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Abstract

Berenstein, Maldacena, and Nastase have recently discovered a particular limit of

AdS/CFT correspondence where string theory in a plane wave background is dual

to a sector of N = 4 SYM in a double scaling limit. It is based on the observation

that a plane wave background can be obtained by taking Penrose limit of Anti de

Sitter background. The corresponding gauge theory limit is identified via AdS/CFT

dictionary. This proposal is especially exciting because string worldsheet theory in

a plane wave background is exactly solvable, thereby opening a possibility that one

can go beyond supergravity approximation. In the absence of string interactions,

the duality made a remarkable prediction for anomalous dimension of gauge theory

operators from exact free string spectrum, which was soon verified.

In this thesis, we attempt to extend the duality to the interacting theory level. We

propose that the correct holographic recipe is to identify the full string field theory

Hamiltonian with the dilatation operator of gauge theory. In practice, we must find an

identification map between string theory and gauge theory Hilbert spaces and evaluate

matrix elements of the two operators accordingly. The requirement that the inner

product should be preserved determines a unique identification map assuming that

it is hermitian. We show that transition amplitudes of string field theory agree with

matrix elements of dilatation operator under this preferred identification for states

with two different impurities. We later extend it to states with arbitrary impurities.

In doing so, we find a diagrammatic correspondence between string field theory and

gauge theory Feynman diagrams thereby providing direct handles on the duality. Our

proposal is universal in the sense that it is applicable to any interaction type such

as the open-closed interaction, and to all orders in g2 and λ′. Hopefully, this thesis

will be a key step towards proving the novel duality and a beginning of an exciting

journey to the stringy regime of string/gauge duality.
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Chapter 1

Introduction

String theory was originally born as a theory of hadrons. Strings were a dynamical

realization of Faraday flux lines between quarks with a length of about 10−13 cm.

The theory successfully explained many properties of hadrons including linear Regge

trajectories. However, the theory had the unusual feature that it inevitably contained

a spin-2 massless particle, which came from the closed string spectrum. It was a

mystery at the time because the only consistent way to couple such particles is to

treat them as “gravitons,” and definitely we were not dealing with gravity. In the

early 1970s, it was discovered that hadrons and mesons are made of quarks which

are described by Quantum Chromodynamics (QCD), and string theory soon lost its

original motivation of describing the strong interaction. Shortly after, string theory

was reborn in a more ambitious fashion, as a unified theory of all interactions in

nature, particularly, a quantum theory of gravity [1, 2, 3]. Previous attempts to

quantize gravity based on point particles were not successful due to divergent short-

distance behavior. String theory naturally spreads out the interactions over spacetime

in a consistent manner, thereby cutting off the divergences. Presently, string theory

is the only known consistent quantum theory of gravity. It is hoped that string theory

can address all the important problems in quantum gravity such as Hawking radiation

and spacetime singularities. Much progress has been made in this direction, but our

understanding is yet far from complete.

Perturbative study of QCD, a non-Abelian gauge theory (also known as Yang-
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Mills theory) with SU(3) gauge group, has deepened our understanding of the strong

interaction since its discovery. QCD is however strongly coupled at low-energy, and

therefore perturbative analysis no longer applies. A full understanding of the theory

in this regime is not available to date even though partial success has been achieved in

supersymmetric analogues. In particular, quark confinement remains as a challenging

problem in theoretical physics. In 1974, ’t Hooft conjectured that in the strong

coupling regime, the gauge theory should have a dual string theory description [4].

Let us summarize his argument. Assume that we have a gauge theory with U(N)

gauge group and that all fields in this theory transform in the adjoint representation

of U(N). An adjoint field Φa, where a is an index in the adjoint representation, can be

written as a matrix acting on the fundamental representation, i.e., Φj
i =

∑
a Φa[T a]ji

where T a’s are the generators of U(N) in the fundamental representation and i, j

run from 1 to N .1 Hence, we can think of Φ as carrying two indices, one in the

fundamental and the other in the anti-fundamental representation. The propagator

for Φ is

〈Φj
iΦ

l
k〉 ∝ δliδ

j
k. (1.0.1)

On drawing Feynman diagrams in this theory, it is natural to represent the propagator

for Φ as a double line (or a “fat” line) with each line denoting the fundamental or anti-

fundamental index (See figure 1.1). Then any Feynman diagram looks like a web of

double lines. We further assume that all cubic interaction vertices are proportional to

the Yang-Mills coupling gYM , and all quartic vertices to g2
YM .2 We are interested inN ,

gYM dependence of Feynman diagrams. Let us consider a diagram with V = V3 + V4

vertices, E edges, and F faces. From the interaction vertices, we get gV3+2V4
YM . Each

face is bounded by a index loop, which gives a factor of N from summing over colors

running around the loop. By counting the number of edges in two independent ways,

1More precisely, sub-index and super-index denote fundamental and anti-fundamental represen-

tations, respectively.
2This is the case for N = 4 Super Yang-Mills theory, which will be our main interest in this

thesis.
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Figure 1.1: The double line representation of adjoint fields and a typical vacuum

diagram with genus 0.

we can get a relation 3V3 + 4V4 = 2E. Altogether, this Feynman diagram gives

NFgV3+2V4
YM = NFg2E−2V

YM = NV−E+F (g2
YMN)E−V = NχλE−V , (1.0.2)

where χ is the Euler number of the underlying two-dimensional surface triangulated

by this Feynman diagram and λ = g2
YMN is the so-called ’t Hooft coupling. The

surface is oriented since the double lines have an orientation and can be compactified

by adding one point at infinity. Then the Euler number is completely determined by

the genus (the number of handles) of the surface, χ = 2 − 2g. Hence, the ordinary

perturbative expansion of the gauge theory can be rearranged into a double expansion

in terms of genus and quantum loops:

∞∑
g=0

N2−2g
∞∑
n=0

Cg,nλ
n. (1.0.3)

This sum over the genus or topology of two-dimensional surface is strongly reminis-

cent of the perturbative string expansion if 1/N is identified with the string coupling

constant. This double expansion is valid only if N is large and λ is small. When λ

becomes large, the string worldsheet emerges from a “fat” Feynman diagram of gauge

theory, and the dual string theory takes over. The string theory is still perturbative
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as long as we keep N large. Therefore, this string/gauge duality is more manifest

in the large N limit. From this heuristic argument, we can learn that gauge theory

is linked to string theory, and it is not surprising that string theory was originally

designed for describing the strong interaction. However, little had been known about

whether this argument holds beyond perturbation theory and exactly what the dual

string theory is until the recent discovery of the AdS/CFT correspondence.

The AdS/CFT correspondence is a particular realization of ’t Hooft’s idea [5, 6, 7]

(For an extensive review on the subject, see [8]). It is based on consideration of a

stack of large number N of parallel D3-branes in type IIB string theory. Dp-branes are

special non-perturbative objects in string theory with mass of order 1/gs
3 which are

sources of closed strings, in particular, carrying Ramond-Ramond (RR) charges. They

are also defined as p-dimensional surfaces where open strings can end on [9]. These

two alternative viewpoints provide two equivalent descriptions of the large N D3-

brane system. On the one hand, they deform the closed string background, i.e., curve

the spacetime and generate RR-flux. We can study the system by considering closed

string theory on the resulting background which is a higher dimensional analogue of

extremal black holes. On the other hand, we can consider open strings on the D3-

branes and their interaction with closed strings in the bulk flat spacetime. Now let

us take the low-energy limit with respect to an observer far from the D-brane system.

From the first point of view, we have low-energy supergravity modes propagating

in the asymptotically flat region of the spacetime and arbitrary modes in the near

horizon region. In the limit, these two two types of modes decouple from each other.

From the second point of view, we have a four-dimensional N = 4 SU(N) Super

Yang-Mills (SYM) theory from open strings on the D-branes and supergravity in the

bulk flat spacetime. Again, in the limit, they decouple. After cancelling out the

common bulk supergravity in the flat spacetime, we come to conjecture that the four-

dimensional N = 4 SU(N) Super Yang-Mills theory is dual to type IIB string theory

on the near horizon geometry which is AdS5 × S5 with N units of self-dual RR-flux

through S5. This AdS/CFT correspondence has been the focus of much research since

3gs is the string coupling constant in string perturbation theory.
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its discovery. One crucial relation between string theory and gauge theory parameters

in this duality is
R4

α′2
= λ = g2

YMN, (1.0.4)

where R is the common radius of AdS5 and S5, and
√
α′ is the fundamental string

length scale. In practice, we take the supergravity approximation of string theory

because string theory on AdS5×S5 is hard to quantize due to the notorious difficulty

of dealing with RR-flux. This approximation is valid only if the curvature of spacetime

is small compared with the string scale, i.e.,

R4

α′2
= λ� 1, (1.0.5)

whereas perturbative SYM computation applies only if the ’t Hooft coupling is small,

i.e.,
R4

α′2
= λ� 1. (1.0.6)

Therefore, the regimes where we can analyze each side of the duality are mutually

exclusive. This fact has been a source of excitement, as well as frustration in the past

years. We can make interesting predictions for strongly coupled gauge theory from

classical geometry using the duality, for example, but we are not able to prove them.

Nevertheless, AdS/CFT has provided us many conceptual advances. It is an explicit

realization of the holographic principle of quantum gravity [10, 11], which states that

a quantum theory of gravity in a region can be described by a theory at the boundary

of the region with at most one degree of freedom per Planck area. This is deduced

from the fact that the entropy of a black hole is proportional to the area of its horizon

and from the subsequent argument of Bekenstein [12] that the entropy of a system

surrounded by a surface should be bounded by the area of the surface. Otherwise, we

can think of a process of formation of a black hole having the surface as its horizon,

and then the entropy would decrease during the process. AdS/CFT could also give

us a non-perturbative definition of quantum gravity or string theory at least on a

particular background since we know how to define SYM non-perturbatively.

The aforementioned difficulty of studying strings propagating in an RR back-

ground has been a challenge for string theorists. There have been many attempts to
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overcome it, leading finally to a breakthrough. The idea is that we can take a limit

of the original AdS5 × S5 background to simplify the situation. The limit actually

taken is the so-called Penrose limit [13, 14, 15, 16]. The Penrose limit is, roughly

speaking, to zoom in on the vicinity of a null geodesic in the original spacetime. It

results in a background that an imaginary observer travelling along the null geodesic

would observe. In general, one obtains a plane wave (or pp-wave) geometry in this

limit. The limit has the nice property that the number of symmetries including su-

persymmetry of the background never decreases in the limit. In this way, we can

obtain a maximally supersymmetric plane wave background of type IIB supergravity

or string theory from the AdS5 × S5 background. This background is much simpler

but still has an interesting light-like RR-flux inherited from the original background.

Another important input came from [17], which showed that free string theory in

the plane wave background can be exactly solvable4 despite the presence of RR-flux.

In the seminal paper [18], Berenstein, Maldacena, and Nastase (BMN) identified the

corresponding limit in the dual gauge theory via AdS/CFT correspondence. The

limit of gauge theory turns out to be a double scaling limit where N, J, λ are taken

to infinity while λ/J2 and J2/N are kept fixed. Here J is the charge for U(1) inside

SO(6) R-symmetry which corresponds to the direction along which the null geodesic

winds around S5. In this limit, the gauge theory truncates to a subset of operators

with large R-charge J but finite ∆−J . One would think that ’t Hooft’s expansion of

gauge theory (1.0.3) might not make sense because λ goes to infinity, and that, even

if so, only planar diagrams (diagrams with g = 0) might contribute since 1/N goes

to zero. In fact, both expectations are too naive and one finds a well defined double

expansion in terms of g2 and λ′ [19, 20],

g2 =
J2

N
λ′ =

λ

J2
, (1.0.7)

Now g2 counts the genus of diagrams and λ′ measures quantum loops instead of 1/N

and λ,
∞∑
g=0

g2−2g
2

∞∑
n=0

Cg,nλ
′n, (1.0.8)

4One should use Green-Schwarz strings in the light-cone gauge.
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The reason why we have a sensible expansion in strong ’t Hooft coupling limit is that

the class of operators we are looking at in this limit nearly satisfies the BPS condition

∆ = J , thereby leaving the nonrenormalization theorem partially intact. Therefore,

there are quantum corrections, but they are actually controllable in the limit. All the

non-planar diagrams do contribute in the N → ∞ limit because a growing number

of Feynman diagrams at a given genus can compete with the suppressing factor of

N2−2g.

Hence, we have an exciting possibility that we can check AdS/CFT beyond su-

pergravity approximation and also that both sides of the duality may be calculable in

the same regime. A crucial step in making the correspondence precise is to identify

the charges of string states in spacetime with the charges carried by gauge theory

operators. The identification is given by

1

µ
H = ∆− J, (1.0.9)

where H is the light-cone Hamiltonian corresponding to a light-cone time of the plane

wave background, and µ is a mass scale introduced while taking the Penrose limit

of AdS5 × S5. The details will be explained later. The first check of the duality is

to compare the free string spectrum with anomalous dimensions of operators in the

planar limit via (1.0.9). Remarkable agreement is shown perturbatively in [18, 21],

and to all orders in λ′ using superconformal invariance in [22].

The next question we should address is how to go beyond free string theory.

Once we turn on the string coupling, strings start joining and splitting and the free

Hamiltonian receives corrections of all orders in the string coupling,

H = H2 + g2H3 + · · · . (1.0.10)

Splitting/joining transition amplitudes via the interaction Hamiltonian should be

captured by the dual gauge theory. On the string side, investigation of interacting

string theory in plane wave backgrounds was initiated by [23] and soon followed by

many authors using light-cone string field theory [24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35] or using string bit model [36, 37, 38, 39]. The main interest in this direction is
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construction of the cubic Hamitonian and evaluation of its matrix elements between

single- and two-string states. On the other hand, many computations have been done

in the BMN limit of gauge theory [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,

53, 54, 55, 56]. However, it is not clear how to match both sides of the duality at the

interaction level.

In the original AdS/CFT, we have a general holographic description [6, 7], where

gauge theory operators inserted on the boundary of AdS5 give boundary conditions for

the corresponding fields in AdS5. In this way, we can extract, in principle, bulk inter-

actions from boundary gauge theory correlators. Notice that, however, the boundary

of AdS5 is pushed to infinity and eventually lost in the Penrose limit because we are

focusing on a trajectory lying deep inside AdS5. Therefore, we do not have a holo-

graphic map of a plane wave background directly inherited from that of AdS/CFT.

In fact, it is shown that the conformal boundary of a plane wave geometry is a one-

dimensional null line [57]. Therefore, one expects the holographic dual theory to be

a quantum mechanical system, but such a system has not yet been found5.

In this thesis, we attempt to answer this important problem: “How can we describe

string interactions in a plane wave from gauge theory?” Our guiding principle is simply

to take the relation (1.0.9) as the holographic map for all orders in the string coupling.

This philosophy was first put forward by [40]. In order to use the relation (1.0.9), we

need to sandwich the operators on both sides of the equation by states in string and

gauge theory. Therefore, we first have to find an explicit map between the Hilbert

space of string states and the Hilbert space of states in the gauge theory,

|sA〉 → |ÕA〉, (1.0.11)

where |sA〉 is a string state and |ÕA〉 the corresponding gauge theory state (or equiva-

lently operators via state/operator correspondence of conformal field theory). More-

over, in order for the comparison to be meaningful, such a map must preserve inner

5It is plausible that the double scaling limit of the subset of operators that we consider here may

effectively give rise to a quantum mechanical system. See [58, 59] for development along this line.
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products of the two Hilbert spaces,

〈sA|sB〉 = 〈ÕA|ÕB〉. (1.0.12)

In string theory, there exists a canonical diagonal inner product, namely, states with

different number of strings are orthogonal. In gauge theory, a natural inner product is

given by mixing of two operators, but operators with different number of traces tend

to mix to all orders in g2. Therefore, we need to diagonalize the gauge theory inner

product order by order. After finding this identification, we can test our proposal by

checking
1

µ
〈sA|H|sB〉 = 〈ÕA|(∆− J)|ÕB〉. (1.0.13)

We emphasize that this remarkably simple recipe is universal. First, it applies to

any in- and out- states no matter what they are, two-string states, three-string states,

or even open string states if any. Computations on both sides are well defined, and

we need not find a separate recipe for each interaction type. Furthermore, it can

be used for all orders in g2 and λ′ without modification. We know how to compute

corrections in g2 and λ′ to both sides of (1.0.9) and we just have to compare order

by order. Throughout this thesis, however, we restrict ourselves to first order in λ′

and leave higher loop analysis for future study. Also, we are mostly interested in

calculations to first order in g2, the so-called cubic Hamiltonian, but we will perform

some order g2
2 contact term analysis.

The rest of the thesis is organized as follows. In the subsequent sections, we

explain in detail the Penrose limit of AdS/CFT. In Chapter 2 which is based on [60],

we formulate our proposal more precisely and apply it to the simplest class of string

and gauge theory states. This will be generalized to arbitrary states in Chapter 3

based on [61] and we complete a proof of agreement of string and gauge theories via

our proposal to first order in g2 and λ′. We also show some agreement to order g2
2 and

λ′. In so doing, we find a correspondence between gauge theory Feynman diagrams

and string field theory Feynman diagrams6. This tells us that the agreement is not

a numerical coincidence, but a physically meaningful duality. In the Penrose limit of

6We will define string field theory Feynman diagrams in Chapter 3.
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AdS/CFT, we will see explicitly each elementary gauge theory field forming string bits

and string worldsheets emerging from gauge theory Feynman diagrams. We conclude

the thesis in Chapter 4. Many details of analysis are presented in the appendix.

1.1 AdS/CFT correspondence and Penrose limit

Let us explain AdS/CFT in more detail. In the global coordinate system where the

duality is the most conveniently formulated, the metric of AdS5 × S5 is given as

ds2 = R2
[
−dt2 cosh2 ρ+ dρ2 + sinh2 ρ dΩ2

3

]
+R2dΩ2

5, (1.1.14)

where R, the common radius of AdS5 and S5, is given by R4 = g2
YMNα

′2, and dΩ2
n

is the round metric of an n-sphere. The background is also equipped with a self-dual

RR-flux, ∫
S5
F5 = N. (1.1.15)

The Yang-Mills coupling and the string coupling are related by

g2
YM = 4πgs. (1.1.16)

The SYM lives on Rt × S3 which is the conformal boundary of AdS5 located at

ρ = ∞. Here Rt is the direction along the global time t. The four-dimensional

N = 4 SYM is known to have a conformal symmetry group including ordinary Lorentz

symmetry. In a conformal field theory, there are no asymptotic states or S-matrix,

and natural objects are operators and correlation functions among them. That said,

it is convenient to radially quantize the SYM, meaning that we map Rt of Rt × S3

to the radial direction of R4 as we do in quantizing the worldsheet theory of strings.

Then states on S3 in the SYM on Rt×S3 are mapped to local operators in the SYM

on R4.

The duality implies matching of the global symmetries of the two theories. The

string theory has as a global symmetry the isometries of AdS5×S5 which is SO(4, 2)×

SO(6). The SYM has the four-dimensional conformal symmetry group SO(4, 2) and

also the extended N = 4 supersymmetry which includes SO(6) R-symmetry. Using
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this identification, we can match symmetry generators on both sides. In particular,

the Hamiltonian Ht of the string theory associated with the global time t is identified

with the scaling operator ∆ of the SYM on R4. Also the rotation symmetry generator

along a great circle in S5 corresponds to the generator of a U(1) subgroup of the SO(6)

R-symmetry group.

