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“ ‘CrTpaHHO... — JyMaeT OH, epollia BOJIOCH n KpacHes. — Kak ke oHa permaercst? ['ml..
DT0 3aj[ada Ha HEeOlpeJeIEHHbIe YPABHEHUsI, & BOBCE He apudMerndeckas...’

Yunurenab rISOUT B OTBETHI U BUAUT 7D u 63.

‘T'm!l.. cTpammo... <..>"’

— Pemaiite xe! — roBopur ou Ilere.

— Hy, gero gymaemns? 3amada-To Beah myctsakoBasa! — rosoput Ymomos Ilere. — Dxwmii
THI Aypak, Oparten! Pemmwre yx BoI emy, Erop Amexcend!

Erop Anekcenu Geper B pyku rpudesib u HaunHaeT permarsk. OH 3auKaeTcs, KPaCHEeT,
OJ1eTHEEeT.

— D10 3aj7a4a, cOOCTBEHHO I'OBOps, ajredpaunyeckas, — roBopur oH. — Ee ¢ mkcom u
HUTPOKOM PEMIUTh MOXKHO. Brpodem, MOYKHO U TaK PemnnTh. 9 BOT pa3aen... monumaere?
Temneps BOT HAIO BBIYECTH... moHmMaere? Vaum BOT uTo... Pemmre MHe 3Ty 337341y camu K
3aBTpaMmy... [lomymaiire...
<...>

— W 6e3 anrebpnl pemuTh MOXKHO, — FOBOPUT Y/0/I0B, HMPOTIrUBasi PYKYy K CY€TaM U
B3/bixasd. — BOT, u3BOJIbTE BUJETh...

Omn meKaeT Ha cUeTax, W y HEro moaydaercs 75 u 63, 9T0 u Hy»KHO OBLIO.

— Bor-c... no-namiemy, no-ueygesomy. ”

A.II. Yexos, “Penerurop.”?

1« ‘How queer!’ he thinks, ruffling his hair and flushing. ‘How should it be done? H’m — this is an
indeterminate equation and not a sum in arithmetic at all => The tutor looks in the back of the book and
finds that the answer is 75 and 63. ‘H’m — that’s queer. <...> ’ ‘Come, do the sum!” he says to Pete.
‘What's the matter with you? That’s an easy problem!” cries Udodoff to Peter. “What a goose you are,
sonny! Do it for him, Mr. Ziboroff!” Gregory takes the pencil and begins figuring. He hiccoughs and flushes
and pales. ‘The fact is, this is an algebraical problem,” he says. ‘It ought to be solved with x and y. But
it can be done in this way, too. Very well, I divide this by this, do you understand? Now then, I subtract
it from this, see? Or, no, let me tell you, suppose you do this sum yourself for to-morrow. Think it out
alone!” <..> ‘That sum can be done without the help of algebra,” says Udodoff, sighing and reaching for
the counting board. ‘Look here!” He rattles the counting board for a moment, and produces the answer
75 and 63, which is correct.  ‘That’s how we ignorant folks do it.” ” — Anton Chekhov, “The Tutor.”
Translated by Marian Fell. From Russian Silhouettes: More Stories of Russian Life, by Anton Tchekoff,
New York: Charles Scribner’s Sons, 1915.



v

Acknowledgements

The completion of such strenuous a task as Ph.D. thesis research is impossible without ad-
equate support, with which I was definitely blessed. First and foremost, I wish to thank
my advisor, Professor Oscar Bruno, who managed to find the perfect balance between in-
dependence and supervision, trust and test, support and challenge, best suited for guiding
me down this long road. Oscar could be — and was — a mentor, an authority, a colleague,
or a friend, depending on what a particular situation demanded. The excellent working
relationship that we have developed over the last four years is, in my opinion, something to
be truly proud of.

There is another person, without whom this research would not have even started, let
alone completed. It was Professor Peter Bossaerts who introduced me to finance, and pointed
out the remarkable opportunities to be pursued by someone with a math background. I have
learned a great deal from Peter’s inspiring, open-minded, often critical presentations, both
in class and in private conversations, of various challenges in the modern finance.

I would certainly like to thank Professor Dan Meiron and Dr.Niles Pierce for providing
their comments and thus contributing towards shaping up this work, as well as for patiently
putting up with more than a fair share of organizational “issues.”

The whole environment of the Applied and Computational Mathematics option at Cal-
tech deserves a special note of gratitude. I am privileged to have been part of such a
brilliant, stimulating and fun group of people as this one, which has done a lot to foster my
creative growth. I would like to specifically thank Professor Don Cohen, who has served
as an invaluable source of support and positive criticism on numerous occasions; Dr.Alexei
Novikov, whose discussions have benefited this work on many counts; all my co-inhabitants,
of various times, in 210 Firestone: Mike Louie, Bogdan Craciun, Razvan Fetecau and Lau-
rent Demanet, who helped create an atmosphere of friendly cooperation in the office; Sheila

Shull, who is one of the most efficient, most helpful and, quite simply, nicest people I have



A%

ever met; Chad Schmutzer, who has many a time saved my technologically challenged self
from (computer) panic attacks; and many, many other colleagues at the Department, each
of whom deserves lots of kind words. I would also like to mention my good friend and math
Ph.D., Andrei Khodakovsky, from whose expertise in mathematical physics I was able to
benefit on several important occasions.

I would also like to thank all the people — instructors, peers and friends, both from inside
and outside of Applied Math, whom I have met at Caltech and who made my stay here a
fruitful and enjoyable experience. Tom Hou, Uri Keich, John Pelesko, Leonid Kunyansky,
Patrick Guidotti, McKay Hyde, Jason Kastner, Maya Tokman, Gang Hu, Danny Petrasek,
Christiane Orcel, Shuki Bruck, Ulyana Dyudina, Serge Makarov, Vadym Kapinus, George
Shapovalov and wife Kira, Alexei Dvoretskii, Rustem Shaikhutdinov, Konstantin Matveev
and wife Anna, Anton Ivanov and wife Olga, Alexey Pankine, Eric Severin, Ricardo Hassan,
Sergey Pekarsky, Anna Kashina, Dmitry Kossakovsky, Vincent Bohossian, Michael Ol, Yuri
Solomatine — the list of the wonderful personalities I have come to know and personal friends
I have made here could go on and on.

I would be amiss not to mention the place where I have discovered the world of both
pure and applied mathematics; the school that gave me the education, taught me the culture
and developed the skills for independent research in this area. I could truly appreciate all
that I received as an undergraduate at the Mechanics and Mathematics department of the
Moscow State University during my graduate studies at Caltech.

Finally, last but not least, I want to thank my family for their generous part in making
me who I am, without whom I would not have had all that it takes to succeed. 1 wish
to thank my grandparents, who saw me grow and believed in me; my in-laws, notably,
my father-in-law, Boris Yakovlevich Lokshin, himself a top applied mathematician, whose
advice and help I could always rely on; my elder brother Tony (Anton), my closest friend
and always an inspiring example; my parents, Tatyana Borisovna Ilyina and Jacob (Yakov
Haskelevich) Greenberg, whose love, support, comfort, advice, hearts and souls were with
me, literally, each step of the way, and whose presence I always feel, despite the physical
distance separating us; and of course, my dearest wife, Galina, who made some important
sacrifices to follow me to a new place, bore the cross of a graduate student’s wife with
stoicism, took care of me, loved, endured and supported me through all ups and downs of

our five years at Caltech. It is to her that this thesis is most affectionately dedicated.



vi

Abstract

In the simulation of the inherently nonlinear processes involving moving boundaries, accu-
rate solutions only result from use of sophisticated, high-quality numerical algorithms. Much
work has been devoted to the design of such algorithms; unfortunately, the most general
approaches in existence are usually not very accurate, while those that produce the most
accurate results for restricted classes of problems are hard to generalize. In this work we at-
tempt to bridge this gap by proposing a general method for the solution of parabolic moving
boundary problems — a method which, in particular, can accurately treat the notoriously
difficult Stefan-like problems with singular initial conditions.

Our method is based on a front-fixing change of variables, followed by the solution of the
resulting nonlinear partial differential equation via expansion in Chebyshev series, with the
use of an appropriate convergent smooth approximations in singular cases. This approach
provides a unified framework for arbitrary parabolic operators. For problems with smooth
initial data, our method is competitive with any available technique in both speed and
accuracy. At the same time, our method is able to produce accurate numerical solutions in
the most general setting, whenever existence theorems for moving boundary problems hold.
We establish convergence of these numerical solutions to the true solution for a large class
of possibly singular initial conditions.

In addition to the general method mentioned above, we also introduce a number of
additional computational techniques, which enable us to improve the performance of the
method for singular problems. These include derivative evaluations with Padé approxima-
tions; smoothing the problem via prior integration in time; and domain decomposition.

We demonstrate the performance of our method with a number of well-known regular
and singular problems. We compare our solutions to those obtained by other methods
and show that our algorithms generally produce significantly more accurate results. The

additional techniques mentioned above, which we introduce for greater efficiency and which



vii
do not use smoothing approximations, give rise to substantial gains in computing times and
still produce reasonably accurate solutions.

In the last part of this work we present a systematic study of the mathematical finance
problem of pricing American options on a dividend-paying asset from the point of view of
partial differential equations. A symmetry result, which is obtained via a simple change
of variables, allows us to reduce any American option problem to one of the two canonical
cases, depending on the relation between the interest rate and the dividend yield. Each of
these cases is equivalent to a singular Stefan problem, which can be solved by the meth-
ods introduced in this text. We present several model calculations, including the classical
problem of an American put on a single stock, as well as more complicated examples, such
as index options and foreign currency options, thus demonstrating the remarkable practical

scope of the proposed approach.
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Chapter 1

Introduction

The age of chivalry is gone. That of sophisters,

econornists and calculators has succeeded.

(Edmund Burke, 1729-1797)

Boundary value problems are ubiquitous in applied mathematics. Physical quantities which
depend on several variables and are studied within a certain region (e.g., the whole space
or a body) are usually modelled as solutions of differential equations satisfying a set of
boundary conditions. In most cases the contours of the region are known in advance and
remain fixed throughout the solution process. However, there is a class of phenomena
which require mathematical models allowing for domains whose boundaries are partially or
completely unknown and must be determined as a part of the solution. Examples of such
processes are ample in physics; the two best known of them probably are those relating to
the simultaneous flow of two non-mixing fluids and melting or solidification of materials. In
either case, an unknown quantity (the velocity profile in the former and the temperature in
the latter) is studied on both sides of an interface (fluid-fluid and liquid-solid, respectively),
which is not specified and needs to be found. Mathematically, this is usually expressed by
a partial differential equation valid away from the interface plus boundary conditions on it.
Since the boundary is unknown, one more boundary condition than would be necessary on
a fixed domain, must be specified.

Problems involving unknown boundaries are thus inherently nonlinear, even for linear
differential equations, and thus, distinctly complex — and interesting. In the literature, they
are known by the name of free or moving boundary problems. We adopt the terminology
of [27], where steady state problems on unspecified domains are called “free boundary,”
while the term “moving boundary” is associated with time-dependent settings, notably those

governed by parabolic equations. The latter are the sole subject of this work, even though
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the same ideas can be applied to elliptic and even hyperbolic problems. Throughout this

7 G 7 L

work, we use the terms “moving boundary,” “moving front,” “interface,” “moving end,” etc.,
interchangeably, to refer to the unknown part of the boundary of the domain where the
problem is posed.

Problems with moving boundaries have received much attention for both their wide
practical relevance and the mathematical challenges they present. The original model,
which was developed by J. Stefan in the late 1880s in his study of melting and freezing

processes, can be expressed as follows

Up = Klgg, 0<z<s(t),t>0
u(0,2) =0, s(0) =0

(02) (©) (1.0.1)
u(t,0) = o, u(t,s(t)) =0

—kug(t, s(t)) = As(t)

These equations describe the following physical configuration: initially at critical tempera-
ture u = 0, a slab of ice is subject to a positive temperature ug > 0 at its left end, causing it
to melt. The function s(t), then, represents the boundary of the region occupied by water
(melting front). The last condition in this set of equations expresses the energy balance
across the interface, taking into account the absorption of latent heat A. This is what is

known as the classical Stefan problem; it admits a simple similarity solution

x
u(t,z) = ug + Aerf N s(t) = avkt
where
g
A=—r—
erf (a/2)

and « is determined from the transcendental equation

2Aaﬁea2/4 erf (%) = g

The specific form of the conditions at the moving front depends on the problem, of course.



For example, the non-dimensional equations

Ct = Cgz — 1, 0<z<s(t),t>0
c(0,2) = 3(1 —2)?, s(0)=1 (10.2)
cx(t,0) =0, c(t,s(t)) =0

cx(t,s(t)) =0

describe the evolution of the concentration of oxygen in an absorbing tissue, when its surface
is sealed after a steady state is reached (see Section 6.2 for a more detailed discussion). The
second condition at x = s(t) is thus in a form of a no-flux constraint. Since no explicit
expression for the dynamics of the moving boundary is given, problems of this type are often
called implicit (or problems with prescribed flux), in contrast with those similar to (1.0.1),
which are called Stefan problems (or Stefan-like problems, for more general settings). Note
that the similarity approach can no longer give an exact solution for (1.0.2), even though a
good approximation can be obtained (see p. 73 of this work).

In fact, any generalization from the simplest setting (e.g., to account for non-constant
conductivity, introduction of reaction terms, time-dependent boundary condition at the fixed
end, etc.) invalidates the similarity argument, and solutions should therefore be obtained
by alternative means. Starting from the 1950s, a number of related models for various phys-
ical phenomena were constructed, and a number of methods for solution of general Stefan
problems were proposed. With the increased availability of digital computers a focus on
numerical solution of moving-boundary problems developed, and the research area centered
around Stefan problems grew from a narrow confine concerned with a handful of simple
mathematical models for freezing and melting to a wide field dealing with moving bound-
aries for general parabolic equations, with a variety of applications in many areas of science
and technology. Melting and solidification of materials, crystal growth, optimal stopping
of Markov processes, absorption of oxygen by biological tissue, valuation of American-style
derivative securities in finance — all of these problems, taken from different branches of
science, are characterized by these common features. In each case, a parabolic partial dif-
ferential equation (reaction-diffusion for the physical problems and backward Kolmogorov
for the stochastic ones) governs the dynamics in a time-dependent domain, whose boundary

is unknown and needs to be determined as part of the solution.
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The mathematical apparatus has accordingly become increasingly sophisticated over
the years. To establish important theoretical results on existence, uniqueness and global
behavior of solutions, the concept of weak, or generalized solutions, was introduced. Asin the
case of hyperbolic problems with shocks, numerical schemes converging to the weak solutions
were designed. As the models became more general and complex, the bulk of practical
results could only be obtained numerically. Clearly, a good numerical method able to deal
accurately with problems arising from such a broad set of applications is highly desirable,
especially if it is sufficiently general and flexible to accommodate the variety of possible
input data, without significant change in its structure. In addition to competitive results
for well-behaved problems, a good numerical method should provide direct generalizations
to more challenging cases, retaining as much of its performance as possible.

Our approach, which combines a front-fixing coordinate transformation, a Chebyshev
spectral method for the spatial part of parabolic operators, and a scheme for resolution of
singular initial data, was designed with these concerns in mind. Firstly, due to the excellent
convergence properties of spectral approximations, this method produces highly accurate
numerical solutions for both the function and the interface for simple parabolic operators
and smooth initial conditions. Since, as it is known, solutions of Stefan problems are smooth
for positive time, the method we propose is highly competitive in terms of both speed and
accuracy. Secondly, the method is flexible enough to admit straightforward generalizations
to problems with piecewise smooth or otherwise singular initial conditions. The basic ap-
proach to singular problems is based on constructing certain smooth approximations of the
initial data, so that the corresponding numerical solutions converge to the true solution of
the singular problem as the initial approximation tends to the singular initial data. The
smoothing effect of diffusion helps control the error at positive time. As we shall see, the
performance of the method remains very competitive, and the accuracy is still high, even
for singular problems, compared to such methods, as the integral equation approach, which
were designed to overcome the effect of initial singularities. At the same time, the added
complexity, with respect to the smooth cases, is reasonable. Techniques such as domain
decomposition, which can be incorporated easily, lead to better resolution of more localized
problems. The main importance of the approach proposed here is that, unlike all other
methods available thus far, it remains purely numerical, in the sense that no knowledge

of the solution is required beyond ¢ = 0, i.e., no procedure (such as small-time asymptotic
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solution) needs to be used to start off the computation.

We also present several alternative procedures which use the singular initial data directly
and involve Padé approximations and prior integration. These techniques can often produce
solutions that, while not as accurate as those obtained with our main approach, still yield
very acceptable accuracies with significantly improved computing times. For example, for
the oxygen diffusion problem (1.0.2), use of Padé approximation allows to carry out the
computation with 5 significant digits in a quarter of the time needed to obtain 8 digits by
the general method. Prior integration allows to further reduce computation time up to an
additional factor of three, with at least 6 significant digits in the numerical solution. Thus,
it is possible to find amongst the various methods proposed the appropriate balance of speed
and accuracy for a given application.

The rest of this text is organized as follows. In Chapter 2, we provide a survey of
various numerical methods which have been proposed over the years for the solution of
moving boundary problems. An effort is made to point out the strengths and weaknesses
of each approach; we also give a brief comparison of their performance for a classical test
problem. The detailed formulation of our numerical method is given in Chapter 3. In
particular, in Sections 3.1 and 3.3, we discuss front-fixing transformations and Chebyshev
expansions, while in Section 3.4 we introduce the method of smooth approximations. The
convergence result, which provides a bound for the maximum absolute error of the numerical
solution produced by a smooth approximation and the quadratic convergence rate, is proved
in Chapter 4 for the fixed boundary case, in anticipation of the same behavior in the moving
boundary setting. In Chapter 5, we present two additional techniques, which, for certain
singular problems, yield reasonably accurate solutions in short computing times. A variety
of numerical examples is presented in Chapter 6, including results for simple smooth Stefan
problems and for the classical oxygen diffusion problem.

Finally, Chapter 7 is devoted to the pricing of American options on a dividend-paying as-
set. After a review of the finance background given in Section 7.1, we present a mathematical
formulation of the American option pricing as a moving boundary problem for a degenerate
parabolic equation with singular initial data. In Section 7.3, we provide a simple derivation
of an important symmetry result between the two kinds of American options. This result
allows for reduction of the valuation problem for any American option on dividend-paying

stock to one of the two canonical forms, depending on the relative magnitude of the interest
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rate and the dividend yield. Both of these forms are amenable to numerical treatment by
our method; results and comparisons with available small-time asymptotics are given in
Sections 7.4 and 7.5. In the former, an additional singularity, due to the infinite initial
velocity of the moving boundary, is fixed by a simple change of time scale, a technique
which greatly facilitates numerical analysis of any similar problem. In Section 7.6, we apply
our construction to some of the more complicated finance settings, describing index options
and foreign currency options. Finally, concluding remarks and future research problems are

presented in Chapter 8.



Chapter 2

Numerical Methods for Moving
Boundary Problems

A science is any discipline in which the fool
of this generation can go beyond the point
reached by the genius of the last generation.
(Max Gluckman, 1911-1975)

Over the years, a number of methods for solving moving boundary problems were proposed,
and several monographs have been published [4, 27,39, 69,85, 101]. The number of scientific
papers devoted to this subject has been growing steadily in the past two decades, and
the most comprehensive bibliography available [95] includes over 5,800 titles. A detailed
comparative analysis of a material of this volume could thus warrant a study of its own. In
this chapter we present merely a review of the available methods for solution of Stefan-type
problems, with an attempt to explain their respective strengths and weaknesses. Throughout

the discourse, we refer to the previously published surveys, notably, John Crank’s book |27],

from which we borrow most of the classification and terminology.

2.1 Historical remarks

The prototype parabolic moving boundary problem is the process of freezing or melting
of a homogeneous medium, such as water (or ice), when subject to cooling or heating,
respectively. The evolution of temperature in the medium obeys the heat equation, and
the change of phase introduces a moving front, defined as the surface at which the freezing
(or melting) occurs. According to [85], the earliest study in this area was conducted by
Gabriel Lamé and Emile Clapeyron in 1831 [61]. They investigated the thickness of the

crust forming as a result of freezing of a liquid held at crystallization temperature. The
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fact that this thickness is proportional to the square root of time was established in this
work, even though the constant of proportionality was not specified. The first mention of
a similarity solution to a simple ice-melting problem appeared in the 1860s in the lectures
given by Franz Neumann at Konigsberg.

In his works on freezing of the ground [93] and melting of ice [94], published in 1889, Jozef
Stefan formulated a mathematical model for a general class of phase-change phenomena.
The corresponding moving boundary problems have inherited his name and are now known
as one-phase and two-phase Stefan problems. In the one-phase setting, the liquid, held at
a positive temperature, initially occupies the right half-space and is subject to a negative
temperature front at the left end, causing crystallization. In [93| the sub-zero temperature
was held constant, while in [94] it was a function of time, and the initial temperature
of water was 0°C, i.e., the freezing point. In the two-phase setting, in addition to the
mentioned conditions on water, the left half-space is occupied by ice held at a constant
negative temperature. In both cases, freezing (or melting) is assumed to occur at a constant
temperature and is accompanied by the release (or absorption) of latent heat. The key heat

balance condition across the phase-change boundary x = s(t), also due to Stefan, is

\ds T
pdt_ ox

(2.1.1)
z=s(t)

in the one-phase case and

in the two-phase case. In the equations above, T'(¢, ) is the temperature; A is the specific
latent heat; p is the density; and , the conductivity of the material. In the two-phase case,
the index “1” corresponds to the solid and the index “2,” to the liquid.

