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Abstract

The gauge/gravity duality in the interaction between M theory objects has
taught us a lot about quantum gravity. The eleven-dimensional PP-wave
background provides a new arena for exploring this duality beyond flat and
almost flat, i.e., weakly curved, backgrounds. In this thesis we discuss the
gauge theories that describe the dynamics of interacting M theory objects,
the supergravity calculations that capture these dynamics, the comparison
of the two sides, and various objects (such as gravitons and membranes)
in the eleven-dimensional PP-wave background. We only consider the

one-loop gauge theory and linearized supergravity approximations.
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Chapter 1

Introduction

The five superstring theories in ten dimensions, Type ITA, Type IIB, Type I, Heterotic
SO(32), Heterotic Eg x Eg are known to be related to each other via a web of dualities
[1]. Underlying these theories, there is believed to be a fundamental M theory whose
low energy effective theory is the eleven-dimensional supergravity.

Matrix theory was proposed by [2, 3] as a candidate of M theory for flat tar-
get space. This is a (0 + 1)-dimensional quantum mechanical theory whose degrees
of freedom reside in N by N matrices as a noncommutative generalization of the
usual concept of target space coordinates, and it is argued that it should provide a
nonperturbative description of quantum gravity in a manifestly unitary way.

The generalization of Matrix theory to a generic nonflat background was initiated
in [4, 5]. In [6, 7], this generalization was carried out in detail to linear order in the
background fields for a weakly curved background (i.e., a background whose metric is
g1 = N1y + hry, with n7; being the flat metric, and |h;;| << 1) which is independent
of the light like direction x~.

Not very long ago, another useful technique, different from the weakly curved
background approximation, for understanding nonflat backgrounds was put forward
in the context of string/M theory. This is the Penrose limit [8, 9, 10], a limit in which
one zooms in, roughly speaking, to the close neighborhood of a null geodesic. In
general, a space arising from Penrose limit may be highly curved, hence not restricted
to the weak background approximation. More importantly, when taking the limit, the

resulting background inherits the (super)symmetries of the original space. Hence one
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expects that upon taking the Penrose limit, the M theory in a nonflat background will
become more tractable, provided that the original background has a large amount of
(super)symmetries.

The Matrix theory in an eleven-dimensional Parallel-Plane-wave (henceforth ab-
breviated as PP-wave) background proposed in [10] is a good example of such an
application of the Penrose limit. As a matter of fact, the main subject of study in
this thesis will be the dynamics of this Matrix theory and other theories related to it.
Here the original space is the product of four-dimensional Anti de Sitter space and
seven-sphere AdSy x S7, or the product of seven-dimensional Anti de Sitter space and
four-sphere AdS; x S, and the eleven-dimensional PP-wave is the space resulting
from their Penrose limits.

Although the Matrix theory (in a general background) has the form of a (0+41)-
dimensional quantum mechanics, and can be interpreted as describing N DO-branes in
the ITA string theory obtained from compactifying the eleven-dimensional M theory
to ten dimensions, it does not only describe point particles. Philosophically, the
reason is, since the Matrix theory is supposed to be a realization of the fundamental
M theory, it must have the capability to describe the dynamics of all M theory objects
(e.g., M2-brane, M5-brane from the perspective of eleven-dimensional supergravity,
the fundamental string, NS5-brane, and higher-dimensional D-branes from the ten-
dimensional ITA string perspective), after including all sectors with different values
of N. Technically, the reasons are, to name a few, the Matrix theory can be obtained
by “discretizing” the supermembrane theory [11, 12], the D0O-brane theory can be
T-dualized to give theories describing higher-dimensional D-branes, and by taking
the “continuum limit” of the Matrix theory, one gets field theories living in higher
dimensions. Depending on the problem at hand, e.g., the investigation of membrane
scattering, one may choose the (0 4+ 1)-dimensional theory, or, higher-dimensional
field theories as long as it is valid, whichever is more convenient, and the computed
physical quantities should be the same. This is one of the points that the discussions
in Sections 3.1 and 3.2 try to make.

The Matrix theory and related higher-dimensional field theories are nonabelian
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gauge theories, with which we can do perturbative loop computations in expansion of
the gauge coupling. One interesting thing observed is the gauge/gravity duality in the
dynamics of interacting M theory objects [13, 14, 15, 16, 17, 18, 19, 20, 7, 21, 22, 23,
24], where results of quantum loop computations on the gauge theories’ side are shown
to agree with results of solving classical equations of motion on the supergravity side.
This duality is physically motivated recalling that eleven-dimensional supergravity is
the low energy limit of M theory, although supersymmetry also seems to be a crucial
ingredient to bridge the disparate regions of validity on the two sides. Of course,
similar gauge/gravity duality also appears in many other settings, such as the well
known AdS/CFT correspondence in IIB string theory (in that case, taking the Penrose
limit actually gives us access to full string theory, not just the classical supergravity,
on the AdS side [10]). As stated in the title, this thesis is devoted to the study of
the gauge/gravity duality for interacting M theory objects in the eleven-dimensional
PP-wave background. In this study we shall restrict our attention to one-loop on
the gauge theory side, and to first order in x%, on the supergravity side, that is,
linearized supergravity. As our contribution to the subject, this thesis discusses some
generalities in the gauge/gravity comparison, the results on two graviton interaction in
the absence of transfer of the momentum along the light-like = direction, the so-called
M-momentum, and some initial steps taken towards understanding two membrane
interaction with M-momentum transfer, based mainly on works in collaboration with
Hok Kong Lee and Tristan McLoughlin.

The thesis is organized as follows:

In Chapter 2 we briefly review features of the eleven-dimensional PP-wave, giving
the expressions for its 38 Killing vectors, 32 Killing spinors, and the (anti)commutators
of the symmetry superalgebra [25, 26, 27|, also describing how it arises as the Penrose
limit of AdS x S space [8, 9, 28].

In Chapter 3 we discuss the gauge theories that describe M-theory objects in the
eleven-dimensional PP-wave background.

Section 3.1 is devoted to the Matrix theory proposed by [10]. In this section we

mainly review three different ways of deriving this matrix theory: the approach taken
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by [10] which starts with a superparticle and then nonabelianizes the resulting theory;
the one taken by [29] where the Matrix theory is obtained by “discretizing” the su-
permembrane in 11-D PP-wave background; and the one taken by [29] which uses the
framework developed in [6, 7] to derive the Matrix theory from the dynamics of multi
DO-branes in the ITA supergravity background arising from a space-like compactifi-
cation of 11-D PP-wave, in the weakly curved background approximation. We pay
particular attention to the multi DO-brane approach because firstly it illustrates the
connection between the dynamics in eleven dimensions and that in ten dimensions,
as well as the appropriate limit [4] in which this connection is made, and secondly
it illustrates how, given a large number of (super)symmetries, sometimes the weak
background matrix theory actually needs no correction and is exact.

Section 3.2 is devoted to the three-dimensional theory describing multi spherical
membranes in 11-D PP-wave. This theory was first obtained by [30] as the continuum
limit of the matrix theory proposed by [10] expanded around its k-membrane vacuum.
In Subsection 3.2.1 we present an alternative derivation which obtains this theory
directly from the supermembrane theory, expanding around the single membrane
vacuum to get an abelian theory and then carrying out a nonabelian generalization.
In Subsection 3.2.2 we discuss the vacua and instantons of this theory in the two
membrane case, presenting the instanton solution which interpolates between the flux
one vacuum and the flux zero trivial vacuum, and briefly comment on the application
of this instanton solution to the study of M-momentum transfer between two spherical
membranes in an 11-D PP-wave background.

Section 3.3 is an application based on [21]. In short, [21] computes the two-
graviton one-loop effective action for the Matrix theory in the eleven-dimensional
PP-wave background, and compares it to the effective action on the supergravity
side in the same background. Agreement is found for the effective action on both
sides, to all orders of u (i.e., beyond the weak background approximation), which
provides evidence for the Matrix theory proposed by [10] being the correct description
of M theory in the eleven-dimensional PP-wave background, and also points to the

existence of a supersymmetric nonrenormalization theorem in this background. This
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section is mainly the computation on the gauge theory side given in [21].

In Chapter 4 we discuss the treatment of M theory objects’ interaction on the su-
pergravity side. On the supergravity side we use the method of source-probe analysis,
which is valid when the source is much heavier than the probe.

Section 4.1 works out the light-cone Lagrangian, which is the supergravity quan-
tity that should in the end be compared with the gauge theory one-loop effective
Lagrangian, for a point particle and a membrane in an arbitrary (yet static, i.e., z-
independent) background. In doing so, we give a careful treatment of the constrained
Hamiltonian mechanics of the systems concerned.

Section 4.2 addresses the issue of finding the background fields that the probe feels,
describing the diagonalization of the supergravity field equations for arbitrary static
sources. The idea here is quite straightforward, and the results given are technical
in nature, but since they are necessary for solving the field equations and have not
been explicitly given elsewhere to the best of our knowledge, we present them in this
section.

The above two sections provide the framework for the computation on the super-
gravity side. In Section 4.3 we apply the general formalism to the specific application
of two graviton interaction in the absence of M-momentum transfer, completing our
investigation of gauge/gravity duality in this particular physical problem. This sec-
tion is based on the supergravity computation of [21].

In Chapter 5 we briefly review supersymmetric nonrenormalization theorems in
the Matrix theory quantum mechanics in flat space, following [31, 32, 33, 34, 35, 36,
37], and comment on the generalization to a 11-D PP-wave background.

In Chapter 6, we make some concluding remarks, discussing possible future direc-

tions to pursue.



Chapter 2

Review of the Eleven-Dimensional
PP-wave (Geometry

The fields of eleven-dimensional supergravity are the metric g,,, the three-form gauge
potential A,,,, and the gravitino v,,.
In the eleven-dimensional PP-wave, the gravitino field 1, vanishes, whereas the

nonzero components of the metric g,,, and the four-form field strength F),, 5 are given

3 9
1 1
gr-=1, gyr = =4 9 Z(IZ)Q T 36 Z(xa) , 9aB = 0aB (2.1)
=1 a=4
Fiozy = (2.2)

Here p is a parameter with the dimension of inverse length.

In our conventions, u, v, p,... take the values +, — 1,...,9; A, B,C, ... take the
values 1,...,9; 4,7,k,... take the values 1,...,3; and a,b,c,... take the values
4,...,9. This solution to eleven-dimensional supergravity was first given by [25],

and it also goes under the name KG space (where KG stands for Kowalski-Glikman).
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2.1 Isometries and Supersymmetries of the 11-D

PP-wave

The explicit expressions for the Killing vectors (as well as the algebra of the isometry
group) and Killing spinors of the 11-D PP-wave were first given in [26]. Here we follow
the exposition of the same subject given by [27]. A slight change of the notation of
[27] is necessary to bring it in accordance with ours: exchange z™ and x~; change u
to —u; also in [27] the transverse index ¢ goes from 1 to 9, thus corresponding to our
transverse index A.

The isometry group of the 11-D PP-wave has 38 generators, coinciding with the
dimension of the isometry algebras of AdS, x S™ and AdS; x S*. This is no accident,
because the former solution can be obtained from the latter solutions via a Penrose

limit [9], which we shall discuss shortly. The Killing vectors of 11-D PP-wave are

56— - _8—7 §e+ = 8+
+ + i
&, = —cos (%) 0; — sin (%) #?)x 19)
+ + 2.0
£ = —sin (NZE ) %81- + cos (%) ,ugx 0_
- g (Y

Earyy = 0y — 200, (2.3)

A little explanation of the subscripts in the above expressions is in order: a generic
so-called Cahen-Wallach space, of which the 11-D PP-wave is a special case, can be
written as the coset space G/K, where G is the group whose algebra is spanned by
{e_,eq,eq, ey}, and K is the subgroup whose algebra is spanned by e%; M;;, My,

are the generators of SO(3) and SO(6), which are the symmetry transformations
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preserving the (+4) component of the 11-D PP-wave metric.
Next let us look at the Killing spinors, which are determined by the condition

that the supersymmetry variation of the gravitino field v, must vanish

1
Ve = @ pQRs(FPQRSM + 8FPQR5}?’4)E (2.4)

where Vi = 0y + iwﬂj;‘BFAB and the gamma matrices are those of SO(10,1). There
are 32 independent solutions to this equation, making the 11-D PP-wave a maximally
supersymmetric solution of 11-D supergravity. These 32 Killing spinors depend only

on 2 and not the other coordinates, and are given by

xt , xT xt ) xt
€= [cos (%) + sin <MT> F123:| Y+ |:COS (%) + sin (,ul_2) F123:| Uy

, 1 xt xt
—|—% (Z mTi - 5 Z.’L’ara> |:— sin (Ml—Q) — COS (Iul—2> F123:| F,er

(2.5)

where ¢, are arbitrary constant spinors satisfying I'11, = 0

Now let us look at the symmetry superalgebra. In the superalgebra, the commuta-
tor between two bosonic generators is realized as the Lie bracket of the two correspond-
ing Killing vector fields. The commutator between a bosonic generator and a fermionic
generator is realized as the spinorial Lie derivative Lxe = XMV e+ %V[ MX N]FM Ne,
where X and e are the corresponding Killing vector and Killing spinor, respectively.
The anti-commutator between two fermionic generators is realized as the bilinear of
the corresponding Killing spinors, namely, for two Killing spinors €1, €5, one simply

takes 61" ¢, to get a Killing vector.
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The commutators of the bosonic generators are

e eal = €, e €l] =t fer el = —Ee,
9 36
#2 2
i, e5] = —e-dij,  lea, @] = —5ze-das
[Map,ec] = —daces + dpcea
[MAB, 62«] = —(5,406*3 + 53062 (26)

The commutators of the bosonic generators and the fermionic generators, with
-+ being the 32 fermionic generators generating shifts proportional to the constant

spinors ¢4 parametrizing the Killing spinors, are

le_,Q+] =0, [e4, Q-] = HF123Q—, ler, Q4] = ﬂr123Q+

4 12
[617 Q—] = %FHSFiFfQJm [eau Q—] = %F123FaF7Q+
€.Q =~ q, (o= -LrrQ
v 18" r b 720 T
1
(Map, Q1] = §FABQi (2.7)

The anticommutators between fermionic generators are (suppressing spinor in-

dices)

{Q-.Q-} = -T,C e
{Q_, Q+} = — Z FAC’_leA - % Z 1—‘123]_—‘7;0_16: - 2 Z F123FGC_1€Z

A a
. —1 H i v—1 % ab v—1
{Q4,Q4} =-T_C ey — 6 ZF—FmF O™ My + 2 Zb:F—FmF C™ My,

ij

(2.8)

with C being the charge-conjugation matrix.
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2.2 How the PP-wave Arises as a Penrose Limit of

AdS x S

We follow [9, 28] in our review of the Penrose limit in the context of 11-D supergravity
(again, we exchange the ™ and 2~ in their notation).

The Penrose limit of a space-time can be thought as a blowup of the space-time
along a null geodesic. The starting point for the derivation of the Penrose limit is
the metric g and p-form potential (p = 3 in the 11-D supergravity context) A, in a
neighborhood of a conjugate-point-free ! segment of a null geodesic v in the original

space-time given by

g=dVv (dU +adV +) 6AdYA> +)  CupdyHdy” (2.9)
A AB

where «, 54, C'4p are functions of all the coordinates, and C'4p is a symmetric positive-
definite matrix. In this coordinate system, the null geodesic is parametrized by U,

with V =Y4 =0. Also
AUBlBQ...Bp_l == AUVBlBQ...Bp_Q = O (210)

where this form of A, can be achieved by using its gauge freedom.

Then we rescale the coordinates to
U=u, V=0%, Y4=Qy! (2.11)

with € being a positive real constant. Acting with this diffeomorphism on the tensor

fields of the theory we obtain the Q2-dependent family of fields g(€2), A,(£2). Then the

'Recall the following definition of conjugate points [38]: Use 7 to denote a geodesic. A solution
n® of the geodesic deviation equation vV, (v°Vyn®) = — R, snPv®v? is called a Jacobi field on . A
pair of points p,q € vy are said to be conjugate points, if there exists a Jacobi field n® which is not
identically zero but vanishes at both p and ¢q. Roughly speaking, two points p and ¢ are conjugate
if an “infinitesimally nearby” geodesic intersects v at both p and gq.
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Penrose limit of the original space-time is defined as
T ) A — 1: —p
g= glzlg%)Q g(), A, = Slzl_I%Q A,(Q) (2.12)
The limiting fields depend only on the coordinate w, which is the affine parameter
along the null geodesic. The space-time resulting from this limit is expressed in Rosen
coordinates. One can change to the more usual Brinkman (or harmonic) coordinates

(we will not give the details of this coordinate transformation here) in which the

metric takes the form
g =2dztdr + (Z ABC(x+)xBxC) (dz™)? + Z da’ da? (2.13)
BC A

When Ape is constant the above metric is a Lorentzian symmetric Cahen-Wallach
space.

The nice thing about the Penrose limit is that, if the original space-time is a so-
lution to the supergravity field equations, so is its Penrose limit; also, the number of
(super)symmetries of the original space-time does not decrease in this limit. Hence,
even if the M-theory of concern in the original space-time is beyond our analytical ca-
pability, we can still take a Penrose limit, usually making the problem more tractable
and still getting physically meaningful data.

Now let us see how the Penrose limit works for the original space-times of interest,
namely, AdS,; x S” and AdS; x S*, which are the near horizon geometries of M2 and
M5 branes 2. If we define p = RRLZS as the ratio of the radii of the AdS part and the
S part, then p = % for AdSy x ST and p = 2 for AdS; x S*.

2 A quick review of the near horizon geometries following [39]: The metric created by N M2 branes
is ds® = f2/3(—dt* + dz?) + f1/3(dr? + r2dQ2), f = 1+ (R/r)®, where R® = 3272NIS and Z is a
two-dimensional Euclidean vector. In the near horizon region r << R, so f ~ (R/r)®. Plugging this
into the metric and letting r = R3/2(u/2)/2, one gets ds® = (R/2)* [(du?/u?) + u?(—dt* + d7?)] +
R2d0O2, which is of the form AdSy x S” with the AdS part in the Poincaré coordinates, and Ragqs =
R/2, Rs = R. The derivation of the near horizon geometry of N M5 branes is similar.
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The metric of the original AdS x S space-time is

dr?

1472

Ri%g=p° [—er + (sinT)? ( + T2dQ§):| + dyp? + (sing)?dQ3_,  (2.14)

with p = 2 for the M2 case, and p = 5 for the M5 case. One can change the coordinates
(1, 7) to (u,v)

u=v+pr, v=1—pr (2.15)

in terms of which the metric becomes

_ . U—v dr? ) u—+ v
Rg%g = dudv + p? sin® ( % ) (1 2 + r2dQ§> + sin? ( 5 ) ng_p (2.16)
One then takes the Penrose limit along the null geodesic parametrized by u. In
practice this amounts to dropping the dependence on coordinates other than w, and
replacing the spherical metric dQF_, with the flat space metric ds*(E®?) (because

in the Penrose limit we are looking at a small region near the null geodesic on the

sphere S¥P which is effectively flat space). The metric then becomes
R3%5 = dudv + p? sin® (;) ds*(EP*Y) + sin? (g) ds?(E5P) (2.17)
p

with ds?(E) denoting the metric of Euclidean flat space.
The above g is in Rosen coordinates, so let us change it to Brinkman coordinates.

First introduce coordinates y*, A = 1,...,9 so that

in?(Au)
25 = dud st (Aaw) g 4 2.1
Rs%g uv+§A: @z W (2.18)
where
1 1
Mm=—, A=1,...,p+1;, Mq==, A=p+2,..,9 (2.19)
2p 2
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then change coordinates to (z*, 27, ') where
Loou 1 4 asin(2hqu) 4 ysin(Aau)
==, T =v— - — 2 =y —— 2.20
2 1 ; YT IV (2:20)
The metric becomes
R3%g = 2dx"dx™ — 4 (Z )\ixAxA) (dz)* + Z da? da (2.21)
A A

As is easily seen, the p = % and p = 2 cases are isometric, with the explicit diffeomor-
phism given by 27 — %:17*, r- — 2z, and (2!, ..., 25 27, ..., 2% — (2, ..., 2% 2!, ..., %),
Also, this metric is just the 11-D PP-wave, as is seen by rescaling all the coordinates
by Rg, and then scaling x* and z~ oppositely by u/3.

Finally, let us give an alternative (and easier to remember) way of taking the
Penrose limit of AdS,;2 x S (p = 2 or 5) to get the 11-D PP-wave, which is
parallel to the treatment of AdSs x S° in [10].

Let us use the global coordinates (7, p,2,) for the AdS part, and coordinates

(8,0, ) similar to those in [10] for the S part. The metric is

ds®> = p?R*(— cosh? pdr? + dp® + sinh? dezz)) + R?*(cos® §dB* + db? + sin® HdQ’ﬁp)

(2.22)

Notice that now we use p to denote the ratio Ré‘gs, with p denoting a coordinate.

