
Extending quantum error correction: new continuous

measurement protocols and improved fault-tolerant overhead

Thesis by
Charlene Sonja Ahn

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

2004

(Defended May 3, 2004)

ii

c© 2004

Charlene Sonja Ahn

All rights Reserved

iii

Acknowledgements

A great deal of thanks and praise is due my advisor, John Preskill, who not only has been

exceptionally generous with his time and energy but also has greatly encouraged and aided

me in following my own interests and collaborations while still remaining interested in my

work.

Additionally, I have been very fortunate to be able to work with Gerard Milburn and

Howard Wiseman during parts of two summers spent at the University of Queensland.

These visits were enlightening and productive. Both were always ready with advice and

help when needful; their ideas inspired the work in Chapters 5 and 6. Howard Wiseman

has been especially helpful in always encouraging me to find more general formulations of

my work.

I would like to thank the members of the Institute for Quantum Information, who have

made Caltech into a very exciting and interesting place to research quantum information

theory. In particular, the guidance of Andrew Doherty and Patrick Hayden has been invalu-

able, as they practically acted as associate advisors for several years. In addition, I would

like to thank not only the above, but also Jim Harrington and Andrew Landahl, along with

Mohan Sarovar of the University of Queensland and Kurt Jacobs of Griffith University,

for rewarding collaborations. Mohan Sarovar, among other things, has been tremendously

helpful in providing simulation results testing various statements in Chapter 5, some at

extremely short notice. The physical and mathematical insight, keen critiquing skills, and

friendship of Kevin Birnbaum, Sumit Daftuar, Carlos Mochon, Ben Rahn, and Ben Toner

have been indispensable in too many ways to list here. Finally, I thank Dave Beckman for

not only enlightening discussions but also unwavering support and care, even while he was

stressing about his own thesis.

iv

Extending quantum error correction: new continuous measurement

protocols and improved fault-tolerant overhead

by

Charlene Sonja Ahn

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

Quantum mechanical applications range from quantum computers to quantum key dis-

tribution to teleportation. In these applications, quantum error correction is extremely

important for protecting quantum states against decoherence. Here I present two main

results regarding quantum error correction protocols.

The first main topic I address is the development of continuous-time quantum error cor-

rection protocols via combination with techniques from quantum control. These protocols

rely on weak measurement and Hamiltonian feedback instead of the projective measure-

ments and unitary gates usually assumed by canonical quantum error correction. I show

that a subclass of these protocols can be understood as a quantum feedback protocol, and

analytically analyze the general case using the stabilizer formalism; I show that in this case

perfect feedback can perfectly protect a stabilizer subspace. I also show through numerical

simulations that another subclass of these protocols does better than canonical quantum

error correction when the time between corrections is limited.

The second main topic is development of improved overhead results for fault-tolerant

computation. In particular, through analysis of topological quantum error correcting codes,

it will be shown that the required blowup in depth of a noisy circuit performing a fault-

tolerant computation can be reduced to a factor of O(log logL), an improvement over

previous results. Showing this requires investigation into a local method of performing

fault-tolerant correction on a topological code of arbitrary dimension.

v

Contents

1 Introduction 1

2 Quantum error correcting codes 8

2.1 Introduction . 8

2.1.1 Bit-flip code . 9

2.2 Bit-flip code in continuous time . 10

2.3 A true quantum error correcting code: the Shor code 11

2.4 A quick look at the theory of quantum error correction 13

2.5 Stabilizer codes . 13

2.6 Topological quantum codes . 15

2.6.1 Two-dimensional toric code . 15

2.6.2 Local correction of toric codes . 18

3 Quantum feedback control 20

3.1 The master equation . 20

3.2 Markovian feedback . 22

3.2.1 Jump unravelings . 22

3.2.2 Diffusive unravelings . 23

3.3 State-estimate feedback . 25

4 Continuous quantum error correction via estimate feedback control 27

4.1 Continuous quantum error correction protocol 27

4.1.1 One-qubit picture . 27

4.1.2 Bit-flip code model . 28

4.1.3 Feedback for a general code . 31

vi

4.2 Feedback based on the completely mixed state 32

4.3 Simulation of the bit-flip code . 36

4.3.1 Simulation details . 37

4.3.2 Results . 38

4.4 Relaxing assumptions . 42

4.4.1 Bandwidth-limited control . 42

4.5 Imperfect detection . 43

4.6 Conclusion . 46

5 A more practical scheme for continuous error correction via estimate

feedback 47

5.1 The error correction scheme . 47

5.1.1 Example: A one-qubit toy model . 49

5.1.2 Example: Bit flip correction . 50

5.2 Simulation results . 52

5.2.1 The toy model . 53

5.2.2 Three qubit code simulation . 54

5.2.3 Inefficient measurement . 56

5.2.4 Solid-state quantum computing with RF-SET readout 58

5.3 Discussion and conclusion . 63

6 Quantum error correction for continuously detected errors 65

6.1 Introduction . 65

6.2 Example: Spontaneous-emission correction 68

6.2.1 Two-qubit code: Jump unraveling 68

6.2.2 Two-qubit code: Diffusive unraveling 71

6.2.3 Generalizations to n qubits . 71

6.3 One-qubit general measurement operators 72

6.3.1 General unraveling . 73

6.3.2 Diffusive unraveling . 75

6.3.3 Diffusion as the limit of jumps . 76

vii

6.3.4 Relaxing assumptions: imperfect knowledge of measurement rate and

imperfect detection . 79

6.4 Universal quantum gates . 80

6.5 Multiple channels . 82

6.6 Looking at a spin 1 system . 85

6.7 Conclusion . 88

7 Cost of quantum fault tolerance 89

7.1 Towards Pippenger’s conjecture . 89

7.2 The probability of failure for an encoded gate 91

7.2.1 An overview of Gacs’ proof of the fault-tolerance of Toom’s rule . . 92

7.2.2 Suppression of error droplets . 100

7.2.3 The quantum problem: two-dimensional error droplets in four dimen-

sions . 104

7.3 Quantum blowup without fast classical computation 111

7.3.1 Fault-tolerant measurement . 112

7.3.2 Fault-tolerant fanout . 115

7.3.3 Software preparation . 118

7.4 Quantum blowup when classical computation is fast 119

7.5 Status of Pippenger’s conjecture . 120

A One droplet becoming many 122

B Lattice animals 124

viii

List of Figures

2.1 Stabilizer generators operators for the two-dimensional toric code 16

2.2 Homologically trivial and nontrivial cycles 17

2.3 Correction of an error chain . 18

4.1 One-qubit feedback scheme . 29

4.2 Feedback protocol with optimized feedback 39

4.3 Feedback protocol with non-optimized feedback 40

4.4 Feedback protocol behavior over a range of measurement and feedback strengths 41

4.5 Feedback protocol behavior as function of measurement strength 42

4.6 Behavior of continuous plus discrete error correction 43

4.7 Feedback protocol with bandwidth-limited control 44

4.8 Behavior of feedback protocol for imperfect detection efficiency 45

5.1 Sample trajectory of one-qubit “code” . 57

5.2 Behavior of filtered error correction protocol 57

5.3 Behavior of filter protocol for imperfect efficiency 59

6.1 Modified error correction protocol . 67

7.1 A possible error path. 92

7.2 A sample investigation graph with two histories 95

7.3 Illustrating the size . 96

7.4 A spanned History with sub-Histories drawn. 97

7.5 An Explanation Tree . 99

7.6 Another error path . 99

7.7 Another error path . 101

ix

7.8 Whole, original, and truncated tree . 102

7.9 Two corresponding explanations . 107

1

Chapter 1

Introduction

Quantum mechanics has existed as a theory of nature for almost a century, but only in the

last twenty or so years has much of research focused on the question: What are quantum

states good for, anyway? More precisely, what tasks can be performed using quantum states

that go beyond what can be done with classical states alone?

By 1982, R. P. Feynman had suggested that a quantum computer might be able to simu-

late quantum systems more efficiently than classical computers [25], and in 1985 D. Deutsch

constructed a quantum algorithm able to solve a small problem faster than any classical

algorithm [17]. At around the same time, in 1984, C. Bennett and G. Brassard introduced

the provably secure scheme for quantum key distribution now known as BB84 [9] (although

the proof of security took more than ten years after that to be realized [60, 57, 79]).

In the early nineties, it became clear that quantum states could be utilized in performing

a host of exciting and bizarre tasks. Quantum teleportation, discovered by Bennett et al.

in 1993 [10], is a nifty application in which a quantum state, with the help of an additional

entangled state and classical communication, can be transmitted even without any sort of

quantum communication channel. Perhaps the most well-known and exciting application of

quantum states is Shor’s algorithm for factoring numbers in polynomial time in the number

of digits, which represented the first exponential speedup of a quantum algorithm relative

to the best known classical algorithm [78].

What gives quantum states these myriad powers? Classical states can take on discrete

values— a classical bit, for example, takes on the values 0 and 1— but cannot take on

coherent combinations of those values. Quantum states, on the other hand, are represented

2

by elements of a Hilbert space: a quantum bit, or qubit, can take on any value in a two-

dimensional Hilbert space. In particular, it can take on 0 or 1 values, just as a classical bit

can, and those values are represented in the Hilbert space as

|0〉 =





1

0





|1〉 =





0

1



 . (1.1)

A qubit can moreover exist in a coherent superposition of 0 and 1:

|ψ〉 = a|0〉 + b|1〉 ≡





a

b



 , (1.2)

where a and b are complex numbers with |a|2 + |b|2 = 1.

One way of understanding the power of these quantum states (albeit an oversimplified

and incomplete way) is to think of them as being able to perform a sort of parallel processing

on 0’s and 1’s simultaneously. In this way a quantum algorithm such as Deutsch’s or Shor’s

is able to extract global information about a problem that a classical computer might take

much longer to extract.

Unfortunately, we do not have access to all the information encoded in a quantum state;

in that case we could store an infinite amount of data in the complex numbers a and b in

equation (1.2)! Another step is necessary to interact with the quantum system: it must be

measured in some way. In the two-dimensional basis shown above, the measurement will

give one of two values. For example, measuring the state in (1.2) in the computational basis

will give either a 0, with probability |a|2, or a 1 with probability |b|2. If a 0 is obtained,

the state after the measurement will be |0〉, while |1〉 is the resulting state after measuring

a 1. Notice that neither of those two states are the same as the original. This example

illustrates a more general principle: gaining information about a state disturbs it.

Because these delicate superpositions are easily disturbed by noise, controlling and pro-

tecting these quantum states becomes an interesting and difficult problem. Indeed, over-

coming the effects of strong decohering interactions with the environment is a major hurdle

3

faced by experimenters studying quantum systems. Classically, error correction is much

easier to do. Let us assume that given n bits, errors happen independently and infrequently

on each bit with probability p. In the presense of errors that may cause a bit with value 0

to flip to the value 1, or conversely from 1 to 0 (a “bit flip”), logical bits may be encoded

in, for example, a simple repetition code that will act to protect them from errors. For

example, a 0 could be encoded in three zeroes; then even if one of the bits is flipped to a

1, majority voting will act to correct that error. If p is small enough and error correction

is fast enough, most errors will be of this one-bit form and will be corrected. In particular,

the effective error probability on the encoded bit is reduced from p to an expression of order

p2.

Error correction with regard to quantum states is more difficult for several reasons.

We run into problems right away: a simple repetition coding cannot be implemented di-

rectly for arbitrary superpositions of quantum states even in principle, because arbitrary

superpositions cannot be cloned.

Even if this sort of repetition coding, or some variant, could be done, there are even

more issues. Quantum states admit not only bit-flip errors but also phase-flip errors, in

which a state 1√
2
(|0〉 + |1〉) could be flipped to 1√

2
(|0〉 − |1〉) and vice versa. Even worse,

phase and bit flips are not the only sorts of errors; a quantum state a|0〉+b|1〉 is susceptible

to very small errors in the values of a and b, and any quantum error correction scheme

must be able to correct not just bit or phase flips, but also these possibly very small errors.

Finally, the classical repetition code assumed implicitly that the errors could be measured.

Classically, of course, this assumption is a trivial matter because the act of measuring the

state to determine the error has no effect on the state. However, when measuring quantum

states, the very measurements that are performed to determine the error that has occured

may disturb the state that needs to be protected.

These concerns were put to rest in 1996, when P. Shor discovered the first known quan-

tum error correction code that could correct not only for bit flips but also for phase flips,

and indeed for an arbitrary error on any physical qubit in the code [76] 1. These quantum

1There are several other tools that have been developed to protect quantum states from decoherence,

notably decoherence-free subspaces [56] and dynamic decoupling methods [85]. In this thesis we will restrict

our attention to quantum error correcting codes.

4

error correction codes are designed not to require cloning of arbitrary superpositions. Like

classical error-correcting codes, quantum error correcting codes work by redundantly en-

coding quantum information across many quantum systems. The key to this approach is

the use of measurements that discretize errors onto a finite set and additionally reveal in-

formation about the error rather than about the encoded data. This feature is particularly

useful for protecting the unknown quantum states that appear frequently in the course of

quantum computations. The physical tools used in this approach are projective von Neu-

mann measurements that discretize the errors and fast unitary gates that restore corrupted

data.

Often it is necessary to consider slightly weaker tools. In many quantum systems, the

information gained about the quantum state from measurements comes from continuous

measurements which give very little information about a state in an infinitesimal time

interval, and thus disturb the state very little in that time interval. One might also postulate

that the system might be controlled using not unitary gates that change a state suddenly,

but rather bounded-strength Hamiltonians that rotate a state in finite time. These sorts of

tools are the domain of quantum feedback control.

Quantum control, loosely speaking, is the art of getting a quantum system to do what

you want it to do in the presence of various restrictions on how much it is possible to

find out about the system and how powerful the controls are allowed to be. There is

a large and diverse literature on the theory of quantum feedback control, ranging from

practical experimental protocols (e.g., [88]) to abstract theoretical models (e.g., [84]) to

combinations of the two (e.g., adaptive quantum measurement of optical phase in [94,

97], experimentally implemented in [5]. The information about the quantum state fed

into the controller typically comes from continuous measurements, and the operations the

controller applies in response are typically bounded-strength Hamiltonians. In between the

measurements and the subsequent applied operations, there may be varying amounts of

processing of the measurement results. One well-studied type of feedback relies only on

instantaneous measurement results and thus is called Markovian feedback, or Wiseman-

Milburn feedback after H. M. Wiseman and G. J. Milburn, who developed the associated

formalism [93, 98]. Feedback could also depend on parameters extracted from reconstructing

the state of the system due to information gained from the measurement; this type of

5

feedback is often referred to as state-estimate feedback. Discussing some of the formalism

related to these two ways of performing feedback will be the subject of Chapter 3.

Quantum error correction and quantum feedback both rely on performing operations

that are conditioned on the result of some measurement on the system, which suggests

that exploring the links between these two techniques adds to our understanding of both

processes, and may lead to insights into future protocols and experimental implementations.

Although these two subjects are similar in broad outline, little work had been done on

combining them before the work presented in this thesis. Previous work to account for

continuous time using quantum error correction has focused on “automatic” recovery and

decoherence modeling but had neglected the role of continuous measurement [7, 14, 66].

Quantum feedback control had, like quantum error correction, been thought of as a tool

to protect quantum states, but previous work on quantum state protection using quantum

feedback control had focused on protection and preparation of known states and had not

addressed the issue of protecting unknown quantum states [89, 53]. The first protocol for

continuous quantum error correction via quantum feedback control was a state-estimation

protocol given in [2]. This protocol is robust and can be constructed to be optimal; however,

it uses a great deal of classical side-processing to obtain that optimal and robust feedback.

I will present this protocol and simulations of it in Chapter 4, along with some results I

have derived on showing knowledge of the original quantum state is not required, as well as

some new simulation results on relaxing some of the model assumptions.

In Chapters 5 and 6, I will then present two new protocols for continuous quantum

error correction via quantum feedback control, each of which has its own advantages and

disadvantages. One uses less classical processing than the above protocol but is still robust;

its drawback is that it only works when the measurement and correction strengths are

above a certain threshold. The last can be formulated analytically in terms of the stabilizer

formalism because it uses Markovian feedback, which also implies that it requires no side

processing whatsoever; to make use of this formalism, however, the error correction protocol

must be mutated so that it only corrects for a specific sort of error process. Furthermore, the

Markovian nature of the protocol means that it is not robust to measurement inefficiency.

Instead of considering the tools used to perform quantum error correction, let us now

consider quantum error correction itself used as a tool for performing quantum computation

6

with very little error. When combined with fault-tolerant techniques, and when all noise

sources are below a critical value known as the accuracy threshold, quantum error correction

enables quantum computations of arbitrary length with arbitrarily small output error, also

known as fault-tolerant quantum computation. The achievability of fault tolerance leads

naturally to the question: how much overhead is required in order to make a circuit fault-

tolerant? Suppose that a classical circuit of reliable gates with size L and depth D computes

a particular Boolean function. We wish to compute the same function using a circuit of

noisy gates. Suppose that the noisy gates fail independently with a probability of failure ε

and that the function is to be computed with a probability of error less than δ. Classically,

for any fixed positive δ and for sufficiently small fixed positive ε, an equivalent circuit with

noisy gates can be chosen such that its size L∗ and depth D∗ are

L∗ = O(L logL) ,

D∗ = O(D) ; (1.3)

the cost of achieving fault tolerance is that the size of the circuit blows up by a factor of order

logL, and the depth by a constant factor. This result was suggested by Von Neumann [87]

in 1952, and proved by Dobrushin and Ortyakov [18] in 1977. Explicit circuit constructions

realizing this blowup were first achieved by Pippenger [67].

What is the corresponding statement about simulating a quantum circuit using noisy

quantum gates? Pippenger [68] has conjectured that the blowup in the quantum case is

L∗ = O(L log2 L) ,

D∗ = O(D) . (1.4)

The intuition underlying this proposal is that to achieve quantum fault tolerance we must

control both bit flips and phase errors. If control of bit flips costs a factor of logL in size and

a constant in depth, and control of phase errors has the same cost, we arrive at eq. (1.4). On

the other hand, Aharonov and Ben-Or conjecture in the conclusion of [1] that the quantum

cost in depth must be at least a factor D∗ = O(log logL). Using concatenated codes (a

hierarchy of codes within codes) it had been previously established that the blowup in both

7

size and depth is no worse than a factor polylogarithmic in L [1, 23, 47, 72, 35]. Chapter 7

of this thesis will show that the blowup in depth can be reduced to a factor O(log logL).

Another interesting computational model is one in which classical postprocessing of

measurement outcomes that is polylog in L is regarded as instantaneous. In fact, it was

already known that with polylog classical processing, a constant blowup in quantum depth

and a polylog blowup in quantum size can be achieved using concatenated coding. It will

also be shown in Chapter 7 that topological coding methods can improve the power of logL

in the blowup of the quantum size over previous results.

8

Chapter 2

Quantum error correcting codes

2.1 Introduction

One important tool that has been developed for protecting against decoherence is quantum

error correction [76, 80, 50, 38], which is specifically designed for protecting unknown quan-

tum states. In the usual protocol for quantum error correction, projective measurements are

performed to acquire an error syndrome. A unitary operation chosen based on the results

of the projective measurements is then applied to correct for the error.

More specifically, a binary quantum error correcting code (that is, one that can, by anal-

ogy with computer bits, be represented in terms of qubits; for simplicity I will only consider

these binary codes) can be thought of as a 2k-dimensional subspace of a 2n-dimensional

Hilbert space, together with a set of correction operations. We can think of this space as

storing k logical qubits in n physical qubits; the redundancy involved in encoding k logical

qubits in a larger space may allow a certain set of errors to be corrected by measurement

and application of the correction operations without disturbing the logical state. Some ex-

amples of quantum codes are given below, along with some helpful formalism. In particular,

I will discuss the stabilizer formalism, a powerful group-theoretical method that provides

an elegant and compact way to characterize quantum codes.

In the remainder of this work, I will use the notation of [38] in which X, Y , and Z

denote the Pauli matrices σx, σy and σz respectively, and juxtaposition denotes a tensor

product; hence any element of the Pauli group

Pn = {±1,±i} ⊗ {I,X, Y, Z}⊗n (2.1)

9

may be denoted as a concatenation of letters (e.g., ZZI = σz ⊗ σz ⊗ I). For compactness

of notation, I will also sometimes refer to an operator A acting on the (i)th qubit alone as

A(i).

2.1.1 Bit-flip code

The salient aspects of quantum error correction can already be seen in the three-qubit bit-

flip code, even though it does not correct for arbitrary errors. The bit-flip code protects a

single two-state quantum system from bit-flipping errors by mapping it onto the state of

three qubits:

|0〉 → |000〉 ≡ |0̄〉 (2.2)

|1〉 → |111〉 ≡ |1̄〉. (2.3)

The states |0̄〉 and |1̄〉 are called the basis states for the code and the space spanned by

them is called the codespace, whose elements are called codewords.

The qubits are subjected to bit-flip noise: that is, the operators XII, IXI, IIX are

the only possible errors. After the qubits are subjected to noise, quantum error correction

proceeds in two steps. First, the parities of neighboring qubits are projectively measured.

These are the observables

M0 = ZZI (2.4)

M1 = IZZ. (2.5)

The error syndrome is the pair of eigenvalues (m0,m1) returned by this measurement.

Once the error syndrome is known, the second step is to apply one of the following

unitary operations conditioned on the error syndrome:

(−1,+1) → XII (2.6)

(−1,−1) → IXI (2.7)

(+1,−1) → IIX (2.8)

(+1,+1) → III. (2.9)

10

This procedure has two particularly appealing characteristics: the error syndrome mea-

surement does not distinguish between the codewords, and the projective nature of the

measurement discretizes all possible quantum errors onto a finite set. These properties hold

for general quantum error correcting codes as well.

2.2 Bit-flip code in continuous time

For what follows, it is instructive to consider the bit-flip code in the picture of continuous-

time evolution [2].

If the bit-flipping errors arise from reservoir-induced decoherence with some decoherence

rate 1/γ, then prior to quantum error correction the qubits evolve via the master equation

dρnoise = γ(D[XII] + D[IXI] + D[IIX])ρ dt, (2.10)

where γdt is the probability of a bit-flip error on each qubit per time interval [t, t+ dt], and

where

D[c]ρ = cρc†dt− 1

2
(c†cρ+ ρc†c)dt. (2.11)

is a superoperator representing the effects of these bit flips.

This master equation has the solution

ρ(t) =

a (t) ρ0

+b (t) (XIIρ0XII + IXIρ0IXI + IIXρ0IIX)

+c (t) (XXIρ0XXI +XIXρ0XIX + IXXρ0IXX)

+d (t)XXXρ0XXX, (2.12)

11

where

a(t) =
(

1 + 3e−2γt + 3e−4γt + e−6γt
)

/8 (2.13)

b(t) =
(

1 + e−2γt − e−4γt − e−6γt
)

/8 (2.14)

c(t) =
(

1 − e−2γt − e−4γt + e−6γt
)

/8 (2.15)

d(t) =
(

1 − 3e−2γt + 3e−4γt − e−6γt
)

/8. (2.16)

The functions a(t)–d(t) express the probability that the system is left in a state that

can be reached by zero, one, two, or three bit flips from the initial state, respectively. After

quantum error correction is performed, single errors are identified correctly but double and

triple errors are not. As a result, the recovered state, averaged over all possible measurement

syndromes, is

ρ = (a (t) + b (t)) ρ0 + (c (t) + d (t))XXXρ0XXX. (2.17)

The overlap of this state with the initial state depends on the initial state, but is at least

as large as when the initial state is |0̄〉; namely, it is at least as large as

F3̄ =
(

2 + 3e−2γt − e−6γt
)

/4

' 1 − 3(γt)2. (2.18)

Recalling that a single qubit subject to this decoherence has error probability p = γt, we

see that, when applied sufficiently often, the bit-flip code reduces the error probability on

each logical qubit from O(p) to O(p2).

2.3 A true quantum error correcting code: the Shor code

In fact, there are quantum codes that can protect not only against one specific kind of error,

but against any arbitary error on a single qubit! A simple example was first described by

Shor [76]. This code is a concatenation of the bit-flip code described previously and the

phase-flip code; the phase-flip code protects against phase (Z) errors and can be formulated

from the bit-flip code by changing all Z’s into X’s and all eigenstates of Z into eigenstates

12

of X. That is to say, the phase-flip code is given by the codestates

|0̄〉 = (|0〉 + |1〉)(|0〉 + |1〉)(|0〉 + |1〉) (2.19)

|1̄〉 = (|0〉 − |1〉)(|0〉 − |1〉)(|0〉 − |1〉), (2.20)

and the Shor code is given by the codestates

|0̄〉 =
(|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)

2
√

2

|1̄〉 =
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
(2.21)

This code can protect against a bit flip on one qubit; for example, if a bit flip occurs on the

first qubit, measuring the operators ZZIIIIIII and IZZIIIIII will diagnose the error in

the same way as in the bit-flip code, and the appropriate correction can be performed as

in that code. Phase flips are managed similarly; a phase flip occurring on the first qubit

will be diagnosed by measuring the operators XXXXXXIII and IIIXXXXXX and a

correction can be performed. Finally, an error consisting of both a bit flip and a phase flip

can be diagnosed by measuring both the sets of operators above.

From these observations, we can show that an arbitrary error on a single qubit can be

corrected with this code. An arbitrary error on qubit (i) can be written as

E(i) = εII
(i) + εXX

(i) + εY Y
(i) + εZZ

(i). (2.22)

Given a state in the codespace |ψ̄〉, measuring the operators considered above on the state

E(i)|ψ̄〉 will hence collapse the state into four possibilities: |ψ̄〉, X(i)|ψ̄〉, Y (i)|ψ̄〉, or Z(i)|ψ̄〉.
Correction can then be done as above.

As in the bit-flip example, the key to the success of this code is that when the measure-

ments are performed, they give information about the error— and in the process, in fact,

the measurements disturb the error so that it is discretized into a finite small set of possible

errors— without disturbing the quantum state that we wish to protect.

13

2.4 A quick look at the theory of quantum error correction

Given a particular quantum code, what condition must an error satisfy in order to be

correctable? A necessary and sufficient condition for the set E to be correctable is easily

given by the following:

〈ψi|E†
bEa|ψj〉 = Cabδij , (2.23)

for all Ea, Eb ∈ E , where |ψi〉, |ψj〉 are orthogonal codewords of the code [50, 11], and Cab is

an arbitrary matrix. The idea of this condition is that errors must take states to orthogonal

states, and those orthogonal states should not depend on i; if they did, finding the error

subspace would involve gaining information about the encoded state and thus disturbing

it. A proof of (2.23) can be found in Refs. [71, 64].

Another term that is often used in connection with error correcting codes is the distance,

which is related to the weight of errors. Given a Pauli error, that is, an error E such that

E ∈ {I,X, Y, Z}⊗n, the weight of E is simply the number of non-identity terms in E. For

example, the weight of the term XXX is 3, while the weight of IIX is 1. The distance of

a code, then, is the smallest weight for which there exists an operator E with that weight

such that

〈ψi|E|ψj〉 6= Cabδij . (2.24)

Often codes will be parametrized by the distance d of the code as well as the number of

encoded qubits k, and n, the number of physical qubits (or equivalently, the log of the

dimension of the total Hilbert space); these numbers are often represented in the form

[[n, k, d]]. The Shor code from section 2.3, for instance, is a [[9, 1, 3]] code: it encodes one

logical qubit in nine physical qubits. It is also not hard to see that the distance of this code

is 3.

2.5 Stabilizer codes

An important class of quantum error correcting codes is that of the stabilizer codes, which

were first introduced and analyzed by D. Gottesman [34]. A stabilizer code may be defined

simply as follows: Consider a 2n-dimensional (n-qubit) Hilbert space and a subgroup of

2n−k commuting Pauli operators S ∈ Pn. This group of operators is the stabilizer of the

14

code; the codespace C(S) is the simultaneous +1 eigenspace of all the operators in S. It can

be shown [64] that if −I is not an element of S, the subspace stabilized is non-trivial, and

the dimension of C(S) is 2k; hence, we regard this system as encoding k qubits in n. The

generators of such a group are a subset of this group such that any element of the stabilizer

can be described as a product of generators. It is not hard to show that n − k generators

suffice to describe the stabilizer group S.

