

The approach is a standard one in threshold circuit theory. For 1 < ¢ < r and

0 <1 < n, define F,

weights of F;(X) modulo p;. Note that for each X € {0,1}?",

.1(X) to be the linear combination obtained by reducing the

Tp,-,l(X) =1 <& Fp,-,l(X) IIlOdp =1.

62
Now F,, ;(X) assumes at most n - p; different values. At most n of these are equal to
1 when taken modulo p;. Denote the values of F), ;(X) which when reduced modulo

p; equal 1 as vq,vs,...,v,. For each v;, 1 < j < n, we place two LT gates in the first

layer, and call them G;l)(X) and G§-2) (X).

e The weights on the input wires of both G;l) and G§~2) are set equal to the
corresponding weights of F), ;(X).

e The thresholds of Gg-l) and G§-2) are set to v; and vj;;1, respectively.
e The weights on the output wires of G;l) and G;-Q) are set to 1 and -1, respectively.

Clearly,
S (G (X) + CP (X)) = Ty u(X)
j=1

To summarize, we have a total of 3 - s - n? test elements, each of which requires 2 - n
LT gates to realize. So, in total we require 6 - s - n3 LT gates. Since s = O(nlogn),

we conclude that our construction has size O(n*logn).

4.3 Computer simulation

We used a short Matlab program, shown in the Appendix, in order to simulate the
LT construction of COMPARISON. For each n (half the number of variables) we
found the smallest number of primes and the smallest threshold that produce a correct

circuit. The following table shows the results:

63

n | # of primes | threshold
1 1 0
2 1 0
3 2 1
4 3 2
5 4 3
6 6 5
7 8 7
8 10 9
9 12 11
10 14 13
11 16 15

We plot the largest weight in the circuit as a function of the number of inputs.

Results of the Computer Simulation

70

60

w £ 4]
(=) o o
T T

Largest Weight

N
(=]
T

101

L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 11
Number of Inputs

4.4 Generalization to LT; C LT ;.4

An important property of the above construction, called “l-approximability,” is the

fact that one can replace the output threshold gate by a weighted sum (i.e., eliminate

64
the sgn(.) function). The output of such a circuit will be very close to 0 or 1. That
fact is used in [13] to show that LT; C LT 4. The idea is the following:

1. Take the output gate, G5 of the LTy circuit. It is an LT gate so we can
substitute it with an I/LTQ circuit as shown in Section 4.2.
2. Take all gates, Gl(i)stfl that connect to it, and substitute them as well.

3. Use the “l-approximability” property to combine the output layer of Gl(i)st,l
(@)

last*

with the input layer of G

4. Continue the same procedure until all LT gates are replaced by LT, circuits.

— 1-approximability

Combine layers in order to simulate an LT, function

by an ﬁ“dﬂ circuit.

4.5 Conclusion

LT, C LT d+1 18 a very useful result. For example, we can use it show that LT M C

LT,. By construction MADD € LTM which then implies that M ADD ¢ LT,.

65
An interesting direction of research is to derive the exact size of the LT, imple-

mentation of COMPARISON using the approach presented in Section 4.2.

66

Chapter 5 LTM: linear threshold

element with multiple thresholds

5.1 Introduction

Motivated by our work on the VLSI implementation of LT elements [8], see Chapter
6, we introduce in this paper a more powerful computing element, a multiple threshold
neuron, which we call LT'M, which stands for Linear Threshold with Multiple tran-
sitions; see [15] and [35]. Instead of the sign function in the LT element, it computes
an arbitrary (with polynomialy many transitions) Boolean function of the weighted

sum of its inputs.

The main issues in the study of LT M circuits (circuits consisting of LT M ele-
ments) include the estimation of their computational capabilities and limitations and
the comparison of their properties to those of AON circuits. A natural approach in
this study is first to understand the relation between LT circuits and LT'M circuits.

Our main contributions in this chapter are:

e We demonstrate the power of LT M by deriving efficient designs of LT M circuits

for the addition of m integers and the product of two integers.

e We show that LT M circuits are more amenable in implementation than LT
circuits. In particular, the area of the VLSI layout is reduced from O(n?) in LT

circuits to O(n) in LT M circuits, for n input symmetric Boolean functions.

e We characterize the computing power of LT M relative to LT circuits.

LT gate

Figure 5.1: Schematic representation of LT, SY M and LT M computing elements.

Next we describe the formal definitions of LT and LT M elements.

5.1.1 Definitions and examples

Definition 5.1 (Linear Threshold Gate — LT)

A linear threshold gate computes a Boolean function of its binary inputs:

f(X) = sgn(wo + iw,xz)

=1

where the w; are integers and sgn(.) outputs 1 if its argument is greater or equal to

0, and 0 otherwise.

Figure 5.1.1 shows an n-input LT element; if > 7 w;x; > —wp the element outputs
1, otherwise it outputs 0. A single LT gate is unable to compute parity. The latter

belongs to the general class of symmetric functions — SY M.

Definition 5.2 (Symmetric Functions — SY M)
A Boolean function f is symmetric if its value depends only on the number of ones

in the input denoted by | X|,

1X| =)z
1

Figure 5.1.1 shows an example of a symmetric function; it has three transitions, it
outputs 1 for | X| < ¢; and for t; < |X| < t3, and 0 otherwise. AND, OR and parity

are examples of symmetric functions. A single LT element can implement only a

68
limited subset of symmetric functions. We define LT'M as a generalization of SY M.

That is, we allow the weights to be arbitrary as in the case of LT, rather than fixed
to 1 (see Figure 5.1.1).

