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Abstract

Many gauge theories in three dimensions flow to interacting conformal field theo-

ries in the infrared. We define a new class of local operators in these conformal field

theories that are not polynomial in the fundamental fields and create topological dis-

order. They can be regarded as higher-dimensional analogs of twist and winding-state

operators in free 2-D CFTs. We call them monopole operators for reasons explained

in the text. The importance of monopole operators is that in the Higgs phase, they

create Abrikosov-Nielsen-Olesen vortices. We study properties of these operators in

three-dimensional gauge theories using large Nf expansion. For non-supersymmetric

gauge theories we show that monopole operators belong to representations of the

conformal group whose primaries have dimension of order Nf . We demonstrate that

these monopole operators transform non-trivially under the flavor symmetry group.

We also consider topology-changing operators in the infrared limits of N = 2

and N = 4 supersymmetric QED as well as N = 4 SU(2) gauge theory in three

dimensions. Using large Nf expansion and operator-state isomorphism of the resulting

superconformal field theories, we construct monopole operators that are primaries of

short representation of the superconformal algebra and compute their charges under

the global symmetries. Predictions of three-dimensional mirror symmetry for the

quantum numbers of these monopole operators are verified. Furthermore, we argue

that some of our large-Nf results are exact. This implies, in particular, that certain

monopole operators in N = 4 d = 3 SQED with Nf = 1 are free fields. This amounts

to a proof of 3-D mirror symmetry in these special cases.
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Chapter 1

Introduction

One of the most fascinating problems in quantum field theory is understanding non-

perturbative equivalences (“dualities”) between superficially very different theories.

A classic example is the quantum equivalence of the massive Thirring and sine-Gordon

models [1]. The sine-Gordon model has topological solitons (kinks), and it can be

shown that a certain local operator, which creates a kink, satisfies the equations of

motion of the massive Thirring model [2].

More recently, a number of dualities has been conjectured for supersymmetric

gauge theories in three and four dimensions. The earliest proposal of this kind is the

S-duality of N = 4 d = 4 super-Yang-Mills theory [3, 4, 5]. A decade and a half

later, N. Seiberg proposed a dual description for the four-dimensional conformal field

theory (CFT) that arises as the infrared (IR) limit of N = 1 d = 4 super-QCD [6].

The dual theory is again the infrared limit of an N = 1 d = 4 gauge theory. This

proposal generated tremendous excitement, and soon many other candidate dualities

have been found (see Refs. [7, 8] for a review). Later it was realized that many

field-theoretic dualities arise from string theory dualities.

It is believed that many of these conjectural dualities have the same origin as the

sine-Gordon/Thirring duality, i.e., they arise from “rewriting” a theory in terms of

new fields that create topological disorder. But so far nobody has managed to prove a

non-trivial higher-dimensional duality along the lines of Ref. [2]. The main reason for
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this is that the conjectured dualities in higher dimensions typically involve non-abelian

gauge theories and are vastly more complicated than the sine-Gordon/Thirring dual-

ity. Usually, it is not even clear which solitons are “responsible” for the duality.

Until now, all dualities in dimensions higher than two remain conjectural, and the

physical reasons for their existence are not completely understood.

A non-perturbative duality in three dimensions, known as 3-D mirror symmetry,

has been proposed by K. Intriligator and N. Seiberg [9], and later studied by a num-

ber of authors [10]-[27]. The mirror symmetry predicts quantum equivalence of two

different theories in the IR limit. In this regime a supersymmetric gauge theory is

described by a strongly coupled superconformal field theory. The duality exchanges

masses and Fayet-Iliopoulos terms as well as the Coulomb and Higgs branches imply-

ing that electrically charged particles in one theory correspond to the magnetically

charged objects (monopoles) in the other. Also, since the Higgs branch does not re-

ceive quantum corrections and the Coulomb branch does, mirror symmetry exchanges

classical effects in one theory with quantum effects in the dual theory. Many aspects

of the three-dimensional mirror symmetry have a string theory origin.

Mirror symmetry in three dimensions has a number of special features that make

it more amenable to study than other higher-dimensional dualities. First of all, mirror

symmetry makes sense for abelian gauge theories, for which the complications due to

the presence of unphysical degrees of freedom are not so severe. Second, it is known

how to construct a mirror theory (in fact, many mirror theories [19]) for any abelian

gauge theory [13, 19]. The mirror is always an abelian gauge theory, but usually with

a different gauge group. Third, all mirror pairs can be derived from a certain “basic”

mirror pair by formal manipulations [19]. This basic example identifies the infrared

limit of Nf = 1 N = 4 d = 3 SQED with a free theory of a twisted hypermultiplet. To

prove this basic example of mirror symmetry, one only needs to construct a twisted

hypermultiplet field out of the fields of N = 4 SQED and show that it is free. Fourth,

it is known what the relevant topological soliton is in this case: it is none other than
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the Abrikosov-Nielsen-Olesen vortex [15].

There are several related difficulties that one encounters in dimensions higher

than two. First of all, interesting higher-dimensional dualities involve gauge theories.

This implies that in order to write down an operator describing the dual degrees of

freedom, one has to work in an enlarged state space which includes the unphysical

degrees of freedom of both the original and the dual gauge fields. It is not known

how to construct such an enlarged space. Fortunately, there are non-trivial examples

of dualities in three dimensions [9] for some of which the dual theory has a trivial

gauge group. In this case one can hope to construct the operators describing the dual

degrees of freedom directly in the state space of the original gauge theory.

The second difficulty is that it is hard to construct topological disorder opera-

tors in interacting fields theories. For example, it is believed that three-dimensional

mirror symmetry arises when one rewrites three-dimensional supersymmetric QED

in terms of local operators that create Abrikosov-Nielsen-Olesen vortices [15]. This

means that such operators are monopoles. However, it is not clear how to define

monopole operators in SQED. A proposal in this direction was made by A. Kapustin

and M. J. Strassler in Ref. [19], but it was only partially successful.

1.1 Gauge theory dynamics in three dimensions

The dimension of the gauge coupling e in 3-D gauge theory is 1/2 in units of energy

and, hence, gauge interactions are super-renormalizable. In the ultraviolet (UV) limit

we have a free theory of abelian gauge fields and neutral matter fields. In fact, no

renormalization of the gauge interactions is required in UV regime. Contrariwise,

in the infrared regime the gauge theory is strongly coupled and is described by an

interacting conformal field theory.

The difficulty of dealing with strongly coupled theories can be avoided by consid-

ering a limit of large number of flavors Nf . For large Nf fluctuations of the gauge
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field are suppressed and, to leading order in 1/Nf , it can be treated as a classical

background.

In the case of non-supersymmetric gauge theory with Nf flavors of charged mat-

ter it is natural to assume that the low-energy limit of a theory is described by a

non-trivial CFT. In Refs. [28]-[30] it was demonstrated that three-dimensional gauge

theories have severe perturbative infrared divergences due to logarithms of the cou-

pling constant. In Refs. [31]-[32] it was shown that for three-dimensional QED and

QCD, the 1/Nf expansion can be defined in such a way that the infrared divergences

are absent in each order of the expansion and the theory has an IR fixed point.

The physics of three-dimensional non-supersymmetric gauge theories at finite Nf

remains controversial. The conventional approach is to study a system of truncated

Schwinger-Dyson equations and look for symmetry-breaking solutions. For simplicity,

let us focus on the case of zero Chern-Simons coupling and even Nf . It has been

claimed that in QED at finite Nf , flavor symmetry and parity are spontaneously

broken by a dynamical mass for the fermions and the infrared limit is a theory of free

photons [33]. The majority of such studies indicate that this happens for Nf smaller

than a certain critical value of order 6 or 7 (see, for example, Refs. [34]-[38]). There are

also claims that dynamical mass generation takes place for all Nf but is exponentially

small for large Nf and therefore invisible in the 1/Nf expansion [33, 39, 40]. In QCD

at large Nf the non-abelian interactions of gluons are suppressed and, the dynamics

of the theory becomes similar to that of an abelian theory [32, 41]. It must be stressed

that the results of such studies depend on the way one truncates an infinite system

of Schwinger-Dyson equations, a procedure that cannot be fully justified. Lattice

simulations of three-dimensional QED and QCD have been inconclusive so far.

The phase transition takes place at finite Nf and does not affect the dynamics at

large Nf , which is studied in this manuscript. However, it indicates that the 1/Nf

expansion has a finite radius of convergence. Note also that in the N = 2 and N = 4

supersymmetric cases the situation is better, in the sense that one can argue for the
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existence of a non-trivial CFT at the origin of the quantum moduli space for all Nf .

There is no evidence of the phase transitions at finite Nf . Hence, it is possible that

the 1/Nf expansion is convergent all the way down to Nf = 1.

In the remainder of this introductory chapter we construct twist operators in

two-dimensional conformal field theory.

In Chapter 2 we will consider topological disorder operators in three-dimensional

QED with Nf flavors of fermions [42]. This theory is believed to flow to an interacting

conformal fixed point for large enough Nf . The theory is not supersymmetric and

is not expected to possess a simple dual. Nevertheless, it is a useful exercise to

define monopole operators in this simple model and learn how to work with them.

Besides, monopole operators are rather interesting objects even in the abelian non-

supersymmetric case. First of all, these are the first examples of local operators in a

three-dimensional CFT that are not polynomial in the fundamental fields. Thus, our

construction can be regarded as a generalization of the vertex operator construction

from free two-dimensional CFT to an interacting three-dimensional CFT. Second,

we show that because of fermionic zero modes the monopole operators transform in

a non-trivial representation of the flavor group, whose size depends on the Chern-

Simons coupling.

We study monopole operators in N = 2 and N = 4 SQED [43] in Chapter 3.

More precisely, we construct monopole operators in three-dimensional SCFTs that

are the infrared limits of N = 2 and N = 4 SQEDs. We focus on operators that live

in short multiplets of the superconformal algebra. The dimensions of primaries of

such multiplets saturate a BPS-like bound, so that operators in short multiplets are

referred to as BPS or chiral primary operators. Mirror symmetry makes predictions

about the spectrum and other properties of BPS operators, including those with non-

zero vortex charge. In Ref. [15] some of these predictions have been verified on the

Coulomb branch of N = 2 SQED, where the infrared theory is free.

In Chapter 4 the analysis is extended to the non-abelian gauge theories. We
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consider monopole operators in the IR limit of SU(Nc) non-supersymmetric Yang-

Mills theories as well as N = 4 SU(2) supersymmetric Yang-Mills models with a

large number of flavors [44]. The conformal weight of a generic monopole operator in

non-supersymmetric gauge theory is irrational. On the other hand, supersymmetric

gauge theories have monopole operators that are superconformal chiral primaries. The

conformal dimensions of such operators are uniquely determined by their R-symmetry

representations. The R-symmetry group of N = 4 supersymmetric theory is given

by SU(2) × SU(2) and the conformal dimensions of the chiral primary operators

are integral. The mirror symmetry predicts the spectrum and quantum numbers

of chiral primary operators including the ones with magnetic charges. We use the

1/Nf expansion and the operator-state isomorphism of the resulting conformal field

theories to study transformation properties of monopole operators under the global

symmetries and verify the mirror symmetry predictions.

1.2 Twist operator in two dimensions

In this section we review a twist operator in a free scalar theory in two dimensions [45].

The twist operator is an example of an operator that is not polynomial in fundamental

fields and creates topological disorder. Consider the conformally invariant action

S[X] =
1

2π

∫
dzdz̄∂X∂̄X,

where ∂ = ∂/∂z and ∂̄ = ∂/∂z̄. The equation of motion δS/δX = 0 implies that X

is given by a sum of holomorphic and anti-holomorphic functions:

X(z, z̄) =
1

2
(XL(z) + XR(z̄)) .

The correlator 〈X(z, z̄)X(w, w̄)〉 is logarithmically divergent indicating that X is not

a conformal field. On the other hand, its derivatives satisfy the operator product
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expansion (OPE)

∂XL(z)∂XL(w) ∼ − 1

(z − w)2 + . . . ,

and the finite part gives the stress-energy tensor

T (z) = −1

2
lim
w→z

(
∂XL(z)∂XL(w) +

1

(z − w)2

)
. (1.1)

The OPE with the stress-energy tensor confirms that ∂XL(z) has conformal weight

(1, 0):

T (z)∂XL(w) ∼ 1

z − w
∂XL(w) + . . .

The mode expansion of ∂XL has the form

∂XL(z) = −i
∑

n

αnz−n−1, [αn, αm] = nδn,−m, (1.2)

where summation over integer n corresponds to the non-twisted sector of the theory:

∂XL is a single-valued operator in the complex plane, while summation over half-

integer n introduces a branch cut and corresponds to a twisted sector denoted A.

In the latter case, the operator ∂X is anti-periodic if analytically continued along

a closed contour around the origin. It is worth mentioning that the second term in

the defining equation (1.1) reflects renormalization of the stress-energy tensor and

ensures that vacuum state in the non-twisted sector of a theory has vanishing energy.

It is important that exactly the same expression for the stress-energy tensor is also

used in a twisted sector of a theory. Thus, the renormalization procedure corresponds

to the normal-ordering prescription in the non-twisted sector only.

A holomorphic twist operator O(w) satisfies

〈F1 [XL(z1)] . . . Fk [XL(zk)]〉A ≡
〈
O+(∞)F1 [XL(z1)] . . . Fk [XL(zk)] O(0)

〉
, (1.3)

for any local operators F1 [XL(z1)], . . . , Fk [XL(zk)], and the left-hand side of Eq.(1.3)
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is evaluated using the mode expansion (1.2) with half-integer n. Therefore, for a twist

operator we have

∂XL(z)O(w) ∼ 1

(z − w)1/2
K(w) + . . . ,

with some local operator K(w). In a twisted sector we have

〈∂XL(z)∂XL(w)〉A = −1

2

√
z/w +

√
w/z

(z − w)2
.

Therefore, the expectation value of the stress-energy tensor in the twisted sector is

given by

〈T (z)〉A =
1

16z2
,

implying that O(z) is a conformal primary operator with conformal weight
(

1
16

, 0
)
:

T (z)O(w) ∼ 1

16 (z − w)2O(w) + . . .

An anti-holomorphic twist operator is defined in a similar way, and a twist operator

that acts on both XL and XR is given by a product of the holomorphic and anti-

holomorphic twist operators.
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Chapter 2

Monopole operators in
three-dimensional conformal field
theory

2.1 Review of three-dimensional QED

The action of three-dimensional QED in the Euclidean space is given by

LQED =

∫
d3x


 1

4e2
FijF

ij + i

Nf∑
s=1

ψ+s (σ ·D) ψs


 ,

where V is the U(1) gauge field, F = dV is the field-strength 2-form, D is the

corresponding covariant derivative, and ψs is a complex two-component spinor. In

three dimensions one can add to the action a Chern-Simons term

LCS =
iκ

4π

∫
d3x εijkVi∂jVk.

Such a term breaks parity invariance of the theory. We will assume that the gauge

group is compact, i.e., U(1) rather than R. Naively, this requires the Chern-Simons

coupling κ to be an integer, to avoid global anomalies. The real story is slightly

more complicated. When Nf is odd, the fermionic path integral is anomalous. The
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anomaly is the same as the anomaly due to a Chern-Simons term with κ = 1/2. Thus

cancellation of global anomalies requires

κ− Nf

2
∈ Z.

In particular, for odd Nf the Chern-Simons coupling must be non-zero, and parity is

broken. This is known as parity anomaly [46].

In the limit Nf →∞ the infrared theory becomes weakly coupled, and conformal

dimensions of all fields can be computed order by order in 1/Nf . For example, the IR

dimension of ψs is canonical, (i.e., the same as the UV dimension), up to corrections

of order 1/Nf .

More interestingly, the IR dimension of Fij is 2 to all orders in 1/Nf . To under-

stand why this is the case, consider a current

J i =
1

4π
εijkFjk.

It is identically conserved by virtue of the Bianchi identity. A priori, this current

could either be a primary field, or a descendant of the primary field. In the UV, the

latter possibility is realized, since we can write

J i = ∂iσ, (2.1)

where σ is a free scalar field. The scalar σ is usually referred to as the dual photon. It

has dimension 1/2 (as befits a free scalar in three dimensions), while J i and Fij have

dimension 3/2. On the other hand, in the IR an equation like Eq. (2.1) cannot hold.

Indeed, Eq. (2.1) implies that Fij obeys the free Maxwell equation, which clashes with

the assumption that there are massless charged particles in the infrared. (We assume

here that the fermions do not get a mass due to some non-perturbative effect, see the

discussion in section 1.1.) This strongly suggests that in the IR limit J i is a primary
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field.

It is well known that in a unitary 3-D CFT a conserved primary current has

dimension 2. Hence the IR dimension of J i and Fij is 2. This conclusion can also be

reached by directly studying the perturbative expansion in powers of 1/Nf [31].

Note that the difference between the UV and IR dimensions of F is of order 1, and

therefore the IR fixed point is far from the UV fixed point, even in the limit Nf →∞.

In this respect, the situation is very different from the Banks-Zaks-type theories in

four-dimensions [47], where the IR dimensions of all operators are very close to their

UV dimensions.

2.2 Defining monopole operators

2.2.1 A preliminary definition

As mentioned above, three-dimensional QED possesses an interesting conserved cur-

rent, the dual of the field strength:

J i =
1

4π
εijkFjk.

Its conservation is equivalent to the Bianchi identity dF = 0. The corresponding

charge is called the vortex charge, because in the Higgs phase it is carried by the

Abrikosov-Nielsen-Olesen (ANO) vortices. The vortex charge is integral if the gauge

field V is a well-defined connection on a U(1) principal bundle. Loosely speaking, we

would like to construct a vortex-creating operator. But in an interacting conformal

field theory, it does not make sense to say that an operator is creating a particle.

A vortex-creating operator will be defined as an operator with a unit vortex charge.

This means that the OPE of such an operator with J i has the form

J i(x)O(0) ∼ 1

4π

xi

|x|3O(0) + less singular terms.
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Such operators can be organized in the representations of the conformal group. In a

unitary theory local operators must transform according to lowest-weight represen-

tations, i.e., those representations in which the dimension of operators is bounded

from below. The operator with the lowest dimension is called a conformal primary.

It is standard to label a representation by the spin and dimension of its primary.

Our problem can be formulated as follows: determine the spin, dimension, and other

quantum numbers of primaries with a given vortex charge.