The first local existence and uniqueness result for solutions of one-dimensional Stefan
problems with general initial conditions and boundary shapes was proved by Lev Rubin-
shtein in 1947. In his monograph [85], Rubinshtein also proved global existence in time of
the classical solution to this problem, as long as the moving boundary is analytic. A more
general result for two-phase problems appeared in [64]. See also references in [69].

The concept of a generalized, or weak solution of a multidimensional Stefan problem
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for a possibly nonlinear parabolic partial differential equation with an arbitrary number
of phases, was introduced by Svetlana Kamenomostskaja and Olga Oleinik based on the
enthalpy formulation (see the discussion of the enthalpy method below). Existence and
uniqueness of weak solutions of a heat conduction equation with H' initial data were proved
in [54] by finite differences. It was also established that any classical solution, if it exists,
is a generalized solution of the Stefan problem. In [81], a similar result was established for
arbitrary quasi-linear parabolic equations. The same structure was later defined for problems
with zero latent heat by Anna Crowley in [32]. An alternative approach to the definition of
weak solutions, using variational inequalities, was pursued in the works of Georges Duvaut,
David Kinderlehrer, Avner Friedman and others (see [38,39,44| and references therein).
For example, the smoothness of the moving boundary for the one- and two-phase Stefan
problems in several space dimensions was proved using variational inequalities. For a two-
phase multidimesional Stefan problem, existence of the classical solution in the small was
proved by Anvarbek Meirmanov, by introducing von Mises variables [69].

In practice solution of Stefan problems has relied on numerical methods ever since more
complicated models than those of melting of ice slabs were formulated. Several techniques
were introduced in the late 1950s, including the enthalpy method (E.L. Albasiny, 1956),
front-fixing and finite differences (J. Crank, 1957), and variable grids (J. Douglas and
T.M. Gallie, 1955). Since then, a variety of other numerical methods was developed, with
modifications and new ideas still appearing. In general, each of the methods falls into one
of the following categories: front-tracking (e.g., finite differences on fixed or variable grid,
method of lines, level set method), fixed-domain (such as the enthalpy method and vari-
ational inequalities), front-fixing (via coordinate transformations or change of dependent
variable), or reduction to integral equations. Each of these approaches, naturally, has its
own advantages and disadvantages, making it more suitable for certain types of problems
and less suitable for others. Obviously, the choice of a particular numerical method is de-
termined by the nature of the problems studied and by the ultimate goal of the analysis
(e.g., quick qualitative estimation, without much regard to accuracy; accurate resolution of
the moving boundary, but not necessarily of the function; a unified framework for the most

general settings; etc.). We thus proceed to analyze these approaches in more detail.
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2.2 Fixed-domain methods

The idea behind this class of methods is to use the given partial differential equations on
each side of the moving boundary, as well as the boundary conditions, to write down a new
problem, which is valid in the whole domain. In the enthalpy method, this is done by intro-
ducing a new dependent variable, while in the variational inequality approach, the partial
differential equation is used to express the solution as a minimizer of a certain nonlinear
operator. The moving boundary, in a sense, disappears from the immediate formulation and
is determined in such a way that the corresponding conditions are satisfied. This approach
is attractive in that it is independent of the actual behavior of the moving front, which,
in some cases, may not vary smoothly, have sharp peaks or even collapse. Besides, the
fact that the computational domain remains fixed at all times is an additional advantage.
Fixed-domain methods are very general, and their formulation does not change qualitatively
in several space dimensions. The main disadvantage of these methods is the poor resolution
of the moving boundary, since it is determined a posteriori from the numerical approxima-
tion of the unknown function. Nevertheless both the enthalpy method and the variational

inequality approach are extremely popular for various moving boundary problems.

2.2.1 Enthalpy method

The enthalpy method offers a unified framework for the solution of moving boundary prob-
lems for quasi-linear parabolic partial differential equations, valid for any number of space
dimensions and an arbitrary number of phases. Let us illustrate the enthalpy formulation for
a two-phase Stefan problem for a generalized heat conduction equation in three dimensions,
following [54]. Let T;j(z,y, z,t) be the temperature; p;, the density; ¢;, the specific heat;
and k;, the conductivity of phase i, ¢ = 1,2, where the last three quantities can, in general,
depend on T'. Furthermore let A be the latent heat of phase change, and assume that the
phase transition occurs at a constant temperature 7' = Tp across the surface ®(x,y, 2, t).

Then the problem can be described by the following set of equations

IT;

pici 5 =V - (riVTy), i=1,2 (2.2.1)
Ty (q)(xaya Z,t)) - T2(<I’(ffay727t)) =T,
[keVTy — k1 VT1] - VO + A 9 _y (2.2.2)

ot
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The last two expressions are evaluated at the moving surface, and (2.2.2) can also be written
in the form
0T, o1y

Ky —— — Kl =— = — AUy

on on

where n is the normal to the surface ®(x,y, z,t), and v, is its normal velocity. We first set

T
w(T) = / k() de (2.2.3)
0

so that Vu = kVT, and therefore (2.2.1) implies

6ul-
ot

CZ(U) :Aui, 1= 1,2

with C' = p(T)e(T)/k(T), and (2.2.2) assumes the form

O
[Vuz—Vul]-Vq)—k)\E:O

Then we define the enthalpy function H(u) = H(u(T)) to satisfy the following properties [54]

o for u < ugp = u(Tp) and u > wy, i.e., in each of the phases, H(u) is a continuously

differentiable function, satisfying H'(u) = C(u);

e the right and left limits of H as u — ug exist, and the jump (across the interface) is

H(ug) — H(ug ) = X;
e at u =g, H may assume any value between H(uy) and H (ug).

It can be shown that H(u) exists and is a monotone increasing function. Since, obviously

p(0)c(0)de, T <Tp

p(0)c(0)df + A, T >1Ty

=

£

3

Il
o\’ﬂo\’ﬂ

it follows that H (u(T)) incorporates the heat jump across the phase-change front due to the

release (or absorption) of the latent heat, and therefore H(u(T")) is indeed the total heat,
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or the enthalpy, as it is called in thermodynamics. But we now have

OH (u)
at

— Au (2.2.4)

and the boundary conditions at the interface are already incorporated in this formulation.
Since H (u) is monotone, we can reconstruct u from H at every time step, and determine
the position of the moving boundary as the wug level set of u(T(t,x,y, z)) Thus, as long
as the boundary conditions on the fixed domain are provided, and the initial enthalpy is
chosen, the Cauchy problem for (2.2.4) can be solved by any one of the known numerical
methods for parabolic partial differential equations.

In [54], finite-difference discretization was used to prove existence and uniqueness of
the generalized solution to the Stefan problem (2.2.1-2.2.2). A generic scheme, based on
the ADI (alternating directions — implicit) method, for the discretization and numerical
solution of the enthalpy formulation in several space dimensions was given in [76]. The
authors represented the jump in the enthalpy as A times the Heavyside’s function, centered
at the melting temperature. This introduced a d-function into the equation for 0H/0t,
which was smoothed by a d-like approximation. In [6], an explicit in time finite-difference
scheme was used directly on the equation (2.2.4) in a one-dimensional setting. When applied
to a welding problem, where phase change does not occur at a fixed temperature and a so-
called “mushy region” exists, the numerical scheme [6] also produced meaningful results.
The generalized enthalpy function, for the cases of zero conductivity or specific heat, was
introduced in [32], where the appropriate uniqueness results of [81] were extended. In [45]
the generalized enthalpy method was used to compute the solution of the oxygen diffusion
problem, which we describe in Section 6.2; it corresponds to the case of zero latent heat and
zero specific heat in one of the phases.

The main disadvantage of the enthalpy method is in the way it determines the position
of the moving boundary. The Tj level set of temperature can be found by inspection and
bracketed between two mesh points. More accurate resolution of the moving boundary
can present problems and leads to oscillatory behavior in the temperature front. This was
pointed out in [98|, where a method of overcoming this difficulty was proposed, based on a
novel interpretation of the enthalpy, allowing to place the moving front at a particular grid

point when the enthalpy function satisfies a certain relation.
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Due to its simplicity and generality, the enthalpy method and its modifications (such as
a hybrid with the method of lines, suggested in [90]) are one of the most popular techniques
of solving phase-change problems [4].

2.2.2 Variational inequalities

Parabolic variational inequalities [38| present another way of formulating moving boundary
problems on a fixed domain, with the interface conditions satisfied implicitly. This approach
is especially powerful for one-phase problems with both the value and the flux prescribed
at the moving end. (This corresponds to the zero latent heat in the melting and freezing
formulations.) In this case, the unknown function can be continuously extended across the
moving boundary, and the resulting function on the whole domain can be shown to satisfy,
under certain conditions, an inequality of differential or variational nature. The original
moving boundary problem is then reduced to a constrained minimization problem on a
fixed domain, with a number of algorithms for solution available.

Consider the following multidimesional moving boundary problem [27, Section 6.4]

u—Au=f iny
u=1u, =0 on S(t)
u=g>0 on I'y = 001\ S(t)

U =ug >0
t=0

Here Q7 is the domain where the partial differential equation is valid; I'; is the fixed part
of the boundary of this domain and S(¢) is the moving part; and both the function and its
flux (~ uy,, the normal derivative) vanish at the moving end. We can then introduce the
domain = Q; U, such that Qp has a common moving boundary S(t) with ©;, and we
define u = 0 on Qg (i.e,, u = 0 in Qy and u = 0 on 'y = 9N\S(¢)). Then, by virtue of
the conditions at S(t), u is defined continuously on the whole domain €2, which has fixed
boundaries. If compatibility conditions hold for the boundary value g (i.e., g, Vg — 0 as
z — S(t)), then u € C1(Q). Define the positive definite operator

a(v,w) = /Vv -Vwdx
Q
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as well as the usual scalar product

(v, w) :/vwda:

Q

Then for any test function v € H'(2), such that v > 0, v = g on I'; and v = 0 on Iy, we

have

<ut,v—u)+a(u,v—u):/ut(v—u)dx—l—/Vu-V(v—u)dw
O 2

:/(ut—Au)(v—u)d:E:/f(v—u)de‘Z/f(v—u)dx
(o1 Q

1951

In the above, we used the fact that « = 0 in Q\, and integrated by parts, bearing in mind
that v — u = 0 on 9€y. Thus the original moving boundary problem is equivalent to the
inequality

(ut,v —u) + a(u,v —u) > (f,v — u)

on the fixed domain ). Existence and uniqueness of solutions to variational inequalities
of this type can be proved (cf. [39] and references therein), and numerical solutions can be
obtained, e.g., using the finite element method.

It is also possible to obtain a differential inequality, or complementarity formulation,
rather than a variational one. For example, the oxygen diffusion problem (1.0.2) can be

written as
¢t —Cpe+12>20, ¢>0

(¢t —cCoxz+1)c=0 on0<zx<1

since ¢(t,z) > 0 represents the concentration of oxygen, which is 0 to the right of the moving
boundary, so ¢; — ¢z + 1 = 1 > 0 there, while one of the terms in the product vanishes
at any point of the interval (0,1). The discretized version can be reduced to a quadratic
programming problem, which can be solved by various methods, such as generalized succes-
sive over-relaxation (SOR) [33|. It can be shown that the finite element discretization of the
corresponding variational inequality formulation leads to the same constrained minimization
problem, when both are written in matrix form.

A variety of moving boundary problems with prescribed flux was treated by variational
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inequalities. A number of examples can be found in [39], including a fast algorithm for solving
the oxygen diffusion problem. Recently, several authors [53,99] applied this approach to
valuation of American options, the problem we consider in detail in Chapter 7. Using
variational inequalities, the convergence of numerical solutions and important regularity
results were established [53].

Since continuity of the solutions across the moving boundary is essential for the varia-
tional inequality approach, it is not immediately applicable to melting and freezing prob-
lems, where the nonzero latent heat causes a jump in the normal derivative. However, the

following transformation

t

/ u(r,x), dr, 0<x<s(t);

0, s(t) <z <1

introduced by G. Duvaut, has the effect of moving the latent heat from the boundary
condition to the source term, making the new function continuous. Here ¢ = [(x) has the
meaning of the time when phase change occurs at the point z.

Asin any fixed domain method, the determination of the position of the moving boundary
in the variational inequality setting is done by finding a particular level set of the numerical
solution. In some methods, such as the projected SOR, this can be done within the main
computation loop, as it is demonstrated in [99] for the American option problem, and not a

posterior:, as in the enthalpy method.

2.2.3 Truncation method

We briefly mention the method introduced in [9] for the oxygen diffusion problem. The
idea is to embed the solution of a moving boundary problem for a linear partial differential
equation into a family of solutions of nonlinear equations on a fixed domain (hence the

placement of this approach with fixed domain methods). In [9], the nonlinear problem was

¢t = Czq — g(cC), O<z<l, 0<t<T
limi gc(t,z) = f(z), O0<z<1
cz(t,0) =c(t,1) =0  or cz(¢,0) =cz(¢,1) =0
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Here g(c) is the nonlinear source term

and f(z) = (1 — 2)?/2, with ¢(t,x) > 0 for all t. The last constraint forces to take pro-
hibitively small time steps in any numerical method for the problem on a fixed domain, such
as finite differences or finite elements. The truncation method overcomes this restriction by
using larger time steps and enforcing ¢ = 0 at all grid points, where the calculations gave
¢ < 0, at each step. Thus a concentration profile is obtained, with the boundary of the region
¢ > 0 tracing the shape of the moving interface, whose position is thus bracketed between
two grid points. The convergence of the algorithm was established in [9]; and extensions to

higher space dimensions were studied.

Summary

Fixed-domain methods thus present a good general framework for treating moving boundary
problems, including multidimesional ones, without explicitly getting involved in the non-
linear boundary conditions. They are also very powerful tools for defining weak solutions
and proving existence and uniqueness results for them. It is worth noting that the enthalpy
method works well for problems with nonzero latent heat and is not directly applicable to
the cases when it vanishes, while the exact reverse is true for the variational inequality
approach. Thus these methods are good complements of each other, so that one can always
find a suitable fixed-domain method for a given problem.

The main drawback of fixed-domain methods, in a sense, stems from their main ad-
vantage. Since the explicit mention of the moving front is excluded from the formulation,
accurate determination of its position is prone to inaccuracies. Thus for problems, where

tracking of a sharp interface is essential, these methods may not be the first choice.
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2.3 Front-tracking and front-capturing methods

This group of approaches is characterized by the explicit calculation of the position of the
moving interface at each time step. The name “front-capturing” is usually attributed to those
techniques in which the computational grid is fixed. The earliest numerical methods for
solving moving boundary problems were mostly of this type. Regular finite differences were
used to update the solution away from the interface, and the formulas were appropriately
modified near the moving end, to accommodate uneven spacing, since the position of the
interface at every time step is, in general, not located at a grid point. In contrast, “front-
tracking” methods are set up on a variable grid, which is constructed in such a way that, at
each time step, the moving boundary coincides with one of the nodes. This can be achieved
by modifying the spatial or temporal part of the grid, or the whole grid altogether, as in
the adaptive space-time finite element technique [13,14]. More recently, front-capturing
methods for Stefan problems received a boost, when the level set method of S. Osher and
J. Sethian was applied to crystal growth problems [22,89]. In this section we also mention
the method of lines, which is based on discretizing the original problem in time only and
solving a sequence of boundary-value problems for ordinary differential equations at every
time step. Fast algorithms proposed by G. Meyer [71] made this approach very attractive

for one-dimensional moving boundary problems.

2.3.1 Fixed grids: front-capturing

Front-capturing on a fixed finite-difference grid is a simple extension of this fundamen-
tal numerical technique for partial differential equations to include problems with moving
boundaries. In most of the computational domain, the conventional formulas can be used
to update the solution at each time step. At every ¢, the moving boundary s(t) is situated
between two grid points, iAz and (i+ 1)Ax, say, so that s, = (i+p,)Azx, where 0 < p, <1
and is, in general, different for each time step. Obviously, direct use of the update formulas,
as well as the boundary conditions at the moving end, is not possible. However, the solution
can be interpolated, using, for example, its values at the three points, (i — 1)Az, iAx, and
(14 pn)Azx, and its first and second derivatives can be calculated and the solution advanced
one more step in time. The moving boundary position, i.e., p,, is updated using the formula

for the velocity, which involves derivatives at the moving end, computable through inter-
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polation as well. If p,1 becomes less than 0 or larger than 1, this is simply an indication
of the fact that the interface has moved away from the given computational cell to one of
the neighboring ones, so the same idea can be applied over again. This approach was used
in [29] to solve the oxygen diffusion problem (1.0.2). The expression for the derivative of
s(t), involving the third derivative of the solution at the moving end, was first derived in
that paper. The same approach was employed in [63] for two- and three-dimensional Stefan
problems. The drawback of this method is, mainly, the increased complication near the
moving boundary, which is aggravated whenever implicit time stepping is used.

An alternative approach, used in [77], is to introduce fictitious values of the solution
obtained by extrapolation and to use the standard finite-difference formulas throughout the
whole computational domain. For two-phase problems, extrapolations are carried out for
both the solid and the liquid region. Taylor expansions are used to compute u, at the
moving boundary, which is needed to update the position of the latter. Even though this
approach appears to differ from the one described above, the actual formulas have the same
form.

The idea of the level set method is to construct a function which is always zero at the
moving interface. The evolution of this function is governed by a Hamilton-Jacobi-type
equation, which can be solved numerically using various techniques developed in computa-
tional fluid dynamics. Once the new position of the moving boundary is established, the
solution can be updated with a simple finite-difference scheme, with one-sided differences to
be used in the vicinity of the interface. In [22] this approach was applied to several moving
boundary problems from crystal growth. The signed distance from the interface was used
to keep track of it, as it is the most trivial example of a function, whose zero level set coin-
cides with interface. This also helped switch to the one-sided differences in the temperature
calculations at the right place, as the value of this function tells how close the interface is.
In [89] the level set approach was used to advance the moving boundary only, while the
temperature was computed using an integral equation (see also Section 2.5 below). The level
set method is well known for its generality and ability to follow singularities and topological
changes in the interface. It is also one of the primary choices for higher space dimensions,
since few additional complications arise. However, this method is only first order near the

moving boundary, so it is usually not appropriate when accuracy is the main goal.
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2.3.2 Variable grid: front-tracking

The abovementioned increased complexity and loss of accuracy near the moving boundary,
exhibited by the fixed-grid methods, encouraged the advent of variable grids. The first
study in this direction appeared in [37]. The idea was to modify the time step in such a
way that the moving boundary would always be located at a grid point. Suppose a simple
Stefan problem for the heat equation u; — uz, = 0 is considered, with the velocity of the

moving boundary satisfying
ds ou

dt Oz

and with v = 0 on = = s(¢). Then the following expression for s(t)

s(t)
s(t)=t— / u(t, z) dx
0

can be derived from the above equations, if appropriate boundary conditions at the fixed

end hold. Discretization of this equation gives

n
At,, = <n INEDY un) Az —t, (2.3.1)
i=1

which is the new time step size, such that the rightmost grid point coincides with the position
of the moving interface at t,41 = Y ., Atg. If the finite difference scheme to solve the
heat equation is implicit, the discretization (2.3.1) can also be made implicit (by taking
Ujn41 instead of u;,), and the desired time step size can be computed iteratively. This
approach was applied in [50] to the oxygen diffusion problem, except instead of integrating
the expression for the velocity of the moving boundary, the authors used the finite difference
form of the original boundary condition. The so-called explicit variable time step method
(see [101] and references therein) is a variation of this technique, where several “virtual” sub-
steps are taken per each time step to ensure stability of the scheme and the desired level of
accuracy. This mechanism uses both storage and time step size very efficiently, reducing the
computation time and allowing to start calculations from ¢ = 0 even for singular problems.
An equally logical idea is to keep the time step constant, but to modify the spatial grid
with time. In [77], the number of points in the interval [0, s(t)] was held fixed. Thus the
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solution was updated along the curvilinear grid lines x;(t) = iAx(t), with

dx; z; ds

dt — s(t) dt

The partial differential equation on this grid had to be modified as well. This approach re-
sembles the front-fixing technique, which we discuss in Section 2.4 below. In [30] a variable-
in-space stencil was used to solve the oxygen diffusion problem. Unlike the previous method,
here the whole grid moved with the speed of the interface each time step, and the values
of the solution at the new grid points were computed using cubic spline or polynomial
interpolation.

Space-time finite elements, in a sense, represent a combination of the previous two
approaches, since the computational stencil is deformed in both variables at the same time.
In [13], a space grid adapted at each time step was used to construct quadrilateral finite
elements in the (¢,x) space. Then the weak integral formulation of the moving boundary
problem was solved in this domain. This idea was later used by the authors for two-
dimensional Stefan problems, and the convergence of the method was proved. In [14] the
approach was further extended to enable independent partitioning of each strip ¢, < t < #5411
into biquadratic finite elements. This can be very important when singularities are present
in the initial data or when the initial speed of the moving boundary is infinite. The stability
and 3rd order convergence of the numerical method produced by this approach was proved
in [14] as well. In |74] a finite difference time discretization was coupled with an adaptive
finite-element mesh in space to solve the oxygen diffusion problem, with a possibility of

extending the method to higher space dimensions.

