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Abstract

Complex behaviors that can be exhibited by hybrid systems make the verification of

such systems both important and challenging. Due to the infinite number of possi-

bilities taken by the continuous state and the uncertainties in the system, exhaustive

simulation is impossible, and also computing the set of reachable states is generally

intractable. Nevertheless, the ever-increasing presence of hybrid systems in safety

critical applications makes it evident that verification is an issue that has to be ad-

dressed.

In this thesis, we develop a unified methodology for verifying temporal properties

of continuous and hybrid systems. Our framework does not require explicit compu-

tation of reachable states. Instead, functions of state termed barrier certificates and

density functions are used in conjunction with deductive inference to prove properties

such as safety, reachability, eventuality, and their combinations. As a consequence, the

proposed methods are directly applicable to systems with nonlinearity, uncertainty,

and constraints. Moreover, it is possible to treat safety verification of stochastic sys-

tems in a similar fashion, by computing an upper-bound on the probability of reaching

the unsafe states.

We formulate verification using barrier certificates and density functions as convex

programming problems. For systems with polynomial descriptions, sum of squares

optimization can be used to construct polynomial barrier certificates and density

functions in a computationally scalable manner. Some examples are presented to

illustrate the use of the methods. At the end, the convexity of the problem formula-

tion is also exploited to prove a converse theorem in safety verification using barrier

certificates.
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Chapter 1

Introduction

1.1 Background

Much research effort has been devoted to the development of hybrid systems theory

in the recent years. Hybrid systems [48,92] are systems whose dynamics involve both

continuous and discrete processes in interactions. Research on hybrid systems (see,

e.g., [5, 7, 8, 25, 45, 51, 52, 89]) is partly motivated by the ubiquity of engineering and

physical systems that are best modelled as such systems. One important example is

the class of embedded and software-based control systems, which consist of discrete

controllers, typically logical and event-based, interconnected with analog and often

nonlinear actuators, sensors, and plants. Embedded and software-based systems have

become increasingly ubiquitous in our everyday life. In fact, the trend shows that

next generation control systems will be mostly of this type [53,56].

Hybrid systems can exhibit very complex behaviors, which make their analysis

both critical and challenging. Simulation is of limited use for analysis, due to the

infinite number of possibilities taken by the continuous state and also the uncertain-

ties of the system. Verifying by simulation that a hybrid system works correctly in

all cases is never exact, simply because it is impossible to test all system behaviors.

In fact, simulation alone may fail to uncover the existence of bad behaviors. Ver-

ification of hybrid systems is an area where deductive formal methods, relying on

mathematical inferences and proofs to produce exact statements about the system,

are indispensable. Formal methods are also needed in system synthesis, particularly
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when correctness, robustness, and optimality are of paramount importance, which

renders design by informal reasoning combined with trial and error ineffective.

Besides the more traditional properties such as stability and input-output per-

formance, properties of interest in hybrid systems also include safety, reachability,

and eventuality. In principle, safety verification aims to show that starting from any

initial condition in some prescribed set, a system cannot evolve to some unsafe region

in the state space. On the other hand, reachability verification aims to show that for

some — and eventuality verification for all — initial conditions in some prescribed

set, the system will evolve to some target region in the state space. The above prop-

erties are the most relevant when the system specifications are given in temporal logic

formulas [36,46] such as

(from a multi-vehicle coordination scenario): “if Agent 1 starts at zone A

and Agent 2 starts at zone B, then under the given control strategy,

• Agent 1 will reach zone C in finite time,

• Agent 2 will not reach zone D before Agent 1 reaches C,

• both Agent 1 and Agent 2 will never enter a forbidden zone E at any

time,”

which is the kind of specifications that seem likely to dominate next generation control

systems. These verification questions are by no mean easy to answer, as for very

simple classes of hybrid systems they are known to be undecidable already [30].

Scalable automated methods for verification of hybrid systems are definitely in

demand. From computer science, there exist comprehensive bodies of techniques for

verifying temporal logic formulas for discrete systems; they fall into two mainstream

approaches: model checking [23] and deductive verification [47]. Model checking is

applicable to finite state systems, and basically performs an exhaustive exploration

of all possible system behaviors in a fully automated way. The drawback of model

checking is the state explosion problem, i.e., the number of system trajectories that

need to be explored grows very rapidly as the number of states increases, although
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the use of an efficient data structure called ordered binary decision diagrams [18] has

allowed model checking of systems with an astronomical number of states. Still, when

the number of possible states is infinite, such as when the state space is continuous,

model checking is no longer applicable. Indeed, the difficulty of applying model

checking to hybrid systems is caused by the continuous part of their state space.

Deductive verification, on the other hand, verifies system properties through formal

deduction based on a set of inference rules. Deductive verification is applicable to

infinite state systems, but has a drawback in the sense that guidance from a user is

almost always needed in the process.

From control theory, there exist also comprehensive bodies of techniques for veri-

fying properties of continuous systems such as stability, performance, robust stability,

robust performance, and so on (see e.g., [40, 98]). These techniques are deductive in

nature, since the systems considered have an infinite number of states. If the systems

have a special structure (e.g., linear), then the verification can be automated. Unfor-

tunately, the techniques are geared to verify properties that are expressed in terms of

Lyapunov stability or signal/system norms, and as such are not directly applicable to

verification of properties such as safety, reachability, and eventuality, let alone more

general temporal logic formulas.

Naturally, there have been efforts to combine the results from computer science

and control theory, to develop methodologies for verifying temporal properties of

continuous and hybrid systems. Relevant references will be provided later in this

thesis. In our view, however, what is still missing is a unified framework (although

such a framework may not necessarily be the only one that can be proposed) that can

directly handle systems with hybrid dynamics, nonlinearity, uncertainty, constraints,

stochasticity, and so on. Moreover, many of the currently available techniques suffer

from computational scalability issues: their computational cost grows exponentially

with respect to the system size. Needless to say, the area of hybrid systems verification

is still in its infancy, and we expect to see many more developments in the upcoming

years.
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1.2 Contributions and Outline

The objective of this thesis is to develop unified theoretical and computational frame-

works that will facilitate automated verification of properties such as safety, reach-

ability, and eventuality for continuous and hybrid systems. In doing so, we have

used theoretical concepts called barrier certificates and density functions, in addition

to a computational relaxation framework called sum of squares optimization, which

involves sum of squares decompositions of multivariate polynomials, semidefinite pro-

gramming, and real algebraic geometry. The contributions and outline of the thesis

are as follows.

In Chapter 2, we introduce the concept of barrier certificates and propose us-

ing them for safety verification of continuous and hybrid systems in the worst-case

setting. A barrier certificate is a function (or a set of functions) of state satisfying

some inequalities on both the function itself and its derivative along the flow of the

system. In this setting, a barrier certificate proves that all possible system trajec-

tories starting from a given initial set cannot reach a given unsafe region. The use

of barrier certificates for verifying safety is analogous to the use of Lyapunov func-

tions for proving stability, and eliminates the need to propagate sets of states. As

a consequence, our approach is directly applicable to systems with nonlinearity, un-

certainty, constraints, and hybrid dynamics. We also propose using a class of convex

relaxation, i.e., sum of squares optimization, to compute barrier certificates for sys-

tems whose descriptions are in terms of polynomials. Sum of squares optimization

provides a hierarchical way to search for barrier certificates, where at each level the

computational cost grows polynomially with respect to the system size. Because of

this, our methodology seems to be more scalable than many other existing methods

that can handle nonlinear continuous and hybrid systems. This chapter is based on

the papers [65,66].

When stochastic disturbance input, or stochastic discrete transition, or both are

present in the system, answering the safety verification question in the worst-case

setting usually leads to a very conservative answer, i.e., to the conclusion that the
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system is not safe. Indeed, it is more natural to consider safety verification with

probabilistic interpretation, e.g., to prove that the probability of reaching the unsafe

set is lower than some safety margin. This is the subject of Chapter 3. Our method

uses supermartingales as barrier certificates and upper-bounds the reach probability

using a certain supermartingale inequality. The method is applicable to a large class

of stochastic continuous and hybrid systems with polynomial descriptions, and is the

first proposed computational method that can provide a verifiable upper bound on

the reach probability. This chapter is based on the paper [67].

In Chapter 4, we consider the duality relation between proving safety and reach-

ability. Using insights from the linear programming duality appearing in the discrete

shortest path problem and the concept of density functions, we show that proving

reachability or eventuality in continuous systems can also be performed by solving

a convex optimization problem. Convex programs involving barrier certificates and

density functions for verifying safety, reachability, eventuality, and some other tem-

poral specifications are formulated. The chapter is based on the paper [76].

In Chapter 5, the duality relation between safety and reachability is used to prove

a converse theorem for safety verification using barrier certificates. Under reasonable

technical conditions, we prove that there exists a barrier certificate for a nonlinear

continuous system if and only if the safety property holds. The chapter is based on

the paper [75].

We end the thesis in Chapter 6 by presenting some conclusions and suggestions

for future research.

1.3 Notations

We denote the set of real numbers by R and the Euclidean n-space by R
n. The trace

of an n×n matrix M , i.e., the sum of its diagonal elements, is denoted by Tr(M). In

addition, we use int(X), cl(X), and ∂X to denote the interior, the closure, and the

boundary of a set X ⊆ R
n.

By f : X → Y we mean a function f mapping X ⊆ R
n to Y ⊆ R

m. We denote
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the spaces of k-times continuously differentiable functions mapping X ⊆ R
n to R

m

by Ck(X,Rm), and when m = 1, we will write Ck(X). Correspondingly, the spaces

of continuous functions on X are denoted by C(X,Rm) and C(X), equipped with

the supremum norm if necessary. The zero subscript as in C1
0(Rn) indicates that the

functions have compact supports. The dual space of a normed linear space K, i.e.,

the space of all continuous linear functionals on K, is denoted by K∗. By 〈k∗, k〉 we

mean the value of a continuous linear functional k∗ ∈ K∗ applied to k ∈ K.

For a differentiable function F : R
n → R, we define

∂F

∂x
(x) ,

[

∂F

∂x1

(x) · · · ∂F

∂xn

(x)

]

,

and

∂2F

∂x2
(x) ,















∂2F

∂x2
1

(x) · · · ∂2F

∂x1∂xn

(x)

...
. . .

...

∂2F

∂x1∂xn

(x) · · · ∂2F

∂x2
n

(x)















.

The divergence of a differentiable vector field f : R
n → R

n,

∂f1

∂x1

(x) + ...+
∂fn

∂xn

(x),

is denoted by ∇ · f(x). The flow of ẋ = f(x) starting at x0 is denoted by φt(x0). For

a set Z ⊆ R
n, we define φt(Z) , {φt(x0) : x0 ∈ Z}.

Finally, P{ · } and P{ · | · } denote the total and conditional probability, respec-

tively, whereas E[ · ] and E[ · | · ] denote the total and conditional expectation.
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Chapter 2

Worst-Case Safety Verification

In this chapter, we consider safety verification of nonlinear continuous and hybrid

systems in the worst-case setting. Some disturbance signal and model uncertainty

may also be included in the system description. We want to verify that under any

circumstances, there is no trajectory of the system that starts from a given set of

possible initial states and goes to an unsafe region in the state space. Such anal-

ysis is particularly important for safety critical systems like air traffic control [90],

autonomous vehicle systems [33], and life support systems [28].

For safety verification of continuous and hybrid systems, several methods have

been proposed. Explicit computation of either exact or approximate reachable sets

corresponding to the continuous dynamics is crucial for most of these methods. For

linear continuous systems with certain eigenvalue structures and semialgebraic initial

sets, exact reachable set calculation using quantifier elimination has been proposed

in [6, 43]. Unfortunately, their approach requires knowing the exact solution of the

differential equations, and hence does not seem extendable to the nonlinear case. In

another vein, several techniques have also been developed for approximate reachable

set calculation. For linear systems, there are results based on quantifier elimina-

tion [86], ellipsoidal calculus [16, 41], polygonal approximation [10, 13], geometric

programming [96], and real algebraic geometry [97]. Other techniques have been pro-

posed for nonlinear systems, for example, based on the Hamilton Jacobi equations [91],

polygonal approximations [22], and approximating the system as a piecewise linear

system [9]. In the case of hybrid systems, most of the techniques are based on con-
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structing abstractions (i.e., discrete quotients) of the systems, and then performing

model checking on the resulting discrete systems. See for instance [2,4,10,13,22,87,91].

We will present a method for safety verification that is different from the above

approaches as it does not require computation of reachable sets, but instead relies

on what we term barrier certificates. For a continuous system, a barrier certificate is

a function of state satisfying a set of inequalities on both the function itself and its

Lie derivative along the flow of the system. In the state space, the zero level set of a

barrier certificate separates an unsafe region from all system trajectories starting from

a set of possible initial states. Therefore, the existence of such a function provides an

exact certificate/proof of system safety.

Similar to the Lyapunov approach for proving stability, the main idea here is

to study properties of the system without the need to compute the flow explicitly.

Although an over-approximation of the reachable set may also be used as a proof

for safety, a barrier certificate can be much easier to compute when the system is

nonlinear and uncertain. Moreover, barrier certificates can be easily used to verify

safety in infinite time horizon. Note also that there are some connections between our

method and viability theory [11], invariant set theory [11,14], and also the verification

approaches in [37,83,88]. We will discuss these connections later as we progress.

Our method can be easily extended to handle hybrid systems. In the hybrid case,

a barrier certificate is constructed from a set of functions of continuous state indexed

by the system location1. Instead of satisfying the aforementioned inequalities in the

whole continuous state space, each function needs to satisfy the inequalities only

within the invariant of the location. Functions corresponding to different locations

are linked via appropriate conditions that must be satisfied during discrete transi-

tions between the locations. The idea is analogous to using multiple Lyapunov-like

functions [38] for stability analysis of hybrid systems.

With this methodology, it is possible to treat a large class of hybrid systems,

including those with nonlinear continuous dynamics, uncertainty, and constraints.

When the vector fields of the system are polynomials and the sets in the system de-

1The term “location” here means discrete state; cf. Section 2.2.1.
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scription are semialgebraic (i.e., described by polynomial equalities and inequalities),

a tractable computational method called sum of squares optimization [61, 62, 69, 72]

can be utilized for constructing a polynomial barrier certificate, e.g., using the soft-

ware SOSTOOLS [69,72]. While the computational cost of this construction depends

on the degrees of the vector fields and the barrier certificate in addition to the number

of discrete locations and the continuous state dimension, for fixed polynomial degrees

the complexity grows polynomially with respect to the other quantities. Hence, we

expect our method to be more scalable than many other existing methods. Successful

application of our method to a NASA life support system, which is a nonlinear hybrid

system with six discrete modes and ten continuous state variables, has been reported

in [28].

This chapter is organized as follows. In Section 2.1, safety verification of contin-

uous systems is addressed. We present some conditions for barrier certificates which

guarantee the safety of the system. Later in the same section, we incorporate con-

straints into the framework. Safety verification of hybrid systems is then addressed

in Section 2.2. Section 2.3 is devoted to computation of barrier certificates. Finally,

Section 2.4 contains some examples illustrating the use of the methodology.

2.1 Continuous Systems

2.1.1 Convex Conditions

In this section, we address safety verification of continuous systems, to establish a

foundation for the subsequent results. Consider a continuous system described by a

set of ordinary differential equations in the state space form:

ẋ(t) = f(x(t), d(t)), (2.1)

with the state x(t) taking its value in R
n and the disturbance input d(t) taking its

value in D ⊆ R
m. Here, the signal d(t) is assumed to be piecewise continuous and

bounded on any finite time interval. Some smoothness conditions will be imposed on



10

the vector field f(x, d). At the least it will be continuous, which makes x(t) piecewise

continuously differentiable.

In safety verification, only parts of trajectories that are contained in a given set

X ⊆ R
n and that start from a given set of possible initial states X0 ⊆ X are consid-

ered. We denote the unsafe region of the system by Xu, with Xu ⊆ X . With these

notations, the safety property in the worst-case setting can be defined as follows. The

definition can be directly extended for other classes of systems as needed.

Definition 2.1 (Safety) Given the system (2.1), the state set X ⊆ R
n, the initial

set X0 ⊆ X , the unsafe set Xu ⊆ X , and the disturbance set D ⊆ R
m, we say

that the safety property holds if there exist no time instant T ≥ 0 and a piecewise

continuous and bounded disturbance d : [0, T ] → D that gives rise to an unsafe system

trajectory, i.e., a trajectory x : [0, T ] → R
n satisfying x(0) ∈ X0, x(T ) ∈ Xu, and

x(t) ∈ X ∀t ∈ [0, T ].

Our method for verifying safety relies on the existence of what we will call barrier

certificate. For continuous systems, the following proposition states the conditions

that are satisfied by a barrier certificate.

Proposition 2.2 Let the system ẋ = f(x, d) and the sets X ⊆ R
n, X0 ⊆ X , Xu ⊆

X , D ⊆ R
m be given, with f ∈ C(Rn+m,Rn). Suppose there exists a differentiable

function B : R
n → R such that

B(x) ≤ 0 ∀x ∈ X0, (2.2)

B(x) > 0 ∀x ∈ Xu, (2.3)

∂B

∂x
(x)f(x, d) ≤ 0 ∀(x, d) ∈ X ×D, (2.4)

then the safety of the system in the sense of Definition 2.1 is guaranteed.

Proof. Our proof is by contradiction. Assume that there exists a barrier certificate

B(x) satisfying conditions (2.2)–(2.4), while at the same time the system is not safe,

i.e., there exist a time instance T ≥ 0, a disturbance signal d : [0, T ] → D, and
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an initial condition x0 ∈ X0 such that a trajectory x(t) of the system starting at

x(0) = x0 satisfies x(t) ∈ X for all t ∈ [0, T ] and x(T ) ∈ Xu. Condition (2.4)

implies that the derivative of B(x(t)) with respect to time is non-positive on the time

interval [0, T ]. A direct consequence of this (which for example can be shown using

the mean value theorem) is that B(x(T )) must be less than or equal to B(x(0)), which

is contradictory to (2.2)–(2.3). Thus the initial hypothesis is not correct: the system

must be safe.

A function B(x) satisfying the conditions in Proposition 2.2 is termed a barrier

certificate. The zero level set of a barrier certificate “provides a barrier” between

possible system trajectories and the given unsafe region, in the sense that no trajectory

of the system starting from the initial set can cross this level set to reach the unsafe

region (cf. Section 2.4.1 for a visual illustration). In proving that the system is safe,

no explicit computation of system trajectories nor reachable sets is required.

In the above proposition, we have assumed that the unknown disturbance input

can vary arbitrarily fast. If the variation of the disturbance is bounded (for example,

when there are uncertain parameters, which can be regarded as time-invariant distur-

bance), then a less conservative verification can be performed by considering a barrier

certificate B(x, d) that also depends on the instantaneous value of the disturbance

and modifying (2.2)–(2.4) accordingly. For example, in (2.4) we need to take into

account the extra derivative term ∂B
∂d

(x, d)ḋ, with the disturbance variation ḋ taking

its value in some bounded set.

Note that the set of barrier certificates satisfying the conditions in Proposition 2.2

is convex. This can be established by taking arbitrary B1(x) and B2(x) satisfying the

above conditions and showing that for all α ∈ [0, 1], B(x) = αB1(x) + (1 − α)B2(x)

satisfies the conditions as well. The convexity property is very beneficial for the

computation of B(x). As we will see later in Section 2.3, a barrier certificate B(x) in

this convex set can be searched directly using convex optimization.

