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Abstract

Let F be an abelian extension of an imaginary quadratic field K with Galois group G.

We form the Galois-equivariant L-function of the motive M = h0(SpecF )(j) where

the Tate twists j are negative integers. The leading term in Taylor expansion at

s = 0 decomposes over the group algebra Q[G] into a product of Artin L-functions

indexed by the characters of G. We construct a motivic element ξ via the Eisenstein

symbol and relate the L-value to periods of ξ via regulator maps. Working toward

the equivariant Tamagawa number conjecture, we prove that the L-value gives a basis

in étale cohomology which coincides with the basis given by the p-adic L-function

according to the main conjecture of Iwasawa theory.
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Chapter 1

Introduction

Number theorists are like lotus-eaters – having once tasted of this food they can never

give it up.

–Leopold Kronecker

1.1 History

Euler’s eighteenth century solution to the Basel problem on finding a closed form for

the infinite sum

ζ(2) =
∞∑
n=1

1

n2
= π2/6

led to his interest in the zeta function and subsequent discovery of the Euler product

ζ(s) =
∏
p

1

1− p−s

and sowed the seed for the study of special values of L-functions. This seed germinated

in the mid-nineteenth century with the work of Dirichlet, Riemann and Dedekind who

recognized relationships between zeta functions and the structure of integers. In order

to study the density of the prime numbers, Riemann considered ζ(s) as a function

on the entire complex plane with a simple pole at s = 1. While Dedekind, after

formulating the theory of ideals, was able to define for any number field F the zeta
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function

ζF (s) =
∑

a⊆OF

Na−s =
∏

p

(1−Np−s)−1.

Much of modern number theory is rooted in these discoveries, though for the present

investigation we shall focus on the following pair of results.

Theorem 1.1.1. Unit Theorem (Dirichlet)

Let S be a finite set of places of F containing the infinite ones, YF,S =
⊕

v∈S Z =

{
∑

v∈S nv · v : nv ∈ Z}, and OF,S denote the ring of S-integers of F . The regulator is

the map

λF,S :O×F,S → YF,S ⊗Z R

u 7→
∑
v∈S

log |u|v · v.

Setting XF,S := ker
(
YF,S

P
→ Z

)
, the following properties hold:

a) ker(λF,S) is a finite group.

b) im(λF,S) is a discrete lattice in XF,S ⊗Z R.

c) λF,S induces an isomorphism O×F,S ⊗Z R ' XF,S ⊗Z R. Therefore,

O×F,S ' WF,S × Z|S|−1

where WF,S is a finite group.

We formulate the class number formula in the case that S is comprised only of

the inifinite places.

Theorem 1.1.2. Analytic Class Number Formula (Dedekind)

lim
s→1

(s− 1)ζF (s) =
2r1+r2πr2

wF
√
|dF |

RFhF

where r1 (r2) is the number of real (complex) places of F , hF is the class number, dF

is the discriminant, wF is the order of the group of roots of unity and the regulator

RF is the covolume of the lattice determined by the units.
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In fact, fixing a place v0, determines a pairing

O×F,S × HomZ(XF,S,Z)→ R,

and the regulator RF = | det(log |ui|vj
)| is independent of the choice of basis ui and

place v0. Using the functional equation of the zeta function, this can be reformulated

to a statement at s = 0

lim
s→0

s1−r1−r2ζF (s) = −hFRF/wF ,

giving a direct method for computing the class number and tantalizing mathemati-

cians with the promise of a new window into the structure of integers.

1.2 Modern directions

The philosophy that locally defined complex analytic functions can encode global

algebraic information motivated a large body of number theory in the twentieth cen-

tury. With the development of algebraic geometry by Weil and Grothendieck number

theorists acquired new tools of investigation. The notion of L-function generalized

that of the zeta function, and conjectures proliferated. Again, we focus on a specific

generalization which is due to Stark.

Let F/K be any finite Galois extension of number fields with groupG := Gal(F/K).

For a complex representation V of G, we can attach an Artin L-function which de-

pends only on the character (or trace) χ of the representation

L(χ, s) =
∏

p

(det(1− FrPNp−s|V IP)−1.

Here IP denotes the inertia group of the prime P | p and FrP is a lift of the Frobenius

at P. The regulator λF,S is G-equivariant with the action |x|σv = |σ−1x|v. Stark fixes

a Q[G] isomorphism

f : XF,S ⊗Z Q '→ O×F,S ⊗Z Q.
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The composition (λF,S ◦ f)V ∈ AutC(HomG(V ∗, XF,S ⊗Z C)) and we define the Stark

regulator to be

R(χ, f) = det((λF,S ◦ f)V ).

Conjecture 1. (Stark) Let L∗(χ, 0) denote the leading term in the Taylor expansion

at s = 0 of L(χ, s), and define A(χ, f) := R(χ, f)/L∗(χ, 0). Then A(χ, f) ∈ Q(χ),

the field of values of χ, and

A(χ, f)α = A(χα, f)

for all α ∈ Gal(Q(χ)/Q).

Thus Stark conjectured that the L-function not only encodes data about the

number field but also retains information about the group action. This statement is

proved in a very limited number of cases, for example Q-valued characters.

Generalizing from the unit theorem in a different direction than Stark, Borel’s

work [Bor74] on the K-theory of fields gives a suitable alternative to units of a num-

ber field when s 6= 0 and defines a regulator map on these K-groups. Gross then

formulated a version of Stark’s conjecture for negative values of the L-functions in

terms of Borel’s regulator map [Neu88].

The equivariant Tamagawa number conjecture for an extension of number fields

generalizes the analytic class number formula in the same way that Gross’s conjecture

generalizes Dirichlet’s unit theorem. The Tamagawa number conjecture is originally

due to Bloch and Kato [BK90], and the formulation used in this work is due to

Fontaine and Perrin-Riou [FPR94]. Many of these conjectures have been made for

algebraic varieties in general. In fact our investigation is a special case of the equiv-

ariant Tamagawa number conjecture of Burns and Flach [BF01] for motives over Q

with (non-commutative) coefficients which is summarized in section 2.3.

1.3 Current Work

In this work, we take K to be an imaginary quadratic field and G an abelian group.

We study the Artin L-functions of the representations of G at negative integral values



5

and describe them in terms of the `-adic cohomology of the number field. By taking all

representations of the group, we prove the equivariant Tamagawa number conjecture

for the field F with the action of G modulo our formulation of the main conjecture.

The next chapter is devoted to the precise formulation of the conjecture, and an

exposition of the main theorem.

The proof relies heavily on an auxiliary object. Namely, we choose an elliptic

curve E over F with complex multiplication by the ring of integers OK . We can then

express the L-values, K-theory elements and `-adic cohomology classes in terms of

torsion points on the elliptic curve. Section 2.2 outlines the strategy of the proof.

As G is abelian, all representations of G are linear. Indeed, if χ is a representation

of G, then we can also consider χ to be a character on the ideals of K where χ(p) := 0

if p is ramified in F . Thus, if the conductor of χ is a proper divisor of the conductor

of F , the Artin L-function of χ differs from its Dirichlet L-function by a finite number

of Euler factors. These Euler factors play a nontrivial role in our investigation.

1.4 Related Results

The only completely proven case of the equivairant Tamagawa number conjecture is

the proof of Burns and Greither for abelian extensions of Q [BG03]. Huber and Kings

proved independently a weaker version of this cyclotomic case [HK03].

Bley has also been considering the case of abelian extensions of imaginary quadratic

fields, but at the point s = 0. Recall that this thesis looks at all s = j where j is a

negative integer. His recent preprint [Ble05] gives the `-part of the conjecture at s = 0

for split ` - hK for abelian extensions of imaginary quadratic fields. The argument

follows a similar argument to ours, but the difficulties lie in different steps.

For non-abelian extensions of Q, the results are even more sparse. Burns and

Flach give a proof for an infinite family of quaternion extensions [BF03]. Breuning

tackles a family of dihedral extensions [Bre04], and Navilarekallu gives a method of

proof for A4 extensions which he employs for a specific case [Nav04].

There are also several theorems that are not equivariant. Gealy recently proved
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a weakened version of the Tamagawa number conjecture for modular forms of weight

greater than 1 [Gea05]. Kings also proved a weakened version for elliptic curves

with CM by an imaginary quadratic field of class number 1 [Kin01]. Bars builds on

work of Kings to give some non-equivariant results for Hecke characters of imaginary

quadratic fields [Bar03]

The survey paper of Flach [Fla04] includes a nice formulation of the general version

of the equivariant Tamagawa number conjecture and discusses the proven cases.

1.5 A word on motives

By a motive we simply mean a pure Chow motive M = hi(X)(j) of a smooth pro-

jective variety X/ Spec Q with a Tate twist j. Indeed our concern is with the motive

associated to the spectrum of a number field, and we will thus speak almost exclu-

sively about h0(X)(j). In the context of Chow motives, the Tate twist is achieved by

tensoring with the Tate motive. For a nice introductory treatment of correspondences

and motives, see the notes by Murre [Mur04]. M will be endowed with the action of a

semisimple Q-algebra A. We study M via its realizations and the action of A on these

spaces, focusing on the Betti realization MB := H i(X(C),Q(j)) which carries an ac-

tion of complex conjugation, the étale or `-adic realization M` := H i
et(X×Q Q̄,Q`(j))

which is a continuous representation of the Galois group GQ, and the de Rham real-

ization MdR := H i
dR(X/Q)(j) with its Hodge filtration.
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Chapter 2

The Main Theorem

The equivariant Tamagawa number conjecture has been stated very generally by

Burns and Flach [BF01, BF03] for any motive over Q with the action of a semisimple,

finite-dimensional Q-algebra. For the present work we are considering the motive

M = h0(Spec(F ))(j), where F/K is an abelian extension of an imaginary quadratic

field and j is a negative integer. M carries an action of the semisimple Q-algebra

A = Q[Gal(F/K)], so we formulate an equivariant Tamagawa number conjecture for

the pair (M,A).

The A-equivariant L-function is constructed by taking an Euler product over the

rational primes,

L(AM, s) =
∏
p

DetA(1− Fr−1
p ·p−s|M

Ip
` )−1

where Ip is the inertia group at p and M` is the `-adic realization of the motive for

some fixed, auxiliary prime `. Twisting by the Tate motive Q(j) = Q(1)⊗j for j ∈ Z

effects a shift in the Galois action on the `-adic realization of the motive. We are

concerned with the leading term of the Taylor expansion about s = 0, denoted by

L∗(AM) when j < 0.

We first formulate the conjecture for the case in question in section 2.1; we then

state the main theorem and explain the method of proof in section 2.2. Section 2.3

briefly describes the general formulation.
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2.1 Statement of the conjecture

A decomposes into a product of number fields indexed by the rational characters of

G := Gal(F/K)

A =
∏
χ∈ĜQ

Q(χ),

where by a rational character, we mean an Aut(C) orbit (η)η∈χ of complex characters.

The A-equivariant L-function of M also decomposes over ĜQ so that the leading term

L∗(AM, s) = (L′(χ, j))χ∈ĜQ = (L′(η, j))η∈Ĝ ∈ A⊗Q C

exists by meromorphic continuation of the Artin L-function and lies in (A ⊗Q R)×.

Note that L(η, s) has a simple zero at every negative integer.

The dual of the Borel regulator gives an A-equivariant isomorphism

K1−2j(OF )∗ ⊗Z R ρ∨∞← H0
B(Spec(F )(C),Q(j))+ ⊗Q R,

where H•
B denotes the Betti cohomology of the complex space, and K1−2j(OF )∗

denotes the dual of the algebraic K-group K1−2j(OF ) = K1−2j(F ) which is finite-

dimensional over Q [Bor74].