In the path integral language, an insertion of an operator with vortex charge q

at a point p is equivalent to integrating over gauge fields which have a singularity at

x = p such that the magnetic flux through a 2-sphere surrounding x = p is q. To

be consistent, one must regard charged matter fields as sections of a non-trivial line

bundle on the punctured R3. Thus an insertion of a vortex-creating operator causes

a change in the topology of fields near the insertion point. In what follows we will

use the terms “vortex-creating operator” and “monopole operator” interchangeably.

This way of defining topological disorder operators is familiar from 2-D CFT. For

example, a twist operator for a free boson in 2-D reviewed in section 1.2 is defined by

the condition that the field changes sign as one goes around the insertion point [45].

Another example is provided by the theory of a periodic free boson in two dimensions.

This theory has winding states, and the corresponding operators create a logarithmic

singularity for the boson field. Thus our monopole operators can be regarded as

three-dimensional analogues of twist operators or winding-state operators.

In the two-dimensional case one can loosely say that a winding-state operator

creates a kink. The precise meaning of this statement is the following. Consider

a perturbation of the free boson theory by a periodic potential, say, a sine-Gordon

potential. The resulting massive theory has multiple vacua and topological excitations

(kinks) interpolating between neighboring vacua. The operator which carries winding

number one has non-zero matrix elements between the vacuum and the one-kink state.

Similarly, one can loosely say that a monopole operator creates an ANO vortex. To
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make this statement precise, one has to go to the Higgs phase (for example, by adding

charged scalars with an appropriate potential). In the Higgs phase, the magnetic flux

emanating from the insertion point of the monopole operator is squeezed into a thin

tube. This tube is the world-line of a vortex.

2.2.2 A more precise definition

The definition of monopole operators given above is not yet complete. In effect, we

have defined an insertion of a monopole operator by requiring that the gauge field

strength have a particular singularity at the insertion point. However, we did not

specify the behavior of the matter fields near the insertion point. In fact, we expect

that there are many operators which carry the same vortex charge, and they differ

precisely by the behavior of fields at the insertion point.

Another difficulty is that the IR theory is strongly coupled, and it seems hard to

compute correlators involving monopole operators.

The first difficulty can be circumvented using radial quantization. It is a general

feature of CFT in any dimension that local operators are in one-to-one correspondence

with states in the Hilbert space of the radially quantized theory. This follows from

the fact that one can use a conformal transformation to map an insertion point of

an operator to infinity. In this way one trades a local operator for an incoming or

outgoing state. In the case of monopole operators, such a mapping takes an operator

with vortex charge q to a state on S2 × R with a magnetic flux q through S2. Here

R is regarded as the time direction. Classifying states of a CFT on S2 × R with a

given vortex charge is certainly a well-defined problem. Furthermore, the radially

quantized picture is the most convenient one for computing correlators which involve

two monopole operators with opposite vortex charges and an arbitrary number of

ordinary operators.

By mapping the insertion of a monopole operator to an ingoing state and the

insertion of an anti-monopole operator to an outgoing state, one reduces the problem
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to computing a particular matrix element of a product of several ordinary operators.

A particularly important special case is the three-point function which involves a

monopole operator, an anti-monopole operator, and a conserved current. Knowledge

of such correlators allows one to read off the quantum numbers of a monopole oper-

ator. For example, in order to determine the dimension of an operator, one has to

compute the expectation value of the stress-energy tensor in the corresponding state.

This approach is familiar from 2-D CFT, where it is used to compute the quantum

numbers of twist operators (see, e.g., Ref. [45]).

Of course, if one desires to compute four-point functions of monopole operators,

mapping two of the insertion points to infinity does not help very much. In the case of

2-D CFT, one has to use tricks special to the theory in question in order to compute

four-point functions of topological disorder operators. In this chapter, we will focus

on studying the OPE of monopole operators with conserved currents.

The second difficulty can be avoided by working in the large Nf limit. It is

a general feature of this limit that the gauge field does not fluctuate, and can be

treated classically [28, 29, 31]. This can be seen as follows. The infrared limit in 3-D

QED is simply the limit e →∞. This is literally true, because no renormalization of

the Lagrangian is required. Thus one can simply drop the kinetic term for the gauge

field. Integrating out the fermions then gives an effective action for the gauge field

of order Nf . For example, when expanded around a trivial background, this action

looks like

Nf

∫ (
Fij 2−1/2F ij + higher−order terms

)
d3x.

Thus the effective Planck constant is of order 1/Nf , and in the large Nf limit the size

of gauge-field fluctuations is order 1/Nf . Moreover, if we absorb a factor of N
1/2
f into

F, we see that self-interactions of F are suppressed in the large Nf limit. In other

words, N
1/2
f F is a Gaussian field in the large Nf limit. It is this line of reasoning that

allows one to show that the infrared CFT is weakly coupled in the large Nf limit.
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The argument also applies to CFT on S2 × R with a flux. Thus we can regard the

gauge field as a classical background. It is very plausible that the saddle point of the

effective action for F on S2 ×R is rotationally symmetric. Therefore we can assume

that the classical background is simply a constant magnetic flux on S2.

The above discussion reduced our problem to computations with free fermions

on S2 × R in the presence of a constant magnetic flux. Finding the dimension of a

monopole operator is equivalent to computing the Casimir energy of free fermions on

S2 with a flux. It is a priori clear that this energy scales like Nf . There are corrections

to this result, which can be computed by taking into account the fluctuations of the

gauge field. However, such effects are suppressed by powers of 1/Nf .

The above discussion contains a gap as regards gauge invariance of monopole

operators. Gauge-invariance of a local operator is equivalent to gauge-invariance of

the corresponding state in the radially quantized picture. In other words, the state

must satisfy the Gauss law. The Gauss law in QED on S2 × R comes from varying

the action with respect to the “time-like” component of the gauge field A. In the

limit e →∞ it simply reads

k(x)|Φ〉 = 0,

where

k(x) =
∑

s

ψ+s(x)ψs(x)

is the electric charge density operator. In particular, the total electric charge of a

gauge-invariant state must be zero. The latter is a standard fact about gauge theory

on a compact space, valid irrespective of the value of e. The definition of the electric

charge operator involves normal-ordering ambiguities, which will be dealt with below.

Note also that the inclusion of the Chern-Simons term in the action modifies the Gauss

law constraint into (
k(x) +

κ

4π
εijFij(x)

)
|Φ〉 = 0.
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In particular, the total electric charge of the matter modes must be equal to −κ times

the vortex charge. In this way (and only in this way) the Chern-Simons term will

affect the physics at large Nf .

2.3 Properties of monopole operators

2.3.1 Radial quantization in the presence of a flux

As explained in the previous section, at large Nf all properties of monopole operators

can be deduced from studying free fermions on S2 × R in a constant background

magnetic flux. In this subsection we summarize the properties of this system, with

detailed derivations relegated to the Appendix A.

The spectrum of the Dirac Hamiltonian on S2 × R with q units of magnetic flux

is given by

Ep = ±
√

p2 + p|q|, p = 0, 1, 2, . . . .

The degeneracy of the p-th eigenvalue is 2jp + 1, where

jp =
1

2
(|q| − 1) + p.

These 2jp + 1 states transform as an irreducible representation of the rotation group

SU(2)rot.

The presence of q states with zero energy is particularly important. The existence

of at least q zero modes is dictated by the Atiyah-Singer index theorem applied to the

Dirac operator on S2 coupled to the magnetic field. In the case of a unit magnetic

flux (|q| = 1), we have a single fermionic zero mode with zero spin. Thus a spinor

is converted into a scalar due to the non-trivial topology of the magnetic monopole.

This scalar-spinor transmutation is well known in other contexts; in particular it plays

an important role in the conjectured S-duality of N = 4 d = 4 supersymmetric Yang-
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Mills theories. For general q, the fermionic zero modes transform in an irreducible

representation of SU(2)rot with spin j = (|q|−1)/2. We will discuss in detail the case

when q = ±1, and then comment on the higher-q case.

Let us denote the fermionic creation and annihilation operators by c+s
pm and cs

pm

respectively, where s = 1, . . . , Nf is the flavor index, p = 1, 2, . . . , labels the energy

eigenspaces as above, and m = −jp,−jp + 1, . . . , jp, labels the states within the p-th

energy eigenspace. The fermion annihilation operators corresponding to p = 0 will

be denoted simply by cs
0. The Hilbert space of the theory is the tensor product of the

Hilbert space of zero modes and the Hilbert space of all other modes. The latter is

simply a fermionic Fock space with a unique vacuum |vac〉+ which satisfies

cs
pm|vac〉+ = 0, p > 0,∀s,m.

This vacuum state is rotationally invariant. The Hilbert space of zero modes is also

a Fock space of dimension 2Nf , with the vacuum vector which we denote |vac〉0. It is

spanned by the vectors

|vac〉0, c+s
0 |vac〉0, c+s1

0 c+s2
0 |vac〉0, . . . , c+s1

0 c+s2
0 . . . c

+sNf

0 |vac〉0.

All these states are degenerate in energy, and none is a preferred vacuum. Since

the zero modes have spin zero, all the ground states are rotationally invariant. We

conclude that the radially-quantized theory of free fermions has a 2Nf -fold degenerate

ground state.

However, we still need to impose the Gauss law constraint. The charge density

operator receives contributions from both zero and non-zero modes. The part due

to non-zero modes can be defined using the obvious normal-ordering prescription.

If we put all non-zero modes in the vacuum state, then the charge density due to

non-zero modes vanishes. It remains to analyze the contribution from zero modes.

Naively, it seems that the Fock vacuum must be assigned zero electric charge. Then
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the states obtained by acting on the vacuum with zero mode creation operators have

positive charge and must be rejected. However, due to normal-ordering ambiguities,

the situation is more interesting.

As stressed above, the Fock vacuum for the zero modes is not that special. The

completely filled state appears to be an equally good candidate for a state with

vanishing electric charge. The two just differ by a change in the normal ordering

prescription. A statement which is independent of the normal-ordering prescription

is that the electric charge of the filled state exceeds the charge of the vacuum by Nf .

If one wants to be “democratic”, one has to assign charge −1
2
Nf to the vacuum and

charge 1
2
Nf to the filled state. A similar symmetric charge assignment has been ad-

vocated by Jackiw and Rebbi in their pioneering study of fermions bound to solitons,

on the grounds on charge-conjugation symmetry [48].

The precise argument for the symmetric charge assignment goes as follows. Charge

conjugation maps a monopole to an anti-monopole and by itself does not tell us

anything. But CP transformation maps a monopole to itself. If we want to quantize

in a CP-invariant manner, we must assign opposite electric charges to states related

by CP. Since CP takes annihilation operators into creation operators, the filled state

and the vacuum are related by CP, and their electric charges must be opposite.

The invocation of CP invariance assumes that the theory we started with is CP-

invariant. This means that the symmetric charge assignment is valid for a vanishing

Chern-Simons coupling. But we know that turning on the Chern-Simons coupling κ

is equivalent to shifting the electric charge by κ times the vortex charge. Therefore

we conclude that in the presence of the Chern-Simons coupling the Fock vacuum has

electric charge

−Nf

2
+ κ,

while the filled state has charge
Nf

2
+ κ.
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Note that because of the parity anomaly, the electric charge is always integer-valued,

whether Nf is even or odd. This a manifestation of the close relationship between

the existence of parity anomaly and the induced vacuum charge [49].

Now we can analyze the consequences of the Gauss law constraint. If all non-

zero modes are in their ground state, the constraint simply says that the total electric

charge of the state must be zero. For κ = 0 it implies that a physical state is obtained

by acting with Nf/2 zero modes on the vacuum. The number of such states is


 Nf

1
2
Nf


 ,

and they transform as an anti-symmetric tensor of SU(Nf ) with Nf/2 indices. Note

that cancellation of global anomalies requires Nf to be even when κ = 0, so this result

makes sense. For κ between −Nf/2 and Nf/2 the physical states are obtained by

acting with Nf/2−κ zero modes on the vacuum. The corresponding states transform

as an anti-symmetric tensor of SU(Nf ) with Nf/2−κ indices. Again global anomaly

cancellation ensures that Nf/2 − κ is an integer. For |κ| >
Nf

2
there are no gauge-

invariant states with unit vortex charge and all non-zero modes in their ground state.

If one does not assume that positive-energy modes are in their ground state, then one

can construct many other states which satisfy the Gauss law and have unit vortex

charge. However, such states will have higher energy than the ones discussed above.

Now let us consider the more complicated case of q = 2. For simplicity we will set

the Chern-Simons coupling to zero and take Nf to be even. In the case q = 2 each

fermion has two zero modes which transform as a spin-1
2

representation of SU(2)rot.

Reasoning based on CP-invariance tell us that the Fock vacuum has electric charge

−Nf . Physical states must have zero electric charge and are obtained by acting with

Nf zero modes (out of a total number of 2Nf ) on the vacuum. But physical states

must also be annihilated by the electric charge density operator. This is not automatic

anymore, because the fermionic zero modes are not rotationally invariant. A short
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computation shows that the electric charge density operator for the zero modes k0(x)

has a piece which transforms as a singlet of SU(2)rot and a piece which transforms

as a triplet of SU(2)rot. The former is simply the average of k0(x) over the sphere

and is proportional to the total electric charge. The spin-triplet piece of k0(x) is

proportional to the total spin, simply because this is the only spin-triplet one can

make out of two spin-1/2 fermions. Thus the Gauss law constraint is equivalent to

the requirement that the total electric charge as well as the total spin be zero.

For example, for Nf = 2, there are six states with zero total electric charge, which

are obtained by acting on the Fock vacuum with two zero modes out of the available

four. Three of these states transform as a vector of SU(2)rot and as a singlet of the

flavor group SU(2)flavor and do not satisfy the Gauss law constraint. The remaining

three transform as a singlet of SU(2)rot and as a triplet of SU(2)flavor. These three

states are gauge-invariant. Note that in this case the gauge-invariant states transform

as an irreducible representation of the flavor group. For Nf > 2 this is no longer true,

as one can easily check.

2.3.2 Quantum numbers of the monopole operators

In this section we determine the quantum numbers of the simplest monopole oper-

ators, the ones with the lowest conformal dimension for a given vortex charge. On

general grounds, such an operator lives in a lowest-weight representation of the con-

formal group, and its conformal dimension is defined as the conformal dimension of

the lowest-weight vector, or, if we pass to the radially quantized picture, as the energy

of the corresponding state.

Let us begin with the case q = 1. As explained above, gauge-invariant states

with lowest energy are obtained by putting all non-zero modes in their ground states

and acting by Nf/2 − κ zero mode creation operators on the vacuum. Obviously

such states transform as an anti-symmetric representation of SU(Nf ) with Nf/2− κ

indices. It is interesting to note that the usual gauge-invariant operators which are
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polynomials in the fundamental fields transform trivially under the center of SU(Nf ).

Indeed, free fermions have flavor symmetry group U(Nf ), and since we are gauging its

U(1) subgroup, the flavor symmetry of QED appears to be U(Nf )/U(1) = PU(Nf ) =

SU(Nf )/ZNf
. But monopole operators transform non-trivially under ZNf

(except for

κ = ±Nf/2). A very similar effect occurs in N = 2 d = 4 supersymmetric QCD,

where all perturbative states transform as tensor representations of the flavor group

SO(2Nf ), while magnetically charge states transform as spinors [50].

Other quantum numbers of interest are spin and conformal dimension. Since the

Fock vacuum and the zero modes are rotationally invariant, the spin of our monopole

operator is zero. The dimension is proportional to the energy of the state. As usual,

the definition of the energy is plagued by ordering ambiguities. However, we have a

simple cure: we can normalize the energy by requiring that the unit operator have zero

dimension. This means that the energy of the ground state on S2 with zero magnetic

flux is defined to be zero. The energy of any other state can be defined by introducing

a UV regulator, subtracting the regularized energy of the state corresponding to the

unit operator, and then removing the regulator. This procedure gives a finite answer,

which is not sensitive to the precise choice of the regulator, provided the regulator

preserves the symmetries of the problem.

In order to make precise the relation between the Casimir energy and the dimen-

sion, recall that the OPE of a spin-zero primary field and the stress-energy tensor

reads:

Tij(x)O(y) ∼ h

8π

(
∂

∂xi

∂

∂xj

1

|x− y|
)

O(y) + . . . ,

where h is the conformal dimension. If the stress-energy tensor of free fermions is

defined by

Tij = − i

4

∑
s

ψ+s (σiDj + σjDi) ψs +
i

4

∑
s

(
(Djψ

s)+ σi + (Diψ
s)+ σj

)
ψs,

then hψ = hψ+ = 1, the standard normalization. This implies that in the radially-
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quantized picture the expectation value of the stress-energy tensor in the state |O〉 is

given by

〈Tijdxi ⊗ dxj〉O =
h

4π

(
dτ 2 − 1

2
(dθ2 + sin θ2dϕ2)

)
.

Thus h is simply the energy of |O〉 with respect to the Killing vector ∂
∂τ

. In our case,

this means that the conformal dimension of the monopole operator is the Casimir

energy of Nf free fermions on S2 with a magnetic flux. This Casimir energy for any

q is computed in the Appendix A. For q = 1 the result is

h1 = Nf · 0.265 . . . .

By charge-conjugation symmetry, the monopole operator with q = −1 has the same

conformal dimension and spin and transforms in the conjugate representation of the

flavor group SU(Nf ).

It is easy to extend the discussion to q = ±2. As explained in the previous

section, the Gauss law constraint is equivalent to the requirement of zero spin and

zero electric charge. The states with zero electric charge are obtained by acting with

Nf zero modes (out of total number of 2Nf zero modes) on the Fock vacuum. These

states transform as an anti-symmetric tensor of SU(2Nf ) with Nf indices. Gauge-

invariant states are obtained by decomposing this representation with respect to the

SU(2)rot×SU(Nf ) subgroup and separating out SU(2)rot-singlets. In general, gauge-

invariant states transform as a reducible representation of SU(Nf ). One can easily

show that the dimension of this reducible representation is




1
2
N2

f + Nf − 1

1
2
Nf




The conformal dimension of the corresponding monopole operators is the Casimir
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energy of free fermions in a background magnetic field. Numerically, it is given by

h2 = Nf · 0.673 . . . .

It is interesting to note that 2h1 < h2 (at least for large Nf ). Therefore the OPE

of two monopole operators with q = 1 and the lowest conformal dimension contains

only terms with positive powers of |x1 − x2|.
In the next chapters we will consider monopole operators in 3-D gauge theories

with N = 2 and N = 4 supersymmetry.
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Chapter 3

Monopole operators and mirror
symmetry in three-dimensional
SQED

In the previous chapter, we showed how to define vortex-creating (or monopole)

operators in the infrared limit of 3-D abelian gauge theories. The main tools used were

radial quantization and large-Nf expansion. The only example considered was non-

supersymmetric QED. In that theory monopole operators have irrational dimensions

at large Nf and do not satisfy any simple equation of motion. In present chapter we

will consider monopole operators in N = 2 and N = 4 SQEDs.

