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Abstract

The invention of turbo codes and low density parity check (LDPC) codes has made

it possible for us for design error correcting codes with low decoding complexity and

rates close to channel capacity. However, such codes have been studied in detail only

for the most basic communication system, in which a single transmitter sends data

to a single receiver over a channel whose statistics are known to both the transmitter

and the receiver. Such a simplistic model is not valid in the case of a wireless network,

where multiple transmitters might want to communicate with multiple receivers at

the same time over a channel which can vary rapidly.

While the design of efficient error correction codes for a general wireless network

is an extremely hard problem, it should be possible to design such codes for several

important special cases. This thesis takes a few steps in that direction. We analyze

the performance of low density parity check codes under iterative decoding in certain

simple networks and prove Shannon-theoretic results for more complex networks.

More specifically, we analyze the iterative decoding algorithm in two very impor-

tant special cases: (a) when the transmitter and receiver have no prior knowledge of

the channel and (b) when the channel is a multiple access channel. We also apply

iterative decoding to some non-LDPC codes on the binary symmetric channel and

the additive white Gaussian noise channel. Finally, we derive capacity results for a

class of wireless multicast networks and a class of fading channels.
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Chapter 1 Introduction

Digital communications technology has had an unrivaled impact on society over the

course of the last few decades. With applications ranging from sophisticated military

satellites and NASA’s Mars Rovers to the ubiquitous Internet and cell phones used

every day by billions of people, digital communications systems have altered almost

every aspect of our lives. Yet, none of these systems would exist today were it not

for Claude Shannon and his seminal paper, “The mathematical theory of communi-

cation” [71].

In this paper, originally published in 1948, Shannon gave the first quantitative

definition of information, thereby creating the field of information theory. Shannon

also proved that reliable communication of information over inherently unreliable

channels is feasible. This means that even though a transmitter sends a message over

a channel that corrupts or destroys part of the transmitted signal, the receiver can

figure out precisely what message was sent. This counter-intuitive result, known as the

“channel coding theorem,” also tells us that such reliable communication is possible

if and only if the information transmission rate R (measured in bits per channel use)

is less than a threshold known as the “channel capacity” C (also measured in bits per

channel use).

Shannon proposed the use of “channel codes” to construct such a reliable commu-

nication system. Let us suppose that a transmitter needs to send k bits of information

to a receiver. If the transmitter sends these k bits directly over a noisy channel, some

(or all) of these k bits would be corrupted by the time they reach the receiver. So

the transmitter “encodes” the k bits into n > k bits using a “channel code,” thereby

introducing n − k redundant bits. It then transmits the n bits over the noisy chan-
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nel. Even though these n bits are corrupted by the time they reach the receiver, the

receiver can use the redundant bits to try to figure out (or “decode”) the original k

bits.

Shannon showed that as k → ∞, with a judicious choice of the channel code, the

receiver can almost surely infer what the transmitter sent. Moreover, the rate of the

code R
4
= k/n can be made arbitrarily close to the channel capacity C. Unfortunately,

Shannon’s choice for the channel code is impossible to implement in practical systems,

because the computational complexity of the decoder is unacceptably high. This led

to one of the most important problems in information theory viz., to find practical

channel codes whose rates are close to the channel capacity.

This problem proved to be extremely hard to solve. Even though information

theorists constructed a wide variety of practical channel codes, none of these codes

had rates close to channel capacity. It was only in 1993 that Berrou, Glavieux and

Thitimajshima [5] developed “turbo codes,” the first practical codes that had rates

close to capacity. This breakthrough revolutionized the field of channel coding and

led to the development of low density parity check (LDPC) codes [22, 45, 66], which

are state-of-the-art codes that have near-capacity performance on many important

practical channels.

The rest of this chapter is devoted to brief descriptions of the channel coding

theorem and LDPC codes. These descriptions are vital to understanding this thesis,

for all results presented in this thesis are either channel capacity computations or

analyses of the performance of LDPC codes on various channels. In Section 1.1, we

define channel capacity and channel codes, and give examples of important channel

models. In Section 1.2, we review low density parity check codes and the iterative

algorithm used to decode them. In Section 1.3, we describe the motivation for this

thesis and give a brief outline of the succeeding chapters.
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X YU U’ChannelTransmitter Receiver

Figure 1.1: A canonical communication system.

1.1 Basics of channel coding

1.1.1 Channel capacity

A canonical model of a single transmitter, single receiver communication system,

originally studied by Shannon, is shown in Figure 1.1. The objective is to send a

sequence of symbols U
4
= (U1, U2, ..., Uk) across the noisy channel. To do this, the

transmitter maps (or encodes) U to another sequence of bits X
4
= (X1, X2, ..., Xn),

which it then transmits over the channel. The receiver sees a string of corrupted

output symbols Y
4
= (Y1, Y2, ..., Yn) where Y depends on X via a probability density

function (pdf) pY|X(y|x). The receiver then estimates (or decodes) U based on Y.

Definition 1.1 A channel is called memoryless if the channel output at any time

instant depends only on the input at that time instant. Mathematically, this means

that pY|X(y|x) =
∏n

i=1 pY |X(yi|xi). In this case, the channel is completely described

by its input and output alphabets, and the conditional pdf pY |X(y|x) for one time

instant.

If each Xi is chosen independently and identically distributed (i.i.d.) according to a

pdf pX(x), then the Yi’s are also i.i.d., with the pdf pY (y) given by

pY (y) =

∫

X

pX(x)pY |X(y|x)dx (1.1)
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Definition 1.2 The mutual information between the random variables X and Y ,

denoted by I(X; Y ) is defined as

I(X; Y ) =

∫

X,Y

p(x)p(y|x) log2

(

p(y|x)

p(y)

)

dx dy (1.2)

The mutual information between X and Y is a quantitative measure of what the

knowledge of Y can tell us about X (and vice versa).

Definition 1.3 The capacity of a memoryless channel specified by pY |X(y|x) is

C = sup
pX(x)

I(X; Y ) (1.3)

Intuitively, C is the maximum of amount of information that can be learnt about X

from Y and hence is a measure of the maximum rate R at which information can

be reliably transmitted across the channel. Shannon rigorously showed this was the

case [10, 71], i.e., error free transmission was possible at rates R < C and impossible

at rates R > C, where R and C are both measured in bits per channel use.

1.1.2 Channel models

In this thesis, we focus on binary input symmetric channels (BISCs) viz., channels

with the input X chosen from a binary input alphabet and the output symmetric

in the input. We interchangeably use the sets {0, 1} and {+1,−1} for the input

alphabet with 0 mapping to +1 and 1 to −1. The symmetry condition implies that

pY |X(y| + 1) = pY |X(−y| − 1). We now present three of the most important BISCs,

which arise in many communication systems.

Example 1.1 (The binary erasure channel (BEC)) This channel, with param-

eter p, has input alphabet {+1,−1} and output alphabet {+1, 0,−1}. The output

symbol 0 is also called an erasure. The output is equal to the input with probability
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1− p and is 0 with probability p. p is called the probability of erasure. This channel

is arguably the simplest nontrivial channel model, and has capacity 1 − p.

Example 1.2 (The binary symmetric channel (BSC)) This is a binary-input,

binary-output channel with parameter p. To view it as a BISC, it is convenient to

let the input and output alphabets be {+1,−1}. Then the output is equal to the

input with probability 1− p, and is the negative of the input with probability p. p is

called the crossover probability of the channel. The capacity of this channel is given

by 1 − H(p), where H(p) is the entropy function −p log2 p − (1 − p) log2(1 − p).

Example 1.3 (The binary input additive white Gaussian noise channel (BI-

AWGNC)) The binary input additive white Gaussian noise channel has inputs X re-

stricted to inputs +1 and -1. The output Y is a random variable given by Y = X+N ,

where N is a Gaussian random variable with mean zero and variance σ2. The capacity

of the AWGNC is given by

C = 1 − 1√
2πσ2

∫

R

H

(

1

1 + e2x/σ2

)

e
(x−1)2

2σ2 dx (1.4)

where H(·) is again the entropy function. It is customary to express the capacity of

a BIAWGNC in terms of its signal-to-noise ratio (SNR) defined as

Es

N0
= 10 log10

(

1

2σ2

)

dB

Eb

N0

= 10 log10

(

1

2Cσ2

)

dB (1.5)

Here Es/N0 denotes the SNR per transmitted bit and Eb/N0 denotes the SNR per

information bit. SNR is typically measured in deciBels (dB).
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1.1.3 Channel codes

A channel code is defined as a mapping from a set of messages M = {1, 2, ..., M} to

a set of codewords, which are vectors of length n over some alphabet A. n is called

the blocklength of the code and log2 M its dimension.

The most common channel codes are binary codes in which the alphabet A =

{0, 1} and M = 2k for some k. In such a case, we refer to the code as a (n, k) code.

The rate R of the code is defined as k/n. A binary code can also be thought of as a

mapping from {0, 1}k to {0, 1}n. In other words, a channel code maps a k-bit message

to an n-bit codeword. Most practical channel codes have n > k, which means that

n − k redundant bits are added to the message. It is this redundancy that helps in

error correction.

Often, we need to impose additional structure on the codes to make them easier

to design, analyze and implement. Most practical codes in use today are linear codes.

Definition 1.4 An (n, k) linear code over the binary field GF (2) is a k-dimensional

vector subspace of GF (2)n.

Linear codes have several nice properties, for example, they look exactly the same

around any codeword. That is, if C is a linear code and c ∈ C is a codeword, then

the set C − c is identical to C. Also, in order to describe a linear code, we don’t have

to list all its elements, but merely a basis. Such a description is called a generator

matrix representation.

Definition 1.5 A generator matrix for an (n, k) linear code C is a k × n matrix G

whose rows form a basis for C. As u varies over the space GF (2)k, uG varies over

the set of codewords. Thus, the matrix G provides a simple encoding mechanism for

the code.

Another useful representation of a linear code is a parity-check matrix representation.
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Definition 1.6 A parity-check matrix (PCM) for an (n, k) linear code C is an (n −

k) × n matrix H whose rows form a basis for the space of vectors orthogonal to C.

That is, H is a full rank matrix s.t. Hc = 0 ⇐⇒ c ∈ C.

The parity check matrix representation can be represented graphically using a bipar-

tite graph called a Tanner graph. Each row i of the PCM corresponds to a check

node, and each column j to a variable node. There is an edge between check node i

and variable node j if and only if Hij = 1.

Definition 1.7 The Hamming distance between two vectors is the number of compo-

nents in which they differ. The minimum distance of a code is the smallest Hamming

distance between two distinct codewords. For a linear code, this is the same as the

least weight of any nonzero codeword.

1.1.4 Capacity achieving codes

Even for moderately large k, there are a very large number of channel codes. Finding

capacity achieving codes, informally defined as codes with low probability of error and

rates close to channel capacity, from this large set of codes seems like a computation-

ally impossible task. However, Shannon showed that the ensemble of random codes

can achieve capacity as k → ∞ [10]. A random code is one in which each message

is mapped to a codeword picked randomly according to a uniform distribution on

{0, 1}n. It can also be shown that the ensemble of random linear codes can achieve

capacity on any BISC. In a random linear code, each of the n codeword bits is gen-

erated by taking a random linear combination of the k data bits. In other words,

each element of the generator matrix G (or the parity check matrix H) is chosen i.i.d.

according to the distribution Pr(0) = Pr(1) = 1/2.

The fact that a code constructed randomly can achieve capacity might lead one

to believe that the channel coding problem is easy to solve. Unfortunately, random
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codes and random linear codes can achieve capacity under maximum-likelihood (ML)

decoding, an algorithm whose complexity grows exponentially in k. Given the received

sequence Y, the ML-decoder searches the entire codeword space (consisting of 2k

words) and outputs

x̂ = arg max
x∈C

pY|X(y|x). (1.6)

Clearly, the ML-decoder is optimal in the sense that it minimizes the word error rate

(WER), which is the probability x̂ is not the same as the transmitted codeword. ML-

decoders are hard to implement for most codes since ML-decoding typically involves

computing pY|X(y|x) for all 2k codewords. It must be noted here that there are

classes of codes which can be ML-decoded in polynomial time. An example would be

convolutional codes [17], whose ML-decoding algorithm is the Viterbi algorithm [81]

whose complexity is linear in the length of the code. However, practical convolutional

codes are not capacity achieving.

1.2 Low density parity check codes

The high complexity associated with ML-decoding of random linear codes creates

the need for capacity-achieving codes with efficient decoding algorithms. Such codes

could not be found despite the invention of a large number of code families [53, 82]

with efficient decoding algorithms. The situation changed in 1993 with invention of

turbo codes [5], which led to the design of capacity-achieving low density parity check

(LDPC) codes. We will now describe the structure of these codes and their decoding

algorithms.

As their name suggests, low density parity check codes, originally invented by

Gallager [22], have sparse parity check matrices. Informally, this means that the

number of ones in any row or column of the parity check matrix is small. An LDPC

code has O(1) ones per row in contrast to a typical random linear code, which has
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Left degree = 3
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Figure 1.2: Tanner graph of (3, 6)-regular LDPC code.

around n/2 or O(n) ones per row. This means that each variable node in the Tanner

graph of an LDPC code is connected to O(1) check nodes, and each check node is

connected to O(1) variable nodes.

The simplest kind of LDPC codes are regular LDPC codes. In a (dv, dc)-regular

LDPC code, each variable node is connected to exactly dv check nodes and each check

node is connected to exactly dc variable nodes. The connections between the variable

nodes and check nodes are generally chosen at random. For large n, the rate of such

a code is 1−dv/dc. Figure 1.2 shows the Tanner graph of a (3, 6)-regular LDPC code.

1.2.1 Degree distributions

A more general class of LDPC codes are irregular LDPC codes. In an irregular LDPC

code, different nodes may have different connectivities. For example, half the variable

nodes may be connected to two check nodes each, a quarter to three check nodes each,

and the remaining quarter to eight check nodes. The variable node degree distribution

of such a code is specified by the polynomial ν(x) = 0.5x2 + 0.25x3 + 0.25x8. The

check node degree distribution µ(x) is similarly defined. For a regular LDPC code,
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ν(x) = xdv and µ(x) = xdc .

We can also define the edge degree distributions λ(x) and ρ(x).

λ(x) =
ν

′

(x)

ν ′(1)

ρ(x) =
µ

′

(x)

µ′(1)
(1.7)

For the (3,6)-LDPC code, λ(x) = x2 and ρ(x) = x5. λ(x) = x2 means that an edge

has two neighboring edges at the variable node side, i.e., two edges connected to the

same variable node. Similarly, ρ(x) = x5 means that five neighboring edges at the

check node side. For an irregular LDPC code, the polynomials λ(x) and ρ(x) specify

probability distributions on edge connectivities. Edge distribution polynomials are

more useful in analyzing code performance than node distribution polynomials. This

is because of the nature of the algorithm used to decode LDPC codes.

1.2.2 Iterative decoding

The iterative decoding algorithm used to decode LDPC codes, called the sum-product

algorithm, is a completely distributed algorithm with each node acting as an indepen-

dent entity communicating with other nodes through the edges. The message sent

by a variable node to a check node is its estimate of its own value. Typically the

messages are sent in log-likelihood ratio (LLR) form. The LLR of any bit is defined as

log(Pr(bit = 0)/Pr(bit = 1)). The message sent by a check node to a variable node

is the check node’s estimate of the variable node’s value.

At a variable node of degree j, if l1, l2, . . . , lj−1 denote the incoming LLRs along

j−1 edges, and l0 the LLR corresponding to the channel evidence, then the outgoing

LLR lout along the jth edge is merely the maximum a posteriori (MAP) estimate of

the underlying binary random variable given j independent estimates of it, and is
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given by

lout = l0 +

j−1
∑

i=1

li. (1.8)

At a check node, the situation is similar, though the update rule is more complicated.

If l1, l2, . . . , lk−1 denote the incoming LLR’s at a check node of degree k, then the

outgoing LLR lk along the kth edge corresponds to the pdf of the binary sum of j−1

independent random variables, and works out to be

tanh(lout/2) =

k−1
∏

i=1

tanh(li/2). (1.9)

(For a derivation of eqs. (1.8) and (1.9), see [66, Section 3.2].)

Given these update rules, we only need a schedule for updating the various mes-

sages to complete the description of the decoding algorithm, but this schedule varies

from code to code, and sometimes there are many reasonable schedules even for a

single code. There is one canonical schedule, however, which is to update all variable

nodes together, followed by all check nodes, followed again by the variable nodes etc.

In practice, for this algorithm to work well, a Tanner graph should have few short

cycles. This is true in the case of LDPC codes, but is not true for general linear codes.

We do not describe the theory behind the sum-product algorithm, for it is beyond

the scope of this thesis. However, we must mention that it has been studied exten-

sively in the literature. For example, McEliece et al. showed that the sum-product

algorithm was an instance [3, 54] of a more general algorithm known as belief propa-

gation [63], which is widely used in the artificial intelligence community. Luby et al.

analyzed the performance of LDPC codes at infinite blocklengths on the BEC [45].

This analysis, known as density evolution, was later extended to other channels by

Richardson et al. [66]. More recently, Yedidia et al. explored the connections between

belief propagation and free energy approximations in statistical physics [85].
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1.2.3 Capacity achieving distributions

Since a message is passed along each edge in every iteration of the sum-product

algorithm, the complexity of decoding (per iteration) is proportional to the number

of edges in the Tanner graph. Since the graph is sparse, the number of edges and

thus the decoding complexity (per iteration) grow linearly in n. This allows for the

decoding of codes with very high blocklengths. Therefore, all that remains to be done

is the design of LDPC codes which can achieve capacity under iterative decoding.

It can be shown using density evolution analysis [45, 66] that such design is indeed

feasible. The proof consists of three main steps. Firstly, it can be shown that the

performance of an ensemble of LDPC codes depends only on its degree distribution

in the limit of infinite blocklength. This is not hard to understand because the

connections between the variable nodes and check nodes are chosen at random. The

second step is show that an ensemble has a threshold channel parameter. For example,

codes designed using the (3, 6)-regular distribution have a threshold of p = 0.429 on

the BEC. This means that the average bit error rate of the code ensemble approaches

zero as n → ∞ when the codes are used on a BEC with probability of erasure less than

0.429. For comparison, a capacity-achieving random linear code under ML-decoding

has a threshold of p = 0.5. This means that the (3, 6)-code ensemble is not capacity

achieving.