Since the set {x ∈ X : B(x) ≤ 0} is actually an invariant set, the method

presented above is closely related to the smallest invariant set approach for safety

verification (see, e.g., [37]). The latter approach differs from ours in that it tries to
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compute the smallest invariant set that contains X0, and then show that this set does

not intersect Xu. However, among invariant sets whose descriptions have bounded

complexity (e.g., sets described using finite degree polynomials), the smallest set may

not be one that does not intersect Xu. Not only that, such smallest invariant set may

be very difficult to find and may not be unique. Our approach, on the other hand,

uses an arbitrary invariant set containing X0 that does not intersect Xu. As such, our

method is computationally much easier than the smallest invariant set approach.

We would like to remark that other approaches similar to ours are also presented

in [83, 88]. These papers address the verification problem from a computer science

point of view, and proposes methods for constructing invariants of the system. An

invariant here is a property that holds for every reachable state of the system. Thus,

in the barrier certificate framework, for example, B(x) ≤ 0 is an invariant of the

system. The difference is that their conditions for the invariants are more restrictive

than ours, and the invariants are not computed using convex optimization, but instead

using Gröbner basis method followed by solving a system of linear equations.

2.1.2 Non-Convex Conditions

Although the conditions in Proposition 2.2 are good for computation since they define

a convex set of barrier certificates, the conditions seem rather conservative (i.e., within

a class of barrier certificates with bounded complexity) as the derivative inequality

(2.4) needs to be satisfied on the whole state set X . It is natural to expect that the

conditions can be relaxed by requiring a similar derivative inequality to hold only on

and near the set of x ∈ X for which B(x) = 0. This kind of condition is used in

Proposition 2.3 below. Unfortunately, the set of barrier certificates will no longer be

convex, hence a direct computation of a barrier certificate using convex optimization

is not possible, although we can still search for a barrier certificate in the non-convex

set using an iterative method, as we will see in Section 2.3.3.

Proposition 2.3 Let the system ẋ = f(x, d) and the sets X ⊆ R
n, X0 ⊆ X , Xu ⊆ X ,

D ⊆ R
m be given, with f ∈ C(Rn+m,Rn). If there exists a function B ∈ C1(Rn) that
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satisfies the following conditions:

B(x) ≤ 0 ∀x ∈ X0, (2.5)

B(x) > 0 ∀x ∈ Xu, (2.6)

∂B

∂x
(x)f(x, d) < 0 ∀(x, d) ∈ X ×D such that B(x) = 0, (2.7)

then the safety of the system in the sense of Definition 2.1 is guaranteed.

Proof. Consider T > 0, as the case where T = 0 is trivial. Suppose that a disturbance

signal d : [0, T ] → D and a corresponding unsafe trajectory x : [0, T ] → X exist. Let

t1 and t2 be two time instants such that 0 ≤ t1 < t2 ≤ T , B(x(t1)) ≤ 0, B(x(t2)) ≥ 0,

and

∂B

∂x
(x(t))f(x(t), d(t)) < 0 ∀t ∈ [t1, t2].

Now integrate ∂B
∂x

(x(t))f(x(t), d(t)) over the time interval [t1, t2] to obtain a contra-

diction, thus proving that the system is safe.

The above proposition is sufficient for our purposes and its proof is also straight-

forward. However, it is interesting to note that other (non-convex) conditions can be

derived using viability theory [11]. Interested readers are referred to the appendix in

Section 2.5.

2.1.3 Incorporating Constraints

The method we have proposed in Section 2.1.1 can be extended to accommodate a

larger class of systems. Consider the following system:

ẋ(t) = f(x(t), v(t)), (2.8)

0 = g(x(t), v(t)), (2.9)

0 ≤ h(x(t), v(t)), (2.10)

0 ≤
∫ t

0

σ(x(τ), v(τ))dτ ∀t ≥ 0, (2.11)
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where x(t) ∈ X ⊆ R
n is the state vector, and v(t) ∈ V ⊆ R

m is a vector of auxiliary

variables, which may include disturbance inputs. We assume that v(t) is piecewise

continuous along time, and that f(x, v), g(x, v), h(x, v), and σ(x, v) are continuous

in their arguments. In general they will be vector-valued functions, for which the

equality and inequality in (2.9)–(2.11) are interpreted entry-wise.

Note that the above formulation includes a very large class of systems, for example:

• Systems described by differential-algebraic equations (DAEs) can be accommo-

dated by including the equality constraints (2.9) in the formulation.

• Memoryless uncertainties [40] relating some signals in the system can be taken

into account by the inequality constraints (2.10).

• Uncertain time-varying inputs can be characterized using (2.10) for inputs with

bounded magnitude, or (2.11) for inputs with bounded energy.

• Some classes of dynamic uncertainties can be described using hard2 integral

quadratic constraints (IQCs) [49], which is a special case of (2.11).

More importantly, their combinations clearly can still be described by (2.8)–(2.11).

First, we need to specify what is considered as a valid trajectory of the system.

A trajectory x : [0, T ] → X is a valid trajectory of the system (2.8)–(2.11) on the

time interval [0, T ] if there exists a piecewise continuous and bounded v : [0, T ] → V
such that x(t) is a solution of the differential equations (2.8), and the constraints

(2.9)–(2.11) are satisfied by x(t) and v(t) for all t ∈ [0, T ]. Since the vector field

f(x, v) is continuous, x(t) will be piecewise continuously differentiable.

Similar to before, in the safety verification we will denote the initial set by X0 and

the unsafe set by Xu. The safety property for this system is defined as follows.

Definition 2.4 (Safety – Constrained Systems) Given the system (2.8)–(2.11),

the state set X ⊆ R
n, the initial set X0 ⊆ X , the unsafe set Xu ⊆ X , and the set

2The notion “hard” here means that the constraint must be satisfied for all t ≥ 0; a “soft” integral
constraint has the form

∫

∞

0
σ(x(τ), d(τ))dτ ≥ 0. Some important integral constraints for robustness

analysis of uncertain systems [49] are soft constraints.
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V ⊆ R
m, we say that the safety property holds if there exist no time instant T ≥ 0

and a piecewise continuous and bounded signal v : [0, T ] → V that gives rise to an

unsafe system trajectory, i.e., a trajectory x : [0, T ] → R
n such that (2.9)–(2.11)

are satisfied by (x(t), v(t)) for all t ∈ [0, T ], and also x(0) ∈ X0, x(T ) ∈ Xu, and

x(t) ∈ X ∀t ∈ [0, T ].

For handling this class of systems, we will multiply g(x, v), h(x, v), and σ(x, v)

given in (2.9)–(2.11) by some function multipliers satisfying certain positivity criteria,

and add the products to the derivative condition that must be satisfied by the barrier

certificate. This can be regarded as a generalization of the so-called S-procedure

(in which the multipliers are constants; see [95]), and has been proposed in [58] for

constructing Lyapunov functions for systems described by (2.8)–(2.11).

Proposition 2.5 Let the system (2.8)–(2.11) and the sets X ⊆ R
n, X0 ⊆ X , Xu ⊆

X , V ⊆ R
m be given, with f ∈ C(Rn+m,Rn), g ∈ C(Rn+m,Rp), h ∈ C(Rn+m,Rq),

σ ∈ C(Rn+m,Rr). Suppose there exist a function B ∈ C1(Rn), function multipliers

λ1 ∈ C(Rn+m,Rp), λ2 ∈ C(Rn+m,Rq), and constant multiplier λ3 ∈ R
r such that3

B(x) ≤ 0 ∀x ∈ X0, (2.12)

B(x) > 0 ∀x ∈ Xu, (2.13)

∂B

∂x
(x)f(x, v) + λT

1 (x, v)g(x, v)

+ λT
2 (x, v)h(x, v) + λT

3 σ(x, v) ≤ 0 ∀(x, v) ∈ X × V, (2.14)

λ2(x, v) ≥ 0 ∀(x, v) ∈ X × V, (2.15)

λ3 ≥ 0. (2.16)

Then the safety of the system in the sense of Definition 2.4 is guaranteed.

Proof. The proof is similar to the proof of Proposition 2.2, except that here the

conditions (2.14)–(2.16) will be used to show that B(x(t)) is non-increasing along

time. That can be shown directly by integrating the left hand side of (2.14) with

3Note that the inequalities (2.15)–(2.16) are interpreted entry-wise.
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respect to time and using the fact that

∫ t

0

[

λT
1 (x(τ), v(τ))g(x(τ), v(τ)) + λT

2 (x(τ), v(τ))h(x(τ), v(τ)) + λT
3 σ(x(τ), v(τ))

]

dτ

is non-negative for t ∈ [0, T ], which follows from (2.9)–(2.11) and (2.15)–(2.16).

2.2 Hybrid Systems

2.2.1 Modelling Framework

Throughout this section, we adopt the hybrid modelling framework that was first

proposed in [1]; see also [3] for a more detailed explanation and example. A hybrid

system is a tuple H = (X , L,X0, I, F, T ) with the following components:

• X ⊆ R
n is the continuous state space.

• L is a finite set of locations. The overall state space of the system is X = L×X ,

and a state of the system is denoted by (l, x) ∈ L×X .

• X0 ⊆ X is the set of initial states.

• I : L→ 2X is the invariant, which assigns to each location l a set I(l) ⊆ X that

contains all possible continuous states while at location l.

• F : X → 2R
n

is a set of vector fields. F assigns to each (l, x) ∈ X a set

F (l, x) ⊆ R
n which constrains the evolution of the continuous state according

to the differential inclusion ẋ(t) ∈ F (l(t), x(t)).

• T ⊆ X ×X is a relation capturing discrete transitions between two locations.

A transition ((l, x), (l′, x′)) ∈ T indicates that from the state (l, x) the system

can undergo a discrete jump to the state (l′, x′).

Valid trajectories of the hybrid system H start at some initial state (l0, x0) ∈ X0

and are concatenations of a sequence of continuous flows and discrete transitions.

During a continuous flow, the discrete location l is maintained and the continuous
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state evolves according to the differential inclusion ẋ(t) ∈ F (l(t), x(t)), with x(t)

remains inside the invariant set I(l(t)). For our purpose, we will model the uncertainty

in the continuous flow by some disturbance inputs in the following manner:

F (l, x) = {ẋ ∈ R
n : ẋ = fl(x, d) for some d ∈ D(l)},

where fl(x, d) is a vector field that governs the flow of the system at location l, and

d(t) is a vector of disturbance inputs that takes value in the set D(l(t)) ⊆ R
m. We

assume that d(t) is piecewise continuous and bounded on any finite time interval,

and that fl ∈ C(Rn+m,Rn) for all l ∈ L. Finally, at a state (l1, x1), a discrete

transition to (l2, x2) can occur if ((l1, x1), (l2, x2)) ∈ T . We assume non-determinism

in the discrete transition, i.e., the transition may or may not occur, but no stochastic

characterization is used or given.

Given a hybrid system H and a set of unsafe states Xu ⊆ X, the safety verification

problem is concerned with proving that all valid trajectories of the hybrid system H

cannot enter the unsafe region Xu. More specifically, the safety property is defined

as follows.

Definition 2.6 (Safety – Hybrid Systems) Given a hybrid system H and an un-

safe set Xu ⊆ X, the safety property holds if there exist no time instant T ≥ 0, a

piecewise continuous and bounded disturbance input d : [0, T ] → R
m, and a finite

sequence of transition times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tN ≤ T that give rise to an unsafe

system trajectory, i.e., a trajectory (l, x) : [0, T ] → X satisfying (l(0), x(0)) ∈ X0,

x(t) ∈ I(l(t)) for t ∈ [0, T ], and (l(T ), x(T )) ∈ Xu. (Note that the disturbance input

here must also satisfy d(t) ∈ D(l(t)) for all t ∈ [0, T ].)

In our analysis conditions, we will also need the following definitions. For each

location l ∈ L, the sets of initial and unsafe continuous states are defined as, respec-
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tively,

Init(l) = {x ∈ X : (l, x) ∈ X0},

Unsafe(l) = {x ∈ X : (l, x) ∈ Xu},

both of which can be empty. To each tuple (l, l′) ∈ L2 with l 6= l′, we associate a

guard set

Guard(l, l′) = {x ∈ X : ((l, x), (l′, x′)) ∈ T for some x′ ∈ X},

which is the set of continuous states from which the system can undergo a transition

from location l to location l′, and a (possibly set valued) reset map

Reset(l, l′) : x 7→ {x′ ∈ X : ((l, x), (l′, x′)) ∈ T },

whose domain is Guard(l, l′). Obviously, if no discrete transition from location l to

location l′ is possible, then Guard(l, l′) will be regarded as empty, and the associated

reset map needs not be defined.

2.2.2 Conditions for Safety

Verification of hybrid systems should use a barrier certificate that not only is a func-

tion of the continuous state, but also depends on the discrete location. For this

purpose, we construct a barrier certificate from a set of functions of continuous state,

where each function corresponds to a discrete location of the system. Since in each

location the continuous state can only take value within the invariant of the location,

each function only needs to satisfy inequalities similar to (2.2)–(2.4) or (2.5)–(2.7) in

the invariant associated to its location. Functions corresponding to different locations

are linked via appropriate conditions that take care of possible discrete transitions

between the locations. An analogous idea was used in stability analysis of affine hy-

brid systems using piecewise quadratic Lyapunov functions [38, 63], and analysis of
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polynomial hybrid systems using piecewise polynomial Lyapunov functions [68].

We state the conditions that must be satisfied by the barrier certificate in the

following theorem. The notations and assumptions imposed on the system are as

described in Section 2.2.1.

Theorem 2.7 Let the hybrid system H = (X , L,X0, I, F, T ) and the unsafe set Xu ⊆
X be given. Suppose there exists a collection {Bl(x) : l ∈ L} of functions Bl ∈ C1(Rn)

which, for all l ∈ L and (l, l′) ∈ L2, l 6= l′, satisfy

Bl(x) ≤ 0 ∀x ∈ Init(l), (2.17)

Bl(x) > 0 ∀x ∈ Unsafe(l), (2.18)

∂Bl

∂x
(x)fl(x, d) < 0 ∀(x, d) ∈ I(l) ×D(l) such that Bl(x) = 0, (2.19)

Bl′(x
′) ≤ 0 ∀x′ ∈ Reset(l, l′)(x), for all x ∈ Guard(l, l′) s.t. Bl(x) ≤ 0. (2.20)

Then the safety of the system in the sense of Definition 2.6 is guaranteed.

Proof. Assume that a barrier certificate {Bl(x) : l ∈ L} satisfying the above condi-

tions can be found. Take any trajectory of the hybrid system that starts at arbitrary

(l0, x0) ∈ X0, and consider the evolution of Bl(t)(x(t)) along this trajectory. Condi-

tion (2.17) asserts that Bl0(x0) ≤ 0. Next, (2.19) implies that during a segment of

continuous flow Bl(t)(x(t)) cannot become positive, which can be shown using Propo-

sition 2.3. On the other hand, (2.20) guarantees that Bl(t)(x(t)) cannot jump to a

positive value during a discrete transition. Consequently, any such trajectory can

never reach an unsafe state (lu, xu) ∈ Xu, whose Blu(xu) is positive according to

(2.17). We conclude that the safety of the system is guaranteed.

Similar to what we encounter in the continuous case, conditions (2.19)–(2.20) in

the above theorem define a non-convex set of barrier certificates. Conditions defining

a convex set of barrier certificates are given in the following theorem.

Theorem 2.8 Let the hybrid system H = (X , L,X0, I, F, T ), the unsafe set Xu ⊆ X,

and a collection of nonnegative constants {λl,l′ ∈ R : (l, l′) ∈ L2, l 6= l′} be given.
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Suppose there exists a collection {Bl(x) : l ∈ L} of differentiable functions Bl : R
n →

R which, for all l ∈ L and (l, l′) ∈ L2, l 6= l′, satisfy

Bl(x) ≤ 0 ∀x ∈ Init(l), (2.21)

Bl(x) > 0 ∀x ∈ Unsafe(l), (2.22)

∂Bl

∂x
(x)fl(x, d) ≤ 0 ∀(x, d) ∈ I(l) ×D(l), (2.23)

Bl′(x
′) − λl,l′Bl(x) ≤ 0 ∀x′ ∈ Reset(l, l′)(x), for all x ∈ Guard(l, l′). (2.24)

Then the safety of the system in the sense of Definition 2.6 is guaranteed.

Proof. Analogous to the proof of Theorem 2.7, but with Proposition 2.2 now being

used to show that Bl(t)(x(t)) cannot become positive during a segment of continuous

flow.

Remark 2.9 The convexity of the set of barrier certificates in Theorem 2.8 can be

established by taking two arbitrary collections {B1
l (x) : l ∈ L} and {B2

l (x) : l ∈ L} sat-

isfying the conditions in the theorem and showing that for all α ∈ [0, 1] the collection

{αB1
l (x) + (1 − α)B2

l (x) : l ∈ L} satisfies the conditions as well. Note that for this

convexity, it is crucial that the multipliers λl,l′ are fixed in advance.

Remark 2.10 Two possible choices for λl,l′ are 0 and 1. The choice λl,l′ = 0 corre-

sponds to modifying (2.20) to

Bl′(x
′) ≤ 0 ∀x′ ∈ Reset(l, l′)(x), for some l ∈ L and x ∈ Guard(l, l′),

and in this case, a successful verification will actually prove that the system is safe

even if during a transition from location l to l′ the continuous state is allowed to jump

to any continuous state x′ in the image of the reset map. On the other hand, choosing

λl,l′ = 1 is useful for handling integral constraints, as we will shortly see.
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2.2.3 Hybrid Systems with Constraints

In the remainder of this section, we will briefly discuss how constraints can be in-

corporated in verification of hybrid systems. Similar to the continuous case (cf. Sec-

tion 2.1.3), there are three kinds of constraints that can be handled: algebraic equal-

ity, algebraic inequality, and integral constraints. Here we will focus on integral

constraints, as verification by explicit calculation of reachable sets is the most dif-

ficult when such constraints exist. To the best of our knowledge, the only existing

literature addressing this problem is [39], in which a method for bounding an image

of the flow map between two affine switching surfaces for affine hybrid systems with

integral quadratic constraints is presented.

Instead of assuming that the disturbance d(t) is contained in D(l(t)), suppose now

that d(t) and the continuous state x(t) is constrained via a hard integral constraint:

∫ t

0

σ(x(τ), d(τ))dτ ≥ 0 ∀t > 0, (2.25)

where d(t) is again assumed to be piecewise continuous and bounded on any finite

time interval. Apart from this change, valid trajectories of the system are generated

in the same manner as in Section 2.2.1. Conditions guaranteeing safety when an

integral constraint is present are given in the following theorem.

Theorem 2.11 Let the hybrid system H = (X , L,X0, I, F, T ), the unsafe set Xu ⊆
X, and the constraint (2.25) be given, with σ ∈ C(Rn+m,Rr). Suppose there exist a

collection {Bl(x) : l ∈ L} of functions Bl ∈ C1(Rn) and a constant multiplier λ ∈ R
r

that satisfy

Bl(x) ≤ 0 ∀x ∈ Init(l), (2.26)

Bl(x) > 0 ∀x ∈ Unsafe(l), (2.27)

∂Bl

∂x
(x)fl(x, d) + λTσ(x, d) ≤ 0 ∀(x, d) ∈ I(l) × R

m, (2.28)

Bl′(x
′) −Bl(x) ≤ 0 ∀x′ ∈ Reset(l, l′)(x), for all x ∈ Guard(l, l′), (2.29)

λ ≥ 0, (2.30)
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for all l ∈ L and (l, l′) ∈ L2, l′ 6= l. Then the safety of the system is guaranteed in

the sense of Definition 2.6 (except that d(t) is not contained in D(l(t)), but instead

must satisfy (2.25)).

