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Abstract

This thesis investigates variable stage size multistage hypothesis testing in three dif-

ferent contexts, each building on the previous.

We first consider the problem of sampling a random process in stages until it

crosses a predetermined boundary at the end of a stage – first for Brownian motion

and later for a sum of i.i.d. random variables. A multistage sampling procedure is

derived and its properties are shown to be not only sufficient but also necessary for

asymptotic optimality as the distance to the boundary goes to infinity.

Next we consider multistage testing of two simple hypotheses about the unknown

parameter of an exponential family. Tests are derived, based on optimal multistage

sampling procedures, and are shown to be asymptotically optimal.

Finally we consider multistage testing of two separated composite hypotheses

about the unknown parameter of an exponential family. Tests are derived, based on

optimal multistage tests of simple hypotheses, and are shown to be asymptotically

optimal. Numerical simulations show marked improvement over group sequential

sampling in both the simple and composite hypotheses contexts.
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Chapter 1

Introduction

1.1 Background

Sequential hypothesis testing has been a source of interesting problems since its incep-

tion in the late 1940’s. Some highlights are Wald’s [32] seminal book, Chernoff’s [3]

development of asymptotic considerations, Schwarz’s [28] theory of asymptotic shape

of Bayes stopping regions for exponential families, Kiefer & Sacks’ [12] extension of

Chernoff’s and Schwarz’s work to general distributions and hypotheses, and Lorden’s

[20, 23] use of one-sided SPRT’s that are o(cost per observation)-Bayes. The majority

of the sequential literature involves tests that take data in a “one at a time” fashion,

and their optimality properties are proven under the assumption that sampling costs

are proportional to average sample size. But in practice it is often much more costly

to carry out n single experiments than one experiment of size n. Hence a criticism

of sequential testing – and perhaps a barrier to more practical applications of it – is

that, in real-world situations, it is often more natural to take data in groups or stages.

An early example of a such a multistage procedure is Stein’s two-stage extension

of the Student’s t-test [31], whose power is independent of the variance, estimated

in the initial stage. This idea of using an initial stage to estimate the true state of

nature and hence fix a design parameter of the procedure that follows has been used

in two-stage procedures of Wald [33], Sobel [1], Hall [13] and others (see, e.g., [15]).

Schmitz [27] and Morgan & Cressie [7, 24] have proved general existence results for

a large class of multistage problems. In particular, the theorems of Schmitz show that
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optimal multistage sampling strategies share the fundamental “renewal-type” prop-

erty of optimal stopping strategies [5]: at each stage an optimal procedure behaves

as if it were starting from scratch, but with the problem’s parameters appropriately

updated by the data already obtained. Such general results do not, however, tell us

anything specific about the optimal tests and certainly not how to apply them without

resorting to backward induction-type computer algorithms or artificial truncations.

The most general investigation of variable stage size multistage hypothesis testing

is by Lorden [22]. Modelled after the sequential likelihood ratio tests of Schwarz [28],

Lorden’s tests essentially “do what the best fully-sequential test would do” in as few

stages as possible. Lorden showed for simple hypotheses and separated composite

hypotheses about the parameter of an exponential family that, except in a degen-

erate case, three stages are necessary and sufficient to achieve a sample size that is

asymptotically the same as the best fully-sequential tests.

Pocock [25], DeMets [8, 9] and others have considered multistage testing explic-

itly for applications to medical clinical trials. These studies are more concerned

with practical issues that arise in multistage medical trials than with mathematical

optimality however. The methods proposed are largely ad hoc and incorporate se-

vere restrictions, like an ad hoc number of stages and a fixed stage size. Moreover,

these authors propose no alternative to the constant stage size, or group sequential,

paradigm currently used in clinical trials.

1.2 Summary

In broad terms, this thesis investigates the structure of efficient multistage hypothesis

tests in a general setting that allows variable stage size. Specifically, we consider three

different but closely related problems, for which we now give a brief motivation.

A common theme in sequential hypothesis testing is that testing composite hy-

potheses can often be reduced to testing simple hypotheses. For example, Kiefer &

Sacks [12], Lorden [20, 23], Schwarz [28], and Weiss [35] have all used this technique

to reduce asymptotic optimality considerations for testing composite hypotheses to a
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“simple vs. simple” hypothesis test once a substantial number of observations have

been taken - namely, a test of the estimated true state of nature versus the estimated

true state restricted to the opposing hypothesis. Moreover, testing simple hypotheses

can typically be reduced to a boundary crossing problem. For example, in testing

simple hypotheses Lorden [19, 20] showed that minimizing a linear combination of

sampling and error costs can be achieved asymptotically by performing a “one-sided”

test, minimizing sampling costs under one hypothesis and error costs under the other,

which is in turn equivalent to sampling until the likelihood ratio crosses a fixed bound-

ary. These examples seem to suggest the following informal hierarchy:

Testing composite hypotheses

reduces to

Testing simple hypotheses

reduces to

Boundary crossing problem

The three multistage problems considered in this thesis are precisely the three

levels of this hierarchy, studied in the reverse order. In Chapter 2 we consider the

problem of sampling in stages a random process with known drift - first Brownian

motion and later a sum of i.i.d. random variables - until it crosses a predetermined

boundary, a > 0, at the end of a stage. The optimal, or Bayes, procedure is defined

to be that which minimizes the risk, defined as a linear combination of the expected

total sample size and expected number of stages. Since no closed-form Bayes solution

exists, we study the problem as a → ∞. We derive a family of sampling procedures

around the principle of comparing the expected overshoot over the boundary, a, to

the ratio, h, of the cost per stage to the cost per observation. In striking contrast with

group sequential sampling, the stage sizes of these procedures decrease roughly as a

sequence of successive square roots, with probability approaching one. The average

number of stages used by these tests turns out to be determined by the asymptotic
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relationship of h to the critical functions,

hm(a) = a(1/2)m

(log a)1/2−(1/2)m

,

which also play a key role in characterizing the number of stages, m, required by an

optimal procedure. We prove not only that these sampling procedures minimize the

risk to first order as a → ∞, but also that their global properties are necessary for

any efficient procedure. We prove these claims first for Brownian motion and then

extend them to sums of i.i.d. random variables from a large class of distributions that

allows large deviation and Central Limit Theorem-type approximations.

In Chapter 3 we use the optimal multistage sampling procedures of Chapter 2 to

derive efficient multistage tests of simple hypotheses about the unkown parameter

of an exponential family of densities. First we consider one decision tests of simple

hypotheses, i.e., tests that aim to stop sampling and reject the alternative hypothesis

as soon as possible if the null hypothesis is true, but want to continue sampling

without ever stopping if the alternative hypothesis true. We define the risk in this

case as a linear combination of the sampling cost under the null hypothesis and

the probability of ever stopping under the alternative hypothesis. We show that

one decision tests that are essentially the optimal multistage sampling procedures of

Chapter 2 minimize this risk to second order as the costs per observation and per stage

approach zero. Using combinations of these one decision tests we derive (ordinary)

two decision tests of simple hypotheses and show that they asymptotically minimize

the integrated risk to second order. A small-sample procedure based on these tests

is proposed, and its improvement over group sequential sampling is illustrated by a

numerical simulation of testing

µ = −1/4 vs. µ = 1/4,

where µ is the mean of i.i.d. normally distributed random variables with variance one.

In Chapter 4 we extend to a continuous parameter setting the ideas developed in
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Chapter 3 and, using the optimal simple hypothesis tests as a guide, we design tests

of composite hypotheses of the form

H0 : θ ≤ θ ≤ θ0 vs. H1 : θ0 < θ1 ≤ θ ≤ θ

about the parameter θ of an exponential family of densities. For a loss function

w, vanishing on (θ0, θ1) and positive and bounded on [θ, θ0] ∪ [θ1, θ], and a prior

Lebesgue density λ0, continuous, positive, and bounded on [θ, θ], we show that our

tests minimize ∫ θ

θ

[Eθ(c ·N + d ·M) + w(θ)Pθ(error)]λ0(θ)dθ

to second order as the costs per observation and per stage, c and d, approach zero.

Here N and M are the total number of observations and stages, respectively. Whereas

the simple hypotheses problem of Chapter 3 naturally reduces to the boundary cross-

ing problem of Chapter 2, unfortunately this composite hypotheses problem is not

sufficiently well-approximated by the simple hypotheses problem to clarify consider-

ations of second order optimality until “right before the final stage.” Hence, proving

that our test behaves optimally in the time leading up to the final stage requires quite

intricate and technical arguments. These arguments make much use of Laplace-type

expansions of the stopping risk originated by Schwarz [29] and strengthened by Lor-

den [23], as well as generalizations of the tools developed in Chapter 2 for proving

stage-wise bounds on the random process as it is being sampled by our procedure.

A small-sample procedure is also proposed, which performs significantly better than

group sequential sampling in a numerical simulation of the problem of testing

−1 ≤ µ ≤ −1/4 vs. 1/4 ≤ µ ≤ 1,

where µ is the mean of i.i.d. normally distributed random variables with variance one.



6

1.3 Preliminaries

In this section we briefly introduce sequential hypothesis testing and give some pre-

liminaries to the main results. For a more general introduction, see Chernoff [4],

Govindarajulu [11], and Siegmund [30].

Let X1, X2, . . . be i.i.d. random variables with density function f . Suppose it is

desired to test the hypotheses

H0 : f = f0 vs. H1 : f = f1 (1.1)

for given densities f0, f1. Classical tests of these hypotheses would choose a sample

size before the data are taken, then somehow decide between the hypotheses based

on the observed data. It is possible to reach a decision earlier without sacrificing

accuracy, however, if the data are observed sequentially and the total sample size,

N , is a function of the data as they are observed and is therefore a random variable.

Such random variables are called stopping times:

Definition 1.1. A random variable N taking values in {0, 1, 2, . . . ,∞} is a stopping

time with respect to the sequence X1, X2, . . . if for every n ≥ 1, the event {N = n}
depends only on X1, . . . , Xn and the event {N = 0} does not depend on the Xi.

Tests of hypotheses such as (1.1) whose sample size is determined by a stopping

time N are called sequential tests. Note that N ≡ k is allowed - i.e., fixed sample

size tests satisfy this definition. An example is the Sequential Probability Ratio Test

(SPRT), developed by Wald [32] during World War II. Letting

ln =
n∏

i=1

f1(Xi)

f0(Xi)
,

the SPRT is defined by choosing constants 0 < A < B < ∞ and sampling until

A < ln < B
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is violated. Specifically, the SPRT will stop sampling at time

N = inf{n ≥ 1 : ln 6∈ (A,B)}

and

reject H0 if lN ≥ B

reject H1 if lN ≤ A.

The values A,B determine the relevant error probabilities, P0(reject H0) and P1(reject H1).

Wald and Wolfowitz [34] showed that the SPRT is the best possible test of the

hypotheses (1.1) in the following strong sense.

Theorem 1.2 (Wald and Wolfowitz). Among all tests of the hypotheses (1.1) for

which

P0(reject H0) ≤ α and P1(reject H1) ≤ β

and

E0N < ∞ and E1N < ∞, (1.2)

the SPRT with error probabilities α, β minimizes both E0N and E1N simultaneously.

Remark. Lorden [21] showed that the assumption (1.2) is superfluous.

Wald [32] developed the following fundamental tools to compute the operating

characteristics of the SPRT.

Theorem 1.3 (Wald’s Equation). Let X1, X2, . . . be i.i.d. with mean µ = EX1.

For any stopping time N with EN < ∞,

E

(
N∑

i=1

Xi

)
= µEN.
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Theorem 1.4 (Wald’s Likelihood Identity). Let X1, X2, . . . be i.i.d. with density

f, g under Pf , Pg, respectively, and let

ln =
n∏

i=1

f(Xi)

g(Xi)
,

the likelihood ratio. For an arbitrary event A (measurable with respect to the σ-algebra

generated by N),

Pf (A ∩ {N < ∞}) = Eg(lN ; A ∩ {N < ∞}).

Results analogous to Theorems 1.3 and 1.4 hold for Brownian motion; see, e.g.,

[30].
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Chapter 2

Optimal Multistage Sampling

Many problems in theoretical and applied statistics involve observing a random pro-

cess until it crosses a predetermined boundary. We consider a version of this classical

problem in which a random process, first Brownian motion and later a sum of i.i.d.

random variables, is sampled in stages until it exceeds a boundary a > 0 at the end

of a stage. As an example consider periodic monitoring of a pollutant in a water

supply. There is a critical level for the pollutant above which some action must be

taken but below which one will only decide when to test again, basing that decision

on the current level.

If one incurs a fixed cost for each unit sampled and an additional fixed cost for each

stage, then a natural measure of the performance of a multistage sampling procedure

is the sum of these costs upon first crossing the boundary. In this chapter we describe

a family of sampling procedures and show they are first-order optimal as a →∞.

Many aspects of the boundary-crossing or “first-exit” problem are well-studied.

The powerful methods of renewal theory address successive “exits” and the time

between such events (see [10], pages 358-388). Lorden [18] obtained sharp, uniform

bounds for the excess over the boundary of random walks. Siegmund [30] discusses

further applications in sequential analysis.

Schmitz [27] and Morgan & Cressie [7, 24] have proven general existence results for

a large class of multistage sampling problems. In particular, the theorems of Schmitz

show that a Bayes sampling strategy does exist for the problem considered here and

that the optimum has the “renewal-type” property that at each stage it behaves as
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if it were starting from scratch, given the data so far. But these authors do not

propose specific procedures, and though there is an extensive literature dealing with

fully-sequential (one-at-a-time) sampling, there have been few investigations of the

performance of procedures that vary the sample size from stage to stage.

The families of procedures, δm and δ̂m, constructed below are shown to be first-

order asymptotically optimal in Theorems 2.8 and 2.15. They have variable stage sizes

which decrease roughly as a sequence of successive square roots, while the average

number of stages required is determined by the ratio of the cost per stage divided to

the cost per unit time in relation to a family of critical functions, hm, defined below.

These critical functions define “critical bands” - i.e., regions of the first quadrant

which are closely related to how close any efficient procedure can be to the boundary

after each stage of sampling; Lemmas 2.7 and 2.14 give precise lower bounds on this

distance. Theorems 2.9 and 2.16 then provide converse statements to the optimality

of δm, δ̂m, showing that any competing procedure must use at least as many stages,

and the sooner it deviates from the “schedules” of Lemmas 2.7 and 2.14, the worse

its performance.

2.1 Procedures for Brownian Motion

Let X(t) be Brownian motion with known drift µ > 0 and variance one per unit

time. Define a multistage sampling rule T to be a sequence of nonnegative random

variables (T1, T2, . . .) such that, for k ≥ 1

Tk+1 · 1{T1 + · · ·+ Tk ≤ t} ∈ Et for all t ≥ 0, (2.1)

where Et is the class of all random variables determined by {X(s) : s ≤ t}. The

interpretation of (2.1) is that by the time T k ≡ T1 + · · · + Tk, the end of the first k

stages, an observer who knows the values {X(s) : s ≤ T k} also knows the value of

Tk+1, the size of the (k + 1)st stage. By a convenient abuse of notation, we will also

let T denote the total sampling time, TM , where M = inf{m ≥ 1 : X(Tm) ≥ a},
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the total number of stages required to cross the boundary a. We will then describe a

multistage sampling procedure by the pair δ = (T,M). When there is no confusion as

to which sampling procedure is being used, the shorthand Xk = X(T k), X0 = 0 will

be employed. We will also write T (a), M(a) when we wish to emphasize the initial

distance to the boundary, a.

Let c, d > 0 denote the cost per unit time and cost per stage, respectively, and

consider the problem of finding the multistage sampling procedure (T,M) that min-

imizes

c · ET + d · EM.

Dividing through by c, this is seen to be equivalent to minimizing

ET + h · EM, (2.2)

where h = d/c. By Wald’s equation,

ET = EX(T )/µ = a/µ + E(X(T )− a)/µ ≥ a/µ, (2.3)

so the procedure that minimizes

E(T − a/µ) + h · EM (2.4)

also minimizes (2.2), and using (2.4) instead of (2.2) will also lead to a more refined

asymptotic theory.

To describe a procedure that asymptotically minimizes (2.4) to first-order, it suf-

fices to consider sequences {(a, h)} such that a →∞. We are interested in problems

where optimal procedures use a bounded number of stages and it turns out that this

requires

h > aε

for some ε > 0. It will turn out that good procedures use m stages (almost always)
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if, as a →∞,

a(1/2)m

(log a)1/2−(1/2)m ¿ h ¿ a(1/2)m−1

(log a)1/2−(1/2)m−1

, (2.5)

where “¿” means asymptotically of smaller order. We therefore define the critical

functions

hm(a) = a(1/2)m

(log a)1/2−(1/2)m

for m = 1, 2, . . . and a ≥ 1, with h0(a) ≡ a. An essentially complete description of

how to achieve asymptotic optimality is thus given by showing how to proceed in two

cases. The case defined by (2.5) is called {(a, h)} being in the mth critical band. The

other case is

h ∼ Qhm(a)

for some Q ∈ (0,∞), which we refer to as {(a, h)} being on the boundary between

critical bands m and m + 1.

It will prove convenient in the sequel to treat h as a function of a. To translate

the above formulation into these terms, let Bo
m be the class of positive functions h(a)

such that {(a, h(a))} is in the mth critical band (for every sequence of a’s approaching

∞) and let B+
m be the class of positive functions h(a) such that {(a, h(a))} is on the

boundary of critical bands m and m + 1 (for every sequence of a’s approaching ∞).

That is,

Bo
m ≡ {h : (0,∞) → (0,∞)| hm ¿ h ¿ hm−1},
B+

m ≡ {h : (0,∞) → (0,∞)| h ∼ Qhm, some Q ∈ (0,∞)},

and let Bm = Bo
m ∪B+

m. Our notation reflects that, as a →∞, the average number of

stages of an efficient procedure approaches

m if h ∈ Bo
m

m + η if h ∈ B+
m,
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Figure 1.

where η ∈ (0, 1) is a function of lima→∞ h(a)/hm(a); see Figure 1. Finally, we define

the risk of a procedure δ = (T, M) to be

R(δ) = E(T − a/µ) + h(a)EM (2.6)

for a given h(a) ∈ Bm, some m ≥ 1. By (2.3), the definition of risk (2.6) is equivalent

to the expectation of a linear combination of the so-called “overshoot,” X(T ) − a,

and the number of stages used. Define the Bayes procedure δ∗ = (T ∗,M∗) to be one

that achieves R∗ = infδ R(δ). Dependence on a will usually be suppressed to simplify

notation.

A convenient way of parametrizing stage sizes is by the probability of stopping at

the end of a stage. Thus, for a > 0, p ∈ (0, 1), and zp the upper p-quantile of the
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standard normal distribution, let t(p, a) be the unique solution of

a− µt(p, a)√
t(p, a)

= zp. (2.7)

The probability of being across a boundary a units away at the end of a stage of size

t(p, a) is p; in this sense we will refer to the stopping probability of a stage. A simple

computation gives

t(p, a) = a/µ− zp

√
4aµ + z2

p − z2
p

2µ2
.

Letting Φ and φ denote the standard normal distribution function and density, define

∆(z) ≡
∫ ∞

z

Φ(−x)dx = φ(z)− Φ(−z)z.

The function ∆ will appear often in calculations of the expected overshoot or under-

shoot of a random process. For example,

E[X(t(p, a))− a; X(t(p, a)) ≥ a] =

∫ ∞

a

P (X(t(p, a)) > x)dx (integration by parts)

=

∫ ∞

zp

Φ(−z)
√

t(p, a)dz (change of variables)

= ∆(zp)
√

t(p, a)

∼ ∆(zp)
√

a/µ

as a →∞, provided zp = o(
√

a); we will use relations like these below without further

comment.

2.1.1 Geometric Sampling

If (T, M) is the procedure that samples with stopping probability p ∈ (0, 1), constant

across the stages, then Tk = t(p, a − Xk−1) · 1{Xk−1 < a} and M is a geometric

random variable with mean 1/p. We will thus refer to (T, M) as geometric sampling

with probability p. Although p is constant across the stages, we do allow p to vary

with a, the initial distance to the boundary.
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Not only is geometric sampling an interesting random process in its own right, but

it has also been conjectured that optimal multistage procedures share its stationarity

property. While Theorem 2.9 will show this is not true, geometric sampling will

prove a useful tool in designing the final stages of our optimal procedures in the next

section.

Lemmas 2.1 and 2.2 establish some fundamental upper bounds on the behavior of

geometric sampling.

Lemma 2.1. Let p ∈ (0, 1), q = 1− p, and

g(a) ≡ ∆(zq)

qzp

· (a− µt(p, a)) =
∆(zq)

2µq
(
√

4aµ + z2
p − zp). (2.8)

If (T, M) is geometric sampling with probability p, then

ET − a/µ ≤




q∆(zp)

µ∆(zq)
· g(a) + µ−1

∑
k≥2 g(k)(a)qk, if p ≤ 1/2

q∆(zp)

µ∆(zq)

∑
k≥1 g(k)(a)qk−1, if p ≥ 1/2,

(2.9)

where g(k) denotes the kth iterate of g.

Proof. First we will prove

E(a−Xk|M > k) ≤ g(k)(a) for all k ≥ 0. (2.10)

The k = 0 case is trivial and we have

E(a−Xk+1|M > k + 1, Xk) = E[(a−Xk)− (Xk+1 −Xk)|M > k + 1, Xk]

= ∆(zq)
√

t(p, a−Xk)/q

= ∆(zq)
(a−Xk)− µt(p, a−Xk)

qzp

= g(a−Xk).
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g is increasing and concave, so by Jensen’s inequality and the induction hypothesis

E(a−Xk+1|M > k + 1) = E(g(a−Xk)|M > k + 1)

≤ g(E(a−Xk|M > k + 1))

= g(E(a−Xk|M > k)) (2.11)

≤ g(g(k)(a)) = g(k+1)(a),

proving (2.10). In (2.11) we use that E(a−Xk|M > k + 1) = E(a−Xk|M > k); this

is true since the value of Xk and the number of additional stages required to cross

the boundary are independent, as long as Xk < a.

We now prove (2.9). Let p ≤ 1/2. E(T1|M ≥ 1) = t(p, a) and for k ≥ 2,

E(Tk|M ≥ k) = E(t(p, a−Xk−1)|M > k − 1)

≤ µ−1E(a−Xk−1|M > k − 1) (by virtue of p ≤ 1/2)

≤ µ−1g(k−1)(a)

by (2.10). Using these two relations

E(T |M = m) =
m∑

k=1

E(Tk|M = m) =
m∑

k=1

E(Tk|M ≥ k) ≤ t(p, a) + µ−1

m∑

k=2

g(k−1)(a),

since E(Tk|M = m) = E(Tk|M ≥ k) for any m ≥ k as discussed above. Thus

ET = E(E(T |M))

≤ t(p, a) + µ−1
∑
m≥2

qm−1p

m∑

k=2

g(k−1)(a)

= t(p, a) + µ−1
∑

k≥1

g(k)(a)qk (by reversing order of summation)

= a/µ +
q∆(zp)

µ∆(zq)
· g(a) + µ−1

∑

k≥2

g(k)(a)qk,

using the relation between g and t(p, ·) in (2.8).
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Now let p ≥ 1/2. Then zp ≤ 0 and consequently t(p, ·) is concave, so using Jensen’s

inequality and (2.10),

E(Tk|M ≥ k) = E[t(p, a−Xk−1)|M > k − 1]

≤ t(p, E[a−Xk−1|M > k − 1]) ≤ t(p, g(k−1)(a))

and, as computed above,

ET = E(E(T |M)) ≤
∑
m≥1

qm−1p

m∑

k=1

t(p, g(k−1)(a)) = a/µ +
q∆(zp)

µ∆(zq)

∑

k≥1

g(k)(a)qk−1,

again using (2.8) for the final step.

Lemma 2.2. Let (T, M) be geometric sampling with probability 1/2 ≤ p(a) → 1 and

let Y be an arbitrary random variable. There is a K < ∞ such that

E(XM(Y ) − Y |Y > 0) ≤ K|zp(a)| · (
√

E(Y |Y > 0) ∨ |zp(a)|).

Remark. The lemma will frequently be used in the following form: If Y and p(a) →
1 are such that |zp(a)| = o

(√
E(Y |Y > 0)

)
, then

E(XM(Y ) − Y ; Y > 0) = O
(
|zp(a)|

√
E(Y |Y > 0)

)
.

Proof. Let y > 0 and g be as in Lemma 2.1 with p = p(a) and q = 1− p. A simple

computation shows that g has a unique positive fixed point y∗ = ∆(zq)φ(zp)/(µq2)
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such that g(y) ≤ (y ∨ y∗). Then

E(XM(y) − y) = µ(ET (y)− y/µ) (Wald’s equation)

≤ q∆(zp)

∆(zq)

∞∑

k=1

g(k)(y)qk−1 (by Lemma 2.1) (2.12)

≤ q∆(zp)

∆(zq)
·





∑∞
k=1 g(y)qk−1 = g(y)/p ≤ 2g(y) for y > y∗,

∑∞
k=1 y∗qk−1 = y∗/p ≤ 2y∗ for y ≤ y∗,

(since g(y) ≤ (y ∨ y∗))

≤ 2 · q∆(zp)

∆(zq)
· (g(y) ∨ y∗). (2.13)

Now √
4yµ + z2

p − zp ≤ 2
√

yµ + 2|zp| ≤ 4(
√

yµ ∨ |zp|) ≤ K1(
√

y ∨ |zp|)

with K1 = 4(
√

µ ∨ 1). Also, ∆(zp) ∼ |zp| as p → 1, so

q∆(zp)

∆(zq)
· g(y) =

∆(zp)

2µ
(
√

4yµ + z2
p − zp) ≤ K2|zp|(√y ∨ |zp|),

with K2 = 3K1/(4µ) < ∞, say. Also,

q∆(zp)

∆(zq)
· y∗ =

q∆(zp)

∆(zq)
· ∆(zq)φ(zp)

µq2
=

∆(zp)φ(zp)

µq

∼ |zp|φ(zp)

qµ

∼ z2
p

µ
(since φ(zp) ∼ q|zp| as p → 1)

≤ K3|zp|(√y ∨ |zp|),

with K3 = µ−1. Plugging these estimates into (2.13), we have

E(XM(y) − y) ≤ K|zp|(√y ∨ |zp|)
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for all y > 0 with K = 3 max Ki, say, and thus

E(XM(Y ) − Y |Y > 0) ≤ K|zp|[E(
√

Y |Y > 0) ∨ |zp|]
≤ K|zp|(

√
E(Y |Y > 0) ∨ |zp|),

where this last step uses Jensen’s inequality since the square root is concave.

2.1.2 The Procedures δm and δ̂m

In this section we define two families of procedures, δm and δ̂m, and prove some

properties which will later be used to prove them first-order optimal under different

assumptions about h - namely, δm is optimal when h ∈ Bo
m and δ̂m is optimal when

h ∈ B+
m.

Given any positive function h, define δ1(h) to be geometric sampling with probabil-

ity p(1)(a), where p(1) : (0,∞) → (0, 1) is any function satisfying 0 < ε ≤ p(1)(a) → 1

as a → ∞ in such a way that zp(1)(a) = o(h(a)/
√

a). (The choice of p(1)(a) will not

be reflected in the notation). For m = 1, 2, . . ., define δm+1(h) to have first stage

stopping probability Φ(−
√

log(a/h2(a) + 1)), followed (if necessary) by δm(h ◦ f−1),

where f(x) ≡ (2/
√

µ)
√

x log(x + 1).

Given a constant p ∈ (0, 1), define δ̂1(p) to have first stage stopping probabil-

ity p, followed (if necessary) by geometric sampling with probability p̂(1)(a), where

p̂(1) : (0,∞) → (0, 1) is any function satisfying 0 < ε ≤ p̂(1)(a) → 1 as a →∞ in such

a way that zp̂(1)(a) = o(a1/4). (Again, the choice of p̂(1)(a) will be suppressed in nota-

tion). Define δ̂m+1(p) to have first stage stopping probability Φ(−
√

(1− 2−m) log a),

followed (if necessary) by δ̂m(p). Note that the value of the constant p is “passed

through” for m > 1 in the sense that the mth stage of δ̂m(p) begins δ̂1(p), unless of

course the boundary is crossed during the first m− 1 stages.

The next two propositions establish the operating characteristics of δm and δ̂m.

Proposition 2.3. Let m be a positive integer and h ∈ Bo
m. If (T (m),M (m)) = δm(h),
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then, as a →∞,

E(T (m) − a/µ) = o(h(a)), (2.14)

EM (m) → m. (2.15)

Remark. The restriction h = o(h0) in the m = 1 case is a device that simplifies

the proof but is unnecessary in the sense that if h0(a) = a = O(h(a)), then, for

suitably chosen h̃(a) = o(a), the proposition ensures EM (1) → 1 and E(T (1)−a/µ) =

o(h̃(a)) = o(h(a)) for (T (1),M (1)) = δ1(h̃).

Proof. We prove a slightly stronger statement by induction on m. In addition to

(2.14) and (2.15), we show that if 0 < b < ∞, then

sup
a≤b

E(T (m) − a/µ) < ∞, (2.16)

sup
a≤b

EM (m) < ∞. (2.17)

Also, without loss of generality we assume h is non-decreasing. Otherwise, we could

replace h(a) by h(a) ≡ infx≥a h(x) in what follows, since h is non-decreasing and

bounded above by h.

The procedure δ1(h) is geometric sampling with probability p(1)(a) → 1. If h ∈ Bo
1,

then h(a) = o(a) whence zp(1) = o(h(a)/
√

a) = o(
√

a), and so Lemma 2.2 with Wald’s

equation show that

E(T (1) − a/µ) = E(XM(1) − a)/µ = O(|zp(1)|√a) = o((h(a)/
√

a) · √a) = o(h(a)),

as well as that (2.16) holds for m = 1. The relation EM (1) = 1/p(1)(a) implies (2.15)

and (2.17) for m = 1.

Now assume h ∈ Bo
m+1 and let (T (m+1),M (m+1)) = δm+1(h). Let z1 =

√
log(a/h2(a) + 1)

and p1 = Φ(−z1). Obviously lima→∞ h(f−1(a))/hm(a) = lima→∞ h(a)/hm(f(a)) and,
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using the definitions of hm and f ,

hm(f(a)) = O((a log a)(1/2)m+1

(log(a log a))1/2−(1/2)m

)

= O(a(1/2)m+1

(log a)1/2−(1/2)m+1

) = O(hm+1(a)) = o(h(a)). (2.18)

Thus hm(a) = o(h(f−1(a))) and a similar argument gives h(f−1(a)) = o(hm−1(a)),

so that h ◦ f−1 ∈ Bo
m. Then, by the induction hypothesis, (2.14)-(2.17) hold with

(T (m),M (m)) = δm(h ◦ f−1). Now

EM (m+1)(a) = 1 + E(M (m)(a−X1); X1 < a)

and so (2.17) holds for m + 1 since it holds for m. Further, using the induction

hypothesis and letting C = (2
√

µ)−1, Y = a−X1,

EM (m+1)(a) = 1 + E(M (m)(Y ); Y > Cz1

√
a) + E(M (m)(Y ); 0 < Y ≤ Cz1

√
a)

= 1 + m(1 + o(1))P (Y > Cz1

√
a) + O(1)P (0 < Y ≤ Cz1

√
a)

= (m + 1) + o(1),

since

P (0 < Y ≤ Cz1

√
a) ≤ P (Y ≤ Cz1

√
a)

≤ 1− Φ

(
a− µt(p1, a)− Cz1

√
a√

t(p1, a)

)

= 1− Φ(z1 − Cz1
√

µ(1 + o(1))) (by (2.7) and since
√

t(p1, a) ∼
√

a/µ)

≤ 1− Φ(z1/4) → 0. (2.19)

Next we estimate E(T (m+1) − a/µ). Let C ′ = 2/
√

µ. Using Wald’s equation and



22

the definition of δm+1,

µE(T (m+1) − a/µ) = E(XM(m+1) − a)

= E(XM(m+1) − a; M (m+1) = 1) + E(XM(m)(Y ) − Y ; Y > C ′z1

√
a)

+E(XM(m)(Y ) − Y ; 0 < Y ≤ C ′z1

√
a)

≡ A1(a) + A2(a) + A3(a),

and to show that (2.14) and (2.16) hold for m + 1 it suffices to show the Ai satisfy

the same bounds for i = 1, 2, 3. We have

A1(a) = E(X1 − a; X1 ≥ a) = ∆(z1)
√

t(p1, a)

∼ (φ(z1)/z
2
1)

√
a/µ (since ∆(z) ∼ φ(z)/z2 as z →∞)

= O(h(a)/z2
1) = o(h(a)).

Also, the existence of the first moment of X1 implies A1(a) is bounded for bounded

values of a.

Let ϕ(y) = E(XM(m)(y) − y) for y > 0. By the induction hypothesis

ϕ(y) = o(h(f−1(y))) as y →∞, (2.20)

sup
y≤y0

ϕ(y) < ∞ for all y0 < ∞. (2.21)

By a routine computation, E(Y ; Y > C ′z1

√
a) = O(φ(z1)

√
a) = O(h(a)). Let K < ∞

be such that E(Y ; Y > C ′z1

√
a) ≤ Kh(a) for large a. Let ε > 0. Using (2.20), we

have

ϕ(y) = o(h(f−1(y))) = o(hm−1(y)) = o(y), (2.22)

since the m = 1 case is the largest, asymptotically. Thus assume a is large enough so
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that ϕ(y) ≤ (ε/K)y when y > C ′z1

√
a. Then

A2(a) = E(ϕ(Y ); Y > C ′z1

√
a) ≤ (ε/K)E(Y ; Y > C ′z1

√
a)

≤ (ε/K)Kh(a) = εh(a),

showing A2(a) = o(h(a)). Also, (2.21) and (2.22) imply that there are constants

C1, a1 such that

A2(a) ≤ C1 + E(Y ; Y > a1)

for all a, and the latter is finite for bounded values of a by the same argument used

on A1(a).

The condition (2.21) implies A3(a) = E(ϕ(Y ); 0 < Y ≤ C ′z1

√
a) is bounded for

bounded values of a, so to show A3(a) = o(h(a)) it suffices to show

Ã3(a) ≡ E(ϕ(Y ); a0 < Y < C ′z1

√
a) = o(h(a)),

for any constant a0. Let ε > 0 and choose a0 such that

ϕ(y) ≤ εh(f−1(y)) for y > a0, (2.23)

by virtue of (2.20). Now h and f−1 are both non-decreasing, so h ◦ f−1 is non-

decreasing also, and since C ′z1

√
a ≤ f(a) we have

Ã3(a) ≤ εh(f−1(C ′z1

√
a))P (a0 < Y ≤ C ′z1

√
a) ≤ εh(f−1(f(a))) = εh(a),

showing Ã3(a) = o(h(a)).

Before proving bounds on the operating characteristics of δ̂m in Proposition 2.5,

we introduce the following positive constants and prove a property of them in Lemma

2.4. For m ≥ 1 define

κm = κm(µ) = µ−2+(1/2)m
m−1∏
i=1

[(1/2)m−1−i − (1/2)m−1](1/2)i+1

. (2.24)
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Lemma 2.4. For m ≥ 1, as a →∞

κmhm(
√

(1− 2−m)/µ · a log a) ∼ κm+1hm+1(a).

Proof.

log(κm+1/κm) = −(1/2)m+1 log µ +
m∑

i=1

(1/2)i+1 log[(1/2)m−i − (1/2)m]

−
m−1∑
i=1

(1/2)i+1 log[(1/2)m−1−i − (1/2)m−1]

= −(1/2)m+1 log µ + (1/2)m+1 log[1− 2−m]−
m−1∑
i=1

(1/2)i+1 log 2

= (1/2)m+1 log(1− 2−m)/µ + (1/2− (1/2)m) log(1/2).

On the other hand, letting a′ =
√

(1− 2−m)/µ · a log a,

log(hm(a′)/hm+1(a)) = (1/2)m log a′ + (1/2− (1/2)m) log log a′

−(1/2)m+1 log a− (1/2− (1/2)m+1) log log a

= (1/2)m+1[log(1− (1/2)m)/µ + log a + log log a]

+(1/2− (1/2)m)[log(1/2) + log log a + o(1)]

−(1/2)m+1 log a− (1/2− (1/2)m+1) log log a

= (1/2)m+1 log(1− 2−m)/µ + (1/2− (1/2)m) log(1/2) + o(1)

= log(κm+1/κm) + o(1)

so that hm(a′)/hm+1(a) → κm+1/κm.

We will use the notation f . g for f ≤ (1 + o(1)) · g.

