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ABSTRACT 

 

For many protein design problems, limited understanding of the relationship between 

sequence and function necessitates searching through a library of proteins to find the 

properties of interest.  To accelerate this process, molecular models and optimization 

algorithms can be combined to design diverse libraries enriched in folded proteins.  I 

apply this strategy to site-directed recombination, in which an alignment of p homologs is 

partitioned into f blocks, and the resulting gene fragments are combinatorially assembled 

to create a library with pf chimeric sequences.  To design the fragments, I present a 

dynamic programming algorithm that minimizes the average energy of the library, subject 

to constraints on fragment length.  This algorithm works for any pairwise residue 

potential, several of which are compared for their ability to predict which chimeras retain 

the parental function and/or fold.  The alignments of folded and unfolded chimeras are 

used to generate sequence-function relationships via logistic regression, a technique for 

fitting models to binary data.  Compared to methods developed for alignments of 

naturally occurring proteins, logistic regression more readily distinguishes true 

interactions from correlations between strongly stabilizing but non-interacting residues.   
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Chapter I 

The tradeoff between folding and diversity with recombination 

 

Protein design seeks the amino acid sequence that encodes a protein with a 

desired set of properties (DeGrado, 2001).  It is the inverse of the protein folding 

problem, in which one seeks the fold and function of a given amino acid sequence.  One 

class of strategies for protein design involves searching through a library of proteins for 

the properties of interest (Arnold, 2000).  These libraries are often created by altering the 

sequence of a parental protein whose features make it a good starting point for the fitness 

search.  When the parental protein is mutated randomly, the fraction of functional 

mutants declines exponentially with the number of mutations (Daugherty et al., 2000; 

Guo et al., 2004).  The fraction functional after one amino acid mutation, or neutrality, 

can vary from 0.35 to 0.55 depending on the protein structure (Bloom et al., 2005).   

When many amino acid changes are desired, random mutagenesis is too 

deleterious to be effective.  For these design problems, recombination of homologous 

sequences is often appropriate because the mutations involve amino acids previously 

selected by nature to be compatible with the protein fold, albeit in a different genetic 

background (Stemmer, 1994; Crameri et al., 1998; Ostermeier et al., 1999; Stevenson & 

Benkovic, 2002).  The conservative nature of recombination relative to random mutation 

was demonstrated clearly by Drummond et al. (Drummond et al., 2005) with the beta-

lactamase proteins TEM-1 (Jelsch et al., 1993) and PSE-4 (Lim et al., 2001).  Using 

error-prone PCR to randomly mutate PSE-4, they estimated its neutrality to be 0.54.  The 
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red line in Figure I-1 shows the fraction of functional proteins (Ff) expected with random 

mutation under the exponential relationship Ff = 0.54m, where m is the number of amino 

acid changes relative to PSE-4.  The recombination data of Drummond et al., generated 

by selecting 32 unique functional chimeras (including the parents) from a library of 

16,384 sequences, follow a very different trend (black squares, Figure I-1).  The fraction 

functional (calculated by assuming chimeras not isolated by the selection are not 

functional) is roughly symmetric about the midpoint m = D/2, where D = 151 is the 

number of amino acid differences between TEM-1 and PSE-4.  At low levels of mutation 

relative to either parent, the fraction functional (Ff) decreases exponentially, but by m = 

D/2 the slope is zero.  Functional beta-lactamases at this midpoint, which are maximally 

different from TEM-1 and PSE-4, are at least 16 orders of magnitude more common in 

the recombination library than in the one created by random mutation.   

Drummond et al. have proposed a simple model consistent with these data for the 

probability p(F|m) that a chimera with m mutations will fold (Drummond et al., 2005).  

For two parents that differ at D residues, each of the m amino acids from one parent 

makes D - m pairs with residues from the other parent.  Because these “novel” pairs are 

untested by nature within the context of the two parents, each one is assumed to have 

some probability 1 - q of disrupting folding.  All other pairs are assumed to be 

nondisruptive.  If each novel pair acts independently, the probability of retaining the 

parental fold is  

 ( ) ( ) ( ) ( )1/ −−− ≡= DmDmmDmqmFp ρ ,    [I-1] 
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which defines the recombinational tolerance ρ as the probability of folding for chimeras 

with one mutation.  When m = 0 and m = D, the parents are recovered and the probability 

of folding is unity as required.  The dotted blue line in Figure I-1, which is based on a 

maximum likelihood estimate of ρ = 0.82, shows that Equation I-1 describes the data 

fairly well.  The main limitation of this model is the assumption that all novel residue 

pairs act equally.  For a particular set of parents, it is acceptable to treat q as an average 

over the structural context of the residue pairs, but this probability will be different for 

other parents.  To use the TEM-1/PSE-4 recombination data to predict folding with other 

beta-lactamase parents, a different model is needed.  

Borrowing heavily from Voigt et al. (Voigt et al., 2002) and Drummond (D.A. 

Drummond, personal communication), I propose using novel residue-residue contacts, 

which are more likely to be transferable across parents.  The total number of novel 

residue-residue contacts, called “SCHEMA disruption” by Voigt et al., can be written as 

a pairwise sum over residues (Silberg et al., 2004): 

ij ij
i j i

E C
>

= ∆∑ ∑ .     [I-2]   

The contact matrix Cij depends solely on structural information, while ∆ij uses only the 

parental sequence alignment.  Voigt et al. defined Cij = 1 if residues i and j are within 

4.5 Å in the parental structure; otherwise Cij = 0.  The delta function ∆ij = 0 if the amino 

acids found in the chimera at positions i and j are also found together in any single parent 

at homologous positions.  Otherwise, the i-j interaction is considered broken and ∆ij = 1.  

Although Equation I-2 is hardly an energy function in the thermodynamic sense, it can be 
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used to score the compatibility of a sequence with a target fold.  For this reason I refer to 

Equation I-2 as the “SCHEMA energy,” which also helps to distinguish it from the 

SCHEMA algorithm discussed in Chapter II.  

If all non-contacting residues are assumed compatible, and if each novel residue 

contact acts independently with probability 1 - π to disrupt folding, the probability of 

folding decreases exponentially with SCHEMA energy (Meyer et al., 2003): 

   p(F|E) = πE.     [I-3] 

Figure I-2 is a plot of the fraction functional for TEM-1/PSE-4 chimeras vs. their 

SCHEMA energy.  Some bins contain no functional chimeras, but the 90% confidence 

limits still appear on the graph.  The dotted line, which is based on a maximum likelihood 

estimate of π = 0.89, shows that Equation I-3 describes the data reasonably well.   

The probability of folding with respect to SCHEMA can be used to calculate the 

probability of folding with respect to mutation by conditioning: 

( ) ( ) ( )∑=
E

mEpEFpmFp .     [I-4] 

p(E|m) is the probability that a chimera with m mutations has E novel residue contacts.  

Rather than evaluate Equation I-4 directly, I use Jensen’s inequality (Boyd & 

Vandenberghe, 2004) to derive a more readily calculated lower bound on p(F|m), which 

holds as long as p(F|E) is convex:  

p(F|m) r ( ) ( )m
E

EFpEmEpFp =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ .    [I-5] 

For the exponential model in Equation I-3, Equation I-5 becomes 
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p(F|m) r mEπ .      [I-6] 

mE , which is the average SCHEMA energy among chimeras with mutation level m, 

can be calculated by multiplying the number of novel residue pairs by the probability one 

makes contact, denoted χ.  For two parents, there are D(D - 1) residue pairs between the 

D residues at which the parents differ, and m(D - m) of these are novel for a chimera 

with m mutations.  If the total number of contacts between the D(D - 1)  pairs is C, then 

χ = C/(D(D - 1)), ( )mmDE m −= χ , and 

p(F|m) r ( ) ( ) ( ) ( ) ( )1// −−−
=

DmDmDCmDm
ππ χ .   [I-7] 

The ratio C/D is the average number of contacts per mutation, and thus πC/D is the 

probability that a mutation with this many contacts does not disrupt folding.  Equations 

I-1 and I-7 together imply the recombinational tolerance ρ r πC/D.   

 How conservative is this lower bound?  There are C = 322 SCHEMA contacts 

among the D = 151 residues at which TEM-1 and PSE-4 differ, which yields πC/D = 0.78.  

This value is indeed lower than the maximum likelihood estimate of 0.82 for the 

recombinational tolerance.  The solid blue curve in Figure I-1 shows that the lower bound 

in Equation I-6 is a fairly good approximation to Equation I-1 (dashed blue).  The largest 

gap between the two models occurs at the midpoint between TEM-1 and PSE-4, where 

the SCHEMA bound underestimates the fraction folded by about one order of magnitude. 

The data of Drummond et al. can be used with Equation I-6 to compare the 

tradeoff between folding and diversity for different parents.  In principle any number of 

parents can be simulated, but counting the number of novel residue pairs quickly 
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becomes prohibitive.  With three parents the combinatorics are tedious but manageable 

(see Methods).  Instead of a single mutational distance, five degrees of freedom are 

needed to determine the average SCHEMA energy.  These five variables can be averaged 

to give a three-dimensional label (m1, m2, m3) describing the number of mutations relative 

to each parent.  Figure I-3, which shows the probability of folding for four slices through 

(m1, m2, m3)-space, is the analog of Figure I-1 when TEM-1 is partnered with PSE-4 and 

SED-1 (Petrella et al., 2001).  The top panel shows the plane containing all three parents, 

which lie at the corners of the triangle.  These three beta-lactamases have roughly the 

same pairwise sequence identities (~40%), giving rise to the approximate threefold 

symmetry.  The edges of the ternary diagram represent the least deleterious paths from 

one parent to another, along which the fraction folded remains above 10-4.  Chimeras at 

the center of the triangle have 107 mutations to the closest parent.  The next three panels 

show slices through (m1, m2, m3)-space at successively higher values of mutation, and 

hence the probability of folding decreases.  

To more clearly visualize the tradeoff between folding and diversity for these 

three parents, Figure I-4 plots the probability of folding vs. mutation to the closest parent, 

rather than to a fixed parent.  The solid curve represents TEM-1/PSE-4/SED-1, while the 

dashed curve is a reprint of the TEM-1/PSE-4 curve shown in solid blue in Figure I-1.  

The difference in how mutation is measured compared to Figure I-1 explains why the 

two-parent curve is only a half-parabola, terminating at the maximum mutation level of 

D/2.  At low levels of mutation the tradeoff with three parents is similar to the two-parent 

case.  As the mutation level increases, the probability of folding with three parents falls 
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below that for two, and much higher levels of mutation are possible with three parents.  

There is an interesting kink in the three-parent curve around 110 mutations, for which 

there is no analog with two parents.  To understand this phenomenon, consider the group 

of residues at which all three parents have different amino acids (group D in Methods).  

At mutation levels below the kink, most of the chimeras inherit these maximally 

unconserved residues predominantly from two of the three parents.  To reach mutation 

levels above the kink, however, chimeras must inherit the maximally unconserved 

residues from all three parents.  It is precisely because these residues are different in all 

three parents that they create the most novel residue pairs.  As the number of parents 

increases, I expect more of these transitions in the folding-diversity tradeoff curve. 

Despite the conservative nature of recombination, highly mutated and folded 

chimeras may still be too rare to find when created randomly.  According to Figure I-4, at 

least 10,000 TEM-1/PSE-4/SED-1 chimeras with 50 mutations must be checked before 

even one folded protein is expected.  The odds of success can be improved by using 

computational methods to choose specific crossovers less likely to disrupt folding—a 

strategy called site-directed recombination (SDR).  As illustrated in Figure I-5, with SDR 

an alignment of p homologs is partitioned into f blocks, and the resulting gene fragments 

are combinatorially assembled to create a library with pf chimeric sequences (Hiraga & 

Arnold, 2003).  This partitioning is equivalent to choosing f - 1 crossovers in the parental 

sequence alignment.  Folded, site-directed chimeras with 50 mutations can be orders of 

magnitude more common than 1 in 104 for well-designed libraries, as I show in Chapter 

II.   
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Methods 

To compute the average SCHEMA energy for chimeras derived from three 

parents, one must consider four different groups of residues.  At the positions in group A, 

parents 2 and 3 have the same amino acid but parent 1 is different.  At the positions in 

group B, parents 1 and 3 are the same but parent 2 is different, and in group C parent 3 is 

different from parents 1 and 2.  Group D includes residues where all three parents are 

different.  Let a, b, and c denote the number of residues in groups A, B, and C, 

respectively, that belong to the unique parent.  The labels d1, d2, and d3 indicate the 

number of residues from parents 1, 2, and 3, respectively, in group D.   

Table I-1, which shows the number of novel residue pairs between each group, 

was constructed using the same logic as the two-parent case.  For example, each of the a 

residues inherited from parent 1 in group A makes A – a novel residue pairs with the 

other residues in that group, for a total of a(A – a).  To simplify the expressions in Table 

I-1, I have employed the complement overbar, e.g., aAa −= .  The below-diagonal 

entries in Table I-1 were left blank to prevent double counting.  Whereas with two 

parents a single variable m is sufficient to specify the number of novel residue pairs, five 

variables (a, b, c, d1, d2) are needed with three parents.  The number of mutations relative 

to parent 1 is 11 dcbam +++= , and the corresponding expressions for parents 2 and 3 

are 22 dcbam +++=  and 33 dcbam +++= .  If n(a, b, c, d1, d2) denotes the number 

of novel residue pairs (the sum of the entries in Table I-1), then the average SCHEMA 

energy among chimeras at a particular point (m1, m2, m3) is  
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One could use a different contact probability for each entry in Table I-1, but I lumped all 

residue pairs together with a single χ.  The beta-lactamases PSE-4 (parent 1), SED-1 

(parent 2), and TEM-1 (parent 3) are characterized by A = 33, B = 46, C = 30, and D = 

87, for a total of 196 amino acids, between which there are 538 contacts. The probability 

that a novel residue pair is in contact is thus χ = 538/(196µ195) = 0.014.  In practice 

Equation I-8 was evaluated without the constraints, and each term was simply added to 

the appropriate (m1, m2, m3) bin. A similar procedure was used to evaluate the average 

SCHEMA energy at a fixed value of mutation relative to the closest parent, as in Figure 

I-4. 

 To generate Figure I-3, points in the (m1, m2, m3) basis were first transformed to a 

new basis.  In the old basis, parent 1 is located at (0, A + B + D, A + C + D), while in the 

new basis its position is (1, 0, 0).  Parent 2 was transformed from (A + B + D, 0, 

B + C + D) to (0, 1, 0) and parent 3 from (A + C + D, B + C + D, 0) to (0, 0, 1).  The 

slices shown in Figure I-3 are thus perpendicular to the (1, 1, 1) direction, at increasing 

distances from the origin. 
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Table I-1.  Counting the number of novel residue pairs with three parents.   

 Group A Group B Group C Group D 

Group A aa  ab  ac  11 dada +  

Group B  bb  bc  22 dbdb +  

Group C   cc  33 dcdc +  

Group D    3211 dddd +  
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Figure I-1.  Comparing the fraction of functional proteins (Ff) by recombination vs. 

random mutation of PSE-4.  Based on a structural alignment generated with Swiss-Pdb 

Viewer (Guex & Peitsch, 1997), PSE-4 and TEM-1 differ at 151 of the 263 amino acids 

in TEM-1.  The red line, which was fit to error-prone PCR data by Drummond et al. 

(Drummond et al., 2005), shows the exponential decline with random mutation (Ff = 

0.54m, where m is the number of amino acid mutations to PSE-4).  The solid squares are 

the fraction of functional chimeras by recombination in ten evenly spaced bins (x-error 

bars).  Each y-error bar is a 90% confidence interval based on the binomial distribution.  

The dashed blue line is a maximum likelihood fit of Equation I-1 to the recombination 

data (ρ = 0.82), and the solid blue line is the lower bound on folding derived with 

SCHEMA (Equation I-7, π = 0.89).  
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Figure I-2.  The fraction of functional TEM-1/PSE-4 chimeras vs. SCHEMA energy.   