Proof. Assume that a barrier certificate satisfying the above conditions can be

found, but at the same time there exists a T ≥ 0 and a valid trajectory of the hybrid

system on the time interval [0, T ] such that (l(T ), x(T )) ∈ Xu. Assume that discrete

transitions for this trajectory occur at time t1, t2, ..., tN where the system switches to

location l1, l2, ..., lN . Denote the continuous states before and after the i-th transition

by x−i and x+
i , respectively. Then, from (2.28) and (2.30) we obtain

Bl0(x
−
1 ) −Bl0(x0) +Bl1(x

−
2 ) −Bl1(x

+
1 ) + ...+BlN (x(T )) −BlN (x+

N)

=

∫ t−
1

0

∂Bl0

∂x
(x(τ))fl0(x(τ), d(τ))dτ + ...+

∫ T

t+
N

∂BlN

∂x
(x(τ))flN (x(τ), d(τ))dτ

≤ −λT

∫ T

0

σ(x(τ), d(τ))dτ ≤ 0.

Now, (2.29) guarantees that Bli(x
+
i ) − Bli−1

(x−i ) ≤ 0 for i = 1, ..., N , and hence, it

follows from the above inequality that BlN (x(T )) ≤ Bl0(x0). Using (2.26)–(2.27), we

obtain a contradiction, thus proving the theorem.

Remark 2.12 The set of {Bl(x) : l ∈ L} and λ satisfying the conditions in Theo-

rem 2.11 is convex.

2.3 Computational Method

Computation of barrier certificates is in general not easy, as is the case with compu-

tation of Lyapunov functions for nonlinear or hybrid systems. In fact, even verifying

that a given barrier certificate satisfies the required conditions is hard. However, for

systems whose vector fields are polynomial and whose set descriptions are semialge-

braic (i.e., described by polynomial equalities and inequalities), a tractable compu-

tational method for verifying or constructing a barrier certificate exists, if we also
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postulate the barrier certificate to be polynomial. The method uses sum of squares

optimization [61,62,69,72] — a convex relaxation framework based on sum of squares

decompositions of multivariate polynomials [80] and semidefinite programming [93].

2.3.1 Sum of Squares Optimization

In this subsection, we give a brief review on sum of squares optimization. Some parts

of the subsection are based on [72]. See also [61,62] for more detailed expositions.

Let the indeterminate x take its value in R
n. From this point onward, we will

consider polynomials in x with real coefficients. We say that a polynomial p(x) is a

sum of squares (SOS), if there exist polynomials f1(x), . . . , fm(x) such that

p(x) =
m

∑

i=1

f 2
i (x). (2.31)

It follows from the definition that the set of sums of squares polynomials in n vari-

ables is a convex cone. The existence of an SOS decomposition (2.31) can be shown

equivalent to the existence of a real positive semidefinite matrix Q such that

p(x) = ZT (x)QZ(x), (2.32)

where Z(x) is the vector of monomials of degree less than or equal to degree(p(x))/2.

By monomial, we mean a polynomial of the form xα1

1 . . . xαn

n , where the αi’s are

nonnegative integers, and in this case, the degree of the monomial is α1 + . . .+ αn.

Expressing an SOS polynomial as a quadratic form in (2.32) has also been re-

ferred to as the Gram matrix method [21]. The decomposition (2.31) can be easily

converted into (2.32) and vice versa. This equivalence makes an SOS decomposi-

tion computable using semidefinite programming, since finding a symmetric posi-

tive semidefinite matrix Q subject to the affine constraint (2.32) is nothing but a

semidefinite programming problem [93]. Computation of SOS decompositions using

semidefinite programming was first suggested in [61].

It is clear that a SOS polynomial is globally nonnegative. This is a property of
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SOS polynomials that is crucial in many control applications, where we can obtain a

tractable computational relaxation by replacing various polynomial inequalities with

SOS conditions. However, it should be noted that not all nonnegative polynomials

are sums of squares. The equivalence between nonnegativity and sum of squares is

only guaranteed in three cases: univariate polynomials of any even degree, quadratic

polynomials in any number of indeterminates, and quartic polynomials in three vari-

ables [80]. Indeed, nonnegativity is NP-hard to test [54], whereas the SOS condition

is polynomial time verifiable through solving appropriate semidefinite programs. De-

spite this, in many cases we are able to obtain solutions to computational problems

that are otherwise at the moment unsolvable, simply by replacing the nonnegativity

conditions with SOS conditions.

A sum of squares program is a convex optimization problem of the following form:

Minimize
m

∑

j=1

wjcj

subject to

ai,0(x) +
m

∑

j=1

ai,j(x)cj is SOS, for i = 1, ..., p,

where the cj’s are scalar real decision variables, the wj’s are given real numbers,

and the ai,j(x)’s are given polynomials (with fixed coefficients). Note that equal-

ity constraint ai,0(x) +
∑m

j=1 ai,j(x)cj = 0 can be included by asking both (ai,0(x) +
∑m

j=1 ai,j(x)cj) and −(ai,0(x) +
∑m

j=1 ai,j(x)cj) to be SOS. See also another equiv-

alent canonical form of SOS programs in [69]. Sum of squares programs can still

be solved via semidefinite programming using the Gram matrix method explained

above. As a matter of fact, SOS programs and semidefinite programs are equivalent,

since semidefinite programs can also be viewed as SOS programs with the polynomi-

als ai,j(x) being quadratic. The software SOSTOOLS [69–72], in conjunction with a

semidefinite programming solver such as SeDuMi [85], can be used to efficiently solve

SOS programs.

It is notable that SOS programs can be used to prove emptiness of (basic) semi-



25

algebraic sets, i.e., sets of the form

{x ∈ R
n : fj(x) ≥ 0, gk(x) 6= 0, hℓ(x) = 0 ∀j, k, ℓ},

where fj(x)’s, gk(x)’s, and hℓ(x)’s are polynomials. The main tool used for this

purpose is Positivstellensatz [84] (see also [15]), a theorem in real algebraic geometry

characterizing certificates for infeasibility of the above system of polynomial equalities

and inequalities. Computation of such infeasibility certificates using hierarchies of

SOS programs has been proposed in [62]. The idea is to choose a degree bound for

the certificates, then affinely parameterize a set of candidate certificates and find the

proper ones in this set by solving a SOS program. If the semialgebraic set is empty

and the degree bound is chosen to be large enough, then the SOS program will be

feasible.

2.3.2 Direct Computation

The setting of Section 2.2.2 is used in this and the next subsections; other settings

can be treated analogously. Consider a hybrid system H = (X , L,X0, I, F, T ) whose

vector fields fl(x, d) are polynomial for all l ∈ L. Furthermore, assume that for all

l ∈ L, the invariant region I(l) is given by

I(l) = {x ∈ R
n : gI(l)(x) ≥ 0}.

In these set descriptions, the gI(l)’s are vectors of polynomials, and the inequalities

are satisfied entry-wise. For example, when I(l) is the n-dimensional hypercube

[x1, x1] × ...× [xn, xn], we may define

gI(l)(x) =











(x1 − x1)(x1 − x1)
...

(xn − xn)(xn − xn)











.
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Similarly, define the sets D(l), Init(l), Unsafe(l), and Guard(l, l′) by the inequalities

gD(l)(d) ≥ 0, gInit(l)(x) ≥ 0, gUnsafe(l)(x) ≥ 0, and gGuard(l,l′)(x) ≥ 0. Finally, assume

Reset(l, l′)(x) = {x′ ∈ R
n : gReset(l,l′)(x, x

′) ≥ 0}

to be the value of the reset map Reset(l, l′) evaluated at x ∈ Guard(l, l′).

When theBl(x)’s are polynomials, verifying that a given barrier certificate {Bl(x) :

l ∈ L} satisfies the conditions in Theorems 2.7 or 2.8 is equivalent to proving that

some basic semialgebraic sets are empty. Consider for example the condition (2.17)

for a particular l ∈ L. The condition is satisfied if and only if the basic semialgebraic

set

{x ∈ R
n : Bl(x) ≥ 0, Bl(x) 6= 0, gInit(l)(x) ≥ 0}

is empty. Proving that the above set is empty can be done using Positivstellensatz,

with the help of SOS optimization as mentioned in the previous subsection.

What is more important, however, is the computation of barrier certificates. Sum

of squares optimization has been exploited for algorithmically constructing Lyapunov

functions for nonlinear systems [58, 61]. A similar approach can be used in the com-

putation of barrier certificates. In this case, real coefficients c1,l, ..., cm,l are used to

parameterize sets of candidates for the functions Bl(x), ∀l ∈ L, in the following way:

Bl(x) =
∑

j

cj,lbj,l(x), (2.33)

where the bj,l(x)’s are elements of some finite polynomial basis; for example, they

could be monomials of degree less than or equal to some pre-chosen bound. Then

the search for a barrier certificate {Bl(x) : l ∈ L} — or equivalently, the values of

cj,l’s, such that the convex conditions in Theorems 2.8 are satisfied — can be directly

performed by solving a SOS program, as stated in the following algorithm.

Algorithm 2.13 (Direct Method) Let the hybrid system H and the descriptions
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of I(l), D(l), Init(l), Unsafe(l), Guard(l, l′), and Reset(l, l′)(x) be given, along with

some nonnegative constants λl,l′, for each l ∈ L and (l, l′) ∈ L2, l 6= l′.

1. Parameterize Bl(x)’s: Fix a degree bound for the barrier certificate, and

parameterize Bl(x) ∀l ∈ L in terms of some unknown coefficients cj,l’s as in

(2.33), by having all monomials whose degrees are less than the degree bound as

the bj,l(x)’s.

2. Parameterize the multipliers: In a similar way, fix some degree bounds

and use some other unknown coefficients to parameterize polynomial vectors

λInit(l)(x), λUnsafe(l)(x), λI(l)(x, d), λD(l)(x, d), λGuard(l,l′)(x, x
′), λReset(l,l′)(x, x

′)

of the same dimensions as the corresponding g∗(·)’s.

3. Compute the coefficients: Choose a small positive number ǫ. Use SOS

optimization to find values of the coefficients which make the expressions

−Bl(x) − λT
Init(l)(x)gInit(l)(x), (2.34)

+Bl(x) − ǫ− λT
Unsafe(l)(x)gUnsafe(l)(x), (2.35)

− ∂Bl

∂x
(x)fl(x, d) − λT

I(l)(x, d)gI(l)(x) − λT
D(l)(x, d)gD(l)(d), (2.36)

−Bl′(x
′) + λl,l′Bl(x) − λT

Guard(l,l′)(x, x
′)gGuard(l,l′)(x)

− λT
Reset(l,l′)(x, x

′)gReset(l,l′)(x, x
′) (2.37)

and the entries of λInit(l)(x), λUnsafe(l)(x), λI(l)(x, d), λD(l)(x, d), λGuard(l,l′)(x, x
′),

λReset(l,l′)(x, x
′) sums of squares, for each l ∈ L and (l, l′) ∈ L2, l 6= l′.

Proposition 2.14 If the sum of squares optimization problem given in Algorithm 2.13

is feasible, then the polynomials {Bl(x) : l ∈ L} obtained by substituting the corre-

sponding values of cj,l’s to their polynomial parameterization satisfy the conditions of

Theorem 2.8, and therefore {Bl(x) : l ∈ L} is a barrier certificate.

Proof. We show that the entries of λInit(l)(x) and (2.34) being SOS implies (2.17)

as follows. Notice that −Bl(x) − λT
Init(l)(x)gInit(l)(x) is globally nonnegative since it
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is a SOS, and also that for any x ∈ Init(l), the second term is nonnegative. Thus,

−Bl(x) ≥ λT
Init(l)(x)gInit(l)(x) ≥ 0 ∀x ∈ Init(l), i.e., condition (2.17) holds. Similar

arguments can be used for the other conditions.

Remark 2.15 If the reset map Reset(l, l′) actually maps x ∈ Guard(l, l′) to a sin-

gleton, e.g., if Reset(l, l′) : x 7→ gReset(l,l′)(x) for some polynomial vector gReset(l,l′)(x),

then expression (2.37) can be simplified to

−Bl′(gReset(l,l′)(x)) + λl,l′Bl(x) − λT
Guard(l,l′)(x)gGuard(l,l′)(x).

The computational cost of Algorithm 2.13 depends on three factors: the degrees

of (2.34)–(2.37), the cardinality of L, and the dimension of (x, d). For fixed degrees,

however, the required computations grow polynomially with respect to the cardinal-

ity of L and/or the dimension of (x, d). A hierarchy of computations can then be

proposed, where we start with a low degree for the barrier certificate and increase it

as needed. In many cases, a low degree barrier certificate can be used to verify safety

if the system is “sufficiently” safe (in the sense that a small perturbation will not

make the system unsafe).

We would also like to remark that although the computational approach discussed

in this section assumes that the descriptions of the system and sets are polynomial,

non-polynomial descriptions can be handled (although possibly with some conser-

vatism) in at least two different ways:

• First, a non-polynomial vector field can be approximated by a polynomial vector

field and the approximation error can be “covered” by including some uncer-

tainty description, which has been treated in Section 2.1.3. In a similar way, we

can cover sets with non-polynomial descriptions with those that are described

using polynomials.

• Second, for some non-polynomial systems, algebraic recasting of variables can

be used to transform the system to a polynomial system, possibly plus some

algebraic constraints. Consider for example the system ẋ = ex. By introducing
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a new variable x̃ = ex, we can obtain an equivalent polynomial description in

the new state variable ˙̃x = exẋ = x̃2, with inequality constraint x̃ ≥ 0. Then

a polynomial barrier certificate can be constructed for the new system, which

will correspond to a non-polynomial barrier certificate in the original system.

The details of the recasting algorithm are outside the scope of this section, but

we refer interested readers to [59].

2.3.3 Iterative Computation

The SOS optimization approach described in the previous subsection can be used

to find a barrier certificate that lies in the convex set defined by the conditions in

Theorem 2.8. The conditions in Theorem 2.7, however, define a non-convex set of

barrier certificates. As a consequence, the search for a barrier certificate in this set

cannot be performed through direct SOS optimization, although conditions for the

barrier certificate can still be formulated as sum of squares conditions as follows.

Proposition 2.16 Let the hybrid system H and the descriptions of I(l), D(l), Init(l),

Unsafe(l), Guard(l, l′), and Reset(l, l′)(x) be given. Suppose there exist polynomi-

als Bl(x) and λBl
(x, d); positive numbers ǫ1 and ǫ2; and vectors of sums of squares

λUnsafe(l)(x), λInit(l)(x), λI(l)(x, d), λD(l)(x, d), λGuard(l,l′)(x, x
′), λReset(l,l′)(x, x

′), and

λl,l′(x, x
′); such that the following expressions:

−Bl(x) − λT
Init(l)(x)gInit(l)(x), (2.38)

+Bl(x) − ǫ1 − λT
Unsafe(l)(x)gUnsafe(l)(x), (2.39)

− ∂Bl

∂x
(x)fl(x, d) − ǫ2 − λT

D(l)(x, d)gD(l)(d) − λT
I(l)(x, d)gI(l)(x) − λBl

(x, d)Bl(x),

(2.40)

−Bl′(x
′) + λl,l′(x, x

′)Bl(x) − λT
Guard(l,l′)(x, x

′)gGuard(l,l′)(x)

− λT
Reset(l,l′)(x, x

′)gReset(l,l′)(x, x
′) (2.41)

are sums of squares for all l ∈ L and (l, l′) ∈ L2, l 6= l′. Then the collection {Bl(x) :

l ∈ L} satisfies the conditions in Theorem 2.7, and therefore the safety property holds.
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Proof. Analogous to the proof of Proposition 2.14.

In this case, direct computation of {Bl(x) : l ∈ L} via SOS optimization is

not possible due to the multiplication of the unknown coefficients of Bl(x)’s with

those of λBl
(x, d)’s and λl,l′(x, x

′)’s in (2.40)–(2.41). By fixing either of them, all

the unknown coefficients will be constrained in an affine manner, which reduces the

problem4 to a SOS program. For example, fixing the multipliers will convexify the

set of {Bl(x) : l ∈ L}’s satisfying the conditions (2.38)–(2.41), resulting in a smaller

convex set contained in the original non-convex set.

The motivation to search for barrier certificates in the non-convex set is the fact

that when we put a bound on their complexity (e.g., by bounding the polynomial de-

grees), such barrier certificates are generally less conservative than barrier certificates

in the convex set (cf. the comment at the beginning of Section 2.1.2). For instance,

the former may prove safety for larger disturbance sets, guard sets, unsafe sets, etc.

We will now present a simple iterative method to search for a barrier certificate in

the non-convex set. In the iteration, we start with some sufficiently small sets, and

increase their sizes as the iteration progresses.

Algorithm 2.17 (Iterative Method)

1. Initialization: Start with sufficiently small D(l), Guard(l, l′), etc. Specify

λBl
(x, d) and σl,l′(x, x

′) in advance, e.g., by choosing λBl
(x) = 0 and σl,l′(x, x

′) =

0 or 1. Search for Bl(x)’s and the remaining multipliers using SOS optimization

as described in Algorithm 2.13.

2. Fix the barrier certificate: Fix the Bl(x)’s obtained from the previous step.

Enlarge D(l), Guard(l, l′), etc. Search for λBl
(x, d)’s, σl,l′(x, x

′)’s, and the re-

maining multipliers.

3. Fix the multipliers: Fix the λBl
(x, d)’s and σl,l′(x, x

′)’s obtained from the

previous step. Enlarge D(l), Guard(l, l′), etc. Search for Bl(x)’s and the re-

maining multipliers. Repeat to Step 2.

4Note that the original problem is actually equivalent to a bilinear matrix inequality (BMI)
problem [50].
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For an example illustrating the benefit of using this method, we refer the reader

to Section 2.4.2. It should be noted, however, that solving a non-convex optimization

problem by an iteration like the above is not guaranteed to yield a globally optimal

solution, as the iteration may actually converge to a local optimum. In our case, the

barrier certificate we obtain at the end of our iteration may not be a barrier certificate

that is able to prove safety for the maximum possible disturbance sets, etc.

2.4 Examples

2.4.1 Continuous System

Consider the two-dimensional system (taken from [40, page 180])





ẋ1

ẋ2



 =





x2

−x1 + 1
3
x3

1 − x2



 ,

with X = R
2. We want to verify that all trajectories of the system starting from the

initial set X0 = {x ∈ R
2 : (x1 − 1.5)2 + x2

2 ≤ 0.25} will never reach the unsafe set

Xu = {x ∈ R
2 : (x1 + 1)2 + (x2 + 1)2 ≤ 0.16}. Note that the system has a stable

focus at the origin and two saddle points at (±
√

3, 0). Since X0 contains a part of the

unstable manifold corresponding to the equilibrium (
√

3, 0), the safety of this system

cannot be verified exactly by computation of forward reachable sets in a finite time

horizon.