Proposition 2.5. Let m ≥ 1 and p ∈ (0, 1) a constant. If (T (m),M (m)) = δ̂m(p),
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then, as a →∞,

E(T (m) − a/µ) . ∆(zp)κmhm(a), (2.25)

EM (m) → m + 1− p. (2.26)

Proof. As in the proof of the previous proposition, we prove a slightly stronger claim

by induction. In addition to (2.25) and (2.26), we show that if 0 < b < ∞, then

sup
a≤b

E(T (m) − a/µ) < ∞ (2.27)

sup
a≤b

EM (m) < ∞. (2.28)

Let (T (1),M (1)) = δ̂1(p). By Wald’s equation we have

µE(T (1) − a/µ) = E(X1 − a; M (1) = 1) + E(XM(1) − a; M (1) > 1) (2.29)

= ∆(zp)
√

a/µ(1 + o(1)) + E(XM(1) − a; M (1) > 1). (2.30)

Letting (T ′,M ′) be the geometric sampling with probability p̂(1)(a) that follows the

first stage of δ̂1(p), Lemma 2.2 implies that

E(XM(1) − a; M (1) > 1) = E(XM ′(a−X1) − (a−X1); X1 < a)

≤ K|zp̂(1)|
√

E(a−X1|X1 < a) (K < ∞) (2.31)

= O(|zp̂(1)|a1/4) = o(
√

a). (2.32)

Substituting (2.32) into (2.30) gives

E(T (1) − a/µ) = ∆(zp)µ
−3/2

√
a + o(

√
a) = ∆(zp)κ1h1(a) + o(h1(a)),

while (2.29) and (2.31) show that E(T (1) − a/µ) is bounded for bounded values of a.

The relation EM (1) = 1 + (1− p)/p2 → 2− p establishes (2.26) and (2.28) for m = 1.

Fix m ≥ 1 and let (T (m+1),M (m+1)) = δ̂m+1(p). Also let z1 =
√

(1− 2−m) log a,
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p1 = Φ(−z1), and suppose ε > 0. We have

µE(T (m+1) − a/µ) = E(X1 − a; M (m+1) = 1) + E(XM(m+1) − a; M (m+1) > 1) (2.33)

and

E(X1 − a; M (m+1) = 1) = ∆(zp)
√

t(p, a) ∼ O(
√

aφ(z1)/z
2
1) (2.34)

= O(a(1/2)m+1

/z2
1) = o(hm+1(a)), (2.35)

by substituting the value of z1. Thus we can assume a is large enough so that

E(X1 − a; M (m+1) = 1) ≤ ε∆(zp)κm+1µhm+1(a). (2.36)

For y > 0 define ϕ(y) = E(XM(m)(y) − y). By the induction hypothesis and Wald’s

equation there are constants C1, y1 such that

ϕ(y) ≤




C1, if 0 < y ≤ y1

∆(zp)κmµhm(y)(1 + ε), if y1 < y.

Then, letting Y = a−X1,

E(XM(m+1) − a; M (m+1) > 1) = E(ϕ(Y ); Y > 0)

≤ C1P (Y ≤ y1) + ∆(zp)κmµ(1 + ε)E(hm(Y ); Y > y1). (2.37)

Note that hm is concave and satisfies hm(a + o(a)) ∼ hm(a) as a → ∞. Routine

computations give

P (Y > y1) → 1 and E(Y ; Y > y1) ∼ z1

√
a/µ (2.38)
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as a →∞, so, by Jensen’s inequality,

κmE(hm(Y ); Y > y1) ≤ κmP (Y > y1)hm(E(Y |Y > y1)) (2.39)

∼ κmhm(z1

√
a/µ) ∼ κm+1hm+1(a),

this last by Lemma 2.4. Thus assume a is large enough so that

κmE(hm(Y ); Y > y1) ≤ (1 + ε)κm+1hm+1(a),

C1P (Y ≤ y1) ≤ ε∆(zp)κm+1µhm+1(a).

Plugging these estimates into (2.37) and combining with (2.36) gives

E(T (m+1) − a/µ) ≤ [ε + ε + (1 + ε)2]∆(zp)κm+1hm+1(a)

≤ (1 + 5ε)∆(zp)κm+1hm+1(a).

Since ε was arbitrary, this shows that (2.25) holds for m+1. For bounded intervals of

a, the equality in (2.34) shows E(XM(m+1)−a; M (m+1) = 1) is bounded while (2.37) and

(2.39) show E(XM(m+1)−a; M (m+1) > 1) is also bounded, and hence E(T (m+1)−a/µ)

is bounded.

Let ψ(y) = EM (m)(y) for y > 0 and let ε > 0. By the induction hypothesis there

are positive constants C2, y2 such that

ψ(y) ≤ C2 if 0 < y ≤ y2,

|ψ(y)− (m + 1− p)| ≤ ε/3 if y2 < y.

As with the first part of (2.38), P (Y ≤ y2) → 0. So assume a is large enough so that

P (Y ≤ y2) ≤ (ε/3) min{(m + 1− p)−1, C−1
2 }.
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Then

|EM (m+1) − (m + 2− p)|
= |1 + E(ψ(Y ); 0 < Y ≤ y2) + E(ψ(Y ); Y > y2)− (m + 2− p)|
≤ E(|ψ(Y )− (m + 1− p)|; Y > y2) + C2P (Y ≤ y2) + (m + 1− p)P (Y ≤ y2)

≤ ε/3 + ε/3 + ε/3. (2.40)

This shows that EM (m+1) → m + 2 − p and (2.40), with the induction hypothesis,

shows that EM (m+1) is bounded for bounded values of a.

2.1.3 Optimality of δm and δ̂m

For a ≥ y2 > 0 define Fy(a) =
√

a log(a/y2). If h is a positive function, then for a

such that h2(a) ≤ a define

F
(k)
h(a)(a) = F (k)

y (a)|y=h(a).

Note that h(·) is not iterated, e.g. F
(2)
h(a)(a) = Fh(a)(Fh(a)(a)) 6= Fh(Fh(a)(a))(Fh(a)(a)).

The next lemma shows that, when h ∈ Bm, square roots of the iterates F
(k−1)
h(a) (a)

are roughly constant multiples of the critical functions hk. The constants themselves

are given by the solutions of the following recurrence relation. For 1 ≤ k ≤ m define

Cm
k to be the unique solution of

Cm
k+1 =

√
Cm

k · [(1/2)k−1 − (1/2)m−1]1/4; Cm
1 = 1. (2.41)

After taking logarithms, solving (2.41) amounts to solving a difference equation. This

computation gives

Cm
k =

k−1∏
i=1

[
(1/2)k−1−i − (1/2)m−1

](1/2)i+1

, (2.42)
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where it is understood that an empty product equals 1. Note also that

κm = (1/µ)2−(1/2)m

Cm
m . (2.43)

Lemma 2.6. If h ∈ B+
m, then

√
F

(k−1)
h(a) (a) ∼ Cm

k hk(a) as a →∞, for 1 ≤ k ≤ m. (2.44)

If h ∈ Bo
m, then

Cm−1
k .

√
F

(k−1)
h(a) (a)

hk(a)
. Cm

k as a →∞, for 1 ≤ k < m. (2.45)

Proof. Let F k denote F
(k)
h(a)(a). First we prove (2.44) by induction on k. For k = 1,

√
F 0 =

√
a = 1 · √a = Cm

1 · h1(a).

Now assume 2 ≤ k + 1 ≤ m,
√

F k−1 ∼ Cm
k hk(a), and let Q = lim h/hm ∈ (0,∞).

Observe that

log

(
F k−1

h(a)2

)
∼ log

(
(Cm

k hk(a))2

(Qhm(a))2

)

∼ log

(
hk(a)2

hm(a)2

)

∼ log

(
a(1/2)k−1

(log a)1−(1/2)k−1

a(1/2)m−1(log a)1−(1/2)m−1

)

∼ [(1/2)k−1 − (1/2)m−1] log a, (2.46)
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so

√
F k =

{
F k−1 log(F k−1/h(a)2)

}1/4

∼ {
(Cm

k hk(a))2[(1/2)k−1 − (1/2)m−1] log a
}1/4

=
√

Cm
k · a(1/2)k+1

(log a)1/4−(1/2)k+1

[(1/2)k−1 − (1/2)m−1]1/4(log a)1/4

=
√

Cm
k · [(1/2)k−1 − (1/2)m−1]1/4hk+1(a)

= Cm
k+1hk+1(a), (2.47)

by (2.41).

Next we prove (2.45) by induction on k. The k = 1 case is again easy since

Cm−1
1 =

√
F 0

h1

= Cm
1 = 1

for any m ≥ 2. Now assume 2 ≤ k + 1 < m and that (2.45) holds for k. Then, since

hm ¿ h ¿ hm−1,

log

(
F k−1

h(a)2

)
. log

(
(Cm

k hk(a))2

hm(a)2

)
∼ [(1/2)k−1 − (1/2)m−1] log a,

by the same argument leading to (2.46). Then, by repeating the argument leading to

(2.47) with . in place of ∼,

√
F k .

√
Cm

k · [(1/2)k−1 − (1/2)m−1]hk+1(a) = Cm
k+1hk+1(a),

by (2.41). The other bound is similar:

log

(
F k−1

h(a)2

)
& log

(
(Cm−1

k hk(a))2

hm−1(a)2

)
∼ [(1/2)k−1 − (1/2)m−2] log a,

and so

√
F k &

√
Cm−1

k · [(1/2)k−1 − (1/2)m−2]hk+1(a) = Cm−1
k+1 hk+1(a),
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by replacing m by m− 1 in (2.47) and (2.41).

The next lemma establishes a lower bound on how close any efficient procedure

can be to the boundary after each of the first m− 1 stages when h ∈ Bm.

Lemma 2.7. Assume that h ∈ Bm. If δ = (T, M) is any procedure such that R(δ) =

O(h(a)), then

a−Xk

(1/µ)1−2−kF
(k)
h(a)(a)

≥ 1 in probability as a →∞ (2.48)

for k = 0, 1, . . . , m− 1.

Proof. Let Gk(a) = (1/µ)1−2−k
F

(k)
h(a)(a). Given ε > 0, let

Vk = {a−Xk ≥ (1− ε)Gk(a)}.

The k = 0 case is trivial since (2.48) is equivalent to a ≥ a. Fix 1 ≤ k < m and

assume that P (Vk−1) → 1. Let

ζk =
a−Xk−1 − µTk√

Tk

.

Note that

h(a)2 = o(hm−1(a)2) (h ∈ Bm)

= o(F
(m−2)
h(a) (a)) (by Lemma 2.6)

= o(Gm−2(a))

= o(Gk−1(a))

since k − 1 ≤ m − 2. Thus Gk−1/h
2 → ∞ and so does log(Gk−1/h

2). With this, we

claim

P (ζk ≥
√

log(Gk−1(a)/h2(a))− 1|Vk−1) → 1. (2.49)

Let ζ(a) =
√

log(Gk−1(a)/h2(a)) − 1 and U = {ζk < ζ(a)}. If (2.49) were to fail
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there would be a constant η > 0 and a sequence of a’s approaching ∞ on which

P (U |Vk−1) > η. Then

µR(δ) ≥ µE(T − a/µ) = E(XM − a) ≥ E[(XM − a)1{M = k}; U ∩ Vk−1]

= E[∆(ζk)
√

t(Φ(−ζk), a−Xk−1); U ∩ Vk−1]. (2.50)

The function inside the expectation in (2.50) is decreasing in both ζk and Xk−1, hence

µR(δ) ≥ ∆(ζ(a))
√

t(Φ(−ζ(a)), (1− ε)Gk−1(a)) · P (U ∩ Vk−1). (2.51)

By assumption, P (U |Vk−1) ≥ η and P (Vk−1) → 1, so

P (U ∩ Vk−1) ≥ η/2, (2.52)

say, for large enough a. Also

∆(ζ(a))
√

t(Φ(−ζ(a)), (1− ε)Gk−1(a)) ∼ φ(ζ(a))

ζ2(a)

√
(1− ε)Gk−1(a)/µ

≥ ε′h(a)
exp(

√
log(Gk−1(a)/h2(a))− 1/2)

(
√

log(Gk−1(a)/h2(a))− 1)2
(ε′ > 0)

= h(a)/o(1). (2.53)

Plugging (2.52) and (2.53) into (2.51) gives h(a) = o(R(δ)), which contradicts our

assumption that R(δ) = O(h(a)). Hence, (2.49) must hold. Then

P (Vk|U ′ ∩ Vk−1) = P (a−Xk ≥ (1− ε)Gk(a)|U ′ ∩ Vk−1)

= P

(
(Xk −Xk−1)− µTk√

Tk

≤ a−Xk−1 − (1− ε)Gk(a)− µTk√
Tk

∣∣∣∣ U ′ ∩ Vk−1

)
.

(2.54)
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On Vk−1,

a−Xk−1 − (1− ε)Gk(a)− µTk√
Tk

= ζk − 2µ(1− ε)Gk(a)√
4µ(a−Xk−1) + ζ2

k − ζk

≥ ζk − 2µ(1− ε)Gk(a)√
4µ(1− ε)Gk−1(a) + ζ2

k − ζk

,

which is increasing in ζk. Hence, on U ′,

ζk− 2µ(1− ε)Gk(a)√
4µ(1− ε)Gk−1(a) + ζ2

k − ζk

≥ ζ(a)− 2µ(1− ε)Gk(a)√
4µ(1− ε)Gk−1(a) + ζ2(a)− ζ(a)

= ζ(a)− 2µ(1− ε)Gk(a)√
4µ(1− ε)Gk−1(a)

(1 + o(1))

= ζ(a)−
√

(1− ε) log(F
(k−1)
h(a) (a)/h2(a))(1 + o(1))

∼ (1−√1− ε)
√

log(Gk−1(a)/h2(a)) ≡ γ(a) →∞.

Substituting this back into (2.54) gives

P (Vk|U ′ ∩ Vk−1) ≥ 1− [γ(a)/2]−2 → 1

by Chebyshev’s inequality. Thus P (Vk) ≥ P (Vk|U ′ ∩ Vk−1)P (U ′ ∩ Vk−1) → 1 since

P (U ′∩Vk−1) → 1 by the induction hypothesis and (2.49), finishing the induction and

proving the lemma.

Next we prove the optimality of δm and δ̂m.

Theorem 2.8. If h ∈ Bo
m, then

R(δm(h)) ∼ mh(a) ∼ R∗. (2.55)

If h ∈ B+
m, then

R(δ̂m(p∗)) ∼
[
m + 1− p∗ +

∆(zp∗)κm

Q

]
h(a) ∼ R∗, (2.56)
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where Q = lima→∞ h(a)/hm(a) ∈ (0,∞) and p∗ is the unique solution of the equation

p∗

φ(zp∗)
=

Q

κm

.

Proof. Assume that h ∈ Bo
m. Proposition 2.3 implies R(δm(h)) ∼ mh(a). By the

Bayes property, R∗ ≤ R(δm(h)) = O(h) and so Lemma 2.7 applies to δ∗. Then,

letting X∗
k denote the δ∗-sampled process,

R∗ ≥ h(a)EM∗

≥ h(a)mP (M∗ ≥ m)

= h(a)mP (a−X∗
m−1 > 0)

≥ h(a)mP
(
a−X∗

m−1 ≥ (1/2)(1/µ)1−2−(m−1)

F
(m−1)
h(a) (a)

)

∼ mh(a) (by Lemma 2.7)

∼ R(δm(h)) ≥ R∗,

proving (2.55).

If h ∈ B+
m with h(a)/hm(a) → Q ∈ (0,∞), then Proposition 2.5 shows that

R(δ̂m(p∗)) . ∆(zp∗)κmhm(a) + (m + 1− p∗)h(a)

∼ [∆(zp∗)κm/Q + m + 1− p∗]h(a).

Again R∗ ≤ R(δ̂m(p∗)) = O(h(a)), so Lemma 2.7 applies and we have

P (a−X∗
m−1 ≥ (1− ε)(1/µ)1−2−(m−1)

F
(m−1)
h(a) (a)) → 1

for any ε > 0. Fix such an ε. Let (T ∗(m),M∗(m)) denote the continuation of δ∗ after

the (m− 1)st stage, i.e.,

M∗(m) = M∗ − (1{M∗ ≥ 1}+ · · ·+ 1{M∗ ≥ m− 1}),
T ∗(m) = T ∗ − (T ∗

1 + · · ·+ T ∗
m−1).
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For y > 0 define

ϕ(y) = E[µ−1(XM∗(m) − y) + h(a)M∗(m)|a−X∗
m−1 = y].

We will show below that ϕ(y) is non-decreasing in y. Let

γ(a) = (1− ε)(1/µ)1−2−(m−1)

F
(m−1)
h(a) (a).

We now compute a lower bound for ϕ(γ(a)). Letting

p = P (M∗(m) = 1|a−X∗
m−1 = γ(a)),

µ−1E(XM∗(m) − (a−X∗
m−1)|a−X∗

m−1 = γ(a))

≥ µ−1E[(XM∗(m) − (a−X∗
m−1))1{M∗(m) = 1}|a−X∗

m−1 = γ(a)]

= µ−1∆(zp)
√

t(p, γ(a))

∼ µ−1∆(zp)
√

γ(a)/µ

= µ−1∆(zp)
√

(1− ε)(1/µ)2−2−m+1F
(m−1)
h(a) (a)

∼ ∆(zp)
√

1− ε · (1/µ)2−2−m

Cm
mhm(a) (by Lemma 2.6)

∼ ∆(zp)κm

√
(1− ε)

Q
h(a), (2.57)

this last by (2.43) and h ∼ Qhm. Also, E(M∗(m)|a − X∗
m−1 = γ(a)) ≥ 2 − p, and

combining this with (2.57) gives

ϕ(γ(a)) ≥
[

∆(zp)κm

√
(1− ε)

Q
+ (2− p)

]
h(a)(1 + o(1)).
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Letting Y = a−X∗
m−1 and V = {Y ≥ γ(a)}, we have

R∗ = E[µ−1(XM∗ − a) + h(a)M∗]

≥ E[µ−1(XM∗(m) − Y ) + h(a)(m− 1 + M∗(m)); V ]

= E(ϕ(Y ); V ) + (m− 1)h(a)P (V )

≥ ϕ(γ(a))P (V ) + (m− 1)h(a)P (V ) (ϕ non-decreasing)

&
[

∆(zp)κm

√
(1− ε)

Q
+ (m + 1− p)

]
h(a). (2.58)

Using calculus, it can be shown that the expression in brackets in (2.58) achieves its

unique minimum when p = p∗(ε), the unique solution of

p∗(ε)
φ(zp∗(ε))

=
Q

κm

√
1− ε

.

Thus,

R∗ ≥
[

∆(zp∗(ε))κm

√
(1− ε)

Q
+ (m + 1− p∗(ε))

]
h(a)(1 + o(1)).

This holds for all ε > 0, so by a standard asymptotic technique (e.g., [6], p. 188),

there is a sequence εa → 0 for which it holds. Moreover, p∗(εa) → p∗(0) = p∗, which

proves (2.56).

Finally, we show that ϕ(·) is non-decreasing. Fix a > 0 and let 0 < y ≤ y′.

Let (T ′(m),M ′(m)) denote the continuation of δ∗ after the (m − 1)st stage that uses

the same stopping probability at each stage as (T ∗(m), M∗(m)) when starting from

a−X∗
m−1 = y′. Then

E(M ′(m)|a−X∗
m−1 = y) = E(M∗(m)|a−X∗

m−1 = y′) (2.59)

and, letting

p1 = P (M∗(m) = 1|a−X∗
m−1 = y′) = P (M ′(m) = 1|a−X∗

m−1 = y),
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E[(XM ′(m) − y)1{M ′(m) = 1}|a−X∗
m−1 = y] = ∆(zp1)

√
t(p1, y)

≤ ∆(zp1)
√

t(p1, y′) (y ≤ y′)

= E[(XM∗(m) − y′)1{M∗(m) = 1}|a−X∗
m−1 = y′].

Similar arguments inductionly give

E[(XM ′(m)−y)1{M ′(m) > 1}|a−X∗
m−1 = y] ≤ E[(XM∗(m)−y′)1{M∗(m) > 1}|a−X∗

m−1 = y′],

and these last two bounds show

E(XM ′(m) − y|a−X∗
m−1 = y) ≤ E(XM∗(m) − y′|a−X∗

m−1 = y′). (2.60)

Then

ϕ(y) ≤ E[µ−1(XM ′(m) − y) + h(a)M ′(m)|a−X∗
m−1 = y] (optimality of (T ∗(m),M∗(m)))

≤ E[µ−1(XM∗(m) − y′) + h(a)M∗(m)|a−X∗
m−1 = y′] (by (2.59) and (2.60))

= ϕ(y′),

finishing the proof.

The final theorem of this section is a converse to Theorem 2.8, showing that good

procedures must behave like δm, δ̂m in not only the sense that m stages are necessary

when h ∈ Bm, but also that the sooner a procedure deviates from the “schedule” of

Lemma 2.7, the worse its performance.

Theorem 2.9. Assume that h ∈ Bm and let

δm =





δm(h), if h ∈ Bo
m

δ̂m(p∗), if h ∈ B+
m.

If δ = (T, M) is a procedure such that there is a sequence ai →∞ with

P (ai −Xk ≤ (1− ε)(1/µ)1−2−k

F
(k)
h(ai)

(ai)) bounded below 1 (2.61)
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for some 1 ≤ k < m and ε > 0, then there is C > 0 such that

R(δ)−R(δm) ≥ C · hk∗(ai) →∞, (2.62)

where k∗ is the smallest k for which (2.61) holds. In particular, (2.62) holds if

P (M ≥ m) 6→ 1.

Proof. Let Vk = {a − Xk ≤ (1 − ε)(1/µ)1−2−k
F

(k)
h(a)(a)}. By arguments of the type

used in the proof of Lemma 2.7, there is an η > 0 such that

R(δ) ≥ µ−1E(XM − ai)

≥ µ−1E(XM − ai; {M = k∗} ∩ Vk∗−1)

≥ ∆(zη)
√

t(η, (1− ε)(1/µ)1−2−kF
(k∗−1)
h(ai)

(ai)) · η

≥ C
√

F
(k∗−1)
h(ai)

(ai) ≥ C ′hk∗(ai),

for appropriately chosen C, C ′ > 0, where this last inequality uses Lemma 2.6. By

Theorem 2.8, R(δm) = O(h(a)) = o(hk∗(a)) since k∗ < m, proving (2.62). If P (Vk) →
1 for all 1 ≤ k < m, then P (M ≥ m) ≥ P (Vm−1) → 1, proving the second assertion.

2.2 Procedures for i.i.d. Random Variables

In this section we extend the sampling procedures and techniques of the first half of

this chapter to procedures for discrete, i.i.d. data. Specifically, let X1, X2, . . . be i.i.d.

from a distribution whose characteristic function is analytic in some neighborhood of

the origin. For example, the one-parameter exponential family considered in Chapters

3 and 4 satisfies this requirement. Assume the common mean µ is positive and, since

the problem is not changed by multiplying the Xi and the boundary a > 0 by a

positive constant, we assume without loss of generality that VarXi = 1.

Define a multistage stopping rule N to be a sequence of non-negative integer valued
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random variables (N1, N2, . . .) such that

Nk+1 · 1{N1 + · · ·+ Nk = n} ∈ En for all n ≥ 1, (2.63)

where En is the class of all random variables determined by X1, . . . , Xn. By anal-

ogy with the continuous case in Section 2.1, the interpretation of the measurability

requirement (2.63) is that by the time Nk ≡ N1 + · · · + Nk, the end of the first k

stages, an observer who knows the values X1, . . . , XNk also knows Nk+1, the size of

the (k + 1)st stage. We will also let N denote the total sample size, NM , where

M = inf{m ≥ 1 : X1 + · · · + XNm ≥ a}. We will denote a (discrete) multistage

sampling procedure by the pair δ = (N,M). When there is no confusion as to which

sampling procedure is being used, the simplifying notation Sk ≡ X1 + · · · + XNk ,

S0 ≡ 0 will be employed. We will write N(a),M(a) when we wish to emphasize the

initial distance to the boundary, a. Given a positive function h, we again define the

risk of a procedure δ = (N, M) to be

R(δ) = E(N − a/µ) + h(a)EM

and the Bayes procedure δ∗ = (N∗, M∗) to be that which achieves R∗ ≡ infδ R(δ).

(We shall continue to suppress the dependence on a in notation.) We define the

problem analogously as for Brownian motion: to sample X1, X2, . . . in stages until

Sk ≥ a, with the aim of minimizing the risk.

The procedures of the previous section were designed around the principle of

comparing expected overshoot over the boundary, often in the large deviation range,

with the ratio of cost per stage to cost per unit sample. To use these ideas on

discrete data, we need a way of estimating the expected overshoot of a sum of random

variables. Let Σn = X1 + · · ·+Xn and {an} an arbitrary sequence. If the Xi are i.i.d.

N(µ, 1) then it is a simple computation to show

E(Σn − an; Σn > an) =
√

n ·∆
(

an − nµ√
n

)
,
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where

∆(z) ≡
∫ ∞

z

Φ(−x)dx = φ(z)− Φ(−z)z.

Since the distribution of (Σn− nµ)/
√

n approaches the standard normal distribution

as n gets large even if the Xi are not normals, then one might conjecture that

E(Σn − an; Σn > an) ∼ √
n ·∆

(
an − nµ√

n

)
as n →∞ (2.64)

as long as the boundary an is not too far in the tail of the sum’s distribution. The

next lemma gives general conditions under which this is true.

Lemma 2.10. If an is such that

lim
n→∞

an − nµ√
n

∈ (−∞,∞) or n1/6 À an − nµ√
n

→∞

as n →∞, then (2.64) holds.

The idea of the proof is to approximate the distribution of Σn by the normal

distribution in the large deviations range of the tail and use a cruder bound, based

on Schwarz’ inequality, for the remaining tail.

Proof. Let Tn = (Σn − nµ)/
√

n and bn = (an − nµ)/
√

n. Then

E(Σn − an; Σn > an) =
√

nE(Tn − bn; Tn > bn) =
√

n

∫ ∞

bn

P (Tn > x)dx,

using the familiar “integration by parts” formula

E(Y ; Y > y) = yP (Y > y) +

∫ ∞

y

P (Y > x)dx, (2.65)

which holds whenever EY exists. Hence to show that (2.64) holds it suffices to show

∫ ∞

bn

P (Tn > x)dx ∼ ∆(bn).

First assume bn →∞ such that bn = o(n1/6). Choose cn →∞ such that bn + ε ≤
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cn = o(n1/6), some ε > 0. Observe that

φ(cn)

∆(bn)
∼ b2

n

φ(cn)

φ(bn)
(since ∆(x) ∼ φ(x)/x2 as x →∞)

= b2
n exp[−c2

n/2 + b2
n/2]

= b2
n exp[−(1/2)(cn − bn)(cn + bn)]

≤ b2
n exp[−(ε/2)(cn + bn)] → 0. (2.66)

Write ∫ ∞

bn

P (Tn > x)dx =

∫ cn

bn

P (Tn > x)dx +

∫ ∞

cn

P (Tn > x)dx.

By Theorem XVI.7.1 of [10], P (Tn > x) ∼ Φ(−x) for large x satisfying x = o(n1/6).

Thus

∫ cn

bn

P (Tn > x)dx ∼
∫ cn

bn

Φ(−x)dx = ∆(bn)−∆(cn) ∼ ∆(bn), (2.67)

since ∆(cn) ≤ φ(cn) = o(∆(bn)) by (2.66). For the other term,

∫ ∞

cn

P (Tn > x)dx = E(Tn; Tn > cn)− cnP (Tn > cn) (2.68)

by (2.65) and, using Mills’ ratio and (2.66),

cnP (Tn > cn) ∼ cnΦ(−cn) ∼ φ(cn) = o(∆(bn)).

The other piece is

E(Tn; Tn > cn) = E(Tn1{Tn > cn})
≤

√
ET 2

n · E1{Tn > cn}2 (Schwarz’ inequality)

=
√

1 · P (Tn > cn) (2.69)

∼
√

Φ(−cn)

∼
√

φ(cn)/cn

= o(∆(bn)),
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by an argument like that leading to (2.66), replacing c2
n/2 by c2

n/4. These last two

estimates give
∫∞

cn
P (Tn > x)dx = o(∆(bn)) and combining this with (2.67) gives

∫∞
bn

P (Tn > x)dx ∼ ∆(bn), finishing the proof of this case.

Now assume bn → b ∈ (−∞,∞). Suppose ε > 0; we will show

∣∣∣∣
∫ ∞

bn

P (Tn > x)dx−∆(bn)

∣∣∣∣ ≤ ε

for large n. Since ∆(b′), b′P (Tn > b′), and
√

P (Tn > b′) all approach 0 as b′ → ∞,

we can choose b′ > b such that all these are less than ε/4 when n is at least some

arbitrary, fixed no. First write

∫ ∞

bn

P (Tn > x)dx =

∫ b′

bn

P (Tn > x)dx +

∫ ∞

b′
P (Tn > x)dx.

Using the Berry-Esseen Theorem,

∫ b′

bn

P (Tn > x)dx = [1 + O(1/
√

n)]

∫ b′

bn

Φ(−x)dx

= [1 + O(1/
√

n)][∆(bn)−∆(b′)]

and so

∣∣∣∣∣
∫ b′

bn

P (Tn > x)dx−∆(bn)

∣∣∣∣∣ ≤ ∆(b′) + O(1/
√

n)[∆(bn)−∆(b′)]

≤ ε/4 + O(1/
√

n) ·O(1)

≤ ε/4 + ε/4 = ε/2 (2.70)

for sufficiently large n. Then

∣∣∣∣
∫ ∞

bn

P (Tn > x)dx−∆(bn)

∣∣∣∣ ≤
∣∣∣∣∣
∫ b′

bn

P (Tn > x)dx−∆(bn)

∣∣∣∣∣ +

∣∣∣∣
∫ ∞

b′
P (Tn > x)dx

∣∣∣∣
≤ ε/2 + E(Tn; Tn > b′) + b′P (Tn > b′) (by (2.70) and (2.68))

≤ ε/2 +
√

P (Tn > b′) + ε/4 (by (2.69))

≤ ε/2 + ε/4 + ε/4 = ε,
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finishing the proof.

Recall our definition

t(p, a) = a/µ− zp

√
4aµ + z2

p − z2
p

2µ2

as the unique solution of
a− µt(p, a)√

t(p, a)
= zp,

so that the probability of Brownian motion being across a boundary a units away

at the end of a stage of size t(p, a) is p. Recall also that geometric sampling is

defined as sampling so that this stopping probability is constant across the stages.

We now extend this definition to discrete, possibly non-Gaussian data as follows.

Define (discrete) geometric sampling with probability p to be the procedure (N, M)

such that

Nk ≡ dt(p, a− Sk−1)e1{Sk−1 < a}, k ≥ 1

M ≡ inf{m ≥ 1 : Sm ≥ a}.

Note that when the Xi are not Gaussian, we do not know a priori that the true

stopping probability is close to p, nor that M behaves like a geometric random variable

in any sense. However, we will see that both of these are true below by the Central

Limit Theorem and large deviations theory. Our next lemma establishes upper bounds

on discrete geometric sampling when the stopping probability approaches 1 as a →∞.

Lemma 2.11. Let (N, M) be discrete geometric sampling with probability p(a). There

is a constant po ∈ (1/2, 1) such that if p(a) ≥ po and p(a) → 1 as a →∞, then

EN − a/µ . |zp(a)|
√

a/µ3/2 (2.71)

EM → 1 (2.72)
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and

sup
a≤b

EN − a/µ < ∞ (2.73)

sup
a≤b

EM < ∞ (2.74)

for any b < ∞.

Proof. First we prove the statements regarding EM . Let p > 1/2, x > 0, Σn =

X1 + · · ·+ Xn, and n(p, x) = dt(p, x)e. Write

∣∣P (Σn(p,x) < x)− (1− p)
∣∣ ≤

∣∣∣∣∣P (Σn(p,x) < x)− Φ

(
x− µn(p, x)√

n(p, x)

)∣∣∣∣∣

+

∣∣∣∣∣Φ(zp)− Φ

(
x− µn(p, x)√

n(p, x)

)∣∣∣∣∣ .

(2.75)

By the Berry-Esseen Theorem there is a constant C1 such that

∣∣∣∣∣P (Σn(p,x) < x)− Φ

(
x− µn(p, x)√

n(p, x)

)∣∣∣∣∣ ≤
C1√

n(p, x)
. (2.76)

Since n(p, x) ≥ t(p, x) we have

x− µn(p, x)√
n(p, x)

≤ x− µt(p, x)√
t(p, x)

= zp.

Then, using the inequality

Φ(x)− Φ(y) ≤ φ(x)(x− y) for y ≤ x ≤ 0,
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∣∣∣∣∣Φ(zp)− Φ

(
x− µn(p, x)√

n(p, x)

)∣∣∣∣∣ = Φ(zp)− Φ

(
x− µn(p, x)√

n(p, x)

)

≤ φ(zp)

[
zp − x− µn(p, x)√

n(p, x)

]

≤ φ(zp)

[
zp − x− µ(t(p, x) + 1)√

t(p, x) + 1

]
(since n(p, x) ≤ t(p, x) + 1)

= φ(zp)

[
zp − x− µt(p, x)√

t(p, x)
·

√
t(p, x)√

t(p, x) + 1
+

µ√
t(p, x) + 1

]

= φ(zp)

[
zp

(
1−

√
t(p, x)√

t(p, x) + 1

)
+

µ√
t(p, x) + 1

]
. (2.77)

Since t(p, x) →∞ as p → 1 and

1−
√

t(p, x)√
t(p, x) + 1

≤ 1

2t(p, x)
= o(1/

√
t(p, x)),

from (2.77) we get that there is C2 < ∞, po ∈ (1/2, 1) such that

∣∣∣∣∣Φ(zp)− Φ

(
x− µn(p, x)√

n(p, x)

)∣∣∣∣∣ ≤ C2
φ(zp)√
n(p, x)

(2.78)

for p ≥ po. Combining (2.76) and (2.78) into (2.75), we have

P (Σn(p,x) < x) ≤ 1− p + (C1 + C2)
φ(zp)√
n(p, x)

≤ 1− p + C3
φ(zp)

|zp| ,

some C3 < ∞, since
√

n(p, x) ≥
√

t(p, x) ≥ |zp|/(2µ). Then

P (M > k + 1|M > k) = P (Σn(p,a−Sk) < a− Sk|a− Sk > 0)

≤ 1− p + C3
φ(zp)

|zp| . (2.79)

Plugging p = p(a) into this and assuming a is large enough so that

1− p(a) + C3

φ(zp(a))

|zp(a)| ≤ 1/2, (2.80)
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we have P (M > k + 1|M > k) ≤ 1/2 for all k ≥ 1, and hence

P (M > k) = P (M > k|M > k − 1) · · ·P (M > 2|M > 1)P (M > 1)

≤ (1/2)k−1P (M > 1).

This gives

EM = 1 + P (M > 1) + P (M > 2) + · · · ≤ 1 + 2P (M > 1) → 1 (2.81)

as a →∞ since, by (2.79),

P (M > 1) ≤ 1− p(a) + C3

φ(zp(a))

|zp(a)| → 0,

proving (2.72). If we choose po large enough so that (2.80) holds for all a > 0, then

(2.81) shows that EM ≤ 3 for all a > 0, proving (2.74).

Next we estimate EN . Let p = p(a). We have N1 = n(p, a) ≤ t(p, a) + 1. For N2,

consider E(a − S1|S1 < a). Let S ′1 =
∑N1

i=1(2µ −Xi) and a′ = 2N1µ − a. Note that

2µ−X1, 2µ−X2, . . . are i.i.d. with mean µ and variance 1, and

ζa ≡ a′ − µN1√
N1

=
µN1 − a√

N1

= |zp|+ o(1) = o(a1/6).

Hence Lemma 2.10 applies and

E(a− S1|S1 < a) = E(S ′1 − a′|S ′1 > a′) ∼
√

N1∆(ζa)/Φ(−ζa),

using P (S ′1 > a′) ∼ Φ(−ζa) by large deviations. Since ζa ∼ |zp| and
√

N1 ∼
√

a/µ,

this shows

E(a− S1|S1 < a) ∼
√

a/µ∆(z1−p)/(1− p).
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Now let k ≥ 2. Since t(p, ·) is increasing and concave,

E(N2; M = k) = E(N2|M = k)P (M = k)

≤ E[t(p, a− S1) + 1|M = k]P (M = k)

≤ [t(p, E[a− S1|M = k]) + 1]P (M = k)

= [t(p, E[a− S1|S1 < a]) + 1]P (M = k) (2.82)

= [t(p,
√

a/µ ·∆(z1−p)(1− p)−1(1 + o(1))) + 1]P (M = k). (2.83)

In (2.82) we use

E[a− S1|M = k] = E[a− S1|M > 1] = E[a− S1|S1 < a];

this is true since the number of additional stages required to cross the boundary is

independent of S1, provided S1 < a.

To estimate Ni for i > 2 we will bound E[Ni+1 −Ni]. Let 2 < i < k.

E[Ni+1 −Ni; M = k] ≤ E[t(p, a− Si) + 1− t(p, a− Si− 1); M = k]

= E[t(p, a− Si−1 − (Si − Si−1))− t(p, a− Si−1); M = k] + P (M = k).(2.84)

Since

0 <
d

dx
t(p, x) ≤ 2/µ

for all x > 0 when p ≥ 1/2,

t(p, x− y)− t(p, x) ≤ 2y−/µ

and thus (2.84) becomes

E[Ni+1 −Ni; M = k] ≤ (2/µ)E[(Si − Si−1)
−; M = k] + P (M = k). (2.85)
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Recall that Σn = X1 + · · ·+ Xn and let ϕ(n) = E(−Σn;−Σn > 0). For large n

ϕ(n) = E(Σn − 0;−Σn > 0)

≤ E[−Σn − (−nµ + n9/14);−Σn > (−nµ + n9/14)] (since −nµ + n9/14 < 0)

∼ √
n ·∆(n1/7) ∼ √

n · φ(n1/7)

n2/7
. e−n1/7

,

this last line using Lemma 2.10 since

−nµ + n9/14 − n · E(−X1)√
n

= n1/7 = o(n1/6).