Thus, defining

Ξ(AM) := DetA(K1−2j(OF )∗ ⊗Q)⊗A Det−1
A (H0

B(Spec(F )(C),Q(j))+),

we obtain an isomorphism

Aϑ∞ : A⊗Q R→ Ξ(AM)⊗Q R.

Gross conjectured that the image of L∗(AM, 0) in fact lies in the rational space

Ξ(AM)⊗Q 1 [Neu88]. This can be understood as a Stark-type conjecture for negative

integers. The Gross conjecture for abelian extensions of K was proved by Deninger

[Den90] in his work on the Beilinson conjectures for Hecke characters of imaginary
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quadratic fields. We recall his result in chapter 3 and make some modifications to

apply his construction to our situation.

Fix a prime number ` and put A` := A⊗Q Q`. We now construct an isomorphism

which will compute the L-value in terms of compact support cohomology. First, for

every finite prime p, define a complex of the `-adic realization.

RΓf (Qp,M`) =

M
Ip
`

1−Frp−→ M
Ip
` ` 6= p

Dcris(M`)
(1−Frp,π)−→ Dcris(M`)⊕ (DdR(M`)/Fil0DdR(M`)) ` = p.

The modules Dcris and DdR come from Fontaine’s p-adic Hodge theory. We will distill

the essential facts for our work below, but a nice introduction to the subject may be

found in Berger’s paper [Ber04].

There is a map RΓf (Qp,M`) → RΓ(Qp,M`), and we define RΓ/f (Qp,M`) to be

the mapping cone so that we have a distinguished triangle

RΓf (Qp,M`)→ RΓ(Qp,M`)→ RΓ/f (Qp,M`)

in the derived category of Q` vector spaces. We also define RΓ/f (R,M`) to be trivial.

Let S be a finite set of primes containing `, ∞, and the ramified primes. Then

the definition of cohomology with compact supports gives the triangle

RΓc(Z[
1

S
],M`)→ RΓ(Z[

1

S
],M`)→

⊕
p∈S

RΓ(Qp,M`).

The third distinguished triangle is the definition of RΓf (Q,M`) as the shifted mapping

cone in

RΓf (Q,M`)→ RΓ(Z[
1

S
],M`)→

⊕
p∈S

RΓ/f (Qp,M`).

Note that the definition is independent of S.

From the octahedral axiom, we have the triangle

RΓc(Z[
1

S
],M`)→ RΓf (Q,M`)→

⊕
p∈S

RΓf (Qp,M`) (2.1.1)
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which induces an isomorphism

DetA`
(RΓf (Q,M`))⊗Det−1

A`
(
⊕
p∈S

RΓf (Qp,M`)) ' DetA`
RΓc(Z[

1

S
],M`).

Since j < 0, we have MdR/Fil0MdR = 0 and isomorphisms

DetA`
(RΓf (Qp,M`)) ' A`,

induced by the identity map on M
Ip
` (resp. Dcris(M`)) for ` 6= p (resp. ` = p). For

p =∞,

DetA`
(RΓf (R,M`)) := DetA`

(RΓ(R,M`)) ' DetA`
((M+

B )⊗Q A`).

The cohomology of RΓf (Q,M`) is computed in all degrees in two steps. First, there

is an isomorphism with motivic cohomology: H0
f (M)Q`

' H0
f (Q,M`) via the cycle

class map, and H1
f (M)Q`

' H1
f (Q,M`) via the Chern class map. Note that the

motivic cohomology groups are rationally given by algebraic K-theory; H0
f (M) = 0

for weight reasons, and H1
f (M) = K1−2j(F ) ⊗ Q. Second we have Artin-Verdier

duality H i
f (Q,M`) ' H3−i

f (Q,M∗
` (1))

∗. Thus the exact triangle (2.1.1) induces an

isomorphism

Aϑ` : Ξ(AM)⊗Q A` ' DetA`
RΓc(Z[

1

S
],M`). (2.1.2)

Choosing the order Z[G] in A and a Gal(Q̄/Q)-stable projective Z`[G]-lattice

T` = H0
et(Spec(F ⊗K K̄),Z`(j)) in M`, the equivariant Tamagawa number conjecture

can be stated.

Conjecture 2. (ETNC) For every prime number `,

Aϑ` ◦ Aϑ∞(L∗(AM)−1) · Z`[G] = DetZ`[G]RΓc(Z[
1

S
], T`),

inside of DetA`
RΓc(Z[ 1

S
],M`).

Remarks: i) The equivariant Tamagawa number conjecture computes the tuple
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L∗(AM) up to a unit in Z[G].

ii) The statement is independent of the choice of S and T` [Fla00], but depends on

the choice of order in A`. Indeed, if there are 2 orders A` ⊆ A′
` of A then conjecture 2

for A` implies conjecture 2 for A′
` but not vice versa. Thus, the conjecture as stated

gives the equivariant Tamagawa number conjecture for any order in A`.

iii) The composition Aϑl◦Aϑ∞ is only well defined for elements of A⊗QR whose image

under Aϑ∞ have rational coefficients. Hence, Gross’s conjecture for the extension F/K

is assumed in the formulation of conjecture 2.

iv) The conjecture can be made similarly for j ≥ 0. The precise formulation follows

from the discussion in section 2.3.

2.2 Main theorem

This thesis concerns the equivariant Tamagawa number conjecture for abelian ex-

tensions of imaginary quadratic fields at negative integral values of the L-function

(Conjecture 2). We make significant progress, though we do not prove the conjecture

in full. In the cases for which we have Rubin’s 2-variable main conjecture, ` - [F : K],

it remains to reconcile Rubin’s module of elliptic units with that constructed in chap-

ter 4. For the remaining primes ` 6= 2, the main conjecture is still the conditional part

of the proof, but proving it requires the vanishing of certain Iwasawa µ-invariants.

For the prime 2, some of the complexes are no longer perfect and different methods

are needed.

Having explicated what is not done, we now explain the main theorem.

Theorem 2.2.1. The `-part of the equivariant Tamagawa number conjecture for the

motive h0(SpecF )(j) and the order Z[Gal(F/K)] in the group algebra Q[Gal(F/K)]

holds for j < 0 whenever ` 6= 2 and we have the 2-variable Iwasawa main conjecture

for imaginary quadratic fields (Conjecture 3).

Proof Strategy: The remainder of the text is devoted to the proof of this theorem,

but we will summarize the method here.
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To begin, we make some general reductions. Burns and Flach prove a general

functoriality statement for the ETNC ([BF01] Prop. 4.1b) which implies that if F ′/F

is also an abelian extension of K then the conjecture for F ′ implies the conjecture for

F . Thus by class field theory, it suffices to give a proof for F = K(m) where m ⊂ OK
and K(m) is the ray class field modulo m. We can also assume that wm = 1 where

wm denotes the number of roots of unity of K which are congruent to 1 modulo m.

Let Gm be the Galois group of the extension K(m)/K. The conjecture asserts an

equality of rank one Z`[Gm]-modules inside of DetA`
RΓc(Z[ 1

S
],M`), the bases of which

can be computed over A`. Recall that the ring A is a semisimple Q-algebra, so it splits

as a product of number fields according the rational characters of Gm, and hence so

does A`. Thus after finding a canonical global basis of DetZ`[Gm]RΓc(Z[ 1
S
], T`), denoted

by Lm,j, by descending from the main conjecture we can compare Lm,j to the image

of the L-value under Aϑ` ◦ Aϑ∞ character by character. Theorem 2.2.1 reduces to the

following result.

Theorem 2.2.2. For every rational character χ of Gm,

(Aϑ` ◦ Aϑ∞(L∗(AM, 0))χ = (Lm,j)χ

where the subscript χ denotes the projection of the element to the χ-isotypical com-

ponent

DetQ`(χ)(RΓc(Z[
1

S
],M`)⊗A`

Q`(χ)).

We construct in chapter 3 elements ξf(j) ∈ K1−2j(OK(m)) such that whenever χ

has conductor f, the Artin L-function

L′(χ̄, j) ∼Q eχ(ρ∞(ξf(j))).

Computing the image under the étale Chern class map ρ`(ξf(j)) is sufficient to deter-

mine for each χ the element

(Aϑ` ◦ Aϑ∞(L∗(AM, 0))χ.
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The proof is completed by comparing this element with (Lm,j)χ in chapter 5.

2.3 A conjecture for any smooth projective variety

over Q

Given a smooth projective variety

X → Spec Q

we consider the pure motive of weight i− 2j denoted M = hi(X)(j) with the action

of a semisimple, possibly non-commutative, Q-algebra A. To formulate the general

conjecture we proceed much in the same fashion as above, though we must assume

quite a few “nice properties” that are far from being proved. First of all, the motivic

cohomology spaces H0
f (M) and H1

f (M) are defined via algebraic K-theory. We must

assume that these K-groups are finitely generated over Q in order to take determi-

nants (compare bases). Notice that there is a well-defined theory of non-commutative

determinants due to Burns and Flach [BF03].

Instead of merely a regulator isomorphism, we now have a six term exact sequence.

0→ H0
f (M)R

c→ ker(αM)→ H1
f (M

∗(1))∗R
h→ H1

f (M)R
r→ coker(αM)→ H0

f (M
∗(1))∗R → 0

where c is the cycle class map, h is the height pairing, r is the Beilinson regulator,

and

αM : M+
B →MdR/Fil0(MdR)

is induced from the period isomorphism. In fact we use the same sequence in the for-

mulation of the conjecture above, but all spaces vanish save ker(αM) and H1
f (M

∗(1))∗.

The exactness of this sequence is not known in general.

The L-function L(AM, s) is defined at the beginning of this chapter. Write

L∗(AM, 0) ∈ (A ⊗ R)× for the leading term in the Taylor expansion about s = 0

and r(AM) ∈ H0(Spec(A ⊗ R),Z) for the order vanishing. We take as part of our
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framework that L(AM, s) has meromorphic continuation so that this makes sense.

Meromorphic continuation of motivic L-functions is an open question in general,

though it is known for automorphic L-functions. The vanishing order conjecture

states that

r(AM) = dimAH
1
f (M

∗(1))− dimAH
0
f (M

∗(1)).

With these definitions, the general version of conjecture 2 has precisely the same

form.

This seems to be an apt language for the phrasing of conjectures about special

values of L-functions. Indeed, when considering X to be the spectrum of a number

field, we have the strong Stark conjecture; while taking X to be an elliptic curve,

gives a version of the Birch and Swinnerton-Dyer conjecture. A good reference for

the general formualtion and all work done toward the conjecture is the survey paper

of Flach [Fla04].



15

Chapter 3

Formulas for L-values

Recall that the special value of the L-function L∗(M, 0) decomposes over the rational

characters of the group Gal(F/K). We can consider χ as a representation of Gm,

but if the conductor fχ 6= m, then χ is induced from a character of Gfχ . The Artin

L-function of the Gm-representation differs from the Dirichlet L-function of χ by a

finite number of Euler factors. Indeed,

L(χ, s)Dir =
∏

p|m,p-fχ

(1− χ(p)Np−s)L(χ, s).

As mentioned in section 2.2, to prove Conjecture 2 for all abelian extensions of imag-

inary quadratic fields, it suffices to consider all ray class fields of imaginary quadratic

fields. Moreover, the modulus m can be enlarged as necessary without loss of gener-

ality.