Consider the null geodesic v given by p = 0,0 = 0,3 = pr. To zoom in to the

neighborhood of 7, we introduce 7+ = w, and perform the rescaling
et i =t = g Y 2.93

Now let us take the R — oo limit. The infinite terms (i.e., terms proportional to R?)
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in the metric (2.22) cancel out, and we get

ds? = —4datde™ — (% + p2y?) (dat)? + (dr® + 1r2dQ2) + (dy* + y2d%2)

(2.24)

Notice that in the above metric, the +4 component arises from expanding cosh p
and cos  to second order in p and 6, respectively. This metric is again just the 11-D

. + _ 3
PP-wave, as can be seen by rescaling * by £ and 2~ by —3
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Chapter 3

The Gauge Theories Describing
M-theory Objects in an
Eleven-Dimensional PP-wave
Geometry

First, a few remarks on the notations and conventions used in the rest of this thesis:
other authors’ results are cited at various places, however different authors use their
own notations and conventions, differing by extra minus signs and numerical factors.
We do not always bother to recast them in a uniform way, except when necessary, e.g.
when comparing gauge theory results with supergravity results where these factors

really do matter.

3.1 Matrix Theory

The action of Matrix theory in the 11-D PP-wave background was first proposed by
Berenstein, Maldacena, and Nastase (BMN) in [10]. It is given by

2 3py2 9
S—/dtTr{ ZILDXI 2 4 iy Dy + 20 > IxLXIP

2R 4R 7
9 3 9
+(MPR) Y [, X + (57 20 = () Yo ]
J=1 i=1 a=4
M3R)u . o
T DY) eijmxw’f)} 3.)
1,],K=
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where Do X! = 9, X1 — i[ Xy, X1], and Dyt = 0p — i[Xo, ¢]. Here X, X!, and ¢ are
all N by N hermitian matrices. M is the 11-dimensional Planck mass, and R is the
radius of light-like compactification in Discrete Light Cone Quantization (DLCQ) [3].

Eqn. (3.1) is a one-parameter generalization of the flat-space formula of [2].

3.1.1 Derivations

There are many derivations of (3.1). We will explain three of them. Different ap-
proaches are motivated by different (although usually related) physical pictures, and
they give answers that agree. Being maximally supersymmetric (that is, having 32
supersymmetries, 16 of them linearly realized, and the other 16 nonlinearly realized)
is a very restrictive condition, with very few theories satisfying it, so agreement is not
surprising.

I. The BMN Approach

One approach is that taken by [10]. The starting point is the k-symmetric action
of a superparticle in the 11-D PP-wave

S = /dt e 'LALY (3.2)

where L is the pull-back of the 11-D PP-wave supervielbeins, which can be obtained
by taking the Penrose limit of the supervielbeins of AdS x S spaces given in [40].
Upon gauge fixing the x symmetry by choosing the fermionic light-cone gauge, and
also fixing the bosonic light-cone gauge by setting e = 1,21 = ¢, S takes the form of
free massive bosons X and fermions v with the masses ~ p. Then one generalizes
this action to a nonabelian one by promoting the fields X and ¢ to N x N hermitian
matrices. One then adds the Myers term [41] ~ pe;;xTr(X* X7 X*) and the usual flat-
space commutator terms. In this way one gets the matrix theory in 11-D PP-wave
background.

II. Supermembrane Approach

Another approach, given in [29], is also based on the eleven-dimensional perspec-

tive. However, the starting point is not the superparticle, but the supermembrane.
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The basic idea is the same as that in flat space [11].
First one writes out the action for the supermembrane in 11-D PP-wave, which

consists of the kinetic term and the Wess-Zumino term

1 ..
S = / d*o {— \/ — det (I TLm,) — éewkng‘nfngBCBA (3.3)
where ZM(g) = (X*(0),0%0)) are the target superspace embedding coordinates,
4 = 85:[ E%, is the pull-back of the supervielbein E3; to the membrane world-

volume, and Bj;yp is the three-form superfield whose bosonic part is the three-form
A,p. The bosonic part of this action is worked out in Subsection 4.1.2 (see eqn.
(4.32)), as a simple example of constructing the light cone Lagrangian for a membrane
in an arbitrary eleven-dimensional supergravity background. As for the fermionic part
of the action, one again uses the expressions for the supervielbeins in terms of the
component world-volume and background fields given in [40], imposes fermionic light
cone gauge to fix k-symmetry, similar to the superparticle approach. The resulting

supermembrane Hamiltonian is, in the notation of [29]

e for (A A () o (2 )

—%eiﬂf{xi,){j}xﬂ - %@TyA{XA, T} — %uqf%l??’\p} (3.4)
with the Poisson bracket defined as { X4, XB} = (0, X140, XP — 3, X149, XP), not to
be confused with an anti-commutator.

Now to pass to the Matrix theory action, one has to “regularize” the above su-
permembrane theory using the prescription of [11], which, roughly speaking, says one
should expand functions on the membrane using a complete set of basis functions,
and truncate the basis to a finite subset. The result is that one replaces functions

on the membrane with hermitian N x N matrices, integrals with traces, and Poisson
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brackets with commutators

XYo) — %XA, V(o) — U, p+/d20 — Tr {,} = —i[,] (3.5)

This gives the action (3.1).

II1I. Multiple DO-brane Approach

Yet another approach is from the ten-dimensional perspective, by considering the
dynamics of multi DO-branes in IIA string theory, as given in [29]. That analysis is
based on [6, 7], which gives the matrix theory in a general weakly curved background.

In [6] it was proposed that up to terms linear in the background metric perturba-
tion hyy (915 = nry + hry) and three-form Ajjx, with I, J, K = 0, ..., 10, the matrix
theory action in a weakly curved (i.e., |hrs] << 1, |A;jkx| << 1, noting that Asx
is also dimensionless) general 11-D background is given by, in the notation of that
paper

S = Shat + Sweak (3.6)

with Sgae being the formula for flat space

1 ,
Sﬂat - — drTr {—DTXZD‘,-Xl + §[X“ X]][Xu XJ] + @aDT@a — @a’}/;ﬁ[Xia @g]}

2R
(3.7)

with 7,5 = 1,...,9, and R being the radius of the light-like compactified x~ direction
as in (3.1). The additional term

Syeak = / drz o= ( Tl i)y 0, by (0) + JEG-g, 0 Apyi(0)

n=0 91,...,in

+ MITELMN in) g 9 AP v (0) + fermionic terms)

(3.8)

with AP being the six-form potential dual to the three-form A. Note that Syeak

is in the form of the moments of the currents, the moments of the stress tensor
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T1Gn) those of the membrane current J!/K(1-in) and those of the five-brane

current M !JELMN (ir...in)

, coupling to the background fields. The currents are obtained
by taking a trace which is symmetrized over all orderings of terms of the forms Xt
F;; = i[X", X’], ©, and [X", 0] (we denote this symmetrized trace as STr). As

examples,

1
T = —STr(1
=ST(1)
7+ — Lo (Lxix + Lrm, + Lo X4 0] (3.9)
- R 2 4 ) () 2 ’y Y N
There are two types of terms which contribute to higher moments of the currents.
For example, the higher moments of the stress tensor are given by

I (irein) _ Sym (TIJ;Xil,XiQ’ ...,Xi") + I (ir-.cin) (3.10)

fermion

where the contributions Sym (STr(Y'); X% X% ... X'") are defined as the symmetrized
average over all possible insertions of the matrices X into STr(Y) (where Y is the
product of terms of the forms X?, F;, ©, and [X?, ©)]). T--in) are additional terms

fermion

containing fermions, with one simple example being

T, = %s& (ey1710) (3.11)
The higher moments of the membrane current and five-brane current are given in
a similar manner. For a more complete list of the moments of the currents, see
Appendix A of [7].

Before relating the above matrix theory to multiple DO-brane dynamics in ten-
dimensional ITA string theory and applying the formalism to the IIA background
obtained from a space-like compactification of the 11-D PP-wave, we would like to
make one remark: as pointed out in [29], using the matrix theory action given in eqn.
(3.6), one can directly derive the matrix theory in 11-D PP-wave in the weakly curved

approximation. The reason that we would like to present the somewhat indirect
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10-D approach is that the 10-D viewpoint in term of DO-brane dynamics is quite
informative, e.g., it clarifies the subtleties involved in light-like compactification as
well as how dynamics in eleven dimensions is related to that in ten dimensions. Also,
in [7] this procedure is actually used to predict the previously unknown multi DO-
brane action in a general weakly curved type ITA supergravity background.

As pointed out by Seiberg [4] and Sen [5], light-like compactification and space-
like compactification of M theory are related by a certain limit. More specifically,
M theory with Planck scale Mp compactified on a light-like circle of radius R and

N

momentum P_ = % is the same as M theory with Planck scale Mp compactified on

a spatial circle of radius R with N DO-branes in the limit

R, — 0

Mp — oo

R,M? = RM? = fixed

MpR; = M,R; = fixed (3.12)

where R; is the characteristic length of the transverse metric. The ITA string the-
ory resulting from M theory has its string coupling and string scale given by G, =

3/4(RM]2:,)3/4 and M? = Rs_l/Q(RMI%)3/2, and is thus a weakly coupled string theory
with large string tension in the Seiberg-Sen limit, which is a very simple theory and
lies at the root of the simplification of the matrix theory. Also note that the condition
R.M3 = RM?% = fixed is to ensure that the energies of the states we are interested
in remain finite rather than going to zero in this limit. Now let us apply the above
Seiberg-Sen limit to the weak 11-D background at hand.

Recall that our light-like compactified M theory has the background g;; = n;; +
hry, with the light-like (in the flat space limit) direction =~ being a circle of radius R.
This theory can be obtained by an infinite boost of a space-like compactified theory
as follows. Consider the M theory with background metric ;5 = 17y + hry, where

10

the space-like direction z'” is a circle of radius Rs. These two theories are related by



21

a boost along the z'° direction with the boost parameter being

R2
,YZHQ_R2+1 (313)

in the Ry, — 0 limit. The components iLI 7 and hyy are related in an obvious manner
through this coordinate transformation.

The M theory compactified on the space-like circle z'° is equivalent to type IIA
string theory with the background metric, Ramond-Ramond (R-R) one-form, and

dilaton given to leading order by

- 1 -
h,LII,{/A = hlw + §nuvh10 10
Cy = hioy
3.

¢ - Zhlo 10 (314)
where p,v = 0,...,9, with the string coupling and the string scale being g; =
(RsMp)32, M, = RY* M.

Combining the above two steps, namely, boosting and compactifying to ten di-

mensions, one obtains the following relations between the metric components

hllA = gm + SR—}ih++ 1 %h

pIIA — %hﬂ- + Rﬁh

hiid = hy; + %&-j <—h+ + 4R—]§2h++ + %h)

Co= %hH - Z—;h_

C; = %fm - R%h_i (3.15)

where on the right-hand side we have kept only the leading term in R;/R for each

of the components of the metric hy;. In the above we have only considered the 10-D
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fields resulting from the 11-D metric. The relations for the other 10-D fields, i.e.,
the Neveu-Schwarz-Neveu-Schwarz (NS-NS) two-form and R-R three-form, can be
worked out similarly.
Apparently the right-hand sides in the above expressions for the IIA string theory
fields diverge when R; — 0. This is because we are not done with Seiberg-Sen limit
yet. In the spirit of that limit, we should make the further rescaling in the IIA string

theory action

R\ 2 . RAY2
RH(ES) R, xzﬁ(f) z',  h(Z) — h(Z) (3.16)

with the goal that the energies that we are interested in should remain finite when
R, — 0. Note the above rescaling of the transverse direction z* can be inferred from
the rescaling of R; in eqn. (3.12). Section 2.2.2 of [7] gives a nice illustration of this
rescaling in the single DO-brane case.

The multi DO-brane action in weak ITA supergravity background is given by
S = Sﬂat + Sweak (317)

with Sgae being the flat space expression, and

Suwsc = [ dth.[ Ok Dby VS - (O Oy ) 1

+ (O Orn G )Iu(kl )y (Oky -~ akncumpar()[“w\pw((kl hn)

+ (akl"-aknB;w)I'uV(klmkn) + (8]<;l...aknBMV/\pm.)[lW)\pgT(kl"'k")

)]uu)\(kl ky, )+ (akl 51m0 )quz\pa(kl kn)

2N

+  (Ok, - DO

2N

(3.18)

Let us explain the meaning of the various terms in this action. Similar to the 11-D
case, the additional term Syea in the action due to the curved background takes
the form of moments of currents coupling to 10-D background fields. I}, is the stress

tensor, Iy is the current coupling to the dilaton, I/, and I, are DO brane current and
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D2 brane current coupling to the R-R one-form C and three-form C®, respectively.
I and I are D6 brane current and D4 brane current coupling to the dual seven form
C and dual five form C®, respectively. And I, and I5 are the currents associated
with fundamental string and NS5-brane which couple to NS-NS two form B and its
dual B, respectively. It is understood that in the above action the R, — 0 limit is
taken, with the rescaling of parameters as described earlier performed to ensure a
finite result.

By requiring the action (3.17) to reproduce the action (3.6), the various currents
I and their moments in (3.17) can be related to the 11-D stress tensor, membrane
current, and five-brane current. The results are given in equations (17), (19), (21),
(22) of [7], and we do not reproduce those equations here.

Finally it is time to apply the above formalism to the 11-D PP-wave [29]. The

metric of 11-D PP-wave is given in light-cone coordinates, so we first (un)boost it

with a boost parameter v = 4 /% + 1. Under this boost,

. R, . _ V2R

T, T —

V2R R,

x (3.19)

As one can see, the 11-D PP-wave metric is invariant under this boost, except that

2
its (++) component, or equivalently 2, is rescaled by ( \%5 ) . Combining this with

the rescaling of dimensionful parameters R, z# described earlier [7] to ensure finite
energies, one sees that the overall effect of boost and rescaling is p — p1/v/2.

Hence, in the unboosted frame, the 11-D metric becomes

2 F2 2 F2 10\2 F2 10 : A A
%:—1%2ﬁ+]fq(w)—7Mx+me:(M@
A=1
1

with the positive quantity F? = —g, = p? [3 S (@) + = 2224(:13“)2}. The four-

form field strength in the unboosted frame is

Fias310) = —Fo1s = g (3.21)
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Next we perform a space-like compactification along the z'° direction to get a ITA

supergravity background
ds? = —e i At + €5 0 apdrtda® (3.22)

with the dilaton, R-R one-form, R-R three-form, and NS-NS two-form given by

F? F?
T=1-"", Co=—0p, Coy= %Eijkx’“, By = Leyyat (3.23)

€ )
4 6

If we now use the approximation that the background is weakly curved, i.e., F? <<
1 (recall that —F? = g,y = h,,), then to linear order in F?, the dilaton, R-R one-
form, and metric perturbation are
F2

F2
hiIA ~ —5 hi ~ _§6AB (3.24)

3 F?

~——F?% Co~ ——

¢ 16 ) 0 4

As a check, these expressions do agree with the general expressions given in eqn.

(3.15), with hy, set to —F? and all other components of h set to zero (also after
rescaling by (Rs/R)?).

Now consider the multi DO-brane action (3.17) in the above weakly curved back-

ground. One finds that the terms arising from the eleven-dimensional metric are

1 1 . 1
52 — EaAaB(ZbI(;AB) + ZaAthﬁ/A];; (AB) + 58,4(9300]8(143)
3

1 1
(0405 F?) él(ff‘m + 51,?°<AB> + ééch}?D(AE‘) +2109P(3.25)

1
16
Dropping higher-order terms that vanish in the Seiberg-Sen limit, eqn. (17) in [7]

gives the following expressions for the currents Iy, I, Iy

1 1
I¢ — T++ _ §T+_ _ 5(SCDTC'D

[0 =t 4t [CD = 7OD

I =T%" (3.26)
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and their (AB) moments are given by just adding superscript (AB) to both sides of

the above expressions. Plugging these moments into eqn. (3.25), one finds
1
Sy = —Z(aAaBF2)T++<AB> (3.27)

Using eqn. (3.10), one finds TH(A5) = +Tr(X4XP). Plugging in the explicit expres-
sion for F? = —g,, we see that Sy gives the bosonic mass term in the matrix model

(3.1). The terms arising from the eleven-dimensional three-form are

Sy = OB "™ + 04C,s, 157"

= Onm (%e]kx’“) [I;’J'(m) + 3157 (3.28)

Dropping higher-order terms that vanish in the Seiberg-Sen limit, eqn. (19) in [7]

gives following expressions for the currents I, Io
19 =3t )9 = gt (3.29)

and their (m) moments are given by adding superscript (m) to both sides of the above

expressions. Plugging these moments into eqn. (3.28), one finds
Sy = preizpd IO (3.30)
with

g - _ Ly (z’[Xi, X X* 4 quTyijkqf> (3.31)
6R 8
as given in Appendix A of [7]. Now it is easy to see that S5 gives the fermionic mass
term and the Myers term in (3.1).
We know that the Matrix model (3.1) is true to all orders in F?; since the other two
derivations of it described earlier did not require the background to be weakly curved.

Hence it is interesting, from the perspective of this third derivation using the formula
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for multi DO-brane action in weakly curved backgrounds, that there are no corrections
to the weak background result. Also, as can be computed, the scalar curvature of the
ITA supergravity background obtained by compacting the 11-D PP-wave along x'° is
given by

8

2
H - i a
R=—"(1=F /97 la—btp®> (2') —ep® Y (a%) (3.32)
with a, b, ¢ being positive constants. This scalar curvature diverges as F? approaches
4, making the ITA background singular. This is due to the fact that gig 190 changes
sign when F? goes beyond 4, making our space-like compactification along z° lose
its validity. All in all, the reason that the Matrix model derived above turned out to

be valid beyond the weak background approximation is likely to be due to the fact

that the 11-D PP-wave we started with is maximally supersymmetric.

3.1.2 Supersymmetric Classical Vacua

The vacua of the Matrix model in the 11-D PP-wave are given by configurations
which minimize the potential term. The nice thing about the potential term is that

it can be written as a sum of squares,

V= gTr [(%Xi + ieij"’Xij>2 + %(z’[X“,Xb])2 + (i[X X)? + <i>2 (X“)Q}

(3.33)

in the notation of [29]. The last term in the above potential requires X* to vanish at

a minimum. Then one finds that the whole potential vanishes for

Xi= 3.34
3R (3.34)

with J* being the generators of an SU(2) algebra in the N-dimensional representation
[J¢, J7] = i€k gk (3.35)

Hence the classical vacua are labelled by N-dimensional representations of SU(2),
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which are specified by (Ny, ..., Ni) : partitions of N into sums of positive integers with
the N;’s being the dimensions of the individual irreducible representations making
up the N-dimensional representation. The interpretation of this result is that each

vacuum corresponds to a set of membrane fuzzy spheres with radii r; = 5/ NZ—1=~

i
6R

when the N;’s are large.

The above classical vacua preserve all of the sixteen linearly realized supersymme-
tries of the theory [10]. As it turns out these classical vacua are also exact quantum
vacua [42].

One interesting observation about these vacua made in [30] is that they actually
can also be interpreted as transverse five-branes in M theory. For example, the trivial
vacuum X® = 0, labelled by the partition (1,1,...,1), can be interpreted as a single
five brane in the large N limit. The evidence for this is provided by comparing the
spectrum of fluctuations about the single five-brane in 11-D supergravity with the set
of protected excited states about the X = 0 vacuum on the Matrix theory side and

finding precise agreement.

3.2 The Three-Dimensional Theory Describing Mul-

tiple Concentric Spherical Membranes

3.2.1 Derivation

The three-dimensional theory describing multiple concentric spherical membranes in
the 11-D PP-wave background is a SYM-Higgs theory with 16 supersymmetries living
on R x S?% first derived in [30]. The approach adopted in [30] is taking the Matrix
quantum mechanics model in 11-D PP-wave proposed by [10], expanding it around
the k-membrane vacuum where there are k copies of the N-dimensional irreducible
representations of SU(2), then by letting N — oo going to the continuum limit to
get a 3d theory with gauge group U(k).

However, in a certain sense, the above approach is unnecessarily complicated, be-

cause the (0 + 1)d matrix model can be obtained by discretizing the supermembrane
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theory, and then what the above approach does is taking the continuum limit to get
back to a 3d gauge theory. Here we take a different approach that goes directly from
supermembrane theory to the 3d gauge theory, without the detour just described (see
also Section 7 of [29]). We take the supermembrane action given in [29], which is
already a 3d theory, expand it around the single spherical membrane vacuum, throw
away higher-order terms, get a U(1) 3d gauge theory, and then by adding adjoint
indices to the fields obtain the nonabelian theory which describes multiple concentric
membranes. The result of this simpler approach turns out to be the same as that of
[30], which is not surprising because both can be regarded as deforming the usual 3d
SYM-Higgs theory in flat space while preserving sixteen supersymmetries, and there

are not so many such deformations! The following are the details of this approach.