The third and hardest part of the proof is demonstrating the existence of degree

distributions with thresholds approaching channel capacity. Luby et al. proved that

this is the case for any BEC [45], i.e., at any given rate R, there exists a sequence

of irregular degree distributions with thresholds approaching 1−R. However, such a

result exists only for the BEC, probably because density evolution analysis is much

easier for the BEC than it is for general channels. However, it is widely believed

that capacity achieving distributions can be designed for other channels as well. For

example, Chung et al. designed rate-1/2 degree distributions whose thresholds are
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within 0.0045 dB of channel capacity on the BIAWGNC [8]. While these codes are

not strictly capacity-achieving, their thresholds are close enough to channel capacity

for all practical purposes.

While density evolution allows us to design asymptotically good degree distribu-

tions, it does not guarantee that these codes work well at finite block lengths. How-

ever, extensive simulation studies have shown that LDPC codes have very good perfor-

mance in the intermediate blocklength (n ≈ 1000) to long blocklength (n ≈ 100000)

range [9]. They perform rather poorly in the short block length (n < 1000) range.

However, since iterative decoding is extremely fast, it is possible to use long codes in

practice. For example, Flarion Technologies designed an LDPC code with n = 8192

and rate 1/2 that has a WER of 10−10 at under 1.5 dB from capacity on the BI-

AWGNC. The hardware implementation of their decoder can support data rates up

to 10 Gbps [18].

1.3 Thesis outline

The results stated in Section 1.2.3 might lead us to the conclusion that the problem

of transmitting data reliably and efficiently over noisy channels has been solved. Such

a conclusion would not be untrue for the communication system shown in Figure 1.1

where a single transmitter transmits data to a single receiver over a channel whose

statistics are known a priori to both the transmitter and the receiver. However, not

all communications systems can be characterized by such a simple model.

Figure 1.3 shows an example of a communication network which is more general

than the system shown in Figure 1.1. In a network, there are multiple nodes, each of

which can be a transmitter or receiver or both. Each node might want to transmit

information to one or more receivers, and each node might want to receive information

from one or more transmitters. The channel between any two nodes may vary with
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Figure 1.3: A general communication system.

time, and the channel statistics may not be known to the nodes. Moreover, if the

network is wireless, transmissions from multiple senders can interfere at a receiver.

Since many contemporary communication systems are in fact networks, we would

like to design efficient error correction codes for general networks. Unfortunately, this

is very hard for two reasons. Firstly, the capacity region of a general network is not

known [10, Chapter 14]. Secondly, even in the special cases where the capacity region

is known, it is not clear that efficient capacity achieving codes exist. In this thesis,

we take a few steps towards the design of efficient network codes. Our approach is

twofold: in cases where the capacity region of the network is known, we study the

performance of LDPC-like codes under iterative decoding. In cases where the capacity

region is unknown, we try to compute the capacity region.

The rest of the thesis is organized as follows. In Chapter 2, we study the perfor-

mance of rateless codes on the BSC and the BIAWGNC. These codes are designed to

be used on time varying channels where the channel statistics are not known a priori

to the transmitter and the receiver. An ideal rateless code should work well on any

channel, no matter how good or bad the channel is. We show that this is the case for

a class of codes called raptor codes.

In Chapter 3, we design codes for multiple access channels (MACs), where multiple

senders wish to send information to a single receiver. The transmissions from the
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senders interfere with each other at the receiver. We describe how the sum-product

algorithm can be adapted to handle such interference, and how LDPC codes can be

designed for a MAC.

In Section 1.2.3, we mentioned that LDPC codes perform poorly at short block-

lengths. In Chapter 4, we design iterative decoding algorithms for a class of non-sparse

codes called Euclidean geometry (EG) codes. We show that some short EG codes ex-

hibit excellent performance under these algorithms. More generally, we show that it

is possible to decode non-LDPC codes using iterative decoding.

In Chapter 5, we study a class of wireless relay networks for which the capacity

region was previously unknown. In these networks, a single source wants to transmit

information to a single receiver. All the other nodes act as relays, which aid in the

communication between the transmitter and the receiver. We derive the capacity of

such a network under certain conditions.

In Chapter 6, we study fading channels, which are very common in wireless net-

works. We study the capacity-achieving distributions of certain block fading channels,

and show that the capacity achieving distributions of all block fading channels have

some common theoretical properties.

Finally, we summarize our results and list some open problems in Chapter 7.
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Chapter 2 Rateless codes on noisy

channels

In this chapter, we consider iterative decoding for channels when the transmitter and

receiver have no prior knowledge of the channel statistics. We give a brief description

of rateless codes and go on to study the performance of two classes of rateless codes

(LT and raptor codes) on noisy channels such as the BSC and the AWGNC. We find

that raptor codes outperform LT codes, and have good performance on a wide variety

of channels.

2.1 Introduction

Recent advances in coding theory, especially the invention of regular [22] and irregular

[45] low density parity check (LDPC) codes, have shown that very efficient error

correction schemes are possible. LDPC codes, decoded using the belief propagation

algorithm, can achieve capacity on the binary erasure channel (BEC) [45, 57] and

achieve rates very close to capacity on other channels such as the binary symmetric

channel (BSC) and the additive white Gaussian noise channel (AWGNC)[8]. Because

of this, one could say that the problem of reliable communication over many practical

channels has been solved. However, such a statement comes with a caveat: both the

transmitter and the receiver must know the exact channel statistics a priori. While

this assumption is valid in many important cases, it is clearly not true in many other

equally important cases. For example, on the Internet (which is modeled as a BEC),

the probability p that a given packet is dropped varies with time, depending on traffic

conditions in the network. A code designed for a good channel (low p) would result in
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decoding failure when used over a bad channel (high p). Conversely, a code designed

for a bad channel would result in unnecessary packet transmissions when used over a

good channel.

This problem can be solved using rateless codes. Instead of encoding the k infor-

mation bits to a pre-determined number of bits using a block code, the transmitter

encodes them into a potentially infinite stream of bits and then starts transmitting

them. Once the receiver gets a sufficient number of symbols from the output stream,

it decodes the original k bits. The number of symbols required for successful decoding

depends on the quality of the channel. If decoding fails, the receiver can pick up a

few more output symbols and attempt decoding again. This process can be repeated

until successful decoding. The receiver can then tell the transmitter over a feedback

channel to stop any further transmission.

The use of such an incremental redundancy scheme is not new to coding theorists.

In 1974, Mandelbaum [50] proposed puncturing a low rate block code to build such

a system. First the information bits are encoded using a low rate block code. The

resulting codeword is then punctured suitably and transmitted over the channel. At

the receiver the punctured bits are treated as erasures. If the receiver fails to decode

using just the received bits, then some of the punctured bits are transmitted. This

process is repeated till every bit of the low rate codeword has been transmitted. If the

decoder still fails, the transmitter begins to retransmit bits till successful decoding.

It is easy to see such a system is indeed a rateless code, since the encoder ends

up transmitting a different number of bits depending on the quality of the channel.

Moreover, if the block code is a random (or random linear) block code, then the

rateless code approaches the Shannon limit on every binary input symmetric channel

(BISC) as the rate of the block code approaches zero. Thus such a scheme is optimal

in the information theoretic sense.

Unfortunately, it does not work as well with practical codes. Mandelbaum origi-
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nally used Reed-Solomon codes for this purpose and other authors have investigated

the use of punctured low rate convolutional [27] and turbo [39] codes. In addition

to many code-dependent problems, all these schemes share a few common problems.

Firstly, the performance of the rateless code is highly sensitive to the performance

of the low rate block code, i.e., a slightly sub-optimal block code can result in a

highly sub-optimal rateless code. Secondly, the rateless code has very high decoding

complexity, even on a good channel. This is because on any channel, the decoder is

decoding the same low rate code, but with varying channel information. The com-

plexity of such a decoding scheme grows at least as O(k/R) where R is the rate of

the low rate code.

In a recent landmark paper, Luby [43] circumvented these problems by designing

rateless codes which are not obtained by puncturing standard block codes. These

codes, known as Luby Transform (LT) codes, are low density generator matrix codes

which are decoded using the same message passing decoding algorithm (belief prop-

agation) that is used to decode LDPC codes. Also, just like LDPC codes, LT codes

achieve capacity on every BEC. Unfortunately, LT codes also share the error floor

problem endemic to capacity achieving LDPC codes. Shokrollahi [73] showed that

this problem can be solved using raptor codes, which are LT codes combined with

outer LDPC codes. These codes have no noticeable error floors on the BEC. However,

their rate is slightly bounded away from capacity.

The aim of this chapter is to study the performance of LT and raptor codes on

channels other than the BEC. Since LDPC codes designed for the BEC perform fairly

well on other channels, one might conjecture that such a result holds for LT codes

as well. We test this conjecture for LT codes using simulation studies and density

evolution [66].
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2.2 Luby transform codes

The operation of an LT encoder is very easy to describe. From k given information

bits, it generates an infinite stream of encoded bits, with each such encoded bit gen-

erated as follows:

1. Pick a degree d at random according to a distribution µ(d).

2. Choose uniformly at random d distinct input bits.

3. The encoded bit’s value is the XOR-sum of these d bit values.

The encoded bit is then transmitted over a noisy channel, and the decoder receives a

corrupted version of this bit. Here we make the non-trivial assumption that the en-

coder and decoder are completely synchronized and share a common random number

generator, i.e., the decoder knows which d bits are used to generate any given en-

coded bit, but not their values. On the Internet, this sort of synchronization is easily

achieved because every packet has an uncorrupted packet number. More complicated

schemes are required on other channels; here we shall just assume some such scheme

exists and works perfectly in the system we’re studying. In other words, the decoder

can reconstruct the LT code’s Tanner graph without error.

Having done that, the decoder runs a belief propagation algorithm on this Tanner

graph. The message passing rules are straightforward and resemble those of an LDPC

decoder. However there is one important difference: the Tanner graph of an LDPC

code contains only one kind of variable node (Figure 2.1(a)), while that of an LT code

contains two kinds of variable nodes (Figure 2.1(b)) These are the information bit

variable nodes which are not transmitted (and hence have no channel evidence) and

the encoded bit variable nodes which are transmitted over the channel.
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Figure 2.1: Tanner graph of (a) LDPC code (b) LT code.

2.2.1 The robust soliton distribution

Clearly, for large block lengths, the performance of such a system depends mostly on

the degree distribution µ. Luby uses the Robust Soliton (RS) distribution, which in

turn is based on the ideal soliton distribution, defined as follows:

ρ(1) = 1/k

ρ(i) = 1/i(i − 1) ∀i ∈ {2, 3, ..., k} (2.1)

While the ideal soliton distribution is optimal in some ways (cf. [43]), it performs

rather poorly in practice. However, it can modified slightly to yield the robust soliton

distribution RS(k, c, δ). Let R
4
= c · ln(k/δ)

√
k for some suitable constant c > 0.

Define

τ(i) =































R/ik for i = 1, . . . , k/R − 1

R ln(R/δ)/k for i = k/R

0 for i = k/R + 1, . . . , k

(2.2)

Now add τ(.) to the ideal soliton distribution ρ(.) and normalize to obtain the robust

soliton distribution:

µ(i) = (ρ(i) + τ(i))/β (2.3)

where β is the normalization constant chosen to ensure that µ is a probability distri-
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bution.

Luby’s analysis and simulation studies show that this distribution performs very

well on the erasure channel. The only disadvantage is the decoding complexity grows

as O(k ln k), but it turns out that such a growth in complexity is in fact necessary to

achieve capacity [73]. However, slightly sub-optimal codes called raptor codes, can

be designed with decoding complexity O(k) [73]. On the BEC, theoretical analysis

of the performance of LT codes and raptor codes is feasible, and both codes have

been shown to have excellent performance. In fact, raptor codes are currently being

used by Digital Fountain, a Silicon Valley based company, to provide fast and reliable

transfer of large files over the Internet.

On other channels such as the BSC and the AWGNC, there have been no studies

in the literature on the use of LT and raptor codes, despite the existence of many

potential applications, e.g., transfer of large files over a wireless link, multicast over a

wireless channel. We hope to fill this void by presenting some simulation results and

some theoretical analysis (density evolution). In this chapter, we focus on the BSC

and the AWGNC, but we believe that our results can be extended to time varying

and fading channels.

2.3 LT codes on noisy channels

When the receiver tries decoding after picking up a finite number n of symbols from

the infinite stream sent out by the transmitter, it is in effect trying to decode an (n, k)

code, with a non-zero rate R = k/n. As R decreases, the decoding complexity goes

up and the probability of decoding error goes down. In this chapter, we have studied

the variation of bit error rate (BER) and word error rate (WER) with the rate of the

code on a given channel.

In Figure 2.2, we show some results for LT codes on a BSC with 11% bit flip
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Figure 2.2: The performance of LT codes generated using the RS(k, 0.01, 0.5) distri-
bution on a BSC with p = 0.11.

probability. We mention that the results are similar in nature on other BSCs and

other AWGNCs as well. In this figure, we plot R−1 on the x-axis and BER/WER

on the y-axis. The receiver buffers up kR−1 bits before it starts decoding the LT

code using belief propagation. On a BSC with 11% bit flip probability, the Shannon

limit is R−1 = 2, i.e., a little over 2k bits should suffice for reliable decoding in the

large k limit. We see from the figure that an LT code with k = 10000 drawn using

the RS(10000,0.1,0.5) distribution can achieve a WER of 10−2 at R−1 = 2.5 (or n =

25000). While this may suffice for certain applications, neither a 25% overhead nor a

WER of 10−2 is particularly impressive. Moreover, the WER and BER curves bottom

out into an error floor, and achieving very small WERs without huge overheads in

nearly impossible. Going to higher block lengths is also not practical because of the

O(k ln k) complexity.

2.3.1 Error floors

The error floor problem is not confined to LT codes generated using a robust soliton

distribution. Codes generated using distributions optimized by Shokrollahi for the
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BEC1[73] also exhibit similar behaviour. The main advantage of these distributions

is that the average number of edges per node remains constant with increasing k,

which means the decoding complexity grows only as O(k). On the minus side, there

will be a small fraction of information bit nodes that are not connected to any check

node. This means that even as k goes to infinity, the bit error rate does not go to

zero and consequently, the word error rate is always one.

In this chapter, we discuss the performance of one particular distribution from

[73]:

µ(x) = 0.007969x + 0.493570x2 + 0.166220x3

+0.072646x4 + 0.082558x5 + 0.056058x8 + 0.037229x9

+0.055590x19 + 0.025023x65 + 0.0003135x66 (2.4)

Shown in Figure 2.3 is the performance of codes generated using the distribution in

equation (2.4) at lengths 1000, 10000 and infinity. The performance at length infinity

is computed using density evolution [66]. Again, we observe fairly bad error floors,

even in the infinite blocklength limit.

We must mention that these error floors are not just due to the presence of in-

formation bit variable nodes not connected to any check nodes. For example, when

R−1 = 3.00, only a very small fraction of variable nodes (2.25×10−8) are unconnected,

while density evolution predicts a much larger bit error rate (1.75 × 10−4). This can

be attributed in part to the fact that there are variable nodes which are connected to

a relatively small number of output nodes and hence are always unreliable.

1Note that these distributions were not designed to be used in LT codes, but in raptor codes.
See Section 2.4 for a description of raptor codes.
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Figure 2.3: Performance of LT codes generated using right distribution given in equa-
tion (2.4) on BSC with p = 0.11.

2.4 Raptor codes

The error floors exhibited by LT codes suggest the use of an outer code. Indeed this

is what Shokrollahi does in the case of the BEC [73, 74] where he introduces2 the

idea of raptor codes, which are LT codes combined with outer codes. Typically these

outer codes are high rate LDPC codes. In this chapter, we use the distribution in

equation (2.4) for the inner LT code. For the outer LDPC code, we follow Shokrollahi

[73] and use a left regular distribution (node degree 4 for all nodes) and right Poisson

(check nodes chosen randomly with a uniform distribution).

The encoder for such a raptor code works as follows: the k input bits are first

encoded into k′ bits to form a codeword of the outer LDPC code. These k′ bits are

then encoded into an infinite stream of bits using the rateless LT code. The decoder

picks up a sufficient number (n) of output symbols, constructs a Tanner graph that

incorporates both the outer LDPC code and the inner LT code, and decodes using

belief propagation on this Tanner graph.

2We must mention here that Maymounkov [52] independently proposed the idea of using an outer
code.
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Figure 2.4: Comparing LT codes with raptor codes on a BSC with p=0.11. The LT
code has k = 10000 and is generated using the distribution in equation (2.4). The
raptor code has k = 9500 and has two components: an outer rate-0.95 LDPC code
and an inner rateless LT code generated using the distribution in equation (2.4).

Simulation studies, such as the one shown in Figure 2.4, clearly indicate the supe-

riority of raptor codes. Figure 2.4 shows a comparison between LT codes and raptor

codes on a BSC with bit flip probability 0.11. The LT code has k = 10000 and is

generated using the distribution in equation (2.4). The raptor code has k = 9500 and

uses an outer LDPC code of rate 0.95 to get k′ = 10000 encoded bits. These bits

are then encoded using an inner LT code, again generated using the distribution in

equation (2.4). Figure 2.4 clearly shows the advantage of using the outer high rate

code.

Raptor codes not only beat LT codes comprehensively, but also have near-optimal

performance on a wide variety of channels as shown in Figure 2.5, which shows the

performance of the aforementioned raptor code on four different channels. On each of

these channels, the raptor code has a waterfall region close to the Shannon capacity,

with no noticeable error floors. Of course, this does not rule out error floors at lower

WERs.

