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Abstract

With the exponential growth of the Internet, there is a critical need to design efficient, scalable and
robust protocols to support the network infrastructure. A new class of protocols has emerged to
address these challenges, and these protocols rely on a few key techniques, or micro-algorithms, to
achieve scalability. By scalability, we mean the ability of groups of communicating processes to grow
very large in size. We study the behavior of several of these fundamental techniques that appear
in many deployed and emerging Internet standards: Suppression, Announce-Listen, and Leader
Election.

These algorithms are based on the principle of efficient multipoint communication, often in
combination with periodic messaging. We assume a loosely-coupled communication model, where
acknowledged messaging among groups of processes is not required. Thus, processes infer information
from the periodic receipt or loss of messages from other processes.

We present an analysis, validated by simulation, of the performance tradeoffs of each of these
techniques. Toward this end, we derive a series of performance metrics that help us to evaluate
these algorithms under lossy conditions: expected response time, network usage, memory overhead,
consistency attainable, and convergence time. In addition, we study the impact of both correlated
and uncorrelated loss on groups of communicating processes.

As a result, this thesis provides insights into the scalability of multicast protocols that rely
upon these techniques. We provide a systematic framework for calibrating as well as predicting
protocol behavior over a range of operating conditions. In the process, we establish a general
methodology for the analysis of these and other scalability techniques. Finally, we explore a theory of
composition; if we understand the behavior of these micro-algorithms, then we can bound analytically

the performance of the more complex algorithms that rely upon them.
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