I. The Abelian Theory

Ref. [29] gives the following supermembrane action in the 11-D PP-wave back-

ground

Ly = =p* (XA>2

VLo ome . LN onz . (107N va2)  HPT sikrwi win ok
T Z{X 7X}+§ 3 (X)) + o (X) —TGJ{XJ(J}X

Fib T BTy AL XA, B+ %w%mqf

The indices: A =1,...,9,i =1,2,3, a = 4,...,9. {f,g} = €0, f0sg is the Poisson
bracket on the membrane. W is a 16 component real spinor. v are the 16 x 16 gamma
matrices of SO(9), {74,7P} = 2648; and we choose all the v4’s to be real and sym-
metric. (One explicit representation of the y4’s can be found in eqn. (5.B.1) of [43];
however in the following derivation we don’t need to use those explicit expressions).
12 = 414243, b and c in the fermionic part of the lagrangian are real constants to
be determined later on by requiring supersymmetry. (We don’t take the values for

b, c given in [29], since our conventions for spinors and gamma matrices shall differ

from [29].)

(3.36)
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We take the world volume of the membrane to be R x S?, with R parametrized by
time ¢ (which is the T of the 11-D target space) and the unit sphere S? parametrized
by (0, ¢) and the action is S = [dtdfd¢psinf L. Note that on a unit sphere the
Poisson bracket of two functions f(6,¢) and g(0, ¢) is given by

1
sin @

{f.9} = (09f 059 — 051 Ong) (3.37)

A solution to the classical supermembrane equations of motion is one satisfying

{X X7} = eijk%X’“, which minimizes the potential. This is a sphere X* = 2!, with

+ + +
zt = % sinf cos ¢, % = % sinfsin ¢, 2° = % cos 6 (3.38)

Fluctuations about this spherical membrane background give us a U(1) SYM
theory. More specifically, let us expand about this background: X¢ = 2 + Y*. Then
in terms of the fluctuation fields Y?, X and ¥, eqn. (3.36) becomes

Lo=L+L (3.39)
where £ consists of terms quadratic in the fluctuation fields, and is given by

LY X% W) = %p+ [(Y)2+<X)2]

1
2pt

oyt (1) ]
FbTTY + iUy {2, T + %M\I/Tquf (3.40)

with F* = €% {2 Y7} — %Y’“. L’ consists of terms of cubic and quartic orders
in the fluctuation fields. Using the shorthand notation z for 2%, Y for Y*, X for
X? and suppressing gamma matrices, we see that the cubic terms are of the forms
{VYHz, Y {Y,Y}Y, {Y, Xz, X}, U{Y, U}, and ¥{X,¥}. The quartic terms
are of the forms {Y;YHY, YV}, {X, X}{X, X}, and {Y, XY, X }.

By looking at the quadratic kinetic terms in £, we determine that Y? and X



30

both have mass dimension one half, and ¥ has mass dimension one. Noticing that
the Poisson bracket {,} contributes two spatial derivatives, and the appearance of
x inside the Poisson bracket cancels one spatial derivative, we find that the cubic
terms in £’ are of mass dimensions % and g, and the quartic terms in £ are of mass
dimension 6. Hence all the terms in £’ have mass dimensions greater than 3 and are
thus non-renormalizable. So, in what follows we throw £’ away, and only look at £
as given in (3.40).

Consider the following U (1) gauge transformation, with a time-independent trans-
formation parameter A(6,¢) (the time-independence of A is a result of taking the

gauge where the temporal component of the U(1) gauge potential A; vanishes):
(5gaugeYi = {A, 2"}, Ogange X* = 0, Ogauge¥ = 0 (3.41)

As can be easily verified using the Jacobi identity of the Poisson bracket and the
fact {2, 29} = €% %xk , the F'* we introduced above is gauge-invariant. Since A is
time-independent, Y is also gauge-invariant. Hence this U (1) gauge transformation
leaves £ unchanged.

Now let’s show that our theory has 16 supersymmetries. Consider the following
supersymmetry transformation with the parameter being a 16-component real spinor
€(t) (Recall that € is time-dependent due to the supersymmetry algebra of the 11-D

PP-wave target space) is

SY' =ity 4 MAg, 2'}, X =il A"
o0V =e <YWz + X“'y“> € + eg FFnFny123¢

+es{z’, X }y'y% + nu Xy y e (3.42)

where Ay = ieTW. Also ¢ = muy'?e. We will determine the constants A, ey, e, €3,
in the supersymmetry transformation, the constant m in the expression for ¢, and the
constants b, ¢ in the action (3.40) simultaneously by requiring supersymmetry.

The above supersymmetry transformation basically comes from truncating higher-
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order terms in the supersymmetry transformation of the original supermembrane
theory when expanding around the vacuum background. The Ay term in the super-
symmetry transformation of Y is a compensating gauge transformation needed to
remain in the A; = 0 gauge. Recall that the supersymmetry transformation of A; is
0A; = p%eT\Il, and the gauge transformation is dgaugeAr = —p%(f)tAo. Requiring these
two transformation to cancel so that we remain in the A, = 0 gauge gives Ag = ie7 0.

Demonstrating the supersymmetry is fairly easy and not so instructive, so we
don’t bother to write out the details and only explain the strategy here: Since the
SO(3) and SO(6) parts don’t mix, we’ll look at their variations separately, namely,
we consider 6L that only depends on the Y?’s, and §£ that only depends on the X%’s.
When there are two time-derivatives on the fields (time-derivatives on e can always
be replaced by a term proportional to uy'*3¢), we let one of them act on the boson
and the other on the fermion. When there is only one time-derivative, we always
move it to act on the bosons by integration by parts. We always let the Poisson
bracket act on the bosons using integration by parts. Also, it helps to first look at
terms containing two powers of p explicitly (in comparison, there are many terms

containing one power of u, because the Poisson bracket of two 2’s gives a p). Some

useful gamma matrix identities are y/y12% = LeiFndnF LeiPly v v, = §iny128 — cnery,
and yFy12yt = gFiny123 — ki, The fact {z¥, F*} = 0 comes in handy, too.
We find the following values for the coefficients:
1 1 pt 1 1 pt 1
b:_la CZ_F7 )\:__Jr? 61:77 62:_57 63:_57 n:_ﬁa m:_ﬁ
(3.43)

plugging these values into the expressions for the Lagrangian and supersymmetry
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transformation, we get the action

LY X% W) = %p+ [(Y)QJr(X)Q]

1 2 ; pp* ? 2
. Fk i a2 a
e ( )+{x,X}—|—(—6 (X
. 1 o i
o g T ifi v pTA123
AR 2p+\lf v{x,llf}+4,u\11 v (3.44)

and the supersymmetry transformation

§Y' =il ' — —{Ao, 2}, 60X = iel W
p

PY (i a_a Lok k123
5@:7<Y7+X7>e— SF e

L i sayaina P’ o123

—§{x,X i vy%e — E,uva € (3.45)

with ¢ = — %/wl%e.

II. The Nonabelian Generalization

Generalizing the theory to the nonabelian case by adding adjoint indices to the
fields is fairly straightforward. We use the latter half of the alphabet, e.g., m,n,p,
as group adjoint indices. fy,n, is the real, totally antisymmetric structure constant of

the gauge group. The gauge transformation of the fields is given by

5gaugeyyi - {Am7 xl} + gfmnpAnY;
dgange Xy = gfm"pAnXg

Osauge Um = gf""PA, W, (3.46)

where ¢ is the gauge coupling, A,, is the time-independent gauge transformation

parameter. Also, the adjoint indices are raised/lowered by the Kronecker delta.
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Define the following gauge-covariant field strength and covariant-derivatives:

Fi = (' Y} + Sy ) - “g v
B = (2 X5+ 0

ab __ mn avb
Fm - gf anXp

g&o={2", 0, } +gf"Y0, (3.47)

which all have the standard gauge transformation dgauge(---)m = gf™"PAn(...)p.
Now it’s easy to see that, in terms of these gauge-covariant objects, the nonabelian

generalization is

Y[ 2 ra \2
'Cnonabelian = 7 |:(Ynlz) + (Xﬁz) i|

Ly <F$>2+§<F;b>2+(£) <X;z>2]

2p+ 6

1 1
—i\I/T \If _ Z—\IJT ,yzgz . fmnqum’YaXa\Ij + 24M\Dm7123\1jm
pr p
(3.48)
The supersymmetry transformation is
Y = i€l A, — F ({(Ao)m,x }+gf p(Ao)an)
N a 1 mn a
0X2 = i€l N, — Fgf P(No)n X,
p+ N . 1
0= (Vo + X57")e = §Fk’7k’7123
1 1 pt
an i, Fab X4~ 123
2 Ve~ 1 Y ’7 €— 12# m7
- Lo, (349

where (Ao)m = 4elU,, is the time-dependent compensating gauge transformation
parameter, and we still have ¢ = — & 1y'?%¢ as in the abelian case.

The gauge-invariance of Lyonabeian 1S €asily seen since it is built from gauge-
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covariant objects. Demonstrating that it is invariant under the supersymmetry trans-
formation given above is straightforward, although a bit tedious. Compared with flat
space-time we now have many more terms due to two facts: time and space are now
divided into R x S?%; the nine transverse directions are now divided into SO(3) and
SO(6). We relegate the detailed proof of the invariance of Lyonabelian i €qn. (3.48)

under the sixteen supersymmetries to Appendix A.

III. Writing the Theory in a More Conventional Form
Let’s first restore A;. Now the gauge transformation parameter A,,(t,0,¢) can

have time-dependence. The gauge transformation is

6gaugeAm A + gfmnpA Apt
Sgange Yo = {Am, 2"} + gf™PA,, Y’
5gaugeX = gfmnpAnXg
5gauge\1jm - gfmnpAn\Ilp (35())
The action is
. pr i\2 a\2
ﬁnonabelian - 7 [(DtY )m + (DtX )m]

. (Fk)Q_i_(Fia)Q_i_l(Fab)Q_'_ ,Up"‘ 2(Xa )2

2p+ m m g\t m 6 m

Nl 1 T i¢t 1 mnp aya 1 123
SV (D) — i W~ g Y Xy i P

(3.51)

where (D,Y9),, = Yi — {A, 2} — gfmPAY), (DX )y = Xe — gfme AL, X
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(D), = U, — ¢ [P A, U, The supersymmetry transformations are

0

§Y! = i€l YW, 0XE =iy W, 6Am = —+(—:T\I/m
p
_ p_+ i i oy ~ay. Lok ok 123,
6y, = 5 (DY )y + (DeX)mr*)e = SEun™y
1 1
QFW’}/Z’YQE 4Fab’}/ '}/ € — _,uxa a 123 (352)

So far we have used the Poisson bracket extensively in our proof of gauge symmetry
and supersymmetry, because this makes the derivation quite concise (e.g., the Jacobi
identity of the Poisson bracket is used at many places of the proof). The fields
transform as world volume scalars. This is OK for computation of any physical
quantity, e.g., a scattering amplitude. However, let’s also write the theory in the
more familiar form where the fields transform as world volume scalars, vectors, and
spinors !

First let’s look at the bosonic part of (3.51). In the abelian case, the gauge

transformation of the components of the Y*’s in the spherical coordinates is

—1 K pp*
OgaugeYr = 0, OgaugeYp = sm€8¢ ( A) , Ogange Yy = sin 00y ( 3 (3.53)
which suggests we should define new fields ®, Ag, A, as

1 .
P = Y;, Ag = Siﬁyﬂb’ A¢ = — sin 0}/;9 (354)

which has the simple gauge transformation:

Sgange® = 0, Oguuge Ay = Oy (“g )  Ggange Ay = O (“g ) (3.55)
In the nonabelian case, we do the same thing, i.e.,
1 .
D, =Y, Ame = —9Ym¢, Ay = —sinfY, (3.56)
in

IThere is a catch about the spinors, though, as we shall explain later.
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Also, define the rescaled fields

- /Dt - /Tt

a. = , ©,, =
3
(p*)*?

Am@ =V p+Am67 Amzz) =V p+Am¢> Amt = a 3 Amt (357)

In terms of these rescaled fields, the bosonic part of the action (3.51) is

S /dtd&dgb 3\ o[ - LEp B2 — L(D,&)n(DHB),, — L (“)2@ )2
- - S111 - T muy - = m m— s \5 m
b 1 g Tm o\ n 2 \3
N va YR 1 I 2 o a \2 1~2 mnp rmrs va vbyva b
1~2 mnp rmrsd  Yod Ya H n
—5 S O, X P, X! §/vaFm (3.58)
where §j = — (%) (0F) 29, Fopw = 0uAoy — Oy Amp + G ™ Anp Ay, (Du®) =

@fi)m + §fm"pflw<fp, (DHX“)m = (9“5(,?1 + gfm"p[lw)?g. and the one-form V,, has
the following components: V,,; = Q:)m, Ve = 0, Vg = 0.

The above action is of the form of a SYM-Higgs theory on a sphere of radius %
Besides the usual flat space terms, the presence of the three-form in the 11-D PP-wave
background adds mass terms for the scalars ém, X @., and also the term o< f Vin /\Fm.
The last term, which in components is o f émﬁm% , comes from the corresponding
three-form term in the supermembrane action. From the ITA D2 brane view point, it
comes from the wedge product of the R-R one-form potential and the field strength
of the world-volume gauge field. We see that our Sp has the same form of that of
equ. (7) in [30] (their p is our u/3.)

Now let’s look at the fermionic part of the action (3.51). Let’s start with the
abelian theory. In the abelian case, the W ~i¢? term in the action (3.51) becomes

o + 1
W (o W) = PPt (cosfcos 7" -+ cos sin 7 — sin 670,
S11

+(sin 0 sin ¢y' — sin @ cos p7*) W] (3.59)

The above expression contains unwanted explicit-¢-dependence which we will get rid
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of by applying an SO(3) rotation on W; after that, we will still have to apply another
SO(3) rotation on ¥ to bring the # dependence into the standard form for a field on
R x S?. Both rotations will have to depend on ¢ or 6.

The coefficients of the 0,V term form a vector (cos 6 cos ¢, cos 0 sin ¢, —sin 6); and
the coefficients of the ¥ term form another vector (sinésin ¢, —sinf cos ¢,0). It is
easily seen that, a rotation around the 3-axis by an angle —¢ rotates the first vector
into 1-3 plane and the second vector into 2-axis, thus eliminating the ¢-dependence in
both vectors. The explicit rotation matrix is given by Ry = cos(¢/2) — sin(¢/2)y'y?
(recall that rotating the 7"’s is equivalent to rotating their coefficients). The second
rotation is given by Ry = cos(f/2) — sin(6/2)y3~!, which rotates the first vector
into the l-axis, keeping the second vector fixed. Define the rotated spinor ¢ by
U = R1Ry1. In terms of 4, the fermionic part of the lagrangian (3.51) in the abelian

case becomes

Tcos@

=~ — i |~y 0 + wT Dsth — —¢ | — iy

(3.60)

Now let’s compare the above lagrangian with that of a Majorana (real) spinor in
3d n (which is a two-component spinor) with mass m on R x S? with the radius of

the sphere being %

®

1
3) |:—77T7'1@077 + UTTgs.— <8¢ - iCOSQ%) 77] + m77TT277 (3.61)

£3d:i77T77+i< 0o

(we have taken the 3d gamma matrices, denoted as 4’s to avoid confusion with the

SO(9) gamma matrices v’s, to be all real

¥ =in, ¥ =1, ¥ =mn (3.62)

with 71, 7o, 73 being the Pauli matrices).

We see that L£r and L34 have the same form, with the correspondence 4! —
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73,7% — T1, 4 — m, except that in the mass terms i7'** does not correspond to 7
(because iy'?3 commutes with v, 2, while 7, anti-commutes with 73, 7). We would
like to show that L can be written as the sum of 8 copies of L£3;. However, this is
going to be highly non-trivial. The analog of this in string theory is that, to relate the
GS formalism to the RNS formalism, we have to perform a non-trivial bosonization
and re-fermionization of the fermions. What we should do is probably to decompose
U into 8-component spinors ¥, and ¥_ with eigenvalue £1 under 7°. ¥, transform
as 8;’s of SO(8). Then we should exploit the triality of SO(8) so that after some kind
of three-dimensional analog of bosonization and re-fermionization, the ¥ become S
which transform as 8,’s. Then we should combine Sy to get eight 3d Majorana spinors
nM .M =1, ...,8 which transform as 8,. This nontrivial nature of relating target space
spinors to world-volume spinors is also the reason underlying the mismatch between
iv1?3 and 7, noted above.

Carrying out the procedures outlined in the previous paragraph is an interesting
exercise in group theory for its own sake. However we are not going to do it here. So
we will just leave the fermionic part of the action as it is in eqn. (3.51), in terms of
the world-volume scalar W. (The fermions in [30] are also world-volume scalars and

space-time spinors.)

3.2.2 Properties

In what follows we will mostly work in the static gauge where A,,; = 0, and also use
the formalism where the fields are world-volume scalars, i.e., we shall use (3.48) as our
Lagrangian, because in terms of the Y*’s, the SO(3) symmetry in this formalism (let’s
call it the “Y-formalism”) is manifest. Occasionally we go to the formalism given in

(3.58) where the Y?’s are split into A’s and ¢ (let’s call it the “A-d-formalism”).
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3.2.2.1 Supersymmetric Classical Vacua

Let us look at the potential term of (3.48)

= o (R + (E2 g+ (1) <X:;>2] (3.63)

V
To minimize this potential, X% has to vanish due to its mass term, hence F'* and
F% also vanish. Thus vacuum configurations must have Y that satisfy F* = 0.
And by looking at the supersymmetry transformation (3.49), one sees that the vacua
preserve all the sixteen supersymmetries. In the A-®-formalism the form of these
vacuum configurations is most easily seen [30]. In what follows we will focus on the
case where the gauge group is SU(2), which describes two membranes. Basically the
classical vacua in this theory are just “abelian monopoles” in the U(1) C SU(2). The
following are the details.
Setting Xﬁl =0, 1‘11“ = AQM =0, and ®; = D, = 0, with the only nonzero fields
being the U(1) part Agu, and &3 = constant on the sphere, the potential in (3.58)

becomes

2
~ 1 1 =
[@3 - —S.n0F39¢] (3.64)

because the F? term, the mass term for ®, and the V,, A F), term nicely form a

complete square. Thus we need
. 3 .
F3p5 = —sinf @4 (3.65)
i
Then, by the Dirac quantization condition, one can work out that

n
Oy = —— 3.66
=52 (3.66)

(which gives a flux [, Fy = i d0dp Fsy = 2”7"), with the flux number n being integer.

Recall that 4/ (®,,)? is the radial separation between the two membranes. In flat space
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the separation can be continuously varied, while here in the PP-wave we see that the

radial separation is quantized in units of u. In the appropriate limit where 1 — 0,

n — 00, the radial separation can then be regarded as varying continuously.

Going back to the Y-formalism, we find that in the classical vacuum labelled by

flux number n

v =vE =0
vi_ _n,up+ cos ¢(1 F cos )
3 39 sin ¢
v2_ _nuer sin ¢(1 F cos 0)
3 3g sin 6
pp*
Yy = —ng(il)

(3.67)

where the upper sign is for the northern hemisphere patch and the lower sign for the

southern hemisphere patch. As can be easily verified, the above Y indeed yields a

vanishing F .

3.2.2.2 Euclidean Instantons

Just as the theory itself can be regarded as arising from the continuum limit of the

Matrix theory, the instantons in this theory can regarded as the continuum limit of

the instantons in the Matrix theory (see [44] where instanton solutions in the matrix

theory interpolating between an arbitrary vacuum and the trivial vacuum are found).

Define the Euclidean time 7 = it. Then the Euclidean action is given by, upon setting



41

Sg = —iS= —/de@dgbsiné’ﬁ

oYk
= /drd9d¢sm9 [ 5 (87’) +2p+ ]

k k 1k
(ia +F) ~ () D I

N
= /deGd(bst? 57 p_+ gr pt

= /d7d9d¢51119—( Ba}/k+§_k) F [K(1 — +00) — K(T — —00)]

(3.68)

where to get to the last line we have used that fact that the %5—% term can be
written as a total 7-derivative of K (7), where the quantity K (7) is defined to be the
integral over S?
_ 1 . kijy ki vj pp* k gkijmnpkij

K(r) = 3 dfdgpsin@ |e"Y {x' Y} — 3 (Y2 + 36 ¢ YoY Y (3.69)
Since we require Y}, to interpolate between two vacua, K (7 — 400) can be evaluated
using the expression (3.67) worked out earlier for Y, in the final/initial vacuum.

Hence for given initial and final vacua, to minimize Sg the following BPS condition
has to be satisfied

oYk Fk

4 m = .
o+ E =0 (3.70)

and then Sg is given just by the boundary term and is a function of the initial and
final flux numbers (n;,ny). It is easy to verify that the BPS condition implies the
equation of motion for Y.

Now let us look at the supersymmetry transformation (3.49), which becomes (us-
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ing the BPS condition (3.70))

5Wm::(%4ﬁf—§ﬂﬂwm)e

ayz ) 1 A 123
— ipt my($” )e (3.71)

or 2

where the matrix % has eight unity eigenvalues and eight zero eigenvalues, and
is a projection operator. Thus we see that the instanton breaks eight of the sixteen
supersymmetries.

