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Abstract

TheMethod of Imprecisionor Mgl , is a semi-automated set-based approach which uses mathemat-
ics of fuzzy sets to aid the designer making decisions with imprecise information in the preliminary
design stage.

TheMethod of Imprecisiomses preference to represent the imprecision in engineering design.
The preferences are specified both in the design variable space (DVS) and the performance variable
space (PVS). To reach the overall preference which is needed to evaluate designs, the mapping be-
tween the DVS and the PVS should be explored. Many engineering design tools can only produce
precise results with precise specifications, and usually the cost is high. In the preliminary stage, the
specifications are imprecise and resources are limited. Hence, it is not cost-effective nor necessary
to use these engineering design tools directly to study the mapping between the DVS and the PVS.
An interpolation model is introduced to thegMto construct metamodels for the actual mapping
function between the DVS and the PVS. Due to the nature of engineering design, multistage meta-
models are needed. Experimental design is used to choose design points for the first metamodel. In
order to find an efficient way to choose design points wa@niori information is available, many
sampling criteria are discussed and tested on two specific examples. The difference between differ-
ent sampling criteria when the number of added design points is small, while more design points do
improve the accuracy of the metamodel substantially.

The metamodels can be used to induce preferences in the DVS or the PVS according to the
extension principle. The Level Interval Algorithm (LIA) is a discrete approximate implementation
of the extension principle. The resulting preference by the LIA is presented @san which is
the set of designs or performances with a certain level of preference. There are some limitations of

the LIA, especially for multidimensional DVS and PVS. A new extension of the LIA is proposed to
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computea-cuts with more accuracy and less limitations. The designers have more control over the
trade-off between the cost and accuracy of the computation with the new extension of the LIA.

The results of thdlethod of Imprecisioishould be the set of alternative designs in the DVS at a
certain preference level, and the set of achievable performances in the PVS. The information about
preferences in the DVS and the PVS is needed to transfer back and forth. Usually the mapping from
the PVS to the DVS is unavailable, while it is needed to induce preference in the DVS from the
PVS. A new method is constructed to computedheuts in both spaces from preferences specified
in the DVS and the PVS.

Finally, a new measure is proposed to find the most cost-effective sampling region of new design
points for a metamodel. Also, the full implementation of Method of Imprecisiotis listed in de-
tail. Thenitis applied to an example of the structure design of a passenger vehicle, and comparisons

are made between the new results and previous results.
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Chapter 1

Introduction

TheMethod of Imprecisionor Mgl , is asemi-automatedet-based approach which uses the mathe-
matics of fuzzy sets to aid the designer making decisions with imprecise information in the prelim-
inary design stage [62, 28].

In the preliminary design stagé@nprecisionis the design engineer’s uncertainty in choosing
among alternatives, and it arises primarily from choices not yet made because of the intrinsic vague-
ness in the design description, and the uncertainty in the specifications and requirements. Precise
information is usually impossible to obtain. As the design proceeds from the preliminary stage to de-
tailed design and analysis, the level of imprecision is reduced. Finally, the design description will be
precise, except for tolerances, which represent the allowable uncontrolled manufacturing variation.
Despite the unavoidable imprecision in the preliminary design stage, engineering design methods
and computer aids require precise information. Thg Was developed to represent and manipu-
late the imprecise information in the preliminary design stage because the designer faces the highest
imprecision, and the most expensive decisions are made, in the preliminary stage [21, 56, 60, 57].

An imprecise variable in the preliminary design may potentially take on any value within a
possible range. Although the nominal value of the imprecise variable is unknown, some values
are preferred more than others by the designer. mbthod of imprecisiotorrows the notion
of membership functions in a fuzzy set to represent the preference among designs. Although the
preference function in the § and the membership function in the fuzzy sets both have values from
0to 1.0, they are different. The membership function models the uncertainty in categorization. The
preference function is fuzzy in unresolved alternatives.

Many engineering design tools, such as finite element models, require precise specification.

They can be used to evaluate designs one by one. Optimization can be used to find the single



“optimal” design. But the information is only available near that single point. In contrast, ghesM
aset-basednethod. Sets of designs are evaluated in the Whe case study of Toyota’s design and
development process shows that set-based methods enable effective communication, allow greater
parallelism, and permit early decisions based on information that is not yet precise [59, 58, 32, 55].
In the Myl, the design engineers identify preferences on each of the performance variables by
which each design alternative will be evaluated. These preferences will typically come from poten-
tial customers. The designers also identify preferences on design variables (dimensions, material
properties,etc). These preferences will come from the designers’ experience and judgment, and
are subject to change as the design process proceeds. One of the central aspectglabthea
ping the preferences from design variables onto the performance variables, and then building an
aggregate overall preference.
Many people have contributed to thejMand one design tool (IDT) was built by William S.
Law [27, 28]. In his Ph.D. thesis, William asked several questions about the implementation of the
Mgl based on an example in [26]. This example is the mapping of a rectangle in the plane of two
design variables:y and i to the plane of two performance variables bending stiffriégsand
torsional stiffnesd<r. The approximation of{ z is shown in Equation 1.1, and the approximation

of K is shown in Equation 1.2.

Kp = 78,400 4 170z9 — 240x19 — 630z9% — Sx9z10 — 88210° (1.1)

Kr =13,300 4 130x9 — 38x19 — 620%92 + Sxgx10 + 41’102 (12)

The plane oftg andxg is shown in Figure 1.1. The center points, the four corner points, four
center points on the boundaries, and the boundary are mapped to the plEReanid K. The
results of the mapping are shown in Figure 1.2. The solid lines are the mapping of the boundary
in Figure 1.1. The dashed lines connect the mapping of four corner points. The maximum of
Kp is found at(0.05 — 1.36) by optimization. Because of the nonlinearity &z and K, the
boundary of the mapped rectangle is not only curved, but also crosses over itself. There are many
ways to approximate the actual mapping: connecting the mapping of the four corner points by
linear approximations of{z and Kr; connecting the mapping of eight points on the boundary
of the rectangle ofcg andxz19 and the mapping of the center points can be used to indicate the

nonlinearity of Kz and Kr; or constructing a boundary box with the extremdsqf and K found



(-0.05,0) center point (0-05’21
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(0.05,-1.36)
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Figure 1.1: The rectangle in the planeagfandzxy.

by optimizations. Each approximation listed above has its advantages and disadvantages.

Several questions generated from this example need to be answered:

1. Is the linear approximation sufficiently accurate for preliminary engineering design?

2. Will a nonlinear approximation of the mapping functions increase the accuracy of the bound-

ary, but not increase the computation cost significantly?

3. Which approximations are the most accurate and the most flexible among the three approxi-

mations discussed above, or is there any other method to approximate the boundary?

4. Is there any way to let the designer make a compromise or trade-off between the cost and the

accuracy with which the boundary is approximated?

1.1 Organization of Thesis

This thesis builds on the work of Wood and Antonsson [61, 62, 63, 64], Otto and Antonsson [38, 40,
43, 44, 64], Law and Antonsson [27, 28, 29, 30, 31], and Scott and Antonsson [50, 49, 51, 48, 52].
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Figure 1.2: The mapping of the rectangle in the plan&gfand K.

Their work has laid a broad theoretical foundation and practical implementation for the method of
imprecision.

The work described in this thesis seeks to improve the accuracy and efficiency of the imple-
mentation of the M, by practical testing via specific examples. Its principal contributions are the
introduction of a multistage nonlinear metamodel into thg M new extension of the LIA, and a
new method to compute the overall preference with loose constraints.

Chapter 2 introduces basic concepts and techniques in ghe $&ction 2.1 defines the basic
concepts such as variables, spaces and preferences. The overall preference, which is used to evaluate
the design, is introduced in Section 2.2. Aggregation functions and rational aggregation are also
discussed in the same section. Section 2.4 presents the family of rational aggregation functions.

Chapter 3 describes the process to construct multistage nonlinear metamodels. Section 3.1
discusses why the interpolation model is preferred. Section 3.2 focuses on the details of the interpo-
lation model structure. Section 3.3 discusses the experimental designs used to choose design points
for the first metamodel. Sections 3.4 and 3.5 choose the base functions in the metamodel. The
sampling criterion is discussed in Section 3.6. Two methods to test the improvement of metamodels

are introduced in Section 3.7. Several sampling criteria are tested on metamodels of two functions



in Sections 3.8 and 3.9.

Chapter 4 presents the efficient and accurate computation of the overall preferences. The ex-
tension principle and the LIA are introduced in Section 4.1. Then some anomalies and limitations
of the original LIA implementation are discussed in Section 4.2. Section 4.3 introduces some ex-
tensions of the original LIA. The methods to compute overall preferences in both DVS and PVS
without f11 are discussed in Section 4.4.

Chapter 5 presents the full new implementation of thg.Mhe models and methods discussed
in Chapters 3 and 4 are combined into the new implementation of ghe\section 5.1. A measure
of the sensitivity of then-cuts to the metamodel is also proposed in Section 5.1. In Sections 5.2
to 5.4, the new implementation of thegMis demonstrated on a practical design problem, and the
results are compared with previous results.

Chapter 6 summarizes the contributions in this thesis and answers the questions asked at the

beginning.



Chapter 2

The Basics of the Method of Imprecision

This chapter will focus on the basic concepts and techniques in the Method of Imprecision [62,
28]. Section 2.1 defines the basic concepts such as variables, spaces and preferences. The overall
preference which is used to evaluate each design is introduced in Section 2.2. Aggregation functions
and axioms for rational aggregation are also discussed in the same section. Section 2.4 presents a

family of the rational aggregation functions.

2.1 The Basic Concepts

The design variables{d,,...,d,}, are independent variables which differentiate alternative de-
signs. There may be other attributes of the design which are not included in the design variables
because they are not required to identify different designs. The design variables can be discrete
or continuous, but they are at least ordinal in order to facilitate computations. The independence
between design variables does not imply that design variables can not be related, but means that the
value of each design variable can be freely chosen.

All alternative designs under consideration form thesign variable spacer DVS The set of
valid values for the design variabik is denotedY;. All design variables form an-vector,d, which

distinguishes one particular alternative design from others in the DVS.

DVS =z xx9 X---xx, [Cartesian Set Product ] (2.2)

The performance variables{p,...,p,}, are the independent variables used to indicate the
performance achieved by all designs under consideration. Each performance variable is a function

of thed, p; = f;(d). The set of valid values for a performance variapjeis denoted);. All
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performance variables for each alternative design forgrvactor, 7 = f(d), which specifies the
guantified performances of a desidh The performance variable spacer PVS is the set of all

-

quantified performances achievable by all designs in DVS, wfigte= {f1(d), ..., f,(d)}. The
mapping functionfj(cf) can be any calculation, such as closed-form functions, empirical “black-
box” functions, physical experiments, or even from consumer surveys.

—

PVS={p|p=f(d), Vde DVS} Cpi X pax XD, (2.2)

The design variables and performance variables are imprecise in nature. The final value of each
variable is unspecified, and only the range of each variable is known in the preliminary stage of the
design. But certain values in the range are preferred more than others. The preference can be used
to quantify the imprecision of each variable.

Thefunctional requirement,,; (p;) represents the customer’s direct preference for values of the

performance variablg;, which may be specified by customers, or estimated by the designers:

tp; (Pg) 2 Yy — [0,1] (2.3)

The functional requirements preferences are based on quantified aspects of design performances
represented by performance variables. Other unquantified aspects of design performance such as
style are usually not modeled by performance variables; the preferences of these aspects are repre-
sented by the design preferences. Tesign preferenctunction p4, (d;) represents the designer’s
preference for values of the design variallle which will be specified by the designers based on

design considerations:

pa; (di) + X — [0, 1] (2.4)

2.2 The Aggregation Functions

One single scalar preference is needed to compare different designs in DVSM/«EQre u(d})
means that desigdﬁ is more preferred that,. This single preference should embody both the

design preference in the DVS and the functional requirements in the PVS. This combined preference
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—

is called theoverall preferencewhich can be expressed in the DVSia%d):

-

Ho(d) = P (11ay (1) s, () pipy (F1(@)): - 1, (Fo(dD)) (2.5)

The overall preference of the achievable performance can also be expressed in theRYS: as

—

tro(d) =P (ray (D), - - - o, (D), iy (P15 - - - ; thpy (Pg)) (2.6)

TheP in Equation 2.5 is thaggregation functionwhich reflects how the competing attributes
of the design should be traded off against each other [40, 41], and formalizes the designer’s balanc-
ing of conflicting goals and constraints. In order to model the designer’s trade-off strategy, some
restrictions must be applied on the aggregation functions to maintain their rationality [38]. These

restrictions are described by the following five axioms, wh€re- n + ¢.

Axiom 2.1 Commutativity:

P(:U’lu"'7“j7"'7:u’k‘7"'7HN):P(Hlu"'),“’k‘?"'nufja'“7HN) V1§]7k§N

This axiom indicates the aggregation function’s independence on the order in which the indi-

vidual preferences are combined.

Axiom 2.2 Monotonicity:

Pftas oo b iN) < P(lay ooy s - o) for pg < pj, V1 <k < N.

The monotonicity means that the change of the overall preference caused by any change in any
individual preference should not move in the opposite direction. If the monotonicity is not satisfied,
an increase in one individual preference will cause decrease in the overall preference, which is not

rational.

Axiom 2.3 Continuity:

Pty ooy ftpy -y puy) = lim P(ug, ...y, un) Yk

W=

The overall preference should not have any discontinuities if there are no discontinuities in

individual preference.



Axiom 2.4 ldempotency:

The idempotency will remove the artificial biasness in the aggregation function.

Axiom 2.5 Annihilation:

P(/ﬂ,...,O,...,MN):O

A preference of zero indicates that the value of that variable is totally unacceptable. This axiom
is needed to make sure that any acceptable design does not have any unacceptable design perfor-
mance.

These five axioms are only necessary conditions for the rationality of the aggregation function.
Similar axioms are defined by Fung and Fu [20] to maintain the rationality in general decisionmak-
ing: commutativity, monotonicity, continuity, idempotency, and associativity. It is noted that the
annihilation axiom is not necessary for the rationality of general decision-making.

The aggregation functions satisfying all above axioms are considkasign-appropriate Al-
though there are many design-appropriate aggregation functions, the choice should be made accord-
ing to the relationship between design and performance variables as follows [42, 64].

In one type of design strategy, the overall preference of the system is determined by the lowest
preference on any variable. The increase in preference for one variable can not compensate for
the decrease in another preference. There is no trade-off between individual preferences. This is
a non-compensatingrade-off strategy. The minimum aggregation functiBp;, should be used

here:

:uo:min(:udw"'nudn?:upn"'vupq) (2.7)

Prin is the hard “and” operation in fuzzy logic [4], which will lead to the classic max-min
solution from game theory [65].

In another type of design strategy, the decrease in one preference can be counterbalanced by the
increase in another, that is, the two preferences can be traded off with each other. Thibyis a

compensatingrade-off strategy. The geometric weighted mean funcBans needed:

n ¢ e
o = (H e, - [T ij) (2.8)
i=1 j=1
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Pr is the soft “and” operation in the fuzzy logic [4], which corresponds to the Nash solution

from game theory [65].

2.3 Weights of Preferences

The variables representing a design are not equally important with each other. The relative impor-

tance of each variable can be specified by assigwigightsto the corresponding variables:

Wy, >0

wp; =0

Now the overall preference should be aggregated from both the individual preferences and the
individual weights. The axioms which the aggregation functions should satisfy need to be redefined

in order to include weights:

Axiom 2.6 Commutativity:

P(,ul,...,,uj,...,,uk,...,,uN; wl,...,wj,...,wk,...,wN):

P(,ul,...,,uk,...,,uj,...,,uN; wl,...,wk,...,wj,...,wN) Vj, k
Axiom 2.7 Monotonicity:

P(Hlu"'nu’k‘?"'nqu; wl)"wwk‘u"'uwN)SP(H17~"7H;€7"'7HN; wlu"'uwkw")wN)

for pu, < pj,, Yk

Pl1s ooy s ooy NG W1y ey Why e e e s WN) < Py oy oy o s AN Wy e ey Wiy -+, WN)

for wy <wjy, wherep; < g, Vj#k, Vk

The overall preference should not decrease if the weight of the variable with the highest prefer-

ence is increased.

Axiom 2.8 Continuity:

P(Ml,...,uk,...,u]v; wl,...,wk,...,wN):

Hm P, .oy ey oo s NG WiyeowyWhy-..,wN) VEk

1~ e

!/
PLy ey gy e v e s NG Wy v oy Why« oy WN) =
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B Py ooy My e ey NG Wy ev oy Whey ooy, wN) Yk

W =W,
The aggregation function should have continuities on both preferences and weights.
Axiom 2.9 ldempotency:
P(:“’vv,“a wlv"'va) =p

Axiom 2.10 Annihilation:

Pty 00 JUNG Wiye v ey Wy ooy wn) =0 wherew;, # 0, Vk
P(Ml,...,uk,...,uN; wl,...,O,...,wN):

P(Mlv"' y Mk—15 Hk+15 -+ s UN5 W1y .oy WE—1, W15 - - - ,WN) Vk

If a variable is assigned a weight of zero, that variable will be removed from the aggregation.
Because no upper boundaries and normalizations are specified on the weights in the definition,

an additional axiom is needed:

Axiom 2.11 Self-normalization:
P(Hla ce e NG AW, - .,AWN) = P(Ml,. o UNG W ,wN) where \ > 0

According to the self-normalization axiom, the weights can be scaled by any positive canstant
without any change in the overall preference. A weighted aggregation function is design appropriate

if all above six axioms are satisfied.

2.4 Weighted Means

The theory of functional equations [1] has been applied to the exploration of certain aggrega-
tion functions called t-norms and t-conorms [14]. The same approach was applied to the design-
appropriate aggregation functions by Scott and Antonsson [50]. The relevant class of functions is

the weighted means:

P(Nlu"'),uN; W1,...,WN):g<
Zi]iﬂdi
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whereg is a strictly monotonic, continuous function with inverge!; g(0) < p; < g(1), w; > 0,
1<i<N; andeV:1 w; > 0. Itis shown that the weighted means satisfy all the axioms except
possibly the annihilation axiom. Then all weighted means which satisfy the annihilation axiom
are design-appropriate. Arbitrary design-appropriate aggregation functions also satisfy other prop-
erties with the assumption of strict monotonicity [50]. Any strictly monotonic design-appropriate
aggregation must be a weighted mean.

