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Abstract

This thesis investigates variable stage size multistage hypothesis testing in three dif-
ferent contexts, each building on the previous.

We first consider the problem of sampling a random process in stages until it
crosses a predetermined boundary at the end of a stage — first for Brownian motion
and later for a sum of i.i.d. random variables. A multistage sampling procedure is
derived and its properties are shown to be not only sufficient but also necessary for
asymptotic optimality as the distance to the boundary goes to infinity.

Next we consider multistage testing of two simple hypotheses about the unknown
parameter of an exponential family. Tests are derived, based on optimal multistage
sampling procedures, and are shown to be asymptotically optimal.

Finally we consider multistage testing of two separated composite hypotheses
about the unknown parameter of an exponential family. Tests are derived, based on
optimal multistage tests of simple hypotheses, and are shown to be asymptotically
optimal. Numerical simulations show marked improvement over group sequential

sampling in both the simple and composite hypotheses contexts.
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Chapter 1

Introduction

1.1 Background

Sequential hypothesis testing has been a source of interesting problems since its incep-
tion in the late 1940’s. Some highlights are Wald’s [32] seminal book, Chernoff’s [3]
development of asymptotic considerations, Schwarz’s [28] theory of asymptotic shape
of Bayes stopping regions for exponential families, Kiefer & Sacks’ [12] extension of
Chernoft’s and Schwarz’s work to general distributions and hypotheses, and Lorden’s
20, 23] use of one-sided SPRT’s that are o(cost per observation)-Bayes. The majority
of the sequential literature involves tests that take data in a “one at a time” fashion,
and their optimality properties are proven under the assumption that sampling costs
are proportional to average sample size. But in practice it is often much more costly
to carry out n single experiments than one experiment of size n. Hence a criticism
of sequential testing — and perhaps a barrier to more practical applications of it — is
that, in real-world situations, it is often more natural to take data in groups or stages.
An early example of a such a multistage procedure is Stein’s two-stage extension
of the Student’s ¢-test [31], whose power is independent of the variance, estimated
in the initial stage. This idea of using an initial stage to estimate the true state of
nature and hence fix a design parameter of the procedure that follows has been used
in two-stage procedures of Wald [33], Sobel [1], Hall [13] and others (see, e.g., [15]).
Schmitz [27] and Morgan & Cressie [7, 24] have proved general existence results for

a large class of multistage problems. In particular, the theorems of Schmitz show that
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optimal multistage sampling strategies share the fundamental “renewal-type” prop-
erty of optimal stopping strategies [5]: at each stage an optimal procedure behaves
as if it were starting from scratch, but with the problem’s parameters appropriately
updated by the data already obtained. Such general results do not, however, tell us
anything specific about the optimal tests and certainly not how to apply them without
resorting to backward induction-type computer algorithms or artificial truncations.

The most general investigation of variable stage size multistage hypothesis testing
is by Lorden [22]. Modelled after the sequential likelihood ratio tests of Schwarz [28],
Lorden’s tests essentially “do what the best fully-sequential test would do” in as few
stages as possible. Lorden showed for simple hypotheses and separated composite
hypotheses about the parameter of an exponential family that, except in a degen-
erate case, three stages are necessary and sufficient to achieve a sample size that is
asymptotically the same as the best fully-sequential tests.

Pocock [25], DeMets [8, 9] and others have considered multistage testing explic-
itly for applications to medical clinical trials. These studies are more concerned
with practical issues that arise in multistage medical trials than with mathematical
optimality however. The methods proposed are largely ad hoc and incorporate se-
vere restrictions, like an ad hoc number of stages and a fixed stage size. Moreover,
these authors propose no alternative to the constant stage size, or group sequential,

paradigm currently used in clinical trials.

1.2 Summary

In broad terms, this thesis investigates the structure of efficient multistage hypothesis
tests in a general setting that allows variable stage size. Specifically, we consider three
different but closely related problems, for which we now give a brief motivation.

A common theme in sequential hypothesis testing is that testing composite hy-
potheses can often be reduced to testing simple hypotheses. For example, Kiefer &
Sacks [12], Lorden [20, 23], Schwarz [28], and Weiss [35] have all used this technique

to reduce asymptotic optimality considerations for testing composite hypotheses to a
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“simple vs. simple” hypothesis test once a substantial number of observations have
been taken - namely, a test of the estimated true state of nature versus the estimated
true state restricted to the opposing hypothesis. Moreover, testing simple hypotheses
can typically be reduced to a boundary crossing problem. For example, in testing
simple hypotheses Lorden [19, 20] showed that minimizing a linear combination of
sampling and error costs can be achieved asymptotically by performing a “one-sided”
test, minimizing sampling costs under one hypothesis and error costs under the other,
which is in turn equivalent to sampling until the likelihood ratio crosses a fixed bound-

ary. These examples seem to suggest the following informal hierarchy:

Testing composite hypotheses
reduces to
Testing simple hypotheses
reduces to

Boundary crossing problem

The three multistage problems considered in this thesis are precisely the three
levels of this hierarchy, studied in the reverse order. In Chapter 2 we consider the
problem of sampling in stages a random process with known drift - first Brownian
motion and later a sum of i.i.d. random variables - until it crosses a predetermined
boundary, a > 0, at the end of a stage. The optimal, or Bayes, procedure is defined
to be that which minimizes the risk, defined as a linear combination of the expected
total sample size and expected number of stages. Since no closed-form Bayes solution
exists, we study the problem as a — oco. We derive a family of sampling procedures
around the principle of comparing the expected overshoot over the boundary, a, to
the ratio, h, of the cost per stage to the cost per observation. In striking contrast with
group sequential sampling, the stage sizes of these procedures decrease roughly as a
sequence of successive square roots, with probability approaching one. The average

number of stages used by these tests turns out to be determined by the asymptotic
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relationship of h to the critical functions,
hun(a@) = a®/?" (log a)/2-0/2)",

which also play a key role in characterizing the number of stages, m, required by an
optimal procedure. We prove not only that these sampling procedures minimize the
risk to first order as a — oo, but also that their global properties are necessary for
any efficient procedure. We prove these claims first for Brownian motion and then
extend them to sums of i.i.d. random variables from a large class of distributions that
allows large deviation and Central Limit Theorem-type approximations.

In Chapter 3 we use the optimal multistage sampling procedures of Chapter 2 to
derive efficient multistage tests of simple hypotheses about the unkown parameter
of an exponential family of densities. First we consider one decision tests of simple
hypotheses, i.e., tests that aim to stop sampling and reject the alternative hypothesis
as soon as possible if the null hypothesis is true, but want to continue sampling
without ever stopping if the alternative hypothesis true. We define the risk in this
case as a linear combination of the sampling cost under the null hypothesis and
the probability of ever stopping under the alternative hypothesis. We show that
one decision tests that are essentially the optimal multistage sampling procedures of
Chapter 2 minimize this risk to second order as the costs per observation and per stage
approach zero. Using combinations of these one decision tests we derive (ordinary)
two decision tests of simple hypotheses and show that they asymptotically minimize
the integrated risk to second order. A small-sample procedure based on these tests
is proposed, and its improvement over group sequential sampling is illustrated by a

numerical simulation of testing
pw=—1/4 vs. pu=1/4,

where p is the mean of i.i.d. normally distributed random variables with variance one.

In Chapter 4 we extend to a continuous parameter setting the ideas developed in
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Chapter 3 and, using the optimal simple hypothesis tests as a guide, we design tests

of composite hypotheses of the form
H()IQSQSQO VS. H1200<01§0§§

about the parameter 6 of an exponential family of densities. For a loss function
w, vanishing on (,#;) and positive and bounded on [6, 8] U [6;,60], and a prior
Lebesgue density Ao, continuous, positive, and bounded on [0, ], we show that our

tests minimize

/ "Bo(e- N 4 d- M)+ w(8) Py(erron)| \o(6)d6

to second order as the costs per observation and per stage, ¢ and d, approach zero.
Here N and M are the total number of observations and stages, respectively. Whereas
the simple hypotheses problem of Chapter 3 naturally reduces to the boundary cross-
ing problem of Chapter 2, unfortunately this composite hypotheses problem is not
sufficiently well-approximated by the simple hypotheses problem to clarify consider-
ations of second order optimality until “right before the final stage.” Hence, proving
that our test behaves optimally in the time leading up to the final stage requires quite
intricate and technical arguments. These arguments make much use of Laplace-type
expansions of the stopping risk originated by Schwarz [29] and strengthened by Lor-
den [23], as well as generalizations of the tools developed in Chapter 2 for proving
stage-wise bounds on the random process as it is being sampled by our procedure.
A small-sample procedure is also proposed, which performs significantly better than

group sequential sampling in a numerical simulation of the problem of testing
—1<pu<—-1/4 vs. 1/4<pu<1,

where p is the mean of i.i.d. normally distributed random variables with variance one.



1.3 Preliminaries

In this section we briefly introduce sequential hypothesis testing and give some pre-
liminaries to the main results. For a more general introduction, see Chernoff [4],
Govindarajulu [11], and Siegmund [30].

Let X1, X5,... be i.i.d. random variables with density function f. Suppose it is
desired to test the hypotheses

Hoif:fg VS. H1 :f:fl (11)

for given densities fy, f1. Classical tests of these hypotheses would choose a sample
size before the data are taken, then somehow decide between the hypotheses based
on the observed data. It is possible to reach a decision earlier without sacrificing
accuracy, however, if the data are observed sequentially and the total sample size,
N, is a function of the data as they are observed and is therefore a random variable.

Such random variables are called stopping times:

Definition 1.1. A random variable N taking values in {0, 1,2,...,00} is a stopping
time with respect to the sequence X, Xo, ... if for every n > 1, the event {N = n}
depends only on Xj, ..., X,, and the event {/V = 0} does not depend on the Xj.

Tests of hypotheses such as (1.1) whose sample size is determined by a stopping
time N are called sequential tests. Note that N = k is allowed - i.e., fixed sample
size tests satisfy this definition. An example is the Sequential Probability Ratio Test
(SPRT), developed by Wald [32] during World War II. Letting

L=T] il )7
-1 fo(X3)
the SPRT is defined by choosing constants 0 < A < B < oo and sampling until

A<l,<B
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is violated. Specifically, the SPRT will stop sampling at time

N=inf{n>1:1, ¢ (A, B)}

and

reject Hy if [y > B

reject Hy if Iy < A.

The values A, B determine the relevant error probabilities, Py(reject Hy) and Py (reject Hy).
Wald and Wolfowitz [34] showed that the SPRT is the best possible test of the
hypotheses (1.1) in the following strong sense.

Theorem 1.2 (Wald and Wolfowitz). Among all tests of the hypotheses (1.1) for
which
Py(reject Hy) <« and Pi(reject Hy) < [

and

EyN < oo and E|N < oo, (1.2)

the SPRT with error probabilities o, 3 minimizes both EqN and E1N simultaneously.

Remark. Lorden [21] showed that the assumption (1.2) is superfluous.

Wald [32] developed the following fundamental tools to compute the operating
characteristics of the SPRT.

Theorem 1.3 (Wald’s Equation). Let X1, X, ... be i.i.d. with mean p = EX;.
For any stopping time N with EN < oo,
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Theorem 1.4 (Wald’s Likelihood Identity). Let X, Xo, ... be i.i.d. with density
f, g under Py, P,, respectively, and let

n

=11

i=1

~

(Xi)
(Xi)’

<

the likelihood ratio. For an arbitrary event A (measurable with respect to the o-algebra

generated by N ),

PrAN{N < co}) = B,(In; AN {N < 00}).

Results analogous to Theorems 1.3 and 1.4 hold for Brownian motion; see, e.g.,

[30].



Chapter 2

Optimal Multistage Sampling

Many problems in theoretical and applied statistics involve observing a random pro-
cess until it crosses a predetermined boundary. We consider a version of this classical
problem in which a random process, first Brownian motion and later a sum of i.i.d.
random variables, is sampled in stages until it exceeds a boundary a > 0 at the end
of a stage. As an example consider periodic monitoring of a pollutant in a water
supply. There is a critical level for the pollutant above which some action must be
taken but below which one will only decide when to test again, basing that decision
on the current level.

If one incurs a fixed cost for each unit sampled and an additional fixed cost for each
stage, then a natural measure of the performance of a multistage sampling procedure
is the sum of these costs upon first crossing the boundary. In this chapter we describe
a family of sampling procedures and show they are first-order optimal as a — oc.

Many aspects of the boundary-crossing or “first-exit” problem are well-studied.
The powerful methods of renewal theory address successive “exits” and the time
between such events (see [10], pages 358-388). Lorden [18] obtained sharp, uniform
bounds for the excess over the boundary of random walks. Siegmund [30] discusses
further applications in sequential analysis.

Schmitz [27] and Morgan & Cressie [7, 24] have proven general existence results for
a large class of multistage sampling problems. In particular, the theorems of Schmitz
show that a Bayes sampling strategy does exist for the problem considered here and

that the optimum has the “renewal-type” property that at each stage it behaves as
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if it were starting from scratch, given the data so far. But these authors do not
propose specific procedures, and though there is an extensive literature dealing with
fully-sequential (one-at-a-time) sampling, there have been few investigations of the
performance of procedures that vary the sample size from stage to stage.

The families of procedures, d,, and 5m, constructed below are shown to be first-
order asymptotically optimal in Theorems 2.8 and 2.15. They have variable stage sizes
which decrease roughly as a sequence of successive square roots, while the average
number of stages required is determined by the ratio of the cost per stage divided to
the cost per unit time in relation to a family of critical functions, h,,, defined below.
These critical functions define “critical bands” - i.e., regions of the first quadrant
which are closely related to how close any efficient procedure can be to the boundary
after each stage of sampling; Lemmas 2.7 and 2.14 give precise lower bounds on this
distance. Theorems 2.9 and 2.16 then provide converse statements to the optimality
of 0, Sm, showing that any competing procedure must use at least as many stages,
and the sooner it deviates from the “schedules” of Lemmas 2.7 and 2.14, the worse

its performance.

2.1 Procedures for Brownian Motion

Let X (t) be Brownian motion with known drift ¢ > 0 and variance one per unit
time. Define a multistage sampling rule T' to be a sequence of nonnegative random

variables (17,75, ...) such that, for k > 1
Tpor - H{Th+--+ T, <t}e& forallt >0, (2.1)

where & is the class of all random variables determined by {X(s) : s < t}. The
interpretation of (2.1) is that by the time T% = T + - - - + T}, the end of the first &
stages, an observer who knows the values {X(s) : s < T*} also knows the value of
Ti11, the size of the (k + 1)st stage. By a convenient abuse of notation, we will also

let T denote the total sampling time, 7™, where M = inf{m > 1 : X(T™) > a},
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the total number of stages required to cross the boundary a. We will then describe a
multistage sampling procedure by the pair 6 = (T, M'). When there is no confusion as
to which sampling procedure is being used, the shorthand X = X (T%), X, = 0 will
be employed. We will also write T'(a), M (a) when we wish to emphasize the initial
distance to the boundary, a.

Let ¢,d > 0 denote the cost per unit time and cost per stage, respectively, and
consider the problem of finding the multistage sampling procedure (7', M) that min-
imizes

c-ET+d-EM.

Dividing through by ¢, this is seen to be equivalent to minimizing

ET +h - EM, (2.2)

where h = d/c. By Wald’s equation,

ET = EX(T)/p=a/p+ E(X(T) —a)/pn = a/p, (2.3)

so the procedure that minimizes

E(T —a/p)+h-EM (2.4)

also minimizes (2.2), and using (2.4) instead of (2.2) will also lead to a more refined
asymptotic theory.

To describe a procedure that asymptotically minimizes (2.4) to first-order, it suf-
fices to consider sequences {(a, h)} such that a — oco. We are interested in problems
where optimal procedures use a bounded number of stages and it turns out that this
requires

h > a®

for some € > 0. It will turn out that good procedures use m stages (almost always)
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if, as a — oo,
a(1/2)7n (]_Og a)1/2_(1/2)7n << h << a(1/2)m—1 (10g a)l/Q—(l/Q)m—17 (25)

where “<” means asymptotically of smaller order. We therefore define the critical

functions

form =1,2,... and a > 1, with ho(a) = a. An essentially complete description of
how to achieve asymptotic optimality is thus given by showing how to proceed in two

cases. The case defined by (2.5) is called {(a, h)} being in the mth critical band. The

other case is

h ~ Qhy(a)

for some @ € (0,00), which we refer to as {(a,h)} being on the boundary between
critical bands m and m + 1.

It will prove convenient in the sequel to treat h as a function of a. To translate
the above formulation into these terms, let B2, be the class of positive functions h(a)
such that {(a, h(a))} is in the mth critical band (for every sequence of a’s approaching
o0) and let B be the class of positive functions h(a) such that {(a,h(a))} is on the
boundary of critical bands m and m + 1 (for every sequence of a’s approaching o).

That is,

By, = {h:(0,00) = (0,00)] hp <h<hp},
B—i—

{h:(0,00) = (0,00)| h ~ Qh,,, some @Q € (0,00)},

and let B, = B2, UB . Our notation reflects that, as a — oo, the average number of

stages of an efficient procedure approaches

m  ifheB
m+n if he B},



13

h, (@)

’Ls\"ﬁes

y &
1-stage
h(a) 2—-stages
5 or 3 5189S° h,(a)
3-stages 3 or 4 stages hy(@)
—-sta h,@)
a
Figure 1.

where n € (0,1) is a function of lim, .« h(a)/h,(a); see Figure 1. Finally, we define
the risk of a procedure § = (T, M) to be

R(6) = E(T —a/u) + h(a)EM (2.6)

for a given h(a) € B,,, some m > 1. By (2.3), the definition of risk (2.6) is equivalent
to the expectation of a linear combination of the so-called “overshoot,” X(T') — a,
and the number of stages used. Define the Bayes procedure 6* = (T*, M*) to be one
that achieves R* = infs R(4). Dependence on a will usually be suppressed to simplify
notation.

A convenient way of parametrizing stage sizes is by the probability of stopping at

the end of a stage. Thus, for a > 0, p € (0,1), and z, the upper p-quantile of the
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standard normal distribution, let ¢(p,a) be the unique solution of

a— :ut(pa a)

a) = 2. (2.7)

The probability of being across a boundary a units away at the end of a stage of size
t(p,a) is p; in this sense we will refer to the stopping probability of a stage. A simple

computation gives

zpJAap + 22 — 2

2442

t(pva') = a/“_

Letting ® and ¢ denote the standard normal distribution function and density, define

The function A will appear often in calculations of the expected overshoot or under-

shoot of a random process. For example,

E[X(t(p,a)) —a; X (t(p,a)) > a] = /00 P(X(t(p,a)) > x)dxr (integration by parts)

= / ®(—2)/t(p,a)dz (change of variables)

Zp

= A(z)Vt(p,a)

~ Alz)Vafu

as a — oo, provided z, = o(y/a); we will use relations like these below without further

comment.

2.1.1 Geometric Sampling

If (T, M) is the procedure that samples with stopping probability p € (0, 1), constant
across the stages, then T = t(p,a — Xj—1) - 1{Xx-1 < a} and M is a geometric
random variable with mean 1/p. We will thus refer to (7, M) as geometric sampling
with probability p. Although p is constant across the stages, we do allow p to vary

with a, the initial distance to the boundary.
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Not only is geometric sampling an interesting random process in its own right, but
it has also been conjectured that optimal multistage procedures share its stationarity
property. While Theorem 2.9 will show this is not true, geometric sampling will
prove a useful tool in designing the final stages of our optimal procedures in the next
section.
Lemmas 2.1 and 2.2 establish some fundamental upper bounds on the behavior of

geometric sampling.
Lemma 2.1. Letp € (0,1), ¢=1—p, and

A(zg)

0 pttpa) = S a5 - ). (2.9

If (T, M) is geometric sampling with probability p, then

g(a) =

Az _ .
ZA((zZ; ~gla) +p! > k2 g™ (a)g", ifp<1/2
gA(

ET —a/u < ) _ (2.9)
“A(;;) Zkzl g(k)(a)qkq’ if p> 1/2;
where g*¥) denotes the kth iterate of g.
Proof. First we will prove
E(a — XM > k) < g®(a) for all k> 0. (2.10)

The k = 0 case is trivial and we have

Ela— Xpn|M > k+1, X)) = Ella—Xp) = (Xpp1 — Xp)|M >k + 1, Xy

= Alz)Vip,a = Xy)/q
_ A(Zq) (OJ — Xk) _ /ﬂf(pa a— Xk)

qzp
= g(la— Xg).
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g is increasing and concave, so by Jensen’s inequality and the induction hypothesis

E(a— XM >k+1) = E(g(a— Xp)|M >k+1)
< g(E(a— Xg|M > k+1))
= g(E(a— Xg|M > k)) (2.11)

9(g™®(a)) = " (a),

IN

proving (2.10). In (2.11) we use that E(a — Xi|M > k+1) = E(a — Xi|M > k); this
is true since the value of X, and the number of additional stages required to cross
the boundary are independent, as long as X < a.

We now prove (2.9). Let p < 1/2. E(T\|M > 1) = t(p,a) and for k > 2,

E(Ty|M > k) = E(t(p,a— Xp_1)|M >k —1)
< p'Ela— X, 1|M >k—1) (by virtue of p < 1/2)
< ptg*(a)

by (2.10). Using these two relations

m

E(TIM =m) =) E(T:/M=m)=> E(TiM>k)<tlp,a)+pu ") g% ),
k=1 k=1

k=2

since E(Tx|M =m) = E(Tx|M > k) for any m > k as discussed above. Thus

ET = E(E(T|M))
< tpa)+p Y ¢ 'Y g% (a)
m>2 k=2

= t(p,a)+p ! z:g(k)(a)ql’C (by reversing order of summation)
k>1

a/;H—Zi(( )) +u‘1zg

k>2

using the relation between g and ¢(p, ) in (2.8).
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Now let p > 1/2. Then z, < 0 and consequently ¢(p, -) is concave, so using Jensen'’s

inequality and (2.10),

E(T|M >k) = E[t(p.a— Xm1)|M >k —1]

< Up, Bla — Xp_a|M >k — 1)) < t(p, g*(a))

and, as computed above,

— “ _ qA(z _
BT = B < X 0™ 'Y t.g*a)) = afu+ 23S gy,
m>1 k=1 H 1 k>1
again using (2.8) for the final step. [

Lemma 2.2. Let (T, M) be geometric sampling with probability 1/2 < p(a) — 1 and

let Y be an arbitrary random variable. There is a K < oo such that

E(Xuy) =YY >0) < Klzp)| - (VEXY]Y >0)V |zpa)])-

Remark. The lemma will frequently be used in the following form: If Y and p(a) —
1 are such that |z,q)| =0 ( EY|Y > 0)), then

E(Xyy) = Y3V > 0) = O (|5 VEVY >0)).

Proof. Let y > 0 and g be as in Lemma 2.1 with p = p(a) and ¢ = 1 —p. A simple
computation shows that g has a unique positive fixed point y* = A(z,)é(z,)/(1q%)
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E(Xup) —y) = wET(y) —y/u) (Wald’s equation)

X:Q(k)(y)qk_1 (by Lemma 2.1) (2.12)

IN

aA(z,) | it 9@)d ™ = g(y)/p < 29(y) fory >y,
S ytdti =yt /p < 2y* for y <y,
(since g(y) < (y V y*))

< 2. qAA((Zqu)) (9(y) V). (2.13)

IN

Now

\Jdyp + 22— 2 < 20/yp+ 2|z <Ay z]) < Ki(VyVizl)

with Ky =4(y/1tV 1). Also, A(z,) ~ |2, as p — 1, so

QAA((ZZ;;) gly) = A;;P)(\/m— 2p) < Kolzp| (VY V |2]),

with Ky = 3K, /(4p) < oo, say. Also,

qA('Zp) o qA(Zp) ) A(Zq)¢<zp> _ A(Zp)¢(zp>
Az) 1T AE) e e
2|0 (2p)

qu

z
~ 2 (since §(z) ~ qlzy] as p — 1)
7

K|zl (Vy v |2)),

)

IN

with K3 = pu~!. Plugging these estimates into (2.13), we have

E(Xuw) —y) < Klzl(VyVizl)
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for all y > 0 with K = 3max K, say, and thus

E(Xyup) —Y[Y >0) < Kl|g|[[E(WVY[Y >0)V |z

Klz|(VEYY > 0) Vz)),

IN

where this last step uses Jensen’s inequality since the square root is concave. Il

2.1.2 'TheﬁProceduresdm/and.&n

In this section we define two families of procedures, §,, and 5m, and prove some
properties which will later be used to prove them first-order optimal under different
assumptions about i - namely, 9,, is optimal when h € B, and Om 18 optimal when
h € B}.

Given any positive function h, define d;(h) to be geometric sampling with probabil-
ity p!)(a), where pt) : (0,00) — (0, 1) is any function satisfying 0 < ¢ < p®(a) — 1
as a — oo in such a way that z,u, = o(h(a)/y/a). (The choice of pM(a) will not
be reflected in the notation). For m = 1,2,..., define §,,1(h) to have first stage
stopping probability ®(—+/log(a/h?(a) + 1)), followed (if necessary) by d,,(ho f1),

where f(z) = (2//p)/xlog(z +1).

Given a constant p € (0,1), define 6;(p) to have first stage stopping probabil-

ity p, followed (if necessary) by geometric sampling with probability p(*)(a), where

P 1 (0,00) — (0,1) is any function satisfying 0 < ¢ < pM(a) — 1 as a — oo in such

a way that z;1) ) = o(a'/*). (Again, the choice of p)(a) will be suppressed in nota-

tion). Define d,,41(p) to have first stage stopping probability ®(—/(1—2"m)loga),
followed (if necessary) by 6,,(p). Note that the value of the constant p is “passed
through” for m > 1 in the sense that the mth stage of 6,,(p) begins é,(p), unless of
course the boundary is crossed during the first m — 1 stages.

The next two propositions establish the operating characteristics of 6,, and Orm.

Proposition 2.3. Let m be a positive integer and h € BS,. If (T™, M) = §,,(h),
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then, as a — o0,

E(T™ —a/p) = o(h(a)), (2.14)
EM™ — m. (2.15)

Remark. The restriction h = o(hg) in the m = 1 case is a device that simplifies
the proof but is unnecessary in the sense that if ho(a) = a = O(h(a)) then, for
suitably chosen h(a) = o(a), the proposition ensures EM® — 1 and E(TM —a/p) =
o(h(a)) = o(h(a)) for (TM, MDY = 5 (h).

Proof. We prove a slightly stronger statement by induction on m. In addition to

(2.14) and (2.15), we show that if 0 < b < oo, then

sup B(T™ —a/p) < oo, (2.16)
a<b
sup EM™ < oo. (2.17)
a<b

Also, without loss of generality we assume h is non-decreasing. Otherwise, we could
replace h(a) by h(a) = inf,>, h(z) in what follows, since h is non-decreasing and
bounded above by h.

The procedure 6, (h) is geometric sampling with probability p™ (a) — 1. If h € B?,
then h(a) = o(a) whence z,0) = o(h(a)//a) = o(y/a), and so Lemma 2.2 with Wald’s

equation show that

E(TY — a/p) = E(Xy — )i = Oz |Va) = o((h(a)/v/a) - Va) = o(h(a)),

as well as that (2.16) holds for m = 1. The relation EM™ = 1/p("(a) implies (2.15)
and (2.17) for m = 1.

Now assume h € B2, ; and let (T Mm+Dy =5, (h). Let 2z = y/log(a/h%(a
and p; = ®(—z1). Obviously lim, o h(f 1 (a))/hm(a) = lim,_.o h(a)/hy,(f(a)) and,

+1)
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using the definitions of h,, and f,

hn(f(a)) = O((aloga)?™" (log(aloga))/>~1/A™)

= 0" (loga)/*" ") = Olhi1(a) = o(h(a)). (2.18)

Thus hy,(a) = o(h(f~'(a))) and a similar argument gives h(f~(a)) = o(hn,_1(a)),
so that h o f~' € B°. Then, by the induction hypothesis, (2.14)-(2.17) hold with
(T M) = §,,(ho f~'). Now

EM(m+1)(a) -1 +E(M(m)(a—X1);X1 < a)

and so (2.17) holds for m + 1 since it holds for m. Further, using the induction
hypothesis and letting C' = (2,/p)"', Y = a — Xq,

EM™(a) = 1+ EBEM™(Y);Y > Cziva) + E(M™(Y);0 <Y < Cz+/a)
= 1+m(l+0(1)P(Y > Czva)+O(1)P(0 <Y < Czva)

= (m—+1)+o(1),
since

P(O <Y < 021\/5) < P(Y < 021\/5)
< 1_d <a — pt(p1,a) — Czl\/a)
t(p1,0a)
= 1—®(z — Car/u(1+0(1))) (by (2.7) and since \/t(p1,a) ~ v/a/u)

< 1—®(z/4) — 0. (2.19)

Next we estimate E(T) —a/pu). Let C' = 2/,/fi. Using Wald’s equation and
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the definition of 6,1,

pE(TTY —a/p) = E(X om0 — a)

= BE(Xpymen —a; M™ = 1) + B(X oy — VY > C'21v/a)
+E(X promyy — Y0 <Y < C'z1V/a)
Ai(a) + Az(a) + As(a),

and to show that (2.14) and (2.16) hold for m + 1 it suffices to show the A; satisfy
the same bounds for i = 1,2,3. We have

Ai(a) = E(X)—a;X)>a)=A(z1)Vt(p1,a)
~ (¢(=1)/2)Va/p (since A(z) ~ ¢(2) /2% as z — o0)
= O(h(a)/21) = o(h(a)).

Also, the existence of the first moment of X; implies A;(a) is bounded for bounded
values of a.