Thus

ϕ(n) ≤ (3/2)e−n1/7

, (2.86)

say, for large n. Now

E[(Si − Si−1)
−; M = k] = E[(Si − Si−1)

−; M > i]P (M = k|M > i)

= E[ϕ(n(p, a− Si−1)); Si−1 < a]P (M = k|M > i) (2.87)

using the same conditioning argument as above. Also, for all x > 0

n(p, x) ≥ |zp|
µ
≥ |zpo |

µ
≡ n.

Combining (2.85)-(2.87),

E(Ni+1 −Ni; M = k) ≤ (2/µ) · (3/2)e−n1/7

P (Si−1 < a)P (M = k|M > i) + P (M = k)

= (3/µ)e−n1/7

P (M ≥ i)P (M = k|M > i) + P (M = k). (2.88)

By (2.79) there is a constant C such that the probability of crossing the boundary at

each stage is at least p− Cφ(µn)/n. Assuming po (and hence n) are large enough so

that

(3/µ)e−n1/7 ≤ 1/2 ≤ po − Cφ(µn)/n,
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by (2.88) we have

E(Ni+1 −Ni; M = k) ≤ (1/2) · (1/2)i−1 · (1/2)k−i−1 + (1/2)k−1 = (1/2)k−2

and thus

E(Ni; M = k) ≤ E(N2; M = k) + (i− 2)(1/2)k−2

for 2 ≤ i ≤ k. Combining this with (2.83) we have

EN = N1 +
∑

k≥2

k∑
i=2

E(Ni; M = k)

≤ N1 +
∑

k≥2

[(k − 1)E(N2; M = k) + (1/2)k−1(k − 2)(k − 1)]

≤ t(p, a) + 1 + [t(p,
√

a/µ ·∆(z1−p)(1− p)−1(1 + o(1))) + 1]
∑

k≥2

(k − 1)P (M = k)

+
∑

k≥2

(1/2)k−1(k − 2)(k − 1)

= t(p, a) + 1 + [t(p,
√

a/µ ·∆(z1−p)(1− p)−1(1 + o(1))) + 1](EM − 1) + 2

≤ t(p, a) + t(p,
√

a/µ ·∆(z1−p)(1− p)−1(1 + o(1)))(EM − 1) + 5, (2.89)

using EM − 1 ≤ 2. By (2.79),

EM − 1 = P (M > 1) + P (M > 2) + · · ·
≤ P (M > 1)[1 + C3φ(zp)/|zp|+ (C3φ(zp)/|zp|)2 + · · · ]
= P (M > 1)[1− C3φ(zp)/|zp|]−1.

We know P (M > 1) ∼ 1 − p by large deviations, and [1 − C3φ(zp)/|zp|]−1 → 1, so

EM − 1 ∼ 1− p. Then

t(p,
√

a/µ ·∆(z1−p)(1− p)−1(1 + o(1)))(EM − 1) ∼ √
a/µ3/2 ·∆(z1−p)(1− p)−1 · (1− p)

=
√

a/µ3/2 ·∆(z1−p) = o(
√

a).
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Plugging this and the estimate

t(p, a) = a/µ + |zp|
√

a/µ3/2 + o(|zp|
√

a)

into (2.89) we get that for large a

EN ≤ a/µ + |zp|
√

a/µ3/2 + o(|zp|
√

a),

which is (2.71).

For small a, |zp| is bounded so t(p, a) is as well. N1 is thus bounded, whence

E(a − S1|S1 < a) is bounded and thus so is t(p, E(a − sa|S1 < a)). Then, for any

b < ∞,

sup
a≤b

EN ≤ sup
a≤b

{t(p, a) + 1 + [t(p, E[a− S1|S1 < a]) + 1](EM − 1)} < ∞,

which is (2.73), completing the proof.

2.2.1 The Discrete Procedures δm and δ̂m

In this section we describe two families of sampling procedures, δm and δ̂m, and

establish their operating characteristics. In the next section we will see that these

properties are enough to make them first-order optimal, δm when h ∈ Bo
m and δ̂m when

h ∈ B+
m. These procedures are defined analogously to those for Brownian motion in

Section 2.1.2, with minor modifications to account for discrete data. The proofs of

their operating characteristics are similar to those in Section 2.1.2, but significant

additional Central Limit Theorem-type arguments are required.

Let C = 2/
√

µ and f(a) = C
√

a log(a + 1). Given a positive function h, define

δ1(h) to be geometric sampling with probability po ≤ p
(1)
1 (a) → 1 such that

∣∣∣z
p
(1)
1 (a)

∣∣∣ = o[(h(a)/
√

a) ∧ a1/6],
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where po is that given by Lemma 2.11. Define δm+1(h) = (N (m+1),M (m+1)) to have

first stage N
(m+1)
1 = dt(p(m+1)

1 , a)e, where

z
p
(m+1)
1

= C
√

log(a/h(a)2 + 1),

followed on {S1 < a} by (N (m)(a− S1),M
(m)(a− S1)), where (N (m),M (m)) = δm(h ◦

f−1).

For p ∈ (0, 1), define δ̂1(p) = (N (1), M (1)) to have first stage N
(1)
1 = dt(p, a)e,

followed (on {S1 < a}) by geometric sampling with probability p̂
(1)
2 (a− S1), where

z
p̂
(1)
2 (y)

= (−
√

log(y + 1) ∧ zpo)

and po is that given by Lemma 2.11. Define δ̂m+1(p) = (N (m+1),M (m+1)) to have first

stage N
(m+1)
1 = dt(p̂(m+1)

1 (a), a)e, where

z
p̂
(m+1)
1 (a)

=
√

(1− 2−m) log(a + 1),

followed (if necessary) by (N (m)(a−S1),M
(m)(a−S1)), where (N (m),M (m)) = δ̂m(p).

Proposition 2.12. If h ∈ Bo
m then (N (m),M (m)) = δm(h) satisfies

EN (m) − a/µ = o(h(a)) (2.90)

EM (m) → m (2.91)

as a →∞.

Proof. We prove a slightly stronger statement by induction on m: in addition to

(2.90) and (2.91) we show that if b < ∞, then

sup
a≤b

EN (m) − a/µ < ∞ (2.92)

sup
a≤b

EM (m) < ∞. (2.93)
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For m = 1, (N (1),M (1)) is discrete geometric sampling, and Lemma 2.11 shows

that (2.91) and the boundedness properties of N (1),M (1) hold, and as well as

EN (1) − a/µ = O(|zp|
√

a),

where |zp| = o(h(a)/
√

a ∧ a1/6). By this restriction on zp,

EN (1) − a/µ ≤ o(h(a)/
√

a · √a) = o(h(a)),

so (2.45) holds as well, completing the m = 1 case.

Now assume h ∈ Bo
m+1. Let C = 2/

√
µ and define f(a) = C

√
a log(a + 1), whose

inverse is well-defined since f is increasing. It was shown in the proof of Proposition

2.3 (see (2.18)) that

h ◦ f ∈ Bo
m. (2.94)

Now

EM (m+1)(a) = 1 + E[M (m)(a− S1); S1 < a]

so EM (m+1)(a) is bounded for small a since EM (m)(a) is by the induction hypothesis.

Further, letting z1 = C
√

log(a/h(a)2 + 1), C ′ = (2
√

µ)−1, and Z = (S1−µN1)/
√

N1,

observe that

P (0 < a− S1 ≤ C ′z1

√
a) ≤ P (S1 > a− C ′z1

√
a)

= P

(
Z >

a− µN1√
N1

− C ′z1

√
a√

N1

)

= P

(
Z > z1 + o(1)− C ′z1

√
a√

N1

)

= P (Z > z1[1− C ′√µ](1 + o(1))) (since
√

N1 ∼
√

a/µ)

= P (Z > (z1/2)(1 + o(1)))

≤ (z1/4)−2 → 0 (2.95)
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by Chebyshev’s inequality. Then

EM (m+1)(a) = 1 + E[M (m)(a− S1); a− S1 > C ′z1

√
a]

+E[M (m)(a− S1); 0 < a− S1 ≤ C ′z1

√
a]

= 1 + m(1 + o(1))P (a− S1 > C ′z1

√
a) + E[M (m)(a− S1); 0 < a− S1 ≤ C ′z1

√
a],

and so

∣∣EM (m+1)(a)− (m + 1)
∣∣ ≤ m · o(1) + O(1) · P (0 < a− S1 ≤ C ′z1

√
a) = o(1)

as a →∞. We’ve shown that (2.91) and (2.93) hold for m + 1.

Next we handle EN (m+1). Using Wald’s equation

µE(N (m+1) − a/µ) = E(SM(m+1) − a)

= E(SM(m+1) − a; M (m+1) = 1) + E(SM(m+1) − a; M (m+1) > 1)

= E(SM(m+1) − a; M (m+1) = 1) + E(SM(m+1) − a; a− S1 > Cz1

√
a)

+E(SM(m+1) − a; 0 < a− S1 ≤ Cz1

√
a)

≡ A1 + A2 + A3.

To show that (2.90) and (2.92) hold for m + 1 it suffices to show the Ai satisfy the

same bounds. Note that A1 = E(S1 − a; S1 ≥ a) and

a− µN
(m+1)
1√

N
(m+1)
1

∼ z1 = o(a1/6)

so by Lemma 2.10,

A1 ∼
√

N
(m+1)
1 ∆(z1) ∼

√
N

(m+1)
1

φ(z1)

z2
1

= O(
√

a) ·O(h(a)/
√

a)/z2
1 = o(h(a)). (2.96)

For small values of a, N
(m+1)
1 (a) is bounded, hence A1 < ∞ by the existence of the

first moment of X1.
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Let ϕ(y) = E(SM(m)(y) − y) for y > 0. By the induction hypothesis and (2.94) we

know

ϕ(y) = o(h(f−1(y))) (2.97)

and that ϕ(y) is bounded for bounded values of y. Note that

h(f−1(y)) = o(hm−1(y)) = o(y) (2.98)

since the m = 1 gives the largest asymptotically. Let ε > 0 and Y = a − S1. (2.97)

and (2.98) imply that for large a,

A2 = E[ϕ(Y ); Y > Cz1

√
a]

≤ εE[Y ; Y > Cz1

√
a]

= ε(E[Y − Cz1

√
a; Y > Cz1

√
a] + Cz1

√
aP (Y > Cz1

√
a)). (2.99)

Let S ′1 =
∑N1

i=1(2µ−Xi) and a′ = Cz1

√
a− a + 2µN

(m+1)
1 so that (2.99) becomes

A2 ≤ ε(E[S ′1 − a′; S ′1 > a′] + Cz1

√
aP (S ′1 > a′).

Note that 2µ−X1, 2µ−X2, . . . are i.i.d. with mean µ, variance 1, and that

a′ − µN
(m+1)
1√

N
(m+1)
1

=
Cz1

√
a√

N
(m+1)
1

− a− µN
(m+1)
1√

N
(m+1)
1

∼ 2z1 − z1 = z1 = o(a1/6), (2.100)

so by Lemma 2.10,

E(S ′1 − a′; S ′1 > a′) ∼
√

N
(m+1)
1 ∆(z1) ∼

√
N1

φ(z1)

z2
1

= o(h(a)) (2.101)

by (2.96). By large deviations ([10], Theorem XVI.7.1) and (2.100) P (S ′1 > a′) ∼
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Φ(−z1) so

Cz1

√
aP (S ′1 > a′) ∼ Cz1

√
a · Φ(−z1) ∼ Cz1

√
a · φ(z1)

z1

= C
√

a ·O(h(a)/
√

a) = O(h(a)),

hence there is C ′′ < ∞ such that

Cz1

√
aP (S ′1 > a′) ≤ C ′′h(a) (2.102)

for large a. Plugging (2.101) and (2.102) into (2.99) we have A2 ≤ o(h(a) + εC ′′h(a).

Since ε was arbitrary and independent of C ′′, this shows A2 = o(h(a)). For small

values of a, (2.97) and (2.98) imply that there are constants C1, a1 such that

A2 ≤ C1 + E(Y ; Y > a1)

and the latter is finite by the same argument used on A1, showing that A2 is bounded

for small values of a.

A3 is bounded for small values of a by virtue of (2.97). To show A3 = o(h(a)) it

thus suffices to show

Ã3 ≡ E(ϕ(Y ); ao < Y < Cz1

√
a) = o(h(a))

for any constant ao. Let ao be such that

ϕ(y) ≤ h(f−1(y)) for y > ao. (2.103)

Then

Ã3 = E(ϕ(Y ); ao < Y ≤ C ′z1

√
a) + E(ϕ(Y ); C ′z1

√
a < Y ≤ Cz1

√
a) (2.104)
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and h ◦ f−1 is non-decreasing, so (2.103) implies

E(ϕ(Y ); ao < Y ≤ C ′z1

√
a) ≤ h(f−1(C ′z1

√
a))P (0 < Y ≤ C ′z1

√
a) ≤ h(a) · o(1),

by (2.95) and since C ′z1

√
a < f(a) for large a. Given ε > 0, let a be large enough so

that

E(ϕ(Y ); ao < Y ≤ C ′z1

√
a) ≤ (ε/2)h(a)

ϕ(y) ≤ (ε/2)h(f−1(y))

whenever y > C ′z1

√
a. Plugging these into (2.104) gives

Ã3 ≤ (ε/2)h(a) + (ε/2)h(f−1(Cz1

√
a)) ≤ (ε/2)h(a) + (ε/2)h(a) = εh(a)

which shows Ã3 = o(h(a)) and hence that A3 = o(h(a)), completing the induction

step and the proof.

Next we establish the operating characteristics of δ̂m(p).

Proposition 2.13. Let p ∈ (0, 1), m ≥ 1, and κm as in (2.24). Then (N (m),M (m)) =

δ̂m(p) satisfy

EN (m) − a/µ . ∆(zp)κmhm(a) (2.105)

EM (m) → m + 1− p (2.106)

as a →∞.

Proof. As in the proof of the previous proposition, we will prove a slightly stronger

statement by induction on m. In addition to (2.105) and (2.106), we will show that
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if b < ∞, then

sup
a≤b

EN (m) − a/µ < ∞

sup
a≤b

EM (m) < ∞.

By Wald’s equation,

µE(N (1) − a/µ) = E(SM(1) − a; M (1) = 1) + E(SM(1) − a; M (1) > 1).

Now
a− µN

(1)
1√

N
(1)
1

→ zp,

a constant, so by Lemma 2.10

E(SM(1) − a; M (1) = 1) ∼
√

N
(1)
1 ·∆(zp) ∼

√
a/µ ·∆(zp), (2.107)

since

√
N

(1)
1 ∼

√
a/µ. For y > 0 let (N ′(y),M ′(y)) be the discrete geometric proce-

dure with probability p2(y) that follows the first stage when S1 < a. By Lemma 2.11

we know

ϕ(y) ≡ EN ′(y)− y/µ = O(|zp2(y)|√y), and sup
y≤x

ϕ(y) > ∞ (2.108)

ψ(y) ≡ EM ′(y) = 1 + o(1), and sup
y≤x

ψ(y) > ∞ (2.109)

for any x < ∞. Then, letting Y = a− S1, E(SM(1) − a; M (1) > 1) = E(ϕ(Y ); Y > 0).

By (2.108) there are constants yo, Co, C1 such that

ϕ(y) ≤





Co, 0 < y ≤ yo

C1|zp2|
√

y, y > yo.

We may also assume yo is large enough so that |zp2(y)| =
√

log y for y > yo. Then,
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using concavity of y 7→ √
y log y with Jensen’s inequality,

E(ϕ(Y ); Y > 0) ≤ Co + C1E(
√

Y log Y ; Y > yo)

≤ Co + C1

√
E(Y |Y > yo) log E(Y |Y > yo), (2.110)

and

E(Y |Y > yo) = P (Y > yo)
−1E(Y ; Y > yo) = O(

√
a)

by an argument similar to the one leading to (2.107). Plugging this into (2.110) gives

E(SM(1) − a; M (1) > 1) = E(ϕ(Y ); Y > 0) ≤ O(a1/4
√

log a) = o(
√

a),

and combining this with (2.110) gives

EN (1) − a/µ = ∆(zp)µ
−3/2

√
a + o(

√
a) = ∆(zp)κ1h1(a) + o(h1(a)).

For small values of a, N
(1)
1 is bounded and so E(SM(1) − a; M (1) = 1) is bounded as

well. Similarly, E(Y |Y > yo) = P (Y > yo)
−1E(a−S1; S1 < a−yo) is bounded and so

E(SM(1) − a; M (1) > 1) = E(ϕ(Y ); Y > 0) is bounded as well, by the relation (2.110).

To handle M (1) we write

EM (1) = 1 + E(M (1) − 1; M (1) > 1) = 1 + E(ψ(Y ); Y > 0).

Given ε > 0, by (2.109) there are constants C2, y2 such that

ψ(y) ≤





C2, 0 < y ≤ y2

1 + ε, y > y2.

Then

EM (1) ≤ 1 + C2P (0 < Y ≤ y2) + (1 + ε)P (Y > y2). (2.111)
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Since
a− µN

(1)
1 − y2√

N
(1)
1

,
a− µN

(1)
1√

N
(1)
1

→ zp

as a → ∞, P (0 < Y ≤ y2) → 0 and P (Y > y2) → 1 − p by the Central Limit

Theorem. Thus assume a is large enough so that P (0 < Y ≤ y2) ≤ ε/C2 and

P (Y > y2) ≤ 1− p + ε. Then

EM (1) ≤ 1 + ε + (1 + ε)(1− p + ε) ≤ 2− p + 4ε

and a similar argument shows

EM (1) ≥ 1 + (1− p)(1− ε) ≥ 2− p− 2ε

for large a. Since ε was arbitrary, this implies EM (1) → 2 − p. EM (1) is also

clearly bounded for small values of a; e.g. (2.111) holds for all a > 0 and shows

EM (1) ≤ 1 + C2 + (1 + ε). This completes the m = 1 case.

Next we consider (N (m+1),M (m+1)) = δ̂m+1(p). By Wald’s equation

µE(N (m+1) − a/µ) = E(SM(m+1) − a; M (m+1) = 1) + E(SM(m+1) − a; M (m+1) > 1)

= E(S1 − a; S1 ≥ a) + E(SM(m+1) − a; M (m+1) > 1).

Letting z1 =
√

(1− 2−m) log(a + 1), by definition of N
(m+1)
1 ,

a− µN
(m+1)
1√

N
(m+1)
1

∼ z1 = o(a1/6)
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so Lemma 2.10 applies and

E(S1 − a; S1 ≥ a) ∼
√

N
(m+1)
1 ·∆(z1) ∼

√
a/µ · φ(z1)

z2
1

= O

(√
a · exp[−(1/2− (1/2)m+1) log a]

log a

)

= O

(
a(1/2)m+1

log a

)

= o(a(1/2)m+1

) = o(hm+1(a)). (2.112)

For y > 0 define

ϕm(y) = E(SM(m)(y) − y), ψm(y) = EM (m)(y).

Let ε > 0. By the induction hypothesis and Wald’s equation there are constants

C3, y3 such that

ϕm(y) ≤





C3, 0 < y ≤ y3

µ∆(zp)κmhm(y)(1 + ε), y > y3.

(2.113)

Thus

E(SM(m+1) − a; M (m+1) > 1) = E(ϕm(Y ); Y > 0)

≤ C3P (0 < Y ≤ y3) + µ∆(zp)κm(1 + ε)E(hm(Y ); Y > y3). (2.114)

Since hm(·) is concave, we apply Jensen’s inequality to get

E(hm(Y ); Y > y3) ≤ P (Y > y3)hm(E[Y ; Y > y3]P (Y > y3)
−1) (2.115)
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and claim E[Y ; Y > y3] ∼ z1

√
a/µ as a →∞. This is true since

E[Y ; Y > y3] = E[a− S1; a− S1 > y3]

= E[a− S1]− E[a− S1; a− S1 ≤ y3]

= a− µN
(m+1)
1 + E[S1 − (a− y3); S1 ≥ a− y3]− y3P (a− S1 ≤ y3)

and
a− y3 − µN

(m+1)
1√

N
(m+1)
1

∼ z1 = o(a1/6)

so Lemma 2.10 applies and

E[S1 − (a− y3); S1 ≥ a− y3] ∼
√

N
(m+1)
1 ·∆(z1) ∼

√
a/µ · o(1) = o(

√
a).

Also, a− µN
(m+1)
1 ∼ z1

√
N

(m+1)
1 ∼ z1

√
a/µ, so

E[Y ; Y > y3] = z1

√
a/µ(1 + o(1)) + o(

√
a) + O(1) ∼ z1

√
a/µ

as claimed. Note also that P (Y > y3) → 1 by the Central Limit Theorem, whence

we may assume that a is large enough so that, by (2.115),

E(hm(Y ); Y > y3) ≤ (1 + ε)hm(z1

√
a/µ).

Assuming that a is large enough so that also

hm+1(a) ≥ C3

µε∆(zp)κm+1

≥ C3

µε∆(zp)κm+1

· P (0 < Y ≤ y3),

we have, by (2.114),

E(SM(m+1) − a; M (m+1) > 1) ≤ µε∆(zp)κm+1hm+1(a) + µ∆(zp)(1 + ε)2κmhm(z1

√
a/µ)

≤ µε∆(zp)κm+1hm+1(a) + µ∆(zp)(1 + ε)3κm+1hm+1(a) (by Lemma 2.4)

≤ (1 + 8ε)µ∆(zp)κm+1hm+1(a),
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and hence

EN (m+1) − a/µ = µ−1E(SM(m+1) − a) ≤ (1 + 8ε + o(1))∆(zp)κm+1hm+1(a)

by (2.112). Since ε was arbitrary, this shows EN (m+1) − a/µ . ∆(zp)κm+1hm+1(a),

as claimed.

For small values of a, z1 and hence N
(m+1)
1 are bounded and so E(SM(m+1) −

a; M (m+1) = 1) = E(S1 − a; S1 ≥ a) is bounded as well. Similarly, E(a− S1; S1 < a)

is bounded and so (2.114) and (2.115) show that E(SM(m+1) − a; M (m+1) > 1) is

bounded too.

Next we consider M (m+1).

EM (m+1) = 1 + E(M (m+1) − 1; M (m+1) > 1) = 1 + E(ψm(Y ); Y > 0),

where again Y = a−S1. Given ε > 0, by the induction hypothesis there are constants

C4, y4 such that

ψm(y) ≤





C4, 0 < y ≤ y4

(1 + ε)(m + 1− p), y > y4,

and thus

EM (m+1) ≤ 1 + C4P (0 < Y ≤ y4) + (1 + ε)(m + 1− p)P (Y > y4). (2.116)

P (0 < Y ≤ y4) → 0 as a → ∞ by a now routine Central Limit Theorem argument,

so assume a is large enough so that P (0 < Y ≤ y4) ≤ ε/C4. Then

EM (m+1) ≤ 1 + ε + (1 + ε)(m + 1− p) = (1 + ε)(m + 2− p).

By a similar argument,

EM (m+1) ≥ 1 + (1− ε)2(m + 1− p) ≥ (1− ε)2(m + 2− p)



63

for large enough a. These two bounds show EM (m+1) → m + 2 − p since ε was

arbitrary. For small values of a, EM (m+1) is bounded; e.g. (2.116) holds for all a > 0

and shows that EM (m+1) ≤ 1 + C4 + (1 + ε)(m + 1 − p). This completes the m + 1

step and hence the proof.

2.2.2 Optimality of δm and δ̂m

In this section we prove our main results for i.i.d. sampling procedures: that δm (resp.

δ̂m) is first-order optimal when h ∈ Bo
m (resp. h ∈ B+

m). Again, the proofs are similar

in spirit to those for Brownian motion in Section 2.1.3, but additional Central Limit

Theorem-type arguments are needed.

Before getting to the main results in Theorem 2.15, we provide in the next lemma

a bound on how close any efficient procedure can be to the boundary after each of

the first m−1 stages of sampling when h ∈ Bm. This is the discrete analog of Lemma

2.7.

Lemma 2.14. If h ∈ Bm and δ is a procedure such that R(δ) = O(h(a)), then

a− Sk

(1/µ)1−(1/2)kF
(k)
h(a)(a)

≥ 1 in probability as a →∞

for 0 ≤ k < m.

Proof. Let F k denote F
(k)
h(a)(a) and Gk = (1/µ)1−(1/2)k

F k. Choose 0 < ε < 1 and

let Vk = {a− Sk ≥ (1− ε)Gk}; we will show

P (Vk) → 1 as a →∞, for 0 ≤ k < m. (2.117)

The k = 0 case is trivial since V0 = {a ≥ (1 − ε)a}. Assume that 1 ≤ k < m and

P (Vk−1) → 1. Let

ζk =
a− Sk−1 − µNk√

Nk

.
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We claim

P (ζk ≥
√

log(Gk−1/h(a)2)− 1|Vk−1) → 1. (2.118)

Let U = {ζk <
√

log(Gk−1/h(a)2) − 1}. If (2.118) were to fail there would be an

η > 0 and a sequence of a’s approaching ∞ on which P (U |Vk−1) ≥ η. Then

ESM − a & E[(Sk − a)1{M = k}|U ∩ Vk−1] · η
= E[(Sk − Sk−1 − (a− Sk−1))1{M = k}|U ∩ Vk−1] · η

and
a− Sk−1 − µNk√

Nk

= ζk = O(
√

log a) = o(a1/6)

on U , so Lemma 2.10 applies and we have

ESm − a & E[
√

Nk∆(ζk)|U ∩ Vk−1] · η
= E[(2µ)−1(

√
4µ(a− Sk−1) + ζ2

k − ζk)∆(ζk)|U ∩ Vk−1] · η.

The expression inside the expectation is a decreasing function of ζk, hence

ESm−a & E[(2µ)−1(
√

4µ(a− Sk−1) + ζ2 − ζ)∆(ζ)|U ∩ Vk−1] · η
∣∣∣
ζ=
√

log(Gk−1/h(a)2)−1
.

(2.119)

Now

Gk−1 ∝ F
(k−1)
h(a) (a) & [(Cm

k )2 ∧ (Cm−1
k )2]hk(a)2 (by Lemma 2.6)

∝ hk(a)2

≥ hm−1(a)2 (since m− 1 ≥ k)

À h(a)2,

since h ∈ Bm, so Gk−1/h(a)2 → ∞ and hence so does
√

log(Gk−1/h(a)2)− 1. Then,
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using ∆(ζ) ∼ φ(ζ)/ζ2 as ζ →∞, (2.119) becomes

ESm − a &
√

(1− ε)Gk−1

µ
· φ(

√
log(Gk−1/h(a)2)− 1)

(
√

log(Gk−1/h(a)2)− 1)2
· η

≥ η′
√

Gk−1 · (h(a)/
√

Gk−1) exp[
√

log(Gk−1/h(a)2)]

(
√

log(Gk−1/h(a)2)− 1)2
(some η′ > 0)

= h(a)/o(1),

which would imply h(a) = o(R(δ)) on this sequence, contradicting our assumption

R(δ) = O(h(a)). Hence, (2.118) must hold.

Now P (Vk) ≥ P (Vk|U ′∩Vk−1)P (U ′∩Vk−1) and P (U ′∩Vk−1) → 1 by the induction

hypothesis and (2.118), so to show P (Vk) → 1 it suffices to show

P (Vk|U ′ ∩ Vk−1) → 1, (2.120)

which we do now. We have

P (Vk|U ′ ∩ Vk−1) = P (a− Sk ≥ (1− ε)Gk|U ′ ∩ Vk−1)

= P

(
Sk − Sk−1 − µNk√

Nk

≤ a− Sk−1 − µNk − (1− ε)Gk√
Nk

∣∣∣∣ U ′ ∩ Vk−1

)
(2.121)

and

a− Sk−1 − µNk − (1− ε)Gk√
Nk

= ζk − (1− ε)Gk√
Nk

= ζk − (1− ε)Gk

(2µ)−1(
√

4µ(a− Sk−1) + ζ2
k − ζk)

≥ ζk − (1− ε)Gk

(2µ)−1(
√

4µ(1− ε)Gk−1 + ζ2
k − ζk)

on Vk−1. This last in an increasing function of ζk for large enough a, so on U ′,

a− Sk−1 − µNk − (1− ε)Gk√
Nk

≥
√

log(Gk−1/h(a)2)− 1− (1− ε)Gk

(1− ε)1/4
√

(1− ε)Gk−1/µ
.

(2.122)
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Now

Gk√
Gk−1/µ

=
(1/µ)1−2−k

Fh(a)(F
k−1)√

(1/µ)1−2−(k−1)F k−1/µ
(by definition of Gk)

=

√
F k−1 log(F k−1/h(a)2)√

F k−1

=
√

log(F k−1/h(a)2) =
√

log(Gk−1/h(a)2) + o(1).

Plugging this back into (2.122) gives

a− Sk−1 − µNk − (1− ε)Gk√
Nk

≥ [1− (1− ε)1/4]
√

log(Gk−1/h(a)2)− 3/2

≡ γ(a) →∞

as a →∞, so (2.121) becomes

P (Vk|U ′ ∩ Vk−1) ≥ P

(
Sk − Sk−1 − µNk√

Nk

≤ γ(a)

∣∣∣∣ U ′ ∩ Vk−1

)

≥ 1−O(γ(a)−2) → 1,

by Chebyshev’s inequality. This proves (2.120) and finishes the proof of the lemma.

Next we prove the optimality of δm, δ̂m.

Theorem 2.15. If h ∈ Bo
m, then

R(δm(h)) ∼ m · h(a) ∼ R∗. (2.123)

If h ∈ B+
m, then

R(δ̂m(p∗)) ∼
[
m + 1− p∗ +

∆(zp∗)κm

Q

]
h(a) ∼ R∗, (2.124)
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where Q ≡ lima→∞ h(a)/hm(a) ∈ (0,∞) and p∗ is the unique solution of the equation

p∗

φ(zp∗)
=

Q

κm

.

Proof. First assume that h ∈ Bo
m. Proposition 2.12 implies R(δm(h)) ∼ mh(a) =

O(h(a)) and so, by the Bayes property, R∗ ≤ R(δm(h)) = O(h(a)) as well. Hence

Lemma 2.14 applies to δ∗ = (N∗,M∗) and, letting S∗k denote the δ∗-sampled process,

R∗ ≥ h(a)EM∗

≥ h(a)mP (M∗ ≥ m)

≥ h(a)mP
(
a− S∗m−1 ≥ (1/2) · (1/µ)1−(1/2)m−1

F
(m−1)
h(a) (a)

)

= h(a)m(1 + o(1)) (by Lemma 2.14)

= R(δm(h)) ≥ R∗,

which gives (2.123).

To handle the boundary case we must work a bit harder. Assume that h/hm →
Q ∈ (0,∞). Let 0 < ε < 1 and

V =
{

a− S∗m−1 ≥ (1− ε)(1/µ)1−(1/2)m−1

F
(m−1)
h(a) (a)

}
.

By Proposition 2.13,

R(δ̂m(p∗)) . ∆(zp∗)κmhm(a) + (m + 1− p∗)h(a)

∼
[
∆(zp∗)κm

Q
+ m + 1− p∗

]
h(a). (2.125)

In particular, R(δ̂m(p∗)) = O(h(a)), so R∗ ≤ R(δ̂m(p∗)) = O(h(a)) and hence P (V ) →
1 by Lemma 2.14. Let g(a) be an arbitrary nonnegative function of a and define

U(g(a)) =
{

a− S∗m−1 = (1− ε)(1/µ)1−(1/2)m−1

F
(m−1)
h(a) (a) + g(a)

}

ρ(g(a)) = E(N∗ − a/µ|U(g(a))) + h(a)E(M∗|U(g(a))),
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where it is understood that by conditioning on U(g(a)) we mean the optimal contin-

uation from (1 − ε)(1/µ)1−(1/2)m−1
F

(m−1)
h(a) (a) + g(a) with the appropriately adjusted

parameters. Then

R∗ ≥ [E(N∗ − a/µ|V ) + h(a)E(M∗|V )]P (V ) & inf
g

ρ(g(a)), (2.126)

where the infimum is taken over all nonnegative functions g. Let n(g(a)) denote the

value of N∗
m on U(g(a)); note that we may assume that this is not randomized by

virtue of the stationarity property of the Bayes procedure. Let

z(g(a)) =
(1− ε)(1/µ)1−(1/2)m−1

F
(m−1)
h(a) (a) + g(a)− µn(g(a))√
n(g(a))

. (2.127)

We now show that we only need to consider g(a) for which z(g(a)) is bounded in the

infimum in (2.126). That is,

inf
g

ρ(g(a)) = inf
g∈C

ρ(g(a)), (2.128)

where C ≡ {g : z(g(a)) = O(1)}. If g 6∈ C, then lim supa→∞ z(g(a)) = ∞ so there is a

sequence of a’s approaching ∞ on which

P (M∗ = m|U(g(a))) = P (S∗m ≥ a|U(g(a)))

= P

(
S∗m − S∗m−1 − µN∗

m√
N∗

m

≥ a− S∗m−1 − µN∗
m√

N∗
m

∣∣∣∣∣ U(g(a))

)
(2.129)

= P

(
S∗m − S∗m−1 − µN∗

m√
N∗

m

≥ z(g(a))

∣∣∣∣∣ U(g(a))

)

≤ z(g(a))−2 → 0,

using Chebyshev’s inequality. Thus

ρ(g(a)) ≥ h(a)E(M∗|U(g(a))) & h(a)(m + 1). (2.130)
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Some calculus shows that the function

p 7→ ∆(zp)κm

Q
+ m + 1− p

achieves its unique minimum at p = p∗, the unique solution of

p∗

φ(zp∗)
=

Q

κm

.

Hence

m + 1 = lim
p→0

[
∆(zp)κm

Q
+ m + 1− p

]
≥ η +

[
∆(zp∗)κm

Q
+ m + 1− p∗

]
, (2.131)

some η > 0, giving

ρ(g(a))−R(δ̂m(p∗)) & h(a)(m + 1)− h(a)

[
∆(zp∗)κm

Q
+ m + 1− p∗

]

(by (2.130) and (2.125))

≥ ηh(a) →∞

and hence ρ(g(a)) > R(δ̂m(p∗)) ≥ R∗. Thus, by replacing g on any such subse-

quence by a function for which z(g(a)) is bounded, we construct a function in C that

dominates g, and whence (2.128) holds.

Now let g ∈ C. Since z(g(a)) is bounded, by Lemma 2.10 and Wald’s equation we
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have

E(N∗ − a/µ|U(g(a))) = µ−1E(SM∗ − a|U(g(a)))

≥ µ−1E[(SM∗ − a)1{M∗ = m}|U(g(a))]

∼ µ−1
√

n(g(a)) ·∆(z(g(a)))

∼ µ−1

√
(1− ε)(1/µ)1−(1/2)m−1F

(m−1)
h(a) (a) + g(a)

µ
·∆(z(g(a))) (by (2.127))

≥ µ−1

√
(1− ε)(1/µ)1−(1/2)m−1F

(m−1)
h(a) (a)

µ
·∆(z(g(a)))

∼ √
1− ε · (1/µ)2−(1/2)m

Cm
mhm(a) ·∆(z(g(a))) (by Lemma 2.6)

∼ √
1− ε · κmh(a)Q−1 ·∆(z(g(a))), (2.132)

this last using κm = (1/µ)2−(1/2)m
Cm

m . Let p(g(a)) = Φ(−z(g(a))). By the relation

(2.129),

P (M∗ = m|U(g(a))) ∼ Φ(−z(g(a))) = p(g(a))

follows from the Central Limit Theorem, since we know n(g(a)) →∞ by the relation

(2.127). This implies

E[M∗|U(g(a))] & m + 1− p(g(a))

and combining this with (2.132) gives

R∗ & inf
g∈C

ρ(g(a))

& inf
g∈C

[
κm∆(z(g(a)))

√
1− ε

Q
+ m + 1− p(g(a))

]
h(a)

≥ inf
g∈C

[
κm∆(z(g(a)))

Q
+ m + 1− p(g(a))

]
h(a)

√
1− ε

= inf
p∈(0,1)

[
κm∆(zp)

Q
+ m + 1− p

]
h(a)

√
1− ε

=

[
κm∆(zp∗)

Q
+ m + 1− p∗

]
h(a)

√
1− ε.
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This argument holds for all ε > 0, so by a now routine asymptotic argument, there

is a sequence εa → 0 for which it holds. Then

R∗ &
[
κm∆(zp∗)

Q
+ m + 1− p∗

]
h(a)

√
1− εa

∼
[
κm∆(zp∗)

Q
+ m + 1− p∗

]
h(a)

& R(δ̂m(p∗)) (by (2.125))

≥ R∗,

which proves (2.124) and completes the proof.

Our final theorem of this chapter is a type of converse to Theorem 2.15, showing

that the properties of δm, δ̂m established in Propositions 2.12, 2.13, and Lemma 2.14

are not only sufficient but necessary. Moreover, Theorem 2.16 gives a precise lower

bound on the risk inefficiency of any procedure that deviates from the “schedule” of

Lemma 2.14. This is the discrete analog of Theorem 2.9.

Theorem 2.16. Assume that h ∈ Bm and let

δm =





δm(h), if h ∈ Bo
m

δ̂m(p∗), if h ∈ B+
m.