Definition 5.3 (Linear Threshold Gate with Multiple Transitions — LT M)
A function f is in LTM if there exists a set of weights w; € Z, 1 < i < n and a
function h : Z — {0,1} such that

f(X) = h(i w;x;) for all X € {0,1}"

=1

The only constraint on h is that it undergoes polynomialy many transitions as its

input scans [— Y1 |wi|, X0 Jwil]-

Notice that without the constraint on the number of transitions, an LT M gate is
capable of computing any Boolean function. Indeed, given an arbitrary function f,

let w; = 271 and A(X] 27 'x;) = f(z1, .., Tn)-

Example 5.1 (XOR € LTM)
XOR(X) outputs 1 if | X|, the number of 1’s in X, is odd. Otherwise it outputs 0. To
implement it choose w; = 1 and h(k) = 3(1 — (—1)*) for 0 < k < n. Note that h(k)

needs not be defined for £ < 0 and £ > n, and has polynomialy many transitions.

Another useful function that LT M can compute is ADD(X,Y), the sum of two n-bit

integers X and Y.

Example 5.2 (ADD € LTM)

To implement addition we set

l

AXY) = h(Q_ 2 (i + wi))

=1

where hy(k) =1 for k € [2!,2 x 2/ — 1JU [3 x 2!, +00). Defined thus, f; computes the

m-th bit of X +Y. Figure 5.2 shows an example for n = 4.

69

Xo— 1 —1
0 1 0 1
X3— 0 3| X1—2 6
X2 0 X215 0
3—0 3— 0
2 SUMO 4 — SUM]_
Yo—1 1 Yo—1 1
Yi—o 11 Y12 Py
Y,—o Y,— o0
Ys— 0 0 Ysi 0 0
Xo— 1 1 Xo— 1 1 Xo—1
Xi— 2 X1— 2 " Xi—2
X5— 4 12— X5— 4] X5— 4
X3— o 0 X3— 8 0 X3— 8 1
8 4 SUM, 16 — SUM 3 16 |—| SUM 4
Yot 1 Yo—1 1 Yot 0
Yi—2 4l MEsE: gl | Yi—2
Yo— 4 Yo— 4 Yo— 4
Y3—o 0 Y;— 8 0 Y;— 8

Figure 5.2: Addition of two 4-bit integers using a single LT'M gate per output bit.

5.1.2 Organization

This chapter is organized as follows. In Section 5.2, we study a number of applica-
tions of LT M circuits. In particular, we show how to compute the addition of m
integers with a single layer of LT'M elements. In Section 5.3, we prove the character-
ization results of LT M — inclusion relations, in particular LT M C LT,. In addition,
we indicate which inclusions are proper and exhibit functions to demonstrate the

separations.

5.2 LTM constructions

The theoretical results about LT'M can be applied to the VLSI implementation of
Boolean functions. The idea of a gate with multiple thresholds came to us as we
were looking for an efficient VLSI implementation of symmetric Boolean functions.
Even though a single LT gate is not powerful enough to implement any symmetric
function, a 2-layer LT circuit is, Figure 5.2. Furthermore, it is well known that such
a circuit performs much better than the traditional logic circuit based on AND, OR

and NOT gates. The latter has exponential size (or unbounded depth) [51].

70

o tofo-
—w,
L1
1oa %
— 1
—w 1 — W o
. tom 5™ o e
1 Wa — W, t—

LT circuit LT M gate
required area = O(n?) required area = O(n)

Figure 5.3: LT circuit of size O(n) versus a single LT'M gate.

Proposition 5.1 (LT; versus LTM for symmetric function implementation)
The LTy layout of a symmetric function requires area of O(n?); while using LT M

one needs only area of O(n).

PROOF:

Implementing a generalized symmetric function in LT, requires up to n LT gates in
the first layer. Those have the same weights w; except for the threshold wy. Instead
of laying out n times the same linear sum)} w;z;, we do it once and compare the
result to n different thresholds. The resulting circuit corresponds to a single LT M

gate. O

Figure 5.2 shows the advantage of LT'M over LT for the implementation of a
generalized symmetric function. Indeed, the LT layout is redundant; it has n copies
of each weight, requiring area of at least O(n?). On the other hand, LT M performs

a single weighted sum. Its area requirement is O(n).
A single LT M gate can compute the addition of m n-bit integers M ADD. The

only constraint is that m be polynomial in n.

Theorem 5.1 (MADD € LTM)
A single layer of LT M gates can compute the sum of m n-bit integers, provided that

71

m is at most polynomaial in n.

PROOF:
MADD returns an integer of at most n + logm bits. We need one LT M gate per
bit. The least significant bit is computed by a simple m-bit XOR. For all other bits

we use
l m

AEXO, LX) = By (320 Y 2

i=1 j=1

to compute the [-th bit of the sum. O

Example 5.3 (Addition of three 3-bit integers)

We apply the above construction to the case m = 3, n = 3. The result is shown in
Figure 5.2. Notice that the result is in the range {0, ..., 21}; therefore, the LT M gate
computing output bit 3 requires only 2 thresholds.

Corollary 5.1 (PRODUCT € PTM) A single layer of PTM (which is defined
below) gates can compute the product of m n-bit integers, provided that m is at most

polynomaal in n.

PROOF:
By analogy with PT}, defined in [9], in PT M (or simply PT M) we allow a polynomial

rather than a linear sum:
f(X) = h(wlxl + . FWpx, + W(1,2)T1T2 +)

However, we restrict the sum to have polynomialy many terms (else, any Boolean
function could be realized with a single gate). The product of two n-bit integers X
and Y can be written as PRODUCT(X,Y) = ¥, ;Y. We use the construction of
MADD in order to implement PRODUCT.