For example, a polynomial barrier certificate B(x) that satisfies (2.2)–(2.4) is given

by

B(x) = −13 + 7x2
1 + 16x2

2 − 6x2
1x

2
2 −

7

6
x4

1 − 3x1x
3
2 + 12x1x2 −

12

3
x3

1x2.

That the Lie derivative ∂B
∂x

(x)f(x) is less than or equal to zero can be shown by
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Example 1

Figure 2.1: Phase portrait of the system in Section 2.4.1. Solid patches are (from
left to right) Xu and X0, respectively. Dashed curves are the zero level set of B(x),
whereas solid curves are some trajectories of the system. The function B(x) is strictly
greater than zero for all x ∈ Xu and strictly less than zero for all x ∈ X0.

exhibiting the quadratic form −∂B
∂x

(x)f(x) = Z(x)TQZ(x), with

Q =





























20 0 15 0 −15/2 −5

0 3 0 3/2 0 0

15 0 12 0 −6 −4

0 3/2 0 6 0 0

−15/2 0 −6 0 3 2

−5 0 −4 0 2 4/3





























, Z(x) =





























x2

x2
2

x1

x1x2

x2
1x2

x3
1





























.

In this case, the matrix Q is positive semidefinite, which implies the existence of a

sum of squares decomposition for −∂B
∂x

(x)f(x) (and hence its nonnegativity). That

(2.2)–(2.3) are satisfied can be shown by sum of squares arguments as well, and is

also depicted pictorially in Figure 2.1. The zero level set of the barrier certificate

separates Xu from all trajectories starting from X0. Hence, the safety of the system

is verified.
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x ′ = f
2
(x,d)

 
x

1
2+x

2
2+x

3
2 ≥ 0.03

 
x

1
2 ≤ 5.12

x ′ = f
1
(x,d)

 
x

1
2+0.01x

2
2+0.01x

3
2 ≤ 1.01

0.99 ≤ x
1
2+0.01x

2
2+0.01x

3
2 ≤ 1.01

0.03 ≤ x
1
2+x

2
2+x

3
2 ≤ 0.05

CONTROLNO CONTROL

Figure 2.2: Discrete transition diagram of the system in Section 2.4.2. This system
has two discrete locations: NO CONTROL and CONTROL, with the vector field
and the invariant of each location depicted inside the corresponding circle. The texts
labelling the transitions between locations describe the guard sets.

2.4.2 Hybrid System

Consider a hybrid system whose discrete transition diagram is depicted in Figure 2.2.

The system starts in location 1 (NO CONTROL mode), with its continuous state

initialized at Init(1) = {x ∈ R
3 : x2

1 +x2
2 +x2

3 ≤ 0.01}. In this location, the continuous

state evolves according to











ẋ1

ẋ2

ẋ3











=











x2

−x1 + x3

x1 + (2x2 + 3x3)(1 + x2
3) + d











, f1(x, d),

until it reaches some point in the guard set Guard(1, 2) = {x ∈ R
3 : 0.99 ≤ x2

1 +

0.01x2
2 + 0.01x2

3 ≤ 1.01}, at which instance a controller whose objective is to prevent

|x1| from getting too big will be turned on, and the system jumps to location 2

(CONTROL mode). In location 2, the continuous dynamics is described by











ẋ1

ẋ2

ẋ3











=











x2

−x1 + x3

−x1 − 2x2 − 3x3 + d











, f2(x, d).
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Iteration Description Verified
1 Set λBl

(x, d) = 0, find Bl(x). −0.005 ≤ d ≤ 0.005
2 Fix Bl(x), find λBl

(x, d). −0.625 ≤ d ≤ 0.625
3 Fix λBl

(x, d), find Bl(x). −1 ≤ d ≤ 1

Table 2.1: Description and results of the iterative method in Section 2.4.2. The third
column indicates the disturbance range for which safety is verified.

The system will remain in this location until the continuous state enters the second

guard set Guard(2, 1) = {x ∈ R
3 : 0.03 ≤ x2

1 + x2
2 + x2

3 ≤ 0.05}, where the controller

will be turned off and the system jumps to location 1. We assume nondeterminism in

the jump from location 1 to location 2 and vice versa. For this system, the invariant

of the discrete locations are given by I(1) = {x ∈ R
3 : x2

1 + 0.01x2
2 + 0.01x2

3 ≤ 1.01}
and I(2) = {x ∈ R

3 : x2
1 + x2

2 + x2
3 ≥ 0.03, x2

1 ≤ 5.12}.
Our task in this example is to verify that |x1| never gets bigger than 5, if the

instantaneous magnitude of the disturbance d is bounded by 1. We define our unsafe

sets as Unsafe(1) = ∅ and Unsafe(2) = {x ∈ R
3 : 5 ≤ x1 ≤ 5.1} ∪ {x ∈ R

3 :

−5.1 ≤ x1 ≤ −5}, and compute a quartic barrier certificate satisfying the conditions

in Theorem 2.7. Using the iterative method described in Section 2.3.3 to enlarge the

verifiable disturbance set, we obtain the results shown in Table 2.1. At the third

iteration, we are able to prove the safety of the system.

2.4.3 Limit of Design

.

In this example, we analyze the reachability of a linear system in feedback inter-

connection with a relay. The block diagram of the system is shown in Figure 2.3,

with the matrices A, B, C, and D given by

A =











0 1 0

0 0 1

−0.2 −0.3 −1











, B =











0

0

0.1











,

C =
[

1 0 0
]

, D =
[

0
]

,
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y w

v

Relay

K

   

x’ = Ax+Bu
 y = Cx+Du

 

Figure 2.3: Block diagram of the system in Section 2.4.3. We ask if it is possible to
design a controller K that steers the system from an initial set X0 to a destination
set Xu, subject to some other specifications.

and the relay element having the following characteristic:

w =







10, if y ≥ 0,

−10, if y < 0.

For the sets X = {x ∈ R
3 : x2

1+x2
2+x2

3 ≤ 42}, X0 = {x ∈ R
3 : (x1+2)2+x2

2+x2
3 ≤

0.12}, and Xu = {x ∈ R
3 : (x1−2)2 +x2

2 +x2
3 ≤ 0.12}, we pose the following question:

Is it possible to design a controller K (possibly nonlinear and time-varying) with the

L2-gain not greater than one, which is connected to the system in the way shown in

Figure 2.3, such that the system can be steered from X0 to Xu while maintaining the

state in X ?

The requirement that the L2-gain of the controller is not greater than one can be

equivalently formulated as an integral quadratic constraint (IQC) [49]

∫ T

0

[y2(t) − v2(t)]dt ≥ 0 ∀T ≥ 0.

This specification introduces dynamic uncertainty to the problem. Nevertheless, we

can perform reachability analysis by adjoining the above IQC using a nonnegative

constant multiplier to the conditions on the time derivative of barrier certificates

(cf. Theorem 2.11). For this example, a quartic barrier certificate that satisfies the
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required conditions can be found. Hence we conclude that the given specification is

impossible to meet.

2.5 Appendix: Non-Convex Conditions

In Section 2.1.2, it is mentioned that other non-convex conditions guaranteeing safety

can be derived using viability theory. For example, using a viability theorem by

Nagumo [55] and a characterization of contingent cone for a set described by inequal-

ities [12], the following proposition can be obtained.

Proposition 2.18 Let the system ẋ = f(x) and the sets X ⊆ R
n, X0 ⊆ X , Xu ⊆ X

be given, with the vector field f : R
n → R

n being locally Lipschitz continuous and X
being open. Suppose there exists a function B ∈ C1(Rn) that satisfies the following

conditions:

B(x) ≤ 0 ∀x ∈ X0, (2.42)

B(x) > 0 ∀x ∈ Xu, (2.43)

∂B

∂x
(x) 6= 0 ∀x ∈ X such that B(x) = 0, (2.44)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X such that B(x) = 0, (2.45)

then the safety of the system in the sense of Definition 2.1 is guaranteed.

Notice in particular that if there is no disturbance input, the vector field f(x) is

locally Lipschitz continuous, and X is open, then the statement in Proposition 2.3

follows as a corollary of Proposition 2.18. We will now state some definitions and

results needed to prove Proposition 2.18.

Definition 2.19 (Contingent Cone) Let X be a normed space, K be a non-empty

subset of X, and x belong to K. The (Bouligand) contingent cone to K at x is

TK(x) =

{

v ∈ X : lim inf
h→0+

dK(x+ hv)

h
= 0

}

,
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where dK(y) is the distance of y to K, i.e., dK(y) = infz∈K ‖y − z‖.

In proving Proposition 2.18, we will use X = R
n and K = {x ∈ X : B(x) ≤ 0}.

The contingent cone to K is characterized in the following lemma.

Lemma 2.20 (See, e.g., [12]) Let X = R
n and K = {x ∈ X : B(x) ≤ 0} for a

continuously differentiable B(x). Then TK(x) = X if x is in the interior of K, and

TK(x) =

{

v ∈ X :
∂B

∂x
(x)v ≤ 0

}

for any x such that B(x) = 0, under the condition that ∂B
∂x

(x) 6= 0.

Theorem 2.21 (Nagumo5) Let X be a finite dimensional vector space, K ⊆ X be

locally compact and f(x) be continuous from K to X. Then K is locally viable under

f(x), i.e., for any initial state x0 ∈ K there exist τ > 0 such that at least one solution

x(t) of the differential equations ẋ = f(x) starting at x0 stays in K on [0, τ ], if and

only if

f(x) ∈ TK(x) ∀x ∈ K.

Proof of Proposition 2.18. Let K be as defined in Lemma 2.20, and consider

any initial condition x0 ∈ ∂K ∩X , where ∂K here denotes the boundary of K. Since

f(x) ∈ TK(x) for all x ∈ K ∩ X , by Theorem 2.21 there is at least a trajectory of

the system starting at x0 that on a small enough time interval is contained in K ∩X .

But in fact there is only one such trajectory, since in the proposition we assert that

f(x) is locally Lipschitz continuous, which guarantees uniqueness of solutions to the

differential equations. It follows that there is no trajectory x : [0, T ] → X starting

from X0 that can intersect ∂K ∩ X to reach Xu, thus proving the proposition.

To see what can go wrong if condition (2.44) or the local Lipschitz continuity of

the vector field is not fulfilled, consider the following examples.

5We use the version in [11].
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Example 2.22 Consider the system ẋ = 1, with X = R, X0 = (−∞,−1], and

Xu = [1,∞). Let B(x) = x3. Then all the conditions in Proposition 2.18 are satisfied

except (2.44). In fact, the system is not safe.

Example 2.23 Consider the system ẋ = x1/3, with X = R, X0 = {0}, and Xu =

[1,∞). Let B(x) = x. Then all the conditions in Proposition 2.18 are satisfied except

the local Lipschitz continuity of f(x). The system is not safe, as there is a trajectory

x(t) = (2t/3)3/2 that connects X0 to Xu. However, as guaranteed by Theorem 2.21,

there is at least one trajectory, in this case x(t) = 0, that starts from X0 and stays in

{x ∈ R : B(x) ≤ 0}
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Chapter 3

Stochastic Safety Verification

In this chapter, we consider safety verification of stochastic continuous and hybrid

systems. The stochasticity of a continuous system may originate from random inputs

to the dynamics, which can be taken into account by considering stochastic differ-

ential equations. In the case of stochastic hybrid systems, stochasticity may also be

induced by randomness in the discrete transitions. Study of systems modelled by

stochastic differential equations has a long history and readers can find relevant ref-

erences, e.g., in [57]. On the other hand, only quite recently have people started to

consider stochastic hybrid systems. See for instance [24, 27, 31, 34], and also [64] for

an overview. Stochastic hybrid systems have been used as a modelling framework in

various applications, such as air traffic management [29], manufacturing systems [27],

communication networks [31], and stochastic modelling of chemical reactions [32].

When the system is stochastic, answering the safety verification question in a

worst-case non-stochastic manner (i.e., to verify whether or not a trajectory of the

system can reach the unsafe set) as presented in the previous chapter will usually

lead to a very conservative and restrictive answer, since in most cases there is no

hard bound on the value of stochastic input. Indeed, it is more natural to formulate

and consider a safety verification problem that has a probabilistic interpretation. For

example, it may be of interest to prove that the probability that a system trajectory

reaches the unsafe region is lower than a certain safety margin. For some references on

safety verification of stochastic continuous and hybrid systems, readers are referred

to [19, 20, 35, 94]. Note also that there have been results on probabilistic model
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checking (see [82] and references therein), but they are only applicable to systems

with finite state.

The approach that we take to solve the stochastic safety verification problem still

relies on barrier certificates. However, instead of using a barrier certificate whose

zero level set separates the unsafe region from all possible system trajectories, we will

use a barrier certificate that yields a supermartingale (loosely speaking, its expected

value is non-increasing along time) under the given system dynamics. In addition,

we ask that the value of the barrier certificate at the initial state be lower than its

value at the unsafe region. The probability of reaching the unsafe region can then

be bounded from above using a Chebyshev-like inequality for supermartingales. We

derive conditions that must be satisfied by barrier certificates for stochastic con-

tinuous systems and various classes of stochastic hybrid systems. Similar to their

non-stochastic counterpart, polynomial barrier certificates can be computed using

sum of squares optimization when the description of the system is polynomial and

the sets are semialgebraic.

For the above classes of systems, our method can be used to efficiently compute an

exactly guaranteed upper bound on the probability that a system trajectory reaches

the unsafe set. The references [19, 20], for example, suggest (theoretical) ways to

calculate such a probability, yet they have not provided a computational technique

for that. The reference [35] does provide a computational method to approximate

the reach probability for stochastic differential equations, but since their method is

based on discretizing the state space, there are still some unresolved issues with guar-

anteeing the accuracy of the computed probability and the scalability of the method.

Similarly, the work in [94] approximates the reach probability for stochastic discrete

time systems using randomized simulations; hence there is no accuracy guarantee

either.

This chapter is organized as follows. In Section 3.1 we will consider safety verifica-

tion of stochastic continuous systems. Safety verification of stochastic hybrid systems

will be addressed in Section 3.2. Finally, the chapter will end with some examples in

Section 3.3.
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3.1 Continuous Systems

Consider a complete probability space (Ω,F , P ) and a standard R
m-valued Wiener

process w(t) defined on this space. In this section, we will be dealing with stochastic

differential equations of the form

dx(t) = f(x(t))dt+ g(x(t))dw(t), (3.1)

where x(t) ∈ R
n, and f(x), g(x) are of appropriate dimensions. We denote the

state space, the initial set, and the unsafe set, respectively by X , X0, and Xu, all of

which are subsets of R
n, with X assumed to be bounded and X0 ⊆ X , Xu ⊆ X . To

guarantee the existence and uniqueness of solution, we will also assume that both

f(x) and g(x) satisfy the local Lipschitz continuity and the linear growth condition

on X . Since X is bounded, the last condition can be replaced by the boundedness of

f(x) and g(x) on X .

It can be shown that the process x(t) described above is right continuous and a

strong Markov process [57]. The generator A of the process x(t) is defined as follows.

Definition 3.1 (Generator) The (infinitesimal) generator A of the process x(t) is

defined by

AB(x0) = lim
t↓0

E[B(x(t)) | x(0) = x0] −B(x0)

t
,

and the domain of the generator is the set of all functions B : R
n → R such that the

above limit exists for all x0.

The generator can be considered as the stochastic analog of the Lie derivative, and

characterizes the evolution of the expectation of B(x(t)) via the so-called Dynkin’s

formula (see, e.g., [81]):

E[B(x̃(t2))|x̃(t1)] = B(x̃(t1)) + E[

∫ t2

t1

AB(x̃(t))dt|x̃(t1)] (3.2)

for t2 ≥ t1 and for any function B(x) in the domain of the generator.
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Since in general the process x(t) is not guaranteed to always lie inside the set X ,

we define the stopped process corresponding to x(t) and X as follows.

Definition 3.2 (Stopped Process) Suppose that τ is the first time of exit of x(t)

from the open set int(X ). The stopped process x̃(t) is defined by

x̃(t) =







x(t) for t < τ,

x(τ) for t ≥ τ.

The stopped process x̃(t) satisfies various properties. For example, it inherits the

right continuity and strong Markovian property of x(t). Furthermore, in most cases

the generator corresponding to x̃(t) is identical to the one corresponding to x(t) on

the set int(X ), and is equal to zero outside of the set [42]. This will be implicitly

assumed throughout the chapter. Having defined the system and the stopped process

x̃(t), we can now formulate the safety verification problem for stochastic differential

equations in the probabilistic setting as follows.

Problem 3.3 Given the system (3.1) and the bounded sets X ⊂ R
n, X0 ⊆ X , Xu ⊆

X , compute an upper bound for the probability of the process x̃(t) to reach Xu. In

other words, find γ ∈ [0, 1] such that

P{x̃(t) ∈ Xu for some t ≥ 0 | x̃(0) = x0} ≤ γ ∀x0 ∈ X0, (3.3)

or

P{x̃(t) ∈ Xu for some t ≥ 0} ≤ γ, (3.4)

if a probability distribution µ0 whose support is in X0 is also given for x̃(0).

Obviously, the ultimate objective of safety verification is to show that the above

probability is small enough, for example, less than some safety margin. Hence, it is

of interest to obtain an upper bound γ that is as tight as possible.

In this chapter, our approach to solve the above problem is based on finding an
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appropriate barrier certificate B(x) from which we can deduce an upper bound γ.

As in the non-stochastic case, the approach is again analogous to using Lyapunov

functions for proving stability1. However, instead of requiring the value of B(x̃(t))

to decrease along the trajectory of the system, we ask that the expected value of

B(x̃(t)) decreases or stays constant as time increases. A process satisfying such a

property is called a supermartingale (see, e.g., [81] for a technical definition). In

our setting, a process B(x̃(t)) is a supermartingale with respect to the filtration

{Mt : t ≥ 0} generated by the process x̃(t), if B(x̃(t)) is Mt-measurable for all t ≥ 0,

E[|B(x̃(t))|] <∞ for all t ≥ 0, and

E[B(x̃(t2))|x̃(t1)] ≤ B(x̃(t1))

for all t2 ≥ t1. Since we will use B(x) that is twice continuously differentiable and

x̃(t) takes its value in a bounded set X , the first and second conditions are always

fulfilled. For nonnegative supermartingales, there exists the following result, which

will be used several times in this chapter.

Lemma 3.4 ( [42]; see [26] for the discrete version) Let B(x̃(t)) be a supermartin-

gale with respect to the process x̃(t) and B(x) be nonnegative on X . Then for a positive

λ and any initial condition x0 ∈ X ,

P

{

sup
0≤t<∞

B(x̃(t)) ≥ λ

∣

∣

∣

∣

x̃(0) = x0

}

≤ B(x0)

λ
. (3.5)

At this point, we are ready to state and prove our first main result.

Theorem 3.5 Let the stochastic differential equation (3.1) and the bounded sets X ⊂
R

n, X0 ⊆ X , Xu ⊆ X be given, with f(x), g(x) being locally Lipschitz continuous and

bounded on X . Consider the stopped process x̃(t). Suppose there exists a function

1See, e.g., [42] for some notions of stochastic stability and stochastic Lyapunov functions.