Let ¢o(y) = E(Xpom ) — ) for y > 0. By the induction hypothesis

e(y) = olh(f'(y) asy— oo, (2:20)

sup p(y) < oo forall yy < 0. (2.21)
y<yo

By a routine computation, E(Y;Y > C'z14/a) = O(¢(z1)y/a) = O(h(a)). Let K < oo
be such that E(Y;Y > C'z14y/a) < Kh(a) for large a. Let ¢ > 0. Using (2.20), we

have

p(y) = o(h(f (1)) = o(hm-1(y)) = o(y), (2.22)

since the m = 1 case is the largest, asymptotically. Thus assume a is large enough so
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that p(y) < (¢/K)y when y > C’'z1y/a. Then

As(a) = E(p(Y);Y > C'zva) < (e/K)E(Y;Y > C'z1\/a)
< (¢/K)Kh(a) = eh(a),

showing As(a) = o(h(a)). Also, (2.21) and (2.22) imply that there are constants
(', a; such that
AQ(CL) < Cl -+ E(Y,Y > al)

for all a, and the latter is finite for bounded values of a by the same argument used
on A;(a).
The condition (2.21) implies Az(a) = E(o(Y);0 <Y < (’'z14/a) is bounded for

bounded values of a, so to show As(a) = o(h(a)) it suffices to show
Az(a) = E(p(Y);a0 <Y < C'z1y/a) = o(h(a)),
for any constant ag. Let € > 0 and choose ay such that

o(y) <eh(f'(y)) for y > ao, (2.23)

by virtue of (2.20). Now h and f~' are both non-decreasing, so h o f~! is non-

decreasing also, and since C'z14/a < f(a) we have

Ay(a) < eh(fH(C'21v/@)Plag < Y < C'z1/a) < eh(f(f(a))) = eha),

showing Az(a) = o(h(a)). O

Before proving bounds on the operating characteristics of Om in Proposition 2.5,
we introduce the following positive constants and prove a property of them in Lemma

2.4. For m > 1 define

m—1
Ky = /{m(ﬂ _ —2+ (1/2)™ H 1/2 m 1—i (1/2)m—1](1/2)1+1. (224)
i=1
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Lemma 2.4. Form > 1, as a — o0

Proof.

log(fm1/kim) =

Fomhm (\/ (1 = 27) /1 alog @) ~ K y1hmsa(a).

~(1/27" og i+ Y (1/2) ogl(1/2) — (1/2)"]
= (1/2) logl(1/2)" " — (12

3

(2

m—1
= —(1/2)™ " log u + (1/2)™*  log[1 — > (1/2)" log 2
=1

= (1/2)"og(1—27")/u+ (1/2 = (1/2)" )1075(1/2)

On the other hand, letting @’ = /(1 —2-™)/u - aloga,

log(hm(a’)/hm+1(a)) = (1/2)"loga’ + (1/2 — (1/2)™)loglogd’

so that hy,(a")/hmii(a) = Kpme1/Em.

—(1/2)™ loga — (1/2 — (1/2)™ ) loglog a
= (1/2)"log(1 — (1/2)™)/u + log a + log log a]
+(1/2 = (1/2)™)[log(1/2) + loglog a + o(1)]
—(1/2)" " loga — (1/2 — (1/2)™" ) loglog a
= (1/2™ M log(1 —27™)/pu+ (1/2 — (1/2)™) log(1/2) + o(1)

= log(Kmpr/fim) +0(1)

We will use the notation f < g for f < (1+0(1))-g.

Proposition 2.5. Let m > 1 and p € (0,1) a constant. If (T M) = §,.(p),
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then, as a — o0,

E(T(m)—a/,u) S A(zp)Emhm(a), (2.25)

EM™ — m+1—p. (2.26)

Proof. Asin the proof of the previous proposition, we prove a slightly stronger claim

by induction. In addition to (2.25) and (2.26), we show that if 0 < b < oo, then

sup B(T™ —a/p) < oo (2.27)
a<b
sup EM™ < oo. (2.28)
a<b

Let (TM, M®) = §,(p). By Wald’s equation we have

pBE(TY —a/p) = BE(X;—a; MY =1)+ E(Xy0 —a; MY > 1)  (2.29)

= A(z)Va/p(1+0(1) + BE(X 0 —a; MY > 1), (2.30)

Letting (7", M") be the geometric sampling with probability p(")(a) that follows the
first stage of o1 (p), Lemma 2.2 implies that

EXym —a; MY >1) = E(Xppxy) — (@a—X1); X1 < a)

< Klzm|VE(@—Xi|X: <a) (K <oo) (2.31)

= O(\zﬁ(1>]a1/4) = o(va). (2.32)
Substituting (2.32) into (2.30) gives
E(TY — a/p) = Alz)p~*Va+ o(va) = A(z)riha(a) + o(hi(a)),

while (2.29) and (2.31) show that E(T™ —a/u) is bounded for bounded values of a.
The relation EM® = 14 (1 —p)/py — 2 — p establishes (2.26) and (2.28) for m = 1.
Fix m > 1 and let (T, M0y = §, 1 (p). Also let 2z, = /(1 — 2=m)loga,
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p1 = P(—21), and suppose £ > 0. We have
pBE(T™Y —a/p) = B(Xy — a; MY = 1) + B(X e — a; MY > 1) (2.33)
and

E(X, —a; M™ =1) = A(z,)/t(p,a) ~ O(Vag(z1)/23) (2.34)
= O(a/»" /zf) = 0(hpms1(a)), (2.35)

by substituting the value of z;. Thus we can assume a is large enough so that
E(X) —a; M™) = 1) < eA(2)) i fihme (a). (2.36)

For y > 0 define ¢(y) = E(Xyem () — y). By the induction hypothesis and Wald’s

equation there are constants Cf,y; such that

oly) < Cy, f0<y<uwu
N A(zp)mpthm(y) (L +¢€), if y1 <y.

Then, letting Y = a — X7,

E(Xppomsny — a; M™ > 1) = B(p(Y); Y > 0)

<GP <y) + Alz)hmp(1 + ) E(hn (Y)Y > 1), (2.37)

Note that h,, is concave and satisfies h,,(a 4+ o(a)) ~ h,,(a) as a — oo. Routine

computations give

PY >uy) — 1 and E(Y;Y >uy) ~ z1n/a/p (2.38)
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as a — 00, so, by Jensen’s inequality,

EmE(hm(Y);Y >y1) < kP > y1)hn(E(YY > y1)) (2.39)
Kmhm (21 \/a/_:“) ~ Kmy1hmi1(a),

this last by Lemma 2.4. Thus assume a is large enough so that

’%mE<hm(Y>a Y > yl) S (1 + 5)’%m+1hm+1(a)7

CiP(Y <y1) < eA(z)kmiipthmii(a).
Plugging these estimates into (2.37) and combining with (2.36) gives

BT —afu) < [e+e+ (1+)2AGE) Antihmii(a)

< (14 56)A(2p) Emt1hima(a).

Since € was arbitrary, this shows that (2.25) holds for m+1. For bounded intervals of
a, the equality in (2.34) shows E(X ;(m+1)—a; M™+D = 1) is bounded while (2.37) and
(2.39) show E(X s+ —a; M) > 1) is also bounded, and hence E(T™*Y —a/pu)
is bounded.

Let ¥(y) = EM™)(y) for y > 0 and let £ > 0. By the induction hypothesis there

are positive constants Cy, 1o such that

P(y) < Cy if 0<y <y,

[W(y) —(m+1-p)<e/3 if y2<y.
As with the first part of (2.38), P(Y < y2) — 0. So assume a is large enough so that

P(Y <) < (¢/3)min{(m +1—p)~ ", C;'}.
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Then

|EM™Y) — (m 42 — )]
=1+ E@Y);0<Y <y) + E@Y);Y >y2) — (m+2—p)|
SE(YY)=(m+1=p)Y >uy)+CoPY <yo) +(m+1—-p)P(Y <yp)

<e/3+¢/3+¢/3. (2.40)

This shows that EM ™) — m + 2 — p and (2.40), with the induction hypothesis,
shows that £M ™1 is bounded for bounded values of a. m

2.1.3 Optimality of ¢,, and 5m

For a > y* > 0 define F,(a) = y/alog(a/y?). If h is a positive function, then for a
such that h?(a) < a define

k
Fyh (@) = FF (@) y—n(a).

Note that h(-) is not iterated, e.g. Fjrs)(a) = Fi)(Fh(a)(@)) # Fa(ry (@) Fha) (@))-
The next lemma shows that, when h € B,,, square roots of the iterates F ,E?Ll_)l)(a)

are roughly constant multiples of the critical functions hy. The constants themselves

are given by the solutions of the following recurrence relation. For 1 < k < m define

C}' to be the unique solution of

Gty = VO - (/2" = (/2% o =1 (2.41)

After taking logarithms, solving (2.41) amounts to solving a difference equation. This
computation gives

k—1

o =] /2 - a2, (2.42)

=1
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where it is understood that an empty product equals 1. Note also that

fom = (1/p)>~ 12" Cm, (2.43)
Lemma 2.6. If h € B}, then
F}Efa_)l)(a) ~ Cl'hi(a) asa— oo, for 1 <k <m. (2.44)
If h € By, then
Fi (0)
crt < SO asa— oo, for 1 <k <m. (2.45)

~ hk(a) ~ 'k

Proof. Let F* denote F}Eg)(a). First we prove (2.44) by induction on k. For k = 1,

VFO = \a=1-ya=C"-hifa).

Now assume 2 < k+ 1 < m, VFI ~ Cl"hi(a), and let Q = limh/h,, € (0,00).
Observe that

a(1/2)k71 <log a)l_(1/2)k71
a72™ 7 (log @)1~ 1/27 T

~ [(1/2)F 1 —(1/2)™ Y loga, (2.46)
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VFF = {F*log(F*'/h(a)?)}
~ (O hi(a))?(1/2)F 1 = (1/2)™ loga} !
= /O - " (log a) AR (1/2)R1 — (17214 (log @)/
— VO 112 = (1/2)" Y ey (a)
= O hpa(a), (2.47)
by (2.41).

Next we prove (2.45) by induction on k. The k = 1 case is again easy since

1/F’O
Cpl=S =0 =1

for any m > 2. Now assume 2 < k + 1 < m and that (2.45) holds for k. Then, since
hm < h < hmfh

log (f(—>) Stog (CEBO) ~ (/2 - 2y hoga

by the same argument leading to (2.46). Then, by repeating the argument leading to
(2.47) with < in place of ~,

VRS VO 1(1/2) = (1/2)" i (a) = Oy (a),

by (2.41). The other bound is similar:

o8 (1) 2 1 (Y a2 = 1/ g

and so

VEEZ A\ [(1/2) = (1/2)" i (a) = CF i (a),
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by replacing m by m — 1 in (2.47) and (2.41). O

The next lemma establishes a lower bound on how close any efficient procedure

can be to the boundary after each of the first m — 1 stages when h € B,,.

Lemma 2.7. Assume that h € B,,. If § = (T, M) is any procedure such that R(0) =
O(h(a)), then

a — Xk
- k
(1/p) =2 Fy) (a)

> 1 in probability as a — oo (2.48)

fork=0,1,...,m—1.

Proof. Let Gi(a) = (1/u)1_27kFé8) (a). Given € > 0, let

Vk = {a — Xk > (1 — €)Gk(CL)}
The k = 0 case is trivial since (2.48) is equivalent to @ > a. Fix 1 < k < m and
assume that P(Vj_;) — 1. Let

a— Xp_1— pdk

Gk = T

Note that

h(a)* = o(hn-1(a)®) (h€By)

(Pm
(F“" ?(a)) (by Lemma 2.6)
(
(

I
S

Gm—2(a))
= 0o(Gg_1(a))

Il
S

since k — 1 < m — 2. Thus Gj_;/h* — oo and so does log(G}._1/h*). With this, we

claim

P(¢. > \/log(Gr_1(a)/h%(a)) — 1|Vi_1) — 1. (2.49)

Let ((a) = y/log(Gg_1(a)/h%(a)) — 1 and U = {{x < C(a)}. If (2.49) were to fail
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there would be a constant n > 0 and a sequence of a’s approaching oo on which

P(U|Vk-1) > n. Then

uR(0) > pE(T —afp) = E(Xy —a) > E[(Xy — a){M = k}:U N V]

= A(G)VH(@ — Xp1); U N Vi) (2.50)

The function inside the expectation in (2.50) is decreasing in both (;, and Xj_1, hence

pR(65) a))\/t(® (1—¢)Gr_1(a)) - P(UNV,_1). (2.51)

By assumption, P(U|Vj_1) > n and P(Vj_1) — 1, so

P(UNVj_1) > n/2, (2.52)
say, for large enough a. Also
WA=, (1= G ~ 25 DT = Gl
" exp<¢log<Gk71<a>/h2<a>> I
SRV ety ) BT
= h(a)/o(1). (2.53)

Plugging (2.52) and (2.53) into (2.51) gives h(a) = o(R(J)), which contradicts our
assumption that R(0) = O(h(a)). Hence, (2.49) must hold. Then

P(Vk’U/ﬁ kal) = P(&—Xk 2 (1 — e)Gk(a)|U’ﬂ kal)
_p ( (Xk — kal) — ,U,Tk < a — kal — (1 — e)Gk(a) — ,U,Tk
VT - VT

U'n V,H) )

(2.54)
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On Vi_1,
a— Xg-1— (1 —¢)Gg(a) — pTy G 2u(1 — €)Gi(a)
VT ViAp(a — Xi1) + G — G
> G- 2u(1 — e)Gy(a)
- VAl =e)Groa(a) + G = ¢
which is increasing in (. Hence, on U’,
B 2u(1 — €)Gi(a) B 2u(1 — €)G(a)
Gk > > ((a)
VAL = e)Gror(a) + G — G VAL = €)Gr-i(a) + ¢2(a) — ((a)
= () - IOy 4 o)

VA=) (a)
= ¢(a) — /(1 — &) log(F{f " () /h2(a))(1 + o(1)
~ (1= VT —2)y/10g(Gr1(a) /12(a)) = y(a) — oo.

Substituting this back into (2.54) gives
P(VelU'NVier) 2 1= [1(a)/2]7* — 1

by Chebyshev’s inequality. Thus P(Vy) > P(Vi|U' N Vi_1)P(U' N Vi—1) — 1 since
P(U'NVj_1) — 1 by the induction hypothesis and (2.49), finishing the induction and

proving the lemma. 0

Next we prove the optimality of d,, and Om.

Theorem 2.8. If h € BY,, then
R(6,(h)) ~ mh(a) ~ R*. (2.55)
If h € By, then

h(a) ~ R, (2.56)
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where Q = lim,_,o h(a)/hm(a) € (0,00) and p* is the unique solution of the equation

Proof. Assume that h € BY,. Proposition 2.3 implies R(d,,(h)) ~ mh(a). By the
Bayes property, R* < R(d,,(h)) = O(h) and so Lemma 2.7 applies to ¢*. Then,

letting X' denote the d*-sampled process,

R*

vV
>
S
&5
S

Y
>

v
>

amP (o= X5, = (1/21/w)' " EE Y @)

~ R(om(h)) = R,

proving (2.55).
If h € B, with h(a)/hm(a) — Q € (0,00), then Proposition 2.5 shows that

R(0m(p*)) S A(Zp*)’{mhm(a) + (m+1—p*)h(a)

~ [A(zp ) /Q +m + 1 —p*|h(a).

~

Again R* < R(,,(p*)) = O(h(a)), so Lemma 2.7 applies and we have

% _9—(m—1) m—
Pla—X; > 1=/ 2" "E V() — 1

for any & > 0. Fix such an e. Let (7*™) M*(™)) denote the continuation of §* after

the (m — 1)st stage, i.e.,

MM M — ({M* > 1} + -+ 1 {M* > m —1}),

THm) T — (T 4 -+ T5 ).
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For y > 0 define

o(y) = Elp (Xppom — ) + ha)M* ™l — X7, = y].
We will show below that ¢(y) is non-decreasing in y. Let

_9—(m—1) m—
Wa) = (=) 1/ " R ),
We now compute a lower bound for ¢(v(a)). Letting

p=PM"™ =1la—X;_; =7(a)),

p E(X e — (a = X ))]a — X7y = y(a))
> E[(X e — (@ — XJ ) H{M* ™ =1} a — X7, = y(a)]
= 1 A(z)V/t(p,7(a))
n A (z) VA (a) /1
- u*A(W( —e)(1/up " i Va)
( )\/ﬁ (1/p)* 2 "C"hyp(a) (by Lemma 2.6)

/T3,

(2.57)

this last by (2.43) and h ~ Qh,,. Also, E(M*"™)|a — (a)) > 2 —p, and

ml_

combining this with (2.57) gives

Azp)himy/ (1~ ¢)

0 +(2=p)| Ma)(1+o(1)).

p(v(a)) =
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Letting Y =a — X

m—

Land V ={Y > v(a)}, we have

R = Bl (Xar —a) + h(a) M)
> Bl (Xygeom — Y) + h(a)(m — 1+ M“™); V]
— B(p(Y): V) + (m — Dh(a)P(V)
> p(y(a))P(V)+ (m —1)h(a)P(V) (¢ non-decreasing)
> |2 V=) )| i), (2.58)

Q

Using calculus, it can be shown that the expression in brackets in (2.58) achieves its

unique minimum when p = p*(¢), the unique solution of

Thus,

D m 41— ()| h(a)(1+ o(1)).

This holds for all € > 0, so by a standard asymptotic technique (e.g., [6], p. 188),
there is a sequence ¢, — 0 for which it holds. Moreover, p*(¢,) — p*(0) = p*, which
proves (2.56).

Finally, we show that ¢(-) is non-decreasing. Fix a > 0 and let 0 < y < ¢/.
Let (70 M'™) denote the continuation of 6* after the (m — 1)st stage that uses
the same stopping probability at each stage as (7™ M*(™) when starting from
a— X 1 =1v". Then

EM"™a— X5 =y) = E(M™|a- X} =y) (2.59)

m

and, letting

pr=PM"™ =1la— X ,=9)=PM™ =1la— X, _, =1),
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E[(Xppen —y){M'™ =1}a = X} = y] = A(z,)V/t(p1, y)
< Az )VEpLy) W <Yy)
= E[(Xppeom — )M =1}a — X7, =],

Similar arguments inductionly give
E[(Xppm=y) H{M'™ > 1}a—X}, ) = y] < B[(Xypom—y)HM™ > 1}a—X;,_, =y,

and these last two bounds show

EXypom —yla— X5 =y) < E(Xpypee —Yla— X5 =y). (2.60)
Then
py) < Elp (Xypm — ) + h@)M™|a— X,y =y] (optimality of (T, M*™))
< Bl Y Xypom — o) +ha) M ™]a — X* | =4'] (by (2.59) and (2.60))
= (¥,
finishing the proof. O

The final theorem of this section is a converse to Theorem 2.8, showing that good
procedures must behave like d,,, Om in O only the sense that m stages are necessary
when h € B,,, but also that the sooner a procedure deviates from the “schedule” of

Lemma 2.7, the worse its performance.

Theorem 2.9. Assume that h € B,, and let

Sm(h), ifh e B,

6m = ~
om(p*), if h € B}.

If 6 = (T, M) is a procedure such that there is a sequence a; — oo with

Pla; — X, < (1 — 5)(1/u)1_27kF}58i)(ai)) bounded below 1 (2.61)
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for some 1 < k <m and ¢ > 0, then there is C > 0 such that
R(6) — R(61n) > C - hy(a;) — o0, (2.62)

where k* is the smallest k for which (2.61) holds. In particular, (2.62) holds if
P(M >m) 4 1.

Proof. Let V, = {a — X} < (1 — 5)(1/u)1*27kF,§8) (a)}. By arguments of the type

used in the proof of Lemma 2.7, there is an n > 0 such that

R(G) > p ' B(Xy - a)
> u'BE(Xy —ai {M =k} N0 Vi)
> Al (1 — &)1/ 2 FE T (a,) -
> O\E{(T (@) > Clhie(as),

for appropriately chosen C,C” > 0, where this last inequality uses Lemma 2.6. By
Theorem 2.8, R(6,,) = O(h(a)) = o(hg+(a)) since k* < m, proving (2.62). If P(V}) —
1 for all 1 <k < m, then P(M >m) > P(V,,_1) — 1, proving the second assertion.

O

2.2 Procedures for i.i.d. Random Variables

In this section we extend the sampling procedures and techniques of the first half of
this chapter to procedures for discrete, i.i.d. data. Specifically, let X, X5, ... be i.i.d.
from a distribution whose characteristic function is analytic in some neighborhood of
the origin. For example, the one-parameter exponential family considered in Chapters
3 and 4 satisfies this requirement. Assume the common mean p is positive and, since
the problem is not changed by multiplying the X; and the boundary a > 0 by a
positive constant, we assume without loss of generality that VarX; = 1.

Define a multistage stopping rule N to be a sequence of non-negative integer valued
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random variables (N, N, ...) such that
N1 - {N1+---+ Ny=n}eé&, foraln>1, (2.63)

where &, is the class of all random variables determined by Xi,...,X,. By anal-
ogy with the continuous case in Section 2.1, the interpretation of the measurability
requirement (2.63) is that by the time N* = N; + --- + N, the end of the first k
stages, an observer who knows the values X7, ..., Xyr also knows N1, the size of
the (k + 1)st stage. We will also let N denote the total sample size, N, where
M =inf{m > 1: X3+ -+ Xym > a}. We will denote a (discrete) multistage
sampling procedure by the pair 6 = (N, M). When there is no confusion as to which
sampling procedure is being used, the simplifying notation S, = X; + -+ + Xy»,
So = 0 will be employed. We will write N(a), M (a) when we wish to emphasize the
initial distance to the boundary, a. Given a positive function h, we again define the

risk of a procedure § = (N, M) to be
R(0) = E(N —a/u) + h(a)EM

and the Bayes procedure 0* = (N*, M*) to be that which achieves R* = infs R(J).
(We shall continue to suppress the dependence on @ in notation.) We define the
problem analogously as for Brownian motion: to sample X, X5, ... in stages until
Sk > a, with the aim of minimizing the risk.

The procedures of the previous section were designed around the principle of
comparing expected overshoot over the boundary, often in the large deviation range,
with the ratio of cost per stage to cost per unit sample. To use these ideas on
discrete data, we need a way of estimating the expected overshoot of a sum of random
variables. Let X, = X; +---+ X,, and {a,} an arbitrary sequence. If the X; are i.i.d.

N(p,1) then it is a simple computation to show

E(En_anazn>an):\/ﬁA(%)a



where

Since the distribution of (X, — nu)/+/n approaches the standard normal distribution

as n gets large even if the X; are not normals, then one might conjecture that

Ap — N

vn

E(X, — a2, > ay) N\/E-A( H) as n — 0o (2.64)

as long as the boundary a,, is not too far in the tail of the sum’s distribution. The
next lemma gives general conditions under which this is true.

Lemma 2.10. If a,, is such that

an —n an —n
lim F e (—00,00) or n'/f> L NS

SN NG

as n — oo, then (2.64) holds.

The idea of the proof is to approximate the distribution of ¥, by the normal
distribution in the large deviations range of the tail and use a cruder bound, based

on Schwarz’ inequality, for the remaining tail.

Proof. Let T,, = (X, — nu)/+/n and b, = (a, — nu)/y/n. Then
E(X, —an; 3, > a,) = VnE(T, — by; T, > b,) = /n P(T, > z)dz,

bn

using the familiar “integration by parts” formula
EY;Y >y =yPY >y)+ /OO P(Y > x)dx, (2.65)
y
which holds whenever EY exists. Hence to show that (2.64) holds it suffices to show
/OO P(T, > x)dz ~ A(by).
bn

First assume b,, — oo such that b, = o(n'/%). Choose ¢, — oo such that b, +¢ <
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cn = 0o(n'/%), some ¢ > 0. Observe that

P(cn) b2 P(cn)
" o(by)
= b exp[—c,/2+0;/2]

= bi exp[—(1/2)(cn — bn)(cn + by)]
b2 exp|—(g/2)(c, + bn)] — 0. (2.66)

(since A(x) ~ ¢(x)/x? as x — o0)

IN

Write
/ P(T, > z)dxr = / P(T, > z)dx +/ P(T, > z)dx.
bn bn Cn

By Theorem XVI.7.1 of [10], P(T,, > z) ~ ®(—x) for large x satisfying x = o(n'/%).
Thus

/b " P(T, > ) ~ /b " B(—a)dr = Alby) — Alen) ~ Alby), (2.67)
since A(c,) < é(cn) = o(A(by)) by (2.66). For the other term,
/oo P(T, > x)dx = E(T,,; T,, > ¢,) — co P(T), > ¢3) (2.68)
by (2.65) and, using Mills’ ratio and (2.66),
cnP(T, > ¢n) ~ cn®(—cy,) ~ ¢(cn) = o(A(by)).
The other piece is

E(T,;T, >c,) = E(T,{T,> c,})

< /ET2-E1{T, > c,}? (Schwarz inequality)

= V1-P(T, > c,) (2.69)
~ D(—cp)
~ P(cn)/cn
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by an argument like that leading to (2.66), replacing c2/2 by ¢? /4. These last two
estimates give f;o P(T, > x)dx = o(A(b,)) and combining this with (2.67) gives
fbio P(T,, > x)dx ~ A(by,), finishing the proof of this case.

Now assume b,, — b € (—o0,00). Suppose € > 0; we will show

/ P(T, > z)de — A(by)| < =
bn

for large n. Since A(V'), O'P(T,, > V'), and \/P(T,, > V') all approach 0 as b’ — oo,
we can choose O > b such that all these are less than /4 when n is at least some

arbitrary, fixed n,. First write

oo b 0o
/ P(T,, > z)dx = / P(T,, > x)dx +/ P(T,, > x)dz.
bn bn v

Using the Berry-Esseen Theorem,

/b P(T, > 2)de = [1+O0(1/v/m)] /b B(—)dz
= [1+0(1/vn)][A(bn) — A(V)]

and so

/b " P(T, > a)de — Ay)| < AW+ O(L/VA)[AR,) - A®)

< e/d+0(1/v/n) - O(1)

< g/d+e/d=¢/2 (2.70)
for sufficiently large n. Then
0 v’ ()
/ P(T, > z)dx — A(b,)| < P(T, > x)dz — A(b,)| + / P(T, > x)dx
by v

bn
< 2/24 E(Ty: T, > V) + VP(T, > V) (by (2.70) and (2.68))

e/2+\/P(T, >V)+¢c/4 (by (2.69))
ef24+¢c/d+e/d=c¢,

VAN

IN
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finishing the proof. O]

Recall our definition

zp\/Aap + 22 — 27

t(pa a) - CL//,L -
242
as the unique solution of
a—pt(p,a) _
= 2,
t(p,a)

so that the probability of Brownian motion being across a boundary a units away
at the end of a stage of size t(p,a) is p. Recall also that geometric sampling is
defined as sampling so that this stopping probability is constant across the stages.
We now extend this definition to discrete, possibly non-Gaussian data as follows.
Define (discrete) geometric sampling with probability p to be the procedure (N, M)
such that

N,

[t(p,a — Sk—1)|1{Sk-1 < a}, k=>1
M

inf{m >1:85,, > a}.

Note that when the X; are not Gaussian, we do not know a priori that the true
stopping probability is close to p, nor that M behaves like a geometric random variable
in any sense. However, we will see that both of these are true below by the Central
Limit Theorem and large deviations theory. Our next lemma establishes upper bounds

on discrete geometric sampling when the stopping probability approaches 1 as a — oo.

Lemma 2.11. Let (N, M) be discrete geometric sampling with probability p(a). There
is a constant p, € (1/2,1) such that if p(a) > p, and p(a) — 1 as a — oo, then

EN —a/p S |zp@lVa/u’? (2.71)
EM — 1 (2.72)
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and

sup EN —a/p < oo (2.73)
a<b
sup EM < o0 (2.74)
a<b

for any b < oco.

Proof. First we prove the statements regarding EM. Let p > 1/2, z > 0, X, =
X1+ -+ X, and n(p,x) = [t(p,x)]. Write

’P(En(pyx) < l‘) — (1 —p)‘ S

af—un(p,x))‘

P(En(p@) < CL’) —®
n(p, )

(2.75)
(s — o (22 n) )|
n(p,x)
By the Berry-Esseen Theorem there is a constant C such that
P(Spipay <7) — @ | 2= pnp o) V| o G (2.76)
n(p, v) n(p, )

Since n(p,z) > t(p, x) we have

x — un(p, ) <= pt(p, ) _
n(p7 l‘) B t(p,I)

Then, using the inequality

P(z) — @(y) < d(z)(z —y) fory <z <0,
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x — pn(p, )
- o(s) - (- ) )
_x—pn(p, )
n(p, )
oz —p(t(p,x) +1)
t(p,x) + 1

B(z) — B x—uMn@)
) n(p, )

< 9(2) |2

< P(zp) |2 (since n(p,z) < t(p,z) + 1)

oz — pt(p,x) t(p, ) p

Vinn)  Vipn +1 o ip e +1
— (s ; W/t ) p
= =) _p<1 t(p,:v)+1)+ t(px)+ 1|

Since t(p,x) — oo as p — 1 and

= (%) |2

t(pr) < 1 ) :0(1/\/75(177733))7

tp,x) +1 ~ 2t(p,x

from (2.77) we get that there is Cy < 00, p, € (1/2,1) such that

@@w_¢<%ﬂm@wg'§@ ¢ (2p)

n(p, ) n(p, )

for p > p,. Combining (2.76) and (2.78) into (2.75), we have

P(Zn(pjz) < ZE) <l-—p+ (01 + CQ)

some C3 < 00, since \/n(p,z) > \/t(p,z) > |2,|/(21). Then

P(M >k + HM > k) = P(En(pﬂ_gk) <a-— Sk\a — S, > 0)
¢ (2p)

S 1_p+03 ‘Z'
P

Plugging p = p(a) into this and assuming a is large enough so that

1 —p(a) + C;;—gb(zﬂd)) <1/2,

|Zp(a) |

(2.77)

(2.78)

(2.79)

(2.80)
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we have P(M >k +1|M > k) < 1/2 for all k£ > 1, and hence

PM>k) = P(M>kM>k—1)---P(M>2|M>1)P(M > 1)

< (1/2)*'P(M > 1).
This gives
EM=1+PM>1)+PM>2)+---<14+2P(M >1) — 1 (2.81)

as a — oo since, by (2.79),

D (2p(a))

P(M>1)<1-p(a)+Cs oo ]
pla

— 0,

proving (2.72). If we choose p, large enough so that (2.80) holds for all a > 0, then
(2.81) shows that EM < 3 for all a > 0, proving (2.74).