This formalism lends itself to a nice way of describing what errors are correctable with a

given stabilizer code. In order for a stabilizer code to correct for a set of Pauli operators E ,

the condition (2.23) is satisfied if, for every Ea, Eb ∈ E , either E†
bEa ∈ S or {si, E

†
bEa} = 0

for some si ∈ S. This is easily seen: given {si, E
†
bEa} = 0, since sk|ψi〉 = |ψi〉 for all sk ∈ S

and |ψi〉 ∈ C(S),

〈ψi|E†
bEa|ψj〉 = 〈ψi|siE

†
bEa|ψj〉

= −〈ψi|E†
bEasi|ψj〉

= −〈ψi|E†
bEa|ψj〉

= 0. (2.25)

When considering universal quantum computation it is also useful to define the normal-

izer of a code. Given a stabilizer group S, the normalizer N(S) is the group of elements

in Pn that commute with all the the elements of S, and it can be shown that the number

of elements in N(S) is 2n+k. Now, n + k generators suffice to describe N(S). Of these,

n − k can be chosen to be the generators of S. It can be shown that the remaining 2k

generators can be chosen to be the encoded operators Z̄µ, X̄µ, µ = 1, 2, ..., k, where Z̄µ, X̄µ

denote the Pauli operators X and Z acting on encoded qubit µ, tensored with the identity

acting on all other encoded qubits. These encoded operators act, as their name implies,

by taking states in C(S) to other states in C(S). Thus these encoded operators can also

be thought of as undetectable errors: if one of these operators acts without our knowledge,

it is impossible to correct, or even detect, the error with this code because the state stays

within the codespace.

The usual protocol for stabilizer codes starts with measuring the stabilizer generators.

This projection discretizes whatever error has occurred into one of 2n−k error syndromes

15

labeled by the 2n−k possible outcomes of the stabilizer generator measurements. The in-

formation given by the stabilizer measurements about what error syndrome has occurred is

then used to apply a unitary recovery operator that returns the state to the codespace.

We can thus see that the stabilizer notation provides a compact way of describing codes:

one must merely list the stabilizer generators of a code to specify the code subspace and the

measurements to be performed in order to discretize and identify the errors. In addition,

as we have seen, the stabilizer formalism gives a nice characterization of such features of

the code as the encoded operators. As an example of the compactness of this description,

let us consider the shortest possible code that encodes one qubit and corrects for one error

[11, 55]. This code can be described simply with four stabilizer generators:

S1 = XZZXI

S2 = IXZZX

S3 = XIXZZ

S4 = ZXIXZ (2.26)

Writing out the code states in the computational basis, on the other hand, requires

sixteen terms and does not give the rich array of other information able to be gleaned from

the generators.

2.6 Topological quantum codes

Topological quantum codes are a special class of quantum error correcting codes that can

be described by the stabilizer formalism. The basic idea of these codes is that information

is encoded in the topological properties of the system; that is to say, undetectable errors

correspond to homologically nontrivial chains of errors [45, 44, 16]. We will consider a code

on a two-dimensional torus and then extend the formalism to a four-dimensional toric code.

2.6.1 Two-dimensional toric code

For this code, we assume that the (physical) qubits are arranged as the (one-dimensional)

links on a square lattice, where the edges of the lattice are identified in order to form a

16

Z

Z

Z

Z

XX

XX

Figure 2.1: The stabilizer generators for the two-dimensional toric code.

torus. The stabilizer generators of this code are of two types. The first are associated with

the two-dimensional plaquettes on the lattice. The stabilizer generator associated with the

plaquette P consists of the product of the four Z operators acting on the qubits making up

the boundary of P :

S(P) = ⊗q∈PZq. (2.27)

The second type is associated with the vertices of the lattice: the stabilizer associated with

the vertex v consists of the tensor products of the four X operators acting on the links with

v as an endpoint:

S(v) = ⊗q3vXq. (2.28)

These operators are shown in Fig. 2.1.

Let us consider the elements of the stabilizer that are tensor products of Z’s. It is not

hard to see that those elements correspond to regions that can be tiled with plaquettes:

that is, the Z’s act on the boundary of that region, which forms a homologically trivial

cycle. On the other hand, a homologically nontrivial cycle—one that is not the boundary of

anything—also commutes with all the stabilizer generators, but is not itself in the stabilizer.

Therefore, it must be in the normalizer. Similar statements can be made for tensor products

of X’s on the dual lattice. See Fig. 2.2.

Errors can be diagnosed by measuring the stabilizer generators; one of the strengths of

17

C

(a) (b)

C

Figure 2.2: (a) shows a homologically trivial cycle (correctable error) while (b) shows a

homologically nontrivial cycle.

this scheme is that the stabilizer generators are local on a torus. The syndrome is given by

the plaquette(vertex) sites on the lattice(dual lattice) where the syndrome measurement is

−1; these can be thought of as particles, or defects, on the lattice. If a chain of errors (a

set of links on the lattice or dual lattice) occurs, the defects created arise at the endpoints,

or boundary, of the chain on the lattice or dual lattice. This characterization of the defects

means that an error syndrome does not at all uniquely describe an error chain; indeed,

there are many error chains that could give rise to a particular error syndrome. However,

the beauty of this formulation is that it is not necessary to know the exact placement of

the error chain; any correction chain that connects the defects will remove the syndrome.

Furthermore, it will do so without ill effect to the encoded information as long as the correc-

tion is homologically correct: that is, differs from the actual error chain by a homologically

trivial surface. In that case the total operator acting on the system after the correction is

simply an element of the stabilizer, and the encoded state is not disturbed. On the other

hand, if the correction differs from the actual error chain by a homologically nontrivial

surface, an undetectable error is introduced. See Fig. 2.3.

18

Figure 2.3: One chain connecting the syndrome defects is the error chain, and the other is

the correction. Even though they are different, the total operator is a homologically trivial

surface in the stabilizer and hence has no effect on the state.

2.6.2 Local correction of toric codes

Correcting a chain of errors in the above picture therefore seems naively to involve processing

the error syndrome to compute the most likely chain that might have resulted in such a

syndrome and then correcting according to that chain. This procedure, while local as regards

the quantum processing, involves nonlocal classical processing of the error syndrome. How

can this procedure be made into one that is local even as regards the classical processing?

This two-dimensional quantum system is analogous to a one-dimensional classical system

in which the defects are again the point boundaries of a one-dimensional error chain. For

a long time it was believed that there was no set of uniform local rules that could correct

these errors in a way such that an encoded bit was protected over a long period of time.

Not until very recently did Peter Gacs [27, 28] construct a counterexample to this belief.

This counterexample is quite complex and involves a complicated and elegant hierarichal

structure that is able to perform a sort of self-simulation. One approach to local error

correction is therefore to use the ideas of self-similarity and simulation that are used in [28].

This approach was taken by J. Harrington and myself; details are to be found in [40].

In this work, we will take a different approach. A fundamental principle of statistical

19

physics is that systems with a greater number of spatial dimensions are better able to resist

the disordering effects of fluctuations [16]. Thus in Chapter 7, we will introduce extra

dimensions and consider a system where spins reside on two-dimensional plaquettes in a

four-dimensional lattice. Given some edge, one type of stabilizer generator is the tensor

product of X’s on the spins residing on all six plaquettes which share that edge. Another

type is associated with cubes: given a cube, the stabilizer generator is the tensor product

of Z’s on the six spins that are on the faces of that cube. Phase and flip errors are again

dual. The defects here are given by closed one-dimensional loops in both the lattice and the

dual lattice, and correctable errors are characterized by two-dimensional error “droplets” of

plaquettes with a one-dimensional boundary. We will see that it is then possible to construct

an anisotropic rule that locally corrects for these droplets. Because this rule behaves in a

nice way, it will be instrumental in the proofs on the cost of quantum fault tolerance given

in Chapter 7.

20

Chapter 3

Quantum feedback control

3.1 The master equation

Continuous quantum feedback can be defined, for the present purposes, as the process of

monitoring a quantum system and using the continuous (in time) measurement record to

control its dynamics. It can be analyzed by considering the dynamics of the measured system

conditioned on the continuous measurement record; this process is referred to as unraveling.

The reduced dynamics of a system subject to weak continuous measurement is described

by a Markov master equation, which determines the dynamics of the system averaged over

all possible measurement records. However, if the time-continuous measurement record (a

classical stochastic process) is known, then it is possible to describe the conditional state

of the measured system by a stochastic conditional evolution equation. A given master

equation does not uniquely determine the conditional evolution equation, as there are many

ways in which information about the system may be collected from the environment to which

it is coupled as a result of the measurement. That is to say, a given master equation admits

many unravelings.

In this section we will introduce some of the results of this formalism; for more details

see [71, 96]. It is common to perform measurements in quantum systems by entangling the

system (e.g., an atom) with its ancillary environment (e.g., electromagnetic field modes),

and then observing the ancilla. It is possible to show [71] that this kind of indirect mea-

surement can be described via Kraus operators [54] {Mr}, where r indexes the result of

the measurement. These operators are required to satisfy the Kraus normalization condi-

21

tion
∑

r M
†
rMr = 1. Given a pre-measurement state |φ〉, the state of the system after the

measurement, conditioned on the measurement result r, is given by

Mr|φ〉
√

〈φ|M †
rMr|φ〉

with probability 〈φ|M †
rMr|φ〉. (3.1)

Normalization of Kraus operators implies that the operators Fr ≡ M †
rMr constitute a

positive operator-valued measure (POVM).

In terms of a possible mixed state given by the density matrix ρ, this measurement leads

to the conditioned state

ρr =
MrρM

†
r

〈M †
rMr〉

. (3.2)

Had the result of the measurement not been known, the density matrix would have become

the unconditioned

ρfinal =
∑

r

MrρM
†
r . (3.3)

Let us now consider a system in which we assume that these measurements are taking

place continuously, in an infinitesimal time interval dt. If we make the Markovian approxi-

mation that ρ(t+dt) is completely determined by ρ(t), which is a reasonable assumption in

many systems of interest, we can write down a first-order differential equation that describes

the evolution of the density matrix. The form of the Kraus operators dictating the evolu-

tion of the state is dictated by the Markovian approximation. For example, if we assume

only two Kraus operators, then the change in the state of the system over a time interval

dt due to its interaction with the environment can be described by a single Kraus (jump)

operator [54] Ω1 = c
√
dt, so that the “jumps” occur with probability 〈c†c〉dt. Normalization

requires another Kraus operator, Ω0 = 1 − c†cdt/2 − iHdt, where H is Hermitian. Then

the unconditional master equation without feedback is just the familiar Lindblad form [13]

dρ = Ω0ρΩ0 + Ω1ρΩ1 − ρ

= −i[H, ρ]dt+ cρc†dt− 1

2
(c†cρ+ ρc†c)dt

≡ −i[H, ρ]dt+ D[c]ρdt. (3.4)

A bosonic example is given in [26], while a fermionic example is given in [61].

22

3.2 Markovian feedback

3.2.1 Jump unravelings

One way to unravel this master equation is to assume that the environment is measured so

that the time of each jump event is determined. If the measured number of jumps up to

time t is denoted N(t), then the increment dN(t) is defined formally by

dNc(t)
2 = dNc(t) (3.5)

E[dNc(t)] = 〈c†c〉cdt; (3.6)

dNc(t) can be 0 or 1 depending on whether a jump has occurred or not. Here E[] defines

a classical ensemble average, and the subscript c on the quantum average reminds us that

the rate of the process at time t depends on the conditional state of the quantum system

up to that time. That is to say, it depends on the state of the quantum system conditioned

on the entire previous history of the measurement record given by dN/dt. This conditional

state is determined by a stochastic Schrödinger equation (SSE)

d|ψc(t)〉 = dNc





Ω1
√

Ω†
1Ω1

− 1



 |psic(t)〉 + (1 − dNc(t))





Ω0
√

Ω†
0Ω0

− 1



 |ψc(t)〉

=

[

dNc(t)

(

c
√

〈c†c〉c(t)
− 1

)

+ dt

×
(〈c†c〉c(t)

2
− c†c

2
− iH

)]

|ψc(t)〉. (3.7)

We will refer to this as a jump unraveling. If we average over the measurement record to

form ρ(t) = E[|ψc(t)〉〈ψc(t)|], it is easy to show using Eqs. (3.5) and (3.6) that ρ(t) obeys

the unconditional master equation given in Eq. (3.4).

Now consider Markovian Hamiltonian feedback, linear in the current:

Hfb(t) =
dN(t)

dt
V, (3.8)

with V an Hermitian operator. Taking into account that the feedback must act after the

measurement, it can be shown [93] that the feedback modifies the conditional evolution by

23

changing the c in the numerator of the first term into e−iV c. Since likewise changing all

of the other occurrences of c has no effect, the ensemble average behaviour is the same as

before, with c changed to e−iV c. That is to say, the feedback-modified master equation is

ρ̇ = −i[H, ρ] + D[e−iV c]ρ. (3.9)

3.2.2 Diffusive unravelings

A very different unraveling may be defined by first noting that given some complex number

γ = |γ|eiφ, we may make the transformation

c → c+ γ

H → H − i|γ|
2

(e−iφc− eiφc†) (3.10)

and obtain the same master equation. In the limit as |γ| becomes very large, the rate of the

Poisson process is dominated by the term |γ|2. In this case it may become impossible to

monitor every jump process, and a better strategy is to approximate the Poisson stochastic

process by a Gaussian white-noise process.

For large γ, we can consider the system for a time δt in which the system changes neg-

ligibly but the number of detections δN(t) ≈ |γ|2δt is very large; then we can approximate

δN(t) as [98]

δN(t) ≈ |γ|2δt+ |γ|〈e−iφc+ c†eiφ〉c δt+ |γ|δW (t), (3.11)

where δW (t) is normally distributed with mean zero and variance δt.

We now define the stochastic measurement record as the current

dQ(t)

dt
= lim

γ→∞
δN(t) − |γ|2δt

|γ|δt (3.12)

= 〈e−iφc+ eiφc†〉c + dW (t)/dt. (3.13)

Given this stochastic measurement record, we can determine the conditional state of the

quantum system by a stochastic Schrödinger equation analogous to Eq. (3.7). The equiv-

alence (in the ensemble average) to the master equation (3.4) is, in this case, easier to see

24

by considering ρc = |ψc〉〈ψc|, which obeys the stochastic master equation (SME) 1

dρc(t) = −i [H, ρc(t)] dt+ D[e−iφc]ρc(t)dt

+H[e−iφc]ρc(t)dW (t). (3.14)

In the above equations, the expectation 〈a〉c denotes tr (ρca), dW is a normally distributed

infinitesimal random variable with mean zero and variance dt (a Wiener increment [29]),

and H is a superoperator that takes a jump operator as an argument and acts on density

matrices as

H[c]ρ = cρ+ ρc† − ρ tr [cρ+ ρc†]. (3.15)

We thus have a different unraveling of the original master equation Eq. (3.4). Because

of the white noise in the stochastic master equation (3.14) we call this a diffusive unraveling.

It applies, for example, when one performs a continuous weak homodyne measurement of a

field c by first mixing it with a classical local oscillator in a beamsplitter and then measuring

the output beams with photodetectors [98]. In that case the measurement process dQ(t)

determines the observed photocurent. Another measurement model in which it may be

appropriate to approximate a Poisson measurement process by a white-noise measurement

process is the electronic point contact model for monitoring a single quantum dot [33, 32].

In that case the form of the master equation itself determines a large background jump

rate, rather than an imposed classical field prior to detection.

We now consider Markovian feedback of the white-noise measurement record via a

Hamiltonian, where the strength of the feedback is a linear function of the measurement

current:

Hfb(t) =
dQ(t)

dt
F, (3.16)

where F is a Hermitian operator. It can be shown that the addition of such feedback leads

1For an alternate and elegant interpretation of the SME, in which the SME is considered as a quantum

filtering process that changes our state of knowledge of the system, see [84].

25

to the conditioned master equation [93, 99]

ρ̇ = −i[(eiφc†F + e−iφFc)/2 +H, ρ]

+D[e−iφc− iF]ρ

+dW (t)H[e−iφc− iF]ρ. (3.17)

In order to derive analytic results given such feedback, it is convenient to consider the

average over many such evolution trajectories. Since the expectation value of dW is zero,

averaging yields an unconditioned master equation

ρ̇ = −i[(eiφc†F + e−iφFc)/2 +H, ρ]

+D[e−iφc− iF]ρ (3.18)

The above equations are only valid for perfect (unit-efficiency) detection; the correspon-

dences between error correction and feedback are more readily seen in this case, and we

discuss the case of imperfect detection more in subsequent chapters.

These feedback equations are easily generalized in the following way: Given n qubits,

denote a set of measurement operators by {c1, c2, · · · , cn}, where cj acts on the jth qubit,

and a set of feedback operators by {F1, · · · , Fn}, where the action of Fj is conditioned

on the measurement of the jth qubit. Then the unconditional master equation (3.18), for

example, generalizes to

ρ̇ =
n
∑

j=1

{−i[(eiφjc†jFj + e−iφjFjcj)/2 +H, ρ]

+D[eiφjcj − iFj]ρ}. (3.19)

3.3 State-estimate feedback

The second, and more general, way to add feedback is to modulate the Hamiltonian by a

functional of the entire measurement record. An important class of this kind of feedback is

state estimate feedback [22], also called Bayesian feedback, in which feedback is a function

of the current conditioned state estimate ρc. This kind of feedback is of especial interest

26

because of the quantum Bellman theorem [21], which proves that the optimal feedback

strategy will be a function only of conditioned state expectation values for a large class

of physically reasonable cost functions. An example of such an estimate feedback control

law is to add the Hamiltonian 〈IQ(t)〉cF = 〈c+ c†〉cF , which depends on what we expect

the current IQ(t) should be given the previous measurement history rather than its actual

instantaneous value. Adding this feedback to the SME (3.14) leads to the dynamics

dρc(t) = −i [H, ρc(t)] dt

+D[c]ρc(t)dt+ H[c]ρc(t)dW (t)

−i〈IQ〉c [F, ρc(t)] dt (3.20)

dQ(t) = 〈c+ c†〉c dt+ dW (t). (3.21)

This feedback has further advantages over Markovian feedback: as we shall see, because

state-estimation feedback can depend on the entire measurement record rather than on

instantaneous values of the current, estimate feedback protocols are rather more forgiving

of measurement error.

These benefits come at a price, however. To perform the state estimation itself may

take a nontrivial amount of post-processing: we will quantify this computational cost for

the quantum error correction protocol given in the next chapter. Furthermore, because

state estimate feedback is essentially non-Markovian in nature, analyzing state estimation

schemes analytically is difficult. Therefore, the state-estimation protocols given in Chapters

4 and 5 will be analyzed via numerical simulations.

27

Chapter 4

Continuous quantum error correction via estimate

feedback control

This chapter presents a method for continuously protecting an unknown quantum state

using weak measurement, state estimation, and Hamiltonian correction. First a very simple

one-qubit example will be presented. Building on the intuition gained from that model, the

state estimation procedure will be detailed for the example of the bit-flip code, and finally,

a general stabilizer code will be considered. Results obtained from simulating the bit-flip

version of the model will then be presented, including some further results on relaxing the

assumptions of perfect responsiveness and perfect detection efficiency.

4.1 Continuous quantum error correction protocol

4.1.1 One-qubit picture

Before showing how the procedure works for the bit-flip code, we can gain some intuition

about how it works by considering an even simpler “code”: the spin-up state (i.e., |0〉) of a

single qubit. The stabilizer is M0 = Z, and will be weakly measured with strength κ. This

one-dimensional code protects against bit flips X, which we will assume happen with some

probability ∼ γdt. To corect for these flips, a correction Hamiltonian proportional to X is

applied with control strength λ. The resulting stochastic master equation can be rewritten

as a set of Bloch sphere equations as follows:

28

d〈X〉c = −2κ〈X〉c dt− 2
√
κ〈X〉c 〈Z〉c dW (4.1)

d〈Y 〉c = −2γ〈Y 〉c dt− 2κ〈Y 〉c − 2
√
κ〈Y 〉c 〈Z〉c dW − 2λ〈Z〉c dt (4.2)

d〈Z〉c = −2γ〈Z〉c dt+ 2
√
κ(1 − 〈Z〉2c)dW + 2λ〈Y 〉c dt. (4.3)

The Bloch vector representation (〈X〉, 〈Y 〉, 〈Z〉) [71] of the qubit provides a simple ge-

ometric picture of how it evolves. Decoherence (the γ term) shrinks the Bloch vector,

measurement (the κ terms) lengthens the Bloch vector and moves it closer to the z-axis,

and correction (the λ term) rotates the Bloch vector in the y–z plane. Fig. 4.1 depicts

the desired evolution: depending on whether the Bloch vector is in the hemisphere with

〈Y 〉 > 0 or 〈Y 〉 < 0, the feedback should rotate the vector as quickly as possible in such

a way that it is always moving towards the codespace (spin-up state). Therefore, if the

maximum feedback strength possible is λmax, the optimal feedback is given by

λ = λmaxsgn〈Y 〉. (4.4)

Note that if the Bloch vector lies exactly on the z-axis with 〈Z〉 < 0, rotating it either way

will move it towards the spin-up state—the two directions are equivalent, and it suffices to

choose one of them arbitrarily.

4.1.2 Bit-flip code model

Suppose ρ is subjected to bit-flipping decoherence as in (2.10); to protect against such deco-

herence, we have seen that we can encode ρ using the bit-flip code (2.2–2.3). In this section,

a similar protocol is defined that operates continuously and uses only weak measurements

and slow corrections.

The first part of the protocol is to weakly measure the stabilizer generators ZZI and IZZ

for the bit-flip code, even though these measurements will not completely collapse the errors.

To localize the errors even further, we also measure the remaining nontrivial stabilizer

operator ZIZ. The second part of our protocol is to apply the slow Hamiltonian corrections

XII, IXI, and IIX corresponding to the unitary corrections XII, IXI, and IIX, with

29

y=1

z=1

z=-1

y=-1

Figure 4.1: Bloch sphere showing the action of our feedback scheme on one qubit. Wherever

the Bloch vector is in the y–z plane, the feedback forces it back to the spin-up state, which

is the codespace of this system. All the vectors shown lie, without loss of generality, in the

x = 0 plane.

30

control parameters λk that are to be determined. If we parameterize the measurement

strength by κ and perform the measurements using the unravelling (3.13–3.14), the SME

describing our protocol is

dρc = γ(D[XII] + D[IXI] + D[IIX])ρcdt

+κ(D[ZZI] + D[IZZ] + D[ZIZ])ρcdt

+
√
κ(H[ZZI]dW1 + H[IZZ]dW2

+ H[ZIZ]dW3)ρc

−i[F, ρc]dt (4.5)

dQ1 = 2κ〈ZZI〉c dt+
√
κdW1 (4.6)

dQ2 = 2κ〈IZZ〉c dt+
√
κdW2 (4.7)

dQ3 = 2κ〈ZIZ〉c dt+
√
κdW3, (4.8)

where

F = λ1XII + λ2IXI + λ3IIX (4.9)

is the feedback Hamiltonian having control parameters λk.

Following the logic of quantum error correction, it is natural to choose the λk to be

functions of the error syndrome. For example, the choice

λ1 = λ(
1 − 〈ZZI〉c

2
)(

1 + 〈IZZ〉c
2

)(
1 − 〈ZIZ〉c

2
)

λ2 = λ(
1 − 〈ZZI〉c

2
)(

1 − 〈IZZ〉c
2

)(
1 + 〈ZIZ〉c

2
)

λ3 = λ(
1 + 〈ZZI〉c

2
)(

1 − 〈IZZ〉c
2

)(
1 − 〈ZIZ〉c

2
), (4.10)

where λ is the maximum feedback strength that can be applied, is reasonable: it acts

trivially when the state is in the codespace and applies a maximal correction when the state

is orthogonal to the codespace. Unfortunately this feedback is sometimes harmful when it

need not be. For example, when the controller receives no measurement inputs (i.e., κ = 0),

it still adds an extra coherent evolution which, on average, will drive the state of the system

away from the state we wish to protect.

31

This weakness of the feedback strategy suggests that we should choose our feedback

more carefully. To do this, we introduce a cost function describing how far away our state

is from its target and choose a control which minimizes this cost. The difficulty is that

our target is an unknown quantum state. However, we can choose the target to be the

codespace, which we do know. We choose our cost function, therefore, to be the norm

of the component of the state outside the codespace. Since the codespace projector is

ΠC = 1
4(III +ZZI +ZIZ+ IZZ), the cost function is 1− f , where f(ρ) = tr(ρΠC). Under

the SME (4.5), the time evolution of f due to the feedback Hamiltonian F is

ḟfb = 2λ1〈Y ZI + Y IZ〉c
+2λ2〈ZY I + IY Z〉c
+2λ3〈ZIY + IZY 〉c . (4.11)

Maximizing ḟfb minimizes the cost, yielding the optimal feedback coefficients

λ1 = λ sgn〈Y ZI + Y IZ〉c
λ2 = λ sgn〈ZY I + IY Z〉c
λ3 = λ sgn〈ZIY + IZY 〉c , (4.12)

where, again, λ is the maximum feedback strength that can be applied. This feedback

scheme is a bang-bang control scheme, meaning that the control parameters λk are always

at the maximum or minimum value possible (λ or −λ, respectively), which is a typical

control solution both classically [101] and quantum mechanically [86].

4.1.3 Feedback for a general code

Our approach generalizes for a full [[n, k, d]] quantum error correcting code, which can

protect against depolarizing noise [71] acting on each qubit independently. This noise

channel, unlike the bit-flip channel, generates a full range of quantum errors—it applies

eitherX, Y , or Z to each qubit equiprobably at a rate γ. The n−k stabilizer generators {Ml}
are weakly measured with strength κ. For each syndrome m, we apply a slow Hamiltonian

correction Fm with control strength λm, the weight of each correction being d or less. The

32

SME describing this process is

dρc = γ
∑

j=x,y,z

n
∑

i=1

(D[σ
(i)
j])ρcdt+ κ

n−k
∑

l=1

D[Ml]ρcdt

+
√
κ

n−k
∑

l=1

H[Ml]dWjρc − i
R
∑

r=1

λr[Fr, ρc]dt. (4.13)

The number of feedback terms R needed will be less than or equal to the number of

errors the code corrects against. The reason that this equality is not strict is that quantum

error correcting codes can be degenerate, meaning that there can exist inequivalent errors

that have the same effect on the state—a purely quantum mechanical property [34].

The λr may be optimized relative to a cost function equal to the state’s overlap with

the codespace. For a general stabilizer code C, the codespace projector is

ΠC =
1

2n−k

n−k
∏

l=1

(I +Ml)

and the rate of change of the codespace overlap due to feedback is

ḟfb = −i tr
n−k
∑

r=0

λr[ΠC , Fr]ρ.

Maximizing this overlap subject to a maximum feedback strength λ yields the feedback

coefficients

λr = λ sgn〈[ΠC , Fr]〉c . (4.14)

4.2 Feedback based on the completely mixed state

The control solutions (4.12) and (4.14) require the controller to integrate the SME (4.5)

using the measurement currents Qi(t) and the initial condition ρc. However, typically the

initial state ρc(0) will be unknown. Fortunately the calculation of the feedback (4.12) does

not depend on where the initial condition is within the codespace, so the controller may

assume the maximally mixed initial condition ρe = 1
2(|0̄〉〈0̄| + |1̄〉〈1̄|) for its calculations.

This section will prove that this property generalizes for a wide class of stabilizer codes;

simulations show that this property does not hold for all possible stabilizer codes, but it

33

does hold for most codes of interest.

Even though the quantum error correction feedback control scheme described in Section

4.1.2 does not distinguish between codewords, it is not obvious that the initial codeword

can remain unknown when integrating its SME and calculating the relevant expectation

values. Since the goal is to protect unknown quantum states, this property is crucial to this

scheme’s success. Fortunately, for a large class of stabilizer codes, the computation of the

feedback can be done by assuming the initial state is the completely mixed codespace state

ρe = 1
2n

∏n−k
l=1 (I +Ml), which I prove here.