On taking the Penrose limit of AdS5 × S5, it is convenient to express S5 part of

the metric as follows :

ds2 = R2
[
−dt2 cosh2 ρ+ dρ2 + sinh2 ρ dΩ2

3 + dψ2 cos2 ϕ+ dϕ2 + sin2 ϕ dΩ
′2
3

]
,

(1.1.17)

where ψ ∼ ψ + 2π and ϕ ∼ ϕ + 2π. Translation in ψ amount to rotation along a

great circle of S5. We introduce light-cone coordinates

x+ =
t

µ
, x− = µR2(t− ψ), r1 = Rρ, r2 = Rθ, (1.1.18)

where µ is a free mass scale that can be introduced, and we take the Penrose limit,

i.e., R → ∞ with gs, α
′ fixed. Then the metric and the RR flux reduce to the form

of a plane wave background :

ds2 = 2dx+dx− − µ2(~r 2
1 + ~r 2

2 )dx+2 + d~r 2
1 + d~r 2

2 , (1.1.19)

F+1234 = F+5678 = µ, (1.1.20)

where ~r1, ~r2 ∈ R4 and we denote ~r1 = (z1, ..., z4), ~r1 = (z5, ..., z8). Now let us consider

the corresponding limit of the dual gauge theory. As explained above, we identify

i∂t ↔ ∆, −i∂ψ ↔ J, (1.1.21)

where ∆ is the generator of dilatation and J is a U(1) generator in SO(6)R. Hence,

one finds that

1

µ
H =

i

µ
∂x+ = i(∂t + ∂ψ) = ∆− J,

µR2P+ = iµR2∂x− = −i∂ψ = J, (1.1.22)

where H is the generator of x+ translations, and P+ is the generator of x− trans-

lations. In the Penrose limit, we keep the light-cone energy and momentum finite.
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Therefore, the gauge theory is restricted to operators with large R-charge J ∼
√
N

and finite ∆−J in the limit N →∞ with gYM fixed. The true dimensionless param-

eters of string theory in the plane wave background are µp+α′ and gs while those of

gauge theory are λ′ and g2 as explained before. They are related as follows

λ′ =
1

(µp+α′)2
, g2 = 4πgs(µp

+α′)2. (1.1.23)

In the plane wave background, the Green-Schwarz string action reduces to the

following form in the light-cone gauge

S =
1

2πα′

∫
dτ
∫ πα′p+

0
dσ
[
1

2
ż2 − 1

2
z′2 − 1

2
µ2z2 + i

(
1

2
S1∂+S1 +

1

2
S2∂−S2 − µS1Γ

1234S2

)]
,

(1.1.24)

where Si are positive chirality SO(8) spinors. Upon quantization, the Green-Schwarz

string gives rise to towers of massive bosonic and fermionic harmonic oscillators, ain

and ban (i, a = 1, · · · , 8) with frequency

ωn =

√√√√µ2 +
n2

(p+α′)2
. (1.1.25)

The light-cone Hamiltonian is given as

H =
∞∑
n=0

Nnωn = µ
∞∑
n=0

Nn

√√√√1 +
n2

(µp+α′)2
, (1.1.26)

where Nn denotes the total occupation number of that mode for both bosonic and

fermionic oscillators with frequency ωn. Notice that we have vanishing zero-point

energy due to cancellation between bosons and fermions. Using the identification

(1.1.22) and (1.1.23), we can rewrite (1.1.26) in variables better suited for the dual

gauge theory,

∆− J =
∞∑
n=0

Nn

√
1 + λ′n2. (1.1.27)

Now our first task is to find a class of gauge theory operators with anomalous dimen-

sions predicted by (1.1.27).
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In the next section, we review identification of string states and gauge theory

operators in the absence of string interactions, which is done in the original paper

[18] by BMN. Those operators are named in the literature as “BMN operators”.

1.2 Free strings from BMN operators

Let us briefly review the four-dimensional N = 4 SYM. In terms of N = 1 superfields,

this theory contains one vector superfield V and three chiral superfields Z,Φ,Ψ in

the adjoint representation whose lowest components are complex scalar fields named

with the same symbols Z,Φ,Ψ. The potential of those complex scalars come from two

origins, F-terms and D-terms :

VF = 4g2
YM

(
|[Z,Φ]|2 + |[Z,Ψ]|2 + |[Φ,Ψ]|2

)
,

VD = g2
YM

(
[Z, Z̄] + [Φ, Φ̄] + [Ψ, Ψ̄]

)2
. (1.2.28)

We can decompose each complex scalar into two real scalars as

Φ =
φ1 + iφ2√

2
, Ψ =

φ3 + iφ4√
2

, Z =
φ5 + iφ6√

2
. (1.2.29)

These six scalars actually represent the six transverse directions of the original D3-

branes. Without loss of generality, let us set J to be the generator of rotations on

the φ5-φ6 plane. Then, Z and Z̄ have U(1)J charge +1 and −1, respectively, while

the other complex scalars are neutral.

We consider first the gauge theory operator dual to the light-cone ground state

|0, p+〉. The dual operator must be a chiral primary operator with ∆ − J = 0. The

unique solution to this requirement is TrZJ . With a proper normalization factor in

the planar limit, we identify

|0, p+〉 ↔ OJ ≡ 1√
JNJ

TrZJ . (1.2.30)

This operator has classical dimension ∆ = J and it does not receive quantum cor-

rections. Hence ∆ − J = 0 remains true in the full quantum theory as predicted by

the duality. Next, consider zero-mode excitations of the ground state, i.e., ai†0 |0, p+〉.
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The ground state breaks 8 out of 16 bosonic symmetries of the background, and

these states are Goldstone bosons corresponding to the broken symmetries. Using

the AdS/CFT dictionary, we can find corresponding symmetries in the gauge theory,

and the dual operators are obtained by the action of those symmetry generators on

OJ . This process is explained in Appendix A and we summarize the result here. The

dual operators are obtained by inserting DiZ or φi (i = 1, 2, 3, 4) inside the string of

J Z’s and subsequently symmetrizing over all possible positions, i.e.,

ai†0 |0, p+〉 ↔ OJ
i ≡

1√
JNJ

J−1∑
l=0

Tr

(
Z l φi√

J
ZJ−l

)
=

1√
NJ

Tr
(
φiZ

J
)
, (1.2.31)

similarly for DiZ insertions. This operator is also a protected operator and its di-

mension is given as the classical value J + 1. It agrees with the fact that the state

ai†0 |0, p+〉 has H/µ = 1. It is convenient to think of each insertion as carrying a nor-

malization factor 1/
√
J since each insertion generates a sum over J positions. In the

last equality of (1.2.31), we use the cyclic property of trace. Here, we are beginning

to see the intuitive picture that a Z is representing an unexcited string bit and a

φ an excitation or impurity on the string. The cyclic property of trace amounts to

translational invariance along the string (i.e., σ-direction).

Now, let us think about non-zero modes ai†n |0, p+〉. Since n denotes worldsheet mo-

mentum, we assign a worldsheet momentum n to the corresponding impurity meaning

that the sum over position l is now weighted by a phase exp(2πinl/J),

ai†n |0, p+〉 ↔ OJ
(i,n) ≡

1√
JNJ

J−1∑
l=0

e2πinl/JTr

(
Z l φi√

J
ZJ−l

)
. (1.2.32)

In fact, the state ai†n |0, p+〉 is not a physical state since we should impose the level-

matching condition
∑
n nNn = 0 coming from the translational invariance along the

string. Consistently, the dual operator is identically zero due to the cyclic property

of trace,

J−1∑
l=0

e2πinl/JTr

(
Z l φi√

J
ZJ−l

)
= Tr

(
φiZ

J
) J−1∑
l=0

e2πinl/J = 0. (1.2.33)
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This is a nice consistency check for the duality. Therefore, we need at least two

insertions to talk about non-zero modes. Anyway, this illustrates the general rule

of constructing dual operators; for each string oscillator, we insert a corresponding

impurity and sum over all possible positions along the string of Z’s with a proper

phase.

Following the rule, we construct the dual operator of the on-shell string state

ai†−na
j†
n |0, p+〉 as

ai†−na
j†
n |0, p+〉 ↔ OJ

ij,n ≡ 1√
JNJ

J−1∑
li=0

J−1∑
lj=0

e2πin(lj−li)/JTr

(
Z · · ·Z φi√

J
Z · · ·Z φj√

J
Z · · ·Z

)

=
1√
JNJ

J∑
l=0

e2πinl/JTr
(
φiZ

lφjZ
J−l
)
, (1.2.34)

where li and lj are the positions of φi and φj, respectively. In the last equality, we

use the cyclic property again. In general, we can either sum over the positions of

all impurities reserving the use of the cyclic property, or we can fix the position of

one impurity and sum over the positions of the remaining impurities. We call the

two representations of BMN operators as “off-shell”7 and “on-shell” representaions

respectively, which are elaborated in Appendix B.

This identification should be justified by computing all two-point functions among

those two-impurity operators and by showing that they diagonalize ∆ in the planar

limit, because the corresponding string states are eigenstates of the light-cone Hamil-

tonian in the absence of string interactions. Such an analysis was first performed in

[18] by BMN. It is crucial that those operators are nearly BPS and so that we can use

a partial nonrenormalization theorem. D-term interaction, gauge boson exchange,

and self-energy diagrams cancel among themselves, and we have only to take F-term

interaction diagrams into account. The form of F-term interactions and the planar

limit allow only interactions between neighboring impurities and thereby imposing

locality on the string worldsheet. BMN have obtained the first-order correction to

the classical dimension and shown that the above identification is indeed correct.

7Here, shell means the level-matching shell.
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The second-order analysis is done in [21], and the full square root of the frequency

is recovered from the gauge theory in [22] using a clever superconformal symmetry

argument.

In the next chapter, we start to explore the string/gauge theory duality at the

interaction level.
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Chapter 2

Gauge theory description of string

interaction in a plane wave

background: two impurities

2.1 Introduction

In this chapter, we present our proposal of how gauge theory describes string inter-

actions in a plane wave background, and apply it to the simplest class of string and

gauge theory states with two scalar1 impurities.

The first concrete proposal to this problem was made in [19], which relates these

string theory transition amplitudes with three-point functions of BMN operators in

the gauge theory. Their proposal is therefore the first attempt to construct a holo-

graphic map at the interacting level between string theory in a plane wave and gauge

theory. This interesting proposal2 was put to an explicit test by Spradlin and Volovich

in [26], where some Hamiltonian matrix elements were computed using the string field

theory vertex constructed previously in [23]. Exact agreement with the proposal given

in [19] was reported. Unfortunately both the field theory and string theory computa-

tions suffer from errors which, when taken into account, invalidate the proposal. On

1By this, we mean φi (i = 1, 2, 3, 4).
2Various aspects of this proposal were considered in [24, 41, 43, 25, 44, 27, 45, 46, 28, 31, 62, 50].
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the field theory side, operator mixing is more important than initially contemplated

in [20, 19]. Three-point functions of single trace operators with order λ′ interactions

are not conformally invariant, but the correct form is restored after operator mixing

is incorporated, as shown in [47, 48]. On the string field theory side, the prefactor

acting on the delta functional overlap of three strings that enters the Hamiltonian H3

[23] has a minus sign error, which was first reported by Pankiewicz [30]. Once matrix

elements are recomputed with the corrected Hamiltonian H3, which we calculate in

Section 2.2, agreement with field theory is lost. Therefore, what is the correct holo-

graphic map between string theory in the plane wave [15] and N = 4 SYM at the

interacting level?

The most straightforward way to proceed, which was first advocated in a paper

by Gross, Mikhailov and Roiban [21], is to take the identification (1.0.9) between

the string field theory Hamiltonian H and the generator of scale transformations

∆ − J in N = 4 SYM as the holographic map for all g2. This holographic map

therefore identifies Hamiltonian matrix elements in string field theory with those of

the dilatation operator in gauge theory. In order to test this identification one must

find an explicit map between the Hilbert space of string states and the Hilbert space

of states in the gauge theory. Moreover, in order for the comparison to be meaningful

one must compute the matrix elements of these operators in a basis in which the

Hilbert space inner product in gauge theory is the same as that in string field theory.

The obvious inner product in the Hilbert space of string theory is the familiar inner

product where, for example, the one-string states are orthogonal to two-string states.

In gauge theory, the Hilbert space inner product is induced by the matrix of

two-point functions of BMN operators3

|x|2∆0〈OAŌB〉 = GAB + ΓAB ln(x2Λ2)−1, (2.1.1)

where GAB is the Hilbert space inner product and ΓAB is the matrix of anomalous

dimensions. Unlike with the usual Hilbert space inner product in string field theory,

3In this formula the various rows and columns describe single trace, double trace, etc components.

A more complete characterization of this matrix is given in Section 2.3.
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which remains diagonal to all orders in g2, perturbative corrections in gauge theory

induce operator mixing at each order in g2 in perturbation theory and the Hilbert

space inner product is no longer diagonal. Direct comparison with string field theory

calculations requires correcting for operator mixing systematically, order by order in

the g2, expansion by making GAB orthonormal via a change of basis.

In order to relate string theory to gauge theory calculations via (1.0.9) we must

calculate the matrix elements of the dilatation operator. It is straightforward to show

that the matrix elements of the dilatation operator between states created by BMN

operators are given by the matrix of anomalous dimensions4

〈OA|(∆− J)|OB〉 = (∆0 − J)GAB + ΓAB = nGAB + ΓAB, (2.1.2)

where n is the number of impurities. Comparison of matrix elements of H and ∆

requires first making the gauge theory inner product orthonormal order by order in

perturbation theory. We can accomplish this by finding a new basis of operators

ÕA = UABOB such that they are orthonormal

UGU † = 1. (2.1.3)

When g2 = 0, the correct identification between string states and gauge theory op-

erators was given by BMN. Namely, an n-string state is described by an n-trace

operator. Once g2 corrections are taken into account this identification has to be

modified. Therefore, the precise mapping between string field theory states |sA〉 and

gauge theory states |ÕA〉 when g2 6= 0 is given by5

|sA〉 → |ÕA〉 = UAB|OB〉, 〈sA|sB〉 = 〈ÕA|ÕB〉 = δAB. (2.1.4)

4Since BMN operators are BPS or nearly BPS, the contribution from the action of ∆ coming

from the bare dimension of the operator is almost cancelled by the contribution from the R-charge

and thereby giving n in (2.1.2).
5In light-cone string field theory the canonical normalization of states is the usual delta function

normalization 〈s′
A|s′

B〉 = p+
Aδ(p+

A − p+
B) = JAδJA,JB

, so that |s′
A〉 =

√
JA|sA〉. Therefore, when

comparing string field theory results with gauge theory results we will have to take into account this

normalization factor, since gauge theory states have unit norm [57, 19].
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In Section 2.3 we give an expression for the change of basis to order g2
2. Once the

right basis is found, the holographic map reads

1

µ
〈sA|H|sB〉 = 〈ÕA|(∆− J)|ÕB〉 = nδAB + (UΓU †)AB. (2.1.5)

An important subtlety in the holographic map (2.1.5) is that the orthonormaliza-

tion procedure of the gauge theory inner product is not unique, namely, the trans-

formation matrix U that makes GAB orthonormal is not unique6. We uniquely fix

the form U to order g2 by demanding that the dilatation operator matrix elements

agree with the matrix elements of the corrected string field theory Hamiltonian that

we calculate in Section 2.2. We then evaluate U to order g2
2 which via (2.1.5) makes

a non-trivial prediction for string field theory Hamiltonian matrix elements to order

g2
2 which have not yet been evaluated. Remarkably, this purely gauge theory result

we present is reproduced by the order g2
2 string field theory contact term calculation

in [35].7

The rest of the chapter is organized as follows. In Section 2.2 we revisit the string

field theory Hamiltonian H3 and point out that there is an incorrect relative minus

sign in [26]8. We recompute Hamiltonian matrix elements with the corrected sign,

which we will use in Section 2.3. In Section 2.3 we fix the form of the change of basis in

gauge theory to order g2 by demanding that (2.1.5) holds when the string field theory

matrix elements in Section 2.2 are used. We also evaluate the dilatation operator

matrix elements to order g2
2 by making a particular choice of basis to order g2

2 which

allows us to make a calculable prediction by using (2.1.5) about the string field theory

Hamiltonian matrix elements to that order. We note that the final answer agrees with

the recent string field theory result in [35]. A discussion is added in Section 2.4.

6This ambiguity was first pointed out in [21].
7It also agrees with the order g2

2 string bit Hamiltonian [36, 38] matrix elements computed in

[39].
8This sign has been corrected in a recent revision.
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2.2 SFT computation revisited

Before going into our gauge theory computation, let us perform the correct string

field theory calculation that we will compare it to. This also corrects some errors in

the previous literature. In string field theory, the Hilbert space is a direct product of

`-string states,

H = ⊕`H`. (2.2.6)

All these states are orthogonal with respect to each other and they have an orthonor-

mal inner product. The full Hamiltonian H, representing infinitesimal evolution along

x+, can be expanded in g2 :

H = H2 + g2H3 + g2
2H

′
2 · · · . (2.2.7)

In the plane wave background the freely propagating part H2 is simply the energy of

an infinite collection of harmonic oscillators αin. The three-string interaction part H3

is the leading interaction coupling an n-string state to an (n±1)-string state, and H ′
2

is a contact term. Following the flat space results in [67, 66] the plane wave vertex

H3 has been studied in [23, 26, 30, 32, 33]. The properly normalized cubic interaction

term in the case of purely bosonic excitations along R4 in the exponential (BMN)

basis of oscillators is given by9

1

µ
|H3〉 = −y(1− y)

2
P |V 〉, (2.2.8)

where p+
(r) is the length of string r and P is the prefactor

P =
3∑
r=1

∞∑
n=−∞

ωn(r)

µp+
(r)α

′α
i†
n(r)α

i
−n(r), (2.2.9)

9We take without loss of generality α′p+
(3) = −1, α′p+

(1) = y and α′p+
(2) = 1− y, where 0 < y < 1.

Therefore, λ′ = 1/µ2. The large µ normalization was fixed in [39, 60] by comparison with a field

theory amplitude.
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with ωn(r) =
√

(µp+
(r)α

′)2 + n2 and10

|V 〉 = exp
(

1

2

3∑
r,s=1

∞∑
m,n=−∞

αi†m(r)Ñ
(rs)
mn α

i†
n(s)

)
|vac〉. (2.2.10)

|V 〉 represents the delta functional overlap of three strings in the oscillator basis, and

the prefactor P is necessary to appropriately realize the supersymmetry algebra.