Next we estimate EN. Let p = p(a). We have Ny = n(p,a) < t(p,a)+ 1. For Ny,
consider E(a — $|S) < a). Let S} = SN (21 — X;) and @’ = 2N, — a. Note that
2 — X1,2 — Xo, ... are i.i.d. with mean p and variance 1, and

Go= TN IO ) o(1) = ofa')

vhM o VN

Hence Lemma 2.10 applies and
E(a— 51|51 <a) = E(S] —d'|S] > d') ~ /N A()/P(—Ca),

using P(S] > a') ~ ®(—(,) by large deviations. Since (, ~ |z,| and /Ny ~ \/a/u,

this shows

E(a— 8151 < a) ~ V/a/uA(21-)/(1 = p).
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Now let k& > 2. Since t(p, -) is increasing and concave,

E(Ny; M = k) = E(N3|M = k)P(M = k)

IA

Elt(p,a — S)) + 1|M = k|P(M = k)
< [t(p, Ela — Si|M = k]) + 1]P(M = k)

= [t(p, Ela — S1|S1 < a]) + 1]P(M = k) (2.82)
[t(p, Va/i- Alz1-p) (1 = p) (1 +0(1))) + P(M = k). (2.83)

In (2.82) we use
Ela — Si|M = k| = Ela — 51|M > 1] = Ela — 51|51 < al;

this is true since the number of additional stages required to cross the boundary is
independent of 57, provided 57 < a.
To estimate N; for i > 2 we will bound E[N;y1 — N;]. Let 2 < i < k.

E[Niy1 — Ny M =k| < E[t(p,a—S;) +1—t(p,a—Si—1); M = k|

Since

d
0 < —t <9
< (p,2) <2/p

for all > 0 when p > 1/2,
tp,x —y) —tp,x) <2y~ /p
and thus (2.84) becomes

E[Niy1 — Nig M = k] < (2/p)E[(S; — Si-) 3 M = k| + P(M = k). (2.85)



48
Recall that 3, = X; +--- + X,, and let p(n) = E(=%,; —%, > 0). For large n

e(n) = E(X,—-0-%,>0)
< E[-%, — (=np +n"1); =2, > (—np+ M) (since —np +n¥ <0)
o) _
~ \/E'A(”w)”\/ﬁ'wfﬁ )

this last line using Lemma 2.10 since

—np+n"* —n. B(-X))

NG

= nt7 = o(n'/%).

Thus
o(n) < (3/2)e™"", (2.86)

say, for large n. Now

E[(S;i—Si—1) s M =k] = E[(S; — Si—1) ;M > i|P(M = k|M > i)
= Elp(n(p,a— Si-1));Si-1 < a|P(M = k|M > 1) (2.87)

using the same conditioning argument as above. Also, for all z > 0

npa) > Pol 5 lnl )
1 I

Combining (2.85)-(2.87),

E(Niy1 = Npo M =k) < (2/p)-(3/2)e ™" P(Si_1 < a)P(M = k|M > i)+ P(M = k)
= 3/pe ™ " P(M >i)P(M=kM>i)+P(M=Fk). (2.88)

By (2.79) there is a constant C' such that the probability of crossing the boundary at
each stage is at least p — C'¢(un)/n. Assuming p, (and hence n) are large enough so

that
(3/p)e ™" <1/2 < p, — Cp(un) /n,
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by (2.88) we have

E(Nipy = Ny M = k) < (1/2) - (1/2)7" - (1/2)7 7"+ (1/2)"1 = (1/2)

and thus
E(N;; M = k) < E(Ny; M = k) + (i — 2)(1/2)"*

for 2 < i < k. Combining this with (2.83) we have

k
EN = Ni+> Y E(N;iM=k)

k>2 i=2

IN

N+ [(k = D)E(Ny; M = k) + (1/2)F7 (k — 2)(k — 1)]

k>2

t(p,a) + 1+ [t(p, vVa/u- A(z1—p)(1 —p)~ (1—|—0(1)))+1]Z(k3—1)P(M:k:)
F W2 k- k- 1) *

k>2

= t(p,a) + 1+ [tp, Va/p- Alzi,)(1 —p) 1+ 0(1))) + 1J(EM — 1) + 2
t(p,a) +t(p,/a/pu- A(z1p) (1 —p) (1 +0(1))(EM — 1) + 5, (2.89)

IN

IN

using EM — 1 < 2. By (2.79),

EM—-1 = P(M>1)+P(M>2)+-
< P(M > 1)1+ Cs¢(2)/|2p] + (C36(2p)/|2])* + -]
= P(M > 1)[1 = Cs¢(2)/]2[ 7"

We know P(M > 1) ~ 1 — p by large deviations, and [1 — C34(2,)/|2,]]7* — 1, so
EM —1~1—p. Then

Hp.V/afn- Azry) (L= p) (14 o(D)(EM ~1) ~ Va/u¥? - A(z_)(1—p)~" - (1 —p)
= Va/i? - Ala,) = o Va).
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Plugging this and the estimate

tp,a) = a/p+ |z vVa/p*? + of|z,|V/a)

into (2.89) we get that for large a

EN < a/u+ |z|va/ i + o(|z,|v/a),

which is (2.71).
For small a, |z,| is bounded so t(p,a) is as well. N; is thus bounded, whence
E(a — 51]S1 < a) is bounded and thus so is t(p, E(a — s4|51 < a)). Then, for any

b < o0,

sup EN <sup{t(p,a)+ 1+ [t(p, Ela — S1|S1 < a]) + 1}(EM — 1)} < o0,

a<b a<b

which is (2.73), completing the proof. ]

2.2.1 The Discrete Procedures ¢,, and 5m

In this section we describe two families of sampling procedures, §,, and 5m, and
establish their operating characteristics. In the next section we will see that these
properties are enough to make them first-order optimal, d,, when h € B¢, and dm when
h € B}. These procedures are defined analogously to those for Brownian motion in
Section 2.1.2, with minor modifications to account for discrete data. The proofs of
their operating characteristics are similar to those in Section 2.1.2, but significant
additional Central Limit Theorem-type arguments are required.

Let C =2/ /it and f(a) = Cy/alog(a + 1). Given a positive function h, define
91(h) to be geometric sampling with probability p, < pgl)(a) — 1 such that

= o[(h(a)/Va) A a'",

ya
’ p" (@)
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where p, is that given by Lemma 2.11. Define 8,,41(h) = (N™+D M) to have
first stage N\ = [t(p™™"), a)], where

Zymi1) = C'+/log(a/h(a)? + 1),

followed on {S; < a} by (N™(a —S;), M (a — S})), where (N™, M) =6, (ho
).

For p € (0,1), define 6,(p) = (N, M®) to have first stage NV = [t(p,a)],
followed (on {S; < a}) by geometric sampling with probability ﬁ(zl)(a — S1), where

250y —/log(y + 1) A 2p,)

and p, is that given by Lemma 2.11. Define 8,1 (p) = (N™, MDY to have first
stage N\ = [¢(p" (), a)], where

Zpmin) () = V(1 —2"m)log(a + 1),
followed (if necessary) by (N (a — Sy), M (a — Sy)), where (N M) = §,.(p).

Proposition 2.12. If h € B2, then (N™) M) = §,.(h) satisfies

EN™ —a/u = o(h(a)) (2.90)

EM™ — m (2.91)

as a — OQ.

Proof. We prove a slightly stronger statement by induction on m: in addition to

(2.90) and (2.91) we show that if b < oo, then

sup EN™ —a/p < oo (2.92)

a<b

sup EM™ < oo. (2.93)

a<b
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For m = 1, (N®W, M) is discrete geometric sampling, and Lemma 2.11 shows

that (2.91) and the boundedness properties of N M® hold, and as well as

ENY — a/p = O(|2,v/a),

where |z,| = o(h(a)/+/a A a'/®). By this restriction on z,,
ENW — a/p < o(h(a)/Va - Va) = o(h(a)),

so (2.45) holds as well, completing the m = 1 case.
Now assume h € By, ;. Let C'=2/,/i and define f(a) = C'y/alog(a + 1), whose

inverse is well-defined since f is increasing. It was shown in the proof of Proposition
2.3 (see (2.18)) that
hofeB,. (2.94)

Now

EM(mH)(a) =1+ E[M(m)(a — 51);51 < a]

so EM ™+ (a) is bounded for small a since EM ™ (a) is by the induction hypothesis.
Further, letting z; = Cy/log(a/h(a)? + 1), C' = (2,/p) 7", and Z = (S; — uN1)// N1,

observe that

P(O<a—51§C”zl\/5) < P(Sl>a—C’zl\/5)
P<Z>CL—MN1 CZl\/a>

VN1 VNL
= P<Z>z1+o(1)—c/%\\{a>

= P(Z>z[l—Cu)(1+0(1)) (since VN, ~ +/a/u)
= P(Z>(=1/2)(1+0(1)))
< (21/4)72 =0 (2.95)
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by Chebyshev’s inequality. Then

EM™(q) =1+ E[M™(a — Sy);a — Sy > C'21/al
+E[M(m)(a — Sl),O <a-— Sl < 0121\/5]
= 1+ m(l+0(1)P(a— S, >C'zva)+ EIM™(a—5,);0 <a— S, <C'zv/a,

and so
EM™(a) — (m + | <m-o(1)+0(1)- P(0 <a—S; <C'z1v/a) =o(1)

as a — 0o. We've shown that (2.91) and (2.93) hold for m + 1.
Next we handle EN™+1). Using Wald’s equation

ME(N(mel) - a’//ﬁ) = E(SM(m+1) — CL)
= E(Syomen — a; M = 1) 4+ B(Syyenen — a; MU > 1)
= E(Symin — a; M = 1) + E(Syom+y —a;a — Sy > 02’1\/5)

+E<SM(m+1) — a; O<a—5 < 021\/5)

Ay + Ay + As.

To show that (2.90) and (2.92) hold for m + 1 it suffices to show the A; satisfy the
same bounds. Note that A; = F(S; — a;S; > a) and

a— uNl(m+1)

/N1(m+1)

~ 2z = o(a'/®)

so by Lemma 2.10,

Ay~ MDA ~ VPR 0(a)- O(h(a)/Va) 2 = olh(a). (296

1

For small values of a, Nl(m+1)(a) is bounded, hence A; < oo by the existence of the

first moment of X;.
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Let ¢(y) = E(Syom ) — y) for y > 0. By the induction hypothesis and (2.94) we

know

o(y) = o(h(f(v))) (2.97)

and that ¢(y) is bounded for bounded values of y. Note that

h(f () = o(hm-1(y)) = o(y) (2.98)

since the m = 1 gives the largest asymptotically. Let ¢ > 0 and Y = a — S;. (2.97)
and (2.98) imply that for large a,

Ay = Ep(Y):Y > C21/dl
< €E[Y;Y > Cz+/a]

= e(BlY —Cxva;Y > Czva] + Cz1v/aP(Y > Czv/a)).  (2.99)
Let 8) =M (2u — X;) and o’ = Cz1v/a —a + 2,uNl(m+1) so that (2.99) becomes
Ay < e(E[S) —d; 8] > d']+ Czxv/aP(S] > d).

Note that 2 — X1,2u — X5, ... are i.i.d. with mean u, variance 1, and that

a — ’uNl(m-H) _ C’Zl\/a ,lJ,N(m+1
/Nl(m—H) /Nl(m—i-l) / m+1

so by Lemma 2.10,

E(S, —d; S >a) ~ 1/ N™A \/_(b h(a)) (2.101)

by (2.96). By large deviations ([10], Theorem XVI.7.1) and (2.100) P(S] > d’) ~

~ 2z — 2z = 2 = o(a"/%), (2.100)
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®(—2z) so

Czl\/ap(si > CL/> ~ CZl\/a . CI)(—zl) ~ CZl\/a . M

21

= Cva-O(h(a)/Va) = O(h(a)),
hence there is C" < oo such that
Cz1vaP(S] > d') < C"h(a) (2.102)

for large a. Plugging (2.101) and (2.102) into (2.99) we have Ay < o(h(a) +eC"h(a).
Since ¢ was arbitrary and independent of C”, this shows Ay = o(h(a)). For small

values of a, (2.97) and (2.98) imply that there are constants C,a; such that

AQ < 01+E(Y,Y > CL1>

and the latter is finite by the same argument used on A;, showing that A, is bounded
for small values of a.
As is bounded for small values of a by virtue of (2.97). To show A3 = o(h(a)) it

thus suffices to show

As

E(o(Y);a, <Y < Czv/a) = o(h(a))
for any constant a,. Let a, be such that

e(y) < h(f(y) fory> a,. (2.103)

Az =E(p(Y);a, <Y < C'z1v/a) + E(p(Y); C'2z1v/a <Y < Czv/a) (2.104)
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and h o f~! is non-decreasing, so (2.103) implies
E(p(Y);a, <Y < C'zv/a) < h(f HC'211/a))P(0 <Y < C'zv/a) < h(a) - o(1),

by (2.95) and since C'z1y/a < f(a) for large a. Given £ > 0, let a be large enough so
that

E(p(Y);a, <Y < C'z1¢/a)

VAN

(¢/2)h(a)
e(y) < (¢/2h(f ()

whenever y > C'z1+/a. Plugging these into (2.104) gives
Az < (/2)h(a) + (e/2)h(f 7 (C21v/a)) < (¢/2)h(a) + (¢/2)h(a) = eh(a)

which shows As = o(h(a)) and hence that A3 = o(h(a)), completing the induction

step and the proof. O

Next we establish the operating characteristics of d,(p).

Proposition 2.13. Letp € (0,1), m > 1, and k,, as in (2.24). Then (N™) M) =

Om(p) satisfy

EN™ —a/u < A(2)kmhm(a) (2.105)

EM™ — m+4+1—p (2.106)

as a — 0.

Proof. Asin the proof of the previous proposition, we will prove a slightly stronger

statement by induction on m. In addition to (2.105) and (2.106), we will show that
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if b < oo, then

sup EN™ —a/p < oo

a<b
sup EM™ < 0.
a<b

By Wald’s equation,

pENY —a/p) = E(Sy0 —a; MY = 1) + E(Sy0 —a; MY > 1),

Now
a— ,uNl(l)
— Zp7
N
a constant, so by Lemma 2.10
E(Sy —a; MY =1) ~ A/ NV A(z,) ~ VVa/p- Alz), (2.107)

since 4/ Nl(l) ~/a/p. Fory > 0let (N'(y), M'(y)) be the discrete geometric proce-
dure with probability ps(y) that follows the first stage when S; < a. By Lemma 2.11

we know

¢(y) = EN'(y) —y/1n = O(|2pplvy),  and  supp(y) > o0  (2.108)

y<z

Y(y)=EM' (y) =1+0(1), and supt(y) >oo (2.109)

y<z

for any o < co. Then, letting Y = a — Sy, E(Sy0 —a; MW > 1) = E(p(Y);Y > 0).
By (2.108) there are constants y,, C,, C; such that

Co, 0<y <y,

Cl’Zp2|\/g7a ) > Yo-

p(y) <

We may also assume v, is large enough so that |z,,«)| = v1ogy for y > y,. Then,
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using concavity of y — +/ylogy with Jensen’s inequality,

E(e(Y);Y >0) < Co+CiE(\YlogY;Y >y,)
Co +OIVEXY|Y >y log E(Y|Y >1,), (2.110)

N

and

E(Y|Y >y,) = P(Y > yo) 'E(Y;Y > y,) = O(Va)

by an argument similar to the one leading to (2.107). Plugging this into (2.110) gives
E(Syw —a; MY > 1) = BE(p(Y);Y > 0) < O(a/*\/loga) = o(+/a),

and combining this with (2.110) gives

ENW —a/p = A(z,)u=**Va+ o(va) = A(zy)kihi(a) + o(hy(a)).

For small values of a, Nl(l) is bounded and so E(S,;a) — a; MM = 1) is bounded as

well. Similarly, E(Y|Y > y,) = P(Y > y,) 'E(a—51;51 < a—1y,) is bounded and so

E(Sym —a; MY > 1) = E(o(Y);Y > 0) is bounded as well, by the relation (2.110).
To handle M® we write

EMY =14+ EBEM®Y —1; MY > 1) =1+ E@(Y);Y > 0).
Given € > 0, by (2.109) there are constants Cy, yo such that

CQ; O<y§y2
U(y) <
1+67 Yy > Y2

Then
EMY <14+ CPO<Y <o)+ (L+e)P(Y > pa). (2.111)
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Since , )
a—pNY —yp a— pNY

) - P
/Nl(l) Nl(l)

as a — 00, P(0 <Y < y9) — 0 and P(Y > y2) — 1 — p by the Central Limit

Theorem. Thus assume a is large enough so that P(0 < Y < yy) < ¢/Cy and
P(Y >yy) <1—p+e. Then

EMW <14e+(14+e)(l—p+e)<2—p+ie
and a similar argument shows
EMMW >1+(1—-p)(l—e)>2—p—2¢

for large a. Since ¢ was arbitrary, this implies EM® — 2 —p. EM® is also
clearly bounded for small values of a; e.g. (2.111) holds for all @ > 0 and shows
EM® <14 Cy+ (14 ¢). This completes the m = 1 case.

Next we consider (N™+D Af(m+1D))y =5 (p). By Wald’s equation

pE(NT —a/p) = E(Symen —a; M = 1) + E(Symen — a; M > 1)

= E(S —a;51 > a)+ E(Sym — a; MO+ > 1).

Letting 21 = /(1 —2-™)log(a + 1), by definition of Nl(mﬂ)7

Nl(m+l)

~ 2z = o(a*/%)
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so Lemma 2.10 applies and

E(S; —a; S8 >a) ~ w/N{m+”-A(z1)~\/a/_u-¢(Zl)

2
21

_ 0 (\/5_ exp[—(1/2 — (1/2)m+1)1oga])

log a
(1/2)m+t
- 0 <a—)
loga

= o(aVD™Y = o(hpa(a)). (2.112)

For y > 0 define

om(y) = E(Syomg) —¥),  Um(y) = EMU™(y).

Let € > 0. By the induction hypothesis and Wald’s equation there are constants

(s, y3 such that

Cs, 0<y<uys
Pm(y) < (2.113)
HA(zp)Emhm (y) (1 4 €), Y > ys.

Thus

E(Sypmrny — a; MM > 1) = E(p,,(Y); Y > 0)

< C3P(0 <Y <wys)+ pA(zp)km(l + ) E(hn(Y);Y > ys). (2.114)
Since h,,(-) is concave, we apply Jensen’s inequality to get

E(hpn(Y);Y > ys3) < P(Y > y3)h(E[Y;Y > ys] P(Y > y3)7") (2.115)
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and claim E[Y;Y > ys] ~ z1y/a/p as a — oco. This is true since

ElY;Y >y3] = FEla— Si;;a— 51 > ys)
= FEla— 5] —FEla— Si;a— 5 <ys]
= a—pN{™V + BIS| — (a—13); S1 > a— ys] — ysP(a — S1 < ys)

and

a—ys — pN{"Y

~ 21 = o(a'/%)
Nl(m+l)

so Lemma 2.10 applies and
B[S — (a—y3); 81 > a—ys] ~ \V N1(m+1) - A(21) ~ Va/p-o(1) = o(Va).
Also, a — ,uN (m+1) m z1\/a/p, so

E[Y;Y >y = 21v/a/u(1+ o(1)) + o(v/a) + O(1) ~ z1v/a/u

as claimed. Note also that P(Y > y3) — 1 by the Central Limit Theorem, whence

we may assume that a is large enough so that, by (2.115),

E(hn(Y);Y > ys) < (1+)hm(211/a/p).

Assuming that a is large enough so that also

Cs S Cs
HEA(2p)Kmi1 — HEA(2p) Kt

hm1(a) = - P(0 <Y <),

we have, by (2.114),

E(Syomen — a; MY > 1) < pEA(2p) Ko 1 him 1 (@) + pA(2) (14 €)*Kinhim (21 0/ 1)
< peA(zp)kmithmer(a) + pA(z) (1 + €)*kmii1hmyi (@) (by Lemma 2.4)

< (1+ 85)MA(Z,,)Hm+1hm+1(a)7
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and hence
ENT™D /1= B(Symy —a) < (1482 + 0(1)A(2p) fms1hmsr (@)

by (2.112). Since e was arbitrary, this shows EN™) —a/u < A(z,)kms1hmi(a),
as claimed.

For small values of a, z; and hence Nl(mﬂ) are bounded and so E(Sym+1) —
a; MM+ = 1) = E(S; — a; S; > a) is bounded as well. Similarly, E(a — S1; S < a)
is bounded and so (2.114) and (2.115) show that E(Syjm+1y — a; M™HD > 1) is
bounded too.

Next we consider M (™41,
EM™Y =1 4+ BE(M™) — 1, M) > 1) = 1 4+ E(3,,(Y); Y > 0),

where again Y = a—.S;. Given € > 0, by the induction hypothesis there are constants

Cy, y4 such that

Cy, 0<y<uys
Ui (y) <
(I+e)m+1-=p), y>u,
and thus
EM™D <14+ CPO<Y <ya)+ (L +e)(m+1-p)PY >y). (2116

PO <Y <) — 0as a— oo by anow routine Central Limit Theorem argument,

so assume a is large enough so that P(0 <Y < y,) < e¢/C;. Then
EM™Y) <l14e+(1+e)(m+1—p)=(14e)(m+2—p).
By a similar argument,

EM™D > 14 (1-e)*(m+1—p) > (1—e)*(m+2—p)
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for large enough a. These two bounds show EMtY) — m + 2 — p since € was
arbitrary. For small values of a, EM ™+ is bounded; e.g. (2.116) holds for all a > 0
and shows that EM ™) <14+ Oy + (1 +¢)(m + 1 — p). This completes the m + 1
step and hence the proof. Il

2.2.2 Optimality of ¢,, and Om

In this section we prove our main results for i.i.d. sampling procedures: that d,, (resp.
0y is first-order optimal when h € B2, (resp. h € B;). Again, the proofs are similar
in spirit to those for Brownian motion in Section 2.1.3, but additional Central Limit
Theorem-type arguments are needed.

Before getting to the main results in Theorem 2.15, we provide in the next lemma
a bound on how close any efficient procedure can be to the boundary after each of

the first m — 1 stages of sampling when h € B,,. This is the discrete analog of Lemma

2.7.
Lemma 2.14. If h € B,, and § is a procedure such that R(6) = O(h(a)), then

a — Sk
(1/p) =02 EL) (a)

> 1 in probability as a — oo

for 0 <k <m.

Proof. Let F* denote F}%)(a) and Gy, = (1/p) /2" FF Choose 0 < ¢ < 1 and

let Vi, = {a — Sk > (1 — €)Gy}; we will show
P(Vk) — 1 asa— oo, for 0 <k <m. (2.117)

The k = 0 case is trivial since Vy = {a > (1 — €)a}. Assume that 1 < k < m and

P(Vi—1) — 1. Let
a— Skp—1 — Ny

VN

Gk =
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We claim

P(¢ > \/log(G_1/h(a)?) = 1|Vi_y) — 1. (2.118)

Let U = {¢ < \/log(Gy-1/h(a)?) — 1}. If (2.118) were to fail there would be an

n > 0 and a sequence of a’s approaching co on which P(U|V;_1) > 7. Then

ESy—a 2 E[(Sk—a)l{M =k}HUNVia]-n
= E[(Sk — Sp_1 — (CL - Sk—l))l{M = k}|U N ‘/If—l] N

and

=S 20— o(y/loga) = ol

on U, so Lemma 2.10 applies and we have

ESn—a 2 E[V/NAG)UNVia] n
= E[20) (/40 — Sim1) + G — AU N V] 1.

The expression inside the expectation is a decreasing function of (;, hence

ESp—a 2 E[(2p)" (v/Ap(a — Sk—1) + 2 — QAU N Vi) -

log(Gr_1/h(a)?)~1
(2.119)

Now

Gra o Fin V(@) 2 (G2 A(CP ") hi(a)®  (by Lemma 2.6)
o hi(a)?
> hyo1(a)®  (since m — 1> k)
> h(a)?,

since h € By, so Gy_1/h(a)? — oo and hence so does /log(Gx_1/h(a)?) — 1. Then,



65
using A(C) ~ ¢(¢)/¢? as ¢ — o0, (2.119) becomes

ps o s [0=9G o(/loaG/h@?) — 1)
moe W (Vloa(Gri/h(@)?) — 12
, (h(a)/ /T 1) expl/og(Gr_1/h(a)?)]
VG-t -
! (V108(Gr_1/h(a)?) — 1)2

(some 1’ > 0)

= h(a)/o(1),

which would imply h(a) = o(R(4)) on this sequence, contradicting our assumption
R(0) = O(h(a)). Hence, (2.118) must hold.

Now P(Vy) > P(Vk|U' NVi_1)P(U'NVi_1) and P(U'NVi_1) — 1 by the induction
hypothesis and (2.118), so to show P(V)) — 1 it suffices to show

PWVRU' NVy) — 1, (2.120)
which we do now. We have

P(V]JU’ N kal) = P((l — Sk Z (1 — 8)Gk‘U/ N kal)
_ P(Sk—sk1—MNk<CL—Sk1—MNk—(1—€)Gk

U'n Vk_1>(2.121)

V' Nk, - V' Ni,
and
a—Sk,l—,uNk—(l—a)G’k . C _(1—8)Gk
V' Ni, - VNi
_ C _ (1 — 8)Gk
C e (Ve = S + G - G
(1 —E)Gk
> Gk —

(20) M (VA1 — €)Gro1 + G — &)

on Vj_1. This last in an increasing function of (; for large enough a, so on U’,

CL—Sk_l —,LLNk — (1 —€)G
VN,

(1 — €)Gk

(1) /(- )CGii/p
(2.122)

> log(Gi1/h(a)?) — 1 —
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Now

1 1-27F . k-1
G _ (/W) v (FT) (by definition of Gy)

VGr-1/p \/(1/M)1_2_(k_1>Fk_1/,u
VI Tog(F*1/h(a)?)
k-1
= Vlog(FF1/h(a)?) = \/log(Gr-1/h(a)?) + o(1).

Plugging this back into (2.122) gives

e N NCrevImRRET:

v(a) — oo

as a — 00, so (2.121) becomes

P(Vi|U NVj_y)

v

P <Sk — Sk—1 — uNy,
VN,
> 1-0(y(a)7?) — 1,

<~(a)|U'N Vk1>

by Chebyshev’s inequality. This proves (2.120) and finishes the proof of the lemma.

O
Next we prove the optimality of d,,, Om.
Theorem 2.15. If h € B¢, then
R(6m(h)) ~m-h(a) ~ R". (2.123)
If h € B, then
R(0m(p*)) ~ |m+1—p" + Al )fim h(a) ~ R*, (2.124)
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where Q = lim,_oo h(a)/hm(a) € (0,00) and p* is the unique solution of the equation

Proof. First assume that h € B2,. Proposition 2.12 implies R(d,,(h)) ~ mh(a) =
O(h(a)) and so, by the Bayes property, R* < R(d,,(h)) = O(h(a)) as well. Hence
Lemma 2.14 applies to 6* = (N*, M*) and, letting S} denote the d*-sampled process,

R*

vV
>
S
o
S

Vv
>

mP (a= 85,0 2 (1/2) - (/)= B a)

(by Lemma 2.14)

v
—~ —~ i —~

I
>
S

£
—_
+
2

—_
~—
~—

which gives (2.123).
To handle the boundary case we must work a bit harder. Assume that h/h,, —

Q€ (0,00). Let 0 <e < 1and

V={am S50z 0o i a)
By Proposition 2.13,

R(m(®)) S Alzp)kmhm(a) + (m+ 1 —p*)h(a)
|:A(Zp*>lim

0 +m+1-— p*} h(a). (2.125)

~ ~

In particular, R(d,,(p*)) = O(h(a)), so R* < R(6,n(p*)) = O(h(a)) and hence P(V') —

1 by Lemma 2.14. Let g(a) be an arbitrary nonnegative function of a and define

Ulga)) = {a— S5 =1 =2) 1/ 2" Fi (@) + gla)}

plg(a)) = E(N"—a/p|U(g(a))) + h(a) E(M*|U(g(a))),
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where it is understood that by conditioning on U(g(a)) we mean the optimal contin-
uation from (1 — 6)(1/u)1*(1/2)m_1F}Eg)—1)(a) + g(a) with the appropriately adjusted
parameters. Then

R 2 [E(N" —a/plV) + Ma) E(M*|V)]P(V) 2 inf p(g(a)), (2.126)

where the infimum is taken over all nonnegative functions ¢g. Let n(g(a)) denote the
value of N}, on U(g(a)); note that we may assume that this is not randomized by
virtue of the stationarity property of the Bayes procedure. Let

(=) (/)02 B @) + g(a) — pn(g(a)

2(g(a)) = ) : (2.127)

We now show that we only need to consider g(a) for which z(g(a)) is bounded in the

infimum in (2.126). That is,

inf p(g(a)) = inf p(g(a)). (2.128)

where C = {g: 2(g(a)) = O(1)}. If g € C, then limsup,_, 2(g(a)) = oo so there is a

sequence of a’s approaching co on which

P(M* =m|U(g(a))) = P(S;, = alU(g(a)))

A%

Yoo = U(g(a))) (2.129)

= P<S:n_s7*n_1_/iNr*n a— S, — Ny,
Sk — Sk — uNz,
. p< i zdﬂw)Wﬂwv

< 2(9(a))? =0,
using Chebyshev’s inequality. Thus

p(g(a)) = h(a) E(M*|U(g(a))) Z h(a)(m + 1). (2.130)
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Some calculus shows that the function

A(Zp)’{m
——— +m-+1-
0 p

pl—)

achieves its unique minimum at p = p*, the unique solution of

o Q
Qb(zp*) Km
Hence
m+ 1 = lim %nthrl—p]znnt{%erJrl—p*}, (2.131)
p—)

some 7 > 0, giving

Plala) = RGn(p) 2 ha)m + 1) = hla) [SEE2 41— ]

(by (2.130) and (2.125))

> nh(a) — oo

and hence p(g(a)) > R(6,(p*)) > R*. Thus, by replacing g on any such subse-
quence by a function for which z(g(a)) is bounded, we construct a function in C that
dominates g, and whence (2.128) holds.

