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Abstract

Entanglement is a key resource in the emerging field of Quantum Information. The
strong correlations between systems described by an entangled state allow us to per-
form certain tasks more efficiently than it would be possible by using only classical
resources. This is why the characterization of entanglement is one of the most im-
portant problems in Quantum Information.

In this thesis, we analyze several aspects of entanglement. First, we introduce a
new family of criteria to determine if a bipartite mixed state is entangled or not. This
family consists of a sequence of tests that can be implemented efficiently, and has the
property that all entangled states can be detected by some test in the sequence.

Each test in the family can be stated as a semidefinite program, which is a class
of convex optimization problems. The duality structure of these programs allows us
to explicitly construct an entanglement witness that proves entanglement of a state,
whenever the state fails one of the tests in the sequence. The entanglement witnesses
constructed in this manner have well-defined algebraic properties that can be used to
give a characterization of the interior of the set of all possible entanglement witnesses,
as well as the set of strictly positive bihermitian forms and the set of strictly positive
maps.

We also study deterministic transformations of three-qubit pure state when only
local operations and classical communication (LOCC) are allowed. We derive strong
constraints that the operations and states involved must satisfy, and we apply these
results to characterize the set of real states that can be obtained from the GHZ state

by LOCC.
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Chapter 1

Introduction

Entanglement has been one of the most striking features of quantum mechanics since
the theory reached its maturity in the late 1920s. After developing his wave equation,
Schréedinger himself noted that the linear structure of the space of quantum states led
to a very strange behavior when a composite system was considered. He formulated
his observations (and worries) in a gedanken (thought) experiment involving a cat
in a box, that has become one of the most famous animals in science, widely known
as Schraodinger’s cat. In this experiment, a cat is confined inside a box that also
contains a closed jar filled with poison. A mechanism containing a radioactive atom
will break the jar if the atom decays, killing the cat. If the atom does not decay, the
jar remains undamaged and the cat lives. Treated quantum mechanically, the system
cat-atom is described by a coherent superposition of two states, one in which the atom
decayed and the cat is dead, and another with no decay and a living cat. In quantum
mechanics, we say that this state is entangled. Schrodinger and many scientists at the
time were puzzled by these weird states that the new theory predicted, but described
a world very different from their experiences in every day life.

In their famous paper of 1935 [19], Einstein, Podolsky and Rosen tried to use
the strange behavior of entangled states to argue that the quantum mechanical de-
scription of nature was incomplete. Their analysis led them to the conclusion that
either the wave function did not yield a complete description of a physical system, or
subsystems that were spatially separated had some kind of nonlocal connection, what

Einstein used to call a “spooky action at a distance.” Since they truly believed in the
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locality of physical laws, they concluded that the wave function did not have all the
information about the state of the system. The existence of classical “hidden” vari-
ables that completed the description and maybe brought physics back to the realm
of determinism became an appealing idea.

But in 1964, John Bell showed [4] that theories that involved classical hidden
variables and were required to be local gave predictions that were very different from
those of quantum mechanics. His proof took the form of a set of inequalities that
the outcomes of measurements had to satisfy for any local hidden variable theory,
but were violated by the predictions of quantum mechanics. This result allowed the
construction of experiments to test whether nature admitted a local classical hidden
variable model or not. The results of these experiments have confirmed that nature
is quantum mechanical.

For many years, entanglement was just a strange trait of quantum mechanics. But
in the 1980s, following ideas by Feynman [22] and Deutsch [15], physicist began to
look at quantum mechanics not just as a means for describing the world, but also as a
tool to perform certain tasks, like information processing and computing. Maybe the
power of the “weird” laws of quantum mechanics could be harnessed and exploited.
This was the start of the Quantum Information era.

Since the late 1980s, many interesting and useful applications of Quantum Infor-
mation were developed: teleportation of an unknown quantum state [6], superdense
coding of classical information [7], quantum cryptographic protocols [5, 20], Shor’s
algorithm for efficiently factoring prime numbers on a quantum computer [44] and
quantum error correcting codes [45, 46], to name a few. Most of these applications
share a common ingredient: they rely on the use of entangled states.

In Quantum Information, entanglement is no longer just a strange characteristic
of the theory. It has become a very precious resource. Many applications rely entirely
on entanglement while others can be made more efficient if entanglement is available.
Then, it becomes clear that quantifying and characterizing entanglement should be
one of the main tasks in Quantum Information Theory.

The first step in this study should be, of course, identifying which states are en-



3

tangled. In the case of pure states this is a remarkably simple task. But for mixed
states, this simple and fundamental question seems very hard to answer, and a lot of
effort has been devoted to it. Several criteria have been developed to help identify
entangled states. However, these criteria are either incomplete, in the sense that they
give no conclusive answer for some states, or they do not provide an algorithmic pro-
cedure to check them. This is a somewhat uncomfortable situation not only from a
theoretical point of view but also from a practical point of view, since the states gen-
erated in the laboratory for practical applications of quantum information processing
are invariably mixed states.

Since determining which pure states are entangled is simple, a natural next step
is to compare the entanglement of two different states and try to quantify it. This
can be done by defining measures of entanglement, but also by studying what other
states can be obtained from a given entangled state by applying only local operations
and classical communication. Since entanglement cannot be created by local actions,
this gives us a way of quantifying it. For bipartite pure states this problem has been
completely solved, but the case of multipartite entanglement still has many open
questions.

In this thesis, we will explore some of these interesting questions regarding entan-
glement. In Chapter 2, we will briefly introduce the basic mathematical tools used in
describing quantum states and some useful mathematical concepts that will help us
in our study of entanglement. In Chapter 3, we will introduce a new family of separa-
bility criteria that allows us to identify all bipartite entangled mixed states. This new
tool consists of a sequence of tests that can be implemented efficiently, since they can
be stated as semidefinite programs. In Chapter 4, we will show that the duality of
semidefinite programs can be exploited to construct a “certificate of entanglement,”
in the form of an entanglement witness, whenever a state fails one of the tests in
the sequence. This allows us to give a complete characterization of the interior of
the set of all possible entanglement witnesses, the set of strictly positive biquadratic
bihermitian forms and the set of strictly positive maps. We will also discuss in detail

some examples where we apply this technique to detect entangled states. In Chapter
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5, we will analyze the deterministic transformations of a pure state of three qubits,
when only local operations and classical communication are allowed. We show that
under this type of transformations the GHZ class of states breaks into a continuum
of subclasses. We study under what conditions a 2-outcome POVM can be used in
deterministic transformations, and derive a set of constraints that the state involved
and the POVM must satisfy. Finally, we apply these results to characterize a set
of states that can be obtained from the GHZ state by local operations and classical

communication.



Chapter 2

Preliminary concepts

In this chapter we will briefly review some basic mathematical tools used in the
description of quantum states. We will be interested in the representation of quantum
states as vectors and hermitian matrices on a Hilbert space. This will also help us fix
the notation that will be used throughout this thesis. We will also introduce several
concepts and operations that are particular to the case of composite systems. We will
mention how measurements are represented in quantum mechanics and also we will
introduce a few mathematical concepts that have useful applications in the study of

entanglement.

2.1 Quantum states

In quantum mechanics we associate a Hilbert space H to every physical system.
We then proceed to describe the properties of this system in terms of mathematical
objects defined on its Hilbert space.

A pure state is represented by a normalized vector in ‘H which we will write in
Dirac’s notation as [¢)). This vector represents everything we can possibly know about
the state of the system, and we can use it to compute any of the system’s physical
properties. To the same state, we also associate a linear functional denoted by (¢|,

defined on vectors in H. The normalization condition then takes the form

(Ylp) = 1. (2.1)
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If {|i)}%_, is an orthonormal basis of H, any state can be expanded as

) = _aili), (2.2)

where the z; are complex coefficients that satisfy >, |z;|> = 1. We will denote a
Hilbert space of dimension d by Hg4.

In many cases we do not have complete information about which pure state de-
scribes the system. Instead, we only know that there is a set of vector {|¢;)} such
that the system is in the pure state |¢);) with some probability p;. When this hap-
pens, we say the system is in a mized state. This type of state is represented by a
positive semidefinite hermitian matrix p of trace 1, operating on the Hilbert space of

the system, that can be written as
P = Zpi|¢i><¢i|, (2.3)

where |1;)(1;| is a projector into a one dimensional subspace spanned by |4;). This
matrix is called a density matriz and it represents the most general description of the
state of a quantum system. Note that a pure state can be represented by a density
matrix of rank 1, since in this case the right-hand side (RHS) of (2.3) consists of only
one term, and there is no uncertainty about which pure state describes the system.
An observable is a hermitian operator that represents a physical property of the
system. The possible values that we can obtain when measuring this property are
given by the eigenvalues of the observable. If the system is in the state p and we
measure an observable A, the mean value (A) of these measurements can be computed
by
(4) = Tr[Ap], (2.4)

with Tr representing the usual trace of a matrix. If the state is pure, we can write
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p = |¥) (1] for some vector |¢), and the mean value takes the form

(A) = T[A)(@]
= (Y[A]Y). (2:5)

2.2 Composite systems

Sometimes we are interested in studying a system not only as a whole, but also in
terms of two or more subsystems. This is typically the case when we consider physical
systems that are spatially separated and we are interested in correlations between
their properties, or when the system of interest interacts with an environment that
we cannot access or control.

If we have k subsystems A;, i = 1,...,k, each one described by a Hilbert space
H 4, of dimension d4,, the Hibert space associated with the whole system is just the
tensor product

If {|7iYa, }, i = 1,...,da,, is a basis of H4,, all the vectors of the form

71040 @ - ® |i) ay, (2.7)

form a basis of H 4, ..4,, which has dimension d4, X - - - X d4,. To simplify the notation,

we will also write a state of the form (2.7) as

g1 Jk),s (2.8)

where we dropped the tensor product sign and the subindex identifying the subsys-
tems, and we use the convention that the i** symbol corresponds to a state in the it*
space on the tensor product. The most general state of a composite system will then
be represented by a density matrix, that is a positive semidefinite hermitian matrix

operating on Ha, . 4,, as in the case of a single system.
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In a composite system we can define an operation called the partial trace with

respect to subsystem A; of an operator Z in H 4, .4, by

Toa (2] = 3 ailZli) (2.9)

The result of this partial trace is an operator defined on the tensor product of the
remaining subsystems.
If p is the density matrix of the system in the space Hau,. 4,, we can define a

reduced density matriz pa, by

pa, = Tra, a,lpl, (2.10)

which represents the physical state of subsystem A;. In the same way we can define
the reduced density matrix of any other subsystem, by taking the partial trace over

the subsystems excluded.

2.3 Pure entangled states

A pure product state |¥) is a vector in Hy, 4, of the form

[U) = [11) @ ... @ [), (2.11)

that is, the tensor product of pure states corresponding to the subsystems. When the
system is in a pure product state, we have maximal knowledge of both the state of
the system and the state of all of its subsystems.

If a pure state of a composite system cannot be written as a tensor product of

pure states, we say that it is an entangled state. For example, the state

1

|@7) = 7

(00) + |11)), (2.12)

is an entangled state in Ho®Ho. The existence of these states, which is a consequence
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of the linear structure of the set of states, is one of the most strange characteristics of
quantum mechanics since these states describe correlations between the systems that
cannot be explained classically. They are essential in many applications of Quantum

Information.

2.3.1 Bipartite pure states

The case of pure states in a bipartite system (only two subsystems, A and B) has been
extensively studied, and most of the questions about the properties and characteristics
of entanglement in this case have been answered. One of the facts that has facilitated
many of these results is the existence of the Schmidt decomposition, that states that
any bipartite pure state |¥) can be transformed by the application of local unitary
transformations Uy ® Up (where Uy and Up are unitary transformations acting on

Ha and Hp, respectively), into a canonical form given by

min{d,dp}

. Nl)a® s, (2.13)

i=1
where {|i)4} and {|i)p} are orthonormal vectors in H 4 and Hp, respectively. The
scalars \; are real and nonnegative, and are called the Schmidt coefficients. The
number of nonzero Schmidt coefficients is called the Schmidt number. Since entan-
glement cannot be changed by local unitary operations, studying the canonical form
(2.13) is sufficient to understand the entanglement of any bipartite pure state. This
decomposition is also very easy to compute since the nonzero Schmidt coefficients

are the nonzero eigenvalues of the reduced density matrices ps = Trg[|¥)(¥|] and

pp = Tral| W) (¥]].

2.4 Measurements

A projective (Von Neumann) measurement is represented by a set of orthogonal pro-

jectors P; that form a partition of the identity. They satisfy
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2. En:Pi =1,
=1

where 1 is the identity matrix. The number n must be equal to the dimension of
the Hilbert space of the system. If the system is originally in the state p, after
the measurement is performed the system can be in one of several possible states,
depending on the outcome of the measurement. The outcome associated with the

projector P; is obtained with probability
Prob(i) = Tr[P;p], (2.14)

and in this case the state after the measurement is given by

PipP;
Tx[Pip]’

pi = (2.15)

A generalized measurement is represented by a positive operator valued measure

(POVM). A POVM is a set of operators E; that satisfy

1. E; is positive semidefinite.

2. Zm:ETE =1,

with EI the hermitian conjugate of E;. The number m of operators in a POVM can
be greater, equal or smaller than the dimension of the Hilbert space. Note that there
is no orthogonality requirement, so different outcomes may not be mutually exclusive.
A generalized measurement can always be realized as a projective measurement in a
larger Hilbert space. The outcome associated with the operator E; is obtained with
probability

Prob(i) = Tr[E;pE]], (2.16)

and in this case the state after the measurement is given by

E;pE!

Tr(EipEl] (210

Pi =
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2.5 Mathematical concepts

We will now review a few mathematical concepts that have proven very useful in the

study and characterization of entanglement.

2.5.1 Majorization

Let x = (x1,...,2,) and y = (y1,...,Yn) be two vectors in R™ whose components
n n

are positive and satisfy Z r; =1 and Z y; = 1. Denote by z* the vector obtained
i=1 i=1
from x by arranging the components x; in decreasing order, x% > x% > ... >z We

will say that x is majorized by y, which we will note x < y, if

ui

8
=<
IN

ritay < Yty

.yt (2.18)

)
=<
+
_|_
)
:|<*
IN

If the two vectors have different lenghts, we can still compare them by padding the
shorter one with zeros to make them both the same length. The idea of majoriza-
tion aims at making more rigorous the notion of a string of numbers being “more

disordered” than another.

2.5.2 DPositive and completely positive maps

Let us denote by A4 and Ap the set of linear operators acting on ‘H, and Hp,
respectively. We will call £(A4, Ap), the set of linear maps from A4 to Ag. We say
that a map A € L(Aa, Ap) is positive if

VAe As,A> 0= A(A) >0, (2.19)
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where A > 0 means that the operator A is positive semidefinite. A map A is said to

be completely positive (CP) if the induced map

Av=A®1,: Ay @A, - Ag ® A,, (2.20)

is positive for all n, with A, being the space of operators in a Hilbert space of
dimension n, and 1,, the identity map on A,. Completely positive maps have very
important applications in characterizing the set of physically meaningful evolutions

of a quantum state.
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Chapter 3

New separability criteria

In this chapter we will introduce a new family of separability criteria for finite dimen-
sional bipartite quantum states. This family has a natural, hierarchical structure,
with each test being at least as powerful as all the previous ones. Using techniques
from convex optimization, each of these tests can be implemented efficiently. This in-
finite family of tests has the very important property that it can detect any entangled
state in a finite number of steps, giving a complete characterization of bipartite entan-
glement. All the results presented in the following two chapters have been obtained
in collaboration with Andrew Doherty and Pablo Parrilo [16, 17].

Before presenting these new separability criteria, we will introduce the main con-
cepts regarding the separability problem, present several separability criteria that

have been developed so far, and briefly point out their advantages and short comings.

3.1 Introduction

Pure state entanglement is very easy to recognize. A bipartite entangled pure state
is defined as a state that cannot be written as the tensor product of two pure states.
We can find out if a state is entangled by computing the Schmidt decomposition. If
the Schmidt number is greater than one, the state is entangled. However, there is no
such a thing as a Schmidt decomposition for bipartite mixed states, and the simple
question of asking if a given mixed state is entangled becomes really hard to answer.

First of all, we need to specify what is it meant by an “entangled mixed state”, since
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the pure state definition clearly does not apply.
A bipartite mixed state is said to be separable [56] (not entangled) if it can be

written as a convex combination of pure product states
p =Y pilt) (Wil ® i) (i, (3.1)

where |1;) and |¢;) are state-vectors on the spaces H4 and Hp of subsystems A
and B, respectively, and p; > 0,) .p; = 1. This definition can be extended to the
multipartite case in a straightforward manner. From this expression it is easy to see
that parties A and B can generate such a state by performing local operations and
exchanging classical information, which makes clear the fact that this state cannot
have stronger than classical correlations, and hence posseses no entanglement. Since
entanglement is such a useful resource in Quantum Information, the importance of
having a procedure that allows us to determine whether a state is entangled or sep-
arable becomes evident. Even though the definition given by (3.1) does not provide
us with such a procedure, it allows us to develop several criteria that can be helpful

to distinguish between entangled and separable states.

3.2 Separability criteria

A separability criterion is usually based on a certain property that can be shown to
hold for all separable states. To make the criterion useful in practice, this property
should be easy to check. Given a bipartite state, if it does not satisfy the property
we can conclude that the state cannot be separable, and hence must be entangled.
However, if the property is satisfied, no valid conclusion can be extracted from the
criterion. It is clear then that separability criteria give usually necessary but not

sufficient conditions for separability.
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3.2.1 Positive partial transpose criterion

One of the first and most famous separability criteria was introduced by Peres [38],
and it is based on a very simple observation. Given a state p in H ® Hpg, we define
the partial transpose of p with respect to subsystem A, which we will denote by p’4,

as the operator whose matrix elements satisfy
(il @ p(klp™[5)a ® |[1)p = a(j| ® B(klpli)a @ [1)5. (3.2)

In a similar manner, we can define the partial transpose of a multipartite state with
respect to any subset of its subsystems. If p is a separable state, then using equation

(3.1) it is easy to see that

o = 3 b () (i) @ i) (@]
= > _onile )W ©19:)(6il, (3.3)

where we used the hermiticity of |¢;)(¢;|. Since [¢f) is a pure state in H 4 and
pi > 0,>.p; = 1, equation (3.3) tells us that p™ is a valid physical state for the
system. Then, p™ must be a positive semidefinite (PSD) matrix, and we can state

the following separability criterion.