44

B ∈ C2(Rn) such that

B(x) ≤ γ ∀x ∈ X0, (3.6)

B(x) ≥ 1 ∀x ∈ Xu, (3.7)

B(x) ≥ 0 ∀x ∈ X , (3.8)

∂B

∂x
(x)f(x) +

1

2
Tr

(

gT (x)
∂2B

∂x2
(x)g(x)

)

≤ 0 ∀x ∈ X , (3.9)

then the probability bound (3.3) holds. If an initial probability distribution µ0 is given,

then (3.7)–(3.9) and

∫

X0

B(x)dµ0(x) ≤ γ (3.10)

imply that the probability bound (3.4) holds.

Proof. For the stochastic differential equation (3.1), the generator of the process

is given by (see, e.g., [57])

AB(x) =
∂B

∂x
(x)f(x) +

1

2
Tr

(

gT (x)
∂2B

∂x2
(x)g(x)

)

,

where the domain of the generator is the set of twice continuously differentiable

functions with compact support. Since X is bounded, we can use any B ∈ C2(Rn).

Next, using Dynkin’s formula, we have for 0 ≤ t1 ≤ t2 <∞

E[B(x̃(t2))|x̃(t1)] = B(x̃(t1)) + E[

∫ t2

t1

AB(x̃(t))dt|x̃(t1)]

≤ B(x̃(t1)),

and therefore (3.9) will imply that B(x̃(t)) is a supermartingale. By (3.8) and

Lemma 3.4 we conclude that (3.5) holds. Now use (3.6) and the fact that Xu ⊆
{x ∈ X : B(x) ≥ 1}, which follows from (3.7), to obtain the following series of
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inequalities:

P{x̃(t) ∈ Xu for some t ≥ 0 | x̃(0) = x0}

≤ P

{

sup
0≤t<∞

B(x̃(t)) ≥ 1

∣

∣

∣

∣

x̃(0) = x0

}

≤ B(x0) ≤ γ ∀x0 ∈ X0.

Thus, the probability bound (3.3) is proven.

Finally, if an initial probability distribution µ0 is given, then the above derivation

can be combined with the law of total probability and (3.10) to obtain

P{x̃(t) ∈ Xu for some t ≥ 0} ≤
∫

X0

B(x)dµ0(x) ≤ γ,

hence finishing the proof.

Note that it is possible to choose γ to be at most equal to one, since when γ = 1

the function B(x) = 1 will satisfy (3.6)–(3.9) and (3.10). The intuitive idea behind

the theorem is clear. The process B(x̃(t)) is a supermartingale, and therefore its value

is likely to stay constant or decrease as time increases. When we start from a lower

initial value of B(x) (i.e., as γ gets smaller), it becomes less likely for the trajectory to

reach the unsafe set, on which the value of B(x) is greater than or equal to one. This

is quantified by Lemma 3.4, which provides a Chebyshev-like inequality for bounding

the probability of the distribution tail.

An upper bound γ and a barrier certificate B(x) which certifies the upper bound

can be computed by formulating conditions (3.6)–(3.9) or (3.7)–(3.9) and (3.10) as

a sum of squares optimization problem, similar to what we describe in Section 2.3.

Furthermore, γ can be chosen as the objective function of the SOS program, whose

value is to be minimized. The minimum value of γ obtained from the optimization

will be the tightest upper bound for a given polynomial and sum of squares parame-

terization. Obviously, we may get a better bound as we expand the parameterization,

for example, when we use higher degree barrier certificates. However, there is a trade-

off between using a larger set of candidate barrier certificates and the computational

complexity of finding a true certificate within it.
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3.2 Hybrid Systems

In this section, we will consider several classes of stochastic hybrid systems, namely:

• Piecewise deterministic Markov processes [24],

• Switching diffusion processes [27],

• Stochastic hybrid systems of Hu et al. [34].

See also [64] for an overview. The method proposed in Section 3.1 can be extended to

handle the above classes of systems. The main idea is similar to before, i.e., use the

appropriate generator for the process, find a barrier certificate from the domain of

the generator that yields a nonnegative supermartingale, and then bound the reach

probability using the barrier certificate.

3.2.1 Piecewise Deterministic Markov Processes

In this section, we consider a class of stochastic hybrid systems called the piece-

wise deterministic Markov processes. Systems in this class have both continuous and

discrete states, where the continuous state evolves according to an ordinary differen-

tial equation that depends on the discrete state. A discrete transition occurs either

when the continuous state hits the boundary of the invariant, or in the interior of

the invariant according to a generalized Poisson process with a state-dependent rate.

In addition, during a transition the hybrid state is reset according to a probability

distribution that is determined by the hybrid state before transition.

A piecewise deterministic Markov process is defined as H = (X , L, I, µ0, fl, λl, Rl),

with the following components2:

• X ⊆ R
n is the continuous state space.

• L is a finite set of locations. The overall state space of the system is X = L×X ,

and the state is denoted by (l, x) ∈ L×X .

2For notational simplicity and without loss of generality, we assume that the continuous state
space has the same dimension for all l ∈ L; this is unlike in [20,24].
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• I : L→ 2X is the invariant, which assigns to each location l an open set I(l) ⊆ X
that contains all possible continuous states while at location l. For our purpose,

it will also be assumed that I(l) is bounded.

• µ0 is a probability measure for the initial state, with its support contained in

X0 ⊆
⋃

l∈L({l} × I(l)).

• fl : I(l) → R
n, l ∈ L, is a set of vector fields, where the subscript indicates the

corresponding discrete location.

• λl : I(l) → [0,∞), l ∈ L, is a set of state-dependent transition rates.

• Rl(x), where l ∈ L, x ∈ cl(I(l)), is a set of reset probability measures for the

hybrid state, with its support contained in
⋃

l∈L({l} × I(l)).

In addition, we denote the unsafe region byXu = ∪l∈L{l}×Unsafe(l), where Unsafe(l) ⊆
I(l) and can be empty for some l’s.

A trajectory of the system starts with an initial condition (l0, x0) drawn from

the initial probability measure µ0. At this location, the continuous part of the state

evolves according to the differential equation ẋ(t) = fl0(x(t)). Let T̂ be the first time

φt(x0) exits I(l), where φt(.) is the flow corresponding to the vector field fl0(x). The

time to transition T is governed by

P{T > t} =







exp(−
∫ t

0
λl(φτ (x0))dτ) if t < T̂ ,

0 if t ≥ T̂ .

Right when T elapses, the system undergoes a transition, and the hybrid state is reset

to a new state (l1, x1) that is drawn from the reset probability measure Rl0(φT (x0)).

The above process is then repeated. Under some technical assumptions [24], the

process will be right continuous and have the strong Markovian property. For our

purpose, we will assume that fl(x) is globally Lipschitz continuous, λl(x) is continu-

ous, and the expected number of transitions is finite on any finite time interval. Since

we reset the state when x(t) goes out of I(l), there is no need to use a stopped process

here.
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For this class of systems, the barrier certificate B(l, x) will be constructed from

several functions Bl(x), where each Bl(x) corresponds to a discrete location and we

define B(l, x) = Bl(x). The conditions that are satisfied by the barrier certificate are

stated in the following theorem.

Theorem 3.6 Let the piecewise deterministic Markov process H = (X , L, I, µ0, fl, λl, Rl)

with bounded I(l)’s, globally Lipschitz continuous fl(x)’s, continuous λl(x)’s, and

the unsafe set Xu ⊆ ⋃

l∈L({l} × I(l)) be given. Suppose there exists a collection

{Bl(x) : l ∈ L} of functions Bl ∈ C1(Rn), which satisfy

Bl(x) ≥ 1 ∀x ∈ Unsafe(l), (3.11)

Bl(x) ≥ 0 ∀x ∈ I(l), (3.12)

∂Bl

∂x
(x)fl(x) + λl(x)

∑

l′∈L

∫

I(l′)

(Bl′(x
′) −Bl(x))dRl(x)(x

′) ≤ 0 ∀x ∈ cl(I(l)), (3.13)

Bl(x) −
∑

l′∈L

∫

I(l′)

Bl′(x
′)dRl(x)(x

′) = 0 ∀x ∈ ∂I(l), (3.14)

for all l ∈ L, and

∑

l∈L

∫

I(l)

Bl(x)dµ0(l, x) ≤ γ. (3.15)

Then P{(l(t), x(t)) ∈ Xu for some t ≥ 0} ≤ γ.

Proof. Define B(l(t), x(t)) = Bl(t)(x(t)). In this case,

AB(l, x) =
∂Bl

∂x
(x)fl(x) + λl(x)

∑

l′∈L

∫

I(l′)

(Bl′(x
′) −Bl(x))dRl(x)(x

′)

is the generator of the process, and B(l, x) is in the domain of the generator if Bl ∈
C1(Rn) and (3.14) holds (see [24]). Condition (3.13) implies that B(l(t), x(t)) is a

supermartingale, which can be shown using Dynkin’s formula. Since B(l(t), x(t)) is

also nonnegative (as implied by (3.12)), Lemma 3.4 can be applied. The rest of the

proof is similar to the proof of Theorem 3.5.
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3.2.2 Switching Diffusion Processes

The continuous state of a switching diffusion process evolves according to a stochastic

differential equation that depends on the discrete state, and the discrete trajectory

itself is a Markov chain whose transition matrix depends on the continuous state. As

implied by the name, these systems are switching systems, meaning that the value of

the continuous state does not change during a discrete transition.

Formally, a switching diffusion process is a tuple H = (X , L, µ0, fl, gl, λll′) with

the following components:

• X ⊆ R
n is the continuous state space, assumed to be bounded.

• L is a finite set of locations. The overall state space of the system is X = L×X ,

and the state is denoted by (l, x) ∈ L×X .

• µ0 is an initial probability measure, with its support in X0 ⊆ X.

• fl : X → R
n, l ∈ L, is a set of drift vector fields.

• gl : X → R
n×m, l ∈ L, is a set of diffusion coefficients, where the i-th column

of gl corresponds to the i-th component of the R
m-valued Wiener process w(t).

• λll′ : X → R, (l, l′) ∈ L2, is a set of x-dependent transition rates, with λll′(x) ≥ 0

for all x if l 6= l′, and
∑

l′∈L λll′(x) = 0 for all l ∈ L.

Here we denote the unsafe set by Xu, with Xu ⊆ X .

A trajectory of the system starts with an initial condition drawn from the initial

probability measure µ0. As mentioned above, the continuous part of the state evolves

according to a stochastic differential equation, which at location l is given by

dx(t) = fl(x(t))dt+ gl(x(t))dw(t).

On the other hand, the dynamics of the discrete state is described by the following
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transition probability:

P{l(t+ ∆) = j | l(t) = i} =







λij(x(t))∆ + o(∆), if i 6= j,

1 + λii(x(t))∆ + o(∆), if i = j,
(3.16)

with ∆ > 0. See [27] for more details on how the discrete transitions are generated.

During a discrete transition, the value of the continuous state is held constant. It

is assumed that the discrete transition is independent from the Wiener process w(t).

In addition, we assume that fl(x), gl(x), and λll′(x) are bounded and locally Lips-

chitz continuous. Under these assumptions, the solution to the stochastic differential

equation at each location exists and is unique, and also that (l(t), x(t)) is a Markov

process and almost every sample path of it is a right continuous function [27]. Similar

to the continuous case, we stop the process when x(t) goes out from int(X ).

The conditions for a barrier certificate are stated in the following theorem.

Theorem 3.7 Let the switching diffusion process H = (X , L, µ0, fl, gl, λll′) be given,

with bounded X and bounded, locally Lipschitz continuous fl(x)’s, gl(x)’s, and λll′(x)’s.

Suppose there exists a collection {Bl(x) : l ∈ L} of functions Bl ∈ C2(Rn), which sat-

isfy

Bl(x) ≥ 1 ∀x ∈ Xu, (3.17)

Bl(x) ≥ 0 ∀x ∈ X , (3.18)

∂Bl

∂x
(x)fl(x) +

1

2
Tr

(

gT
l (x)

∂2Bl

∂x2
(x)gl(x)

)

+
∑

l′∈L

λll′(x)Bl′(x) ≤ 0 ∀x ∈ X , (3.19)

for all l ∈ L, and

∑

l∈L

∫

X

Bl(x)dµ0(l, x) ≤ γ. (3.20)

Then P{x̃(t) ∈ Xu for some t ≥ 0} ≤ γ.



51

Proof. Define B(l(t), x(t)) = Bl(t)(x(t)). In this case,

AB(l, x) =
∂Bl

∂x
(x)fl(x) +

1

2
Tr

(

gT
l (x)

∂2Bl

∂x2
(x)gl(x)

)

+
∑

l′∈L

λll′(x)Bl′(x)

is the generator of the process, and B(l, x) is in the domain of the generator if

Bl ∈ C2(Rn) ∀l ∈ L (see [27]). Condition (3.19) implies that B(l(t), x(t)) is a

supermartingale, which can be shown using Dynkin’s formula. Since B(l(t), x(t)) is

also nonnegative (as implied by (3.18)), Lemma 3.4 can be applied. The rest of the

proof is similar to the proof of Theorem 3.5.

3.2.3 Stochastic Hybrid Systems

In the class of stochastic hybrid systems proposed by Hu et al. [34], the continuous

state of the system evolves according to a stochastic differential equation that depends

on the discrete state. When the continuous state reaches a guard set, a discrete tran-

sition occurs, where the discrete state after the transition is chosen deterministically,

but the continuous state is reset according to a probability distribution that is de-

pendent on the hybrid state before the transition.

Formally, a stochastic hybrid system is H = (X , L, I, µ0, fl, gl, G,Rll′) with the

following components3:

• X ⊆ R
n is the continuous state space.

• L is a finite set of locations. The overall state space of the system is X = L×X ,

and the state is denoted by (l, x) ∈ L×X .

• I : L→ 2X is the invariant, which assigns to each location l an open set I(l) ⊆ X
that contains all possible continuous states while at location l. For our purpose,

it will also be assumed that I(l) is bounded.

• µ0 is a probability measure for the initial state, with its support in X0 ⊆
⋃

l∈L({l} × I(l)).

3Following [64], we assume that the initial state is drawn according to an initial probability
distribution.
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• fl : I(l) → R
n, l ∈ L, is a set of vector fields, where the subscript indicates the

corresponding discrete location.

• gl : X → R
n, l ∈ L, is a set of diffusion coefficients corresponding to the

1-dimensional Wiener process w(t).

• G : L2 → 2X is guard, which assigns to each pair (l, l′) ∈ L2 a set G(l, l′) that

is a measurable subset of ∂I(l) (note that G(l, l′) is possibly empty for some

(l, l′)’s), and for each l ∈ L the collection {G(l, l′) : l′ ∈ L} forms a disjoint

partition of ∂I(l).

• Rll′(x), where (l, l′) ∈ L2, x ∈ G(l, l′), is a set of reset probability measures for

the continuous state, with its support contained in I(l′).

We denote the unsafe region by Xu = ∪l∈L{l} × Unsafe(l), where Unsafe(l) ⊆ I(l)

and can be empty for some l’s.

A trajectory of the system starts with an initial condition drawn from the initial

probability measure µ0. The continuous part of the state evolves according to a

stochastic differential equation, which at location l is given by

dx(t) = fl(x(t))dt+ gl(x(t))dw(t).

When the continuous state reaches a guard set G(l, l′), a transition from location l

to location l′ occurs. In this transition, the continuous state is reset according to the

probability measure Rll′(x), where x is the value of the continuous state before the

transition. It is assumed that fl(x) and gl(x) are locally Lipschitz continuous and

bounded, and also that Rll′(x)(A) is a measurable function in x for each measurable

set A ⊂ I(l′). Under this assumption, the solution (l(t), x(t)) exists, is unique, and

satisfies the right continuity and the Markovian property [64].

For these systems, the conditions that are satisfied by a barrier certificate are

stated as follows.
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Theorem 3.8 Let the stochastic hybrid system H = (X , L, I, µ0, fl, gl, G,Rll′) with

bounded I(l)’s, and bounded, locally Lipschitz continuous fl(x)’s and gl(x)’s; and the

unsafe set Xu ⊆ ∪l∈L({l} × I(l)) be given. Let µll′(x) , Rll′(x) if x ∈ G(l, l′), and

zero otherwise. Suppose there exists a collection of functions Bl ∈ C2(Rn), which

satisfy

Bl(x) ≥ 1 ∀x ∈ Unsafe(l), (3.21)

Bl(x) ≥ 0 ∀x ∈ I(l), (3.22)

∂Bl

∂x
(x)fl(x) +

1

2
Tr(gT

l (x)
∂2Bl

∂x2
(x)gl(x))

+

∫

I(l′)

(Bl′(x
′) −Bl(x))dµll′(x)(x

′) ≤ 0 ∀x ∈ cl(I(l)), (3.23)

Bl(x) −
∫

I(l′)

Bl′(x
′)dµll′(x)(x

′) = 0 ∀x ∈ ∂I(l), (3.24)

for all l ∈ L and (l, l′) ∈ L2, and

∑

l∈L

∫

I(l)

Bl(x)dµ0(l, x) ≤ γ. (3.25)

Then P{(l(t), x(t)) ∈ Xu for some t ≥ 0} ≤ γ.

Proof. Similar to the proof of Theorem 3.6, but in this case

AB(l, x) =
∂Bl

∂x
(x)fl(x) +

1

2
Tr(gT

l (x)
∂2Bl

∂x2
(x)gl(x))

+

∫

I(l′)

(Bl′(x
′) −Bl(x))dµll′(x)(x

′)

is the generator of the process, and B(l, x) is in the domain of the generator if Bl ∈
C2(Rn) and the boundary condition (3.24) holds [64].
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3.3 Examples

3.3.1 Stochastic Differential Equation

Consider the nonlinear stochastic differential equation

dx1(t) = x2(t)dt,

dx2(t) = (−x1(t) − x2(t) − 0.5x3
1(t))dt+ σdw(t),

where the diffusion coefficient σ is assumed to be a constant. In this case, the de-

terministic system corresponding to σ = 0 has a globally asymptotically stable equi-

librium at the origin, as can be proven by a quartic polynomial Lyapunov function.

Because of the asymptotic stability of the deterministic system, we expect that for

small enough diffusion coefficient σ, the trajectories of the stochastic system will also

evolve to a region around the origin.

We use X = {x ∈ R
2 : −3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3, x2

1 + x2
2 ≥ 0.52} as the set of

states and X0 = {x ∈ R
2 : (x1 + 2)2 + x2

2 ≤ 0.12} as the initial set. Finally, the set

Xu = {x ∈ X : x2 ≥ 2.25} will be regarded as the unsafe set. Some realizations of

the process x̃(t) starting from X0 are depicted in Figure 3.1.

We will compute an upper bound γ on the probability that a stopped process

starting from X0 intersects Xu, as the state evolves toward the origin. For example,

this may correspond to the control objective of keeping the value of x2 lower than

the given threshold. Using the theory described in Section 3.1 and the computational

method described in Section 2.3, we are able to compute upper bounds as well as

polynomial barrier certificates that prove these upper bounds. The verification re-

sults for various degrees of barrier certificates and various values of σ are given in

Table 3.1. As we include more candidates in the set of candidate barrier certificates

to be searched (i.e., as we increase the degree of the barrier certificate), we are able

to obtain a better upper bound. However, the computational complexity of solving

the sum of squares problem also increases. When we decrease σ, the bound on the

reach probability decreases as well. This agrees with our intuition, as the system is
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Figure 3.1: Phase portrait of the system in Section 3.3.1. Black curves are some
realizations of the stopped process x̃(t) for σ = 0.5, all starting at x̃(0) = (−2, 0).
We stop the process when it enters the region whose boundary is depicted by the
dash-dotted curve. The shaded region at the top is the unsafe set. Shown as dashed
curves are the level sets B(x) = 1 (outer) and B(x) = 0.792 (inner) of the barrier
certificate that proves the upper bound γ = 0.792 (cf. Table 3.1).