The family of weighted root-mean-power functions is generated by the fungfjon= ° [1]:

1
Z]‘\;lwz‘/ﬁ )

Ps(pot, ..., P Wiy, wy) = | Ee—t 2.10

(Ml HUN; Wi N) (Ei]\ilwi ( )

wheres € R. If s > 0, 0=g(0) <p; <g(1)=1. If s < 0, g~'(u) and P, satisfies the
annihilation axiom [50].Ps<( is a family of design-appropriate aggregation functions because it
satisfies all the axioms in Section 2.3.

The two design-appropriate aggregation functioig,,, andPr, are just limiting cases dP;<

wheres — 0 & s — —oo respectively [50]:

N w
Prt = Pacoljity -, fix; @1, 0N) = (H ui:;') wherew =N, w  (2.11)
i=1
and
Ps—oo(f1s- oy UN; Wy ywn) = min(pg, ..., un) (2.12)

OtherP; with —oo < s < 0 changes continuously withbetweerP,,;,, andPr and represent
partially compensatingrade-off strategies, where a change of preference for one variable can be
partially compensated for by changing the preference for another variable.

Because of the properties of idempotency and monotoni€jty,, is the lower bound for design-
appropriate functions. Similarly?,,,, = max(u1, ..., ux) might be the upper bound for design-
appropriate functions. BUP,,.. is hot design-appropriate because it does not satisfy the annihila-
tion axiom.

For P with s > 0, the level of compensation increases withntil P;_, ., = max is reached.

Py~ are also calleduper-compensatinfunctions. Just likeP,,,.., all super-compensating func-

tions do not satisfy the annihilation axiom. But they can be modified to become design-appropriate
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because of the actual implementation of thgl (48].

The parametes defines the trade-off strategy or degree of compensation between any two vari-
ables, and is implemented by a design-appropriate aggregation fufittipn, p2; wi,w2). The
indifference pointare defined as two points which have the same preference. The pararaeter

the weights can be numerically calculated from indifference points [52].

2.5 Hierarchical Aggregation

If many different trade-off strategies are used to aggregate the overall preference in a design, the in-
dividual preferences should be aggregated by an aggregation hierarchy. The hierarchy is determined
by the problem. Even if differer®,’s are used in the hierarchy, the weights can be propagated freely
because of the self-normalization axiom discussed in Section 2.3. If there are only aggregations of
pairs of individual preferences in the hierarchy, a numerical method can be used to calculate the
parametes and the weights [52].

One special situation for hierarchical aggregation is aggregations with thesstiateare com-
bined together. Consider three individual preferenegsue and e with weightswy, ws andws.

Assumey is first aggregated witps, then aggregated withs with the same trade-off strategy.

Po(Ps (11, pro; wi,wa), p3; wi + wa,ws) (2.13)

1
_ (w1+w2)77 (pe1, p2; wi,w2)® +w3,u§)5
w1+w2)+w3

1 S =
(wm +wapl)s s
(w1 + w2) w1+w22 + w3 15

w1 +WQ+(,U3

(Wl Py + wa 3 +W3M3>
w1 + wa + w3

= P ,ulvlu%:u?)a wlvw%w:’))

Therefore in this case, the hierarchical aggregation is unnecessary since it is equivalent to the

single aggregation function.
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2.6 Summary

All designs under consideration form the DVS, and the design variables, are used to distinguish
alternative designs. The PVS consists of all achievable performances. The performance variables
can be mapped from the vector of design variables. All quantified preferences are specified on
the performance variables directly, usually in consultation, or by survey, of the customers. Other
unquantified preferences are determined by the designer based on judgment and experience.

The design will be evaluated by the overall preference which is aggregated from individual
preferences. A design with higher overall preference is preferred more than one with lower over-
all preference. The aggregation functions embody the trade-off strategies. All design-appropriate
aggregation functions represent rational trade-off strategies and satisfy the five axioms: commu-
tativity, monotonicity, continuity, annihilation, and idempotency, among which the annihilation is
unigque to design problems.

Weights may be included in the aggregation function in order to represent the relative impor-
tance of individual preferences. In this case, all of the above five axioms need to be redefined, and
one self-normalization axiom is added for the scalability of weights.

The family of root-mean-power functior8; with a negative parameters,_...s<o, contain
all monotonic design-appropriate aggregation functions. The root-mean-power fuigtiwith
positive parameteg > 0 is not design appropriate, but it can be modified to be design appropriate
because of the implementation details of thgl, s shown later. If different trade-off strategies are
used in a design, a hierarchy of aggregation is needed.

This completes the introduction to the basic model structure and techniques used ig the M

The computational implementation ofgMvill be discussed in later chapters.
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Chapter 3

Metamodels for the Mapping between DVS and PVS

A central element of the }{, is to approximate the mapping between the design variable space
(DVS) and the performance variable space (PVS), because the mapping will be used to induce
preferences in the PVS from the preferences in the DVS, as will be discussed in Chapter 4. Because
of the wide use of computers, this process is usually conducted by running some complex computer
analysis software package. When the DVS is high dimensional, it is prohibitively expensive to
directly use complex analysis software to explore the DVS. For example, it will require about 5
minutes to analyze a modestly complex finite element model. For a five dimensional DVS, it will
require about 10 days on a grid with 5 points on each design variable (DV). If the dimensionality of
the DVS increases to 10, then it will run about 92 years, on a grid with 5 points on each DV.

It is not necessary to pursue high accuracy at the preliminary stage of the engineering design.
So, a linear approximation can often be used to reduce the computational cost [30]. It does not
perform well on nonlinear mappings common in design, so a traditional optimization is used to
improve the accuracy [30]. It is preferred to have one single model to estimate linear and nonlinear
mappings.

A metamodels defined as “a model of the model [24].” It should have flexible model structure
and be able to estimate the actual mapping with reasonable accuracy. A metamodel will be con-
structed by running the analysis software over a relatively small set of design points, and will be
used to explore the mapping between the DVS and the PVS. Due to the iterative nature of engineer-
ing design, multistage metamodels are helpful, because a more accurate metamodel may be needed
as the design is refined.

This chapter will introduce the model structure of the metamodel in Sections 3.1 and 3.2. Sec-

tion 3.3 will discuss the experimental design used to determine the design points for the metamodel
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at the first stage. In Sections 3.4 and 3.5, the base functions used in the metamodel will be deter-
mined by tests on two specific examples. The sampling criteria of the design points, when there is
a priori knowledge available, will be discussed in Section 3.6. Section 3.7 introduces two methods
to test the improvements between metamodel at different stages. Finally, the sampling criteria will

be tested on two specific examples in Sections 3.8 and 3.9.

3.1 Approximation or Interpolation

The difference between a computer experiment and a traditional physical experiment is that repeated
computer experiments generate the same results.

For an approximate model of a traditional physical experiment, the most frequently used method
is least-squares regression, which models the random errors in the results as identical and indepen-
dent Normal variables with mean zero and variamcthat is . qnd0m ~ N(0,02). The least-square
estimator will minimize the sum of the squared differences between the experiment results and the
predicted values. Figure 3.1 shows one set of sample data and the results of two different approxi-

mate models. The relationship between the estimate and the actual value is

Yy = :'3 + Esystem + Erandom (31)

wherey is the actual valueyj is the estimated value,, .., is the systematic error, angq,qonm, is
the random error, or call it approximation error.

Although the estimated model does not pass through the actual values, it is assumed that the
random errors are smoothed out because of the assumptiog,@f,,, ~ N (0,0?)

However, for the deterministic results from a computer experiment, the relationship between the

estimate and the actual value is

Y= g + Esystem (32)

wherey is the actual valuey is the estimated value, ang, .., is the systematic error.

Although the response surface method is based on least square regression, it still can be applied
to computer experiments if the dimensionality of the design space is not high and the response is
not strongly nonlinear, because of the simplicity and maturity of the response surface method.

Neural networks implement a nonlinear regression method [8]. It may be used for deterministic
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e Sample Data /
—— - Cubic Approximation o/
——  Linear Approximation /

Figure 3.1: Two approximations of one set of sample data.
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high-dimensional computer experiments. But the fatal disadvantage of the neural networks is that
it converges slowly. To construct a good metamodel, it needs lots of training data. This makes
the neural networks not suitable for building the metamodel in the preliminary stage of engineering

design where available resources are limited.

Inductive learning draws inductive inference from obtained facts [17, 16]. This method builds
the estimation model in the form of condition-action rules, and decision trees. A matched rule is
found by a search in the decision tree for the encountered condition [25]. This method works well
if the design variables and the response are almost all discrete-valued, but it is not a good candidate
in engineering design where, in general, the responses are continuous

By probabilistic modeling of the uncertain prediction error, J. Satkal. proposed a new in-
terpolation model which generates the best unbiased linear predictor for the deterministic computer

experiment [46]. This method is discussed in detail in the next section.

3.2 Interpolation Model

Consider the approximation af(z) by someY (z) wherez € R™. In Equation 3.2, the structure
of the systematic errof,y:.,, is usually unknown. In the approach proposed by Sacks, Schiller
and Welch [46], the estimate is an approximatiglﬁ’;:1 Bj - fi(x), andegystem is modeled as a

stochastic procesg;(x). Now the model becomes

k
=38 fi(z) + Z(x) (3.3)
j=1

The approximation is simple and straightforward once the choice of the base fungfiens
made. For the stochastic procegsér), the important part is the covariance structure, and this is

chosen to be

Cov(Z(t),Z(u)) = V(t, u)

= exp(— Z (tj —uj)?) (3.4)

wheret = (t1,...,t,) andu = (u1,...,uy), o2, p; andd > 0 are parameters to be decided by
the designer.

It is always assumed th#&t(Z(x)) = 0 and thatZ(x) is a Gaussian process. The valud ofill
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affect the prediction ability of the model. It is harder to predict for the model with la#fgban the
model with smallef. The choices op;’s will determine the derivatives of the correlation functions
and the response. Here thgs are chosen to b2, andd is set tol /2.

The points in the DVS used to build the estimation model are callediés&n points With
a set ofn design points,S = {si,...,s,} and corresponding respon3gs;),...,Y (s,), the
interpolation model is generated as follows by Sacks, Schiller and Welch [46]. First introduce the

notation:

B = [Br,....0

Vo= [Cou(Y(s:), Y (sj)l1<i<n1<j<n

fr = [h(@),..., fu(2)]

v, = [V(s1,2),...,V(sp,7)]

y = [Y(s1),...,Y(sn)]

Fo= [filsi)li<icni<i<k (3.5)

For the linear predictor of the response;, y, its mean square error (MSE) is [46]:

/ 2 / ! 2 / 4 Uz ¢
B y=Y@P = (¢ Fp=fopPaldi=tl- | (39
v, O -

To obtain an unbiased predictor, it is needed to apply the consfraint= f,. After minimizing
the MSE for the predictor’ - y under the above constraint by Lagrange multipliers method, the

interpolation model becomes [46]

V() = fo-B+0- V' -(y—F-p)

g = (FF-vV.F) L F vy (3.7)

wheref is the generalized least square estimatg.of
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3.3 Experimental Design

Experimental design methods have been widely used in many areas including computer experi-
ments. It helps to learn how systems work. Careful design of experiments will result in improved
process yields, reduced development costs, etc. It also has an important role in the area of engi-
neering design. It helps the designer to compare different design configurations, to optimize design
parameters, to improve robustness of the design, etc. The design of experiment also helps to choose
design points which are used to construct the metamodel efficiently.

There are many frequently used experimental design methods for different purposes. One such
method is Latin Hypercube sampling first introduced by M.D. Mc&ayal.[35], which ensures all
portions of the design space are sampled. The Latin Hypercube method is an extension of stratified
sampling. With stratified sampling, the design space is divided into many disjoint strata. Each stra-
tum is sampled individually. The Latin Hypercube simply divides the region of each design variable
into N strata with equal marginal probability distribution. If the design variables are distributed
equally, each stratum will be divided into the same range, and then the method is called Uniform
Latin Hypercube sampling. Each stratum is sampled only once. Therefor, fdf'tbesign vari-
able, there will be N different sampling locatiofgv; 1, - - -, dv; n}. The values of theé!” design
variable at allN sampling points{x;1,---,z; n}, Will be a permutation ofdv; 1, -, dv; n}.
Because all portions of each design variable region are covered in the Latin Hypercube sampling,
it is best used when there are only a few dominating design variables for the response. The Latin
Hypercube method usually needs a reasonably large number of samples to make the method work
well.

In afactorial design all possible combination of the levels of each factor are evaluated [37, Page
228]. In general, factorial design is the most efficient method if it is desired to study the effects of
more than one factor. Factorial design allows not only study of the effects of the main factor, but
also the effects of the interactions between factors. The most important factorial design method
is the 2-level factorial design, which requirg$ observations fok factors. It is also called the
2F factorial design[37, Page 290]. TheF factorial design works quite well in the studies of the
linear effects of the main factors and the interactions. However, the number of required observations
increases dramatically when the number of factors increases. If it can be assumed that certain high-
order interactions are negligible, then only a fraction of2fdactorial design is needed to get the

information of the main factors and the low-order interactions. The high-order interactions with
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fixed values are called the generators. Wittndependent generators, &P fractional factorial
designcan be constructed, which ig'2” fraction of the2* factorial design [37, Page 398]. There

are many possible choices of generators, but only some of them can generate the highest possible
resolutions. If two or more effects can not be differentiated by the observations, they are called
aliases[37, Page 374]. The resolution of a fractional factorial design is considered o iber-

factor effects and effects with less thali (- n)-factor are not aliases [37, Page 376]. The most
useful ones are Resolution Il designs, Resolution 1V designs, and Resolution V designs.

For a Resolution 1l design, no two or more main effects are aliases, but any main effect and
any two-way interactions may be aliases. For a Resolution IV design, no two or more main effects
are aliases, neither are any main effects and any two-way interaction. But two or more two-way
interactions may be aliases. For a Resolution V design, no two or more main effects are aliases,
neither are two or more two-way interactions. But any two-way interaction and any three-way
interaction may be aliases [9].

If the regression model is only first-order, thehogonal first-order design@7, Page 600] can
be used to minimize the variance of the regression parameters. A design is orthogonal if the matrix
(X'X) is diagonal. The2* factorial design and fractional factorial design are both orthogonal.
Another type of orthogonal design is teemplex desigiill]. The simplex design is a equilateral
triangle fork = 2, and is a regular tetrahedron for= 3.

For fitting the second-order polynomial regression model, diatral composite desigror
CCD [37, Page 601], is the most popular design. Usually @@D consists of a Resolutiofr
fractional factorial design, the center point, ahdk axial points fork factors. There are several
variations ofCCD. If the fractional factorial design in theCD is only Resolution lll, the design is
calledsmall composite desidB7, Page 605]. Sometimes the interesting region itbanensional
hypercube, then the axial points can be put at the center of each.éace,l. This design is called
theface-centered central composite desjgn, Page 605].

The Box-Behnken design, proposed by Box and Behnken, is also used for the second-order
regression model [5]. It is constructed by combining Miefactorial design and the incomplete
block design. This type of design is spherical design. All the design points are on a sphere of radius
V2, and there are no corner points included.

Among all these design methods, the right choice should be made based on the regression model
and any specific requirement. For the computer experiment at the preliminary stage of engineering

design, more weight will be put on parsimony, i.e., fewer design points for the same number of
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factors.

3.4 Base Functions

For the first part of Equation 3.3, the base functiginge) are unspecified. The second part of the
Equation 3.3 models the error in the approximation of the response. The general principles of choos-
ing a good model type are flexibility and parsimony, and a trade-off is always made between them.
In the preliminary stage of engineering design, the computational cost is a significant concern, so
more weight is put on the principle of parsimony when considering the model type of base func-
tions. Also, there is the “main effects principle,” which is the empirical observation that linear main
factors are more important than high-order interactions [34]. From all of the above considerations,
several polynomial models ( from the simple linear model, quadratic model, to more complicated

nonlinear MARS model ) are candidates for the base functions in the interpolation model.

3.4.1 Polynomial Models

The linear model of, independent variables with up to order interactions is

Ylinear = f(xla .- 7xn) = ao+ Z a;xg (38)
=1

The design points for the linear model are determined by a Resolution Il fractional factorial design.
In piecewise linear model, the design variable space is divided into many rectangular subspaces
and each subspace has its own linear model, as above.
The (partially) quadratic model of independent variables with up to order interactions adds

guadratic terms to the linear model above:

A~

n
yAquad = f(:rlv coe 7xn) = glinear(:rla v ,fEn) + Z azzx? (39)
i=1

The central composite design is used to decide the coefficients of the quadratic terms. It is simply
the factorial design plus the central points of each face.

The higher-order model ot independent variables, with higher-order interactions determined
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by the values of, andm, is

n n n
g]:f(xl,...,xn) = ao—i—Zaixi—i— Z Zai1i2wilwi2+,...,
=1

i1=142=1

+ Z .. Z iy iy Tig + - - Ty (310)

i1=1 im=1

This is equivalent to a product of several linear regression polynomials. If the number of data points
is less than the number of terms in the polynomial, only the coefficients of an equal number of

lower-order terms are nonzero.

3.4.2 Nonlinear Regression MARS Model

MARS [19, 45] fits high-dimensional data to an expansion in multivariate spline basis functions.
The number of basis functions, the product degree, and the knot locations are automatically deter-
mined by, and are adaptive to, the data. The model produces a strictly continuous approximation
with continuous derivatives, and identifies the contributions from additive terms and multivariable

interactions. The method is attractive due to its low computational cost.

“The approximation takes the form of an expansion in multivariate spline basis func-

tions: ;
Q:f(xl,...,xn):ao—i- ZamBm(azl,...,xn) (3.11)
m=1
with:
Bo(z1,...,2n) =1, (3.12)
Km
B (@1, 20) = [ brm(@oem)ltem)- (3.13)
k=1

The {a, }3! are the coefficients of the expansion. Each multivariate spline basis func-
tion B, is the product of univariate spline basis functidnseach of a single in-

put variablez, ,,), and characterized by a knot &t,,. The multivariate spline
basis functionsB,,, are adaptive in that the number of factdss,, the variable set
V(m) = {v(k,m)}i™, and the parameter s, are all determined by the data.” [18,
Page 17]

The “knots” here means a nondecreasing sequen¢g, & which determine the control (design)

points of the spline. For further details of the MARS model see Friedman (1991) [19].
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Based on modeling of five-dimensional input variables on an engineering workstation, results
can be obtained essentially immediately when 32 observations are used and a maximum of 30 base
functions are allowed. The regression computations required less than 80 seconds for modeling and
prediction based on 3125 data points with a maximum of 40 base functions.