Another indicator of the performance of a rateless code on any given channel is the
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Figure 2.5: Performance of raptor code with k=9500 and k’=10000 on different chan-
nels: (a) BSC with p = 0.11 and AWGNC with Es/N0 = −2.83dB. Both channels
have capacity 0.5. (b) on BSC with p = 0.2145 and AWGNC with Es/N0 = −6.81dB.
Both channels have capacity 0.25

number of bits required for successful decoding. We must note here this indicator not

only depends on the code, but also on the number of decoding attempts made by the

receiver. For example, the decoder could attempt decoding each time it receives a new

noisy bit. While such a decoder would be optimal in terms of number of bits required

for successful decoding, it would have prohibitively high decoding complexity. A more

practical decoder would wait for more bits to come in before decoding. Such a decoder

would have a vastly lower complexity at the expense of slightly larger number of bits

received. Note that there is no need for such a tradeoff in the case of the BEC. This

is because the decoder fails when the Tanner graph is reduced to a stopping set [13].

After new bits are received, further decoding can be done on the stopping set instead

of the original Tanner graph. Such a scheme is not appplicable to noisy channels

where the decoder must start over every time new bits are received.

Figure 2.6 shows a histogram of the number of noisy bits needed for decoding

the previously described raptor code with k = 9500. We observe that the expected

number of noisy bits required for successful decoding (20737) is fairly close to the

Shannon limit (19000).
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Figure 2.6: Histogram of number of bits required for successful decoding of raptor
code with k = 9500 on an AWGNC with Es/N0 = −2.83dB. The capacity of this
channel is 0.5. The receiver first attempts decoding after receiving 19000 noisy bits
(Shannon limit). Whenever decoding fails, the receiver waits for another 100 bits
before attempting to decode again.

2.5 Conclusion

We have conducted simulation studies and density evolution analysis of rateless codes

on channels such as the BSC and the AWGNC. We found that raptor codes have

excellent performance on such channels, while the performance of LT codes is not

as good. These results suggest that raptor codes are ideal for use in data transfer

protocols on noisy channels. A similar observation has already been made on the

BEC [73] and consequently, commercial applications that use raptor codes on the

Internet are already in the market.

We must point out here that we have not explicitly designed any forward error

correction based data transfer scheme for noisy channels. We have only shown that

raptor codes are likely to outperform any other known class of rateless codes in such

a scheme. Therefore, a natural direction for future work is the design of a raptor

code based protocol and a study of its performance on relevant noisy channels, such

as fading channels.
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Chapter 3 Graph-based codes for

synchronous multiple access channels

In this chapter, we discuss a general algorithm for using LDPC-like codes on a syn-

chronous multiple access channel (MAC). We then introduce a code design procedure

known as graph-splitting, and show that codes designed using this technique achieve

capacity on the binary adder channel (BAC) without using timesharing. Finally,

we present simulation results for the noisy binary adder channel, qualitatively ana-

lyze these results and argue that LDPC-like codes perform well on multiple access

channels.

3.1 Introduction to multiple access channels

A multiple access channel (MAC) [10, Section 14.3] is defined as a channel in which

two or more senders send information to the same receiver. Examples include a

satellite receiver with many independent ground stations or a cellular base station

receiving inputs from many cell phones. In these channels, the senders must not only

contend with the receiver noise, but also interference from each other. In mathe-

matical terms, a discrete memoryless MAC is defined as a channel that takes in n

inputs x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn and produces an output y ∈ Y according to a

probability transition matrix p(y|x1, x2, . . . , xn).

Several information theoretic results are known about the MAC, the most im-

portant one being about its capacity. The capacity region of a two-user MAC

(X1 × X2, p(y|x1, x2),Y) is the closure of the convex hull of all rate pairs (R1, R2)
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satisfying

R1 < I(X1; Y |X2),

R2 < I(X2; Y |X1),

R1 + R2 < I(X1, X2; Y ) (3.1)

for some product distribution p1(x1)p2(x2) on X1 ×X2. A detailed proof of this result

is found in [10, Section 14.3]. The key point to note here is that the input distribution

should be a product distribution. This reflects the fact that the inputs X1 and X2

come from different users.

The MACs we consider in this chapter are synchronous, i.e., all users share a

common clock. In a synchronous MAC, we can assume that the codeword length

and codeword boundaries are the same for every user. We must mention the capacity

region of an asynchronous MAC is the same as that of the corresponding synchronous

MAC [11]; however, the coding scheme that achieves capacity is much simpler in the

synchronous case.

3.2 Decoding LDPC codes on a MAC

In this section, we discuss a general algorithm for using low density parity check

(LDPC) codes on a binary input two-user MAC. Assume that User 1 and User 2

encode their respective data independently using two distinct LDPC codes with same

blocklength n and rates R1 and R2. At the channel output, we get a sequence of

symbols which is a probabilistic function of the two transmitted codewords. Based

on the received channel symbol, we can compute channel information by using Bayes’

rule.

pch(x1, x2|y) =
p1(x1)p2(x2) p(y|x1, x2)

p(y)
∝ p(y|x1, x2) (3.2)
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Figure 3.1: LDPC codes on a MAC: Each user encodes his data independently using
an LDPC code, but the channel gives an output dependent on the bits from both
users.

where x1, x2 ∈ {0, 1} and y ∈ Y. Note that we have a joint distribution on the

possible channel inputs.

The belief propagation decoding algorithm proceeds as follows. At a check node

(of either Graph 1 or Graph 2), the update rule is the same as in a single user LDPC

code. The incoming bits to any check node should sum to zero, therefore the outgoing

message along any edge is the convolution of the messages along all other incoming

edges. Since the pmfs get convolved, their Fourier transforms get multiplied and

therefore the outgoing message along any edge i is given by

Piout
(x) =

∏

j 6=i

Pjin
(x) (3.3)

where P is the Fourier transform of the distribution p. Note that (P (0), P (1)) =

(p(0) + p(1), p(0) − p(1)) = (1, p(0) − p(1))
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At the variable nodes, each incoming message along the edges of Graph 1 is an

independent estimate of the x1. Similarly, each incoming message along the edges

of Graph 2 is an independent estimate of x2. Moreover, if the two graphs are also

designed randomly, then with high probability, the messages coming in from both the

graphs are also independent of each other. In addition to these messages, we also

have the joint channel information. Therefore, by the usual belief propagation rule,

we get the outgoing joint message along an edge i of Graph 1 to be

piout
(x1, x2) ∝ pch(x1, x2)

∏

j1 6=i

pj1(x1)
∏

j2

pj2(x2) (3.4)

Thus, the joint message passed along an edge of Graph 1 depends on the channel

information, all the incoming messages along the edges of Graph 2 connected to

the corresponding variable node, and the incoming messages along all the edges of

Graph 1 (except the edge along which the outgoing message is passed) connected to

the same variable node. However, we do not want to pass this joint distribution along

Graph 1 since we just need to pass a message about x1, so we marginalize the joint

distribution to get

piout
(x1) ∝

∏

j1 6=i

pj1(x1)

1
∑

x2=0

(

pch(x1, x2)
∏

j2

pj2(x2)

)

(3.5)

Now we define the updated channel information p
′

ch as follows:

p
′

1ch
(x1) ∝

1
∑

x2=0

(

pch(x1, x2)
∏

j2

pj2(x2)

)

(3.6)

Note that p
′

ch does not depend on the edge i along which the message is to be passed.

In this way, it is similar to channel information in a single user LDPC code. However,

the updated channel information depends on the messages being passed from Graph 2.
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After computing the updated channel information, we pass messages as in a single-

user LDPC code. The message along edge i is

piout
(x1) ∝ p

′

1ch
(x1)

∏

j1 6=i

pj1in
(x1) (3.7)

Similar update rules apply to Graph 2; using the incoming messages from Graph 1

and the joint channel information, we compute the updated channel information for

Decoder 2.

p
′

2ch
(x2) ∝

1
∑

x1=0

(

pch(x1, x2)
∏

j1

pj1(x1)

)

(3.8)

Then we pass messages on Graph 2 similar to a usual single-user LDPC code, i.e., in

a manner similar to that in equation 3.7.

piout
(x2) ∝ p

′

2ch
(x2)

∏

j2 6=i

pj2in
(x2) (3.9)

We repeat the above iteration steps till a criterion for stopping is met. For example,

the algorithm can be stopped when all the parity checks are satisfied or after a fixed

number of iterations.

Thus the decoder for the MAC is the same as two single-user LDPC decoders with

each decoder updating the effective channel information for the other code at each

iteration. The MAC is very similar to the turbo decoder used to decode concatenated

codes; just like the MAC decoder, a turbo decoder is comprised of two or more simple

component decoders operating in tandem [5].

3.3 The binary adder channel

One of the simplest examples of a MAC is the binary adder channel (BAC). This

channel has binary inputs x1, x2 ∈ {0, 1} and a ternary output y = x1 + x2 where the
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addition is over the real field. There is no ambiguity in (x1, x2) if y = 0 or if y = 2.

However y = 1 can result from either (x1, x2) = (0, 1) or (x1, x2) = (1, 0). Thus the

inputs are determined for two of the possible output values, but are ambiguous for the

third. This is why the BAC is sometimes referred to as the binary erasure multiple

access channel.

The capacity of the BAC can be computed very easily from equations (3.1). It

turns out the capacity of the BAC [10] is given by

R1 < 1, R2 < 1, R1 + R2 < 1.5 (3.10)

Therefore it is possible to achieve a joint rate of 1.5 bits per channel use. We now

consider our algorithm on the BAC. Suppose User 1 encodes his data with an LDPC

code of rate R1 and User 2 does the same with a code of rate R2. Let n be the

blocklength of both the codes. Since both bitstreams are independent, the weak law

of large numbers tells us that with high probability, the channel input would have

an equal number (i.e., n/4) of the four possible bit pairs (0, 0), (0, 1), (1, 0) and (1, 1).

Since (0, 1) and (1, 0) result in the same output Y = 1, at the channel output we

would see n/4 0s, n/2 1s, and n/4 2s. To either decoder, this looks like n/4 0s, n/4 1s

and n/2 erasures, i.e., like the output of a erasure channel with probability of erasure

1/2. However, the erasures input to both the decoders are dependent and decoding an

erasure in one user’s codeword would automatically decode the corresponding erasure

in the other user’s codeword.

The belief propagation algorithm used by either user is the same as that used to

decode a usual erasure correcting LDPC code. In an erasure correcting code, if an

erasure is decoded to a 0 (or 1), then it always stays a 0 (or 1), i.e., no mistakes are

ever made by the decoder. Therefore, the decoding algorithm on the BEC is: (1) at

an erased variable node, if at least one incoming message is a non-erasure, decode the
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erasure to that incoming non-erasure, (2) at a check node, if all except one incoming

messages are non-erasures, then decode that erasure to be the sum over GF (2) of all

the other incoming messages. If there are more than one incoming erasures, then the

check node just passes back erasures.

Our algorithm for the BAC works exactly the same way, except that the two

LDPC decoders interact. The algorithm proceeds as follows: Do one iteration on

each graph, thereby correcting some erasures on the input to Graph 1 and some other

erasures on the input to Graph 2. Now erasures corrected on one graph are corrected

on the other also. This corresponds to the “update channel information” step of the

algorithm for the general MAC. Repeat this procedure till there are no erasures left

or till no further erasures can be corrected.

3.4 Design of LDPC codes for the BAC

All that remains to be done is to find good LPDC codes for both the users. For

this purpose, we introduce a graph-splitting design. We start with a good erasure

correcting code of rate R < 1/2 having a Tanner graph G. We first split the set of check

nodes C into two disjoint sets C1 and C2 having c1 and c2 check nodes respectively.

We now split the graph G into two disjoint graphs G1 and G2 where G1 is the set of all

edges connected to the check nodes in C1 and G2 is the set of all edges connected to

the check nodes in C2. Now let G1 be the Tanner graph of User 1’s LDPC code and

G2 be the Tanner graph of User 2’s LDPC code. The rates of the codes are given by

R1 = 1 − c1/n, R2 = 1 − c2/n (3.11)

R1 + R2 = 2 − (c1 + c2)/n = 1 + (1 − c/n) = 1 + R (3.12)
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Figure 3.2: The graph-splitting technique: (a) Start with the Tanner graph of a single
user LDPC code (b) Split the graph into two subgraphs containing disjoint sets of
check nodes (c) The two subgraphs are now the the Tanner graphs for the two users.

Thus, splitting a rate-R graph gives a joint graph of rate 1+R. Therefore, if we split

a “good” rate-1/2 erasure code, we get a joint rate of 1.5, which is the capacity of

the BAC. What remains to be shown, of course, is that this graph-splitting design

works. This is done by density evolution [66] analysis of the joint decoder.

3.4.1 Density evolution on the BAC

Suppose the probability that an erasure is passed along an edge of a graph to a check

node is x. The message passed out of a check node is also an erasure when at least one

of the other messages is an erasure. This occurs with probability y = 1 − ρ(1 − x),

where ρ is the right degree sequence polynomial of the graph and equals xa−1 in

the case of a right-regular graph. Now at the variable nodes, an erasure is passed

out when all the incoming messages from both graphs and the channel are erasures.

This occurs with probability λ(y), where λ is the connectivity polynomial describing

the probability distribution on the number of edges in both graphs that an edge is

connected to. But this is nothing but the left-degree sequence λ of the original graph
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Figure 3.3: Performance of graph-split codes: (a) Variation of BER with R1 for
constant overall rate R (b) Variation of BER with total rate R at rates close to
capacity.

G. Thus the density evolution goes as follows:

x −→ 1 − ρ(1 − x) at the check nodes. (3.13)

x −→ 0.5λ(x) at the variable nodes. (3.14)

x −→ 0.5λ(1 − ρ(1 − x)) in one iteration. (3.15)

Note that this is the exactly the same as the density evolution of the probability

of erasure when the code with Tanner graph G is used on a binary erasure channel

(BEC) with probability of erasure 0.5. Therefore, if we design a capacity achiev-

ing rate-1/2 code on the BEC and split its graph, then we get a pair of capacity

achieving codes on the BAC. Recent research on graph-based codes has showed that

such erasure correcting codes indeed exist. Starting with the codes of Luby et al.

[45], various linear-time decodable capacity-achieving graph-based codes have been

constructed. These include Shokrollahi’s right-regular LDPC codes [72] and irregular

repeat-accumulate (IRA) codes introduced by Jin, Khandekar and McEliece [33]. All

the above codes essentially use belief-propagation decoding. Using techniques similar

to density evolution [66], it has been shown (by the respective authors) that these
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codes achieve capacity on the BEC. Therefore, we can state the following result:

Codes designed by graph-splitting achieve capacity on the binary adder channel.

We used irregular repeat accumulate (IRA) codes [33] to test our graph-splitting

code design and decoding algorithm on the BAC. IRA codes are very similar to LDPC

codes, and have the extra advantage that they can be encoded in linear time. We

used codes of length 10000 and constant right-degree 5 IRA codes. The simulations

confirm the fact that the final probability of error does not depend on the individual

R1 and R2, but only on the joint rate R1 + R2, i.e., it depends only on the graph G

and not the way it is split into subgraphs (see Figure 3.3a). A graph showing the

performance of the codes at joint rates close to capacity is also shown (see Figure

3.3b).

3.5 The noisy binary adder channel

We now consider the noisy binary adder channel (noisy BAC) whose output y is given

by

y = x1 + x2 + n (3.16)

where x1, x2 ∈ {−1, +1} are the inputs from the users and n is a zero-mean Gaussian

random variable with variance σ2. Thus, in addition to the interference between the

two users, noise is also present at the receiver. The variation of the capacity region

of the noisy BAC with Eb/N0 = 10 log10(1/(R1 + R2)σ
2) is shown in Figure 3.4.

We now study the performance of LDPC-like codes on this channel. Our first

choice for the two users’ codes would be those designed by graph-splitting, since they

work well on the BAC. However, it turns out that these codes do not work at all on

the noisy BAC. More precisely, we can show that the bit error probability is bounded

away from zero for any noise variance σ2 > 0.

The proof relies on the fact that there are “unprotected variable nodes” that result
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Figure 3.4: Capacity region of the noisy BAC: (a) The capacity region of the noisy
BAC for three values of Eb/N0 (b) Plot showing the maximum achievable rate for a
given Eb/N0 and the R1, R2 coordinates of an extremal point of the capacity region
at that Eb/N0.

from the graph-splitting design. By splitting any graph G, there would be a non-zero

fraction f of nodes for which all of the connected edges are in one of the subgraphs, say

G2 (see Figure 3.2). For these nodes, only x2 (viz., the node with the edges connected)

can be corrected because only it participates in the belief propagation process. Now

even if we assume x2 is perfectly decoded to +1 or −1 (which certainly need not be

the case), the resulting effective single user channel for User 1 is y = x1 + n. Among

the unprotected bits of User 1, there will be a non-zero fraction Q(σ−1) of errors. On

the whole there will at least be a non-zero fraction of errors fQ(σ−1) > 0 of errors in

User 1’s bit stream. Therefore graph-splitting in its present form does work for the

noisy BAC. A simple extension of this argument will show that this is the case for

any noisy MAC, i.e., a MAC in which the output is not a deterministic function of

both the inputs.

The next choice would be independently designed single-user LDPC codes with

parameters (λ1(x), ρ1(x)) and (λ2(x), ρ2(x)). Assuming the coefficients of x0 and x1 in

λ1(x) and λ2(x) are zero (an essential condition for a good single-user LDPC code), we

can show (proof omitted) using density evolution techniques that these codes do not
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achieve capacity on the BAC, except in the extreme case when (R1, R2) = (1.0, 0.5)

or (0.5, 1.0). Therefore, we would expect something similar in the case of the noisy

BAC as well.

We again used IRA codes to test this hypothesis. SNR vs. BER performance

curves for total rate R = 1 are shown in Figure 3.5. As we can see, the independently

designed codes perform well when the rates R1 and R2 are close to the extremal points

of the capacity region and poorly when the rates R1 and R2 are equal.