If δ = (N, M) is a procedure such that there is a sequence ai →∞ with

P (ai − Sk ≤ (1− ε)(1/µ)1−2−k

F
(k)
h(ai)

(ai)) bounded below 1 (2.133)

for some 1 ≤ k < m and ε > 0, then there is C > 0 such that

R(δ)−R(δm) ≥ C · hk∗(ai) →∞, (2.134)

where k∗ is the smallest k for which (2.133) holds. In particular, (2.134) holds if

P (M ≥ m) 6→ 1.

Proof. Let Vk = {a − Sk ≤ (1 − ε)(1/µ)1−2−k
F

(k)
h(a)(a)}. By repeating the argument
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leading to (2.119) there is an η > 0 such that

R(δ) ≥ µ−1E(SM − ai)

≥ µ−1E(SM − ai; {M = k∗} ∩ Vk∗−1)

≥ η ·
√

F
(k∗−1)
h(ai)

(ai) ·∆(zη)

≥ Chk∗(ai),

some C > 0, since η∆(zη) > 0 and hk∗ = O(
√

F
(k∗−1)
h(ai)

) by Lemma 2.6. By Theorem

2.15,

R(δm) = O(h(a)) = o(hk∗(a))

since k∗ < m, proving (2.134). Since

P (Vk) → 1 for all 1 ≤ k < m ⇒ P (M ≥ m) → 1,

if P (M ≥ m) 6→ 1 then there is some k∗ < m for which P (Vk∗) 6→ 1 and hence (2.134)

holds, proving the second assertion.



73

Chapter 3

Multistage Tests of Simple
Hypotheses

In this chapter we use the multistage sampling procedures of Chapter 2 to design

efficient multistage tests of simple hypotheses in two different settings. In Section

3.1 we consider tests that have just one terminal decision and are designed to have

a large sample size under the alternative hypothesis. In Section 3.2 we use these so-

called one decision tests to design efficient two decision tests concerning members of

a one-dimensional exponential family. In both settings the resulting procedures share

the global properties of the multistage sampling procedures discussed in Chapter 2.

The stage sizes decrease roughly as a sequence of successive square roots, while the

average number of stages required is determined by the asymptotics of the ratio of

the cost per stage to cost per observation, involving the critical functions hm.

Let X1, X2, . . . be i.i.d. with a density belonging to an exponential family

f(x|θ) = exp(θx− ψ(θ)) (3.1)

with respect to some non-degenerate σ-finite measure. Let f0 and f1 be two distinct

members of this family whose corresponding parameter values, θ0 and θ1, lie in the

interior of the natural parameter space. Then ψ is infinitely differentiable at θ0, θ1,

ψ′(θi) = EiX1, and ψ′′(θi) = VariX1 for i = 0, 1, where Ei, Vari denote expectation,



74

variance under fi. Let

ln =
n∏

i=1

f0(Xi)

f1(Xi)
,

the likelihood ratio, and let

Ii = Ei log

(
fi(X1)

f1−i(X1)

)
, i = 0, 1,

the Kullback-Leibler information numbers.

3.1 One Decision Tests

Consider the problem of deciding between f0 and f1 by sampling the Xi in stages.

Suppose also that if f0 is the true density, sampling costs are being incurred and

so we want to stop sampling as soon as possible and reject the hypothesis f =

f1. On the other hand, if f1 is the true density sampling costs nothing and our

preferred action is to observe X1, X2, . . . ad infinitum. As an example, suppose a new

drug is being marketed under the hypothesis that its side effects are insignificant.

Physicians prescribing the drug record and report on the side effects and if they

appear unacceptably high (f = f0), this must be announced and the drug withdrawn

from use. But as long as the hypothesis of insignificant side effects (f = f1) remains

tenable, no action is required.

Specifically, define a one decision test of f0 vs. f1 to be a pair (N,M) such that

N = (N1, N2, . . .) is a sequence of nonnegative integer-valued random variables sat-

isfying the measurability requirement (2.63), which essentially requires that the size

of the (k + 1)st stage, Nk+1, is determined by the data obtained in the first k stages.

Nk ≡ N1+· · ·+Nk should be interpreted as the sample size through the kth stage and

M ≡ inf{m ≥ 1 : Nm = 0}, the number of stages. By a convenient abuse of notation,

we also let N denote NM , the total sample size. If one pays costs per observation

and per stage under f0, plus a cost for terminating sampling under f1, then a natural

measure of the performance of a one decision test of f0 vs. f1 is the expected sum of



75

these costs. Hence we define the risk of a one decision test of f0 vs. f1 to be

R(N, M) = cE0N + dE0M + P1(N < ∞), (3.2)

where c, d > 0 and Pi is probability under fi. Let (N∗,M∗) denote the Bayes test,

that which achieves risk R∗ ≡ inf(N,M) R(N, M). Note that a “one decision test of f0

vs. f1” may only reject f = f1.

In this section we derive a family of one decision tests and show they minimize

the risk to second-order as c, d → 0. As one may expect from (3.2), the notion of

“efficiency” depends heavily on the rates at which c and d approach 0. To simplify

our bookkeeping, we assume that d is the independent variable and that c = c(d),

though this choice is arbitrary. Recall that the critical functions were defined as

hm(a) = a(1/2)m

(log a)1/2−(1/2)m

for m ≥ 1, h0(a) = a,

and we say the sequence {(a, h)} is

in the mth critical band if hm(a) ¿ h ¿ hm−1(a)

on the boundary between critical bands m, m + 1 if lim h/hm(a) ∈ (0,∞).

It will turn out that efficient tests will use m stages (almost always) if

hm(log d−1) ¿ d/c ¿ hm−1(log d−1)

as d → 0. Proceeding by analogy with Chapter 2, we thus give an essentially complete

description of the problem while assuming {(log d−1, d/c)} is either in the mth critical

band or on the boundary between critical bands m and m + 1 (for every sequence of

d’s approaching zero), for some m ≥ 1. Thus we define

Bo
m(d) = {c : (0, 1) → (0, 1)| hm(log d−1) ¿ d/c ¿ hm−1(log d−1)},
B+

m(d) =

{
c : (0, 1) → (0, 1)

∣∣∣∣
d/c

hm(log d−1)
→ Q, some Q ∈ (0,∞)

}
,
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and we assume in our main results that

c ∈ Bm(d) ≡ Bo
m(d) ∪ B+

m(d) (3.3)

for some m ≥ 1. Note that c ∈ Bm(d) implies hm(log d−1) = O(d/c), hence a

consequence of this assumption is that d/c → ∞ as d → 0, which we shall assume

throughout this chapter. Indeed, if d/c ≤ B < ∞, then it is not hard to show that a

fully-sequential test minimizes the risk (3.2) to second-order. Since our main interest

here is variable stage size multistage procedures, we can be sure the assumption (3.3)

does not exclude any interesting cases.

Since the “decision” aspect of a one decision test is trivial, any multistage sampling

procedure can be used as a one decision test. In particular, we will be interested in

using multistage sampling procedures to sample the log-likelihood process

log(f0(X1)/f1(X1)), log(f0(X2)/f1(X2)), . . .

until
∑

log(f0(Xi)/f1(Xi)) exceeds a predetermined boundary. The only slight tech-

nicality to overcome is that multistage sampling procedures were defined in Chapter

2 with respect to random processes with unit variance. To remedy this, we simply

transform the log-likelihood process to have variance one under E0: let

C = (|θ0 − θ1|
√

ψ′′(θ0))
−1 > 0

and

Yi = C log(f0(Xi)/f1(Xi)) =
(θ0 − θ1)Xi − ψ(θ0) + ψ(θ1)

|θ0 − θ1|
√

ψ′′(θ0)
, (3.4)

so that

E0Yi = CI0 and Var0Yi =
(θ0 − θ1)

2Var0Xi

|θ0 − θ1|2ψ′′(θ0)
= 1.

Whenever we use a multistage sampling procedure as a one decision test below, we

will always mean with respect to Y1, Y2, . . ..

The following lemma shows that the Bayes one decision test is essentially a one-
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sided likelihood ratio test, stopping only if the likelihood ratio exceeds a boundary

determined by the parameter values.

Lemma 3.1. There exists a∗ = log d−1 + o(1) such that

log lN∗ ≥ a∗. (3.5)

Proof. By Wald’s likelihood ratio identity we can write

R∗ = inf
(N,M)

{cE0N + dE0M + P1(N < ∞)}
= inf

(N,M)
E0[cN + dM + l−1

N 1{N < ∞}].

Suppose that the Bayes procedure has observed X1, . . . , Xn in m stages. By the Bayes

property we know that (N∗,M∗) will stop at this point only if the stopping risk is no

greater than the continuation risk, i.e., only if

cn + dm + l−1
n ≤ cn + dm + inf

(N,M):N≥1
E0[cN + dM + l−1

n l−1
N 1{N < ∞}]

⇔ 1 ≤ inf
(N,M):N≥1

E0[ln(cN + dM) + l−1
N 1{N < ∞}], (3.6)

where it is understood that such infimums are taken over all continuations and the

expectation is conditional on X1, . . . , Xn. For t > 0 define

ρ(t) = inf
(N,M):N≥1

E0[t(cN + dM) + l−1
N 1{N < ∞}],

so that (3.6) implies

ρ(lN∗) ≥ 1. (3.7)

Note that ρ(t) (as a function of t) is the infimum of a set of lines, each of slope at

least c + d, by virtue of the restriction of the infimum to the class of all (N, M) such

that N (and hence M) are at least one. Thus ρ(t) is continuous, strictly increasing,
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and satisfies ρ(t) ≥ t(c + d), so that

ρ(t) ≥ 1 when t ≥ (c + d)−1. (3.8)

If (N ′,M ′) is the procedure that samples with constant stage size one (i.e., fully-

sequential sampling) and an appropriately chosen boundary, then it is well-known

(see, e.g., [20]) that

1 > P1(N
′ < ∞) = E0[l

−1
N ′ 1{N ′ < ∞}] and E0N

′ = E0M
′ < ∞

and hence

ρ(t) ≤ t(c + d)E0N
′ + P1(N

′ < ∞) < 1

for sufficiently small t. Since ρ(·) is continuous and increasing, this last and (3.8)

imply that there is a unique number, call it ea∗ , such that ρ(ea∗) = 1. Then

log lN∗ = log ρ−1(ρ(lN∗))

≥ log ρ−1(1) (by (3.7))

= log ea∗ (since ρ(ea∗) = 1)

= a∗,

establishing (3.5).

To show that a∗ = log d−1 + o(1), let Yi be as in (3.4) and (N, M) = δ1(h),

the multistage sampling procedure described in Section 2.2 with h(a) ≡ a3/2 and

boundary a ≡ C log(d/c). Since
√

a ¿ h(a) ¿ a, by Proposition 2.12

E0N − a(CI0)
−1 = o(h(a)) and E0M = 1 + o(1).

Observe that

l−1
N = exp[−C−1(Y1 + · · ·+ YN)] ≤ exp[−C−1a] = c/d
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so that

ρ(t) ≤ E0[t(cN + dM) + l−1
N 1{N < ∞}]

≤ tc[E0(N − a(CI0)
−1) + a(CI0)

−1 + (d/c)E0M ] + E0l
−1
N

≤ tc[o(h(a)) + a(CI0)
−1 + (d/c)(1 + o(1))] + c/d

= tc[o(d/c) + d/c(1 + o(1))] + c/d

= td(1 + o(1)) + c/d.

This implies

ρ(t) ≤ 1 when t ≤ d−1(1 + o(1)), (3.9)

and so

a∗ = log ea∗ = log ρ−1(1) (since ρ(ea∗) = 1)

≥ log ρ−1(ρ(d−1(1 + o(1)))) (by (3.9))

= log(d−1(1 + o(1))) = log d−1 + o(1).

On the other hand,

a∗ = log ρ−1(1) ≤ log ρ−1(ρ([c + d]−1)) (by (3.8))

= log(c + d)−1 = log d−1 + o(1)

since d/c →∞, establishing a∗ = log d−1 + o(d).

Before proving our main result of this section in Theorem 3.2, we consolidate our

notation a bit. The following function provides the coefficient of the second-order

term in the Bayes risk for both the c ∈ Bo
m(d) and c ∈ B+

m(d) cases. For m = 1, 2, . . .

and Q,µ > 0 define

um(Q,µ) = m + 1− p∗ +
∆(zp∗)κm(µ)

Q
,
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where p∗ = p∗(m,Q, µ) is the unique solution of

p∗

φ(zp∗)
=

Q

κm(µ)
. (3.10)

Now fix µ > 0. Note that p∗ → 1 as Q →∞, so ∆(zp∗) ∼ |zp∗| as Q →∞. Also,

Q =
p∗

φ(zp∗)
κm(µ) ∼ κm(µ)

φ(zp∗)

as Q →∞, so
∆(zp∗)κm(µ)

Q
∼ |zp∗|φ(zp∗) → 0

and hence

lim
Q→∞

um(Q, µ) = m.

Thus we can extend our definition of um to all Q ∈ (0,∞] by setting

um(∞, µ) ≡ lim
Q→∞

um(Q, µ) = m.

Theorem 3.2 shows that the asymptotically optimal multistage sampling proce-

dures derived in Chapter 2 are second-order optimal as one decision tests. Said

another way, Lemma 3.1 tells us that efficient one decision tests are essentially likeli-

hood ratio tests and the part of the risk (3.2) due to error is of smaller order than the

sampling costs, which we already know our multistage sampling procedures minimize.

Theorem 3.2. Assume c ∈ Bm(d) and let

Q = lim
d→0

d/c

hm(C log d−1)
∈ (0,∞]

and p∗ = p∗(m,Q, CI0) as in (3.10). Let δm, δ̂m be the multistage sampling procedures

defined in Section 2.2.1 and

(N, M) =





δm(d/c), if c ∈ Bo
m(d)

δ̂m(p∗), if c ∈ B+
m(d)
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applied to Y1, Y2, . . . with boundary a = C log d−1. Then

R(N, M) = cI−1
0 log d−1 + d · um(Q,CI0) + o(d) (3.11)

R∗ = cI−1
0 log d−1 + d · um(Q,CI0) + o(d) (3.12)

as d → 0.

Proof. Since R∗ ≤ R(N,M), it suffices to prove (3.11) with “≤” and (3.12) with

“≥.” Assume first that c ∈ Bo
m(d), i.e.,

hm(log d−1) ¿ d/c ¿ hm−1(log d−1). (3.13)

Note that in our notation, Q = ∞ and hence um(Q,CI0) = m. Let a∗ = log d−1+o(1)

be that given by Lemma 3.1. Then

hk(Ca∗) ∼ C(1/2)k

hk(a
∗) ∝ hk(log d−1 + o(1)) ∼ hk(log d−1)

since (d/dx)hk(x) is bounded for large x, thus

hm(Ca∗) ¿ d/c ¿ hm−1(Ca∗) (3.14)

by (3.13). By Lemma 3.1 we know that (N∗,M∗) stops iff lN∗ ≥ ea∗ , so by comparing

(N∗,M∗) with the Bayes multistage sampling procedure with boundary Ca∗ in the

Bo
m case (because of (3.14)) of Theorem 2.15,

R∗ = cE0N
∗ + dE0M

∗ + P1(N
∗ < ∞)

≥ c[E0(N
∗ − a∗/I0) + (d/c)E0M

∗] + ca∗/I0

≥ c[m(d/c) + o(d/c)] + cI−1
0 (log d−1 + o(1)) (by Theorem 2.15)

= cI−1
0 log d−1 + d ·m + o(d)

= cI−1
0 log d−1 + d · um(Q,CI0) + o(d). (3.15)
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By (3.13) we can also apply the Bo
m case of Theorem 2.15 to (N, M) to get

E0(N − I−1
0 log d−1) + (d/c)E0M ≤ m(d/c) + o(d/c). (3.16)

Then

R(N, M) = cE0N + dE0M + P1(N < ∞)

= c[E0(N − I−1
0 log d−1) + (d/c)E0M ] + cI−1

0 log d−1 + P1(N < ∞)

≤ c[m(d/c) + o(d/c)] + cI−1
0 log d−1 + P1(N < ∞) (by (3.16))

= cI−1
0 log d−1 + d ·m + o(d) + P1(N < ∞)

= cI−1
0 log d−1 + d · um(Q,CI0) + o(d) + P1(N < ∞), (3.17)

so to show (3.11) holds it suffices to show P1(N < ∞) = o(d). Now the right hand

side of (3.16) is obviously O(d/c), so we can apply Lemma 2.14 to Sk ≡ Y1 + · · ·+YNk

(with C log d−1 in place of a and CI0 in place of µ) to get

P0(C log d−1 − Sm−1 ≥ (1/2)(CI0)
−1+(1/2)m−1

F
(m−1)
d/c (C log d−1)) → 1

as d → 0. Let U be the above event and note that on U ,

C log d−1 − Sm−1 ≥ (1/2)(CI)−1+(1/2)m−1

F
(m−1)
d/c (C log d−1)

≥ (1/2)2(CI)−1+(1/2)m−1

[Cm
mhm(C log d−1)]2 (by Lemma 2.6)

≥ ηhm(C log d−1)2,

η > 0. On U , the mth stage of (N, M) begins geometric sampling with probability of

crossing the boundary approaching one (under P0). Then, letting

ρm =
Sm − Sm−1 − CI0Nm√

Nm

,
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P0(Sm ≥ C log d−1 +
√

hm(C log d−1)|U)

= P0


ρm ≥ C log d−1 − Sm−1 − CI0Nm√

Nm

+

√
hm(C log d−1)

Nm

∣∣∣∣∣∣
U


 → 1

if

hm(C log d−1) ¿ Nm (3.18)

on U , since
C log d−1 − Sm−1 − CI0Nm√

Nm

→ −∞

by definition of (N, M). But (3.18) holds since

Nm ≥ C log d−1 − Sm−1

CI0

≥ ηhm(C log d−1)2

CI0

À hm(C log d−1) (3.19)

on U . Thus let

V = U ∩
{

Sm ≥ C log d−1 +
√

hm(C log d−1)
}

so that

P0(V ) = P0(Sm ≥ C log d−1 +
√

hm(C log d−1)|U) · P0(U) → 1 · 1.

Note that ln = exp(C−1
∑n

1 Yi), so that by Wald’s likelihood identity and letting V ′

denote the compliment of V ,

P1(N < ∞) = E0(l
−1
N ; N < ∞) ≤ E0l

−1
N

= E0[exp(−C−1Sm); V ] + E0[exp(−C−1SM); V ′]

≤ exp(− log d−1 − C−1
√

hm(C log d−1)) + E0[exp(− log d−1); V ′]

(by definition of V and since SM ≥ C log d−1)

= d · exp(−C−1
√

hm(C log d−1)) + d · P0(V
′)

= d · o(1) + d · o(1) = o(d),
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proving (3.11) in the c ∈ Bo
m(d) case.

Now assume c ∈ B+
m(d). By the same arguments leading to (3.15) and (3.17) but

using the boundary cases of the appropriate results,

R∗ ≥ cI−1
0 log d−1 + d · um(Q,CI0) + o(d)

≥ R(N,M)− P1(N < ∞),

so it again suffices to show P1(N < ∞) = o(d). Let U be as above and

W1 =
{

Sm ≥ C log d−1 +
√

hm(C log d−1)
}

,

W2 =
{

Sm ≤ C log d−1 −
√

hm(C log d−1)
}

,

W3 =
{
Sm+1 ≥ C log d−1 + (hm(C log d−1))1/5

}
, and

W = (U ∩W1) t (U ∩W2 ∩W3).

We will show P0(W ) → 1 as d → 0, which will allow us to say that the log-likelihood

ratio is far enough beyond the boundary at the end of the mth stage (on W1) or at

the end of the (m + 1)st stage (on W3) that P1(N < ∞) = o(d).

P0(U ∩W1) = P0(W1|U)P0(U) ∼ P0(W1|U)

= P0


ρm ≥ C log d−1 − Sm−1 − CI0Nm√

Nm

+

√
hm(C log d−1)

Nm

∣∣∣∣∣∣
U




and
C log d−1 − Sm−1 − CI0Nm√

Nm

→ zp∗

by definition of (N, M). Then

P0(U ∩W1) → p∗ (3.20)

by the Central Limit Theorem if
√

hm(C log d−1) ¿ √
Nm on U , which holds by
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(3.19). To handle the other piece, first write

P0(U ∩W2 ∩W3) = P0(U)P0(W2|U)P0(W3|U ∩W2) ∼ P0(W2|U)P0(W3|U ∩W2).

We have P (W2|U) → 1− p∗ by an argument similar to the one showing (3.20). Also

P0(W3|U ∩W2) = P0

(
ρm+1 ≥ C log d−1 − Sm − CI0Nm+1√

Nm+1

+
(hm(C log d−1))1/5

√
Nm+1

∣∣∣∣ U ∩W2

)

→ 1

since

√
Nm+1 ≥

√
C log d−1 − Sm

CI0

≥ (hm(C log d−1))1/4

√
CI0

À (hm(C log d−1))1/5

and
C log d−1 − Sm − CI0Nm+1√

Nm+1

→ −∞

on U ∩ W2 since the (m + 1)st stage of (N, M) begins geometric sampling with

probability of crossing the boundary approaching one. Combining these estimates we

have P0(U ∩W2 ∩W3) → 1− p∗ and combining this with (3.20) shows

P0(W ) = P0(U ∩W1) + P0(U ∩W2 ∩W3) → p∗ + 1− p∗ = 1.

With this in hand, and noting that, on W ,

SM − C log d−1 ≥
√

hm(C log d−1) ∧ (hm(C log d−1))1/5 = (hm(C log d−1))1/5,
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P1(N < ∞) = E0(l
−1
N ; N < ∞) ≤ E0l

−1
N

= E0[exp(−C−1SM); W ] + E0[exp(−C−1SM); W ′]

≤ exp(− log d−1 − C−1(hm(C log d−1))1/5) + E0[exp(− log d−1); W ′]

= d · exp(−C−1(hm(C log d−1))1/5) + d · P0(W
′)

= d · o(1) + d · o(1) = o(d),

finishing the boundary case and the proof.

3.2 Tests of Two Simple Hypotheses

In this section we use the optimal one decision tests from the previous section to

derive optimal multistage tests of two simple hypotheses. Again assume f0, f1 are

two distinct densities from the exponential family (3.1). Consider the problem of

deciding between f0 and f1 by sampling X1, X2, . . . in stages while incurring a cost

per observation, a cost per stage, and a penalty for making the wrong decision. More

specifically, define a test of the hypotheses

H0 : f0 vs. H1 : f1

to be a triple (N, M, D), where N = (N1, N2, . . .) is a sequence of nonnegative

integer-valued random variables satisfying the measurability requirement (2.63), M ≡
inf{m ≥ 1 : Nm = 0}, and D takes values in {0, 1}. Nk should be interpreted as the

size of the kth stage, Nk ≡ N1 + · · ·+ Nk the sample size through the kth stage, M

the number of stages, and D the “decision,” i.e., the choice of i such that Hi : fi is

deemed correct. By a convenient abuse of notation, we let N also denote NM , the

total sample size.

Define the integrated risk of a test δ = (N, M, D) with respect to prior π and loss
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parameters wi to be

r(δ) =
1∑

i=0

πi[cEiN + dEiM + wiPi(D = 1− i)],

where c, d > 0. To avoid trivialities we assume πi, wi > 0. Let δ∗ = (N∗,M∗, D∗)

denote the Bayes test, that which achieves integrated risk r∗ ≡ infδ r(δ).

We describe a family of tests and show they minimize the integrated risk to second-

order as d → 0. We continue to assume that c ∈ Bm(d), some m ≥ 1. Extending the

notation of the previous section, for i = 0, 1 define

Ci = (|θ0 − θ1|
√

ψ′′(θi))
−1 > 0

and

Y
(i)
j = Ci log(fi(Xj)/f1−i(Xj)) for j = 1, 2, . . .

so that

EiY
(i)
j = CiIi and VariY

(i)
j = 1.

Whenever we speak of a one decision test of fi vs. f1−i (i.e., a test which chooses fi

as the correct density) below, we will always mean the one defined with respect to

Y
(i)
1 , Y

(i)
2 , . . ..

Our first lemma gives us a lower bound on the integrated risk of δ∗ by comparing

it to the best one decision tests.

Lemma 3.3. If c ∈ Bm(d), then

cE0N
∗ + dE0M

∗ + P1(D
∗ = 0) ≥ cI−1

0 log d−1 + d · um(Q,C0I0)− o(d) (3.21)

as d → 0, where

Q ≡ lim
d→0

d/c

hm(C0 log d−1)
∈ (0,∞].

Remark. The lemma actually holds for any test (N,M, D) such that lN ≤ K1d on

{D = 1} for some constant K1, since this is the only property of the Bayes test used
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in the proof, though we will not need this full strength in what follows. The lemma

also holds of course with the indices 0, 1 reversed.

Proof. The idea of the proof is to compare the left hand side of (3.21) with the

Bayes risk of Theorem 3.2 by extending δ∗ to a one decision test of f0 vs. f1 on the

event {D∗ = 1}. Let

N = M = inf{n ≥ 1 : ln ≥ d−2},

i.e., fully-sequential sampling with boundary d−2 for the likelihood ratio. Then define

N ′ = N∗ + N · 1{D∗ = 1}
M ′ = M∗ + M · 1{D∗ = 1}.

(N ′,M ′) coincides with δ∗ on {D∗ = 0}, but continues with the one decision procedure

(N,M) on {D∗ = 1}, and is hence a one decision procedure itself. Since

{N ′ < ∞} = {D∗ = 0} t {D∗ = 1, N < ∞},

we have

cE0N
∗ + dE0M

∗ + P1(D
∗ = 0)

= c[E0N
′ − E0(N ; D∗ = 1)] + d[E0M

′ − E0(M ; D∗ = 1)]

+ P1(N
′ < ∞)− P1(D

∗ = 1, N < ∞)

= [cE0N
′ + dE0M

′ + P1(N
′ < ∞)]

− [cE0(N ; D∗ = 1) + dE0(M ; D∗ = 1) + P1(D
∗ = 1, N < ∞)]

≡ R1 −R2.

By Theorem 3.2,

R1 = cE0N
′ + dE0M

′ + P1(N
′ < ∞)

≥ cI−1 log d−1 + d · um(Q,C0I0)− o(d),
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so to show that (3.21) holds it suffices to show R2 = o(d).

We can write

R2 ≤ [cE0(N |D∗ = 1) + dE0(M |D∗ = 1)]P0(D
∗ = 1) + P1(N < ∞|D∗ = 1). (3.22)

By Theorem 1 of [18],

E0(N |D∗ = 1) = E0(M |D∗ = 1) ≤ I−1
0 log d−2 + I−2

0 E0

[(
log

f0(X1)

f1(X1)

)+
]2

= O(log d−1) + O(1) = O(log d−1).

By Lemma 3.4, which follows, there exists K1 < ∞ such that lN∗ ≤ K1d on {D∗ = 1}.
Using this and Wald’s likelihood identity,

P0(D
∗ = 1) = E1(lN∗ ; D∗ = 1, N∗ < ∞)

≤ E1(K1d; D∗ = 1, N∗ < ∞) ≤ K1d = O(d).

Combining these two estimates gives

[cE0(N |D∗ = 1) + dE0(M |D∗ = 1)]P0(D
∗ = 1) = [c ·O(log d−1) + d ·O(log d−1)]O(d)

= O(d2 log d−1). (3.23)

Now, by definition of (N, M),

P1(N < ∞|D∗ = 1) = E0(l
−1
N 1{N < ∞}|N > 0) ≤ E0(d

21{N < ∞}|N > 0) ≤ d2.

Plugging this and (3.23) into (3.22),

R2 ≤ O(d2 log d−1) + d2

= O(d2 log d−1)

= d ·O(d log d−1) = d · o(1) = o(d),
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finishing the proof.

The next lemma shows, by considering stopping risk concerns, that the Bayes test

is roughly a likelihood ratio test.

Lemma 3.4. There is a constant K1 > 0 such that

lN∗ ≤ K1d on {D∗ = 1},
lN∗ ≥ (K1d)−1 on {D∗ = 0}.

(3.24)

Conversely, there is a constant K2 > 0 such that δ∗ stops after the kth stage of

sampling and

rejects H0 if lN∗k ≤ K2d,

rejects H1 if lN∗k ≥ (K2d)−1.
(3.25)

Proof. For i = 0, 1 and k ≥ 1 let

rik =
wiπifi(X1, . . . , XN∗k)∑1
j=0 πjfj(X1, . . . , XN∗k)

,

the posterior risk of rejecting Hi after the kth stage. Note that we can write these in

terms of likelihood ratios:

r0k =
w0π0lN∗k

π0lN∗k + π1

, r1k =
w1π1

π0lN∗k + π1

. (3.26)

Also, let rk = r0k ∧ r1k, the stopping risk after the kth stage.

The Bayes procedure stops sampling if the stopping risk is less than all possible

continuation risks. One possible continuation is fully-sequential sampling. By Lemma

2 of [17] there is a constant K∗ < ∞ such that a Bayes procedure can only stop when

the continuation risk of fully-sequential sampling is less than K∗ times the cost per

observation - c + d in this case. Thus, when δ∗ stops,

rM∗ ≤ K∗(c + d) ≤ 2K∗d
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meaning r0M∗ ≤ 2K∗d or r1M∗ ≤ 2K∗d. If r0M∗ ≤ 2K∗d, then by the first relation in

(3.26) and some simple algebra

lN∗ ≤ π1 · 2K∗d
π0(w0 − 2K∗d)

≤ 4π1K
∗

π0w0

d (3.27)

for small enough d. Clearly r0M∗ < r1M∗ in this case so we can be sure D∗ = 1.

Otherwise, r1M∗ ≤ 2K∗d so that, similarly,

lN∗ ≥ π1(w1 − 2K∗d)

π0 · 2K∗d
≥ π1w1

4π0K∗d
−1

for small enough d and D∗ = 0. We see from this last and (3.27) that (3.24) holds

with

K1 =
4π1K

∗

π0w0

∨ 4π0K
∗

π1w1

.

Since each additional stage of sampling costs at least c + d > d, δ∗ will stop after

the kth stage of sampling if rk ≤ d. If

lN∗k ≤ π1

π0w0

d, (3.28)

then (3.26) and some algebra show

d ≥ w0π0lN∗k

π0lN∗k + π1

= r0k

and hence δ∗ will stop. Also clearly r0M∗ < r1M∗ so we can be sure δ∗ rejects H0.

Similarly, if

lN∗k ≥ π1w1

π0

d−1 (3.29)

then

d ≥ w1π1

π0lN∗k + π1

= r1k,

so δ∗ will stop and reject H1. Thus, we see from (3.28) and (3.29) that (3.25) holds

with

K2 =
π1

π0w0

∧ π0

π1w1

.
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Next, we define a test δ and prove its optimality. For this, we consider separately

two cases of the relationship between f0 and f1 in the exponential family (3.1). The

first case, considered in Section 3.2.1, is when I0 = I1 and Var0Xi = Var1Xi. This is

a symmetric case in the sense that the two corresponding one decision tests dictate

the same initial stage size, and hence they can be applied simultaneously. This case

is of interest because it contains, most notably, the Normal mean problem, i.e.,

H0 : µ = µ0 vs. H1 : µ = µ1,

where µ is the mean of Normal random variables with known variance, and the

symmetric Bernoulli case,

H0 : p = 1/2− β vs. H1 : p = 1/2 + β,

where p is the probability of success in a Bernoulli trial. If I0 6= I1, the nature of the

Bayes test is fundamentally different. In this case, considered in Section 3.2.2, the two

initial stages given by the one decision tests are of different order of magnitude, and

hence cannot be applied simultaneously. This gives rise to a necessary “exploratory”

first stage. The remaining case, where I0 = I1 and Var0Xi 6= Var1Xi is at present

unsolved, but the popular examples contained in the former and the generality of the

latter make our analysis sufficient for most practical purposes.

3.2.1 Case I: I0 = I1 and Var0Xi = Var1Xi

Assume c ∈ Bm(d). Let (N (0),M (0)) be the one decision test of f0 vs. f1 described

in Theorem 3.2 and let (N (1),M (1)) be the corresponding one decision test of f1

vs. f0. Under the assumptions I0 = I1 and Var0Xi = Var1Xi, the two procedures

(N (0),M (0)) and (N (1),M (1)) dictate the same first stage size. Define the first stage
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of δ = (N,M, D) to be this common first stage size,

N1 ≡ N
(0)
1 = N

(1)
1 .

If lN1 ≥ 1, continue with (N (0),M (0)), stopping the first time lNk ≥ d−1 to reject H1,

as dictated by (N (0),M (0)), or lNk ≤ d to reject H0. Otherwise, lN1 < 1 so continue

with (N (1),M (1)) similarly.

Theorem 3.5. If I0 = I1, Var0Xi = Var1Xi, and c ∈ Bm(d), then

r(δ) = cI−1
0 log d−1 + d · um(Q,C0I0) + o(d)

r∗ = cI−1
0 log d−1 + d · um(Q,C0I0) + o(d) (3.30)

as d → 0, where

Q ≡ lim
d→0

d/c

hm(C0 log d−1)
∈ (0,∞].

Proof. Let I = I0 = I1 and note that the assumption of equal variances implies

C0 = C1, so let C denote this common value. Since r∗ ≤ r(δ), it suffices to establish

(3.30) with “≤” and (3.30) with “≥,” which we do first. We have

r∗ =
1∑

i=0

πi[cEiN
∗ + dEiM

∗ + wiPi(D
∗ = 1− i)]

=
1∑

i=0

[πicEiN
∗ + πidEiM

∗ + π1−iw1−iP1−i(D
∗ = i)]

=
1∑

i=0

π1−iw1−i[ciEiN
∗ + diEiM

∗ + P1−i(D
∗ = i)], (3.31)

where

ci =
πi

π1−iw1−i

c, di =
πi

π1−iw1−i

d.

Note that di/ci = d/c and

hm(log d−1
i ) = hm(log d−1 + O(1)) ∼ hm(log d−1).
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Thus, if

hm(log d−1) ¿ d/c ¿ hm−1(log d−1)

then

hm(log d−1
i ) ∼ hm(log d−1) ¿ di/ci ¿ hm−1(log d−1

i ) ∼ hm−1(log d−1),

while if

lim
d→0

d/c

hm(log d−1)
∈ (0,∞),

then

lim
di→0

di/ci

hm(log d−1
i )

= lim
d→0

d/c

hm(log d−1)
∈ (0,∞).

This shows that ci ∈ Bm(di). Moreover,

lim
di→0

di/ci

hm(C log d−1
i )

= lim
d→0

d/c

hm(C log d−1)
= Q ∈ (0,∞],

so by Lemma 3.3

ciEiN
∗ + diEiM

∗ + P1−i(D
∗ = i) ≥ ciI

−1 log d−1
i + di · um(Q, CI) + o(di)

= ciI
−1 log d−1 + di · um(Q, CI) + o(d).

Plugging this into (3.31),

r∗ ≥
1∑

i=0

π1−iw1−i[ciI
−1 log d−1 + di · um(Q,CI) + o(d)]

=
1∑

i=0

πi[cI
−1 log d−1 + d · um(Q,CI) + o(d)]

= cI−1 log d−1 + d · um(Q,CI) + o(d),

since π0 + π1 = 1.
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Next we handle (3.30). Let (N,M, D) = δ and for an arbitrary event A let

r(δ; A) =
1∑

i=0

πi[cEi(N ; A) + dEi(M ; A) + wiPi(D = 1− i, A)]

and obviously r(δ; A) + r(δ; A′) = r(δ). Let lk = lNk , the likelihood ratio after the

kth stage. Let

A0 =
{∣∣log l1 − IN1

∣∣ ≤ C−1
√

N1 log N1

}

A1 =
{∣∣log l1 + IN1

∣∣ ≤ C−1
√

N1 log N1

}
.

Let (N (0),M (0)) be the one decision test of f0 vs. f1 in the definition of δ. The

following six bounds are proved in Lemma 3.6, which follows this proof:

cE0(N ; A0) ≤ cE0N
(0) + o(d) (3.32)

dE0(M ; A0) ≤ dE0M
(0) + o(d) (3.33)

P0(D = 1, A0) = o(d) (3.34)

cE1(N ; A0) = o(d) (3.35)

dE1(M ; A0) = o(d) (3.36)

P1(D = 0, A0) ≤ P1(N
(0) < ∞) + o(d). (3.37)

Using these bounds

r(δ; A0) =
1∑

i=0

πi[cEi(N ; A) + dEi(M ; A) + wiPi(D = 1− i, A)]

≤ π0[cE0N
(0) + dE0M

(0) + o(d)] + π1[w1P1(N
(0) < ∞) + o(d)]

= π1w1[c0E0N
(0) + d0E0M

(0) + P1(N
(0) < ∞)] + o(d)

≤ π1w1[c0I
−1 log d−1

0 + d0 · um(Q,CI) + o(d0)] + o(d) (by Theorem 3.2)

= π0[cI
−1 log d−1 + d · um(Q,CI)] + o(d) (3.38)
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and the same argument with the indices reversed gives

r(δ; A1) ≤ π1[cI
−1 log d−1 + d · um(Q,CI)] + o(d). (3.39)

Now we consider r(δ; A′
0 ∩ A′

1). Let A = A′
0 ∩ A′

1. The bounds

cE0(N ; A) = o(d) (3.40)

dE0(M ; A) = o(d) (3.41)

P0(D = 1, A) = o(d), (3.42)

are also proved in the next lemma, along with their equivalents with indices reversed,

and thus r(δ; A) = o(d). Combining this with (3.38) and (3.39) gives

r(δ) = r(δ; A0) + r(δ; A1) + r(δ; A)

≤
1∑

i=0

πi[cI
−1 log d−1 + d · um(Q,CI)] + o(d)

= cI−1 log d−1 + d · um(Q, CI) + o(d),

finishing the proof.