PRODUCT(X,Y) = MADD(z1Y, z5Y, ..., z,Y)

72

XO* 1 1 Xof 1 0
él*g 3 §1*§ 3;
Y(Z)— 1 0 YS— 1 61—
Y,—o 2 SUMg Y, —2 0 SUM ¢
sl = s
278 1 1o
Z,— o 0 Z,—o 0
Xog— 1 1 Xog— 1 Xog— 1
0 0 0
X112 *79) X172 X172
X5— 4 16 |—| X5— 4 X5— 4
Yof 1 1 Yof 1 0 Yof 1 1
Yi—2 12— SUM, Y;—2 16 — SUM; Y2 16 — SUM 4
Yo—4 82 Yo—4 1 Yo—4 0
Zo— 1 Zo—1 Zo—1
z 1 z 8 z
12 41— 12 0 12
Zo— 4 0 Zo— 4 Z,— 4

Figure 5.4: MADD: addition of three 3-bit integers — X, Y and Z — using a layer of
LTM elemets.

ADD /\
LTM LT,
1Pk

Figure 5.5: Relationship between classes.

n l
[(X,Y) = Rhy(ZZT%%

j=1li=1

fi outputs the [-th bit of the product. O

5.3 Classification of LT M

We use a hat to indicate small (polynomialy growing) weights, e.g., ﬁ’, LTM 6],
[43], and a subscript to indicate the depth (number of layers) of the circuit of more
than a single layer. All the circuits we consider in this paper are of polynomial size
(number of elements) in n (number of inputs). For example, the class LT consists
of those Boolean functions that can be implemented by a depth-2 polynomial size

circuit of LT elements.

73
Figure 5.3 depicts the membership relations between five classes of Boolean func-
tions, including LT, ﬁ, LTM, LTM and ﬁ}, along with the functions used to

establish the separations.

In this section we will prove the relations illustrated by Figure 5.3.

Theorem 5.2 (Classification of LT M)
The inclusions and separations shown in Figure 5.3 hold. That is,
1. LT C LT C LTM
2. LT C LTM C LTM
3. LTM C LT,
4. XOR € LTM but XOR ¢ LT
5. COMP € LT but COMP ¢ LTM
6. ADD € LTM but ADD ¢ LT U LTM

7. IP, € LT, but IP, ¢ LTM

5.4 Proof of the classification theorem

Let us prove the relations illustrated by Figure 5.3. We first show the inclusion rela-

tions. Then, we provide functions that demonstrate the separation between classes.

5.4.1 Inclusions

Most inclusion relations follow from the definitions: LT C LT C LTM and LT -
LTM C LTM. Only one requires a proof:

74
LTM C LT,
To show the above statement we use a result from [13]: a single LT gate with arbitrary
weights can be realized by an LT, circuit. Furthermore, the non-linearity in the
second layer can be removed without affecting the output of the circuit (a property
called “l-approximability,” [18]). So, given f € LT, f(X) = X5 w; fi(X) where p is

polynomial in n and f; € LT for all i.

Now, consider the LT, implementation of a function in LT M. It consists of a
layer of identical LT gates followed by a single gate with 1 and -1 weights and a -1
threshold. We substitute each LT gate of the first layer by its equivalent layer of LT
gates and weighted sum. We combine the weighted sums, i.e., collapse the second

and the third level. The resulting circuit is in LT,.

5.4.2 Separation

In Example 1 we saw that XOR € LTM and it is well known that XOR ¢ LT. On
the other hand COM P(X,Y), the comparison of two n-bit integers is in LT [43].
no 1 fY<X
COMP(X,Y) = sgn(d_ 2" (z; — yi)) =
i=1 0 otherwise
Let us show that COMP ¢ LTM. For that we introduce the notion of entropy of

a Boolean function. An equivalent definition based on communication complexity is

developed in [47].

Definition 5.4 (Entropy)
Given an n-variable Boolean function, S a subset of those variables and s € {0,1}5],
we call fo(x1,..,2n|5) the function obtained by assigning the value s to S in f. The

entropy of f is defined as:

E[f] = max |{f, : s € {0,1}1¥1}]

75
In words, the entropy is the mazimum number of sub-functions over n — |S| variables
one can produce by assigning to a set S of its n variables all possible 2!5! values. The

mazimum 1s taken over S.

Lemma 5.1 (Ezponential Entropy implies Exponential Weights)
Given a function f such that E[f] is exponential in n, its LT M implementation

requires exponential weights, i.e., 37 |w;| exponential in n.

Proof: A subfunction can be written as

fs(.’l,‘l, ..,.’L‘n,|5|) = f(X,S = S) = h(Z w;T; + Ws)

1ieX-S

where Wy = 3 ;cq w;s;. By the pigeonhole principle, and given that W, is an integer,
[{W, : s}| must be greater than E[f]. If it is not, there will not be enough distinct

values of W; to map to all E|[f] distinct sub-functions. That in turn implies

Bl <Y il séw

€S

COMP ¢ LTM
Proof: We show that E[COM P)] is exponential and use Lemma 5.1. Let

fs(z1,..,2n) = COMP(X,Y = s)

There are 2" such functions; let us show that they are all distinct. Given two distinct

integers s and sg, choose X, such that s; < Xy < s9, then f,, (Xo) # fs,(Xo)- O

ADD € LTM but ADD ¢ LT U LTM
Proof: We already saw that ADD € LT M. The least significant bit of the sum
is XOR which is not in LT. On the other hand, E[ADD)] is exponential by a proof
similar to the one for COM P, implying that ADD ¢ LTM. O

76
IP, € LTy but IP, ¢ LTM
Proof: Let IP(X,Y) = Y7 x;y;. Define the function IP,(X,Y) = 1iff IP > k, else
IP, = 0. We claim that [P, ¢ LTM. Indeed, if I P, was in LT M, then it could be

implemented by a layer of LT gates followed by a weighted sum [13]. We could then
combine the circuits for £ = 1..n to implement P2 (Inner Product mod 2) in LT

which is known to be false [14]. O

What remains to be shown in order to complete the classification picture is LT =

LT N LTM. We conjecture that this is true.