The above result can be explained qualitatively as follows. An extremal point of

any MAC is the rate pair (I(X1; Y ), I(X2; Y |X1)) (or the similar pair with X1 and

X2 interchanged). This shows that X1 can be decoded independently first, because

the capacity of the single-user channel that User 1 sees is I(X1; Y ). Based on the

decoded X1, we can decode X2 because the capacity of the single-user channel that

User 2 sees now is I(X2; Y |X1), since X1 has already been decoded. Therefore the

joint decoder can be replaced by two single-user decoders, one operating after the
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other. This method of decoding is known as successive cancellation or onion peeling

[67]. Only the extremal points of the rate region of the MAC can be decoded by

successive cancellation.

In the case of the independently designed LDPC codes on the noisy BAC, the

extremal points can be decoded by using two single-user LDPC decoders. Since

single-user LDPC codes are known (though not provably) to do extremely well, we

expect good performance for these codes at the extremal point rates of the MAC

as well. Note that we did not actually use a successive cancellation decoder in our

simulations. Instead, we used the joint decoder described in Section 3.2. Since the

joint decoder performs at least as well as the successive cancellation decoder, the

performance for the extremal point is good. There is no reason however to believe

that the same will be true for the non-extremal points. This explains the performance

curves in Figure 3.5.

By timesharing the extremal rate pairs, we can achieve any rate pair in the ca-

pacity region. This shows that LDPC-like codes exhibit good performance for any

rate-pair on the noisy BAC. Also note that all the above arguments apply to any

MAC and not just the noisy BAC.

3.6 Conclusion

We studied a coding scheme that graph-based codes on synchronous MACs and saw

how the decoder is equivalent to two or more single-user decoders updating each

other’s channel information. Our analysis and simulation studies showed that LDPC

codes designed for single user channels perform well on MACs only at rates close

to the extremal points of the capacity region of the MAC. Of course, this can be

used in combination with timesharing to get good performance at any point in the

achievable rate region of the MAC. If one were to insist on designing codes that do
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not use timesharing, then special design techniques must be used. Graph-splitting is

one such technique; however its applicability is limited to the binary adder channel.

Other authors have designed codes for the noisy BAC [4]. However, a specialized

system designed by such techniques offers only marginal gains over a system that

timeshares single user codes with the extremal rates.
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Chapter 4 Iterative decoding of

multi-step majority logic decodable codes

In this chapter, we investigate the performance of iterative decoding algorithms for

multi-step majority logic decodable (MSMLD) codes of intermediate length. We

introduce a new bit-flipping algorithm that is able to decode these codes nearly as

well as a maximum likelihood decoder on the binary symmetric channel. MSMLD

codes decoded using bit-flipping algorithms can out-perform comparable BCH codes

decoded using standard algebraic decoding algorithms, at least for high bit flip rates

(or low and moderate signal to noise ratios).

4.1 Introduction

Recently, iterative decoding algorithms for low density parity check (LDPC) codes

have received a great deal of attention. In [22, 23], a (J, L) LDPC code is defined as

an (N, K, d) linear block code whose M x N parity check matrix H has J ones per

column and L ones per row, where J and L are relatively small numbers. For large N ,

it is quite easy to avoid the occurrence of two check sums intersecting on more than

one position when constructing H. In that case, the check sums are called orthogonal

and the Tanner graph representation [80] of H has girth at least six. This is often

considered to be an important feature for good performance of iterative decoding

[48, 49].

In [36, 47, 83] it was shown that iterative decoding of one-step majority logic

decodable codes also performed very well; indeed often better than for ordinary LDPC

codes of similar blocklength and rate for lengths up to a few thousand bits. Despite
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the fact that the parity check matrix of these codes has a higher density of ones than

that of the original LDPC codes, the geometric structure guarantees a girth of six.

Perhaps even more importantly, the matrix H used for decoding is highly redundant,

i.e., M > N − K, and this feature seems to significantly help iterative decoding

algorithms.

In this chapter, we investigate iterative decoding of multi-step majority logic de-

codable (MSMLD) codes for transmission over a binary symmetric channel (BSC).

With the use of redundant H matrices, these codes have already been shown to per-

form relatively well on the additive white Gaussian noise (AWGN) channel [37, 42,

46, 79, 84]. However, whereas on the AWGN channel the performance of iterative

decoding does not approach that of maximum likelihood decoding (MLD), we find

that on the BSC, fast and low complexity bit flipping (BF) algorithms can achieve

near MLD performance.

The chapter is organized as follows. After a brief review of MSMLD codes in

Section 4.2, an improved version of the Gallager’s bit flipping algorithm B is pre-

sented and analyzed in Section 4.3. Different decoding approaches exploiting the

structure of MSMLD codes are proposed in Section 4.4. and simulation results are

reported in Section 4.5. Possible extensions to iterative decoding of these codes for

the AWGN channel are discussed in Section 4.6 and concluding remarks are finally

given in Section 4.7.

4.2 A brief review of multi-step majority logic de-

codable codes

The most famous MSMLD codes are the Reed-Muller (RM) codes introduced in [56].

Motivated by the efficient multi-step majority logic decoding algorithm proposed in

[65], several other classes of MSMLD codes were developed in the 1960’s and 70’s.
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Many of these are based on constructions derived from finite geometries [6, 41, 55, 64].

Unfortunately, the minimum distance d of these codes does not compare favorably to

that of their counterpart BCH codes. Consequently, when decoded using a t-bounded

distance decoding (t-BDD) algorithm (i.e., when decoded up to the guaranteed error

correcting capability t of the code), they are outperformed by BCH codes also decoded

by a t-BDD algorithm.

One-step majority logic decodable codes can also be viewed as a special class of

LDPC codes with orthogonal check sums. For example, a one step majority logic

decodable Euclidean geometry (EG) code of length N = 2ms − 1 over the finite field

GF (2s) is also an LDPC code with

J =
2ms − 1

2s − 1
− 1,

L = 2s.

Iterative decoding of these codes has been shown to perform very well and most impor-

tantly for the BSC, is able to correctly decode many error patterns with considerably

more than t errors.

The main feature in the construction of one-step majority logic decodable codes is

the same as that of LDPC codes, that is the fact that each bit can be estimated by J

check sums orthogonal on it. In constructing a µ-step majority logic decodable code,

this principle is generalized into µ steps as follows: at step i, 1 ≤ i ≤ µ, the modulo-2

sum of Ki bits is estimated by Ji check sums orthogonal on these Ki positions, with

Kµ = 1, Ki < Ki−1, and Ji ≥ d − 1. While µ-step majority logic decoding directly

follows this construction method, its extension to an iterative decoding method is

not straightforward for µ ≥ 2 because any graphical representation of H necessarily

contains many four-cycles corresponding to check sums intersecting on K1 positions.

In the following, we consider the family of µ-step majority logic decodable EG
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codes since the same developments apply to other families of majority logic decodable

codes.

4.3 Three-state decoding algorithm

In [22, 23], Gallager proposed two different BF algorithms. These algorithms are

designed for LDPC codes with few check sums of low weight orthogonal on each bit

and therefore, careful attention must be paid to the introduction of correlations in

the iterative process. In particular, in Gallager’s bit-flipping algorithms, he takes care

that the “message” from a bit to its neighboring check should not directly depend on

the message sent by that check back to the bit and vice versa. In our case, because

of the very large number of check sums intersecting on each bit, we can neglect

that refinement with negligible performance degradation, and obtain the following

algorithm, which simplifies Gallager’s algorithm B:

• For each check sum m and for each bit n in check sum m, compute the modulo-2

sum σmn of the initial value of bit n and of the other bit values computed at

iteration-(i − 1).

• For each bit n, determine the number Nu of unsatisfied check sums σmn inter-

secting on it. If Nu is larger than some predetermined threshold b1, invert the

original received bit n, otherwise keep this value.

The use of a single threshold b1 implies that bits with very different values Nu are

viewed with the same reliability at the next iteration. While for the codes considered

in [22, 23], Nu can take only a few different values, this is no longer the case for the

codes considered in this chapter. It seems reasonable to try to reflect the differing

reliablities of the bits in our algorithm. Consequently, we propose to modify the al-

gorithm described above into the following “three-state” algorithm, which also allows
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bits to be erased and check sums to be de-activated.

• For each check sum m and for each bit n in check sum m, compute the modulo-2

sum σmn of the initial value of bit n and of the other bit values computed at

iteration-(i − 1). If any of these bits is erased, the check sum is de-activated.

• For each bit n, determine the number Nua of unsatisfied activated check sums

σmn intersecting on it.

If Nua ≥ b1 , invert the original received bit n.

If b1 > Nua ≥ b2, erase bit n.

Otherwise keep the original received bit n.

Empirically, we find that the three-state algorithm performs best when the thresh-

olds b1 and b2 are functions of the iteration number. Unfortunately, there are many

ways to do this, and we only could roughly optimize to find the best schedules, but

fortunately the performance seems to be a rather insensitive function of the choice

made. For our schedules, we typically chose to begin at the first iteration with b1 equal

to the maximum possible number of unsatisfied checks J , and with b2 ≈ b1 − J/15,

and then to decrease b1 and b2 by the same small fixed integer (say one to five) at

each iteration, continuing to decrease their values until they reach zero.

The proposed three-state approach can also be applied in a straightforward way to

Gallager’s original algorithm B. In fact, for a theoretical analysis, only this version is

meaningful since the simplified algorithm introduces correlation and it is not known

how to handle correlated values in the analysis of an iterative decoding algorithm

in general. In that case, the three-state algorithm becomes a generalized version of

the algorithm described in [66, Example 5], where b2 = b1 − 1. Consequently, if we

assume the graph representation of the code is a tree, the same approach as in [66]

can be used to analyze the three-state algorithm.
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4.4 Decoding approaches

4.4.1 Fixed cost approaches

Direct approach

A µ-step majority logic decodable EG code can be represented by its M x N incidence

matrix H in which rows represent µ-flats and columns points, with hij = 1 if the j-th

point belongs to the i-th µ-flat.

A straightforward approach is to run the BF algorithm based on H. This matrix

will be plagued by many four-cycles, but fortunately it can also be made very re-

dundant with M >> N , and the weight of each row of the parity check matrix need

not be too high. Furthermore, by exploiting the cyclic structure of the code, a very

balanced graph is obtained so that the same speed of convergence can be expected in

all parts of the graph.

Multi-step approach

In [84], a general method was presented for modifying the parity check matrix of a

code to make it more suitable for iterative message-passing algorithms. Using this

method on a two-step majority logic decodable EG code, one obtains a new parity

check matrix whose graphical representation contains no four-cycles. It is a (M1+M2)

x (N1 + N2) matrix

H =







A B

D C






, (4.1)

in which the M1 and M2 rows represent the plane constraints and line constraints,

respectively, and the N1 and N2 columns represent the points and lines, respectively.

As a result, M2 = N2 and C represents the identity matrix, A is the all-0 matrix while
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the remaining matrices B and D are free of four-cycles (and so is H). Generalization

of (4.1) to µ-step majority logic decodable EG codes is straightforward.

Decoding based on (4.1) can be realized in at least two ways. First the BF

algorithm can be run on H with the N2 nodes corresponding to the lines initialized

without a-priori knowledge. The drawback of this approach is that nodes with no a

priori information from the channel directly exchange highly unreliable information

with each other.

To overcome this problem, H can be modified so that each row of B has weight one.

If a plane is composed of l lines, this corresponds to duplicating each plane l times and

viewing it as the union of one line and of the points composing the remaining l − 1

lines. As a result, nodes without a-priori information no longer directly exchange

information, but the graph representation of the resulting matrix A now contains

many four-cycles. The BF algorithm can then be decomposed in two steps based on

the following scheduling: in step-1, only the top part [AB] of H is used to estimate

the N2 lines, while in step-2, the bottom part [CD] is used to estimate the N1 points.

We notice that this scheduling “mimics” two-step majority logic decoding and can be

easily generalized to µ steps for µ-step majority logic decodable codes.

Decomposable approach

By their construction, several µ-step majority logic decodable codes have a decom-

posable structure. For example, Reed-Muller (RM) codes can be constructed by the

|u|u ⊕ v| construction or the iterative squaring construction [19]. For simplicity, we

consider the |u|u⊕ v| construction in the following. If C1 and C2 are two codes with

parity check matrices H1 and H2, respectively, then C = |C1|C1⊕C2| has parity check
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matrix

H =







H2 H2

H1 0






. (4.2)

Following the approach described in [20, 30], two stage decoding based on (4.2) is

performed as follows. Assuming the received sequence corresponding to the codeword

|u1|u1 ⊕ u2| is y = |y1|y2|, first y1 ⊕ y2 is decoded by a BF algorithm based on H2

to estimate û2. Then |y1|y2 ⊕ û2| is decoded by the three-state BF algorithm of

Section 4.3 based on H1 to estimate û1. At the initialization of this second decoding

stage, the values which coincide in y1 and y2⊕ û2 are conserved, while the other values

are erased.

4.4.2 Variable cost approach

The matrix H used for decoding is generally highly redundant, so that M >> N . If

a sufficient number of check sums is used, then the BF algorithm converges rapidly to

its final solution while if not enough check sums are used, the BF algorithm generally

never converges to a codeword. In this latter case, a decoding failure is detected.

This observation suggests a “call by the need” algorithm in which, for Ma < Mb <

· · · < M , Ma check sums are initially used for Na iterations. If the algorithm converges

to a codeword, correct decoding is assumed; otherwise, the algorithm is reinitialized

(not continued) and performed based on Mb check sums during Nb iterations. This

process is repeated until either a codeword is found, or all M check sums have been

used without success, in which case the decoding fails.
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Figure 4.1: BF decoding of the (255,127,21) EG code; (a) low SNR regime.

4.5 Simulation results

We assume a BSC obtained from BPSK signaling, so that for a code of rate R, we have

p0 = Q
(

√

REb/N0

)

, where Eb/N0 is the signal to noise ratio (SNR) per information

bit.

4.5.1 (255,127,21) EG code

In Figure 4.1, the simulated error performance of three-state BF decoding of the

(255,127,21) EG code with the direct approach of Section 4.4.1 is compared to t-

BDD of its (255,123,39) BCH code counterpart as well as its (3, 6) Gallager LDPC

code counterpart. This EG code corresponds to a µ = 2 Euclidean geometry with

255 points and 5355 planes, so we can construct a parity check matrix H with 5355

rows and 255 columns. We observe that three-state BF decoding of the EG code not

only outperforms its counterparts at the SNR values represented, but also remains

quite close to the sphere packing bound (SPB), also represented in Figure 4.1. In

fact, a lower bound on the MLD failure rate for this code was computed by checking



51

whether the decoding errors were also MLD errors (with unbiased recording of the

ties). This bound is represented in Figure 4.1. One can see that the performance

of the three-state BF algorithm must be very close (within a few tenths of a dB)

of MLD performance. The error performance of the standard sum-product or belief

propagation (BP) algorithm, initialized with the crossover probability p0 of the BSC

is also shown in Figure 4.1. The reasons for the much worse performance of BP at

low SNR’s are elaborated in Section 4.6.

We also mention that the advantage of the three-state BF algorithm over Gal-

lager’s algorithm B is a reduction factor that ranges between two and five in the

number of errors. This gain is small, but remains non-negligible in approaching MLD

performance, especially since the three-state algorithm is not much harder to imple-

ment than Gallager’s algorithm B.

Since this code is two-step majority logic decodable, the two-step approach of

Section 4.4.1 was also implemented. The decomposition of [84] gives an 32,130 x

5610 matrix. Each row corresponding to one of the of 26,775 plane constraints in

this matrix has to be duplicated four times to have weight one in the B-part of (4.1).

The final matrix H given by (4.1) becomes an 112,455 x 5610 matrix. Unfortunately,

despite the large increase in complexity, only a tiny improvement was obtained by

this approach. One explanation is that the multi-step approach can be viewed as a

particular scheduling of the direct approach in which hidden nodes are introduced

as intermediary states. As a result, the information initially available is used in

successive steps rather than at once as in the direct approach. In the case of a binary

erasure channel (BEC), the increased number of constraints and erasures associated

with the multi-step approach helps in improving the decoding as information can

only be improved [84]. However, for the BSC (or other channels introducing errors),

erroneous decisions can propagate through the hidden nodes so that using all available

information at once in a suboptimum way becomes as good as using it partially in
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a more optimum (but still suboptimum after iteration-1) way. The only advantage

of the multi-step approach is its guarantee to perform no worse than t-BDD since

its first iteration can be made equivalent to multi-step majority logic decoding with

b1 = b2 = dJ/2e.

In Figure 4.2, we plot the performance of the three-state BF decoding algorithm

for the (255,127,21) EG code into the very high SNR, or low decoding failure, regime.

These plots actually show the performance of the two-step algorithm described above,

but as mentioned already, the difference in performance between the direct 3-state

algorithm and the more complex two-step algorithm is tiny. At all word error rates

(WERs) down to 10−20, this difference is less than 0.1 dB.

To obtain these performance curves, we randomly generated random errors of fixed

weight w, w > t and for each weight w, evaluated the corresponding error performance

Ps(w). The overall error performance Ps was then obtained by the average

Ps =

N
∑

w=t+1

Ps(w)

(

N

w

)

pw
0 (1 − p0)

N−w. (4.3)

The results are reported in Figure 4.3. Since for WERs larger than 10−6, no reliable

evaluation of Ps(w) is possible, we computed: (a) an upper bound on (4.3) by as-

suming the same Ps(wmin) as the smallest simulated for weights w
′

, t < w
′

< wmin;

(b) a lower bound on (4.3) by assuming Ps(w
′

) = 0 for weights w
′

, t < w
′

< wmin;

and (c) an approximation by extrapolating Ps(w
′

) for weights w
′

, t < w
′

< wmin.

A pessimistic lower bound on MLD was also obtained from the lower bound on Ps.

From Figure 4.2, we conclude that the three-state BF for the (255,127,21) EG code

outperforms t-BDD of its BCH counterpart down to a WER of about 10−13 for the

two-step approach (and 10−12 for the direct approach).
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Figure 4.2: BF decoding of the (255,127,21) EG code; (b) high SNR regime.
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4.5.2 (511,256,31) EG (RM) code

Figure 4.4 depicts the performance of three-state BF decoding of the (511,256,31)

EG (or RM) code with the direct approach of Section 4.4.1 and the decomposable

approach of Section 4.4.1 based on the |u|u⊕v| construction. For comparison, the SPB

and t-BDD of the counterpart (511,250,63) BCH code have also been represented.