In this chapter, we will consider the special value of the (primitive) Artin L-

function L(χ, s) at negative integers j, and we will denote the conductor of χ by f.

Section 3.1 follows the work of Deninger [Den89, Den90] to give a proof of Gross’s

conjecture and discusses the modifications to Deninger’s construction which are nec-

essary for our situation. In Section 3.2, we compute the `-adic realization of the

motivic cohomology classes constructed in Section 3.1, building primarily on work

of Huber and Kings [HK99, Kin01]. The two main theorems of this chapter are the

construction of canonical motivic elements in Theorem 3.1.1 and the computation of

the étale chern class of these elements in Theorem 3.2.1.
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3.1 Analytic Computation

We devote this section to the proof of the following theorem which is a modification

of a result of Deninger [Den90] (see proposition 3.1.4 below).

Theorem 3.1.1. For every ideal 1 6= f | m, there are motivic elements

ξf(j) ∈ H1
M(K(m), 1− j)

with the property that if χ is a rational character of Gm of conductor f, then

eχ(ρ∞(ξf(j))) =
N f−1−j2−1−jΦ(m)

(−1)1+j(−2j)!Φ(f)
L′(χ, j)ηQ.

where ηQ is a basis of the χ-component of (H0
B(Spec(F )(C),Q(j))+)

∗
, and

Φ(m) = |(OK/m)×| = Nm
∏
p|m

(1−Np−1)

is Euler’s totient function. Moreover, these elements form a norm compatible system,

and for f = 1 we have a family of elements, qξ1(j), indexed by the primes of K which

are defined via the norm map and satisfying the above formula for any choice of q

with wq = 1.

Remark: Combining this result with theorem 3.2.1 gives an analog of the theorem

of Huber and Wildeshaus over Q [HW98] (9.6, 9.7).

We begin by recalling some results of Deninger [Den89, Den90]. Notice that taking

F = K(m) and using functoriality to increase m as necessary, the formulas become

somewhat simpler.

We first establish some notation. Let E be an elliptic curve defined over K(m)

with complex multiplication by OK where E has the additional property that the CM

character factors through the norm map from K(m) to K. Shimura [Shi71] showed
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that this is equivalent to the condition that the torsion points of the elliptic curve E

generate an abelian extension of K.

Fix an isomorphism

θE : OK ' EndK(m)(E)

such that θ∗E(α)ω = αω for all ω ∈ H0(E,Ω1
E/K(m)) and an embedding, τ0 of K(m)

in C such that j(E) = j(OK). Then, over the complex numbers, E ' C/Γ where

Γ = ΩOK for some Ω ∈ C. Notice that this choice is entirely non-canonical. It

determines a class in the Betti cohomology of E.

In order to distinguish an f-torsion point on E, we let ρf ∈ A∗
K be an idèle with

ideal f, and choose ff ∈ K∗ with

vp(ff) ≤ 0 if p - f and vp(f
−1
f − (ρf)

−1
p ) ≥ 0 if p | f. (3.1.1)

Let fβ = ([Ωf−1
f ]). Then fβ is an f-torsion point on E which is rational over K(f).

For g ∈ Gm, let gE be the curve obtained by base change according to the diagram

gE //

��

E

��
F

g // F

Let A = RK(m)/KE be the Weil restriction of the elliptic curve. A is an abelian

variety over K with CM by a semisimple K-algebra T and Serre-Tate character ϕA.

Deninger proves that any Hecke character, ϕ of weight w > 0 is of the form
∏w

i=1 ϕλi

where λi ∈ Hom(T,C) and ϕλi
= λi ◦ ϕA [Den89] (Proposition 1.3.1).

Twisting a complex character η ∈ χ by the norm character gives a Hecke character

of K of weight 2

ϕη = ηNK/Q = ϕλ1ϕλ2 .

Once again by functoriality, we can increase m so that it is a multiple of the conductors
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of ϕλ1 and ϕλ2 . Notice that this can be done once and for all by choosing a type (1, 0)

character ϕ with NK/Q = ϕϕ̄ and taking m to be a multiple of the conductor of ϕ.

Fix a set of ideals {bg ⊆ OK}g∈Gm with Artin symbol (bg, K(m)/K) = g ∈ Gm. For

integral ideals a of K prime to the conductors of ϕλ1 and ϕλ2 , define Λ(a) ∈ K(m)×

by

ϕA(a)∗ωσa = Λ(a)ω

where ω ∈ H0(E,Ω1) has period lattice Γ, ϕA(a) ∈ T× is viewed as an isogeny

E → σaE, and σa is the Artin automorphism of a. Now, for all g ∈ Gm, ωg has period

lattice Γg, and we can identify gE(C) with C/Γg via the Abel-Jacobi map to obtain

a divisor

fβg = ([Λ(bg)Ωf
−1
f ])

on gEf(K(m)) with Gm action given by h
fβg = fβhg. Notice that if f = 1, fβ is just

the identity on E.

We return to the consideration of rational characters with an formula for the

special values of these Artin L-functions at negative integers.

Proposition 3.1.2. (Deninger [Den90] (3.4))

The L-series, L(χ, s) has a first order zero for every s = j < 0, and the special value

is given by the formula

L′(χ, j) = (−1)−j
Φ(f)(−j)!2

Φ(m)

(√
dKN f

(2πi)

)−j
χ(ρf)

∑
g∈Gm

χ(g)A(Γg)
1−jMj(fβg),

where Φ is the totient function, and dK is the discriminant of K. For any Z-basis of

Γg with Im(v/u) > 0,

A(Γg) = (ūv − v̄u)/2πi,

and for divisors on the f-torsion of E, Mj is defined by linearity from

jMlog(x) =
∑
γ∈Γg

′ (x, γ)g
|γ|2(1−j)

, x ∈ Ef
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with the Pontrjagin pairing (, )g : C/Γg×Γg → U(1) given by (z, γ)g = exp(A(Γg)
−1(zγ̄−

z̄γ)).

Deninger constructs motivic elements from the divisors fβ using an early variation

of the Eisenstein symbol

EkM : Q[E]0 → Hk+1
M (Ek, k + 1)

which is defined only for divisors of degree 0. Lemma 3.1.7 demonstrates the relation-

ship between Deninger’s Eisenstein symbol and the one that used in the later work

of Huber, Kings, and Scholl [HK99, Kin01, Sch98], which we will also need. Choose

an integer N ≥ 2 and define a degree 0 divisor on gE(C)

Nαg = N2(0)−
∑

p∈gE(C)N

(p).

Deninger shows that

Proposition 3.1.3. (Deninger [Den90] (2.6))

fβ
′
g = fβg − (deg fβg)(0) +

deg fβg
N2

(
1− 1

N4−2j

)−1

Nαg

is a degree 0 divisor on gE(K(m)) with f
hβ′g = fβ

′
hg and

Mj(fβ
′
g) =Mj(fβg).

His notation does not distinguish between the group Gm and the embeddings

HomK(K(m),C). In Lemma 3.2, he computes that for an embedding τ of F into C,

ρ∞(KME−2j
M (fβ

′))τ = −|EN f(C)|−2jA(Γτ )
1−j(−j)!2

2(−2j)!
(2
√
dK)−jMj(fβ

′
τ )

The Kronecker map is a projector given by the composition
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H1−2j
M (E−2j, 1− 2j)

(id,θE(
√
dK)−j,∗

//

KM **UUUUUUUUUUUUUUUUU
H1−2j
M (E−j, 1− 2j)

π−j,∗

��
H1
M(Spec(K(m)), 1− j),

where the map π−j∗ is a proper push forward.

Recall that the regulator, ρ∞ is an isomorphism

K1−2j(OK(m))⊗Z R ρ∞−−→

(⊕
σ∈T

C/R · (2πi)1−j · σ

)+

where T = Hom(K(m),C). Since j < 0, K1−2j(OK(m)) ' K1−2j(K(m)), and the

R-dual of this last space is identified with M+
B,R by taking invariants in the Gal(C/R)-

equivariant perfect pairing

⊕
σ∈T

R · (2πi)j ×
⊕
σ∈T

C/R · (2πi)1−j →
⊕
σ∈T

C/2πi · R Σ−→ R

induced by multiplication.

To prove ETNC, it is essential to distinguish between the group Gm and the group

T . The reader should note that there are two commuting left actions: that of the

Galois group Gm, and the group of embeddings, T . For an element,
∑

σ∈T xσ · σ, the

Galois group acts via

g ·

(∑
σ∈T

x · σ

)
=
∑
σ∈T

x · g−1σ.

With this action, ρ∞ is A-equivariant just as in the case of the Dirichlet regulator.
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Therefore by [Den90] (Lemma 3.2),

ρ∞(KME−2j
M (fβ

′)) =
∑
τ∈T

(2πi)j
(
−|EN f(C)|−2jA(Γτ )

1−j(−j)!2

2(−2j)!
(2
√
dK)−jMj(fβτ )

)
· τ

(3.1.2)

=
∑
g∈Gm

(2πi)j
(
−|EN f(C)|−2jA(Γg)

1−j(−j)!2

2(−2j)!
(2
√
dK)−jMj(fβg)

)
· gτ0

=
∑
g∈Gm

g−1 · (2πi)j
(
−|EN f(C)|−2jA(Γg)

1−j(−j)!2

2(−2j)!
(2
√
dK)−jMj(fβg)

)
· τ0.

Again, the analysis over Q[Gm] is done character by character, so one projects to the

χ-isotypical component

eχ(ρ∞(KME−2j
M (fβ

′))) =

(∑
g∈Gm

−
|EN f(C)|−2jA(Γg)

1−j(−j)!2

2(−2j)!
(2
√
dK)−jMj(fβg)χ̄(g)

)
·ηQ

where ηQ = eχ · (2πi)jτ0 is a basis of eχ
(
M+∗

B

)
. This settles the proof of Beilinson’s

conjecture for a rational character χ of Gm which is summarized in the following

proposition.

Proposition 3.1.4. (Deninger [Den90] (3.1))

eχ(ρ∞(KME−2j
M (fβ

′))) =
(−2)−1−jN−4j)N f−j

(−2j)!χ(ρf)

Φ(m)

Φ(f)
L′(χ̄,−j)

Remark: Notice that this differs from theorem 3.1.1 by a factor of χ(ρf).

Corollary 3.1.5. The Gross conjecture holds for the extension K(m)/K .

Proof of 3.1.5: The group algebra A = Q[Gm] is semisimple and thus decomposes

as a product of fields indexed by the rational characters of Gm. Hence, Ξ(AM) also

decomposes

Ξ(AM) =
∏
χ∈ĜQ

m

DetQ(χ)(K1−2j(OK(m))
∗⊗ZQ(χ))⊗Det−1

Q`(χ)(H
0
B(Spec(K(m))(C),Q(j))+⊗QQ(χ)).

The corollary follows from the Beilinson conjecture at each χ component.
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In order to make the necessary modifications to Deninger’s elements, we digress

on the theory of complex multiplication for elliptic curves. For an idèle s of K, we

can define multiplication by s componentwise.

Theorem 3.1.6. Main theorem of complex multiplication(Shimura [Shi71]

(5.3))

Let X be an elliptic curve with CM by OK. Given a map r : K/OK → X and an idèle

s ∈ A×
K with ideal (s) and Artin symbol ψ(s) we have a unique map r′ : K/(s)→ ψ(s)X

such that the following diagram commutes.

K/OK s //

r

��

K/(s)

r′

��
X

ψ(s)−1

// ψ(s)X.