Now let g € C. Since z(g(a)) is bounded, by Lemma 2.10 and Wald’s equation we
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have

E(N" = a/u|U(g(a))) = u™"E(Sy+ — alU(g(a)))
> Bl(Sue — ) {M* = m}|U(g(a))]
~ wt/n(g(a) - Alx(g(a))
L \/ (1= )1/ =02 D (a) + gla)
W

1 — &)(1/ )1 -/2m—t plm=1)
§ w\/( £)(1/1) S & @ Astoa)

~ V1—e- (/W) YY"Cmh, (a) - A(2(g(a))) (by Lemma 2.6)
~ V1I—c knh(a)Q - Alz(g(a))), (2.132)

- A(2(g(a)))  (by (2.127))

this last using x,, = (1/p)>= /2™ C™. Let p(g(a)) = ®(—z(g(a))). By the relation
(2.129),
P(M* =m|U(g(a))) ~ ®(=z(g(a))) = p(g(a))

follows from the Central Limit Theorem, since we know n(g(a)) — oo by the relation

(2.127). This implies
EM"[U(g(a))] Z m+ 1= p(g(a))

and combining this with (2.132) gives

R 2 infp(g(a))
e R
LS R OO

. KmA(2p)
pelgfl) [ Q
— {M +m+1 —p*] h(a)V/1 —e.

—|—m—|—1—p} h(a)v1 —¢
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This argument holds for all ¢ > 0, so by a now routine asymptotic argument, there

is a sequence ¢, — 0 for which it holds. Then

R = {%@p*)+m+l—p*} h(a)v1—¢g,

(2
~ [—H (Zp)+m+1—p*} h(a)
Q
Z R(6m(p")) (by (2.125))
Z R*7
which proves (2.124) and completes the proof. ]

Our final theorem of this chapter is a type of converse to Theorem 2.15, showing
that the properties of d,,, 8, established in Propositions 2.12, 2.13, and Lemma 2.14
are not only sufficient but necessary. Moreover, Theorem 2.16 gives a precise lower
bound on the risk inefficiency of any procedure that deviates from the “schedule” of

Lemma 2.14. This is the discrete analog of Theorem 2.9.

Theorem 2.16. Assume that h € B,, and let

om(h), ifh € By,

Om =14
om(P*), if h € B,

If 6 = (N, M) is a procedure such that there is a sequence a; — oo with
o—k
Pla; — S, < (1 —¢e)(1/p)*2 F,El(izz)(al)) bounded below 1 (2.133)
for some 1 < k <m and e > 0, then there is C > 0 such that

where k* is the smallest k for which (2.133) holds. In particular, (2.134) holds if
P(M >m) 4 1.

Proof. Let Vy = {a— S < (1 — 5)(1/;1)1*2_16}7’}58)(&)}. By repeating the argument
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leading to (2.119) there is an 7 > 0 such that

R(©) = p'E(Su — a)
> p ' E(Sy —ag {M = kYN Vi)
> 1\ Fyay (@) - Alz)
> Chys(a;),

some C' > 0, since nA(z,) > 0 and hy = O( F,Ef;;l)) by Lemma 2.6. By Theorem
2.15,
R(0m) = O(h(a)) = o(hy-(a))

since k* < m, proving (2.134). Since
P(Vy)—1 foralll<k<m= P(M>m)—1,

if P(M > m) + 1 then there is some k* < m for which P(Vj+) / 1 and hence (2.134)

holds, proving the second assertion. Il
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Chapter 3

Multistage Tests of Simple
Hypotheses

In this chapter we use the multistage sampling procedures of Chapter 2 to design
efficient multistage tests of simple hypotheses in two different settings. In Section
3.1 we consider tests that have just one terminal decision and are designed to have
a large sample size under the alternative hypothesis. In Section 3.2 we use these so-
called one decision tests to design efficient two decision tests concerning members of
a one-dimensional exponential family. In both settings the resulting procedures share
the global properties of the multistage sampling procedures discussed in Chapter 2.
The stage sizes decrease roughly as a sequence of successive square roots, while the
average number of stages required is determined by the asymptotics of the ratio of
the cost per stage to cost per observation, involving the critical functions h,,,.

Let X, X5, ... be i.i.d. with a density belonging to an exponential family

f(2]0) = exp(6x — ¥(0)) (3.1)

with respect to some non-degenerate o-finite measure. Let fy and f; be two distinct
members of this family whose corresponding parameter values, 6y and 6y, lie in the
interior of the natural parameter space. Then 1 is infinitely differentiable at 6y, 01,

Y'(0;) = E; Xy, and ¢"(6;) = Var; X; for i = 0,1, where E;, Var; denote expectation,
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variance under f;. Let

“r fo(Xi)
ln = )
1155
the likelihood ratio, and let

o fi(X4) o
I; = E;log <—f1—i(X1)) , 1=20,1,

the Kullback-Leibler information numbers.

3.1 One Decision Tests

Consider the problem of deciding between fy and f; by sampling the X, in stages.
Suppose also that if f; is the true density, sampling costs are being incurred and
so we want to stop sampling as soon as possible and reject the hypothesis f =
fi- On the other hand, if f; is the true density sampling costs nothing and our
preferred action is to observe X7, X, ... ad infinitum. As an example, suppose a new
drug is being marketed under the hypothesis that its side effects are insignificant.
Physicians prescribing the drug record and report on the side effects and if they
appear unacceptably high (f = fp), this must be announced and the drug withdrawn
from use. But as long as the hypothesis of insignificant side effects (f = fi) remains
tenable, no action is required.

Specifically, define a one decision test of fo vs. fi to be a pair (N, M) such that
N = (N1, Ny, ...) is a sequence of nonnegative integer-valued random variables sat-
isfying the measurability requirement (2.63), which essentially requires that the size
of the (k + 1)st stage, N1, is determined by the data obtained in the first k stages.
N¥ = Ny +---+ N, should be interpreted as the sample size through the kth stage and
M =inf{m >1: N,, = 0}, the number of stages. By a convenient abuse of notation,
we also let N denote N™ the total sample size. If one pays costs per observation
and per stage under fy, plus a cost for terminating sampling under f;, then a natural

measure of the performance of a one decision test of fy vs. fi is the expected sum of
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these costs. Hence we define the risk of a one decision test of fy vs. fi to be
R(N,M) = cEgN + dEyM + Pi(N < o0), (3.2)

where ¢,d > 0 and P; is probability under f;. Let (N*, M*) denote the Bayes test,
that which achieves risk R* = inf(y ) R(IN, M). Note that a “one decision test of fy
vs. fi”7 may only reject f = fi.

In this section we derive a family of one decision tests and show they minimize
the risk to second-order as ¢,d — 0. As one may expect from (3.2), the notion of
“efficiency” depends heavily on the rates at which ¢ and d approach 0. To simplify
our bookkeeping, we assume that d is the independent variable and that ¢ = ¢(d),

though this choice is arbitrary. Recall that the critical functions were defined as
B (@) = aYP" (log )2 Y2™ for m > 1, hy(a) = a,
and we say the sequence {(a,h)} is

in the mth critical band if hy(a) < h < hyp-q(a)
on the boundary between critical bands m, m +1 if lim h/h,,(a) € (0, 00).

It will turn out that efficient tests will use m stages (almost always) if
hm(logd™) < d/ec < hp_1(logd™)

as d — 0. Proceeding by analogy with Chapter 2, we thus give an essentially complete
description of the problem while assuming {(logd™',d/c)} is either in the mth critical
band or on the boundary between critical bands m and m + 1 (for every sequence of

d’s approaching zero), for some m > 1. Thus we define

B(d) = {c:(0,1) — (0,1)] hp(logd™?) < d/c < hp_1(logd™")},

B = {00~ 00| Gl @ some Qe (0,00 |
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and we assume in our main results that
c € B,(d) =B (d)U B;L(d) (3.3)

for some m > 1. Note that ¢ € B,,(d) implies h,,(logd™') = O(d/c), hence a
consequence of this assumption is that d/c — oo as d — 0, which we shall assume
throughout this chapter. Indeed, if d/c < B < oo, then it is not hard to show that a
fully-sequential test minimizes the risk (3.2) to second-order. Since our main interest
here is variable stage size multistage procedures, we can be sure the assumption (3.3)
does not exclude any interesting cases.

Since the “decision” aspect of a one decision test is trivial, any multistage sampling
procedure can be used as a one decision test. In particular, we will be interested in

using multistage sampling procedures to sample the log-likelihood process

log(fo(X1)/f1(X1)), log(fo(X2)/f1(X2)), ...

until > log(fo(X;)/f1(X;)) exceeds a predetermined boundary. The only slight tech-
nicality to overcome is that multistage sampling procedures were defined in Chapter
2 with respect to random processes with unit variance. To remedy this, we simply

transform the log-likelihood process to have variance one under Ej: let

C = (|60 — 01|/ 0" (0)) " > 0

and
(6o — 61)X; —p(6p) + ¥ (61)
Y, = Clog(fo(X;)/ f1(X;)) = , 3.4
8(fo(X0)/ F1(X0) ERNN (3.4)
so that

90 - (91)2VaroXi —1
|00 — 61]2¢" (6o) '

Whenever we use a multistage sampling procedure as a one decision test below, we

EyY; =CIl, and Varyy; = (

will always mean with respect to Y1, Y5, .. ..

The following lemma shows that the Bayes one decision test is essentially a one-
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sided likelihood ratio test, stopping only if the likelihood ratio exceeds a boundary

determined by the parameter values.

Lemma 3.1. There exists a* = logd™ + o(1) such that

log Iy« > a*. (3.5)

Proof. By Wald’s likelihood ratio identity we can write

R* = inf {cByN + dEyM + P,(N < o0)}
(A1)

= (]'{[r}ﬂf/[) Eo[eN + dM + I3 ' 1{N < oo}].

Suppose that the Bayes procedure has observed X1, ..., X,, in m stages. By the Bayes
property we know that (N*, M*) will stop at this point only if the stopping risk is no

greater than the continuation risk, i.e., only if

en+dm+10 < en+dm+  inf  Ep[eN +dM + 1M 1{N < oo}
(N,M):N>1

< i ! .
& 1 < (N,A14I)l:fJV21EO[ln(CN+dM) + Iy I{N < o0}], (3.6)

where it is understood that such infimums are taken over all continuations and the

expectation is conditional on Xy,..., X,,. For t > 0 define
_ : -1
pt) = jnf  Eolt(eN +dM) + 1" I{N < co}],

so that (3.6) implies
p(ln+) > 1. (3.7)

Note that p(t) (as a function of ¢) is the infimum of a set of lines, each of slope at
least ¢+ d, by virtue of the restriction of the infimum to the class of all (N, M) such

that N (and hence M) are at least one. Thus p(t) is continuous, strictly increasing,
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and satisfies p(t) > t(c+ d), so that

p(t) >1 when t> (c+d) . (3.8)

If (N, M’) is the procedure that samples with constant stage size one (i.e., fully-
sequential sampling) and an appropriately chosen boundary, then it is well-known

(see, e.g., [20]) that
1> P (N < o0) = Elly/71{N' < 00}] and EyN' = E;M’' < o

and hence

p(t) <tlc+d)EoN'+ P (N' < o0) <1

for sufficiently small ¢. Since p(-) is continuous and increasing, this last and (3.8)

imply that there is a unique number, call it e*", such that p(e®”) = 1. Then

logly- = logp™ ' (p(In-))
> logp~'(1) (by (3.7))
= loge® (since p(e®’) =1)
= a,
establishing (3.5).
To show that a* = logd™ + o(1), let Y; be as in (3.4) and (N,M) = §;(h),

3/2

the multistage sampling procedure described in Section 2.2 with h(a) = «** and

boundary a = C'log(d/c). Since v/a < h(a) < a, by Proposition 2.12
EoN —a(Cly) ™' = o(h(a)) and EqgM =1+ o(1).
Observe that

Iyt =exp[—C (Y1 + -+ Yy)] < exp[-C'da] = ¢/d
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so that

Eo[t(eN +dM) + Ij' 1{N < oo}]

s
—~
~+
~—
IN

IN

te[Eo(N — a(CIo) ™) + a(Cly) ™ 4 (d/c) EgM] + Eyly*

IA

tefo(h(a)) + a(CIy) ™ + (d/c)(1 + o(1))] + ¢/d
= tclo(d/c)+d/c(1 4 0o(1))] + ¢/d
td(1+ o(1)) 4+ ¢/d.

This implies
p(t) <1 when ¢t < d (14 0(1)), (3.9)

and so

a* = loge” =logp '(1) (since p(e®) =1)
> logp ' (p(d (1 +0(1)))) (by (3.9))
= log(d (14 0(1))) = logd ™" + o(1).

On the other hand,

a* = logp (1) <logp ' (p([c+d]™)) (by (3.8))

= log(c+d)™ =logd™ +o(1)

since d/c — oo, establishing a* = logd™! + o(d). O

Before proving our main result of this section in Theorem 3.2, we consolidate our
notation a bit. The following function provides the coefficient of the second-order
term in the Bayes risk for both the ¢ € B2,(d) and ¢ € B (d) cases. For m = 1,2,...
and @, pu > 0 define

A(zp)him (1)

Um(QaN):m+1—p*+ Q )
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where p* = p*(m, @, p) is the unique solution of

P Q

o)~ Fm() (3.10)

Now fix > 0. Note that p* — 1 as @ — 00, 50 A(2p+) ~ |2,+| as Q — o0. Also,

o p* N K (1)
©= P(2p+) (4t P(2p)
as () — 00, so
A(zp*)ﬁm(ﬂ) ~ |Zp* Qb(zp*) =0

and hence

Qlim U (@, pt) = m.

Thus we can extend our definition of u,, to all @ € (0, c0] by setting

um(00, 1) = lim wn(Q, ) = m.

Theorem 3.2 shows that the asymptotically optimal multistage sampling proce-
dures derived in Chapter 2 are second-order optimal as one decision tests. Said
another way, Lemma 3.1 tells us that efficient one decision tests are essentially likeli-
hood ratio tests and the part of the risk (3.2) due to error is of smaller order than the

sampling costs, which we already know our multistage sampling procedures minimize.

Theorem 3.2. Assume c € B,,(d) and let

Q = lim /¢

I Cloga ) € (0

and p* = p*(m,Q,Cly) as in (3.10). Let 0,y,, bm be the multistage sampling procedures
defined in Section 2.2.1 and

dm(d/c), if c € B2 (d)

(N, M) =
m(P), if c€B(d)
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applied to Y1,Ys, ... with boundary a = C'logd=1. Then

R(N,M) = clytlogd ™ +d - u,(Q,Cly) + o(d) (3.11)
R* = cly'logd ™ +d - un(Q,Cly) + o(d) (3.12)

as d — 0.

Proof. Since R* < R(N, M), it suffices to prove (3.11) with “<” and (3.12) with

“>. Assume first that ¢ € B, (d), i.e.,
hm(logd™) < d/c < hy_1(logd™). (3.13)

Note that in our notation, Q) = co and hence u,,(Q,CIy) = m. Let a* = logd™+0(1)

be that given by Lemma 3.1. Then
hie(Ca*) ~ CY2 hy(a*) o hy(logd™ + 0(1)) ~ hy(logd™)
since (d/dx)hi(zx) is bounded for large x, thus
hm(Ca™) < d/e¢ < hy1(Ca®) (3.14)

by (3.13). By Lemma 3.1 we know that (N*, M*) stops iff [y« > €%, so by comparing
(N*, M*) with the Bayes multistage sampling procedure with boundary C'a* in the
B2, case (because of (3.14)) of Theorem 2.15,

R*

CEoN*+dEOM*—|—P1(N* < OO)

v

c[Eo(N* —a*/1Iy) + (d/c) EgM™] + ca* /I,

v

clm(d/e) + o(d/c)] + cly*(logd™' + o(1)) (by Theorem 2.15)

cly M logd™ +d - m+ o(d)

clytlogd™ 4+ d - um(Q, Cly) + o(d). (3.15)
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By (3.13) we can also apply the B2, case of Theorem 2.15 to (N, M) to get

Eo(N — Iyt logd™) + (d/c)EgM < m(d/c) + o(d/c). (3.16)
Then

R(N,M) = cEyN +dEyM + Pi(N < o0)
= [Eo(N — Iy logd™) 4 (d/c) EgM] + cIy  logd™ + P(N < o0)
< ¢[m(d/c) +o(d/c)] + cly logd™ + Py (N < o0) (by (3.16))
= cly'logd™ +d-m+o(d) + P,(N < )

= clytlogd™t +d - un(Q,ClIy) + o(d) + P, (N < o), (3.17)

so to show (3.11) holds it suffices to show P(N < o0o) = o(d). Now the right hand
side of (3.16) is obviously O(d/c), so we can apply Lemma 2.14 to S, = Y1 +- - -+ Yy
(with C'logd™" in place of a and Cj in place of p) to get

Py(Clogd™ — Spq > (1/2)(CL) 2" D (Clogd ™)) — 1
as d — 0. Let U be the above event and note that on U,

Clogd™"' — S,_1

v

(1/2)(0[) 1+(1/2)m=1 (Z*l)(c log d_l)
(1/2)2(CT)~ 2" emp, (Clogd™)]?  (by Lemma 2.6)

v

> Ny (Clogd™)?,
n > 0. On U, the mth stage of (N, M) begins geometric sampling with probability of
crossing the boundary approaching one (under Fy). Then, letting

S — Smo1 — CLN,,
T VA,
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Py(S,, > Clogd™ + \/h,(Clogd=1)|U)

Clogd™t — S,,_1 — CIyN,, hp(C'logd=1)
= P, > 1
T\ VN A
if
hm(Clogd™) < N, (3.18)
on U, since
Clogd™"' = Sju1 — CIyNy, ~
o
VNm
by definition of (N, M). But (3.18) holds since
1 -1 _ _ 1 —1\2
N, > Cloed = Smor o mhn(Clogd™ )7 gy (3.10)

- Cly - Cly

on U. Thus let

V=Un {Sm > Clogd™! + \/hm(C’logd—l)}

so that

Po(V) = Py(Sy, > Clogd ™ + \/hy(Clogd=)|U) - Py(U) — 1-1.

Note that I, = exp(C~1>°1Y;), so that by Wald’s likelihood identity and letting V"

denote the compliment of V',

Pi(N < o0) Eo(Iy's N < 00) < Eply!

= Eylexp(=C715,,); V] + Eglexp(—=C~1Sy); V']
< exp(—logd™' — C'\/h,(Clogd)) + Ey[exp(—logd *); V']

(by definition of V' and since Sy; > C'logd™)

= d-exp(—C '/hn(Clogd=1)) +d- Py(V')

= d-o(l)+d-o(l) =o(d),
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proving (3.11) in the ¢ € B2,(d) case.
Now assume ¢ € B, (d). By the same arguments leading to (3.15) and (3.17) but

using the boundary cases of the appropriate results,

R*

Y]

clytlogd ™ 4+ d - u, (Q, Cly) + o(d)
> R(N,M) - P(N < o),

so it again suffices to show P (N < 00) = o(d). Let U be as above and

W, = {szmogd‘1+\/m},

W, — {Smgclogd—l—\/m},

Wy = {Spn > Clogd™ + (h,(Clogd™))*}, and
W o= (UNW))U (U NW,n W),

We will show Py(IW) — 1 as d — 0, which will allow us to say that the log-likelihood
ratio is far enough beyond the boundary at the end of the mth stage (on Wj) or at
the end of the (m + 1)st stage (on W3) that P (N < o0) = o(d).

RUNWY) = Py(Wi|U)Py(U) ~ Po(W1|U)

Clogd™t — S,,_; — CIyN,, B (Clog d—1)
= Pyl pp> U
of| Pm 2 N + N,
and
Clogd™t —S,,_1 — CIyN,, B
e *
VN, i
by definition of (N, M). Then
P()(U N Wl) — p* (320)

by the Central Limit Theorem if /h,,(Clogd=!) < /N, on U, which holds by
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(3.19). To handle the other piece, first write

Po(U N Wy N W) = Py(U) Py(Wa|U) Py(W3|U N Wa) ~ Po(Wa|U) Po(Ws|U N Wa).

We have P(W5|U) — 1 — p* by an argument similar to the one showing (3.20). Also

Clogd™t — S, — CIgNp+1 (hm(C'log dil))l/f)
P WslUNWY) = Py posy > = o vnw:
o (W3] 2) 0 <P 41 2 N + N, 2
— 1
since

Clog d-! — Sm (hm(c log dil))1/4 —1\\1
/N1 > > o (C'log d=1))1/®
+1 = \/ OIO - \/C_I(] > ( ( 0og ))

and
ClOg d-'— S — CIQNm+1
N

V Nm+1

on U N Wy since the (m + 1)st stage of (N, M) begins geometric sampling with

probability of crossing the boundary approaching one. Combining these estimates we

have Po(U N Wy N W3) — 1 — p* and combining this with (3.20) shows
P()(W) :Po(UﬂW1>+P0(UmW2ﬂW3) —>p*—|—1—p* =1.
With this in hand, and noting that, on W,

Sy — Clogd™ > \/hp(Clogd=1) A (hy(Clog d™*))Y> = (hy(C'log d=1))'/,
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Pi(N <o00) = Ey(ly"s N < 00) < Eyly!
= Eylexp(—C71Sy); W] + Eglexp(—C 1 Sy); W]
< exp(—logd™ — C7 (hy(Clogd ))/®) + Eylexp(—logd™); W]
= d-exp(=C 7 (hp(Clogd ™ )?) +d - Py(W')
= d-o(l)+d-o(l) =o(d),

finishing the boundary case and the proof. O]

3.2 Tests of Two Simple Hypotheses

In this section we use the optimal one decision tests from the previous section to
derive optimal multistage tests of two simple hypotheses. Again assume fy, f; are
two distinct densities from the exponential family (3.1). Consider the problem of
deciding between fy and f; by sampling X, X5, ... in stages while incurring a cost
per observation, a cost per stage, and a penalty for making the wrong decision. More

specifically, define a test of the hypotheses
HO . f() VS. H1 . f1

to be a triple (N, M,D), where N = (Ni, Ns,...) is a sequence of nonnegative
integer-valued random variables satisfying the measurability requirement (2.63), M =
inf{m >1: N,, =0}, and D takes values in {0,1}. N should be interpreted as the
size of the kth stage, N¥ = N; + --- 4+ N, the sample size through the kth stage, M
the number of stages, and D the “decision,” i.e., the choice of ¢ such that H; : f; is
deemed correct. By a convenient abuse of notation, we let N also denote N, the
total sample size.

Define the integrated risk of a test 6 = (N, M, D) with respect to prior 7 and loss
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parameters w; to be

1
r(8) =Y m[cEN + dEM +w;P,(D = 1 —i)],
i=0
where ¢,d > 0. To avoid trivialities we assume m;,w; > 0. Let §* = (N*, M*, D*)
denote the Bayes test, that which achieves integrated risk r* = infsr(d).
We describe a family of tests and show they minimize the integrated risk to second-
order as d — 0. We continue to assume that ¢ € B,,(d), some m > 1. Extending the

notation of the previous section, for ¢ = 0,1 define

Ci = (16 — 61]/"(6;)) " > 0

and

Y = Cilog(fi(X;)/ fii(X;)) forj=1,2,...

so that
Ein(i) = C;I; and Varin(i) = 1.

Whenever we speak of a one decision test of f; vs. fi_; (i.e., a test which chooses f;
as the correct density) below, we will always mean the one defined with respect to
Y*l(i) Y*Q(i)

Our first lemma gives us a lower bound on the integrated risk of * by comparing

it to the best one decision tests.

Lemma 3.3. If ¢ € B,,(d), then
cEgN* + dEgM* + Pi(D* = 0) > eIy logd™ +d - um(Q, Coly) —o(d)  (3.21)

as d — 0, where

d/c
=i
@ e him(Cologd=1)

€ (0, 00].

Remark. The lemma actually holds for any test (N, M, D) such that [y < K3d on

{D = 1} for some constant K7, since this is the only property of the Bayes test used
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in the proof, though we will not need this full strength in what follows. The lemma

also holds of course with the indices 0, 1 reversed.

Proof. The idea of the proof is to compare the left hand side of (3.21) with the
Bayes risk of Theorem 3.2 by extending ¢* to a one decision test of fy vs. f; on the
event {D* =1}. Let

N=M=inf{n>1:1,>d?},

i.e., fully-sequential sampling with boundary d=2 for the likelihood ratio. Then define

N' = N*4+N-1{D*=1}
M' = M*+M-1{D*=1}.

(N', M") coincides with §* on { D* = 0}, but continues with the one decision procedure

(N, M) on {D* =1}, and is hence a one decision procedure itself. Since

(N' <00} = {D" =0} U{D*=1,N < o},

we have

cE N™ +dEyM* + P (D* = 0)
= ¢[EyN' — Ey(N; D" = 1)] + d[EcM' — Eo(M; D* = 1)]
+ P (N' < 00) = Py(D* =1,N < 00)
= [cEyN'+dEyM' 4+ Py(N' < c0)]

—[cEy(N; D* =1)+dEy(M;D* =1)+ P (D*=1,N < )]

Ry — Rs.

By Theorem 3.2,

R, = CEoN,+dE0M/+P1(N/ < OO)

> cl tlogd !t 4 d - um(Q, Coly) — o(d),
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so to show that (3.21) holds it suffices to show Ry = o(d).

We can write

Ry < [cEy(N|D* = 1) + dEy(M|D* = 1)]Py(D* = 1) + Pi(N < 0o|D* = 1). (3.22)

By Theorem 1 of [18],

E, * _ * -1 -2 -2 fO(Xl) * i
o(N|D* = 1) = Eo(M|D* =1) < I;'logd ™%+ I;2E, log 5
1 1

= O(logd™") + O(1) = O(logd™).

By Lemma 3.4, which follows, there exists K; < oo such that Iy« < K;d on {D* = 1}.
Using this and Wald’s likelihood identity,

Combining these two estimates gives

[cEo(N|D* = 1) + dEy(M|D* = 1)]Py(D* =1) = [c-O(logd™")+d-O(logd )]O(d)
= O(d’logd™). (3.23)

Now, by definition of (N, M),
Pi(N < oco|D* = 1) = Ey(Iy' 1{N < 00}|N > 0) < Eo(d’1{N < oco}|N > 0) < d°.
Plugging this and (3.23) into (3.22),

Ry < O(d®logd™) + d?
= O(d*logd™)
= d-O(dlogd™) =d-o(1) = o(d),
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finishing the proof. O]

The next lemma shows, by considering stopping risk concerns, that the Bayes test

is roughly a likelihood ratio test.

Lemma 3.4. There is a constant K; > 0 such that

Iy Kd on {D* =1},
lN* 2 (Kld)_l on {D* :0}

IN

(3.24)

Conversely, there is a constant Ky > 0 such that 0* stops after the kth stage of

sampling and

N
8
B

rejects Hy if Iy+x
rejects Hy if Iy« > (Kod)™'.

(3.25)

Proof. Fori=0,1and k> 1 let

wﬂifi(Xb . ,XN*k)
Z;:O ﬂ—jfj(le e 7XN*k)7

Tik =

the posterior risk of rejecting H; after the kth stage. Note that we can write these in

terms of likelihood ratios:

.
Woltgonek o, = WAL (3.26)

Tor = .

molpk + 1

Also, let ry = roi A 711, the stopping risk after the kth stage.

The Bayes procedure stops sampling if the stopping risk is less than all possible
continuation risks. One possible continuation is fully-sequential sampling. By Lemma
2 of [17] there is a constant K* < oo such that a Bayes procedure can only stop when
the continuation risk of fully-sequential sampling is less than K* times the cost per

observation - ¢+ d in this case. Thus, when 0* stops,

rae < K*(c+d) < 2K*d
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meaning roy < 2K*d or ripy < 2K*d. If rop < 2K*d, then by the first relation in

(3.26) and some simple algebra

m - 2K*d 4m K*
Iy < < d 3.27
N = 71'0(200 — QK*d) B ToWo ( )

for small enough d. Clearly rop« < rip+ in this case so we can be sure D* = 1.

Otherwise, 71y« < 2K*d so that, similarly,

7T1<U}1 — ZK*d) > T1W1

d*l
mo - 2K*d T 4dmgK*

[N+ >

for small enough d and D* = 0. We see from this last and (3.27) that (3.24) holds
with

_ 4m K* v 4o K*

K .
ToWo T1W1

Since each additional stage of sampling costs at least ¢ + d > d, 6* will stop after

the kth stage of sampling if r, < d. If

s
lN*k S !

d 3.28
g, (3.28)

then (3.26) and some algebra show

woﬂolN*k
Z = —Tok
WolN*k + T

and hence 6* will stop. Also clearly rop+ < 713+ SO we can be sure 6* rejects Hy.