Another advantage of MARS is that it provides methods of slicing up:tiémensional space
by assigning specific values to a subset of the design variables and obtaining the MARS model
along the slice. This is of great convenience when the shape of performance response in one or two

specific directions is needed.

3.5 Method for Selection of the Base Functions

Among the candidates listed in Section 3.4, one type of base function will be chosen. The choice will
be made based on the performance of each type of base functions on a practical problem described
below. One estimation model will be built for each type of base function using the least-squares
regression method. This finite element model has already been ruf®ogria in the DVS. There

are5” = 3125 points in the DVS and corresponding values of the response at these points. Only a
fraction of the results will be used to build the estimation model, but all data will be used to evaluate
the performance of the resulting model. All the points used to test the model are callegstthe
points For each estimation model, the empirical root-mean-square error (ERMSE) at all the design
points and all the test points, the maximum error at all design points and test points, and the error at
the point with maximum response will be computed as the measure of the performance of each type
of base function. Also, the cost of building the model will be taken into consideration. Because the
computation cost of the least square regression method is negligible when compared with the cost

of the finite element model, only the latter cds,, the number of design points, will be considered.

3.5.1 Problem Description

The test function in the example presented here is the bending stiffness of a Volkswagen passenger
automobile chassis (shown in Figure 3.2) computed from a finite-element model (shown in Fig-

ure 3.3) in a design space of five variables= 5):

1 A Pillar Thickness [mm]

xo = B Pillar Thickness [mm]
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Figure 3.2: Geometric model of body-in-white in SDRC I-DEAS.

x3 = Floor Rail Thickness [mm]
x4 = Floor Thickness [mm]
x5 = B Pillar Location [mm]

Table 3.1 lists the models that have been built to fit the actual response function. In all cases,
n=5. For the linear model (LM);» = 2 was used for 17 points which are a Resolution IV fractional
factorial design and the center point, and= 5 was used for 32 points which are the full factorial
design. For the quadratic model (QDM),= 2 for 14 and 19 points. The 14 points are a Resolution
[l fractional factorial design, the center point, and five face-center pdifits. . . , ds } where
d, =1landd; =0, VI # k,1 < k < 5. The 19 points are a Resolution Il fractional factorial
design, the center point, and ten face-center pdits. . . , ds } whered;, = +1 and
d =0, VI#Ek 1<k <5. Forthe high-order polynomial model (HMy; = 4 was used for
34 and 106 points which is the combination of fractional factorial designs in each sub-hypercube
over the grid, andn = 10 for 243 points which is a 3-level full factorial design. For the piecewise

linear model (PLM)m = 2 was used for each linear model. There are 32 linear models in the PLM
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Figure 3.3: Finite element model of body-in-white.

with 243 points which is the combination of 32 2-level full factorial designs in 32 sub-hypercubes,
and 1024 linear models in the PLM with 3125 points which is the combination of 1024 2-level full
factorial designs in 1024 sub-hypercubes. The test points for each model are all points56n the

grid except the design points.

3.5.2 Test Results

Figure 3.4 shows a projection of the five-dimensional bending stiffness data surface onto 2 dimen-
sions Floor thicknessand B pillar location). This illustrative projection was created by holding
each of the 3 dimensions not showkillar thicknessB pillar thicknessandFloor rail thicknes3
at a constant value. The approximations computed here fit all 5 dimensions of the design space,
however, to enable graphical comparison, the figures only show variations in bending stiffness as a
function of 2 dimensions.

The bending stiffness response in Bigillar location direction has the highest nonlinearity of
the 5 directions. The nonlinearity in that direction is reflected, to some degree, in the errors of most
regression models. Polynomial models and the MARS model were fitted to the data selected by

each design of experiment listed in Table 3.1. Figures 3.5 through 3.7 show the error surfaces of
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Table 3.1: Data Fitting Models.

No. of Design Paintg

Model | Experimental Design  for a Single Model| No. of Models

QDM, MARS Resolution Il 14 1
+ half central pts

LM, MARS Resolution V 17 1
+ all central pts

QDM, MARS Resolution Il 19 1

LM, MARS Full 32 1

HM 34 1

HM 106 1

PLM Full 243 32

HM 243 1

MARS Full 243 1

PLM Full 3125 1024

MARS Full 3125 1
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Figure 3.4: Bending stiffness data projected onto 2 dimensions.

the polynomial and MARS models with 19,243 and 3125 evaluations. The errors are computed by
systematically computing the bending stiffness at 5 equally spaced points in each of the 5 variables,
thus producing a five-dimensional set of 3125 data points. The error is the difference between each
approximation model and the 3125 computed data points. As before, these figures are plotted by
projecting the error onto two directionklfor thicknessandB pillar location) of the design space
while fixing the values in each of the other three directions.

Table 3.2 shows some numerical results.

Figures 3.8 through 3.10 show error statistics from the regression models. In each case, the

empirical root-mean-square error is computed as follows:

m

1
ERMSE= | — )2 3.14
$ p” ;(erron) ( )
Figure 3.8 shows the mean square error computed from the difference between the computed bend-
ing stress and the regression models at the points used to build the regression model. This illustrates
how close each regression model is to the known data. Figure 3.9 shows the mean square error com-

puted at the balance of the five-dimensional set of 3125 data points not used to build the regression
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Figure 3.5: (ERMSE/response range) of polynomial and MARS models with 19 design points.

MARS with 243 pts

% of Range

150

. 1 -50
Floor Thickness B pillar location

Figure 3.6: (ERMSE/response range) of polynomial and MARS models with 243 design points.
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Table 3.2: Selected Numerical Results.

No. of ERMSE at
Model | Design Points| Max Error | Design Points Test Points
LM 14 95.0222 4.0675 38.1969
QDM 14 96.5684 0.3146 37.8841
MARS 14 97.0071 26.1171 36.7300
LM 17| 114.8618 8.2247 48.4791
MARS 17| -139.7960 14.3700 48.3807
LM 19 95.7740 5.1729 38.3018
QDM 19 97.0783 0.8729 37.8844
MARS 19 96.8069 24.0653 36.5292
LM 32| 100.4263 0.0000 38.8571
HM 34 93.5924 0.1188 38.2424
HM 106 93.1696 0.0157 38.5856
LM 243 98.7086 6.5460 39.9432
QDM 243 92.1269 1.1224 39.4614
HM 243 93.1550 0.0000 39.4917
PLM 243 | -51.3850 0.0000 7.2887
MARS 243 92.9333 0.2467 39.4931
LM 3125 77.9965 34.2793 N/A
QDM 3125 70.3151 33.7758 N/A
PLM 3125 0.0000 0.0000 N/A
MARS 3125 6.5911 1.4939 N/A
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Figure 3.7: (ERMSE/response range) of polynomial and MARS models with 3125 design points.

model. Figure 3.10 shows the maximum error at all 3125 data points. Figures 3.9 and 3.10 illustrate
how well each regression model approximates the data in areas of the design space away from the
points used to build the regression model.

Finally, the error at the point where the bending stiffness itself is a maximum is shown in Ta-

ble 3.3 and in Figure 3.11 for all models.

3.5.3 Base Functions Selected

When using the same set of design points, polynomial models can produce smaller empirical root-
mean-square error (ERMSE) at all design points than MARS models, because the polynomial mod-
els are generated by the method of the least MSE. The ERMSE of all test points is a more important
indicator of the quality of an approximation because it indicates how well the model fits the actual
function at the unknown (for this model) points. It is used as an indication of the accuracy of each
model. For MARS models, the accuracy is similar to the other models when the number of the
points used to build the model is less than or equal to 243. The MSE for all test points is, of course,
not meaningful when all 3125 points are used to generate the model (since there are no test points).

Comparing the maximum error of each MARS model, the one with 3125 evaluations is much better
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Table 3.3: Error at Maximum Response (3,364.9).

No. of Error at

Model | Design Points| Max Response Error/Max Responsg
LM 14 92.5664 2.75
QDM 14 96.5684 2.87
MARS 14 93.9426 2.79
LM 17 111.5991 3.32
QDM 17 97.0783 2.89
MARS 17 130.299 3.87
LM 19 93.3192 2.77
QDM 19 97.0783 2.89
MARS 19 93.7131 2.78
LM 32 90.5300 2.69
HM 34 93.5924 2.78
HM 106 93.1696 2.77
LM 243 89.2554 2.65
QDM 243 93.1550 2.77
HM 243 93.1550 2.77
PLM 243 0.0000 0
MARS 243 92.9333 2.76
LM 3125 67.2762 2.00
QDM 3125 67.2762 2.00
PLM 3125 0.0000 0
MARS 3125 6.5911 0.20




% of Response Range (Max-Min)

25.0 |

20.0

15.0

10.0

5.0

0.0

36

~
~

S —— o LM .
| |0—o QDM N ]

o----0 HM N

s ——4 PLM N
S |« < MARS] YT ° )

| L L R R “H’

10 100 1000 10000

Number of Evaluations

Figure 3.11: (error/response range) at maximum response.



37

than the one with 243 evaluations.

In the same way, similar conclusions can be drawn for polynomial models. The only difference
is that the piecewise polynomial model with 243 evaluations is much better that the polynomial
model with 32 evaluations. When the number of evaluations is sriall §2), there is no significant
difference between the polynomial models and the MARS model. However, when the number of
evaluations is increased and the piecewise linear model is used, the polynomial model is better than
the MARS model, especially with 243 evaluations.

The single linear model with 3125 evaluations is also generated (listed in tables but not plotted
in figures). The accuracy is almost the same as any other single polynomial model.

Among all the four measures, the ERMSE at design points is not important because those errors
will be compensated by the second term of the interpolation model as in the Equation 3.3.

From the other three measures for all models with design points up to 243, the piecewise linear
model (PLM) has the smallest maximum absolute e5ioB85, the smallest ERMSE.2887, and
the smallest error at the maximum respof$®00. Although the error at the maximum response is
meaningless because that point is included in 243 design points of PLM, it seems that the apparent
choice should still be the piecewise linear model if the computational cost of the finite element
model is negligible. But because the design of experiment for the PLM is a 3-level full factorial
design with3” = 243 design points, the PLM witB" = 32 models is equivalent to dividing the
DVS equally into2™ sub-DVS and building one linear model for each sub-DVS. And if the cost of
the computer experiment is not negligible, the number of design points should also be taken into
consideration. For a ten-dimensional DS € 10), the PLM needs$” = 59049 design points,
but the linear model or quadratic model will work with only 27 design points. So the PLM is not
a feasible choice in practice. Actually, the good performance of the PLM only shows the effect of
reducing the size or volume of the DVS to be exploited.

For all other models, the three measures only differ slightly. The high-order polynomial model
and the MARS model, which includes nonlinear interactions, are not so appealing because these
complex models could not outperform the simpler models. Because the two-way interactions can

be transformed into second-order terms of main factors,

. A A
o) - ah = (x) — o) - (1 + 12) = 2 — a3, if 2} = (21 — 29) andah = (21 + )

the quadratic model is balanced only with a CCD design based on a Resolution V fractional factorial
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design, otherwise it is equivalent to a linear model with interaction terms under another coordinate
system. The linear model will work well with a Resolution Il fractional factorial design, which
consists at most of half the design points needed for a balanced quadratic model.

Finally, based on a balance of all of these considerations, the linear model 3.8 is chosen as the

base function.

3.6 Ciriteria for Sampling Design Points witha priori Information

Once the base functions and the cov structure of the interpolation model are decided, the metamodel
can be built with a set of design points and the corresponding responses. When building the first
metamodel at the first stage, in general it is not possible to assume any specific knowledge about
the objective function because of the wide range of functions in engineering systems. So the initial
design points are chosen by a experimental design method. After the first stage, some knowledge of
the objective function is obtained from the responses at design points and the metamodel. It would
be helpful if design points can be chosen based on data at previous stage or stages in order to build
better metamodels.

After constructing the metamodel of tié stage, a set of; design points exists; = {s1,..., s, }.
Now some new design poin{s,,, ..., s,,,,} need to be chosen according to a sampling cri-
terion, and append them t§; in order to generate thg + 1) set of design pointsS;;; =
{8153 Snys S14mys -5 Snigi b

Among many sampling criteria, the maximum entropy sampling criterion has a sound basis.
Lindley [33] introduced ideas from Shannon’s information theory into the area of experiment de-
sign, and established a measure of the information provided by an experiment. Later Shewry and
Wynn [54] defined the maximum entropy sampling criterion for the set of fixed candidate design
points.

For a random process in the design space, 18t = {X,---, Xx} be the set of all possible
candidate design points and corresponding responsesS andT’ be the chosen design points,

S =T\ S be the complementary set 6f The following relation can be obtained.

Ent(Y) = Ent(S) + Es(Ent(S|9)) (3.15)

The second term of the right side is the entropy for the conditional distribution of the unsampled

S give chosen design points. The natural Bayesian sampling criterion is to minimize it. But



39

because the left side, the entropy of the process, is fixed, minimizing the second term on the right
side equals to maximizing the first term, which is the entropy of the chosen design poiifs. If

is a Gaussian process as assumed in Section£h2(Y) is, up to constantdpg(det(Cov(Y))).

So the maximum entropy sampling criterion becomes to maximize the determinant of the posterior

correlation matrix which is

D= [COU(Y(Si)vy(Sj))] 1<i<nit1, 1<j<ni+1 (3.16)

The conclusions above are based on the assumption of finite set of possible design points. By
the different use of the entropy formula, Wyehal. proved the same conclusions while loosening
the condition of discrete design points [53].

Also there are several variations of the maximum entropy criterion. If the first term in Equa-
tion 3.3 is a constant, then the criterion becomes maximiaingD)-||D~*|| [3]. If there is random
error whose variance tends ¢o in the model, the criterion becomes minimizii®| [36]. The
operator]| - || in above criteria is the sum of all entries in the covariance matrix.

Johnsoret al. [22] proposed thenaximin distance desigri-or the Gaussian process with the
covariance structure as in Equation 3.4, the maximin distance design is asymptotically equivalent
to the maximum entropy design under some conditions [22]. For any sfibsief’ containingn

design pointsS° is a maximin distance design if

in d(s,s’) = min d(s,s’ 3.17
max min d(s. <) = iy, dls. <) 3.17)

whered(s, s') is a distance function of a pair of design points. For the model in Sectiod(3.2)
is them-dimensional Euclidean distance. By maximizing the minimum distance between design
points, this criterion tries to reduce the redundancy among design points.

Johnsoret al. also proposed the thminimax distance desigim a similar way [22]. For any

subsetS of T' containingn design points, we calf* a minimax distance design if

min max d(t,S) = max d(t,S*) (3.18)

whered(t, S) = mingeg d(t, s).
As in the case of the maximin distance design, for the Gaussian process with the covariance

structure as in Equation 3.4, the minimax distance design isopti&ial [23] design under some
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conditions, where the Gptimaldesign will minimize the maximum variance of the fitted response

over the design region as in the following equation:

max var(Y; | Ys, s € S)/var(Yz) (3.19)
€

where Y is the random process, T is the finite set of all possible design points, and S is the chosen
design points.
Following the induction of the interpolation model in Section 3.2, the integrated mean square

error of the interpolation modellM/ S E, can also be calculated:

IMSE = % . / o Tl (@) =Y @) w(a) -ax (3.20)

where and o? are parameters of the covariance structure of the random proe¢ss,is the
weighting function, and2 = [y gw(z) - dX.

Crary el al. [10] introduced!.-Optimal designs which will minimize théMSE of the inter-
polation model for computer experiments. TheOptimal design can be generated by a program
I — OPT™ which is available at http://www-personal.engin.umich.edu/crary/iopt. They also in-
troduced the BayesidrOptimality, in which X’W X is used to represeatpriori information. Here
X is the matrix of all design points, arid is the weight matrix. The Bayesian I-Optimal design
can also be generated by the program OPTTM

All above criteria will be compared with random sampling, in which all coordinates of each

design point are generated as uniformly distributed random numbers, in the tests described below.

3.7 Tests of Improvement between Metamodels

The metamodel using more design points would be expected to outperform the metamodel using
fewer design points. A guantitative measure would be helpful to know how good the performance
improvement is. To compare two metamodels, one method is to compute the errors of the meta-
model over a grid in DVS. This method will be used to compare different sampling criteria. The
disadvantage of this method is that it requires lots of evaluations of the complex software which is
just opposite of the purpose of using metamodels, so it is crucial to find a way to compare meta-
models at different stages using a limited number of evaluations.

Consider the comparison between the metamodel at stage the metamodel at stagegi.e.,
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Yi(x) andffj(x). Without loss of generality, assume> j. A new set of design points is needed

to comparey;(x) andY;(x), and design point§s,, +1, - - -, sn,., } are needed to construkt 1 (z).
So it is convenient to Uss,, 1, - - - » Sn;,, } 10 testY;(z) andY;(z). Letk = n;1 — n;, then two
groups of errors{e; 1, ..., e;} for Yi(x) and{e;1,...,ej} for Yj(x), can be obtained.

Repeated computer experiments with the same parameters generate same results, so the error
for a metamodel at any specific point in the DVS is the same if the metamodel is compared with
computer experiments repeatedly at the same point. But if the overall performance of the metamodel
in the DVS is of interest but not the performance at any specific design point, then errors of the
metamodel in the whole DVS can be considered as a population with certain probability distribution.
With this, some of the techniques in traditional experiment analysis can be applied to the metamodel

of the computer experiment.

3.7.1 Test with Assumption about the Distribution of the Error

According to the central limit theorem, the sumroidentically distributed random variables has

an approximate normal distribution. Furthermore, the Liapunov theorem states that the sum of

random variables with different means and variances still has an approximate Normal distribution

if some conditions are satisfied. If the error is considered as the sum of many disturbances among

which there is no overwhelming factor, then the error random variable can be assumed to be Normal.
Let E; be the random variable for the errorf(z), andE; be the random variable for the error

of Y;(x). Then under the assumption of their distributid®), ~ N (p;,0?) and E; ~ N(y;,02).