Conjecture 5.1 (LT = LT NLTM)

Let LT denote the class of linear threshold functions with arbitrary weights, and LT
the class of functions with polynomial growth in the weights, and let LTM be as
described in Definition 5.1, then

LT = LTNLTM

5.5 Conclusions

Our original goal was to use theoretical results in order to efficiently lay out a gener-
alized symmetric function. During that process we came to the conclusion that the
LT, implementation is partially redundant, which lead to the definition of LT M, a
new, more powerful computing element. We characterized the power of LT M relative
to LT. We showed how it can be used to reduce the area of VLSI layouts from O(n?)
to O(n) and derive efficient designs for multiple addition and product. Interesting
directions for future investigation are (i) to prove the conjecture: LT =LTNLTM ,
(ii) to apply spectral techniques ([9]) to the analysis of LT M, in particular show how
PTM fits into the classification picture (Figure 5.3).

Linear decision lists, LDL, [49], were mentioned in the concluding section of

7
Chapter 2, Section 2.6. It is easy to see that LT'M is an instance of an LD L, implying
that LTM C LDL. An interesting problem is to establish whether LT M € LDL or
LTM = LDL. To prove the former, which is the more probable answer, one needs

to show an LDL construction of I Py, the function shown not to be in LT M.

Another direction for future research, described in Chapter 6, consists in intro-
ducing the ideas described above in the domain of VLSI. We have fabricated a pro-
grammable generalized symmetric function on a 2u, analog chip using the model
described above. Floating gate technology is used to program the weights. We store
a weight on a single transistor by injecting and tunneling electrons on the floating

gate [16].

78

Chapter 6 VLSI implementation:

programmable neural logic

6.1 Introduction

In the field of neuromorphic analog VLSI, most research deals with implementing
neurons that in some way learn or adapt, [11], [16], [19]. That is because it is believed
that the power of neural systems comes from their adaptive behavior. In fact it has
been shown that the function performed by a neuron — the sum of weighted inputs
followed by a threshold — is by itself (without learning) a powerful building block. For
many years, theoretical computer science has studied the power of such neurons, in
issues related to polynomial versus exponential size circuits and the general problem of
NP completeness. The basic problem — build Boolean input Boolean output threshold
circuits, to compute useful Boolean functions efficiently. Threshold circuits have
been shown to be surprisingly powerful [1]. For example, integer division can be
implemented by a polynomial-size threshold circuit of constant depth, [5], [44]. In
other words, if one is to implement a threshold circuit to compute the division of two
n-bit integers, one needs polynomially many, in n, threshold elements. On the other
hand, using the traditional logic circuits, composed of AND, OR and NOT gates,
requires exponentially many gates. That is also the case with simpler functions such

as exclusive-OR and integer addition.

Many results from the theory of threshold circuits could be applied to the imple-
mentation of circuits on silicon. Results such as the relationship between the maximal
size allowed for the weights and the power of the resulting element or circuit [6], [13],

not to mention efficient designs for XOR, ADD, MULTIPLY and other useful func-

79
tions; see [24], [28], [31]. For example, a simple application of the theory led us to
the introduction of a multiple threshold element; see Chapter 5. The latter reduces
the area of the layout from O(n?) to O(n) for certain Boolean functions, in particular

symmetric functions, such as PARITY.

Our research has three distinct goals:

1. The implementation aspect. To design and implement efficient threshold ele-

ments on silicon.

2. The theoretical aspect. To leverage the work done in theoretical computer
science in order to design high performance threshold circuits in a systematic

way.

3. The programmable aspect. To introduce threshold elements as building blocks

in FPGA’s.

Implementations of threshold circuits were proposed already in the 60’s and 70’s
[4], [48], [53], and more recently in [28], [39]. To our knowledge, the theoretical results
on threshold circuits have not been linked to any work involving silicon implementa-
tions. Programmable neuron-based hardware has been recently proposed [39], [41].
In the implementation section below, we show how those relate to our work. For a
short overview of FPGA’s, see [50]. In Section 6.2 we compare threshold circuits to
traditional logic circuits. In Section 6.3 we discuss the programmable aspect of the
design. Section 6.4 shows the VLSI implementation and testing results. The LT M
element was presented in Chapter 5 and in [7] from the theoretical point of view.
It was compared to traditional threshold circuits and (AND, OR, NOT) circuits.
Section 6.5 presents an implementation of LT M on a 2u-technology 2mm x 2mm

chip.

80

AND
1
T X, AND
X —Q
1 . . X, OR
X, 12 11—y, — AND
X3
1
L3 AND

Figure 6.1: Neural vs. conventional logic. Two circuits computing XOR.

6.2 Neural logic versus conventional logic

Why bother use threshold elements given that any Boolean functions can be im-
plemented, in a systematic way, by a circuit of AND, OR and NOT gates (AON
circuit). The reason is that for some functions, such as exclusive-OR (XOR), the
number of elements in the AON circuit will grow exponentially with the number of
bits in the input, [51]. On the other hand, if one uses linear threshold elements, the
number of gates is linear in the number of input bits. This is shown in Figure 6.2 for
a 3-bit input. In general, a depth-2, AON circuit computing XOR of n bits requires
at least 27! + 1 gates. Using LT, one needs only n + 1 gates.