The first step is to define the set G for the [[n, k, d]] code C with stabilizer S(C) as

G = {αs |α ∈ Pn, s ∈ S(C), [s, α] = 0 iff |α| is even} , (4.15)

where |α| denotes the weight of α as defined in Chapter 2.

The conditions required for the computation of the feedback to be insensitive to the

initial codeword can be rewritten in terms of the Pauli basis coefficients Rg(ρ) which are

defined as follows. Let g = σi1 ⊗ ... ⊗ σin , where i1 . . . in take on the values x, y, z, I and

σI = I. Then

Rg(ρ) ≡ tr(ρg)/2n = 〈g〉/2n. (4.16)

The problem can then be formulated in terms of proving conditions on G as follows:

1. For every Rg used in this feedback scheme, g ∈ G.

2. For every g ∈ G and every ρ1 and ρ2 in C, Rg(ρ1) = Rg(ρ2).

3. Evolution under the SME couples members of the set {Rg|g ∈ G} only to each other.

Theorem Let C be an [[n, 1, 3]] 1 stabilizer code whose stabilizer S(C) has generators

of only even weight and whose encoded operations set N(S) \ S has elements of only odd

1The restriction to [[n, 1, 3]] codes is for simplicity of analysis; the proof may be extended to larger codes.

Note that for an [[n, 1, 3]] code, the Fl in the master equation (4.13) are all of the form σ
(k)
j , where this

notation denotes the weight-one Pauli operator σj acting on qubit k.

34

weight.2 Then the conditions 1–3 above are satisfied; consequently, this scheme does not

require knowledge of where the initial codeword lies in C.

Proof:

In this proof, any variable of the form αa is an arbitrary element of Pn, and any variable

of the form sa is an arbitrary element of S(C). Each of the conditions listed above is proved

separately.

Condition 1: By construction, G contains all M of the form M = siσ
(k)
j , where

[si, σ
(k)
j] 6= 0. These are precisely the operators used to compute the feedback in (4.14)

for a code encoding one qubit.

Condition 2: Let g = αs ∈ G and let ρ ∈ C. Either α ∈ S, α ∈ N(S) \ S, or

α /∈ N(S). Suppose α ∈ S. Then g ∈ S acts trivially on all states in the codespace, so

Rg = 1/2ntr(ρg) = 1/2n for this case. Now suppose α ∈ N(S) \ S. Then [α, s] = 0, and

since αs ∈ G, |α| is even. But every element of N(S) \ S has odd weight by hypothesis,

which is a contradiction. Hence α cannot be in N(S) \ S. Finally, suppose α /∈ N(S).

Then there exists some s′ ∈ S such that [α, s′] 6= 0; let s′ be such an element. Then for

|ψ〉, |φ〉 ∈ C,

〈ψ|α|φ〉 = 〈ψ|αs′|φ〉 = −〈ψ|s′α|φ〉

= −〈ψ|α|φ〉 = 0. (4.17)

Hence for this case Rg = 1/2ntr(ραs) = 0. Note that these expressions for Rg must be

the same no matter where ρ is in the codespace; therefore, for every g ∈ G and ρ1, ρ2 ∈ C,

Rg(ρ1) = Rg(ρ2).

Condition 3: This is proved by considering dRM , where M ∈ G: it will be shown that

dRM = f({RN |N ∈ G}) for some real function f . Now, for any M ∈ Pn, dRM = tr(dρ M),

where dρ is given by the master equation (4.13), and condition 3 can be shown for each

term of the master equation separately. First, substituting in the master equation shows

2It is possible that this restriction may be able to be relaxed; however, it is sufficiently general that it

holds for the most well-known codes, including the bit-flip code, the five-bit code, the Steane code, and the

nine-bit Shor code. This condition also ensures that the definition of G is consistent, i.e., if αjsk ∈ G and

αj = αnsm, then αn and smsk also fulfill the conditions for αn(smsk) to be in G.

35

that any term of the form D[c]ρdt contributes either 0 or the simple exponential damping

term −2RM to dRM if M and c commute or anticommute, respectively.

As for the master equation term H[sj]dWjρ, by writing the master equation in the Pauli

basis it is possible to see that RN contributes to dRM through this term precisely when

Nsj = M and {sj , N} 6= 0. Since M ∈ G, it is possible to write M = αksl (with the

appropriate restriction on [αk, sl] depending on the weight of αk) . N = αkslsj = αksm,

so the condition above that [sj , N] = 0 becomes [sj , αkslsj] = (αk[sj , slsj] + [sj , αk]slsj)

⇒ [sj , αk] = 0. Therefore, [αk, sm] = sl[αk, sj] + [αk, sl]sj = [αk, sl]sj which is zero or not

depending on the original weight of αk. So if M = αksl is such that M ∈ G, N = αksm

must fulfill that same condition, implying that N ∈ G also.

Similarly, RN contributes to dRM through the master equation term [σ
(k)
j , ρ] when

Nσ
(k)
j = M and [σ

(k)
j , N] 6= 0. Now, M ∈ G so M = αlsm, again with the appropriate

restriction on [αl, sm] depending on the weight of αl. Then N = σ
(k)
j αlsm ≡ αnsm, so the

condition above that {σ(k)
j , N} 6= 0 becomes

{σ(k)
j , σ

(k)
j αlsm} = σ

(k)
j [σ

(k)
j , αl]sm + σ

(k)
j αl{σ(k)

j , sm}

= σ
(k)
j {σ(k)

j , αl}sm − σ
(k)
j αl[σ

(k)
j , sm]

= 0. (4.18)

The analysis of this term can now be divided into two cases. Case 1 occurs when σ
(k)
j αl

has weight |αl|, implying that {αl, σ
(k)
j } = 0. Then {σ(k)

j , σ
(k)
j αlsm} = −σ(k)

j αl[σ
(k)
j , sm] = 0,

which implies that [sm, αn] = [sm, σ
(k)
j]αl + σ

(k)
j [sm, αl] = σ

(k)
j [sm, αl]. So [sm, αn] = 0 just

when [sm, αl] = 0, which means that N ∈ G since |αn| = |αl|.
In Case 2, σ

(k)
j αl has weight |αl±1| ⇒ [αl, σ

(k)
j] = 0. Then (4.18) becomes {σ(k)

j , σ
(k)
j αlsm} =

σ
(k)
j αl{σ(k)

j , sm} = 0, which implies that [sm, αn] = {sm, σ
(k)
j }αl+σ

(k)
j {sm, αl} = σ

(k)
j {sm, αl}.

So [sm, αn] = 0 just when {sm, αl} = 0, which means that N ∈ G since |αn| = |αl ± 1|.

Thus we have proved the following three conditions: that all the R’s used to compute

the feedback are of the form RN∈G; that for a given M ∈ G, RM will be the same for

any state in the codespace; and that evolution via the master equation mixes the R’s of

the form RN∈G only with each other. Therefore, taking the initial state to be any state

in the codespace, including the true initial state and the entirely mixed state, produces

36

the same expression for the feedback when the master equation is evolved conditioned on

a measurement record, and so it is not necessary to know the true initial state to use this

protocol.

Another consequence of using the completely mixed state for feedback arises from the

fact that doing so corresponds to discarding information about the state of the system.

Therefore, this procedure should reduce the number of parameters needed to compute the

feedback. Unfortunately, this only leads to a modest reduction in the number of parameters,

which can be found by using a simple counting argument. There are 2n/2k = 2n−k different

error subspaces, including the no-error (code) space, and if we start with the completely

mixed state in the codespace we do not need to worry at all about any movement within

any of these spaces. We must only worry about which error space we are actually in, along

with coherences between these spaces, so we find that (2n−k)2 parameters are needed to

describe the system.

At first this does not seem promising. However, if one encodes mk qubits using m copies

of an [[n, k, d]] code, as might well be the case for a quantum memory, the SME (4.13) will

not couple the dynamics of the m logical qubits; and, as in the bit-flip case, the initial

condition for the controller’s integration can still be the completely mixed state in the total

codespace. Then the relevant scaling for this system, the dependence on m, is linear: the

number of parameters is m(2n−k)2.

4.3 Simulation of the bit-flip code

Because the bit-flip code feedback control scheme (4.5–4.8) uses a nonlinear feedback Hamil-

tonian, numerical simulation is the most tractable route for its study. Simulation of a

quantum code protecting against an arbitrary error was not feasible due to limitations on

computer power; however, simulation of the bit-flip code proved to be possible. In this

section, we present the results of Monte Carlo simulations of the implementation of the

protocol described in Section 4.1 for the bit-flip code.

37

4.3.1 Simulation details

To obtain ρc(t), the quantum state conditioned on feedback, we directly integrated these

equations using a simple Euler integrator and a Gaussian random number generator. We

found stable convergent solutions when we used a dimensionless time step γdt on the order of

10−6 and averaged over 104 quantum trajectories. As a benchmark, a typical run using these

parameters took 2–8 hours on a 400MHz Sun Ultra 2. We found that more sophisticated

Milstein [52] integrators converged more quickly but required too steep a reduction in time

step to achieve the same level of stability. All of our simulations began in the state ρc(0) =

|0̄〉〈0̄| because it is maximally damaged by bit-flipping noise and therefore yielded the most

conservative results.

We used two measures to assess the behavior of our bit-flip code feedback control scheme.

The first measure we used is the codeword fidelity Fcw(t) = tr(ρc(0)ρc(t)), the overlap of

the state with the target codeword. This measure is appropriate when one cannot perform

strong measurements and fast unitary operations, a realistic scenario for many physical

systems. We compared Fcw(t) to the fidelities of one unprotected qubit F1(t) = 1
2(1+e−2γt)

and of three unprotected qubits F3(t) = (F1(t))
3.

The second measure we used is the correctable overlap

Fcorr(t) = tr(ρc(t)Πcorr), (4.19)

where

Πcorr = ρ0 +XIIρ0XII

+IXIρ0IXI + IIXρ0IIX (4.20)

is the projector onto the states that can be corrected back to the original codeword by

discrete quantum error correction applied (once) at time t. This measure is appropriate

when one can perform strong measurements and fast unitary operations, but only at discrete

time intervals of length t. We compared Fcorr(t) to the fidelity F3̄(t) obtained when, instead

of using our protocol up to time t, no correction was performed until the final discrete

quantum error correction at time t. As was shown in equation (2.18), the expression for

38

F3̄(t) may be calculated analytically; it is F3̄(t) = 1
4(2 + 3e−2γt − e−6γt) ∼ 1 − 3γ2t2.

4.3.2 Results

The simulations show that both the optimized estimate feedback scheme (4.12) and the

heuristically-motivated feedback scheme (4.10) effectively protect a qubit from bit-flip de-

coherence. In Figs. 4.2 and 4.3 we show how these schemes behave for the (scaled) mea-

surement and feedback strengths κ/γ = 64, λ/γ = 128 when averaged over 104 quantum

trajectories. Using our first measure, we see that at very short times, both schemes have

codeword fidelities Fcw(t) that follow the three-qubit fidelity F3(t) closely. For both schemes,

Fcw(t) improves and surpasses the fidelity of a single unprotected qubit F1(t). Indeed, per-

haps the most exciting feature of these figures is that eventually Fcw(t) surpasses F3̄(t), the

fidelity achievable by discrete quantum error correction applied at time t. In other words,

our scheme alone outperforms discrete quantum error correction alone if the time between

corrections is sufficiently long.

Looking at our second measure in Figs. 4.2 and 4.3, we see that Fcorr(t) is as good as

or surpasses F3̄(t) almost everywhere. For times even as short as a tenth of a decoherence

time, the effect of using our protocol between discrete quantum error correction cycles is

quite noticeable. This improvement suggests that, even when one can approximate discrete

quantum error correction but only apply it every so often, it pays to use our protocol in

between corrections. Therefore, our protocol offers a means of improving the fidelity of a

quantum memory even after the system has been isolated as well as possible and discrete

quantum error correction is applied as frequently as possible.

There is a small time range from t ∼= 0.01 to t ∼= 0.05 for the parameters used in Fig. 4.2

in which using our protocol before discrete quantum error correction actually underperforms

the protocol of not doing anything before the correction. The simulations suggest that the

reason for this narrow window of deficiency is that, in the absence of our protocol, it is

possible to have two errors on a qubit (e.g., two bit flips) that cancel each other out before

discrete quantum error correction is performed. In contrast, this protocol will immediately

start to correct for the first error before the second one happens, so we lose the advantage of

this sort of cancellation. This view is supported by the fact that Fcorr(t) in our simulations

always lies above the fidelity line obtained by subtracting such fortuitous cancellations from

39

0 0.05 0.1 0.15 0.2 0.25
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time

F
id

el
ity

Figure 4.2: Behavior of our protocol with optimized feedback (4.12) for parameters κ/γ =

64, λ/γ = 128, averaged over 104 quantum trajectories. The analytical curves shown are

as follows: the dashed line is the fidelity of one decohering qubit, F1(t); the dashed-dotted

line is the fidelity of three decohering qubits, F3(t); and the dotted line is the fidelity of

an encoded qubit after one round of discrete error correction, F3̄(t). Our simulation results

are as follows: the solid line is the codeword fidelity Fcw(t), and the thick solid line is the

correctable overlap Fcorr(t).

40

0 0.05 0.1 0.15 0.2 0.25
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time

F
id

el
ity

Figure 4.3: Behavior of our protocol with non-optimized feedback (4.10) for parameters

κ/γ = 64, λ/γ = 128, averaged over 104 quantum trajectories. As in Fig. 4.2, the dashed

line is F1(t), the dashed-dotted line is F3(t), the dotted line is F3̄(t), the solid line is Fcw(t)

and the thick solid line is Fcorr(t). Note that this feedback is qualitatively similar to that

in Fig. 4.2 but does not perform as well.

F3̄(t). In any case, this window can be made arbitrarily small and pushed arbitrarily close

to the beginning of our protocol by increasing the measurement strength κ and the feedback

strength λ.

In Figs. 4.2 and 4.3, the Fcw(t) line is much more jagged than the Fcorr(t) line. The

jaggedness in both of these lines is due to statistical noise in our simulation and is reduced

when we average over more than 104 trajectories. The reason for the reduced noise in

the Fcorr(t) line has to do with the properties of discrete quantum error correction—on

average, neighboring states get corrected back to the same state by discrete quantum error

correction, so noise fluctuations become smoothed out.

The improvement our optimized estimate feedback protocol yields beyond our heuristically-

motivated feedback protocol is more noticeable in Fcw(t) than in Fcorr(t) as seen in Figs. 4.2

and 4.3. Our optimized protocol acts to minimize the distance between the current state

and the codespace, not between the current state and the space of states correctable back

to the original codeword, so this observation is perhaps not surprising. In fact, optimizing

feedback relative to Fcorr(t) is not even possible without knowing the codeword being pro-

41

40

80

120

40

80

120

0

0.1

0.2

λ/ γ
κ / γ

C
ro

ss
in

g
tim

e

Figure 4.4: Time τ at which Fcw(τ) = F1(τ) as a function of measurement strength κ/γ and

feedback strength λ/γ. This crossing time is the time after which our optimized protocol

improves the fidelity of a qubit beyond what it would have been if it were left to itself.

tected. Nevertheless, our optimized protocol does perform better, so henceforth we shall

restrict our discussion to it.

We investigated how the protocol behaved when the scaled measurement strength κ/γ

and feedback strength λ/γ were varied using the two measures described in Sec. 4.3.1. Our

first measure, the codeword fidelity Fcw(t), crosses the unprotected qubit fidelity F1(t) at

various times τ as depicted in Fig. 4.4. This time is of interest because it is the time

after which our optimized protocol improves the fidelity of a qubit beyond what it would

have been if it were left to itself. Increasing the scaled feedback strength λ/γ improves our

scheme and reduces τ , but the dependence on the scaled measurement strength κ/γ is not

so obvious from Fig. 4.4.

By looking at cross sections of Fig. 4.4, such as at λ/γ = 80 as in Fig. 4.5, we see that

for a given scaled feedback strength λ/γ there is a minimum crossing time τ as a function

of measurement strength κ/γ. In other words, there is an optimal choice of measurement

strength κ/γ. This optimal choice arises because syndrome measurements, which localize

states near error subspaces, compete with Hamiltonian correction operations, which coher-

ently rotate states between the nontrivial error subspaces to the trivial error subspace. This

42

40 80 120
0.1

0.12

0.14

0.16

κ/ γ

C
ro

ss
in

g
tim

e

Figure 4.5: Time τ at which Fcw(τ) = F1(τ) as a function of measurement strength κ/γ,

keeping correction strength fixed at λ/γ = 80.

phenomenon is a feature of our continuous-time protocol that is not present in discrete quan-

tum error correction; in the former, measurement and correction are simultaneous, while in

the latter, measurement and correction are separate non-interfering processes.

In order to study how our second measure, the correctable overlap Fcorr(t), varies with κ

and λ, we examined its behavior at a particular time. In Fig. 4.6 we plot Fcorr(t), evaluated

at the time t = 0.2/γ, as a function of κ and λ. As we found with the crossing time τ ,

increasing λ always improves performance, but increasing κ does not because measurement

can compete with correction. Since F3̄(0.2/γ)
∼= 0.927, for all κ and λ plotted in Fig.

4.6, using our protocol between discrete quantum error correction intervals of time 0.2/γ

improves the reliability of the encoded data.

4.4 Relaxing assumptions

4.4.1 Bandwidth-limited control

The feedback given in (4.12) is a bang-bang control: that is, the optimal solution occurs

when the control parameters λk are always at the maximum or minimum value allowable

(λ or −λ, respectively). Indeed, (4.12) assumes that it is possible to change the direction

43

40

80

120

40

80

120

0.94

0.96

0.98

λ/ γκ/ γ

F
co

rr

Figure 4.6: Fcorr at γt = 0.2 as a function of measurement strength κ/γ and feedback

strength λ/γ. This quantity corresponds to the fidelity of a state given continuous error

correction up to γt = 0.2, at which point discrete error correction is performed.

of the feedback infinitely quickly.

Of course, in practice this is not the case, and one might envision replacing the sgn

function in the feedback (4.12) with a sigmoid such as a tanh function. Fig. 4.7 shows

numerical results for sgn feedback and tanh feedback. The figure of merit here is the

codeword fidelity Fcw(t) = tr (ρc(0)ρc(t)), the overlap of the state with the target codeword.

This graph is a typical average over 104 quantum trajectories for the (scaled) measurement

and feedback strengths κ/γ = 64, λ/γ = 128, assuming perfect detector efficiency η = 1.

The curves describing Fcw(t) for both sgn and tanh feedback are qualitatively similar: they

both improve and surpass the fidelity of a single unprotected qubit as well as eventually

surpass the fidelity achievable by a round of discrete quantum error correction applied at

time t. Further numerical study suggests that, unsurprisingly, the closer the sigmoid gets

to a step function, the better the feedback protects the state.

4.5 Imperfect detection

Another natural question to ask is the following: how do our results change if the detectors

are not perfect? Parametrizing the detector efficiency by the parameter 0 ≤ η ≤ 1 (where

44

0 0.05 0.1 0.15 0.2 0.25
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Time(1/γ)

F
id

el
ity

Continuous error correction (sgn)
Continuous error correction (tanh)
Discrete error correction applied
1 decohering qubit
3 decohering qubits

Figure 4.7: Behavior of our protocol with sgn and tanh feedback for parameters κ/γ = 64,

λ/γ = 128, averaged over 104 quantum trajectories. The analytical curves shown are as

follows: the dashed line is the fidelity of one decohering qubit, the dashed-dotted line is the

fidelity of three decohering qubits, and the dotted line is the fidelity of an encoded qubit

after one round of discrete error correction at time t. The simulation results are given by

the solid lines: the thick solid line is the codeword fidelity given the sgn feedback in (4.12),

while the thin solid line is the codeword fidelity where sgn(x) in the feedback has been

replaced by tanh(50x).

45

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.91

0.915

0.92

0.925

0.93

η

F
id

el
ity

Figure 4.8: The codeword fidelity at time γt = 0.2 as a function of detector efficiency η.

η = 1 denotes perfect efficiency) yields the following stochastic master equation describing

the state conditioned upon the measurement results:

dρc = γ(D[XII] + D[IXI] + D[IIX])ρcdt

+κ(D[ZZI] + D[IZZ] + D[ZIZ])ρcdt

+
√
κη(H[ZZI]dW1 + H[IZZ]dW2 + H[ZIZ]dW3)ρc

−i[F, ρc]dt (4.21)

dQ1 = 2κη〈ZZI〉dt+
√
κηdW1 (4.22)

dQ2 = 2κη〈IZZ〉dt+
√
κηdW2 (4.23)

dQ3 = 2κη〈ZIZ〉dt+
√
κηdW3. (4.24)

Using the feedback (4.9,4.12) as before, the protocol can again be numerically tested using

the SME above. Fig. 4.8 graphs the codeword fidelity at a particular time as a function of

η; the time γt = 0.2 was chosen as indicative of the general behavior of Fcw as a function

of η.

This figure shows that for efficiencies close to 1, the protocol still performs very well.

In particular, there is no exponential dropoff when η is decreased. This feedback does

not propagate errors badly because it is a function of the entire measurement record, not

46

just instantaneous measurement results, which lends the protocol a limited inherent fault-

tolerance.

4.6 Conclusion

In many realistic quantum computing architectures, weak measurements and Hamiltonian

operations are likely to be the tools available to protect quantum states from decoherence.

Moreover, even in quantum systems in which strong measurements and fast operations are

well-approximated, such as ion traps [92], it is likely that these operations will only be possi-

ble at some maximum rate. This protocol is able to continuously protect unknown quantum

states using only weak measurements and Hamiltonian corrections and can improve the fi-

delity of quantum states beyond rate-limited quantum error correction. Bandwidth-limited

control and imperfect efficiency must be considered if our protocol for protecting unknown

quantum states is to be of practical importance. These limitations, as long as they are

not too severe, do not greatly hinder our ability to protect an unknown quantum state.

In fact, one particular strength of this protocol is that, because it responds to the entire

measurement record and not to instantaneous measurement results, it will not propagate

errors badly and therefore has a limited inherent fault-tolerance that ordinary quantum

error correction does not.

We expect that our protocol will be applicable to other continuous-time quantum in-

formation processes, such as reliable state preparation and fault-tolerant quantum com-

putation. We also expect that our approach will work when different continuous-time

measurement tools are available, such as direct photodetection. Finally, although current

computing technology has limited our simulation investigation to few-qubit versions of our

protocol, we are confident that many of the salient features we found in our three-qubit

bit-flip code protocol will persist when our protocol is applied to larger codes.

47

Chapter 5

A more practical scheme for continuous error

correction via estimate feedback

The protocol given in Chapter 4 has the rather unfortunate property that the state estima-

tion feedback used in that protocol requires keeping track of a number of parameters that is

exponential in the size of the code. Is there a way to reduce this computational overhead?

In fact, this chapter will show through discussion of numerical simulations that if one is not

concerned with optimality of the feedback, and if the measurement strength is sufficiently

high compared to the decoherence time, it is possible to perform a relatively simple filtering

post-processing on the measurement results that will serve to protect the quantum states

against decoherence.

This work was done mainly in collaboration with M. Sarovar, and the numerical sim-

ulations in Sec. 5.2 are due to him. Sec. 5.2.4, a discussion of a possible experimental

implementation, is due solely to M. Sarovar and G.J. Milburn and is included here for

completeness.

5.1 The error correction scheme

When measurement strength is sufficiently high compared to decoherence time, the recorded

measurement current bears a strong resemblance to a noisy series of quantum jumps. Al-

though the noisiness of the currents renders them unsuitable for direct use in performing a

continuous error correction protocol, this observation suggests that smoothing via a simple

low-pass filter on the measurement currents may be sufficient post-processing for making

48

them useful for error correction.

The general form of the error correcting scheme proposed here is similar to discrete error

control, but with a few modifications to deal with the incomplete information gained from

the weak measurements. The scheme can be stated in four steps:

1. Encode information in a stabilizer code suited to the errors of concern.

2. Continuously perform weak measurements of the stabilizer generators, and smooth

the measurement currents.

3. Depending on the signatures of the smoothed measurement currents, form condition-

ing signals for feedback operators on each physical qubit. These conditioning currents

will be highly non-linear functions of the measurement currents because the condi-

tional switching based on signatures is a non-linear operation.

4. Apply feedback Hamiltonians to each physical qubit, where the strength of the Hamil-

tonians is given by the conditioning signals formed in the previous step.

Given m stabilizer generators and d errors possible on our system, the stochastic master

equation describing the evolution of a system under this error control scheme is

dρc(t) =
d
∑

k=1

γD[Ek]ρc(t)dt

+

m
∑

l=1

κD[Ml]ρc(t)dt+
√
κH[Ml]ρc(t)dWl(t)

+

d
∑

k=1

−iGk(t)[Fk, ρc(t)]dt, (5.1)

where γ is the error rate, Ek are the errors, κ is the measurement strength, Ml are the

measurement operators, Fk is the feedback Hamiltonian correcting for error Ek, and Gk is

the feedback conditioning signal for Fk. Each Gk is a conditional function of the signatures

of all the smoothed stabilizer measurements, {Ml}. The assumption made here that the

error rate is the same for all errors and that the measurement strength is the same for all

measurement operators is made for simplicity and can be removed. In equation (5.1), the

first line describes the effects of the error operators, the second line describes the effects of

49

the weak stabilizer generator measurements, and the third line describes the effect of the

feedback.

This general scheme is illustrated by the following examples. The systems described by

these examples are also the ones simulated in section 5.2.

5.1.1 Example: A one-qubit toy model

In this toy model, as in Chapter 4, the ‘codespace’ we want to protect is simply the state

|0〉, and the errors are random applications of X; the protocol gathers information by mea-

suring the stabilizer generator Z. Obviously this ‘code’ cannot be used for any information

processing, but it is useful for investigating the behaviour of our feedback scheme.

The dynamics of this system before the application of feedback are described by the

following SME:

dρc(t) = γD[X]ρc(t)dt+ κD[Z]ρc(t)dt

+
√
κH[Z]ρc(t)dW (t), (5.2)

where γ is the error rate and κ is the measurement rate. The measurement current has the

form

dQ(t) = 2κ〈Z〉c(t)dt+
√
κdW (t). (5.3)

Now, the measurement of Z reveals whether the systems is in the ‘codespace’ or not,

with 〈Z〉 = 1 indicating the codespace, and 〈Z〉 = −1 showing deviation from it. If the

measurement is strong enough, it will tend to localize the state in one or the other of these

two possibilities very quickly. However, we do not have direct access to 〈Z〉c, but rather

only to the noisy measurement current (5.3). Therefore we must smooth out the noise on

it to obtain error information, and we will choose the following simple filter to do so:

R(t) =
1

N

∫ t

t−T
e−r(t−t′)dQ(t′) (5.4)

This integral is a convolution in time between the measurement signal and an exponentially

decaying signal. In frequency space, this acts as a low pass filter, and thus the output

of this operation is a smoothed version of the measurement current with high frequency

50

oscillations removed 1. The filter parameters r and T determine the decay rate and length

of the filter, respectively, and N = 2κ
r (1 − e−rT) serves to normalize R(t) such that it is

centred around ±1.

We will use the signature of this smoothed measurement signal to infer the state of the

system and thus to condition the feedback. Explicitly, the form of the feedback conditioning

current is

G(t) =







R(t) if R(t) < 0

0 otherwise
(5.5)

The behavior of the system with feedback becomes

dρc(t) = γD[X]ρc(t)dt+ κD[Z]ρc(t)dt

+
√
κH[Z]ρc(t)dW (t)

−iλG(t)[X, ρc(t)]dt (5.6)

where λ is the maximum feedback strength.

This feedback conditioning current is non-Markovian, so the most direct route to eval-

uating this error correction protocol is numerical simulation, which is discussed in section

5.2.

5.1.2 Example: Bit flip correction

This example is similar to the toy model above but looks at a more realistic error control

situation. We will describe the dynamics of a continuous error correction scheme designed

to protect against bit flips using the three qubit bit-flip code from chapter 2.

The measurement currents and SME of the system before the application of feedback

1This low pass filter is far from ideal. It is possible to design low-pass filters with much finer frequency

selection properties (e.g. Butterworth filters) [65], and we expect schemes using such filters to perform better

than this simpler version.