Similarly, if
W1 ;4

2
p (3.29)
then

w171 —
— 'k,

7T()lN*k —|— T
so 0* will stop and reject Hy. Thus, we see from (3.28) and (3.29) that (3.25) holds
with

™ o
Ky = A .
oWy  T1W1
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[l

Next, we define a test 0 and prove its optimality. For this, we consider separately
two cases of the relationship between fy and f; in the exponential family (3.1). The
first case, considered in Section 3.2.1, is when Iy = I} and VargX; = Var; X;. This is
a symmetric case in the sense that the two corresponding one decision tests dictate
the same initial stage size, and hence they can be applied simultaneously. This case

is of interest because it contains, most notably, the Normal mean problem, i.e.,

Ho:p=po vs. Hi:p=p,

where p is the mean of Normal random variables with known variance, and the

symmetric Bernoulli case,

Hy:p=1/2—0 vs. Hy:p=1/2+7,

where p is the probability of success in a Bernoulli trial. If Iy # I;, the nature of the
Bayes test is fundamentally different. In this case, considered in Section 3.2.2, the two
initial stages given by the one decision tests are of different order of magnitude, and
hence cannot be applied simultaneously. This gives rise to a necessary “exploratory”
first stage. The remaining case, where Iy = I; and VargX; # Var; X, is at present
unsolved, but the popular examples contained in the former and the generality of the

latter make our analysis sufficient for most practical purposes.

3.2.1 Casel: Iy =1, and VaryX; = Var X;

Assume ¢ € B,,(d). Let (N© M©) be the one decision test of fy vs. f; described
in Theorem 3.2 and let (N M®) be the corresponding one decision test of f;

vs. fo. Under the assumptions Iy = I; and VargX; = Var;X;, the two procedures

(NO MO) and (NM M) dictate the same first stage size. Define the first stage
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of § = (N, M, D) to be this common first stage size,

Ny = N9 = nND.

If I, > 1, continue with (N(©, M(®), stopping the first time Iy« > d~! to reject Hi,
as dictated by (N©, M©) or [yr < d to reject Hy. Otherwise, Iy, < 1 so continue
with (N M) similarly.

Theorem 3.5. If Iy = I, VangX; = Van X;, and ¢ € B,,(d), then

r(8) = clytlogd™ 4 d - un(Q,Coly) + o(d)
r* = clytlogd™t 4+ d - un(Q,Coly) + o(d) (3.30)

as d — 0, where

d/c
=1
@ = lim hm(Cologd 1)

€ (0,00].

Proof. Let I = I, = I; and note that the assumption of equal variances implies
Co = (1, so let C denote this common value. Since r* < r(9), it suffices to establish

(3.30) with “<” and (3.30) with “>,” which we do first. We have

1
rt = Y m[cEN* + dEM* +wP(D* = 1—1)]
=0
1
= Z[TFZCEZN* + WZdEZM* + Wl_iwl_iPl_i(D* = Z)]

i=0
1
= Z Wl—iwl—i[CiEiN* + dzElM* + Pl_i(D* = Z)], (331)
i=0
where
c = i c, d;= i d.
T1—iW1—4 T1—iW1—4

Note that d;/¢; = d/c and

hm(logd; ") = hy(logd™ 4+ O(1)) ~ hy(logd™).
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Thus, if
hm(logd™) < d/c < hp_1(logd™)

then
hm(logd; ') ~ hy,(logd™) < di/ci < hy_1(logd; ') ~ hp_1(logd™),

while if

then

: di/c; : d/c
lim ————— =lim ——— € (0 .
a0 hm(logd; ) P hp(logd=1) € (0,00)

This shows that ¢; € B,,(d;). Moreover,

: di/c; : d/c
l —_—— = ]_ _— =
I e Clogd D)~ I Clogay ~ @ € (0och

so by Lemma 3.3

= I Mogd ™ +d; - um(Q,CI) + o(d).
Plugging this into (3.31),
1
reo > Zwl,iwl,i[cil’l logd ™ +d; - u(Q, CI) + o(d)]
i=0

1
= Yo mlel M ogd ™ +d- un(Q, CT) + o(d)]
=0

= cltlogd ™t +d-un(Q,CI) + o(d),

since mg + m = 1.
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Next we handle (3.30). Let (N, M, D) = 6 and for an arbitrary event A let

r(6; A) = Zm[cEi(N; A)+dE;(M; A) + w; P(D =1—1, A)]

=0

and obviously 7(d; A) + r(d; A') = r(5). Let I* = Iy, the likelihood ratio after the
kth stage. Let

Ay = {flogl" — IN,| < ¢ /Nilog N }
Ay = {flogl" + 1| < €'Y/ NiTog Ny }

Let (N© M©) be the one decision test of f; vs. fi in the definition of §. The

following six bounds are proved in Lemma 3.6, which follows this proof:

cEy(N; Ay) < cEyN© +o(d) (3.32)
dEy(M;Ay) < dE,M© + o(d) (3.33)
Py(D=1,4,) = o(d) (3.34)
cE{(N; Ay) = o(d) (3.35)
dEy(M; Ay) = o(d) (3.36)
P(D=0,4) < P(NOY < o0)+o(d). (3.37)

Using these bounds

1
r(6;A0) = > ml[cEi(N; A)+ dE;(M; A) + w;Py(D = 1 — i, A)]
=0
< 7o[cEN© 4+ dE,M© + o(d)] + m1[w, P (N@ < 00) + o(d)]

= Wlwl[COEQN(O) + doEoM(o) + P (N(O) < OO)] + O(d)
< muwileol tlogdyt + do - um(Q, CT) + o(dp)] + o(d)  (by Theorem 3.2)

= molel Mlogd ™t +d - un(Q,CT)] + o(d) (3.38)
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and the same argument with the indices reversed gives
7(6; Ay) < mifel tlogd ™t 4+ d - uy(Q,CI)] + o(d). (3.39)

Now we consider r(d; Ay N A}). Let A= Aj N A}. The bounds

cEy(N; A) = o(d) (3.40)
dEo(M; A) = o(d) (3.41)
Py(D=1,4) = o(d), (3.42)

are also proved in the next lemma, along with their equivalents with indices reversed,

and thus 7(d; A) = o(d). Combining this with (3.38) and (3.39) gives

r(8) = r(6;Ay) +7(5; A1) +7(5; A)
< mileI Mogd ™ 4+ d - un(Q,CI)] + o(d)

1=0

= cllogd ! +d - un(Q,CI)+ o(d),

finishing the proof. [l

Lemma 3.6. Under the assumptions of Theorem 3.5, the bounds (3.32)-(3.37) and
(3.40)-(3.42) hold.

Proof. Let B = {logl* > —logd™' forall k=1,...,M} and note that § and
(N(O), M(O)) coincide on Ay N B since log ! > IN; — C+v/N; log N; > 0 for small d on
Ay and log [* never crosses the lower boundary —logd~! on B. Recall the definition

zp\/Aap + 22 — 22

2442

tu(f% a) = a/,u -

and that the stages of our multistage sampling procedures, and hence the one decision
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tests and J, are defined in terms of ¢,(p, a). First we prove the crude bound
E;(N|U) = O(logd ™) for any U such that E;(M|U) = O(1), (3.43)

i =0,1. In the ¢ € B%(d) [resp. ¢ € B (d)] case, the mth [resp. (m + 1)st] stage of

0 begins geometric sampling, in which the size of each stage is bounded by

[tor(p, (Clogd™ =Y V)V (Y Yi+Clogd ™)) < T[ter(p,2Clogd™)]

2C logd~!
- =7 1 -1
i + o(logd™)

= O(logd™),

where p — 1 but slowly enough so that |z,| = O(loglogd™~"'). Similarly, [tcr(p, 2C logd™)]
also bounds the first m stages, but where p goes to zero for the first m — 1 stages and
approaches a limit in (0, 1) for the mth stage of the boundary case. In either case, p

is bounded below 1. Hence, these initial stages are O(logd™') as well, since t¢;(p,a)

is nondecreasing in p. Thus, the size of each stage of § is uniformly O(logd™!) and
therefore

E;(N|U) < O(logd YE;(M|U) = O(logd™1),

proving (3.43).
Clearly Eo(M|Ay N B’) = O(1), so using this crude bound and Wald’s likelihood
identity,
Py(AgNB') < Po(B') = E\(I"; B') < Ey(d; B') < d

and Ey(N; Ao N B) < EgN© since 6 and (N©, M) coincide on Ay N B, so that

CE()(N, AQ) = CE()(N, AQ n B) + CEQ(N, AQ N B/)
< cEyNO +¢.0O(dlogd™)

= ¢ENO +0(c) = cEoN© + o(d),

which proves (3.32). Similarly, Eo(M; AgNB) < EgM© and Ey(M|AyN B') = O(1),
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so that

< dE,M© +d-0(1)-d=dEM® + o(d),

proving (3.33). Letting vy(d) = IN; — C~'y/N; log Ny,

Py(D=1,40) < PRy(D=1]Ag) = R(I" < —logd™"|logl' > v(d))
< exp[—(logd™" + v(d))]
= de @ = o(d),

proving (3.34). Since v ~ IN; ~ logd™! we have

Pi(Ay) = Ey(iy%logl > ~(d)) < Eo(e " ;logly > ~(d))
< e < exp[—(1/2)logd™!] = Vd.

Also E1(N|Ag) = O(logd™) by (3.43) so
¢Ey(N; Ag) = cE1(N]Ag)Py(Ay) < evVd-O(logd™) = ¢ - o(1) = o(d),
proving (3.35). E1(M|Ap) = O(1) and clearly P;(Ay) — 0, so
dEy (M; Ag) = dEL (M| Ag) Pi(Ag) = d- O(1) - o(1) = o(d),
proving (3.36). Since § and (N M) coincide on Ay N B,
P(D=0,ANB) =P (N? < 00,A4)NB) < P, (N? < 0).

Also

P1<D = 0, AomB,) = E()[(ZM)_I, D = 0, AoﬂB/] S E()[d, D = 0, AoﬂB/] S dPo(B,) = O(d)
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since clearly Py(B’) — 0. Combining these two gives
P(D =0;A) = Pi(D=0;A4,NB)+ P, (D=0;ANB) <P (N < c0) + 0(d),

proving (3.37).

Now

Py(A) < Py(A}) = Py(logl' < v(d)) = Py (—logll +IN, IN;— ”Y(d))

Cc-1 N1 Cc-1 N1

and
INy —~(d)

_ _ 1/6
RN = log N; = o(N,""),

so by large deviations and Mills’ ratio

Po(A) < B(~ log Ny)(1 + o(1)) ~ 20BN _ g (exp[—(1/2)(10glog d‘l)Z]) |

log NV, loglog d—!

since IN; ~ logd~! implies log N; = loglogd~* + O(1). Thus

< . Ollogd )0 (exp[—(l/zmog log d—1>2]>

loglog d—1!

proving (3.40). It’s not hard to see that Ey(M|A) = O(1), so
Eo(M; A) = d- O(Py(A)) = d- o(1) = o(d),
which is (3.41). Finally, since I < d on {D = 1},
Py(D=1,A)=E (I D=1,A) <dP.(A) = o(d),

proving (3.42). O
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3.2.2 Casell: [ # I,

Let Iy < I;. Define § = (N, M, D) for this case as follows. Let (NM, M®) be the

one decision test of f; vs. fy described in Theorem 3.2. Let

: d/c
Qo = i S G (T = 1o/ ) Tog 1)

€ (0, 0] (3.44)

and let (N© M) be the one decision test of fy vs. f; described in Theorem 3.2,

but with parameters

Toln Toln *
- ¢, - d7 b (ma QOa C’0]0)
T1W1 1w

in place of ¢, d, p*. Define the first stage of & to be the first stage of (N, MM), i.e.,
Ny = N9, If Iy, < 1, continue with (N, M®), stopping the first time {yx < d to
reject Hy (as dictated by (N, MM)) or [yx > d~' to reject Hy. Otherwise, Iy, > 1
so begin (N©, M) stopping the first time [yt > d~! to reject H; (as dictated by
(NO MOY) or Iye < d to reject Hy.

Theorem 3.7. If Iy < I and c € B,,,(d), then
r(6) = molely logd ™ + d(1 + upm(Qo, Colp))]
+milel; Mogd ™ + d - u,(Qy, Ch11)] + o(d) (3.45)
r* = molely M logd ™t 4 d(1 + um(Qo, Colp))]
el logd™ + d - up (Q1, C111)] + o(d) (3.46)
as d — 0, where Qq is as in (3.44) and

- d/c
d—0 h,, (Cylogd=1)

€ (0, 00].

In particular, r(0) < r* + o(d).



101
Proof. Let I*¥ = Iy,

T={t>0:logt— IoN;| < Cy*'+/Nilog Ny},

and Ay = {I' € T}. Let 6y = (N© M©_ DO) denote the continuation of § after its
first stage when {! > 1, and let (N © preo )) denote the one decision test of fy vs. fi
that coincides with &y except that d, may stop before (N 0 M© ) and reject Hy when
the likelihood ratio crosses the lower boundary. We will write (N(© (11), M© (1), DO (11))
and (NO (1), M©(i")) when we wish to emphasize the dependence on the value of
It

Using the bounds (3.34)-(3.36),

7”((5, Ao) = 7T()CEO(N; Ao) + WodE(M, Ao) + 7T1’w1P1 (D = O, Ao) + 0<d)
= ED[’]TDCN + 7T0dM + Wlwl(lM)_l : 1{D = O}AQ] + O(d)
= Ey[mocNO (1Y) + mod MO (1Y) + mpaoy (1M1 @MV )~1 1{DO = 0}; A

+mocNy + mod + o(d)

= Eolp(1");1" € T) + moeNy + mod + o(d), (3.47)
where
o(t) = mo[cEoNO(t) + dE,M© (1)) 4+ mw it PL(DO(t) = 0). (3.48)
ForteT,
NO@) < NO@) and MO@t) < MO(t) (3.49)

since & coincides with (N © A1 ©)) except that do may stop early by crossing the

lower boundary. Also,
{(DO@1) =0} C{NO(t) <0} forteT (3.50)

since the lower boundary cannot be crossed on {D© () = 0}, hence the two proce-



102

dures coincide exactly. Thus, for t € T,

o(t) < meENO®) + mod EgM O (t) + muwt PP (N () < 00)  (by (3.49) and (3.50))

= Wlwltil[C/EoN(O) (t) + d/E(]M(O) (t) + P1 (N(O) (t) < OO)], (351)
where
d = ot c, d= ot d.
T1W1 T1W1

We now show that ¢ € B,,(d’) uniformly for ¢ € T. Note that d'/¢’ = d/c and, for
teT,

log(d)™ = logd™' —logt+O(1)
= logd ' — IyN; +o(N;) (since logt ~ IgN; on T)
= logd™* — (Iy/1)logd™* + o(logd™") (since Ny ~ I;*logd™)

~ (1 — ]0/]1) log d_17
and this holds uniformly on 7. Thus

B (log(d') ™) ~ A (1 — Iy /1) logd™ ) ~ (1 — Iy /I,) V2" by, (log d 1),

so if
hm(logd™) < d/c < hy_1(logd™),
then
him(log(d)™") < d'/¢ < 1 (log(d) ™),
and if

d/c

lim ——— € (0
a0 hy(log d—1) € (0,00),
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then

, d/d _ d/c
70 o (Qog (@) 1) a0 hon((1 — I/ 11) log d-1)

m d/c
— _ /2™ gy —
(1=1lo/0) lll—r»% hm(logd=1)

€ (0,00).
This shows that ¢ € B,,(d’) and, moreover,

lim d/¢ = lim dfc
d—0 Ry, (Colog(d)™1) — d=0 hyy,(Co(1 — Iy/I1)log d—1)

= Qo € (0, 00],

so by Theorem 3.2,

EqNO @) +d EqM© (1) 4Py (NO(t) < 00) < 15 og(d) ™ +d'm (Qo, Colo)+o(d').
Plugging this into (3.51),

o(t) < Wlwlt_l[c'_fo_l log(d) ™ + d'um(Qo, Colo) + o(d')]
= Wlwlt_l[c’]o_l(log d_l — IOgt + O(].)) + dlum(Q(), 00]0> + O(d,)]

= molely Mlogd ™ + d - u(Qo, Colo)] — mocly Hlogt + o(d)
uniformly on 7', and plugging this into (3.47),

7(8; Ag) < molely M log d™ +d(14um (Qo, Colo))]+mocly Lo N1 —E(log I'; 1* € T)]+o(d).
(3.52)
Since Eylogl! = IyN; and Py(Ay) — 1 quickly, one may suspect that

Eo(loglh; Ag) = IoNy + o(1). (3.53)
Assuming this holds, (3.52) becomes

7(8; Ag) < molely M logd ™t + d(1 4w (Qo, Colp))] + o(d). (3.54)
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To see why (3.53) is true, first use Wald’s equation and write

Ey(loglh; Ag) = IgNy — Ey(log1';logl' > IyNy + Cyty/Nylog Ny) (3.55)
3.55
— Eo(logll, log ll < I()Nl — Co_l\/ Ny 10g Nl),

we will show that these last two terms are o(1). Letting %, = Yl(o) + o+ Y9 and
v = ColoN1 + VN1log Ny,

Ey(logl';logl > IyNy + Cy '/ Nilog Ny) = Cp ' Eo[Sn, — 7 En, >3]+ 7 Po(En, > )

— 0 (VASLEED) 1 0(v) - 0 (@(-1og 30) = of1)

by Lemma 2.10 and a routine large deviations argument. The other term in (3.55) is
handled similarly, establishing (3.53).
Letting A; = {|log(1/1') — LN;| < C;'v/Nylog N1} and repeating arguments

from the proof of of Theorem 3.5 gives

r(6; A1) < mlely M logd ™t +d - upm(Qr, C11)] 4+ o(d)  and
r(0; Ay N A = o(d).

Combining these with (3.54) gives (3.45).
Next we show (3.46) with “>." Let I** = lyu, T* = {t > 0 : |logt — IyN;| <
Cy'\/Nilog Ni}, As = {I*' € T*}, and

T;k = Wi(CEiN* + dEZM*) + Wl_iwl_iPl_i(D* = ’L), 1= 0, 1.
Since 6* follows its first stage with the optimal continuation, denoted by (N * M, D*),

rs = Eo[Eolmo(eN* 4+ dM*) + mow, (I"*M7)711{D* = 0}|1*"]]
= Eo[mo(cEgN*(I"'Y) + dEgM*(I*1)) 4 mywy ()L P(D* (IFY) = 0)]

+o(cN? + d) (3.56)
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where we again write (N*(1*1), M*(I*'), D*(I*")) to reflect the dependence on the value
of I*!. Define

O (t) = mo[cEoN*(t) + dEM*(t)] + mw it~ Py (D*(t) = 0)

= Wlwlt_l[C,EgN* (t) + d,EoM*(t) + P1<D* (t) = 0)]

It will be shown below that N; ~ I;'logd™'. Assuming this, the same arguments
that showed ¢ € B,,,(d') when t € T' (but with /Ny in place of N;) hold here for t € T,

and also
d/d
!
a0 iy (Co log(d) 1)

Then by Lemma 3.3, for t € T™,

= Qo - (0, OO]

QO*(t) 2 7'['111)11571[0/[071 lOg(d/)il + dlum(Qo, Colo) + O(dl)}

= molely Mlogd ™ + d - unm(Qo, Colo)] — mocly Hlogt +o(d)  (3.57)
and this holds uniformly on 7%*. Plugging this back into (3.56),

© = By (1Y) + mo(eN7 + d)

ﬁ
o
I

v

Eolo*(I*Y); Ajl 4 mo(eNJy 4+ d)  (since ¢* > 0)

A%

molely Mlogd ™t + d - u (Qo, Colo) Po(Ay) — mocly t Egllog 1™ Af]

+70(eNF + d) + o(d) (3.58)

by (3.57). The same argument that leads to (3.53) shows that Fy[log I*'; Aj] = IoN; +
o(1) and a routine large deviations argument shows 1 — Py(Af) = O(P(—log Ny)).
Plugging these two estimates into (3.58) gives

7”3 > 7T0[CIO_1 log d_l + d(l + um(Q07 CO-[O))] + O(d)
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A straightforward application of Lemma 3.3 gives

ri > mlel;logd ™ + d - up(Q1, C11h)] + o(d)

and adding these last two gives (3.46).
All that remains is to verify that N; ~ I;*logd~". Suppose that

< I (3.59)

Then there is a sequence of d’s approaching 0 on which the liminf is achieved, and

by repeating the above arguments on this sequence

e > molely M logd ™ + d(1 + u (Q), Colp))] + o(d), (3.60)
where
d/c
o= i
Qo = I e = IoL) log 1)
: d/c
= oS 1
(L) hn(Colt = o/ ) logd™)
1— I/ I \"?"
- o ()T )

Note further that Q) < Qo by this last. By reversing indices and repeating this
argument, conditioning on {|log(1/1*!) — I, Ni| < C;'\/Njlog N;} instead of A, we

obtain

T‘T 2 7T1[CII IOg d_l + d(l + um(Qllu OIII))] + O(d)

> mlelilogd™ +d(m+1)] + o(d)) (3.61)

since u,, > m, where

Q) = lim d/c

I (il = LDy Toga T < (o)
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Then, using (3.45), (3.60), and (3.61), we would have

r*—r(d) = ry+r;—r(0)

> d{ﬂo[um(Qév Colo) — um(Qo, Colo)] + mi[m + 1 — uy(Q1, C111)]} — o(d).

Now since u,,(+, Cyly) is decreasing and @, < Qo,

um(Q/O? Colo) — um(Qo, Colp) > 0.

Also m + 1 — uy,(Q1,C11;) > 0 since u,, < m + 1. Hence there exists ¢ > 0 such
that 7 — r(d) > ed — o(d) > 0 for sufficiently small d. This obviously contradicts
r* < r(6), so (3.59) cannot hold.

On the other hand, if

*

— N -1
n= llrcrllj(l)lp ogd 1 I >0, (3.62)

then again on a sequence of d’s approaching zero we would have

r*—r(0) =ry+r] —r(0)

> 1y + meEIN* —1r(6)

v

mocly M logd™ + meNy —r(0) (by Lemma 3.3)

v

mocly Mlogd ™ + me(n + I ) logd ™ (1 + 0(1)) — [(mo/Io + m1/I1)clogd ™" + O(d)]
(by (3.62) and (3.45))
= m(n+o(1))-clogd™ — O(d)

= m(n+o(1))-clogd™ —o(clogd™) >0

for sufficiently small d, again a contradiction. Thus (3.62) cannot hold either, so that

N ~ I7'logd™" and the proof is complete. O



108
3.3 A Numerical Example

The procedures § described above in Theorems 3.2, 3.5, and 3.7 are asymptotic not
only in the sense that their optimality properties are proved in the limit as d — 0,
but also in the sense that they are defined in terms of the rates at which ¢,d — 0.
Thus, there may be more than one small-sample procedure that are asymptotically
equivalent to the above procedures and hence asymptotically optimal, among which a
statistician may want to choose when designing a procedure for practical applications.
In this section we describe one such small-sample procedure and give the results of a
numerical experiment comparing it to group-sequential sampling.

Choose mg and mj to be
my =inf {m > 1: K (CiL) by (C; M log d ™) — K1 (Cidi) huns (G5 M logd™Y) < dfc},

1 = 0,1, and let 6 be the test designed from the multistage sampling procedures
dmx(d/c) (the “c € By, (d) case” sampling procedures, as described in Section 2.63), as
described in Sections 3.2.1 and 3.2.2. That is, ¢ has first stage the smaller of the first
stages of the d,,:, followed by the appropriate continuation, determined by whether
r>1oril!<1.

Table 1 contains the results of a numerical experiment comparing ¢ with group-
sequential (i.e., constant stage-size) testing of the hypotheses p = .25 vs. u = —.25,
concerning the mean of normally distributed random variables with unit variance. Be-
low d,(k) denotes group-sequential testing with constant stage-size k, which samples

until

S log(ful X))/ F1(X,)]| = logd”! (3.63)

at the end of a stage. The boundary log d~! is chosen because it is the same boundary



109

Table 1
Numerical Results for Testing Normal Mean
pw=.25vs. p=—25(d=.001, m =1/2, w; =1)
Test EN EM int. risk (d) 2nd-order risk (d)

d/c=1
62.2 5.2 68.0 9.5
d,(1) 575 575 115.0 56.5
5,(15) 64.9 4.6  73.0 14.5
5,(30) 767 2.6  80.0 21.5
d/c=5
68.3 2.9 16.7 4.2
5,(1) 575 575 695 57.0
5,(22) 727 33 180 5.5
5,(44) 836 1.9 18.9 6.4
d/c=10
76.6 1.9 9.8 2.9
5,(1) 575 575  63.8 57.1
5,(37) 805 22 10.4 3.7
5,(74) 97.6 1.3 11.2 45

used by 9. Indeed, recall that § will stop sampling the first time

Cilogd™ < |C;Y v
J

C; Z 10g<fi<Xj>/flfi(Xj))

Y

& logd ™t < Zlog(fo(Xj)/fl(Xj))

where ¢ = 1{sign(log!') < 0}.

For each value of d/c, the operating characteristics of §,(k) are given for k = 1, the
best possible k (determined by simulation), and two times the best possible k. Since
both § and ¢, must sample until (3.63) occurs, the cost of number of observations
required for this and the first stage represents a “fixed cost” which all procedures will
incur. Thus, we obtain a more accurate comparison of the efficiency due to sampling

by considering the 2nd-order risk of the procedures, defined as

integrated risk —(cENM + d),
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where N is the number of observations of ,(1).

The results show significant improvement in the integrated risk and 2nd-order risk
of ¢ over d,. The size of the smallest possible 2nd-order risk is not known, so it is
difficult to say how much further improvement is possible without backward induction
type calculations, which remain prohibitively large in this general setting. We would
expect the difference between ¢ and the best group sequential test to decrease for
larger values of d/c, since EM* — 1 in this limit.

The procedure ¢ is asymptotically optimal by virtue of Theorems 3.5 and 3.7 when

c € BY,(d) since m! = m for sufficiently small d. This is true since

i (Ci L) (Ci log ™) — ko1 (Ci I s (Ci log 1) — dfc
i o () o ()

= (d/c) - [o(1) = o(1) = 1] — —o0,

SO

K (CiI) hn (Cilog d ™) — Koy 1 (Cidi) g1 (Cilogd ™) < d/c

and similarly
/{k(C’,]Z)hk(C, log d_l) — /{k—l—l(oiji)hk-‘rl (Cz lOg d_1> > d/C

for all £ < m and for sufficiently small d. Thus m; and m will coincide for sufficiently

small d.
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Chapter 4

Multistage Tests of Composite
Hypotheses

In this chapter we extend the methods developed in Chapters 2 and 3 to the contin-

uous setting. Consider testing the two separated composite hypotheses
H()ZQSGSQO VS. H1190<91§¢9§§, (41)

by sampling i.i.d. random variables X7, X, ... in stages, whose distribution belongs

to the exponential family of densities

fo(z) = exp(0z — ¥(0)),

with respect to some non-degenerate o-finite measure. Assume that [0, 0] is contained
in the interior of the natural parameter space, so that v is infinitely differentiable on
[0,0] and ¥'(0) = EgX,, ¢¥"(0) = VargX,, where Ey, Varg denote expectation and
variance under fy. We denote multistage tests of the hypotheses (4.1) by triples
(N, M, D), where N is the total number of observations, M is the total number of
stages, and D is the decision variable, taking values in {0,1}. Again we assume
a cost per observation ¢ and a cost per stage d which will both approach zero at
rates described below. Given a Lebesgue prior density Ag for the true parameter 6,
positive and bounded on its support [, 6], and a loss function w(f) representing the

penalty for a wrong decision when 6 is the true value of the parameter, vanishing on
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(0, 01) and bounded away from 0 and oo on [0, 6] U [0y, 0], a natural measure of the

performance of a procedure § = (N, M, D) is its integrated risk,

0
(Ao, 0) = / [cEgN + dEgM + w(0) Py(6 makes wrong decision)|\o(0)df,  (4.2)
0

where Py denotes probability under fjy.

We define a family of multistage tests of the hypotheses (4.1) in Section 4.2,
establish bounds on their operating characteristics, and, after a detailed analysis of
the Bayes test in Section 4.3, show that they minimize the integrated risk to second-
order as ¢,d — 0. These variable stage-size procedures are similar to those considered
in Chapters 2 and 3, yet the continuum of possible values of the parameter 6, which
must be re-estimated at the end of each stage, makes the arguments considerably
more intricate. These procedures also share a property of those of Section 3.2.2 that
utilize an “exploratory” first stage — a stage whose size is a smaller order of magnitude
than the first stage of any relevant simple hypothesis test. This first stage allows the
the “true” parameter value to be sufficiently well estimated to design future stages.

In Section 4.4 we present the results of a numerical experiment comparing our
procedure with group sequential (i.e., constant stage size) testing. The results show
that these variable stage size tests significantly improve upon group sequential sam-
pling, but also suggest that more efficient practical procedures are possible through
a higher level of theoretical refinement.

As one may expect from (4.2), the nature of efficient tests depends heavily on
the rates at which ¢,d — 0. As was done is Chapter 3, we will assume that d is
the independent variable and that ¢ = ¢(d), though this choice is arbitrary. We
also continue to assume, for any sequence of d’s approaching zero, that the sequence

{(logd™",d/c)} is either in the mth critical band, i.e.,

hm(logd™) < d/ec < hpy_1(logd™), (4.3)
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or on the boundary between critical bands m and m + 1, i.e.,

d
lim /c

i g € () (4.4)

for some m > 1. We summarize this assumption by saying ¢ € B,,(d), where

B(d) = {c:(0,1) — (0,1)] hp(logd™?) < d/c < hpy_1(logd™)},
B = {es 0~ 00| il - some Qe (0,00 |
and B, (d) = B°(d)uUB(d).

As discussed in Sections 2.1 and 3.1, these definitions suffice to give a useful descrip-

tion of asymptotic optimality.

4.1 Preliminaries

Define a test of the hypotheses (4.1) to be a triple (N, M, D) where N = (N1, N, .. .)
is a sequence of stopping variables satisfying the the measurability requirement (2.63).
N}, should be interpreted as the size of the kth stage and N¥ = N; + --- + N, the
sample size through the kth stage. M is the number of stages before decision and, as
a convenient abuse of notation, we also let N denote the total sample size, NV

Assume for convenience that

By <0<61, ©0)=v¢(0)=0, and ¥(f)=1b(0).