SCHEMA energies were calculated using the TEM-1 structure based on a structural 

alignment of the two proteins (Silberg et al., 2004).  The experimental data (black 

squares) are divided into ten evenly spaced bins (x-error bars).  The y-error bar for each 

bin is the 90% confidence interval based on the binomial distribution.  The dashed line is 

a maximum likelihood fit of the exponential model in Equation I-3 (π = 0.89). 
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Figure I-3.  Ternary diagrams for TEM-1/PSE-4/SED-1.  The probability of folding is 

shown for four slices through a three-dimensional space defined by the mutational 

distances to each parent (see Methods).  The top slice is the plane containing all three 

parents, which lie at the corners of the triangle.  Chimeras at the center of this triangle 

contain 107 mutations to the closest parent.  The bottom three slices are parallel to the top 

one but at progressively higher levels of mutation (114, 121, and 128 are the maximum 

mutation values, relative to the closest parent).  The white triangles show the outline of 

the top panel as a reference.   
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Figure I-4.  Comparing the folding-diversity tradeoff for two vs. three beta-lactamase 

parents.  The probability of folding (Equation I-6) is plotted against the number of amino 

acid mutations to the closest parent.  The dashed curve for two parents is a half-parabola 

that terminates at the midpoint between the parents.  The solid curve shows that many 

more mutations are possible with three parents, and it reveals an interesting transition at 

around 110 mutations (see text).  
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Figure I-5.  Site-directed recombination with three parents and eight blocks.  After the 

parents are aligned and split into blocks, the gene fragments are combinatorially 

assembled to create a library with 38 = 6,561 chimeras (including the parents).  Fragment 

i.x is the peptide inherited from parent x at block i. 
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Chapter II 

Site-directed recombination as a shortest-path problem 

 

As with other kinds of computational protein design (Hellinga & Richards, 1991; 

Dahiyat & Mayo, 1996; Voigt et al., 2001b; Hayes et al., 2002; Kuhlman et al., 2003), 

site-directed recombination (SDR) has two key ingredients: an energy function and 

optimization algorithm.  Depending on the desired level of molecular detail and 

acceptable kinds of prior information (e.g., evolutionary vs. physicochemical), a wide 

variety of energy functions are available to predict how compatible chimeric sequences 

are with the target fold (Gordon et al., 1999; Lazaridis & Karplus, 2000; Mendes et al., 

2002).  My focus is on energy functions that involve one- and two-body interactions 

between residues.  The SCHEMA energy belongs to this class of pairwise residue 

potentials. 

The optimization component of SDR involves algorithms that minimize the 

chimeric energies, and hence improve the probability of folding, by judiciously choosing 

crossovers.  The SCHEMA algorithm proposed by Voigt et al. uses the SCHEMA energy 

to calculate the local disruption caused by crossovers (Voigt et al., 2002).  When plotted 

against residue number, this map of local disruption was called the SCHEMA profile.  

Originally, minima in the profile were recommended as crossovers for site-directed 

recombination, but subsequent work by Voigt (Voigt, 2002) and the experimental results 

of Meyer et al. (Meyer et al., 2003) showed that profile minima are not necessarily ideal 

for optimizing libraries with many crossovers. 
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 Algorithms for library design must consider not only the fraction folded but also 

the diversity of the proteins.  Searching through a library of folded proteins that closely 

resemble each other or the parents is not much better than searching through a mostly 

unfolded library.  The design goals and library creation method should dictate what kinds 

of diversity and how much are needed, but our understanding of this subject is limited.  In 

several studies, libraries with more mutations were better for adaptive evolution of 

enzyme function (Crameri et al., 1998; Zaccolo & Gherardi, 1999; Daugherty et al., 

2000).  Because our capacity for searching through libraries is finite, more diversity 

cannot always be better (Voigt et al., 2001a).  In theory there should be an optimal 

diversity (Ostermeier, 2003), but this concept is of limited use when little is known about 

the fitness landscape.   

These two design criteria, diversity and folding, are at odds because most 

mutations are neutral or deleterious to protein structure.  In Chapter I the tradeoff 

between folding and mutation was illustrated for chimeras with any number of 

crossovers.  Site-directed recombination can ameliorate this tradeoff, yielding libraries 

closer to the optimal tradeoff surface, i.e., the highest fraction folded at different levels of 

diversity.  Among all libraries of fixed size at a desired level of diversity, those on the 

optimal tradeoff surface provide the most attempts at the protein design goal. 

 In general, optimizing the tradeoff between folding and diversity for site-directed 

recombination is hard, but one formulation of the problem can be solved efficiently.  I 

will show that finding the crossovers (X1, X2, …, Xn) that minimize the average energy 

E  of the library, subject to constraints on the length L of each peptide fragment,  
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subject to   Lmin b L b Lmax, 

is equivalent to finding the shortest path between nodes in a network.  This is a well-

studied combinatorial optimization problem for which the global minimum can be found 

efficiently by dynamic programming (Korte & Vygen, 2002).  Just as the energy of one 

protein sequence measures how likely it is to fold, the average energy of all sequences in 

a library is an aggregate measure of “foldability.”  Minimizing E  is thus one way to 

enrich a library in folded proteins, although the effectiveness of this strategy depends on 

the relationship between E  and the fraction folded, which in turn depends on the 

energy function.  The constraints on fragment length [Lmin, Lmax] provide an indirect but 

computationally tractable way to control library diversity.   

 

Methods 

Protein sequences 

 Two different protein families were used.  The cytochrome P450 homologs 

CYP102A1, CYP102A2, and CYP102A3 (Nelson, 2005) were aligned with ClustalW 

(Thompson et al., 1994), and SCHEMA calculations were done with the CYP102A1 

structure 1JPZ (Haines et al., 2001).  P450 residues were numbered from the N-terminus 

of CYP102A1.  The beta-lactamase homologs TEM-1 (Jelsch et al., 1993), PSE-4 (Lim 

et al., 2001), and SED-1 (Petrella et al., 2001) were also aligned with ClustalW, and 
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SCHEMA calculations were done with TEM-1 structure 1BTL (Jelsch et al., 1993).  

Beta-lactamase residues were numbered from the N-terminus of TEM-1. 

 

From SCHEMA energy to fraction folded 

 The probability of folding was assumed to decrease exponentially with SCHEMA 

energy, using the same maximum likelihood fit presented in Chapter I.  This model was 

used to estimate the diversity and fraction folded for SDR libraries.  If each chimera folds 

independently, the library can be modeled as a binomial experiment (Silberg et al., 2004), 

for which the fraction expected to fold (Ff) is  

( )∑
=

=
T

i
if EFp

T
F

1

1 .     [II-2] 

Excluding the parents (they are known to be folded), the number of binomial trials T for a 

library with p parents and n crossovers is pn+1 - p.  The diversity of each library was 

defined as the number of amino acid mutations expected for a folded protein: 
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For a particular chimera, m is the number of amino acid mutations to the closest parent.  

 

SCHEMA algorithm 

 The SCHEMA algorithm calculates the local disruption Γi, within a window of 

length w along the primary sequence, caused by a crossover immediately after residue i 

(Voigt et al., 2002): 



 25

∑ ∑ ∑
+−=

−+

=

−+

+=
Π=Γ

i

wij

wj

jk

wj

kl
klkli C

w 1

2 1

1

1 .   [II-4] 

The contact matrix Ckl is the same as defined in Equation I-2, and Πkl is the probability 

that the residue pair k-l is “novel,” and hence potentially disruptive, when each residue is 

inherited randomly.  (This is a different normalization than the one used by Voigt et al. 

but makes no qualitative difference to the profile.)  For recombination of p parents, there 

are p2 amino acid combinations for every pair of positions.  Because the parental residue 

combinations are not novel (by definition), the maximum value for Πkl is 1 – 1/p.  I used a 

window size of 14 residues. 

 

Results  

Proof of the shortest-path problem   

For any energy function with one- and two-body interactions between residues σk, 

( ) ( , )i i j
i i j i

E e eσ σ σ
>

= +∑ ∑ ∑ ,    [II-5] 

Equation II-1 is equivalent to finding the shortest path in the directed graph of Figure 

II-1.  To prove this equivalence, first I establish a one-to-one correspondence between 

feasible n-crossover libraries (those that satisfy the constraints in Equation II-1) and 

n-paths, which are paths that connect node 0 to any node in column n of Figure II-1.  

Then I show that the total length of each n-path equals the average energy of the 

corresponding library, which means the shortest n-path is the minimum of Equation II-1. 
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To create the one-to-one correspondence, nodes in Figure II-1 are selectively 

connected.  If the node Xk visited in column k b n represents the position of the kth 

crossover, then a path that visits node X1 in the first column defines the first peptide 

fragment as [1, X1] (amino acid residues 1 to X1, inclusive).  To satisfy the constraints on 

fragment length, node 0 should be connected to a node in the first column if and only if 

(iff) Lmin b X1 b Lmax.  Similarly, an arc from node X1 in the first column to node X2 in 

the second column defines the second peptide fragment as [X1 + 1, X2].  Thus node X1 is 

connected to node X2 iff Lmin b  X2 – X1 b Lmax.  This process is continued until the last 

column, where an arc from Xn-1 to Xn defines two peptide fragments: [Xn-1 + 1, Xn] and 

[Xn + 1, N] for a protein of length N.  Thus node Xn-1 is connected to node Xn iff 

Lmin b Xn - Xn-1 b Lmax and Lmin b N - Xn b Lmax.  

Arc lengths are assigned so that the total length of each n-path equals the average 

energy of the corresponding library:    

  )X,...,X,(X
1

1 21
)X,X(

n
EA

n

k
kk =∑

=
− ,    [II-6] 

where A(Xk-1,Xk) is the arc length from node Xk-1 to node Xk (X0 = 0), and the subscript 

on E  explicitly denotes the crossovers.  To satisfy Equation II-6, arc lengths from 

node 0 are assigned the average energy of a library with one crossover immediately 

following residue X1: 

 )X(1 1
)X,0( EA = .     [II-7] 

Arc lengths between columns are assigned the incremental change in energy associated 

with the next crossover: 
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To be consistent, the right-hand side of Equation II-8 must be independent of all 

crossovers except Xk-1 and Xk.  This holds true for any pairwise residue potential 

(Equation II-5).  First note that for a library with p parents, the average energy can be 

written as a sum over inheritance patterns:  
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where Si,j denotes the parent from whom the peptide fragment [i + 1, j] (residues i + 1 to 

j, inclusive) is inherited.  When a fragment contains only one residue, I use the shorthand 

Si-1,i ≡ Si.  Combining Equations II-5 and II-9, the arc length in Equation II-8 can be 

rewritten as  

∑ ∑ ∑ ∑∑ ∑ ∑
−− − −

+
= +=⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

1X,0 1X,2X X,1X ,X ,1X

1
1 1

1 ),(
S S

N

r

N

rt
tr

S S S
p

kk kk Nk Nk

k ep σσL  

∑ ∑ ∑ ∑∑ ∑ ∑
−− −− −

+
+= +=⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
−=

1X,0 1X,2X 1X,1X ,X ,1X

1

X

1X 1X

1 ),(
S S r

N

t
tr

S S S
p

kk

k

k kkk Nk Nk

k ep σσL  [II-10]

∑ ∑∑ ∑ ∑
+= +=−− −

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−=

k

k kkk Nk Nk r

N

t
tr

S S S
p

ep
X

1X 1X

1

1X,1X ,X ,1X

2 ),( σσ  [II-11]

∑ ∑ ∑ ∑ ∑
+= += =−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

k

k k r t trr

N

t
tr

S S SS
p

ep
X

1X 1X

1

1

2 ),( σσ . [II-12]

Equation II-10 follows because the operator in brackets, which is the difference of two 

inheritance sums, is only nonzero for interactions between the fragments [Xk-1 + 1, Xk] 
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and [Xk + 1, N].  Trivial evaluation of the k - 1 inheritance sums outside the brackets 

yields Equation II-11.  In Equation II-12 the order of the sums is swapped to simplify the 

notation: first sum over parents and then sum over residues.   

 

Algorithmic complexity  

Shortest-path problems can be solved efficiently because of their recursive 

structure (Lawler, 1976; Korte & Vygen, 2002).  In the case of Figure II-1, the length of 

the shortest path k
jU  from node 0 to node j in column k can be computed using the 

shortest paths from node 0 to all nodes in column k - 1:  

( ).),(min 1 jiAUU k
i

i
k
j += −      [II-13] 

No information from other columns is needed.  This property is the basis for dynamic 

programming.  Using forward induction, RASPP finds the shortest path to every node in 

the first column, then the shortest path to every node in the second column, etc.  Each 

evaluation of Equation II-13 requires O(N) operations. This is repeated for all O(N) nodes 

in a column and for each of the n columns, yielding a running time of O(N2n).   

 In the process of finding the shortest n-path, RASPP also finds the shortest path to 

every column k b n.  These path lengths do not quite correspond to the solution of 

Equation II-1 with k crossovers because the set of arc connections to the “last” column 

must satisfy a different set of constraints, as discussed above.  To find optimal libraries 

with any fixed number of crossovers k b n, the arc connections between column k - 1 

and column k are updated, and Equation II-13 is solved O(N2) times as before.   This can 
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be repeated for all values k b n with a total running time of O(N2n), the same as a single 

iteration of RASPP.  

The complexity analysis must also include the time needed to calculate the arc 

lengths.  The first evaluation of Equation II-12 requires O(N2p2) pairwise energy 

calculations, but only O(Np2) are needed to compute each subsequent arc length.  This 

means all O(N2) distinct arc lengths can be constructed with complexity O(N3p2).  When 

combined with the running time for dynamic programming, the overall complexity is 

O(N3p2 + N2n). 

To generate libraries with different diversities, the length constraints [Lmin, Lmax] 

are adjusted over a range of values.  In the absence of experimental constraints, Lmin can 

vary from 1 to N/(n + 1) and Lmax from N/(n + 1) to N - nLmin.  This requires O(N2/n) 

iterations of RASPP, but since the arc lengths are not recalculated each time, the total 

running time is only O(N4 + N3p2).   

 

Case studies using the SCHEMA energy 

 The theoretical development thus far has been valid for any potential with 

pairwise interactions between residues (Equation II-5).  To present computational results, 

I now specialize to the SCHEMA energy, which counts the number of structural contacts 

disrupted when portions of the sequence are inherited from different parents (Equation 

I-2).  In this case the formula for the arc lengths (Equation II-12) has a particularly simple 

form: 
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Πrt, which is the probability of breaking the r-t interaction when residues r and t are 

inherited at random, also appears in the definition of the SCHEMA profile (Equation 

II-4). 

 Consider making a seven crossover library using the heme domains of 

cytochrome P450 homologs CYP102A1, CYP102A2, and CYP102A3, which share 

roughly 65% of their 456 amino acids (Nelson, 2005).  By varying the length constraints 

for n = 7 crossovers, 2,052 libraries were generated, of which 391 are distinct.  These are 

plotted in gray in Figure II-2.  As Lmin increases and Lmax decreases, the crossovers 

become more evenly spaced, resulting in libraries with higher E  and higher diversity, 

as measured by the average number of amino acid mutations to the closest parent m .  

Designing libraries with more crossovers increases the levels of diversity accessible by 

SDR, but adding fragments also complicates construction of the library.  In this example, 

the choice of n = 7 provides enough mutants for screening (38 = 6,561 chimeras) and 

sufficiently high levels of mutation for laboratory evolution based on data from previous 

experiments (Otey et al., 2004). 

 The lowest-energy RASPP libraries at increasing values of m  define the solid 

“RASPP-curve” shown in Figure II-2.   To determine how well RASPP-curves 

approximate the optimal energy-diversity tradeoff surface, I enumerated all four-

crossover libraries for CYP102A1/CYP102A2 and for TEM-1/ PSE-4, the two beta-
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lactamases introduced in Chapter I.  These two sets of parents have 25 and 20 million 

possible libraries, respectively, as shown in Figure II-3.  At most levels of mutation, the 

RASPP-curve provides a good estimate of the lowest energy possible.  Exceptions occur 

in mutation ranges where RASPP does not produce any libraries, e.g., 30 < m  < 35 for 

the cytochromes P450.  A similar mutation gap can be seen in Figure II-2 at 

40 < m  < 50.  Such gaps are to be expected when using constraints on fragment length 

as a surrogate for m .  Changing the parents or the number of crossovers can shift the 

location of a gap, as seen by comparing Figures II-2 and II-3, which differ in both 

respects.  

 The pattern of optimal crossovers varies dramatically along a RASPP-curve.  

Figure II-4 shows the elements of secondary structure for CYP102A1 (Ravichandran et 

al., 1993) corresponding to crossovers along the RASPP-curve of Figure II-2.  At low 

values of m , RASPP favors the ends of the protein to minimize structural disruption.  

The resulting chimeras inherit a single, large fragment from one parent, and most of the 

remaining fragments contain only a few residues.  To create libraries with higher m , 

RASPP must spread out the crossovers and penetrate the middle of the polypeptide chain, 

and the algorithm often cuts through secondary structure motifs.  For example, the most 

commonly chosen crossover (after residue 214, which shows up as a long horizontal 

black line in Figure II-4) lies in the middle of a long α helix covering the substrate 

binding pocket.  Two other consistently good regions for recombination (residues 

248-255 and 256-276) are also helical.   
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Before choosing optimal crossover locations, one must decide upon a set of 

parents for recombination.  RASPP-curves provide a rapid and reliable way of 

determining which parents yield the lowest-energy libraries in a desired diversity range.  