3.1 Monopole operators in three-dimensional N =

2 SQED

3.1.1 Review of N = 2 SQED and N = 2 mirror symmetry

N = 2 d = 3 SQED can be obtained by the dimensional reduction of N = 1 d = 4

SQED. The supersymmetry algebra contains a complex spinor supercharge Qα and its

complex-conjugate Q̄α. (In three dimensions it is not necessary to distinguish dotted

and undotted indices on spinors. The two-dimensional spinor representation of the 3-
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D Lorentz group SO(1, 2) is real.) The field content is the following: a vector multiplet

with gauge group U(1), Nf chiral multiplets of charge 1 and Nf chiral multiplets of

charge −1. We will use N = 2 superspace to describe these fields. General superfields

are functions of x ∈ R2,1, a complex spinor θα, and its complex-conjugate θ̄α. The

vector multiplet is described by a real superfield V (x, θ, θ̄) satisfying V + = V . The

corresponding field-strength multiplet is Σ = εαβDαD̄βV , where

Dα =
∂

∂θα
+ iσi

αβ θ̄β ∂

∂xi
, D̄α = − ∂

∂θ̄α
− iθβσi

βα

∂

∂xi
.

The lowest component of Σ is a real scalar χ, while its top component is the gauge

field-strength Fij. The vector multiplet also contains a complex spinor λα (photino).

A chiral multiplet is described by a superfield Q(x, θ, θ̄) satisfying the chirality con-

straint:

D̄αQ = 0.

It contains a complex scalar A, a complex spinor ψα, and a complex auxiliary field

F . We will denote the superfields describing charge 1 matter multiplets by Qs, s =

1, . . . , Nf , and the superfields describing charge −1 matter multiplets by Q̃s, s =

1, . . . , Nf . Then the action takes the form

SN=2 =

∫
d3x d4θ





1

4e2
Σ+Σ +

Nf∑
s=1

(
Q+se2V Qs + Q̃+se−2V Q̃s

)


 .

Besides being supersymmetric, this action has a global SU(Nf )×SU(Nf )×U(1)B ×
U(1)N symmetry. The action of SU(Nf )× SU(Nf ) is obvious (it is a remnant of the

chiral flavor symmetry of N = 1 d = 4 SQED). Under U(1)B the fields Qs and Q̃s

have charges 1, while V transforms trivially. Finally, there is an R-symmetry U(1)N
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under which the fields transform as follows:

Qs(x, θ, θ̄) 7→ Qs
(
x, eiαθ, e−iαθ̄

)
,

Q̃s(x, θ, θ̄) 7→ Q̃s
(
x, eiαθ, e−iαθ̄

)
,

V (x, θ, θ̄) 7→ V
(
x, eiαθ, e−iαθ̄

)
.

There is one other conserved current:

J i =
1

4π
εijkFjk.

Its conservation is equivalent to the Bianchi identity. We will call the corresponding

charge the vortex charge, and the corresponding symmetry U(1)J symmetry. All the

fundamental fields have zero vortex charge; our task will be to construct operators

with non-zero vortex charge and compute their quantum numbers. Operators with

non-zero vortex charge will be called monopole operators.

One can add an N = 2 Chern-Simons term to the action of N = 2 SQED.

However, the theory is consistent without it, and we will limit ourselves to the case

of vanishing Chern-Simons coupling.

N = 2 d = 3 SQED is super-renormalizable and becomes free in the ultraviolet

limit. In the infrared it flows to an interacting superconformal field theory (SCFT).

Note that the action needs no counter-terms, if one uses a regularization preserving

all the symmetries. Thus the infrared limit is equivalent to the limit e →∞.

In general, the infrared CFT is strongly coupled and quite hard to study. A simpli-

fication arises in the large Nf limit, where the infrared theory becomes approximately

Gaussian. The reason for this is the same as in the non-supersymmetric case consid-

ered in the previous chapter. At leading order in the large Nf expansion, the matter

fields retain their UV dimensions. The dimension of the gauge field strength multiplet

Σ is 1 to all orders in 1/Nf expansion. This can be traced to the fact that the dual
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of the gauge field strength is an identically conserved current, as well as a primary

field in the infrared SCFT.1 A well-known theorem states that in a unitary CFT in

d dimensions a conserved primary current has dimension d− 1. Since the gauge field

strength occurs as the top component of Σ, while θ and θ̄ have dimensions −1/2, the

photino has infrared dimension 3/2 and the lowest component χ has dimension 1.

The IR dimensions of Q and Q̃ can be computed order by order in 1/Nf expansion,

but the exact answer for all Nf is unknown. The only other thing we know about these

dimensions is that they are equal to the R-charges of Q and Q̃. This is a consequence

of the fact that Q and Q̃ live in short representation of the superconformal algebra,

and therefore their scaling dimensions are constrained by unitarity.2 However, the

R-current in question is not necessarily the one discussed above. Rather, it is some

unknown linear combination of the U(1)N and U(1)B currents. We will call it the

“infrared” R-current, to avoid confusion with U(1)N current defined above. In the

large Nf limit it is easy to see that the infrared R-charge is

RIR = N + B

(
1

2
+ O

(
1

Nf

))
,

where N and B are the charges corresponding to U(1)N and U(1)B. For Nf of order

1 we do not know the coefficient in front of B, and so cannot easily determine the

infrared dimensions of Q and Q̃.

For Nf = 1 mirror symmetry comes to our rescue. The statement of 3-D mirror

symmetry in this case is that the IR limit of N = 2 SQED is the same as the IR

limit of another N = 2 gauge theory. This other gauge theory has a gauge group

U(1)Nf /U(1)diag, and 3Nf chiral matter multiplets Xs, X̃s, Ss, s = 1, . . . , Nf . The

1In the UV the dual of the field strength is not a primary, but a descendant of a scalar known as
the dual photon.

2Strictly speaking, it is the dimension of gauge-invariant chiral primaries like QQ̃ that is con-
strained by unitarity to be equal to the R-charge. However, since Q and Q̃ are chiral superfields, the
dimension and R-charge of QQ̃ is twice the dimension and R-charge of Q and Q̃, and the claimed
result follows.
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action of the mirror theory has the form

Sdual =

∫
d3x d4θ

Nf∑
s=1

{
1

4e2
Σ+sΣs +

1

e2
S+sSs + X+se2V s−2V s−1

Xs + X̃+se−2V s+2V s−1

X̃s

}

+


i
√

2

∫
d3x d2θ

Nf∑
s=1

XsX̃sSs + h.c.


 ,

where the gauge multiplets satisfy the constraints

V 0 = V Nf ,

Nf∑
s=1

V s = 0. (3.1)

Note that the chiral fields Ss are neutral with respect to the gauge group and couple

to the rest of the theory only through a superpotential.

The mirror theory also flows to a strongly coupled SCFT in the infrared limit

e → ∞, and in general the mirror description does not help to compute the IR

scaling dimensions in the original theory. However, the case Nf = 1 is very special:

the mirror gauge group becomes trivial, and the mirror theory reduces to the Wess-

Zumino model in three dimensions with the action

SWZ =

∫
d3x d4θ

(
X+X + X̃+X̃ + S+S

)
+

(
i
√

2

∫
d3x d2θ XX̃S + h.c.

)
.

This theory has “accidental” S3 symmetry permuting X, X̃, and S, which allows

one to determine their infrared R-charges. Indeed, since in the infrared limit the

superpotential term must have R-charge 2, the R-charges of X,X̃ and S must be

2/3. The mirror map identifies S with the operator QQ̃ in the original theory [15].

Thus we infer that for Nf = 1 Q and Q̃ have infrared R-charge 1/3. Comparing with

large-Nf results, we see that the infrared R-charge has a non-trivial dependence on

Nf .

Let us describe in more detail the matching of global symmetries between the
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original and mirror theories following Ref. [15]. The symmetry U(1)B of the original

theory is mapped to the symmetry under which all Ss have charge 2, while Xs and

X̃s have charges −1. The symmetry U(1)J is mapped to the U(1) symmetry under

which all Xs have charge 1/Nf , all X̃s have charge −1/Nf , while Ss are uncharged.

The R-symmetry U(1)N maps to an R-symmetry under which all Xs and X̃s have

charge 1 and Ss are uncharged. The mapping of non-abelian symmetries is not well

understood. It is only known that that the currents corresponding to the Cartan

subalgebra of the diagonal SU(Nf ) are mapped to the Nf − 1 U(1)J currents of the

mirror theory.

3.1.2 Monopole operators in N = 2 SQED at large Nf

Our strategy for studying monopole operators will be the same as in Chapter 2. In any

3-D conformal field theory, there is a one-to-one map between local operators on R3

and normalizable states of the same theory on S2×R. Therefore we will look for states

with non-zero vortex charge on S2 × R. In other words, we will be studying N = 2

SQED on S2 ×R in the presence of a magnetic flux on S2. Since our goal is to check

the predictions of mirror symmetry, we will require that the states be annihilated

by half of the supercharges; then the corresponding local operators will live in short

representations of the superconformal algebra. The low-energy limit of N = 2 SQED

is an interacting SCFT, so in order to make computations possible, we will require

Nf to be large. This has the effect of making the CFT weakly coupled. In particular,

in the large Nf limit the fluctuations of the gauge field and its superpartners are

suppressed, and one can treat them as a classical background. In other words, at

leading order in 1/Nf we end up with free chiral superfields coupled to an appropriate

background vector superfield. We will discuss how one can go beyond the large-Nf

approximation in section 3.3.

The states on S2 × R of interest to us are in some sense BPS-saturated, since

they are annihilated by half of the supercharges. But in contrast to the situation
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in flat space, here the supercharges do not commute with the Hamiltonian H which

generates translations on R. Indeed, since the Hamiltonian on S2 ×R is the same as

the dilatation generator on R3, and supercharges have dimension 1/2, it follows that

the supercharges obey

[Qα,H] = −1

2
Qα, [Q̄α,H] = −1

2
Q̄α. (3.2)

Thus, although Qα and Q̄α are conserved, they do not commute with the Hamiltonian

H. The reason is that supersymmetry transformations and, hence, supercharges on

S2 × R have explicit τ -dependence of the form exp (−τ/2) which is consistent with

Eq.(3.2).

The superconformal algebra arising in the IR limit has generators Sα and S̄α which

are superpartners of the special conformal transformations K:

[K,Qα] ∼ S̄α,
[
K, Q̄α

] ∼ Sα.

Note also that in the radial quantization approach Qα and Q̄α are no longer Hermi-

tian conjugate of each other. Rather, their Hermitian conjugates are superconformal

boosts Sα and S̄α, which have dimension −1/2:

Sα = Q+
α , S̄α = Q̄+

α , (3.3)

[Sα,H] =
1

2
Sα, [S̄α,H] =

1

2
S̄α.

For the same reasons as in Chapter 2, in the large Nf limit the energy E of the

states with non-zero vortex charge is of order Nf . By unitarity, for scalar states E

is bounded from below by the R-charge RIR. Furthermore, we will see below that in

the limit Nf →∞ RIR is also of order Nf , while the combination E−RIR stays finite

for all the states we encounter. A similar limit in d = 4 SCFTs recently gained some
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prominence in connection with AdS/CFT correspondence [51]. But unlike Ref. [51],

we take the number of flavors, rather than the number of colors, to infinity.

First let us determine which classical background on S2 ×R we need to consider.

As in Chapter 2, we have a gauge field on S2 ×R with a magnetic flux q. Assuming

rotational invariance of the large-Nf saddle point, this implies that we have a constant

magnetic field on S2. The only other bosonic field in the N = 2 vector multiplet is

the real scalar χ. It is determined by the condition of the vanishing of the photino

variation under half of the SUSY transformations. This will ensure that the monopole

operator we are constructing is a chiral primary.

It is convenient to work out the photino variations on R3, and then make a con-

formal transformation to S2 × R. Photino variations in Euclidean N = 2 SQED on

R3 have the form

δλ = i

(
−σi∂iχ− 1

2
εijkσkFij + D

)
ξ,

δλ̄ = iξ̄

(
−σi∂iχ +

1

2
εijkσkFij −D

)
,

where ξ and ξ̄ are complex spinors which parameterize SUSY variations. (In Euclidean

signature, they are not related by complex conjugation.) Since we are setting the

background values of the matter fields to zero, the D-term can be dropped. Half-BPS

states are annihilated by ξ̄αQ̄α for any ξ̄ and therefore must satisfy

Fij = εijk∂
kχ.

Hence the scalar background on R3 is

χ = − q

2r
,

where q is the vortex charge (the magnetic charge of the Dirac monopole on R3). Un-
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surprisingly, supersymmetry requires the bosonic field configuration to be an abelian

BPS monopole. Recalling that χ has dimension 1 in the infrared, we infer that on S2

the scalar background is simply a constant:

χ = −q

2
.

Similarly, an anti-BPS state is annihilated by ξαQα for any ξ, and therefore the scalar

field on S2 is

χ =
q

2
.

Having fixed the classical background, we are ready to compute the spectrum

of matter field fluctuations. The details of the computation are explained in the

Appendix B. The results are as follows. The energy spectra of charged scalars are

the same for both As and Ãs, do not depend on whether one is dealing with a BPS

or an anti-BPS configuration, and are given by

E = E+
p =

( |q| − 1

2
+ p

)
, p = 1, 2, . . . ,

E = E−
p = −

( |q| − 1

2
+ p

)
, p = 1, 2, . . . .

The degeneracy of the pth eigenvalue is 2|Ep|, and the corresponding eigenfunctions

transform as an irreducible representation of the rotation group SU(2)rot. The spec-

trum is symmetric with respect to E → −E. The energy spectra of charged spinors

are the same for ψs and ψ̃s and are given by

E = E+
p =

|q|
2

+ p, p = 1, 2, . . . ,

E = E−
p = −|q|

2
− p, p = 1, 2, . . . ,

E = E0 = ∓|q|
2

.
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Here the upper (lower) sign refers to the BPS (anti-BPS) configuration3. The eigenspace

with eigenvalue E has degeneracy 2|E| and furnishes an irreducible representation of

SU(2)rot.

Comparing the fermionic energy spectrum with the results of Chapter 2, we see

that the inclusion of the scalar χ causes dramatic changes in the spectrum of fermions.

First, there are no zero modes. Second, the spectrum is not symmetric with respect

to E → −E.

The absence of zero modes, either in the scalar or in the spinor sector, means that

for a fixed magnetic flux the state of lowest energy is unique. We will call it the vacuum

state. By construction, it is an (anti-)BPS state, and we would like to determine its

quantum numbers. It is clear that the vacuum state is rotationally invariant, so its

spin is zero. It is also a flavor singlet. The other quantum numbers of interest are

the energy (which is the same as the conformal dimension of the corresponding local

operator) and the U(1)B and U(1)N charges. Vacuum energy and charge are plagued

by normal-ordering ambiguities, as usual, but as in Chapter 2 we can deal with them

by requiring the state corresponding to the unit operator (i.e., the vacuum with zero

magnetic flux) to have zero energy and charges.

The asymmetry of the fermionic energy spectra leads to a subtlety in the com-

putation. Suppose we use point-splitting regularization to define vacuum energy and

charges. Then one gets different results after renormalization depending on the or-

dering of operators ψ and ψ̄. For example, consider two definitions of the U(1)N

3We will use this convention throughout the manuscript.
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charge

N(τ) = lim
β→0+

[∫

S2

−ψ̄

(
τ +

β

2

)
στψ

(
τ − β

2

)
− ¯̃ψ

(
τ +

β

2

)
στ ψ̃

(
τ − β

2

)

−C(β)] ,

N ′(τ) = lim
β→0+

[∫

S2

ψ

(
τ +

β

2

)
στ ψ̄(τ − β

2
) + ψ̃

(
τ +

β

2

)
στ

¯̃ψ

(
τ − β

2

)

−C ′(β)] ,

where τ is the time coordinate on S2×R, and C(β) and C ′(β) are c-numbers defined

as the U(1)N charge of the vacuum with q = 0 regularized by means of appropriate

point-splitting. One can easily see that these two definitions are equivalent only if

the fermion spectra are symmetric with respect to zero; otherwise they differ by a

c-number which depends on q. This ambiguity can be removed by requiring that

the regularization procedure preserve charge-conjugation symmetry. This mandates

using expressions symmetrized with respect to ψ and ψ̄ (and ψ̃ and ¯̃ψ):

ψ̄Oψ → 1

2
ψ̄Oψ − 1

2
ψOT ψ̄, (3.4)

where O is some operator independent of the fields. Thus we will define the U(1)N

charge as the average of N(τ) and N ′(τ). The same applies to the U(1)B charge and

the energy operator.

As an illustration, let us compute the U(1)N charge of the vacuum for arbitrary

q. The above definition yields the following regularized U(1)N charge:

Nreg(β) = Nf

∑
E

2|E| sign(E) e−β|E|. (3.5)

Here the summation extends over the fermion energy spectrum, and we took into

account that ψ and ψ̃ have the same energy spectra and U(1)N charge and contribute

equally to Nreg(β). The regularized charge of the unit operator is identically zero,
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since the spectrum is symmetric for q = 0. For non-zero vortex charge the spectrum

is symmetric except for a single eigenvalue E0. Thus the renormalized charge is equal

to

Nvac = ± lim
β→0+

Nf |q| = ±Nf |q|,

where the upper (lower) sign refers to the BPS (anti-BPS) state. Since the spectrum of

scalars is symmetric, only spinors will contribute to the U(1)B charge of the vacuum,

and an identical argument gives

Bvac = ∓Nf |q|.

A similar computation performed in Appendix B, Eq.(B-1), gives the vacuum energy:

E =
|q|Nf

2
.

This is the same as the scaling dimension of the corresponding monopole operator.

We note that vacuum energy of a true vacuum state, i.e., vacuum with zero vortex

charge q, vanishes identically and does not require any renormalization. Standard

argumentation given for supersymmetric theories in 3-D Minkowski space is that

the vacuum state is invariant under supersymmetry transformations generated by Q

and Q̄. Hence, an anticommutator
{
Q, Q̄

} ∼ Pi and identity Q+ = Q̄ imply that

the vacuum state has vanishing energy. In the radial quantization picture, however,

generators of translations P0 in Minkowski space does not play a role of the Hamil-

tonian and hermitian conjugation operation is realized differently (3.3). The relevant

anticommutators in the radially quantized theory are {Q, S} and
{
Q̄, S̄

}
. Unitarity

constraints applied to these anticommutators imply that a rotationally invariant state

annihilated by all supercharges must have vanishing energy [52].