By a CM pair of modulus f over F , we mean a pair (X,α) where X is an elliptic

curve over F with complex multiplication by OK and such that the inculsion of OK
into F factors through End(X). By [Kat04] (15.3.1), there is a CM pair of modulus

f over K(f) which is isomorphic to (C/f, 1 mod f) over C. This pair is unique up to

isomorphism, and whenever O×K → (OK/f)× is injective the isomorphism is unique.

We call this pair the canonical CM pair. There is also a good account of the theory

of complex multiplication in the book by Silverman [Sil94]

Proof of 3.1.1: Continuing with the previous notation, we have fixed a choice of

an embedding τ0 : K ↪→ C and of a uniformization E ' C/ΩOK . The torsion point

fβ ∈ Ef is dependent on the choice of idèle ρf. In fact, by theorem 3.1.6

ψ(ρf)
−1 : E → ψ(ρf)E
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maps the pair (E(C), fβ) to (C/Ωf, 1 mod Ωf) since fβ = Ωf−1
f

ρf · f−1
f ≡ 1 mod f.

Indeed, the restrictions on the valuation of ff at each prime p | f in (3.1.1), give that

ρf,p/ff ∈ 1 + m
ordp f
p

where mp is the maximal ideal in the local ring OKp . Moreover, one may choose the

idèles ρ to be multiplicative in the sense that ρfp = ρfρp. We require the following

lemma in order to compute the Eisenstein symbol of individual torsion points.

Lemma 3.1.7. For k > 0, there is a variation of the Eisenstein symbol EiskM :

Q[E[f] \ 0]→ Hk+1
M (Ek, k + 1) which is defined for divisors of any degree. Moreover,

Eis(fβ
′) = Eis(fβ).

Proof of 3.1.7:

For N = N f ≥ 3, let M be the modular curve parameterizing elliptic curves with full

level N structure, and let E be the universal elliptic curve over M . Choose a level

N structure on E, α : (Z/NZ)2 ∼→ E[N ], rational over some extension K ′ of K(m).

By the universality of E, we have the following diagram depending on the choice of

level-N structure.

E
α∗ //

��

E

��
Spec(K ′) // M

Denote by Ẽ0 the fiber over the cusps of the connected component of the gener-

alized elliptic curve over the compactification of M . Then we can define Isom =

Isom(Gm, Ẽ
0
Cusp). Isom is a µ2 torsor over the subscheme of cusps, and we consider

the subset Q[Isom](k) ⊆ Q[Isom] where µ2 acts by (−1)k. Define the horospherical
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map %k : Q[E[N ]]0 → Q[Isom](k) explicitly by

%k(ψ)(g) =
Nk

k!(k + 2)

∑
t

ψ(g−1t)Bk+2(
t2
N

),

where t = (t1, t2) ∈ (Z/NZ)2 and Bk(x) is the kth Bernoulli polynomial. Moreover,

when k > 0, % is well-defined for divisors of any degree.

For an elliptic curve over any base, Beilinson [Bei86] constructs an Eisenstein

symbol Eisk : Q[E[N ]]0 → Hk+1
M (Ek, k + 1) which is preserved under base change.

For the universal elliptic curve E0, we also have a boundary map

resk : Hk+1
M (Ek, k + 1)→ Q[Isom](k)

coming from the long exact cohomology sequence, and another Eisenstein symbol

Eisk : Q[Isom](k) → Hk+1
M (Ek, k + 1)

with resk ◦ Eisk = id. The following diagram commutes when restricting to degree

zero divisors.

Q[E[N ]]
% // Q[Isom](k)

Eis// Hk+1
M (Ek, k + 1)

α∗

��
Q[E[N ]]0

Eisk
//

α

OO

Hk+1
M (Ek, k + 1)

Indeed, he horospherical map above was computed by Schappacher and Scholl to

be the composition Eisk ◦ resk [SS91]. Combining this fact with base change, the

diagram commutes, and we can compute the Eisenstein symbol at torsion points on

the elliptic curve. Moreover, this computation does not depend on the choice of full

level structure since the assignment of Eisenstein symbols commutes with the GL2

action on the torsion sections and is thus invariant under the trace Y (N) → Y1(N)

[Kin99] (Lemma 3.1.2).
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To show that Eis(fβ
′) = Eis(fβ), it suffices to show that

fβ
′ − fβ =

1

Ñ4−2j − 1
(0)− Ñ2−2j

Ñ4−2j − 1

∑
p∈E(C)[Ñ ]

(p) ∈ ker %.

Here, Ñ denotes the auxilliary integer defined by Deninger as discussed in section 3.1.

To see that this lies in the kernel of %, we first note that the action of Gm preserves

the identity section on the curve. So,

%−2j(0)(g) =
N−2j

(−2j)!(2− 2j)
B2−2j(0).

We compute

%−2j

 ∑
p∈E(C)[Ñ ]

(p)

 (g) =
Ñ−2j

(−2j)!(2− 2j)

∑
(p)=(t1,t2)∈(Z/ÑZ)2

B2−2j

(
t2

Ñ

)

=
Ñ1−2j

(−2j)!(2− 2j)

Ñ−1∑
a=0

B2−2j

(
a

Ñ

)
.

Moreover, we have the distribution relation

Bk(X) = Ñk−1

Ñ−1∑
a=0

Bk

(
X + a

Ñ

)

which implies that

%−2j

 ∑
p∈E(C)[Ñ ]

(p)

 (g) =
1

Ñ2−2j
%−2j(0)(g).

Remark: This lemma allows us to extend Deninger’s formula [Den89] (Theorem

10.9) for computing the Beilinson regulator of the Eisenstein symbol of a divisor

to our torsion point fβ without the modification to degree 0 in the sequel [Den90]

(Proposition 2.6). This is necessary in order to have the desired shape in the `-adic
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computation. It is used incorrectly in [Kin01]. We also note that EM = NEis due

to an error in the normalization of the residue map in Deninger’s work (one can find

this error in for example [Den94] formula 3.7).

Thus we define

ξf(j) := KMEis−2j(ρf · fβ)

One will notice that we have not constructed motivic elements for small f. We atone

for this omission with the following lemma.

Lemma 3.1.8.

wf/wpf TrK(pf)/K(f) ξfp(j) =

ξf(j) p | f 6= 1

(1− Fr−1
p )ξf(j) p - f 6= 1.

Proof of 3.1.8: Given an isogeny of CM elliptic curves of order p over the field K(f)

and an f-torsion section β according to the diagram,

E
Frp //

!!DD
DD

DD
DD

E

��
K(f)

β

UU

there is an fp-torsion section β′ pullback diagram

E
Frp // E

K(fp) //

β′

OO

K(f)

β

OO

when p | f and by

E
Frp // E

K(f) tK(fp) //

β′

OO

K(f)

β

OO

when p - f. So we see that the trace on fields gives a sum on torsion sections, though
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when p - f we must account for the fact that we only have Np− 1 primitive roots.

Scholl gives these relations for the Eisenstein symbol on the universal elliptic curve

in [Sch98] (A.2.2, A.2.3). Pulling back to our elliptic curve over K(m), we deduce

them for Eis(ρf · fβ). Finally, applying the Kronecker map, we have the lemma. .

With this lemma we can define motivic elements for small ideals via the trace

map. In particular, for any prime q of K with wq = 1, we define

qξ1(j) := (1− Fr−1
q )−1wK TrK(q)/K(1) ξq(j),

for a family of motivic elements at level 1. To complete the proof of the theorem, we

compute

ρ∞(wf/wpf TrK(pf)/K(f) ξfp(j)) =wf/wp/f TrK(pf)/K(f) ρ∞KMEis−2j(ρfp · fpβ)

=ψ(ρfp)
−1 · wf/wp/fN fp−1 TrK(pf)/K(f) ρ∞KME−2j

M (fpβ)

By the computation in 3.1.2 we have that

TrK(pf)/K(f)ρ∞KME−2j
M (fpβ)

= TrK(pf)/K(f)

∑
g∈Gm

−g−1(2πi)j
N fp−2jA(Γg)

1−j(−j)!2

2(−2j)!
(2
√
dK)−jMj(fpβg) · τ0

=
∑
g∈Gm

−g−1(2πi)j
N fp−2jA(Γg)

1−j(−j)!2

2(−2j)!
(2
√
dK)−j TrK(pf)/K(f)Mj(fpβg) · τ0

Focusing onMj, which should probably be called an Eisenstein number, we proceed
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as in the proof of 3.1.8 taking first the case of p | f.

ψ(ρfp)
−1 TrK(pf)/K(f)Mj(fβg) =ψ(ρf)

−1Np TrK(pf)/K(f)Mj(ρpΛ(g)Ωf−1
f f−1

p )

=ψ(ρf)
−1Np TrK(pf)/K(f)Mj(Λ(g)Ωf−1

f )

=ψ(ρf)
−1Npwpf/wf

∑
u∈p∗fβg

Mj(fβg + u)

=wpf/wfψ(ρf)
−1Np2j+1Mj(fβg) (3.1.3)

Here the u are the primitive pth roots of fβg resulting from pulling back by the

isogeny E
p→ FrpE, and the equality in 3.1.3 follows from a formula in the proof

of [Den90] (Proposition 2.6). Now in the case that p - f, there is a unique point

u0 ∈ {u : pu = fβg} with u0 6∈ p∗fβg. Adding and subtracting this point from the

sum, we conclude that

ψ(ρfp)
−1 TrK(pf)/K(f)Mj(fβg) = (1− Fr−1

p )wpf/wfψ(ρf)
−1Np2j+1Mj(fβg).

Compare with the formulas in 3.1.2 to prove that for a character χ of conductor f

eχ(ρ∞(wf/wpf TrK(pf)/K(f) ξfp(j)) =


N f−1−j2−1−jΦ(m)
(−1)1+j(−2j)!Φ(f)

L′(χ̄, j)ηQ p | f

(1− χ̄(p)Np−j)N f−1−j2−1−jΦ(m)
(−1)1+j(−2j)!Φ(f)

L′(χ̄, j)ηQ p - f.

3.2 `-adic Computation

The second main result of this chapter is the computation of the `-adic regulator of

the motivic elements constructed in the proof of proposition 3.1.1.

Theorem 3.2.1. For all 1 6= f | m, we have that

ρet(ξf(j)) =
N f−1−jwf

(Na− σ(a))
∏

l|`(1− Fr−1
l )(−2j)!

·
(
TrK(`nf)/K(f) az`nfζ

−j
`n

)
n
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up to a sign, where a - 6`f is an auxilliary ideal and the az`nf are elliptic units.

Following the treatment in de Shalit’s book [dS87](Ch.II) except for minor im-

provements involving the canonical choice of various 12-th roots, we review the con-

struction of elliptic units. We first introduce certain very classical functions associated

to lattices in the complex plane, and then indicate the connection to elliptic curves.

The elliptic curves in fact play an auxiliary role.

Let L = Z · w1 + Z · w2 be a lattice in C with oriented basis w1, w2, i.e. so that

τ := w1/w2 has positive imaginary part. The Dedekind Eta-function is defined as

η(τ) = e
πiτ
12

∞∏
n=1

(1− qnτ ); qτ := e2πiτ

and we put

η(2)(w1, w2) = w−1
2 2πη(w1/w2)

2.

This function depends on the choice of basis but

∆(L) = ∆(τ) = η(2)(w1, w2)
12

does not. Define a Theta-function

φ(z, τ) = ie
πiz
2

z−z̄
τ−τ̄ q1/12

τ q−1/2
z (1− qz)

∞∏
n=1

(1− qzqnτ )(1− q−1
z qnτ )

where qz = e2πiz and

φ(z;w1, w2) = φ(z/w2, w1/w2).