This standardization essentially involves subtracting Fy, X; from the X; and 6, from

0, where 65 is the unique solution of

¥(61) — ¥ (6o)

Y'(0a) = P

(see [2], Proposition 1.6), and it has the convenient feature that sign(6) = sign(¢’(0)).
Let S, = X; + -+ + X} and, given a test (N, M, D), let S* = Syx. Let é*(n) =
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(')"1(S,/n), the (unrestricted) MLE of 6, and let §(n) denote the [6, f]-retricted
MLE. We will use the shorthand 6,6, for 6*(N*),0(N*), with respect to a given

test. It will prove useful to associate each point (n,.S,) with a point in the half-plane
{(t,s):1 <t <o00,—00 < s < oo}

Thus we define the continuous analog of 8, namely

/

if s >t (0)

|

0(s,t) =40 if s < t/(6)

(¢/)"(s/t) otherwise.

\

Let
1(0,9) = Eglog[fo(X1)/ fo(X1)] = (0 — 9)¢'(0) — ¥(0) + ¢ (9),

the Kullback-Leibler information number. Given a value 0, we will be interested in
the “closest competitor” — the parameter value in the set {0y, 6;} minimizing 1(0, ).

Thus, given 6, define

y 0, if0>0
0., if0<o0.

Indeed,

I<0’ 0/) _ mingggo [(0, 19), if 6 Z 0
mingzgl 1(0,19), if 0 < 0.

We will often use the convenient shorthand I(6) = 1(0,0). We also define a slight

extension of 1(f) that will be useful in proving convergence results near the endpoints

of [, 0], namely

Ly(0) = (6 — ')y () — ¥ (0) + ¥(6").
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For functions ¢, continuous on [f, 6], we employ the generic notation

ma
0clo,

g(0), g = min g(0).

9<[0,0]

g

EYES

Applying this to 1(0), it is easy to see that
T=10)VI@), 1=100)

Let
0(t,0) = (0 —0)s — t[y(0) — v(0)],

the continuous analog of the log-likelihood ratio of 8 versus #’. Note that dependence

on s is suppressed in notation; this should not cause confusion as the value of s is

often contained in the value of 6 used, e.g., ((t,0(s,t)) = t[é*(&t)(é(s, t)). We will use

the shorthand £, = ¢(N*, ék), with respect to a given test.
Let

7
() = / Eo()20(6)db,

the A\g-mixture of f-expectations, and Py, (-) = E),1{-}. We associate each point (s, t)

with the density
_ Ao (0) explfs — t1p(0)] .
I3 Ao (9) exp[9s — tp(9)]d0

Ay (0) =

Note that (s can be interpreted as a prior density, “moving forward” from (s, %), or

a posterior density, since A, ) is in fact the posterior density of 6 given X, ...

Ax will denote A(gr nr) With respect to a given test.

Define the posterior risk of rejecting 6 < 6y by

Sy w(®) exp[ds — 1 (9)] Ao (9)dV
JF explis — () Ao(D)d9

Yo(s, 1) =
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and the posterior risk of rejecting 6 > 6, by

o w(9) explds — 1) do(9)dd
foe exp[ds — typ(9)] Ao (V) dV

Yi(s,t) =

Then the stopping risk at (s,t) is
r(Asn) = (Yols,t) AYa(s, 1)),
Note that, with respect to a given test 6 = (N, M, D),
Ey\,r(Ay) = EyJw(8); 6 makes wrong decision],

SO we may write

(Ao, 0) = Ex[eN + dM + r(Xy)].

The first auxiliary lemma gives a bound on the rate of convergence of the expected

inverse information number.

Lemma 4.1. Asn — oo,
Eofé*(n)(é(”))_l =1(0)"" +0(1/n) (4.5)
uniformly for 6 € [0, 0).

Remark. If N = N(d) is a stopping time and n(d) a function such that N > n a.s.

and n(d) — oo as d — 0, then the lemma implies
Eefé*(N)(é(N))_l =1(0)"" +O(1/n)

as d — 0; the lemma will frequently be used in this form.

Proof. It suffices to prove (4.5) for all § € [f,6] since uniformity follows from

continuity of 6 — Eylj;. (6,)"1 — I(§)~" and compactness of [0,0]: see, for example,
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26], Theorem 7.25.
Let ¢ = (¢)7', X,, = n Y (X; +--- + X,,), N be the natural parameter space,
and J = ¢/(N). For x € J define

gi(z) = 1(p(@)™!, v €/ =[(0),¢'(0)
9(2) = 02(2) = Loy (0)7', @ € o= (¥/(0),5upJ)
g3(z) = Iy (0)F, =€ J3 = (inf J,¢'(0))

so that g(X,) = Ié*(n)(é(n))’l and we can write

Eply, (0,)7 = 1(0)™" = Eyg(X,) — g4 (0))]

= Y Bln(X0) - g (0): Xa € J] =D Ai (46)

i=1 =1

First consider 6 € (0,6). Since g(¢/'(9)) = g1(¢'(0)), using a Taylor series we can

write

91(Xa) = g(¥'(0)) = 91 (' (0)) (X0 — ¥/ (0)) + Ri(X),

where |Ry(X,)| < (X, — ¢/(9))’]g7]/2. Then

A = Eylgi(Xn) —g9('(0)); X, € ]
= Eylgy (' (0)) (X — ¢'(0)) + Ri(X,); X € Ji]
= (V' (0)Ep[ X — ' (0); X,y € J1] 4+ Eg[Ri(X); X0 € ).

Since Ey X, = ¢'(6),
Eg[yn — g[/(@),yn € Jl] = —EQ[X w ( ) X € JouU Jg]
and

Eo[ X —/(0); Xn € Jo] = (¥'(0) —¢'(0)) Po(Xn > 4'(0)) + Eg( X — ¥/(0); X > 4/'(0))
0

0
('(0) — ¢ (0) Po(Xn > /(0

IA
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where a* = /() + n=/1\/Y"(0) < ¢'(0), for sufficiently large n. Using large

deviations,

Py(Xn > 0/(0)) =

X, —v(0) [ - v(0)
P, n
< SO ! 0 ] f)

< B <_X—n — V) > n1/7>
V'(0)/n
~ &(=nY") = o(1/n). (4.8)

Also, since (na* — ny'(0))/+/n¢"(0) = n*/7 = o(n'/%),

Ey(X, —a; X, >a") = n'Ey(nX,—na*;nX, > na*)

nl/7
~ el %/7 ) /i = o(1/n) (4.9)

by Lemma 2.10. Plugging these two estimates into (4.7) gives
Ep[X, — 4'(0): X € Jo] = o(1/n)
and the same argument works on J3 so we have

|Eo[X,, — ' (0); X,, € Ji]| = o(1/n).

|BolRi(X0); X € L]l < (lg71/2) Eol(Xn — 9/(6))% X € J1]

< (Ig7l/2)Varg(X,,)
(lg71/2)"(0)/n = O(1/n), (4.10)

giving [4:] < O(1/n).
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To estimate Ay observe that, for X,, € Jo, g2(X,) < g2(¢/(0)) = I(0)7!, so

[Az| = | Eplga(Xn) = g(v'(0)); Xn € Jo]]
< IO+ 1(0) M| Py(X, € )
= O +1(0)7'[Po(Xn > ¢'(9))
— o(1/n) (4.11)

by (4.8). As is handled similarly and plugging into (4.6) shows that (4.5) holds for
0 € (0,0).
Next we consider the § = 6 case; § = @ is handled similarly. Observe that

g('(0)) = g1(¥'(0)) = g2(x'(A)) and a simple computation verifies that ¢/ (1'(0)) =

g5(¢'(0)). Then, using the same expansion (4.6) and defining Rs by analogy with Ry,

|A1 + As| = ZEE[gz‘(Yn) —g:(V'(0)); X,y € Jj

= Z Eglgi (' (0)) (X — ¥/'(0)) + Ri(X,); X € Ji]

Y By[Ri(X,); X, € J]

=1

< g (W' (0)) B[ X0 — ¢'(0); X € JLU o) +

2

> B[R(X,): X, € J]

=1

= o(l/n)+

)

using the argument leading to (4.9). Repeating the argument leading to (4.10) gives

> B[Ri(X,); X, € J]

=1

< O(Varg(X,)) = O(1/n)

and hence |A; + As| < O(1/n). The same argument leading to (4.11) gives |As| <
0(1/n) and combining this with |A; + Ay| = O(1/n) shows that (4.5) holds at 6 = 0,
as well as 0 = 0. O

The next two lemmas are Laplace-type expansions of the stopping risk due to

Lorden [23].
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Lemma 4.2.

~

0, 0(s,t)) + O(1) < log Yy(s, )~ < £(t,0(s,t)) + O(logt)

uniformly for s >0 as (s Vt) — oo.

Lemma 4.3. For every n, ast — oo
log Yo(s + S, t + 1)t =log Yo(s, t) ™' + £(n,0(s, 1)) + o(1)

uniformly for

s+ .S,
t+n

D>

V() +e<s/t<Y'(0)—e and

_w/( (8>t>> §5/2>

where € > 0.

Remark. Lemmas 4.2 and 4.3 hold with Y, replaced by Y; and the restrictions

appropriately modified for s < 0.

Define
a=logd™, ap=a—logr(\) ' fork>1

with respect to a given test. We will see below that a, represents, after k stages of
the given efficient procedure, the amount the log inverse stopping risk must further
increase before stopping. The next lemma gives bounds on the difference of successive

ay for any procedure satisfying some mild bounds.

Lemma 4.4. Let k > 1 and 6 = (N, M, D) be any procedure such that there is a
function n(d) — oo and a constant C' < oo satisfying n(d) < Ny and N < a a.s.
Then, under 9,

{(Ni1,0:) — O(log a) < ax — ags1 < €(Niy1,0k41) + O(log a).
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Proof. The restrictions on N allow us to write |logr(X\;)™' — 4| < O(loga) for
i =k,k+1, by Lemma 4.2 and its analog for Y;(s,t). Using this,

a1 = a—logr(Agp) ™"
< a—Vlg1+ O(loga)
< a—L0(N*1 6) + O(loga) (since lypq > O(NFHL 6,))
= a—/{, —K(Nkﬂ,ék) + O(log a)
< ap — U(Nps1,0,) + O(log a),

which gives the first inequality. On the other hand,

agr1 > a—Llgr1+ O(loga)
= a—E(Nk,ék+1) —f(Nk_,_l,ék_,_l)—FO(lOga)
> a—Lly — U(Nys1,0p1) +O(loga) (since g > ((N* Gi))
> ap — {(Niy1, ék+l) + O(loga),
which gives the second inequality. Il

4.2 The Tests ¢, and 9

In this section we define a test ¢ and prove bounds on its operating characteristics.
Examining the properties of the Bayes procedure in Section 4.3 will show that ¢ is
second-order optimal.

For z,0 > 0, let t = t(z, x, 1, o) be the unique solution of

r—pt

Z’
o/t

ie.,

T zo\/dwp + 2202 — 2207

t = —
(’Z"IJ/’L?O_) /,L 2/1/2
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by a simple computation. If Z is a standard normal random variable, then
P(oVtZ + ut > x) = ®(—=2).

Therefore, under appropriate regularity conditions that allow Central Limit Theorem-
type approximations, the probability that a random process with mean ;1 and variance
o? per unit time will be across a boundary z units away at the end of a stage of size
t(zp, z, pt, o) approaches p. We will use this idea to define 6.

The procedure § begins with an “exploratory” first stage and then follows with, on
average, m—1 “conservative” stages using the MLE as an estimate for the true value of
0 and ay as an estimate for the distance from the current value of the log-likelihood
ratio to the optimal boundary. If ¢ € Bl (d), the (m + 1)st stage is a “critical”
stage in the sense that the stopping probability is determined by limg_.o(d/c)/hm(a)
and bounded away from 0 and 1, followed (if necessary) by geometric sampling with
stopping probability approaching 1. If ¢ € B2, (d), no critical stage is necessary so the
(m + 1)st stage begins the geometric sampling. The stopping risk is computed after
each stage and J stops as soon as the stopping risk is no greater than d, or equivalently,
when a;, < 0. The value of D is determined of course by which hypothesis has smaller
posterior risk of rejection. In addition, the total sample size N has a fixed upper
bound 7, defined below.

We first define a sub-family of tests, {04 }a>0, which we will use to define § = 6,(q)
for a function a(d) that approaches 0 as d — 0. (In practice, this limiting process can
be dispensed with and ¢y can simply be used; see Section 4.4.) After an “exploratory”
first stage, d, essentially mimics the procedures defined in Chapters 2 and 3 by taking
as large a sample as possible at each stage while keeping the sampling costs the correct
order of magnitude, but while “estimating all parameters as it goes along.”

Specifically, for a > 0, k =1,2,... let

ﬂ] e [W} 1-(1/2)

& (0) = {1 - 0 (4.12)
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and let &(0) = £€2(0). The & represent the units of the smallest possible (in proba-
bility) a; and play a similar role to the x,, in Chapters 2 and 3. Observe that the £
satisfy

o PN G )
§ia(0) = \/§k (6) - ) (4.13)
We will let & = f,‘j(ék) with respect to a given procedure. Recall the constants

defined in Section 2.1.3,

m—1

=TT [z = a2

i=1

i1

and that Lemma 2.10 established

VES @) ~ Gt (a)

when ¢ € B} (d). For Q > 0 let 2%(6, Q) be the unique solution of

= m (4.14)

(=2%(0,Q)) _ QIO)Cy
¢(22(0,Q))  £5,1.(0)

and let 20(Q) = zo‘(ém, () with respect to a given procedure.
Now fix 0 < a < 1 and let 6, = (N, M, D). Let

we = 1(67)

ot = [0 — (6D TY"(6)

with respect to d,, which we now define. Let @ = [3a/I] and

% = ]

N = [t(Vlog(ar/(d/c)? + 1), ax, i, 07,) 1 H{ax > 0} A (7 — N*)
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for 1 <k <m. When ¢ € B?,(d), let

Nintir1 = [8(2, Gty s Oppgi) [ H{@mgr > O} A (0 — N™FF) (4.15)

for k > 0, where z — —oo satisfies h,,(a)|z| = o(d/c); z represents the standard
normal upper quantile for geometric sampling. In this ¢ € B2,(d) case we then let
§ = 0q(q) for any function a(d) — 0 as d — 0; e.g., a(d) = d suffices. If ¢ € B}, (d)
and Q = limg_o(d/c)/hm(a) € (0,00), then

N1 = [1(25,(Q); am, pin; 07 1 H{am > 0} A (70— N™),

where Ny, 114k is given by (4.15) for & > 1. In this boundary case also, § = da(q),
where a(d) — 0 as d — 0, but the function a(d) will be specified in the proof of
Theorem 4.10. Finally, let

M=inf{lk >1:a,<0 or N*=nm}.
Observe that r(Ay) < d under §, since, on {N < 7},

r(A) = exp(—logr(Aw)™")
— explanr — 0)
< exp(—a) (since apr <0 on {N <7n})

= d,
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while on {N =7},

r(Au) = exp(—logr(Au)™)
< exp(—ly +0O(1)) (by Lemma 4.2)
< exp(=NI(0y) + O(1))
< exp(—nl+O(1))
= exp(—3a+0(1)) <e ™ =d°

for sufficiently small d. The lemmas that follow establish further properties of sam-
pling under 4.
For e >0 and &k > 1 let

Vi(e) = {

é,ﬁ—@‘ga}

with respect to d,. Note that the dependence on 6 is suppressed in notation; this
should not cause confusion as its probability will always be computed under P, for
the same value of . The next lemma gives a lower bound on the rate at which

Pg(Vk(e)) — 1.

Lemma 4.5. Let k > 1. There exists n > 0 such that
Py(Vi(e)) > 1 — 2exp(—nea) (4.16)

for all 0 < e < 1, uniformly for 6 € [0,0]. In particular, Py(Vi(¢)) — 1 uniformly for
0 € 10,0] even if ¢ — 0, provided e\/a — oo.

Proof. Let0)<e< 1.

Py(0r > 0 +¢) = Py((0)) 1 (S*/N*) > 0 + ) = Pp(S* > N*/(0 + ¢))
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since 1) is increasing. By Theorem 7.5 of [2],

Py(Sy > ) < exp[—nI((¢) " (z/n), 0)].

Using this and letting 7, = [(1 + «)I]~! so that N* > N > ,a,
Py(0; > 0+ ¢) < exp[—n,al(0 + ¢,0)] < exp[—ne2al,

some 7 > 0, since (0 + €,0) > n/e?, some 1/, > 0. The other tail is handled similarly

and the second claim follows immediately from (4.16). O

For e >0 and k > 1 let

Up(e) = {ak > (1+ e)ggFgfg”(a)} .

The next two lemmas will allow us to make precise statements about the behavior of

ay, under 0.

Lemma 4.6. Under o, there exists n > 0 such that for any 0 < e < 1,

dl

uniformly for 0 € [6,0].

3]
— =1
£ra

> 5) = O(®(—(nev/a A a'/™))) (4.17)

Proof. By Lemma 4.2, a; < a—{; + O(1), so

Py(Ui(e)) < Pplh < —al(1+e)&F — 1]+ 0O(1)) = Py <€101_—M\/;]_]1V1 < C> ,

where
—a[(1+ )& — 1] — Ny + 0(1)
01\/T1 .

¢
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Since 0 < Ny —a/[(1 +a)I] <1,

o9 (- ) 1] -ty

¢ < (1:a)1 (1+a)] +o(1)
1\ (Fa)T +1
—ae (1 R )
< ;H ! +o(1)
91/ (Fa)T
S _775\/5,

where
o

U
24/2¢" (1 + ) /T

say. Thus ¢ < —ney/a < —(ney/a Aa'/7), and

>0,

(nev/a A a7y < a7 = o(a'/%) = o( (N1)9),
so by large deviations,
Py(ar > (1 +e)éfa) < ®(—(nevara'’M))(1+o(1)).
The other tail is handled similarly to prove (4.17). ]

Lemma 4.7. If ¢ € B,,(d), then under 6., for 1 <k <m,

ag
o (k
& Fy " (a)

— 1

in Py-probability as d — 0, uniformly for 6 € [0,0).

Proof. The k =1 case holds a fortiori by Lemma 4.6. Assume 2 < k < m and let

F* denote F(/)( ). Fix 0 < £ < 1. By Lemma 4.4, ay4; < ax —€(Nys1, 0;) +O(loga),
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where
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Upii(e) C {e(zvk+1,ék) <ak—(1—i—£)£g‘+1Fk+O(loga)}

0(Nii1,0;) — e N
{ ( k+1 k) V41 <§k+1}

01V Nig1

oy = Ny — (1 + )&, F* 4 O(log a)
k+1 = .
i kv Ni41

Let 0 < 7 — 0 at a rate which will be determined below. Letting primes denote

complements, on U, (¢/10) N Vi(n),

Chr1 =

Let

— WEN, L)&  FF 4+ 0(1
Ok — Hp Vet + \/m Nk Hik (1) F™ + O(log a)
01V Nig1

03V Nit1
(1) F* 4 O(log a)

— Kk
—L4/1 d N, —
\/Ogak/ (d/c)? + \/Nisa - o o /N

(1+ 5)£?+1Fk

U—zwog FR=1/(d/c? + O(VFR=1) - Ol — pl) =

O(1)

o/ T e/ I0G /i

Z—E\/Iog F1/(dJcf + O(WVF= -p)

log F¥=1/(d/c)?
77281\/ Fk_/l( /) )

where €1 > 0 is small enough that the O(VF¥-! . n) term in (4.18) is less than
(£/10)+/log FF=1/(d/c)2.

e = P TE

loo FF—1/(d/c)2
> 61\/0g /{d/c) -vVa (since k> 2= FF1 < a)

a

= ery/log F*=1/(d/c)? — o0,
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so Py(Vi(n)) — 1 by Lemma 4.5. Since both

* *
9 M

k k «
— _a£k+1 — 1
Ok O'kfk

as 71 — 0, we may assume 7 is small enough that

T <14¢6/10, €0,,] L >1—¢/10.
Ok ngk

Plugging these and the above bound for the O(v F*~1.7) term into (4.18),

Tl . (1—¢/10) . .
< —Vlog FF1/(d]e[(1 + €)(1 — ¢/10)(1 — £/20) — 1 — /5] + 1
< —(/2)y/log F*1/(d/c)? + 1 — —o0

on U (g/10) N Vi(n), hence Py(Ur+1(e) N U (¢/10) N Vi(n)) — 0. Then

Py(Uria(e)) = o(1) + P(Ussi(e) N (Ug(e/10) N Vi(n))')
< o(1) + Pa(Ur(e/10)) + Po(Vi(n)) = o(1)

using the induction hypothesis and the fact that Pp(Vi(n)) — 1. The other tail is

Pg( >€)—>0,

completing the induction and the proof. Il

handled similarly to show

Ak+1
G
k+1

-1

Lemma 4.8. If ¢ € B,,(d), then there is a function v = ~y(d) such that

2
. 0 <hi/(2)> , if ce B2(d)
o), if c € By (d)

(4.19)
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and, under d,,

Py(ay, > vFCE;“C—l)(a)) =0 (dT/C) (4.20)

uniformly for 0 € 0,0 as d — 0.

Proof. Let F* denote F*)

4/c(@) and Ur(z) = {ay > zF*'}. We proceed by induction

on m. For m =1, since a; < a + O(1) and F° = a, taking v = 2 gives

By(Ui(v)) < Pypla <O(1)) =0

for sufficiently small d, which satisfies (4.19).
Fix m > 2. We now prove by induction on k that, for 1 < k < m — 1, there are
constants C}, < oo such that

Py(Up(Cy)) =0 (d—/c) . (4.21)

a

The same argument used in the m = 1 case shows that €'} = 2 suffices. Thus assume
2 <k+1<m-—1 and that (4.21) holds; we now show it holds with k replaced by
k+ 1. Since a1 < ag — €(Nyy1, ék) + O(log a) by Lemma 4.4,

Py(Ups1(Cri1)) < Po(€(Niya,01) < ay, — Co1 F* 4+ O(log a))

((Nis1,0r) = e (6) i
P9< o O)V Nt <C>’ 422

where

(= %= 11:(0) Niey1 — Crn F* + O(log a)
- Uk(e)\/Nk+1
op = ppNew1 | e gy = (0)  CpaF* 4+ O(loga)
g + N . j—
0'1€<9) O-ZVN/H—I P ak(G) Uk(e)\/Nk+1

% floea o2 i = (0)  CraF* 4 O(loga)
= (@) VOB /e + N S ooV Nen

(4.23)
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Let € > 0 and O}, satisfy (4.21) so that on UJ(Cy) N Vi(e),

*

“('fg) logay/(djc)? = O<\/logF’“—1/(d/c)2>, (4.24)
Ok

\/NM.’%;—(’;’“)@ < Jar it - O(e) = O(eVE-1), (4.25)
Cr1 F* + O(loga) F*

VN Uk(@)\/ﬁﬂ(l)Zn\/long-l/(d/cP, (4.26)

some 11 > 0. Now let

log F*=1/(d/c)?
8:C\/g Fk_/l(/)

where C' < oo will be determined below. By Lemma 4.5 there exists 1, > 0 such that
Py(Vi(e)) < 2exp(—n,e%a) and

log[F*1/(d/c)?]

noc2a > 1,0 -a > n,C?log[F*'/(d/c)?.

k-1
Furthermore,
Fk-1 Fm—3 '
@jo? > CIBE (since k —1<m —3)
hp—o(a)?
> - #C(;) (some 71/, > 0 by Lemma 2.6)
hm—a(a)? S
> o 2 o (.27

for sufficiently small d, so that
n.e2a > 1n,C*(1/2)" tloga > loga
by choosing C' sufficiently large. Then

Py(Vi(e)) < 2exp(—loga) = 2a™" =0 (d—/0> : (4.28)

a



132
Plugging the estimates (4.24)-(4.26) into (4.23), on U, (Cy) N Vi(e)

¢ < 0(ViegF=1/(d/e)?) + 0 (Viog F=1/(d/e)?) = Ciyny/log F=1/(d]c)?
< —\/log F*1/(d]c)? - (Chian — O(1))
< —+/loga? (4.29)

by taking Cj1 sufficiently large and using (4.27). Then, using (4.21), (4.28), and a

large deviations argument,

Py(Uis1(Crt1)) < Po(Un1(Crn) N U(Cr) N Vi(€)) + Po(U(Cr)) + P(V; (<))

. ({ﬁ(NkH,ék) — (O Newr _ _\/1og—a2} NUL(Ci) N Vk@) o (dT/C>

1 (0)V/Nes1
0 (v~ vioga®) +o (L),

IN

and, using Mill’s Ratio,

O(—+/loga?) ~ (Mfﬁjjj) =0 (%?og%) =0 <d7/c) , (4.30)

50 Py(Ups1(Chpr)) = o((d/c)/a). This completes the induction to prove (4.21), which

we now use to prove (4.20).
If there exists 3 > 0 such that a® = o(h,,_1(a)/(d/c)), which holds when ¢ €
B (d), then

m—2

28

>
(/o2 ="
for sufficiently small d by the argument used in (4.27), and (4.20) holds with v a large
constant as in the m = 1 case. Otherwise, by considering subsequences there exists

£, > 0 such that a2 > ¢, h,,_1(a)/(d/c) for sufficiently small d. Then

d/C _ d/C ) hm_l(a) > Eo ] a(1/2)m+1 . a(l/Q)m+2

hm(a) hm—1(a)  hp(a) — q(1/2)m+2
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and hence ,
m d/c
/™ - . 4.31
A ) .
By the induction hypothesis, let C,_; satisfy P(Up—1(Crm_1)) = o((d/c)/a), and let
K log a I log a
T Mg Frzj@jer T 0 Ve

where K, K’ will be determined below. By the argument leading to (4.22)

P(Un(v) < P (é(Nm, Om—1) = pm—1(0) N _ me1 = 1 ()N — 7 F 71+ O(log a))

Tt (O N, Ot (O

and

1~ fim 1 (0) N — 7 F 71+ Ollog ) ST ,
Om-1(0)v/ Ny, < O <\/logF /(d/c) > s (\/@> _ kif\/loga

= —y/loga- (Kn' —O(1)),

some 1’ > 0, by the argument leading to (4.29). Hence, taking K sufficiently large,

we obtain

P(Un(7)) < PUn(7)NUL,_1(Conet) N Vi (€)) + P(Un—1(Crer) + PV, (€))
< P(—+/loga?)+o <%) + PV _1(9))
= o0 (d%c) + P(V! _,(g)) (4.32)

by (4.30). By choosing K’ sufficiently large and repeating the argument leading to

(4.28),
PN =o ().

a

Plugging this back into (4.32) gives P(Uy.(v) = o((d/c)/a), and all that remains is to



134
verify that + satisfies the first case of (4.19). But

v:o<@>=0<a(l/2)m+2):0( e )

hom(a)

by (4.31), finishing the proof.

Next we establish the operating characteristics of § when ¢ € B9, (d).

Theorem 4.9. If ¢ € B2,(d), then

(X0, 0) < caEx,1(0)t +d(m + 1) + o(d).

Proof. Let (N, M, D) = d,, « > 0. We will prove

EygleN +dM + r(Ay)] < clogd™/1(8) + d(m + 1) + o(d)

uniformly for 6 € [0, 6].

Fix 6 € [6,0]. First we show that

EgN < a/I(0)+ o(d/c).

(4.33)

(4.34)

(4.35)

Write EgN = Eo(N; M < m) + Eo(N; M > m + 1) and consider Ey(N; M = k) for

1 <k <m. Letting 2, = —\/10g(ak:—1/<d/c)2 +1),

2 %2 2 %2
sty fAak iy + 2o, - o,

k-1
Ne = = ;
Hr—1 212
_ — -1 +O(1
< a]: L < ¢ T *1+ (1) (by Lemma 4.2)
Hi—1 Hg—1

a - Niopi, +0(1)  a+0(1)

o Nk_l,
* *
Hr_q M1

(4.36)

(4.37)

(4.38)
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Ey(N; M =k) = Ep(N* '+ N M=k)
< Ep((a+O0(1))/py_1; M = k)
= Ey(a/pp_y; M = k) + O(By(13;"1; M = k)
< Byla/piy; M = k) + O(By(1;71))  (since pf_; > 0)
= Epla/uj_;M =k)+O(I(0)"") (by Lemma 4.1)
= Byla/u_; M =k)+O0(1) = Eg(a/il_;; M = k) + o(d/c)

for 1 < k <m. Also

Eo(N; M =1) = Ny Py(M =

so we have

Let z — —o0 be the quantile chosen for geometric sampling, which satisfies |z|

aBy(pyt ;2 < M <m)+o(d/c),

Eo(N; M < m) <
o(d/c),

o((d/¢)/hm(a)). For k > m + 1, let

Ay

N —a/uy_,
Nk_l‘*‘Nk_a/NZ; 1

1) £ 0(a)O((~a"'T)) = o(1) = o(d/c),

m > 2
(4.39)
m = 1.

i 4a + Z o* _ 2’20*2
_ p_1 |2]o 1\/ k—1Hp—1 i k-1
Nk L
! [ " 2032 a/ -
[ * * *2 2 %2
a+ O(1 |Z|0k71\/4ak—1,uk,1 + 22072, — 2702,
Vit | 2 — /iy
He—1 2u7
2] 1\/4% Wiy + 22032 — 2202, .
+ O(1)/ -, (4.40)

2#%—1
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this last by the argument leading to (4.38). Then

Eg(N;M>m+1) = > Ep(N"M=k)
k>m+1
= aBp(uy s M >m+1)+ Y Ep(Ay M = k),(4.41)

k>m+1

and we now estimate the summands in the latter term. Let F™~! denote Féﬁ_l)(a)
and let v be the function given by Lemma 4.8 such that Py(a,, > vF™ 1) = o((d/c)/a)
and v = o((d/c)/hn(a))?®. Since we may assume without loss of generality that

|z| — oo arbitrarily slowly, assume

2| = o (#/)Cﬁ) . (4.42)

Then, using (4.40) and the crude bound A, < N* <7,

Eg(Apii; M =m+1) < FEy(Api; M >m+1) = Ep(Apy; am > 0)
= Ep(Api1;0 < @ < AF™ ) + By(Appsr; am > yF™ 1)
< Oz Fm™Y) + nPylam > v ™)
= O(|z|[v/7hm(a)) + O(a)o (dT/C> (by Lemma 2.6)
= o(d/c) +o(d/c) = o(d/c)

by (4.42). Note that

Eo(Apa|M >m+1) = Ee(g?;; f;flj b _ 10%2) = o(dfc).

