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Abstract

The thesis describes an extension of O. Schramm’s SLE processes to complicated
plane domains and Riemann surfaces. First, three kinds of new SLEs are defined
for simple conformal types. They have properties similar to traditional SLEs. Then
harmonic random Loewner chains (HRLC) are defined in finite Riemann surfaces.
They are measures on the space of Loewner chains, which are increasing families
of closed subsets satisfying certain properties. An HRLC is first defined on local
charts using Loewner’s equation. Since the definitions in different charts agree with
each other, these local HRLCs can be put together to construct a global HRLC.
An HRLC in a plane domain can be described by differential equations involving
canonical plane domains. Those old and new SLEs are special cases of HRLCs.
An HRLC is determined by a parameter x > 0, a starting point and a target set.
When « = 6, the HRLC satisfies the locality property. When x = 2, the HRLC
preserves some observable that resembles the observable for the corresponding loop-
erased random walk (LERW). So HRLC, should be the scaling limit of LERW. With
reasonable assumptions, HRLCg/3 differs from a restriction measure by a conformally
invariant density; for x € (0,8/3), HRLC,, differs from a pre-restriction measure by
a conformally invariant density. A restriction measure could be constructed from a

pre-restriction measure by adding Brownian bubbles.
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Chapter 1

Introduction

1.1 Background

Stochastic Loewner evolution or Schramm-Loewner evolution (SLE), introduced by O.
Schramm in [15], is about random growth processes of closed fractal subsets in simply
connected (plane) domains (other than C) and in Riemann sphere C:= CU{oo}. The
evolution is described by the classical Loewner differential equation with the driving
term being a Brownian motion. SLE depends on a parameter x > 0, the speed of
the Brownian motion, and behaves differently for different value of . See [14] by S.
Rohde and O. Schramm for the basic fundamental properties of SLE.

Schramm’s processes turned out to be very useful. On the one hand, they are
amenable to computations, on the other hand, they are related with some statistical
physics models. In a series of papers [4]-[8], G. F. Lawler, O. Schramm and W.
Werner used SLE to determine the Brownian motion intersection exponents in the
plane, identified SLE; and SLEg with the scaling limits of loop-erased random walk
and uniform spanning tree Peano curve, respectively, and conjectured that SLEg/3 is
the scaling limit of self avoiding walk. S. Smirnov proved in [17] that SLEg is the
scaling limit of critical site percolation on the triangular lattice. And O. Schramm
and S. Sheffield proved in [16] that the harmonic explorer converges to SLE,.

For various reasons, a similar theory should also exist for multiply connected
domains and even for general Riemann surfaces. We expect that the definition and

some study of general SLE will give us better understanding of SLE itself and its



physics background.

There are three kinds of SLEs in the literature: radial SLE, chordal SLE, and full
plane SLE. They are all conformally invariant. Full plane SLE grows in ((Aj, and is the
limit case of radial SLE. Radial and chordal SLE grow in simply connected domains.
A basic property of these two kinds of SLEs is that if (K};) has the law of a radial or
chordal SLE in a domain D, then for any fixed time b, the increment of (K;) after
b has the same law as (K}) in the sense of conformal equivalence. This means that
there is a conformal map W from D onto D \ K}, fixing certain marked point which is
the target of (K}) such that (W (K})) has the same law as (K. \ K}). For radial SLE,
the target is an interior point. And for chordal SLE, the target is a prime end. One
may see [1] for the definition of a prime end, and we will give an equivalent definition
in Chapter 3.

The definitions of SLEs use the fact that all simply connected domains with a
marked interior point or prime end are conformally equivalent. This property does
not hold for general plane domains or Riemann surfaces. That is the main difficulty

in our extension of SLEs.

1.2 Main results

In this thesis, we first define three new kinds of SLEs: strip SLE, annulus SLE, and
disc SLE. Strip SLE grows in a simply connected domain whose target is a “boundary
arc” which is the set of prime ends between two fixed prime ends. Annulus SLE
grows in a doubly connected domain (with finite modulus) whose target is a whole
boundary component. Disc SLE is the limit case of annulus SLE, and grows in a
simply connected domain. We call them SLEs because they satisfy most properties
that the traditional SLEs have.