The sample means and sample variances;@&nd E; are

L
€ = Ezei,l
1=1

1 k
St o= =Y ke
k—llzl '
1 k
2 § : 2 =2
Sj = m £ ej,l - ]f . ej (321)

If 1; andy; are to be compared, consider the statistic
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Ss2 g2
7 i
T

Let the null hypothesis and alternative hypothesis be

Ho: pj—pi=0

H: i — i > 0 (323)
UnderHy
T = (ej; ) g (3.24)
52 2
T

Hy will be rejected if T > t;,_1 ;_, with significance level ofv, which means that the probability
of erroneously accepting; : 1 —p; > 0is . Here the value of” is computed, then the smallest
« is chosen which will cause the rejection &f.
It may be useful to compare’ andaf-, the variances of the two random variables. Then consider

another statistic 9, o 9
(k—1)-55/o; S of
P~ G S~ 5 o

(2

and make the following null hypothesis and alternative hypothesis:

Hy: JJQ» > o? (3.26)
Under H,
0 @
Fy= S_JQ ~ Fi-1k-1 (3.27)

Hy will be rejected if Fy > Fj_1,-1,1- With significance level ofx, which means that the
probability of erroneously accepting; : 0]2- > o2 is a. Here the value ofy is computed first,

then the smallest is chosen which will cause the rejection &f,.

3.7.2 Test without Assumption about the Distribution of the Error

The tests in previous section are based on the assumption that the distribution of the error random

variable is Normal. Sometimes this assumption is valid, but in general the distribution of the error
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Figure 3.12: Histogram with fitted normal densityegfat 10, 000 random test points.

is unknown or its distribution is known to be not Normal. For example, consider two random error
variables:e; = 3 + xy + - - + 2¢ andey = 10 - 23 + 29 + - - - + 6. The only difference between

e1 andey is the weights omr$ arel and10. Figure 3.12 and Figure 3.13 are histograms with fitted
Normal density of; ande, at 10,000 uniformly random test points (The), 000 test points used

here and later are only used to test the Normality assumption. They are not available to construct
metamodels). As is apparent, the Normality assumption is a good approximation for probability
density function (PDF) foe;, but not fore,.

Under either circumstance, if the test poifits,; 11, ..., s,,,, } are randomly generated, tests
similar to those in Section 3.7.1 can be carried out with a different method. This method is called
randomization test [6]. When two random variables are considered equivalent in the sense of any
numerical characteristics, switching any pair of samples from each random variable will not affect
corresponding statistics.

To compare:; andy.;, consider the statistic:
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Figure 3.13: Histogram with fitted normal densityeafat 10, 000 random test points.
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k
deo =7 - > et = ) (3.28)

If some pairs ok; ; ande; ; are exchanged in Equation 3.28,possible results can be obtained.
The same hypotheses as those in 3.23 are made. Uhgtrere is no difference between,; and
e;1 in Equation 3.28 because they are values of the random variables with the same mean value at
randomly generated design points. So all thigispossible results are equally likely. Compas
with all 2* results, suppose thai; results are larger thade, andms results are equal tde.

Hy will be rejected at significance level of which means that the probability of erroneously
acceptingH : p; > p; is a, where

my + 52

o= 2 (3.29)

To compares? and o2, consider the sefeji1,...,€jk:€i1s---,€i k), Which consists oRk

errors. There aren = 2K possible ways to separate the errors into two sets with the same

N
sizek. The F” for each possible partition of th# errors can be computed using Equation 3.27

and Equation 3.21. The hypotheses are the same as those in Equation 3.26.Hyntihere is

no difference in the result of sample variance if any pair of elements in two partitions of the set of
2k errors are switched because they are values of two random variables with the same variance at
randomly generated design points. So the sample variancesaf @lrtitions are equally likely.
Comparefy with all m possibleF's, it can be seen that, possibleF's are larger thatty, andms
possibleF's are equal tdy. H, will be rejected at significance level of, which means that the
probability of erroneously accepting; : o7 > o7 is o, where

my+ %2 (my + %2) - (k)2

T TR T (2 k)! (3.30)

3.8 First Examples and Results

The first example function to be fitted is a ten-dimensional function

Yied = oo+ Z i + Bisin(Bxi + ") + i exp(yizi +7;")]

10 10

+ Z Z[ai,jﬂciﬂﬁj + B sin(B jzixs + B75) + i exp(v] jwiy + 1) ]
i=1 j=i



Table 3.4: Ratio of ERMSE to Response Range of the 10-D Function.
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Number of Design Points
Sampling Criterion 16 32 48 64
Entropy Criterion| 13.8424%| 10.7751%| 8.5945%| 6.8520%
Maximin Criterion | 13.8424%| 11.4704%| 10.1075%| 9.4655%
Random Method 13.8424%| 12.6506%)| 10.9997%| 10.5827%
Bayesian I-Optimal| 13.8424%| 8.7966%| 7.0228%| 6.9093%
10 10 10
+ Z Z Z[am,kxixjxk + Bk sin(B; prizizy + 575 k)
1=1 j=1i k=j

"

+%{,j,k eXp(’YZj,kxz‘xjxk + %’,j,k) ] (3.31)

All the o parameters are random numbers frpai6, 16]. All the § and~y parameters are random
numbers fron]—2, 2].

The initial design of experiments is a Resolution 11l fractional factorial design with 16 corner
points in the design space. Then based on each sampling criterion, three more metamodels will be
built with 16 more design points for each metamodel.

Each metamodel will be tested at th& points on the grid—1,—0.5,0,0.5,1]'°, and the
ERMSE is computed. Figures 3.14 and Table 3.4 contain the results of the average errors for all
metamodels. The results of maximum errors for all metamodels are in Figures 3.15 and Table 3.5.

It can be seen that the resulting design points by all four sampling criteria improve the accuracy
of the metamodel. By addints more design points, the ratio of the ERMSE to the response range
decreases by aboat%, and the ratio of the maximum error to the response range decreases by
roughly abou%. The effect of adding6 more design points decreased when the total number of
design points increases. Among all four sampling criteria, it can be seen that the Bayesian I-Optimal
design outperforms the other three criteria véithand48 design points, and it is only second to the
result of the entropy criterion with4 design points.

For the metamodels based on the random sampling criterion, significance levels of tests about
mean and variance are computed with the two methods described in Section 3.7. The results are
shown in in Table 3.6. The resulting significance levels indicate that the probability of erroneously

acceptingu; > ;11 is low, and the probability of erroneously accepting> Jz'2+1 is also low. By
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Table 3.5: Ratio of Maximum Error to Response Range of the 10-D Function.
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Number of Design Points

Sampling Criterion 16 32 48 64
Entropy Criterion| 73.5424%| 64.6439%| 55.1691%| 48.5776%
Maximin Criterion | 73.5424%)| 64.1262%| 61.4853%| 59.3365%
Random Method 73.5424%| 70.3027%| 63.7913%| 62.7712%
Bayesian I-Optimal| 73.5424%| 55.9763%| 51.6001%| 51.9713%
16.0
140 +
12.0 -
10.0 ~
8.0
6.0
G——>5% Entropy Criterion
4.0 - (-] Maximin Criterion
*-- -k Random Method
/5~ —A Bayesian I-Optimal
20 -
0.0 | | | |
0.0 16.0 32.0 48.0 64.0

Figure 3.14: Ratio of ERMSE to response range of the 10-D function.
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Figure 3.15: Ratio of maximum error to response range of the 10-D function.
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Figure 3.16: Histogram with fitted Normal density for the errord’pbf the 10-D function.

comparing the results from Normality tests and randomization tests, it can be seen that both tests
generate similar results except the testsffor the first and the second metamodels.

The histogram with superimposed fitted Normal density of erroiig p¥> andYs, whereY}, is
the k** metamodel constructed on the set of design points), is presented in Figures 3.16, 3.18,
and 3.20, respectively. The Normal probability plots (NPP) for these errors are shown in Fig-
ures 3.17, 3.19, and 3.21. From both the histograms and NPP of these errors, it can be seen that the

Normality assumption is valid for the metamodels of ten-dimensional test function.

3.9 Second Examples and Results

The second test function is the bending stiffness of a Volkswagen passenger automobile chassis

(shown in Figure 3.2) computed from a finite-element model (shown in Figure 3.3) in a design
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Table 3.6: Significance Levels of Different Tests on the 10-D Function.

Normality Tests | Randomization Tests

Tested Modelg t F t F

Vi, Yo 0n{sss,...,s4s} | 21.0153| 48.8245| 1.5343| 48.6295
Ya, Y3 0n{s4,...,561} | 29.2422| 27.5828| 5.04532| 29.7665
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Figure 3.18: Histogram with fitted Normal density for the error&’ebf the 10-D function.
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Figure 3.20: Histogram with fitted Normal density for the error&’obf the 10-D function.



0.999
0.997

0.99
0.98

0.95
0.90

Probability
o o
1 N
o al

o
N
a

0.10
0.05

0.02
0.01

0.003
0.001

54

-300 -200 -100 0 100 200
Value of Error

Figure 3.21: Normal probability plot for the errors Bf of the 10-D function.
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space of five variablesi(= 5):

x1 = APillar Thickness [mm]
x9 = B Pillar Thickness [mm]
x3 = Floor Rail Thickness [mm]
x4 = Floor Thickness [mm]

x5 = B Pillar Location [mm]

Each design variable has been standardizdd to1] before constructing the metamodel.

The initial design of experiment is a Resolution Il fractional factorial design with 8 corner
points in the design space. Then based on each sampling criterion, three more metamodels will be
built with 16 more design points for each metamodel.

Each metamodel will be tested at tifepoints on the grid—1, —0.5,0,0.5, 1]3, and the ERMSE
is computed. Figure 3.22 and Table 3.7 contain the results of the average errors for all metamodels.
The results of maximum errors for all metamodels are in Figure 3.23 and Table 3.8.

It can be seen that the resulting design points by all four sampling criteria improve the accuracy
of the metamodel. By addints more design points, the ratio of the ERMSE to the response range
decreases by abo0t5%, and the ration of the maximum error to the response range decreases by
roughly abou®.5%. The effect of adding 6 more design points decreased when the total number
of design points increases. Among all four sampling criteria, it can be seen that the entropy criterion
outperforms the other three in the ERMSE, and the random method is the best one in the maximum
error. It should be noticed that the Bayesian I-Optimal design has almost no effect in both ERMSE
and the maximum error.

For the metamodels based on the random sampling criterion, significance levels of tests about
mean and variance are computed with two methods described in Section 3.7. The results are shown
in Table 3.9. The resulting significance levels indicate that the probability of erroneously accepting
wi > pit1 is low, and the probability of erroneously acceptiryg> Uz'2+1 is also low. By comparing
the results from Normality tests and randomization tests, it can be seen that both tests generate
similar results.

The histograms with superimposed fitted Normal density of erroi pt, andYs, are pre-
sented in Figures 3.24, 3.26, and 3.28, respectively. The Normal probability plots (NPP) are shown

in Figures 3.25, 3.27, and 3.29. From both the histograms and NPP of these errors, it can be seen
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Table 3.7: Ratio of ERMSE to Response Range of the VW Model.

Number of Design Points

Sampling Criterion

8

16

24

32

Entropy Criterion

6.2127%

5.4689%

5.0754%

4.5471%

Maximin Criterion

6.2127%

5.5805%

5.2125%

4.9149%

Random Method

6.2127%

5.8470%

5.4753%

5.3617%

Bayesian I-Optimal

6.2127%

6.2391%

6.1680%

6.1845%

Table 3.8: Ratio of Maximum Error to Response Range of the VW Model.

Number of Design Points

Sampling Criterion

8

16

24

32

Entropy Criterion

15.5695%

16.5687%

15.0072%

13.4118%

Maximin Criterion

15.5695%

16.4573%

15.2478%

14.1349%

Random Method

15.5695%

14.4502%

13.2244%

12.9143%

Bayesian |-Optimal

15.5695%

15.6412%

15.8285%

15.8930%
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Figure 3.22: Ratio of ERMSE to response range of the VW maodel.
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Figure 3.24: Histogram with fitted Normal density for the error&’pbf the VW model.

that the Normality assumption is invalid for the metamodels of the VW model.

3.10 Discussions and Conclusions

Because resources are limited, sometimes a metamodel must be used instead of a complicated simu-
lation software package. Two of the most important factors to consider are the metamodel structure
and the sampling criterion if multistage metamodels are needed. Experimental design is also im-
portant to increase the efficiency of the design points, but it is strongly dependent on the structure
of the metamodel. A reliable measure of the performance improvement of the metamodel is also
helpful to increase confidence about metamodels.

There are several metamodel structures for the deterministic computer experiments. Among
them, the model proposed by J. Saeksl. is the most widely used and is also suitable for the
functions in many engineering design problems. This model consists of two parts, a approximation

and a probability model of the approximation error. Sometimes the approximation is only a constant,
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Table 3.9: Significance Levels of Different Tests on the VW Model.

Normality Tests | Randomization Tests
Tested Modelg t F t F
Vi, Yoon{si7,...,s04} | 1.2609| 2.0781| 1.7578| 0.7343
Ya, Yz 0n{sas,...,s3} | 17.3823| 24.1834| 15.4297| 23.2129
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Figure 3.26: Histogram with fitted Normal density for the error&’pbf the VW model.
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and the prediction mostly relies on the stochastic error model. But from a viewpoint based on
the “main effects principle,” which emphasizes the importance of the linear main factors based on
empirical observations, it is reasonable to use the polynomial model containing all main factors as
the approximation.

The next step should be experimental design. Among many experimental design methods, the
most attractive two are the Latin Hypercube design and the Resolution Il fractional factorial de-
sign. The advantage of the Latin Hypercube design is that this type of design uses a “space-filling”
strategy which is good to study the overall performance of the response, but its disadvantage is that
it requires a few more design points and it is not the best design for the linear polynomial model.
Alternatively, a Resolution Il design is the best design for the polynomial model and it only needs
a relatively small number of design points, but it may be outperformed by the Latin Hypercube
design because all the design points are corner points. Because multistage metamodels are usually
used, the lack of “space-filling” in the Resolution Il fractional factorial design can be remedied by
adding noncorner design points at later stages. So a Resolution Il fractional factorial design is the
final choice of the design of experiments for the first metamodel.

Because now there is some knowledge about the underlying response function, an efficient sam-
pling criterion to take advantage of tlaepriori information is expected. Several sampling criteria
are tested on a practical finite element model and a randomly generated analytical test function.

From the resulting errors of both test functions in Section 3.8 and 3.9, it can be seen that there
is no significant difference between these sampling criteria. The main reason is because the number
of design points is small with respect to the dimension of the DVS. If the dimension of the DVS is
1, then the function-fitting problem is almost the same as the nonparametric procedure to estimate
a probability density function. The interpolation model used here is similar to the Parzen Windows
method in estimating the probability density function without assumption about the form of the
density function [15]. With the Parzen Windows method, the estimate is good enough when there
are about 20 samples. For a five-dimensional or ten-dimensional DVS, 32 or 64 samples is far
fewer than equivalent 20 samples in a one-dimensional DVS. Because the available information
is too little, the efficiency of the sampling criterion is not so important. The second reason is that
the optimality for any criterion is always based on some assumptions. The optimal design is the
one which minimize or maximize the objective function generated from those assumptions. This
means that the chosen design is optimal only when the assumptions are valid. But the reality is

that no knowledge exists about the function to be fitted which means that the assumptions needed
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for the optimality may or may not be valid. So optimality of the chosen design is questionable.
For some criteria, there is a need to search for the minimum in a high-dimensional space. The
search ofm design points in a-dimensional DVS is not trivial. Based on the difference in the

cost and the nonsignificant difference in the efficiency, the random generated design points are a
good choice. To avoid the situation that two or more design points are too close to each other, the
constraint of minimum distance between design points should be added. At the same time, because
the increase in accuracy in the region near added design points can be inferred from the structure
of the interpolation model, the sampling range is more crucial than the sampling criterion for newly
added design points.

The last problem is how to compare two metamodels. The test with the Normality assumption
is simple, but dependent on the validity of the assumption. The distribution-free randomization
test does not depend on the distribution assumption of the error variable, but it is costly. So the
metamodels should be compared with the randomization method when the computation cost is not
high, otherwise the and I tests with Normality assumption should be used as approximations.

From the standpoint of performance improvement, it can be seen from the resulting significance
levels in Sections 3.8 and 3.9 that although the metamodels do not improve the performance much,
the confidence in the improvement is relatively strong even with only 8 or 16 test samples for five-
dimensional and ten-dimensional DVS, respectively. Because the test design points are randomly
chosen, sometimes even when the Normality assumption is not valid as in the case of the Volkswa-
gen model, the results efand F' tests with the Normality assumption are close to those from the
randomization tests. The computation cost of the randomization test increases exponentially with
the number of test samples. To run the randomizaiidest with 16 test samples, tévalue must

be computed for( 3

o). ()16), = 601080390 possible cases. The C program to compute all flse

runs about 35 minutes on a Sun Ultra 10. If the number of test samples becomes 22, the running
time is about 84 days on the same computer. Sa el F' tests should be run with both methods
when possible, but the tests with the Normality assumption should only be run when the other one
is prohibitive.

Two principles underlie the choices above: the parsimony and the robustness of the metamodel.
The principle of parsimony is obvious because it is decided by the nature of the preliminary stage
engineering design. Robustness here means that the predictive ability of the metamodel should be
insensitive to violations of the basic assumption, and it is the major reason for the choice of the

linear approximation in the interpolation model and the sampling criterion. For the interpolation
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model, even if the probability model of the approximation error is invalid, the approximation still
can maintain enough predictive ability because of the “main effects principle.” For the sampling
criterion, the optimality of the set of design points does not contribute much to the performance
of the metamodel when the number of design points is small with respect to the dimensionality of
the DVS. There may also be some negative effects on the performance of the metamodel if the
assumption for the optimality is violated. So the random method with constraint on the minimum
distance between design points is the choice for the sampling criterion.

The procedure for building a multistage metamodel for one performance variable is as follows:
1. Specifyn design variables and their ranges.

2. Construct a Resolution Il fractional factorial desi§pwith card(Sy) = 2% > n.

3. Run the simulation software at design pointsin

4. Build the first metamodel using Equation 3.7 with results from last step.

5. Seti = 1 and repeat until satisfactory results are achieved:

(a) Decide the number of design points to be addet!'atage card(S;).