The string states, which are dual to a certain class of two impurity BMN operators

when g2 = 0, are given by

|n〉 = α1†
n α

2†
−n|0, 1〉 (2.2.11)

|n, y〉〉 = α1†
n α

2†
−n|0, y〉 ⊗ |0, 1− y〉 (2.2.12)

|y〉〉 = α1†
0 |0, y〉 ⊗ α2†

0 |0, 1− y〉, (2.2.13)

where the first state represents a single-string and the other two represent two-string

states. Here |0, y〉 is the one-string vacuum state carrying a fraction 0 < y < 1 of the

total longitudinal momentum p+ of the multi-string state. The Hamiltonian matrix

elements of these states are given by

〈n|H3|m, y〉〉 ∼ (F+
(1)|m|F

+
(3)|n| + F−

(1)|m|F
−
(3)|n|)(N̄

(13)
|m|,|n| − N̄

(13)
−|m|,−|n|), if mn > 0

〈n|H3|m, y〉〉 ∼ (F+
(1)|m|F

+
(3)|n| − F−

(1)|m|F
−
(3)|n|)(N̄

(13)
|m|,|n| + N̄

(13)
−|m|,−|n|), if mn < 0

〈n|H3|y〉〉 ∼ F+
(3)|n|(F

+
(1)0N̄

(23)
0,|n| + F+

(2)0N̄
(13)
0,|n|), for ∀n 6= 0 (2.2.14)

where Fm(r) comes from the prefactor and the Neumann matrices N̄ (rs)
mn come from

the delta functional overlap. The negative modes are related to the positive modes

by (here m,n > 0)

N̄
(rs)
−m,−n = −(U(r)N̄

(rs)U(s))m,n, (2.2.15)

F−
(r)m = i(U(r)F

+
(r))m, (2.2.16)

with (U(r))m,n = δm,n
(√

m2 + (µp+
(r)α

′)2 − µp+
(r)α

′
)
/m. Note that in (2.2.16) we have

an extra factor of i compared to the original literature [26]11, which was first pointed

10Here we omit the overall p+ conservation factor, |p+
(3)|δ(p

+
(1) + p+

(2) + p+
(3)).

11More explicitly, formulas (3.15) and (3.21) in the original version of [26] should have an extra

factor of i. This invalidates the evaluation of (4.4) [26].
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out in [30]. Using (2.2.15) and (2.2.16), we can show that both (2.2.14) and (2.2.14)

reduce to the same expression.

In order to compare these answers with perturbative gauge theory we must analyze

the µ → ∞ limit of (2.2.14), (2.2.14) and (2.2.14). The µ → ∞ behavior of both

the prefactor and the Neumann matrices was evaluated in [26]. In the µ→∞ limit,

(2.2.14), (2.2.14) and (2.2.14) yield12

1

µ
〈n|H3|m, y〉〉 =

λ′

2π2
(1− y) sin2(nπy), (2.2.17)

1

µ
〈n|H3|y〉〉 = − λ′

2π2

√
y(1− y) sin2(nπy). (2.2.18)

These corrected results invalidate the agreement previously found in the literature13.

In the next section we will use these results to test the holographic proposal in (2.1.5)

and will show that agreement is found for a particular choice of basis.

2.3 Orthonormalization and comparison with SFT

In this section, we make a change of operator basis such that the gauge theory inner

product is orthonormal order by order in g2. We then compute the matrix elements of

the operator ∆− J in this basis. An important subtlety in this procedure is that the

basis change that makes the Hilbert space inner product G orthonormal is not unique.

The leading term at g2 = 0 is uniquely fixed by the original correspondence explained

in [18] between single/double-string states and single/double-trace operators. When

g2 6= 0 the field theory operators start mixing and the matrix with which we make

the inner product orthonormal is not unique, due to the familiar ambiguity when

diagonalizing a matrix. We propose to fix this ambiguity in the change of basis by

taking seriously the proposal in (2.1.5) and demanding that exact agreement with

12The precise overall numerical factor of the cubic string field theory Hamiltonian is not known.

It is fixed by comparing with the gauge theory calculation in the next section.
13Also due to this extra i, the result proven in [31] that the prefactor reduces to energy difference

between incoming and outgoing states should be modified. Instead it reduces to the energy difference

in cos modes minus that in sin modes that appear in the worldsheet Fourier decomposition.
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the corrected string field theory results computed in the previous section is obtained.

Exact agreement is obtained for a unique choice of basis. This particular choice

is the unique choice for which the transformation matrix is hermitian to order g2.

We then proceed to calculate to next-to-leading order, i.e., to order g2
2. Here there

is also an ambiguity in the orthonormalization procedure. If we make the strong

assumption that the transformation matrix is still hermitian to this order, we can

uniquely determine the transformation matrix to order g2
2.

14 Given these assumptions

we can calculate explicitly the order g2
2 matrix element between the orthonormal

basis states which reduce when g2 = 0 to single trace operators. This result gives a

prediction using the proposal (2.1.5) for light-cone string field theory matrix elements

to order g2
2 involving single-string states, which has been confirmed in [35].15

The particular set of gauge theory operators that we are interested in are the

following single trace and double trace operators16

OJ =
1√
JNJ

TrZJ , (2.3.19)

OJ
(i) =

1√
NJ+1

Tr
(
φiZ

J
)
, (2.3.20)

OJ
n =

1√
JNJ+2

J∑
l=0

e2πiln/JTr
(
φ1Z

lφ2Z
J−l
)
, (2.3.21)

T J,y
p = : Oy·J

p O(1−y)·J : , (2.3.22)

T J,y = : Oy·J
(1)O

(1−y)·J
(2) : . (2.3.23)

We need to make the inner product G appearing in the matrix of two-point functions

in (2.1.1) orthonormal and eventually compute the matrix elements of Γ in the or-

thonormal basis (2.1.5). Both matrices GAB and ΓAB have a systematic expansion in

14This choice is compatible with the proposal in [39].
15the matrix elements we predict from the gauge theory computation also match the order g2

2

matrix elements computed in [39] using the string bit formalism [36, 38]. It would be very desirable

to understand more precisely the relation between light-cone string field theory and the string bit

formalism.
16Here we are using the notation in [47].
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powers of g2

G = 1 + g2G
(1) + g2

2G
(2) +O(g3

2), (2.3.24)

Γ = Γ(0) + g2Γ
(1) + g2

2Γ
(2) +O(g3

2). (2.3.25)

In the following we split these matrices into 3 × 3 blocks representing matrix ele-

ments involving OJ
n , T J,y

p and T J,y, respectively. The indices (n,m, · · ·) denote the

worldsheet momentum of the single trace BMN operators like, for example, OJ
n . The

double indices (py, qz, · · ·) represent for example the worldsheet momentum and light-

cone momentum fraction of the double trace operators T J,y
p , while (y, z, · · ·) represent

the fraction of momentum carried by the operator T J,y. These matrices have been

computed in [47, 48]. They are given by :

G = 1 + g2


0 Cn,qz Cn,z

Cpy,m 0 0

Cy,m 0 0

+ g2
2


M1

n,m 0 0

0 〈?〉 〈?〉

0 〈?〉 〈?〉

 , (2.3.26)

Γ

λ′
=


n2δn,m 0 0

0 p2

y2
δp,qδy,z 0

0 0 0

+ g2


0 Γ(1)

n,qz Γ(1)
n,z

Γ(1)
py,m 0 0

Γ(1)
y,m 0 0



+ g2
2


nmM1

n,m + 1
8π2D1

n,m 0 0

0 〈?〉 〈?〉

0 〈?〉 〈?〉

 . (2.3.27)

The explicit form of the matrix elements are summarized in Appendix C and we

denote by 〈?〉 matrix elements that have not yet been computed. Luckily, we will not

need them for our computations. Finding them is, however, an important enterprise

since via the holographic map (2.1.5) they predict yet unknown matrix elements

in string field theory, like the order g2
2 Hamiltonian matrix element of a two-string

state17.
17One should also compute, however, the mixing between double and triple trace operators to get

this result.
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Let us now apply a linear transformation U to make the inner product orthonor-

mal. We require that

UGU † = 1 (2.3.28)

and solve this equation order by order. We can expand U in a power series in g2 and

express it as

U = 1 + g2U
(1) + g2

2U
(2) +O(g3

2). (2.3.29)

As explained in the beginning of this section, we restrict our attention to hermitian

matrices. This is motivated in part by the fact that the hermitian choice uniquely

leads to exact agreement with string field theory via (2.1.5) to order g2 as we will

see below. Clearly, having a better understanding of why this choice works is very

desirable. Therefore, by assuming that U is a hermitian matrix, we need to solve

(2.3.28). Solving this equation order by order we get

U (1) = −1

2
G(1), (2.3.30)

U (2) = −1

2
G(2) +

3

8
(G(1))2. (2.3.31)

In the new orthonormal basis, Γ is transformed to

Γ̃ = UΓU †. (2.3.32)

We can determine Γ order by order in g2 by expanding

Γ̃ = Γ̃(0) + g2Γ̃
(1) + g2

2Γ̃
(2) +O(g3

2). (2.3.33)

The matrix of anomalous dimensions in the new basis is therefore

Γ̃(0) = Γ(0), (2.3.34)

Γ̃(1) = Γ(1) − 1

2
{G(1),Γ(0)}, (2.3.35)

Γ̃(2) = Γ(2) − 1

2
{G(2),Γ(0)} − 1

2
{G(1),Γ(1)}+

3

8
{(G(1))2,Γ(0)}+

1

4
G(1)Γ(0)G(1).

(2.3.36)
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Using (2.3.26) and (2.3.27) we can evaluate (2.3.35) to be

Γ̃(1) =


0 Γ̃(1)

n,qz Γ̃(1)
n,z

Γ̃(1)
py,m 0 0

Γ̃(1)
y,m 0 0

 , (2.3.37)

where

Γ̃(1)
n,py = Γ̃(1)

py,n = λ′
√

1− y√
Jy

sin2(πny)

2π2
, (2.3.38)

Γ̃(1)
n,y = Γ̃(1)

y,n = −λ′ 1√
J

sin2(πny)

2π2
. (2.3.39)

We note that after using the proposed holographic map (2.1.5) that the gauge theory

results (2.3.38), (2.3.39) match with the string field theory results (2.2.17), (2.2.18)18.

We can now make a prediction about the order g2
2 matrix elements in string field

theory by using (2.1.5). In order to do that we must calculate the matrix of anomalous

dimensions in the new basis to order g2
2. By using (2.3.26), (2.3.27) we can perform

the sums in (2.3.36) to get19

Γ̃(2) =


Γ̃(2)
n,m 0 0

0 〈?〉 〈?〉

0 〈?〉 〈?〉

 , (2.3.40)

where20

Γ̃(2)
n,m =


λ′

32π4

(
3
nm

+ 1
(n−m)2

)
if n 6= m,−m

λ′

16π2

(
1
3

+ 5
2π2n2

)
if n = m

− 15λ′

128π4n2 if n = −m

, (2.3.41)

18As explained in footnote 5, in order to compare the string field theory answer with the gauge

theory answer, one must divide the string result by
√

Jy(1− y) so that both string field theory

states and gauge theory states have unit norm.
19The formulas we need to compute the required sums are summarized in Appendix D.
20Numerically, this expression is the same as the one in [19] for the non-nearest neighbor genus 1

single-trace two-point function.
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and 〈?〉 are quantities that we cannot determine since the full matrix of two-point

functions has not been computed to order g2
2. We can nevertheless make the following

prediction
1

µ
〈n|H|m〉

∣∣∣
g22

= Γ̃(2)
n,m. (2.3.42)

The corresponding string field theory computation of order g2
2 contact term was re-

cently done in [35], and it precisely agrees with our prediction (2.3.42).

2.4 Discussion

In this chapter we have studied the gauge theory realization of string field theory

Hamiltonian matrix elements. The answer, which was already anticipated in [21], is

that these matrix elements correspond to matrix elements of the dilatation operator.

Using the corrected string field theory results in Section 2.2 we find a preferred basis

of states which yields agreement between gauge theory and string theory calculations.

Moreover, we make a prediction using a gauge theory computation for the Hamilto-

nian matrix elements of single-string states to order g2
2, which precisely agrees with

a recent string field theory computation of order g2
2 contact term in [35] 21. An out-

come of the corrected string field theory calculation in Section 2.2 is that the proposal

of [19] no longer holds. This paper gives evidence that the correct correspondence

is between matrix elements of the string Hamiltonian and the dilatation operator

in the gauge theory. This proposal suggests that the only observables that can be

holographically computed in the plane wave string theory are gauge theory two-point

functions [36, 21]. Nevertheless, operator mixing between multi-trace operators con-

tains information about higher point functions in gauge theory. In string field theory,

the Hamiltonian matrix elements compute the matrix of anomalous dimensions in

the orthonormal basis via (2.1.5), which can be read from the gauge theory two-point

functions.

The mapping between the string field theory and gauge theory Hilbert spaces is

non-unique. By comparing the calculation of the dilatation operator matrix elements

21It also agrees with the recent string bit [36, 38] Hamiltonian calculation presented in [39].
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with the corrected string field theory Hamiltonian matrix elements in Section 2.2 we

fixed the ambiguity, which picks a particular basis of states in the gauge theory to

be identified with string states. The unique transformation matrix U is hermitian.

Notice that just assuming U is hermitian is enough to find the unique gauge theory

basis. However, it would be very desirable to have a first principle explanation of why

this choice is the correct one. In [39], the authors motivate this choice by proving

that the string bit Hamiltonian simplifies in this basis, that is, it truncates at finite

order in g2. It would be desirable to understand the uniqueness of the basis choice

more directly. In this choice of basis the gauge theory computation we present in

Section 2.3 exactly agrees with the calculation [39] performed at order g2
2 using the

string bit [36, 38] Hamiltonian.

A fascinating open problem is to understand more precisely the relation between

light-cone string field theory and the string bit formalism. The advantage of the string

bit formalism is, as shown in [39], that the Hamiltonian truncates at order g2
2. This

however seems to raise a puzzle. The Hamiltonian matrix elements truncate at order

g2
2, which via the map (2.1.5) predicts that matrix elements of the dilatation operator

in some basis truncate at order g2
2 even though the Hilbert space inner product GAB

and the matrix of anomalous dimensions ΓAB have corrections to all orders in g2. It

would be very interesting to study this prediction in detail.

The light-cone string field theory and the string bit model have some complemen-

tary features. In the string bit formalism it is easier to compute the g2
2 corrections,

while the same problem is notoriously difficult in light-cone string field theory. On

the other hand, in light-cone string field theory we can systematically evaluate 1/µ

corrections, which are hard to obtain in the string bit model. Computing these correc-

tions is crucial in extending the duality beyond leading order in λ′ in the gauge theory.

In particular, the results in (2.2.14) make non-trivial predictions about λ′-corrections

to the matrix of anomalous dimensions via (2.1.5). The complete string field theory

formulas to all orders in 1/µ is recently found in [33] using the factorization theorems

[29, 30]. It would be very desirable to compute these corrections directly in gauge

theory.
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Chapter 3

Generalization to abitrary

impurities

3.1 Introduction

In the previous chapter and also in [39, 60, 21], a basis of operators inN = 4 SYM was

found such that the O(g2) matrix elements of the string Hamiltonian were reproduced

using (1.0.9) from gauge theory computations. The analysis in the previous chapter

and in [39, 60, 21] was restricted to string states with two different scalar impurities

along an R4 plane in the transverse R8 directions of the plane wave.

In this chapter we compute the O(g2) and O(g2
2) Hamiltonian matrix elements

for string states with two identical scalar impurities along R4 and reproduce them

from gauge theory computations. We find that the matrix elements of the dilata-

tion operator in the basis described in Chapter 2 exactly reproduce the string theory

answer. When considering string states with identical impurities we find that there

are new classes of Feynman diagrams that contribute to the string theory and gauge

theory computations. In this work we find a direct connection between the Feynman

diagrams that appear in the string calculation and the Feynman diagrams that con-

tribute to the gauge theory matrix elements. Roughly, the action of the prefactor

in string field theory is captured by the interaction vertex in gauge theory while the

Neumann matrices are captured by the sum over all free contractions in gauge the-
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ory. This correspondence could be an important step in deriving the duality. We then

compute the O(g2) Hamiltonian matrix elements for string states with an arbitrary

number of impurities along R4 and exactly reproduce them using gauge theory using

(1.0.9) and the basis of states in Chapter 2, after identifying gauge theory Feynman

diagrams with corresponding diagrams in string theory. These results give strong

supporting evidence of the holographic map (1.0.9) and of the basis of gauge theory

states proposed in Chapter 2 as a dual description of string states.

The rest of the chapter is organized as follows. In Section 3.2 we consider the string

states and gauge theory operators with two identical scalar impurities. We perform

computations up to O(g2
2) of the string Hamiltonian matrix elements, emphasizing

the extra diagrams that contribute beyond those that appear when considering string

states with two different scalar impurities. Using the basis change proposed in Chap-

ter 2, we exactly reproduce the string theory results from a gauge theory analysis. In

Section 3.3 we show equivalence between string theory and gauge theory computa-

tions for arbitrary string states by identifying string theory Feynman diagrams with

gauge theory Feynman diagrams. Appendix J , which is outside the main focus of the

paper, contains the O(g2) calculation of a two-impurity p-string state transition into

a p + 1-string state. We find precise agreement with the gauge theory calculation in

[52] once we change to the basis in Chapter 2.

3.2 Correspondence in two impurity singlet sector

In this section, we study string states and BMN operators with two real scalar impu-

rities along the same direction in R4. Since SO(4) is a symmetry, we can decompose

two scalar impurity states into 4⊗4 = 1⊕6⊕9 irreducible representations of SO(4),

with two repeated impurities belonging to the singlet. We will consider states with

two impurities in one direction i ∈ {1, 2, 3, 4} instead of looking at the singlet state

and later on extend the analysis to arbitrary number of impurities.

The single-string states we will consider are given by (no sum over i):

|ii, n〉 = αi†nα
i†
−n|vac〉,
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|ii, 0〉 =
1√
2
αi†0 α

i†
0 |vac〉. (3.2.1)

As shown by [64, 47], the corresponding gauge theory operators when g2 = 0 are

given respectively by

OJ
ii,n =

1√
JNJ+2

(
J∑
l=0

e2πiln/JTr
(
φiZ

lφiZ
J−l
)
− Tr

(
Z̄ZJ+1

))
,

OJ
ii,0 =

1√
2JNJ+2

(
J∑
l=0

Tr
(
φiZ

lφiZ
J−l
)
− Tr

(
Z̄ZJ+1

))
, (3.2.2)

without summing over i. The extra contribution involving Z̄ is crucial [64, 47] for the

existence of the BMN limit, where N, J → ∞, with g, g2 = J2/N and λ′ = g2N/J2

fixed and as we will see leads to interesting new effects.

The interaction term H3 couples single-string states to two-string states. These

are given by

|ii,m, y〉〉 = αi†mα
i†
−m|vac, y〉 ⊗ |vac, 1− y〉,

|ii, 0, y〉〉 =
1√
2
αi†0 α

i†
0 |vac, y〉 ⊗ |vac, 1− y〉,

|ii, y〉〉 = αi†0 |vac, y〉 ⊗ αi†0 |vac, 1− y〉, (3.2.3)

where 0 < y < 1 is the fraction of the total momentum carried by the first string in

the two-string state. These states are represented when g2 = 0 by the following gauge

theory operators

T J,y
ii,m = : Oy·J

ii,m · O(1−y)·J :,

T J,y
ii = : Oy·J

i · O(1−y)·J
i :, (3.2.4)

where y = J1/J and 1− y = J2/J and

OJ =
1√
JNJ

Tr
(
ZJ
)
,

OJ
i =

1√
NJ+1

Tr
(
φiZ

J
)
. (3.2.5)

We now proceed to describe string interactions among these states using string

field theory and reproduce the results from a gauge theory analysis.



33

3.2.1 SFT computations

•The O(g2) Computation

We now compute the matrix elements between single-string and two-string states.