2.3.3 Method of lines

The method of straight lines, in which a partial differential equation is replaced by a sequence
of ordinary differential equations at discrete time levels, is a well-established method, both

for theoretical estimates and numerical solutions of boundary-value problems, including
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those with moving boundaries. Consider the following general formulation (cf. [71])

ou 0 ou
5 (fi(t,$) %) +a(t,z) p +b(t,x)u+ f(t,z), 0<ax<s(t)

U(O, l‘) = UO(:E)’ ﬁl(t)u(()? t) + /BZ(t)ux(Ov t) = ﬂ(t)
Gt ult,s(t), uz(t, s(t)), ue(t, s(t)), s(t), $(t)) =0

where G = (G1,G2)7 is the vector of boundary conditions at the moving end. For example,

for the Stefan problem,
G ults®)
-\ Ws(t) + kug(t, s(t))

The method of lines approximation is

Up — Un—1 _
I (b, 2) = 0 (2.3.2)

B1(tn)u(0) + B2 (tn)uy, (0) = B(tn)

un(sn — Un—-1\Sn Sn — Sn—1
G(tn,un(sn),u%(sn), ) Al ( )75717 AL ):0

(K(tn, :C)u;ﬂb)/ + a(tp, v)ul, + b(tn, )u, —

where t, = nAt, u, = u(tn,z), u, = ug(tn,z), and s, = s(t,), n = 1,...,N. The
obtained system can be solved by different means, depending on the specific form of the
parabolic operator. G. Meyer proposed the invariant embedding technique, which is an
efficient method for linear parabolic operators and can be extended to the nonlinear ones as

well. For each n, equation (2.3.2) can be rewritten as a first-order system by letting
vp = K(tn, T)ul,
The solution {u,(z), v,(z)}, with the boundary conditions

Ba(tn)vn(0) = [5(7571) - 51(tn)un(0)]“(07’5n)

Un(sn) Un(sn) - unfl(sn) Sn — Sp—-1Y)
G<tn’un(5n)7 K(tn, Sn)’ At P TAY ) =0

(2.3.3)

is embedded into the family of solutions of the same system, but with the boundary condi-

tions

Ba2(tn)vn(0) = [ﬁ(tn) - Bl(tn)r]’f(o’tn)
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depending on the parameter r. The Riccati transformation

vp(x, 1) = Rp(x)un(z,7) + 20 ()

is introduced, so that R, and z, solve two coupled initial value problems

o c(tn, x) . ) — a(tn, ) . 1 2 _ _ﬁl(tn) K
Rn - At b(tnv ) H(tn,x) n H(tn,.T) mns RH(O) - 62(tn) (tn,O)
) _ Ru(x) +altn, z) o ) — Uun—1(x) - _ B(tn) K
Zn - H(tn,x) n f(tna ) At ) n(o) 62(tn) (tn7 O)

The position of the moving boundary s, = s(t,) is then the root of the nonlinear equa-
tion (2.3.3), and wu, can be obtained by integrating the Riccati transformation using the
definition of v,.

Convergence of this scheme to the weak solution of the moving boundary problem was
proved [71]. For nonlinear equations, the Riccati transformation can be substituted by a
shooting technique for solving the corresponding boundary value problem. Several attempts
were made to generalize the method of lines to several space dimensions. Alternating direc-
tions was applied in [72] and an iterative SOR-type technique, based on invariant embedding
in one space variable at a time, was proposed in |73]. However, both generalizations suffer
when the moving boundary essentially follows one of the coordinate axes. Thus the method

of lines remains a powerful approach, if only for one-dimensional problems.

Summary

Front-tracking and front-capturing methods are the most direct extensions of the conven-
tional methods for fixed boundary value problems for partial differential equations, such
as finite differences and finite elements. However, the simplest generalizations suffer from
reduced accuracy near the moving boundary, and the formulas, especially in higher dimen-
sions, become very involved. The more sophisticated techniques, like the method of lines
with invariant embedding and the level set method, give better and more generally appli-
cable recipes. The main drawback of this group of methods is their overall poor accuracy
for the calculations near the moving boundary. Any singularities in the initial data can
only aggravate this property, except for the special cases of the discontinuous in time finite

element method [14] and the explicit variable time step method [101].
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2.4 Front-fixing methods

The idea of transferring the nonlinearity from the boundary conditions to the partial differ-
ential equation by immobilizing the moving front is appealing in many circumstances. Since
the computational domain becomes a rectangle, the formulas need not be adjusted near the
boundaries. This is done at a price of having an additional term in the differential operator,
so that the latter becomes explicitly nonlinear and often coupled with the equation for the
moving boundary. Therefore any method used to numerically solve the partial differential
equation has to be adjusted accordingly. Fortunately, in many practical cases this can be
done in a straightforward way.

Below we discuss two major ways to fix the moving front. One is to make a change
of the independent variables, in which case we get, essentially, a version of front tracking
on a variable grid. However, since the transformation is made only once in the beginning,
the calculations are set up as though the grid is actually the same. Another way is to take
advantage of the fact that melting and freezing occur at a constant temperature, so should
the temperature become one of the independent variables, the front would be fixed as well.
This is a variation of the hodograph method, when evolution of the space coordinate as
a function of time and the unknown function is considered, and is known as the isotherm
migration method. Application of either of these approaches becomes problematic if the
dynamics of the moving boundary is singular (e.g., when it is not smooth or collapses

toward the fixed end).

2.4.1 Change of variables

The front-fixing change of variables in one dimension
E=— (2.4.1)
maps the interval (0,s(¢)) to (0,1) and reduces the heat equation

Ut = RUgy
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and the Stefan condition at the moving boundary

d
Ap —j = —Ruy(t, s(t))

respectively, to the following forms

ds
$%(t) uy = uge — s(t) & = e

d
A ()

A T

Similar expressions can be obtained for more general parabolic operators. We present this
in more detail in Section 3.1 below. For two-phase problems, when the first phase occupies
the region I} < x < s(t), and the second phase, the region s(t) < x < [y, the corresponding

front-fixing transformations are

. Xr — ll
8= =k
for the first phase and
. Xr — 12
2= = h

for the second, so we get two separate equations for each of the phases, coupled through
the nonlinear term and one of the boundary conditions. For Stefan problems, the moving
boundary is updated according to the corresponding ordinary differential equation (the Ste-
fan condition) and is then used to update the solution at the next time step. For implicit
moving boundary conditions, one can either find the root of the appropriate nonlinear equa-
tion, or derive the differential equation for the moving front, as we do below in Section 3.2.

The front-fixing transformation was first proposed in [62] for the heat equation. In [45]
it was described for a general linear parabolic operator and two phases. Finite differences
were used to solve the partial differential equation. An alternative way, which is taken in
the current work, is to use spectral methods instead of finite differences. In [34], the authors
introduced a Fourier cosine expansion of the solution to the oxygen diffusion problem and
obtained very good results for larger times. However, due to the incompatible initial and
boundary conditions and the non-periodic structure of the problem, the numerical procedure
was only be applied for ¢ > 0.01, when the solution becomes sufficiently smooth, while the

analytical approximation of [29] was used for smaller times. In [92], the Chebyshev collo-
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cation method was applied to the equation resulting from a boundary-fixing transformation
of a two-phase Stefan problem for the heat equation, and the results compared favorably to
those obtained by finite differences. In this case as well, the problem had a singularity at
t = 0, and the exact solution was used to start off the computations. In [58], a Lagrangian-
interpolation based numerical scheme was proposed for the solution of nonlinear diffusion
problems. The Chebyshev collocation points were taken as the interpolation nodes in space.
The construction was applied to the oxygen diffusion problem after a front-fixing change
of variables. Here again, as in [34], accurate interpolation was not possible from ¢ = 0, so
the problem was treated as one with fixed boundaries for ¢ < 0.04. Numerical results still
compared well to those obtained by other methods, especially for larger times.

There has been considerable effort devoted to the generalization of the front-fixing co-
ordinate transformation to several space dimensions. In general, if the new variables £ and

7 are introduced, then the Laplace’s operator in two dimensions becomes

02 5 52 9 9
Aep=A=—=+B——+C——+D—+E—
=290t Lo, T o TP e T oy

where
x2+y2 332+y2
A=G+g="0 C=nitn="7"
Teky + Yely
B = 26atle +1y6y) = —2 =y

D =& + fyya E =g + Myy
with the Jacobian
J = 2eyy — Ty # 0

Similar expressions can be obtained for more general second-order elliptic operators in any

number of space dimensions. Normal and time derivatives are also transformed, as follows

s = s (P g 5 ) = g | (Bt ) g — (e +26)
On VIpEINT 00 Oy) g ip R T o
0 0 Tt 9 9 Yt 9 0

In the above, y = F(z,t) is the moving surface with the outward normal n, and z;, y; denote
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the time derivatives of the original coordinates in the frame associated with & and n. Thus
the whole moving boundary problem can be transformed and solved numerically in the new
variables.

There is significant freedom in choosing a particular change of variables for a given
problem. One approach is to solve a sequence of boundary value problems at each time
step and introduce a new coordinate system every time. In this case, it is important to
be able to do this in a fast and simple way within the code. A review of numerical grid
generation techniques can be found in [59]. In earlier paper the authors suggested choosing
¢ and n in such a way that they solve linear elliptic problems at each step. More recently,
in |96] a computer code was presented to fully automate the generation of boundary-fitting
coordinate systems for free and moving boundary problems.

As an alternative, in [87] two- and three-dimensional moving boundary problems were
written in polar (or, respectively, spherical) coordinates and the boundary was fixed in the
radial variable. This approach works especially well for the so-called “star-shaped” domains
in two or three dimensions, when the angular variables can be conveniently separated, e.g.,
by Fourier expansions. For example, the following freezing problem in an annular sector

was considered in [87]

I kAT, 0<0<by, BO)<r<F(0)
oT oT
%(ta T70) - %(t,T‘, 1) - 0
T(t, B(8),6) = Tw(t,0)
T =0, ’OLV:)\(;% onr=F(t0)

Here r = F'(t,0) is the freezing surface with normal n, so that
oF 1 OF\2] oT
Vo = <87§>/[1+(F80> ]ar

_ r—=F(t,0)
- B(#) - F(t,0)

The new variable

was introduced, mapping the curvilinear region to the sector [0, 1] x [0, fp], and the resulting

nonlinear partial differential equation was solved using finite differences. In three space
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dimensions, where the freezing surface can be written as r = F(t,0, ¢), the corresponding

change of variables is
"= F(tv 97 ¢)

" B(0,9) — F(t,6,9)

which gives a method to solve moving boundary problems in spherical and near-spherical

geometry.

2.4.2 TIsotherm migration method

Let us consider once again the simple one-phase Stefan problem

Ut = Ugz, 0<l’<8(t>
u(0,2) =0;  wu(t,0)=1
u(t,s(t)) =0, $§(t) =—Aug(t,s(t))

Note that since the temperature u is 0 along the moving boundary s(¢), this curve is an
isotherm. Moreover the temperature is also fixed at the other end, so all the dynamics
happens between two isotherms, © = 1 and u = 0, corresponding to z = 0 and = = s(t).
Thus it is tempting to consider x = z(¢,u) as the new dependent variable, since the domain
will then be a finite box. Using the chain rule we get

o d 0
-1
i\ Cr)

which is then solved for z(t,u) using finite differences. Derivative boundary conditions at

O<u<l1

the fixed end can also be handled — for example, by approximating u with a parabola and
finding the value of u at x = 0 at each time level.

The idea was first mentioned in [24], where explicit differential equations for isotherms
were written down for general heat conduction problems with phase transitions. The ap-
proach can be generalized to several space dimensions [31] by expressing one of the spatial
coordinates as the function of v and the remaining ones |27, §5.4.2]. However, this particu-
lar idea fails for problems where the motion of the interface does not allow for a consistent
representation of this sort for all times (e.g., dz/0u vanishes for some ¢ > 0). In [28] the

same approach was used to track the movement of isotherms along orthogonal flow lines by
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solving locally one-dimensional problems in the radial variable, representing r = r(¢,u, 6).

Summary

Fixing the moving front and shifting the nonlinearity from the boundary conditions to
the differential operator is an attractive way of avoiding the complications which would
otherwise emerge on a variable domain. Since in the new variables, the computations are
carried out on a fixed box, the accuracy is uniform and depends only on that of the method
of integration used for the resulting differential equations. As we intend to show further
in this work, even in the most general cases, highly accurate numerical solutions can be
obtained with such approaches. Viable extensions of the front-fixing technique exist in
two and three dimensions, thus contributing even more to the generality of this approach.
There are some numerical difficulties with it, however. Firstly, the nonlinear differential
equations obtained after the boundary-fixing transformation are often very stiff, so care
must be taken in what integration method to choose at the next stage. Explicit methods
tend to have harsh stability constraints, while the implicit ones can be complicated and
slow, due to the nonlinear equations to be solved at each time step. One way to overcome
this is to use semi-implicit methods (see [16]) or explicit ones with extended stability region,

such as the Runge-Kutta-Chebyshev [2,91] or Chebyshev-Euler 3] methods.

2.5 Integral equations

All the methods described so far deal with a given moving boundary problem directly,
through its differential equation formulation. However, frequently in the general theory
of boundary value problems of mathematical physics, differential operators are converted
to integral operators. While the former are not bounded, the latter usually are. This
makes the integral formulation a powerful tool both in theory (e.g., convergence proofs
and various norm estimates) and practice (due to the many iterative solution algorithms
available). In most cases, the dimensionality of the problem is decreased by one, since the
integrals are usually taken along the boundary of the original domain. It is true, however,
that conventional integral formulations apply to linear problems, while moving boundary
problems do not fall into this category. Nevertheless, for certain linear differential operators,

the integral equation approach can still be used, with slight modifications.
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2.5.1 Green’s functions

The integral method most widely used is based on the fundamental solution of parabolic
differential operators. The framework for moving boundary problems consists of the follow-
ing stages. First, the appropriate Green’s function, satisfying the time causality property
and the boundary conditions on the fixed end, is found. The formal solution can then be
written down in the usual manner, by integrating the Green’s function or its normal deriva-
tive, times the initial and boundary values and, possibly, the source term. However, unlike
in the linear case, the corresponding expression cannot be immediately resolved, since the
domain of integration and, possibly, the integrands depend on the moving boundary, which
is unknown. Nevertheless letting = approach the interface s(¢) and using the additional con-
dition at the moving front, an integral equation for s(¢) can be derived. Once this is solved,
the moving boundary is substituted into the formal expression for the unknown function on
the whole domain, and the solution is obtained. In some cases, the kernels may depend on
the velocity of the moving boundary, so the equation for s(¢) is integro-differential. How-
ever, this can often be avoided by deriving another integral equation for the flux at the
moving front, since in many boundary conditions, it is related to the speed of the front’s
propagation. This is the approach taken in [43]. It is important that the resulting integral
equations are of Volterra type of the second kind, and thus amenable to numerical solution
using iterative algorithms.

As an illustration, consider the integral equation approach, applied in [51] to the oxygen

diffusion problem (1.0.2). The Green’s function satisfies

Gt + Gyp = 0(x — 2)6(t — ¢') fundamental solution of the adjoint operator
G(z,2',t,t') =0 fort>1t  causality
G.(0,2',t,t') =0 boundary condition at the fixed end

Now, the integral

¢ s(t

[

can be evaluated in two ways. First, from the differential equations satisfied by ¢ and G,

—~

)
[(cm — )G — (G + Gm)c] dx dt

o
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the integral equals
¢ s(t)

//dedt+c(t’,x’)
0

0

On the other hand, integration by parts gives another expression for the same integral

% 1
/{Gcw — cG / = x)d:r
0 0

Boundary conditions require that the first of the last two integrals, as well as the contribution

from t = s~!(x) in the second one, vanish, and therefore

t s(t)

1
1
—//G(:U,:Jc’,t,t d:vdt—i—Q/G z,2’',0,t")(1 — z)%dx (2.5.1)
0 0 0

In the last integral, initial conditions for ¢ and s were used. This is the form of the above-
mentioned expression for ¢(¢,z). For this particular problem, the Green’s function has the

familiar form

1 (x —a')?

x+2)?
Gz,a' t,t') = Gz, 2/, t' —t) = s /all ) {exp [—m} + eXp[_(zl(;L—%]}

Therefore it is possible to simplify (2.5.1), and in [51] this is done as follows. The partial

differential equation for G is integrated in time and causality used to write
oo
G(z,2',0,t') = G(z, 2, t") / z—2')o(t —t') + Gao(w, ', 1 — t)] dt
0

This is substituted into the second integral in (2.5.1), and the G, term is integrated by
parts twice with respect to x, taking into account the boundary conditions. Thus (2.5.1)
becomes

t/ 1

c(t',a") = %(1—5)2 —/G(O,:v’,t’—t) dt+//G(x,x',t’—t) dx dt

0 0 s(t)
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Now the exact form of G can be used to evaluate the integrals explicitly, so that

/2 /

1 t x x
PN 1 N2 v _ ! _ It
c(t', ') = 2(1 x')* — 24/ 7rexp( 4t’> +x erfc( 2\/{/) + R(t', z") (2.5.2)

where

'
/

= g el ] o ) o] - el o
0

From (2.5.2), an integral equation for s(t) can be obtained by letting 2’ — s(¢’) and using
one of the conditions c(t, s(t)) = cx(t, s(t)) = 0 (in the latter case, of course, (2.5.2) needs to
be differentiated in 2’ first). In [51], the second approach was taken; the resulting integral
equation was solved using a simple iterative technique, and ¢(¢', 2") then found from (2.5.2).

In [17], a similar approach was taken to model thermal solidification with undercooling. If
the solid-liquid interface moves in the direction of the z-axis, then a simple one-dimensional
heat equation governs the temperature distribution on both sides of the moving front. If
temperatures adjust to an undercooled value Ty, far from the interface, then the following

integral equation describes the motion of the front

t
Ty -Twn 1 (s(t) — s(t")?7ds(t) dt’
A== T 2\/ﬁ0/eXp[_ Ar(t — 1) } ' i—t

+2\/% ?exp [—W]Tg(z’) dz’ (2.5.3)

Here A is the scaled undercooling parameter, Tj; is the melting temperature, k is the
diffusivity, A is the latent heat, and Tp(z) is the initial temperature distribution. Numerical
evaluation of the time integral in (2.5.3) (called the memory integral, since it includes the
whole history of motion) can be cumbersome, since the number of operations and storage
increase with the number of time steps. In [17], an efficient computational technique was
proposed, making the number of required operations fixed at each time step. The idea is to
separate the smooth part of the integral (i.e., ¢’ <t —¢€, 0 < e < 1), which has derivatives
of any order and can be calculated using any suitable method for the heat equation. The

remaining part has an integrable singularity due to the presence of the moving boundary,
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and Gaussian quadrature can be used to evaluate it accurately. Time is discretized, so that
t — e = nAt at each level. At each new time step, the integral equation for s(t) is solved
using Newton’s method; then the smooth temperature field is advanced according to the
heat equation discretization; and finally, the added contribution of the memory integral to

the smooth field is computed, by evaluating the integral

T (s(t) — s())? 1ds(¥)  dt’
W / eXp[_4/<;(t—t’+At)] At T—t + At

t—nAt

for all z (fortunately, this contribution decays rapidly away from the interface). Implemen-
tation details are given in [17], where it is demonstrated that computation can be carried out
to any given accuracy; generalizations to nonsymmetric problems (i.e., when Kliquid 7 Ksolid)
are also provided.

In [89], an integral equation formulation was coupled with the level set method to solve
a problem of dendritic solidification in two dimensions. For the problems of this class,
the conditions at the moving boundary I'(¢) are different from those in the Stefan problem.

Instead of the constant temperature on the interface, the so-called Gibbs-Thompson relation

u(t,z) = —ec(n)C —ey(n)V  for x € I'(t) (2.5.4)

holds. Here C is the curvature and V, the normal velocity of the moving interface I'(¢) with

outward normal n, and the anisotropy coefficients

ec (1 — Acos(kab + o))
ey (1 — Acos(kaf + 00))

ec(n)

Ev(n)

model surface tension (e¢) and molecular kinetic (ey) effects. The energy balance condition

BZ] = -\V forz eI(t)

still holds as the second moving boundary condition for this model as well. The integral
expression for u(t, z) in terms of I'(¢) was derived in [89] using the heat kernel, just as it was
done above. Since the interface in this setting is usually a closed curve in two dimensions,

which can develop spikes and cusps, the integral equation for I'(¢) was not considered; rather,
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the interface was updated using the level set construction, by evolving an auxiliary function
o(t, ), whose zero level set is T'(t) (see also the discussion above in Section 2.3.1). Thus the
algorithm of [89] consisted of four main stages: determine and extend off the interface the
normal velocity (the extension was done smoothly by means of the integral expression for u);
advance the level set function ¢; update the temperature field by solving the heat equation;
and determine the new position of the interface as the level set ¢ = 0. The numerical results
demonstrated the ability of this approach to successively track singularities and topological
changes in the interface.

The integral equation approach was used extensively for the American option valuation
problem, which appears in Chapter 7 of this work. Various forms were proposed |56, 60,
65] for the integral equation to determine the moving boundary, which in this problem
corresponds to the critical stock price, beyond which the option should be optimally exercised
(see details in Chapter 7). In [56], the integral formulation was discretized in time, but
without the use of a sophisticated numerical technique, such as the one in [17]. In [60],
asymptotic behavior of the moving boundary was derived for small times, which can be
used to start off numerical procedures.