Positive Partial Transpose (PPT) Criterion Let p be a separable state; then
the matriz pT4 must be PSD.

This criterion has the advantage that it is computationally very easy to check, since it
only involves computing the eigenvalues of a certain hermitian matrix. Furthermore, it
was shown by Horodecki et al. [29] to be both necessary and sufficient for separability
in Ho ® Ho and Hy ® Hs. However, in higher dimensions, there are PPT states that
are nonetheless entangled, as was first shown in [32]. These states are called bound
entangled states, because they have the peculiar property that no entanglement can
be distilled from them by local operations [30]. It is worthy to note that even though
the definition of partial transpose given by Equation (3.2) depends on the basis used,
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the criterion still holds since the positivity requirement is independent of the basis.

3.2.2 Range criterion

Another useful separability criterion that has been used to show entanglement of PPT

states is the range criterion [32].

Range Criterion Let p be a separable state; then there exists a set of product states
{|:)|#i)} that span the range of the matriz p. Furthermore, the set {|})|¢:)} spans

the range of the matriz p4.

The validity of this criterion is evident from Equations (3.1) and (3.3). Unfortunately,
the criterion does not provide a way of finding the vectors {|¢;}|#;)}, and whether
the criterion is useful to show entanglement of a particular state, strongly depends on
the state considered. The range criterion is independent of the PPT criterion, since
it can be shown that there are PPT entangled states that violate the range criterion,

but also that there non PPT states that satisfy it.

3.2.3 Reduction criterion

This criterion is very interesting since its violation implies distillability of the state 28,

11].

Reduction Criterion Let p be a separable state, ps and pp the reduced density

matrices. Then the matrices 14 ® pg — p and pa @ 1g — p are both PSD.

Checking this criterion is easy since, like the PPT criterion, it only involves computing
eigenvalues of hermitian matrices. The reduction criterion coincides with the PPT
criterion for Ho ® Ho and Hs ® Hs, and hence gives also a sufficient condition for

separability in these two cases.
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3.2.4 Majorization criterion

Entangled states have the property that they seem more disordered locally than
globally. When we analyze separately the states of each subsystem of a composite
quantum system, we lose all the information about the quantum correlations of the

state. This property can be used to state the following separability criterion [37].

Majorization Criterion Let p be a separable state, A(p) the vector of its eigen-
values, X\(pa) and A(pg) the vectors of eigenvalues of the reduced density matrices p4

and pg, respectively. Then A(p) < A(pa) and X(p) < A(pB).

The majorization criterion is easy to check, but it turns out to be weaker than the

PPT criterion.

3.2.5 Positive maps

All the criteria discussed above have the disadvantage that they are, in general,
necessary but not sufficient to prove entanglement of a state. There is a criterion
that gives a necessary and sufficient condition for separability that is based on the

use of positive maps [29].

Positive Map Criterion Let A4 and Ag be the algebra of linear operators acting
on the Hilbert spaces H 4 and Hp, respectively. Then a state p in HoQH p is separable,
if and only if, for any positive map A : Ag — Aa, the operator (14 ® A)(p) is PSD.

Although very important from a theoretical point of view, this criterion fails to provide
us with a practical tool to detect the entanglement of a given state. The problem lies
in our lack of a complete operational characterization of the set of all positive maps,
which we would need to apply the test to a given state. This characterization has
been known only in two cases, when the Hilbert spaces of both subsystems A and B
are equal to Hs, and when one is equal to Hs and the other is equal to H3s.

The positive map criterion can be used to generate new criteria that give only
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necessary conditions for separability. If A is a certain positive map that is not com-
pletely positive, then if (14 ® A)(p) is not PSD for some state p, this state must be
entangled. Both the PPT criterion and the reduction criterion are examples of this.
The positive non CP maps involved are the transposition map o — ¢! for the PPT
criterion, and the map o — Tr[og|1 — ¢ for the reduction criterion.

In summary, there seems to be a gap in our arsenal of tools to address the sepa-
rability problem. On one side we have efficiently computable criteria that are incom-
plete, and on the other side, complete criteria that we do not know how to compute.
In the next section we will introduce a new set of separability criteria that bridges
this gap by providing a sequence of tests that can be efficiently implemented and are

guaranteed to detect all entangled states.

3.3 A new family of separability criteria

To state our new separability criteria, we first need to introduce the idea of a PPT
symmetric extension of a state p. Let {|i)}%4, be a basis of the space H 4, with du
the dimension of H 4. Then the set {|i1ia...ix)}, with i, =1,...,ds, for i =1,... k,
will be a basis of the space ’ka , which is the Hilbert space associated with k copies
ok
A

of system A. We define a set of operators {P,,} on H{", n >m, m=1,... k, by

Ponlivio . cim ool ig) = T2l ool e 2T (3.4)
These operators correspond to swapping two copies of system A. We will now intro-

duce the central concept in our separability criteria.

Definition 1 Let p be a state in Ha@Hp. We will say that a state p in ’Hff{k Q@Hp is
a PPT symmetric extension of p to k copies of subsystem A, if p satisfies the following

properties:

1. j is PPT.
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2. p is invariant under swaps of the copies of A, i.e.,

ﬁ = (Pmn ® ]lB)ﬁ(Pmn X ILB)’ (35)

forallm=1,.... k, n>m.

3. TrA2---Ak [:5] = p-

The first property means that p must remain positive under partial transpositions
with respect to any subset of subsystems in H%k ® Hp. For an arbitrary state in
H%k ® Hp this will require checking positivity of (2% — 1) partial transposes, which
scales exponentially with k. The requirement of invariance under swaps of copies
of A allows us to drastically reduce the number of independent partial transposes.
Any two of them that involve the same number of copies of A, irrespective to its
order, will be identical, provided that they also agree on transposing with respect to
system B. The number of independent partial transposes for a swap invariant state in
’H%k ® Hp is just k, which scales only linearly with respect to the number of copies of
A. This will be very important when we discuss the resources required to implement
our separability criteria. Also note that even though the last property, which we will
refer to as the extension property, requires tracing out the last (k — 1) copies of A,
the swap invariance tells us that we can actually trace out any (k — 1) copies and the
result will still be p.

The importance of the concept of a PPT symmetric extension in the construction

of new separability criteria is given by the following theorem.

Theorem 1 Let p be a separable state in Ha @ Hp. Then p has a PPT symmetric

extension to k copies of system A for any value of k.

Proof: Since p is a separable state, we know that it can be written as a convex

combination of product states, so we have

p= Zpi |i) (Wi] @ |d3) (s (3.6)
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Now consider the state 5 defined on H%* ® Hp, given by
p= Y pilea (Wil ©16:) (@i (3.7)

We claim that p is a PPT symmetric extension of p to k copies of A. We need to
show that it satisfies the three properties required in Definition 1. First, we can see
from its definition in (3.7) that p is a separable state, and so in particular it must be

PPT. Second,

(P ® 15)p(Prnn ® 1) = zpi (Ponn|t02) (0] ®* Prn) ® |3 (3]
= Zpi i) (| ®F @ | ¢3) (3]

= (3.8)

where the second equality comes from the fact that ;) (1;|®* = (|1;))®*({;])®*, and
Prn(|[00:))®F = (|1;))®*, since (|1;))®* is obviously invariant under swaps of copies of

A. And finally,

Tra,.alp] = ZpinAz...Ak[Wi)(’ébA@k@|¢i>(¢il]

= 3 5 Teag g 1) (Wl & ) (0] © 13) (@
= Zpi|¢i><¢i|®|¢i><¢i|
=/ (3.9)

since Tra,. a,[|w:) (;|*71] = H?ﬁ Tra[|vi)(i]] = 1, because |¢;) is a normalized
state. O

Since we have identified a property that is satisfied by all separable states, we can
use the result of Theorem 1 to construct a new family of separability criteria, which

is one of the main contributions of this thesis.
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PPT symmetric extension to k copies criterion Let p be a separable state in

Ha® Hp; then a PPT symmetric extension of p to ’Hf?{k ® Hp must exist.

Every value of k defines a different criterion, so we have a countably infinite family
of separability criteria. In particular, we can interpret the criterion corresponding to
k =1 as the usual PPT criterion.

These criteria are not completely independent of each other; they actually have a

natural hierarchical structure as the following theorem shows.

Theorem 2 Let p be a state in HaQ@Hp such that it has a PPT symmetric extension
to n copies of subsystem A (n > 2); then p has a PPT symmetric extension to (n—1)

copies of subsystem A.

Proof: Let p, be a PPT symmetric extension of p to n copies of subsystem A. Let
Pn-1 = Tra[p,], where A represents one of the copies of A. It is easy to see that g, 1
will inherit from p,, the property of being symmetric under interchanges of copies of
party A, since we have just removed one of the copies. It is also clear that g, ; is
an extension of p to (n — 1) copies of A. Let us assume that it is not PPT. Then
there is a subset Z of the parties such that ﬁg{ , has a negative eigenvalue, where 77
represents the partial transpose with respect to all the parties in subset Z. Let |e) be
the corresponding eigenvector and let {|i)}%4, be a basis of the system A over which
the partial trace was performed. Since p, is PPT, then (e|(i|p.|e)|i) > 0, for all i.

Then
da

> (el(ilpnrle)li) = (el Tralprr]le) = 0. (3.10)

i=1
Since we performed the partial trace over a party that is not included in Z , we can
commute the trace and the partial transpose, and using p,_1 = Tra[p,], we have
(e|pz le) > 0, which contradicts the fact that |e) is an eigenvector of j.%, with
negative eigenvalue. Then p, 1 is a PPT symmetric extension of p to (n — 1) copies
of subsystem A. O

We have then a natural ordering of this family as a hierarchy of tests, indexed

by the number of copies of subsystem A considered. The first test, corresponding to
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k =1, is just the PPT criterion; the second test corresponds to checking whether p
has a PPT symmetric extension to two copies A; and in general, the k" test searches
for a PPT symmetric extension to k copies of A. The previous theorem shows that
each test in the hierarchy is at least as powerful as all the preceding ones in detecting
entanglement.
This hierarchical structure leads naturally to an operational procedure to study

entanglement of bipartite states (see Figure 3.1). To check whether a given state

NO
is p PPT? ﬁ{ p iSENTANGLED

YES

does p have a PPT symmetric extension NO

to 2 copies of A?

YES
does p have a PPT symmetric extension NO
to 3 copies of A?
iYES
|
|
|
|
does p have a PPT symmetric extension NO

to k copies of A?

iYES

Figure 3.1: The hierarchy of separability tests.

p is entangled, we just apply the tests in sequence. First, we check if p is PPT; if
the test fails (p is not PPT), the state must be entangled. If the test is passed, no
conclusion can be extracted and we need to apply the second test in the hierarchy. If
this second test fails (p has no PPT symmetric extension to two copies of A), the state
is entangled. Again, if the test is passed, the state could be separable or entangled,

and we need to apply the next test. At any point, if a test is failed, the state must
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be entangled and the process stops.

This hierarchy of tests has the two properties that are most desirable on a prac-
tical tool to determine if a state is entangled. First of all, each test can be efficiently
implemented for any state p. This relies on the fact that searching for PPT symmet-
ric extensions can be formulated as a semidefinite program (SDP), which is a class of
convex optimization problems that can be efficiently solved. And second, this hier-
archy is complete, in the sense it can be guaranteed that any entangled state will fail
one of the tests at some finite point in the hierarchy. The remaining of this chapter

will be devoted to proving and discussing these two important properties.

3.4 Semidefinite programs and searching for PPT
symmetric extensions

In this section we will introduce and discuss the structure of a semidefinite program
and we will show explicitly how to apply it to the problem of searching for a PPT

symmetric extension.

3.4.1 Semidefinite programs

A semidefinite program (SDP) is a particular type of a convex optimization prob-
lem [51, 50]. A SDP corresponds to the optimization of a linear function subject to

a linear matrix inequality (LMI). A typical SDP has the form

minimize cI'x
subject to  F(x) >0, (3.11)
where ¢ is a given vector, x = (x1,...,%,), and F(x) = Fy + >, z;F;, for some

fixed hermitian matrices F;. The inequality in the second line means that the matrix
F(x) must be positive semidefinite. The minimization is performed over the vector

X, whose components are the variables of the problem.
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In the particular case in which ¢ = 0, there is no fuction to minimize and the
problem reduces to whether or not the LMI can be satisfied for some value of the
vector x. In this case, the SDP is refered to as a feasibility problem. The convexity
of the SDP has made it possible to develop sophisticated and reliable analytical and
numerical methods to solve them [51].

A very important property of a SDP, both from the theoretical and applied points
of view, is its duality structure. To any SDP of the form (3.11), which is usually called
the primal problem, there is associated another SDP, called the dual problem, that

can be stated as

maximize —Tr[FyZ]
subject to Z >0,
Tr[FZ] = ¢, (3.12)

where the matrix Z is hermitian and is the variable over which the maximization is
performed. This corresponds to the maximization of a linear functional, subject to
linear constraints and a LMI.

The duality structure has very useful consequences. Let x and Z be any two
feasible solutions of the primal and dual problems, respectively, which means that they

satisfy the required constraints and LMIs. Then we have the following relationship

c"'x + Tr[FyZ] = Tr[F(x)Z] > 0, (3.13)

where the last inequality follows from the fact that both F(x) and Z are positive
semidefinite. From (3.11) and (3.12) we can see that the left-hand side of (3.13) is just
the difference between the objective functions of the primal and dual problem. The
inequality in (3.13) tells us that the value of the primal objective function evaluated
on any feasible vector x, is always greater or equal than the value of the dual objective
function evaluated on any feasible matrix Z. This property is called weak duality. So

we can use any feasible x to compute an upper bound for the optimum of —Tr[FyZ],



25

and we can also use any feasible Z to compute a lower bound for the optimum of ¢’x.

If the feasibility constraints on both the primal and dual problems are satisfied for
some Z > 0 and x such that F'(x) > 0, the problems are termed strictly feasible, and
the optimum values of the primal and dual forms are actually equal. This property
is known as strong duality. Furthermore, there is a feasible pair (Xopt, Zopt) achieving
the optimum. In this case it can be shown [51] that Tr [F(Xopt)Zopt] = 0 and thus
F(Xopt) Zopt = 0, so the Hermitian matrices F'(Xopt) and Zp have orthogonal ranges.
This is known as the complementary slackness condition.

Equation (3.13) has another important application. Consider the particular case

of a feasibility problem (i.e., ¢ = 0). Then, Equation (3.13) will read

Tr[FyZ] = 0, (3.14)

and this must hold for any feasible solution of the dual problem. This property can
be used to give a certificate of infeasibility for the primal problem: if there exists Z
such that Z > 0 and Tr[F;Z] = 0, that satisfies Tr[FyZ] < 0, then the primal problem
must be infeasible. We will show later that for the particular case of our hierarchy of
separability tests, whenever a PPT symmetric extension of p cannot be found (primal
problem is infeasible), the certificate provided by the dual problem is nothing but an

entanglement witness for the state p.

3.4.2 Separability tests as semidefinite programs

Each of the tests in the hierarchy of separability criteria introduced in Section 3.3
involves searching for a PPT symmetric extension of a certain state p. This exten-
sion is just a hermitian matrix that is required to satisfy certain linear constraints
imposed by the extension property, and some positivity conditions imposed by the
PPT requirement. This is exactly what a semidefinite program does, it tries to min-
imize a linear function subject to certain positivity conditions on a hermitian matriz.
Implementing our criteria reduces to constructing a SDP in which the LMI encodes

all the requirements that a PPT symmetric extension must satisfy.
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The main task is to determine how to construct the matrices F; in (3.11) for each
one of the tests in the hierarchy. We will now proceed to illustrate this construction
in detail for the second test which corresponds to searching for PPT symmetric ex-

tensions of a given state p in H 4 ® Hp, to two copies of system A, represented by the

Hilbert space H5* ® Hp.

3.4.2.1 The second test

a4

2
Let {o/1}:4,, {Uf}jﬁl be bases for the space of hermitian matrices on H 4 and Hp, of

dimensions d4 and dp, respectively, such that they satisfy

Tr[o'iXU]X] = axd;; and Tl"[O'iX] = 0;1, (3.15)

where X stands for A or B, and ax is some constant—the generators of SU(n) (with
n = da,dp) could be used to form such a basis. This requirement just simplifies the
algebra required, and it is not essential to the construction. We can then expand p

in the basis {0;' ® 0/}, and write
p= Z pij 0L ® o?, (3.16)
ij
with the expansion coefficients given by
pi; = g ag Trpol ® (TJ-B]. (3.17)

The matrices {07'} and {07} can be also used to construct a basis of the space of
hermitian matrices in H%> ® Hp, whose elements are of the form (¢ ® o4 ® of).
The extension 5 we are looking for is a hermitian matrix in H%> ® Hp that satisfies
certain properties. The most general hermitian matrix in this space can be written

as

p=Y puj(of @al @af). (3.18)

ikj
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Our objective is to find whether it is possible to find coefficients p;r; that make p
satisfy all the properties required to be a PPT symmetric extension of p.
From (3.18) it is easy to see that the swapping invariance condition implies that
the coefficients p;r; must be symmetric with respect to the first and second indices,

so (3.18) reduces to

ﬁ:Zﬁikj{0f®a,f®af+a,f®af®Uf}+Zﬁkkja,f®a,f®Uf. (3.19)

ijk kj
i<k

To satisfy the extension condition we need to impose
Tra,[p] = p. (3.20)

Using (3.15) and the fact that the matrices {o;' ® 0’} form a basis of of the set of

hermitian matrices in H4 ® Hp, Equation (3.20) applied to (3.19) implies that

pirj = Pij- (3.21)

This fixes some of the coefficients in (3.19). The remaining coefficients are free vari-
ables.