The function φ is holomorphic in z and τ and has a simple zero at each lattice point

z ∈ Z · w1 + Z · w2. For any pair of lattices L ⊆ L′ of index prime to 6 with oriented

bases ω := (w1, w2) and ω′ := (w′1, w
′
2) it is shown by Robert in [Rob92](Thms. 1,2)
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that there exists a unique choice of 12-th root of unity C(ω, ω′) so that the functions

δ(L,L′) := C(ω;ω′)η(2)(ω)[L′:L]/η(2)(ω′)

and

ψ(z;L,L′) = C(ω;ω′)φ(z;ω)[L′:L]/φ(z;ω′) = δ(L,L′)
∏
u∈T

(℘(z;L)− ℘(u;L))−1

only depend on the lattices L,L′ and so that ψ satisfies the distribution relation

ψ(z;K,K ′) =

[L:K]∏
i=1

ψ(z + ti;L,L
′) (3.2.1)

for any lattice L ⊆ K so that K ∩ L′ = L (and where K ′ = K + L′). The ti ∈

K are a set of representatives of K/L. The set T is any set of representatives of

(L′ \{0})/(±1nL) and ℘ is the Weierstrass ℘-function associated to L. In particular

we see that ψ(z;L,L′) is an elliptic function, i.e. a rational function on the elliptic

curve E = C/L with divisor [L′ : L](O)−
∑

P∈L′/L(P ).

Kato reproves Robert’s result in a scheme theoretic context. Again the key in-

sight is that the distribution relation (or norm compatibility) suffices to canonically

normalize the 12-th root.

Lemma 3.2.2. (Kato [Kat04] (15.5.4))

Let E be an elliptic curve over a field F with OK ∼= EndF (E) and a an ideal in OK
prime to 6. Then there is a unique function

aΘE ∈ Γ(E \ aE,O×)

satisfying

(i) div(aΘE) = Na · (0)− aE

(ii) For any b ∈ Z prime to a we have Nb(aΘE) = aΘE where Nb is the norm map
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associated to the finite flat morphism E \ baE → E \ aE given by multiplication

with b.

Moreover, for any isogeny φ : E → E ′ (where EndF (E ′) = OK) we have φ∗(aΘE) =

aΘE′, in particular property (ii) also holds with b ∈ OK prime to a. For F = C we

have

aΘE(z) = ψ(z;L, a−1L).

Given f 6= 1 and any (auxiliary) a which is prime to 6f we define an analog of the

cyclotomic unit 1− ζf by

azf = ψ(1; f, a−1f)

and for f = 1 we define a family of elements indexed by all ideals a of K by

u(a) =
∆(OK)

∆(a−1)
.

Lemma 3.2.3. The complex numbers azf and u(a) satisfy the following properties

a) (Rationality) azf ∈ K(f), u(a) ∈ K(1)

b) (Integrality)

azf ∈

O
×
K(f) f divisible by primes p 6= q

O×K(f),{v|f} f = pn for some prime p

u(a) · OK(1) = a−12OK(1)

c) (Galois action) For (c, fa) = 1 with Artin symbol σ(c) ∈ Gal(K(f)/K) we have

az
σ(c)
f = ψ(1; c−1f, c−1a−1f); u(a)σ(c) = u(ac)/u(c).
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This implies (see also [Kat04](15.4.4))

az
Nc−σ(c)
f = cz

Na−σ(a)
f ; u(a)1−σ(c) = u(c)1−σ(a).

d) (Norm compatibility) For a prime ideal p one has

NK(pf)/K(f)(azpf)
wf/wpf =


azf p | f 6= 1

az
1−σ(p)−1

f p - f 6= 1

u(p)(σ(a)−Na)/12 f = 1

e) (Kronecker limit formula). Let η be a complex character of Gf. If f = 1 and

η 6= 1 choose any ideal a so that η(a) 6= 1. Then

L(η, 0) = ζK(0) = − h

w1

R η = 1

d

ds
L(s, η)|s=0 =− 1

1− η(a)

1

12w1

∑
σ∈G1

log |σ(u(a))|η(σ) η 6= 1, f = 1

d

ds
L(s, η)|s=0 =− 1

Na− η(a)

1

wf

∑
σ∈Gf

log |σ(azf)|η(σ) f 6= 1.

Proof of 3.2.3: See [dS87] (Chapter II) and [Sie61] (Chapter II Section 2).

Remarks: i) The relations in c) show the auxiliary nature of a. In O×K(f)⊗Z Q we can

invert the element Na − σ(a) ∈ Q[Gf] and obtain an element zf = (Na − σ(a))−1
azf

independent of a. The last item in b) shows that u(c)1−σ(a) ∈ O×K(1) is a unit. How-

ever, here we cannot invert 1 − σ(a) in Q[G1] and obtain a unit independent of a,

only in eigenspaces where η(a) 6= 1.

ii)The Galois action in c) together with the relation

ψ(λz;λL, λL′) = ψ(z;L,L′)
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for any λ ∈ C shows that the Galois conjugates of azf are the numbers aΘE(α) where

(E,α) runs through all pairs with E/C an elliptic curve and α ∈ E(C) a primitive

f-division point. In fact azf is the value of aΘE at a single closed point with residue

field K(f) on a scheme E (with constant field K(1)).

Proof of 3.2.1: We compute the image of ξf(j) under the étale Chern class map ρet.

The following diagram commutes.

H1−2j
M (E−2j, 1− 2j)

ρet //

KM
��

H1−2j(E−2j,Q`(1− 2j))

K`

��
H1
M(Spec(K(m)), 1− j) ρet

// H1(K(m),Q`(1− j))

By Theorem 2.2.4 of [HK99], the étale realization of the Eisenstein symbol can be

computed in terms of the pullback of the elliptic polylogarithm along torsion sections.

Thus,

ρet(ξf(j)) = K`(ρet(Eis−2j(ρf · fβ))) = ψ(ρf)
−1 · N f−2j−1K`(fβ

∗PolQ`
)−2j.

This computation has been done for an elliptic curve over any base by Kings [Kin01]

(Theorem 4.2.9) using the geometric elliptic polylogarithm under the assumption that

` - f.

(fβ
∗PolQ`

)−2j =
±

Na([a]−2jNa− 1)(−2j)!

δ ∑
[`n]tn=fβ

aΘE(−tn)t̃⊗−2j
n


n

where δ is the connecting homomorphism in a Kummer sequence which we hereafter

omit, the Θa(−tn) are the elliptic units defined in 3.2.2, t̃n is the projection of tn to

E[`n], and a ⊂ OK is chosen prime to `f. Gealy [Gea05] uses a more direct method

to prove a slightly weaker statement for the universal elliptic curve over the modular

curve with full level N structure. What’s more he fixes the sign by computing the

residue of both sides. Strengthening Gealy’s result is plausible and would yield a more

straightforward solution. However, without this we must make some adjustments to
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King’s result as follows.

We are considering the elliptic curve E over K(m) with a uniformization C/Γ. We

can define a multiplication by ρf on the elliptic curve componentwise. Notice that this

is not the “map of multiplication by ρf” described in the main theorem of complex

multiplication. By the choice of torsion point fβ, we see that ρftn ∈ E[`n]. Taking

this as our t̃n we must then multiply Kings’ result by a factor of ρ2j
f .

For a point t ∈ E[`n], we define γ(t)k :=< t,
√
dKt >

⊗k where <,> is the Weil

pairing. Then, the Kronecker map acts on the Tate module via

K`(t̃⊗−2j
n ) = γ(t̃n)

−j = ζ⊗−j`n ,

on the integral isogenies [a] by

K`([a]−2j) = Na−j

and on the idele ρf by K`(ρ2j
f ) = N (ρf)

j = N fj. Note also that the Artin au-

tomorphism σ(a) acts on the space H1(K(m),Q`) by Na, and thus on the space

H1(K(m),Q`(1− j)) by Na2−j. We conclude that

ρet(ξf(j)) =
ψ(ρf)

−1

Na− σ(a)
· N f−1−j

δ ∑
[`n]tn=fβ

aΘE(−tn)ζ⊗−j`n


n

.

Lemma 3.2.4. For any rational prime `,

∏
l|`

(1− Fr−1
l )−1

 ∑
[`n]tn=Ωf−1

f

aΘE(−tn)ζ⊗−j`n


n

= wf

(
TrK(`nf)/K(f) aΘE(−sn)ζ−j`n

)
n
,

where sn is a primitive `nth root of fβ.

Notice that this lemma is similar to Kings [Kin01] (5.1.2).

Proof of 3.2.4: Let l be a prime of K and ν = ordl(f). For lrtr = Ωf−1
f write
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tr = (t̃r, tr,0) ∈ E[lr+ν ]⊕E[f0] = E[lrf0].Define a filtration F • on the set H l
r = {lrtr =

Ωf−1
f } by

F i
r := {tr = (t̃r, tr,0) ∈ H l

r,t : lr+ν−it̃r = 0}.

The Frobenius at l acts via (Fr−1
l )ζ⊗k`r = ζ⊗k`r−1 Thus, we compute

Fr−il TrK(lrf)/K(lr−if) aΘE(−sr)⊗ ζ⊗−j`r = TrK(lrf)/K(lr−if) aΘE(−(s̃r, sr,0))⊗ ζ⊗−j`r−i

= aΘE(−(s̃r−i, sr−i,0))⊗ ζ⊗−j`r−i .

The second equality follows from the distribution relation for elliptic units in lemma

3.2.3. Notice that the elliptic function aΘE does not change in the distribution rela-

tion even though the curve does because the lattices are homothetic.

The Galois group Gal(K(lr−if)/K(f)) acts transitively on F i
r \ F i+1

r with each

conjugate appearing wf times. Hence we can write

Fr−il TrK(lrf)/K(f) aΘE(−sr)⊗ ζ⊗−j`r =
1

wf

∑
tr−i∈F i

r\F
i+1
r

aΘE(−(t̃r−i, tr−i,0))⊗ ζ⊗−j`r−i

These elements are annihilated by lr, so summing over i we can take the limit as

r →∞ to get ∑
lrtr=fβ

aΘE(−tr)⊗ ζ⊗−j`r


r

= wf

(
r∑
i=1

(Fr−1
l )i TrK(lrf)/K(f) aΘE(−sr)⊗ ζ⊗−j`r

)
r

= wf(1− Fr−1
l )−1

(
TrK(lrf)/K(f) aΘE(−sr)⊗ ζ⊗−j`r

)
r
.

For ` inert in K, the lemma is proved, and for ` split or ramified in K we apply

the results to TrK(`nf)/K(f) = TrK`nf)/K(lnf) TrK(lnf)/K(f).

By the main theorem of complex multiplication (3.1.6), ρf ·sn gives a primitive tor-

sion point of 1 mod f on the curve σE with C/Ωf ' σE(C). Therefore, we effectively
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“undo” our choice of fβ via the identity

ψ(ρf)
−1

aΘE(−sn) = azf`n .

In particular, we have shown that the χ component is given by

eχ · ρet(ξf(j)) =
∏
l|`

(1− χ(l)N l−j)−1N f−1−j wf

(−2j)!