It is convenient to introduce Feynman rules to evaluate these amplitudes, specially

in later sections when we consider arbitrary impurities. They are given by

(r,m) ————— (s, n) ⇐⇒ Ñ (rs)
m,n ,

(r,m) —————× (s, n) ⇐⇒

 ωm(r)

µp+
(r)α

′ +
ωn(s)

µp+
(s)α

′

 Ñ (rs)
m,−n, (3.2.6)

where r, s ∈ {1, 2, 3} label the string and m,n label the worldsheet momentum of the

oscillator. Then, the Neumann matrix Ñ (rs)
m,n introduced in (2.2.10) is the propagator

between oscillators αm(r) and αn(s). We can eliminate the prefactor P in (2.2.8) by

sequentially commuting it through the external states oscillators, which has the effect

of reversing the sign of the worldsheet momentum of the oscillator which P is acting

on. After elimination of the prefactor, we are left with contractions between external

states oscillators. The × symbol in the vertex (3.2.6) signifies the total effect of

commuting the prefactor P in (2.2.8) through both oscillators and their contraction.

Using these Feynman rules and the following symmetry relations satisfied by the

Neumann matrices

Ñ (rs)
m,n = Ñ (sr)

n,m , Ñ (rs)
m,n = Ñ

(rs)
−m,−n, (3.2.7)

we can now evaluate any Hamiltonian matrix element using combinatorics of Feynman

diagrams. In the case of two identical impurities, the amplitudes are given by

1

µ
〈ii, n|H3|jj,m, y〉〉 = −y(1− y)

2

[
δij4Ñ

(13)
m,n Ñ

(13)
m,−n

(
ωm(1)

µy
−
ωn(3)

µ

)

+2Ñ
(33)
n,−nÑ

(11)
m,m

ωm(1)

µy
− 2Ñ (33)

n,n Ñ
(11)
m,−m

ωn(3)

µ

]
,

1

µ
〈ii, n|H3|jj, y〉〉 = −y(1− y)

2

[
δij4Ñ

(13)
0,n Ñ

(23)
0,n

(
1−

ωn(3)

µ

)



34

+2Ñ
(33)
n,−nÑ

(12)
0,0 − 2Ñ (33)

n,n Ñ
(12)
0,0

ωn(3)

µ

]
. (3.2.8)

We note that there are Feynman diagrams in which the identical impurities in a

given string are connected via Neumann matrices involving only that string. Such

contributions are absent when considering strings with different impurities due to

the SO(8) invariance of the Neumann matrices. We can evaluate the expression

in the large1 µ limit, which corresponds to the perturbative gauge theory regime.

Even though Ñ (11), Ñ (12) and Ñ (33) are suppressed by 1/µ as compared to Ñ (13), the

self-contraction contributions are of the same order as the contractions between differ-

ent strings due to cancellations in the contribution of contractions between different

strings. The large µ expressions are given by

1

µ
〈ii, n|H3|jj,m, y〉〉 = δij

(
Γ̃(1)
n,my + Γ̃

(1)
−n,my

)
− 1

2
Γ

(1)
n,0y,

1

µ
〈ii, n|H3|jj, y〉〉 = δij

(
Γ̃(1)
n,y + Γ̃

(1)
−n,y

)
− 1

2
Γ(1)
n,y, (3.2.9)

where

Γ̃(1)
n,my = λ′

√
1− y√
Jy

sin2(πny)

2π2
,

Γ̃(1)
n,y = −λ′ 1√

J

sin2(πny)

2π2
. (3.2.10)

Γ
(1)
n,0y and Γ(1)

n,y are defined in Appendix C and as we shall see have a direct gauge

theory origin. The splitting of the first term in (3.2.9) into two identical contributions

is convenient when comparing with the gauge theory analysis in the next subsection.

The first contribution in (3.2.9) is twice as large as compared to the answer one

gets when considering string states with two different impurities [39, 60] . The reason

is that there are twice as many ways of contracting impurities among different strings.

This is reproduced in the gauge theory computation because the scalar impurities have

two ways of contracting when they are both the same. The last terms in (3.2.9) are

due to self-contractions and only appear when two impurities are repeated. In the

1We summarize the large µ expansion of the Neumann matrices in Appendix E.
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gauge theory computation in the next subsection these extra contractions are due

to the extra diagrams that one gets when considering the operators (3.2.2)(3.2.4).

The new contractions in string field theory correspond to gauge theory diagrams

involving Z̄ and diagrams coupling all four scalar impurities. In Section 3.3 the

connection between gauge theory diagrams and string field theory diagrams will be

made explicit.

•The O(g2
2) Computation

We now consider the O(g2
2) matrix elements between single string states, that is,

the contact term contribution. We will also reproduce this result from gauge theory

considerations.

The single-string contact term in the plane wave geometry has been recently ana-

lyzed in [35]. It is constructed from the plane wave dynamical supersymmetry genera-

tors via H ′
2 = {Q3, Q̄3}, where Q3 is the leading g2 correction to the free supercharge.

In [35] it was shown that by considering the contact term contribution for two different

impurity string states the gauge theory results in the orthonormal basis of [39, 60, 21]

could be reproduced if one truncated the intermediate states to the two impurity

sector. We will perform a similar calculation for string states with two identical im-

purities using the same truncation and reproduce these results from gauge theory in

the next subsection. Understanding more precisely why the truncation works is an

important open problem.

The intermediate two impurity states that contribute are given by

|j,m, y, 1〉〉 = αj†m
1√
2
(bd†m − ie(m)bd†−m)|vac, y〉 ⊗ |vac, 1− y〉,

|j, 0, y, 1〉〉 = αj†0 b
d†
0 |vac, y〉 ⊗ |vac, 1− y〉,

|j, 0, y, 1〉〉′ = αj†0 |vac, y〉 ⊗ bd†0 |vac, 1− y〉, (3.2.11)

and |j,m, y, 2〉〉(′) defined by changing the string on which the operators act. The b

oscillators are the fermionic oscillators. Using the expression in [32] for the super-

symmetry charge Q we can calculate its matrix elements in the large µ limit2(see

2The zero mode contribution vanishes in the large µ regime.
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Appendix F for details)

Qn,m(s) = 〈ii, n|Qȧ|j,m, y, s〉〉

'
√

1 + µαkδiju
i
abcȧδ

abcd
1234

Ym(s)√
2

[
F̃−

(3)−nÑ
(s3)
m,n + F̃−

(3)nÑ
(s3)
m,−n

]
, (3.2.12)

for s = 1, 2. Therefore the O(g2
2) Hamiltonian matrix element in the case of two

impurities in the same direction is given by

〈ii, n|H ′
2|jj,m〉 = δij

∫ 1

0

dy

y(1− y)

2∑
s=1

∞∑
l=−∞

Qn,l(s)Q
∗
m,l(s). (3.2.13)

Performing the relevant sums and integral one arrives at the final result(see Appendix

G):

〈ii, n|H ′
2|jj,m〉 = δij

1

16π2
(Bn,m +Bn,−m). (3.2.14)

The result in (3.2.14) has an extra term as compared to the calculation for two

different impurities, which is identical to the first one except for the sign of the

worldsheet momentum.

In this subsection we have calculated the Hamiltonian matrix elements using string

field theory up to O(g2
2). We now turn to the gauge theory analysis.

3.2.2 Gauge theory computations

The BMN operators with two identical scalar impurities (3.2.2)(3.2.4) are insensitive

to the sign of the worldsheet momentum since OJ
ii,n = OJ

ii,−n and T J,y
ii,m = T J,y

ii,−m, so

we will consider without loss of generality n,m ≥ 0. Moreover, the BPS double trace

operator T J,y
ii is invariant under y → 1− y, so we can restrict to 0 < y ≤ 1/2.

As explained in Section 2.1, in order to compute string interactions from gauge the-

ory we must compute the matrix of two-point functions of BMN operators OJ
ii,n, T

J,y
ii,p

and T J,y
ii . The relevant inner product metric and matrix of anomalous dimensions
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can be extracted from [47]. They are given by3

G = 1 + g2 δij


0 Cn,qz + C−n,qz 2Cn,z

Cpy,m + Cpy,−m 0 0

2Cy,m 0 0



+ g2
2 δij


M1

n,m +M1
n,−m 0 0

0 〈?〉 〈?〉

0 〈?〉 〈?〉

 , (3.2.15)

and

Γ = δij


λ′n2δnm 0 0

0 λ′ p
2

y2
δp,qδy,z 0

0 0 0



+g2


0 δij(Γ

(1)
n,qz + Γ

(1)
−n,qz)− 1

2
Γ

(1)
n,0z 2δijΓ

(1)
n,z − 1

2
Γ(1)
n,z

δij(Γ
(1)
py,m + Γ

(1)
py,−m)− 1

2
Γ

(1)
0y,m 0 0

2δijΓ
(1)
y,m − 1

2
Γ(1)
y,m 0 0



+g2
2


δij(Γ

(2)
n,m + Γ

(2)
n,−m)− 1

16π2D1
n,m 0 0

0 〈?〉 〈?〉

0 〈?〉 〈?〉

 , (3.2.16)

where 〈?〉 denotes matrix elements that have not yet been computed. We note that

whenever the worldsheet momentum index in (3.2.15), (3.2.16) vanishes, that we must

divide the matrix element by
√

2. Likewise, when both operators have vanishing

momentum, we must divide that matrix element by 2. These extra factors arise from

our normalization of the operators in (3.2.2), (3.2.4) which differ from those in [47].

In this way we get an orthonormal inner product for n,m ≥ 0.

The inner product metric can be computed in the free theory while the matrix of

anomalous dimensions comes with a power of λ′ from evaluating one loop graphs. In

3We have summarized in Appendix C the explicit expressions for the matrix elements.
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the free theory the Z̄ portion of the gauge theory operators (3.2.2), (3.2.4) does not

couple to the terms in (3.2.2), (3.2.4) without the Z̄. Moreover, the diagrams involving

only Z̄ are suppressed by a power of 1/J with respect to the leading contribution,

which only involves the part of the operator with the two impurities(terms without Z̄).

Therefore, in the computation of the mixing matrix the extra term in the operators

(3.2.2), (3.2.4) does not contribute in the BMN limit, so that at any order in g2

the inner product metric can be calculated neglecting the Z̄ term. It then follows

that there are twice as many contributions in the inner product of (3.2.2), (3.2.4) as

compared to the case of two different impurities. This is easy to understand since

there are now twice as many ways of contracting the impurities and they come with

the opposite sign of the worldsheet momentum. An analogous phenomenon occurs

when extending the analysis to arbitrary number of impurities.

The matrix of anomalous dimensions also has twice as many contributions of

the type appearing for different impurities. These gauge theory Feynman diagrams

can be identified in the string field theory calculation with contractions involving

impurities living in different strings. However, there is an extra term arising from

vertices involving Z̄ in (3.2.2)(3.2.4) and the coupling of all scalar impurities4 (see

Fig. 1).

These extra Feynman diagrams can be identified in the string field theory calcu-

lation with contractions of impurities living on the same string as can be inferred by

looking at (3.2.9).

We can now test the holographic correspondence (2.1.5). Using the formula for

the matrix of anomalous dimensions in the orthonormal basis in terms of G and Γ we

find:

Γ̃
(1)
ii;n,jj;my = δij

(
Γ̃(1)
n,my + Γ̃

(1)
−n,my

)
− 1

2
Γ

(1)
n,0y,

Γ̃
(1)
ii;n,jj;y = δij

(
Γ̃(1)
n,y + Γ̃

(1)
−n,y

)
− 1

2
Γ(1)
n,y, (3.2.17)

where terms with Γ̃ on the right hand side come from the usual Feynman diagrams

4The quartic scalar coupling denotes the effective interaction after taking into account self-energy

and gluon exchange diagrams [47].
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Z

Z

φ

Z

φ

φ

Z

φ

φ

φφ φ

Figure 3.1: The new diagrams. The thick lines represent the impurities or Z̄ while

the thin lines denote Z. The first line is for diagrams involving T J,y
ii,m while the second

is for diagrams with T J,y
ii .

present also for two different impurities and the last term comes from new diagrams

only present when two impurities are the same. By comparing with the string field

theory calculation (3.2.9) we find precise agreement.

We now proceed to computing the matrix elements of the mostly single trace

operators5 to order g2
2. Using (2.3.36) we find after some computation6

Γ̃
(2)
ii;n,jj;m = δij

(
Γ̃(2)
n,m + Γ̃

(2)
n,−m

)
+ δΓ̃

(2)
ii;n,jj;m, (3.2.18)

where

Γ̃(2)
n,m =

1

16π2
Bn,m, (3.2.19)

is the result obtained for different impurity operators [60] and δΓ̃
(2)
ii;n,jj;m are the new

5In order to compute the matrix elements of the mostly double trace operators to this order, we

would need to know the expressions for 〈?〉.
6For the detailed computation, see Appendix H.
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contributions only arising for identical impurity operators. They are given by7

δΓ̃
(2)
ii;n,jj;m = δΓ

(2)
ii;n,jj;m −

1

2
{G(1), δΓ(1)}ii;n,jj;m, (3.2.20)

since as explained above only the matrix of anomalous dimensions receives genuine

new contributions while the inner product contributions have the same form as in the

case of different impurities. From (3.2.16) we read

δΓ
(2)
ii;n,jj;m = − 1

16π2
D1
n,m,

δΓ
(1)
ii;n,jj;my = δΓ

(1)
ii;my,jj;n = −1

2
Γ

(1)
n,0y,

δΓ
(1)
ii;n,jj;y = δΓ

(1)
ii;y,jj;n = −1

2
Γ(1)
n,y. (3.2.21)

After some computation one finds (see Appendix H for details)

{G(1), δΓ(1)}ii;n,jj;m = − 1

8π2
D1
n,m, (3.2.22)

giving us the simple result:

δΓ̃
(2)
ii;n,jj;m = 0. (3.2.23)

Hence, the final expression is

Γ̃
(2)
ii;n,jj;m = δij

1

16π2
(Bn,m +Bn,−m), (3.2.24)

which exactly matches the O(g2
2) contact term contribution in the string field theory

calculation (3.2.14).

We now turn to the analysis of arbitrary string states.

3.3 Generalization to arbitrary impurities

Thus far we have analyzed the correspondence for string states with two impurities.

In this section we construct a proof that shows the equivalence between the string

theory and gauge theory computations for an arbitrary number of impurities. The

7We use the notation δA for the new contributions to A due to having identical impurities.
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idea is to find a direct link between the Feynman diagrams of string theory and the

Feynman diagrams of gauge theory, so that the equality between string theory and

gauge theory for arbitrary states follows diagram by diagram. We first outline the

strategy of the proof and then give the explicit details of the string theory and gauge

theory computation.

Let’s first consider which diagrams in string theory contribute to leading order

in the 1/µ expansion, which is of O(1/µ2). These diagrams will have correspond-

ing contributions in the one loop – which is of O(λ′) – gauge theory computation.

We consider matrix elements between single-string states and two-string states with

n impurities each, that is impurity preserving8 processes. The impurities can be

distributed at will among the four directions in R4.

As explained in Section 3, in order to computeO(g2) Hamiltonian matrix elements,

we must commute the prefactor (2.2.9) of the cubic vertex (2.2.8) through all the

impurities. This gives us a sum of 2n terms with 2n oscillators each in which the

sign of the worldsheet momentum of one of the oscillators is reserved. Each term now

can be calculated using the Feynman rules (3.2.6). Each diagram is multiplied by the

frequency of the oscillator whose worldsheet momentum is reversed when commuting

through the prefactor. Now, given the SO(8) invariance of the string field theory

vertex (2.2.10), the oscillators in different directions in R4 completely decouple, so

we can concentrate on the case in which all the impurities are in one direction. The

final answer for arbitrary string states is just the product of the contribution along

each of the R4 directions.

We can now classify Feynman diagrams in terms of the number of self-contractions

(propagators) in the single-string state, that is the number of Ñ (33)’s. It is clear

that to O(1/µ2) there can be at most one self-contraction. Since we are looking at

impurity preserving processes, a self-contraction Ñ (33) always is accompanied by a

self-contraction in the two-string state of the type Ñ (rs), where r, s is either 1 or 2.

Since Ñ (33) and Ñ (rs) are of O(1/µ), we can have at most one self-contraction to

leading order in the 1/µ expansion. This simple observation greatly diminishes the

8Impurity non-preserving processes are inherently non-perturbative [19] .
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Feynman diagrams that need to be considered. We now study the two possibilities.

Let us consider first the case in which there are no self-contractions. In this case all

impurities in the single-string are contracted with impurities of the two-string state,

so the result is the product of Neumann matrices of the type Ñ (r3), (r = 1, 2), where

Ñ (r3) ' O(1). In any of the 2n terms one gets after commuting the prefactor through

the oscillators there is precisely one oscillator with reversed worldsheet momentum.

This oscillator can now contract with any oscillator in the single-string state or two-

string state depending on whether the reversed oscillator belongs to the two-string or

single-string state. For each such contraction there is a corresponding one in which

the sign of the worldsheet momentum of the two oscillators involved in the contraction

is reversed9. The combination of these two contractions we represent by the vertex

(r,m) —————× (3, l) in (3.2.6), where × signifies the action of the prefactor on

the oscillators αm(r) and αl(3). These two terms combine to yield an expression of

O(1/µ2) due to the leading cancellation of the energy difference
(
ωm(r)

µp+
(r)

− ωl(3)
µ

)
of

these two oscillators in the large µ limit. Therefore, this class of diagrams yields an

expression given by the product of n Neumann matrices of the type Ñ (r3) for r = 1

or 2 times the energy difference between one oscillator in the single-string state and

one oscillator in the two-string state.

We now consider the case with one self-contraction on the single string state. As

mentioned above, and due to the impurity conservation condition, this self-contraction

is always accompanied by a self-contraction on the two-string state. Therefore we

have a contribution of the form Ñ (33) · Ñ (rs), where r, s is 1 or 2, which is already

of order O(1/µ2). There are now two possibilities to be considered. Either any

of the oscillators involved in the self-contraction have their worldsheet momentum

reversed due to action of the prefactor or they don’t. If they do not, then there is a

contraction connecting the single-string state with the two-string state involving the

oscillator with the worldsheet momentum reversed. Just as in the previous case of no

self-contractions, such diagram always comes accompanied with another one in which

the sign of the worldsheet momentum is reversed on both oscillators involved in the

9This appears from the term one gets after commuting the prefactor through the other oscillator.
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contraction, yielding the vertex (r,m) —————× (3, l) for r = 1 or 2. Therefore, in

this case, the diagram is proportional to
(
ωm(r)

µp+
(r)

− ωl(3)
µ

)
· Ñ (33) · Ñ (rs) ' O(1/µ4), so

it does not contribute to the leading order result. Therefore, in the case of one self-

contraction the only possibility left is the case in which the self-contractions involve

one oscillator which has the worldsheet momentum reversed due to the prefactor, so

that only diagrams with the vertex (3,m) —————× (3, l) or (r,m) —————× (s, l)

for r, s = 1 or 2 contribute to the leading order result.