In order for p to be a PPT symmetric extension, it also has to be a state, which
requires p to be positive semidefinite and have trace 1. The trace condition is already
implied by the fact that p is an extension of p (and p has trace 1), but the positivity

condition needs to be imposed on p. If we define

Gy = Zpljaf@)af@(ff—k Z pij{of @ o @0} + ol ® o' @ 07},

; i=2,j=1
_ Ao Ao B -
Giji = o0 ®o; ®o0j 12> 2,

Gijk = (Jf®af®af+af®af®af), kE>i>2, (3.22)
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we can write the PSD condition p > 0 as
p=Gx)=Go+ > x,G;>0, (3.23)
J

where we have collected all the subindices in (3.22) into one subindex J and replaced
the free coefficients in (3.19) by x; for notational convenience. This shows that the
positivity condition on p can be written as a LMI with hermitian matrices G;, which
is exactly the form of the constraint appearing on the semidefinite program (3.11).
The variables x; are just the coefficients of p that have not been fixed by the swapping
invariance condition and the extension property.

The last requirement on p is that it must be PPT. As we discussed in the previous
section, the swap invariance property reduces the number of independent partial
transposes that can be applied to p. In this case, in which we have only two copies of
A, there are only two independent partial transposes. These can be taken to be the
partial tranpose with respect to the second copy of A and the partial transpose with

respect to system B. Then we can write the PPT requirements as

e = GTa(x) = Gy + Y 2,6 >0,
J
o= G (x) =GP+ x,GTE >0, (3.24)
J
which again can be written as LMIs, with hermitian matrices G?AZ and G?B that can

be obtained from (3.22) by applying the appropriate partial transposes.
We can combine the LMIs in (3.23) and (3.24) by defining a block-diagonal matrix

F' given by
G(x) 0 0
F(x) = 0 GTa(x) 0 : (3.25)
0 0 G™5 (x)

Since a block-diagonal matrix C' = (%1 (92 ) is positive semidefinite if and only if, both
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C1 and Cy are positive semidefinite, we can use the LMI

F(x)=Fo+ Y z,;F; >0, (3.26)
J
where,
Go 0 0 Gy 0 0
Fr=| o0 o |, Fb=| o ¢™ o |, (3.27)
0 0 G o 0 G»

to ensure the positivity of both p and its partial transposes.

We could state the search for a PPT symmetric extension of p to two copies of A
in the form of a SDP by setting ¢ = 0 in (3.11) and imposing the LMI F(x) > 0. If the
extension does not exist, this will translate into the SDP being infeasible. However,
due both to numerical and theoretical reasons, it is always convenient to work with
strictly feasible problems. We can easily turn the search of PPT symmetric extensions

into a strictly feasible problem. Consider the SDP

minimize t

subject to  F(x) 4+ tLlaap > 0. (3.28)

It is clear that this problem is always strictly feasible, since we can strictly satisfy
the LMI by choosing a value of ¢ that is large enough. If the LMI F(x) > 0 can
be satisfied, then the optimum value of the objective function must satisfy ¢, < 0.
On the other hand, if ¢,,, > 0, then F'(x) > 0 cannot be satisfied for any value of
the variables x, and hence no PPT symmetric extension exists. As we can see, the
SDP (3.28) replaces the feasibility condition by a threshold value on the objective
function. One of the advantages of this formulation is that it allows us to use the
strong duality property of semidefinite programs, which will prove very useful when

we discuss how to construct entanglement witnesses in the next chapter.



30
3.4.2.2 The k' test

Implementing an arbitrary test in the hierarchy follows the same principles discussed
2 2

in the previous section. We can use the bases {Uf‘}fﬁl and {07 }jﬁl to construct a

basis of hermitian matrices in H%k ® Hp by taking tensor products, and write the

most general hermitian matrix in this basis as

- ~ A A B
5= Z Pir iine O3y @ ... @ 07, @0y . (3.29)
{il}fif
Then we use the swap invariance requirement to impose constraints between the
coefficients of this expansion. Any two coefficients whose indices corresponding to
the copies of A are related by a permutation, must be equal, i.e.,

(3.30)

pil...ikik+1 = plﬂ(l)lﬂ(k)lk+1 ’

where 7 is any permutation of k elements. Note that the (k + 1) index corresponds
to subsystem B and it is not part of the symmetrization. Imposing the extension

property fixes the values of some of the remaining coefficients, giving

Pil..1j = Pij- (3-31)

Note that both (3.30) and (3.31) are not basis-independent statements, since they

rely on the tensor product structure of the basis elements (0{} ®...® 0]} ® o .,) and

the properties of ¢! and Jf given in (3.15), even though the swapping invariance and
the extension property are basis-independent constraints.

The coefficients that have not been fixed by the swap invariance and extension
property, will play the role of the variables in the SDP. Then p will again take the
form Go + ) ;2;G;. The matrices Gy and G are just linear combinations of the

B

). By construction, they are invariant under
Lk+1 !

basis matrices (0/, ® ... ® 0/i @ 0
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swaps of copies of A, and they satisfy

Tra,..4,[Go] = p,

Tra, 4,lGs] = 0. (3.32)

This can be easily understood if we notice that the extension condition given by
Tra,..a,[p] = p is just an inhomogeneous system of simultaneous linear equations.
The matrix Gq is a particular solution of the system, while the matrices G; form a
basis of the space of solutions of the associated homogeneous system.

As we mentioned before, the swapping invariance reduces the number of indepen-
dent partial transposes that can be applied on p. To identify them, let us concentrate
on the k copies of A for a moment. Because of the swapping symmetry, different par-
tial transposes are specified only by the number of copies of A that are transposed.
This gives us k different partial transposes. Consider the set of partial transposes
given by {Ta,. a,,l = 1,...,k}. We claim that positivity with respect to this set
implies positivity with respect to any partial transpose. Let 77 represent the partial
transpose with respect to some subset Z of the subsystems, that satisfies Z # () and
T # (), where T is the complement of Z. If B ¢ Z, then Z involves only some number
[, between 1 and k, of copies of A. Because of the swapping symmetry, we can take
these copies to be the first [ copies, and then g’z = pT41-4. If B € T we can use the
fact that

P> 0= (37)" >0. (3.33)

But (ﬁTI)T = p'z. But then B ¢ T, and we have 5’z = p741-4 for some [,1 <[ < k,
as shown above. The case Z = () can be reduced, using (3.33), to the case Z = 0,
which corresponds to applying no partial transposes to p at all.

The only partial transposes for which we need to impose positivity are given then
by the set {T4,..4,,l = 1,...,k}. Together with the positivity condition on p itself,

we have a total of (k + 1) LMIs, which can be encoded in a block-diagonal matrix
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F(x) with (k + 1) blocks, in the form of (3.26), with

k
Fy = Gy (@ G(T;Al...Al> ,

=1

k
F, = Gy @ (EB Gf“l“"‘l) . (3.34)

=1

Thus, we can implement the k™" test by plugging the matrices (3.34) in the SDP given
by (3.28).

3.4.3 Resources needed to implement the tests

Stating our separability criteria as semidefinite programs has the advantage of al-
lowing us to use the very efficient algorithms available to solve them. Since we are
interested in employing these criteria as a practical tool, we need to study in detail
the resources required in their implementation.

One possible approach to numerically solve a SDP involves the solution of a se-
ries of least squares problems [51]. If m is the number of variables (the number of
components of the vector x, or in our case the number of free coefficients in p), and
the matrices Fy are (n x n) hermitian matrices, each least squares problem requires
a number of operations that scales with problem size as O(m?n?). If the matrices F;
have a block-diagonal structure (as in our case), the problem breaks into idependent
parts each requiring a number of operations that scales as before, but with n given
by the size of the blocks, which lowers the computational resources required. The
number of iterations required, i.e., the number of least squares problems that need to
be solved, is known to scale no worse than O(n'/?). Then, solving a SDP scales at
most as O(m?n®/?).

Consider the k' test in the hierarchy. The number of variables is given by

G +k—1

m = —d4 | dx, (3.35)
k
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with d4, dg being the dimensions of H4 and Hp. The combinatorial number gives
the number of independent coefficients after imposing the swap invariance, while the
d? term takes into account the coefficients that are fixed by the extension property.

The size of the matrices F'y is given by
n = d¥dp, (3.36)

so the resources required scale at most as O(d%), which is polynomial on the system
size for k fixed, but exponential on the number of copies of A. This is a rather
undesirable behavior, since in practice we would like to apply these tests to detect
entanglement of a given state (which fixes the size of the system), and we will be
interested in how do the resources required grow if the state passes a given test in the
hierarchy and we need to apply the next one. The scaling with respect to the number
of copies seems to be the most important from a practical point of view. We will show
in the next section that we could actually impose a stronger symmetry requirement

on the extension p that brings the scaling down to polynomial in the number of copies

of A.

3.5 Exploiting the symmetry

As we pointed out before, any separable state in H4 ® Hp of the form (3.1) has a

PPT symmetric extension to ’Hf?{k ® Hp, that we can explicitly write as

p=_ pi[bi) (Wi @ [¢:) (. (3.37)

This extension is obviously invariant under swaps of copies of A, and we used this
property to restrict the form of the matrices F; in the LMI of our SDP. However, p
is invariant under a larger group of transformations, which can be used to restrict its

form even further.
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The symmetric subspace of ka, which we will note by Hgymx,4), has dimension

di+k—1
ds, = | X . (3.38)

Let II; be the projector into Hgym(x,4), which is given by

1
L= 7= ; Py, (3.39)

where the sum is over all permutations 7, of k elements, and Py, is the operator

defined by
Pr litia .. k) = i (1)img(2) - - - bmp (k) - (3.40)

Note that this generalizes the swap operators defined in (3.4) to all permutations of

k elements. According to (3.40) we have the identity

Pwk|¢i>®k = |¢i>®k7 (341)

which implies that
T ([ofi) (0| *F) I = i) (| (3.42)

Thus, the extension 5 in (3.37) satisfies
(Il @ 1p)p(Ily @ 1) = p. (3.43)

Equation (3.43) states that for any separable state p, we can construct a PPT exten-
sion p such that both its support and range are contained in Hgymx,a) ® Hp. For an
arbitrary p, we can now restrict our search to extensions that satisfy this property.
If {SA} is a basis of hermitian matrices having support and range in the symmetric
subspace of ’ka, the constraint (3.43) implies that we only need to consider matrices
G in (3.23) of the form G = S/ ® 0. Since a change of basis does not affect the

positive semidefiniteness of a matrix, we could use this freedom to greatly simplify
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the form of the matrices G. By transforming to a basis whose first elements are the
basis vectors of H.gym(k,4) tensored with the vectors of some basis of H g, the matrices
G ; will take the block-diagonal form

G7™ 0

Gy = , (3.44)
0 0

where G%™ has size (ds,dp)?, which scales at most as O(k(¢4~Y) for fixed dimensions.
This drastically reduces the size of the LMI Gy + ), z;G 5 > 0, since we only need
to check positivity of the nonzero block.

The LMI Gy + ), 2;G 5 > 0 corresponds to only one of the (k + 1) blocks in the
matrix F(x). However, we can show that a similar reduction in size occurs for all
blocks. Consider the case of the block that corresponds to applying partial transposes
to the first | copies of A. The LMI encoded by this block is

GgAl...Al + ZCB,}G:’;AL”A[ > 0. (3‘45)
J

Since the matrices G; have been chosen to satisfy (I ® 15)G (Il ® 1) = Gy, in

particular they satisfy
(I, U @ 1)G,(IL, @ @ 1) = Gy, (3.46)

with II; the projector onto the symmetric subspace of the first [ copies of A, and I_;
the projector onto the symmetric subspace of the (k—1[) remaining copies. If we apply

partial transposes with respect to the first [ copies in (3.46), we get
(7 @ Iy 15)G (T @ Iy_ylp) = G, (3.47)

I17 is still a projector onto a subspace of dimension dg,, although it does not have
to be the symmetric subspace of [ copies. But the key point is that Equation (3.47)

tells us that the matrices G?Al”'Al have range and support on the tensor product of
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two subspaces of dimension dg,dg and ds, ,dp. By the same reasoning discussed
above, we can perform a change of basis that will take the matrices G:;Al"'A’ into
a block-diagonal form, whose only nonzero block has size (dg,ds, ,d%)*>. Thus, the
effective size of the block scales at most as O(k2(@4~1). The number of variables is
nowW m = [( dAJ;k_l )2 — dﬂ d%, and the size of the matrix F' in (3.28) scales no worse
than O(k??4~1), since the number of blocks is linear in k. Then the scaling of the
resources needed to solve the SDP corresponding to the k' test is no worse than

O(k644=49) which is polynomial on the number of copies of party A.

3.6 Completeness of the hierarchy of tests

One of the most important properties of this new hierarchy of separability tests is
that it can be shown to be complete. Any entangled state is guaranteed to fail one of
the tests at some finite point in the hierarchy. This result allows us for the first time
to have an algorithm that will detect an entangled state in a finite number of steps,
although this number may be high for some states.

Even though the hierarchy is a new result, the proof of its completeness is not,
since it can be obtained as a corollary of an already known result regarding the
characterization of the possible equilibrium states of a system that interacts with
a thermal bath. This result was obtained independently by Raggio et al. [39] and
Fannes et al. [21]. It was noted by Werner [55] that this result could be interpreted as a
characterization of separable states as the only states admitting symmetric extensions
to any number of copies of one of its subsystems (with no PPT requirement). The
same idea was independently rediscovered by Schumacher [43]. This characterization
is very interesting from the theoretical point of view, and coupled with the efficient
implementation of our separability tests as semidefinite programs, it becomes also
very important from a practical point of view by closing the gap between efficient
and complete separability criteria.

For the sake of completeness of this presentation, we will include a proof of this

result that follows the one in [21], applied to the case of bipartite mixed states on
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finite dimensional Hilbert spaces, and using some results more familiar to Quantum
Information Theory. Before stating and proving the theorem, we need to introduce
some useful concepts.
A density matrix g in HS" is said to be exchangeable [10] if it is invariant under
any permutation of the copies of H4, and for any n > 0 there is another density

k+n)

matrix P(jin) in ’Hf( that is also invariant under permutations of copies of A, and

satisfies

Pr = Tray s Ay o [Plhan)]- (3.48)
This is the central concept in the following result [10, 41]

Theorem 3 (Quantum de Finetti Theorem) Let py be an exchangeable density
matriz in ’Hfﬁ’k . Then, there exists a unique probability measure P(o) on the space D 4

of states in H such that
p= [ P (3.49)
Dy

We can see from this result that the exchangeability property strongly constraints
the form of the state pi. In fact, it restricts the state to be separable on the space
7—[%’“, since (3.49) gives an explicit expansion of py as a convex combination of product

states. With this result, we can now present the proof of the following theorem.

Theorem 4 (Fannes et al., 1988) Let p be a bipartite mized state in Ha @ Hp.
Then p has a symmetric extension to k copies of subsystem A for any k, if and only

if, p is separable.

Proof: One of the implications is trivial and follows the same reasoning presented in

Theorem 1. Assume p is separable. Then we can write

p= sz’ 1) (Wil ® i) (. (3.50)

From this expression, we can write down explicitly a symmetric extension p for any

value of k£, namely

p= Zpi |0i) (i *F 1 @ [ 93) (il (3.51)
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and this completes the first part of the proof.

To prove the other implication, the idea is to use the existence of the extensions
to construct a set of states in H%* that can be shown to be separable by using the
Quantum de Finetti Theorem, and then show that this implies that the extensions
themselves have to be separable. Let p be a state in H4 ® Hp such that for any n,
there is a symmetric extension of p in H4" ® Hp, which we will call p,. Let us pick
a fixed value k for the number of copies of party A. Let the set {bi}ﬁgl be a basis for
the set hermitian operators in Hpg, such that b; > 0 for all 7 (i.e., all these operators
are positive definite), and in particular let us choose by = 1p, the identity in Hp.

Now we define the operator

P = Trp [(Lasr ® b;)pr] (3.52)

where 1 4er is the identity on the k copies of party A. The operator py, ;. is positive
semidefinite (PSD) and nonzero since all the operators b; were taken to be positive.
Then py, 1, is proportional to a state in 7—[%", since it is hermitian and PSD. We can
choose the operators b; such that Tr[p,, x] = 1, so that (3.52) is actually a normalized
state in 7—[?{’“. The key point in constructing these states is that they are exchangeable.
This can be easily seen from the fact that, by hypothesis, the state p has symmetric
extensions for any number of copies, and by using (3.52) for these extensions we can

generate states py, (x+1) for any [ > 0, that are symmetric and satisfy

ﬁbi,k - T‘I‘Ak+1...Al [ﬁbi,(k—i-l)], (353)

which is the definition of an exchangeable state. Then, the state py, s satisfies the
hypothesis of the Quantum de Finetti Theorem, and so we know there is a unique

probability measure function Py, () > 0, such that

Phik = / 0%* P, (do)
Dy

_ / o®* P, (0)do, (3.54)
Dy
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where D, represents the space of states in H, (i.e., the set of hermitian, positive
semidefinite operators of trace 1).

For each p, we can think of P, (p) as a functional applied to the operators b;,
which we will note F,, defined as F,(b;) = Py,(0). This functional is linear on convex
combinations of positive operators. To see this, let g > 0. Then F,(ub; 4+ (1 —p)b;) =
P+ (1-pyp; (0), where Py, (1,5, is the unique probability density that satisfies

ﬁ(,ubi+(lfp)bj),k: = /D Q®k Pubﬂr(lfu)bj(g)d@
A
= Trp[(1aer @ (ub; + (1 — p)b;))or]
= pTrp[(Laer @ bi)pr] + (1 — p) Trp [(Laer @ bj)py]

- ‘/; o™ (uPu(0) + (1 — )Py, (0)) do. (3.55)

The second equality in (3.55) holds because we are considering a convex combina-
tion of the operators b;, which guarantees that Trp[(1 er @ (ub; + (1 — w)bj))px] is
normalized. Then, by the uniqueness of the probability density in the Quantum de

Finetti Theorem, we must have

Ppbi+(1—#)bj(g) = MPbi(Q) + (1 - N)ij (Q)’ (356)

which translates into

Fylyabi + (1 = p)by) = uEy(b) + (1 = ) Fylby)- (3.57)

Then F, is a linear functional on convex combinations of positive states in Hp.
Since F}, is defined on a basis, then by linearity, there is a unique way of extending

this functional to the whole space of operators in Hp. So we have a linear, positive

and continuous functional on a finite dimensional Hilbert space, and it is a well known

result that any such functional can be written as

Fy(b) = Trpla,b] b, (3.58)
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for some unique positive semidefinite operator 7, in ‘Hp. This operator might not be

a state in Hp since it needs not be normalized. We can then define a function
P(o) = Tr[5,], (3.59)

that is nonnegative. If P(p) is nonzero, we can define o, = 5,/P(p). Then (3.58)
takes the form

Py(0) = F(b) = Tralob}Plo) b, (3.60)

Note that since o0, is normalized, P(p) = Py,(0), which shows that P(p) is a proba-
bility density, since P;, is by construction. Using (3.60) in (3.54), we get

Pbik = / Q®kTrB[Ugbi]P(Q)dQ
Dy

= Trp {(]lAm ®bi)/ g®k ® o, P(o)do| - (3.61)
Dy

If P(p) = 0 for some p, we can define o, arbitrarily, since it would not contribute to
the integral in (3.61). Since (3.61) is valid for all the elements b; of a basis of hermitian
matrices in Hpg, by comparing the expression in the second line with (3.52), we can

deduce that
Pr = / 0% ® g, P(0)do. (3.62)
Dy

This means that py is a separable state, since (3.62) is an explicit decomposition as
a convex combination of product states. Furthermore, since g, is an extension of our

original state p, we have

p = Tra,. a0k

= /D o ® a, P(0)do, (3.63)

which shows that p has to be a separable state. This concludes the proof of the
theorem. O

Since a PPT symmetric extension is also just a symmetric extension, we have the
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following corollary.