For the direct approach, M = 76, 650 and M = 511, 000 have been considered

(corresponding to 150 and 1000 different cyclic shifts of weight-32 codewords of the

dual code, respectively). Also the progressive method was used to speed up each

decoding. In both case, we chose five different sizes of the set of check sums used,

namely, Ma = 5110; Mb = 12, 775; Mc = 22, 550; and Md = 51, 000. For each

size, at most 10 iterations were performed. The value b1 was set to the maximum

number of unsatisfied check sums at each initial iteration and decreased by one (or a

small number) at each subsequent iteration while we chose b2 = b1 − 20. Again these

values were not thoroughly optimized so that additional secondary gains should be

achievable.

The application of the progressive method is validated by the fact that for M =
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76, 650, no undetected error was recorded at all simulated SNR values. For M =

511, 000, at the SNR value of 4.5 dB, about 10% of the errors were undetected (all of

them occurring when all check sums were considered) and at this SNR value, one out

of the 100 errors recorded was recognized as an MLD error. At lower SNR values, no

undetected errors and no MLD errors were recorded. While a reasonably good error

performance is achieved, we are clearly not able to obtain a tight bound on MLD

performance. Because the three-state BF algorithm has a very low word error rate

even for error patterns with a number of bit flips far beyond the guaranteed error-

correcting capability t of the code, we are also not able to meaningfully repeat the

analysis of the very high SNR regime. We also observe that despite the fact that the

minimum distance of this code is about half of that of its BCH counterpart, iterative

BF decoding of this EG code can easily outperform t-BDD of its BCH counterpart

and approaches relatively closely the SPB at the WERs represented in Figure 4.4.

The decomposable approach of Section 4.4.1 was also tried with C1 and C2 being

the (255,163,15) and (255,93,31) RM codes, respectively (resulting in a (510,256,30)

code). At each stage, at most M1 = M2 = 255, 000 check sums were considered. Again

the progressive approach was used with all previous sizes of check sum sets divided

by two. When decoded separately with M = 255, 000, about 95% of the errors are

undetectable errors, and about 40% of the errors are MLD errors for the (255,163,15)

RM code. For the (255,93,31) RM code, about 80-90% of the errors are undetectable

errors while about 10% are MLD errors. However, despite these near MLD individual

performances, the resulting two-stage decoding is not as good as expected. This is

mostly due to the dominance of undetected errors at stage-1 in conjunction with the

suboptimality of this approach (a slight improvement can be obtained by choosing

M2 > M1 since the performance of stage-1 dominates the overall error performance).

Hence, the applications of the techniques developed in [14, 15, 16, 78] to iterative

decoding should provide interesting error performance improvements.
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At a given code rate, as N increases, the weight of the rows of the parity check

matrix H also increases for the class of MSMLD codes. This causes the number of

redundant rows in H to grow to a very large number if near MLD peformance is

required, as is already apparent for the results we present for the (511,256,31) code.

Consequently, this approach does not seem to scale up very well with N despite the

fact that iterative decoding is used. This is not totally surprising, as in general, the

decoding complexity of MLD increases exponentially with N .

4.6 Extension to iterative decoding for the AWGN

channel

A very natural extension of these results is to replace the BSC by an AWGN channel.

Although as already stated in the introduction, relatively good results for iterative

decoding of MSMLD codes have been previously reported for the AWGN channel,

all these results fall short of near MLD. The main reason we believe is the large

dynamical range taken by the a-posteriori values evaluated after few iterations due

to the large correlation propagated by feedback (note that in the BF algorithms,

the values at the bit nodes are always the same at the beginning of each iteration).

As a result, there is no longer much difference between soft information and hard

information with erasure. Indeed, the same conclusions also hold for BP decoding

over the BSC, although in that case, no significant degradation can be expected at

high enough SNR, as observed in Figure 4.1.

Using a heuristic extension of the decomposition proposed in [28], the a-posteriori

information Li+1 evaluated at iteration-(i + 1) can be represented as the sum of the

a-priori information L0 and a function of approximated extrinsic information values

L̃e
i derived (and observable) at iteration-i. In graphs with cycles, L̃e

i can be viewed

as the sum of the true extrinsic information Le
i and additional correlated values Lc

i ,
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so that

Li+1 = L0 + f(L̃e)

with L̃e
i = Le

i + Lc
i ,

Consequently, the influence of correlation can be reduced by modifying the function

f() in several ways g() such as scaling (f ◦ g = αf , 0 < α ≤ 1), off-setting (f ◦ g =

sgn(f) max{|f | − β, 0}), damping (f ◦ g = αfi + (1 − α)fi−1, 0 < α ≤ 1), or clipping

(f ◦ g = sgn(f) min{|f |, C}). However, these modifications affect both Le
i and Lc

i

while hypothetically, it would be desirable to reduce Lc
i only. This is indeed a much

difficult task as we have direct access to L̃e
i only. For example, all best approaches

used to iteratively decode the (255,127,21) EG code over the AWGN channel felt

short of MLD by about 0.8 dB.

4.7 Conclusion

In this chapter, we have shown that iterative BF algorithms can achieve near MLD of

intermediate length MSMLD codes despite the presence of four-cycles in their graph

representation. This drawback is overcome by the very large number of redundant

low weight check sums. The most straightforward parity check matrix representation

of these codes in conjunction with a “call by the need” decoding seems to provide the

best compromise between error performance and decoding complexity.

In principle, the three-state BF decoding approach could be applied to any other

intermediate length linear code. One “merely” needs to find a sufficient number of

redundant low weight codewords in the dual code to construct a useful parity check

matrix H. Unfortunately, this does not appear to be an easy task for codes that are

not as nicely structured as the families of codes considered in this chapter [7, 77].
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Chapter 5 On the capacity of wireless

erasure relay networks

In this chapter we determine the capacity of a certain class of wireless erasure re-

lay networks. We define the “cut-capacity” for erasure networks with broadcast at

transmission and no interference at reception. We show that with this definition, a

max-flow min-cut result holds for the capacity of these networks.

5.1 Introduction

Determining the capacity for a general multi-terminal network has been a long-

standing open problem. A general outer bound, based on splitting the network into

two subsets in all possible ways, has been proposed in [10]. This outer bound is

easily derived: for any division of the network into two parts (also called a “cut”),

the amount of information that can be sent from the source side to the destination

is less than the “cut-capacity,” i.e., the sum-capacity of the links connecting the two

subsets assuming full co-operation between all the nodes on the source side and full

co-operation between all the nodes on the destination side.

Unfortunately, this bound is not tight even for some simple networks. However,

this outer bound can be achieved for a wireline network with a single source and a

single destination. As the name suggests, transmissions along any given link in a

wireline network do not affect transmissions on any other link. In a single source,

single destination network, only one node has information to transmit and only one

node wants to receive that information. For such a wireline network, the maximum

amount of information that can be sent from the source to the destination is the
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minimum of the cut-capacities of all cuts separating the source from the destination [2,

35, 40]. In a wireline network, the capacity of any cut is just the the sum of the

capacities of the links in that cut, as there is no interference. Therefore, this capacity

result is similar to the max-flow min-cut theorem for fluid flows on graphs, and hence

results such as this are referred to as max-flow min-cut results.

Note that the analogy between fluid flow and information transfer does not extend

too far; for example, a max-flow min-cut style result holds for wireline multicast

problems in which a single source wants to transmit the same information to multiple

destinations [2, 35, 40]. In the case of fluids, even the problem statement “how much

of the same fluid can the source send to multiple destinations?” does not make sense.

The goal of this chapter is to show that a max-flow min-cut result holds for a

class of wireless networks. In these networks, we assume the transmission from each

node must be a broadcast, i.e., the information sent out by a node along all links

connected to it must be the same. This is an accurate model of transmission in a

wireless system. However, for reception we assume a model without interference, i.e.,

messages coming in to a node from different incoming transmitters do not affect each

other. Note that this is not true in general for a wireless system; however, this can

be realized through some time/frequency/code division multiple access scheme.

Next we assume that each link is modeled as an memoryless erasure channel with

no delay. Moreover, the erasures on any links are independent of the erasures on all

other links. Finally, we assume that side-information regarding erasure locations on

each link is available to the destination. This assumption is based on the premise that

the network actually operates on long packets. Moreover, each link is a packet erasure

channel, i.e., each packet is either received exactly or dropped completely. Now we can

assume that the information about the erasures on every link is sent to the receiver

either as a header to other packets or encoded separately into a few packets. If the

packets are sufficiently long, the overhead of transmitting the erasure information will
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be negligible when compared to the length of the packet. This justifies our channel

model of a bit erasure channel on each link with side information to the destination

about all erasures on all links. The results for this channel go through for the packet

erasure channel as well.

We shall prove a max-flow min-cut type capacity result for these wireless erasure

relay networks under the assumptions mentioned above. Although this chapter only

concerns itself with the single source, single destination scenario, similar results will

go through for some multicast settings also. Many results parallel to those of [35]

for this wireless setting can be found in [12]. The rest of the chapter is organized as

follows: We introduce the model and the problem statement in Section 5.2 and state

our main result, which we prove in Sections 5.3 and 5.4. In Section 5.5, we have a

concluding discussion where we state without proof some more results related to this

problem.

5.2 Model, definitions and main result

5.2.1 Network model

Let the relay network be modeled by a directed acyclic graph G = (V, E) where

V = {v1, . . . , v|V |} is the set of vertices and E ⊂ V × V is the set of directed edges.

Each edge (vi, vj) ∈ E represents a memoryless erasure channel from vi to vj with

erasure probability εi,j associated with it. All channels are assumed independent and

operate without delay. Let s ∈ V be the source node that wishes to transmit a

message to the destination node d(6= s) ∈ V . Without loss of generality, let s = v1

and d = v|V |. All nodes in V − {s, d} are relay nodes and are used only to aid

communication from s to d. Define ΓO(vi) = {(vi, vj)|(vi, vj) ∈ E} (i.e., the set of all

edges leaving vi) and ΓI(vi) = {(vj, vi)|(vj, vi) ∈ E} (i.e., the set of all edges coming

in to vi).
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We now describe the transmission and reception models. We incorporate broad-

cast in our network by insisting that vertex vi transmit the same bits on all outbound

edges, i.e., all edges in ΓO(i) carry the same bit sequence Xi. On each edge (vi, vj),

Xi is distorted since some bits may get erased. The received signal on edge (vi, vj)

is a string of bits and erasures, denoted by Yi,j. For reception, we assume that vi

receives the symbols from each edge in ΓI(i) without interference, i.e., for every vj

such that (vj, vi) ∈ ΓI(i), Yj,i is received at vi. Define Yi = (Yj,i, (vj, vi) ∈ ΓI(i)).

Clearly, the bit sequence Xs sent out by the source will be a function of the

message M that it wants to transmit. At any intermediate vertex i, the outgoing

message Xi sent out by the vertex will be a function of the incoming information Yi.

At the destination d, the decoded message M ′ is a function of the received sequence

Yd and the erasure locations on each link (which we assume are known perfectly to

the destination). The choice of all these functions defines the coding scheme.

5.2.2 Capacity

We now state our main result. Define an s − d cut as a partition of the vertex set V

into two subsets Vs and Vd = V − Vs such that s ∈ Vs and d ∈ Vd. Clearly, an s − d

cut is determined simply by Vs. For the s − d cut given by Vs, let the cutset E(Vs)

be the set of edges defined as the set of edges going from Vs to V − Vs, i.e.,

E(Vs)
4
= {(vi, vj)|(vi, vj) ∈ E, vi ∈ Vs, vj ∈ Vd}

Define W (Vs), the cut-capacity or the value of an s − d cut given by Vs as

W (Vs)
4
=
∑

i∈Vs



1 −
∏

j:(vi,vj)∈E(Vs)

εi,j



 (5.1)
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Figure 5.1: Example of cut-capacity: The value of this cut is (1 − ε4ε5) + (1 − ε6),
where εe is the probability of erasure along edge e.

Theorem 5.1 The capacity of the erasure relay network described above is given by

the minimum cut-capacity.

C = min
Vs

W (Vs) (5.2)

where Vs determines an s − d cut.

5.3 Achievability

5.3.1 Network operation

In this section, we use a random coding argument to show that all rates R < C

are achievable. Assume that s has to transmit one message out of 2nR possible

messages in n channel uses. Let Ω = {1, 2, . . . , d2nRe}. Let X n : Ω → {0, 1}n

be an encoding function where each X n(i) is chosen randomly and independently

assuming a uniform distribution on {0, 1}n. X n(1),X n(2), . . . ,X n(d2nRe) are called

the codewords and together form the codebook C. If s wishes to transmit message k,

then the bit sequences Xi transmitted by the intermediate nodes will also be functions

of k and hence are denoted Xi(k). Similarly, the received sequences Yi and Yi,j are

also functions of k and hence can be written as Yi(k) and Yi,j(k).

We now describe how the sequence Xi(k) is chosen. Assume that the channel

random variable on edge (vi, vj) is si,j. This is a vector in {0, 1}n where 1 repre-

sents an erasure. Each entry is chosen independently from a Bernoulli distribution
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of probability εi,j. The received symbol on edge (vi, vj), viz. Yi,j(k), is obtained

by erasing those bits of Xi(k) where si,j is 1. Clearly, Yi,j(k) ∈ {0, 1, e}n where

e represents erasures. Since vi has |ΓI(vi)| incoming edges, the received symbol is

Yi(k) ∈ {{0, 1, e}n}|ΓI(vi)|. For each vertex vi ∈ V − {s, d}, define an encoding func-

tion fi : {{0, 1, e}n}|ΓI(vi)| → {0, 1}n. For any Yi(k) described above, let fi(Yi(k))

be chosen randomly and independently assuming a uniform distribution on {0, 1}n.

Let Xi(k) = fi(Yi(k)). (For uniformity of notation, we define Y1(k) = k so that

X1(k) = f1(Y1(k)) = X n(k). With this notation, f1 is chosen in exactly the same

manner as the rest of the fi’s. The operation of the network is thus completely

determined.

5.3.2 Decoder

We now describe the decoder D1. Let y(k) ∈ {{0, 1, e}n}|ΓI(d)| be what d has received

when s wants to transmit message k. We assume that d knows all the functions fi

as well as the codebook C. In addition, the locations of the erasures on each link

are available to d as side information, i.e., it knows the values of vectors si,j exactly.

With this, d is in a position to calculate all Xi(l), Yi(l) and Yi,j(l) for any message

l ∈ Ω and that instantiation of the network (i.e., those erasure locations). It can then

compare the computed Y|V |(l) with what it has received viz. y(k). If there exists a

unique r ∈ Ω such that y(k) = Y|V |(r), r is declared to be the transmitted message.

Otherwise, an error is declared. Note that y(k) = Y|V |(k) will always hold. Therefore,

an error is declared only when ∃r 6= k such that Y|V |(r) = Y|V |(k) = y(k). Let the

decoding function be denoted by g1 : {{0, 1, e}n}|ΓI(d)| → Ω∪{E} where E denotes an

error.
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5.3.3 Probability of error

To analyze the probability of error, we first describe a slightly different decoder D2.

Consider the following typical sets of erasure locations, defined for each vertex vi that

has outgoing edges.

A
(n)
δi

(i)
4
= {(si,j, (vi, vj) ∈ ΓO(i))|(si,j, (vi, vj) ∈ ΓO(i)) are jointly δi-typical}

Decoder D2 knows all the si,j’s from the network. If any set of si,j’s of the form

(si,j, (vi, vj) ∈ ΓO(i)) does not belong to the corresponding typical set A
(n)
δi

(i), an

error is declared. Otherwise, a decoding operation identical to that of decoder D1 is

performed. Denote this decoding function by g2. Clearly, decoding errors made by D1

are a subset of those made by D2. Hence the rate achievable by D2 is also achievable

by D1.

We now analyze the probability of error with D2. Define the probability that the

decoder makes D2 makes an error when message k is sent:

λk = P (g2(Y|V |(k)) = E) (5.3)

The average probability of error for a given codebook is now given by

P (n)
e =

1

|Ω|

|Ω|
∑

k=1

λk (5.4)

The probability of error averaged over all codebooks is defined as

P (E) =
∑

C

P (C)P (n)
e (C) (5.5)
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Because of the symmetry of the code construction, we have

P (E) = P (E|k = 1) (5.6)

i.e., the average probability of error given that the first codeword was sent. Let T be

the event that for all i such that ΓI(i) 6= ∅ we have (si,j, (vi, vj) ∈ ΓO(i)) ∈ A
(n)
δi

(i).

By making n sufficiently large we have P (A
(n)
δi

(i)) = (1 − δi) which can be made

arbitrarily close to 1. Now

P (T ) =
∏

i:ΓO(i)6=∅

P (A
(n)
δi

(i)) (5.7)

which can also be made arbitrarily close to 1. Let P (T ) = 1−∆. If T does not occur

decoder D2 declares an error. If T occurs, we have a decoding error only if ∃l 6= 1

such that Y|V |(1) = Y|V |(l) = y(1). Define the event El as follows.

El = {Y|V |(1) = Y|V |(l)} (5.8)

i.e., the received messages are identical for messages 1 and l.

P (E) = P (E|k = 1)

= P (

|Ω|
⋃

l=2

El)

= P (

|Ω|
⋃

l=2

El|T c)P (T c) + P (

|Ω|
⋃

l=2

El|T )P (T )

≤ P (T c) + P (

|Ω|
⋃

l=2

El|T )P (T )

≤ P (T c) + P (T )

|Ω|
∑

l=2

P (El|T ) (5.9)

We now consider the event {El|T} = {Y|V |(1) = Y|V |(l)|T}. For l 6= 1, Y1(1) 6=
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Y1(l) holds trivially.