From now on, let us focus on a particular Feynman diagram and show agreement

between the string field theory and gauge theory computation. The string states with

n impurities that we need to consider are given by10

|(di, ni)〉 = inδ∑
i
ni,0

∏
i

αdi
ni

†|vac〉,

|(ei, pi); I1, I2; y〉〉 = inδ∑
j∈I1

pj ,0
δ∑

k∈I2
pk,0

∏
j∈I1

αej
pj

†|vac, y〉 ⊗
∏
k∈I2

αek
pk

†|vac, 1− y〉,

(3.3.25)

where the δ-functions impose the familiar level matching condition. The correspond-

ing level-matched gauge theory operators are given by11

OJ
(di,ni)

=
1√

JNJ+n

∑
0≤l1,···,ln≤J

Tr

(
Z . . . Z

φd1√
J
Z . . . Z

φd2√
J
Z . . . Z

φdn√
J
Z . . . Z

)
n∏
i=1

tlii

+terms involving Z̄ with
n∑
i=1

ni = 0,

T J,y
(ei,pi);I1,I2

= : Oy·J
(ej ,pj)j∈I1

· O(1−y)·J
(ek,pk)k∈I2

: with
∑
j∈I1

pj =
∑
k∈I2

pk = 0, (3.3.26)

The labels di, ei ∈ {1, 2, 3, 4} denote the direction along R4 of a string oscillator and

the corresponding gauge theory impurity, and ni, pi ∈ Z are their worldsheet momenta

where ti = exp(2πini/J), and sj = exp(2πipj/J1) for j ∈ I1 and sk = exp(2πipk/J2)

10The arbitrary phase of the state is determined by comparison with gauge theory.
11Here are using a simplified notation for the operators, their precise description is given in

Appendix A and B.
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for k ∈ I2. Also we explicitly assign a factor of 1/
√
J to each impurity which aids in

keeping track of factors of J during the computation. I1 and I2 is a partition of the

index set {1, · · · , n}, which describes a particular way of distributing the n impurities

among string/trace 1 and 2, respectively.

Let us explain the gauge theory computation of the two-point function of single-

trace and double-trace BMN operators defined above and exhibit analogies with the

string theory computation. At one loop order, that is to O(λ′), we can have at most

a quartic interaction12 vertex, coupling four fields, with two of them contracted with

the in-operator and the other two with the out-operator. There are three kinds of

interaction vertices depending on how far the two fields in the same operator are

separated:

Z

nearest neighbor semi-nearest neighbor non-nearest neighbor

Figure 3.2: The three classes of interaction vertices.

• The nearest neighbor interaction13 vertex, where two fields on each operator coupled

by the interaction sit next to each other, involves one impurity in the in-operator,

and the same impurity and Z in the out-operator. This interaction can occur at O(J)

sites along the smaller trace operator and we have to sum over the position of the

interaction in the trace.

• The semi-nearest neighbor interaction vertex has two fields on one side sitting next

to each other but the two fields on the other side are separated by O(J) sites. The

vertex can be inserted only at a particular place along the trace and so we do not

sum over the position of the vertex.

12As shown in [65, 19, 47] the other possible interactions cancel among themselves due to super-

symmetry.
13This terminology was first introduced in [19].
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• The non-nearest neighbor interaction vertex has the two fields on each side of the

interaction point separated by O(J) sites. In this vertex, two impurities or Z̄ are

involved in the two operators and this is possible only when we have two identical

impurities in each operator. This interaction can also occur at a specific location in

the trace, so we do not sum over the position of the vertex.

The contribution of each interaction vertex is given as

Inearest
ni,pi

(li) =
1√
JJ1

g2N

8π2
(1− ti)(1− s̄i)(tis̄i)

li for i ∈ I1,

or
1√
JJ2

g2N

8π2
(1− ti)(1− s̄i)t

J1
i (tis̄i)

li for i ∈ I2, (3.3.27)

Isemi−nearest
ni,pi

= − 1√
JJ1

g2N

8π2
[(1− ti) + (1− s̄i)](1− tJ1

i ) for i ∈ I1,

or
1√
JJ2

g2N

8π2
[(1− ti) + (1− s̄i)](1− t−J2

i ) for i ∈ I2, (3.3.28)

Inon−nearest
ni,nj ,pi,pj

= − 1√
JJJ1J1

g2N

8π2
(1− tJ1

i )(1− tJ1
j ) for i, j ∈ I1,

or

− 1√
JJJ2J2

g2N

8π2
(1− tJ1

i )(1− tJ1
j ) for i, j ∈ I2,

or
1√

JJJ1J2

g2N

8π2
(1− tJ1

i )(1− tJ1
j ) for i ∈ I1, j ∈ I2,(3.3.29)

where li in Inearest
ni,pi

(li) denotes the position of the nearest neighbor interaction vertex

to be summed over. Here each factor of 1/
√
J or 1/

√
Jr (r = 1, 2) comes from each

impurity participating in the interaction. The rest of impurities in the in-operator

are freely contracted with the remaining impurities in the out-operator and each free

contraction contributes

1√
JJ1

(tis̄i)
li for i ∈ I1 or

1√
JJ2

tJ1
i (tis̄i)

l1 for i ∈ I2. (3.3.30)

Now we have to multiply all the different contributions, coming from the interaction

vertex and the free contractions and sum over all possible positions of the impurities.
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However, the whole summation is simply factorized in the large J limit into sums

over each contribution since each contribution is independent of the positions of the

rest of impurities:

Figure 3.3: The factorization property of gauge theory amplitudes.

The computation of each contribution then essentially reduces to the one or two-

impurity cases. This factorization property, which as we have seen earlier has an

analog in the string field theory computation, will turn out to be useful in comparing

the gauge theory and string theory expressions for Feynman diagrams. As we will

see, the effect of the prefactor interaction (r,m) —————× (s, l) in string field

theory is essentially captured by the interaction vertex in gauge theory while the sum

over free contractions in gauge theory capture the Neumann matrices.

Now, let us start to compute the string field theory amplitudes and compare

them with the gauge theory results. As discussed earlier, there are two cases to be

considered.

1) Case 1: Diagrams without self-contraction

First, let us consider a particular way of contracting the oscillators without self-

contractions. In this case, without loss of generality, we can assume that di = ei and

take the di-th oscillator to contract with ei-th oscillator for all i ∈ {1, · · · , n}. More

specifically, the j-th oscillator in string 3 contracts with the j-th oscillator in string

1 for j ∈ I1 and the k-th oscillator in string 3 contracts with the k-th oscillator in

string 2 for k ∈ I2. On the string field theory side, using the Feynman rules in (3.2.6)

we can compute the matrix elements between these states as in the previous section:

1

µ
〈(di, ni)|H3|(di, pi); I1, I2; y〉〉
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= −(−1)n
y(1− y)

2

∑
l∈I1

(ωpl(1)

µy
−
ωnl(3)

µ

)
Ñ

(13)
pl,−nl

∏
j∈I1−{l}

Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk



+
∑
l∈I2

( ωpl(2)

µ(1− y)
−
ωnl(3)

µ

)
Ñ

(23)
pl,−nl

∏
j∈I1

Ñ (13)
pj ,nj

∏
k∈I2−{l}

Ñ (23)
pk,nk

 . (3.3.31)

Now let us explain how to match each term above with specific Feynman diagrams

in gauge theory.

• l ∈ I1

1

1

2

2

3

3
1 1

2

2

3

3

4

3
3

4
3

3
4

4

SFT diagrams Gauge theory diagrams

Figure 3.4: Diagrams without self-contractions, l ∈ I1. The numbers represent the

direction of the SFT oscillators and the corresponding gauge theory impurities.

For each l ∈ I1, the particular term

(−1)n
y(1− y)

2

(
ωnl(3)

µ
−
ωpl(1)

µy

)
Ñ

(13)
pl,−nl

∏
j∈I1−{l}

Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk

, (3.3.32)

arises when the l-th oscillator in string 1 and string 3 go through the prefactor and

contract while the rest of the oscillators get contracted among themselves. The pair

of l-th oscillators produce

1

2

(
ωnl(3)

µ
−
ωpl(1)

µy

)
Ñ

(13)
pl,−nl

' 1

4µ2

(
nl −

pl
y

)2

Ñ (13)
pl,nl

, (3.3.33)

where we have used the large µ relation

Ñ
(r3)
p,−n '

n− p
y

n+ p
y

Ñ (r3)
p,n r = 1 or 2. (3.3.34)
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The other pairs of oscillators bring down one Neumann coefficient Ñ (13)
pj ,nj

or Ñ (23)
pk,nk

.

Therefore the contribution to the Hamiltonian matrix element due to this diagram

is14

1

µ
〈(di, ni)|H3|(di, pi); I1, I2; y〉〉

∣∣∣
l

' (−1)n
1

4µ2

√
y(1− y)

J

(
nl −

pl
y

)2

Ñ (13)
pl,nl

∏
j∈I1−{l}

Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk

. (3.3.35)

We claim that this particular term corresponds to the interaction Feynman dia-

grams where two φl’s are involved in the interaction vertex and the rest of the im-

purities are freely contracted. The contributions come from two classes of diagrams.

The nearest neighbor diagrams give

Γ
(1)
{ni},{pi;I1,I2}y

∣∣∣nearest

l
=

√
y(1− y)

J
×
[
g2N

8π2
(1− tl)(1− s̄l)

1√
JJ1

J1−1∑
a=0

(tls̄l)
a
]

×
∏

j∈I1−{l}

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a
∏
k∈I2

1√
JJ2

J2−1∑
a=0

tJ1
k (tks̄k)

a,

(3.3.36)

whereas the semi-nearest neighbor diagrams contribute

Γ
(1)
{ni},{pi;I1,I2}y

∣∣∣semi−nearest

l
=

√
y(1− y)

J
×
[
− 1√

JJ1

g2N

8π2
[(1− tl) + (1− s̄l)](1− tJ1

l )
]

×
∏

j∈I1−{l}

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a
∏
k∈I2

1√
JJ2

J2−1∑
a=0

tJ1
k (tks̄k)

a,

(3.3.37)

where the phases are defined as ti = exp(2πini/J), and sj = exp(2πipj/J1) for j ∈ I1

and sk = exp(2πipk/J2) for k ∈ I2. The subscript l means that only Feynman

14After going to the unit norm basis.



49

diagrams with φl’s involved in the interaction vertex are included. The first factor in

(3.3.36) and (3.3.48) comes from the interaction vertices involving φl and the rest of

the expression comes from free contraction of the other impurities. We can compute

each factor and express it in terms of purely string field theory quantities and show

that the interaction essentially captures the energy difference factor in the string

theory computation while the free contractions yield the Neumann matrices. For

j ∈ I1 and k ∈ I2, the free contraction contribution is

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a ' (−1)nj+pj+1eiπnjyÑ (13)

pj ,nj
,

1√
JJ2

J2−1∑
a=0

tJ1
k (tks̄k)

a ' (−1)nk+1eiπnkyÑ (23)
pk,nk

, (3.3.38)

while the interaction vertex contribution is

1√
JJ1

g2N

8π2
(1− tl)(1− s̄l)

J1−1∑
a=0

(tls̄l)
a ' (−1)nl+pl+1eiπnly × λ′

2

(
nlpl
y

)
Ñ (13)
pl,nl

,

− 1√
JJ1

g2N

8π2
[(1− tl) + (1− s̄l)](1− tJ1

l ) ' (−1)nl+pl+1eiπnly × λ′

2

(
nl −

pl
y

)2

Ñ (13)
pl,nl

.

(3.3.39)

Altogether, we obtain

Γ
(1)
{ni},{pi;I1,I2}y

∣∣∣
l

' (−1)n
λ′

2

√
y(1− y)

J

(nl − pl
y

)2

+ nl
pl
y

 Ñ (13)
pl,nl

∏
j∈I1−{l}

Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk

.

(3.3.40)

Notice that all the phase factors except (−1)n disappear upon imposing the level-

matching conditions. In order to compare with the string theory result, we must

evaluate these expressions in the string field theory basis (2.3.36). In order to compute

Γ̃(1)|l = Γ(1)|l −
1

2
{G(1),Γ(0)|l} (3.3.41)
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we also need to compute G(1) and Γ(0)|l. They are given by15

G
(1)
{ni},{pi;I1,I2}y =

√
y(1− y)

J

∏
j∈I1

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a
∏
k∈I2

1√
JJ2

J2−1∑
a=0

tJ1
k (tks̄k)

a

' (−1)n

√
y(1− y)

J

∏
j∈I1

Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk

,

Γ
(0)
{ni},{mi}|l =

λ′

2
n2
l

∏
i

δni,mi
,

Γ
(0)
{pi;I1,I2}y,{qi;I1,I2}z|l =

λ′

2

(
pl
y

)2

δy,z
∏
i

δpi,qi . (3.3.42)

Hence,

Γ̃
(1)
{ni},{pi;I1,I2}y

∣∣∣
l
' (−1)n

λ′

4

√
y(1− y)

J

(
nl −

pl
y

)2

Ñ (13)
pl,nl

∏
j∈I1−{l}

Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk

.

(3.3.43)

which precisely reproduces the string field theory result (3.3.35).

• l ∈ I2

1

1

2

2

3

1 1

2

2

3

4

3
3

4
3

3
4

4

SFT diagrams Gauge theory diagrams

3 3

Figure 3.5: Diagrams without self-contractions, l ∈ I2.

Now we consider the other type of contraction in the string field theory compu-

tation, where the prefactor acts on the l-th oscillator in string 2 and string 3. The

15Here we use the large µ relation (3.3.38) to rewrite G(1) in terms of string field theory quantities.
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expression for this diagram is

(−1)n
y(1− y)

2

(
ωnl(3)

µ
−

ωpl(2)

µ(1− y)

)
Ñ

(23)
pl,−nl

∏
j∈I1

Ñ (13)
pj ,nj

∏
k∈I2−{l}

Ñ (23)
pk,nk

. (3.3.44)

As before, it is convenient to express the contribution from the prefactor as

1

2

(
ωnl(3)

µ
−

ωpl(2)

µ(1− y)

)
Ñ

(23)
pl,−nl

' 1

4µ2

(
nl −

pl
1− y

)2

Ñ (23)
pl,nl

, (3.3.45)

where we have used the large µ relation (3.3.34). Therefore, the contribution of this

diagram to the Hamiltonian matrix element of unit normalized states is

1

µ
〈(di, ni)|H3|(di, pi); I1, I2; y〉〉

∣∣∣
l

' (−1)n
1

4µ2

√
y(1− y)

J

(
nl −

pl
1− y

)2

Ñ (23)
pl,nl

∏
j∈I1

Ñ (13)
pj ,nj

∏
k∈I2−{l}

Ñ (23)
pk,nk

.

(3.3.46)

The corresponding gauge theory diagrams are again classified into two classes.

The nearest neighbor diagrams yields

Γ
(1)
{ni},{pi;I1,I2}y

∣∣∣nearest

l
=

√
y(1− y)

J
×
[
g2N

8π2
(1− tl)(1− s̄l)

1√
JJ2

J2−1∑
b=0

tJ1
l (tls̄l)

b
]

×
∏
j∈I1

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a

∏
k∈I2−{l}

1√
JJ2

J2−1∑
b=0

tJ1
k (tks̄k)

b,

(3.3.47)

whereas the semi-nearest neighbor diagrams contribute

Γ
(1)
{ni},{pi;I1,I2}y

∣∣∣semi−nearest

l
=

√
y(1− y)

J
×
[

1√
JJ2

g2N

8π2
[(1− tl) + (1− s̄l)](1− tJ1

l )
]

×
∏
j∈I1

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a

∏
k∈I2−{l}

1√
JJ2

J2−1∑
b=0

tJ1
k (tks̄k)

b.
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(3.3.48)

We can also express the various contributions in terms of string field theory quantities.

The interaction vertex contribution is given by

g2N

8π2
(1− tl)(1− s̄l)

1√
JJ2

J2−1∑
b=0

tJ1
l (tls̄l)

b ' (−1)nl+1eiπnly × λ′

2

(
nlpl
1− y

)
Ñ (23)
pl,nl

,

1√
JJ2

g2N

8π2
[(1− tl) + (1− s̄l)](1− tJ1

l ) ' (−1)nl+1eiπnly × λ′

2

(
nl −

pl
1− y

)2

Ñ (23)
pl,nl

,

(3.3.49)

whereas the free contraction (3.3.38) yields the product of Neumann matrix after

imposing the level matching constraint.

In order to compute the matrix of anomalous dimensions in the string field theory

basis we need also G(1) and Γ(0)
∣∣∣
l
. It is easy to show that these quantities are the

same as in (3.3.42) except for the last formula which can be correctly obtained by

replacing y → 1− y. Therefore, using (3.3.41), we obtain

Γ̃
(1)
{ni},{pi;I1,I2}y

∣∣∣
l
' (−1)n

λ′

4

√
y(1− y)

J

(
nl −

pl
1− y

)2

Ñ (23)
pl,nl

∏
j∈I1

Ñ (13)
pj ,nj

∏
k∈I2−{l}

Ñ (23)
pk,nk

(3.3.50)

and again we find agreement with the string theory result (3.3.46).

2) Terms with self-contractions

As explained in the beginning of this section, to leading order in the 1/µ expansion

we can have at most one self-contraction in string 3 and the prefactor has to go through

any of the oscillators involved in the self-contraction.

Without loss of generality, we can assume that d1 = d2, e1 = e2, di = ei for

i ∈ {3, · · · , n} and we will consider contractions between d1−d2, e1−e2, and di−ei for

i ∈ {3, · · · , n}. There are three cases depending on how the 1st and the 2nd impurities

are distributed on the two-string state and the double-trace operator: 1, 2 ∈ I1,

1, 2 ∈ I2 and 1 ∈ I1, 2 ∈ I2.

• 1, 2 ∈ I1
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Figure 3.6: Diagrams with self-contractions, 1, 2 ∈ I1.

The string theory computation of this particular Feynman diagram is

1

µ
〈(di, ni)|H3|(ei, pi); I1, I2; y〉〉

= −(−1)n
y(1− y)

2

[(
ωp1(1)+ωp2(1)

µy

)
Ñ (33)
n1,n2

Ñ
(11)
p1,−p2 −

(
ωn1(3)+ωn2(3)

µ

)
Ñ

(33)
n1,−n2

Ñ (11)
p1,p2

]

×
∏

j∈I1−{1,2}
Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk

. (3.3.51)

The first line in (3.3.51) is due to the self-contractions while the rest is due to the

contraction between oscillators in the single string state with the two-string state.

The self-contraction contribution is to the leading order in 1/µ:

−1

2

[(
ωp1(1) + ωp2(1)

µy

)
Ñ (33)
n1,n2

Ñ
(11)
p1,−p2 −

(
ωn1(3) + ωn2(3)

µ

)
Ñ

(33)
n1,−n2

Ñ (11)
p1,p2

]

' −2Ñ (33)
n1,n2

Ñ (11)
p1,p2

. (3.3.52)

Therefore, the matrix element of unit normalized states is given by

1

µ
〈(di, ni)|H3|(ei, pi); I1, I2; y〉〉

∣∣∣
1−2;1−2

' −2(−1)n

√
y(1− y)

J
Ñ (33)
n1,n2

Ñ (11)
p1,p2

∏
j∈I1−{1,2}

Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk

. (3.3.53)
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We now show that the corresponding gauge theory diagrams are those with an

interaction vertex involving φd1 , φd2 or Z̄ in OJ
(di,ni)

and φe1 , φe2 or Z̄ in T J,y
(ei,pi);I1,I2

.

In this case, only non-nearest interaction diagrams contribute and the result is

Γ
(1)
{ni},{pi;I1,I2}y

∣∣∣non−nearest

1−2;1−2
=

√
y(1− y)

J
×
[
− 1√

JJJ1J1

g2N

8π2
(1− tJ1

1 )(1− tJ1
2 )
]

×
∏

j∈I1−{1,2}

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a
∏
k∈I2

1√
JJ2

J2−1∑
b=0

tJ1
k (tks̄k)

b.