Corollary 1 The only states that have PPT symmetric extensions to k copies of

subsystem A for any k are the separable states.

Thus, an entangled state cannot have infinite PPT extensions, and so it must fail one
of the tests in the hierarchy at some finite point. This implies that the hierarchy is

complete.

3.6.1 Other complete hierarchies

It is interesting to note that the PPT requirement is not essential for the completeness
of the hierarchy. The existence of symmetric extensions is the key property that
allows us to apply the Quantum de Finetti Theorem and show that the state must
be separable. Then, we could generate another family of separability criteria in
which each test searches for symmetric extensions of a state p without imposing any
constraints on the partial transposes, and Theorem 4 proves that this hierarchy is
also complete. We could still implement these tests using semidefinite programs.
Moreover, these SDPs will require less resources, since not requiring positivity of the
partial transposes reduces the size of the LMI. However, the PPT requirement seems
to be more appealing in practice. First of all, it makes the second test in the hierarchy
at least as powerful as the PPT criterion. And even though the PPT tests require
more resources than the non-PPT tests, they are much more powerful in detecting

entanglement, as we will discuss in the next chapter.

3.7 Computational complexity

Another interesting question about the separability problem involves determining its
computational complezity, i.e., the resources needed to solve it in general (see [23]).
The completeness of the hierarchy provides us with a tool that guarantees detection of
any entangled state, and since we have analyzed the resources required to implement

each test in the sequence, it seems that we have the right information to give an
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answer about the computational complexity of the problem. However, we are missing
a very important piece of information. Even though each test have been shown to
scale polynomially with the number of copies, for fixed dimensions, we do not have
any bounds on how high in the hierarchy we have to go to detect the entanglement of
a given state. The completeness theorem tells us that any entangled will fail a test at
some finite point k in the sequence, but it does not give any information about this
value, so this approach is not very well suited to answer questions about complexity.

By using a different approach, it has been recently proven [27] that the separability
problem is actually NP-hard, which means that solving it in general is at least as hard
as solving any NP problem. This result puts our hierarchy into a new light. Even
though solving separability is hard in general, the sequence of tests allows us to, in
some sense, “order” the instances of the problem according to their difficulty, with
the easiest ones being detected by the first tests, since they require less resources, and
the more difficult requiring to go higher in the hierarchy. So even though we know
that there have to be states for which we need to go arbitrarily high in the hierarchy
to detect them, we still have many states for which the easiest tests are sufficient. In
the next chapter we will discuss evidence that in fact, the lower tests seem to be very

powerful at least for low dimensions.

3.8 Summary

We have introduced a new family of separability criteria. The criteria are based on
the fact that bipartite separable states have an extension to any number of copies
of one of its subsystems that is symmetric under swaps of these copies, and remains
positive under all partial transposes. We can then construct a sequence of tests to
study the separability of a state. We start by checking if the state is PPT (which can
be considered as the search for a PPT extension to only one copy). If the state passes
the test, we search for a PPT extension to two copies, and so on. Anytime a test is
passed, no information can be obtained about the separability of the state, and we

need to apply the next test in the sequence. But if a test is failed, the state cannot
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be separable, and thus it must be entangled.

One of the advantages of this approach is that the search for these extensions can
be stated as a semidefinite program, which is a type of convex optimization problem.
Semidefinite programs have been extensively studied, and many efficient algorithms
to solve them have been constructed. In particular they make the resources required
to apply the tests scale polynomially on the number of copies, when the dimensions
of the subsystems are fixed. The other important property of this family of tests is
its completeness. Every entangled state has to fail one of the tests at some finite
point in the sequence, which will depend on the sate. These two properties make this
approach very appealing from both the theoretical and practical point of view, by
providing us with a new characterization of separable states and a sequence of easily

implementable tests that detect all entangled states.
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Chapter 4

Characterization of entanglement
witnesses and positive maps

In this chapter we will show how the duality structure of a semidefinite program can
be exploited to generate a certificate of entanglement whenever a state fails one of
the tests in the hierarchy introduced in the previous chapter. These certificates take
the form of hermitian operators that have very interesting algebraic properties. We
can exploit the connection between positive semidefinite hermitian operators with
positive maps to give a characterization of the subset of strictly positive maps. We
will also discuss concrete examples where we applied the hierarchy of separability

criteria to analyze the entanglement of bipartite mixed states.

4.1 Introduction

4.1.1 Entanglement witnesses

Another approach to distinguishing separable and entangled states involves the con-

cept of an entanglement witness [49, 29].

Definition 2 An entanglement witness (EW) for a state p is a hermitian operator
W that satisfies
THpW] <0 and  Trlp,, V] > 0, (4.1)

where psep @5 any separable state.
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From this definition it is clear that if (4.1) is satisfied, then the state p cannot be
separable, and W gives a proof of that fact. We will say that W detects or “witness”
the entanglement of the state p. Since an EW is an observable, it also provides a
physical way of determining if a state is entangled. We can just measure W on a
given state, and if the mean value of this measurement (given by Tr[pW]) is less than
zero, then the state must be entangled.

The properties of an EW have a very nice geometric interpretation in terms of
properties of convex sets (see appendix A for a review of useful concepts in convexity).
A very important result in convex analysis is the Hahn-Banach Theorem [42], which
states that any two disjoint convex subsets of a vector space can be separated by an
hyperplane that divides the vector space in two half spaces, where separation means
that each subset is contained in a different half space. We will only need a particular

case of this theorem.

Theorem 5 (Hahn-Banach) Let S be a conver subset of a vector space V', and let
p be a point in V such that p ¢ S. Then there is an hyperplane H that separates S
and p.

Consider the vector space of hermitian operators. The set of separable states is a
convex set in this space, since all its elements can be written as convex combinations
of pure product states, which are then the extremal points of the set. An entangled
state p is just a point in this vector space that does not belong to the set of separable
states. Then, by the Hahn-Banach Theorem, there must be a separating hyperplane.
We can associate with this hyperplane its normal vector, which is some hermitian op-
erator that we can call W. We can see now that the equations in (4.1) use the inner
product between hermitian matrices to state that p and the set of separable states
belong to the different half spaces determined by the hyperplane associated with the
hermitian operator W. This shows that the existence of entanglement witnesses is
just a reflection of the geometric properties of the set of separable states, as we can
see in Figure 4.1. From this geometric point of view, it is clear that we could give,

in principle, a complete characterization of separability by means of entanglement
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separable
states

W

Figure 4.1: Hahn-Banach Theorem.

witnesses. A state is entangled, if and only if, there is an EW that detects the entan-
glement. Then, we could just determine if a state p is entangled or not by computing
Tr[pW] for every entanglement witness . Unfortunately, the lack of a complete
characterization of the set of EWs in the general case, makes this approach not very
useful in practice. This is analogous to the positive map approach to the separability
problem discussed in Section 3.2.5, which gave necessary and sufficient conditions for
separability, but was not a practical tool. This analogy is not a coincidence, since
there is actually an isomorphism between entanglement witnesses and positive maps.

We will discuss this in more detail later in this chapter.

4.1.2 Bihermitian form associated with an entanglement wit-

ness

Let {|i)} and {|j)} be bases of %4 and Hp, respectively, and let |z) = ). z;|i) and

ly) = >_;y;l7) be some arbitrary pure states, where z; and y; are complex numbers,

satisfying >, |z;|*> = >, [ui]* = 1. To every entanglement witness W we associate a
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biquadratic bihermitian form given by

Ew(z,y) = (zyWlzy) = Trljz){z] @ [y)(y|W]

= Y Wyuziyjzem, (4.2)
ikl

where the coefficients of the form are defined by
Wij = (ij|W|kl). (4.3)

The function Ey (z,y) is just the mean value of the observable W on the pure product
state |ry). Any entanglement witness W must satisfy Tr[ps.,W] > 0. Let us recall
that any separable state can be written as a convex combination of projectors into

pure product states

Psep = Zpi|x><fv| ® [y)(yl- (4.4)

From this equation, it is not difficult to see that Tr[ps,W] > 0, if and only if,
Tr[|z) (z| ® |y)(y|W] > 0 for any pure product state |z)(z| ® |y)(y|. From (4.2) we

can see that this condition translates into a positivity requirement on the associated

form Ey(z,y).

4.1.3 Decomposable entanglement witnesses

An entanglement witness W is called decomposable if it can be written as
W =P+Q", (4.5)

were both P and () are PSD operators. We can expand both these operators in the
bases of their corresponding eigenvectors {|¢,)} and {|¢,)}, which yields

P = Zﬁp|¢p><¢p|
Q = ZAP|¢P><¢P|7
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where the eigenvalues x, and A\, must be nonnegative because of the positivity of

both P and (). The form associated with W is then

Ew(z,y) = (zy|(P+Q"™)lzy)
= Trflz)(z] @ |y)(y| P] + Tx[|z){z] @ |y) (y] Q"]
= Tefle) (x| ® |y){y| P} + Te[(|z)(z])" © [y)(y| Q]
= Trfle)(z @ [y)(y| P+ Tx[(|2")(z"]) @ |y)(y| Q]

= erwpwy |2+Z|f¢p|xy
= ZW_Z% zyjl2+2|fz Pty (4.6)

with [1,) = > ¥hlig) and [¢,) = >, ¢%lij). On the third line of (4.6) we used
the fact that Tr[M NTx] = Tr[M*x N] (where X stands for any of the subsystems),
and on the fourth line we used the hermiticity of the operator |z)(z| to replace its
transpose by its complex conjugate, i.e., (|z)(z]|)" = |z*)(z*|, where |z*) = Y, z}]i).
We will make use of these results again later in this chapter.

From the last line of (4.6), we see that the form Ey, (z,y) has a very interesting
property: it can be written as a sum of squared magnitudes (SOS). This trivially
proves that Ew(z,y) is positive, which is equivalent to the property of W having
a positive expectation value on all separable states, as discussed in the previous
subsection.

This type of EW is closely related to entangled states that are non PPT. Let W

be a decomposable EW for a certain entangled state p. Then we must have

0> Te[Wp] = Te[(P+Q™)p]
= Tr[Pp]+ Tx[Q"p]

= Tr[Pp]+ Tr[Qp™]. (4.7)

Then Tr[Qp’4] must be negative, since Tr[Pp] > 0 due to the fact that both P and
p are PSD. But since Q is also PSD, we can conclude that p™ cannot be PSD: a
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decomposable entanglement witness can only detect states that are not PPT.
There is also a converse to this result: all entangled states that are not PPT can be
detected by entanglement witnesses that are decomposable. This can be seen as follows.
Let p be an non PPT entangled state. Then p’4 must have a negative eigenvalue

associated with a certain eigenvector |w). Consider the observable W = (|w){w]|)T4.

Then

Te[Wp] = Tr[(|w)(w])™p]
= Trfjw){w|p™]

= (wlp™|w) < 0. (4.8)
On the other hand,

Ew(z,y) = (zy|Wlzy)
= Tr[lz)(z| @ |y) (y](lw) (w])™]
= Tr[|lz*)(z*| ® |y) (y|(|Jw){w])]

= [wlz"y)l* =0, (4.9)

which proves that W is positive on pure product states, and hence on all separable
states. From Equations (4.8) and (4.9) we can see that W is an entanglement witness
for the state p, and since (|w)(w|) is obviously PSD, W is decomposable. The duality
structure of semidefinite programs will allow us to use the hierarchy of separability
tests to generalize this connection, and show that the set of entangled states breaks
into different classes, each one related to entanglement witnesses whose associated

forms have well-defined algebraic properties.
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4.2 Duality structure and the construction of en-

tanglement witnesses

In the previous chapter we introduced a family of separability tests that allows us to
detect any entangled state. One of the most appealing characteristics of this hierarchy
of tests was the fact that each test could be stated in the form of a semidefinite
program. This fact allows us to employ the very efficient algorithms that have been
developed to solve this type of problem. But there is another important advantage of
this formulation that has to do with exploiting the duality structure of a semidefinite

program.

4.2.1 Dual solutions and entanglement witnesses

Consider the SDP (3.28), and let us focus on the second test of the hierarchy, i.e.,
searching for PPT symmetric extensions to two copies of party A. In this case, the

dual problem takes the form

maximize —Tr[FyZ]
subject to Z >0,
TH[F.Z] =0,
Tr[Z] = 1, (4.10)

where Fy has three blocks, associated with the extension and its two independent

partial transposes, and from (3.25) we can see that it has the block-diagonal form

Go 0 0
Fo=| 0 G™ o [, (4.11)
o o0 G

and so do the matrices F;. Due to this block structure, we can restrict the search

over Z in the dual program, to hermitian matrices that have the same form, so we



o1

can take
Zo 0 0
Z=| 0 z* o |, (4.12)
o o zIr

where the Z; are operators in H%? ® Hp. The positivity condition on Z in (4.10),
translates into a positivity requirements for each of the blocks in (4.12). Using this

structure we can write

TRy Z] = Ti[GoZo + Go'2 Z{* + GIv Z1)

= Tr[GoZo) + Tx[Gy** Z, 2] + Tx[GI? 217
- T‘I‘[Gozo] + 'I‘I'[G()Zl] —|— T‘I‘[G()ZQ]

= TY[Go(Zo+ Z1 + ), (4.13)

since Tr[GpX Z]X] = Tr[GoZi], for i = 1,2 and X = A, B. We defined G in Equation
(3.22) as a linear function of p, so we can write Go = A(p), where A is a linear map
from hermitian matrices in H 4 ® H g to hermitian matrices in 7-[%2 ®H g, whose action
on an arbitrary operator Y is given by

1 1 1 1
A(Y):Y®d—j+P<Y®£>P—ﬁ®d—:®ﬂA[Y], (4.14)

where P is the swap operator defined by Pli)4 ® |7)a ® |k)p = |7)a ® |i)a ® |k) 5.
The adjoint map A* acts in the opposite direction, mapping hermitian matrices in
7—[%2 ® Hp into hermitian matrices in H4 ® Hp, and its action on an operator V is

given by

A (V)= i (T_rA2 [V]+ Tra, [PV P] - ill—: ® Tra, a, [V]) : (4.15)

We can use this adjoint map to define an operator on H 4 ® Hpg, defined by

7 =N (Zo+ 71+ 2s). (4.16)
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We can now combine (4.13) and (4.16) to obtain

Tr[pZ) = Tr[pA*(Zo+ Z1 + Z>)]
= Tr[A(p)(Zo + Z1 + Z3)]
= Tr[Go(Zo + Z1 + Z>)]

= TY[F,Z]. (4.17)

This equation allows us to establish a connection between the objective function of
the dual program (4.10) and the expectation value of an observable Z on the state p.

Let psp be any separable state. Then we know that there is a PPT symmetric
extension of pp, or equivalently, the optimum value of the objective function of the
primal problem (3.28) satisfies topr < 0. From the weak duality property (3.13), we
have

t + Te[FyZ] > 0, (4.18)

for any feasible values of ¢ and Z. In particular, this equation must hold for the

optimum value ?,p¢, which means that
T‘I‘[FOZ] > _topt > 0. (419)

By combining this result with Equation (4.17) we get

Tr[psepZ] > 0, (4.20)

which holds for any Z obtained from a feasible dual solution Z. This means that
any operator Z constructed in this way, satisfies one of the two properties required
in (4.1), and is therefore a candidate for an entanglement witness.

Now consider the case in which the state p has no PPT symmetric extension to
two copies of A, which implies that the state is entangled. In this case, the optimum
value of ¢ in (3.28) must satisfy tp; > 0. Since both the primal and dual problems are

strictly feasible, we can use the strong duality property that implies that an optimal
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dual solution Z,,; exists and satisfies
—Tr[FyZopt| = topt > 0. (4.21)
We can use the adjoint map A* to define an observable
Zow = N (Zape), (4.22)

on the space Ha ® Hp. By using Equations (4.17) and (4.21) we can see that this
observable satisfies

Tr[pZew] < 0. (4.23)

But since this observable was obtained from a feasible solution of the dual problem,

Equation (4.20) tells us that it must also satisfy
Tr[:osepZEW] > 0, (4.24)

for any separable state pse,. These last two equations prove that, if no PPT extension
exists, the optimal dual solution Z,y can be used to construct an explicit entanglement
witness Zpw = AN*(Z,pt) for the state p.

Even though we have shown the calculation explicitly only for the second test
of the hierarchy, a similar reasoning can be applied to all tests to show that if the
appropriate PPT symmetric extension does not exist, the optimal dual solution can be
used to construct an entanglement witness for the state p. The EWs obtained in this
way for each of the tests have very well-defined and interesting algebraic properties,
that can also be used to interpret each step in the hierarchy as a search for EWs of

a particular form.

4.2.2 Algebraic properties of the entanglement witnesses

For any EW there is an associated biquadratic bihermitian form given by (4.2). We

have shown that the requirement that an entanglement witness W is positive on all
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separable states, is equivalent to requiring the associated form Ey (z,y) to be positive.