(
TrK(`nf)/K(f) z`nfζ

−j
`n

)
n
. (3.2.2)

where we follow Kato to set z`nf = (Na − σ(a))−1
az`nf. This completes the proof of

theorem 3.2.1.
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Chapter 4

Iwasawa Main Conjecture

In Chapter 2 we stated the equivariant Tamagawa number conjecture in terms of

an equality of lattices for each prime ` of Z. This formulation allows for a direct

comparison to the main conjecture of Iwasawa theory by taking inverse limits up the

tower of fields unramified outside of `. In section 4.1 we construct a perfect complex

of modules over the group ring Z`[G] and compute their cohomology. Taking the

inverse limit, we obtain a perfect complex of Iwasawa modules. The main conjecture

can then be formulated as an analog of the ETNC for the Iwasawa modules. We give

a precise statement in Conjecture 3.

Unfortunately, there is not a complete proof of this version of the main conjecture

in this 2-variable case. Rubin’s original work [Rub91] involved a somewhat different

formulation. He defines a different module of elliptic units and shows an equality

of characteristic ideals whenever ` - [K(m) : K]. In Bley’s work on the ETNC at

j = 0, he formulates a main conjecture in the same spirit as our conjecture 3 and

gives a proof for split ` - hK . However, his result does not apply to our situation. We

formulate the 2-variable main conjecture in section 4.2 and discuss Bley’s theorem in

section 4.3.
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4.1 Preliminaries

For an integral ideal f of OK , let Gf denote the Galois group of the extentsion K(f)

over K. Fix an integral ideal m. Let µ = ord` m be compound notation.

`µ =


lµ1

1 lµ2

2 ` = l1l2 split

lµ1

1 ` = l21 ramified

`µ ` inert,

where µ1, µ2 ∈ Z, and we write m = m0`
µ. For any finite set of places S of K(m), the

Z[Gm] module XS is defined to be the kernel of the sum map

0→ XS(K(m))→ YS(K(m))→ Z→ 0

where YS(K(m)) :=
⊕

v∈S Z. When there is no confusion we will suppress the field.

We choose a projective GQ-stable Z`[Gm] lattice

T ′` = H0
et(Spec(K(m)⊗K K),Z`) = T`(−j)

in the `-adic realization,

M`(−j) = H0
et(Spec(K(m)⊗K K),Q`).

Then define a perfect complex of Z`[Gm]-modules

∆(K(m)) := RHomZ`
(RΓc(OK [

1

m`
], T ′`),Z`)[−3].

Lemma 4.1.1. The cohomology of of ∆(K(m)) is given by a canonical isomorphism,

H1(∆(K(m)) ' H1(OK(m)[
1

m`
],Z`(1)) ' OK(m)[

1

m`
]× ⊗Z Z`,
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a short exact sequence,

0→ Pic(OK(m)[
1

m`
])⊗Z Z` → H2(∆(K(m)))→ X{v|m`∞} ⊗Z Z` → 0,

and H i(∆(K(m))) = 0 for i 6= 1, 2.

Proof of 4.1.1 By Shapiro’s lemma,

RΓc(OK [
1

m`
], T ′`) ' RΓc(OK(m)[

1

m`
],Z`),

and by Artin-Verdier duality,

RHomZ`
(R̃Γc(OK(m)[

1

m`
],Z`),Z`)[−3] ' RΓ(OK(m)[

1

m`
],Z`(1)).

Here the tilde denotes that this complex differs from the usual definition of cohomol-

ogy with compact supports (see Chapter 2) by substituting Tate cohomology for the

purpose of dualizing. More specifically, the complex is defined as the shifted mapping

cone

R̃Γc(OK(m)[
1

m`
],Z`)→ RΓ(OK(m)[

1

m`
],Z`)→

⊕
p|m`

RΓT (K(m)p,Z`),

where the infinite places are excluded from the direct sum as they are complex, and

their Tate cohomology vanishes. The Kummer sequence

0→ µ`n → Gm
`n→ Gm → 0

induces the long exact cohomology sequence

`n→ H i(OK(m)[
1

m`
],Gm)→ H i+1(OK(m)[

1

m`
], µ`n)→ H i+1(OK(m)[

1

m`
],Gm)

`n→ .
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The Galois cohomology is then computed by the short exact sequences

0→ H0(OK(m)[
1

m`
],Gm)/`n →H1(OK(m)[

1

m`
], µ`n)→ H1(OK(m)[

1

m`
],Gm)[`n]→ 0

0→ H1(OK(m)[
1

m`
],Gm)/`n →H2(OK(m)[

1

m`
], µ`n)→ H2(OK(m)[

1

m`
],Gm)[`n]→ 0

and the canonical isomorphism

H0(OK(m)[
1

m`
], µ`n) ' H0(OK(m)[

1

m`
],Gm)[`n].

The cohomology of Gm on a curve is given by [Mil80]

H i(X,Gm) =


Γ(X,O×X) i = 0

Pic(X) i = 1

0 i > 1.

Hence, taking inverse limits we compute that

H i(OK(m)[
1

m`
],Z`(1)) =


OK(m)[

1
m`

]× ⊗Z Z` i = 1

Pic(OK(m)[
1

m`
])⊗Z Z` i = 2

0 otherwise.

Now we need to account for the use of Tate cohomology. By the octahedral axiom

for triangulated categories, there is an exact triangle

RΓc(OK(m)[
1

m`
],Z`),Z`)→

∼
RΓc (OK(m)[

1

m`
],Z`),Z`)→

⊕
p|m`∞

RΓ∆(K(m)

which induces the triangle

⊕
p|m`∞

RHom(RΓ∆(K(m)p)[−3]→ RΓ(OK(m)[
1

m`
],Z`(1))→ ∆(K(m))



41

where RΓ∆ is defined by the exact triangle

RΓ∆(K(m)p)→ RΓ(K(m)p,Z`)→ RΓT (K(m)p,Z`).

Finally, computing the cohomology of the RΓ∆(K(m)p) we have the lemma.

Remark: This computation is given in [BF98](Prop 3.3) under the condition that

the S-restricted class group is trivial.

For invertible Z`[Gm]-modules, the dual of the inverse module (or vice versa) is

isomorphic to the original module with the action of Gm twisted by the automor-

phism g 7→ g−1. We denote the twisted action with a #. Hence, there is a natural

isomorphism of determinants,

DetZ`[Gm] ∆(K(m)) ' DetZ`[Gm]RΓc(OK [
1

m`
], T ′`)

#.

For a complete treatment of Artin-Verdier duality, see Milne [Mil86].

4.2 Iwasawa theory

We first formulate the 2-variable main conjecture by considering the tower of ray class

fields over K(m) unramified outside of the primes above `. The Iwasawa algebra

Λ := lim←−
n

Z`[Gm`n ] ' Z`[G
tor
m`∞ ][[S, T ]]

is a finite product of complete local 3-dimensional Cohen-Macaulay rings, where Gtor
m`∞

is the torsion subgroup of Gm`∞ = lim←−nGm`n . Λ is regular if and only if ` - #Gtor
m`∞ .

In general, this torsion subgroup is not Gm0` where m0 is the prime to ` part of m.

(Consider that case that ` | hK .)
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The elements S, T ∈ Λ depend on the choice of a complement F ' Z2
` of the

torsion subgroup in Gm`∞ as well as the choice topological generators γ1, γ2 of F . The

cohomology of the perfect complex of Λ modules,

∆∞ = lim←−
n

∆(K(m`n))

is computed by functoriality. By Lemma 4.1.1, H i(∆∞) = 0 for i 6= 1, 2, and we have

a canonical isomorphism,

H1(∆∞) ' U∞{v|m`} := lim←−
n

OK(m0`n)[
1

m`
]× ⊗Z Z`,

and a short exact sequence,

0→ P∞{v|m`} → H2(∆∞)→ X∞
{v|m`∞} → 0,

where

P∞{v|m`} := lim←−
n

Pic(OK(m`n)[
1

m`
])⊗Z Z`

X∞
{v|m`∞} := lim←−

n

X{v|m`∞}(K(m`n))⊗Z Z`.

The limits are taken with respect to the Norm maps, which on the module YS is the

map sending a place to its restriction. We also consider K(m`n) as a subfield of C

and denote the corresponding archimedean place by σm`n . Notice that for f0 | m0, the

elliptic units azf0`n discussed in section 3.2 form a Norm-compatible system of units.

We set

aηf0 := (azf0`n)n>>0 ∈ U∞{v|m`}

σ := (σm`n)n>>0 ∈ Y ∞
{v|m`∞}

We fix an embedding Q̄` → C and identify Ĝ with the set of Q̄`-valued characters.
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The total ring of fractions

Q(Λ) ∼=
∏

ψ∈(Ĝtor
m`∞ )Q`

Q(ψ) (4.2.1)

of Λ is a product of fields indexed by the Q`-rational characters of Gtor
m`∞ . Since for any

place w of K, the Z[Gm`n ]-module Y{v|w}(K(m`n)) is induced from the trivial module

Z on the decomposition group Dw ⊆ Gm`n , and for w = ∞ (resp. nonarchimedean

w) we have [Gm`n : Dw] = [K(m`n) : K] (resp. the index [Gm`n : Dw] is bounded as

n→∞), one computes easily

dimQ(ψ)(Y
∞
{v|m`∞} ⊗Λ Q(ψ)) = 1 (4.2.2)

for all characters ψ. Note that the inclusion X∞
{v|m`∞} ⊆ Y ∞

{v|m`∞} becomes an isomor-

phism after tensoring with Q(ψ), and thus by the unit theorem

dimQ(ψ)(U
∞
{v|m`} ⊗Λ Q(ψ)) = 1. (4.2.3)

So we have that eψ(aη
−1
m0
⊗ σ) is a Q(ψ)-basis of

Det−1
Q(ψ)(U

∞
{v|m`} ⊗Λ Q(ψ))⊗DetQ(ψ)(X

∞
{v|m`∞} ⊗Λ Q(ψ)

∼=DetQ(ψ) (∆∞ ⊗Λ Q(ψ)) .

The last isomorphism follows from the fact that the class group, P∞{v|m`} is a torsion

Λ-module. Hence we obtain an element

L := (Na− σ(a))aη
−1
m0
⊗ σ ∈ DetQ(Λ) (∆∞ ⊗Λ Q(Λ)) .

Conjecture 3. There is an equality of invertible Λ-submodules

Λ · L = DetΛ∆∞
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of DetQ(Λ) (∆∞ ⊗Λ Q(Λ)).

Remark: One proves this by localizing at all height 1 primes of Λ, [Fla04] (Lemma

5.3). We note the similarities to Rubin’s main conjecture. For a height 1 prime q of

Λ, conjecture 3 is equivalent to

FitΛq(U
∞
q /Λq · (Na− σ(a))−1

aηm0) = FitΛq(P
∞
q ) · FitΛq(X

∞
{v|m0},q).

Thus, if we suppose that Rubins module of elliptic units is the same as the module

of elliptic units generated by the (Na− σ(a))−1
aηf0 (this should be true) we have the

conjecture after accounting for the Euler factors in X∞
{v|m0},q whenever ` - [K(m) : K].

For the other primes, the argument is more delicate.

4.3 A Theorem of Bley

When ` = l̄l is split in K, the inverse limit

∆∞
l := lim←−

n

∆(K(m0l
n))

forms a perfect complex over the 1-variable Iwasawa algebra

Λl := lim←−
n

Z`[Gmln ] ' Z`[Gm0l][[T ]],

where we have changed notation and m = m0l
n, so in particular it is possible that

(m0, `) 6= 1. Arguing as above, we deduce that L is in fact an element of DetQ(Λl) (∆∞
l ⊗Λl

Q(Λl)).

Bley proves the following 1-variable main conjecture in his preprint treating the case

of j = 0.