As is usually the case, the BPS condition (3.70) is nonlinear in Y (recall that F*
is quadratic in Y') and finding its solution is not easy. Below we present the instanton

solution interpolating between the n = 1 and n = 0 vacua.

In the n = 0 vacuum, Y,*(n = 0) = 0. In the n = 1 vacuum, Y*(n =1) = %5{%.

As can be verified, this expression of Y (n = 1) indeed gives a zero F* and its radial
zk m . . +
component ®,, =Y, = Yrﬁupﬂ?) = *- has a gauge invariant length VI(P)?2 = £,

as it should be for the n = 1 vacuum. This form of Y*(n = 1) is related to that

given in (3.67) by a gauge transformation. We shall call this form of Y*(n = 1)
the hedgehog gauge because of the form of ®,, (we’ll call that in (3.67) the sigma-3
gauge). As it turns out, the instanton has a nice form in this hedgehog gauge.

Take the trial solution
lez(T) = w(T)Y,E(n =1) (3.72)

and plug it into the BPS condition (3.70), one gets

dw 2
& = :|:3(w w”) (3.73)

whose solution is the kink function

1
 1l+exp [:Fg(T — 7'0)}

w(T) (3.74)
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with 7y being the integration constant which gives the location of the kink. The
solution with the upper sign corresponds to n; = 0,7y = 1, and the one with the
lower sign corresponds to n; = 1,ny = 0. From now on let us take the one with the
lower sign.
To summarize, the instanton solution that interpolates between n; = 1 and ny =0

is given by

1 pp*
YE(r) = 5k 3.75
(7) 1+ exp [%(T — 7'0)} 3g ( )

Note that this instanton solution, in the Y-formalism, is a constant on the sphere.

The Euclidean action for this instanton is

2 +\?
S =Ly =0) = — (%) (3.76)

As a matter of fact, the function obtained from the Y* in (3.75) by replacing 6%
with O™ also satisfies the BPS equation, where the matrix O™ is a constant (i.e.,
(7,0, ¢)-independent) SO(3) group element. However, this new solution is related to
the original one in (3.75) by a gauge transformation, as one can verify.

We can expand the action about the above instanton solution, keeping up to terms
quadratic in the fluctuations. There are bosonic zero modes and fermionic zero modes
for the quadratic part of the action. As can be easily seen,

_ AV _ dop”

= 3.77
dTO dTO 3g m ( )

Y (7)

is a bosonic zero mode, because it arises from shifting 7y which is a symmetry opera-
tion preserving the action. This bosonic zero mode is square integrable over R x S2.
(There are also three bosonic zero modes arising from replacing 6%, with O as de-
scribed above. However, since this is just a gauge transformation, and the resulting
three zero modes are not square integrable, we usually discount them.)

The fermionic zero modes, which we denote as 1,,, are given by the solutions to
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the Dirac equation in the instanton background

I Yo Y iy = 0 (3.78)

where we have assumed that 1), is (0, ¢)-independent. Take

dw

Um = ——7"e (3.79)

where (%) e =0, i.e., i7'?e = €. One can explicitly verify that this satisfies the

Dirac equation. There are eight such fermionic zero modes given by the eight choices
of e. Comparing 1, with the supersymmetry transformation of W, given in (3.71)
(where we now take the lower sign specific to our instanton), we see that they are just
the eight supersymmetries broken by the instanton background, as expected. These
eight fermionic zero modes are square integrable.

The physical meaning of this instanton: at 7 = —oo, the two membranes are
separated by one unit of distance (because n; = 1) in the radial direction; at 7 = 400,
these two membrane coincide (because ny = 0). Since the radius of each membrane is
proportional to its p_ momentum, this instanton describes the exchange of one unit of
p— momentum (the so called M-momentum) between the two membranes. Given this
instanton, one could try to compute the transition amplitude when relative transverse
velocity between the two membranes is turned on and compare the result with a
supergravity computation, which we are currently investigating, in collaboration with
Hok Kong Lee and Tristan McLoughlin. Also, note that for this instanton, the radial
separation between the two concentric membranes /(®,,)? goes from /% to zero,
which is always much smaller than the size of the membranes \/(z%)? = % when
the gauge coupling ¢ is large. Hence, if we also require that the separation between
the two membranes in the z* through z° directions are much smaller than %, the
supergravity computation can be done in the near-membrane limit explained at the

end of Section 4.2 and in Appendix F. For discussions on M-momentum transfer

between membranes, gravitons, and other M theory objects, see [22, 23, 24].
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We would like to make a few more comments on the application of instantons
in this 3d gauge theory to the investigation of M-momentum transfer between two
membranes. In flat space, because of the SO(7) symmetry for the seven scalars
corresponding to the dimensions transverse to a membrane (recall that z~ is non-
dynamical in the light cone gauge), the separation vector between the two membranes
for a given instanton can be rotated, thus producing a transverse velocity. Put in other
words, suppose the initial separation is along the 4th direction and we want to turn
on a velocity along the 5th direction, we can turn on a vev for the scalar of the Hth
direction which is in the same gauge as that initial scalar of the 4th direction. In
PP-wave, we no longer have this SO(7) symmetry, instead the transverse directions
are now divided into the radial direction Y, of the Y?%’s, and the six directions X°.
As we have seen, the instantons lie in the Y%’s. Hence given a instanton specified by
Y, if we want to turn on a velocity along, say, the 4th direction, we have to find an
X* that is in the appropriate gauge, namely, the gauge in accordance with Y. As it
turns out, finding this gauge is not so straightforward technically.

Also, it is of interest to find instanton solutions with more general n;, n; rather
than the simplest one presented above. Given the form of the BPS condition (3.70),
one could try to expand the Y’s in terms of spherical harmonics and consider the

resulting nonlinear equations for the coefficients.

3.3 Two Graviton Interaction without M-momentum
Transfer—Gauge Theory Computation

The content of this section is based on work in collaboration with Hok Kong Lee
[21]. In short, [21] computes the two-graviton one-loop effective action for Matrix
theory in the 11-D PP-wave background, and compares it to the effective action on
the supergravity side in the same background. Agreement is found for the effective
action on both sides, to all orders of u. Besides providing further evidence for Matrix

theory as a description of M-theory in the 11-D PP-wave background, this agreement
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also points to the existence of a supersymmetric nonrenormalization theorem in the
11-D PP-wave background. In this section, we mainly present the computation on
the gauge theory side.

In their original paper [2], the authors computed graviton scattering in flat space
using the Matrix theory and found exact agreement with eleven-dimensional super-
gravity. Since then, more detailed investigations have been performed in flat space
(13, 14, 15, 16, 17, 18, 19, 20]. After the Matrix theory in a weak background was
proposed by Taylor and Van Raamsdonk in [6], the case of a space weakly curved in
the transverse directions was checked explicitly in [7].

Now that we have the Matrix theory in the 11-D PP-wave proposed by [10] at our
disposal, which is exact in this curved background, we expect it to provide further
test of the Matrix theory conjecture beyond the weak background approximation
proposed by [6]. In addition, the 11-D PP-wave is different from the cases studied in
[7], because the metric now has a nontrivial g, component.

Finally a remark about terminology: we use the terms “effective potential”, “effec-
tive action”, and “effective Lagrangian” in an interchangeable sense, although strictly

speaking we really mean the last one; this should not cause any confusion.

3.3.1 Brief Review of Known Results

In [14], the one-loop effective potential for two gravitons in flat spacetime background

was computed in Matrix theory to be

1—-loop __ 15NpNsU4

— s 3.80
o 16 MO R3r7 (3.80)

where N, and Ny are the numbers of DO-branes making up the probe graviton and
source graviton, respectively, v and r are the transverse relative velocity and distance
between them, M is the eleven-dimensional Planck mass, and R is the radius of com-
pactification in DLCQ. This effective potential agrees precisely with the supergravity
result [17].

In [7], the effective potential for a weakly curved background with nontrivial trans-
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verse metric components was computed. Again agreement was found. In fact, the
only modification needed was the replacement of r by d, the geodesic distance between

the two gravitons.

3.3.2 The Effective Potential

The main object for comparison on both sides of the proposed duality is the effective
potential V.g. The computation is carried out in the DLCQ formalism, which was
proposed in Susskind’s finite N conjecture [3], and further elucidated by [4, 5]. In
this formalism = and =~ 4+ 27 R are identified. p_ is therefore quantized in units of
1/R.

The implications of such a light-like compactification, however, are far from trivial
[45]. One such complication arises from the longitudinal zero modes, which appear
to cause perturbative amplitudes to diverge. In addition, there are concerns that the
DLCQ of M-theory in the low energy limit is not necessarily the DLCQ of eleven-
dimensional supergravity because some exotic degrees of freedom such as membranes
wrapped around the lightlike direction may contribute.

Here we are going to take the viewpoint in [46]. Essentially, the presence of a
source exerts a pressure that decompactifies the region surrounding it, rendering =~
effectively space-like by providing a nonzero g__ component in the metric. In the limit
of large N, this bubble of eleven-dimensional space expands, and the approximation
of supergravity as a low energy description is justified. This view is further elucidated
in [47], and we do not expect new issues to arise in the PP-wave background.

One important fact is, the regions of validity for the gauge theory and supergravity
are actually disjoint, as can be seen through the following argument by Hok Kong
Lee (see also [47]): On the gauge theory side, it can be shown that the loop counting
parameter is NM ~3r~3, which must be small for loop expansion to make sense. This
gives the gauge theory’s region of validity r > N'/3M~1. On the supergravity side, the
source graviton produces a metric component h__ ~ NM~2R~2r~7 which gives an

effective space-like compactification radius Ry = y/h__R = NY2M~92p=7/2 Recall



48
that the string length is given by I, = M~3/2R; "/ = M3/4pT/AN-1/4, For supergravity
to make sense, we must have r > [, (otherwise there is no such notion as spacetime).
This gives supergravity’s region of validity r» < NY/3M~1,

Therefore, in general there is no reason why they should match, as each effective
action is valid only within its own validity region. Thus a mismatch does not imme-
diately invalidate the Matrix conjecture. An exact match, however, will point to the
existence of a nonrenormalization theorem, which protects the terms evaluated from
gaining higher-loop corrections. If such a nonrenormalization theorem does exist,
then the agreement of both sides can be viewed as positive evidence for the Matrix
conjecture. It is with these points in mind that the comparison of the effective action
is made here.

On the Matrix theory side, the effective potential is computed up to 1-loop. As
in flat space, it should correspond to terms of order k2, on the supergravity side.
The relation x2; = 167°/M?® [17] means only terms of order 1/M? are relevant on the
Matrix theory side for the purpose of such comparison.

A natural length scale that arises on the Matrix theory side is 1/(M3R)'/2, which
for convenience we will denote as («)'/2. 2 In addition to the low velocity and large
r approximation necessary to facilitate comparison in flat space, we will also assume

that

a2

r2

<<1 (3.81)

where p is the 123+ component of the four-form field strength.

This dimensionless number, as we will see in eqn. (3.82), is simply the relative
strength of the new terms in the action arising from the PP-wave background to
the quartic terms already present in flat space. In the opposite limit, a;‘—; << 1,
the effective potential on the Matrix theory side resums to give 1/u dependence?,

which does not appear possible to be reproduced on the supergravity side. In fact,

2This a should not be confused with the string scale o’
3This can be seen in eqn. (3.94), a typical term in the effective potential.
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this is nothing new. A similar issue arises already in flat space, where the effective
potential only matches when we take the small v and large r limit, or more precisely,
by expanding in the small parameter va/r?. In other words, even with the existence
of a nonrenormalization theorem, the results on both sides should only be compared

at very large r, where supergravity is applicable.

3.3.3 Background Field Method

We will follow the background field method as reviewed in [48]. X is expanded into
a background field B and a fluctuating field Y, i.e., X = B+Y. Only the part of the
action that is quadratic in Y will be of interest below.

Recall the Matrix theory action in the DLCQ of M-theory in 11-D PP-wave back-

ground [10], given in eqn. (3.1)

9

9 3
S-/dtTr{ ZLDXI +Z¢TD0¢+(M—RZXI X7?
=1

2R 45 1,J=1
3 [ 9
T J J 2 2 a

WY+ g | - (]|

J=1 i=1 a=4

iy (MPR)p . .
_Zsz7123¢ - TZ ,;leijk(X XJXk) (382)
1,7,k=

Taking the ratios of any of the p-dependent terms to the p-independent non-
derivative terms gives the parameter in eqn. (3.81). In other words, the assumption
stated in the previous section is identical to treating the new terms arising from
the PP-wave background as a perturbation of flat space. Note that this is exactly
the opposite of the approximation made in [29], where the p-independent terms are
treated as perturbations to the u-dependent terms. While the computation of the
1-loop effective potential is possible in both limits on the Matrix theory side, an
agreement with supergravity is possible only in the large 7 limit given in eqn. (3.81).

In what follows, unless stated otherwise, we will always assume the indices ¢ goes
from 1 to 3, a goes from 4 to 9, and I goes from 1 to 9. In addition to the action

above, there are terms arising from the ghosts and gauge fixing, which we simply
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state below:

ng: /dtTr

Sghost = /dtTr

1 . 2
~ 55 (@Xo +i[B., X)) ] (3.83)

¢07c — 0;¢[Xo, ] +¢[B, [ X", c]]] (3.84)

Thus, the complete Matrix theory action is

Syv =S+ Sgr + Sghost (3.85)

To simplify the notation, we will put M3R = 1/a = 1. This factor can be restored
by dimensional analysis. It is also convenient to define g> = R, which corresponds to
a loop counting parameter in the Matrix theory.

3.3.3.1 Expansion about the Background

The fields X, v, and ¢ are expanded in the following way, with a purely bosonic

background
X, =B, +gY, ; w=0,1,2..9

zr O z
B, = I ; Y, = Cr ~I
0 0 Zr
00 Z
By = S
00 Zo Co

0 € ¢

0 ﬁ Co E

Here we have set N, = Ny = 1, i.e., we deal with 2 x 2 matrices. We will later
restore N, and N,. The above background has the interpretation of one graviton (the

source) sitting at the origin, while another graviton (the probe) approaches from the

4Another possible interpretation is a transverse five brane at the origin [30].
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position given by z in the matrix B. We will use the shorthand r? = 337_ (z7)2.

After a Wick rotation, where we define S = S and 7 = it, and at the same

(E)

time rotating X, to X, ’, the quadratic part of the action is ®

st = | dr{ — 260G — 36028+ 5G(—02 + (13PN + 3Gl =02 + (/6 o
5GP+ Sl =0 + (1)
+ 50(-872_ + 7‘2)20 - 2i87$[(7120 - 202])

+ 2(=02 1%+ (1/3)%) 2+ Za( =02 + 177+ (1/6)%) 20 — z‘ueijkmjzk} (3.87)

Sf(e?nion = / dT{U(iar - ig%%)n +1(10- — i%7123)77+ 20(0; + xyr — 1%%23)9}

(3.88)

S = / dT{Eé‘fe + W% + @@ — ey + G(? - 7‘2)01} (3.89)

3.3.3.2 The Sum over Mass
The partition function, Z, of the above action can be computed as a product of
functional determinants. The one-loop effective action I' is then simply related to Z
via

exp(-I')=Z (3.90)

The one-loop effective potential is defined as

SFor simplicity, all subsequent superscripts (E) on the Euclideanized fluctuation fields will be
omitted.
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I=-— /dT Vog (3.91)

To first approximation, however, it is not necessary to compute the functional
determinants. As was suggested by Talfjord and Periwal [50], and [49], one could de-
duce the effective potential by simply evaluating the mass spectrum of the fluctuating
fields. From the masses, the one-loop contribution to Vg can be easily deduced using

the formula

Velﬁloop:_%< Som- Y m— Y mg> (3.92)

real bosons real fermions real ghosts

The physical reason for this is that at large distances, i.e., the limit where su-
pergravity is valid, all strings stretching between the DO-branes can be assumed to
lie in their ground state. This result can also be verified using the complete expres-
sion for V.g in terms of functional determinants. We provide an argument for this in
Appendix B. In what follows, we will omit the superscript “1-loop”, assuming this
is understood. The contribution from tree level, which does not concern us here, is
simply the Lagrangian with X replaced by B. Both contributions will be put back
together at the end in eqn. (3.100).

One important point to note is that this method is valid only up to the lowest
powers of v, as is already known in the flat space case. In flat space, the above
formula reproduces every term predicted by a supergravity computation with the
right coefficients, but the Matrix theory corrections to supergravity, i.e., terms with
even higher powers of v and 1/r which would not be found in supergravity, will not
come out with the correct coefficients. In fact, the parameter o can be treated as the
counting parameter for this purpose. All terms of order o, which is basically x%, in
the supergravity language, will be found on the supergravity side, but terms on the
Matrix theory side with higher powers of a, which represent short distance effects,
should be treated as corrections. To compute them correctly, one needs to make use
of the complete expression in terms of functional determinants.

For our purpose, however, the above approach is sufficient. We are not interested
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in computing the correction to supergravity, rather we would like to check whether
the terms already predicted by supergravity in the PP-wave background can be re-

produced by a Matrix theory calculation.

3.3.4 A Simple Case

In the next section we will work out a more efficient method to compute V g without
explicitly diagonalizing the mass matrix. Nevertheless, it is instructive to work out
the simplest case in a direct approach to get the basic idea of the computation.

In this simple case, we put 2® = b and 2° = vr, while all the other z! are set to
zero®. Here b is a constant, which can be interpreted as the impact parameter of the
approaching probe graviton towards the source sitting at the origin. In this case, the
mass matrix constructed from eqn.’s (3.87), (3.88) and (3.89) is easily diagonalized
to give the mass spectrum listed in Table 3.1. It should be noted that the velocity in
the table above is measured in Euclidean time 7, i.e., v = %. In a comparison with
supergravity, a Wick rotation back into Minkowski time ¢ = —i7 is required, which
introduces extra minus signs in Vg.

With the mass spectrum at hand, Vg can be evaluated using eqn. (3.92)

2 3 6

1
Var = —5(2)(35 + 65 —85) {6\/7’24—#2/324—10 P2 12)62 + 24/7% £ 1,

+20/r2 f = 812 2 /42 o = 8\/12 2[4 — v — 47“} (3.93)

At this point it is useful to restore the factors of M3R, which we denote as 1/a.
For instance, the first square root term in the about equation becomes
2 2

— + ? (3.94)

SNote that by putting all z* to zero for i = 1,2,3, we ensure that in this case the Myers term
will not contribute to the mass matrix.
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m? Fields

0 o

1232 ¢oi=1,2,3
u?/6? ¢* :a=4,..9
0 0

(1232 ¢ oii=1,2,3
112 /62 (* sa=4,..,9
r? + u?/3? Z 2 i=1,2,3
r? + u?/62 zZ¢. 2% a=4,..8
7"2—1—77+ Z0 +2°,20 + 2°
r? 4+ z0 — 22,20 - 2°
s n_(8)

/4 n_(8)

r? 4+ /4% + v 6 (8)

r? 4+ pu?/4? — v 6 (8)

0 €, €

0 €€

r? ¢r,er 1 =1,2

Table 3.1: The Mass Spectrum for a Simple Case. The numbers inside the
round brackets indicate the number of physical degrees of freedom of the fermions

with the given mass. 7y is given by %[’6‘—5 + \/(5—2)2 + 160?] .
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This can in turn be written as

E e (3.99

! r

The expression for V¢ given above, being a Matrix theory result, is only expected
to match with supergravity in the large r limit (if it does at all!). Defining the large
r limit by eqn. (3.81), we can then expand the one-loop effective potential in powers

of a?u?/r?. Thus, expanding Vg gives

150 7 p*? 1ot
1677 96 7r° 768 13

Ve = 0 ) +0[a”] (3.96)

Wick rotating v, and restoring N,, N, gives

NN <15 vt 7 uo? N 1 pt
 M°R3‘16r7 96 15 76813

Vet )+ Olo”] (3.97)

The o® terms give the factor 1/M?, which translates into k%, in the supergravity
language. This is the order we are interested in. We throw away the higher powers
of a (which are always accompanied by powers of 1/7) because they correspond to
short distance corrections to supergravity, just as in flat space.

Here the first term is just the flat space result. The second and the third term
are the interesting ones, with new p?v? and p* dependence created by the PP-wave
background. A comparison of their coefficients with supergravity will show exact

agreement.

3.3.5 Mass Matrix Computation

In the more general cases, when the velocity and the impact parameter point in
arbitrary directions, calculating the effective potential V.g by finding the entire m?
spectrum, then taking their square roots and expanding them in powers of y and v

becomes inefficient. In the most general case this involves finding the eigenvalues of
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mass matrices of very high dimension. Instead, it is possible to make use of the sum
over mass formula in eqn. (3.92) without explicitly diagonalizing the mass matrix.
Let us denote the square of the mass matrix as W = M?2. Since there is never any
mixing between the bosons, the fermions and the ghosts, we can study their mass
matrices separately.