The first test in our hierarchy of separability criteria corresponds to the PPT
criterion. In Section 4.1.3 we showed that all the entanglement witnesses that detect
states that fail the first test, i.e., those that are not PPT, are decomposable. We also
noted that the bihermitian form associated with these EWs had the property that it
could be written as a SOS.

Now imagine that we have a state p that is PPT entangled, whose entanglement
is detected by the second test of the hierarchy (p does not have a PPT symmetric
extension to two copies of party A). In the previous section we have shown that
the dual SDP will provide us with an entanglement witness Zgy for this state. Let
us concentrate on the properties of Zgy . First, it is clear that this EW cannot be
decomposable, since decomposable EWs can only detect states that are not PPT. By
setting psep = |zy)(xy| in (4.20), we have that

Trl|wy)(xy| Zew] = (zylZew|zy)
= E; (z,y) >0. (4.25)

According to Equation (4.17), we have

Telley) (zy| Zpw] = Te[A(|lzy) (zy])(Zo + Z1 + Z5)]. (4.26)

The operator A maps a state p in H,4 ® Hp into an operator in H5? ® Hp that is
invariant under swaps of the two copies of A and yields the original state p when
one of the copies of A is traced out, but is in general not positive semidefinite. Now
consider the state |zzy)(zzy|. This state is invariant under swaps of copies of system
A and also satisfies Tr 4, [|zzy) (zzy|] = |2ry){(zy|. Then we know that there must exist

some coefficients a; such that

|zzy) (zzy| = A(|zy) (zy]) Z a;Gy, (4.27)
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since the G5 form a basis of the space of matrices M satisfying the swapping symmetry
and Try,[M] = 0. According to (4.10) we have Tr[G;Z;] = 0, and hence we can
rewrite (4.26) as

Telley)(zy| Zew] = Telleay)(zzy|(Zo + Z1 + Zs)]. (4.28)
Combining (4.25) and (4.28), we have
(zy|Zew|zy) = (xay|(Zo + Z1 + Zy)|zay). (4.29)

Since we are working with normalized states, we know that (z|z) = 1, so we can mul-
tiply the left-hand side (LHS) of (4.29) by this factor without changing the equality,
obtaining

By (@) (2l2) = (z2y|(Z0 + Z1 + Z2)|22y). (4.30)

This equation is, in principle, only valid when the variables z; and y; correspond to
a normalized state, i.e., when they satisfy > .|z;|* = 1 and Y, |y;|*> = 1. However,
since both sides of (4.30) are homogeneous polynomials of degree 2 on the z; and the
z}, and of degree 1 on the y; and the y;, we can extend this equality to all values of

the variables, and interpret (4.30) as an equality between two forms that is satisfied

everywhere. But we can now rewrite the RHS of (4.30) as

* Ta, * * *
(xxy|(Zo + Z1 + Zo)|xxy) = (zzy|Zo|xzy) + (x2 y|Z1A lzz*y) + (zzy |Z§B|xxy )
(4.31)

where we used the same properties discussed below Equation (4.6). Since Zy, Z f A2

and
Z2T B are positive by construction, because they are obtained from a feasible solution
of the SDP (4.10), this equation can be shown to give an explicit sum of squares
(SOS) decomposition of the RHS of (4.30) in the same way as we did in Equation
(4.6).

We can summarize these results as follows. The bihermitian form E;__(z,y)

must be positive since Zgy is an EW, but it cannot be a SOS because that would
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imply that this EW is decomposable. However, Equations (4.30) and (4.31) show
that E;__(z,y) can be written as a SOS when multiplied by the form Y, |z;]?. This
property holds for any entanglement witness obtained from the second test in the
hierarchy.

We can perform a similar analysis if we consider the k" test in the hierarchy. From
the point of view of the SDP, the only difference is that the matrices F; in (4.10)
have (k + 1) blocks that correspond to the (k + 1) independent partial transposes
as discussed in Section 3.4.2.2. In the same way as before we can define a map A
mapping hermitian matrices in H4 ® Hp to hermitian matrices in ’H%k ® Hp that
satisfies Gy = A(p), and use the adjoint map A* to associate an entanglement witness
Zpw = N (Zop) with the optimal dual solution of the SDP (4.10), where Zy; will

also have a block diagonal structure with (k 4 1) blocks, so we can write

k
Zop, = Zo & (@ Z,TAl"'TA’) , (4.32)

=1

with each block being PSD. By studying the associated bihermitian form of this EW,

we will obtain an analogous to Equation (4.29) of the form

(wylZpw|ey) = (2** @ (yl (Z Zl) [2)%" ® ly). (4.33)

We can multiply the LHS by (z|z)*~! = 1 without changing the equality, and
this factor transforms the LHS into an homogeneous polynomial on the variables

(z:, 25, Yk, y;) of the same degrees as the RHS. We can then interpret the equation

k
Ej, (xy)(z|z)" ™! = (z[** @ (y] (Z Zl) |2)%* @ |y), (4.34)

1=0
as an identity between forms valid everywhere. By using the same properties of traces
and partial transposes we used before, and the relation between partial transpose of

a hermitian matrix and complex conjugation, we can rewrite the RHS of (4.34) to
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obtain

E; . (@) (=)t = (2/®" @ (y|Zo2)®* @ |y) +
k

Ty, .. T
+ Z<$*|®l ® <$|®k—l ® (ylZ, Ay Az|x*>®l ® |5L’>®k_l ® |y>
=1
(4.35)
And as before, we can use the positivity of the matrices ZlTAl'"TAl, Il =1,...,k, to

see that the RHS of (4.35) gives an explicit decomposition of the LHS of (4.34) as a

SOS. We can summarize these results in the following proposition.

Proposition 1 The biquadratic bihermitian form associated with an EW obtained

from the k" test of the hiemrchy, can be written as a SOS when multiplied by the

k—1
SOS form (z|z)*~ (Z |1:Z|2> :

We will say then that these EWs satisfy the SOS property.
As we discussed in Chapter 3, searching for symmetric extensions with no PPT
requirement generates another complete family of separability criteria. For this family,

Equation (4.30) takes the form

E o (@, y)(2|2) = (22y| Zo|22y), (4.36)

since now the LMI has only one block, corresponding to the positivity requirement
on the extension. Since Z, is PSD, the RHS of (4.36) is also a SOS, so we will still
say that Zgy satisfies the SOS property. The main difference between (4.36) and
(4.31) is in the type of terms that appear in the sum of squares decomposition. Note
that (4.36) involves only squares of polynomials in the variables (z;,y;) while the
second and third terms on the RHS of (4.31) correspond to squares of polynomials
in the (z,y;,7x) and (x;,y;) variables respectively. This situation extends to all
the steps of the hierarchy. The SOS decomposition generated by the PPT family
involves the squared magnitudes of all possible polynomials in the variables (z;,y;)

and their conjugates that are compatible with the symmetry requirements, while the



58
SOS decomposition obtained from the non-PPT family involves squared magnitudes
of polynomials involving only the variables (z;,y;). Thus, for any EW obtained
from any of the two families, the associated bihermitian form becomes a SOS when
multiplied by a certain power of the SOS form (3, |z;|?). However, the value of the
power required need not be the same. The power required in the non-PPT case will
be in general higher than for the PPT case, since the latter provides a decomposition

that uses the same terms as the former plus more general terms.

4.3 A characterization of entanglement witnesses

We have shown that the duality structure of semidefinite programs allows us to con-
struct an EW whenever a certain state p fails a test in our hierarchy of criteria, i.e.,
when p fails to have a PPT symmetric extension to a certain number of copies of
subsystem A. We have seen that the EWs generated in this way have a very distinct
algebraic property.

The completenes of the hierarchy proven in Theorem 4 guarantees that all entan-
gled states must fail one of the tests at some point in the sequence. By using the
duality structure, we can translate this result into a statement regarding entanglement

witnesses.

Proposition 2 All entangled states are detected by an entanglement witness that

satisfies the SOS property.

This result tells us that, of all possible entanglement witnesses, the subset that satisfies
the SOS property is sufficient to detect all entangled states.

We presented our family of separability criteria as the search for an extension of the
original state p that satisfied certain symmetries and had positive partial transposes,
and showed that this search could be put in the primal form of a SDP. By considering
the corresponding dual programs and the properties of the EWs generated by them,
we can give the hierarchy a new interpretation. Given a state p, we try to prove its

entanglement by searching for an entanglement witness. Since we cannot do a search
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over all possible entanglement witnesses, because we lack a complete characterization
of them, we split the search into a countably infinite family of different types of EWs,
each class defined by the smallest value of k such that multiplication by (z|z)*~! =
> |z:|2))* " makes the associated bihermitian form a SOS. We can do these searches
in sequence, increasing the value of k£ in each step, and implement them as a SDP.

The completeness result tells us that searching over the EWs that have the SOS
property is enough to prove entanglement of any entangled state. This raises a very
interesting question: do all EWs have the SOS property? Or, in other words, is the
characterization of EWs provided by the properties of the associated form complete?
We can use some basic properties of convex sets to show that most EWs satisfy the
SOS property, and the ones that may not satisfy it are those that are extremal in the
sense that their associated hyperplane touches the set of separable states. These are
the optimal EWs introduced in [8].

This question is better addressed by using some concepts and results from convex
analysis, that are reviewed in appendix A. Let S be the set of all unnormalized
separable states, which is just the cone generated by the set of separable states. S is
actually a closed convex cone. Its dual cone is S* = {Z : Tr[Zpsep] > 0,Vpsep € S},
which contains the set of all entanglement witnesses. Note that S* is not exactly the
set of entanglement witnesses, since it is not required that its elements detect some
entangled state. An observable X that satisfies Tr[X p] > 0 for all states, is in S* but
it is not an EW. If (5*)° notes the interior of S*, we have (S*)° = {Z : Tr[Zpsep] >
0,Vpsep € S}. Then, we have the following result.

Theorem 6 Let W be an entanglement witness such that W € (S*)°. Then W has
the SOS property, i.e., 3k such that Ew (z,y)(>_, |z:[*)F = SOS.

Proof: Let S; = {Z : Ez(z,y)(>; |7:|?)* = SOS}. These sets are closed convex
cones. Clearly, S; C S;,, and S;; C S*. Now we define the set

o=\Js: (4.37)
k=1
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O is a convex cone, although it may not be closed. We will now show that the dual
of this cone is the set S. Let ps, € S. For any Z € O, 3k such that Z € S;. But

then Z € S*, so Tr[Zpsep] > 0, which means that ps., € O*, so we have
S c o (4.38)

Now, let p € O*. Then, VZ € O we have Tr[Zp] > 0. Since S; C O for all k, then we
have in particular that Tr[Zp] > 0,VZ € S}, which means that p € (S})*. We claim
that this implies p € S. To see this, assume p ¢ S; then p is an entangled state. By
the completeness of the hierarchy of separability tests, we know that there is a value
of k for which Tr[Zp] < 0 for some Z € S}, and then we must have p ¢ (S§)*, which
is a contradiction. Then

oO* CS. (4.39)

From (4.38) and (4.39), we have S = O*. Then we can use (A.9) to state that
S* = cl(O), which means
(5*)° c 0. (4.40)

If W € (5%)° then by (4.37) there exists k such that W € S, and hence it has the
SOS property. O

4.4 The geometric picture

Theorem 6 has a very nice geometric interpretation. It says that the sequence of
convex cones .S, approximates the convex cone S* from the inside, giving a complete
characterization of its interior in terms of the SOS property (see Figure 4.2).

Since the set of all entanglement witnesses is contained in S*, this characterization
applies to all EWs that belong to (S*)°. The theorem does not apply to the EWs
that lie on the boundary of S*, which are the ones that satisfy Tr[Zp,] = 0 for
some separable state pg.,. These EWs may or may not satisfy the SOS property.

Geometrically, they correspond to the EWs whose associated hyperplane is tangent



Figure 4.2: Sequence of cones approximating S*.

to the set of separable states.

We have used concepts from convex analysis to give a nice geometric interpreta-
tion of the dual problem (4.10) in terms of the structure of the set of entanglement
witnesses. We can carry out a similar analysis to give a geometric picture of the
hierarchy of separability tests.

Let Dy, be the set of states that have a PPT symmetric extension to k copies of
subsystem A. It is easy to see that Dy is a convex set. Then, the cone generated
by Dy, Cj = cone(Dy) is a convex cone. Since a state that has a PPT symmetric
extension to k copies, also has one to (k — 1) copies, we have Cy, C Cj ;. The
completeness theorem tells us that the only states having these extensions for any
value of k£ are exactly the separable states. Then the convex cone S of unnormalized

separable states satisfies

S=()C (4.41)
k=1

This means that the convex cone S is approximated from the outside by the convex
cones C}, as seen in Figure 4.3. Figures 4.3 and 4.2 reflect the duality of the SDP. The

primal problem characterizes the cone S by generating a sequence of cones that ap-
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Figure 4.3: Sequence of cones approximating S.

proximate S from the outside, while the dual problem gives another characterization
of it in terms of its dual cone S* by generating a sequence of cones that approximate

S* from the inside.

4.5 Positive maps

It has been known for quite some time that there is a close relationship between
entanglement witnesses, positive bihermitian forms and positive maps [12, 57]. In
particular, this relationship was exploited in [29] to give a complete characterization
of the separability problem in terms of positive maps. We will now show how to
translate the properties of the entanglement witnesses generated by our hierarchy of
separability tests into a characterization of the set of strictly positive maps.

Let us recall the definition of a positive map. Let A4 and Apg be the set of linear
operators acting on H 4 and Hp respectively, and L£(A4, Ap) the set of linear maps
from A4 to Ag. We say that a map A € L(Ax,Ap) is positive, if for any operator
A€ Ay, A> 0 implies A(A) > 0. A completely positive (CP) map, is a map A such
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that the induced map A,
Ah=A®1,: A4 A, > Az ® A,, (4.42)

is positive for all n, with A, being the space of operators in a Hilbert space of
dimension n and 1,, the identity map on that space.

It is clear that any CP map is also a positive map. However, there are positive
maps that are not CP. This has very important consequences on the study of entan-
glement of quantum states. In particular, there is a one to one correspondence [29]
between entanglement witnesses and positive non-CP maps. Since the hierarchy of
separability tests offers a characterization of the interior of the set of entanglement
witnesses, it is not difficult to translate this characterization to the set of positive
non-CP maps. To do this, we use the fact that for any linear operator L € A4 ® Ag,
we can define a map A € L(A4, Ag) by

(KA GDID = (] @ (k[LI7) @11). (4.43)

Conversely, Equation (4.43) can be used to uniquely construct the operator A from

the map A. Equivalently, we can write [33]
A(p) = Tra [L(p" ® 15)], (4.44)

where p is any operator in A,4. Note that the same operator L € A4 ® Ap can
be used to define two different maps, one in £(A4, Ag) and one in L(Ap, As). It
has been shown [33] that this relationship gives in fact a one to one correspondence
between entanglement witnesses, i.e., hermitian operators that are positive on sepa-
rable states but have a negative eigenvalue, and positive non-CP maps. It also gives
a correspondence between CP maps and PSD matrices. By using (4.44) it is not difi-
cult to see that the interior of the set of entanglement witnesses, which correspond to
those Z that satisfy Tr[Zps.,] > 0 for any separable state ps.,, is mapped onto the set

of positive maps that map any nonzero positive semidefinite operator into a positive
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definite operator. Our characterization of entanglement witnesses will translate into
a characterization of this subset of positive maps, which is the set of strictly positive
maps. The maps that are left out are those that send at least one PSD operator that
is not positive definite into a another PSD operator that is not positive definite.

Theorem 6 showed that any Z in the interior of the cone S* (which contains all
entanglement witnesses) has the SOS property. Since they correspond to strictly
positive maps (the ones that map any nonzero PSD operator into a positive definite
operator), we can characterize these maps by associating a biquadratic bihermitian
form directly to the map, using Equation (4.43). Then we can state that a map is

strictly positive only if the form

Ex(z,y) = (yIA(z") (@ )ly)
= > (RIADGDI)e; vz (4.45)
ijkl
has the SOS property.

We can also give a characterization in a language that only involves statements
about maps, without reference to the associated forms. To do this we need to analyze
in more detail some of the properties of the EWs generated by the SDP. Let us
consider the family of separability criteria that searches for symmetric extensions of

a certain state, but does not require positive partial transposes. In this case we have
(zzy|(Zew @ 1a)|way) = (way|Zo|zzy), (4.46)

for all states |z) and |y), with Zy > 0. This is just an equivalent form of Equation
(4.36). It is not difficult to show that this equality implies that the operators Zpy ®1 4
and Zj actually coincide when they are restricted to the subspace given by Hgym, , ®
‘Hp. Furthermore, this is true for any number of copies of system A. If we denote by

ITj, the projector onto Hgym,, ,, (the symmetric subspace of Hi’k), we have

Hk ® I]-B(ZEW ® ﬂ.A@(k—l))Hk ® ]]-B — (Hk ® I]-B)ZO(Hk ® ]]-B) (447)
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Since Z; is PSD on the space ’Hffk ® Hp, its restriction to the tensor product of
Hsymy, 4 and Hp remains PSD, which is the RHS of (4.47). The completeness theo-
rem of Section 3.6 then tells us that if Zgy is a strictly positive entanglement witness,
then there must exist a finite k& for which Equation (4.47) is true.

We can now use the isomorphism defined by (4.43) to restate (4.47) in terms of
properties of maps. First we use the fact that this isomorphism gives a one to one
correspondence between PSD operators in A4 ® Ap and CP maps in L(Ag, Aa)
[33]. Let A : Ag — A4 be the positive non CP map associated with Zgy,, and let
Ay : Ay — Asym(k,4) be defined by A(p) = Hi(p ® 1 400-1))y. Equation (4.44)
can be used to check that the map associated with the operator Il ® 1g(Zpw ®
1 400-1))I1 ® 1 is given by

(Ak o A) A — .Agym(k,A). (448)

But since the RHS of (4.47) is PSD, this map has to be completely positive.