Theorem 4.3.1. ([Ble05] (Theorem 5.1)) If l - hK, then there is an equality of

invertible Λl-submodules

Λl · L = DetΛl
∆∞

l
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of DetQ(Λl) (∆∞
l ⊗Λl

Q(Λl)).

Since we are taking negative Tate twists, we must descend from a tower of fields

which contains the cyclotomic tower for the prime ` over Q. Λl does not factor over

any such tower, so we are not able to use Bley’s theorem to make the descent argument

in the next chapter.
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Chapter 5

Comparison of Integral Lattices

We continue with the notation of the previous chapters. In particular, Gf = Gal(K(f)/K),

G = Gm, A = Q[G], and T` = H0(Spec(K(m)⊗K K),Z`(j)).

In Chapter 3 we constructed elements in K-theory attached to the L-values of

the motive and computed their realization in étale cohomology. Using this data, the

L-value gives an element in the space DetA`
RΓc(Z[ 1

S
],M`) as shown in theorem 5.1.1.

We will show that the Z`[G] lattice spanned by this element is the same as the one

given by the `-adic L-function of conjecture 3 via a descent argument in section 5.2.

5.1 The image of the L-value in DetA`
RΓc(Z[ 1

S ],M`)

The result in Theorem 5.1.1 is the upshot of the calculations in Chapter 3. The twist

by g 7→ g−1 in the Galois action, denoted by # is necessary to make the regulator map

equivariant for the action of the Galois group on the group of embeddings. Moreover,

since j < 0 we must reinterpret in L-value in terms of the dual of the regulator map.

Theorem 5.1.1. The element Aϑ`(Aϑ∞(L∗(AM, 0)−1))# of

DetA`
∆(K(m)) =

∏
χ∈Ĝ

(DetQ`(χ) ∆(K(m))⊗Q`(χ))

has χ component given by
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∏
p|m0

(1−χ̄(p)Np−j)−1 [K(m) : K(fχ)]

(−2)1+j
(Na−χ(a)Na−j)

(
TrK(fχ,0`n)/K(fχ)(azfχ,0`nζ

−j
`n )
)−1

n
⊗ζ−j`∞ ·eχτ0.

Proof of 5.1.1:

The dual of the regulator isomorphism

ρ∨∞ : H0
B(K(m)(C),Q(j))+ ⊗Q R ∼→ K1−2j(OK(m))

∗ ⊗Z R

induces an isomorphism of rank 1 A ⊗ R-modules Aϑ∞ : A ⊗Q R → Ξ(AM) ⊗Q R,

where we recall that

Ξ(AM) = (K1−2j(OK(m))
∗ ⊗Z Q)⊗H0

B(K(m)(C),Q(j))+.

In Theorem 3.1.1 we proved that for fχ 6= 1,

eχ(ρ∞(ξfχ(j))) =
N f−1−j

χ 2−1−jΦ(m)

(−1)j+1(−2j)!Φ(fχ)
L′(χ, j)ηQ,

where ηQ is a basis of eχ(M
+∗
B ) and we refer to Chapter 3 for the remaining notation.

Moreover, for fχ = 1, section 3.1 gives the formula in terms of trace maps

eχ ·ρ∞(qξ1(j)) = eχ ·ρ∞(wK(1−Fr−1
q )−1 TrK(q)/K(1) ξq(j)) =

Φ(m)2−j−1

(−1)1+j(−2j)!
L′(χ, j)ηQ,

where we take the primitive L-function for χ. We will sometimes abuse notation at

write ξ1(j) for a choice of qξ1(j).

Since both H0
B(K(m)(C),Q(j))+ and K1−2j(OK(m))⊗Z Q are invertible A-modules

duality manifests in terms of the twist g 7→ g−1 according to the computation

Ξ(AM)# = (K1−2j(OK(m))
∗ ⊗Z Q)# ⊗ (H0

B(K(m)(C),Q(j))+,−1)#

= (K1−2j(OK(m))⊗Z Q)−1 ⊗ (H0
B(K(m)(C),Q(j))∗)+

= (K1−2j(OK(m))⊗Z Q)−1 ⊗ Y (−j), (5.1.1)
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where for v a place of K(m)

Y (−j) :=
⊕
v|∞

Q · (2πi)−j.

The Gal(C/R)-equivariant perfect pairing

⊕
τ∈T

R · (2πi)j ×
⊕
τ∈T

C/R · (2πi)1−j →
⊕
τ∈T

C/2πi · R Σ→ R

for T = Hom(K(m),C) identifies the Q-dual of H0
B(K(m)(C),Q(j)) with

⊕
τ∈T Q ·

(2πi)−j. Taking invariants under complex conjugation gives the equality in 5.1.1.

We compute that the χ components of Aϑ
#
∞(L∗(AM, 0)−1) = (L∗(AM, 0)−1)#

Aϑ∞(1)

are given by

(Aϑ
#
∞(L∗(AM, 0)−1))χ =

N f−1−j
χ 2−1−jΦ(m)

(−1)j+1(−2j)!Φ(fχ)
[ξfχ(j)]−1 ⊗ (2πi)−jeχτ0.

In Chapter 4 we defined ∆(K(m)) and computed its cohomology (Lemma 4.1.1).

Denote by ∆(K(m))j the “twist” of ∆(K(m)). Namely,

∆(K(m))j := RHomZ`
(RΓc(OK [

1

m`
], T`),Z`)[−3].

The natural isomorphism

DetZ`[G] ∆(K(m)) = (DetZ`[G]RΓc(OK [
1

m`
], T ′`)

∗)−1

' DetZ`[G]RΓc(OK [
1

m`
], T ′`)

#

induces

DetZ`[G] ∆(K(m))j ' DetZ`[G]RΓc(OK [
1

m`
], T`)

#,
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and there are isomorphisms in cohomology

H1(∆(K(m))j)⊗Z`
Q` ' H1(OK(m)[

1

m`
],Q`(1− j))

H2(∆(K(m))j)⊗Z`
Q` '

(⊕
τ∈T

Q`(−j)

)+

,

with H i(∆(K(m))j) = 0 for i 6= 1, 2.

Thus, Aϑ` is given by the composite

Ξ(AM)# ⊗Q` 'Det−1
A`

(K1−2j(OK(m))⊗Z Q`)⊗DetA`
(Y (−j)⊗Q Q`)

∼→Det−1
A`

(H1(OK(m)[
1

m`
],Q`(1− j)))⊗DetA`

(
⊕
τ∈T

Q`(−j))+ (5.1.2)

∼→Det−1
A`

(H1(OK(m)[
1

m`
],Q`(1− j)))⊗DetA`

(
⊕
τ∈T

Q`(−j))+ (5.1.3)

∼→DetA`
∆(K(m)),

where the map (5.1.3) is multiplication with the Euler factors [BF98](Lemma 2)∏
p|m` E

#
p ∈ A× and Ep = (1 − Fr−1

p )−1. These factors measure the difference in the

two trivializations of the complex RΓf (Kp,M`) for each p | m`. The map (5.1.2) is

induced by the isomorphism

K1−2j(OK(m))⊗Z Q`
ρet→ H1(OK(m)[

1

m`
],Q`(1− j)).

Thus far, we have shown for fχ 6= 1,

(Aϑ`◦Aϑ∞(L∗(AM, 0)−1))χ =
∏
p|m`

(1−χ̄(p)Np−j)−1
N f−1−j

χ 2−1−jΦ(m)

(−1)j+1(−2j)!Φ(fχ)
ρet(ξfχ(j))−1⊗ζ−j`∞ ·σ,

and for fχ = 1, we choose a q | m to show

(Aϑ`◦Aϑ∞(L∗(AM, 0)−1))χ =
∏

q6=p|m`

(1−χ̄(p)Np−j)−1 Φ(m)

(−2)1+j
ρet(wK TrK(q)/K(1) ξq(j))

−1⊗ζ−j`∞ ·σ,
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Theorem 3.2.1 states that for any 1 6= f | m,

ρet(ξf(j)) =
N f−1−jwf

(Na− σ(a))
∏

l|`(1− Fr−1
l )(−2j)!

·
(
TrK(`nf)/K(f) az`nfζ

−j
`n

)
n
.

We recall that [K(f) : K(1)] = Φ(f)wf/wK where wK ∈ {2, 4, 6} is the number of

roots of unity in the imaginary quadratic field K, and wf is the number of roots of

unity in K which are congruent to 1 modulo f. For f large enough (at least bigger

than 2) this number is 1. Thus, we can choose m so that wm = 1 and we have that

Φ(m)/Φ(fχ) = [K(m) : K(fχ)]wfχ . What’s more, if (`, f) 6= 1, then

(
TrK(`nf)/K(f) az`nfζ

−j
`n

)
n

=
(
TrK(`nf0)/K(f)

(
TrK(`n+µf0)/K(`nf0) az`nf

)
ζ−j`n
)
n

=
(
TrK(`nf0)/K(f) az`nf0ζ

−j
`n

)
n

by lemma 3.2.3, where µ denotes the compound notation discussed in chapter 4. Thus

for fχ 6= 1 we have the computed the component of the theorem.

When fχ = 1, choose q so that wq = 1 and compute

ρet(wK TrK(q)/K(1) ξq(j)) =wK
1

(Na− σ(a))
∏

l|`(1− Fr−1
l )
· (TrK(`nq)/K(1) az`nqζ

−j
`n )n

=
(1− Fr−1

q )

(Na− σ(a))
∏

l|`(1− Fr−1
l )
· (TrK(`n)/K(1) az`nζ

−j
`n )n.

Substituting the formulas for ρet completes the proof of the theorem.

5.2 Descent from the 2-variable main conjecture

In this section, we will prove that conjecture 3 implies ETNC for all ` 6= 2. We expect

the case of ` = 2 to hold and that the treatment will be similar to that in [Fla04].

Recall that according to conjecture 3,

L · Λ = DetΛ(∆∞) (5.2.1)
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in DetQ(Λ)(∆
∞ ⊗Λ Q(Λ)) where L = (Na− σ(a))aη

−1
m0
⊗ σ. We refer to chapter 4 for

the remaining notation. In this section we will justify the term “`-adic L-function”

by relating L to the special values of L(AM, s). More precisely, we show that from

the identity (5.2.1) we can deduce the identity

Aϑ` ◦ Aϑ#
∞(L∗(AM, 0)−1) · Z`[Gm] = DetZ`[Gm] ∆(K(m))

in DetQ`[Gm](∆(K(m)) ⊗Z`
Q`) to complete the proof that conjecture 4 implies con-

jecture 2.

We begin by proving a twisting lemma. For j ∈ Z we denote by κj : Gm`∞ → Λ×

the character g 7→ χcyclo(g)
jg as well as the induced ring automorphism κj : Λ → Λ.

If there is no risk of confusion we also denote by κj : Λ→ Z`[Gm] ⊆ A` the composite

of κj and the natural projection to Z`[Gm] or A`.

Lemma 5.2.1. a) For j ∈ Z there is a natural isomorphism

∆∞ ⊗L
Λ,κj Z`[Gm]

'→ ∆(K(m))j.

b) On the cohomology groups, the map H i(∆∞)→ H i(∆∞
j ) induces

u 7→ (un ∪ ζ⊗−j`n )n>>0 and s 7→ (sn ∪ ζ⊗−j`n )n≥0

where

u = (un)n≥0 ∈ lim←−
n

H1(OK(m0`n)[
1

m`
],Z/`nZ(1)) ' U∞{v|m`} = H1(∆∞)

and

s = (sn)n≥0 ∈ lim←−Z/`nZ[Gm0`n ] · σ = Y ∞
{v|∞}

Proof of 5.2.1 (As in [Fla04] (Lemma 5.13)) The automorphism κj can be viewed as
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the inverse limit of similarly defined automorphisms κj of the rings Λn := Z/`nZ[Gm0`n ].