Lemma 3.6. Under the assumptions of Theorem 3.5, the bounds (3.32)-(3.37) and

(3.40)-(3.42) hold.

Proof. Let B = {log lk > − log d−1 for all k = 1, . . . ,M} and note that δ and

(N (0),M (0)) coincide on A0 ∩B since log l1 ≥ IN1 −C
√

N1 log N1 > 0 for small d on

A0 and log lk never crosses the lower boundary − log d−1 on B. Recall the definition

tµ(p, a) = a/µ− zp

√
4aµ + z2

p − z2
p

2µ2

and that the stages of our multistage sampling procedures, and hence the one decision
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tests and δ, are defined in terms of tµ(p, a). First we prove the crude bound

Ei(N |U) = O(log d−1) for any U such that Ei(M |U) = O(1), (3.43)

i = 0, 1. In the c ∈ Bo
m(d) [resp. c ∈ B+

m(d)] case, the mth [resp. (m + 1)st] stage of

δ begins geometric sampling, in which the size of each stage is bounded by

dtCI(p, (C log d−1 −
∑

Yi) ∨ (
∑

Yi + C log d−1))e ≤ dtCI(p, 2C log d−1)e

=
2C log d−1

CI
+ o(log d−1)

= O(log d−1),

where p → 1 but slowly enough so that |zp| = O(log log d−1). Similarly, dtCI(p, 2C log d−1)e
also bounds the first m stages, but where p goes to zero for the first m− 1 stages and

approaches a limit in (0, 1) for the mth stage of the boundary case. In either case, p

is bounded below 1. Hence, these initial stages are O(log d−1) as well, since tCI(p, a)

is nondecreasing in p. Thus, the size of each stage of δ is uniformly O(log d−1) and

therefore

Ei(N |U) ≤ O(log d−1)Ei(M |U) = O(log d−1),

proving (3.43).

Clearly E0(M |A0 ∩ B′) = O(1), so using this crude bound and Wald’s likelihood

identity,

P0(A0 ∩B′) ≤ P0(B
′) = E1(l

M ; B′) ≤ E1(d; B′) ≤ d

and E0(N ; A0 ∩B) ≤ E0N
(0) since δ and (N (0),M (0)) coincide on A0 ∩B, so that

cE0(N ; A0) = cE0(N ; A0 ∩B) + cE0(N ; A0 ∩B′)

≤ cE0N
(0) + c ·O(d log d−1)

= cE0N
(0) + o(c) = cE0N

(0) + o(d),

which proves (3.32). Similarly, E0(M ; A0∩B) ≤ E0M
(0) and E0(M |A0∩B′) = O(1),
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so that

dE0(M ; A0) ≤ dE0(M ; A0 ∩B) + dE0(M |A0 ∩B′)P0(A0 ∩B′)

≤ dE0M
(0) + d ·O(1) · d = dE0M

(0) + o(d),

proving (3.33). Letting γ(d) = IN1 − C−1
√

N1 log N1,

P0(D = 1, A0) ≤ P0(D = 1|A0) = P0(l
M ≤ − log d−1| log l1 ≥ γ(d))

≤ exp[−(log d−1 + γ(d))]

= de−γ(d) = o(d),

proving (3.34). Since γ ∼ IN1 ∼ log d−1 we have

P1(A0) = E0(l
−1
1 ; log l1 ≥ γ(d)) ≤ E0(e

−γ(d); log l1 ≥ γ(d))

≤ e−γ(d) ≤ exp[−(1/2) log d−1] =
√

d.

Also E1(N |A0) = O(log d−1) by (3.43) so

cE1(N ; A0) = cE1(N |A0)P1(A0) ≤ c
√

d ·O(log d−1) = c · o(1) = o(d),

proving (3.35). E1(M |A0) = O(1) and clearly P1(A0) → 0, so

dE1(M ; A0) = dE1(M |A0)P1(A0) = d ·O(1) · o(1) = o(d),

proving (3.36). Since δ and (N (0),M (0)) coincide on A0 ∩B,

P1(D = 0, A0 ∩B) = P1(N
(0) < ∞, A0 ∩B) ≤ P1(N

(0) < ∞).

Also

P1(D = 0, A0∩B′) = E0[(l
M)−1; D = 0, A0∩B′] ≤ E0[d; D = 0, A0∩B′] ≤ dP0(B

′) = o(d)



99

since clearly P0(B
′) → 0. Combining these two gives

P1(D = 0; A0) = P1(D = 0; A0 ∩B) + P1(D = 0; A0 ∩B′) ≤ P1(N
(0) < ∞) + o(d),

proving (3.37).

Now

P0(A) ≤ P0(A
′
0) = P0(log l1 < γ(d)) = P0

(− log l1 + IN1

C−1
√

N1

>
IN1 − γ(d)

C−1
√

N1

)

and
IN1 − γ(d)

C−1
√

N1

= log N1 = o(N
1/6
1 ),

so by large deviations and Mills’ ratio

P0(A) ≤ Φ(− log N1)(1 + o(1)) ∼ φ(log N1)

log N1

= O

(
exp[−(1/2)(log log d−1)2]

log log d−1

)
,

since IN1 ∼ log d−1 implies log N1 = log log d−1 + O(1). Thus

cE0(N ; A) = cE0(N |A)P0(A)

≤ c ·O(log d−1) ·O
(

exp[−(1/2)(log log d−1)2]

log log d−1

)

= c · o(1) = o(d),

proving (3.40). It’s not hard to see that E0(M |A) = O(1), so

E0(M ; A) = d ·O(P0(A)) = d · o(1) = o(d),

which is (3.41). Finally, since lM ≤ d on {D = 1},

P0(D = 1, A) = E1(l
M ; D = 1, A) ≤ dP1(A) = o(d),

proving (3.42).
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3.2.2 Case II: I0 6= I1

Let I0 < I1. Define δ = (N, M,D) for this case as follows. Let (N (1),M (1)) be the

one decision test of f1 vs. f0 described in Theorem 3.2. Let

Q0 = lim
d→0

d/c

hm (C0 (1− I0/I1) log d−1)
∈ (0,∞] (3.44)

and let (Ṅ (0), Ṁ (0)) be the one decision test of f0 vs. f1 described in Theorem 3.2,

but with parameters

π0lN1

π1w1

· c, π0lN1

π1w1

· d, p∗(m,Q0, C0I0)

in place of c, d, p∗. Define the first stage of δ to be the first stage of (N (1),M (1)), i.e.,

N1 ≡ N
(0)
1 . If lN1 < 1, continue with (N (1),M (1)), stopping the first time lNk ≤ d to

reject H0 (as dictated by (N (1),M (1))) or lNk ≥ d−1 to reject H1. Otherwise, lN1 ≥ 1

so begin (Ṅ (0), Ṁ (0)), stopping the first time lNk ≥ d−1 to reject H1 (as dictated by

(Ṅ (0), Ṁ (0))) or lNk ≤ d to reject H0.

Theorem 3.7. If I0 < I1 and c ∈ Bm(d), then

r(δ) = π0[cI
−1
0 log d−1 + d(1 + um(Q0, C0I0))]

+π1[cI
−1
1 log d−1 + d · um(Q1, C1I1)] + o(d) (3.45)

r∗ = π0[cI
−1
0 log d−1 + d(1 + um(Q0, C0I0))]

+π1[cI
−1
1 log d−1 + d · um(Q1, C1I1)] + o(d) (3.46)

as d → 0, where Q0 is as in (3.44) and

Q1 ≡ lim
d→0

d/c

hm(C1 log d−1)
∈ (0,∞].

In particular, r(δ) ≤ r∗ + o(d).
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Proof. Let lk = lNk ,

T = {t > 0 : |log t− I0N1| ≤ C−1
0

√
N1 log N1},

and A0 = {l1 ∈ T}. Let δ̇0 = (Ṅ (0), Ṁ (0), Ḋ(0)) denote the continuation of δ after its

first stage when l1 ≥ 1, and let (N̈ (0), M̈ (0)) denote the one decision test of f0 vs. f1

that coincides with δ̇0 except that δ̇0 may stop before (N̈ (0), M̈ (0)) and reject H0 when

the likelihood ratio crosses the lower boundary. We will write (Ṅ (0)(l1), Ṁ (0)(l1), Ḋ(0)(l1))

and (N̈ (0)(l1), M̈ (0)(l1)) when we wish to emphasize the dependence on the value of

l1.

Using the bounds (3.34)-(3.36),

r(δ; A0) = π0cE0(N ; A0) + π0dE(M ; A0) + π1w1P1(D = 0, A0) + o(d)

= E0[π0cN + π0dM + π1w1(l
M)−1 · 1{D = 0}; A0] + o(d)

= E0[π0cṄ
(0)(l1) + π0dṀ (0)(l1) + π1w1(l

1)−1(lṀ
(0)(l1))−1 · 1{Ḋ(0) = 0}; A0]

+π0cN1 + π0d + o(d)

= E0[ϕ(l1); l1 ∈ T ] + π0cN1 + π0d + o(d), (3.47)

where

ϕ(t) ≡ π0[cE0Ṅ
(0)(t) + dE0Ṁ

(0)(t)] + π1w1t
−1P1(Ḋ

(0)(t) = 0). (3.48)

For t ∈ T ,

Ṅ (0)(t) ≤ N̈ (0)(t) and Ṁ (0)(t) ≤ M̈ (0)(t) (3.49)

since δ̇0 coincides with (N̈ (0), M̈ (0)) except that δ̇0 may stop early by crossing the

lower boundary. Also,

{Ḋ(0)(t) = 0} ⊆ {N̈ (0)(t) < ∞} for t ∈ T (3.50)

since the lower boundary cannot be crossed on {Ḋ(0)(t) = 0}, hence the two proce-
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dures coincide exactly. Thus, for t ∈ T ,

ϕ(t) ≤ π0cE0N̈
(0)(t) + π0dE0M̈

(0)(t) + π1w1t
−1P1(N̈

(0)(t) < ∞) (by (3.49) and (3.50))

= π1w1t
−1[c′E0N̈

(0)(t) + d′E0M̈
(0)(t) + P1(N̈

(0)(t) < ∞)], (3.51)

where

c′ ≡ π0t

π1w1

c, d′ ≡ π0t

π1w1

d.

We now show that c′ ∈ Bm(d′) uniformly for t ∈ T . Note that d′/c′ = d/c and, for

t ∈ T ,

log(d′)−1 = log d−1 − log t + O(1)

= log d−1 − I0N1 + o(N1) (since log t ∼ I0N1 on T )

= log d−1 − (I0/I1) log d−1 + o(log d−1) (since N1 ∼ I−1
1 log d−1)

∼ (1− I0/I1) log d−1,

and this holds uniformly on T . Thus

hm(log(d′)−1) ∼ hm((1− I0/I1) log d−1) ∼ (1− I0/I1)
(1/2)m

hm(log d−1),

so if

hm(log d−1) ¿ d/c ¿ hm−1(log d−1),

then

hm(log(d′)−1) ¿ d′/c′ ¿ hm−1(log(d′)−1),

and if

lim
d→0

d/c

hm(log d−1)
∈ (0,∞),
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then

lim
d′→0

d′/c′

hm(log(d′)−1)
= lim

d→0

d/c

hm((1− I0/I1) log d−1)

= (1− I0/I1)
−(1/2)m · lim

d→0

d/c

hm(log d−1)
∈ (0,∞).

This shows that c′ ∈ Bm(d′) and, moreover,

lim
d→0

d′/c′

hm(C0 log(d′)−1)
= lim

d→0

d/c

hm(C0(1− I0/I1) log d−1)
= Q0 ∈ (0,∞],

so by Theorem 3.2,

c′E0N̈
(0)(t)+d′E0M̈

(0)(t)+P1(N̈
(0)(t) < ∞) ≤ c′I−1

0 log(d′)−1+d′um(Q0, C0I0)+o(d′).

Plugging this into (3.51),

ϕ(t) ≤ π1w1t
−1[c′I−1

0 log(d′)−1 + d′um(Q0, C0I0) + o(d′)]

= π1w1t
−1[c′I−1

0 (log d−1 − log t + O(1)) + d′um(Q0, C0I0) + o(d′)]

= π0[cI
−1
0 log d−1 + d · um(Q0, C0I0)]− π0cI

−1
0 log t + o(d)

uniformly on T , and plugging this into (3.47),

r(δ; A0) ≤ π0[cI
−1
0 log d−1+d(1+um(Q0, C0I0))]+π0cI

−1
0 [I0N1−E(log l1; l1 ∈ T )]+o(d).

(3.52)

Since E0 log l1 = I0N1 and P0(A0) → 1 quickly, one may suspect that

E0(log l1; A0) = I0N1 + o(1). (3.53)

Assuming this holds, (3.52) becomes

r(δ; A0) ≤ π0[cI
−1
0 log d−1 + d(1 + um(Q0, C0I0))] + o(d). (3.54)
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To see why (3.53) is true, first use Wald’s equation and write

E0(log l1; A0) = I0N1 − E0(log l1; log l1 > I0N1 + C−1
0

√
N1 log N1)

− E0(log l1; log l1 < I0N1 − C−1
0

√
N1 log N1);

(3.55)

we will show that these last two terms are o(1). Letting Σn = Y
(0)
1 + · · · + Y

(0)
n and

γ = C0I0N1 +
√

N1 log N1,

E0(log l1; log l1 > I0N1 + C−1
0

√
N1 log N1) = C−1

0 E0[ΣN1 − γ; ΣN1 > γ] + γ · P0(ΣN1 > γ)

= O

(√
N1

φ(log N1)

(log N1)2

)
+ O(N1) ·O (Φ(− log N1)) = o(1)

by Lemma 2.10 and a routine large deviations argument. The other term in (3.55) is

handled similarly, establishing (3.53).

Letting A1 = {| log(1/l1) − I1N1| ≤ C−1
1

√
N1 log N1} and repeating arguments

from the proof of of Theorem 3.5 gives

r(δ; A1) ≤ π1[cI
−1
1 log d−1 + d · um(Q1, C1I1)] + o(d) and

r(δ; A′
0 ∩ A′

1) = o(d).

Combining these with (3.54) gives (3.45).

Next we show (3.46) with “≥.” Let l∗k = lN∗k , T ∗ = {t > 0 : | log t − I0N
∗
1 | ≤

C−1
0

√
N∗

1 log N∗
1}, A∗

0 = {l∗1 ∈ T ∗}, and

r∗i = πi(cEiN
∗ + dEiM

∗) + π1−iw1−iP1−i(D
∗ = i), i = 0, 1.

Since δ∗ follows its first stage with the optimal continuation, denoted by (Ṅ∗, Ṁ∗, Ḋ∗),

r∗0 = E0[E0[π0(cN
∗ + dM∗) + π1w1(l

∗M∗
)−11{D∗ = 0}|l∗1]]

= E0[π0(cE0Ṅ
∗(l∗1) + dE0Ṁ

∗(l∗1)) + π1w1(l
∗1)−1P1(Ḋ

∗(l∗1) = 0)]

+π0(cN
∗
1 + d) (3.56)
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where we again write (Ṅ∗(l∗1), Ṁ∗(l∗1), Ḋ∗(l∗1)) to reflect the dependence on the value

of l∗1. Define

ϕ∗(t) ≡ π0[cE0Ṅ
∗(t) + dE0Ṁ

∗(t)] + π1w1t
−1P1(Ḋ

∗(t) = 0)

= π1w1t
−1[c′E0Ṅ

∗(t) + d′E0Ṁ
∗(t) + P1(Ḋ

∗(t) = 0)].

It will be shown below that N∗
1 ∼ I−1

1 log d−1. Assuming this, the same arguments

that showed c′ ∈ Bm(d′) when t ∈ T (but with N∗
1 in place of N1) hold here for t ∈ T ∗,

and also

lim
d→0

d′/c′

hm(C0 log(d′)−1)
= Q0 ∈ (0,∞].

Then by Lemma 3.3, for t ∈ T ∗,

ϕ∗(t) ≥ π1w1t
−1[c′I−1

0 log(d′)−1 + d′um(Q0, C0I0) + o(d′)]

= π0[cI
−1
0 log d−1 + d · um(Q0, C0I0)]− π0cI

−1
0 log t + o(d) (3.57)

and this holds uniformly on T ∗. Plugging this back into (3.56),

r∗0 = E0ϕ
∗(l∗1) + π0(cN

∗
1 + d)

≥ E0[ϕ
∗(l∗1); A∗

0] + π0(cN
∗
1 + d) (since ϕ∗ ≥ 0)

≥ π0[cI
−1
0 log d−1 + d · um(Q0, C0I0]P0(A

∗
0)− π0cI

−1
0 E0[log l∗1; A∗

0]

+π0(cN
∗
1 + d) + o(d) (3.58)

by (3.57). The same argument that leads to (3.53) shows that E0[log l∗1; A∗
0] = I0N

∗
1 +

o(1) and a routine large deviations argument shows 1 − P0(A
∗
0) = O(Φ(− log N∗

1 )).

Plugging these two estimates into (3.58) gives

r∗0 ≥ π0[cI
−1
0 log d−1 + d(1 + um(Q0, C0I0))] + o(d).
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A straightforward application of Lemma 3.3 gives

r∗1 ≥ π1[cI
−1
1 log d−1 + d · um(Q1, C1I1)] + o(d)

and adding these last two gives (3.46).

All that remains is to verify that N∗
1 ∼ I−1

1 log d−1. Suppose that

L ≡ lim inf
d→0

N∗
1

log d−1
< I−1

1 . (3.59)

Then there is a sequence of d’s approaching 0 on which the lim inf is achieved, and

by repeating the above arguments on this sequence

r∗0 ≥ π0[cI
−1
0 log d−1 + d(1 + um(Q′

0, C0I0))] + o(d), (3.60)

where

Q′
0 ≡ lim

d→0

d/c

hm(C0(1− I0L) log d−1)

= lim
d→0

d/c(
1−I0L

1−I0/I1

)(1/2)m

hm(C0(1− I0/I1) log d−1)

= Q0 ·
(

1− I0/I1

1− I0L

)(1/2)m

∈ (0,∞].

Note further that Q′
0 < Q0 by this last. By reversing indices and repeating this

argument, conditioning on {| log(1/l∗1)−I1N
∗
1 | ≤ C−1

1

√
N∗

1 log N∗
1} instead of A∗

0, we

obtain

r∗1 ≥ π1[cI1 log d−1 + d(1 + um(Q′
1, C1I1))] + o(d)

≥ π1[cI1 log d−1 + d(m + 1)] + o(d)) (3.61)

since um ≥ m, where

Q′
1 ≡ lim

d→0

d/c

hm(C1(1− I1L) log d−1)
∈ (0,∞].
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Then, using (3.45), (3.60), and (3.61), we would have

r∗ − r(δ) = r∗0 + r∗1 − r(δ)

≥ d {π0[um(Q′
0, C0I0)− um(Q0, C0I0)] + π1[m + 1− um(Q1, C1I1)]} − o(d).

Now since um(·, C0I0) is decreasing and Q′
0 < Q0,

um(Q′
0, C0I0)− um(Q0, C0I0) > 0.

Also m + 1 − um(Q1, C1I1) > 0 since um < m + 1. Hence there exists ε > 0 such

that r∗ − r(δ) ≥ εd − o(d) > 0 for sufficiently small d. This obviously contradicts

r∗ ≤ r(δ), so (3.59) cannot hold.

On the other hand, if

η ≡ lim sup
d→0

N∗
1

log d−1
− I−1

1 > 0, (3.62)

then again on a sequence of d’s approaching zero we would have

r∗ − r(δ) = r∗0 + r∗1 − r(δ)

≥ r∗0 + π1cE1N
∗ − r(δ)

≥ π0cI
−1
0 log d−1 + π1cN

∗
1 − r(δ) (by Lemma 3.3)

≥ π0cI
−1
0 log d−1 + π1c(η + I−1

1 ) log d−1(1 + o(1))− [(π0/I0 + π1/I1)c log d−1 + O(d)]

(by (3.62) and (3.45))

= π1(η + o(1)) · c log d−1 −O(d)

= π1(η + o(1)) · c log d−1 − o(c log d−1) > 0

for sufficiently small d, again a contradiction. Thus (3.62) cannot hold either, so that

N∗
1 ∼ I−1

1 log d−1 and the proof is complete.
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3.3 A Numerical Example

The procedures δ described above in Theorems 3.2, 3.5, and 3.7 are asymptotic not

only in the sense that their optimality properties are proved in the limit as d → 0,

but also in the sense that they are defined in terms of the rates at which c, d → 0.

Thus, there may be more than one small-sample procedure that are asymptotically

equivalent to the above procedures and hence asymptotically optimal, among which a

statistician may want to choose when designing a procedure for practical applications.

In this section we describe one such small-sample procedure and give the results of a

numerical experiment comparing it to group-sequential sampling.

Choose m∗
0 and m∗

1 to be

m∗
i = inf

{
m ≥ 1 : κm(CiIi)hm(C−1

i log d−1)− κm+1(CiIi)hm+1(C
−1
i log d−1) ≤ d/c

}
,

i = 0, 1, and let δ be the test designed from the multistage sampling procedures

δm∗
i
(d/c) (the “c ∈ Bo

m(d) case” sampling procedures, as described in Section 2.63), as

described in Sections 3.2.1 and 3.2.2. That is, δ has first stage the smaller of the first

stages of the δm∗
i
, followed by the appropriate continuation, determined by whether

l1 ≥ 1 or l1 < 1.

Table 1 contains the results of a numerical experiment comparing δ with group-

sequential (i.e., constant stage-size) testing of the hypotheses µ = .25 vs. µ = −.25,

concerning the mean of normally distributed random variables with unit variance. Be-

low δg(k) denotes group-sequential testing with constant stage-size k, which samples

until ∣∣∣∣∣
∑

j

log(f0(Xj)/f1(Xj))

∣∣∣∣∣ ≥ log d−1 (3.63)

at the end of a stage. The boundary log d−1 is chosen because it is the same boundary
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Table 1
Numerical Results for Testing Normal Mean

µ = .25 vs. µ = −.25 (d = .001, πi = 1/2, wi = 1)
Test EN EM int. risk (d) 2nd-order risk (d)

d/c = 1
δ 62.2 5.2 68.0 9.5

δg(1) 57.5 57.5 115.0 56.5
δg(15) 64.9 4.6 73.0 14.5
δg(30) 76.7 2.6 80.0 21.5

d/c = 5
δ 68.3 2.9 16.7 4.2

δg(1) 57.5 57.5 69.5 57.0
δg(22) 72.7 3.3 18.0 5.5
δg(44) 83.6 1.9 18.9 6.4

d/c = 10
δ 76.6 1.9 9.8 2.9

δg(1) 57.5 57.5 63.8 57.1
δg(37) 80.5 2.2 10.4 3.7
δg(74) 97.6 1.3 11.2 4.5

used by δ. Indeed, recall that δ will stop sampling the first time

Ci log d−1 ≤
∣∣∣∣∣Ci

∑
j

Y
(i)
j

∣∣∣∣∣ =

∣∣∣∣∣Ci

∑
j

log(fi(Xj)/f1−i(Xj))

∣∣∣∣∣

⇔ log d−1 ≤
∣∣∣∣∣
∑

j

log(f0(Xj)/f1(Xj))

∣∣∣∣∣ ,

where i = 1{sign(log l1) ≤ 0}.
For each value of d/c, the operating characteristics of δg(k) are given for k = 1, the

best possible k (determined by simulation), and two times the best possible k. Since

both δ and δg must sample until (3.63) occurs, the cost of number of observations

required for this and the first stage represents a “fixed cost” which all procedures will

incur. Thus, we obtain a more accurate comparison of the efficiency due to sampling

by considering the 2nd-order risk of the procedures, defined as

integrated risk −(cEN (1) + d),
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where N (1) is the number of observations of δg(1).

The results show significant improvement in the integrated risk and 2nd-order risk

of δ over δg. The size of the smallest possible 2nd-order risk is not known, so it is

difficult to say how much further improvement is possible without backward induction

type calculations, which remain prohibitively large in this general setting. We would

expect the difference between δ and the best group sequential test to decrease for

larger values of d/c, since EM∗ → 1 in this limit.

The procedure δ is asymptotically optimal by virtue of Theorems 3.5 and 3.7 when

c ∈ Bo
m(d) since m∗

i = m for sufficiently small d. This is true since

κm(CiIi)hm(Ci log d−1)−κm+1(CiIi)hm+1(Ci log d−1)− d/c

= (d/c) ·
[
O

(
hm(log d−1)

d/c

)
−O

(
hm+1(log d−1)

d/c

)
− 1

]

= (d/c) · [o(1)− o(1)− 1] → −∞,

so

κm(CiIi)hm(Ci log d−1)− κm+1(CiIi)hm+1(Ci log d−1) ≤ d/c

and similarly

κk(CiIi)hk(Ci log d−1)− κk+1(CiIi)hk+1(Ci log d−1) > d/c

for all k < m and for sufficiently small d. Thus m∗
i and m will coincide for sufficiently

small d.
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Chapter 4

Multistage Tests of Composite
Hypotheses

In this chapter we extend the methods developed in Chapters 2 and 3 to the contin-

uous setting. Consider testing the two separated composite hypotheses

H0 : θ ≤ θ ≤ θ0 vs. H1 : θ0 < θ1 ≤ θ ≤ θ, (4.1)

by sampling i.i.d. random variables X1, X2, . . . in stages, whose distribution belongs

to the exponential family of densities

fθ(x) ≡ exp(θx− ψ(θ)),

with respect to some non-degenerate σ-finite measure. Assume that [θ, θ] is contained

in the interior of the natural parameter space, so that ψ is infinitely differentiable on

[θ, θ] and ψ′(θ) = EθX1, ψ′′(θ) = VarθX1, where Eθ, Varθ denote expectation and

variance under fθ. We denote multistage tests of the hypotheses (4.1) by triples

(N,M, D), where N is the total number of observations, M is the total number of

stages, and D is the decision variable, taking values in {0, 1}. Again we assume

a cost per observation c and a cost per stage d which will both approach zero at

rates described below. Given a Lebesgue prior density λ0 for the true parameter θ,

positive and bounded on its support [θ, θ], and a loss function w(θ) representing the

penalty for a wrong decision when θ is the true value of the parameter, vanishing on
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(θ0, θ1) and bounded away from 0 and ∞ on [θ, θ0] ∪ [θ1, θ], a natural measure of the

performance of a procedure δ = (N, M, D) is its integrated risk,

r(λ0, δ) ≡
∫ θ

θ

[cEθN + dEθM + w(θ)Pθ(δ makes wrong decision)]λ0(θ)dθ, (4.2)

where Pθ denotes probability under fθ.

We define a family of multistage tests of the hypotheses (4.1) in Section 4.2,

establish bounds on their operating characteristics, and, after a detailed analysis of

the Bayes test in Section 4.3, show that they minimize the integrated risk to second-

order as c, d → 0. These variable stage-size procedures are similar to those considered

in Chapters 2 and 3, yet the continuum of possible values of the parameter θ, which

must be re-estimated at the end of each stage, makes the arguments considerably

more intricate. These procedures also share a property of those of Section 3.2.2 that

utilize an “exploratory” first stage – a stage whose size is a smaller order of magnitude

than the first stage of any relevant simple hypothesis test. This first stage allows the

the “true” parameter value to be sufficiently well estimated to design future stages.

In Section 4.4 we present the results of a numerical experiment comparing our

procedure with group sequential (i.e., constant stage size) testing. The results show

that these variable stage size tests significantly improve upon group sequential sam-

pling, but also suggest that more efficient practical procedures are possible through

a higher level of theoretical refinement.

As one may expect from (4.2), the nature of efficient tests depends heavily on

the rates at which c, d → 0. As was done is Chapter 3, we will assume that d is

the independent variable and that c = c(d), though this choice is arbitrary. We

also continue to assume, for any sequence of d’s approaching zero, that the sequence

{(log d−1, d/c)} is either in the mth critical band, i.e.,

hm(log d−1) ¿ d/c ¿ hm−1(log d−1), (4.3)
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or on the boundary between critical bands m and m + 1, i.e.,

lim
d→0

d/c

hm(log d−1)
∈ (0,∞) (4.4)

for some m ≥ 1. We summarize this assumption by saying c ∈ Bm(d), where

Bo
m(d) ≡ {c : (0, 1) → (0, 1)| hm(log d−1) ¿ d/c ¿ hm−1(log d−1)},
B+

m(d) ≡
{

c : (0, 1) → (0, 1)

∣∣∣∣
d/c

hm(log d−1)
→ Q, some Q ∈ (0,∞)

}
,

and Bm(d) ≡ Bo
m(d) ∪ B+

m(d).

As discussed in Sections 2.1 and 3.1, these definitions suffice to give a useful descrip-

tion of asymptotic optimality.

4.1 Preliminaries

Define a test of the hypotheses (4.1) to be a triple (N, M, D) where N = (N1, N2, . . .)

is a sequence of stopping variables satisfying the the measurability requirement (2.63).

Nk should be interpreted as the size of the kth stage and Nk ≡ N1 + · · · + Nk the

sample size through the kth stage. M is the number of stages before decision and, as

a convenient abuse of notation, we also let N denote the total sample size, NM .

Assume for convenience that

θ0 < 0 < θ1, ψ(0) = ψ′(0) = 0, and ψ(θ0) = ψ(θ1).

This standardization essentially involves subtracting Eθ2X1 from the Xi and θ2 from

θ, where θ2 is the unique solution of

ψ′(θ2) =
ψ(θ1)− ψ(θ0)

θ1 − θ0

(see [2], Proposition 1.6), and it has the convenient feature that sign(θ) = sign(ψ′(θ)).

Let Sk = X1 + · · · + Xk and, given a test (N, M, D), let Sk = SNk . Let θ̂∗(n) =
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(ψ′)−1(Sn/n), the (unrestricted) MLE of θ, and let θ̂(n) denote the [θ, θ]-retricted

MLE. We will use the shorthand θ̂∗k, θ̂k for θ̂∗(Nk), θ̂(Nk), with respect to a given

test. It will prove useful to associate each point (n, Sn) with a point in the half-plane

{(t, s) : 1 ≤ t < ∞,−∞ < s < ∞}.

Thus we define the continuous analog of θ̂, namely

θ̂(s, t) ≡





θ if s > tψ′(θ)

θ if s < tψ′(θ)

(ψ′)−1(s/t) otherwise.

Let

I(θ, ϑ) = Eθ log[fθ(X1)/fϑ(X1)] = (θ − ϑ)ψ′(θ)− ψ(θ) + ψ(ϑ),

the Kullback-Leibler information number. Given a value θ, we will be interested in

the “closest competitor” – the parameter value in the set {θ0, θ1} minimizing I(θ, ·).
Thus, given θ, define

θ′ =





θ0, if θ ≥ 0

θ1, if θ < 0.

Indeed,

I(θ, θ′) =





minϑ≤θ0 I(θ, ϑ), if θ ≥ 0

minϑ≥θ1 I(θ, ϑ), if θ < 0.

We will often use the convenient shorthand I(θ) ≡ I(θ, θ′). We also define a slight

extension of I(θ) that will be useful in proving convergence results near the endpoints

of [θ, θ], namely

Iϑ(θ) ≡ (θ − θ′)ψ′(ϑ)− ψ(θ) + ψ(θ′).
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For functions g, continuous on [θ, θ], we employ the generic notation

g ≡ max
θ∈[θ,θ]

g(θ), g ≡ min
θ∈[θ,θ]

g(θ).

Applying this to I(θ), it is easy to see that

I = I(θ) ∨ I(θ), I = I(0).

Let

`(t, θ) ≡ (θ − θ′)s− t[ψ(θ)− ψ(θ′)],

the continuous analog of the log-likelihood ratio of θ versus θ′. Note that dependence

on s is suppressed in notation; this should not cause confusion as the value of s is

often contained in the value of θ used, e.g., `(t, θ̂(s, t)) = tIθ̂∗(s,t)(θ̂(s, t)). We will use

the shorthand `k = `(Nk, θ̂k), with respect to a given test.

Let

Eλ0(·) =

∫ θ

θ

Eθ(·)λ0(θ)dθ,

the λ0-mixture of θ-expectations, and Pλ0(·) = Eλ01{·}. We associate each point (s, t)

with the density

λ(s,t)(θ) ≡ λ0(θ) exp[θs− tψ(θ)]
∫ θ

θ
λ0(ϑ) exp[ϑs− tψ(ϑ)]dϑ

.

Note that λ(s,t) can be interpreted as a prior density, “moving forward” from (s, t), or

a posterior density, since λ(Sn,n) is in fact the posterior density of θ given X1, . . . , Xn.

λk will denote λ(Sk,Nk) with respect to a given test.

Define the posterior risk of rejecting θ ≤ θ0 by

Y0(s, t) =

∫ θ0

θ
w(ϑ) exp[ϑs− tψ(ϑ)]λ0(ϑ)dϑ
∫ θ

θ
exp[ϑs− tψ(ϑ)]λ0(ϑ)dϑ

,
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and the posterior risk of rejecting θ ≥ θ1 by

Y1(s, t) =

∫ θ

θ1
w(ϑ) exp[ϑs− tψ(ϑ)]λ0(ϑ)dϑ
∫ θ

θ
exp[ϑs− tψ(ϑ)]λ0(ϑ)dϑ

.

Then the stopping risk at (s, t) is

r(λ(s,t)) = (Y0(s, t) ∧ Y1(s, t)).

Note that, with respect to a given test δ = (N, M, D),

Eλ0r(λM) = Eλ0 [w(θ); δ makes wrong decision],

so we may write

r(λ0, δ) = Eλ0 [cN + dM + r(λM)].

The first auxiliary lemma gives a bound on the rate of convergence of the expected

inverse information number.

Lemma 4.1. As n →∞,

EθIθ̂∗(n)(θ̂(n))−1 = I(θ)−1 + O(1/n) (4.5)

uniformly for θ ∈ [θ, θ].

Remark. If N = N(d) is a stopping time and n(d) a function such that N ≥ n a.s.

and n(d) →∞ as d → 0, then the lemma implies

EθIθ̂∗(N)(θ̂(N))−1 = I(θ)−1 + O(1/n)

as d → 0; the lemma will frequently be used in this form.

Proof. It suffices to prove (4.5) for all θ ∈ [θ, θ] since uniformity follows from

continuity of θ 7→ EθIθ̂∗n
(θ̂n)−1 − I(θ)−1 and compactness of [θ, θ]; see, for example,
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[26], Theorem 7.25.

Let ϕ = (ψ′)−1, Xn = n−1(X1 + · · · + Xn), N be the natural parameter space,

and J = ψ′(N ). For x ∈ J define

g(x) =





g1(x) ≡ I(ϕ(x))−1, x ∈ J1 ≡ [ψ′(θ), ψ′(θ)]

g2(x) ≡ Iϕ(x)(θ)
−1, x ∈ J2 ≡ (ψ′(θ), sup J)

g3(x) ≡ Iϕ(x)(θ)
−1, x ∈ J3 ≡ (inf J, ψ′(θ))

so that g(Xn) = Iθ̂∗(n)(θ̂(n))−1 and we can write

EθIθ̂∗n
(θ̂n)−1 − I(θ)−1 = Eθ[g(Xn)− g(ψ′(θ))]

=
3∑

i=1

Eθ[gi(Xn)− g(ψ′(θ)); Xn ∈ Ji] ≡
3∑

i=1

Ai. (4.6)

First consider θ ∈ (θ, θ). Since g(ψ′(θ)) = g1(ψ
′(θ)), using a Taylor series we can

write

g1(Xn)− g(ψ′(θ)) = g′1(ψ
′(θ))(Xn − ψ′(θ)) + R1(Xn),

where |R1(Xn)| ≤ (Xn − ψ′(θ))2|g′′1 |/2. Then

A1 = Eθ[g1(Xn)− g(ψ′(θ)); Xn ∈ J1]

= Eθ[g
′
1(ψ

′(θ))(Xn − ψ′(θ)) + R1(Xn); Xn ∈ J1]

= g′1(ψ
′(θ))Eθ[Xn − ψ′(θ); Xn ∈ J1] + Eθ[R1(Xn); Xn ∈ J1].