To illustrate, consider choosing among three combinations of cytochrome P450 

homologs: A1/A2, A1/A3, or A1/A2/A3.  Even though a library with three parents has 

more chimeras than one with two parents, the comparison is fair because any random, 

experimental sample will on average have the same E  as the entire library.  

 The RASPP-curves for these alternative designs, shown in Figure II-5, reveal 

significant differences at mutation levels m  > 40.  For 40 < m  < 60, the combination 

A1/A2 is better than A1/A3 because the former has lower energy.  This would be difficult 

to ascertain by other means, since A1/A2 and A1/A3 both have 65% sequence identity, 

and on average their nonconserved residues make the same number of contacts.  For 

40 < m  < 50, A1/A2 also has lower energy than A1/A2/A3.  For 50 < m  < 60, A1/A2 

and A1/A2/A3 have comparable energy, but A1/A2 is still preferable because adding a 

third parent increases the cost and complexity of library construction.  All three parents 

are needed to build libraries with m  > 60.  

 

Discussion 

 Equation II-12 is the key theoretical result that shows dynamic programming can 

be used for SDR library design.  In this respect, Equation II-12 is analogous to the dead-

end elimination (DEE) theorem (Goldstein, 1994; Pierce et al., 2000), which has enabled 
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many successes in protein sequence design (Dahiyat & Mayo, 1996; Looger et al., 2003).  

However, Equation II-12 and the DEE theorem have very different consequences for 

computational protein design.  RASPP finds the global energy minimum for Equation II-

1 in O(N3p2 + N2n) operations for a protein of length N, making it efficient in theory and 

practice (Papadimitriou & Steiglitz, 1998).  In contrast, DEE requires an exponential 

number of operations O(aN) in the worst case.  This is unavoidable (unless P = NP) 

because finding the amino acid sequence with minimum energy is NP-hard (Pierce & 

Winfree, 2002).  Averaging over the library transforms protein design from a hard 

problem to an easy one (see also Appendix A). 

 Figure II-6 shows how RASPP (open squares, solid curve) compares with the 

SCHEMA algorithm (closed triangle) using the beta-lactamase homologs TEM-1, PSE-4, 

and SED-1.  The SCHEMA profile for these three parents, shown in Figure II-7, has 

seven pronounced minima and thus encodes one seven-crossover library.  Assuming an 

exponential folding model, I expect 0.1% of the profile library to be folded and each 

folded protein to have 46 mutations (see Methods).  The RASPP library with comparable 

diversity is nearly 3% folded, which is 20 times more than the library chosen by 

SCHEMA and several hundred times more than the probability of folding among all 

TEM-1/PSE-4/SED-1 chimeras with 46 mutations (dashed curve, reproduced from Figure 

I-4).  When the crossovers for the RASPP-library are plotted on the profile of Figure II-7 

(closed squares), no preference for minima over maxima is observed.  Although the 

crossovers selected by SCHEMA are locally optimal on an individual basis, when 

combined into a multi-crossover library their performance is variable (Voigt, 2002).  In 
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my experience, when all profile minima are included as crossovers, the library is unlikely 

to be competitive with RASPP solutions.  However, if only a subset of the profile minima 

is needed, e.g., making a four-crossover library for TEM-1/PSE-4/SED-1, then some 

combinations may be quite good.   

 The main limitation with RASPP is its assumption that the parents are inherited 

with equal probability at every block.  Of the p2 fragment-fragment combinations for 

each block pair, many have never been tested before by nature and hence are likely to be 

deleterious.  Some of these disruptive interactions can be avoided by optimizing the 

crossover locations, but not all.  Yet another way to minimize the library energy is by 

omitting fragments that do not pair well with other fragments.  This modification to the 

SDR paradigm is easily implemented in the laboratory, and the algorithm OPTCOMB 

has recently been developed for designing these kinds of combinatorial libraries (Saraf et 

al., 2005).  The solutions found by RASPP are a subset of those possible with 

OPTCOMB, but this added flexibility comes at a cost.  Unlike RASPP, OPTCOMB is 

not guaranteed to be efficient for large proteins.  In practice this may not be a concern, in 

which case OPTCOMB would be preferred for its ability to find libraries closer to the 

optimal folding-diversity tradeoff surface.  

 

Portions of this chapter were reproduced with the permission of Oxford University Press from 
Endelman, J.B., Silberg, J.J., Wang, Z.G. & Arnold, F.H. (2004) Protein Eng. Des. Sel., 17, 589-594. 
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Figure II-1.  Site-directed recombination as a shortest-path problem.  Every feasible n-

crossover library can be represented as an n-path from node 0 to column n.  The node 

visited in column k corresponds to the position of the kth crossover, shown here for a 

protein of length N.  To constrain the length of each peptide fragment, nodes in adjacent 

columns are selectively connected.  Arc lengths are assigned so that the total length of 

each n-path equals the average energy of the corresponding library. 
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Figure II-2.   SCHEMA energy vs. diversity for seven-crossover cytochrome P450 

libraries.  Equation II-1 was solved by RASPP for length constraints Lmin = 1 to N/(n + 1) 

and Lmax = N/(n + 1) to N - nLmin, where N = 197 nonconserved residues. A plot of E  

vs. m  for the 391 distinct libraries in this set (gray squares) reveals that no RASPP 

libraries fall in the range 40 < m  < 50.  This is a consequence of using constraints on 

fragment length as a surrogate for m .  The RASPP-curve (black line) was generated by 

dividing the m -axis into bins of 1.5 mutations and keeping the lowest-energy library 

within each bin (black squares). 
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Figure II-3.  RASPP-curves approximate the optimal tradeoff between SCHEMA energy 

and diversity.  All four-crossover libraries (gray) were enumerated for cytochromes P450 

CYP102A1/A2 and β-lactamases TEM-1/PSE-4 (25 and 20 million libraries, 

respectively).  In both cases, the RASPP-curve (black line) closely approximates the 

optimal energy-diversity tradeoff surface at most values of mutation.  One glaring 

exception is the range 30 < m  < 35 for the cytochromes P450, in which the RASPP-

curve substantially underestimates the minimum energy.  This happens because there are 

no RASPP libraries in this range (as was true for 40 < m  < 50 in Figure II-2).  
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Figure II-4.  Crossovers along the RASPP-curve.  Crossover locations (dark horizontal 

bars) are shown for every library along the RASPP-curve of Figure II-2 

(CYP102A1/A2/A3, n = 7 crossovers).  When crossovers fall in a contiguous region of 

conserved residues, they are depicted at the position closest to the N-terminus.  Long 

horizontal black lines indicate regions consistently chosen by RASPP.  There are two 

vertical axes.  On the far right are the residue numbers for CYP102A1.  The second axis, 

labeled as 2o, depicts secondary structure motifs along the polypeptide chain of 

CYP102A1 (Ravichandran et al., 1993).  Boxes filled solid gray represent β strands; 

boxes filled solid white represent 310 helices; boxes filled with a black and white gradient 

represent α helices.  Many of the crossovers chosen by RASPP lie within secondary 

structure motifs.   
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Figure II-5.  RASPP-curves guide the choice of parents.  Three alternative sets of 

cytochromes P450 are compared: CYP102A1/A2, A1/A3, and A1/A2/A3, each with nine 

crossovers.  The RASPP-curves, computed as described in Figure II-2, represent the 

lowest-energy libraries possible for each set of parents.  The optimal set of parents in a 

target range of mutation is the one with the lowest RASPP-curve.  At low values of 

mutation, all sets of parents are comparable.  For 40 < m  < 50, A1/A2 is preferred 

because it has lower energy than A1/A3 or A1/A2/A3.  All three parents are needed to 

create libraries with m  > 60.  
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Figure II-6.  RASPP vs. the SCHEMA algorithm.  The SCHEMA profile for beta-

lactamase parents TEM-1/PSE-4/SED-1 (see Figure II-7) encodes one seven-crossover 

library, shown here as a closed triangle.  The seven-crossover libraries along the RASPP-

curve for these parents are shown as open squares connected by a solid line.  For both 

algorithms, the fraction folded and number of amino acid mutations per folded protein 

were calculated by assuming the probability of folding decays exponentially with 

SCHEMA energy (see Methods).  The RASPP library with diversity comparable to that 

chosen by the SCHEMA algorithm has twenty times more folded proteins.  The dashed 

curve, which is reprinted from Figure I-4, shows the probability of folding among all 

TEM-1/PSE-4/SED-1 chimeras. 
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Figure II-7.  Crossovers chosen by RASPP vs. the SCHEMA profile.  The seven minima 

of the SCHEMA profile for beta-lactamases TEM-1/PSE-4/SED-1 lie directly after 

residues R41, S68, V106, T131, D177, W227, and T261 in the TEM-1 sequence.  A 

library with crossovers at all seven minima is expected to be 0.1% folded and to contain 

46 mutations per folded protein.  The RASPP library for these parents with 46 mutations 

is 3% folded (see Figure II-6), and its crossovers (shown as filled squares) lie after 

residues M67, L146, T158, N173, R189, D207, and A215.  
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Chapter III 

Comparing the predictive accuracy of pairwise residue potentials  

 

 The SCHEMA energy was proposed by Voigt et al. to score the stability of 

chimeric sequences for a target fold (Voigt et al., 2002).  SCHEMA uses a crystal 

structure and parental sequence alignment to count the number of contacts disrupted 

when portions of the sequence are inherited from different parents.  A contact is 

considered disrupted if the pair of residues found in the chimera is not present in any of 

the parents (Silberg et al., 2004).  One might expect the simplicity of SCHEMA to hinder 

its effectiveness for protein design.  Since RASPP, and even the SCHEMA algorithm, 

can use any pairwise residue potential, it is important to determine whether SCHEMA is 

competitive with more detailed alternatives.   

 A variety of schemes have been used to evaluate energy function accuracy.  One 

involves checking whether the energy of a natural sequence is lower on its native 

structure than on a set of decoys (Gilis, 2004).  It is also possible to compare the change 

in computational energy upon mutation with experimental measurements of the free 

energy (Gilis & Rooman, 1997). Others have compared the ability of different potentials 

to classify as either neutral or deleterious the mutants of several well-studied proteins 

(Saunders & Baker, 2002).  These binary data (neutral = 1, deleterious = 0) resemble 

those generated by screening site-directed chimeras for their ability to function and/or 

fold (folded/functional = 1, not = 0).   



 51

Binary folding data can be analyzed with information theory to evaluate the 

predictive accuracy of energy functions.  In a sample of folded and unfolded proteins, one 

cannot predict with certainty whether a randomly chosen sequence is folded.  This 

uncertainty, or entropy (Adami, 2004), can be reduced by knowing the energy of each 

sequence if proteins with higher energy are less likely to be folded.  The decrease in 

entropy equals the mutual information between folding and energy.  An energy function 

with higher mutual information is better able to predict folding in the sample and 

presumably in future libraries as well, making it desirable for computational protein 

design.  Within this framework, I compare SCHEMA against other pairwise residue 

potentials using data from cytochrome P450 and beta-lactamase SDR libraries.   

 

Methods 

Cytochrome P450 library 

A seven-crossover cytochrome P450 library, designed before the development of 

RASPP, was selected in silico after two rounds of enumeration.  Using the heme domains 

of Bacillus homologs CYP102A1, CYP102A2 and CYP102A3 as parents (see Chapter 

II), 5,000 seven-crossover libraries were evaluated.  For each library, crossovers were 

chosen randomly with a minimum fragment size of 20 residues.  Based on folding data 

from a set of 17 individually constructed two-crossover chimeras (Otey et al., 2004), and 

by analogy with the beta-lactamase folding model used by Voigt et al. (Voigt et al., 

2002), the probability of P450 folding was assumed to change abruptly from 1 to 0 at 

SCHEMA energy E = 30.  SCHEMA energy calculations, as well as the fraction folded 
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and expected number of mutations per folded protein, were carried out as described in 

Chapter II. 

From the set of 5,000 randomly generated libraries, only those with a fraction 

folded greater than 25% were selected for further study.  Fourteen crossovers appeared in 

greater than 40% of these libraries.  There are 3,432 possible ways to choose 7 crossovers 

from this set of 14, all of which were evaluated.  The final library was selected for its 

high fraction folded (40%) and large number of mutations per folded protein (65).  The 

crossovers lie directly after the following residues: Glu64, Ile122, Tyr166, Val216, 

Thr268, Ala328, and Gln404, numbered from the N-terminus of CYP102A1.   

The chimeras were screened for their ability to fold and bind heme using carbon 

monoxide difference spectroscopy (Otey, 2003).  From a random sampling of several 

thousand colonies, 628 full length P450 sequences were identified, of which 287 bind 

heme (C. Otey, personal communication).  Additional sequencing of folded P450s 

yielded an expanded data set containing 806 chimeras (including the three parents), of 

which 465 bind heme.  These data are listed in Appendix B.  

 

Beta-lactamase library  

A RASPP-curve for beta-lactamase homologs PSE-4, SED-1, and TEM-1 

(parents 1, 2, and 3, respectively; see Chapter I) was generated with the SCHEMA energy 

as described in Chapter II.   From this curve a library with high average mutation and low 

average SCHEMA energy was selected, and the second crossover was moved to be 

compatible with the experimental protocol used in library construction (Hiraga & Arnold, 
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2003).  The final crossover locations lie directly after the following residues: Arg63, 

Lys71, Thr147, Arg159, Asp174, Leu188, and Gly216, numbered from the N-terminus of 

TEM-1.  A random sample of 553 sequences contained 111 functional beta-lactamases, 

as determined by screening for ampicillin resistance on agar plates (M. Meyer, personal 

communication).  Additional sequencing of functional proteins yielded 605 chimeras, of 

which 163 are functional.  These data are listed in Appendix B. 

 

Mutual information between folding and energy 

The uncertainty about folding (F) in a set of N chimeras, only Nf of which are 

folded, was quantified by the Shannon entropy (Adami, 2004).  If p =  Nf/N denotes the 

fraction folded, then the entropy in bits per chimera is 

( ) ( )[ ]ppppFH −−+−= 1log1log)( 22  r 0.    [III-1] 

Given no other information besides the ratio p, the likelihood of correctly predicting the 

folding status of every chimera is 2-NH.  Systems with lower entropy are thus easier to 

predict, i.e., there is less uncertainty.  The conditional entropy H(F|E), which must be less 

than or equal to H(F), measures uncertainty when the chimeric energies are known, and 

the difference H(F) – H(F|E) equals the mutual information I(F:E).  The conditional 

entropy H(F|E) is an average over energy values,  

( ) ( )∑=
kE

kk EFHEpEFH |)|( ,     [III-2] 

where p(Ek) is the fraction of chimeras with energy Ek. H(F|Ek) is the conditional entropy 

associated with knowing whether a chimera has energy Ek.  It was computed from 



 54

Equation III-1 by replacing p with the conditional probability p(F|Ek), which is the 

probability that a chimera with energy Ek is folded.   

In the original work of Voigt et al. (Voigt et al., 2002), and for the P450 library 

described above, the probability of folding was assumed to decrease abruptly with 

SCHEMA energy at some threshold.  This step model was eventually proven inadequate 

by Meyer et al., who noticed that the probability of folding decreased exponentially with 

SCHEMA energy (Meyer et al., 2003).  To capture the wide range of behaviors expected 

for energy functions besides SCHEMA, an even more general folding model is needed.  

With the exponential model it is impossible for the mutual information between folding 

and energy to approach its maximum value.  High mutual information scores require a 

sharp transition between high and low probability.  With a probability model of the form 

( ) abEec
EFp

++
=

1 ,     [III-3] 

both exponential (c = 0, a = 0) and sigmoidal (c = 1) curves are possible, as well as 

intermediate behaviors.  All three parameters were fit to the binary folding data using 

maximum likelihood, subject to the constraints b r 0, 0 b c b 1. 

 

CVHclash  

 Saraf et al. have proposed using the biophysical properties of amino acids to 

restrict which novel residue contacts are counted as disruptive or “clashing” (Saraf & 

Maranas, 2003).  I have created a similar energy function called CVHclash, which counts 



 55

the number of contacting residue pairs with charge (C), volume (V), or hydrophobicity 

(H) outside the range spanned by the parents: 

∑∑
>

=
i ij

ijijCVH CE δ .     [III-4] 

The contact matrix Cij = 1 if the Cβ atoms (Cα for gylcine) of residues i and j are within 

8 Å in the parental structure; otherwise Cij = 0.  The delta function δij considers whether 

the residue pair has parent-like CVH properties.  The charge (Klein et al., 1984), volume 

(Krigbaum & Komoriya, 1979), and hydrophobicity (Cid et al., 1992) parameters for 

each amino acid were taken from the AAindex database (Kawashima et al., 1999).  The 

additive property (C, V, or H) for each contacting pair is the sum of the values for the two 

amino acids involved  (Saraf et al., 2004).  If any of the three properties for a chimeric 

pair lies outside the range spanned by the parents, δij = 1 and one clash is counted.  