Recall that at large Nf the R-charge which is the superpartner of the Hamiltonian
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is given by

RIR = N +
1

2
B.

It is easy to see from the above results that E = ±RIR for our “vacuum” states. This

is a satisfying result, since in a unitary 3-D CFT the scaling dimension of any (anti-)

chiral primary must be equal to (minus) its R-charge.

As expected, the energy and the R-charge of the vacuum are of order Nf . Other

states can be obtained by acting on the vacuum with a finite number of creation

operators for the charged fields. If the number of creation operators is kept fixed

in the limit of large Nf , then both E and RIR tend to infinity, with E − RIR kept

finite. Thus the limit we are considering is qualitatively similar to the PP-wave limit

of N = 4 d = 4 SYM theory considered in Ref. [51]. But since we are taking the

number of flavors, rather than the number of colors, to infinity, the physics is rather

different. For example, in Ref. [51] the combination R2/Nc is kept fixed and can be

an arbitrary positive real number (it is the effective string coupling in the dual string

theory). The analogous quantity in our case is 2RIR/Nf = |q|, the vortex charge,

which is quantized.

One issue which we have not mentioned yet is gauge-invariance. In order for the

operator to be gauge-invariant, the corresponding state must satisfy the Gauss law

constraint. In the limit e → ∞ this is equivalent to requiring that the state be

annihilated by the electric charge density operator. For the vacuum state, this is

automatic. For excited states, the Gauss law constraint is a non-trivial requirement.

We have identified above a scalar state on S2 × R which is a chiral primary.

What about its superpartners? The key point is to realize that the classical field

configuration we are considering breaks some of the symmetries of the CFT. In such a

situation, one must enlarge the Hilbert space by extra variables (“zero modes”) which

correspond to the broken generators. In other words, the semi-classical Hilbert space

is obtained by tensoring the “naive” Hilbert space by the space of functions on the
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coset G/H, where G is the symmetry group of the theory, and H is the invariance

subgroup of the classical configuration. This observation plays an important role

in the quantization of solitons. For example, if we are dealing with a soliton in

a Poincaré-invariant theory which breaks translational symmetry to nothing, but

preserves rotational symmetry, the zero mode Hilbert space is

ISO(d− 1, 1)/SO(d− 1, 1) = Rd−1,1.

Poincaré group acts on the space of functions on Rd−1,1 in the usual manner. Fur-

thermore, if a soliton breaks some of supersymmetries, there will be fermionic zero

modes, and the bosonic coset must be replaced by an appropriate supercoset.

In our case, the symmetry of theory is described by the N = 2 d = 3 super-

Poincaré group.4 For the BPS state, the invariance subgroup is generated by rotations

and the complex supercharge Q̄α. Thus the zero mode Hilbert space will consist of

functions on the supercoset {
Mij,Pi,Qα, Q̄α

}
{
Mij, Q̄α

} ,

where Mij and Pi are the rotation and translation generators on R3, respectively,

and {A,B, . . .} denotes the super-group with Lie super-algebra spanned by A,B, . . . .

Functions on this supercoset are nothing but N = 2 d = 3 chiral superfields [53].

Thus the usual rules of semi-classical quantization lead to the conclusion that the

BPS monopole operator is described by a chiral superfield. Similarly, an anti-BPS

monopole operator will be described by an anti-chiral superfield. In particular, N = 2

auxiliary fields are automatically incorporated. (Note that at large Nf our monopole

operators are not expected to satisfy any closed equation of motion. On the other

hand, auxiliary fields can be eliminated only on-shell. This suggests that any descrip-

4We may forget about U(1)N , U(1)B , and the flavor symmetry, since they are left unbroken
by our field configuration. Furthermore, although conformal and superconformal boosts do not
preserve our field configuration, they can be ignored, since these symmetry generators cannot be
exponentiated to well-defined symmetry transformations on R3.
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tion of monopole operators without auxiliary fields would be rather cumbersome.)

3.1.3 A comparison with the predictions of N = 2 mirror

symmetry

As explained above, under mirror symmetry the vortex charge is mapped to 1/Nf

times the charge which “counts” the number of X’s minus the number of X̃’s. Thus

the obvious gauge-invariant chiral primaries with vortex charge ±1 are

V+ = X1X2 . . . XNf , V− = X̃1X̃2 . . . X̃Nf .

Using the matching of global symmetries explained above, we see that both V+ and

V− are singlets under SU(Nf ) × SU(Nf ) flavor symmetry, have U(1)B charge −Nf

and U(1)N charge Nf . Comparing this with the previous subsection, we see that V+

has the same quantum numbers as the BPS state with q = 1 that we have found,

while V †
− has the same quantum numbers as the anti-BPS state with q = 1. This

agreement provides a non-trivial check of N = 2 mirror symmetry.

Our computation of the charges was performed in the large-Nf limit, but mirror

symmetry predicts that the result remains true for Nf of order 1. Can we understand

this apparent lack of 1/Nf corrections to U(1)N and U(1)B charges? The answer is yes:

U(1)N and U(1)B charges are not corrected at any order in 1/Nf expansion because

they can be determined by quasi-topological considerations (L2 index theorem on

S2 ×R). This will be discussed in more detail in section 3.3.
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3.2 Monopole operators in three-dimensional N =

4 SQED

3.2.1 Review of N = 4 SQED and N = 4 mirror symmetry

N = 4 d = 3 SQED is the dimensional reduction of N = 2 d = 4 SQED. The

supersymmetry algebra includes two complex spinor supercharges QI
α, I = 1, 2 and

their complex conjugates. In Minkowski signature, the spinor representation is real,

so we may also say that we have four real spinor supercharges. If we regard N = 4

SQED as an N = 2 d = 3 gauge theory, then it contains, besides the fields of N = 2

SQED, a chiral superfield Φ. This superfield is neutral and together with the N = 2

vector multiplet V forms an N = 4 vector multiplet. The chiral superfields Qs and

Q̃+s combine into an N = 4 hypermultiplet. The action of N = 4 SQED is the sum

of the action of N = 2 SQED, the usual kinetic term for Φ, and a superpotential

term

i
√

2

∫
d3x d2θ

Nf∑
s=1

QsΦQ̃s + h.c.

The flavor symmetry of this theory is SU(Nf ). In addition, there is an important

R-symmetry SU(2)R × SU(2)N . In the N = 2 superfield formalism used above, only

its maximal torus U(1)2 is manifest. The lowest components of Q and Q̃+ are singlets

under SU(2)N and transform as a doublet under SU(2)R. The complex scalar Φ in

the chiral multiplet and the real scalar χ in the N = 2 vector multiplet transform as a

triplet of SU(2)N and are singlets of SU(2)R. The transformation properties of other

fields can be inferred from these using the fact that the four real spinor supercharges

of N = 4 SQED transform in the (2, 2) representation of SU(2)R × SU(2)N .

Although there is a complete symmetry between SU(2)R and SU(2)N at the level

of superalgebra, the transformation properties of fields do not respect this symmetry.

Therefore one can define twisted vector multiplets and twisted hypermultiplets for
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which the roles of SU(2)N and SU(2)R are reversed. N = 4 SQED contains only

“ordinary” vector and hypermultiplets, while its mirror (see below) contains only

twisted multiplets. There are interesting N = 4 theories in 3-D which include both

kinds of multiplets [19, 54], but in this chapter we will only consider the traditional

ones, which can be obtained by dimensional reduction from N = 2 d = 4 theories.

In order to make contact with our discussion of N = 2 SQED, we will denote the

global U(1) symmetry under which Q and Q̃ have charge 1 and Φ has charge −2 by

U(1)B, and we will denote an R-symmetry under which Q and Q̃ are neutral and Φ

has charge 2 by U(1)N . It is easy to see that U(1)N is a maximal torus of SU(2)N ,

while the generator of U(1)B is a linear combination of the generators of SU(2)N and

SU(2)R. The generator of the maximal torus of SU(2)R can be taken as

R = N + B.

N = 4 SQED is free in the UV and flows to an interacting SCFT in the IR. The

infrared dimensions of fields in short multiplets of the superconformal algebra are

determined by their spin and transformation properties under SU(2)R × SU(2)N .

This is easily seen in the harmonic superspace formalism, where the compatibility of

constraints on the superfields leads to relations between the dimension and the R-

spins [53]. For gauge-invariant operators, one can alternatively use arguments based

on unitarity (see, e.g., Ref. [52]).

Perhaps the easiest way to work out the relation between the IR dimension and

SU(2)R × SU(2)N quantum numbers is to regard N = 4 SQED as a special kind of

N = 2 theory. That is, it is an N = 2 gauge theory which has, besides a manifest

complex supercharge, a non-manifest one. It is easy to see that the combination

N + 1
2
B is the generator of the U(1) subgroup of SU(2)N × SU(2)R with respect

to which the manifest supercharge has charge 1, while the non-manifest supercharge

has charge 0. In the IR limit, the corresponding current is in the same multiplet as



41

the stress-energy tensor (because all SU(2)R × SU(2)N currents are), and therefore

the dimension of chiral primary states must be equal to their charges with respect to

N + 1
2
B. (Note that in the case of N = 2 SQED this was true only in the large-Nf

limit.) In particular, the IR dimensions of Qs and Q̃s are 1/2, and the IR dimension

of Φ and χ is 1.

According to Ref. [9], the mirror theory for N = 4 SQED is a (twisted) N = 4 d =

3 gauge theory with gauge group U(1)Nf /U(1)diag and Nf (twisted) hypermultiplets

(Xs, X̃s). The matter multiplets transform under the gauge group as follows:

Xs → Xsei(αs−αs−1), X̃s → X̃se−i(αs−αs−1), s = 1, . . . , Nf ,

where we set α0 = αNf . The action of the mirror theory is

Sdual =

∫
d3x d4θ

Nf∑
s=1

{
1

4e2
Σ+sΣs +

1

e2
S+sSs + X+se2V s−2V s−1

Xs + X̃+se−2V s+2V s−1

X̃s

}

+


i
√

2

∫
d3x d2θ

Nf∑
s=1

XsX̃s(Ss − Ss−1) + h.c.


 .

Here N = 2 vector multiplets V s satisfy the constraints Eq. (3.1), N = 2 chiral

multiplets Ss satisfy similar constraints

S0 = SNf ,

Nf∑
s=1

Ss = 0,

and each pair (V s, Ss) forms a (twisted) N = 4 vector multiplet.

The global symmetries are matched as follows. The R-symmetries are trivially

identified. The vortex current of N = 4 SQED is mapped to 1/Nf times the Noether

current corresponding to the following global U(1) symmetry:

Xs → eiαXs, X̃s → e−iαX̃s, s = 1, . . . , Nf .
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The currents corresponding to the maximal torus of SU(Nf ) flavor symmetry of

N = 4 SQED are mapped to the vortex currents

2π Js = ∗F s, s = 1, . . . , Nf ,

Nf∑
s=1

Js = 0,

where F s is the field-strength of the sth gauge field. The mapping of the rest of

SU(Nf ) currents is not well understood.

3.2.2 Monopole operators in N = 4 SQED at large Nf

To begin with, we can regard N = 4 SQED as a rather special N = 2 gauge theory,

and look for BPS and anti-BPS monopole operators in this theory. This amounts

to focusing on a particular N = 2 subalgebra of the N = 4 superalgebra. Different

choices of an N = 2 subalgebra are all related by an SU(2)N transformation, so we

do not loose anything by doing this.

From this point of view, our problem is almost exactly the same as in the case

of N = 2 SQED. The only difference between the two is the presence of the chiral

superfield Φ. But in the large Nf limit it becomes non-dynamical, and the N = 2

BPS condition requires the background value of Φ to be zero. This implies that the

radial quantization of the matter fields Qs, Q̃s proceeds in exactly the same way as in

the N = 2 case and yields the same answer for the spectrum and properties of BPS

and anti-BPS states. Namely, for any vortex charge q we have a single BPS and a

single anti-BPS states, with charges

N = ±|q|Nf , B = ∓|q|Nf ,

and energy E = |q|Nf/2.

An interesting new element in the N = 4 case is the way short multiplets of

N = 2 superconformal symmetry fit into a short multiplet of N = 4 superconformal
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symmetry. Recall that we have made a certain choice of N = 2 subalgebra of the

N = 4 superalgebra. This choice is preserved by the U(1)N symmetry, but not by the

SU(2)N symmetry. Thus we have an SU(2)/U(1) ' CP1 worth of BPS conditions.

Applying an SU(2)N rotation to the BPS state found above, we obtain a half-BPS

state for every point on CP1. These half-BPS states fit into a line bundle L over CP1.

Similarly, applying SU(2)N transformations to the anti-BPS state, we obtain another

line bundle on CP1 which is obviously the complex conjugate of L.

The CP1 which parameterizes different choices of the N = 2 subalgebra has a

very clear meaning in the large Nf limit. Namely, we chose the scalar background

on S2 × R to be Φ = 0, χ = q
2
, but obviously any SU(2)N transform of this is also

a half-BPS configuration. The manifold of possible scalar backgrounds is a 2-sphere

given by

|Φ|2 + χ2 =
(q

2

)2

.

The BPS state we are interested in is the Fock vacuum of charged matter fields on

S2 × R in a fixed background. As we vary the background values of Φ and χ, we

obtain a bundle of Fock vacua on S2 ∼ CP1. This bundle can be non-trivial because

of Berry’s phase [55, 56].

Now we can easily see how N = 4 superconformal symmetry is realized in our

formalism. As argued above, we need to enlarge our Hilbert space by the Hilbert

space of zero modes, which arise because the classical background breaks some of the

symmetries of the theory. Compared to the N = 2 case, we have additional bosonic

zero modes coming from the breaking of R-symmetry from SU(2)N down to U(1)N .

Thus our fields will depend on coordinates on R3×CP1. As for fermionic zero modes,

in the BPS case they are generated by a complex spinor supercharge which depends

on the coordinates on CP1 as follows:

Qα =
∑
I=1,2

uIQI
α.
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Here u1, u2 ∈ C are homogeneous coordinates on CP1, and QI
α, I = 1, 2 are a pair

of complex spinor supercharges which transform as a doublet of SU(2)N . Therefore

monopole operators will be described by “functions” on the supermanifold

S(R3) £O(1),

where S(R3) is the trivial spinor bundle on R3 (with fiber coordinates regarded as

Grassmann-odd), while O(1) is the tautological line bundle on CP1. We put the word

“functions” in quotes, because, as explained above, we may need to consider sections

of non-trivial line bundles on CP1 instead of functions.

This supermanifold is known as the analytic superspace [53, 57, 58] (see also section

3 of Ref. [59]). It is a chiral version of the so-called harmonic superspace. It is

well known that “functions” on the analytic superspace (analytic superfields) furnish

short representations of the superconformal algebra with eight supercharges [53]. We

conclude that in the large-Nf limit BPS monopole operators are described by N =

4 d = 3 analytic superfields. Needless to say, anti-BPS monopole operators are

described by anti-analytic superfields which are complex-conjugates of the analytic

ones.

It remains to pin down the topology of the bundle L over CP1. Since this is

a line bundle, its topology is completely characterized by the first Chern class. A

“cheap” way to find the Chern class is to note that the scaling dimension of an

analytic superfield (more precisely, of its scalar component) is equal to half the Chern

number of the corresponding line bundle. (The Chern number is the value of the first

Chern class on the fundamental homology class of CP1.) This follows from the way

superconformal algebra is represented on analytic superfields [53]. We already know

the dimension of our BPS state, and therefore infer that the Chern number of L is

equal to Nf |q|.
We can also determine the Chern number directly, by computing the curvature of
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the Berry connection for the bundle of Fock vacua. In the present case, the compu-

tation is almost trivial, since the Hamiltonians at different points of CP1 are related

by an SU(2)N transformation. In particular, it is sufficient to compute the curvature

at any point on CP1. For example, we can identify CP1 with a unit sphere in R3

with coordinates (x, y, z) and compute the curvature at the “North Pole,” which has

Euclidean coordinates (0, 0, 1). (The abstract coordinates (x, y, z) can be identified

with (Re Φ, Im Φ, χ).) Using SU(2)N invariance, we easily see that the Fock vacuum

at the point (x, y, z) with z ' 1, x, y ¿ 1 is given by

|x, y, z〉 = exp
(
i
(x

z
Nx − y

z
Ny

)
+ O(x2 + y2)

)
|0, 0, 1〉.

Here Nx and Ny are the generators of SU(2)N rotations about x and y axes. Therefore

the curvature of the Berry connection at the point (0, 0, 1) is

F = i (d|x, y, z〉,∧d|x, y, z〉) = idx ∧ dy〈0, 0, 1|[Ny, Nx]|0, 0, 1〉
= dx ∧ dy〈0, 0, 1|Nz|0, 0, 1〉.

Now we recall that the vacuum at (0, 0, 1) is an eigenstate of Nz with eigenvalue

±Nf |n|/2 (one needs to remember that N = 2Nz). Taking into account that F is an

SU(2)N -invariant 2-form on CP1, we conclude that it is given by

F = ±1

2
Nf |q|Ω,

where Ω is the volume form on the unit 2-sphere. It follows that the Chern number

of the Fock vacuum bundle is

c1 =
1

2π

∫

S2

F = ±Nf |q|,

where the upper (lower) sign refers to L (resp. L∗). The result agrees with the
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indirect argument given above.

3.2.3 A comparison with the predictions of N = 4 mirror

symmetry

Chiral primaries in the mirror theory with vortex number ±1 are exactly the same

as in the N = 2 case:

V+ = X1X2 . . . XNf , V− = X̃1X̃2 . . . X̃Nf .

Their U(1)N and U(1)B quantum numbers match those computed in the original the-

ory using radial quantization and large-Nf expansion. This provides a check of N = 4

mirror symmetry at the origin of the moduli space. We can also translate this into

the language of analytic superfields. Then a hypermultiplet (Xs, X̃+s) is described

by an analytic superfield Xs whose Chern number is 1. The analytic superfield which

is gauge-invariant and carries vortex charge 1 is given by

X1X2 . . . XNf .

It has Chern number Nf and corresponds to the BPS multiplet constructed in the

previous section, while its complex conjugate corresponds to the anti-BPS multiplet.

