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Abstract 
 

Fast time-response of the Aerodyne Aerosol Mass Spectrometer (AMS) makes it a 

well-suited instrument for ambient field measurements. On the other hand, laboratory 

chamber experiments provide the opportunity to study a specific system in a more 

controlled environment. The goal of this thesis is to provide a summary of laboratory and 

field measurements using the AMS.  

During laboratory chamber photooxidation experiments of diiodomethane (CH2I2), 

particle nucleation was observed at CH2I2 concentrations down to 15 ppt, which is 

comparable to the total gas-phase iodine species measured at coastal areas. Iodine oxides 

and oxyacids were observed in the aerosol mass spectra obtained by the AMS, consistent 

with the known gas-phase chemistry. 

Airborne measurements by the AMS during the ACE-Asia field study revealed that 

the non-refractory submicron aerosols in the pollution layers of the boundary layer up to 

3700 m were mainly composed of sulfate, ammonium, and organics. These pollution 

plumes originated primarily from urban and industrial areas of China and Korea.  

The laboratory chamber experiments of oxidation of cycloalkenes, terpenes, and m-

xylene provided the opportunity to study the Secondary Organic Aerosol (SOA) forming 

potential, i.e., yield, and determine SOA effective density and chemical composition.  

Evidence of acid-catalyzed heterogeneous chemistry in the ozonolysis of α-pinene was 

observed since the total AMS organic mass during the experiments with acidic seed 

particles had a greater contribution of higher molecular weight fragments. The mixtures 

of SOA compounds produced from similar precursors studied resulted in broadly similar 
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AMS mass spectra. Thus, fragmentation patterns observed for biogenic vs. anthropogenic 

SOA can be potentially useful in determining the sources of ambient SOA.  
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