P (El|T )

= P (Y|V |(1) = Y|V |(l), Y1(1) 6= Y1(l)|T )

=
∑

Vs is a cut

P (Yi(1) 6= Yi(l), Yj(1) = Yj(l), vi ∈ Vs, vj ∈ Vd|T )

≤
∑

Vs is a cut

P (Yi(1) 6= Yi(l), Yj(1) = Yj(l), (vi, vj) ∈ E(Vs)|T )

≤
∑

Vs is a cut

P (Yi(1) 6= Yi(l), Yi,j(1) = Yi,j(l), (vi, vj) ∈ E(Vs)|T )

=
∑

Vs is a cut

∏

i:(vi,vj)∈E(Vs)

P (Yi(1) 6= Yi(l), Yi,j(1) = Yi,j(l),

j such that (vi, vj) ∈ E(Vs)|T )

=
∑

Vs is a cut

∏

i:(vi,vj)∈E(Vs)

P (Yi(1) 6= Yi(l)|T ) · P (Yi,j(1) = Yi,j(l),

j such that (vi, vj) ∈ E(Vs)|T, Yi(1) 6= Yi(l))

≤
∑

Vs is a cut

∏

i:(vi,vj)∈E(Vs)

P (Yi,j(1) = Yi,j(l),

j such that (vi, vj) ∈ E(Vs)|T, Yi(1) 6= Yi(l)) (5.10)

For a fixed i and Vs, consider the event

Fi(Vs) = {Yi,j(1) = Yi,j(l), ∀j such that (vi, vj) ∈ E(Vs)|T, Yi(1) 6= Yi(l)} (5.11)

Since Yi(1) 6= Yi(l), we know that Xi(1) and Xi(l) will be chosen independently from

a uniform distribution on {0, 1}n. The probability that Xi(1) and Xi(l) differ in at

most α places is given by 2−(n−α). For a fixed i we will have Yi,j(1) = Yi,j(l) for every

j such that (vi, vj) ∈ E(Vs) only if all the bits where Xi(1) and Xi(l) differ get erased

on all these edges. For a fixed i, since T occurs, we know that the number of bits

that are erased on every j such that (vi, vj) ∈ E(Vs) is close to its expected value,
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i.e., of the order of n · d(Vs, i) where

d(Vs, i) =
∏

(vi,vj)∈E(Vs)

εi,j. (5.12)

Let this range around d(Vs, i) that is required for typicality according to the definition

of set A
(n)
δi

(i) be given by (d(Vs, i) − d1(Vs, i), d(Vs, i) + d2(Vs, i)). Note that d1(Vs, i)

and d2(Vs, i) depend on δi and εi,js and are independent of n. Therefore the occurrence

of T ensures that at most n(d(Vs, i) + d2(Vs, i)) bits will be erased on all the edges

of interest. Also, d2(Vs, i) and d1(Vs, i) go to 0 as δi goes to 0 provided we let n

grow without bound. Note also that d(Vs, i) is exactly the probability of a bit getting

erased on all edges (vi, vj) ∈ E(Vs).

Let tm for m = 1, 2, . . . , N denote all the distinct values that the vectors si,j

can take such that T occurs. Clearly, the tms represent disjoint events and P (T ) =

∑N
m=1 P (tm). The probability of event Fi(Vs) can now be calculated.

P (Fi(Vs)) = P (Yi,j(1) = Yi,j(l), (vi, vj) ∈ E(Vs)|T, Yi(1) 6= Yi(l))

=
P (Yi,j(1) = Yi,j(l), (vi, vj) ∈ E(Vs), T, Yi(1) 6= Yi(l))

P (T, Yi(1) 6= Yi(l))

=

∑N
m=1 P (Yi,j(1) = Yi,j(l), (vi, vj) ∈ E(Vs), tm, Yi(1) 6= Yi(l))

P (T, Yi(1) 6= Yi(l))

≤ 2−n(1−d(Vs,i)−d2(Vs,i))

∑N
m=1 P (tm, Yi(1) 6= Yi(l))

P (T, Yi(1) 6= Yi(l))

= 2−n(1−d(Vs,i)−d2(Vs,i)) (5.13)
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Substituting this in the expression in (5.10) we get

P (El|T ) ≤
∑

Vs is a cut

∏

i:(vi,vj)∈E(Vs)

2−n(1−d(Vs ,i)−d2(Vs,i))

=
∑

Vs is a cut

2
−n

P

i:(vi,vj)∈E(Vs)(1−d(Vs ,i)−d2(Vs,i))

=
∑

Vs is a cut

2−n(W (Vs)−d2(Vs)) (5.14)

where

d2(Vs) =
∑

i:(vi,vj)∈E(Vs)

d2(Vs, i). (5.15)

and W (Vs) is the value of the cut as defined earlier.

Note that this upper bound on P (El|T ) is independent of l. Substituting this

back in (5.9) we get

P (E) ≤ P (T c) + P (T )(2nR − 1)
∑

Vs is a cut

2−n(W (Vs)−d2(Vs))

≤ P (T c) + P (T )2nR
∑

Vs is a cut

2−n(W (Vs)−d2(Vs))

= ∆ + (1 − ∆)
∑

Vs is a cut

2n(R−W (Vs)+d2(Vs)) (5.16)

We know that as n grows, ∆ as well as d2(Vs) can be made arbitrarily close to

0. Therefore, if R < W (Vs) for every cut Vs in the network, we can make P (E)

arbitrarily small by letting n grow without bound. Thus the rate

R < min
Vs

W (Vs)

is achievable.



69

5.4 Converse

Consider an s − d cut given by Vs. Recall that E(Vs) is the set of edges going from

Vs to V − Vs. We now define quantities X(Vs) and Y (Vs) for this s − d cut.

X(Vs) = {Xi|(vi, vj) ∈ E(Vs)}

Y (Vs) = {Yi,j|(vi, vj) ∈ E(Vs)} (5.17)

It is easy to see that P (Y|V ||X1, X(Vs)) = P (Y|V ||X(Vs)). Therefore X1−X(Vs)−Y|V |

is a Markov chain. Similarly, X(Vs) − Y (Vs) − Y|V | is a Markov chain. We now

have the following sequence of inequalities as a consequence of the data processing

inequality [10].

nR = I(X1; Y|V |)

≤ I(X(Vs); Y|V |)

≤ I(X(Vs); Y (Vs)) (5.18)

We now evaluate the quantity I(X(Vs); Y (Vs)) = H(Y (Vs)) − H(Y (Vs)|X(Vs)).

H(Y (Vs)|X(Vs)) = H((si,j, (vi, vj) ∈ E(Vs)))

=
∑

(i,j):(vi,vj)∈E(Vs)

H(si,j)

= n
∑

(i,j):(vi,vj)∈E(Vs)

H(εi,j) (5.19)

H(Y (Vs)) ≤
∑

i:(vi,vj)∈E(Vs)

H(Yi,j, j such that (vi, vj) ∈ E(Vs))

= n
∑

i:(vi,vj)∈E(Vs)







1 −
∏

j:(vi,vj)∈E(Vs)

εi,j



H(pi) +
∑

j:(vi,vj)∈E(Vs)

H(εi,j)




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where Xi is a string of bits satisfying a Bernoulli distribution with parameter pi.

Clearly pi = 1
2

maximizes H(Y (Vs)). Therefore we have

I(X(Vs); Y (Vs)) ≤ n
∑

i:(vi,vj)∈E(Vs)



1 −
∏

j:(vi,vj)∈E(Vs)

εi,j





= nW (Vs) (5.20)

We have thus shown that

R ≤ W (Vs)

for all cuts Vs, i.e.,

R ≤ min
Vs

W (Vs)

5.5 Conclusion

We have generalized some of the capacity results that hold for wireline networks to

a certain class of wireless erasure relay networks. The method we employ to reach

capacity makes it unnecessary for intermediate nodes to decode and then do channel

or network coding separately. Thus, it takes care of the channel coding and network

coding aspects in one shot, much like the randomized network coding approach of Ho

et al. [31, 32].

In [12] we show that if we restrict ourselves to randomly chosen linear functions at

each node, we can still reach capacity. Furthermore, several of the multicast results

of [35] also go through for the class of wireless erasure relay networks that we have

defined. However, our techniques may not be applicable to other wireless networks.

While randomized coding will give us an achievability region, this will not be the

capacity region in general. It will be interesting to see if capacity results can be

obtained for other types of wireless networks, i.e., networks involving channels other

than the erasure channel.
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Chapter 6 On the capacity achieving

distributions of some vector channels

We study the capacity achieving distributions of some channels with vector inputs,

such as the vector Gaussian channel and block fading channels. Using the theory

of holomorphic functions of several complex variables, we show that in many cases

the capacity achieving random variable will be singular, i.e., it is supported by a

set that contains no open set. Roughly stated, this means that a channel with an

n-dimensional input has a capacity achieving random variable with dimension (n−1)

or lower. This somewhat strange result is a generalization of similar results known in

the scalar case [1, 26, 34, 70, 76]. As a corollary, we prove that for a single antenna

Rayleigh block fading channel [51] the capacity achieving random variable is the

product of a discrete real variable and an isotropically distributed unit vector. We

also prove a general discreteness result that holds for any memoryless or block fading

channel under certain input constraints. This result suggests, but does not prove,

that any non-trivial power constrained memoryless or block fading channel has a

capacity achieving random variable that is the product of a discrete real variable and

an independent isotropically distributed unit vector.

6.1 Introduction

The problem of finding the capacity of a peak and average-power limited Gaussian

channel was first solved by Smith [76], who showed that the capacity of such a channel

is achieved by a discrete variable taking on a finite number of values. This surprising

result was generalized by Shamai and Bar-David [70] to the quadrature Gaussian
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channel with peak and average power constraints. For this case, the capacity achiev-

ing random variable takes on a finite number of amplitude values, but has continuous

uniform phase independent of the amplitude. Geometrically, the support of the dis-

tribution is a finite number of concentric circles centered at the origin. More recently,

Abou-Faycal, Trott and Shamai [1] showed that the capacity achieving distribution

of a power-constrained discrete-time memoryless Rayleigh fading channel is discrete

with a finite number of mass points. Similar results are also known for the Rician

fading channel [26] and the non-coherent Gaussian channel [34].

In this chapter, we try to generalize these results to higher dimensional prob-

lems. The rest of the chapter is organized as follows. In Section 6.2, we develop

the mathematical tools that are necessary for proving our results. We first present

the Kuhn-Tucker optimization condition that any capacity achieving random variable

must satisfy. We then derive an identity theorem for holomorphic functions of several

variables. These two results will then be applied jointly to several channels in later

sections.

In Section 6.3, we consider a power constrained vector Gaussian channel composed

of n component scalar channels. We show that if the input of this vector channel is

constrained to be in a given set A ⊂ Rn such that Rn\A has non-zero Lebesgue

measure, then the support of the capacity achieving random variable must not be a

superset of any open set in R
n (or any infinite sequence of points that “resembles” an

open set in Rn). Roughly speaking, this means that the “dimension” of the support

of the capacity achieving random variable must not exceed (n − 1). We then derive

several previously known results, including Smith’s discreteness result [76] and the

well-known waterfilling rule [10], as special cases of this general result. In addition,

we extend Shamai et al’s result on the quadrature Gaussian channel [70] to higher

dimensional spherically symmetric Gaussian channels.

In Section 6.4, we apply the same techniques to the single antenna Rayleigh block
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fading channel. This channel is specified by yt = htxt + wt, where xt is the input

at time t, yt is the output, wt is additive complex white Gaussian noise, and ht is a

fade with a complex Gaussian distribution. Moreover, the fade ht remains constant

for T channel uses, before changing to an value drawn independently at random from

the complex Gaussian distribution. Marzetta and Hochwald [51] showed that the

capacity achieving random variable for this channel is the product of an amplitude (a

scalar real number) and an isotropically distributed unit vector which is independent

of the amplitude. They also conjectured that the amplitude takes on only a discrete

number of values. This conjecture was proved in [1] for the case when T = 1, i.e.,

when the channel is memoryless. In this chapter, we shall prove the conjecture for all

T > 1.

In Section 6.5, we prove a result that holds for any block fading channel. The

result states that if the channel input X was constrained to satisfy EX ||x||2+ε < a,

then for any ε > 0, the capacity achieving random variable X is of the form X = RU

where R takes on a finite number of real values and U is an independent isotropically

distributed unit vector. This result is true for any distribution that the fade random

variable ht may have and for any fade block length T . We believe that a similar result

holds even when ε = 0 (power constraint) for any non-trivial fading channel, though

we are not able to prove it.

6.2 Mathematical background

6.2.1 Kuhn-Tucker conditions

In this section, we present the required mathematical background and derive prelimi-

nary results that we shall use in later sections to prove our main theorems. The deriva-

tion of these results closely parallels the corresponding derivations in [1, 26, 34, 70, 76].

The results themselves are purely mathematical in nature, with little or no informa-
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tion theoretic meaning. However, when applied to the problem of finding channel

capacity, they throw light on the strange structure of capacity achieving distribu-

tions.

Before we proceed to the derivation, we must mention that we use the vector

Gaussian channel as an example in our derivation. However, the derivation is not

specific to the vector Gaussian channel, so we keep our notation as general as possible.

Let X ∈ R
n be the input random variable, Y ∈ R

n be the output random variable

and p(y|x) be the channel transition probabilities. In the case of the vector Gaussian

channel x = (x1, . . . , xn) is the input and y = (y1, . . . , yn) = (x1 + w1, . . . , xn + wn) is

the output where the wi’s are independent Gaussian random variables with variance

σ2
i respectively, i.e.,

p(y|x) =

n
∏

i=1

1
√

2πσ2
i

e
−(yi−xi)

2

2σ2
i (6.1)

The marginal output density induced by an input distribution F (x) is

p(y; F ) =

∫

p(y|x)dF (x) (6.2)

Let F be the set of distributions F that meet the input constraints (a) X is restricted

to be in a given set A ⊂ Rn almost surely (b) The overall average power is limited:
∫

||x||2dF (x) ≤ a. The capacity of this constrained channel is

C = sup
F∈F

∫

D(p(y|x) || p(y; F ))dF (x) (6.3)

where D(a(y)||b(y)) is the Kullback-Leibler distance given by

D(a||b) =

∫

a(y) ln

[

a(y)

b(y)

]

dy (6.4)
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A necessary and sufficient condition for a random variable X∗ with distribution

F ∗ to achieve the capacity C is ∃β ≥ 0 such that

D(p(y|x) || p(y; F ∗)) − (C + β(||x||2 − a)) ≤ 0 (6.5)

for all x, with equality if x is in E0, the support of X. This is the well known Kuhn-

Tucker optimization condition. The derivation of inequality (6.5) is almost identical

to the derivation of the corresponding conditions in [1, 70, 76] and hence is omitted

for the sake of brevity.

Next, we define the LHS of inequality (6.5) to be f(x1, x2, . . . , xn). In the Gaussian

case,

f(x1, . . . , xn) = −
∫ ∞

−∞

. . .

∫ ∞

−∞

n
∏

i=1

1
√

2πσ2
i

e
−(yi−xi)

2

2σ2
i ln p(y; F ∗) dy1 . . . dyn

−
n
∑

i=1

1

2
ln(2πeσ2

i ) − C − β(

n
∑

i=1

x2
i − a) (6.6)

Inequality (6.5) states that f(x) ≤ 0, with equality when x is in E0, the support of

the optimizing random variable. We define an extension of f to Cn by just replacing

the xi ∈ R with zi ∈ C. In other words,

f(z1, . . . , zn) = −
∫ ∞

−∞

. . .

∫ ∞

−∞

n
∏

i=1

1
√

2πσ2
i

e
−(yi−zi)

2

2σ2
i ln p(y; F ∗) dy1 . . . dyn

−
n
∑

i=1

1

2
ln(2πeσ2

i ) − C − β(

n
∑

i=1

z2
i − a) (6.7)

6.2.2 Holomorphic functions

It is easy to see that the f(z1, . . . , zn) defined this way is a holomorphic function of

n complex variables [25] with domain Cn. Moreover, E0 is a subset of the zero set of

the holomorphic function f , which we’ll denote by Z(f).
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Let us take a look at the topological properties of Z(f). In the single variable

case, Z(f) not having an accumulation point is a necessary and sufficient condition

for it to be the zero set of an analytic function which is not identically zero. Un-

fortunately, there is no nice characterization of zero sets of holomorphic functions of

several variables. The main result in this regard roughly states that Z(f) is locally

a complex manifold of dimension (n − 1), except on an exceptional set of lower di-

mension. Stronger versions of this result are highly technical and are not significant

improvements [38]. Therefore, we’ll consider a weaker result which permits a reason-

able, though not complete, description of what Z(f) should not be. We provide a

simple proof for this result, which is a generalization of the identity theorem used in

[1, 26, 34, 70, 76].

Theorem 6.1 Let f be an holomorphic function defined in an open domain D ⊂ Cn.

If there exists a compact set S ⊂ D such that ∃∞z1∃∞z2 . . .∃∞zn
1 where (z1, . . . , zn) ∈

S and f(z1, . . . , zn) = 0, then f(z1, . . . , zn) = 0 throughout the domain D.

Corollary 6.2 If ∃ an open set A ⊂ Rn such that f(z) = 0 ∀z ∈ A, then f(z) =

0 ∀z ∈ D.

Proof. We prove the theorem for the case n = 2. The proof is essentially the same for

higher n. Suppose we have a compact set S with infinitely many z1 at each of which

there are infinitely many z2 such that the points (z1, z2) are in S and f(z1, z2) = 0.

Pick any point z1 and consider the “marginal function” fz1(z2)
4
= f(z1, z2). This is a

holomorphic function in z2 [25] and it is equal to zero at infinitely many z2. Since S

is compact, the intersection of S with the corresponding complex plane (Z1 = z1) is

also compact [75]. Hence the sequence of the infinitely many z2 has an accumulation

point (Bolzano-Weierstrass theorem). We now have a holomorphic function (fz1) of a

1∃∞ is the “there exist infinitely many” quantifier. ∃∞
x : S(x) would mean that there are

infinitely many values of x where statement S(x) is true.
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single complex variable (z2) vanishing at a sequence of infinitely many points and the

accumulation point. By the identity theorem [69], fz1(z2) = 0 for all z2 in the domain

of definition of f . Thus we now have infinitely many marginal functions vanishing for

all z2. Now look at the marginal functions fz2(z1) for any z2. It vanishes at infinitely

many z1 in a compact set and hence is identically zero by the same argument. Hence

fz2(z1) = 0 ∀(z1, z2) ∈ D which proves the theorem.