It is easy to see that LT circuits are more powerful than AON circuits. The
reason is that for any single AON gate there is an equivalent LT gate, computing

the same function. On the contrary, most LT gates do not have equivalents in AON.

Example 6.1 (MAJORITY)

Consider the function defined by the weight vector (wp, ..., ws) = (—3,1,1,1,1,1) :
f(z1,...,25) = sgn(—3 + o1 + 2o + T3 + T4 + T5)

It outputs 1 only when three or more of the inputs are 1. It cannot be implemented

81

by a single AND or OR gate, even if we allow some inputs to be negated (NOT'). O

One may argue that even though LT circuits are more powerful, their building blocks
are more complex and therefore will require a larger area in the circuit layout. This
argument is correct to some extent. However, the exponential to polynomial decrease
in the number of required gates dominates the penalty introduced by an increase in

their size. The following section addresses the issue.

6.3 Programmable versus hardwired weights

One can look at FPGA’s as circuits of elements in which the function that each ele-
ment computes can be programmed, that is it can be chosen among a set of available
functions. In traditional FPGA’s that set consists of AND, OR and NOT. We pro-
pose a larger collection of functions, namely the set of Linear Threshold Functions,

LT.

All the information about an LT gate is contained in the weights and threshold.

We consider two ways of implementing the weights.

e Hardwired weights are encoded in the width to length ratio of a transistor.

e Programmable weights are stored as non volatile charge on a floating gate.

Hardwired weights cannot be changed once the circuit has been fabricated, while
programmable ones can. Hardwired weights present an interesting problem in terms
of automated layout. Some functions such as the comparison function, COMP,
require weights ranging from 1 to 2"/2. Figure 6.3 shows an 8-bit COM P function.
AND, OR and all symmetric functions can be implemented with small weights. This

difference implies that using hardwired weights, some LT gates are larger than others.

82

Figure 6.2: Comparison of two 4-bit integers.

Using programmable weights simplifies the layout, and allows one to modify the
function that the LT element computes. In the next section we describe the details

of the implementation.

6.4 Implementation and results

In [41] the authors have fabricated a neuron-based circuit that implements an ar-
bitrary Boolean function. We implement an arbitrary threshold element (a limited
set of Boolean functions). The actual function is selected by modifying the weights.
Figure 6.4 shows the schematic implementation. A 16-input threshold element was
fabricated using the standard 2 um double - poly analog process available from MO-
SIS. See Figure 6.4 for the layout. The 16 inputs are fed to all four gates via metal 2

(purple); such layout allows one to build dense arrays of threshold elements.

We store the weights on polysilicon floating gates, using a single transistor per
weight, providing long-term retention without refresh. The multiplication relies on
the fact that the inputs are boolean, 0 Volts for a logical 0, and X volts for a logical
1, where X can vary from 1 to 5 Volts. An input generates current proportional to
the corresponding weight. The sum, > 7" ; w;z;, comes naturally as we connect all
transistors to the same node. That is another difference with the approach of [39]
where a capacitive sum of voltages is used, rather than a sum of currents. Finally

two inverters provide hard thresholding pulling the output to logical 0, or logical 1.

83

Weighted Sum Thresholding

- S~ -

Vad Vdd Vadd

T))

Figure 6.3: Schematic of a Programmable Linear Threshold Element.

To program in a new function one modifies the weights via tunneling (increasing)
and hot electron injection (decreasing), see [16]; [19], [55] for similar applications of
floating gates. As shown in [10] an analog memory cell, which is slightly more complex
than the single transistor storage used here, can store up to 14 bits of information,

an amount largely sufficient for most practical threshold functions.

We tested the linearity of our threshold element by detecting the value of the
threshold, wy, at which wy + 1%, z; = 0, while varying the number of 1’s in the

input vector. 1 Volt was used as the value of logical 1. Figure 6.5 shows the result.

Notice the square root shape of the data. This illustrates an important point, the
voltage one needs to apply in order to get a certain value of T' is not linear in T'. For
an nF'ET, operating above or below threshold the contributions of a single input are
respectively:

1= - Vi
Vg
I =Iher
where V7 is the thermal voltage and (3, Iy and k are constants. Hardwired weights are
encoded as the W/L ratio of the transistor to which both § and I, are proportional
[29]. That in turn makes the values of the weights linear in W/ L irrespective of the

region of operation of the transistor. In the case of programmable weights, the value

84

Figure 6.4: Layout of the linear sum — wq + 2}21 w;x;. Four threshold elements are
shown, two programmable and two non programmable, the latter having unit weights.
The area shown is 168y x 360u. The chip was fabricated using the 2u technology
available from MOSIS.

85

Vdd - Threshold (Volts) ~ Transition Point (Digital Input)
22 1 1 1 1 1 1

181 [
161 []

14+

1.0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Number of Inputs at 1Volt

Figure 6.5: Vdd — Threshold versus the number of 1’s in the input.

of the weights can be quadratic or exponential in the voltage stored on the floating

gate; see Figure 6.4. Such non-linearities result in a large dynamic range.

6.5 LTM:VLSI layout

The theoretical results about LT M can be applied to the VLSI implementation of
Boolean functions. The idea of a gate with multiple thresholds came to us as we were
looking for an efficient VLSI implementation of symmetric Boolean functions. Even
though a single LT gate is not powerful enough to implement any symmetric function,
a 2-layer LT circuit is. Furthermore, it is well known that such a circuit performs
much better than the traditional logic circuit based on AND, OR and NOT gates.
The latter has exponential size (or unbounded depth) [51].