It should be noted that the fundamental solution approach has also been heavily used
for theoretical purposes. Existence and uniqueness results for Stefan problems with analytic
moving boundaries were established in [85] by first converting the differential formulation
into an integral one. Convergence results for the finite-element methods [14] were proved
using integral equations as well. In this work, we also use Green’s functions for general
linear parabolic operators to prove the convergence of our numerical method (see Chapter 4

below).

2.5.2 Other integral methods

The formulation involving the integral of the Green’s function along the boundary is the
most popular one. However, other techniques based on integration have also been applied
to Stefan problems. For the most part, the resulting integral expressions are very close, or
even identical to those obtained with Green’s functions, and we present a short review of
other approaches.

In |40], the moving boundary = = s(¢) for the classical Stefan problem was written as

t = f(z), using its monotonicity property. The temperature function was then extended
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continuously (i.e., as u = 0) below t = f(x), and the Laplace transform was applied. Solution
of the boundary value problem for the resulting ordinary differential equation, followed by
the inverse Laplace transform, gave an integral equation for the moving boundary. Further
developments of the integral transform methods appear in |80, p. 138|, where, in particular,
the Laplace transform approach to the oxygen diffusion problem produces the same equations
as those obtained in [51]| via Green’s functions (see above).

The embedding technique was introduced in [12]| for an ice-melting problem, with the
water removed instantaneously on formation. The idea is to “embed” the solution, which
is valid in s(t) < x < [, in a larger domain 0 < x < [ of constant size and shape. The
“fictitious,” extended values of the solution in 0 < z < s(t), as well as the boundary
conditions at x = 0, are chosen so that the given conditions are satisfied at = s(¢). In [12],
Duhamel’s principle was used to write the integral solution for the temperature field in
[0,1], and this expression was used to write a system of integro-differential equations for s(t)
and the fictitious boundary condition. A short time solution, using series expansion, was
obtained.

Finally, we briefly mention the heat-balance integral method of T. Goodman [47], which
uses the integrated form of the Stefan condition to obtain an integral expression for the
energy balance. The dependence of temperature on the space variable is assumed to be
polynomial and consistent with the boundary conditions. This dependence is then integrated
in space up till the moving boundary, and using the interface conditions and the flow
equations, a heat balance integral is written. Then the moving boundary has to satisfy a
certain integral equation, which is solved and the solution is substituted into the assumed
expression for the temperature. This approach worked extremely well for the simpler Stefan
problems, but it becomes much less viable for more general problems. Also, since the
assumed polynomial dependence of temperature on the space variable is not satisfied exactly,
this method is more suitable for qualitative estimates, than for calculations. For several

extensions of the heat-balance integral method, see [27, § 3.5.4-3.5.6].

Summary

Reformulation of moving boundary problems as integral equations along the moving front
not only reduces the dimensionality, but in most cases also provides regularization and sev-

eral choices of numerical methods. When valid, this approach is capable of producing highly
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accurate numerical solutions to problems with a variety of interface conditions, including
Stefan problems, crystal growth problems and problems with prescribed flux, without any
modification. Complicated interface dynamics can also be incorporated, if a combination
with effective front-capturers, such as the level set method, is employed. The main drawback
of this approach arises from the fact that it relies on the explicit calculation of the corre-
sponding Green’s function, which restricts the application of this method to linear parabolic
operators with either constant-coefficient or well-studied special spatial parts. Direct use of

this method for problems in higher space dimensions is not usually very practical.

2.6 Numerical results: a comparison

We are now in a position to compare the performance of the methods described in this
chapter. Numerical results are presented for the oxygen diffusion problem (1.0.2). Our
presentation is based on the original published work, as well as on the reviews citing the
results, notably [27| and [45].

Before we go on to describe each particular implementation, we wish to caution the
readers in their interpretation of the results appearing on page 39. One should be aware
of the fact that the comparative performance of any two numerical techniques is heavily
dependent on the particular problem, with respect to which they are evaluated. It is quite
possible that, should we have considered a different test problem, the relative “rankings”
(in terms of accuracy) of the numerical methods would have changed dramatically. Our
choice of the oxygen diffusion problem was driven mainly by the fact that our own interest
lies in the field of one-dimensional, one-phase moving boundary problems with singularities
in the initial data, of which this is an excellent example. It is also worth noting that this
problem is, perhaps, second only to the classical Stefan problem of ice melting in the interest
developed towards it since its advent in 1972 by J. Crank and R. Gupta [29]. Thus we ran
into no difficulty in finding studies of this problem by various methods. However, it is not
our intention to even attempt to develop an absolute ranking among the existing numerical
methods. As we have numerously pointed out in the previous sections, each approach has its
own advantages and disadvantages and usually works better for some problems and worse
for others.

The following is the description of the numerical methods mentioned in Tables 2.1
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and 2.2.

e FGL: fixed-grid front-capturing with Lagrangian interpolation near moving boundary;

reported from [29]. Parameters: Az = 0.05, At = 0.001.

e VGX: variable grid (in space), with moving boundary always at grid point [77];
reported from [27, § 4.3.2]. Parameters: Az = 0.01, At = 0.001.

e VTS: variable time step front-tracking, with moving boundary always at grid point;

reported from [50|. Parameters: Az = 0.01.

e EVT: explicit variable time step method [102]; reported from [101]. Parameters:
Az = 0.02.

e MGT: grid moving (in time) at the speed of the front, with polynomial interpolation
used for values at old grid points; reported from [30]. Parameters: Az = 0.05, At =
0.001.

e FEM: finite differences in time, finite elements in space method, with moving bound-
ary position computed via extrapolation; reported from |74|. Parameters: linear basis,

Ax = 0.05, Crank-Nicolson time stepping, At = 0.002.

e LIM: method of lines with invariant imbedding [71]; reported from [45]. Parameters:
Az = 0.005, Crank-Nicolson time stepping, At = 0.001.

e FFD: front fixing, with finite difference solution of the resulting partial differential
equation and a regula falsi estimation of moving boundary position from the no-flux

condition; reported from [27], based on [42]. Parameters: Az = 0.025, At = 0.0005.

e FFL: front fixing with solution of the resulting partial differential equation by the
method of lines; reported from [45]. Parameters: Az = 0.025, fully-implicit time
stepping (stiff ODE solver).

e FFC: front fixing with Lagrangian interpolation based on Chebyshev collocation po-
ints; reported from [58]. Parameters: N = 9 nodes, Crank-Nicolson time stepping,

At = 0.005.
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e FFS: front fixing with spectral (Fourier) solution of the resulting partial differential

equation; reported from [34]. Parameters: N ~ 20 modes, fully implicit time stepping

(stiff ODE solver).

e ENT: generalized enthalpy method [32]; reported from [45]. Parameters: Az = 0.025,

Crank-Nicolson time stepping, At = 0.005.

e VEM.: variational inequality — complementarity formulation with finite element dis-
cretization; reported from [39] and [27, §6.4.1]. Parameters: linear elements, Az =

0.01, At = 0.001.

e TEM: integral equation; reported from [51]. Parameters: Simpson integration formula,

At = 0.0005, tolerance ¢ = 1072 or K = 40 iterations.

All calculations, except IEM, VTS, and FFD, start from a positive time (usually 0.0025 or
0.025), because of the initial singularity at x = 0; asymptotic approximation [29, 51] is used
for start-off. For all methods, just the first four significant digits are reported for uniformity.
Further resolution is available for several methods (FGL, IEM, FFS, VTS, FFC), and some
of these numbers will be shown in Section 6.2, when we compare them with the results
produced by our method.

Generally, there is less discrepancy across methods in the computed values of the concen-
tration at the fixed surface, than in those of the moving boundary. This is natural, given the
fact that most of the dynamics happens at the other end, while the same approximate values
were used to start off the majority of the computations. It is widely accepted that among
all numerical methods previous to this work, the integral equation technique (bottom entry
in the tables on page 39) gives the most reliable results for all times. We see that these are
replicated well by the front-fixing-spectral and variational inequality calculations; however,
both of the latter were performed for ¢ > ty > 0 (tp ~ 0.01 and ty = 0.025, respectively).
This confirms the predicted success of the variational inequality approach for the problems
with prescribed flux, if somewhat smeared by its inability to handle singularities at ¢ = 0.
Fixed- and variable-grid techniques produce results which are similar to one another; the
explicit variable time step method is less accurate, but it requires less storage and CPU
time, while enjoying the additional advantage of starting at ¢ = 0. The method of lines

clearly works better in conjunction with front-fixing. In [45], this property is attributed to
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the way the moving boundary is estimated. The enthalpy method does not work as well in
this particular setting, which is not unexpected, given the degeneracy (i.e., zero latent heat)

and also the initial singularity of the problem.
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Method Time t
t=004]t=006|t=010|¢t=0.12|t=0.14 | t=0.16 | t =0.18
FGL 0.2745 0.2237 0.1433 0.1092 0.0779 0.0489 0.0218
VGX 0.2745 0.2238 0.1434 0.1093 0.0780 0.0489 0.0218
VTS - - 0.1423 0.1093 0.0780 0.0489 0.0218
EVT - - 0.1433 - - - 0.0218
MGT 0.2742 0.2234 0.1429 0.1089 0.0776 0.0486 0.0216
FEM - - 0.1432 - - - -
LIM 0.2746 - 0.1436 - - - 0.0222
FFD - - 0.1438 0.1097 0.0783 0.0493 0.0222
FFL 0.2745 - 0.1433 - - - 0.0219
FFC 0.2744 0.2236 0.1431 0.1091 0.0778 0.0488 0.0218
FFS 0.2743 - 0.1432 0.1091 0.0779 0.0488 0.0218
ENT 0.2766 - 0.1439 - - - 0.0221
VEM 0.2743 0.2236 0.1432 0.1091 0.0779 0.0488 0.0218
IEM - 0.2236 0.1432 0.1091 0.0779 0.0488 0.0218
Table 2.1: Oxygen concentration at fixed sealed surface, c(t,0), calculated with different
methods.
Method Time t
t=004]t=006|t=010|t=0.12|t=0.14 | t=0.16 | t =0.18
FGL 0.9992 0.9922 0.9352 0.8789 0.7976 0.6813 0.4961
VGX 0.9988 0.9904 0.9309 0.8740 0.7930 0.6776 0.4974
VTS 0.9950 0.9899 0.9249 0.8703 0.7916 0.6825 0.4767
EVT - 0.9811 0.9256 0.8701 0.7901 0.6748 0.4928
MGT 0.9992 0.9918 0.9344 0.8780 0.7968 0.6798 0.4948
FEM 0.9993 0.9920 0.9356 0.8796 0.7992 0.6832 0.4985
LIM 0.9993 - 0.9361 - - - 0.5065
FFD - - 0.9354 0.8800 - 0.6850 0.5046
FFL 0.9992 - 0.9358 - - - 0.5028
FFC 1.0000 0.9916 0.9350 0.8792 0.7991 0.6837 0.5021
FFS 0.9992 - 0.9350 0.8792 0.7989 0.6834 0.5013
ENT 1.0000 - 1.0000 - - - 0.4750
VEM 0.9991 0.9916 0.9343 0.8792 0.7987 0.6833 0.5018
IEM 0.9992 0.9918 0.9350 0.8792 0.7989 0.6834 0.5011

Table 2.2: Position of the moving boundary (zero-concentration front), calculated with

different methods.
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Chapter 3

(General Formulation

The justification of such a mathematical construct is
solely and precisely that it is expected to work.
(John von Neumann, 1903-1957)

In this work we consider general one-dimensional one-phase moving boundary problems for

linear parabolic equations, which can be written in the following form

up = Lp[u] + f(t,x), t>0, z€l, (3.0.1)
u(z,0) = ¢(z), s(0) = sg (3.0.2)
Blu] = 9(t), wu(t,s(t)) =0(t), (3.0.3)

Here L, is a linear (possibly, time-dependent) elliptic differential operator

0? 0
L, = as(t,x) 922 + aq(t, x) 92 + ap(t, z) (3.0.4)

(for parabolicity we need as(t,z) to be nonnegative); I, is one of the intervals, [0, s(¢)] or
[s(t), 00); and Blu] is the boundary condition at the fixed end (0 or oo, respectively), e.g.,
Blu] = bju + bau,. We call the problem “finite” when I, = [0, s(¢)] and “semi-infinite” in
the other case.

Since the position of the moving front s(t) is unknown, we need an additional condition
to complete the statement of the problem. This is usually provided in a form of a relation
involving the flux across the moving boundary. The Stefan condition (2.1.1) is character-
istic of phase change problems, as it expresses the energy balance across the moving front
when the latent heat is released or absorbed. In several other moving boundary problems,

e.g., those arising in statistics and optimal stopping of Markov processes, u(t, ) has to be
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continuously differentiable across the interface, and hence the additional condition explicitly
prescribes the first derivative (i.e., flux) at s(t). Since (see Section 3.5.1 below) we recast
the problem so that all boundary conditions are homogeneous, the value uz(t,s(t)) = 0 is
consistent with the continuity condition. Indeed, this relation frequently appears in moving
boundary problems with prescribed flux (see, e.g., [86,88,97]). In [27], these problems are
also called “implicit moving boundary problems,” since the evolution of the interface is not
explicitly specified. Thus, following this terminology, we consider below two main settings,
corresponding to the following interface conditions

ualt s(t) = AL

= (Stefan problems) (3.0.5)
0

ug(t,s(t)) =0 (implicit problems) (3.0.6)

Note that for other physical models, other interface conditions may arise. For example,
in crystal growth, the Stefan condition is complemented by the so-called Gibbs-Thompson
relation (2.5.4), describing molecular kinetics and surface tension effects (see Section 2.5).
We do not address these problems in this work, so no details are given here, even though

our approach can be applied to them equally well.

3.1 Front-fixing transformation

The first stage of our method is the front-fixing coordinate transformation. We set £ = x/s(t)
for the finite problem and & = « — s(¢), for the semi-infinite one. The former maps I to

[0, 1], while the latter maps it to [0, 00]. This results in changing the differential operator to

T 0e

4+ = — ——i—@o(t,f)"‘f(tag)

= &Q(tvg) 82 aq (t,f) § ds 0
. +<sm dwﬁ>8§

in the finite case and

- 2 d 5
Lie = aa(t,€) 252 n (al(t,g) n dj) gg +ao(t,€) + f(t,€)

in the semi-infinite case. In both of the above equations, &;(t,§) = a;(t,x(§,s(t))), i =

0,1,2, and analogous relations hold for f(¢,£). The new initial conditions are obviously
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u(0,€) = ¢(so), and the boundary conditions become

Blul(t,0) =¥(t), u(t,1) =6(t), finite case;
u(t,0) =0(t), Blu](t,00) = ¢(t), semi-infinite case

(3.1.1)

Below, we shall solve the equation u; = IN/tf [u] + f by Chebyshev expansions. Since Cheby-
shev polynomials form a complete orthogonal system on the interval [—1, 1], we need to
map the & domain to this interval. This presents no ambiguity for the finite problem, where

we set
2

s "

which results in multiplication by 2 wherever differentiation with respect to the new variable

y=2-1=

y takes place in the operator L and the boundary conditions. For the semi-infinite problem,
a number of mappings was proposed in the literature ([20, section 2.5.3| or the rational

Chebyshev functions T'L,, in [16] ) In this work, we prefer to use
4 4
y = — arctan({) — 1 = — arctan(z — s(t)) — 1.
s v

This brings about a more complicated adjustment to the corresponding operator I:, namely,

2 ds

Lty = H5(0) a(t.) G+ Aalo) (1) + ) + ) T+ dt) + Ft)

Ai(y) = % (1 - sin(%y)) , Aa(y) = —cos(%y) (3.1.2)

Note that we have, effectively, transformed the nonlinearity of the problem from the bound-
ary conditions to the differential operator: it,y is nonlinear, because both s(¢) and ds/dt
are unknown. However, the modified problem is now amenable to accurate numerical treat-
ment by spectral methods, and we outline the framework in Section 3.3. Before we do that,
however, we need to specify the way the position of the moving front is determined at each

time step.
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3.2 Velocity of the moving boundary

To determine the moving boundary s(¢) as part of the solution, we seek a differential equa-
tion that it satisfies. We also note that ds/dt appears in the nonlinear operator Et,ya S0 an
expression for this quantity is necessary. In the case of Stefan-type problems, such differen-
tial equation is already given by (3.0.5). For implicit moving boundary problems, we need
to differentiate the boundary conditions at the moving front to obtain the desired equation,
as described in what follows.
Differentiating the second relation in (3.0.3) with respect to ¢ yields
g d

o = ults(t) = it s(1) + %uz(t,s&)),

and since uy(t, s(t)) = 0 (3.0.6), we have

ur(t, s(t) = La(u)(t, s(t) = 6(1)

From here, provided as(t,s(t)) # 0, we can find ug(t,s(t)) in terms of u, uy and f, all
evaluated at x = s(t). Now, after differentiating equation (3.0.6) with respect to time, just

as we did with the first boundary condition, we obtain

d ds ds
0= —ua(t, 5(t)) = et 5(0)) + 2 waalt, s(0) = (La(w)),, + = was(t,s(0)),
and therefore
L. s(t) (L clu
@Zf% :fM ,b=0or1 (3.2.1)
dt Uge | (15(t) Uuge (t.b)

which is a valid differential equation if only w,. (¢, s(t)) # 0. This idea originates from [29,
Section 4.3], where

L, = -1, 6(t)=0,

0x?

and the resulting equation for s(t) is

ds

% = *ua:mc(tzs(t))’ (322)
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leading to
ds - ’U{gﬁ(i, 1) - 8

P 10y BT R AR

in our method, as we shall see later in Section 6.2.

Note that since L is a second-order differential operator in the space variable, the form
of (3.2.1) suggests that the velocity $(t) of the moving boundary is typically expressed as
some combination of up to third-order spatial derivatives of the solution, evaluated at ¢ = 1.
It is easy to express these as simple linear combinations of the Chebyshev coefficients of w,

since the third y-derivative, evaluated at 1, equals [49, Appendix]

n2 n2 — n2 —
(1) = 37 11;( D o) (3.2.3)

n

An alternative approach to finding an explicit expression for the velocity of the moving
boundary is based on the equivalence, under some general conditions, of problems with
prescribed flux to Stefan problems for a derivative of the function sought [88]. As it was
shown in [88], if u(¢, x) solves an implicit moving boundary problem, then either v(¢, x) = u;
or w(t,x) = uy solves a related Stefan problem with the same moving boundary s(t). Since
the expression for $(¢) is incorporated into the Stefan formulation, as we have established
above, this transformation can provide a useful reduction of the original problem. We use

it in our approach to the American option problem in Chapter 7.

3.3 Chebyshev expansion

The front-fixing transformation allowed us to reduce a linear parabolic equation on a variable
domain to a nonlinear equation on [—1,1]. A number of methods have been used to solve
the resulting partial differential equation (see Section 2.4 and references therein). The most
accurate results were obtained by a Fourier cosine expansion, so the use of spectral methods
appears as a good choice. However, since boundary conditions in the problems we study
are usually not periodic, we choose Chebyshev polynomials as our basis functions. Among
different spectral constructions, we choose Chebyshev tau (in the terminology of [49]), which
seems to be best suited for our approach. The tau method differs from the perhaps better
known Galerkin method in that the basis functions are not required to satisfy the boundary

conditions individually. Instead, the two highest-order coefficients in the truncated sum are
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chosen (at every time step), so that the boundary conditions are satisfied by the whole sum.
This boils down to a relation, or a constraint, imposed on the Chebyshev coefficients at each

step. For example, for a truncated Chebyshev expansion of the solution

N-1
u(t,z) = Y an(t)Th(z) (3.3.1)
n=0
satisfying v = 0 (Dirichlet) at x = —1 and u, = 0 (Neumann) at x = 1, we have
N-1
> (=1)"an=0
n=0
N-1
Z n? ap =0
n=0

In the tau method, then, the coefficients ay_1 and ay_o are chosen so that these relations
(or their analogs for other boundary conditions) are satisfied exactly. If the Chebyshev
coefficients of u(t, x) decay fast enough and (¢, x) is consistent with the boundary conditions
imposed, then the values of these two coefficients computed in this way are sufficiently close
to their true values.

When the expansion (3.3.1) is assumed, we can also get similar expansions for all spatial
derivatives of u(t, ). Any space-dependent coefficients in L, as well as the source term, are

also expanded in Chebyshev series; then, using the multiplication rule (see, for example, [20])

(uw)g = % Z Upg + Z UpUyg
pta=k [p—ql=Fk
we can write the whole right-hand side as a function of a,’s. Thus we get a coupled system
of N+ 1 nonlinear ordinary differential equations (N Chebyshev coefficients and the moving
boundary), which can be integrated by any of the standard algorithms.

If at t = 0, u(0,2) = ¢(z) is a sufficiently smooth function, then we can expand it
in a rapidly convergent Chebyshev series and use the corresponding coefficients, together
with s(0) = sg, as the initial values for the abovementioned system of ordinary differential
equations. However, if ¢(z) has singularities, its Chebyshev series will converge slowly,
and even though the solution at larger, positive ¢ may be quite smooth, we shall be forced,

in general, to take a very large number of Chebyshev coefficients to accurately resolve it
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initially and for small times. Therefore direct application of this method to problems with
only piecewise smooth initial data may not be very practical. This restriction is highly
undesirable, since many moving boundary problems of practical interest have some sort of
singularity in the initial conditions. One remedy is to use small-time asymptotics (as in [34])
to start off the solution up till some time tg > 0 and perform the actual computations for
t > tg > 0. Such an approach, though justified, lacks the universality of a purely numerical
method, which needs only the initial data as input. We choose to pursue a different avenue
and propose to take advantage of the fact that diffusion tends to smooth out singularities
very fast, and therefore solutions corresponding to appropriate approximations of the initial

conditions should be close to the true solution of a singular problem.