Assume that there exists ¢ — 0 such that, for & > 1,

Py(M >m+1+k) <" (4.43)
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Since A, 114k are stochastically decreasing in k,

E@(Am+1+k;M:m+ ]."’k) S E@(Am+1+k;M Z m+1+k>

Eo(Aps1ok|M >m+1+k)Py(M >m+1+k)

IN

< o(d/c)q"

and the o(d/c) term is independent of k, so that

> Ey(A M =k) <o(d/c)) ¢ = O(df/(j = o(d/c).

1
k>m+1 k>0

Plugging this back into (4.41) gives
Eg(N; M >m +1) < aBp(uyrty; M > m+1) 4 o(d/c)
and combining this with (4.39) yields

EgN

Eg(N;M <m)+ Ey(N; M >m+1)

IN

aBy(i5r M > 2) + o{d/e)

IA

a(I(0)"' +O(1/a)) +o(d/c) (by Lemma 4.1)
a/I1(0) + o(d/c).

To estimate the number of stages, M, note that if (4.43) holds,

E)M = Y Pp(M>k)<m+1+Y> Py(M>m+k)

k>0 k>1
< m+1+2qk

k>1

- m+1+1izm+1+o(1). (4.44)
—q
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We now prove (4.43) by induction. Let n > 0, to be specified below.

Py(M>m+2)<1—Py(M=m+1)
< 1-P({M =m+1}NUn(1/2) N Viu(n))

< 1= B(M =m+1|Un(1/2) N Vi) (Po(Un(1/2)) — Po(Vin(n)")). (4.45)

Let (1 (8) = Io(0m), 97,(6) = (B — 6,,,)*¢" (6), and

€<Nk+179k) 111 (0) N1

pr(0) = 71.(0) Ner

Since apmy1 < am — (N, ém) + O(log a) by Lemma 4.4, we have

By(M = m + U (1/2) N Vin(n)) = Py(am < 0|Un(1/2) N V(1))

> P9<£(Nm+170 )> am+0(loga))

B — ftm(0)Nppi1 + O(log a)
= B (put) > ot O L OURD 4y 17y 11, ) ).
Then

G = — pm(0) Nms1 + Ologa)

" Ty (0)V/ NHT
_ On — N1 [T Hm — Hin(0) loga
~ om(0) { * /Nmtl } " ' om(0) "o <VNm+1>
< (14+0()z+ VN™TLO(n) + o(1)
< —@3/4)|z|+O0MnvEm™1) (4.46)

on U,,(1/2) N V,,,(n) for sufficiently small 7, since z — —oo. Choosing
= e(fz/VFmIAT),

where £, is small enough so that the O(nv F™~1) term in (4.46) is less than |z|/4, we

have

Gm < —=(3/4)]2] + |2]/4 = —|z]/2
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on Upn(1/2) NV, (n), and therefore

By(M = m+1|Un(1/2)0Vin(n)) = Fo(pm(0) = —|21/2[Un(1/2)0Vin(n)) — 1. (4.47)

We know Py(U,,(1/2)) — 1 by Lemma 4.7 and since

wa=e (s ) vaza (Ean) va—agaave -

Py(Vin(n)') — 0 by Lemma 4.5. Letting

_ 1= B(M = m+ 1Un(1/2) 0 Vi (1) (Po(Um(1/2)) = Py(Vin(n)")) o(1)

q = — 0,
Py(M >m + 1) 1—o0(1)
by virtue of these last estimates, we have
Py(M > m + 2)
Py(M > 2|M > 1) =
oM zm+2AM 2m+1) = 5 )
1 — By(M = m+1{Un(1/2) 0 Vi (0)) (o (U (1/2)) — Po(Vin(1)"))
- Po(M > m +1)
= q (4.48)

and so, a fortiori, Py(M >m +2) <gq.

Now suppose k£ > 2. Using the induction hypothesis,

Po(M>m+1+k) = P(M>m+1+kM>m+k)Py(M >m+k)

< P(M=m+1+kM>m+k)d,
and the argument used in the m = 1 case, replacing U,,(1/2) by
U = {amsr4r < (3/2)E0F™ 1,

gives Py(M =m+1+k|M > m+ k) < q, whence Pp(M > m+1+k) < ¢, proving
(4.43).
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Finally, we show that
Egr(Ay) = o(d). (4.49)

Recall that r(\y;) < d uniformly and r(Ay) < d* on {N = 7}. Let 4, — oo be any
function such that

loga < 7 < h(a) (4.50)

and define

Gn___ 1‘ < 1/2} N{M =m+ 1} 0 {r(Ay) < e d}

W = Vm(n)ﬂ{W

3
= Va(np)n ﬂ Wi;.
i=1
Obviously r(Ayr) = o(d) on Wi, so

Egr() = Eo(r(An); N =1) + Eg(r(An); W N {N <7}) + Eg(r(An); W N {N < 7@})
< & 1+o(d)-1+d-Py(W') = o(d) +d- Py(W'),

and (4.49) will be established once we show Py(W') — 0. We know Py(W;) — 1 by
Lemma 4.7 and it was shown that Pp(WW2) — 1. We will choose 7 below in such a

way that Py(Viu(n)) — 1. Let W = {¢(Npy1,0m) > @ + 271} On W,

T Amy1) = exp(—logr(Ani1) ™) <exp(—lny1 +O(1))  (by Lemma 4.2)

exp(—l(Npi1,0m) — b + O(1))
exp[—(am + 271) — (logr(\p) ' 4+ O(loga)) + O(1)] (by Lemma 4.2)

INIA

exp|—a — 27, — O(log a)]

IA

exp(—a—m)=¢"d
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by (4.50), hence W NV, () "Wy N W, € W. Then

Py(Ws| Vi () N W1 NWy) > Py(W (Vi () N Wy N W)

= b (pm(e) > an;;(g;;?v)m%ﬂ + Um(eiy/lm Vin(n) N W1 N W2>(4.51)

and on V,,,(n) N Wy N W,

C — A — :U’m(0>Nm+1 271
0m<0) V N1 0m<0) VN1
_ O Fm — P (6) 27
I AR N () R (7w
< (1+0Mm)z+OWF"™H0(n) +O(n/VE™1)
< z/240MVE™ 1) 4+ O(y1/hm(a)) (by Lemma 2.6)

= z/24+OMnmVF™ 1) +o0(1)

by (4.50). Taking n = e1(|2|/V F™ 1 A1) and using the same argument as above (see
what follows (4.46)) we obtain ¢ < z/3 — —oo and Py(V,,(n)) — 1. Plugging this
back in to (4.51), we have

Po(Wal Vi () AWy O Wa) = Py(po(6) = 2/3|Vin(n) N Wy O Wa) — 1

and therefore Py(W) = By(Ws5|V,,,(n) NW1NW3) Py (Vi (n) MW NW3) — 1, establishing
(4.49).
Combining (4.35), (4.44), and (4.49) we have

EgleN +dM +r(A)] < cla/I1(0) + o(d/c)] + d[m + 1 4 o(1)] + o(d)

= ca/I(0)+d(m+ 1)+ o(d)
uniformly in #, and hence

(Ao, 0a) < caBrI(0)™F +d(m + 1) + o(d).
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This holds for all @ > 0, so by a standard asymptotic technique (e.g., [6], p. 188),
there is a function a(d) — 0 for which it holds. Taking 0 = dq(a) gives (4.34). O

Next we consider the boundary case. Let A(z) = ¢(z) — (—2)z. Let a,Q > 0
and recall from (4.14) that z*(#, Q) is the unique solution of

O(—2(6,Q)) _ QIO
o=0.Q) G0

Let

A0, Q))& (0)
Cnl0)Q

ur(0,Q) =m+ 14+ 0(24(0,Q)) +

Observe that if @ is such that () < I (which can only fail at § = 6 or ), then

0.1(0) > 0 and so 2°(A,Q) and hence u2,(0,Q) are well-defined. If I(d) = I, then

m+1

£0..1(0) =00 2°(0,Q) and hence ul, (6, Q) are not well-defined, but

(%
Sim i (0,Q) = mo+ 1+ I | 8(27(6,Q)) + A<za<e,cz>>qfi(fz§<’e%)>>
(by definition of 2%(6, Q))
= e im0+ i 867
= m+1+0+ EIP |x|@:m+1 (4.52)

since A(x) ~ |z| as * — —oo. Thus, replacing u2 (0, Q) by its limit in this singular

case, we define

_ u® (0,Q), for 0 such that I(0) < T
um (0, Q) = lim u;, (0, Q) = B (4.53)
a0 m+ 1, for 6 such that I(0) =1

for 6 € [0, 0).

Next we establish the operating characteristics of ¢ in the boundary case.

Theorem 4.10. Assume that ¢ € B (d) and let Q = limy_o(d/c)/hm(a) € (0,00).
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There is a function a(d) — 0 such that § = 04 satisfies

r(Xo,0) < caBr I(0)™" + d - Exyun (9, Q) + o(d). (4.54)

Proof. Let (N, M, D) = 6,, @ > 0. We will show that

EglcN +dM +r(Ay)] < ca/I(0) +d-ul(0,Q) + o(d)

uniformly for 6 € [0, 6].

Fix 6 € [6,0]. First we show that

We can write

A0, Q))& ()

EgN < a/I(0)+ (d/c) + o(d/c).

EgN = Ep(NiyM > k)= > Ep(Nu M >k)+ > Eg(Ny M > k)

k>1 k<m+1 k>m+41

and

> Ey(NisM > k) =Y [Eg(Niik < M <m) + Eg(Nis M > m +1)]

k<m+1

IAN

IN

k<m

+Eg(Nps1; M > m+1)

> Eg(Ny; M <m)+ Eg(N™ M > m+1)

k<m
Ey(N; M <m) + Ep(N™™ M >m+1)
aB(pi Ay M <m) +O(1) + Eg(N™ M > m + 1)

(M1
aEG(/[(k_lfl/\l)

M <m)+ Eg(N™™ M >m+1) + o(hp(a))  (4.55)
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by the argument leading to (4.39). Also, by the argument leading to (4.38),

at0Q1) 20 (Q)os /Aampis, + 25,(Q)%032 — z0(Q) 20

Nm+1
T 2187
= et0l) Ly (4.56)
Hom

say. Choose ¢ > 0. Let 0%(0) = (0 — 6')?¢"(0) and ¢, = €[2+ 2%(0, Q) (0)I(0)—3/2] 1,

recalling that § = maxy g g(0). Let F""~! denote Fd%*l)(a), and let

Ule,) = {

A, 1l <
GEmT |

and A = Ul(e,) N Vi(no) N{M > m + 1}, where 1, > 0 will be determined below.
Since z2(Q), pt,, o, approach z*(0,Q), 1(0),0(0) as n, — 0, it follows that

v < SOQUO O £ 2L QPO 2O L o) i,

on A. Since /@, < /(14 ,)E8Fm1 = O(VF™ 1) = O(hy(a)) on Ule,), by taking

7, sufficiently small we may assume

2%(0,Q)o(0)\/4anI(0) + 22(0,Q)%c(0)2 + 22(0, Q)*c(6)?

<
rs 21(0)2

+ (€0/2)hm(a)
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on A. Using (4.56),

Eg(N™ A) < Egl(a+ O(1)) /by, + Y3 A]

< aBy(ust; A) + O(l)

E, ( QO eml )+ Z“(Q’QV“(”Q;A) ¥ (Eof2hla)

< a5 )+ O TS O QRO + 2hfa)

< ot s )+ DR O ST 141226, Qlo0)16) (@
< B A) + = ;fefg;” () + <0f2+ 126, Qo (6)1(6) 7 o)

< Ayt A) + _Zaﬁf’e%;%@ B (@) + £hon(a), (4.57)

by our choice of &,.

Again using (4.56),

Ey(N™ U (,) N Vi (10) N M > m +1}) < aBp(pigy U (20) N V(1) N {M > m +1})
+O(1) + Eg(O(\/am); U(go) N V(o) N{M > m + 1}).

Letting C' be the constant given by Lemma 4.8 such that
d/c
Poan > €6 = o (L) = ofhna)/a) (1.58)

we have

Eo(/am: U(e) N Vi) 0 {M > m + 1))

= Bylv/am: {am < CEF™ I\ U(e)) N Via (1) N {M = m + 1)]
+Eol/am: {an > CELF™Y 0 V(o) 0 {M > m +1}]
OVEm ) Py(U(=,)) + O(Va) Pylay, > CELF™ )

IN

(using the crude bound a; < a+ O(1) = O(a))

= O(hm(a)o(1) + O(Va)o(hm(a)/a) = o(hmn(a)), (4.59)
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using Lemma 2.6 and (4.58), giving

Eo(N™ 5 U(e,) 0 V(1) 0 LM 2 m +1}) <aBo(s s U(es) 0 Vin(no) 0 M = m + 1))
+ o(hm(a)).
(4.60)

Also
Eo(N™ 5 Vi (10) N{M > m+1}) < Pp(Vin (1)) < O(a)O(®(—a'")) = 0(1) = 0(hm(a)),

by Lemma 4.5. Combining (4.57), (4.60), and (4.61), we have

20, Q)& (0)

Eo( N M o> ) < aEp(ut: M > 1)—
9( ’ —m+ )_CL e(lum I —m+ ) I(Q)Cm

hm(a)+(e+0(1))hn(a).

This last term may be replaced by o(h,,(a)) since € is arbitrary. Doing this and
plugging into (4.55),

2(0,Q)6,0),

Z Eo(Ni; M > k) < aBy(13 1 pyy) — I(§)Cm

k<m+1

m(a) + o(hy,(a)). (4.62)

Next we will estimate the terms of » 7, FEg(Ny; M > k). Let V. = Vp,(m) N
Vins1(m), where n; > 0 will be determined below. Given ¢ > 0, choose 0 < g, <
(£/2)[63 - (A(=2(0,Q))&%,1(0)/(CmI(0)))]*. For sufficiently small 7y,

Eg(Npy2; U(go) NV N{M > m + 2})

Eomss/fir + O(amsn): U(e,) AV A {M = m +2})

(1+¢,) .
0 Eg(ami1;U(go) NV N{M > m+ 2})

IN

IN

and

~

i1 < @y — (N1, 0,) + Kloga, (4.63)
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for some K < oo, by Lemma 4.4. Letting a;, = a,, + K loga, note that

{M >m+2} C {ame >0} C {aX, — (Npi1,0,,) > 0} (4.64)

by (4.63). Then, letting

W, = i (0) N1

C: Um(e)VNm-i-l ’

Eg(Nim12:U(g,) NV N{M > m +2})

<

<

IN

IN

IN

(1+¢,)
1(0)

(1 + 6 E0 V m—l—lA |U<50) N V]

%EW o 15+ O(y/am) A(~)on(O)|U(e,) N V]

(1+e,)? (1+e,)85 Fm-1
](9) E0[<1 + 50)0'm(0)\/ Nm(e) A(-C”U(SO) N V]
(for sufficiently small 7;)
7/2
%E oV FrIA(=Q)|U(e,) N V]

(1 + 50)7/2 o my—1
T(0) Ep[(1 4 €0)& 11 (0)(C) ™ hin(a) A(=()|U(e0) N V]

(since VF™1 ~ (C™) 7' h,,(a))
(1+20)"260 11 (0)

E@[(a*

m

— U(Nins1, ) Hath, = (N1, ) = 01U (e5) N V]

Eg[A(=Q)[U(e) N V]

16)Cin @)
e ees O )1 (-20.) + o) (4.65)
%“(03?9()_0: (Q’Q))hm(aﬂ %”&@H(l) hum(a)

by our choice of ,, where (4.65) uses a routine argument like that of Lemma 4.1.
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OnV,

~

A — U(Npa1,0m) + O(loga) (by (4.63))

IN

Am41
< am + O(ay) + O(loga)

O(am) + o(hm(a)),

SO

Eg(Npa2; U(g,) NV N {M > m+2})

Eg(O(pmi1); U(e,) NV N {M > m + 2})

IAN A

Eg(O(an) + o(hy(a));U(e,) NV N{M >m+2})

IN

o(hm(a)) (4.67)

by the argument leading to (4.59). Using the crude bound N2 < N <7,

Eg(Npoo: VI N {M > m +2}) < aPy(V') = o(1), (4.68)

by the argument leading to (4.61). Combining (4.66), (4.67), and (4.68),

(=270, Q))& 1 (0)
Cm1(6)

Eg(Npio; M > m+2) < A h(a) + (e + 0(1))hm(a)  (4.69)

and we may replace this last term by o(h,,(a)) since € was arbitrary.

As in the proof of Theorem 4.9, there exists ¢ — 0 such that Py(M > m+2+k) <
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¢* for k > 1, and since N0y are stochastically decreasing in k,

> Ey(Nsosis M > m+2+ k)

k>1

= Y Ey(Npsosk|M > m+2+k)Py(M >m+2+k)

k>1
< Y Ep(Nipya| M > m + 2)"
k>1

< Z q” (by (4.69) and since Py(M > m + 2) bounded above 0)

k>1

= O(hm(a))g/(1 = q) = o(hm(a)).

Combining this with (4.69) and (4.62),

EgN = > Ef(NuM>k)+ > Ef(NyM>k)
k<m-+1 k>m+1
< bzt~ et On, o) ¢ SR (0) 4 ot (@)

= aBy(uiy 1) + A(Za;(eé)?%1§%+l him(@) + o(hm(a)),

this last since
—2+A(=2)=—z2+¢(—2)+P(2)z = -2+ ¢(2) + (1 — D(—2))z = A(z).

Since h,,(a) ~ Q7*(d/c) and Eg(,u?Ml A1) = I(0)~'+0O(1/a) by Lemma 4.1, we have

( (9 Q)) m+1
()@

EgN < a/I(0)+ (d/c)+o(d/c). (4.70)

Next we estimate the number of stages, M.

EeM = Y Py(M>k)<m+1+P(M>m+2)+> Pp(M>m+2+k)
k>0 k>1
< mAl+P(M2m+2)+Y ¢
k>1

< m4+14+9(2%00,Q)) + o(1), (4.71)
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once we show

Py(M > m+2) < ®(2%(0,Q)) + o(1). (4.72)

Assume that 17, — 0, but slowly enough so that Py(V},(n2)) — 1, and note that this

holds uniformly in # by Lemma 4.5. Let

€<Nk+1a9k) ,Uk(e)NkJrl

) = OV N

and choose € > 0.

Py(M>m+2) < Fp(M>m+2[U(e/2) N Vi(n2)) Po(U(e/2) N Vin(n2))
+Py(U(e/2)") + Py(Vin(n2))
Py(M > m +2|U(e/2) N Viu(n2)) Pa(U(e/2) N Vin(12)) + o(1)

Py(pm(0) < C|U(e/2) N Viu(n2))

IN

IN

by (4.64). We can write

— /J’m(e)Nerl _ a — N/m(@)Nerl Kloga
am(e)\/NmH Um(e)\/NmH om(0)

um um Kloga
Zm + v N +
Um i Mm(‘g) V Nm+1

o > + O(VF™ ) + oaoga(Fm*)*/?)
< O((F™ Y1) = O(N,[f))

IN

uniformly on U(g/2) NV, (1) if we choose gy = (F™1)7%/14 say. Note that ny/a >
a'/m — 00, so Py(Viu(n2)) — 1. Hence, we can apply large deviations to get, for

sufficiently small d,

Po(M>m+2) < Ep[(1+¢/2)2(¢)|U(e/2) N Vin(n2)] (4.73)
= (14¢/2)(P(z%(0,Q)) + o(1)) < P(2%(0,Q)) +¢, (4.74)

proving (4.72) and hence (4.71)
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Finally, we show that Epr(Ay) = o(d). Choose v(d),v2(d) — oo to be any

functions satisfying

Vhm(a) > /71 > v > loga. (4.75)

For example, 71 = a2 " and 7o = a® " suffice. Let

Wo = U(1/2) N Vira(n3),
W1 - {am+1 S _71}7
W2 = {am+1 Z 715 Gm+42 S _72}7

and W = (WonWy) U (WonWs),
where 13 > 0 will be chosen below. On WyN'W,, i =1, 2,
r(Aar) = exp[—logr(Ams1) '] = explami1 — a] < e "d = o(d).
Then, since r(Ay) < d? on {N =7} and r(\y) < d as.,

Eor(Anr) = Eo(rOw); WN{N <7}) + Ep(r(Ay); N =) + Ep(r(Ay); W U{N < 7})
< o(d)-1+d* 1+d-P(W) = o(d), (4.76)

once we show that Py(W) — 1. Now

Py(Wo N W7) = Py(Wo) — Py(Wo NWY) > Py(Wy) — Pp(W{|Wo)

A

> Py(Wy) — Po({(Nm1,0m) < am + 71 + O(loga)|[Wy)  (by (4.63))

— Py(Wy) - P, (pm(9> < “";;(S;é%“ O (x/lleH ) ‘ WO)

— P - PR (pmw) < fm ‘(g;j%“ n o<1>\ WO)

since loga < 71 < hy(a) = O(v/Nyy1) on Wy, This last probability approaches
®(2%(0,Q)) by the argument leading to (4.74), hence if we choose 713 such that
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P@(WO) — 1,
Pi(Won W) >1—0(2%(0,Q)) + o(1). (4.77)

Now

Py(Wo N W) = Py(Wa|Wo)Py(Wo) = Py(am41 > 71, Gmgz < —¥2|Wo)(1 4 0(1))

= Pylamiz < —vl{ams1 >} N Wo)Py(ami1 > 11|Wo)(1 + o(1))

and Py(am1 > 11|Wo) — ®(2%(0,Q)) by replacing +; by —v; in the argument used
on Py(W/{|Wy). Using (4.63),

Po(amy2 > —v2l{amy1 > 1} N W)

Am41 — Mm+1(6)Nm+2 ( V2 )
< P, mat1(0) < +0
’ (p +1( ) 0m+1(6) Nm+2 Nm+2

(s > 10 Wo) .

(4.78)

Now, letting z — —oo be the parameter of d, representing the geometric sampling

quantile, on {a;,+1 > 11} N Wy
_ Omy1 — Mm+1(9)Nm+2 V2
Cm-i—l = +0
Um+1 (9) V Nm+2 V Nm+2
a1 (0
_ m+1 2+ \/T—i—QMerl fims1(0) +o(1)

Um-i—l m+1(9)

(by deﬁnltlon of z and since v, < /71 = O(\/@mt1) = O(V/Npmy2) on {ami1 > 1})

IN

1))z + v/ Nin20(n3) +o(1)  (since Wy € Vip1(n3))
< (I1+o(1))z — —o0

if we choose 13 = +/|2|/hm(a), since then
13y Nz = O(03y/am1) = O(n31/am) = O(nsV ") = O(nghim(a)) = o(|2])
on Wy. Plugging (4.79) into (4.78) yields

Po(amy2 > —vel{ams1 > 1}y N Wo) < Pp(pms1(0) < Cryr[{amyr > N W) — 0

(4.79)
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and thus

By(Wo nW3) = (14 0o(1))(®(2%(0,Q)) + o(1))(1 + o(1)) = (2%(0,Q)) + o(1).

Combining this with (4.77) gives

P@(W) = Pg(WO N Wl) + P@(WO N Wg) (Wl, Wg diSjOiIlt)
> 1-9(z%0,Q)) + P(2(0,Q)) + o(1) =1+ 0(1),

proving (4.76). Combining (4.70), (4.71), and (4.76),
A(z%(0, Q))& 11(0)

1(0)Cn@Q
= ca/I(0)+d-ul(0,Q)+ o(d)

EgleN +dM +r(Av)] < cla/1(0) +

uniformly in 6, and hence
7’()\0, 501) S CaE)\OI(Q)_l +d- E)\ougn(ea Q) + O(d)

This holds for all o > 0, so by a now standard asymptotic technique, there is a function
a(d) — 0 for which it holds. Note that uf‘n(d)(ﬁ, Q) = un(0,Q) + o(1) uniformly in 6
by (4.52), so setting § = dq(a),

7’(/\0, 5) = T()\(), 5a(d))
< caB\I(0)" 4 d - Ex[um(0,Q) + o(1)] + o(d)
= caBy\I1(0)"" +d- Exjun(9,Q) + o(d),

finishing the proof. [

(d/c)]+dim+ 14+ ®(z*(0,Q))] + o(d)
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4.3 The Tests §* and §*

Lemma 4.11. there exists K < oo such that r(Ay+) < Kd. Conversely, if the

stopping risk at the end of a stage is less than d, then 6* will stop.

Proof. The Bayes test 0" stops when the stopping risk is less than or equal the
smallest possible posterior expectation of the cost of continuing. One such continua-
tion is fully sequential sampling, whose expected cost of continuation is well known
to be a bounded multiple of the cost per observation, ¢ + d in this case. Thus, there
exists K < oo such that r(Ay+) < (K/2)(c + d) < Kd, which is the first claim.
Since any possible continuation incurs a cost of at least d, the cost of one stage, the
stopping risk is less than the cost of any possible continuation when it is less than d;

this is the converse claim. O

In computing the operating characteristics of a test, it is useful to have a lower
bound on the size of the first stage. Lemma 4.12 establishes the existence of a test
&* with such a lower bound that is “close” to the Bayes procedure in behavior and
in integrated risk. The remainder of this section will largely be spent computing the
operating characteristics of §*; we then compare the test § of Section 4.2 with the

Bayes test, using 6% as an intermediary.

Lemma 4.12. There is a test 6* = (N*, M*, D*) satisfying

]\71* > ea, >0,
r(A\g.) < Kd, K < oo, (4.80)
r(Xo,0%) < 7(Xo, %) + o(d). (4.81)

Proof. By Lemma 4.11

a—0(1)

IN

logr()\N*)_l

< U(N*,0y) + O(loglog ((N*, 0,+)) (4.82)
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by Lemma 4.2 since (|[Sy«| V N*) — 00 as d — 0. Now, if a — O(1) < z + O(log z),

then z > a — O(log a) since if x = a — yloga, some 7 — oo, then

a—[z+O(logz)] = 7loga— O(log(a —vloga))

> 7loga—O(loga) # O(1),
violating the original assumption. Hence, (4.82) implies
O(N*,0y+) > a — O(log a) (4.83)
as d — 0. Then

N* = T;. (Op) YU(N*, 0ppe) > 1

*
M* M*

(Orr+) " a — O(log a)]. (4.84)

Let £, > 0 be such that § —e,, § + ¢, are both in the interior of the natural parameter

space, and let W = {0%,. € (8 — £,,0 +&,)}. Note that on W

By (4.84), there exists € > 0 such that ca is an integer and
N* > 2¢ela — O(loga)] > ea
on W for sufficiently small d. By Lemma 4.5 there exists €; > 0 such that
Py(N* > ca) > Py(W) > 1 — 2exp[—e1a] (4.85)

uniformly in 6.
Define 6* as follows. Let
Ni = N; Vea,
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for k> 1
e - P N M > k1
Nk+1 =
Niy if M* <k,

and letting k* = inf{k > 1 : N** = N**}_ define

i M* +inf{k > 0: My ppy) =0} on {k" =00 > M~}

M* on {k* < oo},

where Ny +1),M(*k 1) are Bayes continuations after k stages of sampling under 5%,
Note that we have assumed M* < oo a.s. since the Bayes procedure cannot minimize
the integrated risk without FM* < oo.

The test 6* can be interpreted as follows. The first stage Nf is at least ea and, if
this is greater than N7, the following stages of 4* through the (k* A M*)th stage are
smaller than the corresponding stages of 6*. On sample paths such that £* < oo, 0*

has “caught up” with 0% after the k*th stage in the sense that
N* = N* for all k > k* (4.86)

and the two tests will coincide exactly thereafter. On sample paths such that k* = oo,
0* stops before ever “catching up” with 6* and as soon as this happens, o begins
a Bayes continuation. In either case, * only stops when the Bayes stopping rule
indicates to do so, hence (4.80) holds by Lemma 4.11.

On {k* < oo}, (N*,M*,D*) = (N*, M*, D*) since the procedures will behave
identically after the k*th stage. On {k* = oo}, N* is no larger than the sample size

of the procedure that initially samples ea and then performs a Bayes continuation.
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Thus
Eo(N* — N*) < FE4(N*;k* = o)
< (ea+ EgN™)Py(k* = 00)
< (ea+ EgN*)Py(N* < ea) (since {k* = oo} C {N* < ea})
< (ea+ EgN™) -2exp(—e1a) = EgN* - 2exp(—e1a) + o(1),

by (4.85). This holds uniformly in # and so

By () < By (eN*)[1 + 2exp(—21)] + o(c) = By (eN*)[1 + 2exp(—e10)] + o(d).
(4.87)
On {k* = oo}, M* is no larger than the number of stages of the procedure that

performs two Bayes tests successively, so similarly

Eg(M* — M*) < Eo(M*;k* = c0)
< 2EgM™ - 2exp(—e1a).
This holds uniformly in 6, so
By, (dM*) < Ey\,(dM*)[1 + 4exp(—e1a)). (4.88)

Since the stopping risks also coincide on {k* < 0o},

Eolr\ ) —r(Aar)] < Eplr(\p); K = o0

IN

Kd- Py(k* = 00) (by (4.80))

IN

Kd-2exp(—e1a) = O(d) - o(1) = o(d).

This holds uniformly in 6, giving E\,r(Aj.) < Ex7(Ax+) + o(d). Combining this
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with (4.87) and (4.88),

(X, 0%) = Ey\[eN* +dM* 4 r(\g.)]