On the other hand, if A is not a positive map, then the map (/_Xk o A) cannot be
completely positive for any k. This is true because the map A; always maps a non
PSD matrix into a non PSD matrix, as we can easily show. Let |i) be an eigenvector
of a non PSD operator ¢ in H 4, with negative eigenvalue. Then (i|o|i) < 0. For
any k, the vector |i)®* belongs to the symmetric subspace Hsymy, ) and satisfies

I1,|:)®* = |i)®*. Then we have

(i|* A (0)|[))®* = (i|** (0 ® 1ye0—n)IT, i) ="
= (i|®(0 ® 1 gou-1)|1)®*

= (ilo]i) <0, (4.49)

and so Ay (o) cannot be PSD. Thus, we have the following result.

Theorem 7 If the map A : Ag — A, is strictly positive, then there is a finite k
such that the map (I_Xk o A) : Ap — Agym(k,a) is completely positive. If for some k
the map (Ak o A) is completely positive, then A is a positive map.
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4.6 Examples

We have applied the second test of the hierarchy to many bound entangled states
found in the literature of dimensions up to 6 by 6. In all cases, this test has been
sufficient to demonstrate entanglement and construct numerical (and in some cases
analytical) entanglement witnesses. Even though we know that from complexity
arguments that there should be entangled states that pass this test (i.e., they have
a PPT symmetric extension to two copies of A), we have not been able to find an
example of this type of state. This is very encouraging from the practical point of
wiew, since it suggests that the second test is very powerful for low dimensions.

We present now in some detail, two examples of PPT entangled states for which
we applied the second test of the hierarchy to prove entanglement and construct the
appropriate entanglement witnesses. We used MATLAB to code the corresponding
SDP, and used the package SEDUMI [47] to solve it.

4.6.1 3 ® 3 state.

We consider the following state, described in [31], given by

2 o} d—«
Po = §|¢+><¢+| + 50+ + ——Po.P, (4.50)

with 0 < a < 5, 1) = %Zfzoui), oy = $(|01)(01] + [12)(12] + [20)(20]) and P
the operator that swaps the two systems (note they are both the same space). Notice
that p, is invariant under the simultaneous change of @« — 5 — a and interchange of
the parties. The state is separable for 2 < o < 3 and not PPT for @ > 4 and a < 1,
which was proved in [12] by using a positive map that is not completely positive.
Our code solved the SDP for this state in about 5 seconds on a desktop computer.
From this solution, numerical entanglement witnesses can be constructed for p, in

the range 3+ ¢ < a < 4 (and 1 < a < 2 —¢) with € > 10°%. By examining the

numerical form of the witnesses in the limit « — 3", we extracted a witness that
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shows entanglement for all o > 3, that is given by

Zew = 2(]00)(00] + |11)(11| 4 [22)(22]) +

+102)(02[ + [10)(10] + |21) (21| — 3[¢h4) (4.

From this entanglement witness, the Choi form [12], which is actually the basis for
constructing the state (4.50), can be recovered. Since this observable is obtained from
the dual program corresponding to the second test of the hierarchy, it satisfies the
SOS property, and can be shown to be explicitly nonnegative on separable states by
the identity

Ky Zpw|zy)(z|z) = 220215 — T220Y; — T1225 |

+|2z0ziyo — 2x125Y1 + T12TY0 — x2x3y2|2
+|2z0Tys — 221T5Yys + Taxhys — ToThY|?
+|2z0Tiyo — 2T2Tiys + Toxlys — 117y
+3 |zamoyt — Tamoys|® + 3 |z1ziye — mortysl®
+3 |zo75ys — zox3yo|® + 3|Toxtys — rxi]* > 0.

The expected value of this observable on the original state is Tr[Zgw pa] = 13— a),

which demonstrates entanglement for all @ > 3. Applying the non-PPT hierarchy to
this state fails to show entanglement for o < 3.84, even if we apply the sixth test in

this hierarchy, showing that it is considerable weaker than the PPT hierarchy.

4.6.2 4®4 state

We consider next the 4 ® 4 state given by

o= =) (] + 42} (ol +a-0), @20, (451)
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where

= 00) + 1) + v |22)),
Yo = 5(01) +]10) + VZ[33)),
- %(|oz><oz| 103)(03] + [12)(12] + [13)(13] +

+[20)(20] + |21) (21| + |30) (30| + [31)(31]).

Applying the PPT criterion yields provable entanglement only for those states with
a < 2v/2 ~ 2.82843. It was suspected [26] that the state was actually entangled
for all nonnegative values of a. Again, using the second test, we showed that this is
indeed the case and provided an explicit entanglement witness. Using essentially the
same approach as in the example above, from the dual solution of the semidefinite

program we can identify a particular witness

W= (]22) —00))((22] — (00]) + (|22) — [11))({22] — (11]) +
+([33) = 01))((33] — (01]) + (I33) — [10))((33] — (10]) +
+]23)(23| + [32) (32| — |22)(22] — |33)(33].

This witness is nonnegative on all product states, as the following identity certifies.

(zy|Wlzy)(zlz) = |zoxgyo + z127y0 — T2x5ys — T37ys|” +
|Zoziyr + T12iY1 — Tow iy — T3xhys|’ +
|22x3y2 + T3T5Y2 — Toxsyo — T1x3Y1]” +
|woxhys + T3T3Ys — T125Y0 — Toxsy1[” +
|w123y5 — oxays|* + [zowsys — rzays | +

|$1JJ2?JS - 96’03132?Jik|2 + |313096’3y6k - xlxgy’f|2 > 0.

Applying the witness W to the state (4.51), we obtain Tr[Wp,] = —2(‘26;1) < 0,

therefore certifying entanglement for all values of « in the allowable range.
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4.7 Summary

We have seen that the duality structure of the SDP used to implement the separa-
bility tests introduced in Chapter 3 provides us with an explicit construction of an
entanglement witness for a state p, that has been shown to be entangled by one of the
tests. The entanglement witnesses generated in this way have a very nice algebraic
property: their associated bihermitian form becomes a sum of squared magnitudes
when multiplied by a certain positive form that it is also a SOS. This property can
be used as an explicit proof for the positivity of the form, which is equivalent to the
requirement that the corresponding EW must have a nonnegative expectation value
on all separable states.

This property of the entanglement witnesses generated by the dual program, and
the hierarchichal structure of the separability tests, allows us to give an interpretation
of this approach to the separability problem in terms of entanglement witnesses.
To detect the entanglement of a state, we just search for an entanglement witness
for it, but we do it in a sequence of searches, each one restricted to entanglement
witnesses of a certain form, which is determined by the properties of the associated
bihermitian form. The key points are that searching over these restricted classes can
be implemented as a semidefinite program, and these classes of EWs are sufficient to
detect entanglement of any state.

We have applied this approach to many PPT entangled states found in the liter-
ature. For all cases tested so far, with dimensions of up to 6 by 6, the second test of
the hierarchy has been sufficient to show entanglement. By studying the numerical
EWSs constructed by the dual program, we can also extract an EW that can show
entanglement for a parameterized family of states. This is very useful, since every
EW that we construct can be added to our entanglement toolbox, since it may help
to show entanglement for some other family of states.

The connection of the separability problem with other important problems in
algebraic geometry and linear algebra, allowed us to translate important results from

one setting to another and develop a sort “mapping” between characterizations of
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entangled states, positive bihermitian forms and positive maps. The completeness of
the hierarchy implies in the case of bihermitian forms, an extension to the complex
case of the positive solution to Hilbert’s 17"" problem [40], which states that all
positive real forms can be written as a quotient of positive forms that are a sum of
squares. Our result implies that the same is true for strictly positive bihermitian
forms. And for maps, it provides a characterization of strictly positive maps in terms
of their extendability to completely positive maps in a larger space, as well as in terms

of an associated bihermitian form.
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Chapter 5

Local manipulations of three-qubit
pure states

In this chapter we will study deterministic local transformations of three-qubit pure
states. We will be interested in characterizing the set of states that can be obtained
from a given state by letting the three parties A, B and C' (which following the usual
quantum information convention we will refer to as Alice, Bob and Charlie) apply only
local operations, such as local unitaries and local measurements, and communicate
through a classical channel, colectively known as LOCC (local operations and classical

communication).

5.1 Introduction

The study of the transformations that are possible when using only local operations
and classical communication (LOCC) is very useful since it allows us to classify en-
tangled states and it can be used as one way of quantifying this resource. Two states
that are related by local unitary transformations are considered equivalent as far as
entanglement is concerned, since both states can be reversibly obtained from each
other, and local operations cannot increase entanglement. The action of the group of
local unitaries then breaks the space of states into orbits [34]. Then, to transform a
pure state into another state in a different orbit by local operations, we need to allow
each party to apply a local generalized measurement, i.e., a POVM, on their part of

the state.
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For bipartite pure states, the problem of deterministically transforming one state
into another has been solved by Nielsen [36], who gave necessary and sufficient condi-
tions for a given transformation to be achievable with probability 1. Later Vidal [53]
extended this result by calculating the maximal probability of success of any LOCC
transformation of bipartite pure states. For more than two parties, this problem is
still unsolved. The bipartite case seems to be very special due to the existence of
the Schmidt decomposition. As we briefly discussed in Chapter 2, any pure bipartite

state can be transformed, by applying local unitaries, into a state of the form
DESPPIHE (5.1)

where the ); are positive real numbers, |ii) = |i)4 ® |i)p, and {|i)a},{|i)p} are
orthonormal vectors on each of the subsystems. This greatly simplifies the analysis of
LOCC transformations: it gives a canonical expression for states in a given orbit, and
allows the reduction of an arbitrary LOCC protocol to a protocol in which one party
applies local unitaries and local POVMs,; and the other party only has to apply a local
unitary, conditional on the results obtained by the first party [35]. For multipartite
states with three parties or more there is no known reduction of LOCC protocols.

For a system of three qubits, several Schmidt-like decompositions have been pro-
posed [9, 1], all based on the idea of using local unitaries to get rid of as many coeffi-
cients as possible. One interesting property that emerges from these decompositions
is that in general it is not possible to make all the coefficients real. In particular there
are states that have at least one coefficient that is complex for any local basis, and
this has as a consequence that these states are not locally unitarily equivalent to their
conjugates (the states obtained by taking the complex conjugate of the coefficients).
This contrasts with the bipartite case in which, since the Schmidt decomposition has
only real coefficients, every state is in the same orbit as its conjugate.

A POVM applied to a state has, in general, outcomes that belong to different
orbits. However, a protocol that transforms a state into another with probability 1,

has to include at least one POVM for which all outcomes are in the same orbit. For
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instance, this has to be the case for the last POVM of the protocol: if its outcomes
are not in the same orbit, then the protocol has not achieved the transformation
with probability 1. We will call a POVM with this property a deterministic POVM,
because we can use such a POVM and suitable local unitaries, to obtain any state in
the orbit of the outcomes with probability 1, attaining a deterministic transformation.
Since any local POVM can be replaced by a sequence of 2-outcome POVMs [3], it is
then interesting to study the case of a deterministic 2-outcome POVM.

In the rest of this chapter, we will study some properties of deterministic LOCC
protocols and deterministic POVMs applied to three-qubit pure states. We will only
be interested in transformations between states that have genuine tripartite entan-
glement (i.e., all three reduced density matrices have rank 2), since other cases can

be reduced to the bipartite case.

5.2 General properties of LOCC transformations
of three-qubit pure states

Pure states of three qubits with 3-particle entanglement are divided in two inequiv-
alent classes: the GHZ class and the W class [18]. States in the GHZ class can be
transformed by means local unitaries into a state that is a superposition of only two
pure product states. States in the W class always require at least three pure product
states in any local basis. These two classes have the property that any local POVM
applied to a state in a given class, can only have as outcomes states in the same class.
The states in the W class form a set of measure zero in the space of all possible pure
states of three qubits. In particular, a state in this class can always be transformed
by local unitary operations, into a state with real coefficients. We will call a state
real if it is locally unitarily equivalent (LUeq) to a state with real coefficients. States

in the GHZ class can be either real or complex.
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Any state in the GHZ class is LUeq to a state of the (essentially unique) form

[¥) = 1l000) + velp.a)len)lec), (5.2)

where p > v > 0 are real numbers, v € [0,27) and |px) = cosdx|0) + sindx|1) with
dx € (0,%] and X = A, B,C [18]. We will assume that the state [t/) is normalized,
so only five of the six parameters in (5.2) are independent. If we write |¢) = |u) + |v)
where |p) and |v) correspond to the first and second term in (5.2), respectively, we

can construct an invariant quantity
Q) = (u|lv) = pre™ cos 4 cosdp cos be. (5.3)

If 4 = v, the sign of the phase v is not well defined, since in this case there is
an ambiguity with respect to which product state in (5.2) is |u), and hence we can
interchange |u) and |v) by local unitaries, and transform the state into its conjugate,
which changes the sign of 7. As shown in [2] this means that the state is real, although
we need to use complex coefficients if we want to write it in the particular form given
by (5.2). Aside from this ambiguity, this decomposition is unique. If 4 > v then the
state [¢) is complex if and only if Im(2(|1))) # 0, where Sm(z) is the imaginary
part of the complex number z. If Im(Q(|1))) = 0, then either v is equal to 0 or 7
(and in both cases all the coefficients are real, so the state is real), or 0x = 7§ for

some X . If this is the case, we can get rid of the phase by applying the local unitary

1 0
U= . , (5.4)
0 e™
to party X, which makes all the coefficients real.
Let {A;},i=1,...,n, represent a local POVM applied by Alice. If we apply it to
_1
a state |¢)) we can write the normalized outcomes as |¢;) = ¢; *A; ® 1 ® 1|¢)), where
g = (¢|AIA1 ® 1 ® 1|¢) is the probability of outcome i, and 1 is the 2 x 2 identity

matrix. Let us consider the case in which none of the operators A; corresponds to
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a projective measurement (i.e., they all have rank 2). If we apply this POVM to a
state with genuine tripartite entanglement, all the outcomes will still have 3-particle
entanglement. To understand why this is true, suppose that there is an operator A; of
the POVM such that its corresponding outcome |¢;) has no 3-particle entanglement.
Then |¢;) has to be the product of a pure state of one of the parties, let us call
it X, and a pure state (possibly entangled) of the remaining two parties, so party
X is completely disentangled from the other two. Since we are assuming that A,

is invertible (it is a rank two, 2 by 2 matrix), we can construct a local POVM with

operators {Aj_l, \/ 1- (Aj_l)TAj_l} that when applied to |¢;) has at least one outcome
that has 3-particle entanglement (the one corresponding to Aj’1 ® 1 ® 1|¢,)), that
occurs with nonzero probability (because (A;')TA; " also has rank two). Then we
would have a protocol that with finite probability and only applying local operations,
allows us to create entanglement between party X and the other two, starting from
a state in which party X was disentangled, and this is clearly not possible.

Let us consider a state |¢) in the GHZ class and let Alice apply a local POVM to
it. Then all the outcomes |¢;) have to be in the GHZ class too, so we know that we

can apply local unitaries to them such that

(Uag) ® Uy ® Uceiy)|@i) = |pa) + |vi), (5.5)
where
|wi) = :]000),
vi) = vie™ |paa)]ese) lvo)- (5.6)

Since |u;), |v;) and |p), |v) are product states, and the action of the POVM and any

local unitaries is still local, for every outcome ¢ we must have either

Vailp) = (Uae @ Upe) ® Ucp)) (A @ 1® 1)),
Vailv) = (Uaw ® U ® Ucp))(Ai @ L@ 1)|v), (5.7)
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or

Vi) = (UA(i) ® U ® UC(i))(Ai ®1® 1)),

Vailvi) = (Uai @ Ups) ® Ug)(Ai @ 1@ 1) ). (5.8)

To decide which one is the case, we note that decomposition (5.2) requires that

w; > v;, and p;,v; are the norms of the states |u;) and |v;), respectively. Then, if

we have that (5.7) must hold. Otherwise, (5.8) holds. Using 3, AT A; = 1, since the

(WATA; @ 1@ 1|p) > (V]ATA; ® 1 ® 1|v) (which is equivalent to (u|p) > (vi|w)),

A; are the elements of a POVM, we can then write

Re(Q[¥))) = (plv) + vlp) = Zqz(<ﬂz|Vz> + (Vi)
= Z%%G(Q(Wﬁ))a (5.9)

with Re(z) the real part of z. This result is due to Vidal [52]. It puts a strong

constraint on deterministic LOCC protocols, as we show in the following theorem.

Theorem 8 Let 1) and |£) be two states in the GHZ class and assume there is a
LOCC protocol that transforms 1) into |€) with probability 1. Then,

Re(2([y))) = Re(2([)), (5.10)

i.e., the quantity Re(QY) is invariant under deterministic LOCC transformations. Fur-
thermore, it must be invariant for every local POVM in the protocol, that is, if the

POVM is applied to a state |x) and has outcomes |¢;), then

Re(Q(|x))) = Re(Q(|¢4))), (5.11)

for all i.

Proof: The most general LOCC protocol is a sequence of local unitaries, local

POVMs and classical communication between all the parties. Local unitaries can-
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not change Re(£2) because 2(|1)) is an invariant of the orbit. Thus, it can only be
changed by applying POVMs. Consider the first POVM of the protocol, that takes
the state |¢)) into one of its possible outcomes |¢;), each occurring with probability
¢;- Then, according to Equation (5.9) (and because g; > 0), either all outcomes |¢;)
satisfy Re(Q(|¢;))) = Re(2(|Y))) or there are at least two outcomes |¢1) and |¢ps)
that satisfy Re(2(|¢1))) < Re(Q(|))) < Re(Q2(|¢p2))). It is easy to see that in the
latter case, at any stage in the protocol, we will have two outcomes |¢;) and |¢;) that
will satisfy Re(Q2(|¢;))) < Re(2(|¢x))). This will be true in particular for the last
stage of the protocol. But that would mean that |¢;) and |¢;) are in different orbits
(because € is invariant under local unitaries), and that contradicts the fact that the
protocol is deterministic. Thus, the only possibility is that all the outcomes of the
first POVM have the same value of Re(2). We can apply exactly the same reasoning
to all the POVMs in the protocol, and then conclude that all the final outcomes sat-
isfy Re(2(|¢i))) = Re(Q(|h))). Since this is a deterministic protocol that transforms
|1} into |£), then all these outcomes should be in the same orbit as [£), and so we
have Re(Q((€))) = Re((|6:)) = Re(2(1)).0

This theorem tells us that under deterministic LOCC transformations the class
of GHZ states breaks into an infinite number of subclasses that are labeled by the
real part of the complex invariant 2. Two states in different subclasses cannot be
transformed one into the other with probability 1 by means of local operations and
classical communication. From Equation (5.3) and from the range of the parameters,
we see that the set of these subclasses is isomorphic to the open segment (—%, %)
The subclass that contains the GHZ state, |GHZ) = %(|000) + |111)), corresponds
to the center of the segment, and it is defined by Re(£2) = 0. Note that all subclasses
contain both real and complex states.