(b) Randomly generate design poidtswith constraint on the minimum distance.
(c) Run the simulation software at design pointsjn

(d) Test the improvement of the — 1)** metamodel from théi — 2)** metamodel.
(e) Build thei* metamodel using Equation 3.7 with results fréglJ S, U - -- U S;.

) i=i+1.
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Chapter 4

Computation of Preference in DVS and PVS

Chapter 2 introduced some basic concepts of imprecision in engineering design problems, discussed
the details of the modeling of imprecision with preference, aggregation functions for the prefer-
ences, and discribed how to compute the overall preference. The design prefengregps, are
specified in DVS and can be aggregated into the combined design prefe,:r@(@e In similar

way, the functional requirements,, (p;)’s, are specified in PVS and can be aggregated into the
combined functional requiremenpt,(p). The combined design preferences and the combined func-
tional requirements are specified in DVS and PVS, respectively. They have to be in the same space
in order to aggregate them into the overall preference. Usually the mapping from DVS to PVS,
= f (cf), is available but computationally expensive. Chapter 3 discussed how to efficiently build

a multistage metamodel for the mapping between DVS and PVSf (é)ocan be replaced by its
metamodelf/(ci) to reduce the computational cost. The overall preference for a desigh will

be determined if.4(p) can be obtained by mappimgl(cf) onto PVS. Additionally,f~! is generally

not available, so itis not possible to map the overall preference for a design back onto the DVS from
the PVS.

This chapter first introduces the principle of mapping preference, and an implementation of this
principle, theLevel Interval Algorithmin Section 4.1. Then some anomalies and limitation of the
original LIA implementation are discussed in Section 4.2. Section 4.3 introduces some extensions
of the original LIA. The methods to compute overall preferences in both DVS and PVS without

f~1 are discussed in Section 4.4.
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4.1 The Extension Principle and Level Interval Algorithm (or Vertex

Method)

—

The combined design preference in DV§(d), and combined functional requiremept,(p), can

be obtained by aggregation in the corresponding spaces. lefy andy, (p) will use a trade-off
aggregation to gei,, the overall preference. Buti(cf) andy, (p) are expressed in different spaces.
One of the combined preferences need to be mapped into the other space before compitieg
mapping functions from DVS to PV$,= f(d), are usually available, so hepg(5), the combined
design preference in PVS, is considered to be induced frgla) using the extension principle [66].

If f—l(m is available, the preference in DVS can also be computed from the preference in PVS by

using the extension principle.

— - =

pa(P) = sup{ pa(d) | 7= f(d) } (4.1)

wheresup over the null set is defined as zero.
There are many ways to implement the extension principle. One way is to solve this problem
analytically and exactly. Baas and Kwakernaak [2] consider it as a nonlinear programming prob-

lem [2]. Consider one single performance variahble= f;(d). The problem is to maximize,(p;)

with the following constraints:

pa(p) < paldi), i=1.n
p; = 1;(d)

If some conditions are met [2], this problem can be solved. But in general it is difficult to

(4.2)

solve this nonlinear programming problem for arbitrg‘g}(cf). There are also some approximate
analytical methods to implement the extension principle. One method proposed by Dubois and
Prade [13] simplifies the equation by dividing the membership functions into the left side and right
side. This approximate method provides good results, but the accuracy decreases when extended
division is needed. Schumucker [47] proposed an approximate numerical method, which discretizes
the supports of design preferences and uses the preferences at these locations to ggmpute
Because of the nonlinear nature of thep operation, the result from the approximate numerical
method is not always good enough, and even the revised version with imposed convexity does not

work well.
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There is another approximate numerical method called ével Interval AlgorithmorLIA, and
sometimes it is also called thértex Methodlt was first proposed by Dong and Wong [12] in order
to solve the extended operation in the weighted average operation. This method also makes use of
discretization, but it works on the membership value instead of the support. It also uses interval
analysis to get the final solution. The LIA algorithm is summarized below.

First, a set ofM discretized preference values,, k = 1..M, are specified. For each, an
interval,[d;* . . d:* 1,4 =1..n, will be generated for each design preference function.dFbat

7,min’ “’7,max

Dgﬁk of the combined design preference are defined as

Dy, = {de DVS | pa(d) >y} k=1.M. (4.3)

It is assumed to be the Cartesian product ofsthiatervals for individual design preference func-

tions.

] X oo X [dak d%k ] (44)

n,min’ “'n,max

d _ [« o
DE = [d d

1,min’ *1,max

There are2™ corner points ongﬁk, which are permutations of the end points of the individual
design preference intervals. All these corner points are mapped onto PVﬁijIfj(cf), and2"
values ofp; are obtained. Find the minimum valge'* ~and the maximum valug;®: among

them, then thew-cut of p is the interval:

— —

[Dimins Dok ] = {fi(d) | pa(d) > o} (4.5)

A simple example is used to illustrate the LIA. For a design problem with two design variables
d, anddy, and one performance varialjle= f(cf) = (dy +2)? — 6 - dy. The preferences for both
design variables are the same as shown in Figure 4.1 with thieeels,{<, 0.5, 1.0}.

For each level, 4 corner points in the DVS are mapped onto the PVS, andvthet of 14(p)
is specified by the minimum performance and the maximum performance. The regultimg

represented by three-cuts is shown in Figure 4.2.

4.2 Limitation of original LIA for the Mapping between DVS and PVS

Although the LIA is an effective implementation of the extension principle, its good performance

is based on some assumptions. If these assumptions are violated, the LIA will generate poor results
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or even wrong results. This section will discuss the limitations of the LIA.

4.2.1 Anomalies in the LIA for a Single Preference Function

To simplify the situation, consider the limitations of the LIA in the situation where it is desired to
compute one performance variable induced from one design vanahlenap fromuy(d) to ugq(p)

with p = f(d). First, assume that the design preference functions have normality and convexity,
and are continuous over the interested regiod.ofFor such well-defineg.;(d), there are several

possible anomalies if the LIA is used to computgp = f(d)) [64].

1. pugq(f(d)) will be infinite if f(d) is unbounded within the support of;(d). For example,
f(d)=1/d.

2. pq(f(d)) will be difficult to compute if f(d) has singularity within the support of;(d). For
example,f(d) = sin(1/d). Details can be found in [64].

3. una(f(d)) will be uninterpretablei.e., will oscillate near some limit values, ff(d) is infinitely

multivalued within the support qi;(d).

4. uq(f(d)) will have nonsensible results ff(d) has finite extrema within the support @f(d).

— - =

In the My, the metamodel off(d), f'(d), instead off(d) is used. Because of the model
structure and base functions #f(d), f'(d) is bounded and finite multivalued, and will not have
singularities within the support gf;(d). So the only possible anomaly will arise whé?(i) is
nonmonotonic within the support of;(d).

Consider the following simple triangle preference functjaj{d) shown in Figure 4.1. The

performance function is a simple cubic polynomial as following:
p=f(d)=30-d°-25-d

and is shown in Figure 4.3.

Using the LIA described in Section 4.4;levelse, 0.1, 1 are used to compute the preference on
the performance variabl@d(p). The result is shown in Figure 4.4.

From the result it can be seen that theuts of ug(p) with o < 0.5 are not accurate. This is
because the performance functif(d) has local extrema for1 < d < 1. Fora-cutsay, = k/10,

0<k<10,D¢ =[do%  dok.]=[-(1—-%ar),l—3ag. The length of P4, is |f(d%%,) —

min’ “max max
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Fldah )l = 1f(1 = 5ar) = F(=(1 = 5ar))| = 2 |f(1 — 5 ay)| becausef(d) is an odd func-
tion of d. For0 < k < 10, |f(1 — 2 ax)| = | f(1 — 2 k/10)| will reach the maxima at = 6. So

for 1 <k <5, P > P¢

ap !

but ag < a. Thus, it can be seen that the internal extremd (@f)

causes this anomaly in the results of the LIA.

4.2.2 Limitations of LIA for Multiple Design Preferences

For a multidimensional DVS, even if every single design preferengé; ), does not cause any of
the anomalies listed in Section 4.2.1, there still may be some errors when the LIA is applied to the
combined design preference.

When using the LIA for a multidimensional DV3),, is assumed to be the Cartesian product
of the individual intervals of design variables. This is only accurate under some special cases, such
asP = min, oy = {£,1.0}, or P # max anday, = 1.0. Otherwise,D,, is not a hypercube as
assumed.

Consider a two-dimensional DVS. The preference functions on two design variépteslds,
are the same, as shown in Figure 4.1 witbuts at{s, 0.5, 1.0}. Then theu(d;, d2)’s are computed
by several aggregation functionstin(jiqi, fta2), max(pqr, paz), (a1 + pa2)/2, and /g - faz-
All four aggregated preference functions are shown in Figure 4.5 ithat o, = {¢,0.5, 1.0}.
The D.’s are always rectangles, as assumed no matter which aggregation function is used because
of the annihilation property. AlD,,'s from P = min are all rectangles as assumed. In the results
of P = (a1 + paz)/2 and’P = /fia1 - a2, D1.o are also rectangles. Bii?, , is not a rectangle
in the result ofP = max(ua; + pa2). And Dy, ’s with a, = 0.5 or any othel0 < «j, < 1.0 from
aggregation functions other th&= min(d;, d2) are not rectangles. It can also be noticed that the
assumed rectangle will be smaller than the acigl-cut if the assumption is violated.

To avoid this limitation of the LIA, the values af can be limited. tce and 1.0 However,
sometimes the intermediatelevels are also necessary to find the relevant set of designs. Also,

sometimes the preference function does not rdagiespecially for the overall preference function

Lho-

4.2.3 Limitations of the LIA for Multiple Performance Variables

By using the LIA, thex-cut for the preference on any single performance variable can be computed.
If there areg > 1 performance variables, for amylevel there will beg a-cuts for the performance

variables,{ [p1 min--P1,max); " * * » [Pgmin--Pg,max] }. ONE Simple way to generaﬁé;lk is to use the
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Cartesian product of theintervals:

ng = [pl,min-'pl,max] X X [pq,min-'pq,max]

(4.6)

Even if the mappings of the design variables to the performance variables do not cause any anoma-

lies of the LIA, and the aggregation function for the design variables does not oreats different

from hypercubes, the result from Equation 4.6 is accurate only when there is no dependence between

any two mapping functions from the DVS to the PV’s. Otherwise there are some distortions from

the actuak-cut.

For example, consider a simple system of two design variadjemdd,, and two performance

variables,p; andps. The design preferences are the same as those in Figure 4.1. The aggregation

function isP = min(ua1, pa2), SO the resultinge-cuts are exactly the same as those in the upper-left

figure in Figure 4.5. The mappings from the DVS to the PVS are;
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dy.dy) =dy +d
pro| fi(di,d2) 1+ ds @.7)

P2 fa(dy,do) = dy +2-dy

Within the region[—1 .. 1] x [—1 .. 1], the mapping functionsf; and f,, are single-valued
and bounded, have no singularities, and are also monotonic. So the regplt$,Qf .. p1 max] and
[P2min -- P2,max) USING the LIA are accurate. The result is ttﬂ%(ﬁk is a Cartesian product of the
intervals ornp; andps.

Becausef; and f, are both linear functions af;, andds, an alternate way to compuﬁgk is to
map the corner points dﬂgﬁk to the PVS and connect them in the same order as in the DVS. The
two sets ongk 's for « = {¢,0.5,1.0}are shown in Figure 4.6. There are significant differences
between thev-cuts generated by the different methods because of the strong dependence between
f1 and f5. The stronger the dependence between mapping functions, the bigger the difference
between the results from the two methods. The situation will become more complicated if the
mapping functions are not linear, or there are other errors caused by the anomalies of the LIA or the

aggregation function in DVS.

4.3 The Revised LIA

There are many possible anomalies and limitations of the LIA described in Section 4.2. There are
also many extensions of the LIA to improve its performance.

Among all four types of anomalies listed in section 4.2.1, the first three can be avoided by using
the metamodef”(d) of f(d), because its model structure and the chosen base functions ensured that
no anomalies will happen except the fourth ofi&d() has finite extrema).

Wood, Otto, and Antonsson [64] proposed an extension of the LIA to remedy the anomaly
caused by finite number of internal extremafg(cf) within the support of anyl;. This extended
method tries to find the extrema of the mapping function within or on the boundary of tl¢ of
d. Then these extrema are used to improveffﬁke

When the dimensionality of the DVS is high, it is expensive to find the extrema by solving the
equationg%’ = 0 directly. Law and Antonsson [30, 31] proposed a simplified method to find the
extrema. First build a linear approximation for #jfs. Then evaluatef; at the center point of the
DVS (d.+,), and usef;(d.) to detect nonlineay;'s. Finally refine the linear approximation for all

the linearf;’s. Then the extrema can be found by using conventional optimization method to find
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the extrema in the reduce search space of only those nonlfinsar
The linear approximation of alf;'s can also be used to relax the assumption fl’@k is a

hypercube. The linear approximation is in the form as [31]:

Fld) = A-(d—da) + A (4.8)
ail - Gip dy — dﬁ” A1
= -
Qg1+ Qgn dy, — df{” JANS

A polyhedron can be generated to approximate the ad?gg.l Consider the column vectors
in matrix A as the principle directions, and the extrema points found through linear approximation
or optimization as the corner points of the polyhedron. The result of the extension of the LIA by
principle directions oﬁinear(cf) is denoted a®? . For the example in section 4.2.3, the upper-right
corner points are the maxima foy andp-, the lower-left corner points are the maxima fgrandp,
because both performance functions are linear. Therefor, the actuas will be found. However,
if any extremum is generated by optimization, a special adjustment is needed. The resulting
by the extension of the LIA with linear approximations and optimizations on nonlinear performance
functions is denoted aB%.

If the f5 in Equation 4.7 is changed to make a n¢_€7\(d1,d2) as in Equation 4.9, then the
linear approximation of is the f, in Equation 4.7, and th&% is the same as that in Figure 4.6.
If optimization is applied on nonlinear performance functions, the extrema wifill be found as
P2,min = f5(—1.0,—-0.75) = —3.5 andpz mar = f5(1.0,0.5) = 3.5. The extrema op; are the
upper-right and the lower-left corner points in Figure 4.6. TRts from two different extensions
are shown in Figure 4.7. The optimizations add two more regiof§tpand some adjustments are
needed if convexity is desired. From the location ff(0.8,0.8), f3(0.8,0.8)), it can be seen that

the P41 is more accurate thaR%, becaus€0.8,0.8) € DZ.

fi(dy,d2) = dy + da
D1 _ dy —dsy + 3.0 if dp > 0.5 (49)
P2 f3(di,d2) =4 dy +4ds +0.5 if —0.75 > dy > 0.5

di —2dy — 4.0 if —=0.75 > dy
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o Extrema
< (fl’fZ) at (0.8,0.8) P max
_ . Principle Directions PN
_ Adjustment Line s ~ p
. . . . s X 1,max
o-—cut using Linear Approximation 7,

Figure 4.7:P% and P* in a 2-D PVS from a 2-D DVS.
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For a mapping between a two-dimensional DVS and a two-dimensional PVS, the result gen-
erated by the extrema and principle directions with adjustment lines is highly accurate. However
for a mapping between am-dimensional DVS and a-dimensional PVS, ifn > g, thenngk has
q degrees of freedom and its boundary has 1 degrees of freedom. Far > 3, it is difficult to
generate the boundary ﬂfk from the principle directions which have only 2 degrees of freedom,
and it is also difficult to add the adjustment patches for the resulting extrema from the optimizations.

Although the extension of the LIA by a linear approximationf?(tf) can improve the per-
formance of the LIA, the resulting:-cut is not presented in a desired form. The operations on
g-dimensional polyhedron are not trivial even if the difficulty of constructing the polyhedra is ig-
nored, and patches are added, when some extrema are the results of optimizations. On the other
hand, the results from Equation 4.4 and Equation 4.6 are less accurate but expressed in a much sim-
pler form,n-cubes. Operations ancubes are much easier than thosewetimensional polyhedra.
Furthermore, the errors caused by invalid assumptions about the aggregation function or the inde-
pendence betweef}’s and the chance thdt’s have local extrema within DVS are all proportional
to the size or volume of the DVS or PVS. Based on above the observations, an alternative way to
improve the performance of the LIA by dividing the DVS and PVS into smaller regions is proposed
below.