Mirror symmetry also predicts a certain interesting relation in the chiral ring of

the IR limit of N = 4 SQED. Consider the product of V+ and V−:

V+V− = (X1X̃1)(X2X̃2) . . . (XNf X̃Nf ).

Using the equation of motion for Ss, it is easy to see that the operators (XsX̃s)

for different s are equal modulo descendants. Furthermore, mirror symmetry maps

any of these operators to Φ modulo descendants [15]. Thus we infer that modulo
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descendants we have a relation in the chiral ring:

V+V− ∼ ΦNf . (3.6)

Can we understand this relation in terms of N = 4 SQED? Indeed we can!

To begin with, it is easy to see that the operator ΦNf is the only chiral operator

whose quantum numbers match those of V+V− and which could appear in the OPE

of V+ and V−. Thus it is sufficient to demonstrate that it appears with a non-

zero coefficient. To this end, we need to compute the 3-point function of V+, V−,

and (Φ+)
Nf . In the radial quantization approach, we need to show that the matrix

element

〈V +
− |

(
Φ+

)Nf |V+〉

is non-zero.

Now we recall that the state corresponding to V+ has magnetic flux +1 and scalar

VEV χ = −1
2
, while the state corresponding to V− has magnetic flux −1 and χ = 1

2
.

Hermitian conjugation reverses the sign of the magnetic flux and leaves the VEV of

χ unchanged. It follows that the path integral which computes the matrix element

of any operator between 〈V +
− | and |V+〉 must be performed over field configurations

such that the magnetic flux is equal to 1, while the scalar χ asymptotes to −1/2 at

τ = −∞ and 1/2 at τ = +∞. Thus we are dealing with a kink on S2 ×R.

Next, we note that the Dirac operator on S2 × R coupled to such a background

may very well have normalizable zero modes. If this is the case, then in order to

get a non-zero matrix element one needs to insert an operator which has the right

quantum numbers to absorb the zero modes. For example, one can insert a product

of all fermionic fields which possess a zero mode. Another possibility, which is more

relevant for us, is to insert some bosonic fields which interact with fermions and can

absorb the zero modes. In our case, the action contains a complex scalar Φ which has
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Yukawa interactions of the form

∫
d3x Φ

Nf∑
s=1

ψsψ̃s.

Thus if each ψ and each ψ̃ has a single normalizable zero mode, then we can get a

non-zero result for the matrix element if we insert precisely Nf powers of Φ+.

To complete the argument it remains to show that the Dirac operator for both ψ

and ψ̃ has a single zero mode. The Atiyah-Patodi-Singer theorem says in this case

that the L2 index of the Dirac operator is

ind(D) =
1

2
(η(H−)− η(H+)),

where η(H±) denotes the η-invariant of the asymptotic Dirac Hamiltonian at τ →
±∞. We also made use of the fact that neither H+ nor H− have zero modes (see

section 3.1). Now we recall that we have computed the η-invariants already: according

to Eq. (3.5), η(H−) and η(H+) coincide with the U(1)N charges of the BPS and anti-

BPS vacua, respectively, divided by Nf . This implies that the index of the Dirac

operator is equal to 1, for both ψ and ψ̃, and therefore both ψ and ψ̃ have a single

zero mode.

3.3 Beyond the large-Nf limit

3.3.1 Non-renormalization theorems for the anomalous charges

We have seen that mirror symmetry makes certain predictions about the quantum

numbers of BPS monopole operators, and that our large-Nf computations confirm

these predictions. But mirror symmetry also suggests that large-Nf results for U(1)B

and U(1)N charges remain valid for all Nf , all the way down to Nf = 1. In this

subsection we provide an explanation for this without appealing to mirror symmetry.
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We show that the values of U(1)N and U(1)B charges for monopole operators are

fixed by the L2 index theorem for the Dirac operator on S2×R and therefore cannot

receive 1/Nf corrections.

The argument is very simple. For concreteness, consider the monopole operators

V± which have vortex charge q = ±1. These operators are related by charge conjuga-

tion and thus have the same U(1)N charge, which we denote NV . To determine NV ,

we need to consider the transition amplitude on S2×R from the state corresponding

to V+ to the state corresponding to V +
− : if it violates the U(1)N charge by m, then

NV = −m/2. Since ψ and ψ̃ have N = −1, the charge is violated by −2Nf times

the index of the Dirac operator on S2 × R. The index of the Dirac operator in the

present case has only boundary contributions (η-invariants), which depend on the

asymptotics of the gauge field and the scalar χ. When these asymptotics are given

by the large-Nf saddle points, the index was evaluated in section 3.2 with the result

ind(D) = 1. Furthermore, in the large-Nf expansion fluctuations about the saddle

point are treated using perturbation theory. Hence to all orders in 1/Nf expansion

the transition amplitude from V+ to V +
− will violate U(1)N charge by −2Nf . This

implies that the U(1)N charge of V± is equal to Nf to all orders in 1/Nf expansion.

An identical argument can be made for U(1)B.

One may ask if it is possible to dispense with the crutch of 1/Nf expansion al-

together. Naively, there is no problem: we consider the path integral for N = 4 or

N = 2 SQED with e = ∞ and use the APS index theorem to infer the charges of

V±. However, this argument is only formal, because we do not know how to make

sense of this path integral without using 1/Nf expansion. In particular, this leads

to difficulties with the evaluation of the index: we cannot compute the η-invariants

without knowing the precise asymptotic form of the background, but the asymptotic

conditions put constraints only on the total magnetic flux through S2 and the aver-

age value of χ at τ = ±∞. (We remind that the L2-index of a Dirac operator on a

non-compact manifold is only a quasi-topological quantity, which can change if the
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asymptotic behavior of the fields is changed.) The index has a definite value only if

we choose some particular asymptotics for the gauge field and χ.

3.3.2 A derivation of the basic N = 4 mirror symmetry

It is plausible that the point Nf = 1 is within the radius of convergence of 1/Nf

expansion. Singularities in an expansion parameter usually signal some sort of phase

transition, and in the case of N = 4 SQED we do not expect any drastic change of

behavior as one decreases Nf .

With this assumption, we can prove the basic example of N = 4 mirror symmetry,

namely, that the IR limit of N = 4 SQED with Nf = 1 is dual to the theory of a free

twisted hypermultiplet. The proof is quite straightforward. As explained above, the

U(1)N charge of the chiral field V± is equal to Nf to all orders in 1/Nf expansion, while

its U(1)B charge is equal to −Nf . This implies that the IR dimension of V+ is equal to

Nf/2 to all orders in 1/Nf expansion (see section 3.2). Assuming that 1/Nf expansion

converges at Nf = 1, this implies that for Nf = 1 the IR dimension of V± is 1/2. In

a unitary 3-D CFT, a scalar of dimension 1/2 must be free [52]. Then, by virtue of

supersymmetry, the N = 2 superfields V± are free chiral superfields with N = 1 and

B = −1, or, equivalently, the pair (V+, V +
− ) is a free twisted hypermultiplet.

The above argument shows that the IR limit of N = 4 SQED contains a free

sector generated by the action of free fields V± on the vacuum. But this sector also

contains all the states generated by Φ and its superpartners. Indeed, the product of

V+ and V− is a chiral field which has zero vortex charge and N = 2, B = −2. It is easy

to see that the only such field is Φ. In addition, since V+ and V− are independent free

fields, their product is non-zero. Thus we must have V+V− ∼ Φ (we have seen above

how a more general relation Eq. (3.6) can be demonstrated in the large-Nf limit).

We conclude that the sector of the IR limit of N = 4 SQED generated by Φ and

its superpartners is contained in the charge-0 sector of the theory of a free twisted

hypermultiplet. This is precisely the statement of mirror symmetry in this particular
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case.

In the next chapter we extend the analysis to non-abelian gauge theories and

non-abelian 3-D mirror symmetry.
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Chapter 4

Monopole operators in
three-dimensional non-abelian
gauge theories

4.1 Monopole operators in three-dimensional non-

supersymmetric SU(Nc) gauge theories

4.1.1 IR limit of SU(Nc) gauge theories

Consider a three-dimensional Euclidean Yang-Mills action for Nf flavors of matter

fermions in the fundamental representation of the gauge group SU(Nc) with genera-

tors {Tα}1, (α = 1, . . . , N2
c − 1):

S =

∫
d3x


 1

4e2
Tr VijV

ij + i

Nf∑
s=1

ψ+s~σ
(

~∇+ i~V
)

ψs


 , (4.1)

where ψ are complex two-component spinors, ~V = ~V αTα is gauge potential with

a field-strength Vij =
(
∂iV

α
j − ∂jV

α
i − fαβγV β

i V γ
j

)
Tα, fαβγ are the structure con-

stants. To avoid a parity anomaly, Ref. [46], we choose Nf to be even. Action (4.1)

is invariant under the flavor symmetry U(Nf )flavor.

1We use Tr(TαT β) = 1
2δαβ normalization.
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There are two ways to classify monopoles in non-abelian theories. A dynamical

description of monopoles in terms of weight vectors of the dual of (unbroken) gauge

group was developed by Goddard, Nuyts, and Olive (GNO) in Ref. [60]; topological

classification in terms of π1 was suggested by Lubkin in Ref. [61], (see also Ref. [62]

for a review). It is well known that in R1,3 the dynamical (GNO) monopoles with

vanishing topological charges are unstable in the small coupling limit. We will study

the dynamical monopoles in the IR limit of (4.1). The theory is free in the UV

limit ( e2

Λ
→ 0, where Λ is a renormalization scale) and is strongly coupled in the IR

( e2

Λ
→∞). In the strong coupling regime the dominant contribution to the gauge field

effective action is given by the matter fields and stability analysis of GNO monopoles

performed at weak coupling is no longer applicable. Since matter fields belong to

the fundamental representation, the effective gauge group is given by SU(Nc). The

corresponding π1 is trivial and all dynamical monopoles have vanishing topological

charges. The GNO monopoles of SU(Nc) are given by

V N = H(1− cos θ)dϕ, V S = −H(1 + cos θ)dϕ, (4.2)

where V N and V S correspond to gauge potentials on upper and lower hemispheres

respectively. H is a constant traceless hermitian Nc × Nc matrix, which can be

assumed to be diagonal. On the equator V N and V S are transformed into each other

by a gauge transformation with a group element exp (2iHϕ). This transformation is

single-valued if

H =
1

2
diag(q1, q2, . . . , qNc) (4.3)

with integers qa, (a = 1, .., Nc),
Nc∑
a=1

qa = 0. (4.4)

Consider a path integral over matter and gauge fields on the punctured R3. Integra-

tion over the gauge fields asymptotically approaching (4.2) at the removed point of R3
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corresponds to an insertion of a monopole operator with magnetic charge H. To com-

plete definition of the monopole operator we have to specify the behavior of matter

fields at the insertion point. Thus monopole operators with a given magnetic charge

are classified by the behavior of the matter fields near the singularity. In the IR limit

the theory (4.1) flows to the interacting conformal field theory. In three-dimensional

CFT operators on R3 are in one-to-one correspondence with normalizable states on

S2×R. Namely, insertion of a monopole operator in the origin of R3 corresponds to a

certain in-going state in the radially quantized theory on S2×R. Hamiltonian of the

radially quantized theory is identical to the dilatation operator on R3. In unitary CFT

all physical operators including those creating topological disorders are classified by

the lowest-weight irreducible representations labelled by the primary operators. We

will say that topological disorder operator is a primary monopole operator, if such

an operator has the lowest conformal weight among the monopole operators with a

given magnetic charge H. Since conformal transformations do not affect the mag-

netic charge, the primary monopole operators are conformal primaries. Our task is to

determine spin, conformal weight and other quantum numbers of primary monopole

operators.

In the IR limit kinetic term for the gauge field can be neglected and integration

over matter fields produces effective action for the gauge field proportional to Nf .

Although IR theory is strongly coupled, the effective Planck constant is given by

1/Nf and in the large Nf limit the CFT becomes weakly coupled. It is natural to

assume that saddle point of the gauge field effective action is invariant under rotations

and corresponds to the GNO monopole. Since fluctuations of the gauge field are

suppressed, it can be treated as a classical background. Thus, in the large Nf limit

we have matter fermions moving in a presence of the GNO monopole. Therefore, a

primary monopole operator is mapped to a Fock vacuum for matter fields moving

in a monopole background on S2 × R. Conformal weight of the primary monopole

operator is equal to Casimir energy of the corresponding vacuum state relative to the
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vacuum state with vanishing monopole charge.

4.1.2 Radial quantization

Let us implement the procedure outlined in the previous section. Namely, we consider

CFT which appears in the IR limit of the theory (4.1). We neglect the kinetic term of

a gauge field, introduce a radial time variable τ = ln r and perform the Weyl rescaling

to obtain metric on S2 ×R:

ds2 = dτ 2 + dθ2 + sin2 θdϕ2.

Since a gauge potential of the GNO monopole (4.2) with H given by Eqs.(4.3)-(4.4) is

diagonal in color indices we may use results of Chapter 3 for fermionic energy spectra

on S2 ×R. We conclude that for each ψs
a, where s = 1, . . . , Nf and a = 1, . . . , Nc are

flavor and color indices respectively, the energy spectrum is given by

En = ±
√
|qa|n + n2, n = 1, 2, . . .

Each energy mode has a degeneracy 2|En| and spin j = |En| − 1
2
. In addition, there

are |qa| zero-energy modes which transform as an irreducible representation of the

rotation group SU(2)rot with spin j = 1
2
(|qa| − 1). In the large Nf limit leading

contribution to the conformal weight h{q} of the GNO SU(Nc) monopole is given by

h{q} = Nf

Nc∑
a=1

(
1

6

√
1 + |qa| (|qa| − 2) +

+ 4Im

∫ ∞

0

dt




(
it +

|qa|
2

+ 1

) √(
it +

|qa|
2

+ 1

)2

− q2
a

4


 1

e2πt − 1


 ,

where branch of the square root under the integral is the one which is positive on the

positive real axis.
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Let us specialize in the case of GNO monopole with minimum magnetic charge:

H =
1

2
(1,−1, 0, . . . , 0), (4.5)

and denote the fermionic non-zero energy mode annihilation operators by as
akm, bs

akm,

where k labels the energy level, and m accounts for a degeneracy. Fermionic zero-

energy modes have vanishing spin and are present for ψs
1 and ψs

2 only. The corre-

sponding annihilation operators we denote as cs
1 and cs

2. The Fock space of the theory

is the tensor product of the zero-mode Fock space and the Fock space of all other

modes. The latter is simply a fermionic Fock space with a unique rotationally invari-

ant vacuum |vac〉+ which is annihilated by all annihilation operators corresponding

to excitations with non-zero energies. The Fock space of zero modes has a vacuum

vector which we denote |vac〉0. Consider a Fock space of states obtained by acting

with creation operators on a state |vac〉 ≡ |vac〉0
⊗ |vac〉+, which is annihilated by

all the annihilation operators. Those elements of the Fock space which satisfy the

Gauss law constraints form the physical Fock space.

The background (4.2) with H given by Eq.(4.5) breaks gauge group G = SU(Nc)

to Ḡ = U(1) for Nc = 2 and Ḡ = SU(Nc−2)×U(1)×U(1) for Nc > 2, where genera-

tors of the two U(1) groups are given by (1,−1, 0, . . . , 0) and (2−Nc, 2−Nc, 2, . . . , 2).

Let T̄ ᾱ be generators of Ḡ. In quantum theory we impose Gauss law constraints on

physical states. In the IR limit it implies that they are annihilated by the charge

density operators kᾱ. Consider charges Qᾱ obtained by integration of kᾱ over S2.

The most general form of the corresponding quantum operators is

Qᾱ = Qᾱ
+ + Qᾱ

0 ,

where Qᾱ
0 denote all terms that act within a zero-mode Fock space and Qᾱ

+ are assumed
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to be normal-ordered. Using explicit form of zero-energy solutions we find

Qᾱ
0 = c+s

1 T̄ ᾱ
11c

s
1 + c+s

2 T̄ ᾱ
22c

s
2 + nᾱ,

where C-numbers nᾱ account for operator-ordering ambiguities. Since the zero modes

are rotationally invariant, the Gauss law constraints in the zero-mode Fock space are

translated into requirements that the states are annihilated by Qᾱ
0 .

In the case of Nc = 2 we have

Q0 =
1

2

(
c+s
1 cs

1 − c+s
2 cs

2

)
+ n.

The zero-mode space in spanned by the 22Nf states

|vac〉0, c+s1
1 |vac〉0, c+s1

2 |vac〉0, . . . , c+s1
1 . . . c

+sNf

1 c+s1
2 . . . c

+sNf

2 |vac〉0.

A zero-mode vacuum state as well as completely filled state have Q0-charge given by

n. Since the monopole background is invariant under CP symmetry, we require CP -

invariance of the Q0 spectrum. Therefore, n = 0 and we have the following physical

zero-mode vacuum states transforming as scalars under SU(2)rot

|vac〉0, c+s1
1 . . . c+sl

1 c+p1

2 . . . c+pl
2 |vac〉0, l = 1, . . . , Nf .

Each set of the physical vacuum states labelled by l transforms as a product of two

rank-l antisymmetric tensor representations under U(Nf )flavor.

For Nc > 2 we choose T̄ 1 and T̄ 2 to be generators of the two U(1) groups so that

the only zero-mode contributions are

Q1
0 =

1

2

(
c+s
1 cs

1 − c+s
2 cs

2

)
+ n1, Q2

0 = −1

2

√
Nc − 2

Nc

(
c+s
1 cs

1 + c+s
2 cs

2

)
+ n2.
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In this case CP -invariance gives n1 = 0 and n2 = 1
2

√
Nc−2

Nc
Nf . Therefore, we have

( Nf
1
2
Nf

)2
physical vacuum states

c+s1
1 . . . c

+sNf /2

1 c+p1

2 . . . c
+pNf /2

2 |vac〉0,

transforming as scalars under SU(2)rot and as a product of two rank-Nf/2 antisym-

metric tensor representations of U(Nf )flavor.

4.2 Monopole operators and mirror symmetry in

three-dimensional N = 4 SU(2) gauge theories

4.2.1 IR limit of N = 4 SU(2) gauge theory

Consider three-dimensional Euclidean N = 4 supersymmetric theory of vector mul-

tiplet V in the adjoint representation of the gauge group SU(2)gauge and Nf matter

hypermultiplets Qs, (s = 1, . . . , Nf ), transforming under the fundamental represen-

tation. Decompositions of N = 4 multiplets into N = 2 multiplets are given in the

following table

N = 4 N = 2

Vector multiplet V Vector multiplet V = (Vi, χ, λ, λ̄,D),

Chiral multiplet Φ = (φ, η, K).