Increasing the range of nondisruptive CVH values by 10 or 20% beyond that spanned by 

the parents did not significantly change the results. 

 

Results 

SCHEMA predicts beta-lactamase folding better than P450 folding 

 The mutual information between folding and energy was used to evaluate the 

predictive accuracy of SCHEMA.  Mutual information ranges from zero up to the 

Shannon entropy, which quantifies the uncertainty about folding (see Methods).  When 

half the sequences are folded in a sample, the entropy is at its maximum of 1 bit per 

chimera.  As the fraction folded deviates from 0.5, it becomes easier to predict the folding 
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status of a randomly chosen chimera, and hence the entropy decreases.  The beta-

lactamase data set contains 605 chimeras, 27% of which are folded and functional, which 

means the entropy per chimera is 0.84 bits.  The P450 entropy is 0.98 bits per chimera 

because 58% of the 806 sequences are folded.   

Although more information is available for the P450s, less is captured by 

SCHEMA compared to the beta-lactamases.  As shown in Figure III-1, the mutual 

information per chimera is 0.34 bits for the beta-lactamases, compared to only 0.07 bits 

for the P450s.  These results are not sensitive to how structural contacts are defined.  The 

above scores use the original definition of Voigt et al., who considered whether any pair 

of heavy side-chain atoms or backbone carbon atoms between two residues is within 

4.5 Å (Voigt et al., 2002).  The structure prediction competition CASP defines two 

residues as contacting if their Cβ atoms (Cα for glycine) are within 8Å (Aloy et al., 

2003).  When this standard is used, denoted as SCHEMA2, the mutual information per 

chimera remains essentially unchanged for both proteins (0.01 bit increase).  Increasing 

or decreasing the contact distance by 1Å also has negligible effect (0.01 bit decrease).   

My attempts to improve SCHEMA by weighting each contact with its spatial or 

sequence separation have been unsuccessful.  Inversely weighting each contact by the Cβ 

distance between atoms decreases the mutual information with beta-lactamase folding by 

0.05 bits per chimera. Weighting each contacting residue pair by the number of amino 

acids separating them along the primary sequence, i.e., their contact order (Plaxco et al., 

1998), is one way to emphasize tertiary over secondary contacts.  This modification 
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leaves the mutual information with P450 folding unchanged (+0.01 bit) and slightly 

decreases the score on beta-lactamase (-0.03 bit).   

 

Comparing SCHEMA with other energy functions 

 As a baseline for comparison, I computed the mutual information between folding 

and mutation to the closest parent.  Although mutation is not an energy function in the 

conventional sense, it can be used to predict folding.  Not surprisingly, mutation is less 

effective than SCHEMA for both the P450s and beta-lactamases, with scores of 0.02 and 

0.14 bits per chimera, respectively.  Meyer et al. also concluded that SCHEMA was 

superior to mutation by comparing the energies of functional and nonfunctional beta-

lactamases at a fixed level of mutation (Meyer et al., 2003).  The functional chimeras had 

statistically significant lower energies. 

SCHEMA’s use of the parental sequences, however minimal, contributes to its 

predictive accuracy.  Consider an energy function WPS (Without Parental Sequences) 

that counts as disruptive any contact between residues from different parents, even if one 

or both positions are completely conserved.  SCHEMA only penalizes a subset of these 

amino acid pairs, specifically those not present in any of the parents.  WPS is less 

predictive than SCHEMA for both proteins.  As shown in Figure III-2, it decreases the 

mutual information per chimera by 0.06 bits for the beta-lactamases and by 0.04 bits for 

the P450s.   

.  Whereas SCHEMA considers all sequence changes equally disruptive, Maranas 

and co-workers have proposed using the biophysical properties of amino acids to restrict 
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which novel residue pairs are counted (Saraf & Maranas, 2003; Saraf et al., 2004).  

Inspired by their work, I developed the energy function CVHclash, which considers 

whether the additive charge, volume, or hydrophobicity (CVH) of a chimeric residue pair 

lies outside the range of values observed among the parents (see Methods).  Unlike 

SCHEMA, CVHclash is able to recognize conservative substitutions and avoid 

penalizing novel chimeric pairs with parent-like CVH properties.  Nonetheless, 

CVHclash does not predict folding better than SCHEMA (see Figure III-2).  

I also evaluated the accuracy of the Miyazawa-Jernigan (MJ) potential, which 

assigns a unique energy (derived from the Protein Data Bank) to each residue-residue 

contact based on the identity of the interacting amino acids (Miyazawa & Jernigan, 

1996).  Given its easy implementation, the MJ potential has been widely used (over 800 

citations) to explore folding and designability, often with lattice proteins.  In their 1996 

paper, Miyazawa and Jernigan showed that the potential could identify the native 

structure of 73 of the 88 proteins tested.  In my hands the MJ potential predicts P450 and 

beta-lactamase folding poorly, with mutual information scores even worse than mutation 

(see Figure III-2).  

 

Discussion 

Despite many attempts, I have been unable to find a pairwise residue potential 

with better performance than SCHEMA.  It is surprising that none of the biophysical 

refinements, particularly CVHclash, lead to improvement.  By using binary contacts, 

SCHEMA seems to robustly account for the short-range, nearest-neighbor interactions 



 59

important for protein stability (Chen & Stites, 2001).  SCHEMA then considers the 

structural context of each residue pair by checking whether it has been tested before by 

nature.  This simple insight makes SCHEMA much more effective than a contact 

potential such as Miyazawa-Jernigan, which considers only the identity of the amino 

acids (Vendruscolo & Domany, 1998; Khatun et al., 2004).   

By weighting amino acid pairs differently depending on their structural context, I 

believe SCHEMA is able to partially mimic the resolving power of rotamer-based 

potentials (Gordon et al., 1999; Mendes et al., 2002).  After all, a rotamer-rotamer 

interaction is a context-dependent, residue-residue interaction.  While I expect a rotamer 

potential could be used to predict cytochrome P450 folding better than SCHEMA, it is 

challenging to evaluate the energy of several hundred, 450-residue proteins bound to a 

heme cofactor.  Preliminary attempts to score P450 chimeras with the rotamer potential 

used by ORBIT (Mooers et al., 2003) found that a fixed backbone approximation was too 

severe to compute realistic energies (E. Zollars, personal communication).  The 

sensitivity of rotamer potentials requires a good homology model for each sequence, 

whereas SCHEMA is coarse enough to score all chimeras using the same parental 

structure.    

Of the several possible reasons why SCHEMA more accurately predicts beta-

lactamase folding than cytochrome P450 folding, I believe parental sequence divergence 

is the most significant.  Whereas the beta-lactamase parents have pairwise sequence 

identities around 40%, the P450 parents have 65% sequence identity.  As a result, the 

beta-lactamase substitutions are less conservative and more deeply buried in the protein, 
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making the structural disruptions counted by SCHEMA more likely to be deleterious.  

This is evident in Figure III-3, which plots the probability of folding vs. SCHEMA 

energy for the two proteins.  Fewer novel contacts are needed to reach the p = ½ mark for 

beta-lactamase, and the transition between high and low probability is sharper, leading to 

higher mutual information.  This parental divergence hypothesis could be tested by 

building another P450 library with more distantly related parents.  If the mutual 

information between SCHEMA and folding is still low, structural differences could be 

responsible, but I would also suspect factors unrelated to the proteins, e.g., the assays 

used to score proteins as folded/functional.  This possibility will be discussed further in 

Chapter IV.  
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Figure III-1. Mutual information between SCHEMA and folding.  The maximum 

information available for the P450 data, represented by the total height of the column, is 

0.98 bits per chimera. SCHEMA only captures 0.07 bits of this information, shown in 

solid.  Because the beta-lactamase data is less balanced between folded and unfolded 

chimeras, less information is available (0.84 bits per chimera).  Nonetheless, SCHEMA 

captures more of it (0.34 bits per chimera). 
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Figure III-2.  Comparing the mutual information with folding for different energy 

functions.  SCHEMA seems to use just the right amount of sequence information.  By 

counting as disruptive all contacts between fragments from different parents (WPS, third 

from left), or by counting only those pairs with charge, volume, or hydrophobicity 

outside the range spanned by the parents (CVHclash, fourth from left), the mutual 

information decreases.  The Miyazawa-Jernigan (MJ) contact potential has zero 

information on the P450 data. 
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Figure III-3. Probability of folding vs. SCHEMA energy.  The curves are maximum 

likelihood fits to Equation III-3.  The best-fit parameters for P450 (dashed line) are 

a = -2.1, b = 0.059, c = 0.93.  For beta-lactamase (solid line), the parameters are a = 

-3.6, b = 0.12, and c hits its upper bound at 1.  The beta-lactamase fit is more step-like 

and thus has higher mutual information with folding. 
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Chapter IV 

Inferring interactions from an alignment of  

folded and unfolded protein sequences 

 

Chapter III illustrated the difficulty of predicting which chimeras retain the 

parental function and/or fold.  For example, SCHEMA captures less than 10% of the 

maximum information available in the cytochrome P450 data.  This was the best score of 

any energy function I tried, but there could be others with better performance.  On the 

other hand, the missing information may simply be impossible to capture with a pairwise 

potential.  To assess the limits of the pairwise approximation, in this chapter I fit an 

empirical energy function to each data set using logistic regression, an analog of linear 

regression for binary data (e.g., 1 = folded, 0 = not folded) that is widely used in the 

medical and social sciences (Hosmer & Lemeshow, 2000; Menard, 2002).  The energy 

function, derived from an alignment of folded and unfolded proteins, is a concise way of 

representing sequence-function relationships.  Such relationships have been generated 

from residue-residue correlations in alignments of naturally occurring (and hence folded) 

proteins by a variety of methods (Gobel et al., 1994; Thomas et al., 1996; Larson et al., 

2000; Saraf et al., 2003; Suel et al., 2003).   

By including unfolded proteins in the multiple sequence alignment (MSA), 

however, it becomes easier to distinguish between two kinds of correlations.  It is well 

known that interactions between residues lead to correlations.  It is much less appreciated 

that residues with strong but independent influences on protein stability can also be 
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correlated.   This correlation arises because, when inherited together, the residues are  

more likely to lower (or raise) the free energy beyond the threshold needed for 

thermodynamic stability (Wintrode & Arnold, 2001; Bloom et al., 2005).    

To test how well different algorithms handle the confounding effect of the 

stability threshold, I created a library of fictitious proteins that fold according to a 

specified energy model.  The proteins have one of three possible fragments at each of 

eight variable positions.  While clearly inspired by the SDR libraries from Chapter III, 

this fictitious library represents other combinatorial strategies equally well (Moore & 

Maranas, 2004), such as synthetic shuffling of designed oligonucleotides (Hayes et al., 

2002).  In the hypothetical energy model, each peptide fragment makes an individual, or 

“one-body,” contribution, as well as seven “two-body” interactions with the other 

positions (Russ & Ranganathan, 2002).  The physical interpretation of these terms 

depends on what the positions represent. For a single residue, one-body terms include 

interactions with the solvent, with the backbone, and with conserved residues.  For a 

block of residues, one-body terms also include residue-residue interactions within the 

block.  Two-body terms represent interactions between two non-conserved residues or, 

for the block-level alignment, between all non-conserved residues from two blocks.  It is 

assumed that when the total energy of a fictitious protein is above an arbitrary threshold 

of zero, it is unfolded; otherwise it is folded.   

In addition to logistic regression, three other algorithms are compared for their 

ability to predict which fragments interact, using only the MSA of fictitious proteins.  

The first two methods, contingency table (Larson et al., 2000; Kass & Horovitz, 2002; 
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Fodor & Aldrich, 2004) and statistical coupling (Lockless & Ranganathan, 1999; Suel et 

al., 2003) analysis, were developed for natural protein families and hence use only the 

folded subset of the MSA.  The third method is excess information analysis, which, like 

logistic regression, makes use of both the folded and unfolded sequences.  Excess 

information is based on the mutual information between folding and a pair of positions, 

which is different than (but related to) the mutual information between two positions in 

an MSA of folded proteins (Atchley et al., 2000; Fodor & Aldrich, 2004; Saraf et al., 

2004).  Of all four methods, logistic regression is the only one to correctly predict 

interactions in the hypothetical energy model.   

When applied to the real samples of cytochromes P450 and beta-lactamases, 

logistic regression proposes several sequence-function relationships consistent with the 

protein structures.   

 

Methods 

Construction of the fictitious library 

 The fictitious library contains 6,561 sequences, representing all combinations of 3 

fragments at 8 positions.  Fragment i.x refers to fragment x at position i. The total energy 

of each sequence is the sum of 8 one-body terms (ε1) and 28 two-body terms (ε2): 

( ) ( )∑ ∑∑
= +==

+=
8

1

8

1
2

8

1
1 .,..

i iji
yjxixiE εε .    [IV-1] 

There are 3 one-body parameters for every position (one per fragment) and 3µ3 = 9 two-

body parameters for every pair of positions (one per fragment-fragment combination).  
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Of the 8 positions and 28 pairs, 7 positions and 1 pair were arbitrarily selected to make 

energetic contributions.  The parameters for these variables, listed in Tables IV-1 and IV-

2, were chosen randomly from the standard normal distribution and constrained to have 

zero average energy.  All other energy parameters were set equal to zero.  The larger the 

differences between parameters for a particular position or pair, the more strongly it 

affects folding.  With a stability threshold of zero energy, roughly half the library is 

folded (3,272 out of 6,561 sequences). 

 

Contingency table analysis  

 Several variations on contingency table analysis have been used to detect 

correlated residues in natural protein families (Larson et al., 2000; Kass & Horovitz, 

2002; Fodor & Aldrich, 2004).  For each pair i-j, first I tallied the number of times each 

fragment-fragment combination i.x-j.y was observed in the folded subset of the 

hypothetical library.  Then I calculated the number expected if the two fragments were 

inherited independently (Bernstein & Bernstein, 1999).  The chi-square statistic 

quantifies the significance of the differences between the observed and expected values: 

( ) ( )[ ]
( )∑∑ −

=
x y

ij i.x-j.y
i.x-j.yi.x-j.y

Expected
ExpectedObserved 2

2χ .   [IV-2] 

The double sum is taken over all nine fragment combinations.  Larger χ2 values indicate 

greater deviations from the hypothesis that the positions are inherited independently.  
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Statistical coupling analysis  

Statistical coupling analysis, developed by Ranganathan and co-workers to 

measure energetic coupling in natural protein families (Lockless & Ranganathan, 1999; 

Suel et al., 2003), was adapted for the folded subset of the combinatorial library.  The 

statistical coupling between positions i and j measures the response at position i when the 

MSA is perturbed at position j (∆∆Gi,j) or vice versa (∆∆Gj,i).  In general these energy 

vectors will be different.  ∆∆Gi,j is the difference between the conservation energy for 

position i (∆Gi) and a perturbed energy vector ∆Gi,δj.  The x
iG∆ component of ∆Gi 

measures the probability of finding fragment i.x relative to a reference probability: 
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∆
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i ln1 .      [IV-3] 

x
iP is the binomial probability of fragment i.x appearing x

iN times in a set of N folded 

proteins.  Assuming a reference state where all three fragments are equally likely,  
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The reference probability P* obeys Equation IV-4 with the substitution N/3 for x
iN .   

 The three components of the perturbed energy are defined similarly to Equation 

IV-3: 
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except now N is the number of sequences in a subalignment containing only those folded 

chimeras with fragment j.1.  (Equivalently, one could perturb with respect to fragment 2 

or fragment 3.)  The binomial probabilities x
jiP δ,  and ∗

jPδ  follow Equation IV-4 with the 

appropriate parameters from the subalignment. 

 

Excess information analysis 

The Shannon entropy H(F) measures the uncertainty about folding in a set of 

chimeras: 

( ) ( )[ ]ppppH −−+−= 1log1log 22 ,    [IV-6] 

where p denotes the fraction folded.  This uncertainty can be reduced by knowing the 

chimeric energies, as discussed in Chapter III, or by knowing a specific sequence feature.  

The conditional entropy H(F|j.y), which must be less than or equal to H(F), measures 

uncertainty when the presence or absence of fragment j.y is known.  It is defined by 

Equation IV-6 when p is replaced with the conditional probability p(F|j.y), which is the 

fraction of chimeras with fragment j.y that are also folded.  When averaged over all three 

fragments, the conditional entropy for position j is written as 

( ) ( )∑=
y

yjFHyjpjFH .|.)|( .     [IV-7] 

The change in entropy H(F) – H(F|j), which defines the mutual information I(F:j) 

between folding and position j, represents how much the uncertainty about folding is 

reduced by knowing the sequence at position j.   
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 The mutual information between folding and pair i-j is defined similarly.  Given 

that a sequence contains fragments i.x and j.y, its probability of folding is p(F|i.x,j.y), 

which when substituted into Equation IV-6 gives the conditional entropy H(F|i.x, j.y).  