Proposition 6.1 (LT, versus LTM for symmetric function implementation)

The LTy layout of a symmetric function requires area of O(n?), while using LT M

86

Area> O(rP) Area> O(n)
—wl
I I t1
L 11
S -1
-1
—wl
3 tp

Figure 6.6: Advantage of LT M (right) over LT (left) for symmetric functions. The
weighted sum is implemented only once rather than in each gate of the first layer.

one needs only area of O(n).

PROOF:

Implementing a generalized symmetric function in LT, requires up to n LT gates in
the first layer. Those have the same weights w; except for the threshold wy. Instead
of laying out n times the same linear sum)} w;z;, we do it once and compare the
result to n different thresholds. The resulting circuit corresponds to a single LT M

gate. O

The above proposition is illustrated in Figure 12. The LT; layout is redundant;
it has n copies of each weight, requiring area of at least O(n?). On the other hand,
LTM performs a single weighted sum, and its area requirement is O(n). Figure 6.5

shows a high level schematic of the LT'M element.

One such element was fabricated on a 2mm x 2mm chip, using 2u technology from
MOSIS. Figure 14 shows its layout. It has 16 inputs. The output consists of a 4-bit
bus addressing a 4-bit memory cell (not shown). The weighted sum is implemented
in the Neuron MOS fashion, as a capacitive sum of voltages, see [30], [39], as opposed
to a sum of currents used in the layout of the LT gate, Figure 6.4. The values of
the weights and thresholds are stored on floating gates. They can be programmed

globally (e.g., increasing all weights, or thresholds in parallel), or individually by using

bitl |
bit2 |
bit3 [)
bit4 |
bit5 |

bit6 |
bit7 [)

bits [)

87

[>T7 —
-/ LT
SR —O
[>T8 —

-/

0o

M
il
000000 0L

Figure 6.7: High level schematic of an LT M gate.

out

88
the input lines to select a particular weight/threshold. Assuming the thresholds are
increasing, one knows that only a single line is at logical 1 at the output of the AND
layer; see Figure 13. Taking advantage of this fact, we multiplex the 16 lines into
a 4-bit bus addressing a memory cell, which stores the values of the function. In
general, we get a bus of log, ¢ bits, where ¢ is the number of transitions (thresholds)
of the LT M element. In the case of symmetric functions ¢ = n, the number of inputs.
Alternatively, one can look at the circuit of Figure 6.5 as a 16-bit input, 4-bit output

programmable computing element.

6.6 Conclusion

We have fabricated and tested a 16-input programmable linear threshold element us-
ing floating gates to store the weights. Such storage requires no refresh and allows the
weights to be modified via tunneling and injection. We have fabricated a second chip
implementing a 16-input multi-threshold element. A single multi-threshold element
can implement XOR and integer addition. It takes advantage of the fact that some
useful Boolean functions can be implemented by a 2-layer LT circuit in which all
gates of the first layer have the same weights. That allows us to reduce the area from

n? to n, by implementing the weighted sum only once.

From the practical point of view, one possible extension of this research is to devise
a systematic (maybe automated) way of generating the layout of threshold circuits
with hardwired weights. Another direction of research is to incorporate programmable

threshold elements as building blocks in FPGA’s.

89

.a

sl o d el ned el e d nad mod oo d opd sad ol o 2l !

TUTL

]
Sttt]
- -
e e e

b b b/ bm b o b
S e e .

-

| | —
—-—
-
= =

s - R -

-
-
»
-
-
%
_l'
-
-
-

- s
—

Tl

Figure 6.8: Layout of a 16-input LT'M element. The output consists of a 4-bit bus
addressing a 4-bit memory cell (not shown). The weighted sum is implemented in the
Neuron MOS fashion, as a capacitive sum of voltages. The chip was fabricated using
the 2u technology available from MOSIS.

90

Chapter 7 Conclusions

The present thesis studied the properties of linear threshold elements. Those can be
viewed as Boolean inputs, Boolean output artificial neurons, computing the sign of a
weighted sum of their inputs. Our contributions are three levels

(d)

e At the theoretical level, we defined new classes of functions such as LT and

LTM and classified their computational power.

e At the algorithmic level, we showed how to convert real weights to weights
drawn from an arbitrary subset of the real numbers, e.g., integer weights, we
also showed how to construct LT functions with minimal weights, and finally we
presented an algorithm that produces the LT, circuit that computes COMP.
We also presented LT M circuits computing useful functions, such as XOR,

ADD, PRODUCT.

e At the implementation level, we showed the design, layout and testing of the
VLSI implementation of LT and LTM. We designed a programmable LT
element that uses floating gate technology in order to store the values of the

weights.

In Chapter 2 we showed some well known results in the theory of threshold circuits,
in particular, that any linear threshold element can be implemented with integer
weights. Our contribution is a generalization of that result, to an arbitrary set of
real numbers. The conditions that allow any LT function to be implemented were
derived, along with an algorithm for converting the weights. Chapter 3 presented a
method for constructing linear threshold functions with minimal weights. It was used

—(d
to establish the separation between the classes LT(), indexed by d. Given an integer

91

d, the class ﬁ(d) is defined as the set of functions that can be implemented with
weights of O(n?). In Chapter 4 a well known result was presented, i.e., the fact that
a single LT element with large weights can be implemented by a two-layer circuit
composed of LT elements, that is, linear threshold elements with small weights. Our
contribution is the explicit construction of those circuits for the comparison function,
COMP. Chapter 5 introduces, LT M, or linear threshold element with multiple
thresholds. It presents constructions for useful Boolean functions, such as XOR,
ADD, PRODUCT, along with an estimation of the power of LT M relative to LT
and its derived classes, ﬁ, LT, and LTb. Finally Chapter 6 describes the VLSI
implementation of LT and LT M. Both hardwired and programmable solutions are
presented. Weights are stored as the charge on a floating gate, and modified by

tunneling and injection of electrons.