(3.3.54)

The interaction contribution reduces in the BMN limit to

− 1√
JJJ1J1

g2N

8π2
(1− tJ1

1 )(1− tJ1
2 ) = eπi(n1+n2)yλ′

sin(πn1y) sin(πn2y)

2π2y

' −2(−1)n1+n2+p1+p2eπi(n1+n2)yÑ (33)
n1,n2

Ñ (11)
p1,p2

,

(3.3.55)

while the rest can be rewritten in string field theory language using (3.3.38). Again

the various phase factors disappear after imposing the level matching condition on

each trace.

In order to compare with string field theory we must go to the string field theory

basis. However, the particular class of Feynman diagrams we are considering, which

are those with an interaction vertex involving φd1 , φd2 or Z̄ in OJ
(di,ni)

and φe1 , φe2 or

Z̄ in T J,y
(ei,pi);I1,I2

do not contribute to Γ(0)
∣∣∣
l
. Therefore, in this case (3.3.41) yields

Γ̃
(1)
{ni},{pi;I1,I2}y

∣∣∣non−nearest

1−2;1−2
' −2(−1)n

√
y(1− y)

J
Ñ (33)
n1,n2

Ñ (11)
p1,p2

∏
j∈I1−{1,2}

Ñ (13)
pj ,nj

∏
k∈I2

Ñ (23)
pk,nk

,

(3.3.56)

which agrees with the SFT result (3.3.51).

• 1, 2 ∈ I2

The string theory computation of this particular Feynman diagram is similar to
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Figure 3.7: Diagrams with self-contractions, 1, 2 ∈ I2 .

the previous one:

1

µ
〈(di, ni)|H3|(ei, pi); I1, I2; y〉〉

= −(−1)n
y(1− y)

2

[(
ωp1(2)+ωp2(2)

µ(1− y)

)
Ñ (33)
n1,n2

Ñ
(22)
p1,−p2 −

(
ωn1(3)+ωn2(3)

µ

)
Ñ

(33)
n1,−n2

Ñ (22)
p1,p2

]

×
∏
j∈I1

Ñ (13)
pj ,nj

∏
k∈I2−{1,2}

Ñ (23)
pk,nk

. (3.3.57)

The self-contraction contribution is to the leading order in 1/µ:

−1

2

[(
ωp1(2) + ωp2(2)

µ(1− y)

)
Ñ (33)
n1,n2

Ñ
(22)
p1,−p2 −

(
ωn1(3) + ωn2(3)

µ

)
Ñ

(33)
n1,−n2

Ñ (22)
p1,p2

]

' −2Ñ (33)
n1,n2

Ñ (22)
p1,p2

. (3.3.58)

Therefore, the matrix element of unit normalized states is given by

1

µ
〈(di, ni)|H3|(ei, pi); I1, I2; y〉〉

∣∣∣
1−2;1−2

' −2(−1)n

√
y(1− y)

J
Ñ (33)
n1,n2

Ñ (22)
p1,p2

∏
j∈I1

Ñ (13)
pj ,nj

∏
k∈I2−{1,2}

Ñ (23)
pk,nk

. (3.3.59)

We now show that the corresponding gauge theory diagrams are those with an inter-

action vertex involving φd1 , φd2 or Z̄ in OJ
(di,ni)

and φe1 , φe2 or Z̄ in T J,y
(ei,pi);I1,I2

. In this
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case, only non-nearest interaction diagrams contribute and the result is

Γ
(1)
{ni},{pi;I1,I2}y

∣∣∣non−nearest

1−2;1−2
=

√
y(1− y)

J
×
[
− 1√

JJJ2J2

g2N

8π2
(1− tJ1

1 )(1− tJ1
2 )
]

×
∏
j∈I1

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a

∏
k∈I2−{1,2}

1√
JJ2

J2−1∑
b=0

tJ1
k (tks̄k)

b.

(3.3.60)

The interaction contribution reduces in the BMN limit to

− 1√
JJJ2J2

g2N

8π2
(1− tJ1

1 )(1− tJ1
2 ) = eπi(n1+n2)yλ′

sin(πn1y) sin(πn2y)

2π2(1− y)

' −2(−1)n1+n2eπi(n1+n2)yÑ (33)
n1,n2

Ñ (22)
p1,p2

,

(3.3.61)

while the rest can be rewritten in string field theory language using (3.3.38). Again

the various phase factors disappear after imposing the level matching condition on

each trace.

In order to compare with string field theory we must go to the string field theory

basis. However, the particular class of Feynman diagrams we are considering, which

are those with an interaction vertex involving φd1 , φd2 or Z̄ in OJ
(di,ni)

and φe1 , φe2 or

Z̄ in T J,y
(ei,pi);I1,I2

, do not contribute to Γ(0)
∣∣∣
l
. Therefore, in this case (3.3.41) yields

Γ̃
(1)
{ni},{pi;I1,I2}y

∣∣∣non−nearest

1−2;1−2
' −2(−1)n

√
y(1− y)

J
Ñ (33)
n1,n2

Ñ (22)
p1,p2

∏
j∈I1

Ñ (13)
pj ,nj

∏
k∈I2−{1,2}

Ñ (23)
pk,nk

,

(3.3.62)

which agrees with the SFT result (3.3.57).

• 1 ∈ I1, 2 ∈ I2

The string field theory computation of this particular contraction term is

1

µ
〈(di, ni)|H3|(ei, pi); I1, I2; y〉〉
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Figure 3.8: Diagrams with self-contractions, 1 ∈ I1, 2 ∈ I2.

= −(−1)n
y(1− y)

2

[(
ωp1(1)

µy
+

ωp2(2)

µ(1− y)

)
Ñ (33)
n1,n2

Ñ
(12)
p1,−p2−

(
ωn1(3)+ωn2(3)

µ

)
Ñ

(33)
n1,−n2

Ñ (12)
p1,p2

]

×
∏

j∈I1−{1}
Ñ (13)
pj ,nj

∏
k∈I2−{2}

Ñ (23)
pk,nk

. (3.3.63)

The first factor which is the result of the self-contraction between the single and

two-string state, is to the leading order in 1/µ:

−1

2

[(
ωp1(1)

µy
+

ωp2(2)

µ(1− y)

)
Ñ (33)
n1,n2

Ñ
(12)
p1,−p2 −

(
ωn1(3) + ωn2(3)

µ

)
Ñ

(33)
n1,−n2

Ñ (12)
p1,p2

]

' −2Ñ (33)
n1,n2

Ñ (12)
p1,p2

. (3.3.64)

Therefore, the contribution of this Feynman diagram to the matrix element of unit

normalized states is given by

1

µ
〈(di, ni)|H3|(ei, pi); I1, I2; y〉〉

∣∣∣
1−2;1−2

' −2(−1)n

√
y(1− y)

J
Ñ (33)
n1,n2

Ñ (12)
p1,p2

∏
j∈I1−{1}

Ñ (13)
pj ,nj

∏
k∈I2−{2}

Ñ (23)
pk,nk

. (3.3.65)

Now let us compute the corresponding gauge theory diagrams with an interaction

vertex involving φd1 , φd2 or Z̄ in OJ
(di,ni)

and φe1 , φe2 or Z̄ in T J,y
(ei,pi);I1,I2

. The result is

Γ
(1)
{ni},{pi;I1,I2}y

∣∣∣semi−nearest

1−2;1−2
=

√
y(1− y)

J
×
[

1√
JJJ1J2

g2N

8π2
(1− tJ1

1 )(1− tJ1
2 )
]
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×
∏

j∈I1−{1}

1√
JJ1

J1−1∑
a=0

(tj s̄j)
a

∏
k∈I2−{2}

1√
JJ2

J2−1∑
b=0

tJ1
k (tks̄k)

b.

(3.3.66)

The interaction part of the diagram reduces to

1√
JJJ1J2

g2N

8π2
(1− tJ1

1 )(1− tJ1
2 ) = −eπi(n1+n2)yλ′

sin(πn1y) sin(πn2y)

2π2
√
y(1− y)

' −2(−1)n1+n2+p1eπi(n1+n2)yÑ (33)
n1,n2

Ñ (12)
p1,p2

,

(3.3.67)

while the rest of the diagram, the free contraction contribution, can be computed using

(3.3.38) making the phase disappear after imposing the level matching condition on

each trace.

Just as in the previous case, the Feynman diagrams we are considering do not

contribute to Γ(0)
∣∣∣
l
so that their contribution to the matrix of anomalous dimensions

in the string field theory basis is given by

Γ̃
(1)
{ni},{pi;I1,I2}y

∣∣∣semi−nearest

1−2;1−2
' −2(−1)n

√
y(1− y)

J
Ñ (33)
n1,n2

Ñ (12)
p1,p2

∏
j∈I1−{1}

Ñ (13)
pj ,nj

∏
k∈I2−{2}

Ñ (23)
pk,nk

,

(3.3.68)

which agrees with the string theory result (3.3.65).



59

Chapter 4

Conclusion

In this thesis, we have attempted to extend the duality between string theory in a

plane wave background and a sector of N = 4 SYM in a double scaling limit, which

is derived from the Penrose limit of AdS/CFT, to the interacting theory level. In

Chapter 2, we have proposed that the correct holographic map is simply (1.0.9). In

practice, in order to test our proposal, we need to evaluate (1.0.9) with a particular

basis of states. In the string field theory, there exists a canonical basis in the string

Fock space where states with different numbers of strings are orthogonal to all orders

in g2. In the gauge theory, a natural and computationally convenient basis is BMN

basis, the set of operators with a definite number of traces, i.e., single-trace opera-

tors, double-trace operators, and so on. The gauge theory inner product is given by

the mixing matrix of two-point function, and BMN operators mix to all orders in g2.

By orthonormalizing the gauge theory inner product, we find another basis, “string

basis,” where the holographic map (1.0.9) can be directly tested. In doing so, we

needed an assumption that the transformation matrix U from BMN basis to string

basis is hermitian in order to fix an ambiguity in orthonormalization. It is neces-

sary to understand the hermiticity of U from a first principle. We have shown that

this proposal works in the two-impurity sector at O(g2) and produces a non-trivial

prediction for O(g2
2) contact term, which is verified in [35].

Using the holographic map and the basis of gauge theory states proposed in Chap-

ter 2, we have extended our argument to states with arbitrary impurities in Chapter
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3. We have exactly reproduced all string amplitudes from gauge theory considera-

tions. The calculations have been carried up to O(g2
2) for the case of two identical

impurities and to O(g2) for arbitrary impurities. The precise agreement found here

gives strong support to the validity of the holographic map (1.0.9) and the basis of

gauge theory states in Chapter 2. The O(g2
2) computation has been performed in the

string field theory by truncating by hand the allowed intermediate states [35]. With

this truncation, we get precise agreement with the gauge theory calculation. It is

desirable to understand whether the truncation is necessary.

While considering arbitrary string states, we have found that there is a direct

correspondence between the Feynman diagrams of gauge theory and the string field

theory Feynman diagrams that contribute to a given amplitude. This diagrammatic

correspondence is specially powerful when we consider general string states, in which

new classes of Feynman diagrams appear as compared to the case with two different

impurities. In particular, we have shown which interaction vertex in gauge theory

corresponds to which string field theory vertex arising from the action of the prefactor.

Likewise, the various Neumann matrices in string theory have been derived from

purely field theoretic considerations as arising from various free contractions in gauge

theory. The diagrammatic equivalence between gauge theory one loop diagrams and

string theory diagrams shows explicitly the picture that each gauge field plays the

role of a string bit and a string of gauge fields realizes a physical string. Also, it may

be useful in extending the correspondence to higher orders in λ′. In fact, the string

side computation is already done to all orders in λ′ or equivalently in 1/µp+α′ in [33].

It would be interesting to reproduce it from gauge theory. An argument analogous

to [22] might be helpful to do so without order by order consideration.

Our proposal seems to suggest that only two-point functions of the gauge theory

are relevant in this duality. This is because, from the original AdS/CFT viewpoint,

we are probing the vicinity of a null geodesic which lies deep inside AdS5. There-

fore, the only string worldsheet configurations in AdS5, which survive in the Penrose

limit, are those that are stretched along the null geodesic without probing near the

AdS5 boundary. Relevant observables are quantum mechanical transition amplitudes
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between in and out states. Hence, it is natural to consider two-point functions of the

corresponding in and out operators in the gauge theory. Nevertheless, higher-point

functions can be deformed to two-point functions in a pinching limit, which actually

takes place in the Penrose limit. Consequently, the information about higher-point

functions is encoded in operator mixing between operators with a different number

of trace.

Eventually, it would also be very desirable to represent the degrees of freedom of

the BMN sector of N = 4 SYM as a complete theory, without any truncation. It is

shown that the conformal boundary of the plane wave geometry is a one-dimensional

null line[57]. Together with the fact that only two-point functions are relevant, holog-

raphy strongly suggests that there should be an effective quantum mechanical model

which describes the BMN sector of N = 4 SYM and at the same time captures all

the physics of string theory in the plane wave geometry1.

The universality of our proposal allows one to apply it to other dualities. For

example, we can introduce D-branes in a plane wave background [68, 69], and study

open-closed string transition or splitting/joining process of open strings. The dual

gauge theories have been studied in [70, 71, 69, 72]. Using the same holographic map

and following the same procedure to find “string basis” in dual gauge theories, the

string amplitudes can be reproduced from the gauge theories. This would be a severe

test and a strong evidence for the proposal. A work along this line is in progress [73].

Throughout this thesis, we consider only the regime of small λ′ and small g2, in

which both the string theory and the gauge theory admit perturbations. There are

other interesting regimes. If λ′ � 1 and g2 � 1, the perturbation in the gauge theory

breaks down. However, on the string theory side, we know the exact answer in λ′ due

to [33]. Therefore, this will give us non-trivial predictions for the gauge theory in the

strong λ′ region. Another important regime is when λ′ � 1, g2 � 1 with g2
2λ

′ � 1.

This is the regime that the size of giant gravitons [74] is bigger than that of strings,

and giant gravitons become essential [18]. In gauge theory, nonplanar quantum loop

corrections as well as free nonplanar diagrams are important, and both G and Γ need

1See [58, 59] for recent attempts along this line
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to be exactly treated or resumed. The exact treatment of G may be achieved along

the line of [75]. In this case, we may have to find “giant graviton basis” rather than

string basis which is presumably better suited for resummation. However, how to

resume gauge theory diagrams in this regime is not yet clear. One may speculate

that a physical three-dimensional volume of a giant graviton can be reconstructed

from proper gauge theory fields in a similar way as a string emerges from elementary

gauge fields.

So far we have limited our discussion to scalar impurities which corresponds to

one SO(4) directions among SO(4) × SO(4) transverse directions of the plane wave

background. The anomalous dimensions of BMN operators with vector impurities

DiZ have been calculated in [46, 55] to give agreement with string theory predictions.

It would be desirable to apply our analysis to vector impurities also.

Finally, finding black hole solutions in a plane wave or asymptotic plane wave

solutions would be intriguing[76, 77]. Then, the dual gauge theory description would

be a thermalization of the BMN sector. Hence, it is important to see if the truncation

to the BMN sector in the double scaling limit also arises under thermalization.

The duality between a pp-wave string theory and a certain limit of a gauge the-

ory discussed in this thesis is the first example of string/gauge duality in which we

can explore a “stringy” regime explicitly. This is just beginning of a new avenue

for studying string theory and gauge theory. Understanding obtained here may be

useful to understand holography in a flat spacetime or in a more general situation.

Eventually, we would like to address interesting problems in quantum gravity such as

black holes and Hawking radiations in this context. Hopefully, the development in

this thesis will shed new light on these subjects.
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Appendix A

BMN operators in complex scalar

notation

In the main text, we have used real scalar field notation to define BMN operators

with arbitrary combination of impurities. In this case, we have four kinds of scalar

impurities φ1, φ2, φ3, φ4 which can be inserted, and a subtlety arises when two identical

impurities collide. In this appendix, we study the same problem in the complex

scalar field formulation. In this formulation, there are also four kinds of impurities

Φ, Φ̄,Ψ, Ψ̄. First, we want to see if BMN operators with anti-holomorphic insertions

are well defined in the BMN limit. For example, let us consider Φ and Ψ̄ insertions:

OJ
ΦΨ̄,n =

1√
JNJ+2

J∑
l=0

e2πiln/JTr
(
ΦZ lΨ̄ZJ−l

)
. (A.0.1)

From the original Lagrangian of N = 4 SYM theory, it is easy to see that there is

a symmetry which maps φ4 to −φ4, thereby transforming Ψ to Ψ̄ without changing

Z and Φ. From the ten-dimensional N = 1 SYM viewpoint, it is just the reflection

along one of the internal directions. In terms of an N = 1 superfield formulation

of N = 4 SYM, it is equivalent to treating Z,Φ, Ψ̄ as chiral superfields instead of

Z,Φ,Ψ. (The original D-term potential and F-term potential should regroup to give

the same form of D-term and F-term potential in terms of Z,Φ, Ψ̄.) Therefore, the

Feynman diagram computation is identical to that for BMN operators with Φ and Ψ
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insertions, as it should be because in terms of the real scalar representation the four

impurities are equivalent as far as same impurities do not collide. Hence, we conclude

that the four complex impurities are equivalent in the dilute gas approximation.

Now let us think about the subtlety arising when two impurities collide. In the

real scalar representation, only when two same impurities collide we had to add an

extra term with Z̄ insertion. In the complex scalar representation, this extra term

is necessary only when Φ and Φ̄ collide or Ψ and Ψ̄ collide. This can be understood

from the action of R-symmetry generators on the BMN operators. (See also [64].) Let

us denote the R-symmetry generator of the rotation on φi-φj plane by Rij = −Rji.

More precisely,

Rij · φj = φi, Rij · φi = −φj. (A.0.2)

Then define

RΦZ =
1

2
(R15 +R26 + iR25 − iR16) , RΦ̄Z =

1

2
(R15 −R26 − iR25 − iR16) .

(A.0.3)

Their actions are given as

RΦZ · Z = Φ, RΦZ · Φ̄ = −Z̄, RΦZ · Z̄ = RΦZ · Φ = 0,

RΦ̄Z · Z = Φ̄, RΦ̄Z · Φ = −Z̄, RΦ̄Z · Z̄ = RΦ̄Z · Φ̄ = 0, (A.0.4)

and likewise for RΨZ and RΨ̄Z . BPS BMN operators can be obtained by acting these

generators successively on the vacuum operator Tr(ZJ). For example, if we want to

insert Φ and Ψ, we act with RΦZ and RΨZ on Tr(ZJ+2),

RΨZ ·
(
RΦZ · Tr(ZJ+2)

)
= RΨZ ·

(
J+1∑
l=0

Tr(Z lΦZJ+1−l)

)
= (J + 2)

J∑
l=0

Tr(ΦZ lΨZJ−l).

(A.0.5)

Since RΨZ · Φ = 0, we don’t have any extra term arising when RΨZ acts on Φ. It is

also the case when we insert two Φ’s because RΦZ ·Φ = 0. Now let us consider Φ and

Φ̄ insertions.

RΦ̄Z ·
(
RΦZ · Tr(ZJ+2)

)
= RΦ̄Z ·

(
J+1∑
l=0

Tr(Z lΦZJ+1−l)

)



65

= (J + 2)

(
J∑
l=0

Tr(ΦZ lΦ̄ZJ−l)− Tr(Z̄ZJ+1)

)
. (A.0.6)

The Z̄ term arises when RΦ̄Z acts on Φ, in other words, when Φ and Φ̄ “collide”.