3.4 Approximation of singular initial data

Let us assume that the given singular initial data belong to a certain functional space F.
We then construct a sequence of smooth functions, which converges to the given initial data
in the space F’, where 7' O F. If we choose the functional spaces appropriately, then the
sequence of solutions produced by the elements of the smooth sequence will converge to
the true solution of the problem in a chosen norm (e.g., in the supremum norm, if we wish
to bound the maximum error). This gives us a convergent method for solving arbitrary
singular problems, as long as we can find a sequence of smooth functions, converging in the
appropriate functional space.

For example, if the initial conditions involve a d-function, (e.g., in (7.3.5) below), we

Ccan use

N (T—2))k |z <1
P(x) = N (e els (3.4.1)
0,

otherwise

where .

Val(k+1)
Nk:/l(l—xz)kdxzw

is chosen so that [ ¢(z)dx = 1. This is a C§ approximation of the §-function (a so-called

delta-like sequence) [103]. Thus if we take

b = - ¢(7) (3.4.2)
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then ¢c(x) converges to 6(x) as € — 0 in the sense of distributions, with ¢, piecewise
polynomial with compact support on (-1,1). In Chapter 4, we discuss the convergence of

solutions as € — 0. In the practical calculations below, we used the value of k = 6.

3.5 Remarks on implementation

3.5.1 Nonhomogeneous boundary conditions

It is well known in the theory of partial differential equations that it suffices to construct a
method for homogeneous boundary conditions and an arbitrary nonzero source term. Thus,
if either or both of v¥(¢) and 6(t) in (3.1.1) are nonzero, we use the following standard
technique: define a modified function, which differs from the original one by a polynomial
with given values at the boundaries, so that the new function satisfies the modified equation
with homogeneous boundary conditions. For example, in the case of a finite problem with

Dirichlet boundary conditions (i.e., B[u] = u), we choose

v(t,§) = u(t,§) —§0(t) + (£ — )Y(?) (3.5.1)
It can be shown that v satisfies

UVt = I:t,f[v] + F(t7£)7

F(t,f) = f(t,f) - 59(75) + (5 - 1)sz)(t)
N <a1(t,£) ¢ ds

09, £ dt) (8(1) = (1)) + dolt, €) (€6(t) — (€ — 1)w(t))

and v =0 at £ = 0, 1. Similar manipulations can be performed for other types of boundary
conditions as well. Thus without loss of generality we further assume all boundary conditions

homogeneous.



48

3.5.2 Domain decomposition

Often the accuracy of computations can be improved by decomposing [—1,1] into several

subdomains. To do this we set

“1=0 </ <...<PBrx1<Pr=1

and we write the equations on each interval A; = (8}, B41], 7 = 0,..., K —1, with boundary
conditions that reflect the continuity of u and u, at each node ;. The transformation
2 -+ B

4= G V) [

j=0,....,K—1

maps each of the subintervals to [—1,1], and we can thus solve each of the K “small”

problems with the same technique as the original “large” one, but with the new boundary

conditions
B[] =0
u(j)(t, 1) = w0, -1), j=0,...,K -2
2 2 ;
t1)=— Ut -1), j=0,....,K—2
Bi+1— B 53 D = Bi+2 — Bj+1 ~ ( b g

Bo[uBY] =0

Here, B; and By are the originally prescribed boundary conditions at +1, and u) is the
function u restricted to the interval A;, i.e., ul) = u(t, y(25)).

This is not an uncommon technique in spectral methods [16, Chapter 22]. A whole class
of numerical methods — the so-called spectral elements — is devoted to the development
of this idea, especially in more than one space dimension. In our setting, it serves two
purposes. Firstly, any isolated singularities in the initial data are localized in the smaller
interval and interact with the solution at other points in the domain only through matching
at the boundaries of adjacent segments. Secondly, if enough subintervals are taken, each
of the u)’s is “flatter” than the original u, so we can use fewer Chebyshev polynomials per
interval to represent it at the same level of accuracy. This can benefit higher derivative
calculations, like (3.2.3), since any errors in higher-order modes there are multiplied by

large numbers (O(n%) for the third derivative), which has the potential of deteriorating the
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accuracy of the computation; so it is important to use a reduced number of polynomials if
possible.

There is, obviously, a great deal of freedom in choosing the position of the nodes 3;. It
is not the purpose of this work to present a general method of doing so, since we only use
domain decomposition as an auxiliary tool. We have found, for instance, that even simple
partitioning of the domain in subintervals of equal length can decrease the error significantly
at the cost of a reasonable increase in complexity. If the dynamics of the problem is more
localized, the ;’s can be distributed more densely around the more significant parts of the
large interval. As the solution gets smoother for larger times, the number of subintervals may
decrease and their lengths may become more uniform. In certain cases (see Section 7.5), such
adaptivity in the domain decomposition substantially reduces the number of subintervals
required to resolve the solution accurately, and the savings in computation time over uniform

decomposition are considerable.

3.6 Reduced form

In view of the previous considerations, the original moving boundary problem in the form,

Ut :Lt,y;s(t)(u)+f(tay;5(t))v t>0, -1<y<1, (361)
u(0,y) = ¢(y), s(0) = so, (3.6.2)
Bylu](t,—1) =0, Ba[u](t,1) =0, (3.6.3)
2
——— uy(t, 1) Stefan
ds As(t

B 00 Ly QINCT . (3.6-4)

- 2uyy(t,1) b

can be reduced to a system of N + 1 differential equations of the form

N-1
day, .
T < < - . .
7 H;Anm(&S)avafn, 0<n<N-3, (3.6.5)
an(0) = én,  s(0) = so, (3.6.6)
N-1 N-1
ST am)an=>" g(n)a, =0, (3.6.7)
n=0 n=0
ds
— :G(t,s,ag,...,aN_l), (3.6.8)
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where ay,(t), fn(t) and ¢, are the Chebyshev coefficients of the solution, source term and the
initial data, respectively; and the exact forms of Ay, ¢;(n) and G depend on the specific
form of the spatial operator L and boundary conditions. For example, the Chebyshev

coefficients of the first and second derivatives have the form

E mam,

m=n-+1
m+mn odd
1 o0
a? = — E m(m? — n?)a,,
Cn m=n-+2

with

cg=2, c,=1,n>0.

For similar expressions for other derivatives and combinations, see [49].

Thus, for example, the classical Stefan problem for the melting of an ice slab,

Up = Uy, 0<x<s(t),
u(0,z) =0, s(0) = sp,
u(t,0) =1

u(t,s(t)) =0, ug(t,s(t)) =—A %

after the transformations is reduced to the following system,

da = 2 $(t) = na
n n
—_— = E — E (

7 o 52 2 mm n)am+cn 5(0) pa 1mam+ 5

(7

an(0) = 5 (5 — 6, ) s(0) = so,

N-1 N-1
(—1)"a, = Z an =0,

n=0 n=0

N-1
ds 2 9 Up

dt = st (;” in 2)

(Here, 6,1 is Cronecker’s delta symbol.)
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Chapter 4

Convergence

A mathematician’s reputation rests
on the number of bad proofs he has given.
(A. S. Besicovich, 1891-1970)

In the previous Chapter we introduced convergent approximations of singular initial data
with sequences of smooth functions. From the general theory of Stefan problems [81, 85], we
know that the solution produced by each element of the approximating sequence is classical,
i.e., at least C2(Is) x C1[0,1] for all ¢, so it can be computed accurately by spectral methods.
To determine the way these smooth solutions relate to the true solution of the singular
problem, we investigate their convergence, as the initial approximation gets sharper, and
study the corresponding convergence rates. For simplicity we restrict our analysis to the
linear (i.e., fixed boundary) setting. This provides a rationalization for the convergence

rates observed in the examples presented in Chapters 6 and 7.

4.1 Main result

The general moving boundary problem was formulated in Chapter 3 for the parabolic equa-
tion

u = Lyfu] + f(t,2) = aa(t, ) uge + a1 (t, x) up + ao(t, z) u+ f(t, x)

with x € I, where Iy = [0,s(¢)] (finite case) or I; = [s(f),00) (semi-infinite case). For
s(0) = sp, we define Iy similarly. Restricting ourselves to the following singular initial-

boundary value problem with s(¢) = sg

u = Lp[u] + f(t,z), x€lp, t>0
U(0,$) = uO(x)a B[u] =0

(4.1.1)
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we prove a general convergence result.

Since we shall be working with initial data that are distributions, we briefly review the
basic concepts and notation, following |75, Chapter 4]. The space D(R) contains all infinitely
differentiable functions on the real line with compact support and is equipped with topology
of uniform convergence on compact subsets of R. Distributions are the elements of the
space D'(R) of continuous linear functionals on D(R). The spaces £(R) and &'(R) are
defined similarly for C'*° functions with no restriction on support. For example, Dirac’s 4-
function is an element of both D'(R) and £'(R). We say that 7' € D'(R) (or £'(R)) is a zero
distribution on an open set Q0 C R, if T[] = 0 for every ¥ € D(R) (respectively, ¢ € £(R)),
such that the support of ¢ is contained inside 2. Then the support of a distribution T,
denoted supp (T'), is defined as the complement in R of the largest open subset of R where
T is a zero distribution. For any set S C R, we say that T € £'(S) if T € &'(R) and
supp (T') C S. Finally, a sequence of distributions 7T,, € £’ is said to converge weakly to a

distribution T' € £ as n — oo if V4 € &, the numerical sequence {T},[¢)]} converges to T[¢]:
T, —T asn-—oo in& it T,¢]—T] inR

We now formulate the convergence result for the problem (4.1.1).

Theorem 1. Assume that o; € C2 x C}, i =0,1,2, and the source term f(t,x) is contin-
uous in both variables. Consider an initial-boundary value problem with u(0,z) = ¢(x) €
E'(Ip) and a family of problems with u,(0,2) = ¢,(x) € C*(Iy) for some some k > 0, so
that supp ¢, C Iy. Suppose ¢, — ¢ in E'; and denote u,(t, x) the solutions of each problem
with u,(0,2) = ¢n(z) and u(t,x) the solution of (4.1.1) with w(0,x) = p(z). If for any
v € E(1o),

|6nlt)] — p[¥]] < Myen (4.1.2)

for some sequence €, — 0 and a constant My, depending on 1), then on any finite interval
(0,T] we have

sup |un(t, z) —u(t,z)| < K(t)en (4.1.3)
AT

where K(t) is bounded on any segment [to,T], to > 0, and K(t) — oo ast — 0. In
particular, u,(t,z) converges to u(t,z) uniformly in Iy as n — oo for all finite positive t,

and u(t,x) is continuous.
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Remark. The dependence of K in (4.1.3) on t reflects the fact that convergence is faster
for larger ¢, as the initial singularities smooth out, while at t = 0 the estimate is not valid,

since the limiting initial value ¢ € &'(lp) is, in general, not bounded.

Proof. We present the proof for Dirichlet boundary conditions, i.e.,

u(t,0) = u(t,s0) =0 Iy =][0,s0] (finite problem) (4.1.4)

u(t, so) = u(t,00) =0 Iy =[sp,00) (semi-infinite problem)
Other types of boundary conditions can be treated in the same way.
Recall that the adjoint operator to L, (3.0.4) is [43]

0? 0
L = as(t,x) 92 + (202,4(t, ) — aq (t, z)) p + ap(t, ) — a1 4(t, z) + g 2a(t, z). (4.1.5)

In view of the assumed regularity of the coefficients, we can construct a fundamental solution
G(z,t;&,7) of the operator LY, which is in class C? in o and C! in t for (z,t) # (£,7) [43].
For a finite problem, we choose the fundamental solution vanishing at x = 0; the corre-
sponding condition in the semi-infinite case (i.e., G — 0 as x — o0) is verified automatically.

Integrating Green’s identity [43, p. 27|
te
//{(Gt L LG u + (ur — Lolu])G) dé dr
0 Iy

te
_ / / {885[042(;% — asuGe + (a1 — aneuG] — (uG)T} d¢ dr
0 Ip

by parts using the initial and boundary conditions, and letting t. — t from below, we obtain

the following integral equation for u(¢,x) (cf. [43])

ult,z) = — / / Gla,t:€,7) [(7,€) dE dr + / G, 1€, 0) up(€) de
0 Ip

Io

t
+/042(Ty s0) G(z,t; 50, T)ug(T, S0) dT- (4.1.6)
0

Note that ug(x) is supported on Iy, and therefore the second term on the right-hand side is

well-defined. The last term appears due to the fact that G does not satisfy the boundary
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condition at z = s9. Taking ug(z) = ¢, (x) produces the solution u,(t, z), while ug(z) =
¢(z) produces u(t,r). Since for each n, ¢, € CF(Ip) with k > 0, it follows that the
corresponding solutions of the parabolic equation satisfy u, € C? x C} for ¢t > 0 for any
n. We take two such solutions u,, and u, and subtract the corresponding versions of

equation (4.1.6) from each other. Estimating the absolute value of the difference yields
n(t,2) = i (t,2)] < | [ Gl t:€.0)(00(€) = 6 (€)) (1.7
Io

+ =J1+Jo

t
/a2(7’7 50) G(@,t; 50, 7) [n,e (T, 50) — Um ¢ (T, s0)] dT
0

For the first term we write
= / G, :6,0) (60 (€) — dm(€)) de
Iy
< | [ Glati&.0)@n(e) — 60 de| + | [ Glati€.0)(0(6) — 6ml€)) de
Iy I

According to the estimates in [43, p. 134, formula (1.4)], the fundamental solution
G(z,t; &, 7) satisfies
const 1

’G(%t;gﬂ_)‘ < (t— 1)~ |l‘—f‘1_2“

(4.1.8)

for yu € (0,1). Therefore G(z, t;€,0) = t *G(x, t; €,0), where G(x,t;£,0) € £ in the variable
¢ for all z and t. It follows that if (4.1.2) holds, then we have

M
Jp < Tf (en + Em) (4.1.9)

where the Mg is a constant. For the second term in (4.1.7) we simply write

t

Jo < /} (7, 50) G(,t; 50, T)| |ung (T, 50) — Um.e(T, 50)| dT (4.1.10)
0

Thus (4.1.7) implies that, as long as (4.1.2) holds for the initial data, we have

M,
un(t, z) — um(t, z)| < t—f(sn—f—é‘m)-l—Jg (4.1.11)
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The conclusion is now based on the following

Lemma 1. Let uy,(t,x) and uy(t,z) be the solutions defined above. Then for any t > to,
the fluzes across the line x = sq satisfy the inequality:
2Mg
[tn ot 50) = tman(t,50)| < (Z5E + Ka(#)) (0 + ) (4.1.12)

for any t, if only (4.1.2) holds, where % <~ <1, Mg is a constant, depending on G, and
K is bounded on [0,T] and independent of m and n.

Once we establish this result, the theorem is proved as follows. Combining (4.1.10)

and (4.1.11), we conclude that

t ~

M,
J2 < (5n+5m)/‘ (12(7’, 50) G('Iat;SUaT)l ( Tf +K1(7—)) dr
0

Due to the estimate (4.1.8), Jo can further be bounded by

t
~ _ o(T)dr
J2 < Mg (en + em) F(2; 50) / =)
0
where F'(x, sg) carries the spatial dependence of G, and as, and v(7) is bounded. Since both
~v and p are strictly less than 1, the singularities at 0 and ¢ are integrable, and we conclude

that
Jo < Mg Ky (t) F(x;50) (€n 4 €m)

where K»(t) and F(x;sg) are bounded for all z,¢. Combining this inequality with (4.1.11),
we obtain

() — (£, )] < (% + NGE (1) F(r:50)) (20 + 20

for any t > 0 and = € Iy, which implies

sg) [un,(t, ) — um(t, )| < K(t) (en + €m) (4.1.13)

where

M .
K(t) = =Gy Mg Ks(t) max |F(x;s9)] — o0 ast— 0
tH x€ly
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However, K (t) is bounded on any segment [tg, T for any ¢y > 0, so taking the limit as
m,n — oo yields

sup |un(t, ) — um(t,x)] = 0 asm,n — oo
xz€ly

and by Cauchy’s criterion, the sequence u,, converges uniformly in C°(Iy) for any t € [to, T].
Hence the limit is a continuous function as well, which, by linearity, satisfies the integral
equation (4.1.6) with u(0,x) = ¢(z), i.e., is a solution of the given problem with the singular
initial data. By uniqueness of solutions of parabolic initial-boundary value problems, u(t, x)
has to be the sought solution of the singular problem. Since tg > 0 and T were chosen
arbitrarily, it follows that the convergence result holds for any finite positive t.

Proof of Lemma 1. Since as(t, x) is smooth on the closed domain Iy x [tg, T] C R?, it is also

bounded on it. We assume, without loss of generality, that

sup |as(t, z)| <1 (4.1.14)

x,t

(If h = sup || > 1, we stretch the ¢ variable according to ¢ — t/h. This results in dividing
the spatial part of the original differential equation by h, and in particular, makes the
maximum of the new as no larger than 1.)

For any ¢ > 0 and any z # s¢, differentiating (4.1.6) yields
t
wslte) =~ [ [ Galatien) FrOdcdr+ [ Galo i 0)uo(€) de
0 I() IO

t
+/a2(7, s0) Gz (2, t; 50, T) ue (T, 50) dr. (4.1.15)
0

By virtue of the estimates of [43, p. 134, formulas (1.3), (1.5) and (1.6)], we have

const 1 n const 1
= fa =P = fa— e

| Go(z, 8¢, 7)| < (4.1.16)

where v > 0, % <pir <land1l— % < pg <1. Thus all integrals in (4.1.15) are uniformly
convergent and differentiation under the integral sign is justified. Letting x — s, creates no
problems for the first two integrals, while the last one has a jump, like that of the derivative

of a single-layer potential [43]. We thus have the following equation for the flux across
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t

ua(t, 50) = / / Golso,t:6,7) (7, €) dedr + / G0, £, 0) o (€) dé
1o

0 o
t
1
+/O¢2(T~90) G (s0,t; 80, T) ug(T, 50)d7+§a2(t750)ux(t,50)'
0

Writing two copies of the above equations for u, ; and u,, ., with initial conditions ¢, and

¢®m, respectively, and subtracting one from the other, we obtain
’un,m(tv 80) - um,x(ta 80)| < /G:E(S()a t; ga 0) ((Z)n(‘g) - ¢m(§)) d(f (4117)
Iy

t
+ /‘042(7', 80) GI(SO,t; S(),T)HUT%&(T, 80) — umyg(’r, 80)‘ dr
0
1
+§ ’a2(t7 30)| |un,x(t) 50) - um,az(ta 50)}'

The first term in (4.1.17) can be estimated in the same manner as J; in (4.1.7). In the
estimates (4.1.16), let v = max{1, po}. Then Gy(so,t;&,0) =t~V F(s,t;£,0), where F €
&'(Iy) in the variable ¢ for all ¢t. Thus, if (4.1.2) holds, we have (cf. (4.1.9))

/Gz(SO,t;&O) (Dn(&) — dm(€)) dé| < %(snwm). (4.1.18)
1o

where Mg depends on Gy(so,t;£0), and therefore on G. According to the estimate [43,

p. 137], the derivative of the fundamental solution at the boundary satisfies

const 1
(t— ) Tso — €727

|G (50, ;€ 7)] < (4.1.19)

forany 1 — 3/2 < p < 1, i.e., p+ /2 > 1, so G(s0,t;&,7) is finite as & — sp for a fixed
7, and the singularity as 7 — t is integrable. Thus the ay G in the second term of (4.1.17)
has a finite integral.

Finally, in view of the relation (4.1.14), the last term in (4.1.17) is bounded by
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% ‘unvx(t, 50) — Um, (1, so)|, and we can move it to the left-hand side to obtain

226 (en + Em) (4.1.20)

‘un,x(tv 50) - um,x(t, 50)’ < Py

t
+2/|Ck2(7’, 80) Ga;(SO,t;SQ,T)Hun,§<T, So) — umé‘(T, 80)‘ dr
0

We can now apply the following version of Gronwall’s inequality (see, e.g., [25]), which we

prove below:

Lemma 2. Suppose for continuous function w(t) > 0, and absolutely integrable functions

g(t),9(t) >0

w(t) < ¥(t) +/g(7)w(7) dr (4.1.21)
0
Then . .
w(t) <P(t) + [ g(7) () exp gly)dy | dr (4.1.22)
/ /

In (4.1.20), we let w(7) = |un (7, 50) — Um (7, 50)|, 9(7) = 2|aa(T, s0) Gz (s0,t; S0, )|, and
Y(t) = ZMGt—V(gn + €m). Then by (4.1.22) we have

Mg

|Un,x(t7 SO) - Um,a:(tu 50)| < (En + Em)

dr

t t
(et 2m) [ faariso) Gatonstiso, ™) exp | 2 [ laaty,s0) Galoosts0,0)] dy | &
0 T

We use the estimates (4.1.19) once again to observe that the integrand in the second term
is < const (t — 7)~7¢t77, so the singularities at 0 and ¢ are integrable, and we indeed have

oM
tY

ttn 0t 50) = wma(t, 50)| = (ZE + K1 (1) (20 + m)

with K7 bounded and depends only on g, G and sg, so Lemma 1 is proved.