51

are

dρc(t) = γ(D[XII] + D[IXI] + D[IIX])ρc(t)dt

+κ(D[ZZI] + D[IZZ])ρc(t)dt

+
√
κ(H[ZZI]dW1(t)

+ H[IZZ]dW2(t))ρc(t) (5.7)

dQ1(t) = 2κ〈ZZI〉c(t)dt+
√
κdW1(t) (5.8)

dQ2(t) = 2κ〈IZZ〉c(t)dt+
√
κdW2(t), (5.9)

where γ is the error rate for each qubit, and κ is the measurement strength. Again, we

will assume that the errors on different qubits are independent and occur at the same error

rate, and also that the measurement strength is the same for both stabilizer generators.

As in the toy model, we must smooth the measurement currents in order to gain reliable

error information. Therefore, the steps involved in the error correction scheme are the

following:

1. Smooth the measurement currents using the following filter:

Ri(t) =
1

N

∫ t

t−T
e−r(t−t′)dQi(t

′) i = 1, 2 (5.10)

The definition of this filter is analogous to (5.4).

2. Depending on the signatures of R1(t) and R2(t) apply the appropriate feedback Hamil-

tonian. That is,

(a) If R1(t) < 0 and R2(t) > 0, apply XII.

(b) If R1(t) > 0 and R2(t) < 0, apply IIX.

(c) If R1(t) < 0 and R2(t) < 0, apply IXI.

(d) If R1(t) > 0 and R2(t) > 0, do not apply any feedback.

52

These conditions translate into the following feedback conditioning currents:

G1(t) =







R1(t) if R1(t) < 0 and R2(t) > 0

0 otherwise
(5.11)

G2(t) =







R2(t) if R1(t) > 0 and R2(t) < 0

0 otherwise
(5.12)

G3(t) =







R1(t) if R1(t) < 0 and R2(t) < 0

0 otherwise
(5.13)

Under this scheme, the SME describing the system dynamics with feedback becomes simply

dρc(t) = γ(D[XII] + D[IXI] + D[IIX])ρc(t)dt

+κ(D[ZZI] + D[IZZ])ρc(t)dt

+
√
κ(H[ZZI]dW1(t) + H[IZZ]dW2(t))ρc(t)

−iλ(G1(t)[XII, ρc(t)] +G2(t)[IXI, ρc(t)]

+G3(t)[IIX, ρc(t)])dt (5.14)

where λ is the maximum feedback strength, which is assumed for simplicity to be the same

for all the feedback Hamiltonians.

As before, the non-Markovian feedback signals make numerical simulation the most

direct method of solution of this SME.

5.2 Simulation results

As a way of evaluating the performance of the general error control scheme using weak

measurements and feedback, we numerically solved the SMEs described in the two examples

of section 5.1. In these simulations, the error rate γ was fixed, and the parameter space

formed by r, λ, T , and κ was explored. The numerical results showed that the parameter T

can be optimized as a function of r. In particular, T should be chosen to be large enough

so that the decaying exponential filter is not truncated prematurely. A T that is some large

enough multiple of the filter’s time constant, 1/r, is ideal. Therefore, in what follows we

53

will consider the results based on the parameter space formed by the three parameters r, λ,

and κ.

Since the one qubit toy model has all these free parameters, it is a good model in which to

qualitatively explore this parameter space, and the smaller state space of this model makes

its simulation far more computationally tractable than simulating a larger code, even the

relatively small bit-flip code.

5.2.1 The toy model

We chose to simulate the dynamics of (5.6) by way of an associated stochastic Schrödinger

equation (SSE) for two reasons: (i) it is less computationally intensive, (ii) it allows us to

look at individual trajectories of the system if desired. The form of this associated SSE is

as follows:

d|ψc(t)〉 = dN(t)(X|ψc(t)〉 − |ψc(t)〉) +
√
κ dW (t)(Z − 〈Z〉(t))|ψc(t)〉

−κ
2
(1 − 〈Z〉(t)Z)2|ψc(t)〉dt− iλG(t)X|ψc(t)〉dt, (5.15)

where dN(t) is a random variable that is either 0 or 1 at each time step, and is distributed

according to the error rate γ.

The SSE was solved using Euler numerical integration with time steps dt = 10−4. When

ensemble averages were required — that is, when we were interested in the behaviour of

ρc(t) — 600 trajectories were averaged over. To evaluate the performance of the protocol,

we used the codeword fidelity : F (t) = 〈ψ(0)|ρ(t)|ψ(0)〉. Here, |ψ(0)〉 is the initial state of

the system, which is taken to be |0〉 unless otherwise specified.

Figure 5.1 shows a sample trajectory from the one qubit simulation. The figure shows

the expectation value of the Z measurement as a function of time and also the superimposed

filtered measurement signal, R(t). The transitions of the expectation value of Z to −1 are

due to errors, and the transitions back to +1 are due to feedback correction.

We used this toy model primarily to gain insight into the choice of parameters that lead

to optimal error correction. The conclusions drawn from exploring the parameter space

using this one qubit simulation are very similar to those in Chapter 4:

1. Performance improves as λ, the feedback strength, is increased. This improvement is

54

to be expected because the greater feedback strength corresponds to faster correction.

2. The interplay between the two processes of measurement and feedback must be con-

sidered. In particular, if the measurement strength is too strong compared to the

feedback strength, the measurement process, which tends to localize the state in the

codespace, disrupts the feedback correction process, which tends to take the state out

of the codespace. Numerical results as well as heuristic analytical calculations show

that the magnitude of the measurement strength should be roughly of the same order

of magnitude as the feedback Hamiltonian strength for optimal correction.

3. The decay rate of the filter, r, is determined by the strength of the feedback, λ: that is,

given a strong feedback Hamiltonian, it is necessary to have a responsive conditioning

current, one with little memory.

Given the strong dependence between parameters identified by these one qubit simu-

lations, there are really only two free controllable parameters in the system: κ and λ. In

practice, neither the measurement strength or the feedback strength are completely config-

urable. The physical implementation scheme typically limits the range of these parameters,

and in section 5.2.4 we shall consider the practical ranges for one particular implementation

and put bounds on the error rate allowing for error control via this feedback scheme.

It is instructive to note that the free parameters of the protocol are all physical pa-

rameters: the optimal operating regime of the protocol is defined by the system’s physical

features rather than those of the introduced filter. Therefore, it is in principle possible

to design a filter that allows the protocol to perform optimally for a given set of physical

parameters (κ and λ).

5.2.2 Three qubit code simulation

The simulation of the three qubit bit-flip code behaves in much the same way as the one

qubit version, but with one key difference: for the one qubit ‘code’, a double error event

– where an error occurs on the qubit before we have corrected the last error – is not too

damaging: in this case, the error correcting feedback mechanism detects a traversal back

into the ‘codespace’ and thus stops correcting. In the three qubit code, this situation is

a little more complicated. Let us consider the situation in which a second error happens

55

while a previous error is being corrected. If this second error happens to be on the same

qubit as the one being corrected, then in consonance with the one qubit ‘code’, it is not too

damaging. However, if the second error is on one of the two qubits not being corrected, an

irrecoverably damaging event occurs, because in this case the stabilizer measurements cease

to provide accurate information about the error location, and the protocol’s ‘corrections’

actually introduce errors.

This problem identifies a key consideration in any continuous, feedback based error

correction scheme. The finite duration of the detection and correction window means that

we wish to choose our parameters with this finite window small enough that the probability

of an error we cannot correct (in this case, two errors on different qubits) is negligible.

The SSE that describes the dynamics of the three qubit error correction scheme is

d|ψc(t)〉 = dN1(t)(XII|ψc(t)〉 − |ψc(t)〉) + dN2(t)(IXI|ψc(t)〉 − |ψc(t)〉)

+dN3(t)(IIX|ψc(t)〉 − |ψc(t)〉)

+
√
κ dW1(t)(ZZI − 〈ZZI〉(t))|ψc(t)〉 +

√
κdW2(t)(IZZ − 〈IZZ〉(t))|ψc(t)〉

−κ
2
(1 − 〈ZZI〉(t)ZZI)2 |ψc(t)〉dt − κ

2
(1 − 〈IZZ〉(t)IZZ)2 |ψc(t)〉dt

−iλG1(t)XII |ψc(t)〉dt − iλG2(t)IXI |ψc(t)〉dt − iλG3(t)IIX |ψc(t)〉dt.(5.16)

This SSE is of course an unravelling of the SME (5.14), and all parameters are defined as

for that equation.

As in the one qubit case, we solved this differential equation using an Euler method with

timesteps dt = 10−4. Again, ensemble averages were done over 600 trajectories when needed.

The initial state used was |000〉, and the performance was measured using the codeword

fidelity F3(t) = 〈000|ρ(t)|000〉. A true fidelity measure of the protocol performance would

average over all possible input states; however, because |000〉 is most susceptible to bit-flip

errors, the fidelity we use can be considered a worst case performance analysis.

The performance of the error correction scheme using this code is summarized by Figure

5.2. This figure shows the fidelity versus time curves (F3(t)) for several values of error rate

(γ). Each plot also shows the fidelity curve (F1(t)) for one qubit in the absence of error

correction. A comparison of these two curves shows that the fidelity is preserved for a longer

period of time by the error correction scheme for small enough error rates. Furthermore, for

56

small error rates (γ < 0.3) the F3(t) curve shows a vast improvement over the exponential

decay in the absence of error correction. However, we see that past a certain error rate, the

error correcting scheme becomes unable to handle the errors and becomes ineffective.

The third line in the plots of figure 5.2 is of the average fidelity achievable by discrete

quantum error correction—using the same three qubit code—when the time between the

detection-correction operations is t. The value of this fidelity (F3d(t)) as a function of time

was analytically calculated in Chapter 2:

F3d =
1

4
(2 + 3e−2γt − e−6γt). (5.17)

A comparison between F3(t) and F3d(t) highlights the relative merits of the two schemes.

The fact that the two curves cross each other for large t indicates that if the time between

applications of discrete error correction is sufficiently large, then a continuous protocol will

preserve fidelity better than a corresponding discrete scheme. In fact, this comparison

suggests that a hybrid scheme, where discrete error correction is performed relatively in-

frequently on a system continuously protected by a feedback protocol, might be a viable

approach to error control.

All the F3(t) curves show an exponential decay at very early times, t ≈ 0 to t ≈ 0.1.

This decay occurs because our simulation does not smooth the measurement signal until

enough time has passed to get a full buffer of measurements; that is, filtering and feedback

only start at t = T , and thus the F3(t) curve follows the decay of three unprotected qubits

for t < T . This problem should be at least partially remedied by a more complicated scheme

that smooths the measurement signal and applies feedback even when it has access to fewer

than T/dt measurements.

5.2.3 Inefficient measurement

We have modeled all our measurement processes as being perfect. In reality, detectors will

be inefficient and thus yield imperfect measurement results. This inefficiency is typically

represented by a parameter η that can range from 0 to 1, where 1 denotes a perfect detector.

How is this feedback protocol affected by non-unit efficiency detection?

To examine this question, we simulated the three qubit code with inefficient detection.

57

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

<
Z

>
(t

)

time

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

<
Z

>
(t

)
an

d
R

(t
)

time

Figure 5.1: A sample trajectory of the one qubit ”code” with feedback. The top graph just

shows the expectation value of Z, and the bottom graph shows expectation value of Z and

the filtered signal R(t).

0 1 2
0.8

0.85

0.9

0.95

1

ga
m

m
a=

0.
10

00
00

time
0 1 2

0.7

0.8

0.9

1

ga
m

m
a=

0.
20

00
00

time
0 1 2

0.6

0.7

0.8

0.9

1

ga
m

m
a=

0.
30

00
00

time

0 1 2
0.6

0.7

0.8

0.9

1

ga
m

m
a=

0.
40

00
00

time
0 1 2

0.4

0.6

0.8

1

ga
m

m
a=

0.
50

00
00

time
0 1 2

0.4

0.6

0.8

1

ga
m

m
a=

0.
60

00
00

time

0 1 2
0.4

0.6

0.8

1

ga
m

m
a=

0.
70

00
00

time
0 1 2

0.4

0.6

0.8

1

ga
m

m
a=

0.
80

00
00

time
0 1 2

0.4

0.6

0.8

1

ga
m

m
a=

0.
90

00
00

time

Figure 5.2: Fidelity curves with and without error correction for several error rates. The

thick solid curve is the fidelity of the three qubit code with error correction, F3(t) (param-

eters used: dt = 10−4, κ = 150, λ = 150, r = 20, T = 1500 × dt). The dotted curve is the

fidelity of one qubit without error correction, F1(t). The thin solid curve is the fidelity

achievable by discrete quantum error correction when the duration between applications is

t, F3d(t).

58

The evolution SME and the measurement currents in the presence of inefficient detection

are as follows:

dρc(t) = γ(D[XII] + D[IXI] + D[IIX])ρc(t)dt

+κ(D[ZZI] + D[IZZ])ρc(t)dt

+
√
κη(H[ZZI]dW1(t) + H[IZZ]dW2(t))ρc(t)

−iλ(G1(t)[XII, ρc(t)] +G2(t)[IXI, ρc(t)]

+G3(t)[IIX, ρc(t)])dt (5.18)

dQ1(t) = 2κ
√
η〈ZZI〉c(t)dt+

√
κdW1(t) (5.19)

dQ2(t) = 2κ
√
η〈IZZ〉c(t)dt+

√
κdW2(t) (5.20)

where 0 < η ≤ 1 is the measurement efficiency, and all other quantities are the same as in

equations (5.7) and (5.14).

The results of these simulations are summarized by figure 5.3. Interestingly, the slope

of the decay of fidelity with decreasing η is very small. In particular, the graph does not

exponentially decay as do Markovian feedback protocols, which suggests that this protocol

has a certain tolerance to inefficiencies in measurement. This tolerance occurs because the

filtering has a finite time window: the feedback is computed using more information than the

instantaneous measurement results. Also, as in the full state estimation protocol of Chapter

4, because the feedback conditioning current is a function of a measurement record history

—as opposed to just the current measurement— errors induced by inefficient measurement

tend not to be so damaging. Here we see the true strength of this error correction scheme:

it combines the robustness of a state estimation based feedback protocol with the low post-

processing overhead normally associated with a Markovian feedback protocol.

5.2.4 Solid-state quantum computing with RF-SET readout

In this section we study the possibility of applying this error correction technique to a

particular quantum computing architecture.

Several schemes for solid-state quantum computing have been proposed [42, 58, 82, 63].

These use the charge or spin degree of freedom of single particles to represent logical qubits,

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1−eta

F
id

el
ity

 a
fte

r
a

fix
ed

 ti
m

e
pe

rio
d

gamma=0.1
gamma=0.2
gamma=0.3
gamma=0.4

Figure 5.3: Average fidelity after a fixed amount of time as a function of 1 − η for several

error rates (parameters used: dt = 10−4, κ = 50, λ = 50, r = 10, T = 1500 × dt).

and measurement involves probing this degree of freedom.

Here we examine the weak measurement of one such proposal that uses coherently

coupled quantum dots (CQDs) and an electron that tunnels between the dots [41]. The

dots are formed by two P donors in Si, separated by a distance of about 50nm. Surface

gates are used to remove one electron from the double donor system leaving a single electron

on the P-P+ system. This system can be regarded as a double well potential. Surface gates

can then be used to control the barrier between the wells as well as the relative depth of

the two wells. Using surface gates, the wells can be biased so that the electron can be well

localized on either the left |L〉 or the right |R〉 of the barrier. These (almost) orthogonal

localized states are taken as the logical basis for the qubit, |0〉 = |L〉, |1〉 = |R〉. It is

possible to design the double well system so that, when the well depths are equal, there are

only two energy eigenstates below the barrier. These states are the symmetric ground state

|+〉 and the antisymmetric first excited state |−〉. A state localized on the left (right) of

the barrier is then well approximated as a linear superposition of these two states,

|L〉 =
1√
2
(|+〉 + |−〉) (5.21)

|R〉 =
1√
2
(|+〉 − |−〉) (5.22)

An initial state localized in one well will then tunnel to the other well at the frequency

60

∆ = (ε+ − ε−)/~ where ε± are the two energy eigenstates below the barrier.

The Pauli matrix, Z = |L〉〈L| − |R〉〈R|, is diagonal in this localized state basis. The

Hamiltonian for the system can be well approximated by

H = ~
ω(t)

2
Z + ~

∆(t)

2
X (5.23)

where X = |L〉〈R| + |R〉〈L|. Surface gates control the relative well depth ~ω(t) (a bias

gate control) and the tunnelling rate ∆(t), (a barrier gate control) which are therefore time

dependent. For non-zero bias the energy gap between the ground state and the first excited

state is E(t) = ~
√

ω(t)2 + ∆(t)2. Further details on the validity of this Hamiltonian and

how well it can be realised in the PP+ in Si system can be found in [8].

A number of authors have discussed the sources of decoherence in a charge qubit system

such as this one[8, 24, 41]. For appropriate donor separation, phonons can be neglected as

a source of decoherence. The dominant sources of decoherence then arise from fluctuations

in voltages on the surface gates controlling the Hamiltonian and electrons moving in and

out of trap states in the vicinity of the dot. This latter source of decoherence is expected

to occur on a longer time scale and is largely responsible for 1/f noise in these systems.

In any case both sources of decoherence can be modelled using the well known spin-boson

model [90]. The key element of this model for the discussion here is that the interaction

energy between the qubit and the reservoir is a function of Z.

If the tunnelling term proportional to ∆(t)X in Eq. (5.23) were not present, decoherence

of this kind would lead to pure dephasing. However, in a general single qubit gate operation,

both dephasing and bit-flip errors can arise in the spin-boson model. We can thus use the

decoherence rate calculated for this model as the bit-flip error rate in our feedback error

correction model. We will use the result from the detailed model of Hollenberg et al. [41] for

a device operating at 10K, and set the error rate γ = 1.4×106s−1. This rate could be made

a factor of ten smaller by operating at lower temperatures and improving the electronics

controlling the gates.

We now turn to estimating the measurement rate, κ, for the PP+ system. In order to

readout the qubit in the logical basis we need to distinguish a single electron in the left or

the right well quickly and with high probability of success (efficiency). The technique of

61

choice is currently based on radio frequency single electron transistors (RF-SET)[75]. We

will use the twin SET implementation of Buehler et al. [12].

In an RF SET the Ohmic load in a tuned tank circuit comprises a single electron

transistor with the qubit acting as a gate bias. The two different charge states of the qubit

provide two different bias conditions for the SET, producing two different resistive loads,

and thus two levels of power transmitted through the tank circuit. The electronic signal

carries a number of noise components: for example, the Johnson-Nyquist noise of the circuit,

random changes in the SET bias conditions due to fluctuating trap states in the SET, etc.

The measurement must be operated in such a way that the charge state of the qubit can be

quickly discerned as a departure of the signal from some fiducial setting, despite the noise.

Clearly it takes some minimum time interval, tM , to discriminate a qubit signal change from

a random noisy fluctuation. We need to keep the measurement time as short as possible.

However if the measurement time is too short, one may mistake a large fluctuation, due to

a non-qubit based change in bias conditions, for the real signal. In other words one may

mistake a 1 for a 0, and vice versa. The probability of this happening is the efficiency of

the measurement, η(tM), which depends on the measurement time. The key performance

parameters are (i) the measurement time, tM , and (ii) the efficiency η(tM). An additional

parameter that is often quoted is the minimum charge sensitivity per root hertz, S. Given

tM , S determines a minimum change in the charge, ∆q, that can be seen by the RF-SET

at a given bias condition. In [12], a measurement time of tM = 6 × 10−6s was found for

a signal of ∆q = 0.2e and an efficiency of 10−6. We now need to relate this measurement

time to the measurement decoherence rate parameter, κ, of our ideal feedback model.

If the measurement were truly quantum limited (that is to say, the signal-to-noise ratio

is determined only by the decoherence rate κ), the inverse measurement time would be

of the same order of magnitude as the decoherence rate (see [31]). The measurement

described in Buehler et al.[12] will almost certainly not be quantum limited. However, here

we will assume the measurement to be quantum limited, so as to obtain a lower limit to

the measurement decoherence rate. Thus we take κ = 106s−1.

We next need to estimate typical values for the feedback strength. From Eq. (5.6) we

see that the feedback Hamiltonian is proportional to an X operator. In the charge qubit

example, this corresponds to changing the tunneling rate for each of the double dot systems

62

that comprise each qubit. The biggest tunneling rate (∆) occurs when the bias of the double

wells makes it symmetric. In [8], the maximum tunneling rate is about 109 s−1, for a donor

separation of 40nm. A large tunneling rate makes for a fast gate, and thus a fast correction

operation. Thus the maximum value of λ can be taken to be 109 s−1.

To summarize, in the PP+ based charge qubit, with RF-SET readout, we have γ ≈ κ ≈
106s−1, and λ ≈ 109s−1.

The fact that the measurement strength and the error rate are of the same order of

magnitude for this architecture is a problem for our error correction scheme. This means

that the rate at which we gain information is about the same as the rate at which errors

happen, and it is difficult to operate a feedback correction protocol in such a regime. Al-

though it is unlikely that the measurement rate could be made significantly larger in the

near future, as mentioned above it is possible that the error rate could be made smaller by

improvements in the controlling electronics. Thus it is interesting to consider how low the

error rate would have to be pushed before our error control scheme becomes effective. To

answer this question we ran the three qubit bit-flip code simulation using the parameters

stated above and lowered the error rate until the error control performance was acceptable.

We found that the fidelity after 1ms could be kept above 0.8 on average if the error rate, γ,

is below 102 s−1 (with κ = 106 s−1, and λ = 107 s−1). So we see that a difference in order of

magnitude of four between the measurement and feedback strengths, and the error rate, is

about what this protocol (using the three qubit code) requires for reasonable performance.

That is, we require
κ

γ
≈ λ

γ
≈ 104 (5.24)

Of course, depending on the performance requirements this ratio may be larger or smaller.

Also, a full optimization of the filter used in the scheme is likely to drive this ratio down

by up to an order of magnitude.

We can compare the requirements of the three-qubit code with the one-qubit version.

Given the same measurement and feedback parameters (κ = 106 s−1, λ = 107 s−1), the one-

qubit ‘code’ can keep the fidelity above 0.8 after 1 ms when κ/γ ≈ λ/γ ≈ 10. That is, only

one order of magnitude difference is required between the error rate and the measurement

and feedback rates. This suggests that a key issue with feedback based error correction

63

schemes is scalability. The ratio between measurement and feedback rates and error rate

has to increase along with the error correcting code size (in qubits).

5.3 Discussion and conclusion

We have described a practical scheme for implementing error correction using continuous

measurement and Hamiltonian feedback and have demonstrated the validity of the scheme

by simulating it for a simple error correction scenario. The simulations show that this error

control scheme can be made very effective if the operational parameters (measurement

strength, feedback strength, filter parameters) are well matched to the error rate of a given

sytem. At the same time, the scheme uses relatively modest resources and thus is easy to

implement, as well as robust in the face of measurement inefficiencies.

We also studied a solid-state quantum computing architecture with RF-SET readout

and the feasibility of implementing this error correction protocol on it. Although the mea-

surement and feedback rates currently possible on this architecture do not allow for error

correction via this feedback scheme with the intrinsic error rate, it is foreseeable that as

the controlling technology improves, this error control scheme will become possible on this

architecture. From numerical simulations, we found the approximate parameter regime

where the three qubit code using this scheme becomes effective – that is, exactly how much

improvement is necessary before the scheme becomes feasible. It would be interesting to

investigate this further and explore more rigorously how values of κ/γ and λ/γ dictate

protocol performance.

In general, further exploration of the parameter space for various codes is of considerable

interest. One direction that could be taken is to optimize the various parameters. For

example, one might imagine that the optimum decay time of the filter depends somewhat

on factors such as the inefficiency of the measurement.

Analytical models for both this scheme and the one given in Chapter 6 would be of

interest. It is possible to design a rough model for the one-qubit case in which the finite-

time response due to non-instantaneous correction is the main source of degradation of the

state; this ought to be a good assumption when κ is large. However, numerical simulations

do not support this model; in particular, the one qubit simulations seem to show a steady

64

state, a feature not present in a model in which there is always some rate of degradation

[74]. This result suggests more sophisticated behavior on the part of the correction protocol

than we are currently able to understand, and an analytical model able to reproduce the

behavior in the simulations is still unknown.

The numerical simulations seem to show a threshold error rate above which this partic-

ular error correction scheme does not work. More work could be done in identifying such

a threshold, especially its dependence on κ/γ and λ/γ. Another important consideration

is the scalability of the protocol: how large do κ and λ need to be for good results as the

size of the code grows larger? Preliminary simulation results suggest that the good values

of κ/γ and λ/γ grow exponentially with the size of the code. Investigating this dependence

further would give insight into how truly practical this proposal is.

65

Chapter 6

Quantum error correction for continuously

detected errors

6.1 Introduction

The work in Chapters 4 and 5 presupposed that classical processing of currents could be done

arbitrarily quickly, so the feedback was allowed to be an extremely complicated function

of the entire measurement record in Chapter 4 and a rather less complicated one in 5.

These sorts of complicated feedback can be modeled only by numerical simulations. In this

chapter, by contrast, the feedback will be restricted to be directly proportional to measured

currents, thus removing any need for classical post-processing. In the Markovian limit, this

allows an analytical treatment. This simplification is possible because in this chapter we will

assume that the errors are detected. That is, the experimenter knows precisely what sort

of error has occurred because the environment that caused the errors is being continuously

measured. Since the environment is thus acting as part of the measurement apparatus, the

errors it produces could be considered measurement-induced errors.

There are a number of implementations in which measurement-induced errors of this

sort may be significant. In the efficient linear optics scheme of Knill et al. [51], gates are

implemented by nondeterministic teleportation. Failure of the teleportation corresponds

to a gate error in which one of the qubits is measured in the computational basis with

known result. In a number of solid state schemes, the readout device is always present and

might make an accidental measurement of a qubit, even if the readout apparatus is in a

quiescent state. An example is the use of RF single electron transistors to readout a charge

66

transfer event in the Kane proposal. Such a measurement is modelled as a weak continuous

measurement [100]. While one supposes that the SET is biased in its low conductance state

during qubit processing, it is useful to know that even if the device does accidentally make

a measurement, the resulting error can be corrected.

In this chapter, we show that for certain error models and codes, Markovian feedback

plus an additional constant Hamiltonian (a “driving Hamiltonian”) can protect an unknown

quantum state encoded in a particular codespace. Using the stabilizer formalism, we show

that if there is one sort of error per physical qubit, and the error is detected perfectly, then

it is always possible to store n− 1 logical qubits in n physical qubits. This works whether

the detector record consists of discrete spikes (Poisson noise) or a continuous current (white

noise). This suggest that if the dominant decoherence process can be monitored, then using

that information to control the system Hamiltonian may be the key to preventing such

decoherence (see also the example in [20]).

As a salient application of this formalism, we consider the special case of spontaneous

emission. Stabilizing states against spontaneous emission by using quantum error correcting

codes has been studied by several groups [59, 69, 4, 3]. Here we demonstrate that a simple

n-qubit error correcting code, Markovian quantum feedback, and a driving Hamiltonian, is

sufficient to correct spontaneous emissions on n − 1 qubits. The result of encoding n − 1

logical qubits in n physical qubits has been recently independently derived by [43] for the

special case of spontaneous emission; however, our scheme differs in a number of respects.

We also show that spontaneous emission error correction by feedback can be incorporated

within the framework of canonical quantum error correction, which can correct arbitrary

errors.

Recall that the usual quantum error correction protocol has several steps: after the

encoding and error, the error syndrome is measured (in a stabilizer code, this corresponds

to measuring the stabilizer generators), and a correction is performed based on that error

syndrome. In this chapter we will use a modified version of this protocol. In particular, we

will not measure stabilizer elements. Instead, we will assume that a limited class of errors

occurs on the system and that these errors are detectable: we know when an error has

happened and what the error is. The correction back to the codespace can still be performed

by a unitary recovery operator based on the information from the error measurement. Fig.

67

|ψ>
|0>...
|0>

|Environment>

|ψ>
|0>...
|0>

|Environment>

|Meter>

Correction

Correction

Conventional protocol

Modified protocol

Meter
entanglement

Stabilizer
encoding (Environment

Error

entanglement)

Stabilizer
encoding (Environment

Error

entanglement)

Figure 6.1: The top diagram shows the conventional stabilizer error correction protocol.