The conditional entropy for pair i-j is the average over all nine fragment combinations: 

( ) ( )∑∑=
x y

yjxiFHyjxipjiFH .,.|.,.),|( .   [IV-8] 

The mutual information between folding and pair i-j is I(F:i, j) = H(F) – H(F|i, j).  The 

excess information for a pair, defined as the difference between the mutual information 

for the pair and the mutual information of its constituent positions, I(F:i, j) - I(F:i) - 

I(F:j), was used to predict interactions.   

 

Logistic regression analysis 

Both logistic (Hosmer & Lemeshow, 2000; Menard, 2002) and linear regression 

are special cases of the statistical methodology known as generalized linear modeling 

(McCullagh & Nelder, 1989; Agresti, 2002).  There are three components to a 

generalized linear model.  The random component specifies a response variable Y and its 

probability distribution.  The systematic component specifies a predictor variable  

∑=
i

iiX βη ,       [IV-9] 

which is a linear combination of explanatory variables (Xi).  The use of a linear predictor 

variable does not preclude modeling interaction effects; each interaction is simply 

another explanatory variable.  The third component of a generalized linear model is the 

link function ( )⋅g , which specifies the relationship between the mean of the response 
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variable, E[Y] = µ, and the predictor variable via g(µ) = η.  The choice of link function 

depends on the probability distribution of the response variable.  Linear regression deals 

with normally distributed variables, for which the link is the identity function.  In logistic 

regression, the response variable is binary and follows the Bernoulli (binomial) 

distribution, for which the logit function is the appropriate link:  
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log  .       [IV-10] 

Inverting Equation IV-10 expresses the mean, which equals the probability of observing 

Y = 1, in terms of the predictor variable: 

( ) ηµ
e

Yp
+

===
1

11 .   [IV-11] 

This framework was used to model whether a protein is folded (F = 1) or not (F = 

0) in the fictitious library.  Each of the 3µ8 = 24 fragments and 9µ28 = 252 fragment-

fragment pairs has a corresponding binary explanatory variable to model its presence 

(= 1) or absence (= 0).  If the regression coefficients of these variables (βi in Equation 

IV-9) are interpreted as one- and two-body energy terms (cf. Equation IV-1), then 

Equation IV-11 models the probability of folding p(F|E) as a sigmoidally decreasing 

function of the energy: 

( ) Ee
EFp

+
=

1
1 .    [IV-12] 

The significance of every position and every position pair was computed relative 

to a reference model that includes all the one-body terms plus a constant.  The energy 

parameters were fit by maximizing the likelihood function L, which is equivalent to 
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maximizing the mutual information between folding and energy (defined in Chapter III) 

as well as minimizing the deviance function D = -2 ln L.   Upon removing a position from 

the reference model, i.e., constraining its three one-body parameters to equal zero, the 

minimum deviance must increase because there are fewer parameters to fit the data.  The 

magnitude of this increase asymptotically follows the chi-square distribution with two 

degrees of freedom, which was used to compute a p-value for each position (i.e., the 

likelihood ratio test was applied).  Conversely, adding a position pair to the reference 

model lowers the minimum deviance, and the significance of this change was computed 

from the chi-square distribution with four degrees of freedom.   

As just mentioned, although each position has three one-body parameters (one for 

each fragment), there are only two degrees of freedom because the reference energy for 

each position is arbitrary.   To uniquely determine the one-body parameters, the average 

energy for each position was set equal to zero: 

( ) 0.1 =∑
x

xiε .     [IV-13]  

Similarly, there are only four degrees of freedom for each position pair despite the 

presence of 3µ3 = 9 two-body parameters.  The two-body terms were uniquely 

determined by requiring the average over each fragment index to equal zero: 

( ) ( ) 0.,..,. 22 == ∑∑
yx

yjxiyjxi εε .   [IV-14] 

The five linearly independent constraints in Equation IV-14 were derived by considering 

the extent to which the two-body terms can be reconstructed with one-body parameters: 

ε2(i.x, j.y) = ω(i.x) + ω(j.y).    [IV-15] 
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The space of matrices completely decomposable according to Equation IV-15 is five-

dimensional, and Equation IV-14 makes the matrix of two-body terms perpendicular to 

this space.  Thus I have chosen a two-body representation in which one-body effects are 

minimized. 

 Minimizing the deviance subject to the linear constraints in Equations IV-13 and 

IV-14 is a convex optimization problem in the one- and two-body energy parameters, 

which means local optimization algorithms converge to the global minimum (Boyd & 

Vandenberghe, 2004).  I used the algorithm MINOS through the NEOS server for 

optimization (Czyzyk et al., 1998).  

 

Logistic regression analysis of the cytochrome P450 and beta-lactamase data 

 For both data sets I first calculated chi-square p-values for the 8 blocks and 28 

block pairs as described above.  In the P450 data set, only eight of the nine possible 

fragment-fragment combinations are present for block pairs 1-4 and 4-5, so three degrees 

of freedom were used instead of four.  The likelihood ratio test identified as significant 

six variables for P450 and five variables for beta-lactamase, which were collected into a 

second-round reference model for further analysis.  Upon removing each variable from 

this model, the chi-square p-value was again calculated.  For the P450 data, I also scored 

the change in deviance using tenfold cross-validation.  Initially the data were split into 

ten random partitions of equal size.  For each partition, the energy model was fit to the 

other 90% of the data and scored by its deviance on the remaining 10%.  Unlike the 

likelihood ratio test, this cross-validation score does not necessarily increase upon 
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removing each variable.  When the score is positive, it indicates the variable is 

significant.  The average increase ± standard deviation for the ten partitions is reported.   

 

Results  

Analysis of the fictitious library 

The folding status for each of the 38 = 6,561 sequences in the fictitious library was 

determined according to the hypothetical energy model summarized in Figure IV-1A.  

The diagonal entries of this 8µ8 matrix represent the individual, or one-body, 

contributions of the 8 positions, and the off-diagonal entries represent the interaction, or 

two-body, strengths of the position pairs.  In order of decreasing one-body strength, the 

positions are 4, 5, 7, 8, 3, 1, 6, and 2.  The only nonzero two-body interaction is between 

positions 2 and 7.  

Panels B through E in Figure IV-1 show the predictions of four different 

algorithms.  Except for contingency table analysis (panel B), which does not score the 

one-body terms, the algorithms make qualitatively correct predictions about the relative 

importance of the individual contributions made by the positions.   

 However, there are problems with the predicted two-body interactions for all 

algorithms except logistic regression (panel E).  The contingency table (panel B), 

statistical coupling (panel C), and excess information (panel D) algorithms all score pair 

4-5 as having the strongest interaction.  These positions do not interact in the energy 

model, but their fragment frequencies are strongly correlated because fragments 4.1 and 

5.3 are highly stabilizing at their respective positions (see Table IV-1; fragment i.x refers 
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to fragment i at position x).  The stronger the individual contribution of a position, the 

more frequently it is predicted to make spurious interactions in panels B, C, and D of 

Figure IV-1.  Statistical coupling analysis appears most susceptible to this error, followed 

by the contingency table and excess information algorithms.  The one true interaction in 

the energy model, between positions 2 and 7, is barely in the top ten picked by statistical 

coupling analysis but fares better with the other two algorithms.  All three methods assign 

pair 2-7 a lower score than at least one spurious pair, making it is impossible to separate 

true interactions from false ones.   

This problem does not plague logistic regression, as is clear from a comparison of 

Figure IV-1E with the “answer key” in Figure IV-1A.  No other pair even comes close to 

the score given 2-7.  The success of logistic regression stems not only from its use of the 

unfolded sequences, a characteristic it shares with the excess information analysis 

depicted in Figure IV-1D.  Its distinguishing feature is the ability to directly test for 

energetic coupling with a sigmoidal folding model (Equation IV-12).  The other three 

algorithms are only able to test for probabilistic coupling, i.e., whether the probability 

distributions for two positions are independent.  This is not a reliable indicator of 

energetic coupling when folding is a nonlinear function of energy.   

For the real protein data sets, only a subset of the library is available for analysis 

(806 P450s, 605 beta-lactamases; see Appendix B), which makes it more difficult to infer 

significant interactions.  This effect was simulated with the fictitious library by applying 

logistic regression to the same 806 chimeric patterns, e.g., 11221233, for which P450 

data are available.  The 8µ8 matrix of p-values looks just like a rescaled version of Figure 
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IV-1E, indicating that all hypothetical interactions are predicted correctly.  The least 

significant true prediction is position 6, with a p-value of 10-9, and the most significant 

spurious prediction is pair 2-8, with a p-value of 10-3.  These p-values represent lower 

and upper bounds on the significance threshold that should be used with the real data to 

avoid false positives (much different than p < 0.05!).   

 

Logistic regression analysis of the cytochrome P450 and beta-lactamase data 

Figure IV-2 shows the hierarchy of p-values from logistic regression analysis of 

the cytochrome P450 data.  Blocks 5, 1, 7, and the pair 1-7 are clearly significant, with p-

values less than 10-16.  A handful of other variables are marginally significant, with p-

values in between the thresholds of 10-9 and 10-3 established with the fictitious library.  

The top two from this marginal list, pairs 1-5 and 5-8, were grouped with blocks 1, 5, 7, 

and pair 1-7 to create an energy model with six variables.  The significance of each 

variable in this model was recalculated using tenfold cross-validation and the likelihood 

ratio test, which confirmed 1, 5, 7, and 1-7 but ruled out 1-5 and 5-8.   

 Logistic regression analysis of the beta-lactamase data, shown in Figure IV-3, 

identified five variables as strongly significant (1, 2, 3, 8, 1-8) and three others as 

marginally significant (5, 1-7, 2-8).  Based on my experience with the P450 data, I only 

subjected the first five to further testing.  When the p-values of blocks 1 and 8 were 

recalculated relative to a model that includes pair 1-8, their significance diminished 

considerably (p = 0.5 and 4µ10-3, respectively).  This result stands in contrast to the 

behavior of pair 1-7 in the P450 protein, whose constituent blocks remained highly 
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significant even in the presence of the pair.   The variables 2, 3, and 1-8 remained 

significant after the second round of testing. 

 

Discussion 

Comparison with studies of natural protein families 

 My results with the fictitious library may help explain the difficulty of detecting 

structural contacts from correlations in a sequence alignment of natural proteins.  In their 

pooled analysis of 224 families, Fodor and Aldrich found that for even the best 

algorithms, at least 75% of the predicted interactions were between non-contacting 

residues (Fodor & Aldrich, 2004).  Larson et al. had greater success, with error rates 

between 30% and 50% for several of the 15 families they studied, although far fewer 

predictions were made (Larson et al., 2000).  Whereas Fodor and Aldrich included 

sequences with as high as 90% pairwise identity in the alignment, Larson et al. used a 

diversity cap of 40% identity.  In hindsight, the large number of spurious predictions in 

these studies is not surprising.  I expect many of the correlations detected were the result 

of a stability threshold rather than residue-residue interactions.    

 

Reconciling logistic regression energies with protein structure 

One would expect the two significant block pairs identified by logistic regression, 

beta-lactamase pair 1-8 and cytochrome P450 pair 1-7, to be important from an 

examination of the parental structures.  In both proteins the blocks form two halves of a 

beta-sheet (see Figures IV-4A and IV-5), and the beta-lactamase pair is also coupled 
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through a pair of adjacent alpha helices (red and green in Figure IV-5).  Tables IV-3 and 

IV-4 show the 3µ3 matrix of regression energies for P450 and beta-lactamase, 

respectively.  In both cases the on-diagonal entries are the most stabilizing (negative), 

which means chimeras that inherit the blocks from the same parent, rather than different 

parents, are more likely to be folded/functional.  This result supports the core hypothesis 

of SCHEMA, which assigns the best possible score (zero) to these wild-type interactions.   

Among the significant blocks, beta-lactamase block 2 is the most readily 

understandable.  It contains eight residues, including a conserved serine critical to the 

enzyme’s catalytic function (Matagne et al., 1998).  In total, four positions are conserved 

across the parents, shown in black in the alignment of Figure IV-6.  Of the remaining four 

positions, site-directed mutagenesis of parent TEM-1 has shown that two are tolerant to 

the amino acids found in SED-1 and PSE-4 (Huang et al., 1996).  These residues are 

colored green in Figure IV-6.  At the positions colored red, TEM-1 is not tolerant to the 

amino acids found in SED-1 but is identical to PSE-4.  These residues may explain why 

the one-body energy for SED-1 is destabilizing relative to TEM-1 and PSE-4 at block 2 

(see Table IV-5).    

The importance of cytochrome P450 block 5 may reflect its role in the dynamics 

of the enzyme, as suggested by a comparison of the crystal structures for the substrate-

bound (Li & Poulos, 1997) and unbound (Ravichandran et al., 1993) forms of parent 

CYP102A1.  The F and G helices of CYP102A1 identified in Figure IV-4B close down 

over the substrate when it binds, and block 5 (colored green) sits at the “hinge” of this 

flap.  On average its residues move 3.6 Å, compared with 1 to 2 Å for most of the other 
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blocks.  The one-body energies in Table IV-6 show that CYP102A1 is destabilizing 

compared to A2 and A3, but it is difficult to pinpoint which residues are responsible.  

Unlike beta-lactamase block 2, which contains 4 variable positions, there are 17 in 

cytochrome P450 block 5, many of which form contacts within the block and with 

conserved residues outside the block.  The instability of A1 may simply be due to 

fragment length, since the A1 fragment is one amino acid shorter than the other two.   

 

Mutual information between logistic regression energy and folding 

 In Chapter III the predictive accuracy of the SCHEMA energy was quantified by 

its mutual information with folding.  Mutual information is also appropriate for 

evaluating the energy model produced by logistic regression.  For the sample of 806 

fictitious proteins, 43% of which are folded, the maximum mutual information is 0.98 

bits per sequence, all of which is captured by logistic regression.  Since folding in the 

fictitious library was determined by a pairwise energy model of the same form fit by 

logistic regression, it makes sense that perfect information is attained. 

Substantially less information is captured by logistic regression of the real 

proteins, as shown in Figure IV-7.   The maximum mutual information scores for the 

beta-lactamase and P450 samples are 0.84 and 0.98 bits per chimera, respectively.  The 

beta-lactamase sample has lower entropy because only 27% of the chimeras are folded, 

compared with 58% of the P450s.  When limited to statistically significant terms, the 

dramatic differences between the two proteins observed in Chapter III disappear.  

Logistic regression captures 0.38 and 0.31 bits per chimera for beta-lactamase and 
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cytochrome P450, respectively, compared with a mutual information differential of 0.34 

(beta-lactamase) to 0.07 (P450) with SCHEMA.   

I now return to the questions raised at the end of Chapter III and beginning of 

Chapter IV.  Although the mutual information between beta-lactamase folding and 

SCHEMA energy is only 40% of the maximum possible, SCHEMA performs as well as 

could be expected for a pairwise potential.  Even by fitting an energy model to the data, 

logistic regression only captures 45% of the maximum information.  Since the pairwise 

energy approximation is equally limiting for the two proteins, it is tempting to conclude 

that the poorer performance by SCHEMA on the P450 data is due to biophysical factors 

rather than artifacts from the folding assay.  Two other observations suggest otherwise.  

For one, it is striking that all the predictors tested in Chapter III, including mutation, 

scored higher on the beta-lactamase data set.  In addition, when the significance 

constraints in logistic regression are relaxed to include all one- and two-body terms 

(which leads to overfitting), the beta-lactamase data are 100% predicted by the empirical 

energy function.  In contrast, the mutual information with P450 folding is still only 0.56 

bits per chimera, or 57% of maximum. 

 

Future work 

 One can envision applications of logistic regression analysis other than those 

presented here.  For protein families without structural information, logistic regression 

could help test putative interactions or otherwise refine a homology model.  Because the 

sigmoid used by logistic regression to link sequence and function (Equation IV-12) is 
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quite general, other properties besides protein folding could be modeled, including the 

fitness effects of deleterious mutations (Saunders & Baker, 2002).  For the cytochrome 

P450 and beta-lactamase proteins, the sequence determinants of enzymatic catalysis 

could be studied by screening the libraries for activity on a particular substrate.   

 



85 

Table IV-1.  One-body terms in the hypothetical energy model. 

 

Position Fragment 1 Fragment 2 Fragment 3

1 0.56 0.21 -0.77 

2 0 0 0 

3 0.83 -1.00 0.17 

4 -2.24 -0.45 2.69 

5 1.10 1.40 -2.50 

6 -0.00 -0.46 0.46 

7 -1.61 0.03 1.58 

8 -1.23 0.80 0.43 
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Table IV-2.  Two-body terms for pair 2-7 in the hypothetical energy model.  All other 

two-body terms are zero. 