Since EθXn = ψ′(θ),

Eθ[Xn − ψ′(θ); Xn ∈ J1] = −Eθ[Xn − ψ′(θ); Xn ∈ J2 ∪ J3]

and

Eθ[Xn − ψ′(θ); Xn ∈ J2] = (ψ′(θ)− ψ′(θ))Pθ(Xn > ψ′(θ)) + Eθ(Xn − ψ′(θ); Xn > ψ′(θ))

≤ (ψ′(θ)− ψ′(θ))Pθ(Xn > ψ′(θ)) + Eθ(Xn − a∗; Xn > a∗), (4.7)
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where a∗ ≡ ψ′(θ) + n−5/14
√

ψ′′(θ) < ψ′(θ), for sufficiently large n. Using large

deviations,

Pθ(Xn > ψ′(θ)) = Pθ

(
Xn − ψ′(θ)√

ψ′′(θ)/n
>

[
ψ′(θ)− ψ′(θ)√

ψ′′(θ)

]
√

n

)

≤ Pθ

(
Xn − ψ′(θ)√

ψ′′(θ)/n
> n1/7

)

∼ Φ(−n1/7) = o(1/n). (4.8)

Also, since (na∗ − nψ′(θ))/
√

nψ′′(θ) = n1/7 = o(n1/6),

Eθ(Xn − a∗; Xn > a∗) = n−1Eθ(nXn − na∗; nXn > na∗)

∼ n−1 · φ(n1/7)

n1/7

√
n = o(1/n) (4.9)

by Lemma 2.10. Plugging these two estimates into (4.7) gives

Eθ[Xn − ψ′(θ); Xn ∈ J2] = o(1/n)

and the same argument works on J3 so we have

|Eθ[Xn − ψ′(θ); Xn ∈ J1]| = o(1/n).

|Eθ[R1(Xn); Xn ∈ J1]| ≤ (|g′′1 |/2)Eθ[(Xn − ψ′(θ))2; Xn ∈ J1]

≤ (|g′′1 |/2)Varθ(Xn)

= (|g′′1 |/2)ψ′′(θ)/n = O(1/n), (4.10)

giving |A1| ≤ O(1/n).
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To estimate A2 observe that, for Xn ∈ J2, g2(Xn) ≤ g2(ψ
′(θ)) = I(θ)−1, so

|A2| = |Eθ[g2(Xn)− g(ψ′(θ)); Xn ∈ J2]|
≤ |I(θ)−1 + I(θ)−1|Pθ(Xn ∈ J2)

= |I(θ)−1 + I(θ)−1|Pθ(Xn > ψ′(θ))

= o(1/n) (4.11)

by (4.8). A3 is handled similarly and plugging into (4.6) shows that (4.5) holds for

θ ∈ (θ, θ).

Next we consider the θ = θ case; θ = θ is handled similarly. Observe that

g(ψ′(θ)) = g1(ψ
′(θ)) = g2(ψ

′(θ)) and a simple computation verifies that g′1(ψ
′(θ)) =

g′2(ψ
′(θ)). Then, using the same expansion (4.6) and defining R2 by analogy with R1,

|A1 + A2| =

∣∣∣∣∣
2∑

i=1

Eθ[gi(Xn)− gi(ψ
′(θ)); Xn ∈ Ji]

∣∣∣∣∣

=

∣∣∣∣∣
2∑

i=1

Eθ[g
′
i(ψ

′(θ))(Xn − ψ′(θ)) + Ri(Xn); Xn ∈ Ji]

∣∣∣∣∣

≤ |g′1(ψ′(θ))Eθ[Xn − ψ′(θ); Xn ∈ J1 ∪ J2]|+
∣∣∣∣∣

2∑
i=1

Eθ[Ri(Xn); Xn ∈ Ji]

∣∣∣∣∣

= o(1/n) +

∣∣∣∣∣
2∑

i=1

Eθ[Ri(Xn); Xn ∈ Ji]

∣∣∣∣∣ ,

using the argument leading to (4.9). Repeating the argument leading to (4.10) gives

∣∣∣∣∣
2∑

i=1

Eθ[Ri(Xn); Xn ∈ Ji]

∣∣∣∣∣ ≤ O(Varθ(Xn)) = O(1/n)

and hence |A1 + A2| ≤ O(1/n). The same argument leading to (4.11) gives |A3| ≤
o(1/n) and combining this with |A1 + A2| = O(1/n) shows that (4.5) holds at θ = θ,

as well as θ = θ.

The next two lemmas are Laplace-type expansions of the stopping risk due to

Lorden [23].
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Lemma 4.2.

`(t, θ̂(s, t)) + O(1) ≤ log Y0(s, t)
−1 ≤ `(t, θ̂(s, t)) + O(log t)

uniformly for s ≥ 0 as (s ∨ t) →∞.

Lemma 4.3. For every n, as t →∞

log Y0(s + Sn, t + n)−1 = log Y0(s, t)
−1 + `(n, θ̂(s, t)) + o(1)

uniformly for

ψ′(θ0) + ε ≤ s/t ≤ ψ′(θ)− ε and

∣∣∣∣
s + Sn

t + n
− ψ′(θ̂(s, t))

∣∣∣∣ ≤ ε/2,

where ε > 0.

Remark. Lemmas 4.2 and 4.3 hold with Y0 replaced by Y1 and the restrictions

appropriately modified for s ≤ 0.

Define

a = log d−1, ak = a− log r(λk)
−1 for k ≥ 1

with respect to a given test. We will see below that ak represents, after k stages of

the given efficient procedure, the amount the log inverse stopping risk must further

increase before stopping. The next lemma gives bounds on the difference of successive

ak for any procedure satisfying some mild bounds.

Lemma 4.4. Let k ≥ 1 and δ = (N,M,D) be any procedure such that there is a

function n(d) → ∞ and a constant C < ∞ satisfying n(d) ≤ N1 and N ≤ aC a.s.

Then, under δ,

`(Nk+1, θ̂k)−O(log a) ≤ ak − ak+1 ≤ `(Nk+1, θ̂k+1) + O(log a).
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Proof. The restrictions on N allow us to write | log r(λi)
−1 − `i| ≤ O(log a) for

i = k, k + 1, by Lemma 4.2 and its analog for Y1(s, t). Using this,

ak+1 = a− log r(λk+1)
−1

≤ a− `k+1 + O(log a)

≤ a− `(Nk+1, θ̂k) + O(log a) (since `k+1 ≥ `(Nk+1, θ̂k))

= a− `k − `(Nk+1, θ̂k) + O(log a)

≤ ak − `(Nk+1, θ̂k) + O(log a),

which gives the first inequality. On the other hand,

ak+1 ≥ a− `k+1 + O(log a)

= a− `(Nk, θ̂k+1)− `(Nk+1, θ̂k+1) + O(log a)

≥ a− `k − `(Nk+1, θ̂k+1) + O(log a) (since `k ≥ `(Nk, θ̂k+1))

≥ ak − `(Nk+1, θ̂k+1) + O(log a),

which gives the second inequality.

4.2 The Tests δα and δ

In this section we define a test δ and prove bounds on its operating characteristics.

Examining the properties of the Bayes procedure in Section 4.3 will show that δ is

second-order optimal.

For x, σ > 0, let t = t(z, x, µ, σ) be the unique solution of

x− µt

σ
√

t
= z,

i.e.,

t(z, x, µ, σ) =
x

µ
− zσ

√
4xµ + z2σ2 − z2σ2

2µ2
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by a simple computation. If Z is a standard normal random variable, then

P (σ
√

tZ + µt ≥ x) = Φ(−z).

Therefore, under appropriate regularity conditions that allow Central Limit Theorem-

type approximations, the probability that a random process with mean µ and variance

σ2 per unit time will be across a boundary x units away at the end of a stage of size

t(zp, x, µ, σ) approaches p. We will use this idea to define δ.

The procedure δ begins with an “exploratory” first stage and then follows with, on

average, m−1 “conservative” stages using the MLE as an estimate for the true value of

θ and ak as an estimate for the distance from the current value of the log-likelihood

ratio to the optimal boundary. If c ∈ B+
m(d), the (m + 1)st stage is a “critical”

stage in the sense that the stopping probability is determined by limd→0(d/c)/hm(a)

and bounded away from 0 and 1, followed (if necessary) by geometric sampling with

stopping probability approaching 1. If c ∈ Bo
m(d), no critical stage is necessary so the

(m + 1)st stage begins the geometric sampling. The stopping risk is computed after

each stage and δ stops as soon as the stopping risk is no greater than d, or equivalently,

when ak ≤ 0. The value of D is determined of course by which hypothesis has smaller

posterior risk of rejection. In addition, the total sample size N has a fixed upper

bound n, defined below.

We first define a sub-family of tests, {δα}α>0, which we will use to define δ = δα(d)

for a function α(d) that approaches 0 as d → 0. (In practice, this limiting process can

be dispensed with and δ0 can simply be used; see Section 4.4.) After an “exploratory”

first stage, δα essentially mimics the procedures defined in Chapters 2 and 3 by taking

as large a sample as possible at each stage while keeping the sampling costs the correct

order of magnitude, but while “estimating all parameters as it goes along.”

Specifically, for α ≥ 0, k = 1, 2, . . . let

ξα
k (θ) =

[
1− I(θ)

(1 + α)I

](1/2)k−1 [
(θ − θ′)2ψ′′(θ)

I(θ)

]1−(1/2)k−1

(4.12)
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and let ξk(θ) = ξ0
k(θ). The ξα

k represent the units of the smallest possible (in proba-

bility) ak and play a similar role to the κm in Chapters 2 and 3. Observe that the ξα
k

satisfy

ξα
k+1(θ) =

√
ξα
k (θ) · (θ − θ′)2ψ′′(θ)

I(θ)
. (4.13)

We will let ξα
k = ξα

k (θ̂k) with respect to a given procedure. Recall the constants

defined in Section 2.1.3,

Cm
m =

m−1∏
i=1

[
(1/2)m−1−i − (1/2)m−1

](1/2)i+1

and that Lemma 2.10 established

√
F

(m−1)
d/c (a) ∼ Cm

mhm(a)

when c ∈ B+
m(d). For Q > 0 let zα(θ,Q) be the unique solution of

Φ(−zα(θ,Q))

φ(zα(θ,Q))
=

QI(θ)Cm
m

ξα
m+1(θ)

(4.14)

and let zα
m(Q) = zα(θ̂m, Q) with respect to a given procedure.

Now fix 0 < α < 1 and let δα = (N,M,D). Let

µ∗k = I(θ̂∗k)

σ∗2k = [θ̂∗k − (θ̂∗k)
′]2ψ′′(θ̂∗k)

with respect to δα, which we now define. Let n = d3a/Ie and

N1 =

⌈
a

(1 + α)I

⌉

Nk+1 = dt(
√

log(ak/(d/c)2 + 1), ak, µ
∗
k, σ

∗
k)e1{ak > 0} ∧ (n−Nk)
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for 1 ≤ k < m. When c ∈ Bo
m(d), let

Nm+k+1 = dt(z, am+k, µ
∗
m+k, σ

∗
m+k)e1{am+k > 0} ∧ (n−Nm+k) (4.15)

for k ≥ 0, where z → −∞ satisfies hm(a)|z| = o(d/c); z represents the standard

normal upper quantile for geometric sampling. In this c ∈ Bo
m(d) case we then let

δ = δα(d) for any function α(d) → 0 as d → 0; e.g., α(d) = d suffices. If c ∈ B+
m(d)

and Q ≡ limd→0(d/c)/hm(a) ∈ (0,∞), then

Nm+1 = dt(zα
m(Q), am, µ∗m, σ∗m)e1{am > 0} ∧ (n−Nm),

where Nm+1+k is given by (4.15) for k ≥ 1. In this boundary case also, δ = δα(d),

where α(d) → 0 as d → 0, but the function α(d) will be specified in the proof of

Theorem 4.10. Finally, let

M = inf{k ≥ 1 : ak ≤ 0 or Nk = n}.

Observe that r(λM) ≤ d under δα since, on {N < n},

r(λM) = exp(− log r(λM)−1)

= exp(aM − a)

≤ exp(−a) (since aM ≤ 0 on {N < n})
= d,
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while on {N = n},

r(λM) = exp(− log r(λM)−1)

≤ exp(−`M + O(1)) (by Lemma 4.2)

≤ exp(−NI(θ̂M) + O(1))

≤ exp(−nI + O(1))

= exp(−3a + O(1)) ≤ e−2a = d2

for sufficiently small d. The lemmas that follow establish further properties of sam-

pling under δα.

For ε > 0 and k ≥ 1 let

Vk(ε) =
{∣∣∣θ̂∗k − θ

∣∣∣ ≤ ε
}

with respect to δα. Note that the dependence on θ is suppressed in notation; this

should not cause confusion as its probability will always be computed under Pθ for

the same value of θ. The next lemma gives a lower bound on the rate at which

Pθ(Vk(ε)) → 1.

Lemma 4.5. Let k ≥ 1. There exists η > 0 such that

Pθ(Vk(ε)) ≥ 1− 2 exp(−ηε2a) (4.16)

for all 0 < ε < 1, uniformly for θ ∈ [θ, θ]. In particular, Pθ(Vk(ε)) → 1 uniformly for

θ ∈ [θ, θ] even if ε → 0, provided ε
√

a →∞.

Proof. Let 0 < ε < 1.

Pθ(θ̂
∗
k > θ + ε) = Pθ((ψ

′)−1(Sk/Nk) > θ + ε) = Pθ(S
k > Nkψ′(θ + ε))
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since ψ′ is increasing. By Theorem 7.5 of [2],

Pθ(Sn > x) ≤ exp[−nI((ψ′)−1(x/n), θ)].

Using this and letting ηo = [(1 + α)I]−1 so that Nk ≥ N1 ≥ ηoa,

Pθ(θ̂
∗
k > θ + ε) ≤ exp[−ηoaI(θ + ε, θ)] ≤ exp[−ηε2a],

some η > 0, since I(θ + ε, θ) ≥ η′oε
2, some η′o > 0. The other tail is handled similarly

and the second claim follows immediately from (4.16).

For ε > 0 and k ≥ 1 let

Uk(ε) =
{

ak > (1 + ε)ξα
k F

(k−1)
d/c (a)

}
.

The next two lemmas will allow us to make precise statements about the behavior of

ak under δα.

Lemma 4.6. Under δα there exists η > 0 such that for any 0 < ε < 1,

Pθ

(∣∣∣∣
a1

ξα
1 a
− 1

∣∣∣∣ > ε

)
= O(Φ(−(ηε

√
a ∧ a1/7))) (4.17)

uniformly for θ ∈ [θ, θ].

Proof. By Lemma 4.2, a1 ≤ a− `1 + O(1), so

Pθ(U1(ε)) ≤ Pθ(`1 < −a[(1 + ε)ξα
1 − 1] + O(1)) = Pθ

(
`1 − µ1N1

σ1

√
N1

< ζ

)
,

where

ζ ≡ −a[(1 + ε)ξα
1 − 1]− µ1N1 + O(1)

σ1

√
N1

.



127

Since 0 ≤ N1 − a/[(1 + α)I] < 1,

ζ ≤
−a

[
(1 + ε)

(
1− µ1

(1+α)I

)
− 1

]
− µ1a

(1+α)I

σ1

√
a

(1+α)I
+ 1

+ o(1)

≤
−aε

(
1− µ1

(1+α)I

)

σ1

√
2a

(1+α)I

+ o(1)

≤ −ηε
√

a,

where

η ≡ α

2
√

2ψ′′(1 + α)/I
> 0,

say. Thus ζ ≤ −ηε
√

a ≤ −(ηε
√

a ∧ a1/7), and

(ηε
√

a ∧ a1/7) ≤ a1/7 = o(a1/6) = o((N1)
1/6),

so by large deviations,

Pθ(a1 > (1 + ε)ξα
1 a) ≤ Φ(−(ηε

√
a ∧ a1/7))(1 + o(1)).

The other tail is handled similarly to prove (4.17).

Lemma 4.7. If c ∈ Bm(d), then under δα, for 1 ≤ k ≤ m,

ak

ξα
k F

(k−1)
d/c (a)

→ 1

in Pθ-probability as d → 0, uniformly for θ ∈ [θ, θ].

Proof. The k = 1 case holds a fortiori by Lemma 4.6. Assume 2 ≤ k ≤ m and let

F k denote F
(k)
d/c(a). Fix 0 < ε < 1. By Lemma 4.4, ak+1 ≤ ak− `(Nk+1, θ̂k)+O(log a),
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so

Uk+1(ε) ⊆
{

`(Nk+1, θ̂k) < ak − (1 + ε)ξα
k+1F

k + O(log a)
}

=

{
`(Nk+1, θ̂k)− µkNk+1

σk

√
Nk+1

< ζk+1

}

where

ζk+1 ≡
ak − µkNk+1 − (1 + ε)ξα

k+1F
k + O(log a)

σk

√
Nk+1

.

Let 0 < η → 0 at a rate which will be determined below. Letting primes denote

complements, on U ′
k(ε/10) ∩ Vk(η),

ζk+1 =
σ∗k
σk

· ak − µ∗kNk+1

σ∗k
√

Nk+1

+
√

Nk+1 · µ∗k − µk

σk

− (1ε)ξ
α
k+1F

k + O(log a)

σk

√
Nk+1

=
σ∗k
σk

√
log ak/(d/c)2 +

√
Nk+1 · µ∗k − µk

σk

− (1ε)ξ
α
k+1F

k + O(log a)

σk

√
Nk+1

≤ σ∗k
σk

√
log F k−1/(d/c)2 + O(

√
F k−1) ·O(|µ∗k − µk|)−

(1 + ε)ξα
k+1F

k

σk

√
(1 + ε/10)ξα

k F k−1/µ∗k
+ O(1)

=
σ∗k
σk

√
log F k−1/(d/c)2 + O(

√
F k−1 · η)

−(1 + ε)

√
µ∗k

σkξα
k (1 + ε/10)

· ξα
k+1

√
F k−1/(d/c)2 + O(1). (4.18)

Let

η = ε1

√
log F k−1/(d/c)2

F k−1
,

where ε1 > 0 is small enough that the O(
√

F k−1 · η) term in (4.18) is less than

(ε/10)
√

log F k−1/(d/c)2.

η
√

a = ε1

√
log F k−1/(d/c)2

F k−1

≥ ε1

√
log F k−1/(d/c)2

a
· √a (since k ≥ 2 ⇒ F k−1 ¿ a)

= ε1

√
log F k−1/(d/c)2 →∞,
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so Pθ(Vk(η)) → 1 by Lemma 4.5. Since both

σ∗k
σk

,

√
µ∗k

σkξα
k

ξα
k+1 → 1

as η → 0, we may assume η is small enough that

σ∗k
σk

≤ 1 + ε/10, ξα
k+1

√
µ∗k

σkξα
k

≥ 1− ε/10.

Plugging these and the above bound for the O(
√

F k−1 · η) term into (4.18),

ζk+1 ≤ −
√

log F k−1/(d/c)2

[
(1 + ε)

(1− ε/10)√
1 + ε/10

− (1 + ε/10)− ε/10

]
+ 1

≤ −
√

log F k−1/(d/c)2[(1 + ε)(1− ε/10)(1− ε/20)− 1− ε/5] + 1

≤ −(ε/2)
√

log F k−1/(d/c)2 + 1 → −∞

on U ′
k(ε/10) ∩ Vk(η), hence Pθ(Uk+1(ε) ∩ U ′

k(ε/10) ∩ Vk(η)) → 0. Then

Pθ(Uk+1(ε)) = o(1) + P (Uk+1(ε) ∩ (U ′
k(ε/10) ∩ Vk(η))′)

≤ o(1) + Pθ(Uk(ε/10)) + Pθ(V
′
k(η)) = o(1)

using the induction hypothesis and the fact that Pθ(Vk(η)) → 1. The other tail is

handled similarly to show

Pθ

(∣∣∣∣
ak+1

ξα
k+1F

k
− 1

∣∣∣∣ > ε

)
→ 0,

completing the induction and the proof.

Lemma 4.8. If c ∈ Bm(d), then there is a function γ = γ(d) such that

γ =





o
(

d/c
hm(a)

)2

, if c ∈ Bo
m(d)

O(1), if c ∈ B+
m(d)

(4.19)
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and, under δα,

Pθ(am > γF
(m−1)
d/c (a)) = o

(
d/c

a

)
(4.20)

uniformly for θ ∈ [θ, θ] as d → 0.

Proof. Let F k denote F
(k)
d/c(a) and Ũk(x) = {ak > xF k−1}. We proceed by induction

on m. For m = 1, since a1 ≤ a + O(1) and F 0 = a, taking γ ≡ 2 gives

Pθ(Ũ1(γ)) ≤ Pθ(a < O(1)) = 0

for sufficiently small d, which satisfies (4.19).

Fix m ≥ 2. We now prove by induction on k that, for 1 ≤ k ≤ m − 1, there are

constants Ck < ∞ such that

Pθ(Ũk(Ck)) = o

(
d/c

a

)
. (4.21)

The same argument used in the m = 1 case shows that C1 ≡ 2 suffices. Thus assume

2 ≤ k + 1 ≤ m − 1 and that (4.21) holds; we now show it holds with k replaced by

k + 1. Since ak+1 ≤ ak − `(Nk+1, θ̂k) + O(log a) by Lemma 4.4,

Pθ(Ũk+1(Ck+1)) ≤ Pθ(`(Nk+1, θ̂k) < ak − Ck+1F
k + O(log a))

= Pθ

(
`(Nk+1, θ̂k)− µk(θ)Nk+1

σk(θ)
√

Nk+1

< ζ

)
, (4.22)

where

ζ ≡ ak − µk(θ)Nk+1 − Ck+1F
k + O(log a)

σk(θ)
√

Nk+1

=
σ∗k

σk(θ)

ak − µ∗kNk+1

σ∗k
√

Nk+1

+
√

Nk+1 · µ∗k − µk(θ)

σk(θ)
− Ck+1F

k + O(log a)

σk(θ)
√

Nk+1

=
σ∗k

σk(θ)

√
log ak/(d/c)2 +

√
Nk+1 · µ∗k − µk(θ)

σk(θ)
− Ck+1F

k + O(log a)

σk(θ)
√

Nk+1

.(4.23)
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Let ε > 0 and Ck satisfy (4.21) so that on Ũ ′
k(Ck) ∩ Vk(ε),

σ∗k
σk(θ)

√
log ak/(d/c)2 = O

(√
log F k−1/(d/c)2

)
, (4.24)

√
Nk+1 · µ∗k − µk(θ)

σk(θ)
≤

√
ak/µ∗k ·O(ε) = O(ε

√
F k−1), (4.25)

Ck+1F
k + O(log a)

σk(θ)
√

Nk+1

≥ F k

σk(θ)
√

F k−1
+ o(1) ≥ η

√
log F k−1/(d/c)2, (4.26)

some η > 0. Now let

ε = C

√
log F k−1/(d/c)2

F k−1

where C < ∞ will be determined below. By Lemma 4.5 there exists ηo > 0 such that

Pθ(V
′
k(ε)) ≤ 2 exp(−ηoε

2a) and

ηoε
2a ≥ ηoC

2 log[F k−1/(d/c)2]

F k−1
· a ≥ ηoC

2 log[F k−1/(d/c)2].

Furthermore,

F k−1

(d/c)2
≥ Fm−3

(d/c)2
(since k − 1 ≤ m− 3)

≥ η′o ·
hm−2(a)2

(d/c)2
(some η′o > 0 by Lemma 2.6)

≥ η′o ·
hm−2(a)2

hm−1(a)2
≥ a(1/2)m−1

(4.27)

for sufficiently small d, so that

ηoε
2a ≥ ηoC

2(1/2)m−1 log a ≥ log a

by choosing C sufficiently large. Then

Pθ(V
′
k(ε)) ≤ 2 exp(− log a) = 2a−1 = o

(
d/c

a

)
. (4.28)
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Plugging the estimates (4.24)-(4.26) into (4.23), on Ũ ′
k(Ck) ∩ Vk(ε)

ζ ≤ O
(√

log F k−1/(d/c)2
)

+ O
(√

log F k−1/(d/c)2
)
− Ck+1η

√
log F k−1/(d/c)2

≤ −
√

log F k−1/(d/c)2 · (Ck+1η −O(1))

≤ −
√

log a2 (4.29)

by taking Ck+1 sufficiently large and using (4.27). Then, using (4.21), (4.28), and a

large deviations argument,

Pθ(Ũk+1(Ck+1)) ≤ Pθ(Ũk+1(Ck+1) ∩ Ũ ′
k(Ck) ∩ Vk(ε)) + Pθ(Ũk(Ck)) + P (V ′

k(ε))

≤ P

({
`(Nk+1, θ̂k)− µk(θ)Nk+1

σk(θ)
√

Nk+1

< −
√

log a2

}
∩ Ũ ′

k(Ck) ∩ Vk(ε)

)
+ o

(
d/c

a

)

≤ O
(
Φ(−

√
log a2)

)
+ o

(
d/c

a

)
,

and, using Mill’s Ratio,

Φ(−
√

log a2) ∼ φ(
√

log a2)√
log a2

= O

(
a−1

√
log a2

)
= o

(
d/c

a

)
, (4.30)

so Pθ(Ũk+1(Ck+1)) = o((d/c)/a). This completes the induction to prove (4.21), which

we now use to prove (4.20).

If there exists β > 0 such that aβ = o(hm−1(a)/(d/c)), which holds when c ∈
B+

m(d), then
Fm−2

(d/c)2
≥ a2β

for sufficiently small d by the argument used in (4.27), and (4.20) holds with γ a large

constant as in the m = 1 case. Otherwise, by considering subsequences there exists

εo > 0 such that a(1/2)m+2 ≥ εo · hm−1(a)/(d/c) for sufficiently small d. Then

d/c

hm(a)
=

d/c

hm−1(a)
· hm−1(a)

hm(a)
≥ εo

a(1/2)m+2 · a(1/2)m+1

= εoa
(1/2)m+2
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and hence

a(1/2)m+2

= o

(
d/c

hm(a)

)2

. (4.31)

By the induction hypothesis, let Cm−1 satisfy P (Ũm−1(Cm−1)) = o((d/c)/a), and let

γ = K

√
log a

log Fm−2/(d/c)2
, ε = K ′

√
log a

Fm−2
,

where K,K ′ will be determined below. By the argument leading to (4.22)

P (Ũm(γ)) ≤ P

(
`(Nm, θ̂m−1)− µm−1(θ)Nm

σm−1(θ)
√

Nm

<
am−1 − µm−1(θ)Nm − γFm−1 + O(log a)

σm−1(θ)
√

Nm

)

and

am−1 − µm−1(θ)Nm − γFm−1 + O(log a)

σm−1(θ)
√

Nm

≤ O
(√

log Fm−2/(d/c)2
)

+ O
(√

log a
)
−Kη′

√
log a

= −
√

log a · (Kη′ −O(1)),

some η′ > 0, by the argument leading to (4.29). Hence, taking K sufficiently large,

we obtain

P (Ũm(γ)) ≤ P (Ũm(γ) ∩ Ũ ′
m−1(Cm−1) ∩ Vm−1(ε)) + P (Ũm−1(Cm−1) + P (V ′

m−1(ε))

≤ Φ(−
√

log a2) + o

(
d/c

a

)
+ P (V ′

m−1(ε))

= o

(
d/c

a

)
+ P (V ′

m−1(ε)) (4.32)

by (4.30). By choosing K ′ sufficiently large and repeating the argument leading to

(4.28),

P (V ′
m−1(ε)) = o

(
d/c

a

)
.

Plugging this back into (4.32) gives P (Ũm(γ) = o((d/c)/a), and all that remains is to
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verify that γ satisfies the first case of (4.19). But

γ = o(
√

log a) = o(a(1/2)m+2

) = o

(
d/c

hm(a)

)2

by (4.31), finishing the proof.

Next we establish the operating characteristics of δ when c ∈ Bo
m(d).

Theorem 4.9. If c ∈ Bo
m(d), then

r(λ0, δ) ≤ caEλ0I(θ)−1 + d(m + 1) + o(d). (4.33)

Proof. Let (N, M, D) = δα, α > 0. We will prove

Eθ[cN + dM + r(λM)] ≤ c log d−1/I(θ) + d(m + 1) + o(d) (4.34)

uniformly for θ ∈ [θ, θ].

Fix θ ∈ [θ, θ]. First we show that

EθN ≤ a/I(θ) + o(d/c). (4.35)

Write EθN = Eθ(N ; M ≤ m) + Eθ(N ; M ≥ m + 1) and consider Eθ(N ; M = k) for

1 < k ≤ m. Letting zk = −
√

log(ak−1/(d/c)2 + 1),

Nk ≤ ak−1

µ∗k−1

−

zkσ

∗
k−1

√
4ak−1µ∗k−1 + z2

kσ
∗2
k−1 − z2

kσ
∗2
k−1

2µ∗2k−1


 (4.36)

≤ ak−1

µ∗k−1

≤ a− `k−1 + O(1)

µ∗k−1

(by Lemma 4.2) (4.37)

=
a−Nk−1µ

∗
k−1 + O(1)

µ∗k−1

=
a + O(1)

µ∗k−1

−Nk−1, (4.38)
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so

Eθ(N ; M = k) = Eθ(N
k−1 + Nk; M = k)

≤ Eθ((a + O(1))/µ∗k−1; M = k)

= Eθ(a/µ∗k−1; M = k) + O(Eθ(µ
∗−1
k−1; M = k))

≤ Eθ(a/µ∗k−1; M = k) + O(Eθ(µ
∗−1
k−1)) (since µ∗k−1 > 0)

= Eθ(a/µ∗k−1; M = k) + O(I(θ)−1) (by Lemma 4.1)

= Eθ(a/µ∗k−1; M = k) + O(1) = Eθ(a/µ∗k−1; M = k) + o(d/c)

for 1 < k ≤ m. Also

Eθ(N ; M = 1) = N1Pθ(M = 1) ≤ O(a)O(Φ(−a1/7)) = o(1) = o(d/c),

so we have

Eθ(N ; M ≤ m) ≤




aEθ(µ
∗−1
M−1; 2 ≤ M ≤ m) + o(d/c), m ≥ 2

o(d/c), m = 1.
(4.39)

Let z → −∞ be the quantile chosen for geometric sampling, which satisfies |z| =
o((d/c)/hm(a)). For k ≥ m + 1, let

Λk ≡ Nk − a/µ∗k−1

= Nk−1 + Nk − a/µ∗k−1

= Nk−1 +


ak−1

µ∗k−1

+
|z|σ∗k−1

√
4ak−1µ∗k−1 + z2σ∗2k−1 − z2σ∗2k−1

2µ∗2k−1


− a/µ∗k−1

= Nk−1 +


a + O(1)

µ∗k−1

−Nk−1 +
|z|σ∗k−1

√
4ak−1µ∗k−1 + z2σ∗2k−1 − z2σ∗2k−1

2µ∗2k−1


− a/µ∗k−1

=
|z|σ∗k−1

√
4ak−1µ∗k−1 + z2σ∗2k−1 − z2σ∗2k−1

2µ∗2k−1

+ O(1)/µ∗k−1, (4.40)
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this last by the argument leading to (4.38). Then

Eθ(N ; M ≥ m + 1) =
∑

k≥m+1

Eθ(N
k; M = k)

= aEθ(µ
∗−1
M−1; M ≥ m + 1) +

∑

k≥m+1

Eθ(Λk; M = k),(4.41)

and we now estimate the summands in the latter term. Let Fm−1 denote F
(m−1)
d/c (a)

and let γ be the function given by Lemma 4.8 such that Pθ(am > γFm−1) = o((d/c)/a)

and γ = o((d/c)/hm(a))2. Since we may assume without loss of generality that

|z| → ∞ arbitrarily slowly, assume

|z| = o

(
d/c

hm(a)
√

γ

)
. (4.42)

Then, using (4.40) and the crude bound Λk ≤ Nk ≤ n,

Eθ(Λm+1; M = m + 1) ≤ Eθ(Λm+1; M ≥ m + 1) = Eθ(Λm+1; am > 0)

= Eθ(Λm+1; 0 < am ≤ γFm−1) + Eθ(Λm+1; am > γFm−1)

≤ O(|z|
√

γFm−1) + nPθ(am > γFm−1)

= O(|z|√γhm(a)) + O(a)o

(
d/c

a

)
(by Lemma 2.6)

= o(d/c) + o(d/c) = o(d/c)

by (4.42). Note that

Eθ(Λm+1|M ≥ m + 1) =
Eθ(Λm+1; M ≥ m + 1)

Pθ(M ≥ m + 1)
=

o(d/c)

1− o(1)
= o(d/c).

Assume that there exists q → 0 such that, for k ≥ 1,

Pθ(M ≥ m + 1 + k) ≤ qk. (4.43)
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Since Λm+1+k are stochastically decreasing in k,

Eθ(Λm+1+k; M = m + 1 + k) ≤ Eθ(Λm+1+k; M ≥ m + 1 + k)

= Eθ(Λm+1+k|M ≥ m + 1 + k)Pθ(M ≥ m + 1 + k)

≤ Eθ(Λm+1|M ≥ m + 1)Pθ(M ≥ m + 1 + k)

≤ o(d/c)qk

and the o(d/c) term is independent of k, so that

∑

k≥m+1

Eθ(Λk; M = k) ≤ o(d/c)
∑

k≥0

qk =
o(d/c)

1− q
= o(d/c).

Plugging this back into (4.41) gives

Eθ(N ; M ≥ m + 1) ≤ aEθ(µ
∗−1
M−1; M ≥ m + 1) + o(d/c)

and combining this with (4.39) yields

EθN = Eθ(N ; M ≤ m) + Eθ(N ; M ≥ m + 1)

≤ aEθ(µ
∗−1
M−1; M ≥ 2) + o(d/c)

≤ a(I(θ)−1 + O(1/a)) + o(d/c) (by Lemma 4.1)

= a/I(θ) + o(d/c).

To estimate the number of stages, M , note that if (4.43) holds,

EθM =
∑

k≥0

Pθ(M > k) ≤ m + 1 +
∑

k≥1

Pθ(M > m + k)

≤ m + 1 +
∑

k≥1

qk

= m + 1 +
q

1− q
= m + 1 + o(1). (4.44)
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We now prove (4.43) by induction. Let η > 0, to be specified below.

Pθ(M ≥ m + 2) ≤ 1− Pθ(M = m + 1)

≤ 1− Pθ({M = m + 1} ∩ Um(1/2) ∩ Vm(η))

≤ 1− Pθ(M = m + 1|Um(1/2) ∩ Vm(η))(Pθ(Um(1/2))− Pθ(Vm(η)′)). (4.45)

Let µm(θ) = Iθ(θ̂m), σ2
m(θ) = (θ̂m − θ̂′m)2ψ′′(θ), and

ρk(θ) =
`(Nk+1, θ̂k)− µk(θ)Nk+1

σk(θ)
√

Nk+1

.

Since am+1 ≤ am − `(Nm+1, θ̂m) + O(log a) by Lemma 4.4, we have

Pθ(M = m + 1|Um(1/2) ∩ Vm(η)) = Pθ(am ≤ 0|Um(1/2) ∩ Vm(η))

≥ Pθ(`(Nm+1, θ̂m) ≥ am + O(log a))

= Pθ

(
ρm(θ) ≥ am − µm(θ)Nm+1 + O(log a)

σm(θ)
√

Nm+1

∣∣∣∣Um(1/2) ∩ Vm(η)

)
.

Then

ζm ≡ am − µm(θ)Nm+1 + O(log a)

σm(θ)
√

Nm+1

=
σ∗m

σm(θ)

[
am − µ∗mNm+1

σ∗m
√

Nm+1

]
+
√

Nm+1
µ∗m − µm(θ)

σm(θ)
+ O

(
log a√
Nm+1

)

≤ (1 + O(η))z +
√

Nm+1O(η) + o(1)

≤ −(3/4)|z|+ O(η
√

Fm−1) (4.46)

on Um(1/2) ∩ Vm(η) for sufficiently small η, since z → −∞. Choosing

η = ε1(|z|/
√

Fm−1 ∧ 1),

where ε1 is small enough so that the O(η
√

Fm−1) term in (4.46) is less than |z|/4, we

have

ζm ≤ −(3/4)|z|+ |z|/4 = −|z|/2
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on Um(1/2) ∩ Vm(η), and therefore

Pθ(M = m+1|Um(1/2)∩Vm(η)) ≥ Pθ(ρm(θ) ≥ −|z|/2|Um(1/2)∩Vm(η)) → 1. (4.47)

We know Pθ(Um(1/2)) → 1 by Lemma 4.7 and since

η
√

a = ε1

( |z|√
Fm−1

∧ 1

)√
a ≥ ε1

( |z|√
a
∧ 1

)√
a = ε1(|z| ∧

√
a) →∞,

Pθ(Vm(η)′) → 0 by Lemma 4.5. Letting

q =
1− Pθ(M = m + 1|Um(1/2) ∩ Vm(η))(Pθ(Um(1/2))− Pθ(Vm(η)′))

Pθ(M ≥ m + 1)
=

o(1)

1− o(1)
→ 0,

by virtue of these last estimates, we have

Pθ(M ≥ m + 2|M ≥ m + 1) =
Pθ(M ≥ m + 2)

Pθ(M ≥ m + 1)

≤ 1− Pθ(M = m + 1|Um(1/2) ∩ Vm(η))(Pθ(Um(1/2))− Pθ(Vm(η)′))
Pθ(M ≥ m + 1)

= q, (4.48)

and so, a fortiori, Pθ(M ≥ m + 2) ≤ q.

Now suppose k ≥ 2. Using the induction hypothesis,

Pθ(M ≥ m + 1 + k) = Pθ(M ≥ m + 1 + k|M ≥ m + k)Pθ(M ≥ m + k)

≤ Pθ(M = m + 1 + k|M ≥ m + k)qk−1,

and the argument used in the m = 1 case, replacing Um(1/2) by

Ũ = {am+1+k ≤ (3/2)ξα
mFm−1},

gives Pθ(M = m + 1 + k|M ≥ m + k) ≤ q, whence Pθ(M ≥ m + 1 + k) ≤ qk, proving

(4.43).