6.3 The vector Gaussian channel

We shall now apply Theorem 6.1 to the vector Gaussian channel to say something

about its capacity achieving distribution. Suppose the support set E0 contains an

open set. Then by Theorem 6.1, f(z) = 0 ∀z ∈ Cn, i.e.,

∫ ∞

−∞

. . .

∫ ∞

−∞

n
∏

i=1

1
√

2πσ2
i

e
−(yi−zi)

2

2σ2
i ln p(y; F ∗) dy1 . . . dyn

+

n
∑

i=1

1

2
ln(2πeσ2

i ) + C + β(

n
∑

i=1

z2
i − a) = 0 ∀(z1, . . . , zn) ∈ C

n (6.8)

This condition can be used to solve for the output density p(y; F ∗). It turns out that

the only possible solution is

p(y; F ∗) =
n
∏

i=1

1√
2πτ 2

e−
y2
i

2τ2

τ 2 = (a +

n
∑

i=1

σ2
i )/n (6.9)

where 1/2τ 2 equals the Lagrange multiplier β. It is easy to see that the p(y; F ∗)

in equation (6.9) is in fact a solution to equation (6.8). Uniqueness of this solution

can be established using the fact that the integral in equation (6.8) is an invertible

transform, a result which follows from the invertibility of the n-dimensional Laplace

transform.
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Note that the density p(y; F ∗) is that of n i.i.d Gaussian random variables with

zero mean and variance τ 2. Thus if the input has support on any open set (or any

sequence “resembling” an open set) in Rn, then the output density has to be that of

n i.i.d Gaussians. We apply this result to several cases.

Unconstrained: Suppose x can take any value in Rn and the only constraint is that

on the overall average power. The only input random variable that achieves p(y; F ∗)

is independent Gaussians with variance (τ 2 − σ2
i ). Since each of these variances has

to be non-negative, we get τ 2 ≥ σ2
max, where σ2

max is the largest of the noise variances.

This imposes a constraint on the input power:

a ≥
n
∑

i=1

(σ2
max − σ2

i ) (6.10)

This is a necessary (and sufficient) condition for E0 to be the superset of an open

set. If it is satisfied, then the capacity achieving input density is the product of n

independent Gaussians with the variances given by Pi = τ 2 − σ2
i . This is the well-

known waterfilling rule [10]. If equation (6.10) is not satisfied, then our result tells us

that E0 can’t contain an open set. This is indeed true because at power levels which

do not satisfy equation (6.10), the waterfilling rule allocates zero power to some of

the channels. In other words E0 is a hyper-plane of lower dimension in Rn.

General constraints: Now we impose the additional constraint that the input is

restricted to be in A (E0 ⊂ A 6= Rn) where Rn\A has non-zero Lebesgue measure.

With this constraint, it is no longer possible to achieve the p(y; F ∗) in equation (6.9),

since Gaussian input distributions on each of the component channels are not possible.

This implies that inequality (6.5) can’t be satisfied with equality everywhere. This

leads us to state our first result.

Theorem 6.3 If the input of the vector Gaussian channel is restricted to be in a set A

such that Rn\A has non-zero Lebesgue measure, then the support E0 of the capacity
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achieving distribution must be a subset of the zero set of a non-zero holomorphic

function. In particular, E0 can’t contain any open set in Rn.

Computing the optimizing input distribution and the capacity is however a hard

problem for general A. One special case is Smith’s result for the scalar Gaussian

channel where n = 1, A = [−L, L] where we see that E0 must be a finite set of points.

Rectangular constraints: If the constraints are of the form |xi| < Ai. it is easy

to see that the vector channel can be decoupled into n independent scalar chan-

nels. This is because for any joint density pX1,...,Xn
(x1, . . . , xn), the product of the

marginals
∏

pXi
(xi) is also a valid density and it results in higher output entropy

since h(Y1, . . . , Yn) ≤ ∑

h(Yi). Thus the capacity achieving density is the product

of densities on each of the component channels. By Smith’s result, the optimizing

random variables on each channel have support only on a finite number of points.

Therefore we conclude that E0 for the vector channel is also a finite set of points.

Spherically symmetric constraints: Suppose the input is constrained to be in the

ball ||x|| ≤ a and the noise is also spherically symmetric, i.e., σ2
i = σ2 ∀i. Then

by spherical symmetry and the fact that mutual information is concave in the dis-

tribution, it follows that E0 is spherically symmetric. Since the necessary condition

for Theorem 6.1 should not be satisfied, E0 has to be a finite number of spheres of

the form ||x|| = r. This is a generalization of the Shamai-Bar-David result for the

quadrature Gaussian channel, where the support set is a finite number of circles.

6.4 The Rayleigh block fading channel

As described in [51], the single antenna Rayleigh block fading channel takes in T

complex numbers as the input, multiplies all of them by the same fade h distributed
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CN (0, 1) and adds a noise vector, the components of which are drawn i.i.d CN (0, 1).

vt = hut + wt t = 1, . . . , T (6.11)

where (u1, . . . , uT ) is the input vector, h is the fade and (w1, . . . , wT ) is the noise

vector and (v1, . . . , vT ) is the output vector. Note that the input and the output are

in R2T (or CT ).

Marzetta and Hochwald [51] use the spherical symmetry of the problem to show

that the capacity is achieved by a random variable which is the product of a real

scalar amplitude R and an independent isotropically distributed unit vector. They

go on to conjecture (mainly based on numerical optimization) that R takes on only

a discrete number of values. We will now prove this conjecture by contradiction. Let

us assume r took on an infinite number of values in any compact interval (which is of

course true if the random variable R has support on a continuous interval). Then the

support E0 of the capacity achieving distribution satisfies the necessary condition for

Theorem 6.1. Therefore f(z) = 0 ∀z ∈ C2T where f(z) the LHS of inequality (6.5)

suitably extended to the complex domain.

In particular, f(z) = 0 when z = (x, 0, . . . , 0) = u with x ∈ R. Let us look

closely at f(z) in this case. Here information is only transmitted at t = 1 on a

scalar Rayleigh fading channel. At time instances t = 2, . . . , T , only Gaussian noise

is received. Hence

p(v|u) =
1

π(x2 + 1)
exp

[−|v1|2
x2 + 1

] T
∏

t=2

1

π
exp (−|vt|2) (6.12)

The Kuhn-Tucker condition for this special case states

∫ ∞

−∞

∫ ∞

−∞

. . .

∫ ∞

−∞

∫ ∞

−∞

p(v|u) ln [p(v|u)/p(v)] dv1R
dv1I

. . . dvTR
dvTI

−(C + β(x2 − a)) = 0 ∀x (6.13)
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where vtR , vtI are the real and imaginary parts respectively of vt. Here we have used

||u||2 = x2.

We now need to solve equation (6.13) for an output distribution p(v). The

Marzetta-Hochwald result tells us that the optimizing input density p(u) is isotrop-

ically distributed. As a consequence the output density p(v) is also isotropically

distributed, i.e., the probability is just a function of the amplitude.

p(v1, . . . , vT ) = g(||v||2) = g(|v1|2 + · · ·+ |vT |2) (6.14)

where g is a strictly positive function of a nonnegative real variable.

We observe that every term in equation (6.13) has a dependence only on |vt|2.

Therefore, we use the change of variables yt = |vt|2, θt = tan−1(vtI /vtR) to obtain

∫ ∞

0

. . .

∫ ∞

0

p(y|u) ln [p(y|u)/p(y)] dy1 . . . dyT

−(C + β(x2 − a)) = 0 (6.15)

where

p(y|u) =
1

(1 + x2)
exp

[ −y1

1 + x2

] T
∏

t=2

exp (−yt) (6.16)

p(y) = πg(y1 + · · ·+ yT ) (6.17)

Integrating out the p(y|u) ln p(y|u) term in equation (6.15) yields

∫ ∞

0

. . .

∫ ∞

0

p(y|u) ln p(y)dy1 . . . dyT

+C + T + ln(1 + x2) + β(x2 − a) = 0 (6.18)

Define the marginal function f(y1) which integrates out the variables y2, . . . , yT in
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equation (6.18).

f(y1) =

∫ ∞

0

. . .

∫ ∞

0

exp(−(y2 + · · ·+ yT )) ln(πg(y1 + · · ·+ yT ))dy2 . . . dyT (6.19)

equation (6.18) now reduces to

∫ ∞

0

1

(1 + x2)
exp

[ −y1

1 + x2

]

f(y1)dy1 + α + ln(1 + x2) + βx2 = 0 (6.20)

where α = C + T − βa. This is exactly the same form as the equation for the

memoryless Rayleigh fading channel [1]. So, for the sake of brevity, we state without

proof the solution of equation (6.20) derived in [1].

f(y1) = ln K − ln y1 − βy1 (6.21)

It is easy to see that the above f(y1) is indeed a solution of equation (6.20). Unique-

ness follows from the uniqueness of the Laplace transform. Substituting back in

equation (6.19) and multiplying both sides by exp(−y1), we get

∫ ∞

0

. . .

∫ ∞

0

exp(−(y1 + y2 + · · ·+ yT )) ln(πg(y1 + · · ·+ yT ))dy2 . . . dyT

= exp(−y1)(ln K − ln y1 − βy1) (6.22)

Define the RHS of equation (6.22) to be Q(y1) and the integrand in the LHS to be

q(y1 + y2 + · · ·+ yn). In other words,

∫ ∞

0

. . .

∫ ∞

0

q(y1 + y2 + · · ·+ yT )dy2 . . . dyT = Q(y1) (6.23)

We now want to solve for q in terms of the known Q. For this we start by replacing
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y2 + y1 by y2. This gives us

∫ y1

∞

∫ ∞

0

. . .

∫ ∞

0

q(y2 + · · ·+ yT )dy2 . . . dyT = Q(y1) (6.24)

Using the fundamental theorem of calculus, we get

∫ ∞

0

. . .

∫ ∞

0

q(y1 + y3 + · · · + yT )dy3 . . . dyT = (−1)
dQ(y1)

dy1
(6.25)

Repeating this procedure a further T − 2 times gives us

q(y1) = (−1)T−1dT−1Q(y1)

dyT−1
1

(6.26)

Substituting the q(y1) and Q(y1) defined in equation (6.22), we get

q(y1) = (−1)T−1 dT−1

dyT−1
1

[ln K − βy1 − ln y1] = exp(−y1)

[

(T − 1)! + o(1)

yT−1
1

]

(6.27)

with o(1) being used to denote a term that approaches zero as y → 0. This means

the output distribution p(y1, . . . , yT ) has to be of the form

p(y1, . . . , yT ) = exp

[

(T − 1)! + o(1)

(y1 + · · · + yT )T−1

]

(6.28)

This cannot be a probability density, because

∫ ∞

0

. . .

∫ ∞

0

p(y1, . . . , yT )dy1 . . . dyT = ∞ (6.29)

no matter what the o(1) term is. Thus our assumption that the amplitude R has

support on an infinite number of points on any compact interval leads to an invalid

output distribution. This gives us our second result:

Theorem 6.4 The capacity achieving random variable for a Rayleigh block fading
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channel is of the form X = RU where U is an isotropically distributed unit vector

and R takes on a discrete number of real values such that in any compact interval, it

takes on only a finite number of values.

It may be possible to prove that R takes on only a finite number of values (which

is the case when T = 1), but that is beyond the scope of this chapter.

6.5 General block fading channels

In this section, we will first consider a general memoryless fading channel and try to

describe the structure of the capacity achieving distribution. The fading channel is

of the form

Y = HX + W (6.30)

where Y, H, X, W ∈ C. Here X is the input variable, Y is the output variable, W

is the additive noise distributed CN (0, 1) and H the fade distributed pH(h). The

only constraint imposed on the fade is that the average fade power EH(h2) be finite.

On the input variable X, we impose a “higher moment constraint” by forcing X to

satisfy

EX(|x|2+ε) ≤ a (6.31)

The case ε = 0 corresponds to the usual power condition. We will prove that for any

ε > 0, there is a capacity achieving distribution of the form X = RejΦ where R is

a real variable taking on a finite number of values and Φ is an independent variable

distributed uniformly on [0, 2π]. Such distributions are called discrete amplitude

uniform independent phase (DAUIP) distributions.

The UIP part easily follows from the circular symmetry of the problem. Suppose

X0 = RejΦ0 is a capacity achieving random variable resulting in mutual information

I0. Consider a new random variable X1 = X0e
jΘ where Θ is uniformly distributed.
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Conditioned on Θ, X1 results in the same mutual information, i.e., I(X1; Y |Θ) = I0.

Now by the concavity of mutual information in the input distribution, it follows

that X1 achieves mutual information I1 ≥ I0. Clearly, X1 has UIP since Θ + Φ is

independent of R and uniformly distributed.

The DA part is harder to prove and we have to use the method developed in the

previous sections. Firstly, we will state the Kuhn-Tucker condition.

∃β ≥ 0 : D(p(y|x) || p(y; F ∗)) − (C + β(|x|2+ε − a)) ≤ 0 (6.32)

with equality when x is the support E0 of the capacity achieving distribution.

In the next step, we see that if R takes on an infinite number of values in any

compact interval, then the necessary conditions for Theorem 6.1 are satisfied. (We

have to be slightly careful here since the function we are dealing with is not analytic

at z1 = 0 or z2 = 0, but that is not a major problem). Therefore inequality (6.32)

holds with equality everywhere. In particular we can pick some sequence xi with

|xi| → ∞ where

D(p(y|xi) || p(y; F ∗)) = C + β(|xi|2+ε − a) (6.33)

Note that this holds even in the case when R has support on an infinite sequence of

points with only a finite number of points in any compact interval. This means that

there is a sequence ri → ∞ in the support of R and hence equation (6.33) holds for

some sequence xi with |xi| → ∞.

In the last step, we upper-bound the LHS of equation (6.33) by a function that

grows as |xi|2 thereby proving that equation (6.33) can’t hold for |xi| → ∞. In the
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derivation, we use the notation g(y) = (1/π)e−|y|2 for convenience.

D(p(y|x)||p(y)) = D(EHp(y|x, h)||EXEHp(y|x, h))

= D(EHp(y|x, h)||EHEXp(y|x, h)) (6.34)

≤ EHD(p(y|x, h)||EXp(y|x, h)) (6.35)

= EH

∫

g(y − xh) ln

[

g(y − xh)

EXg(y − xh)

]

dy

= EH

[

− ln πe +

∫

g(y − xh)(− ln EXg(y − xh))dy

]

≤ EH

[

− ln πe +

∫

g(y − xh)EX(− ln g(y − xh))dy

]

(6.36)

= EH

[

−1 − ln π +

∫

g(y − xh)EX(|y − xh|2 + lnπ)dy

]

= EH

[

−1 +

∫

g(y − xh)(|y|2 + |h|2EX |x|2)dy

]

(6.37)

= EH

[

−1 + |h|2EX |x|2 +

∫

g(y)|y + xh|2dy

]

= EH

[

|h|2EX(|x|2) + |h|2|x|2
]

= (EH |h|2)(|x|2 + EX |x|2) (6.38)

EH and EX can be interchanged in equation (6.34) because X and H are indepen-

dent. Inequality (6.35) comes from the convexity of D(.||.) in its inputs [10], while

inequality (6.36) comes from the convexity of − ln(.). X having uniform phase implies

EX(x) = 0, a fact used in equation (6.37). EH |h|2 is finite by assumption and EX |x|2

is also finite because EX |x|2+ε is.

The upper bound (6.38) implies that inequality (6.33) can’t be satisfied as |x| → ∞

for any ε > 0 for any positive β. This leads to our third main result.

Theorem 6.5 Consider any memoryless fading channel with finite fade second mo-

ment (EH |h|2 < ∞). Let there be an input higher moment constraint of the form

EX |x|2+ε ≤ a. Then ∀ε > 0 the capacity achieving random variable is of the form
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X = RejΦ where Φ is uniformly distributed on [0, 2π] and R takes on a finite number

of real values.

Note that β = 0 corresponds to the unphysical situation where the capacity is

independent of the input higher moment constraint. This means that the capacity

at any EX |x|2+ε > a equals the capacity at EX |x|2+ε = a. This can be shown

to be impossible for all non-trivial fading channels by constructing a sequence of

distributions with increasing mutual information. Indeed the construction given in [1]

suffices.

The fact that the capacity achieving R has finite support for all ε > 0 doesn’t prove

that is the case when ε = 0. Indeed, one counterexample is the Gaussian channel

(constant fade) where the capacity achieving X has support on the entire complex

plane. However we believe that the Gaussian case is the only fading channel where

such a continuous-discrete transition occurs at ε = 0. In other words, we believe that

all non-constant fading channels have DAUIP capacity achieving distributions. The

results on the Rayleigh fading [1], Rician fading [26] and non-coherent Gaussian [34]

channels support this conjecture.

If this conjecture were true, then finding the capacity achieving distribution would

require numerical optimization of a discrete set of parameters, as opposed to a contin-

uous set of parameters. This should lead to faster computation and better precision

(see [1, 70, 76] and [68] for computation details). Even if the conjecture were not true,

there may be something to be gained in the way of complexity by computing the ca-

pacities with a higher moment constraint instead of the power constraint. Because

EX |x|2+ε is continuous in ε, the capacity computed this way by using finite dimen-

sional optimization can be reasonably close to the actual capacity if ε is sufficiently

small.

We can extend the results of Theorem 6.5 to all block fading channels. These

are channels where the fade remains constant for T channel uses, then changes to
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an independent value drawn according to some probability density pH(h). We can

extend Theorem 6.5 to such channels easily by using steps similar to (6.34)-(6.38).

Theorem 6.6 Consider any block fading channel with finite fade second moment

(EH |h|2 < ∞). Let there be an input constraint of the form EX ||x||2+ε ≤ a. Then

∀ε > 0 the capacity achieving random variable is of the form X = RU where U is

isotropically distributed and R takes on a finite number of real values.