In terms of W, the sum over mass formula becomes

Vi P = ——tr (VW — /Wy — /W) (3.98)

The square root of W can be defined unambiguously by its expansion in powers
of a/r? in the supergravity limit, as was discussed in Section 3.3.4. Note that M, is
defined to be the mass matrix for real bosons. If it is taken to be the mass matrix for
the complex bosons, then there will be an extra factor of two in front of /W,

Simple Recipe for Mass Matrix

In this subsection we will give a simple recipe for writing out M? for both the
bosons and the fermions. The mass for the ghosts is exactly the same as in the simple
case of Section 3.3.4.

First of all, we should note that the mass of ¢* and (* are always u/3 and p/6,
respectively, for ¢ = 1,2,3 and a = 4,...,9. The mass of all eight physical degrees
in 7 is always pu/4. These are independent of the background B. Mixing occurs
only among the 2/ and among the 6 and 6. Hence in what follows, we will denote the
component arising from say z/ 2/ in the bosonic Lagrangian simply as (M?);; without
mentioning z explicitly. Note also that M? is symmetric.

I. Rules for Bosons
L (M?)og =17 (M) =1+ pi? /3% (M?)aa = 1° + pi*/6%;

2. @' = vy mixes 2° and 2! = (M?)o; = —2v;

3. ! = by mixes 2% and 2%... etc. = (M?);, = iueib;

Note that Rule 3 applies only to z° but not z%. Such mixing is the effect of the

Myers term in the Matrix theory action.



57
I1. Rules for Fermions

The mass matrix for the fermions can be written in a closed form
9 3 iz
M? = 7?4 12 /47 —{ 3.99
r? 4’/ +;vm+; {3} (3.99)

3.3.6 The General Case

Once the mass matrix squared W = M? is known, eqn. (3.98) can be used to compute
the one-loop effective potential explicitly. In accordance with our earlier discussions,
only terms up to order a® ~ 167°/M? = k%, are kept. After restoring all factors of

M3R, N,, and Nj, the sum of zero and one-loop effective potentials is given by

9 9 2\2 2 3 2 29 2
) N, NN, [15(3%_, 022 122 02 72w
Voyl 100P: P( U2+g ) pt's I=1"1 o =1 "1 a=4 “a
2R DVt g
=1

o TR T 16 906> 96r0

1_5 o [ 3 3 9 3
+ 32—/;7 fo (—ZUZ~2+ZUZ> +2(invi)2] }
Li=1 =1 =1

= a=4

4 [ 3 2
NNy 1 2
B Tp s 32

RO 68 >_ (@)

_l_

9

Z(:ﬁ)?] —122(a;i)2- (;1:“)2} (3.100)

a=4

In (3.100), 12\[—5(2?:1 v? + g4+ ) is the zero-loop potential, and the rest is the one-loop
potential. Note that, compared with (3.97), the one-loop potential given in (3.100)
contains additional terms arising from the x!, 22, 2® directions. This is the equation to
be compared with the supergravity result. Notice the effective potential has manifest
SO(3) x SO(6) symmetry, as should be expected from the symmetry of the original
Matrix theory action. Just as in flat space [6], one should be able to recast this
1-loop effective potential in the form T"G,. A comparison with the supergravity
side will indeed confirm this, as this is precisely the form of the effective potential on
the supergravity side as derived in Appendix C.

Having computed the effective potential on the Matrix theory side, the next step

will be to compare it with the result from a supergravity calculation. Before this can
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be done, the issue of gauge choice has to be addressed.

It is necessary to make a gauge choice when solving the Einstein equations. A
gauge choice corresponds to a choice of the coordinate system one uses to describe
the physics. On the Matrix theory side, such a choice of coordinates was made right
from the very beginning: The action in eqn. (3.82) was written in coordinates that
made the SO(3) x SO(6) symmetry manifest. Before a comparison is possible, a
corresponding choice of coordinates, i.e., a choice of gauge has to be made on the
supergravity side.

A comparison of the above equation with the general expression for V.g in eqn.
(4.113) will in the end determine the correct gauge choice for the supergravity com-
putation. There will be a further discussion about gauge choice in the supergravity

section.
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Chapter 4

Interaction of M-theory Objects in
Eleven-Dimensional Supergravity

On the supergravity side, we adopt the source-probe viewpoint, which is valid when
the source is much heavier than the probe. Section 4.1 deals with the action of
the probe via constrained Hamiltonian mechanics with the constraints arising from
worldline /worldvolume diffeomorphism, for a point particle probe and a membrane
probe. Section 4.2 deals with the determination of the background fields the probe
feels, by diagonalizing the linearized supergravity field equations in the presence of the
source. These first two sections provide the basis for investigating M-theory objects’
interactions on the supergravity side, at linear k2, order. Section 4.3 is an application

to the two graviton interaction without M-momentum transfer.

4.1 The Light Cone Lagrangian

The light cone Lagrangian is the quantity that will be computed on the supergravity
side and then compared with the gauge theory result. We shall only consider bosonic
degrees of freedom, because we are only concerned with the bosonic coordinates of

the probe, and also the background fermionic fields are set to zero.
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4.1.1 Point Particle Probe

Let us start with the case of a point particle (the graviton). By “light-cone La-
grangian” we mean a quantity L;.(z~,p_, z*, &) which will be defined below. Roughly
speaking, it is the original Lagrangian Legendre transformed in the x~ degree of free-
dom. Appendix C gives a quick derivation of it. The dynamics of a point particle is a
system with constraint due to time reparametrization symmetry, and has to be dealt
with in the Hamiltonian formalism if one wants full rigor. The derivation in Appendix
C is in the Lagrangian formalism and not so rigorous. Hence let us now give a careful
derivation of the light-cone Lagrangian using the constrained Hamiltonian formalism.
This is also a useful warm-up before we derive the same quantity for a membrane.
A very quick review about constraints: Constraints are relations between coordi-
nates and momenta. Constraints that arise directly from the definition of momenta,
i.e., without using the equations of motion, are called primary constraints. Con-
straints that arise when imposing the consistency requirement that the primary con-
straints are preserved in time evolution are called secondary constraints. Constraints
that arise when imposing the consistency requirement that the secondary constraints
are preserved in time evolution are called tertiary constraints, etc. Secondary, tertiary,
etc., constraints are obtained by using the equations of motion. The classification of
constraints into primary, secondary, tertiary, etc., constraints is of little importance
in the final form of the Hamiltonian formalism. A more fundamental classification of
constraints is to define first-class constraints and second-class constraints as follows: a
constraint is called a first-class constraint if its Poisson bracket with every constraint
vanishes weakly (i.e., vanishes on the submanifold defined by the constraints in phase
space); a constraint that is not first-class is called a second-class constraint. This
classification of constraints plays a central role in the Hamiltonian formalism, be-
cause first-class constraints are generators of gauge transformations. Equalities that
hold only on the submanifold defined by the constraints in phase space are called
weak equalities and usually denoted with the weak equality symbol “~”, but in what

follows we will simply use the equality symbol “=" for them, expecting no confusion.
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For a comprehensive discussion on systems with constraints, see, for example, [51]
and [52].
Consider a point particle of mass m in a general curved background G, (z) (this
background includes that generated by the source object, in the context of investigat-
ing M-theory objects’ interaction on the supergravity side). The Lagrangian of the

particle is
Lz, i") = —my/ =G (x)2rav (4.1)
where a dot means a derivative with respect to the world line parameter 7.

The momenta are then given by

oL m
= = G i 4.2
Pu D —Gw(x):fc“:t” uﬁ(@x (4.2)

As can be easily verified, v (2, p,) = G*(x)pup, + m* = 0, which is the primary
constraint of our system. The Hamiltonian is given by H = p,* — L = 0, which
is expected because in general the Hamiltonian of a system with reparametrization
symmetry vanishes.

The consistency condition 47 = 0 trivially holds, hence we don’t have any sec-
ondary constraint. So the only constraint of our system is 7, = 0, which is a first-
class constraint and is the generator of the gauge symmetry — the reparametrization
freedom of the world line.

The extended Hamiltonian is then given by Hr = u'vy;, where the arbitrary
function u' is the Lagrange multiplier that embodies the gauge degree of freedom

(i.e., reparametrization freedom). The evolution of any function F'(z*,p,) is given

by F = [F, Hg|ps, where [F,Glpg = Dt A (% % — % %) is the Poisson
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bracket. Hence the equations of motion are

i+ = 2u' G* () pa

. 13(;0&(1,)
Pu=—u Wpapﬁ
7 = G" (2)pupy, + m* =0 (4.3)

The next step is gauge fixing. Let us use the light-cone coordinates 2# = {2, 2~ 24},
and impose the light-cone gauge condition C; = 27 —7 = 0. We see that [y, Ci|pp =
—2G(z)p, which can reasonably be assumed to be nonzero. Hence upon gauge
fixing we get two second-class constraints x, = (71, Cj).

Then, by the usual story of gauge fixing, now that we have two second-class
constraints, we should replace Poisson brackets with the Dirac brackets (which we
denote as [, |p. Recall that the Dirac bracket for two phase space functions is defined as
[F,G]p = [F, Glps — |F, Xa|pBC*[X 3, G]pB, Where X4, X5 are second-class constraints,
and C*? is the inverse matrix of C,5 = [Xa, Xslps ), and in this case since the gauge
fixing condition Cfj is time-dependent, we should also add a corresponding correction
term (for a discussion on time-dependent gauge fixing, see, e.g., exercise 4.8 in [52]).

One gets the follow law for time evolution

: ; 0C5 1
F =[F Hglp — C*=22[F, v,]pg = ————[F, 4.4
[ ol or [F, YalpB 2G+V(:c)p,,[ TlrB (4.4)
where we have used the fact that [F, Hg|p = 0. In particular, this gives
. G (@)py
G+ (x)p,
. 1 0GP (x)
Pu= 2GtV(x)p, g LoPs

It easy to verify that this indeed gives #7 = 1, which agrees with the gauge choice
xt =1,

Using Dirac brackets is the longer (and more rigorous) way of fixing the gauge.
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However, there is also a shortcut which avoids using Dirac brackets. Remember that
the gauge freedom is embodied in u!. Hence gauge fixing amounts to specifying u!.
So we just have to go to the equations of motion before gauge fixing, which contain

u!, and set 7 = 7. Then the 27 equation gives us u' = which we can then

substitute into other equations and get back the gauge fixed equations of motion
obtained using Dirac brackets. This shortcut approach is what we shall use when
investigating membranes.

Now let’s restrict our attention to situations where the metric is static, i.e., inde-
pendent of x, G* = G (x~,x*). Also, let’s consider functions which are indepen-
dent of x%,p,, i.e., F = F(x~, 2% p_,p4). In this case, if we define the “light-cone
Hamiltonian” as Hj.(x~, 24, p_,pa) = —p,, where p, (2=, 2%, p_,pa) is obtained by
solving 3 = 0 (in which z* is set to 7) for p; in terms of the other variables, then

one can verify that

[ Z <8F oH,. OF 8ch) (4.6)

P Ox+ Op, B Op,, OxH

The above expression justifies the name of Hj.. It generates time evolution in the
smaller phase space consisting of (z7, 24, p_,pa).

Using the gauge fixed equation of motion for #* and also the expression of p, (v, 24, p_, pa),
we can express i* as a function of (z7,24,p_,pa). Now let’s make the reasonable

assumption that the relation 2% = (2~ 24, p_,p4) is invertible so that we can

solve for pg(z~,p_, x4, &4).
Now by making a Legendre transformation in the transverse degrees of freedom,

we define the “light-cone Lagrangian” as

A

Llc(l'i,p,,l' 73}14) = pAiA - ch (47)

Then it’s easy to see that, in the L;. formalism, the equations of motion are

(oL (0L
ba = (356’4)96_@_@3 y PA= <8IA)x_’p_’iB (48)
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The above two equations can be combined to give the expected Euler-Lagrange equa-

tion

d (0L, oL\
E(aj;A)_(amA> =0 (49)

Also

. 8Llc . 8Llc)
= — 5 _ = 4 10
! ( ap_ ) x4 A P <8$ p_,xd A ( )

One more look at L;.: recall that 0 = H = p,i* — L = piat +p_a~ +pait — L,
which upon gauge-fixing 2+ = 7 becomes 0 = p, +p_&~ +pai? —L = —Hj.+p_i~ +
pai? — L = Lj.+p_i~ — L, which gives L, = L —p_&~, which is just the L’ defined
in eqn. (C.2) of Appendix C, as expected. (The P in Appendix C is the p_ here.)

When investigating graviton interactions in a PP-wave, the background metric is
G, = 9y + hyw, with g, being the unperturbed PP-wave, and h,, being the metric
perturbation due to the source graviton. Keeping terms up to linear order in h,,,, one
finds that the light cone Lagrangian for the probe graviton is

1 1
Ly = p—{— [02 + gt T hgt + 944 (—9++h—— - h+—>

2 4
S @i hoa? + gl Y hABUAUB}
A A,B
1 1 1
+§h77’U4 — 57}2 (h+ — §g++h> } (411)

which is the object one compares to the gauge theory effective Lagrangian (and gets
agreement on).

Recall that the change of the longitudinal momentum p_ is governed by p_ =

(gﬁf)pﬂx A gar Hence the x~-dependence of L;. is what’s responsible for the longitu-
dinal momentum exchange between the probe graviton and source graviton. In the
Ly, given in (4.11), ™ -dependence comes in only through h,,. Hence what one does

is to Fourier transform h,, along the 2~ direction, and solve the Einstein equations
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for the Fourier components of h,,,. When one is only considering transverse momen-
tum transfer, one plugs the zeroth Fourier component of h,, into L;.; when one is
considering one unit of longitudinal momentum transfer, one plugs the first Fourier
component of h,, in, etc.

Also, notice that in the L;. given in (4.11), lower powers of velocity are accom-
panied by h,, with more lower + indices, or equivalently fewer lower — indices (“at
higher level”, in the language of Section 4.2). In Section 4.2, we shall see that the
metric perturbations at lower level are easier to compute. Hence, in L;. the v* term
is the easiest to find, next is v2, and then the v-independent term is the hardest to
compute. In flat space, only the lowest level h__ is nonzero, and there is only the v*
term. In the PP-wave, we have metric perturbations at all levels, and life is harder.

In the membrane case the situation is similar.

4.1.2 Membrane Probe

Now we consider the membrane. A brief review of constrained Hamiltonian mechanics
in field theory is given in Appendix D. The previous discussion on the point particle
may be said to be merely a quest for rigor, but for the membrane the following dis-
cussion is a necessity. The reason is, although people have discussed the membrane
in a fairly general background [12], the background there is taken to be the special
case which is independent of 7, which certainly is not true in the physical situation
where there is p_ transfer (see discussion near the end of 4.1.1). Also, in [12], the
background metric G__ and G_4 are set to zero using the target space diffeomor-
phism freedom. This is not the right gauge to use even in the investigation of only
transverse momentum transfer (We know that in the two graviton interaction it is
the background G__ that gives the v* term in the effective potential of the probe
graviton). For the above two reasons, we would like to discuss the derivation of the
light cone Lagrangian for a membrane in an arbitrary static background (note: by
“static” we mean there is no x*-dependence, yet x~-dependence is allowed).

Denote the background metric and three-form as G, (x), A,.,(x), respectively,
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and the membrane embedding coordinates as X*(o%), with o*,i = 0,1,2 being the
world-volume coordinates. Our membrane is considered to be a probe membrane,
hence it does not have any back reaction on the background geometry. The back-
ground geometry can include the contribution from a source, though. The membrane

Lagrangian density is given by
1 ..
ﬁ(XH, E)ZX“) =T [ - det(gw) - Ee”kAWp(()iX‘@jX”ﬁkXp} (412)

with 7" being the membrane tension, and g¢;; = G,,0,X"0;X" being the pullback

metric. The momentum density is

oL v
H)\ = W =T |: — det(gw) gOk(akXM)G/\M — A)\l,palX 82Xp} (413)
Define
ﬁ)\ = HA + TA/\VpaleagXp =T4/— det(gij) gOk(akX“)G,\u (414)

Then it is easy to see we have the following primary constraint
b0 = GNIIL\IIe + T2 det(g,s) = 0 (4.15)

where r, s = 1, 2 label the spatial world-volume coordinates. It is also easily seen that,
¢o only contains II,, X*, and spatial derivatives of X*, as required for a constraint.

One can also verify that there are two more primary constraints:
o, = L0, XN, r=1,2 (4.16)

Of course, we know the gauge freedom these constraints arise from: ¢y comes from
world-volume temporal reparametrization freedom and the ¢,.’s come from world-

volume spatial reparametrization freedom. The Hamiltonian density is given by

H=1,00X"—-L=0 (4.17)
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as it should be for a system with general covariance. The total Hamiltonian density

is given by
Hr =H+ ¢, = oy = Py + oy (4.18)

where the ¢"’s denote the Lagrange multiplier fields. Hy = [ do'do® Hy.
Computing the Poisson bracket with Hr (see Appendix D), one finds the equations

of motion (using g‘bo = 2GHTI,, gﬁr = 0, X")

X" = 2°GHT1, + "9, X"

7 6(251 a¢z
AoIl, = 8, ( 5, X@) ¢ (4.19)

where to facilitate the evaluation of dylIl,, we list below some useful expressions

Db Ol d(det(grs))

s = X g et T’ 42
aoxm ~ 29 g et T 50 ) (4.20)
with
otl
a7 ~ TAv X" = 50X
8 det TS r « r a , o - o
(4.21)
Odo aGAS >\58~)\ ~ ,O(det(gys))
oXH  OX*k e IDlle +2G 8XuH§ +T T oxe (4.22)
with
Oy 0Aw, . o,
OXH =T OXH hX"0, X"
O(det (g, G,
| 86)2 ) 8Xﬁ(a X0 X gos + 91102 X0 X7 — 2010, X0, X7

(4.23)
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also

0ps
a0, X1)

1L, % =0 rs=1,2 (4.24)

We need to check whether there are any secondary constraints. Using the above

equations of motion, one shows after a somewhat tedious manipulation,
Jo; =0 (4.25)

for arbitrary ¢!, which means that there is no secondary constraint, and the ¢;’s are all
first class constraints with the Lagrange multipliers ¢’s embodying the gauge degrees
of freedom. This is an expected result, but it’s reassuring to see that is the case
for arbitrary backgrounds, not just the special backgrounds (e.g., flat background,
x~-independent backgrounds) investigated previously.

Next we should gauge fix the membrane system. In the spirit explained in the
point particle case, we will not do so by introducing Dirac brackets, but rather by
specifying the ¢'’s, which is somewhat shorter.

Now use the light-cone coordinates {z*, 27,2}, and assume static background
Gu(z7,z) and A, ,(z~,z*). Use the light cone gauge X+ = 0. Then the equation

of motion for X gives

0 1
Cc = =
2GHII,

(4.26)

So now the constraint ¢o(X~, X4,0,X~,0, X4, 11, I1_,14) = 0 (in which X¥ is set
to 0%) can be used to solve for II, (X, X4, 0,X~,0, X4 II_,II4). Then we define
the light cone Hamiltonian H;.(X~, X4,0,X~,0, X4, 1I_,II,) = 1L,

Before defining the light-cone Lagrangian, similar to the point particle case, we
need to express II4 as a function of (X, X4,0,X~,0,X4,11_,9,X*). This is done
by looking at the equations of motion for X4:

OXA  GAIL N LOXA
do0 G*”ﬁ,, ¢ do"

(4.27)
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where we have used the expression for ¢ given above. We should fix the gauge by
specifying the ¢"’s to be functions of (X, X4, 0,X~,0,X4,11_,114). Then using
the expression IT, (X, X4, 9,X~,0,X4 I1_,I14) obtained earlier, we can invert this
equation of motion to find M4 (X, X4,0,X~,9, X4, 11_, 9, X*). Then we can define
the light-cone Lagrangian

L1( X7, X4 0.X7,0, X411, 00X4) = 00 X" — Hye (4.28)

e An Easy Example: A Probe Membrane in the Unperturbed PP-
wave Background

Now, as an easy example, let us derive £;. for a probe membrane in the unper-
turbed PP-wave background using the above prescription. We will see that we get
the expected answer given in [29]

In the unperturbed PP-wave, the only nonzero component of A,,, is Ay;; =
Heijk:z:k , and we don’t bother to write down the familiar PP-wave metric here again.

3

Solving the constraint ¢q = 0, we find
I = o {—g4+ 112 4+ TAIL, + T? det(g,s) } — Tgeijk(al)w)(aQXJ)Xk (4.29)

Also easily seen is det(gys) = 5(1 X4, XP — 0, XP9,X4)% Also the equations of

motion for X4 are

I
B X = H—A + 9, XA (4.30)

To motivate a gauge choice, let us note that 9pIlI- = 0,(¢"TI_). (This is just
equation (2.21) in [12], in the particular case of PP-wave). Hence we choose ¢" = 0,

which means II_ will be o%-independent. This gauge choice gives us

Iy =110y X* (4.31)
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Hence we find

L. =T,400X" —H,.
=T1_0y X9, X" + 11,
1 m. ,[1, ., 1

= “T1_9, X9 X" — —(XH? + —(X%)?
5 o o 5 M 9( )+36( )

2
_411;_(81XA62XB — X P0,XM) = T (X (@:X7)X" (4.32)

which agrees with [29] upon setting 7" = —1 (this minus sign is to conform to [12]’s
convention eqn. (2.16) for the membrane action, which [29] follows.) and identifying

our II_ with their p*.

e A Less Trivial Example: A Probe in the PP-wave Background
Perturbed by a Source

Let us compute £;. in the PP-wave background perturbed by some source. The
background is now G, = (Gu)pp + by, and A, = (Auwp)pp + Gup, with the
quantities with subscript pp being those of the unperturbed PP-wave background,
and Ay, a,., being metric and three-form perturbations caused by the source. We

only need the light-cone Lagrangian to linear order in the perturbation.
L. = (‘Clc)pp + 0L (433)

with (L;.),p being the expression given in the previous example of unperturbed PP-
wave.