140

Finally, we show that

Eθr(λM) = o(d). (4.49)

Recall that r(λM) ≤ d uniformly and r(λM) ≤ d2 on {N = n}. Let γ1 → ∞ be any

function such that

log a ¿ γ1 ¿ hm(a) (4.50)

and define

W ≡ Vm(η) ∩
{∣∣∣∣

am

ξα
mFm−1

− 1

∣∣∣∣ ≤ 1/2

}
∩ {M = m + 1} ∩ {r(λM) ≤ e−γ1d}

≡ Vm(η) ∩
3⋂

i=1

Wi.

Obviously r(λM) = o(d) on W3, so

Eθr(λM) = Eθ(r(λM); N = n) + Eθ(r(λM); W ∩ {N < n}) + Eθ(r(λM); W ′ ∩ {N < n})
≤ d2 · 1 + o(d) · 1 + d · Pθ(W

′) = o(d) + d · Pθ(W
′),

and (4.49) will be established once we show Pθ(W
′) → 0. We know Pθ(W1) → 1 by

Lemma 4.7 and it was shown that Pθ(W2) → 1. We will choose η below in such a

way that Pθ(Vm(η)) → 1. Let W̃ = {`(Nm+1, θ̂m) ≥ am + 2γ1}. On W̃ ,

r(λm+1) = exp(− log r(λm+1)
−1) ≤ exp(−`m+1 + O(1)) (by Lemma 4.2)

≤ exp(−`(Nm+1, θ̂m)− `m + O(1))

≤ exp[−(am + 2γ1)− (log r(λm)−1 + O(log a)) + O(1)] (by Lemma 4.2)

= exp[−a− 2γ1 −O(log a)]

≤ exp(−a− γ1) = e−γ1d
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by (4.50), hence W̃ ∩ Vm(η) ∩W1 ∩W2 ⊆ W . Then

Pθ(W3|Vm(η) ∩W1 ∩W2) ≥ Pθ(W̃ |Vm(η) ∩W1 ∩W2)

= Pθ

(
ρm(θ) ≥ am − µm(θ)Nm+1

σm(θ)
√

Nm+1

+
2γ1

σm(θ)
√

Nm+1

∣∣∣∣Vm(η) ∩W1 ∩W2

)
(4.51)

and on Vm(η) ∩W1 ∩W2,

ζ ≡ am − µm(θ)Nm+1

σm(θ)
√

Nm+1

+
2γ1

σm(θ)
√

Nm+1

=
σ∗m

σm(θ)
z +

√
Nm+1

µ∗m − µm(θ)

σm(θ)
+

2γ1

σm(θ)
√

Nm+1

≤ (1 + O(η))z + O(
√

Fm−1)O(η) + O(γ1/
√

Fm−1)

≤ z/2 + O(η
√

Fm−1) + O(γ1/hm(a)) (by Lemma 2.6)

= z/2 + O(η
√

Fm−1) + o(1)

by (4.50). Taking η = ε1(|z|/
√

Fm−1 ∧ 1) and using the same argument as above (see

what follows (4.46)) we obtain ζ ≤ z/3 → −∞ and Pθ(Vm(η)) → 1. Plugging this

back in to (4.51), we have

Pθ(W3|Vm(η) ∩W1 ∩W2) ≥ Pθ(ρm(θ) ≥ z/3|Vm(η) ∩W1 ∩W2) → 1

and therefore Pθ(W ) = Pθ(W3|Vm(η)∩W1∩W2)Pθ(Vm(η)∩W1∩W2) → 1, establishing

(4.49).

Combining (4.35), (4.44), and (4.49) we have

Eθ[cN + dM + r(λM)] ≤ c[a/I(θ) + o(d/c)] + d[m + 1 + o(1)] + o(d)

= ca/I(θ) + d(m + 1) + o(d)

uniformly in θ, and hence

r(λ0, δα) ≤ caEλ0I(θ)−1 + d(m + 1) + o(d).
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This holds for all α > 0, so by a standard asymptotic technique (e.g., [6], p. 188),

there is a function α(d) → 0 for which it holds. Taking δ = δα(d) gives (4.34).

Next we consider the boundary case. Let ∆(z) ≡ φ(z) − Φ(−z)z. Let α,Q > 0

and recall from (4.14) that zα(θ, Q) is the unique solution of

Φ(−zα(θ, Q))

φ(zα(θ, Q))
=

QI(θ)Cm
m

ξα
m+1(θ)

.

Let

uα
m(θ, Q) ≡ m + 1 + Φ(zα(θ, Q)) +

∆(zα(θ,Q))ξα
m+1(θ)

Cm
mI(θ)Q

.

Observe that if θ is such that I(θ) < I (which can only fail at θ = θ or θ), then

ξ0
m+1(θ) > 0 and so z0(θ, Q) and hence u0

m(θ, Q) are well-defined. If I(θ) = I, then

ξ0
m+1(θ) = 0 so z0(θ,Q) and hence u0

m(θ, Q) are not well-defined, but

lim
α→0

uα
m(θ,Q) = m + 1 + lim

α→0

[
Φ(zα(θ, Q)) + ∆(zα(θ,Q))

φ(zα(θ,Q))

Φ(−zα(θ,Q))

]

(by definition of zα(θ, Q))

= m + 1 + lim
x→−∞

Φ(x) + lim
x→−∞

∆(x)
φ(x)

Φ(−x)

= m + 1 + 0 + lim
x→−∞

|x|φ(x)

1
= m + 1 (4.52)

since ∆(x) ∼ |x| as x → −∞. Thus, replacing uα
m(θ,Q) by its limit in this singular

case, we define

um(θ,Q) ≡ lim
α→0

uα
m(θ, Q) =





u0
m(θ,Q), for θ such that I(θ) < I

m + 1, for θ such that I(θ) = I
(4.53)

for θ ∈ [θ, θ].

Next we establish the operating characteristics of δ in the boundary case.

Theorem 4.10. Assume that c ∈ B+
m(d) and let Q = limd→0(d/c)/hm(a) ∈ (0,∞).
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There is a function α(d) → 0 such that δ ≡ δα(d) satisfies

r(λ0, δ) ≤ caEλ0I(θ)−1 + d · Eλ0um(θ, Q) + o(d). (4.54)

Proof. Let (N, M, D) = δα, α > 0. We will show that

Eθ[cN + dM + r(λM)] ≤ ca/I(θ) + d · uα
m(θ,Q) + o(d)

uniformly for θ ∈ [θ, θ].

Fix θ ∈ [θ, θ]. First we show that

EθN ≤ a/I(θ) +
∆(zα(θ, Q))ξα

m+1(θ)

Cm
mI(θ)Q

(d/c) + o(d/c).

We can write

EθN =
∑

k≥1

Eθ(Nk; M ≥ k) =
∑

k≤m+1

Eθ(Nk; M ≥ k) +
∑

k>m+1

Eθ(Nk; M ≥ k)

and

∑

k≤m+1

Eθ(Nk; M ≥ k) =
∑

k≤m

[Eθ(Nk; k ≤ M ≤ m) + Eθ(Nk; M ≥ m + 1)]

+Eθ(Nm+1; M ≥ m + 1)

=
∑

k≤m

Eθ(Nk; M ≤ m) + Eθ(N
m+1; M ≥ m + 1)

= Eθ(N ; M ≤ m) + Eθ(N
m+1; M ≥ m + 1)

≤ aEθ(µ
∗−1
(M−1∧1); M ≤ m) + O(1) + Eθ(N

m+1; M ≥ m + 1)

≤ aEθ(µ
∗−1
(M−1∧1); M ≤ m) + Eθ(N

m+1; M ≥ m + 1) + o(hm(a)) (4.55)
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by the argument leading to (4.39). Also, by the argument leading to (4.38),

Nm+1 ≤ a + O(1)

µ∗m
+

zα
m(Q)σ∗m

√
4amµ∗m + zα

m(Q)2σ∗2m − zα
m(Q)2σ∗2m

2µ∗2m

≡ a + O(1)

µ∗m
+ Y, (4.56)

say. Choose ε > 0. Let σ2(θ) = (θ− θ′)2ψ′′(θ) and εo = ε[2+ zα(θ, Q)σ(θ)I(θ)−3/2]−1,

recalling that g = max[θ,θ] g(θ). Let Fm−1 denote F
(m−1)
d/c (a), and let

U(εo) =

{∣∣∣∣
am

ξα
mFm−1

− 1

∣∣∣∣ ≤ εo

}

and A = U(εo) ∩ Vm(ηo) ∩ {M ≥ m + 1}, where ηo > 0 will be determined below.

Since zα
m(Q), µ∗m, σ∗m approach zα(θ, Q), I(θ), σ(θ) as ηo → 0, it follows that

Y ≤ zα(θ,Q)σ(θ)
√

4amI(θ) + zα(θ, Q)2σ(θ)2 + zα(θ,Q)2σ(θ)2

2I(θ)2
+ O(ηo)

√
am

on A. Since
√

am ≤
√

(1 + εo)ξα
mFm−1 = O(

√
Fm−1) = O(hm(a)) on U(εo), by taking

ηo sufficiently small we may assume

Y ≤ zα(θ,Q)σ(θ)
√

4amI(θ) + zα(θ,Q)2σ(θ)2 + zα(θ, Q)2σ(θ)2

2I(θ)2
+ (εo/2)hm(a)
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on A. Using (4.56),

Eθ(N
m+1; A) ≤ Eθ[(a + O(1))/µ∗m + Y ; A]

≤ aEθ(µ
∗−1
m ; A) + O(1)

+Eθ

(
−zα(θ,Q)σ(θ)

√
4amI(θ) + zα(θ, Q)2σ(θ)2

2I(θ)2
; A

)
+ (εo/2)hm(a)

≤ aEθ(µ
∗−1
m ; A) +

−zα(θ, Q)σ(θ)

I(θ)3/2

√
(1− sign(zα(θ,Q)))εoξα

m(θ)Fm−1 + εohm(a)

≤ aEθ(µ
∗−1
m ; A) +

−zα(θ, Q)σm(θ)

I(θ)3/2

√
ξα
m(θ)Fm−1 + εo[1 + |zα(θ, Q)|σ(θ)I(θ)−3/2]hm(a)

≤ aEθ(µ
∗−1
m ; A) +

−zα(θ, Q)ξα
m(θ)

I(θ)Cm
m

hm(a) + εo[2 + |zα(θ,Q)|σ(θ)I(θ)−3/2]hm(a)

≤ aEθ(µ
∗−1
m ; A) +

−zα(θ, Q)ξα
m(θ)

I(θ)Cm
m

hm(a) + εhm(a), (4.57)

by our choice of εo.

Again using (4.56),

Eθ(N
m+1;U(εo)

′ ∩ Vm(ηo) ∩ {M ≥ m + 1}) ≤ aEθ(µ
∗−1
m ; U(εo)

′ ∩ Vm(ηo) ∩ {M ≥ m + 1})
+ O(1) + Eθ(O(

√
am); U(εo)

′ ∩ Vm(ηo) ∩ {M ≥ m + 1}).

Letting C be the constant given by Lemma 4.8 such that

Pθ(am > Cξα
mFm−1) = o

(
d/c

a

)
= o(hm(a)/a), (4.58)

we have

Eθ(
√

am; U(εo)
′ ∩ Vm(ηo) ∩ {M ≥ m + 1})

= Eθ[
√

am; ({am ≤ Cξα
mFm−1} \ U(εo)) ∩ Vm(ηo) ∩ {M ≥ m + 1}]

+Eθ[
√

am; {am > Cξα
mFm−1} ∩ Vm(ηo) ∩ {M ≥ m + 1}]

≤ O(
√

Fm−1)Pθ(U(εo)
′) + O(

√
a)Pθ(am > Cξα

mFm−1)

(using the crude bound ak ≤ a + O(1) = O(a))

= O(hm(a)o(1) + O(
√

a)o(hm(a)/a) = o(hm(a)), (4.59)
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using Lemma 2.6 and (4.58), giving

Eθ(N
m+1; U(εo)

′ ∩ Vm(ηo) ∩ {M ≥ m + 1}) ≤aEθ(µ
∗−1
m ; U(εo)

′ ∩ Vm(ηo) ∩ {M ≥ m + 1})
+ o(hm(a)).

(4.60)

Also

Eθ(N
m+1; Vm(ηo)

′∩{M ≥ m+1}) ≤ nPθ(Vm(ηo)
′) ≤ O(a)O(Φ(−a1/7)) = o(1) = o(hm(a)),

(4.61)

by Lemma 4.5. Combining (4.57), (4.60), and (4.61), we have

Eθ(N
m+1; M ≥ m+1) ≤ aEθ(µ

∗−1
m ; M ≥ m+1)−zα(θ,Q)ξα

m(θ)

I(θ)Cm
m

hm(a)+(ε+o(1))hm(a).

This last term may be replaced by o(hm(a)) since ε is arbitrary. Doing this and

plugging into (4.55),

∑

k≤m+1

Eθ(Nk; M ≥ k) ≤ aEθ(µ
∗−1
(M−1∧1))−

zα(θ, Q)ξα
m(θ)

I(θ)Cm
m

hm(a) + o(hm(a)). (4.62)

Next we will estimate the terms of
∑

k>m Eθ(Nk; M ≥ k). Let V = Vm(η1) ∩
Vm+1(η1), where η1 > 0 will be determined below. Given ε > 0, choose 0 < εo ≤
(ε/2)[63 · (∆(−zα(θ, Q))ξα

m+1(θ)/(C
m
mI(θ)))]−1. For sufficiently small η1,

Eθ(Nm+2; U(εo) ∩ V ∩ {M ≥ m + 2})
≤ Eθ(am+1/µ

∗
m+1 + O(

√
am+1); U(εo) ∩ V ∩ {M ≥ m + 2})

≤ (1 + εo)

I(θ)
Eθ(am+1; U(εo) ∩ V ∩ {M ≥ m + 2})

and

am+1 ≤ am − `(Nm+1, θ̂m) + K log a, (4.63)
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for some K < ∞, by Lemma 4.4. Letting a∗m = am + K log a, note that

{M ≥ m + 2} ⊆ {am+1 > 0} ⊆ {a∗m − `(Nm+1, θ̂m) > 0} (4.64)

by (4.63). Then, letting

ζ =
a∗m − µm(θ)Nm+1

σm(θ)
√

Nm+1

,

Eθ(Nm+2; U(εo) ∩ V ∩ {M ≥ m + 2})
≤ (1 + εo)

I(θ)
Eθ[(a

∗
m − `(Nm+1, θ̂m))1{a∗m − `(Nm+1, θ̂m) ≥ 0}|U(εo) ∩ V ]

≤ (1 + εo)
2

I(θ)
Eθ[

√
Nm+1∆(−ζ)σm(θ)|U(εo) ∩ V ]

=
(1 + εo)

2

I(θ)
Eθ[

√
am/µ∗m + O(

√
am)∆(−ζ)σm(θ)|U(εo) ∩ V ]

≤ (1 + εo)
2

I(θ)
Eθ[(1 + εo)σm(θ)

√
(1 + εo)ξα

mFm−1

µm(θ)
∆(−ζ)|U(εo) ∩ V ]

(for sufficiently small η1)

≤ (1 + εo)
7/2

I(θ)
Eθ[ξm+1α

√
Fm−1∆(−ζ)|U(εo) ∩ V ]

≤ (1 + εo)
7/2

I(θ)
Eθ[(1 + εo)ξ

α
m+1(θ)(C

m
m)−1hm(a)∆(−ζ)|U(εo) ∩ V ]

(since
√

Fm−1 ∼ (Cm
m)−1hm(a))

=
(1 + εo)

11/2ξα
m+1(θ)

I(θ)Cm
mhm(a)

Eθ[∆(−ζ)|U(εo) ∩ V ]

=
(1 + εo)

11/2ξα
m+1(θ)

I(θ)Cm
m

hm(a)[∆(−zα(θ,Q)) + o(1)] (4.65)

≤ ξα
m+1(θ)∆(−zα(θ,Q))

I(θ)Cm
m

hm(a) +

[
63εoξ

α
m+1(θ)

I(θ)Cm
m

+ o(1)

]
hm(a)

≤ ξα
m+1(θ)∆(−zα(θ,Q))

I(θ)Cm
m

hm(a) + εhm(a), (4.66)

by our choice of εo, where (4.65) uses a routine argument like that of Lemma 4.1.
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On V ,

am+1 ≤ am − `(Nm+1, θ̂m) + O(log a) (by (4.63))

≤ am + O(am) + O(log a)

= O(am) + o(hm(a)),

so

Eθ(Nm+2; U(εo)
′ ∩ V ∩ {M ≥ m + 2})

≤ Eθ(O(am+1); U(εo)
′ ∩ V ∩ {M ≥ m + 2})

≤ Eθ(O(am) + o(hm(a)); U(εo)
′ ∩ V ∩ {M ≥ m + 2})

≤ o(hm(a)) (4.67)

by the argument leading to (4.59). Using the crude bound Nm+2 ≤ N ≤ n,

Eθ(Nm+2; V
′ ∩ {M ≥ m + 2}) ≤ nPθ(V

′) = o(1), (4.68)

by the argument leading to (4.61). Combining (4.66), (4.67), and (4.68),

Eθ(Nm+2; M ≥ m + 2) ≤ ∆(−zα(θ, Q))ξα
m+1(θ)

Cm
mI(θ)

hm(a) + (ε + o(1))hm(a) (4.69)

and we may replace this last term by o(hm(a)) since ε was arbitrary.

As in the proof of Theorem 4.9, there exists q → 0 such that Pθ(M ≥ m+2+k) ≤
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qk for k ≥ 1, and since Nm+2+k are stochastically decreasing in k,

∑

k≥1

Eθ(Nm+2+k; M ≥ m + 2 + k)

=
∑

k≥1

Eθ(Nm+2+k|M ≥ m + 2 + k)Pθ(M ≥ m + 2 + k)

≤
∑

k≥1

Eθ(Nm+2|M ≥ m + 2)qk

≤ O(hm(a))
∑

k≥1

qk (by (4.69) and since Pθ(M ≥ m + 2) bounded above 0)

= O(hm(a))q/(1− q) = o(hm(a)).

Combining this with (4.69) and (4.62),

EθN =
∑

k≤m+1

Eθ(Nk; M ≥ k) +
∑

k>m+1

Eθ(Nk; M ≥ k)

≤ aEθ(µ
∗−1
(M−1∧1))−

zα(θ,Q)ξα
m+1(θ)

I(θ)Cm
m

hm(a) +
∆(−zα(θ, Q))ξα

m+1

I(θ)Cm
m

hm(a) + o(hm(a))

= aEθ(µ
∗−1
(M−1∧1)) +

∆(zα(θ, Q))ξα
m+1

I(θ)Cm
m

hm(a) + o(hm(a)),

this last since

−z + ∆(−z) = −z + φ(−z) + Φ(z)z = −z + φ(z) + (1− Φ(−z))z = ∆(z).

Since hm(a) ∼ Q−1(d/c) and Eθ(µ
∗−1
(M−1∧1)) = I(θ)−1 +O(1/a) by Lemma 4.1, we have

EθN ≤ a/I(θ) +
∆(zα(θ, Q))ξα

m+1

I(θ)Cm
mQ

(d/c) + o(d/c). (4.70)

Next we estimate the number of stages, M .

EθM =
∑

k≥0

Pθ(M > k) ≤ m + 1 + Pθ(M ≥ m + 2) +
∑

k≥1

Pθ(M ≥ m + 2 + k)

≤ m + 1 + Pθ(M ≥ m + 2) +
∑

k≥1

qk

≤ m + 1 + Φ(zα(θ,Q)) + o(1), (4.71)
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once we show

Pθ(M ≥ m + 2) ≤ Φ(zα(θ, Q)) + o(1). (4.72)

Assume that η2 → 0, but slowly enough so that Pθ(Vm(η2)) → 1, and note that this

holds uniformly in θ by Lemma 4.5. Let

ρk(θ) =
`(Nk+1, θ̂k)− µk(θ)Nk+1

σk(θ)
√

Nk+1

and choose ε > 0.

Pθ(M ≥ m + 2) ≤ Pθ(M ≥ m + 2|U(ε/2) ∩ Vm(η2))Pθ(U(ε/2) ∩ Vm(η2))

+Pθ(U(ε/2)′) + Pθ(Vm(η2))

≤ Pθ(M ≥ m + 2|U(ε/2) ∩ Vm(η2))Pθ(U(ε/2) ∩ Vm(η2)) + o(1)

≤ Pθ(ρm(θ) ≤ ζ|U(ε/2) ∩ Vm(η2))

by (4.64). We can write

ζ =
a∗m − µm(θ)Nm+1

σm(θ)
√

Nm+1

=
a− µm(θ)Nm+1

σm(θ)
√

Nm+1

+
K log a

σm(θ)

=
σ∗m

σm(θ)
zm +

√
Nm+1

µ∗m − µm(θ)

σm(θ)
+

K log a

µm(θ)
√

Nm+1

≤ O(1) + O(η2

√
Fm−1) + O(log a(Fm−1)−1/2)

≤ O((Fm−1)1/7) = O(N
1/7
m+1)

uniformly on U(ε/2) ∩ Vm(η2) if we choose η2 = (Fm−1)−5/14, say. Note that η2

√
a ≥

a1/7 → ∞, so Pθ(Vm(η2)) → 1. Hence, we can apply large deviations to get, for

sufficiently small d,

Pθ(M ≥ m + 2) ≤ Eθ[(1 + ε/2)Φ(ζ)|U(ε/2) ∩ Vm(η2)] (4.73)

= (1 + ε/2)(Φ(zα(θ, Q)) + o(1)) ≤ Φ(zα(θ, Q)) + ε, (4.74)

proving (4.72) and hence (4.71)
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Finally, we show that Eθr(λM) = o(d). Choose γ1(d), γ2(d) → ∞ to be any

functions satisfying
√

hm(a) À √
γ1 À γ2 À log a. (4.75)

For example, γ1 = a2−m
and γ2 = a2−m−2

suffice. Let

W0 = U(1/2) ∩ Vm+1(η3),

W1 = {am+1 ≤ −γ1},
W2 = {am+1 ≥ γ1, am+2 ≤ −γ2},

and W = (W0 ∩W1) ∪ (W0 ∩W2),

where η3 > 0 will be chosen below. On W0 ∩Wi, i = 1, 2,

r(λM) = exp[− log r(λm+1)
−1] = exp[am+1 − a] ≤ e−γid = o(d).

Then, since r(λM) ≤ d2 on {N = n} and r(λM) ≤ d a.s.,

Eθr(λM) = Eθ(r(λM); W ∩ {N < n}) + Eθ(r(λM); N = n) + Eθ(r(λM); W ′ ∪ {N < n})
≤ o(d) · 1 + d2 · 1 + d · Pθ(W

′) = o(d), (4.76)

once we show that Pθ(W ) → 1. Now

Pθ(W0 ∩W1) = Pθ(W0)− Pθ(W0 ∩W ′
1) ≥ Pθ(W0)− Pθ(W

′
1|W0)

≥ Pθ(W0)− Pθ(`(Nm+1, θ̂m) ≤ am + γ1 + O(log a)|W0) (by (4.63))

= Pθ(W0)− Pθ

(
ρm(θ) ≤ am − µm(θ)Nm+1

σm(θ)
√

Nm+1

+ O

(
γ1√
Nm+1

)∣∣∣∣ W0

)

= Pθ(W0)− Pθ

(
ρm(θ) ≤ am − µm(θ)Nm+1

σm(θ)
√

Nm+1

+ o(1)

∣∣∣∣ W0

)

since log a ¿ γ1 ¿ hm(a) = O(
√

Nm+1) on W0. This last probability approaches

Φ(zα(θ,Q)) by the argument leading to (4.74), hence if we choose η3 such that
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Pθ(W0) → 1,

Pθ(W0 ∩W1) ≥ 1− Φ(zα(θ, Q)) + o(1). (4.77)

Now

Pθ(W0 ∩W2) = Pθ(W2|W0)Pθ(W0) = Pθ(am+1 ≥ γ1, am+2 ≤ −γ2|W0)(1 + o(1))

= Pθ(am+2 ≤ −γ2|{am+1 ≥ γ1} ∩W0)Pθ(am+1 ≥ γ1|W0)(1 + o(1))

and Pθ(am+1 ≥ γ1|W0) → Φ(zα(θ, Q)) by replacing γ1 by −γ1 in the argument used

on Pθ(W
′
1|W0). Using (4.63),

Pθ(am+2 ≥ −γ2|{am+1 ≥ γ1} ∩W0)

≤ Pθ

(
ρm+1(θ) ≤ am+1 − µm+1(θ)Nm+2

σm+1(θ)
√

Nm+2

+ O

(
γ2√
Nm+2

)∣∣∣∣ {am+1 ≥ γ1} ∩W0

)
.

(4.78)

Now, letting z → −∞ be the parameter of δα representing the geometric sampling

quantile, on {am+1 ≥ γ1} ∩W0

ζm+1 ≡ am+1 − µm+1(θ)Nm+2

σm+1(θ)
√

Nm+2

+ O

(
γ2√
Nm+2

)

=
σ∗m+1

σm+1(θ)
z +

√
Nm+2

µ∗m+1 − µm+1(θ)

σm+1(θ)
+ o(1)

(by definition of z and since γ2 ¿ √
γ1 = O(

√
am+1) = O(

√
Nm+2) on {am+1 ≥ γ1})

≤ (1 + o(1))z +
√

Nm+2O(η3) + o(1) (since W0 ⊆ Vm+1(η3))

≤ (1 + o(1))z → −∞ (4.79)

if we choose η3 =
√
|z|/hm(a), since then

η3

√
Nm+2 = O(η3

√
am+1) = O(η3

√
am) = O(η3

√
Fm−1) = O(η3hm(a)) = o(|z|)

on W0. Plugging (4.79) into (4.78) yields

Pθ(am+2 ≥ −γ2|{am+1 ≥ γ1} ∩W0) ≤ Pθ(ρm+1(θ) ≤ ζm+1|{am+1 ≥ γ1} ∩W0) → 0
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and thus

Pθ(W0 ∩W2) = (1 + o(1))(Φ(zα(θ, Q)) + o(1))(1 + o(1)) = Φ(zα(θ, Q)) + o(1).

Combining this with (4.77) gives

Pθ(W ) = Pθ(W0 ∩W1) + Pθ(W0 ∩W2) (W1,W2 disjoint)

≥ 1− Φ(zα(θ, Q)) + Φ(zα(θ,Q)) + o(1) = 1 + o(1),

proving (4.76). Combining (4.70), (4.71), and (4.76),

Eθ[cN + dM + r(λM)] ≤ c[a/I(θ) +
∆(zα(θ, Q))ξα

m+1(θ)

I(θ)Cm
mQ

(d/c)] + d[m + 1 + Φ(zα(θ,Q))] + o(d)

= ca/I(θ) + d · uα
m(θ,Q) + o(d)

uniformly in θ, and hence

r(λ0, δα) ≤ caEλ0I(θ)−1 + d · Eλ0u
α
m(θ,Q) + o(d).

This holds for all α > 0, so by a now standard asymptotic technique, there is a function

α(d) → 0 for which it holds. Note that u
α(d)
m (θ, Q) = um(θ, Q) + o(1) uniformly in θ

by (4.52), so setting δ = δα(d),

r(λ0, δ) = r(λ0, δα(d))

≤ caEλ0I(θ)−1 + d · Eλ0 [um(θ, Q) + o(1)] + o(d)

= caEλ0I(θ)−1 + d · Eλ0um(θ, Q) + o(d),

finishing the proof.
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4.3 The Tests δ∗ and δ̃∗

Lemma 4.11. there exists K < ∞ such that r(λM∗) ≤ Kd. Conversely, if the

stopping risk at the end of a stage is less than d, then δ∗ will stop.

Proof. The Bayes test δ∗ stops when the stopping risk is less than or equal the

smallest possible posterior expectation of the cost of continuing. One such continua-

tion is fully sequential sampling, whose expected cost of continuation is well known

to be a bounded multiple of the cost per observation, c + d in this case. Thus, there

exists K < ∞ such that r(λM∗) ≤ (K/2)(c + d) ≤ Kd, which is the first claim.

Since any possible continuation incurs a cost of at least d, the cost of one stage, the

stopping risk is less than the cost of any possible continuation when it is less than d;

this is the converse claim.

In computing the operating characteristics of a test, it is useful to have a lower

bound on the size of the first stage. Lemma 4.12 establishes the existence of a test

δ̃∗ with such a lower bound that is “close” to the Bayes procedure in behavior and

in integrated risk. The remainder of this section will largely be spent computing the

operating characteristics of δ̃∗; we then compare the test δ of Section 4.2 with the

Bayes test, using δ̃∗ as an intermediary.

Lemma 4.12. There is a test δ̃∗ = (Ñ∗, M̃∗, D̃∗) satisfying

Ñ∗
1 ≥ εa, ε > 0,

r(λM̃∗) ≤ Kd, K < ∞, (4.80)

r(λ0, δ̃
∗) ≤ r(λ0, δ

∗) + o(d). (4.81)

Proof. By Lemma 4.11

a−O(1) ≤ log r(λN∗)−1

≤ `(N∗, θ̂M∗) + O(log log `(N∗, θ̂M∗)) (4.82)
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by Lemma 4.2 since (|SN∗| ∨ N∗) → ∞ as d → 0. Now, if a − O(1) ≤ x + O(log x),

then x ≥ a−O(log a) since if x = a− γ log a, some γ →∞, then

a− [x + O(log x)] = γ log a−O(log(a− γ log a))

≥ γ log a−O(log a) 6= O(1),

violating the original assumption. Hence, (4.82) implies

`(N∗, θ̂M∗) ≥ a−O(log a) (4.83)

as d → 0. Then

N∗ = Iθ̂∗
M∗ (θ̂M∗)−1`(N∗, θ̂M∗) ≥ Iθ̂∗

M∗ (θ̂M∗)−1[a−O(log a)]. (4.84)

Let εo > 0 be such that θ− εo, θ + εo are both in the interior of the natural parameter

space, and let W = {θ̂∗M∗ ∈ (θ − εo, θ + εo)}. Note that on W

Iθ̂∗
M∗ (θ̂M∗) ≤ [Iθ−εo(θ) ∨ Iθ+εo

(θ)] < ∞.

By (4.84), there exists ε > 0 such that εa is an integer and

N∗ ≥ 2ε[a−O(log a)] ≥ εa

on W for sufficiently small d. By Lemma 4.5 there exists ε1 > 0 such that

Pθ(N
∗ ≥ εa) ≥ Pθ(W ) ≥ 1− 2 exp[−ε1a] (4.85)

uniformly in θ.

Define δ̃∗ as follows. Let

Ñ∗
1 = N∗

1 ∨ εa,
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for k ≥ 1

Ñ∗
k+1 =





[N∗
k+1 − (Ñ∗k −N

∗k)+]+ if M∗ ≥ k + 1

N∗
(k+1) if M∗ ≤ k,

and letting k∗ = inf{k ≥ 1 : N∗k = Ñ∗k}, define

M̃∗ =





M∗ + inf{k ≥ 0 : M∗
(M∗+k+1) = 0} on {k∗ = ∞ > M∗}

M∗ on {k∗ < ∞},

where N∗
(k+1), M

∗
(k+1) are Bayes continuations after k stages of sampling under δ̃∗.

Note that we have assumed M∗ < ∞ a.s. since the Bayes procedure cannot minimize

the integrated risk without EM∗ < ∞.

The test δ̃∗ can be interpreted as follows. The first stage Ñ∗
1 is at least εa and, if

this is greater than N∗
1 , the following stages of δ̃∗ through the (k∗ ∧M∗)th stage are

smaller than the corresponding stages of δ∗. On sample paths such that k∗ < ∞, δ∗

has “caught up” with δ̃∗ after the k∗th stage in the sense that

Ñ∗k = N∗k for all k ≥ k∗ (4.86)

and the two tests will coincide exactly thereafter. On sample paths such that k∗ = ∞,

δ∗ stops before ever “catching up” with δ̃∗ and as soon as this happens, δ̃∗ begins

a Bayes continuation. In either case, δ̃∗ only stops when the Bayes stopping rule

indicates to do so, hence (4.80) holds by Lemma 4.11.

On {k∗ < ∞}, (Ñ∗, M̃∗, D̃∗) = (N∗, M∗, D∗) since the procedures will behave

identically after the k∗th stage. On {k∗ = ∞}, Ñ∗ is no larger than the sample size

of the procedure that initially samples εa and then performs a Bayes continuation.
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Thus

Eθ(Ñ
∗ −N∗) ≤ Eθ(Ñ

∗; k∗ = ∞)

≤ (εa + EθN
∗)Pθ(k

∗ = ∞)

≤ (εa + EθN
∗)Pθ(N

∗ < εa) (since {k∗ = ∞} ⊆ {N∗ < εa})
≤ (εa + EθN

∗) · 2 exp(−ε1a) = EθN
∗ · 2 exp(−ε1a) + o(1),

by (4.85). This holds uniformly in θ and so

Eλ0(cÑ
∗) ≤ Eλ0(cN

∗)[1 + 2 exp(−ε1a)] + o(c) = Eλ0(cN
∗)[1 + 2 exp(−ε1a)] + o(d).

(4.87)

On {k∗ = ∞}, M̃∗ is no larger than the number of stages of the procedure that

performs two Bayes tests successively, so similarly

Eθ(M̃
∗ −M∗) ≤ Eθ(M̃

∗; k∗ = ∞)

≤ 2EθM
∗Pθ(k

∗ = ∞)

≤ 2EθM
∗ · 2 exp(−ε1a).

This holds uniformly in θ, so

Eλ0(dM̃∗) ≤ Eλ0(dM∗)[1 + 4 exp(−ε1a)]. (4.88)

Since the stopping risks also coincide on {k∗ < ∞},

Eθ[r(λM̃∗)− r(λM∗)] ≤ Eθ[r(λM̃∗); k∗ = ∞]

≤ Kd · Pθ(k
∗ = ∞) (by (4.80))

≤ Kd · 2 exp(−ε1a) = O(d) · o(1) = o(d).

This holds uniformly in θ, giving Eλ0r(λM̃∗) ≤ Eλ0r(λM∗) + o(d). Combining this
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with (4.87) and (4.88),

r(λ0, δ̃
∗) = Eλ0 [cÑ

∗ + dM̃∗ + r(λM̃∗)]

≤ Eλ0(cN
∗)[1 + 2 exp(−ε1a)] + Eλ0(cM

∗)[1 + 4 exp(−ε1a)] + Eλ0r(λM∗) + o(d)

≤ r(λ0, δ
∗) + 4 exp(−ε1a)Eλ0(cN

∗ + dM∗) + o(d)

≤ r(λ0, δ
∗) + 4 exp(−ε1a)r(λ0, δ

∗) + o(d).

We know from Theorems (4.9) and (4.10) that r(λ0, δ
∗) ≤ r(λ0, δ) = O(ca), so

r(λ0, δ̃
∗) ≤ r(λ0, δ

∗) + 4 exp(−ε1a) ·O(ca) + o(d) = r(λ0, δ
∗) + o(d)

since

exp(−ε1a) · ca = d[a exp(−ε1a)](c/d) = d · o(1) · o(1) = o(d).

This establishes (4.81) and finishes the proof.

The next lemma gives a uniform lower bound on the average sample size of δ̃∗.

Lemma 4.13. EθÑ
∗ ≥ a/I(θ)−O(log a) uniformly for θ ∈ [θ, θ].

Proof. By the argument leading to (4.83),

`(Ñ∗, θ̂M̃∗) ≥ a−O(log a)

for sufficiently small d. Then

Ñ∗ = Iθ̂∗
M̃∗

(θ̂M̃∗)−1`(Ñ∗, θ̂M̃∗) ≥ Iθ̂∗
M̃∗

(θ̂M̃∗)−1[a−O(log a)]

and hence

EθÑ
∗ ≥ EθIθ̂∗

M̃∗
(θ̂M̃∗)−1[a−O(log a)]

≥ [I(θ)−1 −O(1/a)] · [a−O(log a)]
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by Lemma 4.1 since a = O(Ñ∗
1 ) and Ñ∗ ≥ Ñ∗

1 . Expanding this last proves the

claim.

For 0 < ε < 1 and k ≥ 1 define A+
k (ε) to be the set of all (s, t) such that

log

(
d

r(λ(s,t))

)−1

≥ (1− ε)ξk(θ̂(s, t))F
(k−1)
d/c (log d−1) and ε ≤ θ̂(s, t) ≤ θ − ε.

Define A−
k (ε) similarly but with θ+ε ≤ θ̂(s, t) ≤ −ε, and let Ak(ε) = A+

k (ε)∪A−
k (ε).

We will sometimes abuse this notation by writing λ ∈ Ak(ε) to mean λ(s,t) such that

(s, t) ∈ Ak(ε).