 

 7.1 7.2 7.3 
2.1 0.46 0.38 -0.84
2.2 0.63 -1.01 0.38
2.3 -1.09 0.63 0.46
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Table IV-3.  Two-body energies for cytochrome P450 pair 1-7 (parent x = CYP102Ax). 

 

 7.1 7.2 7.3 
1.1 -0.9 1.3 -0.4
1.2 0.1 -1.3 1.2
1.3 0.8 -0.0 -0.8
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 Table IV-4.  Two-body energies for beta-lactamase pair 1-8 (parents 1, 2, 3 = PSE-4, 

SED-1, TEM-1, respectively). 

 

 8.1 8.2 8.3 
1.1 -1.2 1.7 -0.5
1.2 -0.1 -2.8 2.8
1.3 1.3 1.0 -2.3
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Table IV-5.  One-body energies for the significant beta-lactamase blocks (ε0 = 3.045). 

 

Block Parent 1 
(PSE-4) 

Parent 2 
(SED-1) 

Parent 3 
(TEM-1) 

2 -0.5 1.1 -0.5
3 0.6 1.1 -1.7
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Table IV-6.  One-body energies for the significant cytochrome P450 blocks (ε0 = 0.084). 

 

Block CYP102A1 CYP102A2 CYP102A3
1 0.5 -1.0 0.5
5 1.4 -0.8 -0.6
7 0.3 1.0 -1.3
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Figure IV-1.  Logistic regression is the only algorithm to correctly predict pairwise 

interactions in a library of fictitious proteins.  (A) Energy model.  This symmetric 8µ8 

matrix summarizes the hypothetical energy model used to fold the fictitious proteins 

(Tables IV-1 and IV-2).  The diagonal entries reflect the individual contribution of each 

position, and the off-diagonal entries represent pairwise interactions.  The shade of each 

square encodes the standard deviation across energy parameters, which is a measure of 

energetic “strength.” Because the average energy for each variable is arbitrarily 

constrained to zero, the standard deviation is ( )[ ]∑
x

xi 2
13

1 .ε for position i 

and ( )[ ]∑∑
x y

yjxi 2
29

1 .,.ε for pair i-j.  (B) Contingency table analysis.  The shade of 

each off-diagonal entry encodes the chi-square statistic with four degrees of freedom.  

Larger values indicate the positions are not inherited independently, but this does not 

mean they interact energetically.  This is clear from a comparison with the energy model 

in panel A.  The diagonal entries are blank because contingency table analysis does not 

score one-body terms.  (C) Statistical coupling analysis.  Conservation energies are 

shown on the diagonal and coupling energies are shown off the diagonal.  The shade of 

each square represents the magnitude of the corresponding statistical energy vector, in 

units where kT = 100.  Although the one-body effects are predicted well, the two-body 

interactions are not. (D) Excess information analysis.  The shade of each diagonal entry 

represents the mutual information with folding for that position, in bits per sequence.  

The off-diagonal entries reflect the excess information for each pair in bits per sequence.  

Although this algorithm uses both folded and unfolded sequences, there is little 

improvement over the contingency table analysis in panel B. (E) Logistic regression 

analysis.  The shade of each square represents the significance p-value from the 

likelihood ratio test, reported as -log10(p) so that higher numbers are more significant.  

Panels A and E are nearly indistinguishable, which means logistic regression is able to 

determine all the important energy terms and their relative strengths.   
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Figure IV-2. Logistic regression analysis of 806 cytochrome P450 chimeras.  The 

significance of each block and block pair, reported as -log10(p), is shown relative to a 

model with all one-body terms.  Blocks 1, 5, 7, and pair 1-7 are the most significant with 

this test; many other variables appear marginally significant, in particular pairs 1-5 and 

5-8.  All six were grouped into a second round model for further testing (data not shown), 

which suggested pairs 1-5 and 5-8 should not be included.  Their p-values were 0.01 and 

0.02, respectively, with cross-validation scores of 0 ± 3 and 1 ± 2 (positive means 

significant).  By contrast the least significant variable included was block 5, with p < 10-7 

and a cross-validation score of 3 ± 4. 
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Figure IV-3. Logistic regression analysis of 605 beta-lactamase chimeras.  The 

significance of each block and block pair, reported as -log10(p), is shown relative to a 

model with all one-body terms.  Blocks 1, 2, 3, 8, and pair 1-8 are the most significant 

with this test.  All five were grouped into a second-round model for further testing (data 

not shown), which suggested blocks 1 and 8 should not be included (p = 0.5 and 4µ10-3, 

respectively). 
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Figure IV-4. Structural analysis of pair 1-7 and block 5 for cytochrome P450 parent 

CYP102A1 (Ravichandran et al., 1993). (A) Blocks 1 (pink) and 7 (blue) make extensive 

contacts as two halves of a beta-sheet. (B) The F and G helices form a flap that folds 

down over the substrate, and block 5 (green) sits at the hinge of this flap. 
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Figure IV-5.  Structural context of the eight blocks in the beta-lactamase library.  The 

blocks are color-coded and mapped onto the structure of TEM-1 (Jelsch et al., 1993): 1 = 

red, 2 = pink, 3 = dark blue, 4 = yellow, 5 = orange, 6 = gray, 7= light blue, 8 = green.  

Blocks 1 and 8 make extensive contacts through their terminal alpha helices and joint 

beta-sheet.  The small molecule shown in black is an inhibitor bound to the active site. 
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Figure IV-6.  Alignment of the beta-lactamase parents for block 2.  Four of the eight 

residues in block 2 are variable (colored) and four are conserved (black).  Site-directed 

mutagenesis (Huang et al., 1996) has shown that TEM-1 can tolerate the amino acids 

found in SED-1 at green but not red positions.  This may explain why SED-1 is 

destabilizing in the regression energy model of Table IV-5. 
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Figure IV-7.  Comparing logistic regression with SCHEMA.  The maximum mutual 

information, or Shannon entropy, is shown with the solid bars.  Logistic regression 

(striped bars) captures 100% of the information for the fictitious library compared to 44% 

for the beta-lactamases and 32% for the P450s.  The SCHEMA energy, shown with 

checkered bars for the real proteins, captures nearly as much mutual information with 

beta-lactamase folding/function as logistic regression. 
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Appendix A 

Chimeric sequence design is NP-hard 

 

In Chapter II a contrast was drawn between the difficulty of finding the site-

directed recombination (SDR) library with minimum energy (Equation II-1) and that of 

finding the amino acid sequence with minimum energy.  The former can be solved by 

dynamic programming in O(N3) operations, where N is the length of the protein, while 

the latter is NP-hard (Pierce & Winfree, 2002).  By NP-hard I mean the corresponding 

decision problem (Does there exist an amino acid sequence with energy less than some 

constant?) is NP-complete.  NP-complete problems have been proven to be as hard as any 

other in the complexity class NP, which includes most problems of practical interest 

(Papadimitriou, 1994).  For this reason it is unlikely (but not yet disproven) that 

polynomial-time algorithms exist.  Exact solutions are best found with algorithms that 

intelligently traverse a search tree, e.g., branch-and-bound (Papadimitriou & Steiglitz, 

1998), or one can look for approximate solutions (Hochbaum, 1997).  RASPP can be 

viewed as an approximation algorithm for finding which SDR library has the highest 

fraction folded in a given range of library diversity.  The nonlinear relationship between 

folding and SCHEMA energy, e.g., a single exponential, makes this problem hard, but I 

have been unable to prove anything about it.   

I have proven, however, that within the context of sequence design, choosing 

crossovers between two parents can be as hard as choosing amino acids from the full 
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alphabet, i.e., both are NP-hard.  Consider finding the chimeric sequence with minimum 

energy, subject to constraints on its level of mutation: 

( )
E

nX,,2X,1X
min

K
 [A-1]

subject to   mmin b m b mmax. 

The decision problem for Equation A-1, called CSD for Chimeric Sequence Design, is 

whether there exists a chimera with energy E b K and mmin b m b mmax.  To prove CSD is 

NP-complete, I show that any algorithm which solves CSD in polynomial time could be 

used to solve another NP-complete problem in polynomial time (Sipser, 1997). 

The problem I reduce to CSD is that of finding a balanced cut in an undirected 

graph (Bui & Jones, 1992).  For an undirected graph G with N vertices, an α-balanced cut 

is a partition of the vertices into two disjoint sets V1 and V2 such that neither contains less 

than αN vertices, where α is some specified fraction.  The cost of this cut is the number 

of edges with one endpoint in V1 and the other endpoint in V2.  It is NP-complete to 

decide if there exists an α-balanced cut with cost C b K.  

To construct a polynomial-time reduction to CSD, assign each vertex in G to a 

residue position in an alignment of two parents with zero sequence identity.  When G is 

partitioned, every residue whose vertex is assigned to V1 is inherited from parent 1, and 

every residue whose vertex is assigned to V2 is inherited from parent 2.  Under this 

mapping, the number of vertices in the smaller partition equals the mutation level m of 

the corresponding chimera.  Choose an energy function such that if two vertices are 

connected in G, the interaction energy between the corresponding residues is 1 when they 
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are inherited from different parents and 0 when inherited from the same parent.  All other 

pairwise energies are zero, and there are no one-body energies.  With this prescription, 

the cost C of a cut equals the energy E of the chimera, and the α-balanced cut problem 

reduces to CSD with mmin = αN and mmax = N/2. 
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Appendix B 

Folding data for cytochromes P450 and beta-lactamases 

 

Table B-1.  Folding status of 806 cytochrome P450 chimeras (C. Otey, personal 

communication).  Chimeras were scored as folded (= 1) if and only if they bind a heme 

cofactor.  Homologs CYP102A1, CYP102A2, and CYP102A3 are parents 1, 2, and 3, 

respectively (Nelson, 2005).   The eight blocks are defined by crossovers after residues 

Glu64, Ile122, Tyr166, Val216, Thr268, Ala328, and Gln404, numbered from the N-

terminus of CYP102A1. 

 

11112123 0 
11112212 1 
11113223 0 
11113233 1 
11131313 1 
11132223 0 
11132232 0 
11132323 0 
11133231 1 
11212333 1 
11213133 1 
11213231 1 
11231232 0 
11232111 0 
11232232 1 
11232323 0 
11232333 1 
11311233 1 
11312233 1 
11313223 0 
11313233 1 
11313333 1 

11331123 0 
11331312 1 
11331333 1 
11332221 0 
11332233 1 
11332333 1 
11333122 0 
11333212 1 
11333323 0 
12112333 1 
12133223 0 
12211222 0 
12211232 1 
12211333 1 
12212112 1 
12212211 0 
12212223 0 
12212332 1 
12231231 0 
12232111 0 
12232232 1 
12232233 1 

12232332 1 
12233112 0 
12233323 0 
12311333 1 
12313331 1 
12322333 1 
12331123 1 
12331211 0 
12331221 0 
12331333 1 
12332123 0 
12332223 1 
12332233 1 
12332333 1 
12333331 1 
12333333 1 
13132223 0 
13132322 0 
13132333 0 
13133323 0 
13212122 0 
13212321 0 

13213131 1 
13231332 0 
13232123 0 
13232311 0 
13232323 0 
13233133 0 
13233212 1 
13233233 0 
13233322 0 
13311311 0 
13331123 0 
13331333 0 
13332223 0 
13332332 0 
13332333 1 
13333122 1 
13333123 0 
13333131 1 
13333222 0 
13333223 0 
13333233 0 
13333323 0 
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21111112 0 
21111212 1 
21111312 0 
21111321 1 
21111322 0 
21111323 1 
21111333 1 
21112123 1 
21112212 1 
21112222 1 
21112232 1 
21112312 1 
21112322 1 
21113111 1 
21113112 1 
21113212 1 
21113221 1 
21113222 0 
21113223 1 
21113322 1 
21131111 0 
21131121 1 
21131212 0 
21131321 0 
21132112 1 
21132113 1 
21132121 0 
21132222 1 
21132311 1 
21132313 1 
21132323 1 
21133123 0 
21133131 1 
21133212 1 
21133222 1 
21133223 1 
21133232 1 
21133233 1 
21133313 1 
21133321 1 
21133322 1 
21133331 1 

21133332 1 
21211113 0 
21211122 0 
21211211 0 
21211222 0 
21211223 1 
21211321 1 
21212112 0 
21212122 1 
21212123 1 
21212212 0 
21212231 1 
21212333 1 
21213121 1 
21213212 1 
21213231 1 
21222112 1 
21231233 1 
21232112 1 
21232122 1 
21232132 1 
21232212 0 
21232222 1 
21232231 1 
21232233 1 
21232321 1 
21232332 1 
21233112 0 
21233132 1 
21233212 1 
21233221 1 
21233233 1 
21233312 1 
21233322 0 
21311111 0 
21311122 1 
21311223 1 
21311311 0 
21311331 0 
21311333 0 
21312111 1 
21312112 1 

21312121 0 
21312123 1 
21312212 0 
21312222 1 
21312223 1 
21312321 0 
21312322 1 
21312323 1 
21313112 1 
21313122 1 
21313231 1 
21313312 1 
21313313 1 
21313322 1 
21331111 0 
21331112 0 
21331131 0 
21331223 1 
21331312 0 
21331313 0 
21331332 1 
21331333 1 
21332113 1 
21332131 1 
21332212 1 
21332223 1 
21332231 1 
21332233 1 
21332323 1 
21332331 1 
21332332 1 
21332333 1 
21333121 0 
21333132 1 
21333133 0 
21333212 1 
21333221 1 
21333223 1 
21333233 1 
21333312 1 
21333331 0 
21333332 0 

22111223 1 
22111231 0 
22111332 1 
22112111 1 
22112223 1 
22112321 1 
22112323 1 
22113132 0 
22113223 1 
22113233 1 
22113313 1 
22113323 1 
22121331 0 
22131111 0 
22131112 0 
22131132 0 
22131133 0 
22131221 1 
22131222 0 
22131321 0 
22132233 1 
22132312 1 
22132323 1 
22132331 1 
22133112 1 
22133211 1 
22133212 1 
22133232 1 
22133312 1 
22133323 1 
22211132 0 
22211222 0 
22211331 0 
22211332 0 
22212232 1 
22212312 1 
22212322 1 
22213111 1 
22213112 1 
22213222 1 
22213223 1 
22213312 1 
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22213321 1 
22231113 0 
22231122 0 
22231211 0 
22231212 0 
22231221 1 
22231223 1 
22231232 0 
22231311 0 
22231312 0 
22231333 0 
22232112 1 
22232122 1 
22232212 1 
22232213 0 
22232222 1 
22232223 1 
22232233 1 
22232312 1 
22232322 1 
22232323 1 
22232333 1 
22233112 1 
22233221 1 
22233222 1 
22233223 1 
22233323 1 
22233331 0 
22233332 1 
22233333 0 
22311121 0 
22311123 1 
22311212 0 
22311231 0 
22311332 0 
22312123 1 
22312132 0 
22312211 1 
22312221 1 
22312222 1 
22312223 1 
22312231 1 

22312232 1 
22312312 1 
22312322 1 
22312333 1 
22313221 1 
22313222 1 
22313232 1 
22313233 1 
22313323 1 
22313331 1 
22313333 0 
22331121 0 
22331123 1 
22331133 0 
22331211 0 
22331212 0 
22331221 1 
22331222 0 
22331223 1 
22331321 0 
22331323 1 
22331332 0 
22332112 1 
22332113 1 
22332123 1 
22332132 1 
22332211 1 
22332222 1 
22332223 1 
22332232 1 
22332233 1 
22332312 1 
22332321 1 
22332322 1 
22332332 1 
22333111 0 
22333122 1 
22333132 1 
22333133 1 
22333212 1 
22333221 1 
22333222 1 

22333223 1 
22333231 1 
22333313 1 
22333323 1 
22333332 1 
23111112 0 
23111212 0 
23112123 0 
23112213 0 
23112221 1 
23112222 0 
23112233 1 
23112323 1 
23112333 1 
23113111 1 
23113121 1 
23113212 1 
23113311 1 
23113312 1 
23113323 1 
23122212 1 
23131323 1 
23131332 0 
23132111 0 
23132121 1 
23132212 1 
23132221 1 
23132231 1 
23132232 1 
23132233 1 
23132322 0 
23132323 1 
23133112 1 
23133121 1 
23133233 1 
23133311 1 
23133312 0 
23133321 1 
23133333 1 
23211121 0 
23211131 0 
23211132 1 