Hypermultiplet Q Chiral multiplets Q = (A,ψ, F ),

Q̃ = (Ã, ψ̃, F̃ ),
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where Vi is a vector field in the adjoint representation of the gauge group, χ and φ

are real and complex adjoint scalars respectively; λ, λ̄, and η are the gluinos, whereas

fields D and K are auxiliary. The action in terms of three-dimensional N = 2

superspace formalism is given in the Appendix C. Scalar A (Ã), spinor ψ (ψ̃), and

auxiliary field F (F̃ ) transform according to (anti-)fundamental representation of the

gauge group:

Q → eiωαT α

Q, Q̃ → Q̃e−iωαT α

,

under the gauge transformation with parameters ωα(x). Since all representations of

SU(2) are pseudo-real, we may define a chiral superfield

Ψa =
1√
2

(
Qa − εabQ̃b

i
[
Qa + εabQ̃b

]
)

,

where εab is antisymmetric tensor with ε12 = 1. Therefore kinetic term for a hyper-

multiplet has the form ∫
d2θd2θ̄

2Nf∑
I=1

Ψ+
I e2V ΨI ,

where we used the identities

εabT
αb
c εcd = −(Tαa

d )T , εabε
bc = δc

a.

The superpotential is

W = i
√

2

Nf∑
s=1

Q̃sΦQs =
i√
2

2Nf∑
I=1

Ψa
IεabΦ

b
cΨ

c
I .

The kinetic term is invariant under SU(2Nf ) flavor symmetry. The superpotential,

however, is invariant under SO(2Nf ) subgroup only.

4Nf − 6 dimensional2 Higgs branch is labelled by the mesons MIJ = Ψa
IεabΨ

b
J .

2Moduli space dimensions are assumed to be complex.
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Using an identity

εI1...I2Nf Ψa
I1

Ψb
I2

Ψc
I3

Ψd
I4

= 0,

we obtain the constraints εI1...I2Nf MI1I2MI3I4 = 0. The F-flatness condition implies

M2
IJ = 0.

On the Coulomb branch adjoint scalars χ and Φ can have non-vanishing expecta-

tion values. Let us make a gauge transformation to obtain χ = χ(3)T 3. Dualizing a

photon V (3) = ∗dσ(3) we construct a chiral superfield Υ = χ(3) + iσ(3) + . . . Potential

energy density for scalars χ and Φ is given by U = U1 + U2, with

U1 ∼ Tr
([

Φ, Φ+
])2

, U2 ∼ Tr
(
χ2

)
Tr

(
Φ+Φ

)− |Tr (χΦ)|2 .

Vanishing of the potential gives Φ = Φ(3)T 3. Residual gauge symmetries are U(1)gauge

generated by T 3 and Weyl subgroup Z2 acting by (Υ, Φ(3)) → (−Υ,−Φ(3)). Moreover,

we have Υ ∼ Υ+4πe2i. Let us introduce a pair of operators Y+ and Y− corresponding

to positive and negative expectation values of χ(3) respectively. For large positive

(negative) χ(3) we have Y+ ∼ eΥ/(2e2) (Y− ∼ e−Υ/(2e2)). We emphasize that none of

the Y+, Y− is gauge invariant. In fact, Y+ ↔ Y− under the Weyl subgroup Z2. The

gauge invariant coordinates on the Coulomb branch are

u = i(Y+ − Y−)Φ(3), v = (Y+ + Y−), w =
(
Φ(3)

)2
. (4.6)

In a semiclassical limit we have an equation

u2 + v2w = 0. (4.7)

Since the Coulomb branch receives quantum corrections we expect modification of

the Eq.(4.7).

Three-dimensional N = 4 theory has an R-symmetry group given by SU(2)R ×
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SU(2)N . There are SU(2)R and SU(2)N gluino doublets, scalars A (A+) and Ã+

(Ã) make a doublet of SU(2)R and are singlets of SU(2)N , spinors ψ (ψ̄) and ¯̃ψ (ψ̃)

transform as a doublet of SU(2)N and singlets of SU(2)R. Scalars χ, φ, and φ+ form

a triplet of SU(2)N and are neutral under SU(2)R. In three-dimensional N = 2

superspace formalism only the maximal torus U(1) × U(1) of the R-symmetry is

manifest. Let us introduce a set of manifest R-symmetries denoted as U(1)N , U(1)B,

and U(1)R with the corresponding charges given in the table

N B R

Q 0 1 1/2

Q̃ 0 1 1/2

Φ 2 −2 1

It is easy to see that B-charge of the Grassmannian coordinates of the N = 2 su-

perspace is zero and R = N + 1
2
B. The supercharge which is manifest in N = 2

superspace formalism has R-charge one, whereas a non-manifest supercharge has

vanishing R-charge.

Let us consider topological disorder operators which belong to N = 4 (anti-)BPS

multiplets. In the IR limit the theory flows to the interacting superconformal field

theory and (anti-)BPS representations are labelled by the (anti-)chiral primary oper-

ators. The conformal dimensions of (anti-)chiral primary operators are smaller than

those of other operators in the same representation and are determined by their spin

and R-symmetry representations [53, 52]. We define an (anti-)BPS primary monopole

operator as a topological disorder operator which is an (anti-)chiral operator with the

lowest conformal weight among the (anti-)chiral topological disorder operators with

a given magnetic charge H. It follows that (anti-)BPS primary monopole operators

are (anti-)chiral conformal primaries. Using arguments similar to those presented in

subsection 4.1.1 we conclude that in the large Nf limit we have matter fields in a

background of the (anti-)BPS monopole. Our goal will be to determine the quantum
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numbers of (anti-)BPS primary monopole operators in the limit of large Nf .

Now we will identify (anti-)BPS backgrounds corresponding to (anti-)BPS GNO

monopoles in N = 4 supersymmetric gauge theory. Background values of ~V α, φα,

φ∗α, and χα preserve some of the manifest N = 2 supersymmetry parameterized by

ξ, ξ̄ iff they satisfy the equations

δλα = −i

(
σi

(
∂iχ

α + fαβγχβV γ
i

)
+

1

2
εijkσkV α

ij −Dα

)
ξ = 0, (4.8)

δλ̄α = −iξ̄

(
σi

(
∂iχ

α + fαβγχβV γ
i

)− 1

2
εijkσkV α

ij + Dα

)
= 0, (4.9)

δηα =
√

2
(
fαβγχβφγ + iσi

(
∂iφ

α + fαβγφβV γ
i

))
ξ̄ +

√
2ξKα = 0, (4.10)

δη̄α = −
√

2ξ
(
fαβγχβφ∗γ + iσi

(
∂iφ

∗α + fαβγφ∗βV γ
i

))
+
√

2ξ̄K∗α = 0. (4.11)

The other set of supersymmetry transformations is obtained from (4.8)-(4.11) by the

replacements λ → η, η → −λ. Consider a background with Φ = 0. Let us set Dα = 0

and introduce Eα
i = −∂iχ

α−fαβγχβV γ
i , Bαi = 1

2
εijkV α

jk. Equations (4.8)-(4.11) imply

( ~Eα − ~Bα)~σξ = 0, ξ̄( ~Eα + ~Bα)~σ = 0.

For ~B = ~BαTα = H
r3~r we have the following backgrounds, each preserving half of the

manifest N = 2 supersymmetry:

(i) BPS background

~Eα = − ~Bα, ∀ξ̄, ξ = 0,

(ii) anti-BPS background

~Eα = ~Bα, ∀ξ, ξ̄ = 0.

We choose χ = χαTα = ∓H/r with H = qT 3 = 1
2
(q,−q), where upper (lower)

sign corresponds to the (anti-)BPS monopole backgrounds. These backgrounds are

invariant under SU(2)R symmetry, breakN = 4 toN = 2 supersymmetry, SU(2)gauge
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group to U(1)gauge subgroup, and SU(2)N to U(1)N . We mention that contrary to

monopoles in U(1) gauge theory, SU(2) monopoles specified by H and −H are gauge

equivalent.

4.2.2 Dual theory

The dual theory is a twisted N = 4,
[
U(2)Nf−3 × U(1)4

]
/U(1)diag gauge theory

based on the Dynkin diagram of SO(2Nf ) group. The fields include Nf − 3 U(2)

vector superfields which are made of N = 2 U(1) vector superfields Ul and neutral

chiral superfields Tl, SU(2) vector superfields Tl and adjoint chiral superfields Sl,

l = 1, . . . , Nf − 3. Also, there are four additional U(1) vector superfields which

consist of N = 2 vector superfields UNf−2,..., UNf+1 and neutral chiral superfields

TNf−2,..., TNf+1. Factorization of the diagonal U(1) implies the constraints

Nf+1∑
p=1

Up = 0,

Nf+1∑
p=0

Tp = 0.

Matter fields include twisted Nf − 4 matter hypermultiplets made of N = 2 chiral

multiplets qr and q̃r, transforming as

qr → U(2)r+1qrU(2)+
r , q̃r → U(2)rq̃rU(2)+

r+1, r = 1, . . . , Nf − 4.

We also have four additional twisted matter hypermultiplets which decompose with re-

spect to N = 2 as chiral superfields
(
X1, X̃1

)
, ...,

(
X4, X̃4

)
. X1

(
X̃1

)
has charge +1

(−1) under U(1)Nf−2 and transforms according to (anti-)fundamental representation

of U(2)1; X2

(
X̃2

)
has U(1)Nf−1 charge +1 (−1) and is belongs to (anti-)fundamental

representation of U(2)Nf−3; X3

(
X̃3

)
has a charge +1 (−1) under U(1)Nf

and trans-

forms according to (anti-)fundamental representation of U(2)1; X4

(
X̃4

)
has a charge

+1 (−1) under U(1)Nf+1 and is transformed according to (anti-)fundamental repre-
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sentation of U(2)Nf−3. Superpotential is given by

W = i
√

2



X̃1

(
T1 + S1 − TNf−2

)
X1 + X̃2

(
TNf−3 + SNf−3 − TNf−1

)
X2 +

+X̃3

(
T1 + S1 − TNf

)
X3 + X̃4

(
TNf−3 + SNf−3 − TNf+1

)
X4+

+

Nf−4∑
r=1

q̃r (Sr+1 + Tr+1 − Sr − Tr) qr



 .

The two-dimensional Higgs branch doesn’t receive quantum corrections and is given

by a hyper-Kahler quotient parameterized by x, y, and z subject to a constraint

x2 + y2z = zNf−1. (4.12)

Explicit form of these coordinates is given in Ref. [63]:

z = −Xa1
1 X̃3|a1X

b1
3 X̃1|b1 , (4.13)

and (for even Nf )

x = 2Xa1
1 qa2

1|a1
. . . q

aNf−3

Nf−4|aNf−4
X̃2|aNf−3

X
bNf−3

2 q̃
bNf−4

Nf−4|bNf−3
. . . q̃b1

1|b2X̃3|b1X
c1
3 X̃1|c1 ,(4.14)

y = 2Xa1
3 qa2

1|a1
. . . q

aNf−3

Nf−4|aNf−4
X̃2|aNf−3

X
bNf−3

2 q̃
bNf−4

Nf−4|bNf−3
. . . q̃b1

1|b2X̃3|b1 + (−z)Nf /2−1.

4Nf − 6 dimensional Coulomb branch is parameterized by Nf + 1 dual U(1) photons

V±|r (for a given r, V+|r and V−|r are used as coordinates on two distinct patches)

subject to the constraints
∏

r

V+|r =
∏

r

V−|r = 1,

Nf independent chirals T , 2Nf − 6 independent coordinates analogous to the ones

given in Eq.(4.6).
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4.2.3 Mirror symmetry

Since mirror symmetry exchanges mass and Fayet-Iliopoulos terms, we identify Nf

complex mass terms Q̃sQs (no sum over s) with Nf independent chirals T . Therefore

chirals T and S have baryon charge 2 whereas baryon charges of X, X̃, q, and q̃ are

−1. Baryon charges of x, y, and z are 2−2Nf , 4−2Nf , and −4 respectively which can

be deduced both from the defining equations (4.13)-(4.14) and from the hyper-Kahler

quotient equation (4.12). Likewise, T and S have vanishing U(1)N charges, whereas

X, X̃, q, and q̃ have a charge +1. Finally, U(1)N charges of x, y, and z are 2Nf − 2,

2Nf − 4, and 4 respectively. We also have R(x) = Nf − 1, R(y) = Nf − 2, as well as

R(z) = 2.

It follows that charges of z are independent of Nf and coincide with that of

w = 2 Tr Φ2. Also comparing Eq.(4.7) with Eq.(4.12) we obtain an identification

u ∼ x, v ∼ y, w ∼ z.

Thus, the mirror symmetry predicts the following charges for operators defined in

Eq.(4.6)

N B R

u 2Nf − 2 2− 2Nf Nf − 1

v 2Nf − 4 4− 2Nf Nf − 2

w 4 −4 2

Since x, y, and z are chiral primary operators which are polynomials of the electrically

charged fields, operators u, v, and w are also chiral primaries and describe the sector

with nontrivial magnetic charge. As explained in Chapter 3, the conformal dimension

of N = 4 (anti-)chiral primary operator equals (minus) the corresponding U(1)R

charge.
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4.2.4 Quantum numbers

Quantum numbers of the (anti-)BPS primary monopole state receive contributions

from both matter hypermultiplet Q and vector multiplet V . The former is propor-

tional to Nf and is dominant in the large Nf limit, whereas the latter gives correction

of the form O(1). Let us determine the matter contributions first.

Energy spectra of matter fields in (anti-)BPS backgrounds are given in the Ap-

pendix C. Since matter fermionic particles and antiparticles have different energy

spectra we adopt the “symmetric ” ordering for the bilinear fermionic observables

defined in Eq.(3.4). This procedure gives

EFermions
Casimir =

1

2

(∑
E− −

∑
E+

)
− ”the same”|q=0,

where E+, E− are positive and negative energies respectively. To define the formal

sums appearing in this section we use

∑
E →

∑
Ee−β|E|

regularization and take β → 0 limit at the end of calculations. Matter bosonic

particles and antiparticles have identical energy spectra and standard prescription

can be used. In our model the matter contribution to the Casimir energy is equal to

hQ = Nf |q| for both BPS and anti-BPS monopole backgrounds. For matter part of

the R-charge operator we have

RQ =
1

4

[∑
(a+

ψaψ − aψa+
ψ ) +

∑
(bψb+

ψ − b+
ψ bψ) +

∑
(a+

ψ̃
aψ̃ − aψ̃a+

ψ̃
)+

∑
(bψ̃b+

ψ̃
− b+

ψ̃
bψ̃)−

∑
(a+

AaA + bAb+
A)−

∑
(a+

Ã
aÃ + bÃb+

Ã
)
]

+ const,

where a+ (b+) and a (b) denote the corresponding (anti-)particle creation and anni-

hilation operators respectively. To fix a constant we define a vacuum state with zero
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magnetic charge |0〉 to have vanishing R-charge. It follows that

〈RQ〉q =




∑

E−ψ

|E−
ψ | −

∑

E+
ψ

E+
ψ +

∑

E+
A

E+
A −

∑

E−A

|E−
A |


−′′ the same′′|q=0.

As a result we have 〈RQ〉 = ±hQ. For N and B charges similar calculations give

〈NQ〉q = −〈BQ〉q = ±2Nf |q|.
Now we will consider the vector multiplet contribution to the quantum numbers

of the vacuum state. Relevant charges are summarized in the table

N B R

λ 1 0 1

λ̄ −1 0 −1

η 1 −2 0

η̄ −1 2 0

φ 2 −2 1

φ∗ −2 2 −1

χ 0 0 0

Integration over the hypermultiplet Q produces an induced action for the vector

multiplet SInd[V ] proportional to Nf . Let us assume that supersymmetric monopole

configuration minimizes vector multiplet effective action in the IR region. Changing

V → Vmon + V̂/
√

Nf gives

SInd[V ] = S
(2)
Ind[V̂ ] + O

(
1√
Nf

)
,

where S
(2)
Ind[V̂ ] is quadratic in V̂ and independent from Nf . The full effective action
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for V̂ is

SEff [V ] =
S0[V ]

e2
+ SInd[V ] = Nf

S0[Vmon]

ê2
+

S
(2)
0 [V̂ ]

ê2
+ S

(2)
Ind[V̂ ] + O

(
1√
Nf

)
,

where S0 is original action for a vector superfield and ê2 = e2Nf . Linear term pro-

portional to δS0

δV [Vmon] V̂ vanishes because supersymmetric field configuration Vmon

automatically minimizes the action S0.

In the Euclidean space we have Q+ = S and Q̄+ = S̄, hence special conformal

transformations generated by S̄ (S) leave the (anti-)BPS background invariant. The

(anti-)BPS background breaks some of the global symmetries, and the full Hilbert

space of states is given by a tensor product of the physical Fock space constructed

from a vacuum state and a space of superfunctions on the appropriate supercoset.

In Ref. [52] it was shown that unitarity condition applied to the anticommutator

{Q̄, S̄} in the N = 2 supersymmetric theory implies that the conformal weight h and

infrared R-charge RIR of any state satisfy h ≥ RIR. Also, it follows from the anti-

commutator {Q, S} that h ≥ −RIR in a unitary theory. As explained in section 3.2,

the infrared R-charge RIR coincides with U(1)R charge R. Thus for the physical

Fock space constructed from the (anti-)BPS vacuum, the unbroken subalgebra of the

three-dimensional superconformal algebra implies that (minus) R-charge of a state

can not exceed its conformal dimension:

h ≥ ±R, (4.15)

with the lower bound saturated by the (anti-)chiral primary operators with vanishing

spin.