The computation is, as in the previous example, quite straightforward, although
a bit tedious, because solving for I in terms of (X, X4, 0, X, 0, X4, 1I_, 9, X*)
in the perturbed background requires some work. But the four-time-derivative term,

i.e., the v* term in £, is not hard to find. Making the gauge choice ¢" = 0, we find

II_
£ = 5 - (Gap® X 0, X )2 (4.34)
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(the superscript (4) means it’s the four-time-derivative term) which is quite similar
to the graviton case. To know this term, we only need h__ produced by the source.
Of course, to get terms with lower powers of the velocity, we need other components
of h,, and also the three-form perturbation a,,,.
To summarize, to get the explicit expression for the light-cone Lagrangian, we
only need to figure out the h,, and a,,, produced by the source, which is the subject

of the next section.

4.2 Diagonalizing the Supergravity Field Equations
for Arbitrary Static Sources

Now let us present the diagonalization of the linearized supergravity equations of
motions for arbitrary sources. There is, of course, no highbrow knowledge involved
here: we are just solving the linearized Einstein equations and Maxwell equations,
which are coupled; and by “diagonalization” we basically just mean the prescription
using which we get a decoupled Laplace equation for each component of the metric
and three-form perturbations. The unperturbed background is the 11-D PP-wave,
and we only consider static, i.e., x7-independent, field configurations, thanks to the
fact that the sources considered are taken to be static, i.e., with z"-independent stress
tensor and three-form current.

Since we leave the source arbitrary, what we’ll present here are the left-hand side
of the linearized equations. These are tensors whose computation is straightforward
though a bit tedious: the reason we present them here is because they are necessary
when solving the field equations, and to the best of our knowledge have not been
explicitly given elsewhere.

A somewhat related problem is the diagonalization of the equations of motion
when the source is absent. This requires field configurations with z*-dependence.
One good reference along this line is [53]. Roughly speaking, borrowing the language

of electromagnetism, what’s considered in [53] are electromagnetic waves in vacuum,
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while what we are considering here are electrostatics and magnetostatics for arbitrary
sources.

Denote the metric perturbation dg,, as h,,, and the gauge potential perturbation

mz
as 0A,,, = au,. Once again, the nonzero components of the PP-wave background

metric and the four-form field strength are given by

3
1 ) 1
gr-=1, gy = =4 9 > @)+ =D (@], gap =dap (4.35)

=1 36 a=4
Fiozy = p (4.36)
In our conventions, u, v, p, . .. take the values +, —,1,...,9; A, B, C, ... take the values

1,...,9;4,7,k,... take the values 1, ..., 3; and a, b, ¢, . . . take the values 4, ...,9. Also,
we follow [54] for the conventions of various tensors.
The nonzero components up to (anti)symmetry of the Christoffel symbol, Riemann

tensor, etc., of the 11-D PP-wave are

1 _ 1
Fir = §3A9++, Iy = §3A9++

1 1
Riaip=— §aAaBg++a Riy =— 530809++> R=0 (4.37)

(We usually don’t substitute the explicit expression of g, unless that brings signif-
icant simplification to the resulting formula)

Now let’s add a source, thus perturbing the background. h,,,a,.,, are treated as

s
rank-two and rank-three tensors, respectively, the covariant derivative V acting on
them is defined using the connection coefficient of the unperturbed PP-wave back-
ground, and indices are raised /lowered, traces are taken using the background metric
guv- Let’s deal with the Einstein equations first.

Define l_zu,, = huw — %gm,h, where h = ¢g"h,,. Without the source, the Einstein

equation is

1
Rm/ - §Rg;w - f{%l[Tm/]A =0 (438)
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Recall that the stress tensor of the gauge field is

1 1
T, =—— | Fpe,F P — —qg,, FFNF 4.39
I 122, ( unepl, gIu Y (4.39)

The source perturbs the Einstein equation to

1
5 (R g ) — k3T = kb Tl (4.40)

with [T),,]s standing for the stress tensor of the source.

As usual, it helps to proceed in an organized manner, grouping different terms in
the above perturbed Einstein equations. One finds, ¢ (RM) — %Rgup) = —%V"Vaﬁﬂp—l—
K+ Qup, and £3,0[T,]4 = N, + L,,,, where the explicit expressions of the symmet-
ric tensors V"V(J—LW, K, Quv Ny, and L, can be obtained after some work. Their

definitions and components are given below !
e V'V,hu
_ _ _ 1 _
VoVohiy = ¢"00hiy + | (0404944 )hi— + 5(8A9++3A9++)h——
+2 [aAg++a,}_l+A — 8A9++8A}_l+,:| (441)
_ _ 1 _ _ _
VVohy_ = g"0,0,hy — 5(8A3A9++)h—— + 0494 4+0-h_a — O0agy+Oah_—
(4.42)

- - 1 - - - -
V“V0h+c = g“”a,ﬂyh%v—é(8A8Ag++)h_c+8,49++8_hAC—60g++8_h+_—8Ag++8,4h_c
(4.43)

VoVoh__ = g"0,0,h__
(4.44)

!Notice that d; will never appear because we only consider the static case; also note g#*9,,0, =
—g+ 4+ 0% + 0404 for static configurations.
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VUV(J—I_C = g“ya#a,,]_l_c - acg_H_a_]_I__

VVehep = g"8,00hep — Ocgs+0-h_p — Opgs+0_h_¢

o K,, Its definition is

K

1P

_ _ - 1 - 1 -
(RShep + R, hey) + R, Shoe + 3 GupRhey — 5RhM,

N | —

Its components are given by

1 - 1 = 1 -
Ky = <—58A5A9++) (h+ + §g++h> + ) (040B9++) hap

1
Ki = (_§8A8A9++> h__

1 ) 1 _
Kia= (—Zacacg++) h_a+ (—§3A339++> h_p

1 1 _
Kap = 5 040BG 4+ — §5A330309++ h__

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

e Qu Its definition is Q,, = (V. + Vi) — 204,V a, Where ¢, = VPhg,.

As one can recognize, (), contains the arbitrariness of making different gauge choices

when solving the Einstein equation, where one makes a gauge choice by specifying



5

the ¢,’s. The components of @), are

1 1
Q_=0.q, Q_a= i(a—q/x + aAQ—): Q4 = §(Q++a—Q— - aAQA)
1 1
Qap = 5(@1(13 + 0pqa) — §5AB(&Q+ — G++0-q— + 0aqa)
1
Qia= 2 [3ACI+ - (8Ag++)q_]

1 1
Qiy = §<5A9++)QA - §g++(6Lq+ — 94++0-q- + Daqa) (4.54)

Let’s make a few more remarks about gauge choice here. If one chooses the
“Lorentz gauge” where all the ¢,’s vanish, then ), all vanish. One can also choose,
say, the “harmonic gauge” in which 6(¢g*°T* ) = 0. (Note that in the unperturbed

PP-wave background ¢g”7I', vanishes.) These two gauges are in general different

because 0(g*T'*,,) = —h?7T* +¢*, or more explicitly, §(g*°T",,) = q_, 6(¢”’T'"",,) =
—h_4049++ +q+ — gyriq_, and 5(gp"FApg) = %h__E)AngJr + q4. One may also choose
gauges in between, of which our graviton computation in [21] is an example. We don’t
concern ourselves much with the issue of gauge choice here, because in any gauge,
provided the g,’s are set to some known functions, we shall be able to diagonalize the
linearized equations. The gauge choice issue will resurface later when one compares
the results of the supergravity calculation with that of the gauge theory calculation.
There, for the results from both sides to match, one has to make a “most natural”
gauge choice (usually motivated by the symmetry of the problem) on the supergravity
side. We will discuss that in Section 4.3 in the specific example of two graviton
interactions.

e N, Itis defined to be the part of x3,[T),]4 that contains only the metric

perturbation, but not the three-form gauge potential perturbation. Its components
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are given by

9
1- 1 - 1 - 1 _
Ny =p’ (§h+— + g9++h——3 > " hi + 6 > haa)

i=1 a=4
2 2
i [
N+, - Zh,,7 N+’L = Ehfi, N+b - O
N__=0, N_;=0, N_,=0
pooo [T
Nij - _Z(;ijh——7 Nib = 07 Nab — Zéabh—— (455)

e L, Thisis defined to be the part of x3,8[T,,]a that contains only the three-

form perturbation, but not the metric perturbation. Its components are given by

1
Lii=mn (5F123+ - §9++5F123—) y Ly =0, Ly; = %ijfSFﬂk—, L= géFDSb
L__=0, L;=0, L_,=0

Lij = géijéFI%f? Ly, = %Eijk(stjkfa Lyg = _gébd§F123f (4.56)

Next let us deal with the Maxwell equation. In the absence of the source, it is

1
V=9

ehr---p11

1
a}\ <\/__g F)\MHQHS) — @ﬁﬁjﬁm-w‘”

Fﬂsu-#ll = 0 (457>

where 7] is either +1 or —1 depending on the convention, which we can always fix later
by requiring the consistency of the conventions for the equations and the solutions
that we consider. (As it turns out, in the two graviton interaction case [21] it does not
matter because this F'AF' term has no effect on the final effective potential. Of course,
for membrane interactions, that would no longer be the case.) When the source is
present, we add its current J#1#2#3 to the left-hand side of the above equation, and

get

1
V=3

7’7 eh1---111

5 — -~ _F
1152 /=g = MH7

F,

M8 11

O (\/—_g FAmuzus) _ — JH1K243 (4.58)

We can write the left-hand side of the above equation as the sum of two totally

antisymmetric tensors Z#1#2#3 4 SHb2k3 ywhere ZM1H283 s defined to be the part that
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contains the metric perturbation only, and S#1#2#3 is defined to be the part that

contains the three-form perturbation only. One finds

Z1 = pegdihoy, ZVP =0, Z™ = pe(0_h_, — Och__), ZT" =0, Zt*=0
3
g - - 7 A
Z7Y = peijr lak (gh —h= — Z h“) — Obluy
) L N~ ;
7% = — e [8_ (gh —ho - Z h“') ~ Ohhey

Zite =0, Z' =0 (4.59)

. 27" = peipdibw, 27 =0

, 29" = e (0-hiy — Oph_y)

and

S+_A = g“”@uﬁya_+,4 + aBg++a_CLBA_ — 8_ (V“CLM_’_A) + 8A(V“au+_) <460)

SHAB = ¢"0,0,a_ap — O_(V"auap) + 0a(V'a,_p) — 0p(V'a,_a)  (4.61)

SiAB = glwauauaJrAB - g++S+AB
+{[(9a94+)(0-a_1B) + 0a(V"auyB) — 04 (app-Org++)] — [A < Bl}
—(0pg++)0Fp_ap — M%G_ABM"'WI%JF‘;FM.-.W (4.62)
SAPE = 9" 0,0vaa5E — (0a9++)(0-a-pr) — (0pg++)(0-a-pa) — (Opg++)(0-a-ap)

—04(V*aupE) — 05(V*aupa) — Op(V*auas) — ,u27]_4EABEM"'MlQHéFm.--M

(4.63)

Notice that SH1#2#2 contains V*a,,) and its derivatives. Those terms correspond to
the gauge freedom for the three-form gauge potential. One could use the “Lorentz
gauge” where V*a,,» = 0. But for the sake of generality, let’s leave the gauge choice

for the three-form arbitrary.
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Now that we have collected the expressions for the various tensors, we are ready

to diagonalize the field equations. Recall that the Einstein equation is
—%V“V(,h,w + Ky + Qv — Ny — Ly = 611 [T ] (4.64)
and the Maxwell equation is
ZHkaks 4 QHRaps — JHp2ps (4.65)

The right-hand sides of these equations are given by specifying the source that we
consider (recall that the three-form current J is of order x%;), hence we only need to
concentrate on diagonalizing the left-hand sides.

As will be seen shortly, it is useful to define “level” for tensors: lower + /upper
— indices contribute +1 to the level; lower —/upper + indices contribute —1 to
level; and the upper A/lower A indices contribute zero to the level. We shall see
that the field equations should be solved in ascending order of their levels. The
following is the detailed prescription of the diagonalization procedure. Let us use the
shorthand notation (E.E.),, for the lower () component of the Einstein equation,
and (M.E.)"M#283 for the upper (pypeps) component of the Maxwell equation.

o at level —2

The only field equation at this level is (E.E.)__, which reads, upon using the

expressions of the various tensors V"VUBW, K, Q... etc., that we've given above
1 uv A 2

This equation can be immediately solved for h__ after specifying the source term and
the gauge choice term )__.

e at level —1

We have (E.FE.)_,4, which reads

—% (9" 0u0uha — (D491 )(O-h—)] + Q_a = w1, [T_4ls (4.67)
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which can now be solved for h_4, using the h__ found previously. Also at this level

is (M.E.)*4B which reads,

9" 00,05 — 0 (V') + 0i(V"a,—j) — 0;(VF'a,—) + peijr(0-h_y — Oph__) =
g0, 0,a_y, — O_(V'aun) + 0;(V*a,_p) — 0p(VFa,—;) = Jtib

9" 0,00 e — O_ (V" ae) + 0p(V ay_0) — 0e(VFa,_y) = J (4.68)

from which we can find a_4p, upon specifying the gauge choice V*q,,, for the three-
form and using the h_4 and h__ found previously.
e at level 0
At this level we have (E.E.),_, (M.E.)*=4 (E.E.)4p, and (M.E.)ABE,
(E.E.),_ is of the form

1 _
—égﬂ”aﬂaym_ = known terms (4.69)

(From now on, we will not bother writing down the detailed equations; “known terms”
refers to the gauge choice terms @, V#a,,, source terms, and terms containing pre-
viously found Bw’s and a,,,’s, one can write those down by looking up the expressions
given earlier for the various tensors.) Hence solving it we get h,_. Solving (M.E.)*=4
gives a_4 4.

(E.E.)ap and (M.E.)*BE are coupled, so a little more work is needed. The
following are the details. First notice that the only unknown in (M.FE.)* is ay., hence
solving this equation we find ap. ((M.E.)"° contains the usual term g"*9,0,ap.. and
also a term of the form 0_ag4ry which comes from the F'A F' in the Maxwell equation,
hence it is not quite a Laplace equation. But, that being said, one shouldn’t have
any difficulty solving it.)

(M.E.)" is of the form ¢"0,0,as. = known terms, solving which gives a.
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(M.E.)% and (E.E.) are coupled in the following manner

" 0,00, + ueijka_l_zkb = known terms

1 - 1
—§g‘“’8u(9yhkb + Z—lueklmﬁ,almb = known terms (4.70)

Decoupling these two equations are quite easy. Let us take aq9, and hsp, as the repre-

sentative case. One sees that these two equations can be recombined to give

(9" 0,0, + ipud_) (hay + iay9y) = known terms

(g"0,0, — ipO_ ) (hsy — iai2) = known terms (4.71)

Solving these equations gives (hs, + ia12) and (ks — iay2), and in turn hs, and a;g.
(M.E.)"* is coupled to (E.E.);; and (E.E.)y through the quantity H = 2377 | hy—

% 23:4 haq in the following manner

guya,u,ayalz?, + pn0d_H = known terms
1 - 1

_§gw’auayhij + §u5ij8_a123 = known terms
1

- 1
—ngaua,,hbd — §/L5bd8,a123 = known terms (4.72)

Combining the last two equations gives
—g"0,0,H + 4110_a123 = known terms (4.73)
Recombining this with first equation, we get

(g"0,0, + 2ip0_)(H + 2ia123) = known terms

(g"0,0, — 2ipu0_)(H — 2iai23) = known terms (4.74)

solving which individually gives H and ai23. Using the obtained expression for ajs3
one can then find h;; and hyg. Thus we are done with (E.E.)4p and (M.E.)APE.

e at level 1
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(M.E.)=48 is of the form ¢"*0,0,a, 45 = known terms, solving which gives a 4p.
(E.E.); 4 is of the form —%g““6M6VB+A — known terms, solving which gives h 4.
o at level 2

(E.E.);4 is of the form —1¢#79,0,h,, = known terms, solving which gives A .

Thus we have completely diagonalized the whole set of Einstein equations and Maxwell
equations!

Let us use O to denote 0,0, (which we call the Laplacian). In Appendix E we
discuss the Green’s function of [J, the Fourier transform of 0 along z~. Since it does
not have 21 dependence, this Green’s function is different from the scalar propagator
discussed in [55], which has a closed form expression.

In Appendix F we give the expression for h__ (again Fourier transformed along
the z~ direction) when the source is a membrane which is a sphere in the first three
transverse directions, a point at the origin of the other six transverse directions, and

00 X~ = 0, in the near-membrane limit (see

moving along the trajectory X+ = ¢
Appendix F for what is meant by the “near-membrane limit”). In that case h__ has
the form of a massive scalar Green’s function in seven-dimensional Euclidean space,
with its “mass” proportional to the k_ that the graviton carries. Plugging this h__
into (4.34) gives the v* term of the light cone Lagrangian of a probe membrane in
the PP-wave background perturbed by this spherical source membrane, in the case

when every point on the probe membrane is in the near-membrane limit with respect

to the source membrane.

4.3 Two Graviton Interaction Without M-momentum
Transfer—Supergravity Computation

Completing our investigation of the gauge/gravity duality appearing in two graviton
interactions without M-momentum transfer in a PP-wave, the content of this section

is basically taken from the computation on the supergravity side given in [21]. This
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is an application of the general formalism developed in Sections 4.1 and 4.2, although
since [21] was done before the writing up of this thesis, the following differs from the
general formalism in some nonessential details, e.g., it solves for h,, instead of BW,
and the term “level” is not mentioned explicitly. (The “solving the field equations in
ascending order of the level” pattern can be very easily recognized though.) Because
there is no M-momentum transfer in this application, many terms containing 0_ which
couple different equations simply disappear, making the diagonalization easier.

To find the two-body effective action, one only needs to solve for the metric
perturbation caused by the source graviton at the linear order (~ x%,). The action is
given by

S =S8a+Sa+Sp (4.75)

S¢ is the Einstein action for the metric, given by

1
So= % /d“x\/\g\R (4.76)
11

S 4 is the action for the three-form, given by

2 \/ N 1
SA = ——/dnl‘ {ﬂFMVAgFNVAg + ﬁ EM'"MHA F F

= 2-2-4] 1231(41)? RS T T T p
(4.77)

Sp is the action for the source graviton (the subscript P means “particle”), given by

P Y e 1 dyt dy” )
Sp=Crg [ de (om0 -~ Bl (478)

with C'p being some constant.
The above action gives the equations of motion for the metric, the three-form
field, and the source graviton, listed below.

The Einstein equation is

1
Ry, — §R9MV = ’{%1 ([TMV]A + [Tuu}p) (4-79)
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The Maxwell equation is

a'u (1 /‘g‘F#V)\ﬁ) _ JEGVA&pI“.p8Fp1,,.p4Fp5,up8 — 0 (480)

The geodesic equation is
d>yH
dg?

Wy _
dg dg

+ 17, (y) (4.81)

[T,] , and [T),,] are the stress tensors obtained by varying S4 and Sp with respect

to the metric

[Twla = %’%1 (Fukpru)\gp - éguquUAngaxg) (4.82)
_Cp 1 1 dy?(€) dyM(€) s
Hele (0= 5 gy 94(2) | g we)

(4.83)

Setting C'p to zero means the absence of the source graviton. In this case, a
solution to the above equations of motion is the 11-D PP-wave background. Recall
that the metric g, and the four-form field strength of the unperturbed 11-D PP-wave

background are given by

3 9

1 % 1 a
gp— =1, gup = —p? 9 Z(x )*+ 36 Z(x )| 9aB = dap (4.84)
i=1 a=4
Fiogy = (4.85)

As before, in our conventions, u,v,p,... take the values +,—,1,...,9; A, B,C,...
take the values 1,...,9; 4,7, k,... take the values 1,...,3; and a,b,c,... take the
values 4,...,9

The introduction of a source graviton, i.e., a non-zero Cp, perturbs the above

PP-wave solution to

G = G + P = Gy Frvpe — Fuvpe + fuvpo (4.86)

It suffices to solve the geodesic equation at the zeroth order of Cp, which gives a
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zt=¢ 27=0, 24 =0 (4.87)

and the corresponding stress tensor of the source graviton is then

9
Tl p (2) = p*guegu (™) [] 62 (4.88)
A=1
where pt = 2%; is just the p_ of the source graviton (note that 3(£) is a constant

Bo for a geodesic) and in what follows we will use p* instead of C'p. Note that the
order of k2, is the same as the order of p™. Also note that the only non-vanishing
component of [T, is [T-_]p = p*é(z7) [T, 0(z).