IN

Ey(cN*)[1 + 2exp(—e1a)] + Ex,(cM*)[1 + dexp(—e1a)] + Ex,r(Anr+) + o(d)

IN

r(Xo, 0") + dexp(—e1a) E\,(¢cN* + dM™) + o(d)

IN

(Ao, 0%) + dexp(—e1a)r(Xo, 67) + o(d).
We know from Theorems (4.9) and (4.10) that (Ao, 0%) < (Ao, ) = O(ca), so
(X, 0%) < (X0, ) + 4 exp(—e1a) - O(ca) + o(d) = r(X,d") + o(d)

since
exp(—¢e1a) - ca = dlaexp(—eia)|(c/d) =d-o(1) - o(1) = o(d).
This establishes (4.81) and finishes the proof. O

The next lemma gives a uniform lower bound on the average sample size of §*.

Lemma 4.13. EyN* > a/I(0) — O(loga) uniformly for 6 € [6,6].

Proof. By the argument leading to (4.83),

~ ~

((N*,0,7.) > a—O(loga)
for sufficiently small d. Then

N* =TI (03.) (N*0;7.) > 1. (0,3.) " a — O(loga)]

M* M*
and hence

EsN* > Egly. (0.) 'a — O(loga)]
> [[(6)" = O(1/a)] - [a — O(loga)]
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by Lemma 4.1 since ¢ = O(N}) and N* > N7. Expanding this last proves the

claim. O

For 0 <e <1 and k > 1 define A () to be the set of all (s,t) such that

d \ . B ) )
log <T(/\( t))> > (1- 5)§k(9(s,t))FC§fc Y(logd™) and e <6(s,t)<80—-c.

Define A (¢) similarly but with 8 +¢ < 8(s,t) < —¢, and let Ag(e) = A (e) UAL (¢).
We will sometimes abuse this notation by writing A € Ax(e) to mean A(y4) such that

(s,t) € Ax(e).

Lemma 4.14. Assume ¢ € By,(d) and let Ay = A(gr oy Givene >0 and1 <k <m,

there exists 7 > 0 such that

Py € Ag(n)) > 1 —e. (4.89)

Proof. Let A,(C')(n) ={\ € .A,g)(n)}. First we handle the k = 1 case. Assume that

*

N —
limsup —% < T g (4.90)
d—0 a
Suppose € > 0. Choose €, > 0 such that
Mo(0 + €0, —€0) + Ao(E0, 0 — £0) > 1 —¢/2,
and let n = ¢,/2. We can write
—€o 5750
Po(in) = [ RO+ [ RATm)NO®. (191
O+co €o

Let Vi(e) = {|0k — 0] < e}. Let 0 < &1 < &,/2, where £, will be determined below.

On ‘/1(51) for 0 € [8070 - 80]7

é120—61250_51250/2:n
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and

b <O0+e<O0—co+e1<O—c,/2=0—n.
Similarly, 0 +n < 0, < —n for 6 € [0 + ¢,, —¢,]. Let
pe(0) = Io(0r)

or(®) = (O —6,)%"(9)

pr(0) =

E( l::ka k) - ,uk(e)Nl:

on(0)y/ Ny

Now, a; = a —logr(\)™" > a — ¢; + O(1) by Lemma 4.2, so that

A NVier) 2 {6 <a[l = (1 =n)(1 = 1(6)/D)] + O(1)} N Vi(e)

2 {m(e) _all = (1 =m)( = 1(6)/T)) = (O)NF

o1(6)\/ N

CI(0+e0/2) VIO —0/2) -
T

and note that 1 — I(6,)/T > 1, on Vi(ey). Also, using (4.90) and the fact that

+ O(Nf1/2)} N Vi(er).

Let
0

770:1

Nf > eca — o0,

all = (1 = n)(1 = 1(6,)/T)] — ju (O)N;
o1(6)\/N;

all = (1= n)(1 = 1(6,)/T)] = (0)a(1 + o /4)/T
01(0)\/a(1 +nm./4)/T

+O(N?

+o(1)

N \/0—1(0)2(1ai ey [1 — (L=n)(1 = 1(6)/T) = (O) (1 + o/ ) /T

for sufficiently small d. As e; — 0, the expression in brackets approaches

n[1 = 10)/T = (1(6)/T)no/4)] > n[l —1(0)/T —1,/4]
> 77[3770/4] >0,
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and therefore

all = (1—n)(1 = 1(01)/1)] — m (O) N} V) > 0 a

o1(6)\/N;

some 7’ > 0, for sufficiently small £;. Thus, for 6 € [e,,0 — &,],

Py(Ar(m) = Py(A7 (Vi) Bo(Vai(er))
> Py(pi(0) < n'ValVi(er)) Po(Vi(er)) — 1

uniformly since 7'y/a — oo and we choose £; — 0 so that Py(Vi(e1)) — 1 by a now
routine argument. Similarly, Py(A; (7)) — 1 uniformly for 8 € [0 + ¢,, —¢,], and

plugging into (4.91) gives

(1 —0(1))No(@ + €0, —€5) + (1 — 0(1)) Ao(g0, 0 — &5)
> (1—o(1)(1—¢/2) >1—¢

Py (A1(n))

v

by the time the o(1) term is less than /2.

All that remains for the £ = 1 case is to verify (4.90). Suppose that, contrary to
(4.90), lim sup N7 /a > T ', Then there exists n > 0 and a sequence of d’s approaching
0 on which N7 > (7_1 + 2n)a. Assume I = I(f); the other case, I = I(6), is handled
similarly. By continuity there exists 6, < 6 such that 1(9)~! < T 47 for all

0 € [0, 0], and hence
Ny > (I1(0)" +n)a (4.92)

for all 6 € [0, 0]. Since
EgN* > I1(8)"'a — O(log a) (4.93)
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uniformly for 6 € [0, 6] by Lemma 4.13, it follows that

(Ao, 5*) > E)\O(CN*)

6 ~ 7 ~
— C/ EQN*)\O(Q)CZQ—I—C/ EQN*)\O(Q)dQ
[ 02

> ca /92 I(0) ' Xo(0)dO + ca /6(1(9)_1 + 1) Ao(0)d0 — O(cloga)
(by (4.92) and (4.93)) 2

> ca[ExI(0)"" + 7] — O(cloga),

where 7' = nAo(62,0) > 0. We know from Theorems 4.9 and 4.10 that
(o, 0) < caFEx,1(0)™* +O(d),

which leads to

(Mo, 6%) = (N, 8) = [r(No,0%) — (Ao, 0%)] + [r(Xo, 6%) — (Ao, 6)]
> —o(d) + [n'ca — O(cloga) — O(d)] (by Lemma 4.12)

= 1n'ca — o(ca) >0

for sufficiently small d, which contradicts the optimality of 6*. This proves (4.90) and
completes the £k = 1 case.

To handle 2 < k < m, we will first prove that for sufficiently small n > 0,
Pro (A5 (3n/49) A, () — 1 (4.94)

as d — 0. Let \,_; € A () and &, > 0, which will be chosen below. Consider
Py(AE(3n/4)) for |0 — 01| < 1. If &, < 1/8, then on Af_,(n) N Vi(ey),

Op >0 —e1 > 01 — 28, >0 — 25 > 3n/4
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and

Oy <O+e1 <Op 1426 <O —n+25 <0 3n/4

Similarly, on 4; (1) N Vi(e1),
0+ 3n/4 <6, < —3n/4

5o in either case, the requirements of 6; on A¥(3n/4) are satisfied on Vi (e;) if &1 < 1/8,

which we assume for the remainder of the proof. Let

ap—1 — Mk(e)N]:

on(6)/ Ny

and let F*~! denote Féfgl)(a). By Lemma 4.4, a, > ap_y — ((N;,0;) — O(loga), so

(=

that

AEGBn/A) N Vi(e)) 2 6N}, 0) < apy — (1= 3n/4)&F*1 + O(log a)} N Vi(e1)
(1 —3n/4)&.F*1 + O(loga)

on(6)\/N;

2 {(0) <C— N Vi(er).

Solving for y/ N » we obtain

(1 —3n/4)&F* ! + O(log a)
on(0)/ Ny

This last is increasing in ¢, so letting U = {¢ > /log[F*~2/(d/c)?] — 1}, on Vi(g1) N

(1—3n/4)&.F* ! + O(log a)

- o) 0) (v ar @) T o0/ — Con(0)/2)

=(—
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U N A%—l(n)a

(1—3n/4)&F* ! + O(loga)

on(0)y/ Ny

Vlog F¥=2/(d/c)? — 1 —

<_

(1 = 3n/4)&F"!

o1 (0) e (0) 1/ ag—1111(0)
(1 = 3n/4)&F"!

o1 (0) 10 (0) 712/ (1 — )€1 FF2

(1—3n/4) | m(0) . F*!

v

(1+0(1))

> /log F¥=2/(d/c)? — (L+0(1))

> /log F*2/(d/c)? — — O_kw)gk_l&k —Fk_z(”"(l))
> log FE=2/(d/c)? — (1 = n/12)(1 + 1/24)\/log F*=2/(d/c)?

> (n/24)y/log F*=2/(d/c)? — o0,

this last since

(1—3n/4) 1 (6)
= <1-n/12 and 05 &e(1+o0(1)) <14n/24

for sufficiently small ;. Thus,

Po(Ag(3n/4)) = Po(Ag(Bn/9)|Viler) NU)Pa(Vi(er) NU)
> Pylpr(0) < (n/24)y/log F¥=2/(d/c)?|Vi(e1) N U)Py(Vi(e1) N U)
= (140(1))P(Vi(er) NU) ~ Fy(U), (4.95)

since Pp(Vi(e1)) — 1 by a routine argument.

Now, lettin
e o) = P )00
T By (AE ()

and using wy to denote the distribution function of (S,_;, N¥~1) given the true pa-
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rameter value 0, we write

Pu(AE B0/ A1) = Bay(Pou, (A G/ )| AE, ()
= [ B A )AL o0

_ // P (A (3n/4)) i d=3(5:t) 5 ()ad
) JAE |

Py(A 1 (n)
- : 550 5 G)dd
B /99] /Ai /69] Po(Ax (3n/4))A(s.1) (0)dO Pg(Af_l(n) Xo(0)dO
dwg(s,t) ~ ~ ~
< /99] /Aki A / Fy(U )\(St )dep (Zi 1(77) Ao(0)d0, (4.96)

this last by (4.95). Thus if (4.94) were to fail there would be a sequence of d’s

approaching zero on which the right hand side of (4.96) is bounded below 1. Letting

V(Ji X o X i) = /J /J /J (o) dj‘%(i(t)))ﬂo(é)dé,

this would imply that there exists ¢, > 0 and J C [0, 0] x A ,(n) x [0,0] such that

v(J) > ey and Py(U’) > &5 on this sequence. Let
Ji=Ax:(x,y,2) € J}, J0)={y:(0,y,2) € J}, Js(s,t) ={z:(x,(s,t),2) € J}.
For 6 € J;, using Wald’s equation
EgN* = [Egly(0,5.)] " Eol ;-
By Theorem 6.1.1 of [16],

[Eolg(057.)] 7 = [L(6) + O(1/a)] ™ = 1(6)™" + O(1/a),
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since a = O(N;) by Lemma 4.12. Let €3 > 0 and

Wo0) = {di_1 € L(@)}n{0e J5(Sp_y, NNV
W(0) = Wo(0)N{0p_1,0r € (0 —e3,0 +35)}.

lie > logr(A\g.)"' — O(loga)
> a—0(1)—O(loga) (by Lemma 4.11)

= a—0O(loga),
and therefore

Eyl — a+ O(loga) > Eyllyy. — a+ O(log )| W], (W)
> FEy[ly. —a+ O(loga)|W|Py(W)

v

Ey[(ly7- — a+ O(log a))1{M* = E}|W]Py(W)
> Bpl(E(N}, 0x-1) — ax—1 + Olog a)) I{M* = k}|W]|Py(W) (4.97)

since, on {M* = k},

U = N 0,) = ((N™*,6),_y)

(
(

= (N}, 0,_1) +1ogr(M\—1) "t +O(loga) (by Lemma 4.2)
(

Letting e3 — 0 in such a way that ey/a < ¢ yields Py(f),_1,0; € (0 — 3,0 +¢3)) — 1
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and 53\/]%‘ on W. Let
ar—1 — O(log a) — pu—1 ()N

o 1(9)\/?;
- <+f — pe-a(8)) + o1)

Uk:l

~ (1+o1 >><+o<esﬁ>

~ ¢ = o(F))

Y
Il

on W C A,_1(n) Then by Lemma 2.10

Eol(€(N}. 1) — an 1 + O(log ) L{IT* = K}W] ~ Bg[AQ)y/ N7 |W]
> Eo[A(\/1og[F*=2/(d/c)?] — 1)\/ax_1/I(0)|W] (on U’)
o(y/log[F*=2/(d/c)?] - 1) - ]
> [, N P2 W
~ Mog[Fkﬂ/(d/c)?]—l)Z !
(some ' > 0 on Ap_1(n), and since A(z) ~ ¢(z)/2?)
exp[—(1/2)(y/log[F*-2/(d/c)?] — )]\/m
(V1og[F*=2/(d/c)?] — 1)?
_dfc exply/log[F*2/(d/c)’] — UZ]W
VEE2 ((/log[FF=2/(d/c)?] — 1)
4y 2L IR~ 12
(V1og[FF=2/(d/c)?] — 1)

= (d/c)-v>d/c. (4.98)

Also, since

/ Po(W,(0) A0 (6)d0 = v(J) > e3> 0,
J1

there exists J; C J; such that Xo(jl) > &9 > 0 and Py(W,(0)) > &, for all § € Ji.
Since Py(fp_1,0, € (0 — e3,0 4 €3)) — 1, this last implies Py(W(0)) > &,/2 > 0, say,
for all § € J; and sufficiently small d and also implies that

V(jl X Jy X Jg) > / PQ(WO(Q))S\O(Q)dQ > E::% > 0. (499)
J1
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Plugging this and (4.98) into (4.97), we have

EgN* > [1(0)™ + O(1/a)l[(d/ec) - 7 - £2/2 + a — O(log a)] = a/I(6) + 7,

where 4 > d/c, and this holds uniformly for § € Ji; we will use this lower bound for

0 € J, and the uniform lower bound provided by Lemma 4.13 for 6 =4 Ji. Now, since

i Pay(Af ()Mo (0)d0
Mo(J1) = /jlko@d@ = /J Pf(A;:_l(n)

Pag (A1 (m)Ao(J1) 2 Pag (A (m)v(Jr % o x )

Y

> £3>0
by the induction hypothesis and (4.99),

r(Xo,0%) > Ey(cN*) = cEy,(N*:0 € J)) + cE\ (N*:0 & Jy)

V

> cBEy,(a/I(0) +7;0 € J\) + cE\,(a/I(#) — O(loga);8 € J;) (by Lemma 4.13)

> caBy1(0)"" + c7é3 — c- O(log a)

= caBE\1(0)" + 985 — o(c¥)
since 4 > d/c > log a. But we know from Theorems 4.9 and 4.10 that
7(No, 0) < caEy,1(0)' 4+ O(d) = caBEx,1(0)~" + o(c7),

which implies

7“()\0, (S*) - T()\(), (5) = [7"(/\0, 5*) - ’f’(/\(), 5*)] + [T’(/\(), 5*) - T’(/\(), 5)]
> —o(d) + [c¥€5 — o(c7)] (by Lemma 4.12)

= cyé3—o(cy) >0 (4.100)

for sufficiently small d, a contradiction. We have thus established (4.94).
With this in hand, we now finish the induction by proving the k case of (4.89).
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Given € > 0, let n > 0 be such that Py,(A1(n)) > 1 —¢/2 via the k = 1 case of (4.89).
Then

Po (AF (/D) = Pag(AF () [ Pao(AF ((3/4) ') [ AE, ((3/4)2n))

1=2
k

= Pyu(ATm) [J(1 = 0(1))  (by (4.94))

=2

= Py (Af(n) - (1 - o(1)).

Assuming d is sufficiently small that this last o(1) term is less than /2 (for both the

+ and — cases), we have

P (Ar((3/4)10)) = Pa(AL((3/9) ) + Pag (A4 ((3/4)* 1))
> Py(AT(n) - (1 —¢/2) + Py (Ar(n) - (1 —¢/2)
= Pr(Ai(n)(1 —¢/2)
> (1-¢/2)(1—-¢/2) > 1—¢,

finishing the proof. L

Lemma 4.15. Assume that ¢ € B} (d) and let Q = limy_o(d/c)/hy(a) € (0,00). For

every € > 0 there exists n > 0 such that
7“()\, 5*) > CIOg(d/T()‘))ilE)\[(e)il + d[E)\um(ev Q) o m] —ed

uniformly for X € A, (n).

Proof. Let n,7m1,m; > 0, to be chosen below. Let (s,t) € A% (n) and let §* =
(N*, M*, D*) denote the continuation from (s,t); also let 6 = é(s,t), A= Ay, and
0. = 0(s+ S™ t + N*). Write

r(X,0%) > E\(cN* 4 dM¥)

_ / (e + dITA(0)d0 + / Ey(eN*)A(6)do.
|0—0|<m

|0—6]>m
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We first consider EaN* for |0 — 0] < n,. Let V = {|0;. — 0] < n,}. By Wald’s
equation, Ey(¢(N*,0)|V) = i(0) Eo(N*|V), where (f) = IEG(X1|V)(é), so that

EgN* 2 Eg(N*|V)Fy(V) = [u0) " Eg(((B",0)[V) Py (V).
Note that for sufficiently small 75, Lemma 4.3 applies on V' so that

UN*0) = logr(Ag.) " —logr(\) ' +o(1)
> logd™' —O(1) —logr(A\) ™' +0o(1) (by Lemma 4.12)
> log(d/r(\)™' = K

for some K < co. Letting 5(0)% = (6 — 0')Var(X,|V) and q(f) = Pp(M* = 1|V),

Ef(((N*0)V) = Ef[t(N*,0) — (log(d/r(\) ™" — K)[V] + log(d/r(\) " — K
Eol(¢(N",0) — (log(d/r(\) ™" — K)L{AI* = 1}|V] + log(d/r(V)) ™ — K
— Alz0)5(0)y Nf - (14 0(1) + log(d/r(\) " — K.

Vv

Assume that

log(d/r(\)™" — K — f(0)N;
5(0)\/ N7

as d — 0; if this were to fail then a contradiction to the optimality of ¢* could be

= 0(1) (4.101)

reached by an argument like that leading to (4.100). Then, letting F™~! denote

Fé;ﬁfl)(a), it follows from (4.101) that

ACao)F O N: = Alzge)FO)[VIogld/r (V) /i(0) + O(1)]
> A(Z’q(e))6(9)\/( DEm(@)Fm=1/i(0)(1 + o(1)),

by virtue of A\ € A% (n). Hence

~—

(B PAV)™" 2 0) os(d/r(0) ™+ )i0) 2500 (1~ ) ()22

m

(1+o(1)),
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using Lemma 2.6. Now, by an argument like that of Lemma 4.1,
a0) ™" = 1(0) " + O(1/a) > 1(6)"" + O(1/a),

since Ip(0) = I1(0) — 1(0,6) < I(0), and similarly 5(6)32 = u(6)~3/2 4 o(1). Also,

for sufficiently small 7,

10)*0(0)\/5n(0) > f@ﬂ/%(l ) = 10) e (6)(1 — ).

Combining these estimates, we obtain for sufficiently small d

A(Zq(G))gm—l—l (Q)hm(a)

IR 2 10 oglafr() !+ Sma Ol e
> 10 og(a/r ) + S0 g1

For the remainder of the proof assume that 7, < 15/2, which implies that V D
{|07. — 0] < 12/2} and hence

log(d/r(\)) ' (V') < O(loga)Py(|0z. — 0] > 1m2/2)
= O(log a)O(@(~npa'’")) = o(1),

for some 7}, > 0, by the argument of Lemma 4.5. Thus

A(Zq(H))Sm—i-l (9)

EyN* > 1(0) M log(d/r(\) " + 1(6)CmQ

(d/c)(1 —n)*.

Also EgM* > (2 — q(#))(1 — 0(1)) so that for |0 — 8] < n:,

A(Zq(e))£m+1 (9>
1(9)CnaQ

Eo(ecN*+dM*) > I(0)clog(d/r(N)) '+ (1—7n)*+2—q(0)| d—o(d).
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Using some calculus,

A(zp(9,m))Em+1(0) )
I(Q;CT%Q (1 _77)3+2_p (9777)7

where p*(0,n) is the unique solution of

pOn) _ 16)CnQ
Crom)  Enna(O)(1 1)

Now

A<Zp*(0,ﬂ))£m+1 (9)

1(6)CmQ (=) +2=p"(0,n) = un(0,Q) —m

as n — 0, so that

A(zp*(ﬁ,n))gm—f—l(g)

Teycmg (2= (00 2 un(60,Q) —m —e/2

for sufficiently small 7, uniformly for |6 — | < ;. Thus
Ey(ecN* 4+ dM*) > I(0)Lelog(d/r(N) ™ + d(um (0, Q) — m) — (/2 + o(1))d,
giving
L o N0 Zclogld/rO0) EAIE) 110~ 01 < m)
—0|<m

+d[Ex(un (0, Q) —m; |0 — 0] < m) — /2 — o(1)].
(4.102)

To handle |# — 6] > 7;, we use the uniform bound

EyN*

v

I1(0) M og(d/r(\))~" — O(loglog(d/r(\))™") (Lemma 4.13)
> 1(0) log(d/r(\) ' — O(log a),
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since log(d/r(\))~! < a+ O(1), and therefore

/9—é> EG(CN*>/\(9)d9 > clog(d/r(A\) T EX(I(0)7';0 — é\ > 11) — cO(loga)

> clog(d/r(N) ' Ex(I(6)7"16 — 6] > m) — o(d).

Combining this with (4.102) gives

r(A,0%)

v

clog(d/r(N) ™' + dE\(un(0,Q) —m; |0 — é] <m)—(e/2+0(1))d
> clog(d/r(N\) ™ + dE\(un(0,Q) —m) — (¢/2 + o(1))d (4.103)

since

Ex(um(0,Q) —m; |0 — 0] >m) <2-Py(]0 — 0] > m) = o(1).

Assuming d is small enough so that the o(1) term in (4.103) is less than /2, this

relation establishes the claim. O

The final theorem gives a lower bound on the integrated risk of the Bayes procedure

and thereby shows that § is second-order optimal.

Theorem 4.16. Let m > 1 and u,(0,Q) be as in (4.53). Then, as d — 0,

(o, 6%) > caBxI(0)~" +d(m + 1) — o(d), if c € B°(d)
(Ao, 2
caBT(6)! + - Bxgin (6.Q) = old). if ¢ € B1(d), Q =l 5.
(4.104)

Therefore, as d — 0, 0 minimizes the stopping risk to second-order in the sense that
(Ao, 0) — 7(No, 0%) = o(d), (4.105)
provided ¢ € B, (d) for some m > 1.

Proof. We prove that the lower bounds (4.104) hold for §* and then use Lemma

4.12 to compare the integrated risks of 6* and &*.
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Assume that ¢ € B2, (d) and choose € > 0. Since loga = o(hy,(a)) = o(d/c), by
Lemma 4.13, EgN* > a/I(6) — o(d/c) uniformly in § and hence

By (eN*) > caBy1(0)! — o(d). (4.106)

Let A, (n) = {\n € A(n)} and choose i > 0 such that

€

P(An(n) >1— m

(4.107)
by virtue of Lemma 4.14. Since M* > m + 1 on A,),,

E(dM") 2 dE(M*; Ay (n)) 2 d(m + 1)P(A,(1)) = d(m + 1) — (¢/2)d,

by our choice of . Combining this with (4.106) and assuming d is small ehough so
that the o(d) term in (4.106) is less than (£/2)d,

r(Xo,0") > E(cN*+dM*)

\Y]

caEI1(0)™" — (¢/2)d + d(m + 1) — (¢/2)d
= caBI(0)t +d(m+1) — &d,

proving that
(Ao, 0%) > caEI(0)™! +d(m+ 1) — o(d).

The first case of (4.104) follows since 7(\g, 8*) > 7(Xo, 8*) — o(d) by Lemma 4.12.
Next we consider the boundary case. Assume that ¢ € B (d) and let Q =

limgo(d/c)/hm(a) € (0,00). Choose ¢ > 0. By Lemmas 4.14 and 4.15 there ex-

ists 7 > 0 such that Py (A4],(n)) < ¢/[6(m + 2)] and the conclusion of Lemma 4.15
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holds with e replaced by £/6; one additional restriction is imposed on 7 below. Then

Ex[eN* + dM* + (Mg ): Am(n)] = Ex [eN*™ + dm + (A, 6%); A ()]
> Ey\[eN*™ + dm + clog(d/r(M\y)) " EN, I(6) ™ 4 By, (um(8, Q) — m) — (¢/6)d; A ()]
= clogd ™ Ex,(Ex, [(0)Y; An(n)) + dEx, (B, um(6, Q); An(n))
+cEx (N*™ —log (M) " Ex, 1(0) 7Y Ap(n)) — (€/6)d.

Thus,

Ex[eN* 4+ dM* + (A 7+ ); Am(n)] — clogd ™" Ex, (Ex, 1(0)™"; Am(n)) — dExum(6, Q)

> —dEx(Bx,un(0,Q); A7, (1) + cExy(N™" —logr(An) " Ex, 1(8) ™4 Au(1) — (£/6)d
—d(m +2) Py, (A}, (n)) — c-o(d/c) — (¢/6)d
—(g/3 4 o(1))d, (4.108)

V

Vv

by our choice of 1. Also,

Ex(eN A, (n) = cllogd ™ By, (1(0) 7|7, (1) — O(d/c)]| Pr (A7,(n))
= clogd™ Ex,(1(6)"; AL, (n) — O(d) Pa (A7, ()
> clogd™ By (1) AL, (n)) — (¢/6)d.

assuming 7 is sufficiently small. Combining this with (4.108),

7(X0,0%) = Exg (eN* + dM* +7(A, 0%);: (1)) + Exg (N5 A7 ()
> clogd™ ' [Ex,(Ex, 1(0)"" Am(n)) + Ex,(1(0) 5 AL, ()] + dEx,um(0,Q) — (/2 + o(1))d
> clogd 'E\,I(0)"" + dExum(0,Q) — ed

by the time the last o(1) term is less than /2. This shows

(Mo, 0%) > clogd Ex1(0) ™! 4+ dExum(0, Q) — o(d)
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and consequently that the same bound holds for 6* by Lemma 4.12. This finishes the

boundary case and hence proves (4.104). Comparing this with the integrated risk of
d from Theorems 4.9 and 4.10 establishes (4.105). O

4.4 A Numerical Example

As discussed in Section 3.3 for simple hypotheses, there are many possibilities for
small sample procedures that are asymptotically equivalent to the test d, defined and
proved asymptotically optimal above. In this section we describe one natural choice
and give the results of a numerical experiment comparing it with group-sequential
sampling.

Recall that the “exploratory” first stage of d, does not depend on m, where m is
such that ¢ € B,,(d). Thus, a small sample version of J, may use the data of the first
stage to determine its choice of m. Using this idea, let § denote the test d,—¢ with

parameter m* chosen to be the smallest £ such that

CE&(01) - hi(a)or) < dfe < CF I\ &1 (B1) - ha(a/or). (4.109)

It is immediate from (4.109) that m* = m for sufficiently small d when ¢ € B, (d),
whence 0 is asymptotically optimal by Theorem 4.16.
Table 2 contains the results of a numerical experiment comparing ¢ with group-

sequential testing of the hypotheses
—1<pu< =25 vs. 20< <1

about the mean of normally distributed random variables with unit variance, with a
“flat” prior, Ao(p) = (1/2)-1{|p| < 1}, and 0-1 loss function w(p) = 1{.25 < |u| < 1}.
d4(k) denotes group-sequential testing with constant stage-size k, which samples until
the stopping risk is less than d, the same stopping rule employed by §.

For each value of d/c, the operating characteristics of d,(k) are given for k = 1,
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Table 2
Numerical Results for Testing Normal Mean
—1<pu<—=25vs. 25<u<1(d=10"1%)
Test EN FEM int. risk (d) 2nd-order risk (d)

d/c=1
61.7 4.13 65.8 8.9
5,(1) 559 559 111.8 55.1
5,(12) 644 5.47 69.8 12.9
5,(20)1 771 3.85 81.0 24.1
d/c=5
73.8 2.61 17.4 5.2
5,(1) 559 55.9 67.1 54.9
5,(12) 64.4 5.47 18.4 6.2
6,(32) 772 257 18.0 5.8
d/c=10
81.0 2.47 10.6 3.9
5,(1) 559 55.9 61.5 54.8
5,(12) 64.4 5.47 11.9 5.3
5,(40) 922 2.30 11.5 4.9

k = 12 (the size of the first stage of ¢ for the values of the parameters considered),
and the best possible k (determined by simulation). Since both ¢ and ¢, must sample
until the stopping risk is less than d, the cost of the number of observations required
for this and the first stage represents a “fixed cost” which all procedures will incur.
Thus, we obtain a more accurate comparison of the efficiency due to sampling by

considering the 2nd-order risk of the procedures, defined as
integrated risk —(cENM + d),

where N is the number of observations of §,(1).

The results show significant improvement in the risk and 2nd-order risk of § over
dg. As we noted in Section 3.3, the size of the smallest possible 2nd-order risk is
not known, so it is difficult to say how much further improvement is possible without

backward induction type calculations, which remain prohibitively large in this general

"In the d/c = 1 case, k = 12 is the best possible sample size so we report k = 20 as the third
group size.
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setting. We would expect the difference between ¢ and the best group sequential test
to decrease for larger values of d/c, since EM* — 1 in this limit.

The differences in risk between ¢ and group sequential tests here is roughly com-
parable to that seen in the simple hypotheses setting. One would expect that a pro-
cedure that uses estimates of the true state of nature to design future stages would
be more robust over a range of parameter values, and hence show more pronounced
improvement over constant stage-size sampling in this composite hypotheses setting.
This indicates that a higher level of refinement is necessary to indicate how to achieve

higher efficiencies in practical use.
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