We conclude that only when holomorphic and antiholomorphic insertions of the same

kind collide, we need to add an extra Z̄ term. From this consideration, we can also

learn that no extra term is necessary when Z̄ collides with the four impurities because

all the four generators annihilate Z̄. For example, when RΦZ acts on Tr(Z̄ZJ+1),

RΦZ · Tr(Z̄ZJ+1) =
J∑
l=0

Tr(Z̄Z lΦZJ−l). (A.0.7)

This implies that we don’t have to worry about collision of more than two impurities.

In general, we have only to take care of holomorphic and antiholomorphic impurities

of the same kind pairwise.
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Appendix B

Off-shell representation of BMN

operators

In this appendix, we carefully define “on-shell” and “off-shell” representations of

BMN operators which are introduced in the main text. (See also [19].) Here by

shell we mean the level matching condition shell, which states that the sum of all

worldsheet momentum vanishes. In the on-shell representation, we fix the position of

one scalar impurity and sum over positions of the rest of the impurities. To explain

more explicitly, let us consider the case of three impurities. In this case, we have

OJ
on =

∑
0≤l2,l3≤J

Tr (φd1Z · · ·Zφd2Z · · ·Zφd3Z · · ·Z) sl22 s
l3
3 , (B.0.1)

where di ∈ {1, 2, 3, 4} is the direction of the i-th impurity, li is the number1 of Z

in front of φdi
and si = e2πini/J is the phase assigned to φdi

. This definition gets

ambiguous when two impurities sit next to each other. Therefore, we need a rigorous

definition:

OJ
on = OJ

on,c +OJ
on,a, (B.0.2)

with

OJ
on,c =

∑
0≤a2≤a3≤J

Tr(φd1Z
a2φd2Z

a3−a2φd3Z
J−a3)sa2

2 s
a3
3 ,

1In [64], li is argued to include the number of other impurities in front of it, but the difference is

only subleading in 1/J and inconsequential throughout this paper.
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OJ
on,a =

∑
0≤a3≤a2≤J

Tr(φd1Z
a3φd3Z

a2−a3φd2Z
J−a2)sa2

2 s
a3
3 . (B.0.3)

To normalize this operator canonically, let us compute its free two-point function:

〈ŌJ
onOJ

on〉 = 〈ŌJ
on,cOJ

on,c〉+ 〈ŌJ
on,aOJ

on,a〉 = (J + 1)(J + 2)NJ+3. (B.0.4)

Here we have counted the number of pairs (a2, a3) such that 0 ≤ a2 ≤ a3 ≤ J , which

is
(
J + 2

2

)
. Hence, in the BMN limit, the correct normalization is

OJ
BMN =

1

J
√
NJ+3

OJ
on. (B.0.5)

Now let us move on to the off-shell representation. In the off-shell representation,

we do not fix the position of any scalar impurity and treat them on equal footing

by summing over all possible positions of all impurities. For our present case of 3

impurities, we define

OJ
off =

∑
0≤l1,l2,l3≤J

Tr (Z · · ·Zφd1Z · · ·Zφd2Z · · ·Zφd3Z · · ·Z) sl11 s
l2
2 s

l3
3 , (B.0.6)

where li is defined in the same way as above. Again, a rigorous definition is given by

OJ
off = OJ

off(1, 2, 3)+OJ
off(2, 3, 1)+OJ

off(3, 1, 2)+OJ
off(1, 3, 2)+OJ

off(3, 2, 1)+OJ
off(2, 1, 3),

(B.0.7)

with

OJ
off(1, 2, 3) =

∑
0≤a1≤a2≤a3≤J

Tr
(
Za1φd1Z

a2−a1φd2Z
a3−a2φd3Z

J−a3

)
sa1
1 s

a2
2 s

a3
3 ,

OJ
off(2, 3, 1) =

∑
0≤a2≤a3≤a1≤J

Tr
(
Za2φd2Z

a3−a2φd3Z
a1−a3φd1Z

J−a1

)
sa1
1 s

a2
2 s

a3
3 ,

...
...

... , (B.0.8)

where the other operators are defined likewise. Now the claim is that OJ
off is non-

vanishing if and only if n1 + n2 + n3 = 0:

OJ
off 6= 0 ⇐⇒ n1 + n2 + n3 = 0. (B.0.9)
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Note that this condition is exactly the level-matching condition in string field theory.

Furthermore, if this condition holds, we have

OJ
off(1, 2, 3) +OJ

off(2, 3, 1) +OJ
off(3, 1, 2) = JOJ

on,c,

OJ
off(1, 3, 2) +OJ

off(3, 2, 1) +OJ
off(2, 1, 3) = JOJ

on,a, (B.0.10)

and the off-shell representation (B.0.7) is reduced to the on-shell one (B.0.2):

OJ
off = JOJ

on. (B.0.11)

This explains the terminology of “on-shell/off-shell” representation. Consequently,

the correct normalization of the off-shell operator is

OJ
BMN =

1√
J
√
J3
√
NJ+3

OJ
off . (B.0.12)

This argument can be immediately generalized to n impurities assuming all of

them are different. The on-shell operator is

OJ
on =

∑
0≤l2,···,ln≤J

Tr (φd1Z · · ·Zφd2Z · · · · · ·ZφdnZ · · ·Z)
n∏
i=2

slii , (B.0.13)

with li being the number of Z’s in front of φi as before. Or more rigorously the

definition of it is given as the sum of (n−1)! operators corresponding to permutations

after fixing the position of one impurity:

OJ
on =

∑
σ∈Perm{2,···,n}

OJ
on,σ, (B.0.14)

with

OJ
on,σ =

∑
0≤aσ(2)≤···≤aσ(n)≤J

Tr
(
φd1Z

aσ(2)φdσ(2)
Zaσ(3)−aσ(2)φdσ(3)

· · ·φdσ(n)
ZJ−aσ(n)

) n∏
i=2

sai
i .

(B.0.15)

Each OJ,n
on,σ is composed of

(
J + n− 1
n− 1

)
' Jn−1

(n− 1)!
terms, where the combinatoric

number comes from the number of (n−1)-tuple (a2, a3, · · · , an) satisfying 0 ≤ aσ(2) ≤

· · · ≤ aσ(n) ≤ J . Hence, the normalization is

OJ
BMN =

1√
Jn−1

√
NJ+n

OJ
on. (B.0.16)
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Similarly, the off-shell operator with n impurities is

OJ
off =

∑
0≤l1,···,ln≤J

Tr (Z · · ·Zφd1Z · · ·Zφd2Z · · · · · ·ZφdnZ · · ·Z)
n∏
i=1

slii , (B.0.17)

with a rigorous definition given by a sum over n! terms. As in 3-impurity case, we

have

OJ
off = JOJ

on, (B.0.18)

if and only if the level-matching (on-shell) condition holds for the off-shell operator.

Hence the normalization for the off-shell operator is

OJ
BMN =

1√
J
√
Jn
√
NJ+n

OJ
off . (B.0.19)

Here we can think of each impurity as carrying a normalization factor 1/
√
J , since

we sum over J possible positions for each impurity. The leftover factor 1/
√
J is the

original normalization of the vacuum operator and it originates in the cyclic property

of Tr.

So far, we have defined on-shell and off-shell operators assuming that all impurities

are distinct. However, we have to deal with same impurities eventually since there

are only 4 directions. When two impurities, say φd1 and φd2 , are the same, we have to

insert −Z̄ when they collide as discussed in Appendix A. Then the correct definition

is in the off-shell representation,

OJ
off =

∑
0≤l1,l2,l3,···,ln≤J

Tr (Z · · ·Zφd1Z · · ·Zφd2Z · · ·Zφd3Z · · · · · ·ZφdnZ · · ·Z)
n∏
i=1

slii

−
∑

0≤l(1,2),l3,···,ln≤J+1

Tr
(
Z · · ·ZZ̄Z · · ·Zφd3Z · · · · · ·ZφdnZ · · ·Z

)
(s1s2)

l(1,2)

n∏
i=3

slii ,

(B.0.20)

where l(1,2) is the number of Z’s in front of Z̄ arising when φd1 and φd2 collide. Now

we have to do this modification whenever we have a pair (i, j) such that di = dj.

However, as argued in Appendix A, we do not have to worry about collision of more
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than two impurities. The normalization is not changed since the number of Z̄ terms

is subleading in 1/J compared with the original terms because Z̄ terms arise only

when two impurities collide.

As an example, let us consider a BMN operator with 4 same impurities, i.e.,

d1 = d2 = d3 = d4. In this case the BMN operator should be modified by −Z̄ as

OJ
off =

∑
0≤l1,l2,l3,l4≤J

Tr (Z · · ·Zφd1Z · · ·Zφd2Z · · ·Zφd3Z · · ·Zφd4Z · · ·Z)
4∏
i=1

slii

−
∑

0≤l(1,2),l3,l4≤J+1

Tr
(
Z · · ·ZZ̄Z · · ·Zφd3Z · · ·Zφd4Z · · ·Z

)
(s1s2)

l(1,2)sl33 s
l4
4

−
∑

0≤l(1,3),l2,l4≤J+1

Tr
(
Z · · ·ZZ̄Z · · ·Zφd2Z · · ·Zφd4Z · · ·Z

)
(s1s3)

l(1,3)sl22 s
l4
4

...

+
∑

0≤l(1,2),l(3,4)≤J+2

Tr
(
Z · · ·ZZ̄Z · · ·ZZ̄Z · · ·Z

)
(s1s2)

l(1,2)(s3s4)
l(3,4)

... . (B.0.21)
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Appendix C

Matrix elements

The definition of various matrices appearing in G and Γ on the gauge theory calcu-

lation are given as follows.

2-impurity matrix elements (|m| 6= |n|,m 6= 0, n 6= 0, p ∈ Z, 0 < y < 1)

• Cn,py = Cpy,n =
y3/2

√
1− y√
Jπ2

sin2(πny)

(p− ny)2

Cn,y = Cy,n = − 1√
Jπ2

sin2(πny)

n2

• M1
n,n =

1

60
− 1

24π2n2
+

7

16π4n4

M1
n,−n =

1

48π2n2
+

35

128π4n4

M1
n,m =

1

12π2(n−m)2
− 1

8π4(n−m)4
+

1

4π4n2m2
+

1

8π4nm(n−m)2

• Γ(1)
n,py = Γ(1)

py,n = λ′
(
p2

y2
− pn

y
+ n2

)
Cn,py

Γ(1)
n,y = Γ(1)

y,n = λ′n2Cn,y

Γ(2)
n,m = λ′nmM1

n,m +
1

8π2
D1
n,m

• D1
n,n = D1

n,−n = λ′
(

2

3
+

5

π2n2

)
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D1
n,m = λ′

(
2

3
+

2

π2n2
+

2

π2m2

)

• Bn,n =
1

3
+

5

2π2n2

Bn,−n = − 15

8π2n2

Bn,m =
3

2π2mn
+

1

2π2(m− n)2
(C.0.1)

n-impurity matrix elements

• G
(1)
{ni},{pi;I1,I2}y = G

(1)
{pi;I1,I2}y,{ni}

= (−1)
n+
∑

k∈I2
nk

√
yn1+1

√
(1− y)n2+1

√
J

∏
j∈I1

sin(πnjy)

π(pj − njy)

∏
k∈I2

sin(πnk(1− y))

π(pk − nk(1− y))
,

• Γ
(1)
{ni},{pi;I1,I2}y = Γ

(1)
{pi;I1,I2}y,{ni}

=
λ′

2

∑
j∈I1

(nj − pj
y

)2

+ nj
pj
y

+
∑
k∈I2

(nk − pk
1− y

)2

+ nk
pk

1− y


×G(1)

{ni},{pi;I1,I2}y. (C.0.2)

where n1 = |I1|, n2 = |I2|.
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Appendix D

Useful summation formulas

When one multiplies two matrices in (2.3.36), the following formulae are useful1:

•
∑
p,y

Cn,pyCpy,m =
1

Jπ4
J
∫ 1

0
dyy3(1− y) sin2(πny) sin2(πmy)

∞∑
p=−∞

1

(p− nr)2(p−mr)2

=


1

6π2(n−m)2
+ 1

4π4n2m2 + 1
π4nm(n−m)2

− 1
4π4(n−m)4

if n 6= m

1
30
− 1

12π2n2 + 1
2π4n4 if n = m

•
∑
y

Cn,yCy,m =
1

Jπ4
J
∫ 1

0
dy

sin2(πny)

n2

sin2(πmy)

m2

=


1

4π4n2m2 if n 6= m,−m

3
8π4n4 if n = m,−m

•
∑
p,y

p

y
Cn,pyCpy,m =

1

Jπ4
J
∫ 1

0
dyy2(1− y) sin2(πny) sin2(πmy)

∞∑
p=−∞

p

(p− nr)2(p−mr)2

=


(n+m)

{
1

12π2(n−m)2
+ 1

4π4n2m2 + 1
8π4nm(n−m)2

− 1
8π4(n−m)4

}
if n 6= m

n
30
− 1

12π2n
+ 7

8π4n3 if n = m

•
∑
p,y

p2

y2
Cn,pyCpy,m =

1

Jπ4
J
∫ 1

0
dyy(1− y) sin2(πny) sin2(πmy)

∞∑
p=−∞

p2

(p− nr)2(p−mr)2

1Similar identities can also be found in the Appendix of [48].



74

=


n2+m2

12π2(n−m)2
+ n6+m6−2nm(n4+m4)+n3m3

4π4n2m2(n−m)4
if n 6= m

n2

30
+ 3

2π4n2 if n = m
.
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Appendix E

Asymptotic behavior of Neumann

matrices

In this appendix we present the asymptotic large µ behavior of all Neumann matrices

in the exponential basis. These can be obtained from (m,n 6= 0)

Ñ (rs)
m,n =

1

2
(N̄

(rs)
|m|,|n| − e(mn)N̄

(rs)
−|m|,−|n|), Ñ

(rs)
m,0 =

1√
2
N̄

(rs)
|m|,0, Ñ

(rs)
0,0 = N̄

(rs)
0,0 ,

(E.0.1)

where e(m) = sign(m) and the asymptotic behavior of Neumann matrices in the

cos/sin basis in [33]:

Ñ (11)
m,n '

(−1)m+n

4πµy

Ñ (12)
m,n '

(−1)m+1

4πµ
√
y(1− y)

Ñ (22)
m,n '

1

4πµ(1− y)

Ñ (13)
m,n '

(−1)m+n+1 sinnπy

π
√
y(n−m/y)

Ñ (23)
m,n '

(−1)n sinnπy

π
√

1− y(n−m/(1− y))
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Ñ (33)
m,n '

(−1)m+n+1 sinmπy sinnπy

πµ
. (E.0.2)

For the computation of the contact term, we also need F̃± in the exponential basis

(n 6= 0)

F̃±
n(r) =

1√
2
F±
|n|(r), F̃±

0(r) = F±
0(r). (E.0.3)

and the scalar quantity k and fermionic Neumann matrices Ȳ . Using again the results

in [33], we have

F̃+
(1)n ' (−1)n+1√µy(1− y)

F̃+
(2)n '

√
µ(1− y)y

F̃+
(3)n '

(−1)n+1ny(1− y) sinπny
√
µ

, (E.0.4)

F̃−
(1)n '

(−1)n+1n(1− y)

2
√
µy

F̃−
(2)n '

ny

2
√
µ(1− y)

F̃−
(3)n ' 2

√
µy(1− y)(−1)n+1 sin πny. (E.0.5)

1− µy(1− y)k ' 1

4πµy(1− y)
, (E.0.6)

Ȳ0 '
1√

4πµy(1− y)
, Ȳn(1) '

√
1− y

4πµ
(−1)n+1, Ȳn(2) '

√
y

4πµ
. (E.0.7)
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Appendix F

Calculation of supersymmetry

charge matrix elements

In this appendix we shall show explicitly how to reduce the supersymmetry vertex in

[32] to our simple formula (3.2.12) when we assume the external state to have two

bosonic impurities and the intermediate state to have one bosonic and one fermionic

impurity. See also [35].

The Hamiltonian and supersymmetry charge vertices in [32] are given by

|H3〉 = c
(
(1 + µαk)(Ki

+ −Ki
−)(Kj

+ +Kj
−)− µαδij

)
vij(Y )EaEbEb0|0〉,

|Q3ȧ〉 = c(1 + µαk)1/2(Ki
+ −Ki

−)siȧ(Y )EaEbEb0|0〉,

|Q̄3ȧ〉 = c(1 + µαk)1/2(Ki
+ +Ki

−)s̃iȧ(Y )EaEbEb0|0〉. (F.0.1)

Various constituents of the prefactor, Ki
±, vij siȧ = −i

√
2(ηsi1ȧ + η̄si2ȧ) and s̃iȧ =

i
√

2(η̄si1ȧ + ηsi2ȧ) are given as

Ki
+ =

3∑
r=1

∞∑
m=−∞

F̃+
m(r)α

i†
m(r),

Ki
− =

3∑
r=1

∞∑
m=−∞

F̃−
m(r)α

i†
m(r), (F.0.2)

vij = δij +
1

4!α2
tijabcdY

aY bY cY d +
1

8!α4
δijεabcdefghY

a · · ·Y h
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+
1

2!α
γijabY

aY b +
1

2!6!α3
γijabε

ab
cdefghY

c · · ·Y h,

1√
2
si1ȧ = γiaȧY

a +
1

3!5!α2
uiabcȧε

abc
defghY

d · · ·Y h,

1√
2
si2ȧ = − 1

3!α
uiabcȧY

aY bY c +
1

7!α3
γiaȧε

a
bcdefghY

b · · ·Y h, (F.0.3)

where Y a reads

Y a =
√

2Y0(α(1)λ
a
(2) − α(2)λ

a
(1)) +

3∑
r=1

∞∑
m=1

Ym(r)b
a†
m(r), (F.0.4)

with

λa(r) =

√
α(r)

2

 ba†0(r)

ba0(r)

 (r = 1, 2), λa(3) =
1√
2

 ba0(3)

ba†0(3)

 , (F.0.5)

and

Y0 = Ȳ0

 1

0

+
1

Ȳ0

 0

1

 , (F.0.6)

Yn(1) = Ȳn(1)

 1

0

 , Yn(2) = Ȳn(2)

 1

0

 . (F.0.7)

Note that in the matrix representation of (F.0.5) (F.0.6) (F.0.7), the upper(left)

entries denote the components with spinor indices a = 1, · · · , 4, while the lower(right)

ones denote a = 5, · · · , 8. Also Ea, Eb and Eb0 come from the overlapping condition

of bosonic modes, fermionic non-zero modes and fermionic zero modes, respectively,

Ea = exp
(

1

2

3∑
r,s=1

∞∑
m,n=−∞

αi†(r)mÑ
(rs)
mn α

i†
(s)n

)
, (F.0.8)

Eb0 =
1

24

4∏
a=1

(
√
α(1)b

a†
(1) +

√
α(2)b

a†
(2) + ba(3))

8∏
b=5

(
√
α(1)b

b
(1) +

√
α(2)b

b
(2) + bb†(3)), (F.0.9)

and the explicit expression of Eb is not necessary in our analysis. Finally the “ground”

state |0〉 is related to the “vacuum” state with the lowest energy by

|0〉 =
8∏

a=5

ba†(1)

8∏
b=5

bb†(2)

4∏
c=1

bc†(3)|vac〉. (F.0.10)
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Now we would like to calculate the supersymmetry charge matrix elements

Qn,m(s) = 〈vac|αin(3)α
i
−n(3)α

k
m(s)

1√
2
(bdm(s) − ie(m)bd−m(s))|Qȧ〉, (F.0.11)

where we assume the external states to be two bosonic impurity states and the in-

termediate states to be states with one bosonic and one fermionic impurity. The

supersymmetry charge matrix elements under this assumption will be greatly simpli-

fied. We find the (Y )1 and (Y )7 terms in (F.0.3) vanish and the (Y )3 and (Y )5 terms

reduce to (3.2.12).