Degree= 4 Degree= 6 Degree= 8 Degree= 10

σ = 0.5 γ = 1 γ = 0.847 γ = 0.792 γ = 0.771
σ = 0.25 γ = 0.848 γ = 0.616 γ = 0.472 γ = 0.412
σ = 0.1 γ = 0.824 γ = 0.450 γ = 0.257 γ = 0.157

Table 3.1: Results of the stochastic safety verification in Section 3.3.1.

safe when there is no stochastic input.

3.3.2 Switching Diffusion Process

In this example, we consider the system

dx(t) = Al(t)x(t) + σ(x(t))dw(t),
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where l(t) ∈ {1, 2} and

A1 =





−5 −4

−1 −2



 , A2 =





−2 −4

20 −2



 , σ(x) =





0

0.5x2



 .

It can be shown using a common polynomial Lyapunov function of degree six that

the deterministic system corresponding to σ(x) = 0 is globally asymptotically stable

under arbitrary switching.

We assume that the initial condition is given by l(0) = 1 or 2, with equal prob-

ability for both locations, and x(0) = (0, 3). For the initial continuous condition

x(0) = (0, 3), trajectories of the deterministic system corresponding to the first and

second locations are shown in Figure 3.2. We choose X = {(x1, x2) ∈ R
2 : x2

1 ≤
42,−1.5 ≤ x2 ≤ 4} as the set of continuous states, and the unsafe set is given by

Xu = {(x1, x2) ∈ X : x2 ≤ −1}. The safety of the stochastic system with transition

rates

λ11 = −0.5, λ12 = 0.5,

λ21 = λ, λ22 = −λ,

is to be verified, where the nonnegative parameter λ will be varied. Larger λ means

that from location 2 the system tends to switch to location 1 faster.

This problem can be given the following interpretation. Although in both locations

the system will evolve toward the origin, location 2 is different from location 1 in the

sense that it has an oscillatory response which tends to bring the system to the unsafe

region, whereas the trajectory corresponding to location 1 will evolve directly to the

origin without going through the unsafe region. In the verification, we will show that

by using a large λ – i.e., making the system be in location 1 for most of the time –

the probability of reaching the unsafe set can be kept small.

Using polynomial barrier certificates of degree 10, we can prove that the proba-

bility of reaching the unsafe region is bounded by γ = 0.346 for λ = 10, γ = 0.145

for λ = 20, and γ = 0.069 for λ = 30. As expected, the probability bound decreases
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Figure 3.2: Phase portrait of the system in Section 3.3.2. Trajectories of the systems
ẋ = A1x and ẋ = A2x starting at x(0) = (0, 3) are shown by the dashed and dash-
dotted curves, respectively. A realization of the switching diffusion process for λ = 10
is depicted by the solid curve. Shaded region at the bottom of the figure is the unsafe
set.

when we increase λ.
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Chapter 4

Reachability and Eventuality
Verification

In Chapter 2, a method for safety verification in the worst-case setting using barrier

certificates has been proposed. For continuous or hybrid systems, safety verification

can also be performed by first constructing a discrete abstraction of the system [2,4,

10, 87] and then performing verification on the resulting abstraction. This approach

provides another hierarchical way (i.e., besides simply increasing the degree of the

barrier certificate) for managing the complexity of verification: start with a coarse

abstraction and successively refine it until safety is verified or a non-spurious counter-

example is found. However, a crucial and computationally demanding component

of this approach is still the continuous reachability analysis, which is required to

determine whether or not transitions connecting two discrete states in the abstraction

is possible (see Figure 4.1).

In constructing discrete abstractions, barrier-certificate-based analysis can be used

for ruling out transitions between discrete states. Up to this point, what is still missing

is a method for proving that other transitions are indeed possible. This is the problem

of reachability verification, which can be regarded as the “dual” of safety verification,

and concerns with proving that at least one trajectory of the system starting from

a set of initial states will reach another given set of states in a finite time. It is

important to note that a failure in computing a barrier certificate which proves the

unreachability of the target set from the initial set does not, by itself, mean that
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Figure 4.1: System analysis by abstraction. The continuous state space is partitioned
into cells, four of which are shown in the figure above. Vector field analysis at the
boundaries of the cells indicates that a direct transition from 1 to 4 is not possible,
but transitions from 1 to 3, as well as 3 to 4, are possible. The question now is
whether the system can evolve from 1 to 4 via 3.

the target set is reachable from the initial set. For example, when using polynomial

candidates for B(x), it may be the case that we fail to find B(x) because the degree

of the polynomials is not high enough.

It should be noted that besides its usage for constructing discrete abstraction,

reachability verification has a purpose on its own right, as properties of interest of

the system can often be specified in terms of reachability. For example, it may be of

interest to prove that a “good” set of states can be reached by the system, something

which can be conveniently expressed as a reachability property.

In the present chapter, we use the ideas of duality and density functions [77,78] to

formulate a “dual” test for reachability, thus forming a primal-dual pair of safety and

reachability tests, each of which can be solved using convex optimization. This opens

the possibility of proving reachability using sum of squares optimization, when the

vector field of the system is polynomial and the sets are semialgebraic. Another pair

of convex programs for safety and reachability tests will also be formulated, where the

primal test now proves reachability and the dual test proves safety. Either of these

pairs can be used to rule out or establish transitions between discrete states when
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creating and analyzing abstractions of hybrid systems. In addition, we will show that

this approach can be used to prove properties such as eventuality and weak eventu-

ality, whose definitions will be presented later, or even other simple combinations of

reachability and safety, or eventuality and safety.

The outline of the chapter is as follows. In Section 4.1, we give an intuitive

illustration of the duality idea by addressing the verification of a simple discrete

system. Various primal and dual tests for safety, reachability, eventuality, and other

simple temporal specifications are presented and proven in Section 4.2. The tests

for hybrid systems will be discussed in Section 4.3. Two examples will then be

given in Section 4.4. In the first example, a pair of primal-dual tests is used in a

successive manner to prove safety and reachability, whereas in the second example,

some temporal properties of a Van der Pol oscillator with a disturbance input will be

verified.

4.1 Discrete Example

To give an intuitive flavor of the duality ideas used in this chapter, let us consider

the verification of a simple discrete system shown in Figure 4.2(a). The system has

thirteen states, labelled 1 through 13, and fourteen transitions between states, repre-

sented by the directed edges in the graph. We assume that nodes 1–3 are the possible

initial states and nodes 11–13 are the bad/unsafe states. The safety verification then

amounts to verifying that there is no path that connects any of the initial states to

any of the unsafe states.

An equivalent formulation of this problem, but whose conditions for safety are

easier to write, is shown in Figure 4.2(b). This graph is obtained by augmenting an

extra “source” node (i.e., node 0) and edges that connect it to all initial states, as

well as an extra “sink” node (i.e., node 14) and edges that connect all unsafe states

to it. It is obvious that the safety property holds for the original transition system,

if and only if there is no path connecting node 0 to node 14.

For verifying the safety property, conditions analogous to (2.2)–(2.4) that must
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(a)
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0 14

4

(b)

Figure 4.2: Verification of a simple discrete transition system. The nodes represent
the states of the system, while the directed edges represent transitions between states.
In (a), nodes 1–3 are the initial states and nodes 11–13 are the unsafe states. In (b),
an extra “source” node (i.e., node 0) and an extra “sink” node (i.e., node 14) are
augmented to the graph. It is clear that there is no path that connects any of nodes
1–3 to any of nodes 11–13, if and only if there is no path that connects node 0 to
node 14.

be satisfied by a barrier certificate can be formulated. One way to find a barrier

certificate which proves safety is by solving the linear program (LP)

max sTB

subject to ATB ≤ 0

where B , col(B0, B1, B2, . . . , B14) ∈ R
15 is the decision variable of the LP (i.e., the
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barrier certificate), A is the incidence matrix of the graph, which in this case is a

15 × 20 matrix

A =





























−1 1 0 0 0 . . . 0 0

−1 0 1 0 0 . . . 0 0

−1 0 0 1 0 . . . 0 0

0 −1 0 0 1 . . . 0 0
...

...

0 0 0 0 0 . . . −1 1





























T

,

and s is a 15× 1 column vector whose entries are equal to 1 at the first position, −1

at the last position, and zero otherwise. This formulation is similar to the continuous

case. Analogous to (2.4), we ask that Bi ≤ Bj if there is a directed edge from node i

to node j. The objective function of the LP is just the difference between the values

of B at the unsafe state and at the initial state. If there is a feasible solution to the

above LP such that the objective function is strictly positive, then the safety property

can be inferred, i.e., we prove that there is no path going from node 0 to node 14.

The dual of the above LP is as follows:

min 0

subject to Aρ = s,

ρ ≥ 0,

where ρ , col(ρ0,1, ρ0,2, ρ0,3, ρ1,4, . . . ρ13,14) ∈ R
20 is the dual decision variables, whose

entries correspond to the edges in the graph. The dual decision variable ρi,j can

be interpreted as the transportation density from node i to node j. The equality

constraints basically state that conservation of flows holds at each node, namely that

the total flow into a node is equal to the total flow out. In addition, the first and last

equality constraints indicate that there exist a unit source at node 0, and a unit sink

at node 14. This duality interpretation has been studied extensively in the past; see,
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e.g., [60] and references therein.

The existence of a feasible solution to the dual LP implies the existence of a path

from the initial state to the unsafe state. This can be shown using the facts that the

flows are conserved and that there are a unit source and a unit sink at the initial state

and unsafe state, respectively. Hence, solving the dual LP can be used for verifying

reachability. As a matter of fact, we obtain a linear programming formulation of the

shortest path problem if we also add the objective function
∑

ρi,j to the dual LP. In

this case, the nonzero entries corresponding to any optimal vertex solution to the LP

will indicate a shortest path from the initial node to the unsafe node [60].

This duality argument can also be used to prove that the existence of a barrier

certificate is both sufficient and necessary for safety. For this, suppose that there exists

no barrier certificate for the system, which is equivalent to the maximum objective

value of the primal LP being equal to zero. This objective value is attained, e.g.,

by Bi = 0 for all i. The linear programming duality [17] implies that there exists a

feasible solution to the dual LP, from which we can further conclude the existence of a

path from the initial state to the unsafe state, as explained in the previous paragraph.

In Chapter 5, a strong duality argument will also be used to prove a converse theorem

for barrier certificates later in the continuous case.

For the above example, the optimal objective value of the primal linear program

is equal to zero, and hence the safety property does not hold. A feasible solution to

the dual linear program is given by ρ0,2 = 1, ρ2,5 = 1, ρ5,6 = 1, ρ6,10 = 1, ρ10,13 = 1,

ρ13,14 = 1, and all the other ρ’s equal to zero. This solution shows a path from node 0

to node 14. Had the direction of the edge from node 2 to node 5 been reversed, for

example, the optimal objective value of the corresponding primal linear program will

be ∞, and there will be no feasible solution to the dual linear program.

Other properties of this discrete transition system such as eventuality can also be

verified by solving some appropriate linear programs. We will not state them here,

but instead we will now proceed to present the corresponding convex programs for

continuous systems.
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4.2 Continuous Systems

Several convex programs for verifying safety, reachability, eventuality, and some other

specifications will be derived in this section. Our notations are as described in Sec-

tion 1.3. The following version of Liouville’s theorem will be used several times in

the proofs of the main theorems.

Lemma 4.1 ( [77]) Let f ∈ C1(D,Rn) where D ⊆ R
n is open and let ρ ∈ C1(D) be

integrable. Consider the system ẋ = f(x). For a measurable set Z, the relation

∫

φT (Z)

ρ(x)dx−
∫

Z

ρ(x)dx =

∫ T

0

∫

φt(Z)

[∇ · (fρ)] (x)dxdt (4.1)

holds, provided that φt(Z) is a subset of D for all t ∈ [0, T ].

4.2.1 Safety and Reachability Verification

We define the reachability property of a continuous system as follows.

Definition 4.2 (Reachability) Given a system ẋ = f(x), the state set X ⊆ R
n,

the initial set X0 ⊆ X , and the target set Xr ⊆ X , we say that the reachability

property holds if there exist a finite T ≥ 0 and a trajectory x(t) of the system such

that x(0) ∈ X0, x(T ) ∈ Xr, and x(t) ∈ X ∀t ∈ [0, T ]. (Note that there is no need for

x(t) to stay in Xr for all t ≥ T ).

At this point, we are ready to state and prove the first pair of convex programs

that verify safety and reachability for continuous systems. As the reader may have

noticed from Definition 4.2, for now we will assume that there is no disturbance input

in the system. In addition, we will also assume that the sets of states are bounded.

Some remarks on how to relax these assumptions will be given later.

Theorem 4.3 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊂ R
n,

X0 ⊆ X , Xu ⊆ X , Xr ⊆ X be bounded.



65

(a) If there exists a function B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0, (4.2)

B(x) > 0 ∀x ∈ Xu, (4.3)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X . (4.4)

Then the safety property in the sense of Definition 2.1 holds.

(b) If X0 has a non-empty interior and if there exists a function ρ ∈ C1(Rn) satis-

fying

∫

X0

ρ(x)dx ≥ 0, (4.5)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr), (4.6)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr), (4.7)

then the reachability property in the sense of Definition 4.2 holds.

Proof. The statement (a) is a special case of Proposition 2.2, and has been proven

in Chapter 2.

To prove the statement (b), let X ⊆ X0 be an open set on which ρ(x) ≥ 0. We will

first prove that there must be an initial condition x0 ∈ X whose flow φt(x0) leaves

X \Xr in finite time. In fact, the set of all initial conditions in X whose flows do not

leave X \ Xr in finite time is a set of measure zero. To show this, let Y be an open

neighborhood of X \ Xr such that ∇ · (ρf)(x) > 0 on cl(Y ). Now define

Z =
⋂

i=1,2,...

{x0 ∈ X : φt(x0) ∈ Y ∀t ∈ [0, i]} .

The set Z is an intersection of countable open sets and hence is measurable. It

contains all initial conditions in X for which the trajectories stay in Y for all t ≥ 0.

That Z is a set of measure zero can be shown using Lemma 4.1 as follows. Since
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φt(Z) ⊂ Y , Y is bounded, and ρ(x) is continuous, the left hand side of

∫

φt(Z)

ρ(x)dx−
∫

Z

ρ(x)dx =

∫ t

0

∫

φτ (Z)

[∇ · (fρ)] (x)dxdτ

is bounded for all t ≥ 0. Therefore, for the above equation to hold, we must have
∫

φτ (Z)
[∇ · (fρ)] (x)dx→ 0 as τ → ∞, or equivalently, the measure of φτ (Z) converges

to zero as τ → ∞. Suppose now that Z has non-zero measure. We have a contra-

diction since limt→∞

∫

φt(Z)
ρ(x)dx = 0, whereas limt→∞

∫ t

0

∫

φτ (Z)
[∇ · (fρ)] (x)dxdτ +

∫

Z
ρ(x)dx is strictly positive, as implied by (4.5) and (4.7). Using this argument, we

conclude that Z has measure zero. Since X \ Xr ⊂ Y , it follows immediately that

the set of all initial conditions in X whose flows stay in X \Xr for all time is a set of

measure zero.

Now take any x0 ∈ X whose flow leaves X \ Xr in finite time; we will show that

such a flow must enter Xr before leaving X . Suppose to the contrary that the flow

φt(x0) leaves X without entering Xr first. Let T > 0 be the “first” time instant

φt(x0) leaves X . By this, we mean that either φt(x0) ∈ X \ Xr for all t ∈ [0, T ) and

φT (x0) /∈ X ; or φt(x0) ∈ X \ Xr for all t ∈ [0, T ] and φT+ǫ(x0) /∈ X for any ǫ > 0.

From conditions (4.6)–(4.7), it follows that for a sufficiently small neighborhood U of

x0, we have

ρ(x) ≥ 0 ∀x ∈ U,

ρ(x) < 0 ∀x ∈ φT (U),

∇ · (ρf)(x) > 0 ∀x ∈ φt(U), t ∈ [0, T ].

Apply Lemma 4.1 again to obtain a contradiction. According to the above, the left

hand side of

∫

φT (U)

ρ(x)dx−
∫

U

ρ(x)dx =

∫ T

0

∫

φτ (U)

[∇ · (fρ)] (x)dxdτ
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is negative while the right hand side is positive. Thus, there is a contradiction, and

we conclude that for x(0) = x0, there must exist T ≥ 0 such that x(T ) ∈ Xr and

x(t) ∈ X for all t ∈ [0, T ].

It is interesting to see that the roles of B(x) and ρ(x) in proving safety and

reachability can be interchanged, as in the second pair of tests stated in the next

theorem. The possibility of using the density function ρ(x) to prove safety was first

suggested in [79].

Theorem 4.4 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊂ R
n,

X0 ⊆ X , Xu ⊆ X , Xr ⊆ X be bounded.

(a) If X0 has a non-empty interior and if there exists a function B ∈ C1(Rn)

satisfying

∫

X0

B(x)dx ≤ 0, (4.8)

B(x) > 0 ∀x ∈ cl(∂X \ ∂Xr), (4.9)

∂B

∂x
(x)f(x) < 0 ∀x ∈ cl(X \ Xr), (4.10)

then the reachability property in the sense of Definition 4.2 holds.

(b) If there exist open sets X̃0, X̃ and a function ρ ∈ C1(Rn) such that X0 ⊆ X̃0,

X ⊆ X̃ , and

ρ(x) ≥ 0 ∀x ∈ X̃0, (4.11)

ρ(x) < 0 ∀x ∈ Xu, (4.12)

∇ · (ρf)(x) ≥ 0 ∀x ∈ X̃ , (4.13)

then the safety property in the sense of Definition 2.1 holds.

Proof. To prove (a), consider a point x0 ∈ X0 such that B(x0) ≤ 0. The flow

φt(x0) must leave X \Xr in finite time, since the derivative inequality (4.10) holds and

B(x) is bounded below on X . Now, suppose that φt(x0) leaves X without entering Xr
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first, and consider the “first” time instant t = T at which it happens. Similar to the

proof of Theorem 4.3, by this we mean that either φt(x0) ∈ X \ Xr for all t ∈ [0, T )

and φT (x0) /∈ X ; or φt(x0) ∈ X \ Xr for all t ∈ [0, T ] and φT+ǫ(x0) /∈ X for any

ǫ > 0. From (4.10) and B(x0) ≤ 0, it follows that B(φT (x0)) is non-positive, which is

contradictory to (4.9). Thus, we conclude that for x(0) = x0, there must exist T ≥ 0

such that x(T ) ∈ Xr and x(t) ∈ X for all t ∈ [0, T ].

We proceed to proving (b). Assume that there is a ρ(x) satisfying the conditions

of the theorem, while at the same time there exists an x0 ∈ X0 such that φT (x0) ∈ Xu

for some T ≥ 0 and φt(x0) ∈ X for t ∈ [0, T ]. Then it follows from (4.11)–(4.13) that

for a sufficiently small neighborhood Z of x0, we have

ρ(x) ≥ 0 ∀x ∈ Z,

ρ(x) < 0 ∀x ∈ φT (Z),

∇ · (ρf)(x) ≥ 0 ∀x ∈ φt(Z), t ∈ [0, T ].