Proof of Lemma 2. Denote

q(t) = /9(7) w(r)dr (4.1.23)
0
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Then, after multiplying both sides of (4.1.21) by g(¢) > 0, we obtain

q'(t) < v(t) g(t) + 9(t) a(t)
Moving the last term to the left-hand side produces

ftg(y) dy —[9(y)dy
0 . t 0

¢ - gyat) =e 0"

9(y) dy) and integrating from 0 to ¢ yields

o &

Multiplying through by exp (—

T

aye 77 g0 < / $(7) g(r) exp (— [ s dy) dr
0

0

implying, since ¢(0) = 0 (4.1.23), that

alt) < / () g(7) exp (— / 9(y) dy> ir
0

T

Using the definition of ¢(¢) (4.1.23) and the given inequality (4.1.21), we conclude that

w(t) <¢t) + [ g(r)d(r)exp [ [ g(y)dy | dr
0/ /
as required.

Theorem 1 is thus proved completely.

4.2 Rate of convergence for /-like sequences

Clearly, for practical purposes, it is important to have an estimate on the rate of convergence
of the approximate solutions to the exact solution. We present the result for a class of
distributional initial data, valid for most of the singular problems considered below.

We see from the formulas (4.1.2) and (4.1.3) that the rate of convergence of u, to u
in the supremum norm is driven by the rate of the weak convergence of ¢, to ¢ in &'

Therefore for those problems whose initial data are distributions, the following statement is
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important.

Proposition 1. Recall the C* approzimation of the §-function introduced in Section 3.4

1 4 2\k
d(x) = Nk e =t (4.2.1)
0,

otherwise

where
1

- ATk +1)
—1

is chosen so that [ ¢(x)dx =1, and the corresponding family

b = 1¢<5) (4.2.2)

€ €

Then ¢ — 0o, Dirac’s functional, in E'(R) as € — 0 quadratically, i.e., for any ¢ € E(R)

|e[t] — do[t]| = O(2). (4.2.3)
Proof. For any ¢ € £ we have
“+o0o
6dd) = lw)] < | [ éula)uta)do - v(0)

Since ¢, were constructed in such a way that their integral over the real line is equal to

unity, we can write

+oo
wm—/mmwmm

Furthermore, ¢, is supported on the segment [—e, €], so the integral is only evaluated in

these limits. Finally, we make the change of variables  — /e and use (3.4.2) so that

1

\@wwwwusb/amW&m—wm»m (4.2.4)

-1
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Using Taylor series, we find

2,2

(ex) = (0) = exy! (0) + —— v"(0) + O(€)
Substituting this back into (4.2.4), we find

/ / 621‘2
| det] — 81]] < / o) e/ (0) + S

-1

P"(0) + O(e)) dz

Since the interval of integration is symmetric about 0, and the function ¢(x) is even by

construction (4.2.1), the integral of x ¢(x) vanishes, and we have

1

/ 226(@)dz | +0(2)

-1

6] — 8lul] <10 (0)]
But [1”(0)] < M < oo, since 1 is smooth, and the integral of z2¢(z) is obviously finite.
Thus we have |¢¢[1)] — 0[¢]| < M € + 0(€?), and Proposition 1 is thus proved.

We can now use the definition of weak derivatives to prove that if (4.2.3) holds, then
the subsequent primitives of ¢, converge in &£, respectively, to Heavyside’s function, H (z),
the function max (0, x), and so forth. Note also that Proposition 1 remains valid in £'(a, b),
for any real interval (a,b), as long as it contains 0 as its interior point. The same result will
hold if the peak of the J-function is at any point zg, such that a < zg < b.

Now we can prove the corresponding statement about the rate of convergence of solutions

with approximated initial data, to the true solution.

Theorem 2. In the problem (4.1.1), let xo be a point inside Iy. Suppose the initial condi-

tion is a distribution of the following general form,
u(0,2) = ug = co(z)d(x — xo) + c1(x)H(x — o) + co(x) max(0,x — xo) + ... (4.2.5)

i.e., involves the o-function and its primitives of any order. Let ug g (x) be based on the
approzimation of 6(x — xg) by ¢c(x — x0) of (4.2.2). Then uy ((t,x), the solution of (4.1.1)
using uo,¢, () as the initial data, converges to u(t,x), the true solution of this problem as

e — 0, uniformly in Iy, and the convergence is quadratic in €.
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Proof. By definition, ¢. € CF(Iy) for sufficiently small e. By Proposition 1, ¢, — § in
E'(Ip), and the convergence rate is quadratic in the following sense: for any v € &'(Iy),
the sequence ¢¢[1)] converges quadratically to d[¢)] as € — 0. Thus if we pick any sequence
€n, — 0 as n — oo and denote ¢, = ¢,, we have, due to (4.2.3) and the extension of
Proposition 1,

10,6, e [¥V] — u0[th]| < const e,

which is an estimate of type (4.1.2). The d-function and its primitives, restricted to Iy,
all lie in £'(Iy). Therefore we can use Theorem 1 to conclude that ug = u (uniformly)
in Iy for all finite positive ¢, and the convergence rate is also quadratic in €, due to the

estimate (4.1.3).

Remark 1. In general, the rate of convergence may no longer be quadratic in the case when
u(0,x) of (4.2.5) is supported on the boundary of I, unless the Green’s function in (4.1.6)
is of special form. However, if the singularity is weaker, the quadratic convergence rate may

still be attained. For example, let Iy = [0, so] and
u(0,z) = max(0,z) + ...

where < ... > indicate smoother terms. We define F(x) so that F”(x) = ¢(x) of (4.2.1),
and F, similarly with respect to ¢, so that F(z) = € F(z/e) (cf. (4.2.2)). We have

|Fe[t] — max(0,z)[¢]| = /[Fs(az) — max(0, z)] ¢(z) dz
= /[e F(%) - max(O,x)} Y(z)dz
0

Making a change of variables y = z/¢, we obtain

[F.00] — max(0,0) (6] = | [ [eF (o) — max(0,e)] w(ey) dy
0
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But max(0, \z) = Amax(0, z), so we conclude that

1
‘Fe[lb] — max(0, z)[¢ e / — max(0,y)] ¥(ey) dy| = O(€?) (4.2.6)
0

This estimate will be useful in the discussion of the oxygen diffusion problem in Section 6.2.
Remark 2. We have proved convergence of our approximation construction to the true
solution in a linear setting, since in the proof above, we assumed s(t) = sg throughout. The
estimate of convergence rates provided clearly suggests similar error bounds in the moving
boundary setting. These are substantiated by various numerical experiments presented in
Chapters 6 and 7. A complete generalization of these results to moving boundary problems
is not direct, however. This is due to the fact that we have to account for the difference
in the moving boundary values produced by different initial data, and the corresponding
estimates have non-integrable kernels. For example, the formula (4.1.7) in the moving

boundary setting becomes

t Sn(T)
i (£,2) — (£, 2)| < / / Gla,t:6,7) f(r.€) de | dr
0 Sm(”')

0
/ [ag (7,5n(7)) G(2,t; $0(T), T)Un (T, 50(T))
0

—0(T, 8 (7)) G2, t; 5 (T), T) U ¢ (T, Sm(T))] dr

and the difference of the fluxes (4.1.17) will contain expressions like

/ (T, 8m/(7)) G (T, $Sm(T); t, S (t)) — (T, $n(T)) G (T, sn(7); t, sn(t))]unf(ﬂ sn(T)) dT
0

If we proceed along the same lines as above to obtain bounds for these expressions, those
will involve integrals of G, whose singularity as s,(7) — s, (7) and 7 — t is no longer
integrable [43]|. Therefore we fall short of a rigorous proof of convergence for the full moving

boundary case. We do want to point out that, in fact, even existence of generalized solutions
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to Stefan problems has only been proved for initial data in class H'(Iy) [54], and there is

no general result for problems whose initial conditions are distributions.
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Chapter 5

(Generalizations and Enhancements

Everything should be made as simple as possible,
but not simpler.
(Albert Einstein, 1879-1955)

The framework presented in Chapter 3, enforced by the convergence mechanism established
in Chapter 4, gives a general numerical method for solving singular moving boundary prob-
lems. As we shall illustrate below (Chapters 6 and 7), this numerical method is capable
of producing quantitative results of high quality for a wide range of problems. In certain
practical cases, however, the goal is not to consistently produce progressively more accurate
calculations, but to obtain a quick estimate of what the solution looks like, with reasonable,
but not necessarily highest accuracy. Below we present two techniques which allow us to do
just that. The applicability of these techniques can be limited, and convergence has not been
established rigorously; therefore, these methods should be used with caution. Nevertheless
in many cases these techniques act as very good extensions of our method and are capable
of providing only slightly less accurate results for singular problems with a noticeable time
economy (up to a factor of 10 for certain problems). The first procedure uses the ideas of
analytic continuation to numerically evaluate certain expressions, while the second one uses

prior integration in time to gain a degree of smoothness to the solution.

5.1 Padé approximations

In some of the problems we encounter, the initial data has only one singularity, which lies
within the interval (—1,1). The resulting slow decay of Chebyshev coefficients deteriorates
the accuracy of the spectral approximation at any point in [—1,1]. This is the well-known

“globalization” effect of spectral methods. This can be even more problematic in some of
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the cases we investigate, as becomes evident from the following example.

Suppose we were solving an implicit moving boundary problem with initial data having
a corner singularity inside the interval (—1,1). The Chebyshev coefficients decay initially
like O(1/n?). As we have seen (e.g., (3.2.2)), the derivative of the moving boundary is
proportional to the third derivative of the solution there, so that numerical evaluation of
the velocity involves summing series like (3.2.3). But for a,, = O(1/n?) this series does not
even converge, despite the fact that the third derivative itself is a well-defined function at
that point.

For a related problem, recall the classical example of the geometric series
o0
S(z) :Zz”:1+z+z2+...+z”+...
n=0

which converges in for |z| < 1 and diverges for |z| > 1. At the same time, we know that

this is a power series representation of the rational function

so identifying the power series with R(z) for |z| > 1 is a way to continue S(z) analytically
beyond the circle of convergence. This is the idea behind Padé approximations of power
series with rational functions.

We use this idea to resolve the difficulty stated above. We look at the series (3.2.3) as the
definition of an analytic function. Thus computing uz., at x = 1 is equivalent to evaluating
this analytic function outside of its circle of convergence, and Padé approximation can help.
We can keep using the approximation for several time steps, until the coefficients start to
decay fast enough for x = 1 to be inside the circle of convergence. We found this technique

to be very helpful in starting off solutions from singular initial data.

5.2 Prior integration

The simplest case of a singularity in the initial data occurs when the initial value of the
solution does not satisfy the boundary conditions. In their study of Chebyshev series so-
lutions of linear parabolic equations, D. Knibb and R.E. Scraton [57] proposed to write a

new problem for the time integral of the unknown function. The equation and boundary
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conditions are modified slightly (or not at all, as in the case of homogeneous unforced prob-
lems), while the new initial condition satisfies a second-order differential equation and thus
has two free constants, which can be chosen in a way to satisfy the boundary conditions.
The new problem is therefore smooth, and it can be solved by the regular Chebyshev tau
method. The solution of the original problem is obtained from the auxiliary solution by
differentiation in time.

In [57], the following boundary value problem for the heat equation was considered

d%u ou
u(0,z) = K(z)

u(t,—1) =u(t,1) =0

with K (£1) # 0. The authors choose the new initial condition K*(x), so that

d’K*(x)

2 = P(0)K ()

which is consistent with (5.2.1), and take the solution that satisfies K*(+1) = 0. This can
be done, since it is equivalent to solving a simple boundary value problem for a second-order
ordinary differential equation. Consequently they find the solution u*(¢,z) to (5.2.1) with
the initial condition u*(0,x) = K*(x) and the same boundary conditions as u. Once u* is

found, it is easy to show that

solves the original problem. We refer the reader to the original paper [57] for the details.
As shown in what follows, this ingenious method admits a direct generalization to mo-

ving boundary problems. To illustrate this fact we consider the following autonomous Stefan
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problem,

ur = Lyu] + f(z), 0<z<s(t),t>0 (5.2.2)
U(O,LE) = ¢($)’ S(O) = S0
ﬁou(t, 0) =+ Blug;(t, 0) =0
ds

ult s(t) =0, ualt s(t) = —A—

where the second-order differential operator L[] does not depend on time. It is easy to

see that if the pair {u*(¢, ), s(t)} solves

up = Lylu]+ (t+1)f(x), 0<x<s(t),t>0 (5.2.3)
u*(0,2) = p(x) with Ly[¢] + f(z) = ¢(x) (5.2.4)
B (1,0) + Bt (6,0 =0, Lalu®)(t,5(6)) + F(s(8) = 0
ds 10

os(t) s(0) = so

T (Lx[u*](t,x) + (t+ 1)f(w))

then the pair {uf(¢,x), s(t)} solves (5.2.2). Note that, just as in the fixed-boundary case
above, (5.2.4) is a second-order differential equation, which can be solved for v*(0, z) = ¢(x),
satisfying the boundary conditions at both ends. Also, the boundary condition at the moving
end involves higher-order spatial derivatives of u*, but these can all be expressed in terms of
the Chebyshev coefficients of u* just as well. If the solution of the original problem is unique,
then this is what this condition will determine. The problem (5.2.3) is indeed smooth, so
solving it with the Chebyshev tau method gives accurate solutions. We can also use the
spectral representation of L, + (t+1) f to find the value of v} = u without accumulating any
significant error from numerical differentiation. Thus we find the extended Knibb-Scraton
approach to be a good way of enhancing accuracy.

Note that the same procedure applies to implicit moving boundary problems as well. The
differential equation for the moving boundary will typically contain not the third, but the
fifth spatial derivative of u*(¢, z). If this series is divergent, we can use Padé approximations
to sum it, as described in the preceding section.

The main difficulty with this approach becomes apparent for complicated spatial opera-
tors L. In these cases the representation of boundary conditions for the auxiliary function

in terms of its Chebyshev coefficients may become very involved. As it is, the method is
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not suitable for time-dependent right-hand sides, since in this case, the partial differential

equation for u* is essentially different from that for v and can be technically hard to derive.
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Chapter 6

Numerical Results

Whenever you can, count.
(Sir Francis Galton, 1822-1911)

It is unworthy of excellent men to lose hours,
like slaves, on the labors of calculation.
(Gottfried Leibnitz, 1646-1716)

In this chapter we present results of the numerical experiments we used to test the per-
formance of our methods. In Section 6.1, we apply the Chebyshev tau method directly to
two Stefan-type problems with smooth initial data, for which the analytical solutions are
known. We are able to confirm the spectral accuracy in this setting In Section 6.2, we give
the results for the oxygen diffusion problem, which has a singularity at ¢ = 0, as the initial
data is not compatible with the condition prescribed at the fixed boundary. The exact
solution is not available for this problem, but there is a vast amount of literature with nu-
merical results available (see also Section 2.6 of the current work). We solve these problems
by means of the smooth approximations of initial conditions introduced in Section 3.4. In
particular, these experiments give the convergence rate predicted by Theorem 2; arbitrarily
high accuracies can be achieved provided sufficiently sharp initial approximations are used.
We also demonstrate the performance of the techniques of Chapter 5 above, and show that
introduction of Padé approximations allows to perform the calculations four times faster,
albeit with a certain loss of accuracy, while prior integration can increase the time savings

by an additional factor of three with even smaller accuracy reduction.
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t=0.1 t=0.5 t=1
u exact 1.1618342427282831 | 1.4190675485932571 | 1.8221188003905089
At =5-10"° | 1.1618342427282831 | 1.4190675485932571 | 1.8221188003903754
At =0.001 1.1618342427270414 | 1.4190675485848743 | 1.8221188003575279
s(t) | exact 0.3 0.7 1.2
At =5-10"5 | 0.3000000000000000 | 0.7000000000000001 | 1.2000000000001261
At =0.001 0.2999999999992889 | 0.6999999999940465 | 1.1999999999803832
error | At=5-10"° 2.10~16 2.107P 9.7-107 1
At = 0.001 1.3-1071 8.5-10712 3.3-107 11

Table 6.1: Values of the function at x = s(¢)/2 and the position of the moving boundary
at different times for problem (6.1.1 - 6.1.2), V = A = 1, a = 0.2, calculated using RK4
(At =5-1075) and G3 (At = 0.001), both with N = 11 Chebyshev polynomials.

6.1 Stefan problems

Consider the following Stefan-like problems, one of which has the fixed boundary at zero

and the other, at infinity.

?::Kg:;, 0<z<s(t),t>0; (6.1.1)

u(0,z) = e M=), 5(0) = a;

u(t,0) = VY (e, s(t)) = 1,
gza, s(t)) = % % (6.1.2)

and

g?:‘;gzg,, x > s(t), t > 0; (6.1.3)

w(0,z) = e ATV 5(0) = o

u(t,s(t)) =1, wu(t,+o00) =0,
%(t,s(t)) _ —% %. (6.1.4)

These two problems admit the same exact solution: u(t,z) = exp(—A(z — Vit —a)), s(t) =

V't 4 «, which was used to test the performance of the numerical schemes.

In accordance with the method described in Chapter 3, the moving boundary in prob-

lem (6.1.1 - 6.1.2) was fixed at y = 1 by the change of variables y = 2x/s(t) — 1. Since

the boundary conditions are not homogeneous, we invoked the technique described in Sec-
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t=0.1 t=0.5 t=1

u exact 0.1495686192226351 | 0.2231301601484298 | 0.3678794411714426
At =1-10"% | 0.1495686192226232 - -
At =0.001 0.1495686192226325 | 0.2231301601484236 | 0.3678794411714293
s(t) | exact 0.1 0.5 1.

At =1-10"%10.0999999999880300 - -

At =0.001 0.0999999999999920 | 0.5000000000000112 | 1.0000000000000671
error | At=1-10"% 9.0-10714 - -
At = 0.001 2.3-1071 3.5-1071 3.8-1071

Table 6.2: Values of the function at * = 2 and the position of the moving boundary at
different times for problem (6.1.3 - 6.1.4), V. = X = 1, a = 0, calculated using RK4
(At =1-107%) and G3 (At = 0.001), both with N = 115 Chebyshev polynomials.

tion 3.5.1, to introduce the new dependent variable v(t,y) (see (3.5.1)).

Similarly, in the problem (6.1.3 - 6.1.4), the moving boundary was fixed at y = —1 by
the transformation y = 2 arctan(z — s(t)) — 1; the adjusted function v(t,y) was introduced;
and the appropriate system of equations for its Chebyshev coefficients was generated. As
it was noted above, in this problem, the resulting partial differential equation for v has
space-dependent coefficients (see (3.1.2)) which were also expanded in Chebyshev series.
This required the use of more polynomials to represent the solution at each time step, but
did not add any complication to the algorithm.

Numerical results are summarized in Tables 6.1 and 6.2. The systems of nonlinear
ordinary differential equations for the moving boundary and the Chebyshev coefficients of
the solution were solved using both explicit (fourth-order Runge-Kutta scheme — “RK4” in
the tables) and implicit (third-order Gear backward differentiation scheme — “G3” in the
tables) methods. We quote the values of the solution at a point inside the computational
region, as well as the maximum absolute error in u(t, z) with respect to the exact solution,
for several values of t. Note, however, that because of the stability restriction on the time
step size, due to the large number of polynomials used in problem (6.1.3 - 6.1.4), no explicit
time marching calculation was carried out for ¢ > 0.1 in this problem. The overall results
were selected to balance accuracy and speed: it is clearly possible to push the error level to

machine accuracy by making the time step smaller thus also increasing computation time.
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6.2 Oxygen diffusion problem

In 1972, J. Crank and R. Gupta [29] introduced the following moving boundary problem,

which models diffusion of oxygen in an absorbing tissue:

Oc &%c
_ = — < < > 2.
5% = 922 1, 0<z<s(t),t>0, (6.2.1)
1
c(O,:v)zQ(Ifxf7 0<z<l, s(0) =1,
Jc
Z(t —
%0 =0,
(ts(8) = 21, s(0)) = 0 (6.2.2)
cft, s(t) = 5 (¢, 5(t)) = 2.

Here ¢(t,z) represents the non-dimensionalized concentration of oxygen in the tissue. At
the initial stage, the oxygen is supplied to the medium at a constant rate, until a steady
state is reached, in which the oxygen does not penetrate any further into the medium. Then,
the inflow is cut off and the surface is sealed. The oxygen continues to be absorbed by the
tissue, and the point of zero concentration consequently recedes towards x = 0. The moving
front s(t), then, represents the boundary of the oxygen-saturated portion of the medium,
and the boundary conditions express the fact that the surface is sealed, so that no more
oxygen can flow in or out. In [29], the following short-time asymptotic solution was derived,

based on a fixed-boundary approximation and Laplace transform

T Y AR SR E)

2n+2—x

a nZ:%(—l)"{(Qn +2 1) erfc<T> —(2n+x) erfc(%) }

The series are rapidly convergent, and according to [29], just the n = 0 terms from the first

and fourth series

oft, z) = %(1 ) 2\/Zexp{— (23%)2} + xerfc(%ﬁ) (6.2.3)

represent the solution for ¢ < 0.02 with an accuracy of about 107°. This expression was
rederived in [51] as the first term in the asymptotic solution of an integral equation, and was

later used extensively in the literature to start off various numerical methods, not capable
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t=0.01 t=0.04 t=20.1 t=0.18 t=0.19
c(t,0) | CH | 0.38716208 | 0.27432417 | 0.14317671 | 0.02178097 | 0.00902092
IE | 0.387162 0.2743 0.143177 0.021781 0.009021
FS | 0.387162 0.274324 0.143177 0.021781 0.009021
FC |- 0.27438 0.14314 0.02175 0.00900
FE |- - 0.14315 - 0.00893
FG | 0.387497 - 0.143287 0.021824 0.009039
VT | - - 0.14326 0.02175 0.00899
s(t) CH | 1.00000000 | 0.99918230 | 0.93502290 | 0.50135419 | 0.34602560
IE 1.00000 0.99918 0.93501 0.50109 0.34537
FS | 1.000000 0.999180 0.935018 0.501329 0.346000
FC |- 1.000000 0.93502 0.50205 0.34617
FE | 1.000000 0.99927 0.93559 0.49849 0.33971
FG | 1.00000 - 0.93518 0.49607 0.33873
VT | - - 0.92564 0.49276 0.33763

Table 6.3: Oxygen concentration at x = 0 and moving boundary position for problem (6.2.1-
6.2.2): CH - this work, 7 polynomials, adaptive domain decomposition, ¢ = 2713; IE -
integral equations [51], FS - Fourier series [34]|, FC - Lagrange collocation [58], FE - finite
elements [74], FG - fixed grid [29], VT - variable time step [102].

of resolving the initial singularity.