The typical matrix element of the supersymmetry charge (F.0.11) is

〈vac|αin(3)α
i
−n(3)α

k
m(s)

1√
2
(bdm(s) − ie(m)bd−m(s))K

±Y `EaEbEb0|0〉, (F.0.12)

where ` denotes the number of fermions in the expression .̌ First of all, let us con-

centrate on the zero mode b0(3) operators. Since we only have b0(3) in Eb0 and |0〉,

all the b0(3) operators should cancel out to obtain a non-vanishing contribution. The

only possibility is that ba0(3) (a = 1, · · · , 4) in Eb0 cancels those in |0〉 and we never

use bb0(3) (b = 5, · · · , 8) in Eb0. Using this fact, our typical matrix elements become

〈vac|αin(3)α
i
−n(3)α

k
m(s)

1√
2
(bdm(s) − ie(m)bd−m(s))K

±Y `EaEb0
8∏

a=5

ba†0(1,2)|vac〉, (F.0.13)

with ba0(1,2) meaning ba0(1) or ba0(2). Next, let us concentrate on the zero mode b0(1,2)

operators. In case of ` = 1, we will not have enough annihilation operators to cancel

all the leftover zero modes in |0〉. In case ` = 7, we use four of b(Y )7 to cancel the zero

modes. But the rest must all be the creation operators and now we have too many of

them. If ` = 3, exactly four operators in b(Y )3 are used to cancel the leftover in |0〉.

If ` = 5, four in b(Y )5 are used to cancel. Since Y does not have both the creation

operators and annihilation ones for the same operator, two of the Y ’s cannot cancel

each other. Therefore we have to choose four operators in Y to cancel the creation

operators in |0〉 and let the remaining Y ’s be cancelled by the b of the intermediate

state.

For the (Y )3 term, only the zero modes contribute:

∼ Ȳ0(F̃
±
(1)0Ñ

(33)
n,−n + F̃±

(3)nÑ
(13)
0,−n + F̃±

(3)−nÑ
(13)
0,n ). (F.0.14)
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For the (Y )5 term, besides the zero modes contribution, the non-zero modes also

contribute as:

∼
Ȳm(1)√

2
(F̃±

(1)mÑ
(33)
n,−n + F̃±

(3)nÑ
(13)
m,−n + F̃±

(3)−nÑ
(13)
m,n ). (F.0.15)

Using the large µ behavior of various Neumann coefficients in Appendix A, we find

that F̃−
(3)Ñ

(13) gives the leading contribution. Besides, from the symmetry of the

Neumann coefficients, we have

F̃−
(3)nÑ

(13)
0,−n + F̃−

(3)−nÑ
(13)
0,n ' 0. (F.0.16)

Therefore the only relevant matrix element of the supersymmetry charge comes from

m 6= 0.

For the analysis of the normalization of the contact term, let us be careful about

the overall factor. Since

(α(1)
√
α(2)b

a
0(2)−α(2)

√
α(1)b

a
0(1))(

√
α(1)b

a
0(1)+

√
α(2)b

a
0(2))b

a†
0(1)b

a†
0(2)|vac〉 = −√α(1)α(2)|vac〉,

(F.0.17)

for a = 5, · · · , 8, from the cancellation of the fermionic zero modes we have an extra

factor of

c0 =
(√α(1)α(2)

2Ȳ0

)4

. (F.0.18)

Taking it into account, we find that the only non-trivial contribution is

Qn,m(s) = iη
2cc0
α2

√
1 + µαkuiabcȧδ

abcd
1234

Ȳm(1)√
2

(F̃−
(3)−nÑ

(s3)
m,n + F̃−

(3)nÑ
(s3)
m,−n). (F.0.19)

To fix the overall normalization, let us compare the supersymmetry charge matrix

element with the Hamiltonian. If we restrict the external states to be purely bosonic

ones, we also have the same fermionic zero mode factor c0 in the Hamiltonian matrix

element:

|H3〉 =
cc0
α2

(1 + µαk)(Ki
+ −Ki

−)(Kj
+ +Kj

−)tij5678Ea|vac〉

=
2cc0
α2

(
−y(1− y)

2

) 3∑
r=1

∞∑
n=−∞

ωn(r)

α(r)

αi†n(r)α
i
−n(r)Ea|vac〉. (F.0.20)
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In the final step, we have used the formula derived in [31]. Comparing our final

expression with (2.2.8) whose normalization factor was determined in Chapter 2 and

[39] by comparing the string field theory result with a gauge theory computation, we

find that
2cc0
α2

= 1. (F.0.21)



82

Appendix G

Formulas for calculating the

contact term

The necessary summation and integration we need to calculate the contact term are

the following ones:

∞∑
l=−∞

Ñ
(13)
l,n Ñ

(13)
l,m =

(−1)m+n sin(n−m)πy

π(n−m)
,

∞∑
l=−∞

Ñ
(23)
l,n Ñ

(23)
l,m =

sin(n−m)π(1− y)

π(n−m)
. (G.0.1)

Also,∫ 1

0
dy(−1)m+n sin πmy sin πny

π2

{
(−1)l+n

(
sin π(m− n)y

π(m− n)
− sin π(m+ n)y

π(m+ n)

)
(1− y)

+
(

sin π(m− n)(1− y)

π(m− n)
− sin π(m+ n)(1− y)

π(m+ n)

)
y
}

=
1

4π4(m− n)2
+

1

4π4(m+ n)2
,

∫ 1

0
dy

sin2 πny

π2

{(
y − sin 2πny

2πn

)
(1− y) +

(
(1− y)− sin 2πn(1− y)

2πn

)
y
}

=
1

2π2

(
1

3
+

5

8π2n2

)
. (G.0.2)
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Appendix H

Γ̃(2) computation in singlet sector

In this appendix, we explain the details of the computation of Γ̃(2) matrix elements

for the operators with two impurities in the same direction, as discussed in Section

3. The following identity will be useful throughout the computation:

Cn,py = C−n,−py. (H.0.1)

As in (2.3.36), Γ̃(2) is given by

Γ̃(2) = Γ(2) − 1

2
{G(2),Γ(0)} − 1

2
{G(1),Γ(1)}+

3

8
{G(1)2,Γ(0)}+

1

4
G(1)Γ(0)G(1). (H.0.2)

Here we shall compute all the terms and show that Γ̃(2) reduces to (3.2.24).

Our strategy is to split each matrix element in (3.2.16) into a part proportional

to δij and a part coming from extra diagrams. More precisely, we have

Γ
(1)
iin,jjqz = δij(Γ

(1)
n,qz + Γ

(1)
−n,qz) + δΓ(1)

n,qz,

Γ
(1)
iin,jjz = δij(Γ

(1)
n,z + Γ

(1)
−n,z) + δΓ(1)

n,z,

Γ
(2)
iin,jjm = δij(Γ

(2)
n,m + Γ

(2)
n,−m) + δΓ(2)

n,m, (H.0.3)

with

δΓ(1)
n,qz = −1

2
Γ

(1)
n,0z,

δΓ(1)
n,z = −1

2
Γ(1)
n,z,
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δΓ(2)
n,m = − 1

16π2
D1
n,m. (H.0.4)

As a preliminary computation let us consider (G(1))2:

(G(1))2 = J
∫ 1

0
dy

( ∞∑
p=1

(Cn,py + Cn,−py)(Cpy,m + C−py,m) + 2Cn,0yC0y,m

)

+J
∫ 1/2

0
dy2Cn,y2Cy,m

= J
∫ 1

0
dy

∞∑
p=−∞

(
Cn,pyCpy,m + Cn,pyCpy,−m

)
+ 2J

∫ 1

0
dyCn,yCy,m

=
1

2
(M1

n,m +M1
n,−m). (H.0.5)

Here we have to be careful about the extra normalization factor 1/
√

2 for zero modes

as explained around (3.2.16). Note that originally in the first line we sum only over

positive integers the product of two terms. One of the terms is the product of two

contributions with opposite worldsheet momentum. But with the help of (H.0.1), we

can rewrite these cross terms into the summation of two terms over all the integers,

with still one of them carrying the reversed external worldsheet momentum as in the

second equation in (H.0.5). Since one of two terms is identical to the one arising for

operators with two impurities in different directions, we can perform the summation

and integration easily and add the other term by reversing the external worldsheet

momentum. This kind of mechanism happens everywhere, also in the computation

of Γ̃(2). Therefore, the naive expectation of Γ̃(2) is obtained by adding a term with

the external worldsheet momentum reversed:

Γ̃
(2)
iin,jjm = δij(Γ̃

(2)
n,m + Γ̃

(2)
n,−m) = δij

1

16π2
(Bn,m +Bn,−m). (H.0.6)

The only point we have to be careful with is whether (H.0.4) will give a non-trivial

contribution.

Let us postpone the effect of (H.0.4) and concentrate on the dominant contribution

to see whether the results have an additional contribution of reversing the worldsheet

momentum, as compared to the case of operators with two impurities in different
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directions. Now it is quite trivial to calculate terms involving Γ(0) in (H.0.2) such as

{(G(1))2,Γ(0)}, G(1)Γ(0)G(1) and {G(2),Γ(0)}. They are given by

{(G(1))2,Γ(0)} =
n2 +m2

2
(M1

n,m +M1
n,−m),

G(1)Γ(0)G(1) = J
∫ 1

0
dy

∞∑
p=0

(Cn,py + Cn,−py)
p2

y2
(Cpy,m + C−py,m)

= J
∫ 1

0
dy

∞∑
p=−∞

(Cn,py
p2

y2
Cpy,m + Cn,py

p2

y2
Cpy,−m),

{G(2),Γ(0)} = (n2 +m2)(M1
n,m +M1

n,−m). (H.0.7)

Let us turn to the term involving Γ(1) in (H.0.2), but ignoring the effect of (H.0.4).

It is given by

{G(1), (Γ(1) − δΓ(1))}

= J
∫ 1

0
dy

∞∑
p=1

(Cn,py + Cn,−py)(Γ
1
py,m + Γ1

−py,m) +
1

2
(Cn,0y + Cn,0y)(Γ

1
0y,m + Γ1

0y,m)

+J
∫ 1

0
dy

∞∑
p=1

(Γ1
n,py + Γ1

n,−py)(Cpy,m + C−py,m) +
1

2
(Γ1

n,0y + Γ1
n,0y)(C0y,m + C0y,m)

+J
∫ 1/2

0
dy(4Cn,yΓ

1
y,m + 4Γ1

n,yCy,m)

= J
∫ 1

0
dy

{ ∞∑
p=−∞

(Cn,pyΓ
1
py,m + Γ1

n,pyCpy,m) + (Cn,yΓ
1
y,m + Γ1

n,yCy,m)

}

+J
∫ 1

0
dy

{ ∞∑
p=−∞

(Cn,pyΓ
1
py,−m + Γ1

n,pyCpy,−m) + (Cn,yΓ
1
y,−m + Γ1

n,yCy,−m)

}
.(H.0.8)

Also if we ignore the effect of (H.0.4), Γ(2) also has the same additional contribution,

as seen in (H.0.3). As promised, all the results come paired with (n,m) and (n,−m),

where the first group of terms adds up to give the same result as for the case of two

different impurities.

Now let us consider the contribution of δΓ’s to Γ̃(2)

δΓ̃(2) = δΓ(2) − 1

2
{G(1), δΓ(1)}, (H.0.9)
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that we have not taken into account so far. We can compute the second term as

before:

{G(1), δΓ(1)}iin,jjm

= J
∫ 1

0
dy


∞∑
p=1

(Cn,py + Cn,−py)
(
−1

2
Γ

(1)
0y,m

)
+ Cn,0y

(
−1

2
Γ

(1)
0y,m

)
+J

∫ 1

0
dy


∞∑
p=1

(
−1

2
Γ

(1)
n,0y

)
(Cpy,m + C−py,m) +

(
−1

2
Γ

(1)
n,0y

)
C0y,m


+J

∫ 1
2

0
dy(2Cn,y)

(
−1

2
Γ(1)
y,m

)
+
(
−1

2
Γ(1)
n,y

)
(2Cy,n)

= −J
2

∫ 1

0
dy

∞∑
p=−∞

(
Cn,pyΓ

1
0y,m + Γ1

n,0yCpy,m
)
− n2 +m2

2
J
∫ 1

0
dyCn,yCy,m.(H.0.10)

Using the formula,

J
∫ 1

0
dy

∞∑
p=−∞

Cn,pyΓ
1
0y,m =

1

12π2

(
1 +

3

π2m2

)
, (H.0.11)

and the summation formula in the appendix of [60], we obtain

{G(1), δΓ(1)}iin,jjm = − 1

8π2
D1
n,m, (H.0.12)

which precisely cancels δΓ(2):

δΓ̃(2) = 0. (H.0.13)

Therefore we find that (H.0.6) is exact. In Section 3.2 and Appendix F, we saw that

this result is correctly reproduced from the contact term calculation in string field

theory.
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Appendix I

Anomalous dimension of the

singlet operators

In this appendix we shall calculate the anomalous dimension of the operator with two

impurities in the same direction, using the perturbation theory. This calculation has

essentially been done in [47] by diagonalizing the matrix of two-point functions in the

BMN basis. Here, we perform the calculation using the string field theory basis and

it serves as a consistency check of the evaluation of Γ̃(2) in the previous appendix.

In perturbation theory the eigenvalue at O(g2
2) is given by

∆(2) = J
∫ 1

0
dy

∞∑
p=0

4∑
j=1

(Γ̃
(1)
ii;n,jj;py)

2

n2 − p2/y2
+ J

∫ 1/2

0
dy

4∑
j=1

(Γ̃
(1)
ii;n,jj;y)

2

n2
+ Γ̃

(2)
ii;n,ii;n. (I.0.1)

Using the following relations

Γ̃(1)
n,py =

1

2
Γ

(1)
n,0y,

Γ̃(1)
n,y =

1

2
Γ(1)
n,y, (I.0.2)

(I.0.1) can be rewritten as

∆(2) =
J

2

∫ 1

0
dy

∞∑
p=−∞

(Γ
(1)
n,0y)

2

n2 − p2/y2
+
J

2

∫ 1

0
dy

(Γ(1)
n,y)

2

n2
+ Γ̃

(2)
ii;n,ii;n. (I.0.3)
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Now let us proceed to evaluate each term. The first term is

1

2π4

∫ 1

0
dy

1− y

y
sin4(πny)

∞∑
p=−∞

1

n2 − p2/y2
=

3

64π4n2
, (I.0.4)

and the second term is simply reduced to the integration of (Cn,y)
2, whose result can

be found in [60]:
n2

2
J
∫ 1

0
dyC2

n,y =
3

16π4n2
. (I.0.5)

Consequently, the anomalous dimension of the singlet operator is

∆(2) =
3

64π4n2
+

3

16π4n2
+

1

16π2
(Bn,n +Bn,−n) =

1

16π2

(
1

3
+

35

8π2n2

)
, (I.0.6)

which as explained in [47, 48] is the same as the operators transforming in the 6 and

9 representations of SO(4).
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Appendix J

The O(g2) coupling a p-th string

state to a p + 1-th string state

In a recent paper Gursoy [52] has analyzed the two-point function of multi-trace

BMN operators with two different impurities. The class of operators that the author

considers are

T J,y1,y2,...,yp

ij,n =: Oy1·J
n · Oy2·J · · · Oyp·J : δy1+...+yp,1. (J.0.1)

The O(g2) result for the mixing of the p-th trace with the p+ 1 trace BMN operator

is given by [52]

Gp,p+1(1)
ny1...yp;mz1...zp

= y
3/2
1 Cn,mz1/y1

∑
P

δy2,zP (2)
. . . δyp,zP (p)

δy1,zP (p)
δy1,z1+zP (i+1)

+

1

J
δn,mδy1,z1

∑
P,P ′

δyP (2),zP ′(2)
. . . δyP (p−1),zP ′(p−1)

δyP (p),zP ′(p)+zP ′(p+1)
.(J.0.2)

The contribution in the first line is due to contractions in which the two impurities

in the p-trace operator contract with the two impurities and any vacuum operator in

the p + 1-trace operator. Therefore, the quantity Cn,mz1/y1 is the mixing between a

single trace and double trace two-impurity BMN operator. The contribution in the

second line comes from Wick contractions where the operators with the impurities

just connect among themselves and the vacuum operators in the p-th trace BMN

operator contract with the vacuum operator in the p+ 1-th trace BMN operator.
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The contribution to the matrix of anomalous dimensions is given by [52]

Γp,p+1(1)
ny1...yp;mz1...zp

=

(
n2

y2
1

+
m2

z2
1

− nm

y1z1

)
Gp,p+1(1)
ny1...yp;mz1...zp

. (J.0.3)

Using the holographic proposal we can calculate these matrix elements in the or-

thonormal basis

Γ̃p,p+1(1)
ny1...yp;mz1...zp

= Γp,p+1(1)
ny1...yp;mz1...zp

− 1

2

{
Gp,p+1(1)
ny1...yp;mz1...zp

,Γp,p+1(0)
ny1...yp;mz1...zp

}

=
1

2

(
n

y1

− m

z1

)2

Gp,p+1(1)
ny1...yp;mz1...zp

. (J.0.4)

We note that, in the orthonormal basis, the second term in (J.0.2) does not contribute

due to the δ function constraints and the prefactor in (J.0.4). Therefore, the final

answer can be written as

Γ̃p,p+1(1)
ny1...yp;mz1...zp

=
1
√
y1

Γ̃n,mz1/y1 ×
∑
P

δy2,zP (2)
. . . δyp,zP (p)

δy1,zP (p)
δy1,z1+zP (i+1)

. (J.0.5)

We now perform the relevant string field theory calculation. The string states

dual to the BMN operators (J.0.1 are given by

|n, y1, y2, . . . , yp〉 = αinα
j
−n|vac, y1〉 ⊗ |vac, y2〉 ⊗ . . .⊗ |vac, yp〉 δy1+...+yp,1. (J.0.6)

It follows from the expression for the cubic Hamiltonian vertex (2.2.8) (2.2.9) that

any contraction coupling only vacua is zero. The only possible non-zero contributions

are those in which the string carrying the two impurities contracts with the string

carrying two-impurities and a vacuum string state. Therefore, the matrix elements

of the unitly normalized states are

1

µ
〈n, y1 . . . yp|H3|m, z1 . . . zp〉

=
1

µ
〈n, y1|H3|m, z1〉 ×

∑
P

δy2,zP (2)
. . . δyp,zP (p)

δy1,zP (p)
δy1,z1+zP (i+1)

=
1
√
y1

Γ̃
(1)
n,mz1/y1

×
∑
P

δy2,zP (2)
. . . δyp,zP (p)

δy1,zP (p)
δy1,z1+zP (i+1)

, (J.0.7)

which match the gauge theory computation.
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