After the state is encoded, an error occurs through coupling with the environment. To

correct this error, the encoded state is entangled with a meter in order to measure the

stabilizer generators, and then feedback is applied on the basis of those measurements. The

bottom diagram shows our modified protocol, in which the error and measurement steps

are the same. To correct the error in this protocol, the environment qubits are measured,

and we feedback on the results of the environment measurement.

6.1 shows the difference between the conventional protocol and our modified protocol.

In this chapter, we will also consider operators of the form

T = T1 ⊗ · · · ⊗ Tn, (6.1)

where Ti is an arbitrary traceless one-qubit operator normalized such that its eigenvalues

are {−1, 1}. Operators of this form are not generally Pauli-group stabilizers as presented

in [38], as T is not in general a member of Pn. However, because of the special form of

T , T is equivalent to a Pauli operator up to conjugation by a unitary that is a product

of one-qubit unitaries, i.e., there exists some U =
⊗n

i=1 Ui such that UTU † is a member

of Pn. Therefore, choosing T as the sole stabilizer generator for a code is equivalent, up

to conjugation by a unitary, to choosing a member of the Pauli group as the stabilizer

generator. (Note that additional constraints are necessary if T is not the only stabilizer

generator.)

68

6.2 Example: Spontaneous-emission correction

A particular example of a Poisson process error is spontaneous emission, in which the jump

operator is proportional to |0〉〈1|, so that the state simply decays from |1〉 to |0〉 at random

times. Indeed, if the decay is observed (say by emitting a photon which is then detected),

this may be regarded as a destructive measurement of the operator |1〉〈1|.
Stabilizing states against the important decay process of spontaneous emission through

application of error correcting codes has been studied by several groups [59, 69, 4, 3]. In

[69] Plenio, Vedral and Knight considered the structure of quantum error correction codes

and addressed the problem that spontaneous emission implies continuous evolution of the

state even when no emission has occurred. They developed an eight-qubit code that both

corrects one general error and corrects the no-emission evolution to arbitrary order.

More recently, in several papers Alber et al. [4, 3] have addressed a somewhat more

specific problem relating to spontaneous emission from statistically independent resevoirs.

In this formulation, the only errors possible are spontaneous emission errors, and the time

and position of a particular spontaneous emission is known. They showed that given these

constraints, a reduction of the redundancy in [69] was possible, and constructed a four-qubit

code which corrects for one spontaneous emission error.

In fact, for the case considered in [4, 3], a very simple error correcting code consisting of

just two qubits with feedback is sufficient to correct spontaneous emissions for a single logical

qubit. A crucial difference from Refs. [4, 3] is that we call for a constant driving Hamiltonian

in addition to the feedback Hamiltonian. Moreover, a simple code of n qubits, with the

appropriate feedback and driving Hamiltonians, can encode n − 1 qubits and correct for

spontaneous emissions when the position (i.e., which qubit) and time of the jump are known.

We also show that an equally effective protocol can be found for a diffusive unraveling of

the spontaneous emission (as in homodyne detection).

6.2.1 Two-qubit code: Jump unraveling

The simplest system for which we can protect against detected spontaneous emissions is

a system of two qubits. We consider the model in which the only decoherence process is

due to spontaneous emission from statistically independent reservoirs. We will show that a

69

simple code, used in conjunction with a driving Hamiltonian, protects the codespace when

the time and location of a spontaneous emission is known and a correcting unitary is applied

instantaneously; the codespace suffers no decoherence.

The codewords of the code are given by the following:

|0̄〉 ≡ (|00〉 + |11〉)/
√

2

|1̄〉 ≡ (|01〉 + |10〉)/
√

2. (6.2)

In the stabilizer notation, this is a stabilizer code with stabilizer generator XX. Both

codewords are +1 eigenstates of XX.

Following the presentation in Chapter 3, the jump operators for spontaneous emission

of the jth qubit are

Ωj =
√

κjdt(Xj − iYj) ≡
√

κjdtaj , (6.3)

where 4κj is the decay rate for that qubit. In the absence of any feedback, the master

equation is

ρ̇ =
∑

j=1,2

κjD[Xj − iYj]ρ− i[H, ρ]. (6.4)

If the emission is detected, such that the qubit j from which it originated is known,

it is possible to correct back to the codespace without knowing the state. This is because

the code and error fulfill the necessary and sufficient conditions for appropriate recovery

operations [50]:

〈ψµ|E†E|ψν〉 = ΛEδµν . (6.5)

Here E is the operator for the measurement (error) that has occurred and ΛE is a constant.

The states |ψµ〉, |ψν〉 are the encoded states in Eq. (6.2) with 〈ψµ|ψν〉 = δµν . These con-

ditions differ from the usual condition (2.23) only by taking into account that we know a

particular error E = Ωj has occurred.

More explicitly, if a spontaneous emission on the first qubit occurs, |0̄〉 → |10〉 and

|1̄〉 → |11〉, and similarly for spontaneous emission on the second qubit. Since these are

orthogonal states, this fulfills the condition given in (6.5), so a unitary exists that will

70

correct this spontaneous emission error. One choice for the correcting unitary is

U1 = (XI − ZX)/
√

2

U2 = (IX −XZ)/
√

2. (6.6)

As pointed out in [69], a further complication is the nontrivial evolution of the state

in the time between spontaneous emissions. From Chapter 3, this is described by the

measurement operator

Ω0 = II (1 − (κ1 + κ2)dt) − κ1dtZI

−κ2dtIZ − iHdt. (6.7)

The non-unitary part of this evolution can be corrected by assuming a driving Hamiltonian

of the form

H = −(κ1Y X + κ2XY). (6.8)

This result can easily be seen by plugging (6.8) into (6.7) with a suitable rearrangement of

terms:

Ω0 = II (1 − (κ1 + κ2)dt) − κ1dtZI(II −XX)

−κ2dtIZ(II −XX), (6.9)

and since II −XX acts to annihilate the codespace, Ω0 acts trivially on the codespace.

We then have the following master equation for the evolution of the system:

dρ = Ω0ρΩ
†
0 − ρ+ dt

∑

j={1,2}
κjUjajρa

†
jU

†
j , (6.10)

where Uj is the recovery operator for a spontaneous emission from qubit j. From Sec. 3,

these unitaries can be achieved by the feedback Hamiltonian

Hfb =
∑

j=1,2

dNj(t)

dt
Vj , (6.11)

71

where Nj(t) is the spontaneous emission count for qubit j, and Uj = exp(−iVj). Here, we

can see from the simple form of (6.6) that Vj can be chosen as proportional to Uj . Since

Ujajρa
†
jU

†
j acts as the identity on the codespace by definition, and since we have shown

that Ω0ρΩ
†
0 preserves the codespace, (6.10) must preserve the codespace.

Such a code is optimal in the sense that it uses the smallest possible number of qubits

required to perform the task of correcting a spontaneous emission error, as we know that

the information stored in one unencoded qubit is destroyed by spontaneous emission.

6.2.2 Two-qubit code: Diffusive unraveling

A similar situation applies for feedback of a continuous measurement record with white

noise, as from homodyne detection of the emission. We use the same codewords, and

choose φj = −π/2 for the measurement. Then (6.6) suggests using the following feedback

operators:

F1 =
√
κ1(XI − ZX)

F2 =
√
κ2(IX −XZ). (6.12)

If we use these feedback Hamiltonians with the same driving Hamiltonian (6.8) as in the

jump case, the resulting master equation is, using (3.19),

ρ̇ = κ1D[Y I − iZX]ρ+ κ2D[IY − iXZ]ρ (6.13)

We can see that this master equation preserves the codespace, by again noting that

Y I − iZX = Y I(II −XX), and similarly for IY − iXZ. The operator II −XX of course

acts to annihilate the codespace. This insight will be used in the next section to derive a

feedback procedure for a more general measurement operator.

6.2.3 Generalizations to n qubits

We will now demonstrate a simple n-qubit code that corrects for spontaneous emission

errors only, while encoding n−1 qubits. Both of the above calculations (jump and diffusion)

generalize. The master equation is the same as (6.4), but now the sum runs from 1 to n.

72

Again we need only a single stabilizer generator, namely X⊗n. The number of codewords

is thus 2n−1, enabling n − 1 logical qubits to be encoded. Since it uses only one physical

qubit in excess of the number of logical qubits, this is again obviously an optimal code.

First, we consider the jump case. As in Sec. 6.2.1, a spontaneous emission jump fulfills

the error-correction condition (6.5) (see Sec. 6.3.1 below). Therefore, there exists a unitary

that will correct for the spontaneous-emission jump. Additionally, it is easy to see by

analogy with (6.9) that

H = κj

∑

j

X⊗j−1Y X⊗n−j (6.14)

protects against the nontrivial no-emission evolution. Therefore the codespace is protected.

Next, for a diffusive unraveling, we again choose φj = −π/2, as in Sec. 6.2.2. The same

driving Hamiltonian (6.14) is again required, and the feedback operators generalize to

Fj =
√
κj

(

I⊗j−1XI⊗n−j +X⊗j−1ZX⊗n−j
)

. (6.15)

The master equation becomes

ρ̇ =
∑

j

κjD[I⊗j−1Y I⊗n−j(I⊗n −X⊗n)]. (6.16)

These schemes with a driving Hamiltonian do not have the admittedly desirable property

of the codes given in [69, 4, 3] that if there is a time delay between the occurrence of the

error and the application of the correction, the effective no-emission evolution does not lead

to additional errors. Nevertheless, as pointed out in [3], the time delay for those codes must

still be short so as to prevent two successive spontaneous emissions between correction; they

numerically show that the fidelity decays roughly exponentially as a function of delay time.

Therefore, we believe that this drawback of our protocol is not significant.

6.3 One-qubit general measurement operators

The form of the above example strongly indicates that there is a nice generalization to be

obtained by considering stabilizer generators in more detail. In this section, we consider

an arbitrary measurement operator operating on each qubit. We find the condition that

73

the stabilizers of the codespace must satisfy. We show that it is always possible to find

an optimal codespace (with a single stabilizer group generator). We work out the case of

diffusive feedback in detail and derive it as the limit of a jump process.

6.3.1 General unraveling

Different unravelings of the master equation (3.4) may be usefully parameterized by γ. In

Sec. 3, we have seen that a simple jump unraveling has γ = 0, while the diffusive unraveling

is characterized by |γ| → ∞. We will now address the question of when a unitary correction

operator exists for arbitrary γ, i.e., when a measurement scheme with a given γ works to

correct the error.

Consider a Hilbert space of n qubits with a stabilizer group {Sl}. Let us consider a

single jump operator c acting on a single qubit. We may then write c in terms of Hermitian

operators A and B as

e−iφc = χI +A+ iB (6.17)

≡ χI + ~a · ~σ + i~b · ~σ (6.18)

where χ is a complex number, ~a and ~b are real vectors, and ~σ = (X,Y, Z)T .

We now use the standard condition (6.5), where here we take E = c + γ. Henceforth,

γ is to be understood as real and positive, since the relevant phase φ has been taken into

account in the definition (6.17). The relevant term is

E†E = (|χ+ γ|2 + ~a2 +~b2)I

+Re(χ+ γ)A+ Im(χ+ γ)∗iB + (~a×~b) · ~σ)

≡ (|χ+ γ|2 + ~a2 +~b2)I +D, (6.19)

where D is Hermitian.

Now we can use the familiar sufficient condition for a stabilizer code [38]: the stabilizer

should anticommute with the traceless part of E†E. This condition becomes explicitly

0 = {S,D}. (6.20)

74

As long as this is satisfied, there is some feedback unitary e−iV which will correct the error.

Normalization implies that when E does not occur, there may still be nontrivial evolu-

tion. In the continuous time paradigm, where one Kraus operator is given by E
√
dt, the

transform (3.10) tells us that the no-jump normalization Kraus operator is given by

Ω0 = 1 − 1

2
E†Edt− γ

2
(e−iφc− eiφc†)dt− iHdt. (6.21)

Now we choose the driving Hamiltonian

H =
i

2
DS +

iγ

2
(e−iφc− eiφc†). (6.22)

This is a Hermitian operator because of (6.20). Then the total evolution due to Ω0 is just

the identity, apart from a term proportional to D(1− S), which annihilates the codespace.

Thus for a state initially in the codespace, the condition (6.20) suffices for correction of

both the jump and no-jump evolution.

A nice generalization may now be found for a set {cj} of errors such that cj [with

associated operator Dj as defined in (6.19)] acts on the jth qubit alone. Since Dj is

traceless, it is always possible to find some other Hermitian traceless one-qubit operator

sj such that {sj , Dj} = 0. Then we may pick the stabilizer group by choosing the single

stabilizer generator

S = s1 ⊗ · · · ⊗ sn (6.23)

so that the stabilizer group is {1, S}. As noted in Sec. 6.1, this is not strictly a stabilizer

group, as S may not be in the Pauli group, but this does not change the analysis. Choosing

H according to this S such that

H =
∑

j

i

2
DjS +

iγj

2
(e−iφjcj − eiφjc†j) (6.24)

will, by our analysis above, provide a total evolution that protects the codespace, and the

errors will be correctable; furthermore, this codespace encodes n− 1 qubits in n.

Note that we can now easily understand the n-qubit jump process error of spontaneous

emission considered in Sec. 6.2. Here, γ = 0, S = X⊗n, and Dj = 2κjZj . Thus (6.20) is

75

satisfied, and the Hamiltonian (6.14) is derived directly from (6.24).

Moreover, one is not restricted to the case of one stabilizer; it is possible to choose a dif-

ferent Sj for each individual error cj . For example, for the spontaneous emission errors cj =

Xj−iYj we could choose Sj as different stabilizers of the five-qubit code. This choice is easily

made, as the usual generators of the five-qubit code are {XZZXI, IXZZX,XIXZZ,ZXIXZ},
as we saw in Chapter 2. For each qubit j, we may pick a stabilizer Sj from this set which

acts as X on that qubit, and X anticommutes with Dj = Zj . This procedure would be

useful in a system where spontaneous emission is the dominant error process; it would have

the virtue of both correcting spontaneous emission errors by means of feedback as well as

correcting other (rarer) errors by additionally using canonical error correction.

We note that the work in this section can very easily be modified to generalize the

results of [43]. That work has the same error model as ours: known jumps occuring on

separate qubits so that the time and location of each jump is known; but [43] postulates

fast unitary pulses instead of a driving Hamiltonian. Their scheme for spontaneous emission

depends on applying the unitary X⊗n at intervals Tc/2 that are small compared to the rate

of spontaneous emission jumps. They show that after a full Tc period, the no-jump evolution

becomes

U = e−iTcHc/2X⊗ne−iTcHc/2X⊗n = e−Tc/2
PN

i=1 κi1. (6.25)

Thus the application of these pulses acts, as does our driving Hamiltonian, to correct the

no-jump evolution. The generalization from spontaneous emission to general jump operator

cj for their case is simple: the code is the same as in the above one-stabilizer protocol, with

single stabilizer equal to (6.23). The fast unitary pulses are in this case also simply equal

to (6.23).

6.3.2 Diffusive unraveling

The case of white-noise feedback, where γ → ∞, is easily treated by recalling the master

equation (3.18) for white-noise measurement and feedback. It is clear that the first term in

(3.18) can be eliminated by choosing the constant driving Hamiltonian

H = −(eiφc†F + e−iφFc)/2 (6.26)

76

which is automatically Hermitian. The problem then becomes choosing a feedback Hamil-

tonian F such that c− iF annihilates the codespace. The choice for F can be made simply

by noting that if the codespace is stabilized by some stabilizer S, we can choose

F = B − iAS. (6.27)

Now, note that the decoherence superoperator D acts such that

D[χI + L]ρ = D[L]. (6.28)

Then we know that D[c− iF] = D[χI +A(I − S)] annihilates the codespace.

The only caveat is that F is a Hamiltonian and therefore must be Hermitian. Then the

choice (6.27) for F is only possible if the anticommutator of S and A is zero:

{S,A} = 0. (6.29)

Therefore, if we are given the measurement operator e−iφc = χ + A + iB, we must choose

a code with some stabilizer such that condition (6.29) applies; then it is possible to find a

feedback and a driving Hamiltonian such that the total evolution protects the codespace.

At first glance, it may seem odd that the condition for feedback does not depend at

all upon B. This independence has to do with the measurement unraveling: the diffusive

measurement record (3.13) depends only upon e−iφc+ eiφc† = 2(A+ χ).

6.3.3 Diffusion as the limit of jumps

It is instructive to show that the diffusive feedback process can be derived by taking the

limit of a jump feedback process using the transformation (3.10). This takes several steps,

and we use the treatment in [95] as a guide. But to begin, note that the condition (6.29)

follows by considering Eq. (6.20) in the limit γ → ∞, as the leading order term in D is

proportional to A.

Consider the jump unraveling picture with jump operator c+γ for γ large (but not infi-

nite). Recall that in the error-correction picture given in Sec. 6.2, we postulated a feedback

Hamiltonian (dN/dt)V that produces a unitary correction e−iV that acts instantaneously

77

after the jump. In addition we will postulate a driving Hamiltonian K that acts when no

jump happens. In this picture, we will show that given the condition (6.29), it is possible to

find asymptotic expressions for V and K so that the deterministic equation for the system

preserves the stabilizer codespace. Finally, we will show that taking the limit γ → ∞ leads

to the expression for the feedback and driving Hamiltonians (6.26) and (6.27).

Let us consider the measurement operators for the unraveling with large γ and H = 0.

Following (3.10) these are

Ω1 =
√
dt(c+ γ)

Ω0 = 1 − dt

2
[cγ − c†γ + (c+ γ)†(c+ γ)], (6.30)

where we have assumed for simplicity that γ is real. Now, including the feedback and

driving Hamiltonians modifies these to

Ω′
1(dt) =

√
dte−iV (c+ γ)

Ω′
0(dt) = e−iKdtΩ0(dt)

= 1 − iKdt− dt

2
(c†c+ 2γc+ γ2). (6.31)

Following Ref. [95], expand V in terms of 1/γ to second order: V = V1/γ+V2/γ
2 where

the Vi are Hermitian. Then expanding the exponential in (6.31) we get to second order

Ω′
1(dt) =

√
dt

[

1 − i

(

V1

γ
+
V2

γ2

)

− 1

2

V 2
1

γ2

]

(A+ iB + γ)

=
√
dtγ

[

1 +
χ

γ
+

1

γ
(A+ iB − iV1)

+
1

γ2
(V 2

1 /2 − iV2 − i(A+ iB)V1)

]

. (6.32)

A reasonable choice for V1, by analogy to (6.27), is B− iAS. Following [95], we also use

(6.26) and (6.27) to choose V2 and K; note that (6.27) is exactly the expression we would

expect for K from (6.22) in the limit as γ is taken to infinity. We will proceed to show that

78

the choice for V and K,

V1 = B − iAS (6.33)

V2 = −(c†F + Fc)/2 (6.34)

K = −γ(B − iAS), (6.35)

leads to the correct evolution to second order in γ.

Now, the deterministic evolution is given by

dρ = Ω′
0ρΩ

′
0 + Ω′

1ρΩ
′
1 − ρ. (6.36)

Substituting (6.31)–(6.35) into (6.36) to second order in γ, after some algebra, gives the

deterministic jump equation

dρ = D[A(1 − S)]ρ (6.37)

which of course acts as zero on the codespace.

Now we will show that taking the limit as γ → ∞ leads to the feedback operators given

in (6.26) and (6.27). We saw in (6.33) and (6.34) that the feedback Hamiltonian needed to

undo the effect of the jump operator c+ γ was just

Hfb =
dN(t)

dt

(

B − iAS

γ
− c†F + Fc

2

)

. (6.38)

Keeping terms of two orders in γ gives

Hfb = γ(B − iAS) − c†F + Fc

2

+
dN(t) − γ2dt

γdt
(B − iAS). (6.39)

The last term just becomes the current Q̇(t) as γ approaches infinity, as in equation (3.12).

Furthermore, we have not yet added in the driving Hamiltonian to the expression for the

79

feedback. Doing so yields

Htotal(t) = Hfb +K

= Q̇(t)(B − iAS) − c†F + Fc

2
(6.40)

which is just what we obtained in the previous section. Thus we can see that this continuous

current feedback can be thought of as an appropriate limit of a jump plus unitary correction

process.

6.3.4 Relaxing assumptions: imperfect knowledge of measurement rate

and imperfect detection

One implicit assumption the above analysis has made is that the measurement strength κ

must be known perfectly in order to apply the Hamiltonian 6.8. In a realistic situation,

κ may not be known precisely. Let us assume for simplicity that the error rates on both

qubits are the same (κ): furthermore, imagine that our value for κ is slightly in error by

some fraction ε, so that instead of correctly applying a driving Hamiltonian proportional

to κ, we instead apply a Hamiltonian proportional to κ(1 + ε). In this case, the differential

equations describing the density matrix can be easily solved to yield a steady state that

differs from the original state by an amount that is proportional to ε to first order. This

analysis was done for the two-qubit system considered in Sec. 6.2.1, and also holds when

the error rates on the two qubits are different. The principles of the analysis ought to hold

for arbitrary numbers of qubits as well.

In addition, these results for feedback were obtained by assuming unit efficiency, i.e.,

perfect detection. Realistically, of course, the efficiency η will be less than unity. This

results in extra terms in the feedback master equations we have derived [93]. In the jump

case, the extra term is

ρ̇ = (1 − η)
∑

j

(cjρc
†
j − Ujcjρc

†
jU

†
j). (6.41)

In the diffusion case it is

ρ̇ =
1 − η

η

∑

j

D[Fj]. (6.42)

In both cases this results in exponential decay of coherence in the codespace. This is because

80

the error correction protocol here relies absolutely upon detecting the error when it occurs.

If the error is missed (jump case), or imperfectly known (diffusion case), then it cannot be

corrected. This behavior is, of course, a property of any continuous-time error correction

protocol that depends on correcting each error instantaneously (e.g., [4, 3, 43]).

On the other hand, such behavior for Markovian feedback is in contrast to the state-

estimation procedures used in Chapters 4 and 5. The latter procedures are much more

robust under non-unit efficiency; indeed, given non-unit efficiency, we saw that they still

worked to protect an unknown quantum state without exponential loss. This difference

in performance occurs because state-estimation is a function of the entire measurement

record, not just instantaneous measurement results, and thus does not propagate errors to

the same extent that a Markovian feedback system does. Thus we can see that there is a

certain tradeoff. Our Markovian feedback scheme relies upon calculational simplicity, but

at the expense of robustness. The state-estimation procedure, conversely, is designed to be

robust, but at the cost of computational complexity.

6.4 Universal quantum gates

Given a protected code subspace, one interesting question, as in [43], is to investigate what

kinds of unitary gates are possible on such a subspace. For universal quantum computation

on the subspace— the ability to build up arbitrary unitary gates on k qubits— it suffices

to be able to perform arbitrary one-qubit gates for all k encoded qubits and a two-qubit

entangling gate such as controlled-NOT for all encoded qubits µ, ν. Indeed, as is noted in

[43], it is enough to be able to perform the Hamiltonians X̄µ, Z̄µ, and X̄µX̄ν for all µ, ν

[19]. We will demonstrate that performing these Hamiltonians with our protocol is possible

for the spontaneous emission scheme given in Sec. 6.2, and then we will show how that

construction generalizes for an arbitrary jump operator.

Recall that the example in Sec. 6.2 has single stabilizer X⊗n and encodes n− 1 logical

qubits in n physical qubits. To find the 2(n − 1) encoded operations, we must find oper-

ators that together with the stabilizer generate the normalizer of X⊗n [64]. In addition,

if these operators are to act as encoded X and Z operations, they must satisfy the usual

81

commutation relations for these operators:

{Xµ, Zµ} = 0

[Xµ, Zν] = 0, µ 6= ν

[Xµ, Xν] = [Zµ, Zν] = 0. (6.43)

Operators satisfying these constraints are easily found for this code:

X̄µ = I⊗µ−1XI⊗n−µ

Z̄µ = I⊗µ−1ZI⊗n−µ−1Z

X̄µX̄ν = I⊗µ−1XI⊗ν−µ−1XI⊗n−ν , (6.44)

where we assume 1 ≤ µ < ν ≤ n − 1. If we apply a Hamiltonian Henc given by any

linear combination of the operators in (6.44), the resulting evolution is encapsulated in the

expression for Ω0, from (6.7):

Ω0 = (1 −
∑

j

κjdt)1

−
∑

j

κjZj(1 −X⊗n)dt− iHencdt. (6.45)

As the first term is proportional to the identity and the second term acts as zero on the

codespace, the effective evolution is given solely by Henc as long as the state remains in

the codespace under that evolution. But because the encoded operations are elements

of the normalizer, as we saw Chapter 2, applying Henc does not take the state out of

the codespace. Furthermore, our protocol assumes that spontaneous emission jumps are

corrected immediately and perfectly, so jumps during the gate operation will also not take

the state out of the codespace. Thus we can perform universal quantum computation

without having to worry about competing effects from the driving Hamiltonian.

The generalization to the scheme given in Sec. 6.3.1 to encode n− 1 logical qubits in n

physical qubits is easily done. First we note that for the stabilizer S given in the general

scheme, we know that

S = UX⊗nU † (6.46)

82

for some unitary U =
⊗n

i=1 Ui, so the encoded operations for that code are similarly given

by

X̄µ = I⊗µ−1UµXU
†
µI

⊗n−µ

Z̄µ = I⊗µ−1UµZU
†
µI

⊗n−µ−1UnZU
†
n

X̄µX̄ν = I⊗µ−1UµXU
†
µI

⊗ν−µ−1UνXU
†
νI

⊗n−ν . (6.47)

Now, from (6.22) we can see that the generalization of (6.45) is

Ω0 = (1 − fdt)1 −
∑

j

gjDj(1 − S)dt− iHencdt, (6.48)

for real numbers f, gi given by expanding the expression (6.21). Again, since D(1 − S)

annihilates the codespace, the effective evolution is given solely by Henc as long as the

state remains in the codespace under that evolution. Again, Henc is made up of normalizer

elements, which do not take the state out of the codespace; and again jumps that occur

while the gate is being applied are immediately corrected and thus do not affect the gate

operation. Therefore, universal quantum computation is possible under our general scheme.

6.5 Multiple channels

The previous analysis was for one error channel per qubit. In this section we consider the

following obvious generalization: What happens if there are multiple error channels E (j),α

per single qubit, all of which can be detected? (Here j denotes the qubit on which the

channel acts, and α indexes which channel it is.) Given a certain number of channels per

qubit, what is the smallest number of stabilizers needed to be able to use our protocol?

Equivalently, given n physical qubits, how many logical qubits can be encoded?

For multiple channels (denoted by α) on a given qubit, the expressions in this previous

work can easily be generalized. We are assuming that the time scale of correction is fast

compared to the time scale of decoherence; therefore, different errors do not interfere with

one another, and all the expressions in our paper behave well (i.e., linearly). We should

also note here that implicit in the idea that all errors are detected is the assumption

83

that, therefore, given such a detection we know not only when and where (j) the error has

occurred, but also what the error is (α). In other words, given a detection we can determine

the error Kraus operator Ωα
j that has been applied.

Given the above assumptions, to generalize to multiple-channel protocols we must merely

check whether for all α and j it is true that

〈ψi|D(j),α|ψk〉 = 0. (6.49)

If (6.49) holds, the corresponding errors E(j),α will be correctable, and we will see that this

condition also makes it possible to find a driving Hamiltonian such that the no-jump errors

are also corrected.

Let us first consider the case when there are two channels on a single qubit: α = 1, 2.

When there are two channels, a Bloch-sphere analysis shows that it is possible to find a

single S such that {S,D(j),α} = 0. Let us consider qubit 1: since D(1),1 and D(1),2 are

traceless, they can be represented by two vectors on the Bloch sphere. In fact, D(1),1 and

D(1),2 define a plane intersecting the Bloch sphere; now we pick s(1) to be the operator that

corresponds to the vector on the Bloch sphere that is orthogonal to that plane. Since it is

possible to find a unitary rotation that takes s(1) to σZ as well as D(1),1 and D(1),2 to linear

combinations of σX and σY , this operator must anticommute with D(1),1 and D(1),2. Doing

the same for the other physical qubits, we pick the single stabilizer generator

S = s(1) ⊗ · · · ⊗ s(n) (6.50)

so that the stabilizer group is {1, S} as before. Again, this procedure encodes n− 1 qubits

in n.