First, divide the relevant range of design variadénto s; subregions by{d;,---,d; . }, The

77,84

subregion ford;, the sub-hypercube in the DVS and its center points, are denoted by

Xi,ri = [d<‘> : ] (4.10)

i,ri—10 Yi,r,

*
7 = Xy X X Xy,

Cra o Cim )

(A, = 5 y1)/20 (5, = S 1)/2)

where 7= (r1,-+-,mn), 1<1r;<s, 1<i<n

I
I~

Now each sub-hypercube will have its local design preference, which includes the effect of the

aggregation function:

pa; (di) = P(pa(cra)s o, pa; (di)s - pd, (¢in) ) (4.11)
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where 7= (r1,---,mn), 1<1r;<s, 1<i<n

Then find thex-cut of the local design preferengg, (d;) in eachX as[d;;‘,ii“, dfx], and use
Equation 4.4 computé);{ak. The wholea-cut in the DVS, denoted aB4”(3), is the union of all

Dgak over all sub-hypercubes in the DVS.df = S, V 1 < i < n, the wholea-cut is denoted as

Dgf (S).

d
DF’,ak = [dtl)éf;“l,mim dil;“hmax] Koo X [dzi’nvmin’ d%ﬁ’"vma’(] (412)
D = UDi,
g
where 7= (ry,---,1rn), §=(s1,""",5n)

and 1<r;<s;, 1<i<n

The Pgak can be computed in a similar way. First, compllitgf as described above. Then
divide the relevant range of each design varighlénto u; subregions b\{p{,---,p{,, }. The

subregion fop; and the sub-hypercube formed by these subregions are denoted by

Vit = [p;?,tj—lapitj] (4.13)
== Vi X X Vg,
where t= (t1,--,t,), 1 <t;<uj, 1<j<gq
Then apply the original LIA to eacﬁ);ivak to get thea-cut on eaclp; in each): as
[pﬁ@vﬁmin,pﬁ‘fmmax]. The endpoints of the-cut of 14(p;) in Y are the union of thew-cuts in
all X'*’s:
[e% [e%
Pifymin = WD o (4.14)
[e% [}
Pifymax =  MAXPiL

where T=(ry, -,r), 1<r;<s;, 1<i<n

and 1<t;<u; 1<j<gq
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Then compute the-cut in each sub-hypercube in the P\ngak using Equation 4.6. The-cut
in the whole the PVSP?’(5, ), is the union of allP¢ , over all sub-hypercubes in PVS. And if
s5i=38, V1<i<nandu; =U, V1 < j < g, thea-cut for the whole PVS is denoted as

PS8, U):

d " g
Pt_:ak = [p?ﬁl,min"p?ﬁl,max] Xoeee X [pgéq:min"pgﬁmma’(] (415)
dO /o — d
PEa = | JP,
vt
where t= (t1,---,ty), U= (u1, -, uq)

I<tj<wu;, 1<j<gq

and 5= (81, "+, Sn),

This extension of the LIA will be demonstrated on the examples in Section 4.2.2 and in Sec-
tion 4.2.3. For the problem ofiy(d) = P(pay, 1a, ), the support of each design variable is
divided equally intol0 subregions, and the interval of each design variable is computed from
1a,#(d;) in each sub-rectangle in the DVS. Then theut is generated by Equation 4.13. The
DE2(10)'s for 4 different aggregation functions are shown in Figure 4.8 with the aetaits. For
P = min(dy, d2), the result from the LIA with the hypercube assumption is correct, so is the result
from the extended LIA. FOP = max(d;,d2), the result from the extended LIA is the same as
the actuala-cut because the boundaries of the actualut are parallel to the boundaries of the
sub-rectangle. FOP = (d; + d3)/2 andP = /d; - da, the results from the extended LIA are not
the same as the actualcuts because now the boundaries of the aciualits are not parallel to the
boundaries of the sub-rectangle. But the the results from the extended LIA approximate the actual
a-cuts with good accuracy.

For the problem with multiple performance variables, the same dividing method is applied to
the modifiedfq*(dl, dy) as the one used in the beginning of this section to demonstrate the extension
of the LIA with linear approximations and optimizations. In short, the result of the new extension
of the LIA with S design variable subregions atidperformance variable subregions is denoted as
ng}f‘ (S,U). Also in order to show the effects of the change§ iandl{, results from different values
of S andi/ are shown in Figure 4.9. Because of the anticipated complexity ofﬁ’thﬁ, do), U is

chosen ag S. The mark “” in each figure is5, = f*(—0.88,0.48) and it can be seef, ¢ ng
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M= min(uy,Ky,)
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1/2
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Figure 4.8:D¢ - (10)’s by different aggregation functions.
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Figure 4.9:P27(S,u) with different values ofl” andU.

butpy € PI7(S8,28), S =2,4,8,16. If P{7(16,32) is considered as the actuaicut, it can be
seen that eve?” (2, 4) is much better than,E, and P47 (4,8) already has acceptable accuracy,
and with almost no big difference betwe#}{" (8, 16) and P (16, 32).

PI9(S,U) is better thanP$# and P with respect to flexibility of aggregation function and
dimensionality of the PVS. The anomaly thlafkD C Pglm whereay, < «; may still be triggered
by the nonmonotonicity of(af) although the chances can be reduced by dividing the DVS and the
PVS. To solve this problem, the following operation for muiteuts withk increasing froml to

M — 1 can be added:

pi = PR\ JPE, vi<k<M-1 (4.16)

Q41 A1 g ?

where ap <oy, V1<kE<I<M
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One thing that should be noticed is that this new extension of the LIA can be used to induce any
preference function from the DVS to the PVS. The new extension of the LIA improves the accuracy
at the expense of the increase in the computational cost. If the metamodel of the mapping function

is used, the increased computational cost is reasonable as demonstrated in Section 5.3.1.

4.4 The Computation of the Overall Preference

With the extension of the LIA in Section 4.3, now preferences can be aggregated in the DVS and
accurately mapped to any dimensional PVS with any aggregation function. The next step in the
method of imprecision is to compute thecuts of the overall preferences in the DVS and the PVS,
Dg, andPy, .

Otto, Lewis, and Antonsson [39] proved that the maximum overall preference in the DVS is the
same as that in the PVSpax j1,(d) = max 11,(p) = 115, andf(D, ) = Pg., if f andyuy(d) satisfy
some continuity conditions. Based on these results, etal. developed a two-step method to
computeDy;.. and 7., and demonstrated this method on the design of a turbofan engine, where the

p = f(d) is the design cost which is generated by the Engine Development Cost Estimator provided

by the General Electric Aircraft Engines [27, 28].

e The first step of this method is called the “Forward Calculation,” which is:

-

— computeuy(p) from pg(d) by LIA

- -

— computeyso(5) = P(p1a(d), 1 (d))

— find pf = max 1,(p) and Py.

e The second step is called “Backward Path,” which is

— find Dy,. from Pj. with the help off

The forward calculation is covered by previous sections and chapters. This section focuses on
the backward path. In genera;‘lq,—1 is needed to map’7. onto the DVS in order to geby., but
the problem is that usuallf is not invertible. For the turbofan engine design problem, there are
three special conditions which are helpful to avoid the difficulties causd&b.yFirst, all eight de-
sign variables are discrete. So the DVS is a finite set of design alternativesz?gpean be found by

brute-force search. Second( g, 11,) = min(ug, 11,,), which means thaiy(d) > po(d), ¥ d € DVS.
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ThenV oy, < p, ng 2 Dj., becauseuy(d*) > u > oy, Vd* € Dy.. Because the larger the,,
the smaller the size dP¢ , the search space of;. is now restricted thgZ whereqj is the largest
ag among alloy, < pf.

Although the backward path succeeded for the engine design problem, there are some difficulties
for a general problem without the three special conditions. First, if there is compensation in the
aggregation function ofi; and,,, the search space @¥;. is the whole DVS. Second, the brute-
force search is not feasible if the DVS is not a finite set of design alternatives. When there is
compensation in the aggregation functiorugfandy,,, thea-cut of 1, may not be limited to the:-
cut of 4. There are two ways to compute thecut of i1, from thea-cut of 114: either by intersection
of ng anchf; in which way some region aPy, is lost, or reconstruct,(p) from P? s which is
not trivial. Finally, if f(cf) iS nonmonotonic, it is possible thfrl(Pﬁz) D Dps, wherefi1 is not
a single-valued function and defined as

- =

fUP)={deXx|fld)=p, FcP} VPCY (4.17)

where) is the set of all vectors of performance variables with valid values.

Becausef(d) is nonmonotonic,3 dy, dy € DVS suchthatf(d;) = f(dy) = p.. Without loss
of generality, assume that;(ds) > as > ugq(di) > a1 > 0. According to the extension princi-
ple, 1q(7.) < max(pa(dy), pa(ds)) = pa(dy) > . Assumens > p,(F.) > 1, then there exists

P, # max such thap, (i) = Pu(pa(Pi), pp(Dx)) > ag, i€
P € P, and dy,dy € f7H(PS) (4.18)

But becausgu(d;) < s and pp(Px) < ag, from the idempotency and monotonicity &f,

—

po(dr) = P(pa(dr), p1p(f(d1)) = P(pa(dr), 11 (5s)) < P(az, az) = az, which means that

d ¢ DS, (4.19)

From Equation 4.18 and Equation 4.19, it can be concludedfth]a(tlﬂj’;) D Dy, for aggregation
function P, andy} > ao.

All above difficulties and errors stem from the usagefof. They can be avoided f—l is
no longer needed. The following method can complfe and P;, without f~1, and so it will

produce more accurate results with less computational cost.
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e The new method to computey, and Py, without o

1. Specifycf, Py X, Y, pa,(d;)’'s, andp,, (p;)'s. Decide the trade-off strategye., the P

used to compute the overall preference= P (114, itp)-

-

2. Computeu,(d) the overall preference in DVS, and use the method in Section 4.3 to

O
generateD?,”".

3. ComputePy” with DS by the extension of the LIA in Section 4.3.

The biggest difference between the new method and the old method is that the new method does
not needf—l. In the old method computations are carried out in both the DVS and the PVS, and
finally Pg is generated befor®yg, , which is why it needgF—l. But in the new method, although
up(f(cﬂ) can be considered computations in the PVS, the final aggregation for the overall preference
is in DVS. Computingu,(f(d)) for d € X is the basis of the new method. The LIA is a discrete
approximate implementation of the extension method. When apply Llwgﬁq uo(cf) is needed to
be computed only at a finite number of points in DVS. Eveﬁis& not invertible over the PVS but
it can be considered invertible at any single point in the PVS becausﬁ“ﬂh'm Equation 4.17 is
single-valued forP = {f(cf)} C Y. The new method can be understood as applying the two-step
old method at a finite number of design points whére is well defined. The usage gf ! is
avoided by transferring the information of the functional requirements in the the PVS to the DVS
by using the equivalent inverse ﬁfat individual points in the PVS.

To demonstrate the new method, it will be applied to the example in Section 4.3 with a two-
dimensional DVS and a two-dimensional PVS. The design preferences for both design variables are
defined in Figure 4.1. The performance function is shown in Equation 4.9. The design preferences
and functional requirements are shown in Figure 4.10. The aggregation functions for the combined

design preference, combined functional requirement, and the overall preference in the DVS are

pa(d) = min (g, (d1), pay(dz)) (4.20)
o) = [ (f1(d) + g (f3(d)) ] /2
po(d) =\ pa(d) - pp(d)

The overall preference in DVS is shown in Figure 4.11. Hege= 0.5 is chosen, because the

a-cut will be more complicated than those fof = ¢ or 1.0.
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Figure 4.11: The shape gf, (d).
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Figure 4.13:P9% (S, U) for different values ofS andi/.

Now the new method is used to compub§: and P¢%. Following procedure is listed in Sec-

tion 4.4, D37 should be computed first. Here differefis are chosen a$, 8, 16 and32 to compare

the effect ofS. TheseDJ='s are shown in Figure 4.12. Among the faDf=’s, D33 (32) is of course

the most accurate, anfl (16) also catches many details g7 (32), evenDg3(8) has enough

details for the use in preliminary stages. THRg:'s are also induced with/ = 2S as shown in

Figure 4.13. Not surprisingly¢= (32, 64) is the best one. And thES% (16, 32) is almost the same

as P§5(32,64). P§5(8,16) is the most cost-effective result among these f&E’s. Although

D§7(4) is rough,Pg5 (4, 8) is still on the right track if compared with others.

Now the DVS is continuous, anfiis not invertible over the whole DVS. The backward path

can not be used to compufg] ;. So the result of the new method and the result of the forward

calculation can be comparedS,i/) = (8,16) is chosen because it is the cost-effective setting.

P92(8,16) and P92 (8, 16) are computed by the forward calculation and are shown in Figure 4.14.
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Figure 4.14:P¢2(8,16) and P2 (8, 16) by the forward calculation.

In order to simplify the computation, only the subregions witlﬁ{ﬁg(& 16) are used to compute
P92(8,16), although there is compensationipg = VHd - -

Figure 4.15 shows thEg? (8, 16) and theP$Z (8, 16), along with then-cut generated by the for-
ward calculation with the original LIA, which can be considered?Ps§ (1,1). Several test points
are also drawn in Figure 4.15, whepg = f’(d}) = f’(—O.2,0.2), Dy = f’(d:) = f’(O.6,0.4),
and 7 = f/(dy) = f(0.48,0.36). po(Fx) > po(dy) = 0.79201 > o = 0.5 indicates the error
of ]500%‘(8, 16) in the region aroungh, which may be introduced by not including points outside
Py5d0(8,16). po(d,) = 0.40825 < o = 0.5 indicates possible error af¢2(1,1) in the region
aroundp,. And p,(d,) = 0.40825 < o = 0.5 indicates possible error d?2¥ (8, 16) at its upper-
right corner aroung, .

Among these threev-cuts of the overall preference atlevel 0.5, the result of the forward
calculation with the original LIAP&E(I, 1), is the least accurate one. If the LIA was replaced by

the extension witt8 subregions in each DV anih subregions in each PV, thecut was refined.
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Figure 4.15:P§% (8, 16) by the new method an#¢% (1, 1) and P¢% (8, 16) by the forward calcula-

tion.
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But because, () was not calculated fop ¢ P2 (1,1), PSY(8,16) will be smaller than the actual
P§5. For the resultingy-cut by the new method$% (8, 16), there are errors around its boundary

becauseS = 8 andi/ = 16. IncreasingS andl/ can increase the accuracy &5 .

4.5 Summary

If the new extension of the LIA is added to the new method to compute-ts in the DVS and
the PVS, it becomes a new method which can computexthets of the overall preference with

much higher accuracy. The procedure of this implementation in detail is

1. Specifycf, D, X, Y, pa,(d;)’s, andpy, (p;)'s. Decide the trade-off strategye., the’? used to

compute the overall preferengg = P (14, ttp)-

2. Divide the relevant range of eaghinto subregionst; ,,, which form X’} the sub-hypercubes
in the DVS.

3. Construct, (d;), the local overall preference in each sub-hypercube.
4. Find theD%ak, thea-cut of the local overall preference in each sub-hypercube.

5. The union of theDg , 's in all the sub-hypercubes in DVS i8], the wholea-cut of the

global overall preference in DVS.

6. Divide the relevant range of eaghinto subregiong/; ;., which formY, the sub-hypercubes
in the PVS.

7. For each’)/tf, find the interval of eacl_'Df;’ak on p; by the original LIA, whose union is the

interval of the global overall preference pnin y;.

8. PtS’ak, the a-cut of the global overall preferenge, in each sub-hypercube, is the Cartesian

product of the intervals gf,, onp; in V.

9. The union of theP;ak’s in all the sub-hypercubes in the PVSHgE, the wholea-cut of the

global overall preference in PVS.

The above method can be used to computedimit of the overall preference in the DVS
and the PVS for any level betweere and1.0. If there are severak levels in ascending order,

{a1,...ap}, the operations in Equation 4.17 should be added after the step 4 in the above list.
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The increase of the computational cost is reasonable if the metamodel of the mapping function
is used, which will be demonstrated in Section 5.3.1.

Dividing the DVS into sub-hypercubes and constructing local overall preference function re-
duces the error caused by the aggregation functions. If there are local extrfmhe)hnomaly will
only affect the sub-hypercubes containing the local extrema. Dividing the PVS into sub-hypercubes
can relax the requirement about the independencg;’sf Now it only requires that thef;’s are
independent within each sub-hypercube. Even if the independence assumption is violated, the error
is also reduced and limited within the mapping of that sub-hypercube. The existeﬁcé isf no

longer necessary because of the change of the computation orﬂgfca‘ndPgE.
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Chapter 5

Implementation of the Mgl and Example

The basic definitions, the construction of the metamodel of the mapping function, the revised ex-
tension of the LIA, and a new method to compute the overall preference are discussed in previous
chapters. This chapter will introduce the implementation of tie Which combines all techniques

mentioned above. A new measure will be proposed to test the improvement of metamodels. This

implementation will be demonstrated on the design of the structure of a passenger vehicle.

5.1 Implementation of the Myl

Chapter 4 discussed how to improve the accuracy of the LIA and how to compute the overall pref-
erence more accurately without consideration for the computation cg%tf@xf A less expensive

- = - =

metamodel off (d) should be used wheji(d) is prohibitively expensive to compute. The model
structure of the metamodel f(fg»(cf), and the sampling criteria for for multistage metamodels, are
discussed in Chapter 3. The empirical root-mean-square errdRMSE was used to evaluate the
performance of the metamodels. In the implementation of tge &new single measure for the

metamodel performance instead of the ERMSE is preferable.

5.1.1 The Difference in the Volumes oé&-cuts

- =

With a metamodeﬁ of f(d), the results of the i are thea-cuts in the DVS and the PV$)2~"s

and P°"s. f; is used to comput@o(cf) and mapD?” onto the PVS. The performance of the
metamodel will affect the accuracy of the final results. The ERMSE is only a general measure for
the performance of an individual interpolation function. In thg,Met boundariesa(-cuts) are of

more interest than the value ﬁfj(cf), so the difference betweencuts is more meaningful than the
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n-tuple of the ERMSEP?" is induced fromDS" by the LIA. The LIA will introduce some errors

in PS™ because the LIA is an approximate implementation of the extension principle. As discussed

above, the accuracy will decrease when some assumptions are violated even if the revised extension

of the LIA is used. Hence the difference betweefi’’s by different metamodels will be a measure

of the metamodel’s performance. The procedure to compute this difference is described below.
Consider two metamodels‘? based on the set of design poitis andfl'jrl based on the set of

design pointsS;, ;. Without loss of generality, it is assumed titatC S;;. The resultinga-cut

with fl is D}, which consists of th®7. , ;s in all sub-hypercubes. Eadl , , is also an-cube,

so itis simple to calculate its volume. First define the volume of the difference bet@&en, and

1) .
DF,ak,l—i-l .

—-

.
Il
—

VOlume Df'ak l U DT Ozk,lJrl) = {max(dz I+1,max’ dgimax) mln(dz ,l+1,min> d?fmln)} (6.1

Volume(Dg, o, i [V Dfapis1) = [mln(d A A% ) — max(d g o, dOF )}

i,l+1,max’ “i,l,max 4,0, min

-

s
I
_

V(DO I+1 — %ak,l) = VOlume D*ak l U ‘DT Ol s l—i—l) VOlume Df"ak l ﬂ ‘DT O s l—i—l)

T,y

The volume of the difference betweglf ', andDZ ., is the sum of the volumes of the difference

between each pair of sub-cuts:

V(Dak +1 — ak l ZV rak,lJrl rozk,l) (52)

Sometimes the ratio of the volume of the difference to the volum@&gt, is preferred to

compare the improvements at differentevels:

1% DOD _ DoD
( ag,l+1 - Ozk,l) (53)
V(D°" )

ayg,l

Ty (0, 1,1+ 1) =

Dgyf1 C DQSQ, for ag, > ap,. If ro,(ag,, 0,0 +1) > ry,(ag,, 1,1 + 1), it can be interpreted that
Dgfl . Is more sensitive to the change J@'fthaani'2 - This result suggests that more design points

should be sampled iD? ; for the metamodel at the next stage.
°1?
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5.1.2 Implementation Process

The method discussed in Chapter 4 will only compute araut in the DVS and the PVS. Some
modifications are needed if more than anéevel is specified. Iff is computationally expensive to
evaluate, its metamodfr can be used to replagéin the method. When multistage metamodels
are preferred, the measurg, can be used to choose the sampling range of design points for the

metamodel in the next stage. With all these modifications, the implementation ogtheekbmes

1. Identify design variablegd, , . .., d,} and performance variabldg;, ..., p,}.

N

. Specify design preferencégg, (d1), . . ., 14, (dn)} @and functional requirements

Ly (P1)5 - -+ 5 1ap, (Pg) }-

3. Decide the aggregation hierarchy for the overall preference and parameters of each aggrega-

tion function.
4. Specify interestinge-levels{a, ... ay } whereay, < api1,1 <k < M — 1.
5. Letl! = 1. Decide the design point$; for the first metamodef{ by experimental design.
6. Repeat until satisfactory accuracy is achieved:
(@) Build thelt" metamodelf7 of fwith design pointsS;.
(b) Usefg’ to computeD for 1 < k < M.
(c) If I > 2, then computer,, (o, — 1,1) for1 < k < M, and findDgE‘ which is most

sensitive to the change of metamodels. Otherwise #etl.