This is an example of an implicit moving boundary problem, since s(¢) must be backed
out by solving an implicit equation. We have reviewed a number of techniques for its
solution in Chapter 2; additional surveys can be found in [27,101].

We apply the method of Chapter 3 to the oxygen diffusion problem. After front fixing

and differentiation of the two conditions at the moving end, (6.2.1 - 6.2.2) is transformed

to the following

4 5(t)
= —— 1)—=¢, — 1 1,t>0 6.2.4
Ct SQ(t)ny+(y+ )S(t)cy s lyl<1,t> ( )
1
C<O7y) - g(l - y)27 3(0) =1
cy(t,—1) =¢(t,1) =0
ds 8
— = ——— t, 1 2.
dt $3(1) Cyyy(t,1) (6.2.5)
Note that the initial and boundary conditions do not match at y = —1, corresponding to

the original z = 0:

0 = c(t,0)
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Figure 6.1: Convergence of the numerical solution c¢(¢,y) at ¢ = 0.01 as € — 0; solid line
represents quadratic convergence, plotted for reference.

or, in the variable v,

d 1
OZCy(t,O) 7é dfC(O,y) :_5
t=0 Y y=—1
so that ¢(t,y) has a corner singularity at t = 0,y = —1. We rewrite the initial condition in

the form
1 1 1 1\2
c(0,y) = 5 max(O, y—;) + 5 max(O, (%) >

to reflect this fact. Next, we construct a smooth approximation of the initial data, based
on (3.4.1), using the fact that

d? d3

& max(0,) = L nax(0,22) = §()

dx3 2

so we are within the same setting as in Theorem 2 of Chapter 4. We solve the approximate
problem with Chebyshev tau, choosing e sufficiently small, so that the initial approximation
is sharp enough to produce the solution at the desired accuracy level. For example, ¢ = 4
gives two correct digits at ¢ = 0.01, while e = 2712, gives eight digits. The convergence rate

is illustrated in Figure 6.1, where it is can be seen clearly that as € — 0, the maximum ab-
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solute error goes down quadratically, as anticipated by the results of Chapter 4 (see (4.2.6)
and the Remark after Theorem 2). For the purposes of this calculation, the “exact” so-
lution was the one calculated with e = 2713, To resolve the solution accurately at small
times, we use domain decomposition, with nodes initially clustered around the singularity
(i.e., y = —1) and gradually spreading out more evenly over the whole interval (—1,1).
Numerical results for the value of oxygen concentration at the fixed end and the position of
the moving boundary are reported in Table 6.3, compared with those obtained by several
methods mentioned in Chapter 2 (see Section 2.6 for explanations of particular methods).
As we have pointed out previously, the integral equation solution [51] is considered to be
the most accurate, and the Fourier series method [34] is consistent with it, but uses the
approximation (6.2.3) to start off computations for smaller times. We see that our results
agree perfectly with these two for the concentration of oxygen, and are more accurate for
the moving boundary position at later times. The comparison is based on the published re-
sults, which may not reflect the best performance capabilities of the corresponding methods.
However, if we believe that these results represent the optimal accuracy levels, given the
computing time constraints, then our general method will have produced solutions which
are better than all of those previously reported, even those given by integral equations, for
which this problem is ideally suited.

For the oxygen diffusion problem, we also tested the performance of the computational
techniques presented in Chapter 5. We compare the results given by these methods with
our earlier results for a wide selection of time levels in Table 6.4. The first row of each
entry gives the most accurate calculation by the general method. We can see that we are
usually able to obtain 5 to 6 correct digits using Padé approximation to evaluate the third
derivative in (6.2.5), using the original (singular) initial data (2nd row in each entry). The
gain in computation speed, on the other hand, is considerable. For example, to obtain
8 significant digits at ¢ = 0.01 with the general method, approximately 3.5 minutes of
computation on a 700 MHz PC is required. The calculation involving Padé approximants,
thus, loses 2 to 3 digits of accuracy, but it takes only 45 seconds on the same architecture.
Prior integration by the modified method of Knibb and Scraton (3rd row in each entry)
smoothes the problem and normally gains an extra digit of accuracy over the previous
calculation (i.e., 6 to 7 correct digits), even if larger time steps are taken with an implicit

scheme (such as Gear’s backward differentiation). At the same time, taking larger steps can



7
further reduce computing time: the same calculation (i.e., up to t = 0.01) with A¢ = 0.0001
and implicit time stepping took only 17 seconds. This substantial speed-up is due to the
fact that neither approximations nor domain decomposition is used in these two calculations.
Finally, we observe that even uniform partitioning of the computational domain into several
subintervals of equal length can reduce the influence of the singularity: the results the 4th
row of each entry in Table 6.4 were obtained without any approximation of the initial data.
However, their practical significance should not be overstated, as these simulations take
only slightly less time to run than the general approximation-based method (1.5 minutes

versus 3.5 minutes), but do not produce convergent numerical solutions.
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t c(t,0) s(t) t c(t,0) s(t)
0.01 | 0.38716208 | 1.00000000 | 0.12 | 0.10912923 | 0.87917869
0.38716491 | 0.99999635 0.10913004 | 0.87916937
0.38716214 | 0.99999781 0.10912925 | 0.87916884
0.38716294 | 1.00000000 0.10912948 | 0.87917146
0.02 | 0.34042309 | 0.99999895 | 0.14 | 0.07785023 | 0.79895619
0.34042518 | 0.99999520 0.07785096 | 0.79894423
0.34042313 | 0.99999666 0.07785023 | 0.79894267
0.34042369 | 0.99999885 0.07785045 | 0.79894507
0.04 | 0.27432417 | 0.99918230 | 0.15 | 0.06307754 | 0.74674379
0.27432558 | 0.99917688 0.06307898 | 0.74673299
0.27432420 | 0.99917767 0.06307754 | 0.74672783
0.27432459 | 0.99917996 0.06307764 | 0.74672945
0.05 | 0.24768675 | 0.99679638 | 0.16 | 0.04882276 | 0.68346775
0.24768801 | 0.99678939 0.04882344 | 0.68345214
0.24768678 | 0.99619067 0.04882275 | 0.68344906
0.24768713 | 0.99679306 0.04882296 | 0.68345124
0.06 | 0.22360468 | 0.99180625 | 0.18 | 0.02178097 | 0.50135419
0.22360583 | 0.99179884 0.02178159 | 0.50133627
0.22360471 | 0.99179964 0.02178094 | 0.50133027
0.22360503 | 0.99180246 0.02178115 | 0.50133268
0.08 | 0.18084626 | 0.97155469 | 0.19 | 0.00902092 | 0.34602560
0.18084726 | 0.97154715 0.00902150 | 0.34601185
0.18084630 | 0.97154788 0.00902088 | 0.34600149
0.18084656 | 0.97155054 0.00902109 | 0.34600520
0.1 | 0.14317671 | 0.93502289 | 0.195 | 0.00288362 | 0.20847525
0.14317760 | 0.93501497 0.00288418 | 0.20847436
0.14317673 | 0.93501516 0.00288345 | 0.20859419
0.14317698 | 0.93501787 0.00288378 | 0.20846149

Table 6.4: Miscellaneous Chebyshev spectral methods for problem (6.2.1-6.2.2): 7 polyno-
mials, adaptive domain decomposition, € = 2713 (“exact”) (1st line); 31 polynomials, whole
domain, with Padé approximation (2nd line); 31 polynomials, whole domain, with prior
integration and Padé approximation (3rd line); 7 polynomials, 50 subintervals, ¢ = 1 (4th

line).
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Chapter 7

Valuation of American Options

The economic world is a misty region. The first explorers

used unaided vision. Mathematics is the lantern by which

what before was dimly visible now looms up in firm, bold outlines.

The old phantasmagoria disappear. We see better. We also see further.
(Irving Fisher, 1867-1947)

An important application of our analysis can be found in mathematical finance, namely, in
the valuation of American options. An approach to this problem, based on probability the-
ory, has established itself as a growing branch of stochastic calculus and martingale theory,
with many significant contributions over the last two decades (see [55,78]). More recently,
applied mathematicians and numerical analysts have started to address these problems as
well, and there have been several texts that study financial derivative products and in par-
ticular, options from the point of view of partial differential equations [7,99,100]. Since
these problems have been considered in the mathematical community in the last few years,
we feel an outline of the finance background is appropriate. Such an outline is presented in
the next Section; the mathematical formulation and a simple derivation of a symmetry re-
sult [21] are given in Sections 7.2 and 7.3. In Sections 7.4 and 7.5, we present the numerical
analysis of our method in this context, preceded, as necessary (Section 7.4) by a convenient
change of time scale to remove a singularity in the velocity of the moving boundary. Several

advanced examples of American options are given in Section 7.6.

7.1 Options: key concepts

The main products traded in financial markets are securities. These include basic securities,
such as stocks and bonds, as well as more complicated instruments — futures, options,

convertibles, mortgage-backed securities, swaps, etc. Most of mathematical finance deals
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with a class of securities called derivatives. According to the classical finance text [52, p. 1],
“a derivative security is a financial instrument whose value depends on the values of other,
more basic underlying variables.” One of the best studied examples of a derivative product
is an option — a contract that gives its owner the right to purchase (call option) or sell (put
option) another security (underlying asset, or simply, underlying) at a pre-specified price
(strike price) on or, perhaps, before a specified date (ezpiration, or expiry). Since an option
gives a right and not an obligation, entering the contract involves paying a premium, which
is the price of the option. Choosing to purchase or sell the underlying on the conditions
specified by the contract is termed ezercising the option. Depending on the permissible
exercise patterns, options are separated into several groups. The so-called European options
may only be exercised at a certain date, i.e., at expiration of the contract. American options
admit an early exercise feature: it is allowed to exercise them at any time before expiration.
There are numerous other possibilities (e.g., when exercising the option is allowed at a finite
set of dates before expiry, etc.), but we do not focus on them here.

The payoff of an option at the time of exercise is known in advance, but the price of the
option at any given time is unknown and depends, in general, on the price of the underlying,
among other factors. The underlying can be either a simple asset, like a stock or a bond,
or a more complicated structure, like a stock index or foreign currency. We first focus on
options written on a single stock and address the more complicated structures later.

In the classical setting, the price of the option is assumed to depend only on the price of
the underlying stock and time. Thus choosing a model of stock price movement is critical
in determining the value of the option. The unpredictable behavior of stock price suggests
a probabilistic approach, in favor of a deterministic one, and this was, in fact, the avenue
pursued by most theorists. The most basic stochastic model postulates that the relative
change in the stock price over a small time interval At is distributed normally with both

mean and variance proportional to At, i.e.,

A;Y ~ /\/'(,uAt,U\/E)

Here S is the stock price and p is the expected return on the stock. In the limit as At — 0,

we get a continuous stochastic process for the stock price, which can be written in the
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stochastic differential notation as
dS = pSdt+oSdw (7.1.1)

and is called geometric Brownian motion. Here dW is an elementary Wiener process, i.e.,
dw ~ N(0, \/cﬁ) The parameter o, which characterizes the random part of the stock’s
behavior, is called the volatility of the stock.

Note that the geometric Brownian motion model (7.1.1) for stock price movements is
one of the simplest possible, since it assumes a continuous symmetric distribution for price
increments and disregards the possibility of large jumps. It goes back to Louis Bachelier who
was the first to apply stochastic methods to the processes in financial markets.! It turns out
that this model is a good starting point, which works remarkably well, given its simplicity.
The theory of option pricing based on this model of stock price movements, although not
faultless, describes real-life processes adequately in most cases.

In the final part of our introduction, we give a derivation of the partial differential
equation satisfied by the price of an option. This equation, known as the Black-Scholes PDE,
is a key point in any of the modern texts on derivatives, e.g., [52,79,99]. The derivation
we present is closest in spirit to the one in [79], since it takes into account an important
concept of self-financing portfolios, which most of other texts tend to neglect.

Denoting the price of the option F'(¢,S), where S follows the process (7.1.1), the stochas-
tic differential equation describing the dynamics of F' is obtained in stochastic calculus by
[t6’s lemma (see, e.g., [82]) for a fairly general class of stochastic processes followed by S.

A corollary of this result for (7.1.1) gives

)dt+u58—FdW (7.1.2)

OF OF 1 4 »,0°F
o“S 55

dF:<§+”S%+§ 952

It is crucial that the random part is driven by the same Wiener process dW, that appears
in (7.1.1). This enables one to construct a riskless portfolio with just the option and the

underlying.

'In fact, Bachelier was the one who truly introduced into mathematics the continuous-time stochastic
processes, notably the process currently known as Brownian motion, long before the works of N. Wiener,
P. Lévy, A. Einstein, and others. Unfortunately his work was not very popular with his colleagues and
remained virtually unknown for decades. It was not until the development of mathematical finance that
Bachelier and his contribution to science was recognized [26].
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Indeed, consider a portfolio II consisting of n shares and m options. The value of this
portfolio at any time ¢ is

II=mF+nS

To specify the weights m and n, we need two constraints on the structure of the portfolio.
Hence we require that II be self-financing and riskless. The first of these statements simply
means that by dynamically changing the weights, we keep the portfolio feasible without
additional cash inflows or outflows over the infinitesimal interval dt. Mathematically, this
can be written as

(S+dS)dn + (F+dF)dm =0

i.e., the changes in the values of components offset each other. This equality implies
dll = mdF + ndS

The second condition (absence of risk) means that m and n must be chosen, at time ¢, in
such a way that the stochastic (i.e., risky) component in dII vanishes identically. Looking

at (7.1.1) and (7.1.2), we deduce that we must have

oF
=—-m—_— 1.
n mag (7.1.3)

Then the dynamics of II is described by

2
m%l; +m,u5’8—F +m1 U2S2a—F +nuS> dt = m(

oF 1 25282l
oS 2 052

dH:( ot 7277 952

) dt (7.1.4)

since the p and dW terms cancel because of (7.1.3). We see that the portfolio II is indeed
locally risk-free. Therefore its return over the infinitesimal interval dt must be equal to the
risk-free rate r. This argument is a particular case of the fundamental principle of financial
mathematics, absence of arbitrage opportunities. In its essence, it means that no positive
profits can be made without a positive investment. For a more detailed discussion of this
concept, see, e.g., [79, Chapter 2]. The risk-free rate r is considered constant and is another
parameter of the model. Thus the following identity must hold

dIl = rIldt = r(mF + nS)dt = mr (F - g—g S) dt
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Comparing this to (7.1.4), we conclude that

OF 1 2 , O?F OF
(at 02 F+T%S>d 0

and therefore F'(t,S) has to satisfy

OF | 1 ,0°F | OF

This is the celebrated Black-Scholes partial differential equation [11,70]. It admits several
generalizations, including the cases when the underlying is not a traded asset (e.g., bets on
the risk-free rate) or when there are multiple underlyings. However, the form of (7.1.5) is
quite general, and prices of a variety of derivative securities satisfy similar equations, with
the nature of any particular one determined by the initial and boundary conditions. (Note
that since the equation (7.1.5) is backward parabolic, the initial data must be prescribed
at a final time and the solution worked out backwards; otherwise, the problem is ill-posed.
Fortunately, this requirement is in line with the practical situation: the value of an option
is indeed known only at expiration, but not at the time the contract is written.) Exact
solutions have been found [11,70] in several cases, mostly for European options.
Traditionally, most of the practical work in the valuation of American options was
done via the probability approach to this problem, using such techniques as integration
along sample paths of S and Monte-Carlo simulations. This is a separate field, which is
beyond the scope of this work. The basic concepts are explained, e.g., in [55]. We refer an
interested reader to the available surveys, such as [83], and more recent work, such as [66],
and references therein. At the same time, since the equivalence of the American option
problem to a moving boundary problem was established in [68], there have been certain
developments of the differential equation approach. In [97]|, a related optimal stopping
problem was studied, and certain key results regarding the moving boundary were proved.
Apparently the first numerical scheme for the valuation of American options, based on
finite differences, was proposed in [18]. The convergence of this algorithm was proved later
in [53], where the variational inequality framework was applied to pricing of American
options. This is also the approach taken in [99]. Various integral equation formulations

are available [48,56, 65|, which often allow to explicitly represent the value of an American
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option as the sum of the value of its European counterpart and a nonnegative term, called
the early exercise premium. Exact solutions for several special cases were given in [70];
in particular, it was established that an American call on a stock which does not pay any
dividends, has no early exercise value, and therefore should always be held till expiration.
A general analytical approximation for the American put was given in [46]. Short-time
asymptotics were studied in [23, 36,41, 60]. For other cases and examples, see the review [19],
where a good comparison of different numerical methods for American options is also given.

Finally we mention one simple extension of the above model. Suppose the stock pays
a dividend, which can be represented as a constant yield ¢ to the investor in the form of a

percentage of the stock price. This changes the process (7.1.1) to
dS = (p—q)Sdt+oSdWw

The derivation of the Black-Scholes equation can be carried through with only minor changes
(cf. |52, Appendix 12A]), and in the end we obtain the following, slightly modified form

of (7.1.5) for derivatives on dividend-paying stock

oF

O*F OF
7 + - T

202078 _ _
oS 552 +(r—q)S 55 F (7.1.6)

1
2
We thus have a model describing the evolution of the price of an option by a differential

equation. We proceed to give a comprehensive mathematical formulation for the American

option valuation problem from this point of view.

7.2 Mathematical formulation

Recall that American options can be exercised at any date before expiration. Intuitively,
then, one may expect that these option must be significantly harder to price than their
European counterparts, since determining when to exercise the option in an optimal way
becomes part of the problem. It can be proved that the point of optimal exercise can be
found by monitoring the price of the underlying stock: when the stock price crosses a certain
critical value, the option should be exercised. Naturally, the value of a call option (i.e., an
option to buy stock) goes up with the stock price, so this option is exercised when the stock

price rises above the critical value, while for a put option (i.e., an option to sell stock),
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the stock price has to drop below the critical value for exercise to be optimal. The Black-
Scholes equation governs the behavior of an American call (put) only below (respectively,
above) the critical price, which has to be determined as part of the solution. This is a
very familiar setting indeed, and therefore the equivalence of American option pricing to a
moving boundary problem, first established in [68], is not surprising. We proceed with the
formulation of this problem for the case of an American call on a dividend-paying stock.
Let C(t,.S) denote the value of the call at time ¢ when the price of the underlying stock
is S. Let K be the strike price of the call; r be the interest rate; ¢, the dividend yield; and
o, the volatility of the stock. Then, at any time before expiration 1" and for any stock price

below the optimal exercise value B(t), C(t,S) satisfies the Black-Scholes equation (7.1.5)
1
50252055 + (r—q)SCs+ C; —rC = Lpg[C] =0

At expiration, the option will be exercised only if the stock price is larger than the strike
price. (Since, otherwise, it is preferable for the investor to buy the stock on the market for
S dollars, rather than buy it for K > S dollars from the writer of the option.?) Therefore

the value of the call at expiration is
C(T,S) = max(0,S — K)

It can be proved that zero is an absorbing barrier for the geometric Brownian motion process;
therefore, if the stock price ever hits 0, it stays at 0. But the call is worthless in this case,
so we have

C(t,0) =0

By definition of the optimal exercise price, when the stock price hits B(t), the call is exer-
cised, and its value is

C(t,B(t)) = B(t) - K

Combining these equations, we obtain the differential equations and boundary conditions

2The call option is called in the money at a given time, if the stock price satisfies S > K at this time; if
S = K or S < K, the corresponding terms are at-the-money and out-of-the-money calls, respectively. For
put options, the terminology is the same, but the inequalities have to be reversed.
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for call-option problem:

1
50232055 +(r—q)SCs+Cy=rC, t<T,0<S<B(t)
C(T,5) = max(0,S — K),

C(t,00=0, Ot B(t)=DB(t) K

As we know from our experience with moving boundary problems, the above formulation
is not complete: we need an additional condition on the moving front to be able to solve
for B(t). A finance argument, relying on absence of arbitrage opportunities, was used to
find this condition in [70]. In [7, Section 5-A.1], integration over a small neighborhood of
B(t) was used to derive the corresponding condition for an American put. P. Bossaerts [15]
suggested an alternative approach, based on the fact that the optimal exercise boundary is
chosen in such a way as to maximize the value of the call option at any instant of time.
Our derivation, based on these ideas, is presented below.