Let fn : Spec(OK(m0`n)[
1

m`
]) → Spec(OK(m)) be the natural map. The sheaf Fn :=

fn,∗f
∗
nZ/`nZ is free of rank one over Λn with π1(Spec(OK(m)))-action given by the

natural projection GQ → Gm0`n , twisted by the automorphism g 7→ g−1. There is a

Λn-κ
−j-semilinear isomorphism twj : Fn → Fn(j) so that Shapiro’s lemma gives a

commutative diagram of isomorphisms

RΓc(OK(m),Fn)
twj

−−−→ RΓc(OK(m),Fn(j))y y
RΓc(OK(m0`n)[

1
m`

],Z/`nZ)
∪ζ⊗j

`n−−−→ RΓc(OKm0`n [ 1
m`

],Z/`nZ(j)),

(5.2.2)

with the horizontal arrows Λn-κ
−j-semilinear. Taking the Z/`nZ-dual of the lower

row (with contragredient Gm0`n-action), we obtain a # ◦ κ−j ◦ # = κj-semilinear

isomorphism

RΓc(OK(m0`n)[
1

m`
],Z/`nZ(j))∗[−3]→ RΓc(OK(m0`n)[

1

m`
],Z/`nZ)∗[−3].

After passage to the limit this gives a κj-semilinear isomorphism ∆∞ ' ∆∞
j , i.e. a

Λ-linear isomorphism ∆∞ ⊗Λ,κj Λ ' ∆∞
j . The part a) follows by tensoring over Λ

with Z`[Gm]. For b), consider the inverse map of the lower row of 5.2.2 on the degree

two cohomology given by

H2
c (OK(m0`n)[

1

m`
],Z/`nZ)

∪ζ⊗j
`n← H2

c (OK(m0`n)[
1

m`
],Z/`nZ(j)).

Artin-Verdier duality says that

H i
c(OK(m0`n)[

1

m`
],Z/`nZ(j))∨ = H3−i(OK(m0`n)[

1

m`
],Z/`nZ(1− j)).

Thus we have a dual map which is a κj semi-linear isomorphism.

H1(OK(m0`n)[
1

m`
],Z/`nZ(1))

∪ζ⊗j
`n→ H1(OK(m0`n)[

1

m`
],Z/`nZ(1− j)).
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Moreover, we have a similar diagram to 5.2.2 on the level of sheaves where c denotes

complex conjugation

Fn
twj

−−−→ Fn(j)y y
F c=1
n = H0(K(m0`

n)⊗ R,Z/`nZ)
∪ζ⊗j

`n−−−→ H0(K(m0`
n)⊗ R,Z/`nZ(j)) = Fn(j)c=1.

(5.2.3)

Again using the inverse map and taking the Z/`nZ dual, we again have a κj-semilinear

isomorphism given by the cup product with ζ⊗−j`n

Λn · σ 7→ Λn · σ ∪ ζ⊗−j`n .

Taking inverse limits, we have part b).

As ∆(K(m))j is a rank 1 Z`[Gm]-module, the image of L ⊗ 1 is a basis of the

lattice. So it remains to compare this image with Aϑ` ◦ Aϑ#
∞(L∗(AM, 0)−1) inside of

the rational space ∆(K(m))⊗Z`
Q` which is a rank one module over A`. Recall that in

section 2.2 we showed that in order to prove theorem 2.2.1 it suffices to prove theorem

2.2.2 which states

(Aϑ` ◦ Aϑ∞(L∗(AM, 0))χ = (Lm,j)χ.

The object of the descent computation is to make precise the notation (Lm,j)χ by

computing the image of L in ∆(K(m))j ⊗ Q`(χ). To this end, let q = qχ,j be the

height 2 prime of Λ given by the kernel of the composite ring homomorphism

χκj : Λ
κj

→ Λ→ Z`[G(m)] ⊆ A` → Q`(χ).

R := Λq is a regular local ring of dimension 2 with residue field k := Q`(χ). Let ∆

be the module ∆∞
q over the localized ring R. To indicate the `-divisibility of m and
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fχ, we continue with the compound notation of the previous chapter. Thus,

m = m0`
µ and fχ = fχ,0`

µ′ ,

where (m0, `) = (fχ,0, `) = 1. For ` = l1l2 split, `µ = lµ1

1 lµ2

2 , and for ` = l21 ramified,

`µ = lµ1

1 where µ1 and µ2 are integers. Assuming conjecture 3, we can consider L to be

a basis of the R-module (DetΛ ∆∞)q which is isomorphic to DetR ∆ since localization

is exact and hence commutes with the determinant functor. Lemma 5.2.1 gives the

following isomorphism of complexes of R-modules,

∆⊗L
R k

'→ ∆(K(m))j ⊗Z`[Gm] k.

Lemma 5.2.2. For i = 1, 2

H i(∆⊗L
R k) ' H i(∆)⊗R k.

Remark: Since the cohomology of ∆ vanishes for i 6= 1, 2 this statement holds for

all i.

Proof: Indeed, if (x, y) is a regular sequence for R, then the Koszul complex is the

resolution

0→ R
(
x
y)→ R⊕R (y,−x)→ R→ k → 0.

Thus, the homological spectral sequence for Tor degenerates to give an isomorphism

H2(∆⊗L
R k) ' H2(∆)⊗ k and in degree 1 an exact sequence

0→ Tor2(H
2(∆), k)→ H1(∆)⊗ k → H1(∆⊗L

R k)→ Tor1(H
2(∆), k)→ 0.

Now, the second degree cohomology is given by an exact sequence where the quotient

is a free module (lemma 4.1.1)

0→ P∞{v|m`} → H2(∆∞)→ X∞
{v|m`∞} → 0.
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Again, localization is exact, so we must show that the higher torsion groups of the

localized class groups are zero. As R is a 2-dimensional local ring, the localization Rπ

at a height 1 prime is a DVR, and the image of aηfχ,0 in H1(∆)π is non-zero because

of its relationship to the non-vanishing L-value. Then, by Rubin’s main conjecture,

the fitting ideal of the (P∞q )π vanishes, and so by Nakayama’s lemma does P∞q .

By lemma 5.2.2 the isomorphism of determinants

φ : Detk(∆⊗L
R k)

'→ Detk(∆(K(m))j ⊗Z`[Gm] k)

can be computed as a map on the cohomology groups

φ :
2⊗
i=1

H i(∆)⊗ k '→
2⊗
i=1

H i(∆⊗L
R k)

'→
2⊗
i=1

H i(∆(K(m))j)⊗Q`[G] k.

Our descent computation amounts to computing φ(L ⊗ 1). We will consider the

elements aηm0 and σ independently. First, we recall that for an ideal d | m0

Nd :=
∑

τ∈Gal(K(m0)/K(d))

τ.

When fχ,0 | d, Nd is invertible is the ring R since χ(Nd) = [K(m0) : K(d)]. Thus, in

the localized module ∆, the norm compatibility properties of the elliptic units give
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the equality

aηm0 =N−1
fχ,0
Nfχ,0aηm0 (5.2.4)

=N−1
fχ,0

∏
p|m0,p-fχ,0

(1− Fr−1
p )(wm0/wfχ,0)aηfχ,0

=(wm0/wfχ,0)

 ∑
τ∈Gal(K(m)/K(m0`µ

′ ))

τ

 ∑
τ∈Gal(K(m)/K(m0`µ

′ ))

τ

−1

N−1
fχ,0

∏
p|m0,p-fχ,0

(1− Fr−1
p )aηfχ,0

=(wm0`µ
′/wfχ)[K(m) : K(fχ)]

−1 TrK(m)/K(m0`µ
′ )

∏
p|m0,p-fχ,0

(1− Fr−1
p )aηfχ,0 .

The last equality in 5.2.4 can be deduced from the diagram of fields below.

K(m0`
µ′)

w
m0`µ′wfχ,0

wm0wfχ

K(m0)K(fχ)

ppppppppppp

MMMMMMMMMM

K(m0)

NNNNNNNNNNN
K(fχ)

qqqqqqqqqq

K(fχ,0)

Thus, by Lemma 5.2.1

φ(aηm0) =(wm0`µ
′/wfχ)[K(m) : K(fχ)]

−1
∏

p|m0,p-fχ,0

(1− χ̄(p)Np−j)

· TrK(m)/K(m0`µ
′ )(TrK(m0`n)/K(m) azfχ,0`n ⊗ ζ

⊗−j
`n )n

=[K(m) : K(fχ)]
−1

∏
p|m0,p-fχ,0

(1− χ̄(p)Np−j)(TrK(fχ,0`n)/K(fχ) azfχ,0`n ⊗ ζ
⊗−j
`n )n.
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The second equality follows from a similar diagram of fields

K(m0`
n)
wfχ

w
m0`µ′

K(m0`
µ′)K(fχ,0`

n)

mmmmmmmmmmmmm

QQQQQQQQQQQQQ

K(m0`
µ′)

QQQQQQQQQQQQQQ
K(fχ,0`

n)

mmmmmmmmmmmmmm

K(fχ)

where we recall that we take m and n to be large enough that wm0 = 1 and wfχ,0`n = 1.

For the second degree cohomology, the situation is somewhat more simple. Indeed,

by lemma 5.2.1,

φ(σ) =eχ(σm ⊗ ζ−j`n )n

=eχσm ⊗ ζ−j`∞ .

Recalling that σm was our fixed choice of embedding τ0 from section 3.1 and multi-

plying by Na− σ(a), we see that in fact

φ(L) = [K(m) : K(fχ)]
∏

p|m0,p-fχ,0

(1−χ̄(p)Np−j)−1(TrK(fχ,0`n)/K(fχ) zfχ,0`n⊗ζ
⊗−j
`n )−1

n ⊗ζ
−j
`∞ ·eχτ0.

Since χ(p) = 0 for p | fχ and 2 is a unit Λq we have proved that φ(L ⊗ 1) = (Aϑ` ◦

Aϑ∞(L∗(AM, 0)−1))#. By its relation to the L-value established in theorem 5.1.1, the

image of (Na− σ(a))−1
aηm0 does not vanish and thus is a basis of H1(∆(K(m))j)⊗

Q`(χ), making the image of σ is a basis of H2(∆(K(m))j) ⊗ Q`(χ). This completes

the proof of theorem 2.2.2.

Reason’s last step is the recognition that there are an infinite number of things which

are beyond it.

–Blaise Pascal
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Birkhäuser, 1992.



61

[Rub91] K. Rubin, The main conjectures of Iwasawa Theory for imaginary quadratic

fields, Invent. Math. 103 (1991), 25– 68.

[Sch98] A. J. Scholl, An introduction to Kato’s Euler systems, Galois representa-

tions in arithmetic algebraic geometry (Durham, 1996), London Math. Soc.

Lecture Note Ser., vol. 254, Cambridge Univ. Press, 1998, pp. 379–460.

[Shi71] G. Shimura, Introduction to the arithmetic theory of automorphic forms,

Princeton University Press, 1971.

[Sie61] C. L. Siegel, Lectures on advanced analytic number theory., Tata Institute

of Fundamental Research, 1961.

[Sil94] J. H. Silverman, Advance Topics in the Arithmetic of Elliptic Curves, GTM,

vol. 151, Springer, 1994.

[SS91] N. Schappacher and A.J. Scholl, The boundary of the Eisenstein symbol,

Math. Ann. 290 (1991), 303–321.