This result gives a broad description of how a state can be transformed in the
space of orbits with probability 1. Tighter constraints can be obtained from studying
the behavior of entanglement monotones [54], which usually introduce some necessary
conditions that must be satisfied in order for a transformation to be possible to be

implemented locally. To find sufficient conditions we have to be able to show that a
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protocol exists that accomplishes the transformation. A first step in that direction is

to study deterministic POVMs.

5.3 Deterministic 2-outcome POVM

In this section we will study under what conditions a 2-outcome POVM is a deter-
ministic POVM (i.e., both outcomes are in the same orbit). A general three-qubit

state can be written as

) = Z tijulijk), (5.12)

ijk=0
where the complex coefficients t;;, satisfy )=, [tijx|* = 1. Following [1], we can define

matrices Ty and Ty, where

(T3)jx = tij- (5.13)

The group of Local Unitary (LU) transformations of three qubits is locally isomorphic
(i.e., has the same Lie algebra) to U(1) x [SU(2)]3. Under a LU transformation per-
formed only by Bob and Charlie with matrices Ug and Ug, the matrices T; transform
according to

T, — UgTiUg, (5.14)

while if the transformation is performed by Alice, we have

T — u‘foTO + UflTl, (515)

where uf}- are the matrix elements of Ujy.
It has been shown [48, 25] that the orbits of three-qubit pure states can be pa-
rameterized with 5 continuous invariants plus a discrete invariant, since in general

a three-qubit state is not LUeq to its complex conjugate. There are many ways of
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choosing these invariants [18, 9, 1]. For our analysis we will use the following set

_ * * _ 2
L = E : tkijtmijtmpqtkpq = Tr[pA],
1jkmpq
— * * 2
I = E : tikjtimjtpmqtpkq = Tr[pB],
ijkmpq
_ * * _ 2
I3 = § tijktijmtpamlpge = Trlpcl,
1jkmpq
I4 = | E tijk:tlmntopqtrsteileorejmepsekqent7
ijklmnopqrst
_ * * *
15 — E tijktilmtnlotpjotpqmtnqk7 (516)
ijklmnopq

where ¢;; is the antisymmetric symbol, px is the reduced density matrix of subsystem
X (X = A, B,(C), and all the indices are summed from 0 to 1. I, is the 3-tangle
introduced in [13]. As shown in [48] these 5 invariants are algebraically independent.
However, since they are all real and invariant under complex conjugation of the co-
efficients ¢;;, they cannot distinguish between a state and its conjugate. To fix this

ambiguity we use the complex invariant [24]

Is = E ti1j1k1ti2jzk2tisjsksti4j4k4ti5j5k5tiﬁjskﬁ X
ujik

inuks Uingaka Lisgahs Liagaka Lisjoka Lisske (5.17)
where again all indices are summed from 0 to 1. To completely specify an orbit we
need the value of I; through I5 plus the sign of the imaginary part of Ig. It is worth
noting that 1 —I; , 1 — Iy , 1 — I3 and I, are decreasing entanglement monotones [54],
while I5 is not an entanglement monotone [24].

We will consider the case of a 2-outcome POVM applied by Alice on a pure state
|1} of three qubits. The most general POVM is given by operators Ay and A; of the
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form
Ao = W ve o U,
0 vy
AL = W vi-z ’ U, (5.18)
0 Vvi-y
where Vj, V3 and U are unitary matrices and 0 < z,y < 1. This decomposition can
be understood in the following way: A; are positive semidefinite operators, and by
performing a singular value decomposition we know that there are unitary matrices
V; and U; such that ViTAiUiT are positive semidefinite diagonal matrices. The matrices
U; can be used to diagonalize the hermitian matrices AIAi. But since we have the
constraint that AZ;AO + A];Al = 1, and 1 is already a diagonal matrix, it is easy to
see that we can take Uy = U; = U.
It is easy to check that the operators in (5.18) satisfy Aj Ay + AlA; = 1. When

we apply this POVM to a state |1), we obtain two outcomes |¢g) and |¢;) given by

L Aie1@ 1) , i=0,1, (5.19)

|6i) = NG

where ¢; is the probability of outcome i. From (5.18) and (5.19) we can see that the
action of this POVM on [|¢) is equivalent to applying a local unitary transformation
first given by U, applying a diagonal and real POVM and finally applying a local
unitary V; conditional on the outcome of the POVM. This last local unitary cannot
change the orbit of the outcome |¢;). Since we are considering two states in the same
orbit to be equivalent, we can take this unitary to be the identity without loss of
generality.

Let us consider first the case in which U = 1 in (5.18). Then both elements of
the POVM reduce to real and diagonal matrices

z 0 Vv1i—z 0
EO = \/_ , E1 = . (520)

0 Vi 0 Vi—y
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From now on, we will take 0 < z,y < 1, since when x or y are equal to zero or
one, the POVM becomes a projective measurement, which destroys three particle

entanglement. We can write explicit expressions for both outcomes of the POVM

o) = %jzkwto]-kmjmmukujk»,

Now we compute the invariants I; through I5 for |¢g) as a function of z and y

22a® + 2zy TY[ToT)] Te[TyT]] + y2b?

Il(xa y) (GZE _|_ by)2 )
/ _ 2?Fy + 22y T TG T T] + y* P
2('7"7 y) - (a:c n by)2 )
; 2 Fy+ 20y T[Ty T TV T + 2 Fy
3(x,y) - (ax—l— by)2 )
zy Li(]Y))
I(z,y) = W,
.733 Goo + 3$2y G01 + 31’y2 G10 + y3 G11
Is(z,y) = @z by)’ : (5.22)

where the matrices T} are as defined in (5.13), a = Tr[TyT}], b = Tx[T\T{], a + b =1
for a normalized [¢), F; = Tr[(T;T})?] and Gy; = TT[EZ}TEETT}ET]. The invariants
for |¢1) are obtained from (5.22) by replacing 2 by 1 — z and y by 1 — y. For the two
outcomes to be in the same orbit, we need the five invariants to take the same values

for both states, i.e.,
L(z,y)=L(1—-2,1—y) , i=1,...,5. (5.23)

If these conditions are satisfied, then either |¢g) is LUeq to |¢1), or |@p) is LUeq
to |¢1)*. To determine which one is the case, we need to compute the sign of the
imaginary part of the complex invariant Is. For now, let us concentrate on the

equations in (5.23). These equations have a common solution with 0 < z,y < 1 if
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and only if the following conditions are satisfied (see appendix B)

o T(LT)] = 8 Tr(ToT3)?), (5.24)
o TNTiTTITT = b T[T, T T, T Ty T}), (5.25)
a?x(1—z) = b*y(l —y). (5.26)

Furthermore, the solution satisfies I5(|¢;)) < I5(|¢))). This is worth noting because I;
is not an entanglement monotone, but behaves monotonically under this particular
class of POVMs. Equations (5.24) and (5.25) are real valued polynomial constraints
on the coefficients of the state, and in general are not satisfied for an arbitrary state.
From (5.14) and (5.15) we can see that these constraints are invariant under LU
transformations applied by Bob and Charlie, while they are not invariant under local
unitaries by Alice. Equation (5.26) is a constraint on the parameters of the POVM
that depends on the state we are transforming through the values of a and b.

Now let U in (5.18) be any unitary matrix, so our POVM takes the form { EqU, E\U },
with Ejy, Fy given by (5.20). This is equivalent to applying the local unitary U to
Alice’s part of the state, followed by a diagonal POVM, and we already know the
conditions that need to be satisfied in this last stage for the outcomes to be in the
same orbit. So we can reduce the problem to finding a local unitary performed by
Alice that would transform the original state [¢) into a state that satisfies (5.24)
and (5.25). Then we can choose a POVM that satisfies (5.26), where now a and b
are computed using the coefficients of the transformed state U @ 1 ® 1]¢). We will

consider the cases of real and complex states separately.

5.3.1 Real states

To characterize the orbit of a real state [1) we only need four parameters instead of
the five needed for an arbitrary state. First, note that, by our definition, any real
state can be transformed by means of local unitary transformations, into a state with

only real coefficients. Of the (at most) eight coefficients of this state, only seven are
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independent if we are considering a normalized state, and we can get rid of three
more by applying local real unitary (orthogonal) transformations on each of the three
qubits. Since I;,i = 1,...,4, are algebraically independent, we can use this set to
parameterize the orbits of real states. This greatly simplifies our analysis because,
as seen in appendix B, (5.24) is enough to assure that I;,i = 1,...,4, have the same

values for both outcomes of our POVM. So, given a real state, we need to find a U

such that |¢') = U ® 1 ® 1|) satisfies (5.24). Let

U( ) cosa  sin« (5 27)
a) = . .
—sina cos«

In terms of the matrices T;, which group the coefficients ¢;;;, of the state, this trans-

formation can be written

Ty = cosa Ty+sina Ty,

T, = —sinaTy+cosa T. (5.28)

8 a, introduce the variable

If we plug this into (5.24), take out a common factor cos
z = tan a and move all terms to one side, we can write (5.24) as a polynomial p(z)

of degree 8 with real coefficients, of the form
p1(2) = A(1 = 2%) + B(z +2") + C(2* — 2%) + D(2* + 2°) = 0. (5.29)

If zy is a real root of p;, then U(ay), with oy = arctan(zp) is the unitary matrix we
are looking for. Now it is easy to check that p;(1) = —pi(—1), so p; has at least
one real root in [—1, 1], which means that we can always find a unitary U, such that
[P = U ® 1 ® 1]y) satisfies (5.24). Now we can apply to [¢') a diagonal POVM
that satisfies (5.26), and we are certain that both outcomes have the same values of
the four invariants I;,7 = 1,...,4. But in the case of real states this is enough to
completely specify the orbit, since |¢) real implies |¢') is real, since U was chosen to

be real, and the outcomes of the POVM, |¢o) and |¢;), are also real, due to the fact
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that the POVM itself is real. In this case we do not have to worry about the value
of the complex invariant. Finally, since |¢g) and |¢;) are in the same orbit, we can
apply local unitaries to transform them into any state in the same orbit. So the net
result of this protocol is to transform any state in the orbit of |¢) into any state in
the orbit of |¢g), with probability 1. The results presented so far show that for any
real state, there is some set of orbits that can be reached deterministically from that
state, although we have not yet characterized this set. We will discuss this problem

in Section 5.4.

5.3.2 Complex states

The analysis of complex states turns out to be more complicated, because now we

need to find U such that [¢)") satisfies both (5.24) and (5.25). We can write any unitary

) e 0 cosa  sin« e 0
e . . (5.30)
0 e —sina cos« 0 e %

The phase and the matrix on the left will commute with the diagonal matrices of the
POVM, so their action is equivalent to applying a local unitary to the outcomes of
the POVM. But we know that this action will not change the orbit of the outcome
state, so we can fix them to be the identity. So U will take the state |¢)) with matrices

To and T7 to a state |¢') with matrices

Ty = cosa e Ty+sinae™ T,

T; = —sina e Ty +cosa e ™ Ty. (5.31)

We can substitute (5.31) into the homogeneous form of (5.24) and (5.25), again divide
by cos® a and introduce the variable z = tan a, so both conditions are expressed as

polynomials in 2z equal to zero, with real coefficients, of the form

pi(2) = Ai(1 = 2%) + Bi(z + 2") + Ci(2® = 25 + Dy(2* + 2°) =0, i=1,2, (5.32)
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with the coefficients given by

A = ag,

B; = by;c08(2¢) + by; sin(2()

Ci = coi + c13008(4() + c2;8in(4() ,

D; = dy;co8(20) + do; sin(2¢) + da; cos(6¢) + dy; sin(6(), (5.33)

where ag;, bji, ¢ji, dj; are real valued polynomials on the coeflicients of 1), whose exact
form can be computed from regrouping the terms obtained after substituting (5.31)
into (5.24) and (5.25).

Finding a local unitary performed by Alice on |¢)) that would yield a state that
satisfies (5.24) and (5.25) is equivalent to finding values z and ¢ (which parameterize
the unitary) such that both polynomials p; and py vanish simultaneously. We can
think of ¢ as a parameter for these polynomials, and what we are looking for is a
value of ( such that p; and py have a common real root.

The polynomials p; have certain useful symmetries. First of all, because their
coefficients are real, complex roots appear in conjugate pairs. Also, because of the
particular symmetry of the coefficients (i.e., the coefficient of z® is equal to minus the
independent term, the coefficient of 27 is equal to the coefficient of z, and so on), if z
is a root of p;, so is —% (this corresponds to o + § being also a solution if so is «, and
this is related to the fact that (5.24) and (5.25) are symmetric under the interchange
of 0 and 1). Since p;(1) = —p;(—1), p; has a real root in [—1,1]. To simplify the
problem, we can extract a factor z? 4+ 1 from p;, so we reduce the problem to two
polynomials of degree 6, that have the same symmetry properties discussed above. If

1

we introduce the variable w = (; — z) we can further reduce the two polynomials of

degree 6 to two polynomials g;(w),i = 1,2, of degree 3, given by
gi(w) = Aw® + Biw? + (C; + 24:)w + (D; + By), (5.34)

with the property that if w is a root of g;, the corresponding 2’s given by w = (% —2)
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(which are real if and only if w is real) are roots of p;. So we reduced the problem to
finding a common real root of g; and go. The resultant [14] of the two polynomials

g1 and g is a function of ( and takes the form

4
Res(g1,92)(¢) = > _(ri cos[(2 + 4k)(] + sy sin[(2 + 4k)()), (5.35)
k=0

where 7, and s are polynomials on the coefficients of |¢)). We can see that this
resultant vanishes several times in [0, 27|, which is the range of {, and this is useful
because the resultant of two polynomials vanishes if and only if they have a common
factor. This falls short of saying that we can find ( such that g; and g, have a common
real root, because there is in principle the possibility that the common factor is a
polynomial of degree 2 irreducible over the real numbers, so g; and g, have a common
root but it is complex. However, after checking this procedure with many randomly
generated states, we found that the common factor always corresponds to a real root.
Let us assume that in fact, we can always find a value (y such that p; and py have

a common real root zg. Then we know that if we apply U(ag,{p) ® 1 ® 1 (where
ap = arctan(zg)) to |¢), we obtain a state [¢)') that satisfies (5.24) and (5.25). Then,
we can choose a POVM that satisfies (5.26), and we can be sure that both outcomes
of this POVM, when applied to [¢'), will have the same values of [;,i = 1,...,5.
However, as we pointed out before, this is still not enough to say that both outcomes
are in the same orbit. There is still the possibility that they are in orbits that are
conjugate to each other, since we are dealing with complex states, which are not
LUeq to their conjugates. To decide which one is the case, we can compute the sign
of the imaginary part of I5 for both outcomes. Unfortunately, the expression of I
for both outcomes is too complicated and it is not possible to extract the sign of the
imaginary part analytically for an arbitrary state, although it is very easy to compute
it numerically for a given state. We analyzed randomly generated states, and found
that we can always find a value of ¢ for which both outcomes are indeed in the same
orbit (although there are other values of  for which the outcomes are in conjugate

orbits). We will refer to states with this property as gate states, since we can use
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them as a gate to leave one orbit and move to another with probability 1.

5.4 The transformation in the space of orbits

We can now use the results of the previous section to give a characterization of the
states that can be obtained from |¢)) by applying a 2-outcome deterministic POVM.
Let us assume that the state |1)) is a gate state. We will also assume that a < b (if it
is not, we apply a bit flip on Alice’s qubit, which interchanges the matrices Ty and 77,
and hence a and b). We can use the invariants evaluated for |@g) (given by (5.22)) to
characterize the orbit of the outcomes. These equations are homogeneous of degree

zero in x and y, so we can write them in terms of only one parameter A\ = £

A
LA = i T I\ .:]—7"'747
W = a+ B
A(Bs + 15A)
[5()\) = Oé5 —|— W, (536)
where
Te[(TyT1)2
a;p = ].,0622063: [(020)],064—0,
a
_ T(ToTy)?]
Qs = T3
a
By = 2T, Tr[T T — ab) |
Tr[(TyT5)2
By = Z(T‘r[TngTlTlT]—bM),
Te[(TyT5)2
B = aminrirr) )

Br = L)),

Tr[(T,T1)3
Bs = (T[T ToTiTyTy] - i (Chet Dl

a ) )
W Tr[(ToTi)?]

vs = 3(Tx[T\TIT\TiTyT}] — >

). (5.37)

The range of A is [1,4+00) (when a < b), with A = 1 corresponding to no transfor-

mation (Ey o 1), so we have I;(A = 1) = L;(]¢)), and A = 400 corresponding to
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a projective measurement (y = 1,z = 0) that destroys any 3-particle entanglement.
From (5.36) we can see that the set of orbits we can reach from |¢) by applying a
deterministic 2-outcome POVM can be described as a one parameter family {I;(\)}
that corresponds to a curve in the space of orbits, that starts at state |¢) and ends
on a state that has no tripartite entanglement.

It is possible for some orbits to have more than one gate state. The values of
the coefficients (5.37) will be in general different for different gate states. Since these
coefficients determine the curve {I;(\)}, we will be able to transform to different sets
of orbits depending on which gate state we use. We can also reach a different family
of orbits if we let Bob or Charlie apply a deterministic POVM instead of Alice. This
is because the matrices T}, are different for different parties, and so will give in general
different gate states.

If we fix the sign of the imaginary part of Is, we can use the set of invariants
{L;;i=1,...,5} as coordinates for the orbits. All the previous results can be sum-
marized in the following picture. Every point in this space (which represents the orbit
of some state |1))) is the starting point of a finite number of curves, each representing
a set of orbits that can be obtained from [¢) with probability 1 with a local 2-outcome
POVM.