Mathematically speaking, the above argument implies that
B(t) = argr?(egc(t,b’; f(t))

The maximum is taken over a suitable class of admissible functions f(¢). For example, we

can consider all continuous functions f(¢) with f(7') = B(T). In the neighborhood of B(t)

f(t) = B(t) + eg(t)

with g(t) continuous and g(T') = 0. Denote Cc = C(t, S; f(t)) = C(t, S; B(t) +€g(t)). The

necessary condition for C¢ to be maximized by B(t) is

0C,
Oe

=0 (7.2.1)
e=0

Let U = 0C,/0e. By differentiating the partial differential equation, obtain

0C,
}:o, t<T,0<S<B(t)+eg(t)

1
5025%Uss + (r — q)SUs + Uy = U = L |
2 Oe
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Also,
oC.
Oe

0C,
Oe

(t,5) =0 =

(t,0)

since the right-hand sides do not depend on e. Now find the boundary value of 9C/0¢. By

the chain rule,

dCe

I(t, B(t) + eg(t)) = Cs(t, B(t) + eg(t)) g(t) +

oC,
Oe

On the other hand, direct differentiation of the boundary condition for C, gives

dC

2 (LB +eg(t) = % (B(t) + eg(t) — K) = g(t)

so we have

aC,
[Cs(t, B(t) +eg(t)) — 1] g(t) = 5
Thus for
, _ 9C
0 = Oe e=0
we have
20252 (€] gs+ (r—)S[Ch ) s + [Ch.), —7[Ch] =0, t<T, 0<8<B)

[Co. (T, 8) =0
[Co.e](£,0) =0
[Co (¢, B(t)) = [1 - Cs(t,B(t))] g(t)

For (7.2.1) (i.e., Cc = 0) to be the solution of this problem, we need the last condition to

be homogeneous, so we must have

[1—Cs(t,B(t)] g(t) =0

for any admissible function g(¢). This immediately implies that the desired second condition
on the moving front

Cs(t, B(t)) =1 (7.2.2)

holds. This expression is known as the “smooth pasting,” or high-contact condition for
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American options. If we perform the same analysis for an American put P(¢,S) (see below),

we get this condition in the form

Ps(t, B(t)) = —1 (7.2.3)

Thus for the call option, we have the following formulation

1
50232055 +(r—q)SCs+Cy=rC, t<T,0<S<B(t) (7.2.4)
C(T,S) = max(0, S — K), (7.2.5)
C(t,0) = 0,

C(t,B(t)) = B(t) — K, Cs(t,B(t)) =1,

B(I™) = Kmax<1, g) (7.2.6)

The expression (7.2.6) for the optimal exercise price just before expiration was derived in [56].

For the put option, we have

%(72521355 +(r—q)SPs+ P, =rP, t<T,S> B(t) (7.2.7)
P(T,S) = max(0, K — 9), (7.2.8)
P(t,+00) =0,

P(t,B(t)) = K — B(t), Ps(t,B(t)) =—1,

B(T™) = Kmin<1, g) (7.2.9)

The description is analogous to the case of the American call. Note the difference between
(7.2.5) and (7.2.8) and the resulting differences in the boundary conditions at the moving
end. We also recognize the two option problems, in the notation of Chapter 3, as a finite
one for the call and a semi-infinite one for the put. An important symmetry result between

these two problems greatly facilitates further analysis.

7.3 Put-call parity for American options

As derivative instruments which are, in a sense, dual, a call and a put written on the same

underlying asset are related to each other, and their prices cannot be independent. An
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elegant argument gives the following identity for European options [52, Section 12.1]
C(t,S) — P(t,8) = Se=9T=1) _ (T (7.3.1)

This result is called the put-call parity. For verification, consider the following two portfolios

(we repeat the presentation in [52, Section 12.1])

A: one European call and Ke "(T=% dollars in the bank;

T—1)

B: one European put and e~ shares, with all dividends to be reinvested in the stock.

At expiration T, the call is worth max(0, S — K) and the money in the bank earns e"(7'—*

in interest, so that the total amount of cash at time T is K dollars. Thus portfolio A pays
max(0,S — K) + K = max(S, K) at expiration. At the same time T', the put is worth
max(0, K —S), while the continuously reinvested dividend brings up the effective number of
shares from e~9T—%) at t to exactly one at T, which will be worth S dollars. Thus portfolio
B pays max(0, K —S) + .S = max(S, K) dollars, i.e., the same amount, at expiration. If the
prices of these two portfolios at time ¢ were different, a smart investor would have bought
the cheaper of the two and sold the more expensive one, collecting the difference and making
a profit with no risk (since his or her assets would have exactly offset the liabilities at time
T'). This would have constituted what is called an arbitrage opportunity (i.e., a possibility
of a positive riskless profit), which is impossible by the no-arbitrage postulate. Hence the
values of both portfolios at time ¢ should be equal, which implies (7.3.1).

This argument works very well for European options, but is bound to fail for the Amer-
ican options, since the possibility of early exercise (i.e., exercise before T') at an a priori
unknown time does not permit to work out the final payoffs as cleanly. The most that a
similar procedure for American options can give us is an estimate in the form of an inequal-
ity [52, Section 12.1].

However, the symmetry between C and P is still striking, even for American options.
The duality of the two problems becomes obvious mathematically when we introduce the

following new variables

T = éaQ(T— t), s= %; c(r,8) = ——=——, b(1)= BI((t)’
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for the call and

Pt S)— K K

1 K
r= gt =g plns) = U b = g

for the put. The problems (7.2.4) - (7.2.6) and (7.2.7) - (7.2.9) then become

cr = 8%css + (p — K)scs — pc — ks, 7>0,0<s<b(r)
c(0,5) = max(0,s — 1) —s, b(0") = max(1, p/k) (732)
c(1,0) =0
c(r,b(1)) = —1, ¢s(7,b(7)) =0
and
pr = 5°pss — (p — K)sps — Kp — ps, 7T>0,0<s<b(r)
p(0,s) = max(0,s — 1) —s, b(0") =1/min(1, p/k) = max(1,x/p)
p(1,0) =0
p(1,b(7)) = =1, ps(7,b(7)) =0
(7.3.3)

respectively. Here p = r - (02/2)_1 and Kk = ¢ - (02/2)_1 are the two crucial dimensionless
quantities, which describe the relation between interest rate, dividend yield and volatility.

The problems (7.3.2) and (7.3.3) are almost identical, and it is now evident that if the pair
{c(7,s), b()} solves (7.3.2) for some specified values of p and &, then it also solves (7.3.3)
for the values of p and k interchanged. Going back to the original formulations (7.2.4)
and (7.2.7), we conclude that if C(¢,S; r,q) is the price of an American call option and
B¢(t) is the corresponding optimal exercise boundary, found for interest rate r and dividend
yield ¢, and P(t,S; r,q) and BP(t) are the corresponding quantities for an American put

option, then

Ct,S;rq) =S PS5 qr)—K B
_ d = 7.3.4
K S W TR T By (7:3.4)
This expression gives the put-call parity for American option and is a particular case of
the result established in [21], built on the ideas of [10,67]. Although not as general as the
formula in [21], our result is derived in a more direct fashion, straight from the partial

differential equation in the original variables.
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For the analysis we present below, the parity formula gives the advantage of having to
solve only one of the problems (7.2.4), (7.2.7), with the solution of the other one following
immediately by (7.3.4). Thus for the remainder of this section, we shall concentrate on
equation (7.3.2).

Note that the first of the formulas (7.3.4) does not reflect the fact that the independent
variable S lies in different domains for the call and put options (see the original formula-
tions, (7.2.4) and (7.2.7)). However, one is mapped to the other by the coordinate trans-
formation S — K?2/S. Thus for practical calculations, we should incorporate this change of

variables into the parity formula and write

P(t,S; q,r) = %C(t,? q)
P(t,lg;q,r) %C(t S;r,q)

To solve the problem (7.3.2), we make another transformation of the dependent variable.
It is easy to see that the setting satisfies all the conditions in [88], so we can write a Stefan
problem for u(7, s) = ¢-(7,s) (see Chapter 3). Up to a numerical factor, u is what is called
the theta of an option: the sensitivity of its price with respect to time. wu(7,s) solves the

following

Uy = s%uss + (p — K)sus — pu, 0<s<b(r), 7>0
u(0,5) = s%6(s — 1) + (p — K)sH(s — 1) — pmax(0,s — 1) (7.3.5)
u(7,0) = u(r,b(1)) =0 (7.3.6)
db b2(7) us(7,b(7))
dr — kb(r)—p (7:37)

b(0") = max(1, p/k)

The initial condition is obtained from that of (7.3.2) by substituting for ¢, the sum of spatial
derivatives, i.e., the right-hand side of the partial differential equation in (7.3.2). 4(-), the
Dirac 0-function, and H (-), the Heavyside step function, emerge as a result of differentiating
the function max(0, s —1), which is only C?, but not even C! in the intervals (0, b(O*)). The
boundary conditions at the moving end, i.e., the second one of (7.3.6), and the expression

for the derivative of b(7) are obtained from the corresponding conditions for ¢(7, s) using
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the differential equation (7.3.2). Clearly, two distinct cases emerge:
(i) r > ¢, implying p/k > 1; and

(ii) r < ¢, so that p/k <1

7.4 The case r > q

Since p > &, it follows that b(0%) > 1, and the initial data are singular at s = 1, inside the

interval (0,5(07)). Moreover, the denominator of (7.3.7) vanishes as 7 — 0T, so

db
— — 0 as 710
dr

However, as noted in the introduction to this Chapter, scaling time according to the formula

T = /T yields
6— =27 g
or T o

and in particular,
db  2mtb?(7) ug (T, b(T))
dre kb(T) — p

which is finite initially, as long as us(7x,b(7«)) remains bounded as 7, | 0. Thus we have
removed the initial singularity in db/dr with a simple change of variables. This technique
appears quite general and very useful for certain ordinary differential equations with singular
right-hand sides.

The precise value of the initial velocity of the moving boundary can be determined from
local analysis of u(7y,x) near z = b(0") for small 7.. Asymptotic formula from [99] gives

b(0T) = (p/K) &, where & is the solution of the transcendental equation

€o
e/t [ iy =22 - ¢
—o0
with a numerical value of £y = 0.90344659788 . ... We wish to emphasize that the asymptotic
solution is used here exclusively to determine the initial speed of the moving boundary and
not to approximate or start off the solution for any positive value of 7.
We see that the initial conditions (7.3.5) are a particular case of those mentioned in

Theorem 2, Chapter 4. (Since p > k, b(0T) > 1, the singularity lies in the interior of
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(0,6(0™).) Q =10, p/k].) Moreover, u(0,z) is a distribution supported on (0,b(0"), which
is the same class of functions, as considered in Theorem 1 of Chapter 4. Existence of a
solution follows from the fact that u is the derivative of ¢ (u = ¢;), and the solution ¢(7, s)
exists and is differentiable by the general theory (since the initial data for ¢ are continuous).
To calculate u numerically, we use an approximation for §, H and max, which is based
on (3.4.1), just as in Section 6.2 above, expecting to obtain numerical solutions that converge
to the true solution with singular initial data quadratically as € — 0, as in the construction
presented in Chapter 4. Figure 7.5 (bottom curve) confirms these expectations perfectly
and demonstrates quadratic convergence rate. For the purposes of this analysis, the “exact”
solution is the one computed using ¢ = 1/32. Note that in this calculation, we set less
ambitious accuracy goals than in the oxygen diffusion problem. In this setting, more biased
towards the practical side, speed is a greater priority, while relative error of about 0.1%
is quite acceptable. The more complicated form of the Black-Scholes differential operator,
relative to the simple diffusion one in (6.2.1), demands smaller values of € and lengthier
computations. For example, three correct digits in the option price can be obtained by a
10-minute calculation on a 700 MHz PC, with e = 1/4. Thus we have once again chosen
the parameters of our method in an optimal way for the given problem.

Figure 7.1 shows the optimal exercise price, calculated for various values of €, the “con-
centration” parameter of the § approximation. We take o = 30%,r = 10%, ¢ = 8%, and
K = $100. We compare (Figure 7.1(a)) our calculations to the small-time asymptotics
of [99] and observe improved agreement as € — 0 near expiry. In Figure 7.2 we plot the
calculated price of the option described above, expiring in 1 year for crude (e = 1) and sharp
(e = 1/32) initial approximations. The optimal exercise price at this time is $172.13. For
reference, we also show the price of the European call option (i.e., the one with no early ex-
ercise feature, and therefore no moving boundary) with the same values of K, r, g and 0. An
early exercise premium, which makes the prices of the two options different, is also plotted.
As expected, the difference is always nonnegative, since an American option provides an
additional feature and hence must be worth at least as much as its European counterpart.
The difference in prices is, essentially, zero for low stock prices (deep out-of-the-money calls)
and grows steadily as the stock price approaches the strike price and increases past it. For
this particular problem, however, the early exercise premium is fairly small, not more than

5% of the option value.
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7.5 The case r < ¢

In this case, b(0") = 1, and the singularity of the initial data is at the right boundary.
Note that, unlike in the oxygen diffusion problem, the derivative in (7.3.7) is evaluated
at the singularity. This means, in particular, that analytic continuation, such as Padé
approximation, will not help in this case. However, we can still apply the general method,
using the construction of Theorems 1 and 2. Since we still have ¢ — ug in the sense of
distributions according to Lemma 1, we obtain a convergent method as € — 0.

Note that since the denominator of (7.3.7) does not vanish initially for r # ¢, we do
not have to use the square-root time scaling, as in the previous case. This speeds up the
computations somewhat, since the time scale is shorter than in the previous case.

Results are presented in Figures 7.4 for the American put option on a non-dividend
paying stock. We take the values r = 10%, K = $100 and o = 20% for the interest rate, the
strike price, and the stock volatility, respectively. The actual calculation was performed for
a call with » = 0 and ¢ = 10%, and then the parity formula (7.3.4) was used to find the value
of the put. We chose this problem because it is probably the most studied example of an
American option on one asset. It is known not to admit a closed-form solution, and several
approximate solutions are available [41, 56, 99]. We compare (Figure 7.3) our computations
of the optimal exercise boundary for the American put to the asymptotic solutions [23]
and [41] and observe good agreement close to the expiration date of the option. Note also
(Figure 7.3(b)) that asymptotical formulas break down for large ¢, as expected. The price
of both American and European options, as well as the critical stock price and the early
exercise premium, are plotted in Figure 7.4; the values of the options are given 1 year before
the expiration date. Here the calculated optimal exercise price is $86.37. Note that in this
case, the structure of the early exercise premium is different from the call example in the
case r > q: here, it reaches a constant value of about 10% of the option price soon after the
option becomes in the money.

The convergence of the calculated solutions to the “exact” solution (here, the one com-
puted using € = 1/128) is shown in Figure 7.5 (top curve). Note that the initial data not
only contain a J-function in this case, but are also incompatible with the boundary con-
dition at b(7), so the initial singularity is stronger than in the case r > ¢. However, the

rate of convergence is still qualitatively the same, even though better approximations of the
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d-function are required (i.e., smaller €’s in (3.4.2)) to achieve comparable accuracy levels.
However, adaptive domain decomposition, with nodes initially clustered at the right end
and spreading out as t increases, offsets the additional time requirement: a calculation with

three correct digits in the option price takes only 4 minutes on a 700 MHz PC.

7.6 Further examples

In the preceding sections of this chapter, we presented our mathematical framework as it
applies to the pricing of American options on a single stock paying a continuous dividend
yield. The same approach can be used to treat more general problems which have a similar
structure. One example is index options. Here the underlying is not a single stock, but an
index, such as S&P 500 or FTSE 100 or Nikkei 225. Another example is foreign exchange
options, i.e., options to buy or sell foreign currency at a specified exchange rate. In this
case, the role of the continuous dividend yield is played by the foreign interest rate. We
perform calculations for several options of these types.

Our first example is an index option on the S&P 100. This is the oldest index op-
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tion traded on the Chicago Board of Options Exchange and the options written on it are
American-style; therefore they are suitable for our analysis. We present numerical results
for put options only, neglecting any dividend streams paid out by the constituents of the
index. On May 9, 2002, the S&P 100 closed at 531.69, and we take a slightly in-the-money
put with strike price K = $520. We take the interest rate equal to the yield on a 10-year
treasury bond, or 5%, and the volatility equal to the value of the market volatility index,
or 25%.% We plot the results in Figure 7.6(a) for the value of the option and early exercise
premium and Figure 7.6(b) for the optimal exercise boundary. The calculated value of the
index, at which early exercise is optimal one year before expiration is 390.40.

Our two final examples deal with call options to buy two different currencies for US
dollars. We choose the euro and the Japanese yen. The fundamental difference is in the
interest rate that can be earned on these currencies: in the euro zone, it is about 3.3%
and in Japan, 0.8%. Here we take one-week short rates, the analog of which in the US is
currently 1.78%. Identifying ¢ = r; for the foreign interest rate, we see that the dollar-euro
call satisfies r < ry, while the dollar-yen call satisfies r > 7, so we have both cases here.
We take the volatilities to be 9.6% for the euro and 9% for the yen, which is consistent with
the numbers in the current financial press.

Results appear in Figures 7.7 and 7.8 on pages 102 and 103. The corresponding critical
exercise exchange rates one year from expiration of the option are 0.816 dollars per euro
and 1.90 dollars per 100 yen, respectively. Note that the early exercise premium for the yen
option is extremely small, while that for the euro option is in line with the previous model

calculations.

30n May 9, 2002, the yield on a 10-year T-bond was 5.187%, and the volatility index VIX closed at
24.36.
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Chapter 8

Concluding Remarks

I hope that posterity will judge me kindly,

not only as to the things which I have explained,
but also to those which I have intentionally omitted
so as to leave to others the pleasure of discovery.
(René Descartes, 1596-1650)

8.1 Summary and conclusions

We have presented a general framework of a front-fixing method for moving boundary prob-
lems for linear parabolic equations, based on the Chebyshev expansion of solutions. Highly
accurate and rapidly convergent for smooth problems, this method becomes a very powerful
and robust tool in the presence of singularities, when most other techniques lose accuracy,
require analytical start-off expressions (which may in many cases not exist), or, otherwise,
fail altogether. The intuitively simple construction based on smooth approximations of sin-
gular initial data, introduced in this text, allows us to use the accurate spectral framework,
and keep control over the convergence and the error in numerical solutions. We have proved,
in the most general linear setting, the convergence of numerical solutions of approximated
problems to the true solution of the original problem, as the accuracy of the approximation
of the singular initial data by smooth functions increases, and have given convincing numer-
ical evidence of the same behavior in the moving boundary case. We have provided simple
modifications of the general method, relying on analytic continuation and prior integration,
which allow for considerable gain in computing time for certain practical problems. We have
incorporated domain decomposition into the general framework, which enhances accuracy in
localized settings. The oxygen diffusion test problem was used to illustrate the power of our

method in the classical framework: the theoretical predictions of quadratic convergence as
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smooth data approximates singular data were verified perfectly. The approach proposed in
this work, which is applicable in its full generality, compares very favorably to the existing
techniques, including those which, relying on integral equation formulations, were designed
specifically for the treatment of problems of a type analogous to this test problem.

In the investigation of the American option problem, we re-established an important
parity result, which allowed us to formulate, classify and solve this problem from the point of
view of the theory and numerical analysis of partial differential equations. Even though this
approach is gaining popularity, our work is one of the very few systematic efforts to analyze
this challenging finance problem from an applied mathematics angle. Our numerical method
produced meaningful results both for the classical setting of one asset and for more practical
examples, including index options and foreign currency options. We find the success of our

general method in the treatment of these quite singular problems very encouraging indeed.

8.2 Future work

Although the general framework of the approach is established, the possibilities for further
analysis and extensions are ample. We have so far focused entirely on one-phase problems,
and the corresponding formulation for two-phase problems is relatively straightforward.
Other boundary conditions, such as those in crystal growth models, may also be incorpo-
rated.

One important practical improvement in the accurate numerical resolution of singu-
larities is automatic adaptive mesh refinement in space and time. This mechanism has
the potential of both reducing the storage requirement and speeding up the computations.
There is room for optimization in the time marching as well. Most of our computations
for singular problems were performed using explicit schemes, since implicit schemes involve
rather complicated nonlinear systems to be solved at each time step. We have already
mentioned (see Summary in Section 2.4) the explicit methods with extended stability do-
mains [1-3,91] as one possible approach. Another alternative is related to the current work
by O.P. Bruno and collaborators (see, e.g., [5]) on unconditionally stable explicit schemes,
as it seems appropriate for the current setting.

Two- and three-dimensional problems represent another important possibility for gener-

alization of our method. Chebyshev expansions in the radial variable, combined with peri-
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odic Fourier expansions in the angular variable, are promising approaches for higher space
dimensionality, especially for “star-shaped” domains (cf. [35] for fixed boundary problems
and [87| for several moving boundary problems). Domain decomposition with careful patch-
ing should provide viable extensions to those domains, which can be split into several pieces
of desired form. On the practical side, the partial differential equation approach is usually
considered to be too cumbersome even for two-dimensional versions of the American option
problem, e.g., when there are multiple assets, or one of the parameters, such as volatility
or interest rate, follows its own stochastic process (see, e.g., [104]). We believe our methods
have a potential to lead a change in this area, to allow for (significantly more accurate)

differential equation treatments of finance problems of arbitrary space dimensionality.
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