The next step is to consider three channels. Unfortunately, for three channels on a

single qubit, it is not in general possible to find a single s which anticommutes with all the

D operators of the channels; this is reflected by the fact that the Bloch sphere is three-

dimensional, and so given three arbitrary vectors, it is not possible in general to find a

fourth vector perpendicular to all three.

However, we can do almost as well. Let us return to (6.49) again. In fact for (6.49) to

84

be true, it suffices to decompose any given error operator, D, as D = ~d · ~σ and to require

〈ψi|dlσl|ψk〉 = 0 ∀ l. (6.51)

If our stabilizers are the two stabilizers of the familiar four-qubit code for the erasure channel

[39],

S1 = XXXX,

S2 = ZZZZ, (6.52)

we can see that for any l one of these two, call it Sj(l), will satisfy

{Sj(l), σl} = 0 (6.53)

no matter what D is, and thus (6.51) holds.

In this case, with a = 1 +O(dt) as before, we have

Ω0 = a1 − D

2
dt− γ

2
(e−iφE − eiφE†)dt− iHdt. (6.54)

Let

H =
∑

l

i

2
(dlσl)Sj(l) +

iγ

2
(e−iφE − eiφE†), (6.55)

where Sj(l) is defined as in (6.53). Then

Ω0 = a1 − 1

2

∑

l

dlσl(1 − Sj(l)), (6.56)

which leaves the codespace invariant. This analysis is true for each additional error channel

we introduce. Thus no matter how many error channels there are, as long as we can detect

all of them and know which error has happened and where the error has happened, we can

correct for the error and the no-error evolution. This code encodes two logical qubits in

four physical ones.

85

In fact, this reasoning applies for n qubits, where n is even, given the two stabilizers

S1 = X⊗n

S2 = Z⊗n. (6.57)

Using these stabilizers with the constant Hamiltonian found above, it is possible to encode

n− 2 qubits in n.

This protocol, of course, borrows heavily from the stabilizer formalism of the quantum

erasure code. Indeed, the quantum erasure code can be generalized using the stabilizers in

(6.57) in the same way, with the same scaling of n− 2 logical qubits in n physical ones; as

far as we know this scaling has not been explicitly noted in the literature. On the other

hand, our protocol differs from the erasure code in that we have made a different and

more restrictive assumption about the error model; as a result, we only need to perform

local measurements instead of a highly nonlocal stabilizer measurement. To elaborate, the

quantum erasure code makes the same assumption that the position and time of the error

are both known. In the protocol given here, we make the further assumption that we know

what error has occurred in that measuring the error tells us what error has occurred. This

information about the error comes precisely from the detection of the local measurements

performed by the environment. Again, these results indicate that if dominant error processes

can be monitored, using that information can be the key to correcting them, and that the

overhead in encoding is minimal (just two physical qubits).

6.6 Looking at a spin 1 system

The protocols in this chapter have been heavily dependent on the use of a two-state quantum

system. What happens when we consider embedding the two-dimensional Hilbert space of

a qubit in a spin J state? A realistic quantum architecture may well make use of such spin

J systems in which the operators e−in̂·Ĵ are the control operations that can be applied to

the system. Furthermore, understanding this case may help in applying this protocol to

coherent-state computing [73].

Unfortunately, for most values of J and for coherent states I do not know how to design

a suitable protocol. In this section I will sketch a protocol for J = 1. In this section alone

86

I will not be using the usual stabilizer notation, in the sense that when I have a tensor

product I will always explicitly write X ⊗X and not XX.

A first guess might be to let the states of the qubit be Jz eigenstates, e.g.,

|0L〉 = |1, 1〉z

|1L〉 = |1, 0〉z

|E〉 = |1,−1〉z, (6.58)

where |E〉 will be some leakage (error) state. Since the no-jump evolution is given by the

operator J+J− = J2 − J2
z , and of course the above are eigenvalues of both J 2 and J2

z , the

codespace is fixed by the no-jump evolution (one might think of it as a sort of decoherence-

free subspace under that evolution). The J− errors can, therefore, be simply fixed by doing

a J+ operator.

Unfortunately this is a bit too simple to be true, as J+ operators do not fall in the

category of operators we are allowed to perform. Instead let the states of the qubit be given

by Jx eigenstates (one might also motivate this encoding as an analogy to the “cat” states

in coherent-state encoding [73]). It turns out as well that matters are better if we use the

|±L〉 notation, that is,

|+L〉 = |1, 1〉x + |1,−1〉x

|−L〉 = |1, 1〉x − |1,−1〉x

|E〉 = |1, 0〉x, (6.59)

where |±L〉 will be the logical states, and again |E〉 will be some leakage (error) state.

The nice thing about this encoding is that processing turns out to be (relatively) nice:

Jx acts simply on the two-dimensional space as the operation Xqubit (and annihilates the

error state), and Zqubit is also somewhat simple: Zqubit = 1 − 2J2
y .

This allows us to decompose the no-jump error J+J− as

J+J− = J2
x + J2

y + 2Jz. (6.60)

The first term, J2
x , obviously acts as the identity on the two-dimensional space, so we do not

87

need to worry about that term further. The third term, 2Jz, cannot be canceled directly

by a Jz term in the Hamiltonian (recall that this would give a non-Hermitian and therefore

dissipative evolution), but fortunately on the two-dimensional space it can be canceled by

H1 = JxJy + JyJx.

The second term is a bit of a problem, but now we can use the same trick used above

for detected errors. If we encode the state in the same way as before, such that

|0̃〉 = |+L〉|+L〉 + |−L〉|−L〉

|1̃〉 = |+L〉|−L〉 + |+L〉|−L〉, (6.61)

the codespace given by {|0̃〉, |1̃〉 is stabilized by Jx ⊗ Jx = Xqubit ⊗Xqubit.

So now (assuming for now that the J+J− evolution is happening on the first qubit; can

be fairly easily generalized if we get this to work) we define

H2 = −iDS = −iZqubitXqubit ⊗Xqubit = (1− 2J2
y)Jx ⊗ Jx = Jx ⊗ Jx − 2J2

yJx ⊗ Jx. (6.62)

And now we just apply the total Hamiltonian H = H1 +H2.

The jump evolution is similarly easy to correct; if we are in the codespace to begin with,

it turns out that the effect of J− is the following:

J−(α|+L〉 + β|−L〉) = β|E〉 + β|+L〉 + α|−L〉 (6.63)

Since, as we remarked before, Jx acts as X on the |±L〉 basis and annihilates the error state,

Jx is the operator that corrects for this error.

This nicely solves the problem of being able to do all the necessary operations. Un-

fortunately, in a real physical system, performing complicated operators like Jy2Jx ⊗ Jx

may be quite difficult. So this procedure, although theoretically elegant, has a fundamental

drawback as well. Perhaps it is possible to decompose the J+J− term in a different way

that leads to a protocol that retains the elegance but is easier to perform.

88

6.7 Conclusion

It is possible to understand a particular variant of quantum control as quantum error

correction. This method is very general in that it can correct any single qubit detected

errors, while requiring only n physical qubits to encode n−1 logical qubits. As a particular

example, we have shown how to correct for spontaneous emission evolution using feedback

and a driving Hamiltonian, which allows less redundancy than has previously been obtained.

We have additionally shown that universal quantum computation is possible under our

method and generalized the method for multiple error channels. Perhaps this work will

provide a starting point for practically implementable feedback schemes to protect unknown

states. The fact that only two qubits are required for a demonstration should be particularly

appealing.

This work, together with the work from previous chapters, suggests that there are

certain tradeoffs present in all these protocols. In the last three chapters we have seen

three protocols, all of which have different strengths and weaknesses. The protocol given

in Chapter 4 was able to perform inefficiency-robust optimal control, but at the expense

of a large amount of calculational power. The protocol in Chapter 5 retained the property

of robustness with much less post-processing, but at the expense of only working when

the measurement and feedback strengths were much stronger than that of decoherence. In

contrast, the protocol given here requires no post-processing at all, but it cannot correct

arbitrary errors and is not robust to measurement inefficiency. Is there a nice way of

characterizing the tradeoffs for these different protocols? Perhaps if that question could

be answered, one could construct a whole range of intermediate protocols that could be

tailored for the specific requirements of a given physical system.

89

Chapter 7

Cost of quantum fault tolerance

7.1 Towards Pippenger’s conjecture

In Chapters 4-6 we explored the consequences of changing the physical tools available to

perform quantum error correction. We now ask what happens when the physical tools

remain projective measurements and unitary gates, but the structure of the code becomes

different: information is encoded in topological degrees of freedom. Here we shall apply

these toric codes to the problem of calculating the cost of quantum fault tolerance.

We saw in Chapter 1 that Pippenger has conjectured that the quantum blowup to

produce a fault-tolerant circuit is given by

L∗ = O(L log2 L) ,

D∗ = O(D) . (7.1)

In this chapter, we will use topological coding methods to prove the following:

Theorem 1 A quantum circuit of size L and depth D can be accurately simulated by a

circuit of noisy quantum gates, provided the noise is sufficiently weak, with blowup in size

and depth

L∗ = O(L log3+α L) ,

D∗ = O(D · log logL) , (7.2)

for any positive α.

90

As for the classical analysis, in Theorem 1 we are assuming that a quantum gate can be

executed acting on any pair of qubits with a fixed fidelity. Geometry is ignored — we

won’t worry about how the qubits are arranged in space. In the quantum case, we also

assume that an inexhaustible supply of ancilla qubits (with fixed fidelity) is available; since

quantum gates are reversible, ancilla qubits are needed to provide a sink for dumping the

entropy introduced by errors.

An interesting alternative computational model is one in which qubits can be measured,

and classical postprocessing of measurement outcomes that is polylogarithmic in L is as-

sumed to be instantaneous. In this model, the blow up in quantum depth and size can be

further reduced:

Theorem 2 A quantum circuit of size L and depth D can be accurately simulated by a circuit

of noisy quantum gates, measurements, and reliable classical gates. If classical postprocess-

ing of measurement outcomes that is polylogarithmic in L is regarded as instantaneous, then

provided that noise in the quantum gates is sufficiently weak, the quantum blowup in size

and depth is

L∗
qu = O(L log2+β L) ,

D∗
qu = O(D) (7.3)

for any positive β.

Here we prove this result using a topological coding method, improving the power of logL

in the blowup of the size over previous results. Thus in this model, we can come arbitrarily

close to realizing the blowup envisioned by Pippenger.

The chapter is organized as follows: Section 7.2 gives some background on the classical

version of the topological code being used here, and uses formalism from the classical case

to prove an important lemma about failure rates for encoded gates. Section 7.3 uses the

lemma to prove Theorem 1 above, and section 7.4 proves Theorem 2. Section 7.5 concludes.

91

7.2 The probability of failure for an encoded gate

Chapter 2 describes a quantum memory, discussed in more detail in [16], in which qubits are

arranged in a hypercubic lattice on a four-dimensional torus, such that (six) encoded qubits

can be protected from storage errors through the action of noisy local gates. It was a source

of embarrassment in [16] that four dimensions were required to allow all gates to act locally,

but now we are disregarding geometry and need not be apologetic. This four-dimensional

quantum memory based on toric coding [48, 44] is a natural quantum generalization of a

two-dimensional classical memory based on repetition coding, which can be stabilized by

local gates as described by Toom [83]. In this classical system, each bit is encoded in a

repetition code on a two-dimensional torus with side length m: that is, the initial state of

the system is either all zeros or all ones. This state can be preserved under the application

of a simple local cellular automaton transition rule at each (discrete) time step, even in the

presence of noise at each time step, if the amount of noise is small enough. In particular,

let us define a spacetime cell to be in error if its value obtained from the noiseless evolution

(e.g., the value 0 for the encoded bit 0) differs from the actual value (e.g., the cell has value

1 when the encoded bit is 0). Under the action of the transition rule at every time step,

even if the rule is applied with error ε every time, as the size of the torus gets very large,

at arbitrary time the probability of any one cell being in error is still at most a constant

factor times ε.

Such a simple transition rule that preserves the state under noise on a two-dimensional

lattice is given by the following procedure. For a given cell p, draw a string between p and

its neighbor if at the current time step the value of the neighbor is different than p. If p has

string on both its north and east edges, flip the value of p in the next time step (from 0 to

1 or from 1 to 0); otherwise, the value of p will remain the same. This rule is called Toom’s

rule after A. Toom, who was the first to give a proof of the fault-tolerance of this rule [83].

The intuition behind the rule comes from the observation that given a finite (error) droplet

of 1’s in a sea of 0’s (or vice versa, if a 1 is to be protected), this rule will invariably eat

away at the droplet in a time that is roughly proportional to the linear boundary of the

droplet. Note that such a droplet will have its boundary delimited by string.

In the proofs of Theorems 1 and 2, it will be important to show that given qubits

92

v

Figure 7.1: Here is shown a possible error path for the cell v having been in error. White

cells are in Noise, while grey circles are in error but not in Noise.

encoded in the four-dimensional topological coding method in lattices of linear size s, the

probability of error in an encoded gate goes like exp[−O(s)]. In order to do so, we shall

borrow formalism from a proof of the fault-tolerance of Toom’s rule due to Gacs [30].

7.2.1 An overview of Gacs’ proof of the fault-tolerance of Toom’s rule

The basic idea of Ref. [30] is the following: given a particular cell, in order to find the

probability that it is in error, we must add up all the probabilities corresponding to the

different ways the cell could have come to be in error. Let us define Noise as the set of cells

in spacetime that did not obey the transition rule at that time step. Then one way the

cell could have been in error is to simply have been in Noise at the current time step, with

probability ε. Another possible route could have been two neighboring cells in Noise in the

preceding time step that evolved correctly (obeyed the transition rule) in the current time

step to result in the current erroneous cell, with probability ε2. A more complicated route

is shown in Fig. 7.1.

Counting all of these possibilities is the main subject of [30]; to do so, Gacs associates

each of these error “paths” in spacetime with what he calls an Explanation Tree. Cells in

error are the nodes of these Explanation Trees. A given node is connected by an edge only

to cells that are adjacent to it in space and/or time. Edges connecting cells adjacent in

space but with the same time coordinate will be called forks, and edges connecting cells

with different time coordinates will be called arrows. These trees are constructed in such

a way that the number of possible “Explanations” with n points in Noise is no more than

exponential in n. This construction is made possible with two main lemmas from [30]:

Explanation Tree Lemma: Let u be a cell in error but outside Noise. Then there is an

Explanation Tree Expl rooted at u such that if n nodes of Expl belong to Noise then the

number of edges of Expl is at most 4n− 4.

93

The second lemma is useful because the construction of the above trees implies a max-

imum node degree:

Tree Counting Lemma: In a graph of maximum node degree r, the number of weighted1

subtrees rooted at a given node and having k edges is 2r · (2r2)k.

Since the probability of n points being in Noise goes as εn, adding up all the probabilities

associated with those Explanation Trees results in a converging geometric series, as long as

ε is below a particular threshold value. Explicitly, for some cell v,

Prob(v in error) ≤
∞
∑

n=m

|En|εn

≤ 2r

16r8

∞
∑

n=1

(16r8ε)n =
2rε

1 − 16r8ε
. (7.4)

where |En| denotes the number of trees with n edges.

The above is true for a system acting as a quantum memory that is on an infinite lattice.

Changing the proof to accomodate finite-size lattices is simple: replacing the plane by the

torus causes an error no worse than the probability that the Explanation Tree has more

nodes than the linear size of the torus, which is exponentially small. Moreover, incorporating

computation in these models is fairly simple. In the classical case, computation involving two

encoded bits is done by encoding each bit in a two-dimensional lattice and then performing

the computation between each pair of corresponding bits. This complication does nothing

more to the proof by Gacs than add another dimension to the formalism and add to the

maximum degree r of each node. Gacs’ theorem becomes the following: For error rate ε

below a certain threshold value and finite lattice size m,

Prob(v in error) ≤ 24tm2N(2 · (144)ε1/12)m + 24ε, (7.5)

whereN is the size of the computational register and t is the time taken to do the calculation.

The second term comes from the analysis in the previous paragraphs, and the first term is

the correction for finite-size lattices.

1The term “weighted” refers to an extra bit associated with each node; it is a technicality of the proof that

will not be further discussed here, as it carries over without change in the toric code case. For elaboration

see [30].

94

The proof of the Tree Counting Lemma is fairly straightforward and simply involves

counting the number of ways the tree can be formed. The Explanation Tree Lemma,

however, is rather more convoluted in its construction of Explanation Trees.

The Explanation Tree in spacetime is built by considering “excuses” for each point in

error. That is, if a spacetime cell P = (a, b, t) is in error but not in Noise, there must have

been at least two points in the preceding time step that were in error and that resulted in

the cell P being in error. In particular, at least two out of the three elements of the set

{(a, b, t− 1), (a, b+ 1, t− 1), (a+ 1, b, t− 1) must be in error. Choose two elements that are

in error, and denote this two-element set as Excuse(P). (This is, of course, not necessarily

a unique choice, but this turns out not to matter.) A preliminary investigation graph for a

particular error path is constructed by connecting each cell P in error (if it is not in Noise)

to the cells in Excuse(P) by arrows, and for each P connecting the two cells in Excuse(P)

to each other by forks. Fig. 7.2 shows a sample investigation graph.

How large the graphs are in space is quantified by what Gacs calls the span and size of

the tree. The span is computed by defining the following functionals: for v = (x, y, t),

L1(v) = −x

L2(v) = −y

L3(v) = x+ y. (7.6)

A spanned set (S, v1, v2, v3) is a set of cells S together with an ordered triplet of cells (or

poles) (v1, v2, v3), vi ∈ S, and the span of a spanned set is simply

Span(S, v1, v2, v3) =
3
∑

i=1

Li(vi). (7.7)

Note that the span of a set consisting of a single point v (which forces the poles to be

(v, v, v)) is zero.

One special case of the span of (S, v1, v2, v3) is that in which the vi ∈ S are picked such

that Li(vi) is maximal over the set S for all i. A moment’s thought will convince you that

95

t=0

t=-5

t

p q

v

Figure 7.2: A sample investigation graph for the evolution shown in Fig. 7.1. Two droplets

at t = −5 evolve to become the a single cell, v, in error at t = 0. Nodes are cells in error,

and adjacent nodes are connected by edges. Grey circles are cells in error but not in Noise,

and white circles are cells in Noise. Solid lines are arrows, and dotted lines are forks. Earlier

times are higher. Cells p and q are in different Histories at t = −5 (see Fig. 7.4).

96

Figure 7.3: The size of the set S, where S is four cells arranged as shown, is 2. The isoceles

triangle shown has a short side of length 3.

given a set S of cells in an “error droplet” at a particular time, the quantity

Size(S) =
3
∑

i=1

max
v∈S

Li(v) (7.8)

corresponds to one less than the length of the shortest side of the smallest isoceles right

triangle (with right angle at the lower left of the triangle) that covers the set S . See Fig.

7.3. Additionally, given such an error droplet, applying Toom’s rule perfectly will result in

the next time step in an error droplet with size that is one less than it was previously. Thus

given a set S, Size(∪v∈SExcuse(v)) = Size(S) + 1. This is a general principle in regard to

spanned sets: if S = (S, v1, v2, v3) is a spanned set and the vi are not in Noise, the spanned

set S′ = (∪v∈SExcuse(v), Excuse1(v1), Excuse2(v2), Excuse3(v3)) has the property that

Span(S′) = Span(S) + 1. The span, then, is a way of quantifying the observation that

applying Toom’s rule shrinks an error droplet.

The investigation graph is pruned through a process Gacs calls refinement. The basic

idea behind the refinement procedure is that it retains all the important structural behavior

both about the points in Noise necessary to the Explanation as well as about how they

propagate (encoded in the concept of the span), while removing any extraneous edges or

nodes of the tree.

In order to retain this structural information, more formalism is needed to address the

case of two separated droplets coalescing into one droplet at a later time, as in Fig. 7.2.

This situation leads to the concept of the spanned History : given a spacetime cell p with

time coordinate T , consider the graph formed by deleting all forks and all parts of the

investigation graph with time coordinate greater than T . The connected part of the resulting

graph containing p isHistory(p), and the time coordinate of the History, Time(History(p)),

is defined to be T . A spanned History is an object (History(p), p1, p2, p3), where p1, p2, p3

97

History(p) History(q)

History(r)
u1 p

k1 k2, k3

u3 u2

q

Figure 7.4: A spanned History K (one of the two Histories associated with t = −4 in

the investigation graph in Fig. 7.2; the other is the single point at the right) with poles

(u1, u2, u3) and with all sub-Histories drawn. Here we can say M1 = History(p),M2 =

History(r) = r,M3 = History(q). White circles denote Histories, including the one-cell

Histories that are points in Noise. p and u1 refer to the same cell, as do the pair k2, k3 and

the pair q, u2.

are three (not necessarily distinct) poles contained in History(p) with time coordinate T .

These poles, again, provide a way to keep track of the spatial size of the Histories. Fig.

7.2 gives an investigation graph in which the points p and q are in different Histories, and

Fig. 7.4 gives a subset of the graph on which all Histories are marked.

The refinement operation proceeds as follows. We start with a node v in error but not

in Noise; this node has a nontrivial History. We pick the three poles associated with this

History to be (v, v, v). We will proceed recursively by considering each spanned History

at each time T , moving backwards in time. Given a particular spanned History K with

poles that we will denote as k1, k2, k3, consider all the distinct (sub-)Histories Mj that can

be formed with Time(Mj) = Time(K) − 1 = T − 1. (These sub-Histories Mj will all be

subsets of K and will partition the cells in K with time coordinate less than T . See Fig.

7.4). Delete any existing forks with time coordinate T − 1 as well as arrows connecting

cells with time coordinate T − 1 to cells with time coordinate T . Now define the points

ui = Excusei(ki). (Note that
∑

i Li(ui) = Span(K, k1, k2, k3)+1, as was discussed earlier.)

The only edges added back in are the (at most) three arrows connecting ki to ui, and forks

connecting separate histories at time T − 1 together. Gacs has proved a “Stokes” theorem

98

that says, when applied to this situation, that we can discard extraneous sub-Histories

in a way such that the remaining sub-Histories Mj′ (now indexed by j′ instead of j to

account for the fact that there are fewer of them) can be turned into spanned Histories by

associating poles to each of them. The ui give some of the poles; the others are given by the

endpoints of the forks connecting the Histories together. Furthermore, the theorem states,

this construction has the property that
∑

j′ span(Mj′)+number of forks =
∑

i Li(ui). This

means that given this construction, we can consistently define the span of the tree at a

given time T − 1 to be the span of all the histories M such that Time(M) = T − 1 plus

the number of forks connecting histories together in the tree. Also, since we saw that
∑

i Li(ui) = Span(K, k1, k2, k3) + 1, one step of the refinement has the effect of adding at

most three arrows and raising the span by one.

An example of this refinement procedure is given in Fig. 7.4. Here, poles p1, p2, p3 and

q1, q2, q3 for History(p) and History(q) respectively can be chosen from the ui and the fork

endpoints in such a way that Span(History(p)) = 1 and Span(History(q)) = 1. Note that

there will be two forks drawn in this example to connect History(p) to r and History(q)

to r; then

Span(K, k1, k2, k3) + 1 = 3 + 1

= Span(History(p) ∪History(q) ∪History(r), u1, u2, u3)

= Span(History(p)) + Span(History(q)) + Span(History(r))

+# forks

= 1 + 1 + 0 + 2 (7.9)

It is possible to prove via inductive reasoning that after carrying out this refinement

procedure for each spanned History at each time, the resulting Explanation Tree is con-

nected. When the tree has been wholly refined the only Histories left will be single points

in Noise with span 0, so the number of forks is equal to the span, which is equal to the total

number of points in Noise minus one (because any extra forks would have been removed

during refinement). Fig. 7.5 shows the Explanation Tree resulting from the investigation

graph given in Fig. 7.2.

This removal of extraneous edges and nodes is what allows the tree size to remain small

99

Figure 7.5: The Explanation Tree associated with the investigation graph in Fig. 7.2. White

circles denote points in Noise, and grey points denote points in error but not in Noise. Note

that the number of horizontal edges is one less than the number of points in Noise.

100

v

t=-4

Figure 7.6: Another error path that has the same Explanation Tree as that in Fig. 7.1.

and is intimately tied to the concepts of the span and size, which are extremely important

in Gacs’ arguments. In his construction of the explanation trees in [30], as we have seen,

he only considers trees in which the number of cells in Noise (k) is almost the same as the

span of the explanation tree (k − 1).

The subtleties of discarding extraneous trees are discarded may be better understood

by means of an example. Let us consider the error path shown in Fig. 7.6. This path leads

to v being in error; however, there are many more cells in Noise in this path than in that

shown in Fig. 7.1. However, when the Explanation Tree for this error path is drawn, it

looks (or can look; there is some ambiguity in making the tree) exactly like the Explanation

Tree given in Fig. 7.5. Essentially, the intuition is that Toom’s rule does not care about

any of the cells in that triangle except the cells shown in Fig. 7.1.

Even though configurations such as Fig. 7.6 are not explicitly counted, the probability

counting actually includes all explanations. Gacs is counting sets of the form Fig. 7.1 as

Explanations with the important stipulation that one does not know whether or not the

interior cells at e.g. t = −4 are in Noise or not (hence the sum in Eq. (7.4) has a term εn

instead of, say, εn(1 − ε)m). Therefore, Gacs is actually also counting sets of the form Fig.

7.6. In fact, any given cell in the interior of the triangle at t = −4 in Fig. 7.6 could be

in Noise (with probability ε) or not (with probability 1 − ε). Since those two probabilities

sum to 1, Gacs needs not count Fig. 7.6 separately. In general, the intuition behind Gacs’

argument tells us that given a set with a certain Size, we require a cell in Noise to have

given rise to each element of the Size, and any other cells can be ignored.

The preceding procedure, of course, is only a heuristic outline. Gacs’ description is

rigorous, and the reader who would like to understand the details of the construction is

referred to [30].

101

7.2.2 Suppression of error droplets

Before applying the formalism to the four-dimensional quantum case, let us consider a

variant of Gacs’ analysis: Since the toric code fails when large enough error droplets are

formed, we wish to compute the probability that a droplet of Size m (under the definition of

Size given above) is present at a given time. In particular, we will show that the probability

of getting a droplet error in a two-dimensional CA system that is subject to Toom’s rule at

every time step is suppressed exponentially by the Size of the droplet, that is, roughly by

the length of the boundary of the droplet.

The crucial idea of the proof is that the droplet itself can be regarded as the Explanation

for a single-cell error with no additional Noise. The intuition behind this claim is the simple

observation that after enough applications of Toom’s rule, a connected droplet will evolve

into a single cell; furthermore, at all time steps until then the evolution of the droplet will

result in another connected droplet. (Formally, the statement is the following: Take the

investigation graph generated by applying Toom’s rule noiselessly to the droplet until it

becomes a single cell. Delete all forks. For all t < 0, deleting all areas connecting cells

at all times t′ < t should result in a graph that is a single History.) We will call the tree

representing the decay of the droplet to a single cell the “original tree” and define the times

0, T by saying that the tree encompasses time 0 to time T . The idea is that we can construct

a Gacs-like tree by imagining a model in which we turn off the noise after time 0.

Now we consider an explanation tree that is a concatenation of the “Original tree” and

some Explanation of the droplet. We will assume that this Explanation encompasses time

T to time −T ′; it is, of course, also a valid Explanation Tree for the single-cell root of the

original tree. We will call this tree the “whole tree.” Now consider deleting all parts of the

whole tree between times 1 to T , so that the remaining parts encompass times 0 to −T ′.

We will call this construction the “truncated tree.” The goal will be to sum over all the

truncated trees, keeping the original tree fixed. In this way all Explanations of the droplet

will be considered. In Fig. 7.7 and Fig. 7.8, examples of these terms are shown for a droplet

consisting of a four-by-four triangle; the error path shown is the same as that given in Fig.