(d) Sample a set of points}S;,, for flil within the bounding hypercube d’r)gf', but
outside the bounding hypercubeDﬁE‘H if s < M, then letSx1 = Sk UdSi+1.

@ 1=1+1.
7. ComputePs™ for 1 < k < M with the last metamodejfl’il.

The whole procedure will be demonstrated in the following sections.

5.2 Problem Description

The problem used in the example is the preliminary vehicle structural design of a 1980 VW Rabbit,

which was an application of the jl demonstrated to Volkswagen Wolfsburg in the summer of
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Figure 5.1: Testing setup of body-in-white.

1997 [51]. In general, the vehicle structural design is to optimizebtiy-in-whiteof a vehicle,
which is the portion of the body of the vehicle that carries the loads. The design engineer needs to
refine the design in order to meet some quantified engineering targets such as stiffness or weight.
Othersoftspecifications such as style or manufacturability, which are not easy to quantify, are also
be taken into consideration.

The bending stiffness and the torsional stiffness were measured for the body-in-white. The
1980 VW Rabbit has a bending stiffness of approximately 2500 N/mm and a torsional stiffness of
approximately 4900 N-m/degree. A solid model and a finite element model were created from the

geometry data measured from the body-in-white.

5.2.1 Design Variables and Performance Variables

The problem here is to improve the overall performan@#g. There are five design variables which

will represent the manufacturability and style:
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Figure 5.2: Geometric model of body-in-white in SDRC I-DEAS.
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Figure 5.3: Finite element model of body-in-white.
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dy = APillar Thickness [mm]

do = B Pillar Thickness [mm]
ds = Floor Rail Thickness [mm]
dy = Floor Thickness [mm]

ds = B Pillar Location [mm]

and three performance variables:

p1 = Bending Stiffness [N/mm]
po = Torsional Stiffness [N-m/deg]
p3 = Weight [kq]

5.2.2 Design Preferences and Functional Requirements

The design preferences obtained from engineers and stylists [51] are shown in Figure 5.4. Because
the sheet steel used to build A-pillar is only available in certain thickneséd; ) is obtained only at
certaind; values. Thinner sheet steel is easier to formugdd, ) represents the manufacturability.

The design preference for the B-pillar thickness is continuous because of the simplifications in the
finite element model. A thicker B-pillar requires more reinforcing features, so a thinner and simpler
B-pillar has higher preference. The preference of the floor thickness reflects the availability of
materials with such thickness. A thicker floor pan is easier to attach and more durable, so it has
higher preference. The preference of the B-pillar location is for the vehicle’s style. It is specified

in a-cuts at threex-levels, {¢,0.5,1.0}. The continuous version of design preferences is built by
connecting discrete points with lines fog, , p4,, fta, andg, .

The functional requirements are gathered from customers or managers by asking what is the
extreme value of a performance variable while the performance is accepigbteg, or the per-
formance is idealy, = 1.0. Then these pairs of points are connected by straight lines. So they are
in simpler form as piecewise linear functions [51]. All three functional requirements are shown in

Figure 5.5.
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Figure 5.4: Design preferences of the VW model
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Figure 5.5: Functional requirements of the VW model.
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Figure 5.6: Aggregation hierarchy of preferences.

5.2.3 Aggregation of Preferences

After the preferences are defined, the appropriate aggregation of each pair of preferences must be
established. The aggregation hierarchy is shown in Figure 5.6. Each aggregation function in the

hierarchy is determined as follows:

1. For the functional requirements of bending stiffness and torsional stiffness, there is little com-

pensation in the aggregation @f;; f fness = Ps(tip1; tip,) atp = 0.5:
P.(0.5,1.0) = P,(1,0.5) ~ Py(1.0,1.0)

This means thatig;  fress = min(up1, 1y, ) is reasonable.
2. For the functional requirement of measured performaneg,the combined functional re-
quirementyu, = Ps(fistif fness, Hps ), the indifference points [52] are
P.(0.3,1.0) = P,(1,0.2) ~ P.(0.5,0.5)
The computation shows that= —0.02 andw = 0.7. If they are rounded to one decimal
. _1
place,S = 0 which means théﬂmeasured = Pn (,ustiffnessa Hps; 1, w) = (,Ustiffness /’[/;)3) Hw,
3. FOrpugesigner, the designer preference aggregated from the preference of the B-pillar thigkpgss(

and the preference of the floor pan thickness:

P4(0.4,1.0) ~ Py(1,0.3) ~ P,(0.5,0.5)
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These indifference points lead to= —1.4 andw = 0.6.

4. The preference of the A-pillar thickness and the floor sill thickness are specified for manu-
facturability. They are aggregated into the manufacturer preferenegutacturer- FOr this

aggregation, the indifference points are

P4(0.4,1.0) ~ Py(1,0.1) ~ P,(0.5,0.5)

The computation shows that= —0.2 andw = 0.3.

5. The designer preference and the manufacturer preference will be aggregated into the engi-

neering preferencgeygincering- NOW the indifference points are found to be:

P,(0.25,1.0) & Py(1,0.25) ~ P,(0.5,0.5)

This shows that the aggregation functiorPig with weight ratiow = 1.0.

6. The next step is to get the combined design prefergpd®y the aggregation of the engineer-
ing preferenc@icygineering and the preference of the B-pillar locatipn, which represents

the style. This aggregation has the following indifference points:

P(0.4,1.0) ~ Py(1,0.3) ~ P4(0.5,0.5)

Sos = —1.4 andw = 0.6 here.

7. Finally, the combined functional requirement and the combined design preference will be

aggregated into the overall preferenge This aggregation has the indifference points:

P4(0.2,1.0) ~ Py(1,0.3) ~ P,(0.5,0.5)

The parameters for the last aggregation functionsate—0.02 ~ 0.0 andw = 1.3.

Combining all of the above aggregation functions according to the aggregation hierarchy, the

final aggregation of the overall preference is

g = P-_14(Pa(P-1.4(de,ds;1,0.6),P_g2(d1,ds;1,1);1,1),d5;0.6,1) (5.4)



108

Table 5.1: Range of the Design Variables.

Design Variable| dy | do | d3 | ds | ds

Minimum Value | 0.7 | 0.9 0.8| 1.0 | -50
Maximum Value| 1.1 | 1.3| 1.2 | 1.4 | 150

Hp = PH(,Pmin(plvp%lal)vp?);170'7)

Ho = PH(:“/dv Hp; 1,1, 3)

5.3 Results

Before the solution to the problem is computed, continuous preferences are constructed from the
discrete design preferences to facilitate computation. From previous results [51], it is known
that the maximum overall preferengég ~ 0.40159, so thea-levels of interest are set tr =
0.01,0.2,0.4}. If there is no previous result available, the near maximum overall preference can
be found at the end of the computation of the fitgt),. The range of each design variable is also
restricted to that in the previous work [51] as in Table 5.1. Beforeatfoeits are computed, the
number of subregions of the range of each design variable is choser=a8, and the number of
subregions of the range of each performance variable is chogér-a8S = 16,

First, a Resolution 11l fractional factorial experimental design is chosen as the design points for
the first stage metamodfll. Then theDgi‘vl’s are computed foty, = 0.01, 0.2, and0.4, and the

bounding hypercube abg5, ; is found to be:
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Another set of8 design points is sampled within above range, and added to the fitssign
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Figure 5.7: Thex-cuts of design variables at.
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points to construct the second metamoﬁgl Another set ongi‘Q’s is computed withf’g. Now

there are two sets db2's. The measure,, (., 1,2) for each pair ofx-cuts is

70, (0.01,1,2) = 12.77%
15,(0.2,1,2) = 13.61%

1oy (0.4,1,2) = 91.13%

These results show thd®;’ , is the most sensitive to the improvement of the metamodel’'s
accuracy, so the nestdesign points forf’3 should be sampled from the bounding hypercube of

Dg » which is

0.7
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do
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ds
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0.925
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25
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ds
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100

Another8 design points are sampled within the bounding hyperculcl‘elgﬁ[2 to build f’g. After

O

computingDg, -

73’5, the ratio of volume of the change in thecuts can be found as:

74,(0.01,2,3) 4.149%
10,(0.2,2,3) = 5.5%

rv,(0.4,2,3) = 75.38%

Comparer,, (o, 1,2)'s andr,, (o, 2,3)’s, it can be noticed that the accuracylagi2 is im-
proved at alln-levels, especially &.01 and0.2. And the values of,,, (ax, 2, 3)’s indicate that the
8 design points forf’, should be sampled within the boundary hypercub@@%:
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Finally, f’4, the metamodel for the last stage is built, and the final resul@g@fs and Pg,?’s
are computed using’,. The achievable maximum overall preference= 0.408. The point in the
DV'S which can generate, is d* = (0.95,0.9, 0.85,1.02, 75). The corresponding point in the PVS
with the maximum overall preference i = f,(d*) = (2,803.09, 5,831.43,149.33). The indi-
vidual design preferences and the combined design preferenﬁeaae (0.7,1.0,0.6,0.575,1.0)
and0.8691, respectively. The individual functional requirements and the combined functional re-
quirement ap* are(0.235, 0.1344, 0.487) and0.2283, respectively.

Here Dgi‘ is a 5-hypercube, anﬂ’gjkD is a 3-hypercube. So for presentation convenience, all
a-cuts are shown on the axis of any single variable and as cross sections in the plane of any two
variables atl* in the DVS, or ap* in the PVS in Figures 5.7, 5.8, 5.9 and 5.10.

The intervals of theDgf’s on each design variable at are shown in Figure 5.7 with the
maximum reachable range of each design variabléatThe cross sections dbg s are also
shown in the plane of any pair of design variables as in Figure 5.8. The cross sections of all three
«-cuts are shown in the same figure for comparison.

The intervals of theP;’ on each performance variablezatare shown in Figure 5.9 with the
maximum reachable range of each design variabi& afhe cross sections @t are also shown
in the plane of any pair of performance variables as in Figure 5.10. Because the shapes of the

boundariengS’s are not as simple as thoseDgf’s, each figure only contains one cross section.

5.3.1 Computational Cost

The computation oD ’s and Pg’s at threea-levels {0.01,0.2,0.4} only requires32 runs of
the finite element model which will take about 32 minutes. The tHpge's are computed four
times for different metamodels which také$ seconds forfﬂ, 76 seconds forf%, 112 seconds

for f’g, and 135 seconds forf’4. The computation costs are increasing because of the increases
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in the complexity of the metamodels. The total time spenD@j’ is 374 seconds. Théjgl'f’s are
only computed with the last metamodﬁh, which takes254 seconds for; = 0.01, 214 seconds
for ap = 0.2, and3 seconds forxg = 0.4. The computational time QP[;S is proportional to
the number of sub-hypercubes in the DVS at least partially occupiddg@ywhich arel7674 for
ap = 0.01, 16387 for ap = 0.2, and27 for a3 = 0.4. The time needed for the,,’s is negligible
when compared with above costs. The computation cost for gleidabout 845 seconds (14

minutes). The total time needed to solve this problem is about 46 minutes.

5.4 Discussion

From the resulting>°~’s shown on one or two design variables, it can be noticed that the differences

ag
between the lengths of the intervals or the areas of the cross sections are not significalet&r
at0.01 and0.2. This indicates thamo(cf) increases sharply fro01 to 0.2, although0.2 is almost
half of the maximum achievable overall preferendey; is quite small compared with the other
two, but it is meaningful because; = 0.4 is close tou = 0.408. If the change betweePg5 and
Dfﬁ is of interest, morex-cuts can be added atlevels betwee.2 and0.4.

This problem was also solved in a previous demonstration by using an exhaustive evaluation
over all points on &° grid in the DVS, which takes about 3,000 minutes. The overall preference
is computed at the 3,125 points in the DVS. Although the informatiop pfs only available at
the 3,125 points, the geometry p@(cf) can be approximated along the axis of one design vari-
able and in the plane of two design variables. The previous resultg}are 0.40159 at d =
(1.0,0.9,0.9,1.0, 50), where the design preferences &bes, 1.0,1.0,0.5,1.0). Thep* = f(d*) is
(2,832,5,836, 147), where the functional requirements &0e23,0.14,0.62).

The new results(};, d*, andp*) listed in Section 5.3 are close to the previous ones. The biggest
difference is between twa:’'s. The previous one i§0, and now it is75. This is because in
previous demonstratiop,, (ds) was simplified by connecting,, (ds) at (—50,0, 50, 100, 150),

which makes.,, (75) = 0.75 although it should bé.0.

5.5 Summary

In the first section, the ratio of the change in the volume of tweuts is proposed as a measure to

predict the sensitivity of the-cut to the change of the metamodel.
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The implementation of the Ml has been applied to a design problem used in a previous demon-
stration. The specification of preferences and the aggregation strategies are the same as those used
previously [51]. The new set-based implementation of thgdes only about.5% of the com-
putational time required by the exhaustive evaluation, but generates almost the same results for the
maximum overall preference. Besides this result, it creates a set of design alternatives far each

level of the overall preference. It also provides information about the set of achievable performances

with a certain level of overall preference.
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Chapter 6

Conclusion

In engineering design, the study of the mapping between the DVS and the PVS is necessary. Usually
a simulation model is built for computer analysis software to avoid an expensive physical prototypes.
There are many optimization methods which can find the extrema by running the simulation model
only a limited number of times. However, in thegM information solely about the extrema is not
enough. The whole geometry of the overall preference function, or at least its contours at certain
a-levels, is critical to obtain. When the DVS is even moderately high dimensional, the computation
to find the geometry of the overall preference function is prohibitively expensive. To implement the
Mgl on areal problem, a metamodel, which is “a model of the model” [24], has to be used to reduce
the computation cost to a reasonable level.

In previous attempts of using a metamodel, linear polynomial models were used to replace the
actual linear or near-linear mapping functions on some performance variables. The simplicity of the
linear model is its biggest advantage. It works well for the original Level Interval Algorithm (LIA)
in Section 4.1, which requires monotonicity of the mapping function. However, for any extension
of the LIA which has the ability to generate more accurate results, the linear model can not satisfy
the accuracy requirement. Moreover, the linear model is not flexible enough. Increasing the number
of design points is not helpful to increase the accuracy of the linear model.

A nonlinear interpolation model is introduced into thg!Mn Section 3.2. This interpolation
model can be considered as the combination of a linear approximation built by the generalized least-
square regression method, and a nonlinear compensation for the approximation error based on the
assumption that the error is an instance of a Gaussian process. Among the several base functions
listed in Section 3.4, the simplest linear polynomials are chosen in Section 3.5. The reasons for

this choice are as follows: the chosen base function preserve the simplicity of the linear polyno-
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mial approximation model, they follow the “main effects principle,” and the flexibility requirement
for the approximation is satisfied by the nonlinear part of the interpolation model. For the linear
polynomial, which contains mostly the main effect, the Resolution Ill fractional factorial design of
experiment is the best candidate among all the experimental design methods in Section 3.3.

The design points chosen by the experimental design are decided by the type of base function. If
more design points are added afterwards, the accuracy of the linear approximation will not change
much, but the errors in the region near the response of any design point will be reduced. It would be
helpful to find a sampling criterion for the design points after the original experimental design which
can increase the accuracy of the metamodel significantly. Many criteria are discussed in Section 3.6.
Each criterion is based on some assumptions. The optimal set of design points under any sampling
criterion is the set of design points, which maximizes or minimizes the objective function of the
sampling criterion. In engineering design, the type of mapping function is unconstrained. It is not
practical, if not impossible, to prove whether the assumption of any sampling criterion is violated
or not, so two testing examples are used to compare these sampling criteria, and the empirical root-
mean-square error is used as a measure of the accuracy of the metamodel. The test results show that
there is no evidence to back the conclusion that any sampling criterion is better than any other with
respect to improving the accuracy of the metamodel.

Two tests of the improvement in accuracy of the metamodels were also carried out at the same
time. The results suggest that the improvement of accuracy is noticeable. The indifference between
sampling criteria is not encouraging but understandable. Some researchers get similar results in
comparisons between many sampling criteria [7]. The equivalent densiypoints for a five-
dimensional DVS is equal '/ ~ 1.5 points for a one-dimensional DVS. To double the equivalent
density,3 points are needed for tHedimensional DVS, bus-2° = 256 points will be needed for the
5-dimensional DVS. Witt82 points in the5-dimensional DVS, the equivalent density3!/> = 2,
which is only aboutl.3 times the equivalent density &f points although the number of design
points is already times as much.

When the dimensionality of the DVS increases, the improvement of the equivalent density will
deteriorate compared with the absolute number of design points. When the validity of the assump-
tions of the sampling criteria is unknown, the equivalent density of the design points will dominate
the increase in the performance of the metamodel. Because the increase in accuracy in the region
near added design points can be induced from the structure of the interpolation model, the sampling

range is more crucial than the sampling criterion for newly added design points.
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After the metamodel is constructed, it can be used to induce preference in one space from that
in the other space by using the extension principle. The LIA is an efficient implementation of the
extension principle. It requires monotonicity of the mapping function to generate the correct answer.
It avoids solving a nonlinear programming problem by sacrificing accuracy. The assumption about
the aggregation function of the preferences and the assumption about the independence between
the mapping functions limits the area of its application if reasonable accuracy is required. The new
extension of the original LIA proposed in Section 4.3 relaxes these assumptions, and reduces the
errors if the relaxed assumptions are violated.