Again we conjecture that a similar result holds even when ε = 0, except in the

case when the fade is constant (spherically symmetric vector Gaussian channel). The-

orem 6.4 about the Raleigh block fading channel partly supports this conjecture.

6.6 Conclusion

We have studied several vector channels and found that the capacity achieving dis-

tribution is singular in almost all of these channels. In other words, a channel with

an n-dimensional vector input generally has a capacity achieving distribution with

lower dimension. A classic example is the power constrained vector Gaussian channel

on which the waterfilling rule allots zero power to some of the component channels.

This means that the capacity achieving random variable can be specified by (n−1) or

fewer parameters. Other previously known examples include Smith’s result for a peak

power limited scalar (1-dimensional) Gaussian channel [76], which states the capac-

ity achieving distribution has support on a finite number of points, a 0-dimensional

set. Similarly the peak-power limited quadrature Gaussian channel [70], with a 2-

dimensional input, has a capacity achieving distribution supported by a finite number

of circles, a set with dimension 1. In this chapter, we showed that these results are

instances of a general singularity result (Theorem 6.3) that holds for almost all vector

Gaussian channels.
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We also showed that similar singularity results hold for block fading channels as

well. This singular nature, when combined with channel specific information, often

reduces the computation of the capacity achieving distribution to the optimization

of a finite (or at least discrete) number of parameters. As an example, we used

our singularity results and spherical symmetry to show that the capacity achieving

random variable for the Rayleigh block fading channel [51] is the product of a discrete

real amplitude and an independent isotropically distributed unit vector.

We hope that the techniques we developed will be useful on channels other than

the ones described in this chapter. In particular, we hope that they can be used to

prove that the capacity achieving random variable on any block fading channel is the

product of a discrete real amplitude and an independent isotropically distributed unit

vector. This conjecture, if true, would encompass many previously known results [1,

26, 34] on this subject.
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Chapter 7 Conclusion

In the preceding chapters, we have studied several important problems related to the

design of efficient error correction codes for wireless networks. In this chapter, we

present a brief summary of our results and some open problems.

In Chapter 2, we studied two classes of rateless codes viz., LT codes and raptor

codes on channels such as the BSC and the AWGNC. We found that raptor codes

outperform LT codes and have good performance on a wide variety of channels.

However, there is room for minor improvements. For example, we could use raptor

codes optimized for the AWGNC instead of those optimized for the BEC. Moreover,

we did not design an explicit data transfer protocol that uses raptor codes. Designing

such a protocol and analyzing its performance on important wireless channels would

be a logical direction for future research.

Our results in Chapter 3 are similar in nature to those in Chapter 2. While error

correcting codes designed for the single user BEC work fairly well on MACs, it is

possible to have explicit code constructions that offer marginal improvements. We

provided such a construction in the case of the BAC. Like in the case of rateless

codes, we have assumed synchronization between all nodes. Designing a protocol

that achieves this is a non-trivial task.

In Chapter 4, we studied iterative decoding algorithms for a class of non-LDPC

codes called Euclidean geometry (EG) codes. We found that the use of highly redun-

dant parity check matrices makes it possible to obtain near-optimal performance for

some EG codes. It would be interesting to see if similar techniques can be applied to

other classes of codes, such as Reed-Solomon codes.

In Chapter 5, we designed a distributed network code that achieves capacity for
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a class of wireless erasure multicast networks. However, our results are not easily

extended to non-erasure networks. One goal of future research would be to find the

capacity of other wireless networks.

In Chapter 6, we conjectured that all non-trivial block fading channels have sin-

gular capacity achieving distributions and proved several results that support this

conjecture. A proof of this conjecture would be desirable.

The list of open problems given above is by no means exhaustive. There are a

large number of other important problems in the design of efficient codes for wireless

networks. Solutions to these problems are likely to have significant impact on future

communications systems. We hope that this thesis will be prove to be useful in solving

a few of these open problems.



92

Bibliography

[1] I. C. Abou-Faycal, M. D. Trott and S. Shamai, “The capacity of discrete-time

memoryless Rayleigh-fading channels,” IEEE Trans. Inform. Theory, vol. 47, pp.

1290-1301, May 2001.

[2] R. Ahlswede, N. Cai, S. -Y. R. Li and R. W .Young, “Network information flow,”

IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204-1216, Jul 2000.

[3] S. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans.

Inform. Theory, vol. 32, no. 1, pp. 325-343, Mar 2000.

[4] A. Amraoui, S. Dusad, R. Urbanke, “Achieving general points in the 2-user Gaus-

sian MAC without time-sharing or rate-splitting by means of iterative coding,”

Proc. Intl. Symp. Inform. Theory, Jul 2002.

[5] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding,” Proc. Intl. Conf. Comm., pp. 1064-1070, May

1993.

[6] I. F. Blake and R. C. Mullin, The mathematical theory of coding, Academic Press,

1975.

[7] A. Canteaut and F. Chabaud, “A new algorithm for finding minimum-weight

words in a linear code: Application to McEliece’s cryptosystem and to narrow-

sense BCH codes of length 511,” IEEE Trans. Inform. Theory, vol. 44, pp. 367-

378, Jan 1998.



93

[8] S.-Y. Chung, G. Forney, T. Richardson and R. Urbanke, “On the Design of

low-density parity check codes within 0.0045 db of the Shannon Limit,” IEEE

Comm. Letters, vol. 5, pp. 58-60, Feb 2001.

[9] S.-Y. Chung, R. Urbanke and T. J. Richardson, “Analysis of sum-product de-

coding of low-density parity-check codes using a Gaussian approximation,” IEEE

Trans. Inform. Theory, vol. 47, pp. 657-670, Feb. 2001.

[10] T. M. Cover and J. A. Thomas, Elements of information theory, Wiley, 1991.

[11] T. M. Cover, R. J. McEliece and E. C. Posner, “Asynchronous multiple-access

channel capacity,” IEEE Trans. Inform. Theory vol. 27, pp. 409-413, Jul 1981.

[12] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi and M. Effros, “On the capacity

of wireless erasure networks,” submitted to IEEE Trans. Inform. Theory.

[13] C. Di, D. Proietti, E. Teletar, T. Richardson and R. Urbanke, “Finite-length

analysis of low density parity-check codes on the binary erasure channel,” IEEE

Trans. Inform. Theory, vol. 48, pp. 1570-1579, Jun 2002.

[14] I. Dumer and K. Shabunov, “Recursive decoding of Reed-Muller codes,” Proc.

Intl. Symp. Inform. Theory, Jun 2000.

[15] I. Dumer and K. Shabunov, “Near-optimum decoding for subcodes of Reed-

Muller Codes,” Proc. Intl. Symp. Inform. Theory, Jun 2001.

[16] I. Dumer and K. Shabunov, “Recursive and permutation decoding for Reed-

Muller codes,” Proc. Intl. Symp. Inform. Theory, Jun 2002.

[17] P. Elias, “Coding for noisy channels,” IRE Conv. Record, Part 4, pp. 37-37,

Mar 1955.

[18] Flarion Technologies, “Vector LDPC coding solution,” Technical data sheet.

Available online at http://www.flarion.com/products/vector.asp



94

[19] G. D. Forney Jr., “Coset codes II: Binary lattices and related codes,” IEEE

Trans. Inform. Theory, vol. 34, pp. 1152-1187, Sep 1988.

[20] M. Fossorier and S. Lin, “Generalized coset decoding,” IEEE Trans. Comm., vol.

45, pp. 393-395, Apr 1997.

[21] M. Fossorier, R. Palanki and J. S. Yedidia, “Iterative decoding of multi-step ma-

jority logic decodable codes,” Proc. 3rd Intl. Symp. on Turbo Codes and Related

Topics, Sep 2003.

[22] R. G. Gallager, Low-density parity-check codes, M.I.T. Press, 1963.

[23] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory,

vol. 8, pp. 21-28, Jan 1968.

[24] R. Gowaikar, A. F .Dana, R. Palanki, B. Hassibi and M. Effros, “On the capacity

of wireless erasure relay networks,” accepted for presentation at ISIT 2004.

[25] R. C. Gunning and H. Rossi, Analytic functions of several complex variables,

Prentice-Hall, 1965.

[26] M. C. Gursoy, H. V. Poor and S. Verdu, “On the capacity-achieving distribu-

tion of the noncoherent Rician fading channel,” Canadian Workshop on Inform.

Theory, May 2003.

[27] J. Hagenauer, “Rate-compatible punctured convolutional codes and their appli-

cations,” IEEE Trans. Comm., vol. 36, pp. 389-400, Apr 1988.

[28] J. Hagenauer, E. Offer and L. Papke, “Iterative decoding of block and convolu-

tional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429-445, Mar 1997.

[29] J. Harel, R. J. McEliece and R. Palanki, “Poset belief propagation - experimental

results,” Proc. Intl. Symp. Inform. Theory, Jun 2003.



95

[30] F. Hemmati, “Closest coset decoding of |u|u + v| codes,” IEEE Jour. Select.

Areas Commun., vol. 7, pp. 982-988, Aug 1989.

[31] T. Ho, R. Koetter, M. Medard, D. R. Karger and M. Effros, “The benefits of

coding over routing in a randomized Setting,” Proc. Intl. Symp. Inform. Theory,

Jul 2003.

[32] T. Ho, M. Medard, J. Shi, M. Effros and D. R. Karger, “On randomized network

coding,” Proc. 41st Allerton Annual Conference on Communication, Control,

and Computing, Oct 2003.

[33] H. Jin, A. Khandekar and R. J. McEliece, “Irregular repeat-accumulate codes,”

Proc. 2nd Intl. Symp. on Turbo Codes and related topics, Sep 2000.

[34] M. Katz and S. Shamai, “On the capacity-achieving distribution of the discrete-

time non-coherent additive white Gaussian noise channel,” Proc. Intl. Symp.

Inform. Theory, Jul 2002.

[35] R. Koetter and M. Medard, “An algebraic approach to network coding,”

IEEE/ACM Trans. Networking, Feb 2003.

[36] Y. Kou, S. Lin and M. Fossorier, “Low density parity check codes based on finite

geometries: A rediscovery and new results,” IEEE Trans. Inform. Theory, vol.

47, pp. 2711-2736, Nov 2001.

[37] Y. Kou, J. Xu, H. Tang, S. Lin and K. Abdel-Ghaffar, “On circulant low density

parity check codes,” Proc. Intl. Symp. Inform. Theory, Jun 2002.

[38] S. G. Krantz, Function theory of several complex variables, Wiley, 1982.

[39] C. F. Leanderson, G. Caire and O. Edfors, “On the performance of incremental

redundancy schemes with turbo codes,” Proc. Radiovetenskap och Kommunika-

tion 2002, pp. 57-61, Jun 2002.



96

[40] S. -Y. R. Li, R. W. Yeung and N. Cai, “Linear network coding,” IEEE Trans.

Inform. Theory, vol. 49, no. 2, pp. 371-381, Feb 2003.

[41] S. Lin and D. J. Costello, Jr., Error control coding: fundamentals and applica-

tions, Prentice-Hall, 1983.

[42] S. Lin, H. Tang and Y. Kou, “On a class of finite geometry low density parity

check codes,” Proc. Intl. Symp. Inform. Theory, Jun 2001.

[43] M. Luby, “LT- codes,” Proc. 43rd Annual IEEE Symp. on the Foundations of

Comp. Science, pp. 271-280, Nov 2002.

[44] M. Luby, M. Mitzenmacher, A. Shokrollahi and D. Spielman, “Improved low-

density parity check codes using irregular graphs,” IEEE Trans. Inform. Theory,

vol. 47, pp. 585-598, Feb 2001.

[45] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman and V. Stemann, “Prac-

tical loss-resilient codes,” Proc. 29th ACM Symp. on the Theory of Computing,

pp. 150-159, May 1997.

[46] R. Lucas, M. Bossert and M. Breitbach, “On iterative soft-decision decoding of

linear binary block codes and product codes,” IEEE Jour. Select. Areas Com-

mun., vol. 16, pp. 276-298, Feb 1998.

[47] R. Lucas, M. Fossorier, Y. Kou and S. Lin, “Iterative decoding of one-step major-

ity logic decodable codes based on belief propagation,” IEEE Trans. Commun.,

vol. 48, pp. 931-937, Jun 2000.

[48] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inform. Theory, vol. 45, pp. 399-431, Mar 1999.

[49] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low

density parity check codes,” Electron. Let., vol. 32, pp. 1645-1646, Aug 1996.



97

[50] D. M. Mandelbaum, “An adaptive-feedback coding scheme using incremental

redundancy,” IEEE Trans. Inform. Theory, vol. 20, pp. 388-389, May 1974.

[51] T. L. Marzetta, B. M. Hochwald, ”Capacity of a mobile multiple-antenna com-

munication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 45,

pp. 139-157, Jan 1999.

[52] P. Maymounkov, “Online codes,” NYU Technical Report TR2003-883, Nov 2002.

Available online at http://www.scs.cs.nyu.edu/~petar

[53] R. J. McEliece, The theory of information and coding, Cambridge University

Press, 2002.

[54] R. J. McEliece, D. J. C. MacKay and J.-F. Cheng, “Turbo decoding as an

instance of Pearl’s ‘belief propagation’ algorithm,” IEEE J. Selected Areas in

Comm., vol. 16, no. 2, pp. 140-152, Feb 1998.

[55] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes,

North-Holland Mathematical Library, 1977.

[56] D. E. Muller, “Application of Boolean algebra to switching circuit design and to

error detection,” IRE Trans. Electron. Comput., vol. 3, pp. 6-12, Jan 1954.

[57] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for the erasure

channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 3017-3028, Dec 2002.

[58] R. Palanki, “On the capacity achieving distributions of some fading channels,”

Proc. 40th annual Allerton conference, Oct 2002.

[59] R. Palanki, M. Fossorier and J. S. Yedidia, “Iterative decoding of multi-step

majority logic decodable codes,” submitted to IEEE Trans. Comm.



98

[60] R. Palanki, A. Khandekar and R. J. McEliece, “Graph-based codes for syn-

chronous multiple access channels,” Proc. 39th Allerton Conf. on Communica-

tion, Control and Computing, Oct 2001.

[61] R. Palanki and J. S. Yedidia, “Rateless codes on noisy channels,” Proc. Conf.

Inform. Sciences and Systems, Mar 2004.

[62] R. Palanki and J. S. Yedidia, “Rateless codes on noisy channels,” accepted for

presention at ISIT 2004.

[63] J. Pearl, Probabilistic reasoning in intelligent systems, Morgan Kauffman, 1988.

[64] W. W. Peterson and E. J Weldon Jr., Error-correcting codes, M.I.T. Press, 1972.

[65] I. S. Reed, “A class of multiple-error-correcting codes and the decoding scheme,”

IRE Trans. Inform. Theory, vol. 4, pp. 38-49, Sep 1954.

[66] T. Richardson and R. Urbanke, “The capacity of low-density parity check codes

under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599-

618, Feb 2001.

[67] B. Rimoldi, “Generalized time sharing: A low-complexity capacity-achieving

multiple-access technique,” IEEE Trans. Inform. Theory, vol.47, pp. 2432-2442,

Sep 2001.

[68] K. Rose, “A mapping approach to rate-distortion computation and analysis,”

IEEE Trans. Inform. Theory, vol. 40, pp. 1939-1952, Nov 1994.

[69] W. Rudin, Real and complex analysis, McGraw-Hill, 1987.

[70] S. Shamai and I. Bar-David, “The capacity of average and peak-power limited

quadrature Gaussian channels,” IEEE Trans. Inform. Theory, vol. 41, pp. 1060-

1071, Jul 1995.



99

[71] C. E. Shannon, “The mathematical theory of communication,” Bell System Tech-

nical Journal, vol. 27, pp. 379-423 and pp. 623-656, Jul and Oct 1948.

[72] A. Shokrollahi, “New sequences of linear time erasure codes approaching channel

capacity,” Proc 1999 ISITA, pp. 65-76, Nov 1999.

[73] A. Shokrollahi, “Raptor codes,” accepted for presentation at ISIT 2004. Available

online at http://www.inference.phy.cam.ac.uk/mackay/DFountain.html

[74] A. Shokrollahi, S. Lassen and M. Luby, “Multi-stage code generator and decoder

for communication systems,” U.S. Patent application number 20030058958, Dec

2001.

[75] G. F. Simmons, Introduction to topology and modern analysis, McGraw-Hill,

1963.

[76] J. G. Smith, “The information capacity of amplitude and variance-constrained

scalar Gaussian channels,” Inform. Contr., vol. 18, pp. 203-219, Apr 1971.

[77] J. Stern, “A method for finding codewords of small weight,” Lecture Notes in

Computer Science, vol. 388, pp 106-113, Springer Verlag, 1989.

[78] D. Stojanovic, M. Fossorier and S. Lin, “Iterative multi-stage maximum likeli-

hood decoding of multi-level concatenated codes,” Proc. Workshop on Coding

and Cryptography, Jan 1999.

[79] H. Tang, J. Xu, Y. Kou, S. Lin and K. Abdel-Ghaffar, “On algebraic construction

of Gallager low density parity check codes,” Proc. Intl. Symp. Inform. Theory,

Jun 2002.

[80] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.

Inform. Theory, vol. 27, pp. 533-547, Sep 1981.



100

[81] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-

mal decoding algrotihm,” IEEE Trans. Inform. Theory, vol. IT-13, pp. 260-269,

Apr 1967.

[82] S. B. Wicker, Error control systems for digital communication and storage,

Prentice-Hall, 1995.

[83] K. Yamaguchi, H. Iizuka, E. Nomura and H. Imai, “Variable threshold soft de-

cision decoding,” IEICE Trans. Elect. and Comm., vol. 72, pp. 65-74, Sep 1989.

[84] J. S. Yedidia, J. Chen and M. Fossorier, “Generating code representations suit-

able for belief propagation decoding,” Proc. 40th Annual Allerton Conf., Oct

2002.

[85] J. S. Yedidia, W. T. Freeman and Y. Weiss, “Constructing free energy approxi-

mations and generalized belief propagation algorithms,” MERL technical report,

Aug 2002. Available online at http://www.merl.com/papers/TR2004-040/