Now apply Lemma 4.1 to obtain a contradiction. According to the above, the left

hand side of

∫

φT (Z)

ρ(x)dx−
∫

Z

ρ(x)dx =

∫ T

0

∫

φτ (Z)

[∇ · (fρ)] (x)dxdτ.

is negative and the right hand side is non-negative. Hence there is a contradiction

and the proof is complete.

Remark 4.5 Modulo the following modifications on the assertions of the theorems,

the conclusions of Theorems 4.3 and 4.4 will still hold even when the sets are not

bounded. In particular, for the second statement of Theorem 4.3, we need to add the

condition that ρ(x) is integrable on X and replace (4.7) by

∇ · (ρf)(x) ≥ ǫ ∀x ∈ (X \ Xr)

for a positive number ǫ. In the first statement of Theorem 4.4, we need to add the
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condition that B(x) is bounded below on X and replace (4.10) by

∂B

∂x
(x)f(x) ≤ −ǫ ∀x ∈ (X \ Xr)

for a positive number ǫ.

In applications where the system has stable equilibrium points, it is often conve-

nient to exclude a neighborhood of the equilibria from the region where the divergence

inequality (4.13) must be satisfied, since the inequality is otherwise impossible to sat-

isfy without a singularity in ρ(x). This does not make the conclusion of the theorem

weaker, as long as the excluded set does not intersect Xu and is entirely surrounded

by a region of positive ρ(x).

Similarly, the Lie derivative inequality (4.10) is impossible to satisfy when the

system has equilibrium points in X \Xr. In this case, a neighborhood of the equilibria

should also be excluded from the region where the inequality is to be satisfied. The

conclusion of the theorem is still valid as long as the excluded set is entirely surrounded

by a region of positive B(x).

Notice in particular that all the tests presented above are convex programming

problems. This opens the possibility of computing B(x) and ρ(x) using convex opti-

mization. For systems whose vector fields are polynomial and whose set descriptions

are semialgebraic, a computational method based on sum of squares optimization is

available, if we use polynomial parameterizations for B(x) or ρ(x). This computa-

tional technique has been described in Section 2.3 of this thesis.

When we set Xu = Xr, each pair of the convex programs in Theorems 4.3 and 4.4

form a pair of weak alternatives : at most one of them can be feasible. Nevertheless,

strictly speaking it should be noted that the tests in the above theorems are not pairs

of Lagrange dual problems [17] in the sense of convex optimization. We deliberately

do not use Lagrange dual problems to avoid computational problems when we pos-

tulate B(x) or ρ(x) as polynomials. For example, the Lagrange dual problem of the

safety test in Theorem 4.3 will require ∇· (ρf)(x) to be zero on X \ (X0∪Xu) (cf. Sec-

tion 5.1). Although useful for theoretical purposes, this will hinder the computation
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of ρ(x) through polynomial parameterization and sum of squares optimization. In

this regard, some interesting future directions would be to see if a pair of Lagrange

dual problems can be formulated so that both problems can be solved using sum of

squares optimization, or more importantly, to see if the dual infeasibility certificate

of one convex program can be interpreted directly as a feasible solution to the dual

convex program.

4.2.2 Eventuality Verification

In the reachability test of Theorem 4.4, the set of states {x ∈ X0 : B(x) ≤ 0} is said

to satisfy the eventuality property, which we define as follows.

Definition 4.6 (Eventuality) Given a system ẋ = f(x), the state set X ⊆ R
n, the

initial set X0 ⊆ X , and the target set Xr ⊆ X , we say that the eventuality property

holds if for all initial conditions x0 ∈ X0, any trajectory x(t) of the system starting

at x(0) = x0 satisfies x(T ) ∈ Xr and x(t) ∈ X ∀t ∈ [0, T ] for some T ≥ 0.

Analogously, in Theorem 4.3, the set of states {x ∈ X0 : ρ(x) ≥ 0} is said to

satisfy the weak eventuality property, defined as follows.

Definition 4.7 (Weak Eventuality) Given a system ẋ = f(x), the state set X ⊆
R

n, the initial set X0 ⊆ X , and the target set Xr ⊆ X , we say that the weak eventuality

property holds if for almost all1 initial conditions x0 ∈ X0, any trajectory x(t) of the

system starting at x(0) = x0 satisfies x(T ) ∈ Xr and x(t) ∈ X ∀t ∈ [0, T ] for some

T ≥ 0.

These facts are evident from the proofs of the theorems. In many applications, it

is of paramount importance to prove eventuality (or even weak eventuality), e.g., to

prove that something “good” will happen. The eventuality and weak eventuality tests

for the whole initial set X0 can be performed simply by replacing (4.8) by B(x) ≤ 0

∀x ∈ X0, and (4.5) by ρ(x) ≥ 0 ∀x ∈ X0, where in the latter we also require that X0

has a non-empty interior.

1This is in the sense that the set of all initial conditions that do not satisfy the criteria has
measure zero.
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Proposition 4.8 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊂ R
n,

X0 ⊆ X , Xr ⊆ X be bounded. Suppose that there exists a function B ∈ C1(Rn)

satisfying

B(x) ≤ 0 ∀x ∈ X0, (4.14)

B(x) > 0 ∀x ∈ cl(∂X \ ∂Xr), (4.15)

∂B

∂x
(x)f(x) < 0 ∀x ∈ cl(X \ Xr). (4.16)

Then the eventuality property in the sense of Definition 4.6 holds.

Proof. Analogous to the proof of the first statement of Theorem 4.4.

Proposition 4.9 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊂ R
n,

X0 ⊆ X , Xr ⊆ X be bounded. If X0 has a non-empty interior and if there exists a

function ρ ∈ C1(Rn) satisfying

ρ(x) ≥ 0 ∀x ∈ X0, (4.17)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr), (4.18)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr), (4.19)

then the weak eventuality property in the sense of Definition 4.7 holds.

Proof. Analogous to the proof of the second statement of Theorem 4.3.

Example 4.10 To show that the weak eventuality property mentioned above cannot

in general be strengthened to eventuality, consider the system ẋ = x, with X =

[−5, 5] ⊂ R, X0 = [−1, 1], Xr = [−5,−4] ∪ [4, 5]. The function ρ(x) = 1 satisfies all

the conditions that guarantee weak eventuality. Hence, almost all trajectories starting

from X0 will reach Xr in finite time. The only exception in this case is the trajectory

x(t) = 0.
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4.2.3 Other Verification

While one may argue that the reachability property can be shown by running a

numerical simulation of ẋ = f(x) starting from a properly chosen x0 ∈ X0, the merit

of the tests in Theorems 4.3 and 4.4 is twofold. First, a solution to the convex

programs for reachability will automatically indicate a set from which all (or almost

all) points can be chosen as the initial state. Second, the use of these convex programs

allows us to consider also the worst-case analysis of systems with disturbance, or even

the controller design problem. For example, consider a system ẋ = f(x, d), where the

disturbance signal d(t) is assumed to be piecewise continuous, bounded, and takes its

value in a set D. Then solving (4.8)–(4.10) with the Lie derivative inequality replaced

by

∂B

∂x
(x)f(x, d) ≤ −ǫ ∀(x, d) ∈ (X \ Xr) ×D (4.20)

will prove reachability under all possible disturbance d(t), which obviously cannot be

proven using simulation. The same remark applies to eventuality, which cannot be

proven using simulation even when there exists no disturbance.

At the moment, it is unclear how a similar worst-case analysis for systems with

time-varying disturbance can be formulated using ρ(x). However, as pointed out

in [77], the density function ρ(x) seems to have a better convexity property that is

more beneficial for controller design. For a system ẋ = f(x) + g(x)u(x) where u(x) is

the control input (assumed to be in a state feedback form), the inequalities (4.5)–(4.6)

and

∇ · [ρ(f + ug)](x) > 0 ∀x ∈ cl(X \ Xr),

(and similarly for (4.11)–(4.13)) are certainly convex conditions on the pair (ρ, ρu).

It is therefore natural to introduce ψ = ρu as a search variable and use convex

optimization to find a feasible pair (ρ, ψ), then recover the control law as u(x) =

ψ(x)/ρ(x). Some results on this are available in [79].
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It is clear that the tests in the previous subsections can be combined to prove the

reachability – safety property:

There exists a trajectory x(t) such that x(0) ∈ X0, x(T ) ∈ Xr for some

T ≥ 0, and x(t) /∈ Xu, x(t) ∈ X for all t ∈ [0, T ],

and the eventuality – safety2 (or weak eventuality – safety) property:

For all (or almost all) initial states x0 ∈ X0, the trajectory x(t) starting at

x(0) = x0 will satisfy x(T ) ∈ Xr for some T ≥ 0 and x(t) /∈ Xu, x(t) ∈ X
for all t ∈ [0, T ].

For instance, the tests for eventuality – safety and weak eventuality – safety properties

are stated in the following corollaries.

Corollary 4.11 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn) and let X ⊂
R

n, X0 ⊆ X , Xu ⊆ X , Xr ⊆ X be bounded. Suppose that there exists a function

B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0, (4.21)

B(x) > 0 ∀x ∈ cl(∂X \ ∂Xr) ∪ Xu, (4.22)

∂B

∂x
(x)f(x) < 0 ∀x ∈ cl(X \ Xr). (4.23)

Then the eventuality – safety property holds.

Corollary 4.12 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn) and let X ⊂ R
n,

X0 ⊆ X , Xu ⊆ X , Xr ⊆ X be bounded. If X0 has a non-empty interior and if there

exists a function ρ ∈ C1(Rn) satisfying

ρ(x) ≥ 0 ∀x ∈ X0, (4.24)

ρ(x) < 0 ∀x ∈ cl(∂X \ ∂Xr) ∪ Xu, (4.25)

∇ · (ρf)(x) > 0 ∀x ∈ cl(X \ Xr), (4.26)

2In linear temporal logic (LTL), for example, this property corresponds to the “until” opera-
tor [46].
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then the weak eventuality – safety property holds. In this case, the safety property

holds also for trajectories that do not reach Xr in finite time.

4.3 Hybrid Systems

Some of the tests proposed in the last section, namely those that are based on B(x),

can be directly extended to handle hybrid systems. We will illustrate this by present-

ing a test for the eventuality property of a hybrid system, although similar extension

can be derived for other temporal properties. For this, the idea of using multiple

B(x)’s, similar to the one in Chapter 2, will be adopted. The model of hybrid system

that we use is the same as in Section 2.2.1. First, we define the eventuality property

as follows.

Definition 4.13 (Eventuality – Hybrid Systems) Given a hybrid system H and

a target set Xr ⊆ X, the eventuality property holds if for all initial conditions (l0, x0) ∈
X0, any valid trajectory (i.e., trajectory that corresponds to a piecewise continuous and

bounded disturbance d(t) ∈ D(l(t))) (l(t), x(t)) of the system starting at (l(0), x(0))

satisfies (l(T ), x(T )) ∈ Xr and x(t) ∈ I(l(t)) ∀t ∈ [0, T ] for some T ≥ 0.

In the proposition below, we define the sets of continuous target states as Reach(l) =

{x ∈ X : (l, x) ∈ Xr}, for l ∈ L.

Proposition 4.14 Let the hybrid system H = (X , L,X0, I, F, T ) with bounded X ⊂
R

n and the target set Xr ⊆ X be given. Suppose there exists a collection {Bl(x) : l ∈
L} of functions Bl ∈ C1(Rn,R) which, for all l ∈ L and (l, l′) ∈ L2, l 6= l′ satisfy

Bl(x) ≤ 0 ∀x ∈ Init(l), (4.27)

Bl(x) > 0 ∀x ∈ cl(∂I(l) \ ∂Reach(l)), (4.28)

∂Bl

∂x
(x)fl(x, d) ≤ −ǫ ∀(x, d) ∈ (I(l) \ Reach(l)) ×D(l), (4.29)

Bl′(x
′) −Bl(x) ≤ −ǫ ∀x′ ∈ Reset(l, l′)(x) \ Reach(l′),

for all x ∈ Guard(l, l′) \ Reach(l) (4.30)
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for some positive number ǫ. Then the eventuality property in the sense of Defini-

tion 4.13 is guaranteed.

Proof. Consider a valid trajectory of the system starting at (l0, x0) ∈ X0 and the

evolution of Bl(t)(x(t)) along this trajectory. Since the inequalities (4.29)–(4.30)

hold and each Bl(x) is bounded below on the bounded set X , the trajectory must

leave ∪l∈L{l} × (I(l) \Reach(l)) in a finite time and after a finite number of discrete

transitions. Using an argument similar to the proof of (a) in Theorem 4.3, it can be

shown that the above trajectory does not leave ∪l∈L{l} × I(l) without entering Xr

first. Thus the statement of the proposition follows.

Although the currently available tests for hybrid systems are based on B(x), we

expect that the tests based on ρ(x) can also be extended to handle hybrid systems

directly, using an approach that is analogous to the one presented here.

4.4 Examples

4.4.1 Successive Safety and Reachability Refinements

Consider the system

ẋ1 = x2,

ẋ2 = −x1 +
1

3
x3

1 − x2,

and let the set of states be X = [−3.5, 3.5] × [−3.5, 3.5] ⊂ R
2. Furthermore, define

X0 = [−3.4, 3.4] × [3.35, 3.45], X2 = [−3.5, 3.5] × {−3.5},

X1 = {3.5} × [−3.5, 3.5], X3 = {−3.5} × [−3.5, 3.5].

In this example, we will investigate the reachability of X1, X2, X3 from X0. This kind

of analysis is encountered when constructing a discrete abstraction of continuous or

hybrid systems, or when analyzing a counter-example found during the verification
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of such an abstraction (cf. Figure 4.1).

The tests in Theorem 4.3 will be used for our analysis. Since the vector field is

polynomial and the sets are semialgebraic, we use polynomial parameterization for

B(x) and ρ(x), and then apply the sum of squares method to compute them. Degree

bound is imposed on B(x) and ρ(x). Because of this, we might not be able to find a

single B(x) or ρ(x) that prove safety or reachability for the whole X0. If neither B(x)

nor ρ(x) can be found, we divide the interval of x1 in X0 into two parts and apply

the tests again to the smaller sets. A set is pruned if B(x) is found, and this process

is repeated until a ρ(x) is found or the whole X0 is proven safe. When the degree

of B(x) or ρ(x) is chosen equal to eight, the semidefinite program for each safety or

reachability test at any node can be solved in less than four seconds on a Pentium III

600 MHz machine.

The result is as follows.

1. We prove that the set X1 is reachable from X0. The verification progress is

shown in Figure 4.3 (a).

2. It can be proven directly that X2 is not reachable from X0.

3. It is proven that the set X3 is reachable from X0 (see Figure 4.3 (b)).

For visualizations of reachability and safety proofs, see Figure 4.4.

Obviously, the above bisection algorithm is just a simple, straightforward approach

to refine and prune the initial set, and other algorithms that are more efficient can

be proposed in the future.

4.4.2 Eventuality and Eventuality – Safety Verification

Consider a Van der Pol oscillator with disturbance input:

ẋ1 = x2,

ẋ2 = x2(1 − x2
1) − x1 + d,
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[−3.4,3.4]; (?)

[−3.4,0]; (?) [0,3.4]; (?)

[−3.4,−1.7]; (S) [−1.7,0]; (R)

(a) X0 → X1

[−3.4,3.4]; (?)

[−3.4,0]; (?) [0,3.4]; (S)

[−3.4,−1.7]; (?) [−1.7,0]; (S)

[−3.4,−2.55]; (?) [−2.55,−1.7]; (S)

[−3.4,−2.975]; (R)

(b) X0 → X3

Figure 4.3: Proving the reachability of X1 and X3 from X0 in the example of Sec-
tion 4.4.1. At each node, we indicate the range of x1 in X0 for which safety and
reachability are tested. If neither is verified (denoted by ?), then the x1-interval is
divided into two and the tests are applied to the smaller sets. The annotation S
(respectively R) indicates that B(x) (respectively ρ(x)) is found. Breadth-first search
starting from the leftmost branch is used. The verification of X0 9 X2 terminates at
the top node, since a barrier certificate B(x) can be found directly.
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(c) X0 → X3

Figure 4.4: Possible transitions from X0 to X1, X2, and X3 in the example of Sec-
tion 4.4.1. In (a) and (c), dashed curves are the zero level sets of ρ(x)’s that certify
reachability. In (b), dashed curve is the zero level set of B(x) that certifies safety.
Thick solid lines at the top of the figures are the initial sets for which the certificates
are computed. Some trajectories of the system are depicted by solid curves.
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Figure 4.5: Verifying the temporal properties of a Van der Pol oscillator with dis-
turbance. We want to verify that under all possible disturbance input, if the system
starts in XA, then both XB and XC are reached in finite time, but XC will not be
reached before the system reaches XB. The nominal trajectory of the system (i.e., for
d = 0) starting at x = (0, 2) is depicted by the solid curve.

where d is the disturbance input, taking its value in D = [−0.25, 0.25] ⊂ R. Let

X = {x ∈ R
2 : 0.5 ≤ ‖x‖2 ≤ 5}. In addition, let

XA = {x ∈ R
2 : (x1)

2 + (x2 − 2)2 ≤ 1},

XB = {x ∈ R
2 : (x1 − 2)2 + (x2)

2 ≤ 1},

XC = {x ∈ R
2 : (x1)

2 + (x2 + 2)2 ≤ 1}.

These sets are depicted in Figure 4.5, where a nominal trajectory of the system

starting at x = (0, 2) is also shown. Our objective in this example is to verify that

under all possible piecewise continuous and bounded disturbance d(t), if the system

starts in XA, then both XB and XC are reached in finite time, but XC will not be

reached before the system reaches XB.

To verify this temporal specification, we will search for two barrier certificates
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B1(x) and B2(x) satisfying the following conditions:



















B1(x) ≤ 0 ∀x ∈ XA,

B1(x) > 0 ∀x ∈ ∂X ∪ XC ,

∂B1

∂x
(x)f(x, d) ≤ −ǫ ∀(x, d) ∈ (X \ XB) ×D,



















B2(x) ≤ 0 ∀x ∈ XA,

B2(x) > 0 ∀x ∈ ∂X ,
∂B2

∂x
(x)f(x, d) ≤ −ǫ ∀x ∈ (X \ XC) ×D,

for some positive ǫ. Using sum of squares optimization, polynomial B1(x) and B2(x)

of degree ten can be found, thus the temporal specification is verified.
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Chapter 5

On the Necessity of Barrier
Certificates

In this chapter, the idea of strong duality between convex programs (cf. Section 4.1)

will be exploited to derive a converse theorem for safety verification of continuous

systems using barrier certificates. Under some reasonable technical conditions, we

will prove in Section 5.1 that the existence of a barrier certificate is both sufficient

and necessary for safety. In Section 5.2, we will give comments on some cases in which

these technical conditions are automatically satisfied.

5.1 A Converse Theorem

The main result of the section can be stated as follows.

Theorem 5.1 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn). Let X ⊂ R
n,

and X0 ⊆ X , Xu ⊆ X be compact sets, and suppose that there exists a function

B̃ ∈ C1(Rn) such that ∂B̃
∂x

(x)f(x) < 0 for all x ∈ X . Then there exists a function

B ∈ C1(Rn) that satisfies

B(x) ≤ 0 ∀x ∈ X0, (5.1)

B(x) > 0 ∀x ∈ Xu, (5.2)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X (5.3)
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if and only if the safety property holds.