23211222 0 
23211311 0 
23211332 0 
23212112 1 
23212212 1 
23212231 1 
23212312 0 
23212332 1 
23212333 1 
23213123 1 
23213223 1 
23213231 0 
23213232 1 
23213311 1 
23213322 1 
23213333 1 
23231121 0 
23231212 0 
23231233 1 
23231323 0 
23232211 1 
23232212 1 
23232221 0 
23232223 0 
23232233 1 
23232323 1 
23233221 1 
23233231 1 
23233232 1 
23233322 0 
23233333 1 
23311112 0 
23311221 0 
23311222 0 
23311233 1 
23311313 0 
23311323 1 
23312122 1 
23312131 1 
23312223 1 
23312311 1 
23312312 1 
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23312323 1 
23313121 0 
23313133 1 
23313212 1 
23313222 1 
23313231 0 
23313232 1 
23313233 1 
23313322 0 
23313323 1 
23313333 1 
23331112 0 
23331212 0 
23331232 0 
23331233 1 
23331323 1 
23332221 1 
23332222 1 
23332223 1 
23332231 1 
23332311 1 
23332322 0 
23332323 1 
23332331 1 
23333111 1 
23333122 0 
23333123 1 
23333131 1 
23333211 1 
23333213 1 
23333222 1 
23333223 1 
23333232 1 
23333233 1 
23333323 1 
31111233 1 
31112121 0 
31112333 1 
31113132 1 
31113222 1 
31113321 0 
31113323 1 

31113331 1 
31113332 1 
31131233 1 
31131312 0 
31131323 0 
31132221 0 
31132223 0 
31132232 1 
31132311 0 
31132312 0 
31132333 1 
31133112 0 
31133123 0 
31133212 0 
31133233 1 
31133331 1 
31211122 0 
31211132 0 
31211211 0 
31211232 1 
31211312 0 
31212112 1 
31212113 0 
31212132 0 
31212211 0 
31212232 1 
31212321 1 
31212333 1 
31213122 0 
31213223 0 
31213232 1 
31213233 1 
31213323 1 
31213332 1 
31231211 0 
31231311 0 
31231323 0 
31232231 1 
31232312 1 
31232322 0 
31232332 1 
31232333 1 

31233111 0 
31233122 0 
31233133 0 
31233221 1 
31233222 0 
31233233 1 
31233333 1 
31311112 0 
31311122 0 
31311212 0 
31311231 1 
31311233 1 
31311312 0 
31311332 1 
31312212 1 
31312221 1 
31312222 1 
31312231 1 
31312233 1 
31312323 1 
31312332 1 
31312333 1 
31313111 1 
31313123 0 
31313131 1 
31313132 1 
31313133 1 
31313222 0 
31313223 1 
31313232 1 
31313233 1 
31313321 0 
31313333 1 
31331221 0 
31331222 0 
31331223 0 
31331331 1 
31331332 0 
31331333 1 
31332112 0 
31332131 1 
31332132 0 

31332133 1 
31332221 0 
31332232 1 
31332233 1 
31332312 1 
31332322 1 
31332323 1 
31332333 1 
31333112 0 
31333222 0 
31333223 0 
31333232 0 
31333233 1 
31333311 0 
31333322 1 
31333332 1 
31333333 1 
32111112 0 
32111121 0 
32111123 0 
32111211 0 
32111311 0 
32111333 1 
32112212 1 
32112232 0 
32112311 0 
32112321 1 
32113112 0 
32113233 1 
32131133 1 
32131212 0 
32131311 0 
32132211 0 
32132212 0 
32132221 0 
32132232 1 
32132233 1 
32132331 1 
32133111 1 
32133113 0 
32133122 0 
32133212 0 
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32133223 0 
32133232 1 
32133233 1 
32133311 0 
32133312 0 
32133321 0 
32133323 0 
32133331 1 
32211111 0 
32211112 1 
32211133 0 
32211212 0 
32211323 1 
32212111 0 
32212122 0 
32212133 1 
32212231 1 
32212232 1 
32212233 1 
32212311 0 
32212323 1 
32212333 1 
32213123 1 
32213132 1 
32213311 0 
32213312 0 
32213333 1 
32231122 0 
32231222 0 
32231332 0 
32232111 0 
32232133 0 
32232212 0 
32232213 0 
32232221 0 
32232222 0 
32232322 1 
32232331 1 
32232333 1 
32233112 0 
32233122 0 
32233123 0 

32233222 1 
32233232 0 
32233233 0 
32233332 1 
32311131 1 
32311132 0 
32311212 0 
32311221 0 
32311322 1 
32311323 1 
32312212 1 
32312231 1 
32312233 1 
32312311 1 
32312323 1 
32312331 1 
32312332 1 
32312333 1 
32313122 0 
32313133 1 
32313212 0 
32313222 0 
32313231 1 
32313232 1 
32313233 1 
32313313 1 
32313332 1 
32313333 1 
32331111 0 
32331112 0 
32331122 0 
32331132 0 
32331212 0 
32331221 0 
32331222 0 
32331311 0 
32331313 0 
32332111 0 
32332112 0 
32332123 0 
32332133 1 
32332211 0 

32332212 0 
32332222 0 
32332223 1 
32332232 1 
32332323 1 
32332331 1 
32332333 1 
32333122 0 
32333212 0 
32333223 1 
32333232 1 
32333233 1 
32333311 0 
32333312 1 
32333322 0 
32333323 1 
32333333 1 
33111122 0 
33111212 0 
33111222 0 
33111312 0 
33112112 0 
33113111 1 
33113121 0 
33113212 1 
33113223 0 
33113233 1 
33131122 0 
33131123 0 
33131332 0 
33131333 1 
33132222 0 
33132223 0 
33132322 0 
33133121 0 
33133131 1 
33133223 0 
33133233 0 
33133321 0 
33133323 0 
33133332 0 
33133333 1 

33211112 0 
33211211 0 
33211312 0 
33211321 0 
33212213 1 
33212222 0 
33212311 1 
33212312 0 
33212313 0 
33212333 1 
33213112 0 
33213211 1 
33213232 1 
33213333 1 
33231212 0 
33231221 0 
33231312 0 
33231333 0 
33232112 0 
33232122 0 
33232123 0 
33232222 0 
33232223 0 
33232233 1 
33232312 1 
33232322 0 
33232323 0 
33232333 1 
33233112 0 
33233131 1 
33233221 0 
33233222 0 
33233223 0 
33233233 1 
33233323 0 
33233333 1 
33311122 0 
33311223 0 
33311231 1 
33311311 0 
33311312 0 
33311322 0 
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33311332 0 
33312233 0 
33312312 0 
33312322 1 
33312323 0 
33312333 1 
33313122 0 
33313223 0 
33313233 1 
33313311 0 
33313323 1 
33313333 1 

33331122 0 
33331133 0 
33331223 0 
33331232 1 
33331233 1 
33331311 0 
33331321 0 
33331331 0 
33331333 1 
33332112 0 
33332121 0 
33332123 0 

33332131 1 
33332133 1 
33332211 0 
33332221 0 
33332223 0 
33332232 1 
33332233 1 
33332323 1 
33332333 1 
33333133 0 
33333222 0 
33333223 0 

33333231 1 
33333232 1 
33333233 1 
33333311 0 
33333321 0 
33333323 1 
33333332 0 
11111111 1 
22222222 1 
33333333 1 
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Table B-2.  Folding status of 605 beta-lactamase chimeras (M. Meyer, personal 

communication).  Chimeras were scored as folded (= 1) if and only if they conferred 

resistance to ampicillin.  Homologs PSE-4 (Lim et al., 2001), SED-1 (Petrella et al., 

2001), and TEM-1 (Jelsch et al., 1993) are parents 1, 2, and 3, respectively.   The eight 

blocks are defined by crossovers after residues Arg63, Lys71, Thr147, Arg159, Asp174, 

Leu188, and Gly216, numbered from the N-terminus of TEM-1. 

 

11111222 0 
11113312 0 
11121312 0 
11121322 0 
11123212 0 
11123312 0 
11131133 0 
11131333 0 
11132133 0 
11133222 0 
11133322 0 
11211333 0 
11223222 0 
11223333 0 
11233332 0 
11311332 0 
11312312 0 
11312332 0 
11313112 0 
11313133 1 
11313232 0 
11313322 0 
11321132 0 
11323132 0 
11323222 0 
11331212 0 
11331232 0 
11331332 0 

11332133 1 
11332322 0 
11333112 0 
11333212 0 
11333222 0 
11333312 0 
11333322 0 
12123132 0 
12123333 0 
12131323 0 
12133332 0 
12211322 0 
12211332 0 
12211333 0 
12212133 0 
12222322 0 
12233322 0 
12233332 0 
12313233 0 
12313332 0 
12321331 0 
12323132 0 
12323212 0 
12323322 1 
12332222 0 
12332232 0 
13111233 0 
13123332 0 

13131333 0 
13133132 0 
13213312 0 
13223132 0 
13223232 1 
13223332 0 
13233233 0 
13233332 0 
13311112 0 
13311332 0 
13312223 0 
13313212 0 
13313323 0 
13313332 0 
13322333 0 
13323312 0 
13331232 0 
13331333 0 
13332122 0 
13332212 0 
13332222 0 
13332312 0 
13332323 0 
13333112 0 
13333212 0 
13333232 0 
13333233 1 
13333322 0 

13333332 0 
21133332 0 
21211332 0 
21212233 0 
21213332 0 
21233112 0 
21312213 0 
21313132 1 
21313222 1 
21313232 1 
21321132 1 
21322322 1 
21323222 1 
21323232 1 
21332132 1 
21333232 1 
22223322 1 
22233112 0 
22311322 0 
22313222 1 
22313322 1 
22313332 0 
22323122 0 
22332323 0 
22333213 0 
22333232 0 
22333332 0 
22333333 0 
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23132332 0 
23133232 1 
23133323 0 
23212313 0 
23213222 0 
23221332 0 
23222332 0 
23311332 0 
23323212 1 
23331232 1 
23333132 1 
23333222 1 
23333312 0 
31111212 0 
31111333 0 
31112333 1 
31113212 0 
31113312 0 
31113322 0 
31122113 0 
31123133 0 
31133333 1 
31213322 0 
31222322 0 
31233333 0 
31311313 1 
31312233 1 
31313232 0 
31322312 0 
31322333 1 
31323112 0 
31323223 1 
31323332 0 
31331122 0 
31331332 0 
31332112 0 
31332333 1 
31333233 1 
32122333 0 
32123232 0 
32123333 0 
32133233 0 

32133332 0 
32222312 0 
32223333 0 
32311233 0 
32313122 0 
32313222 0 
32321132 0 
32321222 0 
32321333 0 
32323212 0 
32323322 0 
32333322 0 
33113322 0 
33122312 0 
33123332 0 
33133333 0 
33213332 0 
33222333 0 
33223332 0 
33311132 0 
33311233 0 
33312133 1 
33313232 0 
33313312 0 
33313332 0 
33313333 1 
33321113 1 
33321123 1 
33321132 0 
33321312 0 
33321333 1 
33323212 0 
33323232 0 
33333122 0 
32313322 1 
31213332 0 
11112212 0 
11112332 0 
11113232 0 
11121132 0 
11121223 0 
11122212 0 

11131332 0 
11133332 0 
11211132 0 
11212312 0 
11213332 0 
11213333 1 
11221313 0 
11222332 0 
11223312 0 
11223332 0 
11233132 0 
11233312 0 
11311133 1 
11311232 0 
11311322 0 
11313222 0 
11313312 0 
11313332 0 
11313333 1 
11321332 0 
11322312 0 
11323133 0 
11323213 0 
11323232 0 
11323312 0 
11323322 0 
11323332 0 
11331112 0 
11331113 0 
11331312 0 
11332332 0 
11332333 1 
11333132 0 
11333133 1 
11333232 0 
11333332 0 
12113332 0 
12122332 0 
12123232 0 
12123322 0 
12123332 0 
12132322 0 

12133132 0 
12133233 0 
12212233 0 
12212333 0 
12213132 0 
12221232 0 
12223312 0 
12223332 0 
12231212 0 
12233112 0 
12233312 0 
12311122 0 
12311332 0 
12312233 0 
12313132 0 
12313212 0 
12313222 0 
12313232 0 
12313312 0 
12313322 0 
12313323 0 
12321333 0 
12331123 0 
12331313 0 
12332332 0 
12333132 0 
12333312 0 
13122313 0 
13123232 0 
13131212 0 
13132212 0 
13212233 0 
13213332 0 
13221113 0 
13222213 0 
13222233 0 
13231233 0 
13231333 0 
13232332 0 
13232333 0 
13311123 0 
13311132 0 
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13311232 0 
13312132 0 
13313112 0 
13313122 0 
13313312 0 
13313322 0 
13313333 1 
13322233 1 
13331312 0 
13331332 0 
13332232 0 
13332333 1 
13333132 0 
13333323 0 
21133232 0 
21233312 0 
21233332 0 
21311333 0 
21313312 0 
21313322 1 
21313333 0 
21322132 1 
21323322 1 
21323332 1 
21331132 0 
21331232 0 
21331312 0 
21333132 1 
21333222 1 
21333322 1 
21333332 1 
22133132 0 
22311332 0 
22331333 0 
22332312 0 
22333132 0 
23123332 1 
23132322 1 
23133321 0 
23133322 0 
23213112 0 
23223212 0 

23223333 0 
23313332 1 
23322332 1 
23323322 1 
23332222 1 
23332332 1 
23333112 1 
23333212 1 
23333322 1 
23333332 1 
31113232 0 
31123332 0 
31133132 0 
31133332 0 
31211213 0 
31212232 0 
31213333 0 
31222132 1 
31223132 0 
31223133 0 
31223322 0 
31223332 0 
31233122 0 
31233132 0 
31233312 0 
31233322 0 
31311122 0 
31311133 1 
31311222 0 
31311323 0 
31311332 0 
31311333 1 
31312132 0 
31312133 1 
31312333 1 
31313113 1 
31313122 0 
31313132 0 
31313233 1 
31313312 0 
31313333 1 
31322212 0 

31323132 0 
31323232 0 
31323333 1 
31332313 1 
31332322 0 
31333322 0 
31333332 0 
31333333 1 
32111113 0 
32123212 0 
32133232 0 
32213332 0 
32221232 0 
32222233 0 
32222332 0 
32222333 0 
32223322 0 
32223332 0 
32231332 0 
32311122 0 
32311123 0 
32311232 0 
32312312 0 
32312322 0 
32312333 1 
32313132 0 
32313133 1 
32313312 0 
32313332 0 
32313333 1 
32321223 0 
32322132 0 
32322322 0 
32322332 0 
32322333 0 
32323122 0 
32323222 0 
32323332 0 
32331312 0 
32331333 0 
32333332 0 
33123322 0 

33222232 0 
33223312 0 
33223323 0 
33311133 1 
33311312 0 
33311313 1 
33311332 0 
33313122 0 
33313322 0 
33322313 0 
33322333 1 
33323112 0 
33323312 0 
33323322 0 
33332312 0 
33332333 1 
33333212 0 
33333232 0 
33333332 0 
12333332 0 
31313332 0 
11121333 0 
11122332 0 
11132333 0 
11221322 0 
11221333 0 
11222233 0 
11231132 0 
11232332 0 
11233333 0 
11311333 0 
11312331 1 
11312333 0 
11313331 1 
11321333 0 
11322332 0 
11323333 0 
11331133 0 
11331331 1 
11331333 0 
11332131 0 
11332132 0 
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11332331 1 
11333231 1 
11333333 1 
12121333 0 
12122333 0 
12131333 0 
12212331 0 
12231333 0 
12232333 0 
12311131 0 
12311133 0 
12311233 0 
12311333 0 
12312131 1 
12312132 0 
12312331 0 
12322333 0 
12331333 0 
12332131 1 
12332331 0 
12332333 0 
12333121 1 
13132333 0 
13133332 0 
13133333 0 
13221132 0 
13231223 0 
13231332 0 
13233333 1 
13311323 0 
13311331 0 
13311333 1 
13312131 0 
13312312 0 
13312333 1 
13321331 0 
13331231 0 
13331331 0 
13332133 0 
13332233 1 

13333333 1 
21131331 0 
21231331 0 
21231332 0 
21232333 0 
21311311 0 
21312331 0 
21331321 0 
21331331 0 
21332133 0 
21332232 1 
21332313 0 
21332332 1 
21332333 0 
22113332 0 
22122332 0 
22131333 0 
22222333 0 
22232333 0 
22311333 0 
22312333 0 
22332321 1 
22332331 0 
22332332 0 
22333323 0 
23221333 0 
23222333 0 
23312332 1 
23321122 1 
23332131 0 
31121213 0 
31121332 0 
31123333 0 
31212332 0 
31231312 0 
31232333 0 
31311312 0 
31312332 0 
31321332 0 
31323233 1 

31331132 0 
31331313 1 
31331333 1 
31332233 1 
32122332 0 
32221332 0 
32312332 0 
32313232 0 
32322331 0 
32332233 1 
33121323 0 
33131331 0 
33211213 0 
33222133 0 
33222332 0 
33231133 0 
33311333 1 
33312333 1 
33313133 1 
33322332 0 
33331333 1 
33332233 1 
33332331 0 
33333333 1 
11322331 0 
11312133 1 
11331231 1 
11332231 1 
11332233 1 
11333233 1 
11333331 1 
13311133 1 
13312133 1 
13313133 1 
13321233 1 
13322332 1 
21312132 1 
21312332 1 
21313332 1 
21331333 1 

21332222 1 
21333122 1 
22222222 1 
22313312 1 
23132333 1 
23313112 1 
23313132 1 
23313232 1 
23313322 1 
23321232 1 
23322222 1 
23323222 1 
23323232 1 
23323332 1 
23331222 1 
23332212 1 
23332232 1 
23333122 1 
23333232 1 
33323333 1 
31113333 1 
31311233 1 
31311331 1 
31313112 1 
31313133 1 
32213312 1 
32311133 1 
32321233 1 
32322233 1 
32333333 1 
33312213 1 
33312233 1 
33312312 1 
33313233 1 
33322233 1 
33331233 1 
11111111 1 



118 

 References 

 
Adami, C. (2004) Information theory in molecular biology. Phys. Life Rev. 1, 3-22. 
Agresti, A. (2002) Categorical Data Analysis. 2nd ed, John Wiley & Sons, Hoboken. 
Aloy, P., Stark, A., Hadley, S. & Russell, R. B. (2003) Predictions without templates: 

New folds, secondary structure, and contacts in CASP5. Proteins 53, 436-456. 
Arnold, F. H., Ed. (2000) Evolutionary Protein Design. Vol. 55. Adv. Protein Chem. 