Let us focus on the gluino contribution to the R-charge. We have two sets of

gluinos λ̂ and η̂. Since U(1)R symmetry acts trivially on η̂, the only contribution
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comes from λ̂. Relevant quadratic terms in the effective action have the form (in R3):

S
(2)
0 [λ̂, ˆ̄λ] =

∫
dx

(
iˆ̄λ+

[
~σ

(
~∇− i~V mon

)
± q

r

]
λ̂+ + iˆ̄λ−

[
~σ

(
~∇+ i~V

)
∓ q

r

]
λ̂− + iˆ̄λ3~σ~∇λ̂3

)
,

S
(2)
Ind[λ̂, ˆ̄λ] =

∫
dxdy

(
ˆ̄λ+(x)O(+)(x, y)λ̂+(y) + ˆ̄λ−(x)O(−)(x, y)λ̂−(y)

+ ˆ̄λ3(x)O(3)(x, y)λ̂3(y)
)

,

with λ̂+ = (λ̂1 + iλ̂2)/
√

2, λ̂− = (λ̂1 − iλ̂2)/
√

2, and

O(+)(x, y) ∼ 〈
ψ̄1(x)ψ1(y)

〉 〈
A2(x)A+

2 (y)
〉
, O(−)(x, y) ∼ 〈

ψ̄2(x)ψ2(y)
〉 〈

A1(x)A+
1 (y)

〉
,

O(3)(x, y) ∼ 〈
ψ̄1(x)ψ1(y)

〉 〈
A1(x)A+

1 (y)
〉

+
〈
ψ̄2(x)ψ2(y)

〉 〈
A2(x)A+

2 (y)
〉
,

where we used the identities

〈
¯̃ψ1(x)ψ̃1(y)

〉
=

〈
ψ̄2(x)ψ2(y)

〉
,

〈
¯̃ψ2(x)ψ̃2(y)

〉
=

〈
ψ̄1(x)ψ1(y)

〉
,

〈
Ã1(x)Ã+

1 (y)
〉

=
〈
A2(x)A+

2 (y)
〉
,

〈
Ã2(x)Ã+

2 (y)
〉

=
〈
A1(x)A+

1 (y)
〉
.

R-charge contribution of λ̂+ and ˆ̄λ+ can be expressed in terms of η-invariant of the

Hamiltonian associated with O(+). If λ̂+ has zero-energy modes in the Fock space, it

may lead to ambiguities in the R-charge computation. Let us show that such modes

are not present. Induced action equation of motion δS
(2)
Ind/δ

ˆ̄λ+ = 0 has the form

∫
dyO(+)(x, y)λ̂+(y) = 0. (4.16)

Transforming to S2 ×R and assuming λ̂+ independent of τ , we obtain

∫
dτydϕydθyO

(+)(ϕx, θx, τx; ϕy, θy, τy)λ̂+(ϕy, θy) = 0. (4.17)



70

If Eq.(4.17) has a non-trivial solution corresponding to an operator acting in the Fock

space, SU(2)R symmetry implies that η̂+ = (η̂1 + iη̂2) /
√

2 also has a zero-energy

mode. Then it follows from the supersymmetry transformation

δφ̂∗+ =
√

2ξ̄ ˆ̄η+e−τ/2,

that φ̂+ has a mode with energy−1/2 in the Fock space associated with BPS monopole

background. Let us denote the corresponding creation operator as b
+{|E−|=1/2}
φ̂+

. Using

the explicit form of the matter field energy modes it is straightforward to check that

O(−) = O(+)|ϕx→−ϕx,ϕy→−ϕy ,

which implies that there is a zero-energy solution for λ̂− as well. Hence, η̂− has zero-

energy mode and φ̂− has a mode with energy −1/2 which we denote as b
+{|E−|=1/2}
φ̂−

.

The product b
+{|E−|=1/2}
φ̂+

b
+{|E−|=1/2}
φ̂−

is U(1)gauge invariant operator which has R-

charge 2 and energy (conformal dimension) 1. Repeated action of this operator on

any physical state with definite R-charge and conformal dimension will finally give a

state with R-charge greater than the conformal dimension which violates the unitar-

ity bound (4.15). Thus we conclude that λ̂+ does not have zero-energy modes in the

Fock space constructed from the BPS vacuum. For anti-BPS monopole background

similar analysis gives analogous conclusion.

Action S
(2)
Eff acquires explicit τ -dependence on S2 × R as a reminiscence of the

fact that theory is not conformal invariant for 0 < ê2 < ∞. Let us define g2 = eτ ê2

and consider the resulting theory S
(2)
g , which can be viewed as conformal invariant

deformation of S
(2)
Ind with constant g being a deformation parameter. Let {Ek(g)} be

the energy spectrum of λ̂+, then the R-charge contribution is

< R
λ̂+,ˆ̄λ+

>q= lim
β→0

(Z(q, β)− Z(0, β)) , Z(q, β) =
1

2

∑

k

sign [Ek (g)] e−β|Ek(g)|.

(4.18)
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Since Z(q, β) is proportional to η-invariant, < R
λ̂+,ˆ̄λ+

>q is expected to be indepen-

dent from g and, hence, can be computed in the region of small g. To make this

argument rigorous it is necessary to show that λ̂+ does not have zero-energy modes

for all values of the constant g. We hope to return to this problem in the future. If

g is small the induced action terms can be ignored and we have gluinos moving in a

monopole background Vmon. The Hamiltonian eigen-value equation has a form

(
Hψ2|q→2q −

1

2

)
λ̂+ = Eλ̂+,

where Hψ2 is Hamiltonian for the matter field ψ2. Using energy spectrum of ψ2 given

in the Appendix C, we find that the spectrum of λ̂+ in the limit of small g is given

by (n = 1, 2, . . . )

E = −|q| − n− 1

2
, ∓|q| − 1

2
, |q|+ n− 1

2
,

where each energy level has degeneracy |2E + 1|. We mention that energy level

E = ∓|q| − 1
2

has degeneracy 2|q| and is not present if q = 0. Using Eq.(4.18) in the

small g region we obtain < R
λ̂+,ˆ̄λ+

>q= ∓|q|.
Similar analysis can be implemented for λ̂− and λ̂3. R-charge contribution of λ̂−

is identical to that of λ̂+, whereas in the small g limit λ̂3 is moving in the trivial

(V = 0) background and does not contribute to the R-charge. Besides gluinos λ̂, the

only vector multiplet fields charged under the U(1)R symmetry are scalars φ and φ∗.

Analogous calculations show that they do not contribute to the O(1) terms of the

R-charge. Therefore, in the large Nf limit, we have

〈R〉q = ± (Nf − 2) |q|.

For the N -charge we have 〈NV〉q =< N
λ̂,ˆ̄λ

>q + < Nη̂,ˆ̄η >q= 2 < N
λ̂,ˆ̄λ

>q, where we
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used invariance of the (anti-)BPS background under SU(2)R:

S
(2)
Ind[η̂, ˆ̄η] = S

(2)
Ind[λ̂, ˆ̄λ]

∣∣∣
λ̂→η̂,ˆ̄λ→ˆ̄η

.

Calculations similar to those for the R-charge give 〈NV〉q = ∓4|q|, which implies

〈N〉q = ± (2Nf − 4) |q|, 〈B〉q = ±(4− 2Nf )|q|.

4.2.5 Comparison with the mirror symmetry predictions

Mirror symmetry implications for the quantum numbers of w (see Eq.(4.6)) are triv-

ially satisfied. Thus we conclude that w ∼ z. Let us consider a physical state |vac〉q.
It is the lowest energy state and, hence, a superconformal primary. (Anti-)BPS back-

ground is annihilated by a supercharge Q̄ (Q), therefore, a state Q̄ |vac〉q
(
Q |vac〉q

)

belongs to the Fock space associated with |vac〉q. Since supercharge Q̄ (Q) raises

energy by 1/2 and has U(1)R charge (minus) one, we find that there is no such a

physical state in the Fock space. Therefore, a state |vac〉q is annihilated by Q̄ (Q)

and corresponds to the insertion of the (anti-)chiral primary operator at the origin of

R3. Thus, conformal weight of |vac〉q equals its R-charge, i.e., ± (Nf − 2) |q|. Back-

ground Φ = 0 also corresponds to the (anti-)BPS monopoles in N = 2 SU(2) gauge

theory which can be obtained by giving mass to the adjoint chiral field Φ. There-

fore, matter contribution to the quantum numbers of the N = 2 (anti-)BPS chiral

monopoles is the same as in the N = 4 theory. We also note that chiral primaries

u and w are present for N = 4 only and absent in N = 2 theory. This observation

implies

|vac〉BPS
|q|=1 ∝ v(0) |0〉 , |vac〉anti-BPS

|q|=1 ∝ v+(0) |0〉 .

Identity of |vac〉BPS
|q|=1 and y quantum numbers gives v ∼ y.

To obtain another (anti-)chiral primary state in the physical Fock space, we must

act on a state |vac〉(anti-)BPS
|q|=1 with an U(1)gauge invariant operator f such that it raises
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energy by R(f) (−R(f)). It is easy to see that f can not be made of matter fields

only. Indeed, the most general expression for (anti-)chiral primary f (Q) |vac〉q would

be a superposition of gauge invariant states of the form
(
a+
Q
)m (

b+
Q
)p |vac〉q with some

non-negative integers m and p. However,

E
(
a+
Q
)

> ±R
(
a+
Q
)
, E

(
b+
Q
)

> ±R
(
b+
Q
)
,

and the state
(
a+
Q
)m (

b+
Q
)p |vac〉q is not an (anti-)chiral primary, unless m = p = 0.

Now we consider energy spectra of fields which belong to the vector multiplet. In

the IR limit the only terms in the vector multiplet effective action are those induced

by integration over the matter hypermultiplets. Let us show that gluinos η̂, ˆ̄η, λ̂, ˆ̄λ do

not have (anti-)chiral primary creation operators in the Fock space associated with the

(anti-)BPS background. It follows from Eq.(4.15) that such modes can not be present

in ˆ̄η and ˆ̄λ, (η̂ and λ̂). Since R-charge of η̂ vanishes, the (anti-)chiral primary creation

operator corresponds to a mode with zero energy. It was shown in section 4.2.4 that

η̂+ and η̂−, (ˆ̄η+ and ˆ̄η−), do not have such zero-energy modes. If a gauge invariant

field η̂(3) (ˆ̄η(3)) has a creation operator with zero energy, then SU(2)R symmetry

implies existence of b
+{E=0}
λ̂(3)

, (a
+{E=0}
λ̂(3)

), which is incompatible with Eq.(4.15). If

present, an (anti-)chiral primary creation operator of λ̂α (ˆ̄λα) has the form b
+{|E−|=1}
λ̂α

,

(a
+{|E−|=1}
λ̂α

). Then SU(2)R symmetry ensures existence of b
+{|E−|=1}
η̂α , (a

+{|E−|=1}
η̂α ).

The supersymmetry transformation δφ̂∗α =
√

2ξ̄ ˆ̄ηαe−τ/2, (δφ̂α =
√

2ξη̂αeτ/2), implies

a presence of φ̂α mode with energy |E−| = 3/2: φ̂α ∼ e3τ/2, φ̂∗α ∼ e−3τ/2. Such modes

should annihilate the right-hand side of S2×R counterpart of Eq.(4.10), (Eq.(4.11)),

for all ξ̄ (ξ) in the (anti-)BPS monopole background to ensure that an operator

b
+{|E−|=1}
η̂α , (a

+{|E−|=1}
η̂α ) is annihilated by Q̄ (Q). It is easy to see that it can not be

the case. Thus we conclude that gluinos do not have (anti-)chiral primary creation

operators in the Fock space. Similar arguments reveal that it is true for χ̂α and V̂ α
i

as well. Thus φ̂ and φ̂∗ are the only fields which could have such modes.
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It follows from Eq.(4.15) that energy spectrum of φ̂α satisfies |E−| ≥ R
(
φ̂α

)
= 1,(

E+ ≥ −R
(
φ̂∗α

)
= 1

)
. The (anti-)BPS background under consideration has van-

ishing expectation values of U(1)gauge invariant fields φ(3) and φ∗(3). However, as

it follows from Eqs.(4.8)-(4.11), setting φ(3) = c,
(
φ∗(3) = c

)
3, with constant c in

R3 leaves the (anti-)BPS background invariant under Q̄ (Q). Therefore, the action

SEff [V ] is stationary on these field configurations. Since the constant c is arbitrary,

quadratic part of SEff [V̂ ] is stationary as well. In the IR limit it implies existence

of the creation operator b
+{|E−|=1}
φ̂(3)

(
a

+{E+=1}
φ̂(3)

)
, corresponding to the spinless mode

of φ̂(3)
(
φ̂∗(3)

)
on S2 × R. In the (anti-)BPS background any creation operator of

φ̂(3)
(
φ̂∗(3)

)
corresponding to a mode with energy |E−| = 1 (E+ = 1) saturates the

unitarity bound given by Eq.(4.15). Hence, this mode has vanishing spin and is given

by const × eτ on S2 × R. Thus the (anti-)chiral primary mode of φ̂(3)
(
φ̂∗(3)

)
in

the (anti-)BPS background is unique. Acting with the corresponding creation opera-

tors on the state |vac〉(anti-)BPS
|q|=1 we obtain chiral primaries with the quantum numbers

identical to those predicted for u (u+). We have

b
+{|E−|=1}
φ̂(3)

|vac〉BPS
|q|=1 ∝ u(0) |0〉 , a

+{E+=1}
φ̂(3)

|vac〉anti-BPS
|q|=1 ∝ u+(0) |0〉 .

The BPS background breaks the Weyl subgroup Z2 spontaneously and Z2 invariance

of the physical states is not required. However, it might be instructive to construct

Z2 invariant (anti-)chiral primary states by “integrating” the physical states over Z2.

Let us introduce a pair of gauge equivalent states

|vac〉BPS
q=1 ∝ Y+ |0〉 , |vac〉BPS

q=−1 ∝ Y− |0〉 .

Then,

v(0) |0〉 ∝ |vac〉BPS
q=1 + |vac〉BPS

q=−1 , u(0) |0〉 ∝ φ(3)
(
|vac〉BPS

q=1 − |vac〉BPS
q=−1

)
.

3It also implies setting φ∗(3)
(
φ(3)

)
to c∗/r2 in R3.
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Similar construction can be made for the anti-BPS primary monopole operators as

well.

We summarize results of this chapter as follows. In the case of N = 4 SU(2)

gauge theory, the mirror symmetry predicts existence of two (anti-)chiral primary

monopole operators corresponding to the (anti-)chiral primary operators x (x+) and

y (y+) in the dual theory. The (anti-)chiral primary operator dual to y (y+) exists in

N = 2 theory as well, whereas existence of the (anti-)chiral primary dual to x (x+) is

a special feature of N = 4 theory. Using the radial quantization we have shown that a

state |vac〉(anti-)BPS
|q|=1 corresponds to the insertion of the (anti-)chiral primary monopole

operator which is dual to the operator y (y+) in the large Nf limit. We demonstrated

that there is unique (anti-)chiral primary monopole operator with quantum numbers

matching those of x (x+). However we note that the relation in the chiral ring implied

by Eq.(4.12) remains obscure.

It might be interesting to generalize our analysis for the monopole operators in

supersymmetric SU(Nc) gauge theories with Nc > 2.
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Chapter 5

Conclusion

The idea that vortex-creation operators can be studied in the large Nf limit has been

proposed previously in Ref. [19]. The approach taken there was to integrate out the

matter fields, and then perform a duality transformation on the effective action for

the gauge field. Then the vortex-creation operator is defined as the exponential of

the dual photon. One drawback of this approach is that it is easy to miss fermionic

zero modes, and consequently to misidentify the quantum numbers of the vortex-

creating operator. It is preferable to keep the matter fields, and identify a vortex-

creating operator by the property that its insertion causes a change of the gauge field

topology. As we have seen above, this definition can be made precise by using radial

quantization and the large Nf expansion.

We have constructed local operators in an interacting 3-D CFT, which carry vortex

charge and therefore create Abrikosov-Nielsen-Olesen vortices in the Higgs phase. It

was demonstrated that, for large Nf , conformal dimensions of these operators have

leading terms of the order Nf . In the non-supersymmetric case, we showed that a

monopole operator with the lowest possible dimension among the operators with unit

vortex charge has zero spin and transforms in a non-trivial representation of the flavor

group.

We have also studied certain monopole operators in 3-D SCFTs that arise in

the IR limit of N = 2 and N = 4 three-dimensional SQED as well as N = 4
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SU(2) gauge theory. We constructed monopole operators that are conformal primary

operators in short representations of the superconformal algebra. Certain predictions

of three-dimensional mirror symmetry have been verified directly at the origin of

the moduli space, where the IR theory is an interacting SCFT. Namely, we have

shown that the chiral primary monopole operators are scalars under the SU(2)rot

and transform trivially under the flavor symmetry group. Transformation properties

under the global symmetries have been computed in the large Nf limit providing a

new nontrivial verification of three-dimensional mirror symmetry.

In many cases one can go further and argue that certain results derived at large Nf

remain valid even for Nf of order one. For example, the monopole operators in SQED

have “anomalous” transformation laws under global symmetries, whose form is fixed

by quasi-topological considerations (the Atiyah-Patodi-Singer index theorem). This

implies that the global charges of monopole operators do not receive corrections at

any order in the 1/Nf expansion. Furthermore, since our monopole operators belong

to short representations of the superconformal algebra, their scaling dimensions are

determined by their transformation law under R-symmetry. In the case of N = 4

SQED and N = 4 SU(2) SYM, where it is easy to identify the relevant R-symmetry,

this allows us to determine the exact scaling dimensions of monopole operators for

all Nf . Our main assumption is that the 1/Nf expansion has a large enough domain

of convergence. If we assume that Nf = 1 is within the convergence radius of this

expansion, it can be concluded that a certain monopole operator in N = 4 SQED

with Nf = 1 is a (twisted) hypermultiplet whose lowest component is a scalar of

dimension 1/2. In a unitary theory, this is only possible if the hypermultiplet is free.

Thus we are able to show that for Nf = 1 certain monopole operators satisfy free

equations of motion. This is essentially the statement of mirror symmetry in this

particular case.

Our computations were performed at the origin of the moduli space. Therefore, the

agreement between our results and the predictions of mirror symmetry is a new check
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of this duality. In the case of SQED, we have been able to verify certain interesting

relations in the chiral ring that follow from mirror symmetry. In the approach of

Ref. [15], the origin of these relations was obscure.

Our main motivation for studying vortex-creation operators was the hope that this

would enable us to give a constructive proof of 3-D mirror symmetry. We feel that

these results go some way towards making the 3-D mirror symmetry conjecture into a

theorem (on the physicist level of rigor). On the other hand, much remains to be done

before it can be claimed that three-dimensional mirror symmetry is understood. First,

it would be desirable to construct monopole operators directly, using the Hamiltonian

formalism on R3, rather than by identifying the corresponding states on S2 × R.

Mandelstam’s construction of soliton-creating operators in the sine-Gordon theory [2]

serves as a model in this respect. Second, it would be interesting to find the mirror of

more complicated observables in N = 4 SQED. Third, mirror symmetry predicts that

many 3-D gauge theories have “accidental” symmetries in the infrared limit [9, 17].