In what follows we will integrate everything over the £~ direction, thus getting rid
of §(x~) and derivatives with respect to z~. On the Matrix theory side, the effective
potential was only computed up to 1-loop. In supergravity language, that means we
are only looking at order x%,. To find the effective potential on the supergravity side
up to this order, we need only the linearized (i.e., to the linear order of p*) Einstein
equation and Maxwell equation.

We consider static solutions which have no ™ dependence. Also, we restrict our
attention to metric and gauge field perturbations that go to zero at infinity. The

linearized Einstein equation in 11 dimension is
OR,, = K3y |01, + ég,w (Thag — g*P6Tog) | = T (4.89)
where the perturbation to the total stress tensor is given by
6Top = [0Tapl 4 + [Tuplp (4.90)

[6T4p) 4 is the perturbation to the stress tensor of the gauge field, which is to be
expressed in terms of the perturbation to the field strength.

First look at the (——) component of the Einstein equation, which is
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9
1 O?h__
R ==5) oo (4.91)
A=1
and
9
T - = k0T = w1, [T--]p = w1p" H a(z") (4.92)
A=1

where [07__], = 0 (as can be readily verified) has been used. This gives

pt15 1
T 16|7]7

ho_ = (4.93)

where we use 7 to denote the nine-dimensional vector in the transverse directions.

The (—A) component of the Einstein equation is

Ha= _%Bi: a;ha;B i aizfafB (4.94)
and
T 4=0 (4.95)
which gives
h_a=0 (4.96)

Now we look at the linearized Maxwell equation, in terms of the gauge potential
perturbation a,,, (note fauw, = O\@up — Ouupx + Ovapry — Opar). We choose to
work in the “Lorentz gauge” where Z?D:l Opa,yp = 0. The upper (AB+) component

of the Maxwell equation gives

9 9
Z 8,%@,43, — Z 80 [h——FDAB+] =0 (497)

D=1 D=1
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Using the expression for h__ that we just found, we have
Ryt 15~ o

— ik — 4.98

3 i
Fi purtp* 156 7Zi:1(x )? o 1
—ijk 7_(_4 32 ijk |f‘9 ‘f|7
2 .+ 3 k.b
pripT 15 T
iy = - ik | T—5 4.99
Fan = PR B S a1 ] (4.99)

Next consider the upper (ABC') component of the Maxwell equation. Using the

fact that h_y = 0 and asp— = 0 except for a;;_, we have
9
Z 8,23aABc =0 (4.100)
hence, all aypc = 0. Now the (A + —) component. Using h_4 = 0 we get
9
> 0hasy =0 (4.101)

thus aa—y = 0. Now we go back to look at the (+A) component of the Einstein

equation. Using h_4 = 0, we get

9 9
1 0?hys 1 82h+3
OR o= —= 4.102
A 2 BZ:: 8x33x3 B aanxB ( )
Using aa—+ =0, aapc =0, and h_4 = 0, we get
Ta=0 (4.103)

So we conclude that

hya=0 (4.104)
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Now consider the (+—) component of the Einstein equation

9 9
1 a2h+_ 1 8g++ ah__
6R+_ - _5 E + -

4.105
OrAdzA 2 orA OxA ( )
A=1 A=1
and
L
T, = 5 (Hh—— = pf-123) (4.106)
In writing 7, _, we made use of the following equations
2
i
0y 1, = —5h__
1
[5Tij]A = 4—25ij (—2ﬂf—123 - Mthf)
ki1
1
0T4e], = 4—25bc (2pf 123 + pi°h__)
K11
I 3
[0Tw], = — =y €ijk S —jkb (4.107)
K1y
j,k=1
Solving the (+—) component of the Einstein equation, we get
2,2+ 3 )2
KK P b i@ 11
hy =— — = 4.108
- ™ |64 |77 192 |Z]° (4.108)
The (AB) component of the Einstein equation reads
spo _ LIS @has N~ Phac N~ Phse |~ Phee ) P
AP 2 0x¢0xC 0xBoxC dxAdx¢ OxA0xB JxA0xB
Cc=1 c=1 c=1 c=1
1 8294_4_ (92h__ 8g++ Oh__ (9g++ Oh__
- |2h__ 2 4.109
T3 { T A0 T 0uA 9xB | 028 oA ( )

OxA0xB
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and

1

T; = — géij (20 f 123 + p*h__)
1
Tpe = 65bc (2Mf—123 + /fh,,)
3
]
7;1, = — Z ;1€ijkf—jkb (4110)
k=

So far the need to make a gauge choice for the metric has not arisen. Now to
solve for hap we must make a gauge choice for the metric. Let G*? and I') denote
the complete inverse metric and Christoffel symbol, respectively (by “complete”, we
mean they include both the unperturbed and perturbed part). We shall fix the gauge
by specifying G*T' .

As can be easily verified,
9
GT), = ) Och_c=0
c=1

9
Gl = Z (=h-cOcgit + Ochyc — g140ch-_c) =0

1

9

1

GPUFZXU = Ochac — 58,4 (Z hoo +2hy - — g++h) (4.111)
c=1 Cc=1

Q
©

. o A . . o
so we need to specify G*?I') to fix the gauge. Using the above expressions for G*T' ;‘J,

we can rewrite 0 R4p as

2 02C0xC oxB oxA

C=1

SRam 1  Ohap  0(GrTY) 0 (GT)) n 1 (0944 Oh_— n 094+ Oh_—
AR~ 2 \ dxA 0xB oxB OxA

(4.112)

In general relativity one often uses the “harmonic gauge”, where one sets GPUF‘;‘U =
0 (which is satisfied by the unperturbed PP-wave background). Here, however, we
shall opt for a different gauge.



89

As derived in the Appendix C, the effective potential is given by

N, |1 1
Verr = —p{§ {02 + 94+ + Iy + 944 <Zg++h - h+>

+3 2hia—hoa(W + g0t + hABvAvB]

A A,B
1 1 1
+§h__v4 - 5212 (h+_ - §g++h__> } (4.113)

where N,, is the number of DO-branes forming the probe graviton, and v4 = 4,

v = 30 (0% As hya h_ all vanish, they simply drop out of the effective
potential.

The computation on Matrix theory side in section 3.3.6 tells us that in the effective
potential there are no terms of the form v®® for a # b, nor are there terms of the
form v'v®. This suggests we choose the gauge such that hg, o< dgp, and h;, = 0. To

make hgp, X gy, We set
poTa 1
G Fpo‘ = §h__aag++ (4114)
then, to make h;, = 0, we set

' 1
8{, (GpUF;U) = §8ig++8bh__ - geijkf—jkb (4.115)

which implies

Gpari :3_5ﬂ2/€%1p+ zi
T

(4.116)

Note that the above expression makes the gauge different from the “Lorentz gauge”
where all the g,’s vanish (see Section 4.2). Hence our gauge is something in between

the harmonic gauge and the Lorentz gauge. In this gauge, the Einstein equation gives

2,2+ 3 k)2
prript 111557, (2 1
ha = 5a ~~ | & Jy - 15 4117

PN 96 [2 E |75 (4.117)
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96 E !7 21z w64 |7

+ 1 2 1 1 2.2 +15 .7

Now let us look at the upper (AB—) component of the Maxwell equation. It gives

the following equations

9

9 9
Z alzjaz‘j+ — 0++ Z a%aij— - Z OpG++ (Opaij— + Oia;p— + Ojap;—)
D=1 D=1

TR

3 9 3
+u Z €ijk{ - Z Ophpi + Z (Omhmi — Okhunm) + Ok

k=1 D=1 m=1
=0

> Ohaiy =0 (4.119)
D_

Solving them gives

3 3 9
/,L K/ p 1 m a
e = (S ) s [0S+ ]
1 m=
Apet+ = 0

aps = 0 (4.120)

Hence the field strength is given by

Foin = KT pt : 149 2 - 2
e T e Y Z + Z )

3.2 .+ 3 b 3 9
WR1LP 5o m o
frigp = ;41 (E eijkas’“> 31 7 [—41 > @+ (x )2] (4.121)
= m=1 a=4

As can be easily checked, all the a,,, we have found indeed satisfy the Lorentz gauge.
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Finally, we consider the (++) component of the Einstein equation

R,y = — —ZﬁAh+++ Z aAg—H-thAB_ - Z 0a9++0ahpp

ABl ABl

+ Z hap0a0pg++ + 5 28A9++8Ah+ + - Zg++3A9++3Ah——

A B=1 1o
1
T Z h-— (8A9++)2 (4.122)
A=1
and
1 - [
T, =- 5 <2f+123 + Z hn‘) + 59+ (2f 123 + ph__) (4.123)
i=1

From this we find

2

4,2 .+ 1 3.
hyy = WK1 P - 116 [Z(xZ)z +9

=1

Z(w%?] —1TY @)Y

(4.124)

To summarize, the nonzero components of the metric perturbation are h__ [eqn.
(4.93)], hy— [eqn. (4.108)], he [eqn. (4.117)], h;; [eqn. (4.118)], and hiy [eqn.
(4.124)]; and the nonzero components of the field strength perturbation are f_;;x, f_ij»
leqn. (4.99)], and fiijk, frie [eqn. (4.121)].

Substituting the expressions for the metric into our formula for Vg in eqn. (4.113),

averaging h,,, over z~ (i.e., dividing by 27 R), and noting that 3, = 1]?47;5, pt =1
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we find
N, 15 N,N, v*
Vg = —2(v? s 7
T AR TS VL
CENNT 11 15 () 4 (@) + (@) i( i)2+15zij:1xfvaivﬂ‘
—_— —_ — /Z] —
R3M? 96 |77 32 Eil p 16 |7

71 15(2)2 + (222 + (%)) =, av
R s by

2

_|_

4 3
*N,N, 1 o
+ 32 E x

R3M® 768 |7|" 1.21( )

(4.125)

Comparison of the above formula with eqn. (3.100) on the Matrix theory side shows
exact agreement.

We would like to emphasize the approximation involved once again. We treated
the source graviton as a perturbation to the exact PP-wave background, and the
calculation was performed to first order in p™. However, the solution that we found
for these linearized equations is exact in .

So, we have finished our comparison of the effective potentials describing two gravi-
ton interactions on the gauge theory side and the supergravity side, and have found
precise agreement at order li%l, up to quantum corrections at short distances. Let us
make a few comments on our result: our result at order u? agrees with Taylor and
Van Raamsdonk’s proposal in [6] for Matrix theory in a weakly curved background up
to linear terms. As mentioned in their discussion, their proposal is proven only in the
case where the background is produced by well-defined Matrix theory configurations.
This is not the case for the PP-wave background, so their proposal for the Matrix
theory in this background, while convincing, is not a proven fact. Thus, the result
at p?, i.e., terms linear in the background, can be treated as additional evidence for
their proposal, similar to the explicit calculation in [7], this time with a nontrivial
g+, metric component.

The result at order u* is beyond linear order in the background, and hence is a
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new result. In fact, our calculation explicitly shows that there are no higher powers
of 11 in the effective action of the supergravity side at the order x%,. On the Matrix
theory side, higher powers of i are also not expected for long distances. When they
do appear, they are always accompanied by higher powers of a/r?, which indicates
that they are corrections to supergravity at short distances. However, as it stands,
the corrections for velocity dependent terms are unreliable because they are computed
using the sum over mass formula, which is exact only for terms independent of velocity
or terms proportional to x2,, as is shown in the Appendix B. Evaluating these
corrections exactly requires going beyond the sum over mass formula, and an efficient
way of handling the mass matrix will be of use.

As pointed out by [56, 57], Matrix theory in a generic curved background is not
expected to agree with supergravity. In the PP-wave case, however, we do find precise
agreement as has been shown above. This is likely to be a result of the large number of
supersymmetries of the PP-wave background, or in other words, we can say that this
agreement predicts the existence of a supersymmetric nonrenormalization theorem.

This leads us naturally to the discussion in Chapter 5.
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Chapter 5

Supersymmetric
Nonrenormalization Theorems

The role of supersymmetric nonrenormalization theorems in Matrix theory has been
crucial from the very beginning (see [2]). As a matter of fact, they are very likely
to be the reason why the two theories, namely, gauge theory and supergravity, with
disparate regions of validity (see Subsection 3.3.2), would give agreement in the first
place.

The most convincing way to address this issue is brute force evaluation of higher
loop contributions, as [14] did in showing that there is no correction to the v* term
from two-loops in the context of graviton scattering in flat space. An alternative ap-
proach is to proceed without using detailed knowledge of the underlying theory. One
wants to see how sixteen supersymmetries alone, together with the SO(9) invariance of
the transverse part of the flat space metric, and CPT invariance, would constrain the
effective Lagrangian. Amazingly, to the v* order these global symmetries completely
fix the effective Lagrangian, up to an overall constant. This approach was pioneered
by [31], whose argument we will briefly review below. See also [32, 33, 34, 35, 36, 37].

In [31])’s notation, the bosonic part of the effective action can take the general

form
Shoson = /dt(fl (r)v? + fo(r)v* 4 higher derivative terms) (5.1)

and one then uses supersymmetries to constrain the functions fi(r), fa(r).



95

At order v2, the supersymmetry transformations can be written in the form
o' = —iey'y, 0 = y'v'e+ Me (5.2)

where the matrix M contains v and two fermions. The closure of the above super-
symmetry transformations then requires M to vanish, which in turn implies that f;

must be a constant, which one normalizes to % Hence adding the fermions the action

S, = / dt <%v2 +wz/}) (5.3)

At the v* order, the bosonic action can be written in the form

at this order takes the form

S, = / at (700 + -+ 1)) (5.4)

where the ellipsis stands for v31?, v?*, and vy® terms.
The supersymmetry variation in general mixes terms with different numbers of
fermions. However, the “top” term, i.e., the eight-fermion term, provides some sim-

plifying clues. Its variation is

S(f50(r)0®) = 6 £ (rw® + £ (r) o (5.5)

where the first term is the only one that contains nine fermions, and thus does not
mix with other terms. Hence this nine-fermion term must vanish by itself.
After the use of Fierz identities, the most general eight-fermion term of the effec-

tive Lagrangian can be written as

(T o My ) (91 ()i + g2 (r)uin + galr)ziwrai,)  (5.6)

As argued earlier, the nine-fermion term in the supersymmetry variation of the above

expression should vanish. Upon applying the operators ngdi%aq and ngdi%:cq to the
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nine-fermion variation, one gets a set of coupled differential equation for the g’s,
whose solution is, unique up to a constant ¢

2 c 4 ¢

c
gi(r) = 143 711 7 ga(r) = T13,713 0 g3(r) = ,15 (5.7)

This gives precisely the same eight-fermion Lagrangian, up to the overall constant,
as obtained in [58] by an explicit loop computation. The other terms with differ-

4 action Sy can be further determined using

ent numbers of fermions in the order v
the eight-fermion result obtained above; for details of that calculation see [34]. In
the above proof(s) of supersymmetric nonrenormalization theorems, there are sub-
tleties related to higher derivative terms and integration by parts. After taking those
subtleties into account, one finds that the result is unaffected [37].

It is natural to ask whether we can give a similar proof of the supersymmet-
ric nonrenormalization theorem in the 11-D PP-wave. The 11-D PP-wave has a
non-vanishing ¢, component which breaks the transverse SO(9) symmetry into
SO(3) x SO(6). As pointed out by [34] in their discussion section, when the SO(9) is
broken, the v* order effective action should take a form similar to that in flat space,
with the coefficient function f(Z) for the v* term now being a harmonic function of
the nine-vector &, not just its length r, and the coefficient functions of the two, four,
six, eight fermion terms being given by partial derivatives 0;...0xf(Z). Unlike in the
SO(9) invariant case, where supersymmetry constraints lead to ordinary differential
equations with respect to r, now one has to solve partial differential equations with
respect to Z. One would expect that this requires substantially more work. For ex-
ample, one could introduce the dimensionless quantity p/z which is the ratio between
the SO(3) radius and the SO(6) radius, and the functions’ dependence on p/z would
not be so easy to determine. Simplifying facts could appear after scrutinizing the
system carefully enough, and it would be an interesting project to give a proof of the

supersymmetric nonrenormalization theorem in 11-D PP-wave.
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Chapter 6

Conclusion and Discussion

Gauge/gravity duality for M theory in flat and almost flat (i.e., weakly curved) back-
grounds has been investigated extensively, and nice agreements have been found. In
generic curved backgrounds, things are less clear, and we certainly want to under-
stand them better. The two graviton results reported in this thesis can be regarded
as a step in this direction.

We hope that our ongoing investigation of membrane interactions will shed some
new light on M theory in generic curved backgrounds in the case of nonzero M-
momentum transfer. There are also many other directions that are very natural to
explore. One of them is going away from the Penrose limit towards M theory in the
full AdS x S, in the spirit of [59], which is in the IIB string context. To be more spe-
cific, we can add 1/R corrections (R — oo in the Penrose limit) to the Matrix theory
proposed by [10] and investigate the dynamics of that model. Another direction is
M theory in backgrounds with fewer supersymmetries, e.g., those preserving sixteen
supersymmetries considered in [27]. Since supersymmetric nonrenormalization the-
orems seem to be crucial for the gauge/gravity duality, those backgrounds that are
not maximally supersymmetric should teach us something valuable. Finally, in this
thesis we have restricted our attention to one loop in the gauge theory and linearized
supergravity. In the future we will try to push our computation to higher loops and

nonlinear supergravity.
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Appendix A

Proof of Invariance of L, nabelian
under Sixteen Supersymmetries

In this appendix we prove that the action Lponabelian given in eqn. (3.48) is invariant
under sixteen supersymmetries. The supersymmetry transformation given in eqn.

(3.49) can be written as
0 =0+ dp, (A1)

where 0, is the part containing €, and d,, is the compensating gauge transformation

part containing Ay. So we have

5£nonabelian - 55£’nonabelian + 5A0£n0nabelian (AQ)

As we will see in the following, it makes the proof neater to separate the supersym-
metry variation 6 Lponabelian N0 d¢Lyonabelian aNd 0a, Lnonabelian at the very beginning.

Carrying out the variation explicitly, we find

6A0£nonabelian - —Y%({(A())m, xl} + gfmnp(AO)n}/pZ>
o a mn, ’ a Zg mn, ’
=X (gf™"(No), X)) — Ff (M), Ty W (A3)

Deriving the result given in eqn. (A.3) involves some algebra. For example, to show

that the g3Y* term which arises from d,,(F¥)? vanishes, one has to deal with the
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product of three structure constants and use the Jacobi identity for the structure
constants. We do not present the details of the derivation here, because the form of
(A.3) is what one would expect, in two aspects. Firstly, it only depends on the time-
derivative of Ay. The reason is, if Ay were time-independent, d,, would just be a usual
time-independent gauge transformation of the form eqn. (3.46) with A,,, = —p%r(Ao)m,
and we have already shown that L, onabelian 1S invariant under time-independent gauge
transformations. Secondly, it only contains ¢ and ¢! powers, but not ¢ and ¢* terms
(recall that Loonabelian has order g® terms, and d,, has order g terms, so potentially
Ono Lnonabelian could have up to g> order terms). The reason is, terms containing the
time-derivative of Ay come purely from 0y, (Y/%)2, da,(X%)2, and dx, (U7 ¥,,), so are
only of orders ¢° and g'. Order g% and ¢? terms only contain A not acted on by time-
derivative, and must vanish, because L, onabelian 1S invariant under time-independent
gauge transformations order by order in g.

Now let us show that 0 L,onabelian vanishes order by order in g (of course, what we
really mean is it vanishes up to total derivatives; in what follows we drop the total

derivative terms).

5£nonabelian = (5£nonabelian)(0) + (5£nonabelian)(1) + (5£nonabelian)(2) + (5£nonabelian)(3)

(A4)

with the superscript denoting the power of ¢ it contains. Also, as in the abelian case,
we always move the time-derivative and Poisson bracket (spatial-derivative) to act on
the boson through integration by parts. ((5L’nombelwn)(0) = ( since this is just a sum
of copies of the variation of the abelian Lagrangian.

Let us first consider (0Luonabelian)®. (We will return to the g and g' terms
afterwards.) Eqn. (A.3) already tells us that (65, Luenabetian)> = 0. Also, easily seen
0 Lponabelian does not contain any order ¢ terms. Hence (5£n0nabehan)(3) =0.

Next, let us consider (0 Lyonabelian) . Here eqn. (A.3) again gives (6a, Luonabelian)' > =
0, so the contribution comes purely from (5e£n0nabehan)(2). There are four types of

terms in it, which we write schematically as X3?e¥, Y X2eW, Y2X eV, and Y3e¥, and
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in what follows we’ll write these structures as subscripts to denote the relevant types

of variation of the Lagrangian.