7.6.

The Tree Counting Lemma still holds here: until time 0 there has been only one history,

and the construction in Gacs’ paper ensures that histories are always connected to one

102

v

t=0

Truncated region Original region

Whole region

-T’=-3 T=4

Figure 7.7: An error path for a droplet at t = 0, analogous to that given for a single cell in

Fig. 7.6. Note that the time labels are different from those in Fig. 7.6.

Truncated tree -T’ = -3

t = 0

T = 4

Original tree

Whole tree

Figure 7.8: The whole, original, and truncated trees for the error path in Fig. 7.7.

103

another. Then it follows that the truncated tree will still be connected, and his Tree

Counting Lemma holds for any connected graph.

Let κ be the number of cells in Noise and γ be the number of edges of the whole

tree. Then we know by Gacs’ construction that γ ≤ 4(κ − 1). We also know, using Gacs’

construction, that if the Original tree has size s, the number of edges of the Original tree

is at least a ≥ s, as at least one edge is introduced every time the span is increased by 1.

Now let κ, g′ be the number of cells in Noise and edges of the truncated tree, respectively.

(Since the whole tree is constructed such that there are no cells in Noise before time 0, the

number of cells in Noise is the same for the whole and truncated trees.) Then

g′ = γ − a (7.10)

≤ 4(κ− 1) − s. (7.11)

Again,

Prob(droplet of size s) ≤
∞
∑

n=m

|En|εn, (7.12)

where |En| is the set of possible explanation trees with n cells in Noise, and m is the smallest

number of errors that could result in the droplet. (Note that m = 1 in Gacs.)

If the maximum node degree is r (r = 12 for 2 dimensions) and the error rate is less

than a certain threshold, the Tree Counting Lemma then implies

|En| ≤ 2r(2r2)4n−4, (7.13)

so

Prob(droplet) ≤ (2r2)−s 2r

16r8

∞
∑

n=m

(16r8ε)n =
(16r8ε)m

8r7(1 − 16r8ε)
(2r2)−s. (7.14)

The trick now is to figure out m. One might believe that m would be equal to the

area of the droplet, but this is not correct. In fact it is easy to demonstrate an example in

which 4s cells in Noise suffice to build a connected droplet of boundary s (and thus area

∼ s2) [62]. Careful reading of Gacs’ arguments shows that m must be at least s. Here is

perhaps a more intuitive way of seeing that: For a droplet with boundary s, consider an

arbitrary cell on the North side of such a droplet. Either this cell can be in error through

104

itself being in Noise, or else by evolution from other errors. Now, the second choice is not

valid: For a cell to be in error by evolution, without having started out in Noise, both its

north and east neighbors must be in error. It is possible for the east cell to have become

in error in previous time steps, but since we are at the north boundary of the droplet, by

definition there is no way that something “more northward” could have become in error

without another independent error. The same analysis holds for the east side of the droplet.

Then we have

Prob(droplet of size s) ≤ 1

8r7(1 − 16r8ε)(2r2)s
(16r8ε)s. (7.15)

We can see that in two dimensions, the suppression of error droplets goes as exp[−O(s)].

Similarly, in d dimensions, where cells are centered in d-dimensional solids with a (d−1)-

dimensional boundary, we can define a similar rule. Define a positive direction for each axis.

For a given d-dimensional solid, there are d faces that have more positive coordinates than

the other d faces. Define string as before to be placed on faces that are shared by two cells

with differing values. If there is string on all plus faces, flip the value of the cell; otherwise

do nothing to that cell. The above argument for finding m generalizes to d dimensions.

In the d-dimensional case, the probability of obtaining a droplet with boundary size sd−1

becomes

Prob(droplet(sd−1, d)) ≤ 1

8r7(1 − 16r8ε)(2r2)s
(16r8ε)sd−1

. (7.16)

7.2.3 The quantum problem: two-dimensional error droplets in four di-

mensions

Here we will show that much of Gacs’ formalism is applicable to the quantum problem. In

some ways, of course, the quantum (4D) version is more complicated, and in those cases we

will show that the probability counting can still be done in a similar way, by constructing

correspondences to the two-dimensional problem.

We now consider a system where spins reside on two-dimensional plaquettes in a four-

dimensional lattice. Given some edge, we will measure the product of X’s on the spins

residing on all six plaquettes which share that edge. We say there is “string” on that edge

if that product is equal to −1. Errors on some connected set of plaquettes then manifest

105

as a closed loop of string. The Z operators work the same way on the dual lattice, but

here we will restrict ourselves to considering the X operators for simplicity. This “string”

description is equivalent to the description given before for the two-dimensional classical

lattice, where the string resided on edges bordering two plaquettes with different values.

We now need a Toom-like deterministic rule to get rid of such loops. We propose the

following simple rule: Define the plus and minus edges as in the previous section. If there

is string on both of the plus sides of the plaquette, then flip the spin on the plaquette. In

two dimensions this rule reduces to Toom’s rule.

Now we make the appropriate changes in the Gacs definitions. The L functional becomes

L1(v) = −x

L2(v) = −y

L3(v) = −z

L4(v) = −w

L5(v) = x+ y + z + w, (7.17)

where now v denotes a plaquette that is parametrized by the coordinates of its center. We

use five poles; given this redefinition, it is fairly easy to see that Gacs’ “Stokes” theorem

(one of the ways in which he gets rid of extraneous nodes) still holds.

Let us denote a similar functional, Lvertex, that acts on vertices instead of on pla-

quettes. This new definition allows us to see see that any loop of string resulting from

a “droplet” of flipped plaquettes eventually disappears through application of a noiseless

Toom rule. Characterize the loop of string S by the two numbers maxv∈S L
vertex
5 (v) and

∑4
i=1 minv∈S(−Lvertex

i (v)). The rule will always act to decrease maxv∈S L5(v) by 1 in each

time step, while
∑4

i=1 minv∈S(−Lvertex
i (v)) must remain constant.

Excuse(v) is now at least two members of the 7-element set given by the original pla-

quette v and the six plaquettes that share an edge e containing string with v such that e is

a minus edge of that plaquette and a plus edge of v. Given a set of cells S that are in error

but not in Noise, the set ∪v∈SExcuses(v) will always have size at least one greater than

Size(S) (where we take the distance between the center of one plaquette and a neighboring

one in the same plane to be two). Then all the other definitions follow from the ones I have

106

already given (with a different maximum node degree, of course). Many of Gacs’ arguments

follow directly; however, there are several issues that must be addressed.

One potential problem with moving the two-dimensional analysis to four dimensions

comes from the fact that sometimes a droplet does not result in a single plaquette after many

applications of the 4-D Toom’s rule. In fact, one can show a three-dimensional example in

which a connected droplet, after a suitable number of applications of the modified Toom’s

rule, results in a number of disconnected droplets that is quadratic in the Size of the droplet.

However, this is a technical problem, and the solution involves tedious manipulation of the

existing formalism rather than lending any additional insight; as such, a modified counting

argument fixing this problem is given in the Appendix.

A more fundamental potential problem is the fact that there are many different “error

surfaces” that give rise to the same error loop. For a given loop of string at a particular

time, for example, we can consider a variety of closed two-dimensional surface such that

the loop divides the surface into two pieces. Either of these pieces, when considered as a

set of plaquettes in Noise, could have produced that loop of string. We will call the set

of plaquettes arrived at by using the Excuses shown above an “obedient” explanation, and

any other Explanation possibly using a closed two-dimensional surface complement as a

“disobedient” explanation.

We need to show that every disobedient explanation has a corresponding obedient ex-

planation, and that the correspondence is such that the counting arguments retain their

validity. The form of this obedient explanation is found by taking the set of loops of string

corresponding to the error path in spacetime and considering their evolution by Toom’s

rule, keeping track of the spacetime coordinates of all the plaquettes that would be flipped

in such a process. Fig. 7.9 gives an example of building an obedient Explanation.

The explicit construction of the obedient Explanation is as follows:

1. Starting with the earliest time step:

(a) Draw all the cells (in space) in the Explanation from the previous time steps

(b) Perform Toom’s rule on the loop of string at the current time step and keep track

of which cells Toom’s rule flips. Draw in those cells.

(c) Erase any cell that would have string on both its plus edges if it were erased.

107

(a) (b)

Figure 7.9: (a) shows a set of plaquettes in Noise leading to a disobedient explanation;

(b) illustrates a set of plaquettes in Noise leading to a corresponding obedient explanation

found by keeping track of which plaquettes flipped through application of Toom’s rule.

(d) Erase any cell that has its center more than a distance of one away from the

loop. These cells will represent the points in Noise in the successive time step.

2. Repeat for all time steps in the Explanation Tree.

3. Get rid of extraneous nodes (and edges) by performing the Gacs refinement operation

on the resulting investigation graph.

By construction, plaquettes in Noise are only generated in the obedient Explanation

in the same time steps in which there are cells in Noise in the disobedient Explanation.

Steps 1c and 1d guarantee that the only cells that remain in the obedient explanation at

a given time step share at least one edge with the loop of string at that time step. As a

consequence, cells in Noise in the obedient explanation share at least one edge with at least

one cell in Noise in the disobedient explanation.

The number of disobedient explanations associated with a given obedient one is thus

given by the number of ways that cells in Noise arranged in a disobedient way could mimic

the effect of the obedient explanation. Since each additional cell in Noise adds at most three

links to the error loop of string and extends the span by at least one, the problem reduces to

finding the ways that a disobedient set of cells could give rise to those links. The disobedient

error surface could hypothetically be quite large; however, as we saw in 7.2.1, Toom’s rule

only cares about the string and not about the parts of the surface that do not contribute to

the string. Therefore, we only have to consider the cells adjacent to the relevant links. In

d dimensions (with (d/2)-dimensional plaquettes), the number of plaquettes that shares an

108

edge with a given plaquette is d−1, and the number of edges of a plaquette is d, so the total

number of disobedient explanations needed to be counted for a given obedient explanation

of span s can be at most ((d− 1) · 2(d/2 − 1))s+1.

It could be possible that the disobedient Explanation takes fewer points in Noise than

the obedient one. For example, in Fig. 7.9(b) there are more points in Noise than in Fig.

7.9(a). It is easy to see that even though the disobedient explanation might contain fewer

points in Noise than the obedient one, the number of points in Noise for the disobedient

explanation must still be linearly related to that of the obedient one. Given a loop of

size s, there are guaranteed to be at least s links in the loops comprising the Explanation

that must be shared by any equivalent explanation, that is, any explanation must have the

property that each of these s links must be the border of some plaquette in the explanation.

Since a plaquette has three sides that could be used as this kind of border, the number

of plaquettes used in a disobedient explanation can be no less than s/3. For d dimensions

(with d/2-dimensional plaquettes) we can then see that the number of plaquettes used in a

disobedient explanation can be no less than s/(d− 1).

In this case, the effect on the counting is that when counting trees with s points in

Noise, one must count not only the obedient explanations with s points in Noise, but also

those with s + 1 points, s + 2,... and all the way up to s(d − 1) points in Noise; in this

way we count all the disobedient explanations with s points in Noise but whose obedient

explanations have more than s points in Noise.

If we define q = 16r8(d− 1)(d− 2), then the probability of obtaining a droplet of size s

becomes

Prob(droplet) ≤ (2r2)−s 2r

16r8

∞
∑

n=s

(

n(d−1)
∑

j=n

qj)εn

= (2r2)−s 2r

16r8

∞
∑

n=s

1

q − 1
(qn(d−1)+1 − qn)εn

< (2r2)−s 1

8r7
q

q − 1

(qd−1ε)s

1 − qd−1ε

< (2r2)−s 1

8r7
2q

q − 1
(qd−1ε)s

≡ (2r2)−sQ(qd−1ε)s. (7.18)

109

Finding r for d-dimensional plaquettes in 2d dimensions is simply done by counting the

number of edges possibly emanating from a particular node; it turns out to be

r < 4(d− 1)2
d(d/2 + 1)

4
∼ d4

2
. (7.19)

Finally, we have showed all the above for a system acting as a quantum memory and

that is on an infinite lattice. As before, incorporating computation and finite-size lattices

is not hard. The computation is carried out via transversal implementation of quantum

gates, and the proof carries over directly.

We have shown that the probability of loops growing too large is very small. However,

one problem we have not yet adequately addressed is the following: what if many errors

occur in a single time step, so that a nontrivial surface occurs without any large loop of

string ever appearing? This probability should be extremely small, as such a nontrivial

surface involves a number of plaquettes on the order of s2 for a two-dimensional torus.

We need to be able to say the following: Let us assume at time t that there are no globs

(collections of loops of string) so large that the probability of them appearing is less than

Q(q4(d−1)ε)s/16, and let us also assume that correcting all errors leads to a homologically

trivial surface. Let us further assume that at time t+ 1 there are no globs with probability

less than Q(q4(d−1)ε)s/16, as before. Then the probability that in the next time step so

many errors occur that doing the correction leads to a homologically nontrivial surface is

roughly proportional to εs
2/32.

Such a nontrivial surface is given by a two-dimensional surface that wraps around the

torus, i.e., is roughly of size s by s. Let us consider a two-dimensional (flat for simplicity)

subsurface S of a nontrivial surface, where S has side length L = s/4. On this surface, there

will be some loops of string. Given such a loop of string l, there are many surfaces with

boundary given by this loop of string. Let us for this argument consider the minimal-area

surface with boundary l; if that minimal surface is not in S, replace whatever plaquettes in

S have the boundary l with the minimal surface.

The first case is that in which more than 1/4 of the plaquettes in S are in these minimal

surfaces. Then we can add fewer than 3L/4 more cells in Noise to form some droplet of size

L. This means that the probability of such a configuration (the “glob”) can be computed

110

by considering it as a droplet of size L and then dividing out the probability that the extra

3L/4 cells were in Noise, which is just ε3L/4. That is,

Prob(first case) ≤ Q
(qd−1ε)L

ε3L/4

= Q(q4(d−1)ε)s/16. (7.20)

The second case occurs if fewer than 1/4 of the plaquettes in S are contained in these

minimal surfaces. Now we have to bound the probability that many plaquettes flip, resulting

in small droplets that are not very dense, that nevertheless will be corrected in a way that

leads to a nontrivial surface. (Again, if there are large droplets, or even many small droplets

that are dense enough that their minimal surfaces cover L/4 of the area of S, the probability

is bounded by the above.) That is, at least 3L/4 of the surface must have been flipped (since

the minimal surfaces of the droplets are allowed to cover L/4 of the surface). This gives

that the number of plaquettes that need to be flipped for this to happen is at least L2/2,

so the probability this happens (for a given surface and given configuration at time t + 1)

is just εL
2/2 = εs

2/32.

Finally, to finish the second case we must be sure that we are counting the number

of such surfaces and the number of configurations possible at time t + 1. The number

of ending configurations cannot be more than 2L2
. Moreover, counting surfaces is a well-

known problem. A variant of the technique given by (e.g.) Whittington and Soteros [91]

(who themselved used techniques due to Klarner [49]) (see Appendix B) yields

an ≤ 2d(d+1)n (7.21)

for the number of surfaces an able to be made from n d/2-dimensional plaquettes in d

dimensions. Thus the probability of the second case occuring is just

Prob(second case) = (2d(d+1)+1ε1/32)s2
(7.22)

which is extremely small as s becomes large.

We know that uncorrectable errors for the quantum toric code with linear size s in

111

dimension d correspond to d/2-dimensional droplets that have d/2−1-dimensional boundary

that is larger than sd/2−1 (and are thus susceptible to being corrected in an erroneous way

resulting in a homologially nontrivial loop). We have then shown, for a large torus of size

s in dimension d,

prob(encoded gate error(s, d)) ≤ prob(droplet of size > s/16) + (2d(d+1)+1ε1/32)s2

< 2

∞
∑

m=s/16

q

8r7(q − 1)(1 − qd−1ε)

(qd−1ε)md/2−1

(2r2)m

=
q(qd−1ε1/16)sd/2−1

4r7(q − 1)(1 − qd−1ε)(1 − qd−1ε
2r2)

. (7.23)

We can now state the chief lemma of this section:

Lemma: For a d-dimensional toric code with d/2-dimensional error chains and linear di-

mension s, when the combined error probability of each quantum gate and associated local

correction rule ε is fixed and sufficiently small, the probability of error per encoded gate is

exp[−O(sd/2−1)].

7.3 Quantum blowup without fast classical computation

The extension of this 4-torus code to the d-torus with d > 4 will be used in our proof of

Theorem 1. For clarity, we will first discuss the d = 4 case, and then the extension to d > 4

will be obvious.

So consider a fault-tolerant circuit that processes the protected qubits of the 4-torus

code. After implementation of each quantum gate, the (local) error recovery circuit is

executed a constant number of times. As shown in Sec. 7.2, if the “error probability”

ε of the quantum gates is fixed and sufficiently small, then the probability of error per

encoded gate is exp [−O(s)] where s is the linear size of the lattice. In our simulation

of a size L circuit with error probability δ, this failure rate per gate must be O(δ/L), or

s = O(log(L/δ)/ log(1/ε)). The block size of the code is O(s4), so that

block size = O(log4 L) , (7.24)

with ε and δ fixed.

112

For the d-torus code the block size is of order sd, the defects in the code block are

(d/2 − 1)-dimensional, and hence the error rate is exp
[

−O(sd/2−1)
]

. Thus to achieve a

failure probability per gate of order 1/L, we chose

block size = O(logγ L) , γ =
2

1 − 2/d
; (7.25)

the power γ approaches 2 from above as d→ ∞.

Sec. IX of [16] describes the implementation of fault-tolerant encoded gates for the 2-

torus code of [48, 44]. Similar considerations apply to the 4-torus code or the d-torus code.

The quantum gates in the normalizer group [35] (those whose action by conjugation takes

tensor products of Pauli matrices to tensor products of Pauli matrices) can be implemented

transversally producing a constant blowup in depth and a blowup in size of order the block

size of the code. (A further slowdown in the implementation of the Hadamard gate is

discussed in [16]. This additional slowdown arises if we insist on using local gates, since

the transversal Hadamard gate produces a rearrangement of the qubits in the code block.

However, this slowdown does not arise if nonlocal gates are allowed.)

To complete a universal set of quantum gates, the quantum software strategy is invoked

[77, 37]. We prepare offline a suitable encoded ancilla state; then (transversal) encoded

normalizer gates are performed, and encoded blocks are measured. Conditioned on the

measurement outcomes, further normalizer gates are applied. Measurements are not really

necessary, though, since we can replace operations conditioned on classical measurement

outcomes with conditional quantum gates, at a constant cost in both size and depth.

Nevertheless, we must consider the complexity of the measurement of an encoded block,

and we will argue that the slowdown due to this measurement dominates the depth of

our simulation (contributing the log logL factor in D∗ appearing in eq. (7.2)). The offline

preparation of quantum software does not affect the depth, but we must consider whether

the software preparation dominates the size.

7.3.1 Fault-tolerant measurement

First let’s consider how we would destructively measure an encoded qubit if we could mea-

sure all the qubits in the (4-torus) code block, and then process the measurement outcomes

113

with a flawless classical computer.

If there were no errors in the block, the outcome of the encoded measurement could

be determined by measuring the parity of the s2 qubits lying on a minimal homologically

nontrivial closed surface. But the parity cannot be accurately determined until we remove

all the errors. A fault-tolerant procedure is to first measure all of the O(s4) qubits in the

code block. Larger error droplets are destroyed by a coarse-graining procedure which works

as follows:

We apply Toom’s rule. Now, we partition the d-dimensional lattice into d-dimensional

cubes of edge length 2 (volume 2d). Consider one of these coarse-grained cubes. It will

contain various d/2-dimensional plaquettes of area 2d/2, both in the interior and on the

surface of the coarse-grained cube. We get rid of all the (d/2 − 1)-dimensional string in

the interior of all of these d/2-dimensional coarse-grained plaquettes; we then replace each

d-dimensional block by the value given by the cells in the plaquette. (Since there is no string

in the interior of these coarse-grained plaquettes, the value of all cells in the coarse-grained

plaquette is the same.) After log s repetitions of this coarse-graining procedure, applying

Toom’s rule will get rid of droplets that are of size on the order of s.

The only thing left to check is that it is possible to do the string removal from the

plaquettes as described above, which is not immediately obvious. Here is a recursive proce-

dure for doing so: For each d-dimensional coarse-hypercube with string running through it,

construct a string on the exterior of the coarse-hypercube that connects with the interior

string to make a (d/2 − 1)-dimensional hyperloop. This takes no more than d operations.

Then, do a “baby” Toom’s rule on the new hyperloop. Since the new hyperloop is contained

within the coarse-hypercube, Toom’s rule requires no more than 4d repetitions to eat away

at the loop. Now, repeat the procedure for the (d − 1)-dimensional hypercubes that make

up the boundary of the d-dimensional hypercube, and so on until we get to plaquettes of

dimension d/2. The cost in depth for this step alone is therefore at most

depth(string removal) ≤ 5(d+ d/2)d/2

2
=

15

4
d2. (7.26)

The total cost in depth for this procedure is of order O(d2 log s) = O(log s).

For smaller errors, it is sufficient to apply the robust classical version of our local “an-

114

nealing” algorithm a constant number of times. With probability of success exponentially

close to one, all of the errors in the classical measured bits are removed. (Long strings that

take a long time to anneal and cannot be quickly taken care of by the above proedure are

exponentially rare, as we saw in Sec. 7.2.) Finally we measure the parity of the bits on a

homologically nontrivial surface with a classical circuit of depth log s2 = O(log logL).

Although we don’t have a classical computer to process the measurement outcomes, we

can simulate the classical circuit with a quantum circuit. Furthermore, we can use Von

Neumann’s fault-tolerant simulation to make this classical circuit robust.

There is a problem: Von Neumann’s circuit processes classical information that is al-

ready encoded. To execute it, we must first fanout each of the O(s4) classical bits many

times. Because we will want to compute the parity with probability of error e−O(s), we’ll

want to use a length s repetition code, so that the fanout requires depth log s = O(log logL).

However, a naive fanout will propagate errors badly — we need to achieve the fanout fault-

tolerantly. This is possible, if we apply a two-dimensional classical Toom rule a constant

number of times between fanouts, as we will see in 7.3.2. Then we can encode each measured

classical bit using the repetition code with a probability of an encoding error of order ε,

and proceed to anneal all the errors with the (now robust) four-dimensional local annealing

algorithm. Fanout and annealing together require depth O(log s) and size O(s5) (since each

of s4 bits is represented by a length s block). Then the parity of s2 encoded bits is computed

in depth O(log s) and size O(s5).

After the encoded measurement, we need to apply an encoded normalizer gate condi-

tioned on the outcome. To do that, we first apply further fanouts to the measurement out-

come, extending the repetition code from length s to length s4 (in depth O(log s4) = O(log s)

and size O(s4)), and then we apply the conditional operation transversally (in constant

depth and size O(s4)), with each gate acting on a qubit of the 4-torus block conditioned on

the value of the corresponding bit in the classical repetition code block.

Altogether, for the 4-torus code our fault-tolerant measurement circuit has size O(log5 L)

and depth O(log logL). Therefore, implementing fault-tolerant gates that consume quan-

tum software produces blowups in size and depth by these factors.

If we use the d-torus code, the blowup in depth is still a factor O(log logL), but the

blowup in size depends on d. To achieve an error probability per measurement exp[O(sd/2−1)],

115

we choose the length of the classical repetition code to be O(sd/2−1). Apart from the blowup

eq. (7.25) in size of the toric block, the classical repetition code produces a further blowup

by a factor O(logL). Altogether, the blowup in the size of the measurement circuit is

O(logσ L) , σ = γ + 1 = 3 · 1 − 2/(3d)

1 − 2/d
; (7.27)

the power σ approaches 3 from above as d→ ∞.

7.3.2 Fault-tolerant fanout

In the fault-tolerant measurement of the torus above, it is important to encode the classical

bits corresponding to the measurement outcomes on the torus qubits into a length s repe-

tition code by a depth log s fanout. However, a naive fanout will propagate errors badly;

we want to fanout fault-tolerantly. This is possible by applying a two-dimensional classical

Toom rule a constant number of times at all fanout levels.

We can characterize this protocol by an inductive procedure, as for the case of con-

catenated codes [50], that achieves fault-tolerance in much the same way as in [50]. In

particular, we denote by C1 the protocol in which

1. One bit is encoded in four to make a two-by-two square, with some error at most εe;

2. (a) Local errors are taking place with some error εd;

(b) Toom’s rule is applied to the four-bit block with some error at most εt;

3. The four bits are “decoded.”

In [50], the decoding actually resulted in a smaller Hilbert space. Here, since we are in-

terested in the whole space of physical qubits, “decoding” will be a purely formal step,

requiring no operations, which just means that we will treat the four qubits as one logical

qubit in future applications of Toom’s rule (what this means will become more clear in the

Ch protocol).

We denote the protocol Ch inductively as follows:

1. (a) One bit is encoded in four to make a two-by-two square, with some error at most

εe;

116

(b) The protocol Ch−1 is applied to the four bits;

2. (a) Local errors are taking place with some error εd;

(b) Toom’s rule is applied to the four-bit block with some error at most εt;

3. The four bits are “decoded.”

Now we can see the purpose of the decoding step: for the protocol Ch, after the first step

we actually have a 2h × 2h number of bits. But because of the “decoding” step, in the

second step we are only considering operations between the four 2h−1 × 2h−1 code blocks.

Note that we can use transversal operations to perform Toom’s rule between code blocks

that keep the Toom’s rule step at constant depth.

Now we must assume that the error in applying Toom’s rule, εt, and the local error εd, are

sufficiently small that there exists some r such that the total recovery error εc ≤ εt +O(ε2d)

has the property that rεc ≤ εd. We will also assume that the encoding error εe is less than

εc.

In order to apply Von Neumann’s fault-tolerant circuit to our block of size s, we need

to be able to say that after the fanout the probability of more than ts errors is at most

proportional to εd, where t is some constant fraction. The key to doing so is to inductively

consider probabilities that blocks of bits have become independently corrupted at each level

of the hierarchical protocol.

We will define the n-block size bn ≡ 4n as the number of cells present after performing

the protocol Cn. Now we will consider the probability pbn that the block has been corrupted.

A corrupted block is one that has errors in at least half of the cells of the block. Once a

block has been diagnosed as corrupted, all cells in the block will be assumed to be in error.

Thus we will be overcounting the corrupted-block probability of error and undercounting

the probabilities of error for smaller amounts of corruption; however, we will always be

overestimating the total probability of error at every stage of the protocol, so we will be

able to find an upper bound using this coarse diagnosis procedure.

In order to complete the induction, we will also define pn(q), the probability that there

are between 2q and 2q+1 errors in the n-block, where 0 < q < 2n− 1. If we define a suitable

cutoff hierarchy level η and error rate εd (e.g., η = 4 and εd < 0.001 will work), and εt is

sufficiently small compared to εd, it is easy to calculate the base case probabilities directly

117

for n ≤ η and show that pn(q) < εqd and pbn < εd for n ≤ η. For n > η, we write n = η+m,

where m is greater than zero, and we would like to show

m
∑

q=1

pη+m(q), < 1, q ≤ m (7.28)

pη+m(q) < εq−m+1, q > m (7.29)

pbn < εd. (7.30)

Eq. (7.28) is straightforward. To show Eq. (7.29) we assume the hypothesis true for

n− 1 and note that the principal contributions to pη+m(q) are the following: one corrupted

n − 1 block and at least one other n − 1 block with 2q−1 errors; and one corrupted n − 1

block and two other n−1 blocks with 2q−2 errors (choosing sufficiently large η ensures that

all other contributions, e.g., from Toom errors at the correction step, are higher-order for

n > η). We can thus write

pη+m ≤ 12pη+m−1(q − 1)εd + 12p2
η+m−1(q − 2)εd +O(εq−m+1)

< 12ε
q−1−(m−1)−1
d + 12ε

2(q−m−1)+1
d εd +O(εq−m+1)

< εq−m+1
d . (7.31)

Similarly, for the inductive step to prove (7.30) we consider the following principal contri-

butions to pbn: an error in the encoding, which leads directly to the corruption of the entire

block; an error due to at least two corrupted n−1-blocks; errors due to one corrupted n−1

block and one other b(n− 1)/2-error block that persisted from the n− 1-level protocol; and

errors due to one corrupted n − 1 block and two other b(n − 1)/4-error blocks. Defining

positive n′ such that n = η + n′, this gives

pbn = εc + 6pbn−1 + 12pn−1(2n− 4)εd + 12pn−1(2n− 5)εd +O(ε2η−2+n′

)

< εc + 6ε2d + 12εdε
2η+n′−3
d + 12εdε

2(2η−4+n′)
d +O(ε2η−2+n′

) (7.32)

Given our assumptions on εd, we can see that the inductive step holds true. Finally, we

can count up all the errors after we have done the fanout to a block of size s: the probability

118

of at least ts errors is

p(at least ts errors) < εd +

log(s/2)
∑

q=log ts

plog s(q). (7.33)

Substituting in the expressions in (7.29), and letting q = log ts+ q′ gives

p(at least ts errors) < εd +
∑

q′=0

εlog t+η+1
d εq

′

d . (7.34)

If η is chosen so that it is larger than − log t, and if εd is sufficiently small, this expression

will converge to be no more than 3εd, which will let us apply Von Neumann’s fault-tolerant

circuit.