It appears possible to understand the origin of these symmetries using the methods

presented in this manuscript. Fourth, for Nf > 1 the mirror theory of N = 4 SQED

is a gauge theory, and one would like to have a conceptual understanding of the origin

of the dual gauge group. Although all abelian mirror pairs can be derived from the

“basic” one, the derivation is rather formal and does not shed much light on this

question.

It is natural to wonder if our approach to the construction of topological disorder

operators has an analogue in four dimensions. In three dimensions, we defined the

vortex charge of a local operator as the first Chern class of the gauge bundle evaluated

on an S2 surrounding the insertion point. In four dimensions, we have S3 instead of

S2, and since characteristic classes of vector bundles are even-dimensional, it appears

impossible to define a similar topological charge for local operators. On the other

hand, a B-field on an S3 can have non-trivial topology, since its field-strength is a

3-form. Thus, if there were an interacting 4-D CFT involving a B-field, one could
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define local operators which create topological disorder. In order for this to work, the

field-strength 3-form must have dimension 3, so that its dual is a conserved primary

current. Note that in the theory of a free B-field, the field-strength has dimension 2.

In this case the dual current, although conserved, is not a primary, but a gradient of a

free scalar. Thus in order to define a conformally-invariant topological charge, the 4-D

CFT must be interacting. Unfortunately, no such theory is known at present. Perhaps

there exists a duality-symmetric reformulation of N = 4 d = 4 supersymmetric Yang-

Mills theory which involves B-fields, and in which both W-bosons and dual W-bosons

are described by topological disorder operators.
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Appendix A

Radial quantization of 3-D QED in
the IR limit. Monopole harmonics.

To solve for the energy spectrum of free fermions on S2 with a magnetic flux, we will

use the fact that this system is related by a conformal transformation to the Dirac

equation in R3 in the monopole background. This allows us to use the machinery of

“monopole harmonics” developed by Wu and Yang [64].

The three-dimensional Dirac operator on flat R3 is given by

iD = −~σ · ~π,

where σ1, σ2, and σ3 are the Pauli matrices, and ~π = −i~∇+ ~V being the momentum

operator. Following Ref. [64], let us define the generalized orbital angular momentum

operator as

~L = ~r × ~π − q~r

2r
(A-1)

with q being the vortex charge. It is straightforward to check that ~L defined this way
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satisfies the angular momentum algebra:

[Lj, xk] = iεjkmxm,

[Lj, πk] = iεjkmπm,

[Lj, Lk] = iεjkmLm.

Let us define the total angular momentum as

~J = ~L +
~σ

2

and take r, ~L2, ~J2, and J3 as a complete set of observables (it is easy to check that

they commute and are all self-adjoint with respect to the usual inner product). We

also have
[
~J, iD

]
= 0, but

[
~L2, iD

]
6= 0. The simultaneous eigenfunctions of ~L2

and ~L3 are given by the monopole harmonics Yq,l,m(θ, ϕ) which were constructed in

Ref. [64]:

~L2Yq,l,m = l(l + 1)Yq,l,m, L3Yq,l,m = mYq,l,m,

l =
|q|
2

,
|q|
2

+ 1,
|q|
2

+ 2, . . . , m = −l, . . . , l.

The simultaneous eigenfunctions of
{

~L2, ~J2, J3

}
will be denoted by Φljmj

~L2Φljmj
= l(l + 1)Φljmj

,

~J2Φljmj
= j(j + 1)Φljmj

,

J3Φljmj
= mjΦljmj

,
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and are given by

Φljmj
=




√
l+m+1
2l+1

Yq,l,m√
l−m
2l+1

Yq,l,m+1


 for j = l +

1

2
, (mj = m +

1

2
),

Φljmj
=


 −

√
l−m
2l+1

Yq,l,m√
l+m+1
2l+1

Yq,l,m+1


 for j = l − 1

2
, (l 6= 0, mj = m +

1

2
).

We can summarize the possible value of l, j, mj as follows:

• j =
|q| − 1

2
,
|q|+ 1

2
,
|q|+ 3

2
,
|q|+ 5

2
, . . .

(for q = 0, j =
|q| − 1

2
is not allowed);

• if j =
|q| − 1

2
, then l = j +

1

2
=
|q|
2

, otherwise l = j ± 1

2
;

• mj = −j,−(j − 1), . . . , j − 1, j.

A wave-function can be expanded as

ψ(~r) =
∑

l,j,mj

Rljmj
(r)Φljmj

(θ, ϕ),

where Φljmj
are two-component spinors and Rljmj

are scalars. Now we are ready to

express iD in terms of the generalized angular momentum (A-1). Using

(
~σ · ~G

)(
~σ · ~K

)
= ~G · ~K + i~σ ·

(
~G× ~K

)

for any ~G and ~K that commute with ~σ, we can show that

σr(iD) = i
∂

∂r
− i

1

r
~σ · ~L− iq

σr

2r
,
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where σr = ~σ · ~r/r. Now using σr
2 = 1, we obtain

iD = σrσr(iD) = iσr
∂

∂r
− i

σr

r
~σ · ~L− iq

1

2r

= iσr
∂

∂r
− i

σr

r
( ~J2 − ~L2 − 3

4
)− iq

1

2r
.

Thus the Dirac Lagrangian on R3 in the presence of a monopole can be written as

LR3 [ψ+, ψ] =
i

r
ψ+σr

(
r

∂

∂r
− ( ~J2 − ~L2 − 3

4
)− q

2
σr

)
ψ.

Setting r = eτ and performing a Weyl rescaling

gµν → e−2τgµν , ψ, ψ+ → e−τψ, e−τψ+, ~V → ~V ,

we obtain the Lagrangian on S2 ×R:

LS2×R[ψ+, ψ] = iψ+σr

(
∂

∂τ
− ( ~J2 − ~L2 +

1

4
)− q

2
σr

)
ψ. (A-2)

Note that the norm ∫

S2

r2 dΩ ψ+σrψ

on R3 is transformed to the norm

∫

S2

ψ+σrψ

on S2 × R. Taking into account the above results, the Euclidean equation of motion

for ψ following from the Lagrangian (A-2) is

dRljmj
(τ)

dτ
−

(
j(j + 1)− l(l + 1) +

1

4

)
Rljmj

(τ)

−
∑

l′j′m′
j

qRl′j′m′
j
(τ)〈ljmj|σr|l′j′m′

j〉 = 0, (A-3)
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where 〈ljmj|σr|l′j′m′
j〉 denotes

∫
dΩφ†ljmj

σrφl′j′m′
j
. The identity

[
~J, σr

]
= 0 ensures

that

〈ljmj|σr|l′j′m′
j〉 = δjj′δmjm′

j
〈ljmj|σr|l′jmj〉,

and thus the equation (A-3) has the form

dRljmj
(τ)

dτ
−

(
j(j + 1)− l(l + 1) +

1

4

)
Rljmj

(τ)

−
∑

l′
qRl′jmj

(τ)〈ljmj|σr|l′jmj〉 = 0.

Let us suppress the j, mj indices, and denote R(l=j− 1
2
)jmj

as Ra, |l = j − 1
2
, jmj〉 as

|a〉, R(l=j+ 1
2
)jmj

as Rb, |l = j + 1
2
, jmj〉 as |b〉, 〈a|σr|a〉 as σaa, 〈a|σr|b〉 as σab, 〈b|σr|a〉

as σba, and 〈b|σr|b〉 as σbb. Then for any given j, mj, we have two coupled first-order

differential equations:

dRa(τ)

dτ
=

(
j +

1

2

)
Ra(τ) +

q

2
(σaaR

a(τ) + σabR
b(τ)),

dRb(τ)

dτ
= −

(
j +

1

2

)
Rb(τ) +

q

2
(σbbR

b(τ) + σbaR
a(τ)).

A straightforward calculation of the matrix elements σaa, σab, and σbb gives

σaa =
−q

2j + 1
, σbb =

q

2j + 1
, σab = −

√
1−

(
q

2j + 1

)2

,

and σba = σ∗ab = σab.

The energy spectrum can be read off from the behavior of the solutions as a

function of τ : a solution with energy E behaves as e−Eτ . The results are as follows.

Case (i): q = 0.

The two equations decouple, and we find

Ra(τ) = Cae(j+ 1
2
)τ , Rb(τ) = Cbe−(j+ 1

2
)τ ,
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where Ca and Cb are integration constants, and j = 1
2
, 3

2
, 5

2
. . . There are no zero-

energy solutions.

Case (ii): q 6= 0, j = |q|−1
2

.

In this case, the first equation is absent, and the second equation gives

Rb(τ) = C,

with an arbitrary constant C. This solution has zero energy and degeneracy 2j +1 =

|q|.
Case (iii): q 6= 0 and j = |q|−1

2
+ p, p = 1, 2, . . .

In this case, we have

Ra(τ) = qC1e
τ
2

√
(2j+1)2−q2

+ qC2e
− τ

2

√
(2j+1)2−q2

,

Rb(τ) =
[√

(2j + 1)2 − q2 − (2j + 1)
]
C1e

τ
2

√
(2j+1)2−q2

+
[√

(2j + 1)2 − q2 + (2j + 1)
]
C2e

− τ
2

√
(2j+1)2−q2

,

where C1 and C2 are integration constants. The corresponding energies are

Ep = ±1

2

√
(2j + 1)2 − q2 = ±

√
|q|p + p2,

with degeneracies 2j + 1 = |q| + 2p. Note that the spectrum is symmetric under

q → −q. The regularized Casimir energy is given by

Ereg(β) = −Nf

∞∑
p=0

(2p + |q|)
√

p2 + p|q|e−β
√

p2+p|q|.

We renormalize it by requiring that the Casimir energy of the vacuum with q = 0 be

zero. That is, we subtract from the above sum a similar sum with q = 0, and then
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take the limit β → 0. Using the Abel-Plana summation formula

∞∑

k=0

F (k) =
1

2
F (0) +

∫ ∞

0

dxF (x) + i

∫ ∞

0

dt
F (it)− F (−it)

e2πt − 1
,

we obtain a finite answer for the Casimir energy:

ECasimir = Nf
1

6

√
1 + |q|(|q| − 2)+

2Nf Im

∫ ∞

0

dt

(
(it +

|q|
2

+ 1)

√
(it +

|q|
2

+ 1)2 − q2

4

)
1

e2πt − 1
.

The integral cannot be expressed in terms of elementary functions, but can be easily

evaluated numerically for any q.
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Appendix B

Radial quantization of 3-D N = 2
SQED in the IR limit

We start with the Lagrangian of N = 1 d = 4 SQED in the conventions of Wess and

Bagger [65] and perform a Wick rotation to Euclidean signature:

LR4 = −LR1,3|x0=−it , V0|R1,3 = iχ|R4 ,

where V0 is the time-like coordinate of the U(1) connection. Then we require that all

fields be independent of the Euclidean time t. This procedure gives the Lagrangian

for N = 2 d = 3 SQED on Euclidean R3:

L =iψ̄~σ(~∇+ i~V )ψ + iχψ̄ψ + i ¯̃ψ~σ(~∇− i~V )ψ̃ − iχ ¯̃ψψ̃ + χ2
(
AA∗ + ÃÃ∗

)

+ ([~∇+ i~V ]A)([~∇− i~V ]A∗) + ([~∇− i~V ]Ã)([~∇+ i~V ]Ã∗)

−D(AA∗ − ÃÃ∗) + i
√

2(Aψ̄λ̄− A∗ψλ− Ã ¯̃ψλ̄ + Ã∗ψ̃λ) + O

(
1

e2

)
.

In the infrared limit e →∞ the kinetic terms for the vector multiplet can be ignored.

Note also that in the e →∞ limit the equation of motion for D enforces the vanishing

of D-terms.

To go from R3 to S2 × R, we perform a Weyl rescaling of the Euclidean metric

ds2 = dr2 + r2dΩ2 by a factor 1/r2. If we set r = eτ , then τ is an affine parameter on
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R. The component fields of Q must be rescaled as follows:

ψ → e−τψ, ψ̄ → e−τ ψ̄, A → e−
τ
2 A, A∗ → e−

τ
2 A∗.

The component fields of Q̃ transform in a similar way. The bosonic fields in the vector

multiplet transform as follows:

χ → e−τχ, ~V → ~V .

To find the one-particle energy spectra for charged fields, we use the procedure

and notations of Appendix A. The Lagrangian for ψ and ψ̄ in the background of the

(anti-)BPS monopole on R3 has the following form

LS2×R[ψ, ψ̄] = iψ̄σr

[
∂

∂τ
−

(
~J2 − ~L2 +

1

4

)
− q

2
σr ∓ q

2
σr

]
ψ,

where the upper (lower) sign corresponds to a BPS (anti-BPS) monopole. A solution

with energy E has the form ψ ∼ e−Eτ , ψ̄ ∼ eEτ . The above Lagrangian is the same

as (A-2), except for the last term in brackets. We will not repeat the diagonalization

procedure and simply quote the resulting energy spectra for ψ and ψ̃:

−|q|
2
− p, ∓|q|

2
,

|q|
2

+ p,

where p = 1, 2, . . . . Whereas the energy spectra for ψ̄ and ¯̃ψ is

−|q|
2
− p, ±|q|

2
, ,

|q|
2

+ p.

Each energy-level has spin j = |E| − 1/2 and degeneracy 2j + 1 = 2|E|. The La-

grangian for A, A∗ is

LS2×R[A,A∗] = [(~∇a + i~Va)A][(~∇b − i~Vb)A
∗]gab +

1

4
AA∗ + χ2AA∗.
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The corresponding equation of motion for A has the from

d2

dτ 2
A =

(
~L2 +

1

4

)
A,

where ~L is the generalized angular momentum defined in Eq.( A-1). Using the known

spectrum of ~L2, we find the energy spectra for A and Ã:

−|q| − 1

2
− p,

|q| − 1

2
+ p, p = 1, 2, . . . .

The degeneracy of each eigenvalue is again 2|E|, and each eigenspace is an irreducible

representation of the rotation group with spin j = |E| − 1/2.

Now we are ready to compute the Casimir energy of the (anti-)BPS vacuum state

with q units of vortex charge

E = Nf lim
β→0

{[
−2

∞∑
n=0

( |q|
2

+ n + 1

)2

e−β(|q|/2+n+1) − 2
∞∑

n=0

( |q|
2

+ n

)2

e−β(|q|/2+n)+

+4
∞∑

n=0

( |q|
2

+ n + 1/2

)2

e−β(|q|/2+n+1/2)

]
− “the same”|q=0

}
.

The previous expression can be brought to the form

E = 2Nf lim
β→0

∂2

∂β2

{(
1− e−β|q|/2

)
tanh

β

4

}
=

Nf |q|
2

. (B-1)

Note that the Casimir energies of the BPS and (anti-)BPS vacuum states with iden-

tical vortex charges are equal.
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Appendix C

Radial quantization of 3-D N = 4
SU(2) gauge theory in the IR limit

We begin with N = 2 Lagrangian in four-dimensional Minkowski space in the nota-

tions Ref. [65] for the vector multiplet V in the adjoint representation of SU(2) and

hypermultiplets Qs in the fundamental representation of the gauge group

LR3,1

V =
1

8e2

(∫
d2θTr (WαWα) + h.c.

)
+

1

e2

∫
d2θd2θ̄Tr(Φ+e2V Φ),

LR3,1

Q =

∫
d2θd2θ̄

Nf∑
s=1

(
Qs+e2V Qs + Q̃se−2V Q̃s+

)
+

(∫
d2θW + h.c.

)
,

where a superpotential W = i
√

2
∑Nf

s=1 Q̃sΦQs. Let us perform the Wick rotation to

R4

LR4 = −LR3,1|x0=−it, V α
0 |R3,1 = iχα|R4 ,

and assume that all fields are independent of the Euclidean time t. This procedure

gives N = 4 supersymmetric Lagrangian in three-dimensional Euclidean space:

LR3

Q = iψ̄~σ
(

~∇+ i~V
)

ψ + iψ̄χψ +
([

~∇+ i~V
]
A

)+ ([
~∇+ i~V

]
A

)
+ A+χ2A+

+i
√

2
(
ψ̄λ̄A− A+λψ

)− F+F − A+DA + i ¯̃ψ~σ(~∇− i~V T )ψ̃ − i ¯̃ψχT ψ̃+
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+
([

~∇+ i~V
]
Ã+

)+ ([
~∇+ i~V

]
Ã+

)
+ Ãχ2Ã+ − F̃ F̃+ + ÃDÃ+−

−i
√

2
(
Ãλ̄ ¯̃ψ − ψ̃λÃ+

)
+ i
√

2
[
F̃ φA + ψ̃φψ + ÃφF + ψ̃ηA + Ãηψ + ÃKA− h.c.

]
,

where summation over flavor indices is implied and summation over color indices is

performed in the order of multiplication, e.g.,

F̃ φA ≡ F̃BφB
CAC .

To obtain a theory on S2×R we perform the Weyl rescaling gij → r2gij and introduce

τ = ln r. The matter fields transform as

(
ψ, ψ̄, ψ̃, ¯̃ψ

)
→ e−τ

(
ψ, ψ̄, ψ̃, ¯̃ψ

)
,

(
A, A+, Ã, Ã+

)
→ e−

τ
2

(
A,A+, Ã, Ã+

)
.

For fields in the vector multiplet we have

(
χ, φ, φ+

) → e−τ
(
χ, φ, φ+

)
, ~V → ~V ,

(
λ, λ̄, η, η̄

) → e−
3
2
τ
(
λ, λ̄, η, η̄

)
.

The (anti-)BPS background is diagonal in color indices and, therefore, we may use

results of Appendix B for matter energy spectra in a background of U(1) monopole.

Solutions with energy E have the form Q, Q̃ ∼ e−Eτ , whereas Q+, Q̃+ ∼ eEτ . To

summarize, we have (n = 1, 2, . . . ):

E = −|q|
2
− n, ∓|q|

2
,

|q|
2

+ n, (C-1)

for ψs
a, ψ̃s

a and

E = −|q|
2
− n, ±|q|

2
,

|q|
2

+ n,

for ψ̄s
a and ¯̃ψs

a. Scalar fields As
a, Ãs

a, A+s
a , and Ã+s

a have

E = −|q| − 1

2
− n,

|q| − 1

2
+ n.
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Each energy level with energy E has a spin j = |E| − 1/2 and a degeneracy 2|E|.
We notice that fermionic energy spectra are not invariant under E → −E. The fact

that A and Ã+ have identical energy spectra is consistent with the action of SU(2)R

symmetry. On the other hand fields ψ and ¯̃ψ have different energy spectra which

conforms with the breaking of SU(2)N symmetry to a U(1)N subgroup which doesn’t

mix these fermionic fields.
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