Lemma 4.14. Assume c ∈ Bm(d) and let λk = λ(Sk,Ñ∗k). Given ε > 0 and 1 ≤ k ≤ m,

there exists η > 0 such that

Pλ0(λk ∈ Ak(η)) ≥ 1− ε. (4.89)

Proof. Let A
(·)
k (η) = {λk ∈ A(·)

k (η)}. First we handle the k = 1 case. Assume that

lim sup
d→0

Ñ∗
1

a
≤ I

−1
. (4.90)

Suppose ε > 0. Choose εo > 0 such that

λ0(θ + εo,−εo) + λ0(εo, θ − εo) ≥ 1− ε/2,

and let η = εo/2. We can write

Pλ0(A1(η)) ≥
∫ −εo

θ+εo

Pθ(A
−
1 (η))λ0(θ)dθ +

∫ θ−εo

εo

Pθ(A
+
1 (η))λ0(θ)dθ. (4.91)

Let Vk(ε) ≡ {|θ̂k − θ| ≤ ε}. Let 0 < ε1 ≤ εo/2, where ε1 will be determined below.

On V1(ε1) for θ ∈ [εo, θ − εo],

θ̂1 ≥ θ − ε1 ≥ εo − ε1 ≥ εo/2 = η
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and

θ̂1 ≤ θ + ε1 ≤ θ − εo + ε1 ≤ θ − εo/2 = θ − η.

Similarly, θ + η ≤ θ̂1 ≤ −η for θ ∈ [θ + εo,−εo]. Let

µk(θ) = Iθ(θ̂k)

σ2
k(θ) = (θ̂k − θ̂′k)

2ψ′′(θ)

ρk(θ) =
`(Ñ∗

k , θ̂k)− µk(θ)Ñ
∗
k

σk(θ)
√

Ñ∗
k

.

Now, a1 = a− log r(λ1)
−1 ≥ a− `1 + O(1) by Lemma 4.2, so that

A+
1 ∩ V1(ε1) ⊇ {`1 ≤ a[1− (1− η)(1− I(θ̂1)/I)] + O(1)} ∩ V1(ε1)

⊇


ρ1(θ) ≤ a[1− (1− η)(1− I(θ̂1)/I)]− µ1(θ)Ñ

∗
1

σ1(θ)
√

Ñ∗
1

+ O(Ñ
∗−1/2
1 )



 ∩ V1(ε1).

Let

ηo = 1− I(θ + εo/2) ∨ I(θ − εo/2)

I
> 0

and note that 1 − I(θ̂1)/I ≥ ηo on V1(ε1). Also, using (4.90) and the fact that

Ñ∗
1 ≥ εa →∞,

a[1− (1− η)(1− I(θ̂1)/I)]− µ1(θ)Ñ
∗
1

σ1(θ)
√

Ñ∗
1

+ O(Ñ
∗−1/2
1 )

≥ a[1− (1− η)(1− I(θ̂1)/I)]− µ1(θ)a(1 + ηηo/4)/I

σ1(θ)
√

a(1 + ηηo/4)/I
+ o(1)

=

√
aI

σ1(θ)2(1 + ηηo/4)

[
1− (1− η)(1− I(θ̂1)/I)− µ1(θ)(1 + ηηo/4)/I

]

for sufficiently small d. As ε1 → 0, the expression in brackets approaches

η[1− I(θ)/I − (I(θ)/I)ηo/4)] ≥ η[1− I(θ)/I − ηo/4]

≥ η[3ηo/4] > 0,
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and therefore

a[1− (1− η)(1− I(θ̂1)/I)]− µ1(θ)Ñ
∗
1

σ1(θ)
√

Ñ∗
1

+ O(Ñ
∗−1/2
1 ) ≥ η′

√
a,

some η′ > 0, for sufficiently small ε1. Thus, for θ ∈ [εo, θ − εo],

Pθ(A
+
1 (η)) ≥ Pθ(A

+
1 (η)|V1(ε1))Pθ(V1(ε1))

≥ Pθ(ρ1(θ) ≤ η′
√

a|V1(ε1))Pθ(V1(ε1)) → 1

uniformly since η′
√

a → ∞ and we choose ε1 → 0 so that Pθ(V1(ε1)) → 1 by a now

routine argument. Similarly, Pθ(A
−
1 (η)) → 1 uniformly for θ ∈ [θ + εo,−εo], and

plugging into (4.91) gives

Pλ0(A1(η)) ≥ (1− o(1))λ0(θ + εo,−εo) + (1− o(1))λ0(εo, θ − εo)

≥ (1− o(1))(1− ε/2) ≥ 1− ε

by the time the o(1) term is less than ε/2.

All that remains for the k = 1 case is to verify (4.90). Suppose that, contrary to

(4.90), lim sup Ñ∗
1 /a > I

−1
. Then there exists η > 0 and a sequence of d’s approaching

0 on which Ñ∗
1 ≥ (I

−1
+ 2η)a. Assume I = I(θ); the other case, I = I(θ), is handled

similarly. By continuity there exists θ2 < θ such that I(θ)−1 ≤ I
−1

+ η for all

θ ∈ [θ2, θ], and hence

Ñ∗
1 ≥ (I(θ)−1 + η)a (4.92)

for all θ ∈ [θ2, θ]. Since

EθÑ
∗ ≥ I(θ)−1a−O(log a) (4.93)
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uniformly for θ ∈ [θ, θ] by Lemma 4.13, it follows that

r(λ0, δ̃
∗) ≥ Eλ0(cÑ

∗)

= c

∫ θ2

θ

EθÑ
∗λ0(θ)dθ + c

∫ θ

θ2

EθÑ
∗λ0(θ)dθ

≥ ca

∫ θ2

θ

I(θ)−1λ0(θ)dθ + ca

∫ θ

θ2

(I(θ)−1 + η)λ0(θ)dθ −O(c log a)

(by (4.92) and (4.93))

≥ ca[Eλ0I(θ)−1 + η′]−O(c log a),

where η′ = ηλ0(θ2, θ) > 0. We know from Theorems 4.9 and 4.10 that

r(λ0, δ) ≤ caEλ0I(θ)−1 + O(d),

which leads to

r(λ0, δ
∗)− r(λ0, δ) = [r(λ0, δ

∗)− r(λ0, δ̃
∗)] + [r(λ0, δ̃

∗)− r(λ0, δ)]

≥ −o(d) + [η′ca−O(c log a)−O(d)] (by Lemma 4.12)

= η′ca− o(ca) > 0

for sufficiently small d, which contradicts the optimality of δ∗. This proves (4.90) and

completes the k = 1 case.

To handle 2 ≤ k ≤ m, we will first prove that for sufficiently small η > 0,

Pλ0(A
±
k (3η/4)|A±

k−1(η)) → 1 (4.94)

as d → 0. Let λk−1 ∈ A±
k−1(η) and ε1 > 0, which will be chosen below. Consider

Pθ(A
±
k (3η/4)) for |θ − θ̂k−1| ≤ ε1. If ε1 ≤ η/8, then on A+

k−1(η) ∩ Vk(ε1),

θ̂k ≥ θ − ε1 ≥ θ̂k−1 − 2ε1 ≥ η − 2ε1 ≥ 3η/4
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and

θ̂k ≤ θ + ε1 ≤ θ̂k−1 + 2ε1 ≤ θ − η + 2ε1 ≤ θ − 3η/4.

Similarly, on A−
k−1(η) ∩ Vk(ε1),

θ + 3η/4 ≤ θ̂k ≤ −3η/4

so in either case, the requirements of θ̂k on A±
k (3η/4) are satisfied on Vk(ε1) if ε1 ≤ η/8,

which we assume for the remainder of the proof. Let

ζ =
ak−1 − µk(θ)Ñ

∗
k

σk(θ)
√

Ñ∗
k

and let F k−1 denote F
(k−1)
d/c (a). By Lemma 4.4, ak ≥ ak−1 − `(Ñ∗

k , θ̂k) − O(log a), so

that

A±
k (3η/4) ∩ Vk(ε1) ⊇ {`(Ñ∗

k , θ̂k) ≤ ak−1 − (1− 3η/4)ξkF
k−1 + O(log a)} ∩ Vk(ε1)

⊇


ρk(θ) ≤ ζ − (1− 3η/4)ξkF

k−1 + O(log a)

σk(θ)
√

Ñ∗
k



 ∩ Vk(ε1).

Solving for
√

Ñ∗
k we obtain

ζ−(1− 3η/4)ξkF
k−1 + O(log a)

σk(θ)
√

Ñ∗
k

= ζ− (1− 3η/4)ξkF
k−1 + O(log a)

σk(θ)µk(θ)−1(
√

ak−1µk(θ) + ζ2σk(θ)2/4− ζσk(θ)/2)
.

This last is increasing in ζ, so letting U = {ζ ≥
√

log[F k−2/(d/c)2]− 1}, on Vk(ε1) ∩
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U ∩ A±
k−1(η),

ζ − (1− 3η/4)ξkF
k−1 + O(log a)

σk(θ)
√

Ñ∗
k

≥
√

log F k−2/(d/c)2 − 1− (1− 3η/4)ξkF
k−1

σk(θ)µk(θ)−1
√

ak−1µk(θ)
(1 + o(1))

≥
√

log F k−2/(d/c)2 − (1− 3η/4)ξkF
k−1

σk(θ)µk(θ)−1/2
√

(1− η)ξk−1F k−2
(1 + o(1))

≥
√

log F k−2/(d/c)2 − (1− 3η/4)√
1− η

√
µk(θ)

σk(θ)ξk−1

ξk
F k−1

√
F k−2

(1 + o(1))

≥
√

log F k−2/(d/c)2 − (1− η/12)(1 + η/24)
√

log F k−2/(d/c)2

≥ (η/24)
√

log F k−2/(d/c)2 →∞,

this last since

(1− 3η/4)√
1− η

≤ 1− η/12 and

√
µk(θ)

σk(θ)ξk−1

· ξk(1 + o(1)) ≤ 1 + η/24

for sufficiently small ε1. Thus,

Pθ(A
±
k (3η/4)) ≥ Pθ(A

±
k (3η/4)|Vk(ε1) ∩ U)Pθ(Vk(ε1) ∩ U)

≥ Pθ(ρk(θ) ≤ (η/24)
√

log F k−2/(d/c)2|Vk(ε1) ∩ U)Pθ(Vk(ε1) ∩ U)

= (1 + o(1))Pθ(Vk(ε1) ∩ U) ∼ Pθ(U), (4.95)

since Pθ(Vk(ε1)) → 1 by a routine argument.

Now, letting

λ̃0(θ) =
Pθ(A

±
k−1(η))λ0(θ)

Pλ0(A
±
k−1(η))

and using $θ to denote the distribution function of (Sk−1, Ñ
k−1) given the true pa-
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rameter value θ, we write

Pλ0(A
±
k (3η/4)|A±

k−1(η)) = Eλ0(Pλk−1
(A±

k (3η/4))|A±
k−1(η))

=

∫

[θ,θ]

Eθ̃[Pλk−1
(A±

k (3η/4))|A±
k−1(η)]λ̃0(θ̃)dθ̃

=

∫

[θ,θ]

∫

A±k−1(η)

Pλk−1
(A±

k (3η/4))
d$θ̃(s, t)

Pθ̃(A
±
k−1(η)

λ̃0(θ̃)dθ̃

=

∫

[θ,θ]

∫

A±k−1(η)

∫

[θ,θ]

Pθ(A
±
k (3η/4))λ(s,t)(θ)dθ

d$θ̃(s, t)

Pθ̃(A
±
k−1(η)

λ̃0(θ̃)dθ̃

&
∫

[θ,θ]

∫

A±k−1(η)

∫

[θ,θ]

Pθ(U)λ(s,t)(θ)dθ
d$θ̃(s, t)

Pθ̃(A
±
k−1(η)

λ̃0(θ̃)dθ̃, (4.96)

this last by (4.95). Thus if (4.94) were to fail there would be a sequence of d’s

approaching zero on which the right hand side of (4.96) is bounded below 1. Letting

ν(J1 × J2 × J3) ≡
∫

J1

∫

J2

∫

J3

λ(s,t)(θ)dθ
d$θ̃(s, t)

Pθ̃(A
±
k−1(η))

λ̃0(θ̃)dθ̃,

this would imply that there exists ε2 > 0 and J ⊆ [θ, θ] ×A±
k−1(η) × [θ, θ] such that

ν(J) ≥ ε2 and Pθ(U
′) ≥ ε2 on this sequence. Let

J1 = {x : (x, y, z) ∈ J}, J2(θ) = {y : (θ, y, z) ∈ J}, J3(s, t) = {z : (x, (s, t), z) ∈ J}.

For θ ∈ J1, using Wald’s equation

EθÑ
∗ = [EθIθ(θ̂M̃∗)]−1Eθ`M̃∗ .

By Theorem 6.1.1 of [16],

[EθIθ(θ̂M̃∗)]−1 = [I(θ) + O(1/a)]−1 = I(θ)−1 + O(1/a),



166

since a = O(Ñ∗
1 ) by Lemma 4.12. Let ε3 > 0 and

Wo(θ) = {λk−1 ∈ J2(θ)} ∩ {θ ∈ J3(Sk−1, Ñ
∗k−1)} ∩ U ′

W (θ) = Wo(θ) ∩ {θ̂k−1, θ̂k ∈ (θ − ε3, θ + ε3)}.

By Lemma 4.2

`M̃∗ ≥ log r(λM̃∗)−1 −O(log a)

≥ a−O(1)−O(log a) (by Lemma 4.11)

= a−O(log a),

and therefore

Eθ`m∗ − a + O(log a) ≥ Eθ[`M̃∗ − a + O(log a)|W ]Pθ(W )

≥ Eθ[`M̃∗ − a + O(log a)|W ]Pθ(W )

≥ Eθ[(`M̃∗ − a + O(log a))1{M̃∗ = k}|W ]Pθ(W )

≥ Eθ[(`(Ñ
∗
k , θ̂k−1)− ak−1 + O(log a))1{M̃∗ = k}|W ]Pθ(W ) (4.97)

since, on {M̃∗ = k},

`M̃∗ = `(Ñ∗k, θ̂k) ≥ `(Ñ∗k, θ̂k−1)

= `(Ñ∗
k , θ̂k−1) + `(Ñ∗k−1, θ̂k−1)

= `(Ñ∗
k , θ̂k−1) + log r(λk−1)

−1 + O(log a) (by Lemma 4.2)

= `(Ñ∗
k , θ̂k−1) + a− ak−1 + O(log a).

Letting ε3 → 0 in such a way that ε
√

a ¿ ζ yields Pθ(θ̂k−1, θ̂k ∈ (θ− ε3, θ + ε3)) → 1
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and ε3

√
Ñ∗

k on W . Let

ζ ′ ≡ ak−1 −O(log a)− µk−1(θ)Ñ
∗
k

σk−1(θ)
√

Ñ∗
k

=
σk(θ)

σk−1(θ)
ζ +

√
Ñ∗

k ·O(µk(θ)− µk−1(θ)) + o(1)

= (1 + o(1))ζ + O(ε3

√
Ñ∗

k )

∼ ζ = o((Ñ∗
k )1/6)

on W ⊆ Ak−1(η) Then by Lemma 2.10

Eθ[(`(Ñ
∗
k , θ̂k−1)− ak−1 + O(log a))1{M̃∗ = k}|W ] ∼ Eθ[∆(ζ)

√
Ñ∗

k |W ]

& Eθ[∆(
√

log[F k−2/(d/c)2]− 1)
√

ak−1/I(θ)|W ] (on U ′)

& Eθ

[
φ(

√
log[F k−2/(d/c)2]− 1)

(
√

log[F k−2/(d/c)2]− 1)2
·
√

η′F k−2

∣∣∣∣∣ W

]

(some η′ > 0 on Ak−1(η), and since ∆(z) ∼ φ(z)/z2)

∝ exp[−(1/2)(
√

log[F k−2/(d/c)2]− 1)2]

(
√

log[F k−2/(d/c)2]− 1)2

√
F k−2

=
d/c√
F k−2

· exp[
√

log[F k−2/(d/c)2]− 1/2]

(
√

log[F k−2/(d/c)2]− 1)2

√
F k−2

= (d/c)
exp[

√
log[F k−2/(d/c)2]− 1/2]

(
√

log[F k−2/(d/c)2]− 1)2
≡ (d/c) · γ À d/c. (4.98)

Also, since ∫

J1

Pθ(Wo(θ))λ̃0(θ)dθ = ν(J) ≥ ε2 > 0,

there exists J̃1 ⊆ J1 such that λ̃0(J̃1) ≥ ε̃2 > 0 and Pθ(Wo(θ)) ≥ ε̃2 for all θ ∈ J̃1.

Since Pθ(θ̂k−1, θ̂k ∈ (θ − ε3, θ + ε3)) → 1, this last implies Pθ(W (θ)) ≥ ε̃2/2 > 0, say,

for all θ ∈ J̃1 and sufficiently small d and also implies that

ν(J̃1 × J2 × J3) ≥
∫

J̃1

Pθ(Wo(θ))λ̃0(θ)dθ ≥ ε̃2
2 > 0. (4.99)
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Plugging this and (4.98) into (4.97), we have

EθÑ
∗ ≥ [I(θ)−1 + O(1/a)][(d/c) · γ · ε̃2/2 + a−O(log a)] = a/I(θ) + γ̃,

where γ̃ À d/c, and this holds uniformly for θ ∈ J̃1; we will use this lower bound for

θ ∈ J̃1 and the uniform lower bound provided by Lemma 4.13 for θ 6∈ J̃1. Now, since

λ0(J̃1) =

∫

J̃1

λ0(θ)dθ =

∫

J̃1

Pλ0(A
±
k−1(η))λ̃0(θ)dθ

Pθ(A
±
k−1(η))

≥ Pλ0(A
±
k−1(η))λ̃0(J̃1) ≥ Pλ0(A

±
k−1(η))ν(J̃1 × J2 × J3)

≥ ε̃3 > 0

by the induction hypothesis and (4.99),

r(λ0, δ
∗) ≥ Eλ0(cÑ

∗) = cEλ0(Ñ
∗; θ ∈ J̃1) + cEλ0(Ñ

∗; θ 6∈ J̃1)

≥ cEλo(a/I(θ) + γ̃; θ ∈ J̃1) + cEλ0(a/I(θ)−O(log a); θ 6∈ J̃1) (by Lemma 4.13)

≥ caEλ0I(θ)−1 + cγ̃ε̃3 − c ·O(log a)

= caEλ0I(θ)−1 + cγ̃ε̃3 − o(cγ̃)

since γ̃ À d/c À log a. But we know from Theorems 4.9 and 4.10 that

r(λ0, δ) ≤ caEλ0I(θ)−1 + O(d) = caEλ0I(θ)−1 + o(cγ̃),

which implies

r(λ0, δ
∗)− r(λ0, δ) = [r(λ0, δ

∗)− r(λ0, δ̃
∗)] + [r(λ0, δ̃

∗)− r(λ0, δ)]

≥ −o(d) + [cγ̃ε̃3 − o(cγ̃)] (by Lemma 4.12)

= cγ̃ε̃3 − o(cγ̃) > 0 (4.100)

for sufficiently small d, a contradiction. We have thus established (4.94).

With this in hand, we now finish the induction by proving the k case of (4.89).
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Given ε > 0, let η > 0 be such that Pλ0(A1(η)) ≥ 1− ε/2 via the k = 1 case of (4.89).

Then

Pλ0(A
±
k ((3/4)k−1η)) ≥ Pλ0(A

±
1 (η))

k∏
i=2

Pλ0(A
±
i ((3/4)i−1η)|A±

i−1((3/4)i−2η))

= Pλ0(A
±
1 (η))

k∏
i=2

(1− o(1)) (by (4.94))

= Pλ0(A
±
1 (η)) · (1− o(1)).

Assuming d is sufficiently small that this last o(1) term is less than ε/2 (for both the

+ and − cases), we have

Pλ0(Ak((3/4)k−1η)) = Pλ0(A
+
k ((3/4)k−1η)) + Pλ0(A

−
k ((3/4)k−1η))

≥ Pλ0(A
+
1 (η)) · (1− ε/2) + Pλ0(A

−
1 (η)) · (1− ε/2)

= Pλ0(A1(η))(1− ε/2)

≥ (1− ε/2)(1− ε/2) ≥ 1− ε,

finishing the proof.

Lemma 4.15. Assume that c ∈ B+
m(d) and let Q = limd→0(d/c)/hm(a) ∈ (0,∞). For

every ε > 0 there exists η > 0 such that

r(λ, δ̃∗) ≥ c log(d/r(λ))−1EλI(θ)−1 + d[Eλum(θ, Q)−m]− εd

uniformly for λ ∈ Am(η).

Proof. Let η, η1, η2 > 0, to be chosen below. Let (s, t) ∈ A±
m(η) and let δ̃∗ =

(Ñ∗, M̃∗, D̃∗) denote the continuation from (s, t); also let θ̂ = θ̂(s, t), λ = λ(s,t), and

θ̂M̃∗ = θ̂(s + SM̃∗
, t + Ñ∗). Write

r(λ, δ̃∗) ≥ Eλ(cÑ
∗ + dM̃∗)

=

∫

|θ−θ̂|≤η1

Eθ(cÑ
∗ + dM̃∗)λ(θ)dθ +

∫

|θ−θ̂|>η1

Eθ(cÑ
∗)λ(θ)dθ.
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We first consider EθÑ
∗ for |θ − θ̂| ≤ η1. Let V = {|θ̂M̃∗ − θ̂| ≤ η2}. By Wald’s

equation, Eθ(`(Ñ
∗, θ̂)|V ) = µ̃(θ)Eθ(Ñ

∗|V ), where µ̃(θ) = IEθ(X1|V )(θ̂), so that

EθÑ
∗ ≥ Eθ(Ñ

∗|V )Pθ(V ) = µ̃(θ)−1Eθ(`(B
∗, θ̂)|V )Pθ(V ).

Note that for sufficiently small η2, Lemma 4.3 applies on V so that

`(Ñ∗, θ̂) = log r(λM̃∗)−1 − log r(λ)−1 + o(1)

≥ log d−1 −O(1)− log r(λ)−1 + o(1) (by Lemma 4.12)

≥ log(d/r(λ))−1 −K

for some K < ∞. Letting σ̃(θ)2 = (θ̂ − θ̂′)Var(X1|V ) and q(θ) = Pθ(M̃
∗ = 1|V ),

Eθ(`(Ñ
∗, θ̂)|V ) = Eθ[`(Ñ

∗, θ̂)− (log(d/r(λ))−1 −K)|V ] + log(d/r(λ))−1 −K

≥ Eθ[(`(Ñ
∗, θ̂)− (log(d/r(λ))−1 −K))1{M̃∗ = 1}|V ] + log(d/r(λ))−1 −K

= ∆(zq(θ))σ̃(θ)

√
Ñ∗

1 · (1 + o(1)) + log(d/r(λ))−1 −K.

Assume that
log(d/r(λ))−1 −K − µ̃(θ)Ñ∗

1

σ̃(θ)
√

Ñ∗
1

= O(1) (4.101)

as d → 0; if this were to fail then a contradiction to the optimality of δ∗ could be

reached by an argument like that leading to (4.100). Then, letting Fm−1 denote

F
(m−1)
d/c (a), it follows from (4.101) that

∆(zq(θ))σ̃(θ)

√
Ñ∗

1 = ∆(zq(θ))σ̃(θ)[
√

log(d/r(λ))−1/µ̃(θ) + O(1)]

≥ ∆(zq(θ))σ̃(θ)

√
(1− η)ξm(θ̂)Fm−1/µ̃(θ)(1 + o(1)),

by virtue of λ ∈ A±
m(η). Hence

(EθÑ
∗)Pθ(V )−1 ≥ µ̃(θ)−1 log(d/r(λ))−1+∆(zq(θ))µ̃(θ)−3/2σ̃(θ)

√
(1− η)ξm(θ̂)

hm(a)

Cm
m

(1+o(1)),
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using Lemma 2.6. Now, by an argument like that of Lemma 4.1,

µ̃(θ)−1 = Iθ(θ̂)
−1 + O(1/a) ≥ I(θ)−1 + O(1/a),

since Iθ(θ̂) = I(θ) − I(θ, θ̂) ≤ I(θ), and similarly σ̃(θ)−3/2 = µ(θ)−3/2 + o(1). Also,

for sufficiently small η1,

I(θ)−3/2σ(θ)

√
ξm(θ̂) ≥ I(θ)−1

√
σ(θ)2ξm(θ)

I(θ)
(1− η) = I(θ)−1ξm+1(θ)(1− η).

Combining these estimates, we obtain for sufficiently small d

(EθÑ
∗)Pθ(V )−1 ≥ I(θ)−1 log(d/r(λ))−1 +

∆(zq(θ))ξm+1(θ)hm(a)

I(θ)Cm
m

(1− η)2

≥ I(θ)−1 log(d/r(λ))−1 +
∆(zq(θ))ξm+1(θ)

I(θ)Cm
mQ

(d/c)(1− η)3.

For the remainder of the proof assume that η1 ≤ η2/2, which implies that V ⊇
{|θ̂M̃∗ − θ| ≤ η2/2} and hence

log(d/r(λ))−1Pθ(V
′) ≤ O(log a)Pθ(|θ̂M̃∗ − θ| > η2/2)

= O(log a)O(Φ(−η′2a
1/7)) = o(1),

for some η′2 > 0, by the argument of Lemma 4.5. Thus

EθÑ
∗ ≥ I(θ)−1 log(d/r(λ))−1 +

∆(zq(θ))ξm+1(θ)

I(θ)Cm
mQ

(d/c)(1− η)3.

Also EθM̃
∗ ≥ (2− q(θ))(1− o(1)) so that for |θ − θ̂| ≤ η1,

Eθ(cÑ
∗+dM̃∗) ≥ I(θ)−1c log(d/r(λ))−1+

[
∆(zq(θ))ξm+1(θ)

I(θ)Cm
mQ

(1− η)3 + 2− q(θ)

]
d−o(d).
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Using some calculus,

∆(zq(θ))ξm+1(θ)

I(θ)Cm
mQ

(1− η)3 + 2− q(θ) ≥ inf
p∈(0,1)

[
∆(zp)ξm+1(θ)

I(θ)Cm
mQ

(1− η)3 + 2− p

]

=
∆(zp∗(θ,η))ξm+1(θ)

I(θ)Cm
mQ

(1− η)3 + 2− p∗(θ, η),

where p∗(θ, η) is the unique solution of

p∗(θ, η)

φ(zp∗(θ,η))
=

I(θ)Cm
mQ

ξm+1(θ)(1− η)3
.

Now
∆(zp∗(θ,η))ξm+1(θ)

I(θ)Cm
mQ

(1− η)3 + 2− p∗(θ, η) → um(θ, Q)−m

as η → 0, so that

∆(zp∗(θ,η))ξm+1(θ)

I(θ)Cm
mQ

(1− η)3 + 2− p∗(θ, η) ≥ um(θ, Q)−m− ε/2

for sufficiently small η, uniformly for |θ − θ̂| ≤ η1. Thus

Eθ(cÑ
∗ + dM̃∗) ≥ I(θ)−1c log(d/r(λ))−1 + d(um(θ,Q)−m)− (ε/2 + o(1))d,

giving

∫

|θ−θ̂|≤η1

Eθ(cÑ
∗ + dM̃∗)λ(θ)dθ ≥c log(d/r(λ))−1Eλ(I(θ)−1; |θ − θ̂| ≤ η1)

+d[Eλ(um(θ, Q)−m; |θ − θ̂| ≤ η1)− ε/2− o(1)].

(4.102)

To handle |θ − θ̂| > η1, we use the uniform bound

EθÑ
∗ ≥ I(θ)−1 log(d/r(λ))−1 −O(log log(d/r(λ))−1) (Lemma 4.13)

≥ I(θ)−1 log(d/r(λ))−1 −O(log a),
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since log(d/r(λ))−1 ≤ a + O(1), and therefore

∫

|θ−θ̂|>η1

Eθ(cÑ
∗)λ(θ)dθ ≥ c log(d/r(λ))−1Eλ(I(θ)−1; |θ − θ̂| > η1)− cO(log a)

≥ c log(d/r(λ))−1Eλ(I(θ)−1; |θ − θ̂| > η1)− o(d).

Combining this with (4.102) gives

r(λ, δ̃∗) ≥ c log(d/r(λ))−1 + dEλ(um(θ, Q)−m; |θ − θ̂| ≤ η1)− (ε/2 + o(1))d

≥ c log(d/r(λ))−1 + dEλ(um(θ, Q)−m)− (ε/2 + o(1))d (4.103)

since

Eλ(um(θ, Q)−m; |θ − θ̂| > η1) ≤ 2 · Pλ(|θ − θ̂| > η1) = o(1).

Assuming d is small enough so that the o(1) term in (4.103) is less than ε/2, this

relation establishes the claim.

The final theorem gives a lower bound on the integrated risk of the Bayes procedure

and thereby shows that δ is second-order optimal.

Theorem 4.16. Let m ≥ 1 and um(θ, Q) be as in (4.53). Then, as d → 0,

r(λ0, δ
∗) ≥





caEλ0I(θ)−1 + d(m + 1)− o(d), if c ∈ Bo
m(d)

caEλ0I(θ)−1 + d · Eλ0um(θ, Q)− o(d), if c ∈ B+
m(d), Q = lim (d/c)

hm(a)
.

(4.104)

Therefore, as d → 0, δ minimizes the stopping risk to second-order in the sense that

r(λ0, δ)− r(λ0, δ
∗) = o(d), (4.105)

provided c ∈ Bm(d) for some m ≥ 1.

Proof. We prove that the lower bounds (4.104) hold for δ̃∗ and then use Lemma

4.12 to compare the integrated risks of δ̃∗ and δ∗.



174

Assume that c ∈ Bo
m(d) and choose ε > 0. Since log a = o(hm(a)) = o(d/c), by

Lemma 4.13, EθÑ
∗ ≥ a/I(θ)− o(d/c) uniformly in θ and hence

Eλ0(cÑ
∗) ≥ caEλ0I(θ)−1 − o(d). (4.106)

Let Am(η) = {λm ∈ Am(η)} and choose η > 0 such that

P (Am(η)) ≥ 1− ε

2(m + 1)
(4.107)

by virtue of Lemma 4.14. Since M̃∗ ≥ m + 1 on Am,

E(dM̃∗) ≥ dE(M̃∗; Am(η)) ≥ d(m + 1)P (Am(η)) ≥ d(m + 1)− (ε/2)d,

by our choice of η. Combining this with (4.106) and assuming d is small ehough so

that the o(d) term in (4.106) is less than (ε/2)d,

r(λ0, δ̃
∗) ≥ E(cÑ∗ + dM̃∗)

≥ caEI(θ)−1 − (ε/2)d + d(m + 1)− (ε/2)d

= caEI(θ)−1 + d(m + 1)− εd,

proving that

r(λ0, δ̃
∗) ≥ caEI(θ)−1 + d(m + 1)− o(d).

The first case of (4.104) follows since r(λ0, δ
∗) ≥ r(λ0, δ̃

∗)− o(d) by Lemma 4.12.

Next we consider the boundary case. Assume that c ∈ B+
m(d) and let Q =

limd→0(d/c)/hm(a) ∈ (0,∞). Choose ε > 0. By Lemmas 4.14 and 4.15 there ex-

ists η > 0 such that Pλ0(A
′
m(η)) ≤ ε/[6(m + 2)] and the conclusion of Lemma 4.15
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holds with ε replaced by ε/6; one additional restriction is imposed on η below. Then

Eλ0 [cÑ
∗ + dM̃∗ + r(λM̃∗); Am(η)] = Eλ0 [cÑ

∗m + dm + r(λm, δ̃∗); Am(η)]

≥ Eλ0 [cÑ
∗m + dm + c log(d/r(λm))−1EλmI(θ)−1 + Eλm(um(θ, Q)−m)− (ε/6)d; Am(η)]

= c log d−1Eλ0(EλmI(θ)−1; Am(η)) + dEλ0(Eλmum(θ, Q); Am(η))

+cEλ0(Ñ
∗m − log r(λm)−1EλmI(θ)−1; Am(η))− (ε/6)d.

Thus,

Eλ0 [cÑ
∗ + dM̃∗ + r(λ0,M̃∗); Am(η)]− c log d−1Eλ0(EλmI(θ)−1; Am(η))− dEλ0um(θ, Q)

≥ −dEλ0(Eλmum(θ, Q); A′
m(η)) + cEλ0(Ñ

∗m − log r(λm)−1EλmI(θ)−1; Am(η))− (ε/6)d

≥ −d(m + 2)Pλ0(A
′
m(η))− c · o(d/c)− (ε/6)d

≥ −(ε/3 + o(1))d, (4.108)

by our choice of η. Also,

Eλ0(cÑ
∗; A′

m(η)) ≥ c[log d−1Eλ0(I(θ)−1|A′
m(η))−O(d/c)]Pλ0(A

′
m(η))

= c log d−1Eλ0(I(θ)−1; A′
m(η))−O(d)Pλ0(A

′
m(η))

≥ c log d−1Eλ0(I(θ)−1; A′
m(η))− (ε/6)d,

assuming η is sufficiently small. Combining this with (4.108),

r(λ0, δ̃
∗) ≥ Eλ0(cÑ

∗ + dM̃∗ + r(λm, δ̃∗); Am(η)) + Eλ0(cÑ
∗; A′

m(η))

≥ c log d−1[Eλ0(EλmI(θ)−1; Am(η)) + Eλ0(I(θ)−1; A′
m(η))] + dEλ0um(θ, Q)− (ε/2 + o(1))d

≥ c log d−1Eλ0I(θ)−1 + dEλ0um(θ,Q)− εd

by the time the last o(1) term is less than ε/2. This shows

r(λ0, δ̃
∗) ≥ c log d−1Eλ0I(θ)−1 + dEλ0um(θ, Q)− o(d)
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and consequently that the same bound holds for δ∗ by Lemma 4.12. This finishes the

boundary case and hence proves (4.104). Comparing this with the integrated risk of

δ from Theorems 4.9 and 4.10 establishes (4.105).

4.4 A Numerical Example

As discussed in Section 3.3 for simple hypotheses, there are many possibilities for

small sample procedures that are asymptotically equivalent to the test δ, defined and

proved asymptotically optimal above. In this section we describe one natural choice

and give the results of a numerical experiment comparing it with group-sequential

sampling.

Recall that the “exploratory” first stage of δα does not depend on m, where m is

such that c ∈ Bm(d). Thus, a small sample version of δα may use the data of the first

stage to determine its choice of m. Using this idea, let δ denote the test δα=0 with

parameter m∗ chosen to be the smallest k such that

Ck
k

√
ξk(θ̂1) · hk(a/σ1) ≤ d/c ≤ Ck−1

k−1

√
ξk−1(θ̂1) · hk−1(a/σ1). (4.109)

It is immediate from (4.109) that m∗ = m for sufficiently small d when c ∈ Bo
m(d),

whence δ is asymptotically optimal by Theorem 4.16.

Table 2 contains the results of a numerical experiment comparing δ with group-

sequential testing of the hypotheses

−1 ≤ µ ≤ −.25 vs. .25 ≤ µ ≤ 1

about the mean of normally distributed random variables with unit variance, with a

“flat” prior, λ0(µ) = (1/2)·1{|µ| ≤ 1}, and 0-1 loss function w(µ) = 1{.25 ≤ |µ| ≤ 1}.
δg(k) denotes group-sequential testing with constant stage-size k, which samples until

the stopping risk is less than d, the same stopping rule employed by δ.

For each value of d/c, the operating characteristics of δg(k) are given for k = 1,
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Table 2
Numerical Results for Testing Normal Mean
−1 ≤ µ ≤ −.25 vs. .25 ≤ µ ≤ 1 (d = 10−4)

Test EN EM int. risk (d) 2nd-order risk (d)
d/c = 1

δ 61.7 4.13 65.8 8.9
δg(1) 55.9 55.9 111.8 55.1
δg(12) 64.4 5.47 69.8 12.9
δg(20)† 77.1 3.85 81.0 24.1

d/c = 5
δ 73.8 2.61 17.4 5.2

δg(1) 55.9 55.9 67.1 54.9
δg(12) 64.4 5.47 18.4 6.2
δg(32) 77.2 2.57 18.0 5.8

d/c = 10
δ 81.0 2.47 10.6 3.9

δg(1) 55.9 55.9 61.5 54.8
δg(12) 64.4 5.47 11.9 5.3
δg(40) 92.2 2.30 11.5 4.9

k = 12 (the size of the first stage of δ for the values of the parameters considered),

and the best possible k (determined by simulation). Since both δ and δg must sample

until the stopping risk is less than d, the cost of the number of observations required

for this and the first stage represents a “fixed cost” which all procedures will incur.

Thus, we obtain a more accurate comparison of the efficiency due to sampling by

considering the 2nd-order risk of the procedures, defined as

integrated risk −(cEN (1) + d),

where N (1) is the number of observations of δg(1).

The results show significant improvement in the risk and 2nd-order risk of δ over

δg. As we noted in Section 3.3, the size of the smallest possible 2nd-order risk is

not known, so it is difficult to say how much further improvement is possible without

backward induction type calculations, which remain prohibitively large in this general

†In the d/c = 1 case, k = 12 is the best possible sample size so we report k = 20 as the third
group size.
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setting. We would expect the difference between δ and the best group sequential test

to decrease for larger values of d/c, since EM∗ → 1 in this limit.

The differences in risk between δ and group sequential tests here is roughly com-

parable to that seen in the simple hypotheses setting. One would expect that a pro-

cedure that uses estimates of the true state of nature to design future stages would

be more robust over a range of parameter values, and hence show more pronounced

improvement over constant stage-size sampling in this composite hypotheses setting.

This indicates that a higher level of refinement is necessary to indicate how to achieve

higher efficiencies in practical use.
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