First look at the X3eW¥ terms. These come from the variation of two terms in the

Lagrangian, one being the Yukawa term WX W, the other being the (F®)? term. It is
given by

.

Zg mn mrs a a (6 C
(6£nonabelian)g?2‘seg/ = %f P XX (V) apesra X Wap

ig®
- opt
ig®
- 2pt
ig®
T 1t

fmanZX;gfmrs (Ga’YZg‘Ifgr)Xf
fmansX]I;fmrng(ea’ygﬁ\IjBS)

FrorFr XXX T, (A.5)

where to get to the last line we have renamed indices at various places and also used

the Jacobi identity of the gauge group structure constants. This vanishes because

I XXXy
(by using the Jacobi identity for the structure constants)
= () Xe XXt
(renaming n «> $,b < ¢ in the 1st term, and r <> s,a <> b in the 2nd term)
= — [T T XXX P — P XXX S
— R XXXy e TP XX X
QP IR XA [T XXX
(the two terms with only one gamma matrix cancel
upon renaming n < r in the 2nd of them)
— 2 XXX Py = 0 (A.6)
Thus we have shown ((5£nonabehan)g?%& = 0.
(5£nonabehan)§,2§d, = 0 by manipulations similar to the above.

Now look at Y X2eWU terms. These come from the variations of three terms in the
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Lagrangian, one being the U¢ term, one being the (£?)? term, and the other being
the Yukawa term WX W. We have

7 2
2 L9 mnp fFmrsy/i v a a i
(0Luonabelion)y 2y =~ 2z7f PETY XX e Yy W

igz mnp pmrsysi yvavyva, T 1
- p_+f f YnXst e \Ijr
Z.gQ mnp gmrsyiyvayvb T i a. b
+ p—+f Y X Xe I,
(renaming the indices to bring the fields into the same form

and then using the Jacobi identity)
=0 (A.7)

(anabehan)@ xop = 0 by similar steps.

So we have shown that (6Luonapetian)? = 0.

Next consider (5£nonabelian)(1). At this order we have contributions from both
(0 Aoﬁnonabelian)(l) and ((5€£n0nabehan)(1). There are: terms containing yi, uX2e¥, uY2eW,
1Y XeV; terms containing a Poisson bracket, {z, X} XeWU, {z,Y}Ye¥, {z, X}YeV,
{z,Y} XeV; terms containing a time-derivative, XXE\IJ, YYE\I/, XYe\If, YXG\I/; terms
containing four spinors, e¥3. Compared with g2 order, ¢ order is more straightfor-
ward because structure constants only appear once in each term, hence it doesn’t

involve the Jacobi identity for the structure constants.



102
Let’s first consider terms containing p. The most complicated term is
(5£nonabelian)/(ﬂ)/26\p =g [ ngﬁG jkf p(GT’y \Ijn)}/pj
1 1] £mn; AV
+ 66k Tf pYan(eT'ykkIfm)

+ ﬂekm fmnpynzypj (7k7123)a6’7/é§3€>\\1/am
1

- §Y£(7k7123)aﬁ6ﬂ73/\f mPY W,
1 ,.. o
— S Y (1) e B0,
(renaming indices to bring the fields into the same form

and also using gamma matrix identities given before)

ik i 1 1 1 1 1
= iguet Y Y () (§+a— 23 é)

= 0 (A.8)

The other terms containing p all vanish by similar manipulations and we omit the
details here. The terms containing the Poisson bracket and time-derivative also all
vanish by similar steps and we don’t bother to write the details down, either.

As always, it is worthwhile to write out the proof for the vanishing of the four

spinor term in detail. So let us do this now. We have
g mn
(O Laomabetian)cgs = 1™ (7 ) (U710 = (W)W 0)] - (A9)

We just have to work out the Fierz transformation for SO(9) spinors. Any 16 x 16

matrices can be expanded using the complete set of 256 matrices

which satisfy tr(y*") = 16 §MV.

So we can expand

VM\I/n‘IJTTnyN = C’QyQ (A.11)
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with
1
Co=— ﬁtr(vaQvaw)(‘Ifva‘Pn) (A.12)

Using the above result, we find

9 7
(GT,}/A\I}n)OIIz;,YA\I[p) B 16 (\Ilﬁqj"»(ﬁj\l/ )+ 16(\11 \Ifn)(GT’YA‘I/p)
o 3
16 (\I’m,yAB\Dn)(eT,YAB\I;p) G (\I’m’YABC\I/n)(ET’yABC\IJp)
1
= 16 (T W) () (A.13)

Upon contraction with f™ the v4% and y4B¢ terms vanish because these two types

of matrices are antisymmetric. Hence we find

9
PR WEA,) = = L) ) ()
1 mn;
- 7 P(\IJMBCD%><J¢BCD%> (A14)

Similarly, we find

1 1
fmnp(GT\I/n)(\D%\ij) = - Efmnp(\l/T \I]n)(ET\IJp) - Efmnp(\lji'Vqun)(eTVA\Dﬁ
. fmnp(‘llm’}’ABCD\Dn) (ET")/ABCD\IJP) (A 15)

Hence we have

(6£nonabelian)£}1;)3 = [fmnp( \Ij )(‘I’m’Y ) - fmnp(ET\pn)(\Ijﬁ\ij)}

(usmg the Fierz identities derived above)
= | S S ) ()
renaming indices n < p
e indi

— 1y [fm”p(e AT )(\Ifm”)/ )—fmnp(eT\Ijn)(\pgmqu)}

= Y (6£nonabelian)£}p)3 <A16)
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which gives
<5£nonabelian)gp)3 =0 (A].?)

So we have proved (6Luonabetian) " = 0. Thus 6 Lponabetian = 0.
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Appendix B

The One-Loop Effective Potential

In this appendix we will prove the sum over mass formula in eqn. (3.92).
The one-loop effective action I' of a theory expanded upon a background B in the

background field method is given by

r— %[Trboson (=2 +Wy(7)) = Trtermion (=82 W (7)) = Trgnoss (=024 Wy (7))

(B.1)
Here W = M? is the mass matrix squared for the fluctuating fields, and the trace Tr
is over both the functional space and the field component indices (which are, besides
the U(2) indices, the space-time indices 0,1, ..,9 for the bosons, and the 16 Dirac
spinor indices for the fermions).

Take the trace of the boson, for example

1—\boson = %Trboson ln(_af + W(T))
= —%Tr / % exp[—s(—02 + W(7))] (B.2)
0

The trace over functional space can be computed by sandwiching the operator

between the “plane-wave” basis wave-functions |w) = \/szﬂe_i‘” and the conjugate
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wave-functions (w| = \/%76“”

Lhmon = 51 / /’ / e expl—s(—02 + W(r)]e ™™ (B3)

The trace tr is now over only the field component indices. If we define Vog(7) by

r=— / drVeu(T) (B.4)

Then, the bosonic part of Vg becomes

Veg(boson) = / / “T exp[—s(—02 + W(7))]e ™" (B.5)
The operator in the middle can be rewritten as
exp|—s(—0% + W(r))] = Xe W (etsd* (B.6)

Where X is defined as

X = exp[—s(—@f—I—W(T))]e_sage“w(ﬂ

= 1+ commutator terms (B.7)

The commutator terms give corrections to supergravity, so for the purpose of
this paper, which is to see whether the Matrix theory can reproduce supergravity
results, we can ignore them. This claim will be proven shortly, after the result from

approximating X = 1 is examined. In this approximation, we have

Vi(boson) = ~ / /—%m s(w? + W ()]

= Vg = —§trM (B.8)

Note that M, the square root of W, can be defined through its expansion in powers
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of 1/r. Putting everything together, and minding the minus signs for the fermions
and the ghosts, we get the sum over mass formula in eqn. (3.92). Now, we return to
the claim made above, that the commutator terms in X will not contribute to terms

in the supergravity limit. To show this, we first write X in a most general form
X =Y K[MW(r)s"oy (B.9)

Here K["'](W (7)) is a general function of W (7) and its 7-derivatives, and is defined
by eqn. (B.9). Looking back at the definition of X in eqn. (B.7), we see that n counts
the number of terms involved in forming the commutator, and m is the number of
derivatives not acting on W. For example, when n = 0, it implies m = 0, and
K9] = 1, corresponding to the approximation we made above. All the other values
of n correspond to commutator terms in X, and in particular, K = 0 when n = 1,
because a commutator takes at least two terms.

Putting X in terms of K into V.g, we will encounter the following factor inside

the integrand:

m [m/2]

T GMTIwT (lm)(_,iw)lam—l _ Z (g})(_uﬂ)lam—% (BlO)
1=0 1=0

[m/2] is the biggest integer no larger than m/2. In the last line, we made use of

the fact that w will be integrated from —oo to +o00 so that any odd functions in the

integrand will give zero. As a result, only terms with even powers of w are kept.

Therefore, the effective potential becomes
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1 *d - » 2
Ve(boson) = EZtr /dw/ ?SK[?]S"e’m@me_WTe_SWe_s‘”
n,m 0

[m/2]
1 < d
= S [ [Ty e e
Am n,m [=0 0 s
[m/2] 0o !
1 ds J Ir
- Zmy =, [ D\ K™ m—2l  —sW
X [T D
[m/2]
1 1 *“ds
— t —(m K[m 8m—2l/ WO n—1-1/2  —sW
r ;;4(21>F(1/2—Z) [n] 0 SS €
o= 1 m F(Tl -1 - 1/2) m 0m—2l 1
n,m [=0
Thus, the effective potential can be recast as
Vo= 305 L PO oL (g
TN 2 (I ) ‘ xwyie B

As before, o = 1/(M3R). The reason these factors of a are inserted will be clear
shortly.

In a comparison of one-loop Matrix theory with supergravity, the relevant terms on
the supergravity side are proportional to x%;, which is of order o* on the Matrix theory
side. This means that any higher powers of a are irrelevant for such a comparison
as they represent Matrix theory corrections to supergravity, and finding them is not
the purpose of this paper. In other words, to examine whether the Matrix theory can
reproduce supergravity in the appropriate limit, only terms up to order o® need to
be kept.

It makes sense, therefore, to examine each factor in V.g and count the powers of
« it contains. We begin with the mass matrix squared. By inspection of the explicit

expressions given in Subsection 3.3.5, one sees that W can always be schematically
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written as

1 1
W ~ —2T2+—N
(6% 0]

=a’W ~ r’4aN

= (®W) ~ 14+ aN+ (aN)? +--. (B.13)

where powers of r and numerical coefficients have been suppressed in the last expres-

sion. For example, using eqn. (3.99), we have

9 3.
aNy =« (; vy ; %{%’7 ’7123}> + P p? /47 (B.14)
Similarly, « N, can be constructed using the rules given in Subsection 3.3.5 (we omit its
explicit expression here), while alNy, = 0. From the explicit expressions for NV, it can
be shown easily that tr N = 0, tr [(aN)?] = 0+ O[a?], and tr [(@ON)?] = 0+ Ola)].
These facts are related to the large number of supersymmetries of our system and
will be of use shortly. The last line in eqn. (B.13) is a symbolic statement that for
any k, whether positive or negative, (o> )* will only give non-negative powers of a.
Another important point to note is that every « arising from (W )* is accompanied
by a factor of N. Now look at K[']: Let K[| = > K[ P] where p is the number
T-derivatives acting on W inside K, and ¢ is the number of W inside K. By definition,

we have

— ta=n (B.15)

Forn=0 = K=1;
Forn=1 = K =0;
For n > 2 = K consists of commutators. In this case, we have
<n
1 (B.16)
2

For fixed ¢ and n > 2, m and p have the following extremal values:
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Monin =0 = Praz = 2(n — q)
Pmin =1 = Mypae = 2(n—¢q) — 1
The reason p,,;, = 1 is that 83 must act at least once on W to give non-vanishing

commutators like [W, [W, [W, W]]] in K. Consider

1 1
2(n—=0)—1 r-m m—21 _ 2(n=0)—1 g-m m—21
a K[n ](W)a (QQW)n—l—l/Q - ; « K[n ;’](W)@ (a2W)n—l—1/2
1
2(n—q)—1-21 m 2 m—21
::%;a<m K[ P)(a®W)d COEEE
1
a o rm 2 m—21
p.q

where a = 2(n—q) —1—2I. Noting | < [m/2] < [mpax/2] =[n—q¢—1/2] =n—q—1,

we must have

lmax:n_q_l

=a>1 (B.18)

From this derivation of the lower bound of a, we see that the equality holds only when

M= Mpax = 2(n —q) — 1 and | = lyax = n — ¢ — 1. Then, eqn. (B.15) gives

m—2=1

D = Pmin = 1 (B.19)

A comparison of supergravity with one-loop Matrix theory means keeping terms only

up to a® ~ k%,. Therefore, we need only consider the range of a to be

1<a<3 (B.20)

For a = 3: There can be no factors of aN from oW because they increase the powers

of a beyond 3, hence taking us beyond the limit of supergravity. Without any factors
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of aN, the effective potential is simply

Veg = f(r)trl
Vg ~ trl1=0 (B.21)

Here, tr is again the trace over the boson minus the trace over the fermions and
the ghosts. For a = 2: There can be at most one aN, either from K (W) or

o2 (W)~ H+1/2 But for only one N, we have

Vig ~ tr N
= ™tr N

= 0 (B.22)

For a = 1: Now it is possible to have (aN)? coming from one of the following three

cases: (i) Both (aN)? come from 92/ (W) —nH+1/2

Vg ~ atr 9™ % (aN)?
~ ad™tr (aN)?
~ a0l

~ O[a”] (B.23)

(ii) Both (aN)? come from K (a?W): Since we showed that p = 1 when a = 1, there
is only one T-derivative acting on W in K, we must have either: (a) Vig ~ tr N? or
(b) Ve ~ tr (NO;N) ~ $0,tr (N?). In either case, Vg = 0+ O[]

(iii) One (aN) comes from K(a?W) and one from 9™~ (a?W)~"++1/2; We already

showed that m — 2] = 1 when a = 1, so we have
Vg ~ KO(a2W) i1/ (B.24)

This implies either: (a) Veg ~ tr (NON) or (b) Veg ~ tr (ONON)



112
(a) is identical to case (iib) above. (b) is of order o’ using the fact mentioned
before. This exhausts all cases contributing to terms up to order o ~ k3, in Vig. In
particular, we have shown that none of the commutator terms in X, corresponding
to K["] with n > 2, contributes to terms relevant to supergravity. This completes

the proof of the claim made following eqn. (B.7).
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Appendix C

An Alternative Derivation of Vg
for the Point Particle Probe

In this appendix, we give an alternative derivation of the effective potential V.g for a
point particle probe (a probe graviton). The same quantity is derived in Subsection
4.1.1 under the name of light-cone Lagrangian, with a more rigorous treatment of
constraints.

The Lagrangian of the probe graviton moving in the perturbed PP-wave with
metric G, = g + hyw, with g, being the unperturbed PP-wave metric, and h,,

being the metric perturbation due to the source graviton, is given by!

L=—-m\/—-Giriv = —m\/—(g,w + hy ) THEY (C.1)

We make a Legendre transformation

L'=L-Pri (C.2)

p

where upon setting z™ =1

L 14 he i
pro b LEhd (C.3)

IThis approach is the one used in [17].
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When we let m — 0, this gives
Gudts” = (gu + hy)i"d” = 207 + grp + 0> + hy,dti” =0 (C.4)

This is a quadratic equation for =, which we will solve for 7, keeping only terms

up to linear order in h,,. We find

. 1 1
ro= —{5 {Ug + gt T hir + 944 <19++h—— - h+—)
Z 2h+A — U + g++ U + Z hABUA’UB:|
A AB
1 1 1
+§h__?]4 — 5?}2 <h+_ — §g++h__> } (05)

Taking the limit m — 0, the L' in eqn. (C.2) is simply —P,#~, which is the
effective potential Vg that we need. It contains the interaction between the probe
and the source up to terms linear in h,,. An alternative way of writing such an

interaction is

L
puv

This structure was used by [6] to identify the effective potentials on both sides.



115

Appendix D

Constrained Hamiltonian
Dynamics in Field Theory

For simplicity of notation let us consider field theory in (1 4+ 1) dimensions. The
generalization to field theory in higher dimensions is straightforward. Denote the
field as n(t,x), its momentum density m(t,z) = W, and the Hamiltonian

density H(n, 0.n,m) = mdyn — L. The equations of motion are

OH
0= o
OH 0 OH
o =~ (% "o (a@m))) (1)

The Poisson bracket in field theory is defined as follows. In field theory, we can
have density f(¢,z) = f(n,d,n,m, 0,m), or integrated density F(t) = [dz f(t,z) =
[dx f(n,d,m, 7, 8,m). Let us denote both densities and integrated densities collec-
tively as £&. For any two such objects & and &, we define their Poisson bracket to

be

06 6% 0 6§
=[|d — D.2
el = [0 (565t~ e 2
where % is the functional derivative.
In terms of the Poisson bracket one can see that 0;n(t, x) = 573(?:5) = [n(t,z), H]pg,
and Oy (t,z) = — % = [n(t,2), Hlpg with H = [ dz H(t,z) being the Hamilto-

nian. Using this, one also see that for any function f(t,z) = f(n,0.n,7,0,m), we
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have

O f(t,x) =1[f(t,x), Hpp (D.3)

So far we have been talking about an unconstrained system. Now let us introduce

constraints. Suppose the system has M primary constraints
Om(n, 0, ) =0, m=1,2,.... M (D.4)

Define the total Hamiltonian density as Hy = H + u™¢,,, and the total Hamilto-

nian as

Hr = /dx Hr =H + /dx u" G (D.5)

with u (¢, x) being the Lagrange multiplier fields. Then the time evolution is given

by, for any function f(t,x) = f(n, 0w, ™, Opm)

8tf(t7 I) = [f(tvx)v HT]PB (D6)

This completes our brief review of constrained Hamiltonian dynamics in field
theory. We didn’t introduce the extended Hamiltonian Hp which is different from
the total Hamiltonian Hp only when there exist secondary constraints, since in the
application to the membrane one can show that there is no secondary constraint (see

Subsection 4.1.2).
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Appendix E

The Green’s Function for the =™~
Fourier Transformed Laplacian []

In Section 4.2, upon diagonalizing the supergravity field equations, the components of
the metric and three-form perturbations satisfy Laplace equations. (See, for example,
eqn. (4.66).) So in this appendix we discuss the Green’s function for the Laplace
equation Fourier transformed along the ™ direction.

Let us use [J to denote the Laplacian ¢*”0,0,, and its = Fourier transform
O =gk +35%.,0% =37, 04 where 0; = % — (202, 0, = % —
ki (%)%,

Of course, —L14 is just a harmonic oscillator’s Hamiltonian along the z# direction.
Let us use ¢,, and E,, to denote its normalized eigenfunctions and eigenvalues.
Then @, poy = Gy (21) by (1) and Epn, noy = Soa_y En, are the normalized
eigenfunctions and eigenvalues of —[.

Use 7 to denote the nine vector (z',...,2%). Define

which is the Green’s function of [: OzK (Z,7) = 6(Z — ¥)
The above Green’s function doesn’t have closed form. Thus although in principle
fLW and a,,, can all be obtained by integrating over the source using this Green’s

function, in practice one may have to take some limit to get an answer, e.g., the
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near-membrane limit in Appendix F.
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Appendix F

h__ for a Spherical Source
Membrane in the Near-Membrane
Limit

In this appendix, we discuss the solution h__ to the field equation (4.66), in the
near-membrane limit. Also see the end of Subsection 3.2.2.2 and the end of Section
4.2 for discussions on the near-membrane limit in the investigation of two membrane
interactions.

Note h__ = h__. In the following we use the same symbol for the metric pertur-
bation and its Fourier transform. Its meaning should be clear from context.

For a source membrane extending a sphere of radius 7 in the (X!, X2 X3) direc-
tions, with its center sitting at X~ =0, X% = ... = X? =0, and X' = ¢°, the (——)
component of its stress tensor is

T s = T6(x7)5(r — ro)8(aY)...5(2%) (_71) (?)1 (F.1)

where r = Vzix?. Recall h__ satisfies eqn. (4.66)

—%Dh +Q_ = rH[T s (F.2)

Let us make the gauge choice ¢ = 0 (thus Q__ = 0_¢_ = 0) and take its Fourier
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transform along the =~ direction

— 5T = RATS(r — ro)d(a)..5(a") (‘71) GoN (F.3)

Integrating the Green’s function K over the sphere is not such a great idea. In-
stead, we consider the near-membrane limit (so that the source membrane looks
almost flat), where w = r —ry << 19, also Vxtx® << ro. In this limit (and assuming
h__ only depends on (w,z?, ..., 2%)), we get

{— (%)2/& + 88;)2 + aiiy 4o 8?329)2} ho = (%)_1 K2 T (w)3(2)...0(2°)
(F.4)

which is just a massive scalar equation in seven-dimensional flat space. The solution

to this is, defining £ = Vw? + x%x®

___ET e (= kY o pro, )2
=~ o & {3 +3(50%¢) + (Bhee) } (F.5)

3 . . .
where (g = 161—75r is the area of unit six sphere.
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