More orbits can be reached if several rounds of deterministic POVMs are allowed.
The general protocol will be something like this: (i) starting with the state |¢), Alice
applies a local unitary to transform it into a gate state; (ii) she applies a POVM
on her part of the system, that satisfies (5.26); (iii) according to the outcome she
obtains, she communicates to Bob and Charlie the state |¢)') they are sharing after
the measurement; (iv) they decide which one will apply the next POVM and repeat
the same steps, now starting with the state |¢)'). A simplified pictorial representation
of this transformation is given in Figure 5.1. The transformation occurs in the 5-
dimensional space defined by the invariants I;, but for simplicity, we represent only
two of them (I4 and I5). We start with a gate state 1)) and we apply a deterministic
2-outcome POVM (with some parameter \g), that transforms it into state |¢)'). The

solid curve connecting |¢)) and |¢)') represents all the orbits that can be reached from
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Figure 5.1: Transformation of states in the space of orbits.

|) by applying a POVM with parameter A\ between 1 and A\o. The dotted lines
originating at |¢)) represent the set of orbits that can be reached from the same orbit,
but using a gate state different from |¢) (that is still in the same orbit as |¢) so it
is represented by the same point in the plot). In the actual space of orbits, these
curves extend until they reach an orbit that represents a state with no 3-particle
entanglement, that corresponds to the point where the POVM becomes a projective
measurement (i.e., A = 400). For clarity, we are only plotting the beginning of these
curves. After deterministically transforming [¢) into |¢/), the parties can choose
again from several gate states to apply the next POVM. This will determine which
party will apply this POVM, because in general, a state is a gate state only for a
particular party. In Figure 5.1, the full line represents a POVM that transforms
|¥") into |¢"), while again, the dotted lines correspond to other possible deterministic
transformations that can be applied to |¢/'). By applying many deterministic POVMs

with different parameters, we can reach many different orbits.
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5.5 Transformation of the GHZ state

As an example of the use of 2-outcome deterministic POVMs, we will now study
the particular case of the state |GHZ) = \%(|000) +]111)). As it was mentioned in
Section 5.2, this state belongs to the subclass of states that satisfy Re(2) = 0. We
will show that it can be transformed with probability 1 into any real state in that
subclass.

First, we need to identify the real states that satisfy Re(2) = 0. From (5.3),
clearly we must have that either Q(|t)) is zero or pure imaginary. In the former case,
this means that (u|v) = 0, and then decomposition (5.2) takes one of the following

forms:

pl000) + vI1)|p)le"),
pl000) + vlp)[1)]e"),

p1000) + vlp)le')(1). (5.38)

If Q(|¢)) is pure imaginary (but nonzero), then the only case in which |¢) is actually
a real state is the case in which u = v, as discussed in Section 5.2. In this case, the

state takes the form
1
V2

where none of the states in the second term can be equal to |0) or |1), and we

(1000) & ilo) ) |[¥")), (5.39)

obtain p = % by imposing normalization of the state. The two states in (5.39)
(corresponding to the two possible signs of the second term) are LUeq to each other.

Since the GHZ state is symmetric under a permutation of the parties, it is clear
that if we find a protocol that transforms it into the first state in (5.38), then we can
also transform it into the other two. Now we will use the results of Section 5.3 to

explicitly construct protocols that transform the GHZ state into the state

|6) = 1l000) + v[1)|p)|¢), (5.40)
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or the state
1
V2

for all allowed values of u,v, |p),|¢’) and |¢"). These protocols will be divided into

(1000) +ilo") [0} 1)), (5.41)

three steps. First, Charlie applies a local deterministic POVM that transforms |GH Z)
into %(|000> +]11)|¢')). Then, Bob applies another local POVM that takes the state
to %(|000) +|1)|¢)|¢")). Finally, Alice applies the last POVM, which she can choose
to take the state to u|000) + v|1)|p)|¢’) or %(|000> + i) ) ¢"))-

Step 1. The T; matrices for the GHZ state are given by

L0 0 0
To=| V2 . Ty = , (5.42)
0 0 0%

and they have the same form for all parties. If Charlie applies a local unitary U on

its qubit, where

po Y21 1, (5.43)

2\ 11

the 7] matrices for the state [¢') =1 ® 1 ® U|{GHZ) are

1({ 10 1{ -1 0
T6:§ ,TII:—

5 (5.44)
01 0 1

It is very easy to check that these matrices satisfy Equation (5.24), so the state |¢)
is a gate state. Thus, Charlie can apply a deterministic POVM to it. In particular,
this state satisfies b = o/ = Tr[T}'T}] = 1, so according to Equation (5.26) we have
y =1 — z, so Charlie can apply a deterministic POVM of the form

, (5.45)
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where z € [%, 1). The normalized state corresponding to the outcome zero is

d0) = V2(1®1® Ey)|Y)
= V2(1®1® EU)|GHZ)
= 100) (EoU10)) + |11) (EoU|1))
Ut EJE,U|0)2 [00)|0') + (1|UT E} EoU|1)2 [11)]17), (5.46)

where

EyU|0)
(O|UTElE,U|0)2

EoU1)

0) = L
(1|UTE} EoU|1)3

) |1I> =

, (5.47)

are normalized states. A straightforward calculation shows that (0|UTElE,U[0) =
(1UTEIE,U|1) = 1, 80 we can write

1

|¢O> = \/5

(100)[0°) + [11)[1)). (5.48)

This state can be taken to the canonical form (5.2) by letting Charlie apply a local
(real) unitary on his qubit, that takes the state |0’) into |0), and |1’) into |¢') =
cos0'|0) + sin §’'|1). Thus, (0|¢’) = (0'|1") and then we have

cosd = (0'|1)
= 2(0|U'EJEU|1)
= 21 (5.49)
We can see that for any §' € (0, 2], we can find = € [1,1) that satisfies this equation.
This means that we can transform |GHZ) into %(|000) +|11)|¢")) with probability
1, for any |¢').
Step 2. In this step Bob applies a deterministic POVM to transform the state
|6) = 75(1000) + [11)|¢')) into —5(]000) + [1)]g)|")). The T; matrices for |¢) from
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Bob’s point of view are given by

L0 0 0
To=[ V2 . Ti=| ] (5.50)
0 0 %COS(S Esmé

First, Bob applies the local unitary U from (5.43) to his qubit, obtaining the state
|¢') =1 ® U ® 1|¢), characterized by matrices T} given by

.1 1 0 .1 -1 0
T = - , T =- . (5.51)
2\ cosd' sind 2\ cosd' sind
Again, it is easy to show that 7} satisfy (5.24), so |¢') is a gate state. We also have
that o' =1 = T_r[TéTéT] = %, so Bob can apply the POVM of Equation (5.45) to his
qubit and obtain two outcomes in the same orbit. We can apply the same analysis

we did in Step 1 to the outcome |yg) of Bob’s POVM, and show that

1

X0) = \/5(|0>|0'>|0> +[DI1)]"), (5.52)

where the normalized states |0') and |1’) are also given by (5.47). It should be clear
from Step 1 that, again, we can choose z and a suitable local unitary on Bob’s qubit

to transform this state into

X} = %(I000> +1)e)e) (5.53)

for any |p) = cos§|0) + sind|1), with ¢ € (0, 5].

Step 3. Now Alice has to choose between two local POVMs depending on whether
she wants to obtain (5.40) or (5.41). Consider first the case in which she wants to
transform |x) into p|000) + v|1pg’). The T; matrices for |x) from Alice’s point of
view are

1 10 1 cosdcosd’ cosdsind’

TO = —F= y T1 = — = . (554)
V2 00 V2 sind cosd’ sindsind’
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These matrices already satisfy Equation (5.24) and since a = Tr[TpT)] = 3, Alice can
apply the deterministic POVM given by (5.45). The state corresponding to outcome

7Zero 18

€)= Vx[000) + V1 — z|1p)
= p|000) + v|1py'), (5.55)

where we set 4 = \/z and v = /1 — z. Since z € [3,1), we have > v. The state in
(5.55) is the same as in (5.40).

Consider now the case in which Alice wants to obtain \%(|000> +ilp") ) |¢')) from
|x). In this case we can construct the appropriate POVM {Ag, A;} by inspection. If
|©") = cosd”|0) + sind”|1), we define

1 1 icosd” 1 1 —icosd”

AO - —F= , Al = —F= . (556)
V2 \ 0 ising” V2 \ 0 —isine”

It is easy to verify that they satisfy A(];Ao + AIAl = 1, and that the probabilities
of both outcomes are equal to % The normalized state that corresponds to outcome

Zero 18
1

V2

while the one corresponding to outcome 1 is just the complex conjugate of (5.57). But

(1000) + i[") 0)]¢")), (5.57)

we know that these two states are actually in the same orbit, so we can transform
outcome 1 into (5.57) by local unitaries, so we obtain (5.57) with probability 1. The
state in (5.57) is the same as in (5.41). This concludes the protocol. O

Note that all three steps involve only local unitaries and deterministic POV Ms,
so these protocols allow Alice, Bob and Charlie to transform the GHZ state into any
other real state that belongs to the subclass defined by Re(£2) = 0 with probability
1, using only local operations and classical communication. This is then a complete
characterization of the real states that can be obtained from the GHZ state, since

by Theorem 8 we know that we cannot reach real states that belong to a different
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subclass. It is interesting to note that it does not seem to be that easy to find a
deterministic protocol to transform the GHZ state into any complex state in the

same subclass. Whether this is actually possible is still an open question.

5.6 Summary and conclusions

In this chapter, we studied the properties of deterministic LOCC transformations of
three-qubit pure states with tripartite entanglement. We showed that the set of states
in the GHZ class breaks into an infinite number of disjoint subclasses, characterized
by the real part of a complex function (|1))). Two states that belong to different
subclasses cannot be transformed one into the other with probability one, by means
of local operations and classical communication. This quantity is not only invari-
ant under deterministic transformations, but it also must be conserved by any local
POVM that is part of a deterministic protocol. This imposes a strong constraint on
the POVMs that can be used for deterministically transforming a given state.

It is interesting to point out that the invariance of Re(f2) under deterministic
LOCC transformations (and its invariance under any local POVM that is part of
such a transformation) follows from the invariance of Q2 under local unitaries and the
very particular form of Equation (5.9). In the language of entanglement monotones,
we can say that Re(£2) is both an increasing and decreasing entanglement monotone.
Any function of the states that is invariant under local unitaries and satisfies an
equation like (5.9) for an arbitrary local POVM, will be invariant under deterministic
LOCC protocols, and hence will break the set of states into inequivalent classes that
will be labeled by that function. This will be true even in the multipartite case,
so identifying quantities with these properties could be very useful in the study of
deterministic transformations of entanglement.

We also discussed the case of a deterministic 2-outcome POVM. We showed that
for this POVM to exist, both the state and the parameters of the POVM have to
satisfy certain polynomial conditions. In particular the coefficients of the state have

to satisfy two polynomial constraints. To be able to apply a deterministic POVM to
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a given state, we need to find a local unitary that will transform our original state
into another state that satisfies the two constraints. For real states, the problem
actually simplifies and only one constraint has to be satisfied. In this case, it was
proven in general that the necessary local unitary could be found, allowing us to
apply a local 2-outcome POVM that would send the state to some other orbit with
probability 1. For complex states we found some analytical evidence that the unitary
could be found, but a rigorous proof of this fact is still an open problem. However, it
is important to stress that of all random numerical examples analyzed, the algorithm
discussed in Section 5.3 never failed to find a gate state for complex states. We also
discussed how several rounds of POVMs and local unitaries applied in sequence by all
the parties allow us to reach a larger set of orbits than the one we get from only one
POVM. There is a lot of freedom in choosing the order in which the parties apply a
POVM and which POVM they choose. Although it is in general difficult to study this
procedure analytically, in order to characterize the set of states that can be obtained
from |¢)) (except for states with high symmetry like the GHZ state), a numerical
analysis is easy to implement, and can be used to study general properties of this set,
that could help us to have a better understanding of deterministic transformations.

Finally, we combined the two main results of this chapter to give a complete
characterization of the real states that can be obtained from the GHZ state with
probability 1. First we used the results of Section 5.2 to characterize the subclass
of states that could in principle be obtained deterministically from it, and then we
constructed an explicit protocol that allows the three parties to transform the GHZ
state into any real state in that subclass. Finding a protocol to transform it to a
complex state in the same subclass does not seem to be as easy, and thus whether

this transformation is possible or not is still an open question.
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Appendix A

Convex sets

A set C C R™ is said to be a convex set if it satisfies
,ye C,0<A<1=Az+(1-NyeC. (A1)

This property simply states that if two points belong to the set, so do all the points
in the segment that connects them.
A point y € R™ is said to be a convezr combination of a set of points {z;}*; C R"
if .
y=>_ pi, (A.2)
i=1

where the coefficients p; satisfy p; > 0 and " p; = 1. We can use this concept to
define the convex hull of a set S, which we will denote by Co(S), as

Co(S) ={y:y= Zpimi, {z:}ity €S, pi 20, Zpi =1} (A.3)
i=1 i=1

The convex hull of a set S is equal to the intersection of all convex sets that contain
the set S, so it can also be interpreted as the smallest convex set containing S.

A point z of a convex set S C R" is said to be extremal if
c= M+ 1 =Ny, y1, 12 € S= (= AX=1)V(e=y AA=0). (A.4)

Geometrically, it means that an extremal point does not belong to any proper segment
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defined by two distinct elements of S. If E is the set of extremal points of S, then
S = Co(FE).

A set K C R™ is said to be a cone if it satisfies

re K, A>0= Xz € K. (A.5)

For any given set S, we define the cone generated by S as

cone(S)={y:y=Ax, A\ >0,z € S}. (A.6)

A set K C R"™ is a convez cone if

r,ye K\, u>0= Az + uy € K. (A.7)

If an inner product (,) is defined, we can associate with any cone its dual cone, noted
by K* and defined by
K*={y:(y,z) >0,Vz € K}. (A.8)

Note, that this definition depends on the inner product considered. First of all, it is
easy to see that K™ is in fact a convex cone. It is always a closed set, even if the cone

K is not closed. A very important property (see [42]) is that

(K*)* = cl(K), (A.9)

where cl(K') represents the closure of K.
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Appendix B

Solution of I;(z,y) =1;(1 —x,1 — y)

We want to know under which conditions does (5.23) have a nontrivial solution (i.e.,
r # yand z,y # 0,1). We will consider only states that have 3-particle entanglement,

which means that a,b # 0,1. First, let us note that we can write I;(x,y) as

2y (Tr[TyT{ | Te[T T}] — ab)
(ax + by)?

Ii(z,y) =1+ (B.1)

?

where (Te[TT{ | Te[T,T{] —ab) # 0 if |1) has 3-particle entanglement. Then I;(z,y) =
I,(1 —z,1 —y) has a solution if and only if

vy __ (-2)(-y)
(az +by)2  (a(l —z)+b(1 —y))?’ (B.2)

which is the same as

a’r(1 — z) = b*y(1 — y). (B.3)
This also implies that I4(z,y) = I4(1 —z,1 — y). Both I; and I3 have the form

For* + Fiy® + 2Cizy .
Ii(z,y) = , =2,3. B.4
(ay) = IO (B.4)

We can use (B.2) to write [;(z,y) = L(l —z,1 —vy),i =2,3, as

FO + F12’2 - FO —f— Fl’U)2

(@527~ (a+bw)’ (B-5)
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where we introduced the variables z = £ and w = 8:5; From (B.3) we see that these

variables are not independent, and satisfy the condition zw = (5)2. Furthermore,
both z and w are positive, since x and y are between 0 and 1. If we expand (B.5)
and use the relationship between z and w, we have

a® + b? a

(Calia B 2-) =0, (B.6)

a? b

(F0b2 - F16L2)(Z
and since z has to be positive (and a and b are positive), we have the condition
a’Fy = b*Fy, (B.7)

which is Equation (5.24).
To study the equation I5(z,y) = I5(1 — z,1 —y) we can assume that both (B.7)
and (B.3) are satisfied, since we are looking for a simultaneous solution of (5.23). Let

p = Is(z,y). Introducing z = £ and using (5.22) we can write
Goo + 3Go12 + 3G102* + G112° = p(a + bz)?, (B.8)
where G;; = T‘r[]}T}E]}W}]}T], and we can expand this into
(Goo — pa®) + 3(Gor — pa®b) + 3(Grg — pab?®)2® + (G — pb®) = 0. (B.9)

A root of this cubic polynomial represents an operator of a POVM for which the value
of I5 for the outcome of that operator is . We are looking for two operators whose
outcomes have the same value of I5, but that also satisfy Equation (B.3). That is the

same as finding two roots 2o and z; of (B.9), that satisfy the condition

2

o (B.10)

2pR1 =

Let 23 be the third root of (B.9). From elementary algebra we know that the product

of the three roots is equal to minus the quotient of the independent and the cubic
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coefficients, so we can write

Goo — pa® ad € —
207179 = ———— = —— & . B.11
02122 Gy = i R ( )

Using (B.7) and the Cayley-Hamilton theorem, it can be shown that

GOO Gll

so (B.11) reduces to

a3

—3

Z20R1R%9 =

(B.13)

If we want (B.10) to be satisfied we need 2z, = —%. If we plug this into (B.9), we find

that zy is actually a root if and only if
b G01 = aGlo, (B].4:)

which is Equation (5.25). There is one more detail we need to check. We need zy = £

z
and z; = t—z to be positive numbers, because x and y are between 0 and 1, and only
one of them should be greater than 1 (which can be seen from their explicit form in
terms of z and y). We know that the other root z; = — is negative, so the condition

for only one of them to be greater than 1 can be written
(zo0—1)(z1 —1)(22 — 1) > 0. (B.15)
Expanding this inequality we get
202122 — (2021 + 2022 + 2122) + (20 + 21 + 22) — 1 > 0. (B.16)

All the symmetric polynomials on the roots of a polynomial equation can be written

in terms of the coefficients of that polynomial, so we can rewrite this inequality as

(Goo — Mag) (Gor — ua2b) (Go — /Mle)
— -3 -3 —1>0. B.17
Cu—pb) (G > (Gu— i) (B.17)
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Expanding this and using a + b = 1 we get

Goo+ 3 Go1 +3 Gig + G11 > L. (B18)

But the left-hand side is just the value of I5 for the state |¢), while y is the value of
I5 for the transformed state |¢g) (or |¢1)). So this condition is telling us that under a
deterministic 2-outcome POVM, I5 behaves monotonically, even though it is not an

entanglement monotone in general.
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