Academic Press, San Diego. 
Atchley, W. R., Wollenberg, K. R., Fitch, W. M., Terhalle, W. & Dress, A. W. (2000) 

Correlations among amino acid sites in bHLH protein domains: An information 
theoretic analysis. Mol. Biol. Evol. 17, 164-178. 

Bernstein, S. & Bernstein, R. (1999) Elements of Statistics II: Inferential Statistics. 
Schaum's Outline Series, McGraw-Hill, New York. 

Bloom, J. D., Silberg, J. J., Wilke, C. O., Drummond, D. A., Adami, C. & Arnold, F. H. 
(2005) Thermodynamic prediction of protein neutrality. Proc. Natl. Acad. Sci. 
USA 102, 606-611. 

Boyd, S. & Vandenberghe, L. (2004) Convex Optimization, Cambridge University Press, 
Cambridge. 

Bui, T. N. & Jones, C. (1992) Finding good approximate vertex and edge partitions is 
NP-hard. Inf. Process. Lett. 42, 153-159. 

Chen, J. M. & Stites, W. E. (2001) Higher-order packing interactions in triple and 
quadruple mutants of staphylococcal nuclease. Biochemistry 40, 14012-14019. 

Cid, H., Bunster, M., Canales, M. & Gazitua, F. (1992) Hydrophobicity and structural 
classes in proteins. Protein Eng. 5, 373-375. 

Crameri, A., Raillard, S.-A., Bermudez, E. & Stemmer, W. P. C. (1998) DNA shuffling 
of a family of genes from diverse species accelerates directed evolution. Nature 
391, 288-291. 

Czyzyk, J., Mesnier, M. & More, J. (1998) The NEOS Server. IEEE J. Comp. Sci. Eng. 5, 
68-75. 

Dahiyat, B. I. & Mayo, S. L. (1996) Protein design automation. Protein Sci. 5, 895-903. 
Daugherty, P. S., Chen, G., Iverson, B. L. & Georgiou, G. (2000) Quantitative analysis of 

the effect of the mutation frequency on the affinity maturation of single chain Fv 
antibodies. Proc. Natl. Acad. Sci. USA 97, 2029-2034. 

DeGrado, W. F. (2001) Introduction: Protein Design. Chem. Rev. 101, 3025-3026. 
Drummond, D. A., Silberg, J. J., Wilke, C. O., Meyer, M. M. & Arnold, F. H. (2005) On 

the conservative nature of intragenic recombination. Proc. Natl. Acad. Sci. USA 
102, 5380-5385. 

Fodor, A. A. & Aldrich, R. W. (2004) Influence of conservation on calculations of amino 
acid covariance in multiple sequence alignments. Proteins 56, 211-221. 



119 

Gilis, D. & Rooman, M. (1997) Predicting protein stability changes upon mutation using 
database-derived potentials: Solvent accessibility determines the importance of 
local versus non-local interactions along the sequence. J. Mol. Biol. 272, 
276-290. 

Gilis, D. (2004) Protein decoy sets for evaluating energy functions. J. Biomol. Struct. 
Dyn. 21, 725-735. 

Gobel, U., Sander, C., Schneider, R. & Valencia, A. (1994) Correlated mutations and 
residue contacts in proteins. Proteins 18, 309-317. 

Goldstein, R. F. (1994) Efficient rotamer elimination applied to protein side-chains and 
related spin-glasses. Biophys. J. 66, 1335-1340. 

Gordon, D. B., Marshall, S. A. & Mayo, S. L. (1999) Energy functions for protein design. 
Curr. Opin. Struct. Biol. 9, 509-513. 

Guex, N. & Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-Pdb Viewer: An 
environment for comparative protein modeling. Electrophoresis 18, 2714-2723. 

Guo, H. H., Choe, J. & Loeb, L. A. (2004) Protein tolerance to random amino acid 
change. Proc. Natl. Acad. Sci. USA 101, 9205-9210. 

Haines, D. C., Tomchick, D. R., Machius, M. & Peterson, J. A. (2001) Pivotal role of 
water in the mechanism of P450BM-3. Biochemistry 40, 13456-13465. 

Hayes, R. J., Bentzien, J., Ary, M. L., Hwang, M. Y., Jacinto, J. M., Vielmetter, J., 
Kundu, A. & Dahiyat, B. I. (2002) Combining computational and experimental 
screening for rapid optimization of protein properties. Proc. Natl. Acad. Sci. USA 
99, 15926-15931. 

Hellinga, H. W. & Richards, F. M. (1991) Construction of new ligand binding sites in 
proteins of known structure. J. Mol. Biol. 222, 763-785. 

Hiraga, K. & Arnold, F. H. (2003) General method for sequence-independent site-
directed chimeragenesis. J. Mol. Biol. 330, 287-296. 

Hochbaum, D. S., Ed. (1997) Approximation Algorithms for NP-hard Problems. PWS, 
Boston. 

Hosmer, D. W. & Lemeshow, S. (2000) Applied Logistic Regression, John Wiley and 
Sons, New York. 

Huang, W. Z., Petrosino, J., Hirsch, M., Shenkin, P. S. & Palzkill, T. (1996) Amino acid 
sequence determinants of beta-lactamase structure and activity. J. Mol. Biol. 258, 
688-703. 

Jelsch, C., Mourey, L., Masson, J. M. & Samama, J. P. (1993) Crystal structure of 
Escherichia coli TEM1 beta-lactamase at 1.8 Å resolution. Proteins 16, 364-383. 

Kass, I. & Horovitz, A. (2002) Mapping pathways of allosteric communication in GroEL 
by analysis of correlated mutations. Proteins 48, 611-617. 

Kawashima, S., Ogata, H. & Kanehisa, M. (1999) AAindex: Amino Acid Index 
Database. Nucleic Acids Res. 27, 368-369. 

Khatun, J., Khare, S. D. & Dokholyan, N. V. (2004) Can contact potentials reliably 
predict stability of proteins? J. Mol. Biol. 336, 1223-1238. 

Klein, P., Kanehisa, M. & Delisi, C. (1984) Prediction of protein function from sequence 
properties: Discriminant analysis of a database. Biochim. Biophys. Acta 787, 
221-226. 



120 

Korte, B. & Vygen, J. (2002) Combinatorial Optimization: Theory and Algorithms, 
Springer, Berlin. 

Krigbaum, W. R. & Komoriya, A. (1979) Local interactions as a structure determinant 
for protein molecules .2. Biochim. Biophys. Acta 576, 204-228. 

Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L. & Baker, D. (2003) 
Design of a novel globular protein fold with atomic-level accuracy. Science 302, 
1364-1368. 

Larson, S. M., Di Nardo, A. A. & Davidson, A. R. (2000) Analysis of covariation in an 
SH3 domain sequence alignment. J. Mol. Biol. 303, 433-446. 

Lawler, E. (1976) Combinatorial Optimization: Networks and Matroids, Holt, Rinehart & 
Winston, New York. 

Lazaridis, T. & Karplus, M. (2000) Effective energy functions for protein structure 
prediction. Curr. Opin. Struct. Biol. 10, 139-145. 

Li, H. Y. & Poulos, T. L. (1997) The structure of the cytochrome p450BM-3 haem 
domain complexed with the fatty acid substrate, palmitoleic acid. Nat. Struct. 
Biol. 4, 140-146. 

Lim, D., Sanschagrin, F., Passmore, L., De Castro, L., Levesque, R. C. & Strynadka, N. 
C. (2001) Insights into the molecular basis for the carbenicillinase activity of 
PSE-4 β-lactamase from crystallographic and kinetic studies. Biochemistry 40, 
395-402. 

Lockless, S. W. & Ranganathan, R. (1999) Evolutionarily conserved pathways of 
energetic connectivity in protein families. Science 286, 295-299. 

Looger, L. L., Dwyer, M. A., Smith, J. J. & Hellinga, H. W. (2003) Computational design 
of receptor and sensor proteins with novel functions. Nature 423, 185-190. 

Matagne, A., Lamotte-Brasseur, J. & Frere, J. M. (1998) Catalytic properties of class A 
beta-lactamases: efficiency and diversity. Biochem. J. 330, 581-598. 

McCullagh, P. & Nelder, J. A. (1989) Generalized Linear Models. 2nd ed, Chapman & 
Hall, New York. 

Menard, S. (2002) Applied Logistic Regression Analysis. Quantitative Applications in the 
Social Sciences (Lewis-Beck, M. S., Ed.), Sage, Thousand Oaks. 

Mendes, J., Guerois, R. & Serrano, L. (2002) Energy estimation in protein design. Curr. 
Opin. Struct. Biol. 12, 441-446. 

Meyer, M. M., Silberg, J. J., Voigt, C. A., Endelman, J. B., Mayo, S. L., Wang, Z.-G. & 
Arnold, F. H. (2003) Library analysis of SCHEMA-guided protein recombination. 
Protein Sci. 12, 1686-1693. 

Miyazawa, S. & Jernigan, R. L. (1996) Residue-residue potentials with a favorable 
contact pair term and an unfavorable high packing density term, for simulation 
and threading. J. Mol. Biol. 256, 623-644. 

Mooers, B. H. M., Datta, D., Baase, W. A., Zollars, E. S., Mayo, S. L. & Matthews, B. 
W. (2003) Repacking the core of T4 lysozyme by automated design. J. Mol. Biol. 
332, 741-756. 

Moore, G. L. & Maranas, C. D. (2004) Computational challenges in combinatorial library 
design for protein engineering. AIChE J. 50, 262-272. 

Nelson, D. (2005) http://drnelson.utmem.edu/CytochromeP450.html. 



121 

Ostermeier, M., Shim, J. & Benkovic, S. J. (1999) A combinatorial approach to hybrid 
enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205-1209. 

Ostermeier, M. (2003) Synthetic gene libraries: in search of the optimal diversity. Trends 
Biotechnol. 21, 244-247. 

Otey, C. R. (2003) High-throughput carbon monoxide binding assay for cytochromres 
P450. In Directed Enzyme Evolution: Screening and Selection Methods (Arnold, 
F. H. & Georgiou, G., eds.), Vol. 230, pp. 137-139. Humana Press, Totowa. 

Otey, C. R., Silberg, J. J., Voigt, C. A., Endelman, J. B., Bandara, G. & Arnold, F. H. 
(2004) Functional evolution and structural conservation in chimeric cytochromes 
P450: Calibrating a structure-guided approach. Chem. Biol. 11, 309-318. 

Papadimitriou, C. H. (1994) Computational Complexity, Addison-Wesley, Reading. 
Papadimitriou, C. H. & Steiglitz, K. (1998) Combinatorial Optimization: Algorithms and 

Complexity, Dover, Mineola. 
Petrella, S., Clermont, D., Casin, I., Jarlier, V. & Sougakoff, W. (2001) Novel class A 

beta-lactamase SED-1 from Citrobacter sedlakii: Genetic diversity of beta-
lactamases within the Citrobacter genus. Antimicrob. Agents Chemother. 45, 
2287-2298. 

Pierce, N. A., Spriet, J. A., Desmet, J. & Mayo, S. L. (2000) Conformational splitting: A 
more powerful criterion for dead-end elimination. J. Comput. Chem. 21, 
999-1009. 

Pierce, N. A. & Winfree, E. (2002) Protein design is NP-hard. Protein Eng. 15, 779-782. 
Plaxco, K. W., Simons, K. T. & Baker, D. (1998) Contact order, transition state 

placement, and the refolding rates of single domain proteins. J. Mol. Biol. 277, 
985-994. 

Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A. & Deisenhofer, 
J. (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for 
microsomal P450's. Science 261, 731-736. 

Russ, W. P. & Ranganathan, R. (2002) Knowledge-based potential functions in protein 
design. Curr. Opin. Struct. Biol. 12, 447-452. 

Saraf, M. C. & Maranas, C. D. (2003) Using a residue clash map to functionally 
characterize protein recombination hybrids. Protein Eng. 16, 1025-1034. 

Saraf, M. C., Moore, G. L. & Maranas, C. D. (2003) Using multiple sequence correlation 
analysis to characterize functionally important protein regions. Protein Eng. 16, 
397-406. 

Saraf, M. C., Horswill, A. R., Benkovic, S. J. & Maranas, C. D. (2004) FamClash: A 
method for ranking the activity of engineered enzymes. Proc. Natl. Acad. Sci. 
USA 101, 4142-4147. 

Saraf, M. C., Gupta, A. & Maranas, C. D. (2005) Design of combinatorial protein 
libraries of optimal size. Proteins (in press). 

Saunders, C. T. & Baker, D. (2002) Evaluation of structural and evolutionary 
contributions to deleterious mutation prediction. J. Mol. Biol. 322, 891-901. 

Silberg, J. J., Endelman, J. B. & Arnold, F. H. (2004) SCHEMA-guided protein 
recombination. Methods Enzymol. 388, 35-42. 

Sipser, M. (1997) Introduction to the Theory of Computation, PWS, Boston. 



122 

Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 
370, 389-391. 

Stevenson, J. D. & Benkovic, S. J. (2002) Combinatorial approaches to engineering 
hybrid enzymes. J. Chem. Soc., Perkin Trans. 2 9, 1483-1493. 

Suel, G. M., Lockless, S. W., Wall, M. A. & Ranganathan, R. (2003) Evolutionarily 
conserved networks of residues mediate allosteric communication in proteins. 
Nat. Struct. Biol. 10, 59-69. 

Thomas, D. J., Casari, G. & Sander, C. (1996) The prediction of protein contacts from 
multiple sequence alignments. Protein Eng. 9, 941-948. 

Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) CLUSTALW: Improving the 
sensitivity of progressive multiple sequence alignment through sequence 
weighting, position-specific gap penalties and weight matrix choice. Nucleic 
Acids Res. 22, 4673-4680. 

Vendruscolo, M. & Domany, E. (1998) Pairwise contact potentials are unsuitable for 
protein folding. J. Chem. Phys. 109, 11101-11108. 

Voigt, C. A., Kauffman, S. & Wang, Z.-G. (2001a) Rational evolutionary design: The 
theory of in vitro protein evolution. Adv. Protein Chem. 55, 79-160. 

Voigt, C. A., Mayo, S. L., Arnold, F. H. & Wang, Z.-G. (2001b) Computational method 
to reduce the search space for directed protein evolution. Proc. Natl. Acad. Sci. 
USA 98, 3778-3783. 

Voigt, C. A. (2002) Computationally optimizing the directed evolution of proteins. Ph.D. 
thesis, California Institute of Technology. 

Voigt, C. A., Martinez, C., Wang, Z.-G., Mayo, S. L. & Arnold, F. H. (2002) Protein 
building blocks preserved by recombination. Nat. Struct. Biol. 9, 553-558. 

Wintrode, P. L. & Arnold, P. H. (2001) Temperature adaptation of enzymes: Lessons 
from laboratory evolution. Adv. Protein Chem. 55, 161-225. 

Zaccolo, M. & Gherardi, E. (1999) The effect of high-frequency random mutagenesis on 
in vitro protein evolution: A study on TEM-1 β-lactamase. J. Mol. Biol. 285, 
775-783. 

 
 