7.3.3 Software preparation

The preparation of high-fidelity encoded quantum software cannot be carried out directly

on a large encoded block. Rather, we gradually build up the block, via a “quantum fanout

procedure” with depth O(log s). If we use 4-torus coding, we want the probability of an

encoded error in the software to be exp[−O(s)], so each time s doubles we must square

the error probability. This “purification” of the software is achieved through a protocol,

described by Dennis [15] and by Kitaev [46], that generalizes the “recurrence” protocol

[11] for purifying entangled pairs of qubits. The software purification protocol squares

the probability of an encoded error through a constant number of normalizer gates and

measurements of encoded blocks (which are then discarded).

Since the software fans out O(log s) times, and at each stage a constant number of

measurements requiring depth O(log s) are executed, the software is prepared in depth

O(log2 s). However, the depth of the software preparation does not affect the depth of our

fault-tolerant quantum circuit — the preparation is “offline” and causes no delay. The size

of the purification circuit, dominated by the measurements that are required, is O(s5) =

O(log5 L). If we use the d-torus code, the size of the purification circuit is as in eq. (7.27).

(With d-torus coding, each time we double the linear size of the block, we raise the error

probability to the power 2d/2−1 in a constant (for fixed d) number of purification steps.)

Now we have assembled all the elements needed for fault-tolerant simulation of a quan-

119

tum circuit using the 4-torus code or the d-torus code. The size and depth of the simulation

are dominated by the measurement of encoded blocks. (We can replace measurements by

conditional quantum gates, which causes a further blowup in size and depth by only a con-

stant.) For any positive α, we may choose d large enough so that the cost is as in eq. (7.2).

This proves Theorem 1.

Note that if the repertoire of our noisy computer does not include all of the gates used in

the fault-tolerant simulation, a “Solovay-Kitaev” slowdown will arise in the construction of

the necessary gates from the available gates. This further blowup is just a further constant

factor in size and depth, and so has no affect on Theorem 1.

7.4 Quantum blowup when classical computation is fast

Note that the size and depth of our quantum circuits are dominated by computations that

are essentially classical, needed to extract the outcomes of measurements of encoded blocks.

Consider a different computational model, in which measurements yield classical outcomes,

and classical processing is considered to be essentially instantaneous. In this model, the

size and depth of the classical postprocessing of measurement outcomes is not included in

our estimates of the size and depth of the circuit of quantum gates. At a cost in classical

processing that is polylogarithmic in L, we can reduce the quantum blowup in depth to

a constant. The cost in size is of order the blowup eq. (7.25) in the block size. For any

positive β, we may choose d large enough so that the cost is as in eq. (7.3). This proves

Theorem 2.

With Steane’s highly parallelized syndrome computation [81], the quantum process-

ing needed to extract the syndrome of a concatenated code also has constant depth and

polylog(L) size [70]; thus a result analogous to Theorem 2 can be established using con-

catenation, but we have improved on the power of logL in the size blowup realized by

concatenated coding.

The postprocessing of the measured syndrome is carried out level-by-level in the concate-

nated code. If noisy gates are used, then fault-tolerant processing at each level is built from

fault-tolerant gadgets constructed at the next level down, resulting in a blowup in depth

by (constant)` = polylog(L) (where ` is the number of levels of concatenation). Thus, with

120

concatenated codes we do not know how to achieve the log logL blowup in depth asserted

in Theorem 1.

7.5 Status of Pippenger’s conjecture

In the model in which size polylog(L) classical processing is regarded as effectively instan-

taneous, we have come arbitrarily close to realizing the blowup envisioned by Pippenger.

Can we improve the result to β = 0 in eq. (7.3)?

As discussed in [16], with size polylog(L) reliable classical postprocessing of measurement

outcomes, we can achieve an error probability per gate of order 1/L using a 2-torus code

with block size log2 L, ostensibly the block size needed to realize the Pippenger blowup

in size. However, the recovery method described in [16] involves O(s) repetitions of the

syndrome measurement between successive encoded gates (where s is the linear size of the

torus), resulting in a blowup by a factor O(logL) in depth and O(log3 L) is size.

With the 4-torus code (or the d-torus code for d > 4), it suffices to measure the syn-

drome a constant number of times between encoded gates. Furthermore, by processing the

measured syndrome optimally, we can achieve an error probability per gate exp[−O(s2)],

an improvement over the exp[−O(s)] established for the local recovery method used in the

proofs of Theorems 1 and 2. The catch is that the optimal recovery algorithm may require

too much computation. Given the syndrome (the locations of the string loops), the op-

timal recovery method involves flipping qubits on the minimal-area 2-surface bounded by

the strings, and finding the minimal surface with a specified boundary is NP-hard [6] (it is

equivalent to finding the ground state of a four-dimensional Ising spin glass). Perhaps we

can show that finding the minimal surface (up to a homologically trivial surface) is an easy

problem when the error rate is small and the loops of string typically have small length and

are dilute. Then we can improve Theorem 2 to an exact rather than approximate O(log2 L)

blowup in size.

And in the model considered in Theorem 1 (no reliable classical gates), can the cost be

reduced to a constant factor in depth and a factor O(log2 L) in size? The blowup found

in eq. (7.2) was dominated by the simulated measurement of encoded blocks, a feature of

the implementation via quantum software of universal quantum gates for topological codes.

121

Some sort of quantum software strategy is a necessary part of quantum fault tolerance, as

Gottesman has shown [36]. Closing the gap between Theorem 1 and Pippenger’s conjecture

might be achieved by eliminating the (simulated) measurement step in the implementation

of fault-tolerant encoded gates. Can we prepare quantum software offline (with a quantum

circuit of sufficiently small size) that interacts with encoded blocks and is then discarded

without ever being “measured”? It is not clear whether such a construction of universal

fault-tolerant gates is possible.

122

Appendix A

One droplet becoming many

As mentioned in section 7.2.3, the proof given there has the flaw that sometimes a droplet

does not result in a single plaquette after many applications of the modified Toom’s rule

because of the multiple dimensions. So we cannot yet directly use the results on a single-

plaquette tree given in section 7.2.1; in particular, there can be more than one history

in the original tree. However, it is still possible to suitably rewire Gacs’ protocol so that

everything works.

Now, let V ′
0 — analogous to V0 in Gacs— be the set of (individual, disconnected) cells

obtained by evolving the droplet forward, as in the previous section. In the previous section

this set was one cell; now that is no longer the case. (We can define V ′
0 precisely by the

following: Construct the “original” tree as in the 2D Toom’s rule, by applying Toom’s

rule without noise until all errors are gone. For Time(u) ≥ 0, consider the subgraph

of (Voriginal, Arrows) (the graph induced by the Original tree) formed by the cells {v ∈
Voriginal|Time(v) ≥ Time(u)}. By analogy to Gacs’ histories, let’s call the connected

component of this subgraph containing u the extrapolation of u. Any u with Time(u) ≥ 0

such that Extrapolation(u) = {u} will now be in V ′
0 .) For a given tree, define GK as in

Gacs; it is still connected, but may not now encompass the entire explanation for K =

History(u), u ∈ V ′
0 , as was true when V ′

0 was a single cell.

Let us define Gdrop in the obvious way consistent with Gacs’ notation: if t = 0 is the

time at which the droplet is present, Gdrop is the subgraph of (V,Arrows) induced by taking

all the cells v ∈ V with Time(v) ≤ 0. If V ′
0 is a two-element set {a, b}, there are two cases.

The first case is that in which History(a) = History(b) is the whole graph. Arrange the

123

arrows for the tree for t > 0 by choosing the poles of the droplet such that Span(droplet) =

Size(droplet) and working backwards using the Gacs construction backwards. The number

of edges here is precisely as in the Gacs construction.

The second case is that in which History(a) is distinct from History(b). Then the

number of edges can be found by treating the explanation as two distinct explanation trees:

the number of edges is simply less than 4(n1 − 1) + 4(n2 − 1) ≤ 4(n− 1), where n1, n2 are

the number of cells in Noise for the explanation trees for a, b respectively.

In the case where V ′
0 has q elements, the number of cases goes like 2q. So we need to

multiply the probablity found in the previous section by 2q. But each cell in V ′
0 adds at

least one to the boundary, because a different history can only happen when two different

orientations come together, and the different orientation necessitates at least one extra

plaquette in Noise to Explain it. So we effectively only need to multiply by 2boundary.

124

Appendix B

Lattice animals

Here we give a proof based closely on [91] that the number of connected m-dimensional

surfaces made up of n k-dimensional plaquettes in a square lattice in d dimensions is less

than 22m(2d−2m+1)n.

First, note that a m-dimensional “plaquette” on a d-dimensional integer square lattice

can be parametrized by its center, which has some coordinates (x1, x2, ...xd). These co-

ordinates are such that k of the coordinates are half-integers and d − m coordinates are

integers.

Let S0 be the set of centers in the surface of interest. We will define the top of a set S0

of such centers by the following. Define the set S1 ⊂ S0 as the set of centers for which the

first coordinate x1 is the maximum over S0. Define the set S2 ⊂ S1 as the set of centers

in S1 for which the second coordinate x2 is the maximum over S2. Define Sj recusrively in

this way until Sj contains only one element, which will be the top of the set. Define the

bottom in the same way, replacing the word “maximum” above with “minimum.”

Now we will give a unique ordering to the points in S0. For each of the 2m edges of a

k-dimensional plaquette, there are 2(d−(m−1))−1 ways another plaquette in d dimensions

could attach to the given plaquette. This means that there are a total of 2m(2d− 2m+ 1)

edges one could draw from one center to another center (though this will lead to some

overcounting later, as only 2m edges at a time are actually possible). Let us specify a

canonical ordering of these 2m(2d − 2m + 1) edges, {l1, l2, ...l2m(2d−2m+1)}. Let v1 be the

bottom point. We number the k edges incident on v1 1...k in the order of the canonical

ordering, and the vertices connected to v1 through these edges 2...k+ 1. Number the edges

125

of v2 in an order corresponding to the canonical ordering, and so on.

We will now place the edges in the surface into a vector that will uniquely define the

surface. For vk, k > 1, there exists at least one vertex vj connected to vk through an

edge such that j < k. Let j be the smallest such value, and let r be the order of the

edge in the canonical ordering given above. Now we number the ith edge emanating from

vk (where i is given by the canonical ordering subscript {li}) with the number si = (i −
r)mod2m(2d − 2m + 1) for each i = 1...2m(2d − 2m + 1), i 6= r. We place a zero in the

(2m(2d − 2m + 1) + si)th location of a 2m(2d − 2m + 1)n - length vector if the ith edge

is not in the surface or if it connects to vp for p < k; otherwise we place a one in that

position. (In the special case k = 1, assume the edge (v1 − x̂2, v1) is in the surface and

proceed as above. This proceudre gives a 2m(2d− 2m+ 1)n-length vector for any surface.

There are 22m(2d−2m+1)n such vectors, and thus the number of surfaces that can be made

with n plaquettes, an, satisfies

an ≤ 22m(2d−2m+1)n. (B.1)

(In fact this is overcounting by a great deal, and it’s possible that further work could be

done to reduce the threshold. Nevertheless this is good enough for our purposes.)

126

Bibliography

[1] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant er-

ror. In Proc. 29th Ann. ACM Symp. on Theory of Computing, New York, 1998. ACM.

quant-ph/9611025; D. Aharonov and M. Ben-Or, “Fault-tolerant quantum computa-

tion with constant error rate,” quant-ph/9906129 (1999).

[2] C. Ahn, A. C. Doherty, and A. J. Landahl. Continuous quantum error correction via

quantum feedback control. Physical Review A, 65:042301, 2002. quant-ph/0110111.

[3] G. Alber, Th. Beth, Ch. Charnes, A. Delgado, M. Grassl, and M. Mussinger. De-

tected jump-error correcting quantum codes, quantum error designs and quantum

computation. quant-ph/0208140.

[4] G. Alber, Th. Beth, Ch. Charnes, A. Delgado, M. Grassl, and M. Mussinger. Stabi-

lizing distinguishable qubits against spontaneous decay by detected-jump correcting

quantum codes. Physical Review Letters, 86:4402–4405, 2001. quant-ph/0103042.

[5] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and H. Mabuchi. Adaptive

homodyne measurement of optical phase. Phys. Rev. Lett., 89:133602, 2002.

[6] F. Barahona. On the computational complexity of ising spin-glass models. J. Phys.

A, 15:3241–3253, 1982.

[7] A. Barenco, T. A. Brun, R. Schack, and T. Spille. Effects of noise on quantum error

correction algorithms. Physical Review A, 56:1177–1188, 1997. quant-ph/9612047.

[8] S. D. Barrett and G. J. Milburn. Measuring the decoherence rate in a semiconductor

charge qubit. Phys. Rev. B, 68:155307, 2003.

127

[9] C. H. Bennett and G. Brassard. Quantum cryptography: Public-key distribution and

coin tossing. In Proceedings of IEEE International Conference on Computers, Systems

and Signal Processing, pages 175–179, Bangalore, India, 1984. C. H. Bennett and G.

Brassard, “Quantum public key distribution,” IBM Technical Disclosure Bulletin 28,

3153–3163 (1985).

[10] C. H. Bennett, G. Brassard, C. Crepeau, R.Jozsa, A. Peres, and W.Wootters. Tele-

porting an unknown quantum state via dual classical and epr channels. Phys. Rev.

Lett., 70:1895–1899, 1993.

[11] C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters. Mixed state

entanglement and quantum error correction. Physical Review A, 54:3824, 1996. quant-

ph/9701015.

[12] T. M. Buehler, D. J. Reilly, R. P. Starrett, A. Greentree, A. R. Hamilton, A. S.

Dzurak, and R. G. Clark. Efficient readout with the radio frequency single electron

transistor in the presence of charge noise. Phys. Rev. B (Rapid). Submitted., 2003.

[13] H. J. Carmichael. An Open Systems Approach to Quantum Optics. Springer-Verlag,

Berlin, 1993.

[14] I. L. Chuang and Y. Yamamoto. The persistent qubit. quant-ph/9604030.

[15] E. Dennis. Fault-tolerant computation without concatenatio. Phys. Rev. A, 63:052314,

2001. quant-ph/9905027.

[16] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. Topological quantum memory. J.

Math. Phys., 43:4452–4505, 2002. quant-ph/0110143.

[17] D. Deutsch. Quantum theory, the church-turing principle and the universal quantum

computer. Proc. R. Soc. Lond. A, 400:97, 1985.

[18] R. L. Dobrushin and S. I. Ortyakov. Upper bound for the redundancy of self-

correcting arrangements of unreliable functional elements. Problems Inform. Trans-

mission, 13:203–218, 1977.

128

[19] Jennifer L. Dodd, Michael A. Nielsen, Michael J. Bremner, and Robert T. Thew.

Universal quantum computation and simulation using any entangling hamiltonian

and local unitaries. Physical Review A, 65:040301, 2002.

[20] A. C. Doherty. Motion, Measurement and Control in an Open Quantum System. Ph.D.

thesis, The University of Auckland, 1999.

[21] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan. Quantum feedback

control and classical control theory. quant-ph/9912107.

[22] A. C. Doherty and K. Jacobs. Feedback-control of quantum systems using continuous

state-estimation. Physical Review A, 60:2700, 1999. quant-ph/9812004.

[23] W. H. Zurek E Knill, R. Laflamme. Resilient quantum computation: error models

and thresholds. Proc. Roy. Soc. London, Ser. A, 454:365, 1998. quant-ph/9702058.

[24] L. Fedichkin and A. Fedorov. Decoherence rate of semiconductor charge qubit coupled

to acoustic phonon reservoir. Phys. Rev. A, 69:032311, 2004. quant-ph/0309024.

[25] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467, 1982.

[26] D. F.Walls and G. J.Milburn. Quantum Optics. Springer-Verlag, Berlin, 1994.

[27] P. Gacs. Reliable computation with cellular automata. Journal of Computer System

Science, 32:15–78, 1986.

[28] P. Gacs. Reliable cellular automata with self-organization. J. Statist. Phys, 103:45–

267, 2001. arXiv:math.PR/0003117.

[29] C. W. Gardiner. Handbook of Stochastic Methods. Springer, Berlin, 1985.

[30] Peter Gács. A new version of toom’s proof, 1995. Tech. report, Boston University,

Department of Computer Science, Boston, MA 02215.

[31] H. S. Goan. An analysis of reading out the state of a charge quantum bit. Quant. Inf.

and Comp., 3:121, 2003.

[32] Hsi-Sheng Goan and G. J. Milburn. Dynamics of a mesoscopic charge quantum bit

under continuous quantum measurement. Phys. Rev. B, 64:235307, 2001.

129

[33] Hsi-Sheng Goan, G. J. Milburn, H. M. Wiseman, and He Bi Sun. Continuous quan-

tum measurement of two coupled quantum dots using a point contact: A quantum

trajectory approach. Physical Review B, 63:125326, 2001.

[34] D. Gottesman. Stabilizer codes and quantum error correction. Ph.D. thesis, Caltech,

1997. quant-ph/9705052.

[35] D. Gottesman. A theory of fault-tolerant quantum computation. Phys. Rev. A, 57:127,

1998. quant-ph/9702029.

[36] D. Gottesman, 2000. Private communication.

[37] D. Gottesman and I. L. Chuang. Quantum teleportation is a universal computational

primitive. Nature, 402:390–392, 1999. quant-ph/9908010.

[38] Daniel Gottesman. Class of quantum error-correcting codes saturating the quantum

hamming bound. Physical Review A, 54:1862, 1996.

[39] M. Grassl, T. Beth, and T. Pellizzari. Codes for the quantum erasure channel. Physical

Review A, 56:33–38, 1997.

[40] J. Harrington and C. Ahn. In preparation.

[41] L. C. L. Hollenberg, A. S. Dzurak, C. Wellard, A. R. Hamilton, D. J. Reilly, G. J.

Milburn, and R. G. Clark. Charge-based quantum computing using single donors in

semiconductors. Phys. Rev. B (Brief Reports), 69:113301, 2003.

[42] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature (London),

393:133, 1998.

[43] K. Khodjasteh and D. A. Lidar. Quantum computing in the presence of spontaneous

emission by a combined dynamical decoupling and quantum-error-correction strategy.

Phys. Rev. A, 68:022322, 2003. quant-ph/0301105.

[44] A. Y. Kitaev. Fault-tolerant quantum computation by anyons, 1997. quant-

ph/9707021.

[45] A. Y. Kitaev. Quantum computations: algorithms and error correction. Russ. Math.

Surv., 52(6):1191–1249, 1997.

130

[46] A. Yu. Kitaev. unpublished.

[47] A. Yu. Kitaev. Quantum computations: algorithms and error correction. Russian

Math. Surveys, 52:1191–1249, 1997.

[48] A. Yu. Kitaev. Quantum error correction with imperfect gates. In O. Hirota, A. S.

Holevo, and C. M. Caves, editors, Proceedings of the Third International Conference

on Quantum Communication and Measurement, New York, 1997. Plenum.

[49] D. A. Klarner. Cell growth problems. Canadian Journal of Mathematics, 25:585–602,

1965.

[50] E. Knill and R. Laflamme. A theory of quantum error-correcting codes. Physical

Review A, 55:900–911, 1997. quant-ph/9604034.

[51] E. Knill, R. Laflamme, and G. Milburn. Efficient linear optics quantum computation.

Nature, 409:46, 2001. quant-ph/0006088.

[52] P. L. Koleden, E. Platen, and H. Schurz. Numerical solution of SDE through computer

experiments. Springer-Verlag, Berlin, 1994.

[53] A. N. Korotkov. Selective evolution of a qubit state due to continuous measurement.

Physical Review B, 63:115403, 2001. cond-mat/0008461.

[54] K. Kraus. States, Effects, and Operations: Fundamental Notions of Quantum Theory,

volume 190 of Lecture Notes in Physics. Springer-Verlag, Berlin, 1983.

[55] R. Laflamme, C. Miquel, J.-P. Paz, and W. H. Zurek. Perfect quantum error correction

code. Phys. Rev. Lett, 77:198, 1996. quant-ph/9602019.

[56] D. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence free subspaces for quantum

computation. Phys. Rev. Lett., 81:2594, 1998. quant-ph/9807004.

[57] H. Lo and H. F. Chau. Unconditional security of quantum key distribution over arbi-

trarily long distances. Science, 283:2050–2056, 1999.

[58] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev.

A, 57:120, 1998.

131

[59] H. Mabuchi and P. Zoller. Inversion of quantum jumps in quantum optical systems

under continuous observation. Physical Review Letters, 76:3108–3111, 1996.

[60] D. Mayers. Unconditional security in quantum cryptography, 1998. quant-ph/9802025.

[61] G. J. Milburn and He Bi Sun. Quantum open-systems approach to current noise in

resonant tunneling junctions. Phys. Rev. B, 59:10748, 1999.

[62] C. Mochon. Private communication.

[63] Y. Nakumura, Y. A. Pashkin, and J. S. Tsai. Coherent control of macroscopic quantum

states in a single-cooper-pair box. Nature, 398:786, 1999.

[64] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, Cambridge, 2000.

[65] A. V. Oppenheim, A. S. Willsky, and S. Hamid Nawab. Signal and Systems. Prentice

Hall, 2nd edition, 1996.

[66] J. P. Paz and W. Zurek. Continuous error correction. Proc. Trans. R. Soc. Lond. A,

454:355–364, 1998. quant-ph/9707049.

[67] N. Pippenger. On networks of noisy gates. In IEEE Symposium on Foundations of

Computer Science, vol. 26, pages 30–38, New York, 1985. IEEE Press.

[68] N. Pippenger, 2002. private communication.

[69] M. B. Plenio, V. Vedral, and P. L. Knight. Quantum error correction in the presence

of spontaneous emission. Physical Review A, 55:67, 1997. quant-ph/9603022.

[70] J. Preskill. Fault-tolerant quantum computation. In H.-K. Lo, T. Spiller, and

S. Popescu, editors, Quantum Information and Computation. World Scientific, Singa-

pore, 1998. quant-ph/9712048.

[71] J. Preskill. Lecture notes for caltech course ph 219: Quantum information and com-

putation, 1998. http://www.theory.caltech.edu/~preskill/ph219/.

[72] J. Preskill. Reliable quantum computers. Proc. Roy. Soc. Lond. A, 454:385–410, 1998.

quant-ph/9705031.

132

[73] T.C. Ralph, A. Gilchrist, G.J. Milburn, W.J. Munro, and S. Glancy. Quantum com-

putation with optical coherent states. Physical Review A, 68:042319, 2003. quant-

ph/0306004.

[74] M. Sarovar. Private communication.

[75] R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and D. E. Prober. The

radio-frequency single-electron transistor (rf-set): A fast and ultrasensitive electrom-

eter. Science, 280:1238, 1998.

[76] P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical

Review A, 52:2493, 1995.

[77] P. W. Shor. Fault-tolerant quantum computation. In Proceedings, 37th Annual Sym-

posium on Foundations of Computer Science, pages 56–65, Los Alamitos, CA, 1996.

IEEE Press. quant-ph/9605011.

[78] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J.Sci.Statist.Comput., 26:1484, 1997. quant-

ph/9508027; see also Proceedings of the 35th Annual Symposium on Foundations of

Computer Science, Santa Fe, NM, Nov. 20–22, 1994.

[79] P. W. Shor and J. Preskill. Simple proof of security of the bb84 quantum key distri-

bution protocol. Phys. Rev. Lett., 85:441–444, 2000. quant-ph/0003004.

[80] A. Steane. Error-correcting codes in quantum theory. Phys. Rev. Lett., 77:793, 1996.

[81] A. Steane. Active stabilization, quantum computation, and quantum state synthesis.

Phys. Rev. Lett., 78:2252, 1997. quant-ph/9611027.

[82] T. Tanamoto. Coherent control of macroscopic quantum states in a single-cooper-pair

box. Phys. Rev. A, 61:22305, 2000.

[83] A. I. Toom. Stable and attractive trajectories in multicomponent systems. In R. I.

Dobrushin, editor, Multicomponent Systems, Advances in Probability, vol. 6, pages

549–575. Dekker, New York, 1980.

133

[84] R. van Handel, J. K. Stockton, and H. Mabuchi. Feedback control of quantum state

reduction, 2004. quant-ph/0402136.

[85] L. Viola, E. Knill, and S. Lloyd. Dynamical decoupling of open quantum systems.

Phys. Rev. Lett., 82:2147–2421, 1999. quant-ph/9809071.

[86] L. Viola and S. Lloyd. Dynamical suppression of decoherence in two-state quantum

systems. Physical Review A, 58:2733, 1998. quant-ph/9803057.

[87] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from

unreliable components. In C. E. Shannon and J. McCarthy, editors, Automata studies.

Princeton University Press, Princeton, 1956.

[88] I. Walmsley and H. Rabitz. Quantum physics under control. Physics Today, 56:43–49,

2003.

[89] J. Wang and H. M. Wiseman. Feedback-stabilization of an arbitrary pure state of a

two-level atom: a quantum trajectory treatment. Physical Review A, 64:063810, 2001.

quant-ph/0008003.

[90] U. Weiss. Quantum Dissipative Systems. World Scientific, 1999.

[91] S. G. Whittington and C. E. Soteros. Lattice animals: Rigorous results and wild

guesses. In Geoffrey Grimmett and Dominic Welsh, editors, Disorder in physical Sys-

tems: A Volume in Honour of John M. Hammersley. Oxford University Press, 1990.

[92] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M.

Meekhof. i don’t know. Journal of Research of the National Institute of Standards

and Technology, 103:259, 1998.

[93] H. M. Wiseman. Quantum theory of continuous feedback. Physical Review A, 49:2133–

2150, 1994. Errata in Phys. Rev. A 49, 5159 (1994), Phys. Rev. A 50, 4428 (1994).

[94] H. M. Wiseman. Adaptive phase measurements of optical modes: Going beyond the

marginal q distribution. Phys. Rev. Lett., 75:4587, 1995.

[95] H. M. Wiseman. Using feedback to eliminate back-action in quantum measurements.

Physical Review A, 51:2459, 1995.

134

[96] H. M. Wiseman. Quantum trajectories and quantum measurement theory. Quantum

Semiclassical Optics, 8:205–222, 1996.

[97] H. M. Wiseman and R. B. Killip. Adaptive phase measurements of optical modes:

Going beyond the marginal q distribution. Phys. Rev. A, 57:2169, 1998.

[98] H. M. Wiseman and G. J. Milburn. Quantum theory of field-quadrature measure-

ments. Physical Review A, 47:642, 1993.

[99] H. M. Wiseman and G. J. Milburn. Quantum theory of optical feedback via homodyne

detection. Phys. Rev. Lett., 70:548, 1993.

[100] H. M. Wiseman, Dian Wahyu Utami, He Bi Sun, G. J.Milburn, B. E. Kane, A. Dzurak,

and R. G.Clark. Quantum measurement of coherent tunneling between quantum dots.

Phys. Rev. B, 63:235308, 2001.

[101] K. Zhou, K. Glover, and J. C. Doyle. Robust and Optimal Control. Prentice-Hall,

Upper Saddle River, N.J., 1996.