Notice that in the theorem we have used a seemingly strong assumption that there

exists a function B̃ ∈ C1(Rn) such that ∂B̃
∂x

(x)f(x) < 0 ∀x ∈ X . As mentioned at

the beginning of the chapter, in the next section we will show that in many cases the

existence of B̃(x) is actually guaranteed.

Before proving the theorem, we will present and prove the following lemmas, which

will be used in the proof of the main theorem.

Lemma 5.2 Let f ∈ C1(Rn,Rn), and X ⊂ R
n, X0 ⊆ X , Xu ⊆ X be compact sets.

Suppose there exists a function B̃ ∈ C1(Rn) such that ∂B̃
∂x

(x)f(x) < 0 for all x ∈ X .

Then there exists no B ∈ C1(Rn) satisfying (5.1)–(5.3) only if there are measures of

bounded variation ψ0, ψu, ρ (each defined on R
n) such that ψ0, ψu, ρ are nonnegative

on R
n and equal to zero outside X0, Xu, and X respectively; and

∫

X0

dψ0 = 1,

∫

Xu

dψu = 1,

∇ · (ρf) = ψ0 − ψu,

where ∇ · (ρf) is interpreted as a distributional derivative.

Proof. Let us consider the convex optimization problem

supBu −B0,

subject to B(x) −B0 ≤ 0 ∀x ∈ X0,

B(x) −Bu ≥ 0 ∀x ∈ Xu,

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ X ,

with the supremum denoted by γ, and taken over all B0 ∈ R, Bu ∈ R, and B ∈
C1(Rn). Since B0 = 0, Bu = 0, and B(x) = 0 satisfy the constraint, γ must be

greater than or equal to zero. In addition, since the objective function and the



83

constraints are all linear, the value of γ is either 0 or ∞. There exists no B ∈ C1(Rn)

satisfying (5.1)–(5.3) if and only if the value of γ is equal to zero.

Now suppose that γ = 0. Let K = R × (C(X ))3, B = R
2 × C1

0(Rn), and define

K1, K2 as follows:

K1 = {(z, h0, hu, h) ∈ K : h0 = B0 −B, hu = B −Bu, h = −∂B
∂x

f on X ;

z = Bu −B0; and (B0, Bu, B) ∈ B},

K2 = {(z, h0, hu, h) ∈ K : z ≥ 0, h0 ≥ 0 on X0, hu ≥ 0 on Xu, h ≥ 0 on X}.

Then both K1 and K2 are convex sets, and K2 has non-empty interior in K. Fur-

thermore, since γ = 0, it follows that the first component in K1 is less than or equal

to zero when the second, third, and fourth components are greater than or equal to

zero, and therefore K1 ∩ int(K2) = ∅. Now, by the Hahn-Banach theorem [44], there

exists a nonzero k∗ = (a, ψ̃0, ψ̃u, ρ̃) ∈ K∗ = R × (C(X )∗)3 such that

sup
k1∈K1

〈k∗, k1〉 ≤ inf
k2∈K2

〈k∗, k2〉, (5.4)

where C(X )∗ in this case is the set of measures on X with bounded variation. The

right-hand side of the inequality can be expanded as follows

inf
k2∈K2

〈k∗, k2〉 = inf
(z,h0,hu,h)∈K2

az + 〈ψ̃0, h0〉 + 〈ψ̃u, hu〉 + 〈ρ̃, h〉

=



















0, if a ≥ 0; ψ̃0, ψ̃u, ρ̃ ≥ 0; and

ψ̃0, ψ̃u are zero outside X0,Xu respectively,

−∞, otherwise.

Now denote the extension of ψ̃0, ψ̃u, ρ̃ to the whole R
n by ψ0, ψu, ρ, which are

obtained by letting them equal to zero outside of X . Then, for the left-hand side of
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(5.4), we have the following equality:

sup
k1∈K1

〈k∗, k1〉 = sup
(B0,Bu,B)∈B

a(Bu −B0) + 〈ψ0, B0 −B〉

+ 〈ψu, B −Bu〉 + 〈ρ,−∂B
∂x

f〉

= sup
(B0,Bu,B)∈B

(−a+

∫

dψ0)B0 + (a−
∫

dψu)Bu

+ 〈−ψ0 + ψu + ∇ · (ρf), B〉

=



















0, if
∫

Rn dψ0 = a,
∫

Rn dψu = a, and

−ψ0 + ψu + ∇ · (ρf) = 0

∞, otherwise,

where ∇ · (ρf) is interpreted as a distributional derivative. Thus, for the supremum

to be less than or equal to the infimum, we must have a nonzero (a, ψ0, ψu, ρ), where

ψ0, ψu, ρ are measures of bounded variation on R
n, such that a ≥ 0; ψ0, ψu, ρ are

nonnegative; ψ0, ψu, ρ are equal to zero outside X0, Xu, and X respectively; and

∫

Rn

dψ0 = a,
∫

Rn

dψu = a,

∇ · (ρf) = ψ0 − ψu.

We will next show that because of the assumption that there exists a B̃ ∈ C1(Rn)

such that ∂B̃
∂x

(x)f(x) < 0 for all x ∈ X , we must have a > 0. For this, let L = (C(X ))3,

and define

L1 = {(h0, hu, h) ∈ L : h0 = B0 −B, hu = B −Bu, h = −∂B
∂x

f on X ;

and (B0, Bu, B) ∈ B},

L2 = {(h0, hu, h) ∈ L : h0 ≥ 0 on X0, hu ≥ 0 on Xu, h ≥ 0 on X}.
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Note in particular that due to the above assumption and the compactness of X0,

Xu, X , we have L1 ∩ int(L2) 6= ∅ . Now consider k∗ = (a, ψ̃0, ψ̃u, ρ̃) that we have

before. Suppose that a = 0 and substitute this to (5.4). Then we have a nonzero

(ψ̃0, ψ̃u, ρ̃) ∈ (C(X )∗)3, such that

sup
ℓ1∈L1

〈(ψ̃0, ψ̃u, ρ̃), ℓ1〉 ≤ inf
ℓ2∈L2

〈(ψ̃0, ψ̃u, ρ̃), ℓ2〉.

This implies that L1 ∩ int(L2) = ∅, which is contradictory to the above. Thus a must

be strictly positive. Without loss of generality, assume that k∗ is scaled such that

a = 1. This completes the proof of our lemma.

Next, we will show that the existence of ψ0, ψu, ρ in the conclusion of Lemma 5.2

implies that there exists an unsafe trajectory of the system. Since in this case we

have a density function ρ which is in fact a measure, we need a version of Liouville

theorem which applies to measures.

Lemma 5.3 Let f ∈ C1(D,Rn) where D ⊆ R
n is open. For a measurable set Z,

assume that φt(Z) is a subset of D for all t between 0 and T . If ρ is a measure

of bounded variation on D such that ρ has a compact support and the distributional

derivative ∇ · (ρf) is also a measure of bounded variation with compact support, then

∫

φT (Z)

dρ−
∫

Z

dρ =

∫ T

0

∫

φt(Z)

d(∇ · (ρf))dt.

Proof. Choose ρ1, ρ2, . . . ∈ C∞
0 (D) such that ρk → ρ in the (weak) topology of

distributions. Then also ∇ · (ρkf) → ∇ · (ρf) in the sense of distributions. In

particular,

lim
k→∞

∫

X

d|ρk − ρ| = 0,

lim
k→∞

∫

X

d|∇ · (ρkf) −∇ · (ρf)| = 0
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for every X ⊂ D. The lemma (cf. Lemma 4.1) was proven for the case of smooth ρ

in [77], i.e.,

∫

φT (Z)

ρk(x)dx−
∫

Z

ρk(x)dx =

∫ T

0

∫

φt(Z)

[∇ · (ρkf)(x)]dxdt.

The desired equality is obtained in the limit as k → ∞.

Lemma 5.4 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn), and let X ⊂ R
n,

X0 ⊆ X , Xu ⊆ X be compact sets. Suppose there exist measures of bounded variations

ψ0, ψu, ρ such that ψ0, ψu, ρ are nonnegative on R
n and equal to zero outside X0, Xu,

and X respectively; and
∫

X0
dψ0 = 1,

∫

Xu
dψu = 1, ∇ · (ρf) = ψ0 − ψu. Then there

exists a T ≥ 0 and a trajectory x(t) of the system such that

x(0) ∈ X0,

x(T ) ∈ Xu,

x(t) ∈ X ∀t ∈ [0, T ].

Proof. Let X1, X2, ... ⊆ R
n be a sequence of open sets such that X0 ⊆ Xi for all i

and limi→∞Xi = X0. In addition, define the measurable sets

Zi =
⋃

x0∈Xi

{x ∈ R
n : x = φt(x0) for some t ≥ 0}, for i = 1, 2, ....

By the assertions of the lemma, both ρ and ∇ · (ρf) are measures with bounded

variation and compact support, so we can use Lemma 5.3 and ∇ · (ρf) = ψ0 − ψu to

obtain the relation

∫

φt(Zi)

dρ−
∫

Zi

dρ =

∫ t

0

∫

φτ (Zi)

d(ψ0 − ψu)dτ

for all t ≥ 0. Since ρ ≥ 0 and φt(Zi) ⊆ Zi for all t ≥ 0, the left-hand side of

the above expression is less than or equal to zero. It follows from
∫

X0
dψ0 = 1 and

ψ0 ≥ 0 that Xu ∩ Zi 6= ∅ for all i = 1, 2, ..., for otherwise the right-hand side of the
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expression can be made strictly greater than zero by taking some t > 0 and we obtain

a contradiction. Since the sets X0 and Xu are closed, we conclude that φT (x0) ∈ Xu

for some T ≥ 0 and x0 ∈ X0. For our purpose, let T be the first time instance such

that φT (x0) ∈ Xu.

The case in which T = 0 is trivial since X0 ⊆ X . Consider now the case in which

T > 0. We will show that φt(x0) ∈ X for all t ∈ [0, T ] by a contradiction. Suppose

to the contrary that there exists T̃ ∈ (0, T ) such that φT̃ (x0) /∈ X . Then, for a

sufficiently small open neighborhood U of x0, we have

φT̃ (U) ⊂ R
n \ (X ),

φt(U) ∩ Xu = ∅ ∀t ∈ [0, T̃ ].

Using Lemma 5.3 once again, we have

∫

φ
T̃

(U)

dρ−
∫

U

dρ =

∫ T̃

0

∫

φτ (U)

d(ψ0 − ψu)dτ.

Since ρ = 0 on R
n \ (X ), the first term on the left is equal to zero, and therefore, the

left-hand side is non-positive, which leads to a contradiction since the right-hand side

is strictly greater than zero. This lets us conclude that φt(x0) ∈ X for all t ∈ [0, T ],

thus finishing the proof of the lemma.

We are now ready to present the proof of the main theorem.

Proof of Theorem 5.1.

(⇒): This is a special case of Proposition 2.2, and has been proven in Chapter 2.

(⇐): Follows from Lemmas 5.2 and 5.4.

5.2 Some Remarks

The result stated in Theorem 5.1 uses the assumption that the following Slater-

like condition [17] is fulfilled: that there exists a function B̃ ∈ C1(Rn) such that

∂B̃
∂x

(x)f(x) < 0 for all x ∈ X . While in the discrete case strong duality holds (and
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hence the necessity of barrier certificates too) without such an assumption, its proof

depends on a special property of polyhedral convex sets, which does not carry over to

the continuous case. Eliminating this condition in the continuous case will presumably

require a different proof technique than the one presented in this paper. Nevertheless,

there are cases in which the condition is automatically fulfilled, for instance when the

trajectories of the system starting from any x0 ∈ X leave a neighborhood of X at

least once, as shown in the following proposition.

Proposition 5.5 Consider the system ẋ = f(x) with f ∈ C1(Rn,Rn) and let X ⊂ R
n

be a compact set. Suppose there exist an open neighborhood X̃ of X and a time instant

T > 0 such that for all initial conditions x0 ∈ X , we have the flow φt(x0) outside

of cl(X̃ ) for some t ∈ [0, T ]. Then there exists a function B̃ ∈ C1(Rn) such that

∂B̃
∂x

(x)f(x) < 0 for all x ∈ X .

Proof. Let Y be an open neighborhood of X such that its closure is contained in

X̃ . In addition, let ξ ∈ C1(Rn) be a nonnegative function such that ξ(x) = 1 for

all x ∈ Y and ξ(x) = 0 for all x /∈ X̃ ; also let ψ ∈ C1(Rn) be a function such that

ψ(x) > 0 for all x ∈ X and ψ(x) = 0 for all x /∈ Y . Now consider the differential

equation ẋ = ξ(x)f(x). Denote the flow of ẋ = ξ(x)f(x) starting at x0 by φ̃t(x0).

Modulo a time re-parameterization, the flows φ̃t(x0) and φt(x0) are identical up to

some finite time. Next define

B̃(x0) =

∫ ∞

0

ψ(φ̃t(x0))dt.

For all x0 in a neighborhood of X , the flow φ̃t(x0) is outside of Y for large t, and thus

by its construction ψ(φ̃t(x0)) is equal to zero for large t and for all such x0. It follows

that B̃(x) is well defined on a neighborhood of X . The function B̃(x) is continuously

differentiable on X since both ψ(x) and φ̃t(x) are also continuously differentiable.

Taking the total derivative of B̃(x) with respect to time, we obtain

∂B̃

∂x
(x)ξ(x)f(x) = −ψ(x),
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which is strictly less than zero, on X . Finally, recall that on X we have ξ(x) = 1.

This completes the proof of the proposition.

While the above Slater-like condition excludes the possibility of applying Theo-

rem 5.1 when there is, e.g., an equilibrium point in X , analysis can still be performed

by excluding a neighborhood of the equilibrium point from X in the condition (4.4).

If the excluded region is either backward or forward invariant, and does not intersect

X0 and Xu, then the safety criterion (5.1)–(5.3) will still apply in terms of the original

sets.

Finally, note also that when all the connected components of R
n \ X are either

forward or backward invariant, an even stronger safety criterion can be obtained, as

in the following proposition.

Proposition 5.6 Let the system ẋ = f(x) with f ∈ C1(Rn,Rn) and the compact sets

X0 ⊂ R
n, Xu ⊂ R

n be given, with 0 /∈ X0 ∪ Xu. Suppose that the origin is a globally

asymptotically stable equilibrium of the system with a global strict Lyapunov function

V (x) 1. Let ǫ1 = minx∈X0∪Xu
V (x) and ǫ2 = maxx∈X0∪Xu

V (x). Then there exists a

function B ∈ C1(Rn) satisfying

B(x) ≤ 0 ∀x ∈ X0, (5.5)

B(x) > 0 ∀x ∈ Xu, (5.6)

∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ {x ∈ R

n : ǫ1 ≤ V (x) ≤ ǫ2}, (5.7)

if and only if there exists no trajectory x(t) of the system such that

x(0) ∈ X0, (5.8)

x(T ) ∈ Xu for some T ≥ 0. (5.9)

Proof. Define

X = {x ∈ R
n : ǫ1 ≤ V (x) ≤ ǫ2}.

1That is, V ∈ C1(Rn) is radially unbounded, V (x) > 0 ∀x 6= 0, and ∂V

∂x
(x)f(x) < 0 ∀x 6= 0.
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In this case, the existence of a function B̃ ∈ C1(Rn) such that ∂B̃
∂x

(x)f(x) < 0 for all

x ∈ X is guaranteed by Proposition 5.5, and even the Lyapunov function V (x) can be

used as B̃(x). By Theorem 5.1, there exists a function B ∈ C1(Rn) satisfying (5.5)–

(5.7) if and only if there exists no trajectory x(t) of the system such that x(0) ∈ X0,

x(T ) ∈ Xu for some T ≥ 0, and x(t) ∈ X ∀t ∈ [0, T ].

Since the connected components of R
n\X are either forward or backward invariant,

however, there can be no trajectory x(t) of the system and time instants T1, T2, T3

such that T1 < T2 < T3, x(T1) ∈ X , x(T2) ∈ R
n \ X , and x(T3) ∈ X . This,

combined with the fact that X0,Xu ⊆ X , implies that the set of trajectories satisfying

x(0) ∈ X0, x(T ) ∈ Xu for some T ≥ 0, and x(t) ∈ X ∀t ∈ [0, T ] is the same as the set

of trajectories satisfying (5.8)–(5.9), and therefore the statement of the proposition

follows.
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Chapter 6

Conclusions

We have presented in the previous chapters a methodology based on barrier certifi-

cates and density functions for verifying system properties such as safety, reachability,

eventuality, and their combinations. Within our framework, such properties can be

verified without explicitly computing the set of reachable states. This makes the

methodology directly applicable to continuous and hybrid systems with nonlinear,

uncertain, and constrained dynamics. In addition, by using barrier certificates that

generate nonnegative supermartingales under the given system dynamics, we are able

to handle safety verification of stochastic continuous and hybrid systems by comput-

ing certified upper bounds on the probability of reaching the unsafe region.

Most of the conditions satisfied by barrier certificates and density functions form

convex programming problems. When the system is described in terms of polyno-

mials, this provides the possibility to search for appropriate barrier certificates and

density functions using a convex relaxation framework called sum of squares optimiza-

tion. Moreover, a hierarchical search based on bounding the degrees of the polynomial

expressions can be performed, such that at each level the complexity grows polynomi-

ally with respect to the system size. Some examples have been presented to illustrate

the use of the proposed methods. In addition, the convexity of the problem has been

exploited to derive a converse theorem for safety verification using barrier certificates.

The framework presented in this thesis opens several future research avenues, some

of which we will attempt to outline here.

While the duality between safety and reachability verification is now understood
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for deterministic continuous systems, much remains to be discovered when hybrid

dynamics, uncertainty, and stochasticity are present in the system. In particular, we

expect that the density-based approach can also be extended to handle systems with

hybrid dynamics or time-varying uncertainty or both. For stochastic systems, devel-

oping a method for proving that the reach probability is higher than some margin and

discovering schemes to obtain tighter probability bounds (other than by increasing

the degree of the barrier certificate) are just a few directions worth pursuing.

We have shown that a combination of properties such as safety and reachabil-

ity/eventuality can be verified in our framework. Related to this, it would be of

interest to consider verification of more general temporal properties. It seems likely

that our approach can be extended for this purpose. One possible research direc-

tion would be to develop temporal logics for continuous and hybrid systems utilizing

barrier certificates and density functions as certificates of formulas.

While our results are stated for the general case, we believe that it is also benefi-

cial to consider special problem classes, e.g., systems with linear continuous dynamics.

Various questions can be asked, such as under what conditions it will be enough to

consider barrier certificates of low degrees; whether it is possible to obtain a con-

vex reformulation for the non-convex conditions if we consider restriction to special

problem classes; and whether the structure of the problem can be exploited for more

efficient numerical computation.

In a slightly different vein, it would be interesting to investigate the synthesis

problem, i.e., to design a controller for control objectives expressed in terms of safety,

reachability, and eventuality. Synthesis conditions are typically non-convex, which

makes the synthesis problem harder than analysis. Preliminary results on synthesis

of safe controllers using density functions can be found in [79]. Results on synthesis

of controllers for stabilization of nonlinear systems based on density functions [74]

and Lyapunov functions [73] might also be relevant here. Additionally, it may be

interesting to consider alternative computational methods, such as randomized algo-

rithms, to see if they can be used on their own or combined with the sum of squares

optimization to solve the non-convex synthesis conditions.
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