There remain many open questions and interesting directions for future investi-
gation. For example, the relationship between the classes of functions described in
this thesis and linear decision lists, [49]. The proof of Conjecture 5.1 is needed to
complete the picture relating LTM to LT. From the algorithmic point of view, to
develop efficient algorithms for converting or minimizing the weights appears to be a
challenging problem. As far as hardware implementation, a long term goal is the inte-
gration of threshold elements as building blocks of logic design libraries, in particular

field programmable gate arrays.

92

Appendix

function correct = test(n, r, t)

%% function correct = test(mn, r, t)

% Simulation of COMPARISON(X,Y)

% correct = 1 if the construction works

h n =
h T =
h t =

number of bits in X (Y)

number of primes used

threshold used

% V.Bohossian May, 96

BIG = 27n;

correct = 1;

load primes.txt; % The first 1000 primes
p = primes(3:r + 2); % Remove 2 and 3

hp = fix(p / 2) + 0.1; % hp : half p

p = p * ones(1l, n); % Duplicate columns
hp = hp * ones(1, n);
for i=1:n, L(i) = 2 - (i - 1);end;
forx=0:2 " n-1,
fory=0:2"n-1,

Ax = fix((x * ones(1, n)) ./ L);

Ay = fix((y * omnes(1, n)) ./ L);

A = Ax - Ay;

A = rem(ones(r, 1) * A + BIG * p, p);

A=A+ ((signthp - A) - 1) / 2) .* p;

positives = size(find("(A - 1)),1);

bi

t

= (positives > t);

93
correct = correct & (bit == (x > y));
end;

end;

return;

94

Bibliography

1]

[4]

E. Allender. A note on the power of threshold circuits. Proceedings of the 30th

IEEE Symposium on Foundations of Computer Science, pages 580-584, 1989.

N. Alon and J. Bruck. Explicit constructions of depth-2 majority circuits for
comparison and addition. SIAM Journal of Discrete Mathematics, 7(1):1-8,
February 1994.

E. Amaldi and V. Kann. The complexity and approximability of finding max-
imum feasible subsystems of linear relations. FEcole Polytechnique Federale De

Lausanne Technical Report, ORWP 93/11, August 1993.

J.J. Amodei, R.O. Winder, D. Hampel, and T.R. Mayhew. Digital circuit tech-

niques. International Solid-State Circuits Conference, February 1967.

P.W. Beame, S.A. Cook, and H.J. Hoover. Log depth circuits for division and
related problems. Proceedings of the 25th IEEE Symposium on Foundations of
Computer Science, pages 1-6, 1984.

V. Bohossian and J. Bruck. Algebraic techniques for constructing minimal weight
threshold functions. Submitted to SIAM Journal of Discrete Mathematics. Avail-
able at http://paradise.caltech.edu/ETR.html.

V. Bohossian and J. Bruck. Multiple threshold neural logic. Ad-
vances in Neural Information Processing Systems, 10, 1998. Available at

http://paradise.caltech.edu/ETR.html.

V. Bohossian, P. Hasler, and J. Bruck. Programmable neural logic. Proceedings
of the second annual IEEE International Conference on Innovative Systems in

Silicon, pages 13-21, 1997. Available at http://paradise.caltech.edu/ETR.html.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

95
J. Bruck. Harmonic analysis of polynomial threshold functions. SIAM Journal

of Discrete Mathematics, 3(2):168-177, May 1990.

C. Diorio, S. Mahajan, P. Hasler, B.A. Minch, and C. Mead. A high resolution
non-volatile analog memory cell. Proceedings of the International Conference of

Circuits and Systems, 3:2233-2236, 1995.

R. Douglas, M. Mahowald, and C. Mead. Neuromorphic analogue VLSI. Annual
Reviews in Neuroscience, 18:255-281, 1995.

M. Goldmann, J. Hastad, and A. Razborov. Majority gates vs. general weighted
threshold gates. Computational Complexity, 2:277-300, 1992.

M. Goldmann and M. Karpinski. Simulating threshold circuits by majority cir-
cuits. Proceedings of the 25th ACM Symposium on the Theory of Computing,
pages 551-56, 1993.

A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits
of bounded depth. Journal of Computer and System Sciences, 46(2):129-154,
April 1993.

D.R. Haring. Multi-threshold threshold elements. IEEE Transactions on Elec-
tronic Computers, 15(1), February 1966.

P. Hasler, C. Diorio, B.A. Minch, and C. Mead. Single transistor learning
synapses. Advances in Neural Information Processing Systems, pages 817-824,

1995.

J. Hastad. On the size of weights for threshold gates. SIAM Journal of Discrete
Mathematics, 7:484-492, 1994.

T. Hofmeister. A note on the simulation of exponential threshold weights. CON-
COON conference, 1996.

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

96
M. Holler, S. Tam, H. Castro, and R. Benson. An electrically trainable arti-

ficial neural network with 10240 ’floating gate’ synapses. International Joint

Conference on Neural Networks, 11:191-196, June 1989.

J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the USA National Academy of Sciences,

79:2554-2558, 1982.

A.A. Irmatov. On the number of threshold functions. Diskretnaya Matematika

(Russian), 5(3):40-43, 1993.

A.A. Irmatov. Estimations of the number of threshold functions. Discrete Math-

ematics and Applications, 6(6):569-583, 1996.

J. Kahn, J. Komlds, and E. Szemerédi. On the probability that a random {+1}-
matrix is singular. Journal of the American Mathematical Society, 8(1):223-240,
1995.