The target of the |4 is to find the set of designs that exhibit a certain level of overall preference
for their performances. The LIA is a good implementation of the extension principle for this purpose
because it approximates the overall preferencedmuts. But when, and how, to use the LIA still
remains a question because the mapping function from the PVS onto the DVS is usually unknown
or does not even exist. In the previous computational implementation of ghesich consists of
the forward calculation and the backward path, the LIA is used twice. First the combined design
preference in the PVg,(p) is induced from the combined design preference in the my@f) in
the forward calculation. Then the LIA is used to induce the overall preference in the DS
from the overall preference in the PV§(p) in the backward path. In the forward calculation, any
aggregation function other thamin(z, o) will create many intermediate-levels of the combined
design preference if the design preferences are dividedieels beside$ < ¢ <« 1.0 and1.0.

For an-dimensional DVS, if each design preference is divided into threats at{c, o, 1.0} where

e < a < 1.0, there will ben more newa-levels betweenv and1.0 in the worst case. If these new
a-cuts are ignored, some information will be discarded. If they are included in later computations,
n + 3 a-levels may be too many for the designer’s discretion. In the backward path, the LIA
requires the inverse of the performance functions, although the solution can be found without them
for problems which satisfy some special requirements [27].

A new method to compute the overall preference is presented and discussed in Section 4.4.
Because the discretization is only applied to the overall preference at the last step of the computation
after any aggregation in the new method, no relgvels will be created. The LIA will only be used
once to induce the overall preference in the PVS from that in the DVS, in which only the forward
mapping function from the DVS to the PVS is needed. This is because the forward mapping function

= f(d), which is used to compute the performances of a design, is used twice. The first use of

fis in the computation of the combined functional requirement in the RY@) = u,(f(d)),
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and f is also used to induce the-cut of the overall preference in the PV from the a-cut of

the overall preference in the DVBY. The LIA is a discrete approximate implementation of the
extension principle. It only needs the overall preferemgécf) at some individual points in the
DVS to computeP?. So,yp(cf) is needed only at some individual points in the DV]éi.S aN to

1 mapping from the DVS onto the PVS wheie > 1. However, for the set which contains any
individual point in the DVS, it becomeslato 1 mapping, and hence has an inverse. The extension
principle is simplified tmp(@ = pp(p) = up(f(cf)) for the 1 to 1 mapping at any individual point

in the DVS. Hence the use gff*l is avoided.

Now thea-cuts of the overall preference can be computed more accurately without the inverse
of the forward mapping function. If the metamodels are used in the computation, the boundary
of eacha-cut has different levels of sensitivity to the increase in accuracy of the metamodel. It
is more cost-effective to add new design points for the metamodel in the region within the most
metamodel-sensitive-cut but outside thev-cut at the next highen-level, because the study in
Chapter 3 shows that where to sample the new design points is more important than how to sample
them when the equivalent density of design points is low. The difference in the volume of two
a-cuts at the sama-level, but computed from different metamodels, is proposed in Section 5.1.1
as the measure of the sensitivity of thecut at a certair-level to the change in the metamodel.

The ratio of the difference in volume to the original volume is preferred to compare the sensitivity
of a-cuts at differentv-levels.

Finally, the whole computation process of thelMs formed from the preceding discussion
in Section 5.1.2 and is applied to the design problem described in Section 5.2 which was used
to demonstrate the §l The results listed in Section 5.3 includecuts at{e = 0.01,0.2,0.4},
and information about the maximum overall preference. Compared with previous results, the new
computation method produces almost the same maximum overall preference, but finds the design
which has the maximum overall preference within only a small portion, ab®&d%, of the time
used by the previous demonstration.

There are three parameters of the computation which decide the accuracy and the cost of the

Mol:
1. The number of design points used to construct the metamodel.
2. The number of subregions of the range of each design variable.

3. The number of subregions of the range of each performance variable.
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There are mainly two contributions to the computational cost: the cost to evaluate the mapping
functions between the DVS and the PVS, which is decided by the first of the listed parameters;
and the cost to compute thecuts of the overall preference in the DVS and the PVS, which is
decided by the last two parameters. The accuracy of the resultiogis is also affected by two
factors: the accuracy of the metamodel of the actual mapping function, which is controlled by the
first parameter; and the accuracy of the LIA, which is controlled by the last two parameters. A
larger value of any of these three parameters produces a higher computation cost but more accurate
results.

The questions posed in Chapter 1 can now be answered:

1. A more accurate approximation than the linear approximation is preferred.
2. Anonlinear metamodel is not only feasible, but is necessary for the new extension of the LIA.

3. The accuracy of the mapping of thecut is improved by dividing the range of each variable
into smaller regions. Besides, thecuts in the DVS and the PVS can be represented in more

detail than just using a hypercube.

4. With the metamodel and the new extension of the LIA, the designer has more control over the

trade-off between computation cost and accuracy.



122

Bibliography

[1]
(2]

(3]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

J. AcZél. Lectures on Functional Equations and their ApplicatioAsademic Press, New York, 1966.

S. Baas and H. Kwakernaak. Rating and ranking of multiple-aspect alternatives using fuzAytets.
matica 13:47-48, 1977.

R. A. Bates, R. J. Buck, E. Riccomagno, and H. P. Wynn. Experimental design and observation for large
systemsJournal of the Royal Statistical Society Series B- Methodologh&tl):77—-94, 1996.

R. E. Bellman and L. A. Zadeh. Decision-making in a fuzzy environmbtdnagement Science
17(4):B—141-163, December 1970.

George E. P. Box and D. W. Behnken. Some new three-level designs for the study of quantitative vari-
ables.Technometrics2:455-477, 1960.

George E. P. Box, William G. Hunter, and J. Stuart Hun&tatistics for Experimenter§Viley, New
York, NY, 1978.

Wei Chen, Ruichen Jin, and Agus Sudjianto. On sequential sampling for global metamodeling in en-
gineering design. liProceedings of DETCO02: 2002 ASME Design Engineering Technical Conference
2002.

B. Cheng and D. M. Titterington. Neural networks, a review from a statistical perspeStaistical
Science9(1):2-30, 1994.

D. R. Cox and N. ReidThe theory of the design of experimer@iapman and Hall/CRC, Boca Raton,
2000.

Selden B. Crary, Peter Cousseau, and Dabid Armstrong. Optimal design of computer experiments
for metamodel generation using i-opt (t"MES-Computer Modeling in Engineering and Sciences
1(1):127-139, 2000.

William J. Diamond Practical experiment designs for engineers and scientistin Wiley and Sons,
Inc., New York, New York, 2001.

W. M. Dong and F. S. Wong. Fuzzy weighted averages and implementation of the extension principle.
Fuzzy Sets and Systeri§(2):183—-199, February 1987.



123

[13] D. Dubois and H. Prad&uzzy Sets and Systems: Theory and Applicatidoademic Press, New York,
1980.

[14] D. Dubois and H. Prade. A review of fuzzy set aggregation connectiviegmation Sciences86:85—
121, 1985.

[15] Richard O. Duda and Peter E. Haattern classification and scene analydigiley, New York, NY,
1973.

[16] John Anderson et aMachine learning : an artificial intelligence approach. Kaufmann, Los Altos,
California, 1983.

[17] Leonard Bolc et alComputational models of learnin§pringer-Verlag, New York, NY, 1987.

[18] Jerome H. Friedman. Fitting functions to noisy data in high dimension€omputing Science and
Statistics pages 13—-43. American Statistical Association, April 1988. Proceedings of the 20th Sympo-

sium on the Interface.

[19] Jerome H. Friedman. Multivariate adaptive regression splifies.Annals of Statisticd9(1):1-141,
1991.

[20] L. Fung and K. Fu. An axiomatic approach to rational decision making in a fuzzy environment. In
L. Zadeh et al., editordruzzy Sets and Their Applications to Cognitive and Design Procelisss
York, NY, 1974. Academic Press.

[21] Maurice F. Holmes. Machine dynamics, The need for greater productivity. In K. N. Reid, éigor,
search Needs in Mechanical Systepeges 140-159, New York, NY, 1984. ASME.

[22] M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin distance desijnsnal of

Statistical Planning and Inferenc26(2):131-148, 1990.

[23] J. Kiefer and J. Wolfowitz. Optimum design in regression probleinsals of Mathematical Statistics
30:271-294, 1959.

[24] J. P. C. KleijnenStatistical tools for simulation practitionerarcel Dekker, New York, 1987.

[25] P. Langley and H.A. Simon. Applications of machine learning and rule inductommunications of
the ACM 38(11):55-64, 1995.

[26] William S. Law. Evaluating Imprecision in Engineering Desigih.D. thesis, California Institute of

Technology, Pasadena, CA, June 1996.

[27] William S. Law and Erik K. Antonsson. Implementing the Method of Imprecision: An Engineering
Design Example. IProceedings of the Third IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE '94), volume 1, pages 358-363. IEEE, June 1994. Invited paper.



(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

124

William S. Law and Erik K. Antonsson. Including Imprecision in Engineering Design Calculations. In
Design Theory and Methodology — DTM '9%lume DE-68, pages 109-114. ASME, September 1994.

William S. Law and Erik K. Antonsson. Hierarchical Imprecise Design with WeightBraweedings of
the Fourth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE/IFESW®G)ne 1, pages
383-388. IEEE, March 1995.

William S. Law and Erik K. Antonsson. Optimization Methods for Calculating Design Imprecision. In
Advances in Design Automation - 1996lume 1, pages 471-476. ASME, September 1995.

William S. Law and Erik K. Antonsson. Multi-dimensional Mapping of Design Imprecisior8tin

International Conference on Design Theory and Methodald@ME, August 1996.

Jeffrey K. Liker, Durward K. Sobek, Allen C. Ward, and John J. Cristiano. Involving suppliers in product
development in the United States and Japan: Evidence for set-based concurrent engitgelfing.

Transactions on Engineering Managemef8(2):165-178, 1996.

D. V. Lindley. On a measure of the information provided by an experimembals of Mathematical
Statistics (27):986-1005, 1956.

J. M. Lucas. How to achieve a robust process using response-surface methodtmlogs! of Quality
Technology26(4):248-260, 1994.

M. D. Mckay, R. J. Beckman, and W.J. Conover. A comparison of three methods for selecting values
of input variables in the analysis of output from a computer cddehnometric21(2):239-245, May
1979.

T. Mitchell, J. Sacks, and D. Ylvisaker. Asymptotic bayes criteria for nonparametric response-surface
design Annals of Statistic22(2):634—-651, 1994.

D. C. MontgomeryDesign and Analysis of Experimentiley, New York, NY, 1991.

Kevin N. Otto. A Formal Representational Theory for Engineering DesiBh.D. thesis, California

Institute of Technology, Pasadena, CA, June 1992.

Kevin N. Otto and Erik K. Antonsson. Somecut Concepts. Engineering Design Research Laboratory
Report EDRL-TR 91c, California Institute of Technology, 1991.

Kevin N. Otto and Erik K. Antonsson. Trade-Off Strategies in Engineering DeBigaearch in Engi-
neering Design3(2):87-104, 1991.

Kevin N. Otto and Erik K. Antonsson. Trade-Off Strategies in the Solution of Imprecise Design Prob-
lems. In T. Terano et al., editorBuzzy Engineering toward Human Friendly Systems: Proceedings
of the International Fuzzy Engineering Symposium '91, Volunmades 422—-433, Yokohama, Japan,
November 1991. LIFE, IFES.



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

125
Kevin N. Otto and Erik K. Antonsson. Tuning Parameters in Engineering DeA8ME Journal of
Mechanical Design115(1):14—19, March 1993.

Kevin N. Otto, Andrew D. Lewis, and Erik K. Antonsson. Approximatingcuts with the Vertex
Method.Fuzzy Sets and Systerb5(1):43-50, April 1993.

Kevin N. Otto, Andrew D. Lewis, and Erik K. Antonsson. Determining optimal points of membership
with dependent variableBuzzy Sets and Syster6f(1):19-24, November 1993.

Sudhendu Rai. Optimal experimental setpoint determination in systems with multiple output responses.
In Proceedings of DETC98: 1998 ASME Design Engineering Technical Confes8btE, September
1998. Paper Number DETC98/DTM-5678.

Jerome Sacks, William J. Welch, Toby J. Mitchell, and Henry P. Wym. Design and analysis of computer
experimentsStatistical Sciencet(4):409-435, February 1989.

K. J. Schmuckerfuzzy Sets, Natural Language Computations, and Risk Anaysimputer Science

Press, Inc., Rockville, Maryland, 1984.

Michael J. ScottFormalizing Negotiation in Engineering DesigRh.D. thesis, California Institute of

Technology, Pasadena, CA, June 1999.

Michael J. Scott and Erik K. Antonsson. A Comparison of Design Evaluation Techniques. September
1998.

Michael J. Scott and Erik K. Antonsson. Aggregation Functions for Engineering Design Trade-offs.
Fuzzy Sets and Systeri9(3):253-264, 1998.

Michael J. Scott and Erik K. Antonsson. Preliminary Vehicle Structure Design: An Industrial Appli-
cation of Imprecision in Engineering Design. 10th International Conference on Design Theory and
MethodologyASME, September 1998.

Michael J. Scott and Erik K. Antonsson. Using Indifference Points in Engineering Decisiohkthin

International Conference on Design Theory and Methodald@ME, September 2000.

P. Sebastiani and H. P. Wynn. Maximum entropy sampling and optimal bayesian experimental design.
Journal of the Royal Statistical Society Series B- Statistical Methodpb&{§):145-157, 2000.

M. C. Shewry and H. P. Wynn. Maximum entropy samplidgApplied Statisticsl4:165-170, 1987.

Durward K. Sobek, Allen C. Ward, and Jeffrey K. Liker. Toyota’s principles of set-based concurrent

engineeringSloan Management Revied0(2):67—+, 1999.
L. P. Sullivan. Quality function deploymer@uality Progress19(6):39-50, June 1986.

Karl T. Ulrich and Scott A. Pearson. Does product design really determine 80% of manufacturing cost?
Working Paper MSA 3601-93, MIT, Sloan School of Management, Cambridge, MA, August 1993.



[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

126

Allen C. Ward, Jeffrey K. Liker, John J. Cristiano, and Durward K. Sobek. The second Toyota paradox:
How delaying decisions can make better cars faSkran Management Revie®6(3):43-61, Spring
1995.

Allen C. Ward, Jeffrey K. Liker, Durward K. Sobek, and John J. Cristiano. Set-based concurrent en-
gineering and Toyota. IDesign Theory and Methodology — DTM '9olume DEG68, pages 79-90.
ASME, September 1994.

D. E. Whitney. Manufacturing by desigHarvard Business Revigw6(4):83-91, July 1988.

Kristin L. Wood. A Method for Representing and Manipulating Uncertainties in Preliminary Engineer-

ing Design Ph.D. thesis, California Institute of Technology, Pasadena, CA, 1989.

Kristin L. Wood and Erik K. Antonsson. Computations with Imprecise Parameters in Engineering De-
sign: Background and TheorhSME Journal of Mechanisms, Transmissions, and Automation in De-
sign, 111(4):616—-625, December 1989.

Kristin L. Wood and Erik K. Antonsson. Modeling Imprecision and Uncertainty in Preliminary Engi-

neering DesignMechanism and Machine Theg5(3):305-324, February 1990. Invited paper.

Kristin L. Wood, Kevin N. Otto, and Erik K. Antonsson. Engineering Design Calculations with Fuzzy
Parameterd-uzzy Sets and Systerb2(1):1-20, November 1992.

R. Yager. Fuzzy decision making including unequal objectiFegzy Sets and Systeris87—-95, 1978.

L. A. Zadeh. Fuzzy set$nformation and Contrql8:338-353, 1965.



Index

Ps, seeweighted

root-mean-power

aggregation function, 8

aggregation hierarchy, 13

aliases, 21

a-cut, 70

Dé 70

D7 (%), 83

DIY(S), 83

Pl 80

pi 78

P39S, U), 84

Annihilation, 9
weighted, 11

anomalies of the LIA, 73

Backward Path, 87

Bayesian I-Optimal design,
40

body-in-white 101

Box-Behnken design, 21

CCD, seecentral composite
design

central composite design, 21

combined design preference,
68

combined functional

requirement, 68

127

Commutativity, 8
weighted, 10
computation ofDg, andPg,
without f~1, 88
computer experiment, 18
Continuity, 8
weighted, 10

covariance structure, 18

design appropriate, 9
design points, 19
design preference, 7
design variable space, 6
design variables, 6

DV, seedesign variables
DVS, seedesign variable

space

equivalent density, 118
ERMSE, 28
extension of the LIA, 79

extension principle, 69

factorial design, 20

2% factorial design, 20

Forward Calculation, 87

2k fractional factorial
design, 21

fully compensating, 9

functional requirement, 7

G-optimal 39
Gaussian process, 18

geometric weighted mean, 9

Idempotency, 9
weighted, 11

IDT, 2

implementation of the iy,

100

imprecision, 1

indifference points, 13

interpolation model, 19

I.-Optimal, 40

Latin Hypercube, 20

Level Interval Algorithm, 70

LIAseeLevel Interval
Algorithm 70

wa; 7(d;), 82

main effects principle, 22

mapping function, 7

maximin distance design, 39

maximum entropy sampling
criterion, 38

metamodel, 15

Method of Imprecision, 1, 6

Monotonicity, 8



weighted, 10

pa(d), 68
pa

d), 8
1o(P), 8
1ip(P), 68

o

(
(

non-compensating, 9
overall preference, 8

partially compensating, 12
Parzen Windows method, 65
performance variable, 6
performance variable space, 7

polyhedron approximation, 80

128

PV, seeperformance variables
PVS,seeperformance

variable space

randomization test, 43
Ty (g, 1,1+ 1), 99
Resolution

1, 21

v, 21

V, 21

Self-normalization, 11
set-based, 2
significance level

F, 42,45

t, 42,45

sub-hypercube

X, 82

Y%, 83
super-compensating, 12

systematic departure, 18

test points, 24

Vertex Method, 70

V(DE e = Dgla) 99

weighted means, 11

weighted root-mean-power,

12
weights, 10