W.H. Kautz. The realization of symmetric switching functions with linear—input

logical elements. IRE Transactions on Electronic Computers, March 1961.

M. Krause and P. Pudlak. On computing boolean functions by sparse real poly-
nomials. Proceedings of the 36th Annual Symposium on Foundations of Computer

Science, pages 682—-691, October 1995.

H.W. Kuhn and A.W. Tucker. Linear inequalities and related systems. Annals
of Mathematics Studies, 38, 1956. Princeton University Press, Princeton, NJ.

H.W. Kuhn and A.W. Tucker. On systems of linear inequalities. Linear In-
equalities and Related Systems, Annals of Mathematics Studies, 38:99-156, 1957.

Princeton University Press, Princeton, NJ.

R. Lauwereins and J. Bruck. Efficient implementation of a neural multiplier.

IBM Research Report, RJ 8138 (74551), May 30, 1991.

C. Mead. Analog VLSI and neural systems. Addison-Wesley, 1989.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

97
B.A. Minch, C. Diorio, P. Hasler, and C. Mead. Translinear circuits using sub-

threshold floating-gate MOS-transistors. Analog integrated circuits and signal
processing, 9(2):167-179, March 1996.

R.C. Minnick. Linear - input logic. IRE Transactions on Electronic Computers,

March 1961.
M. Muroga. Threshold logic and its applications. Wiley-Interscience, 1971.

J. Myhill and W.H. Kautz. On the size of weights required for linear-input
switching functions. IRE Transactions on FElectronic Computers, 10:288-290,

1961.

A.M. Odlyzko. On subspaces spanned by random selections of +1 vectors. Jour-
nal of Combinatorial Theory, Series A(47):124-133, 1988.

S. Olafsson and Y.S. Abu-Mostafa. The capacity of multilevel threshold func-
tions. IEEFE Transactions on Pattern Analysis and Machine Intelligence, 10(2),
March 1988.

D.T. Perkins, D.G. Willis, and E.A. Whitmore. Division of space by concur-
rent hyperplanes. Internal Report, Missile and Space Division, 1959. Lockheed

Aircraft Corporation, Sunnyvale, California.

D. Rumelhart and J. McClelland. Parallel distributed processing: Explorations

in the microstructure of cognition. MIT Press, 1982.

J.S. Shawe-Taylor, M.H.G. Anthony, and W. Kern. Classes of feedforward neural
networks and their circuit complexity. Neural Networks, 5:971-977, 1992.

T. Shibata, K. Kotania, and T. Ohmi. Real-time reconfigurable logic circuits
using neuron MOS transistors. International Solid-State Circuits Conference,

1993.

98
[40] T. Shibata and T. Ohmi. A functional MOS transistor featuring gate-level

weighted sum and threshold operations. IEEE Transactions on FElectron De-

vices, 39(6), June 1992.

[41] T. Shibata and T. Ohmi. Neuron MOS binary-logic integrated circuits — part
I: Design fundamentals and soft-hardware-logic circuit implementation. IEEE

Transactions on Electron Devices, 40(3), March 1993.

[42] L. Shlafli. Gesamelte mathematische abhandlugen. Band 1, 1850. Basel: Verlag

Birkhauzer.

[43] K. Siu and J. Bruck. On the power of threshold circuits with small weights.
SIAM Journal of Discrete Mathematics, 4(3):423-435, August 1991.

[44] K. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth efficient neural networks
for division and related problems. IEEE Transactions on Information Theory,

39(3):423-435, May 1993.

[45] K. Siu and V.P. Roychowdhury. On optimal depth threshold circuits for multipli-
cation and related problems. SIAM Journal of Discrete Mathematics, 7(2):284—
292, May 1994.

[46] D.R. Smith. Bounds on the number of threshold functions. IEEE Transactions

on Electronic Computers, June 1966.

[47] M. Szegedy. Algebraic methods in lower bounds for computational models with
limited communication. PhD Thesis, 1989. Chicago, Illinois.

[48] T. Tich-Dao. Threshold I?L and its applications to binary symmetric functions
and multivalued logic. IEEE Journal of Solid-State Circuits, 12(5), October
1977.

[49] G. Turan and F. Vatan. Linear decision lists and partitioning algorithms for the

construction of neural networks. 1997.

99
[50] J. Villasenor and W.H. Mangione-Smith. Configurable computing. Scientific
American, pages 66—71, June 1997.

[61] I. Wegener. The complexity of the parity function in unbounded fan-in un-

bounded depth circuits. Theoretical Computer Science, 85:155-170, 1991.

[52] D.G. Willis. Minimum weights for threshold switches. Switching Theory in Space
Techniques, 1963. Stanford University Press.

[53] B.A. Wooley and C.R. Baugh. An integrated m-out-of-n detection circuit using
threshold logic. IEEE Journal of Solid-State Circuits, 9(5), October 1974.

[54] S. Yajima and T. Ibaraki. A lower bound on the number of threshold functions.
IEEE Transactions on Electronic Computers, 14(6):926-929, December 1965.

[55] K. Yang and A.G. Andreou. The multiple input floating gate MOS differential
amplifier: An analog computational building block. IEEE ISCAS, 5, 1994.

[56] A.C. Yao. On ACC and threshold circuits. Proceedings of the 31th IEEE Sym-
posium on Foundations of Computer Science, pages 619-627, 1990.

[67] T. Zaslavsky. Facing up to arrangements: Face-count formulas for partitions
of space by hyperplanes. Journal of the American Mathematical Society, 154,
Providence, RI, 1975.

[58] Y.A. Zuev. Methods of geometry and probabilistic combinatorics in threshold
logics. Discrete Mathematics, pages 427-438, Appl. 2, 1992.