For further extension of SLEs, we first define Loewner chains in finite Riemann
surfaces. Simply or doubly connected domains are simple types of finite Riemann
surfaces, and the old and new SLEs all describe measures on Loewner chains. We

then provide a method to define conformally invariant measures on Loewner chains in



3
complicated types of Riemann surfaces. We call them the harmonic random Loewner
chains, or HRLCs.

An HRLC in a finite Riemann surface depends on a parameter x > 0, a starting
point, and a target set. It is first defined in local charts. In each local chart, after
a time-change, the loewner chain becomes a radial or chordal Loewner chain, whose
driving function is a Brownian motion plus some drift term, where the drift term
carries the information of the total surface and the target set. Ito’s formula is used
to show that the definition in all charts agree with each other. So they can be pasted
together to get a global HRLC. Those six kinds of SLEs are special kinds of HRLCs.
For HRLC in plane domains, the growth of the chain can be described by a differential
equation with finitely many variables. The canonical domains are used here.

The definition of HRLC is most successful when x = 6 and k = 2. If kK = 6, the
random Loewner chain has the locality property, which means that the chain does not
feel the boundary before hitting it. For x > 0 and x # 6, the chain satisfies the “weak
locality”. If k = 2, the growing chain preserves some observables which resemble the
observables for LERW (loop-erased random walk). If we consider plane domain, then
this property suggests that HRLC, is the scaling limit of a corresponding LERW.

We then show that a Brownian excursion can be constructed by adding Brownian
bubbles to an HRLC, trace. With reasonable assumptions, we find that HRLCg/3
differs from a restriction measure by a conformally invariant density; and for 0 < k <
8/3, HRLC, differs from a pre-restriction measure also by a conformally invariant
density. And a restriction measure can be constructed by adding Brownian bubbles
to a pre-restriction measure.

For the extension of SLE, and SLEg, it seems that HRLC,; and HRLCg do not
have properties similar to the corresponding SLEs. Some drift terms other than those
that are used to define HRLC in local charts are needed to define the random Loewner
chain. We expect that the random Loewner chain should preserve observables similar
to those for SLE4 and SLEg. This work is still in progress now, and is not included

in this thesis.



Chapter 2

Various kinds of SLEs

2.1 Hulls and Loewner chains in simple domains

There are three kinds of SLEs in the literature: radial SLE, chordal SLE, and full
plane SLE. In this chapter, we define another three kinds of SLEs: strip SLE, annulus
SLE, and disc SLE. The content about annulus SLE and disc SLE are chosen from
the paper [20].

Those SLEs are measures on the space of (interior) Loewner chains in Riemann
sphere @, simply or doubly connected domains. By a simply connected domain we
mean a simply connected plane domain that is not C. By a doubly connected domain
we mean a doubly connected plane domain whose two boundary components in C
both contain more than one point.

We say K is a hull in a simply connected domain D if D \ K is still a simply
connected domain. Suppose D is a doubly connected domain with two boundary
components S; and Sy in C. We say K is a hull in D on S; if D \ K is a doubly
connected domain that has Ss;_; as one boundary component in C.

Let D be a simply or doubly connected domain and S is a boundary component
of D in C. Suppose L maps [0,T), T € (0, oo, to the space of hulls in D (on S), such
that L(0) = 0, L(t1) & L(t2) when t; < t5, and for any a € [0,T) and a compact
F C D\ L(a) that has more than one point, the extremal length of the family of path
that separates F' from L(t+¢)\ L(t) in D\ L(t 4+ ¢) tends to 0 as ¢ — 07, uniformly

in ¢t € [0,a]. Then we call L a Loewner chain in D (on S). For such L, there is a
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unique prime end w of D (on S) such that L. — w as ¢ — 07. We say L is started
from w.

Suppose D is the Riemann sphere or a simply connected domain. A compact
contractible subset K of D that contains more than one point is called an interior
hull in D. Then D \ K is a simply or doubly connected domain, and the boundary
of K is a boundary component of D\ K. Suppose p € D and L maps (—oo,T),
T € (—00, 0], to the space of interior hulls in D such that {p} = NL(t), L(t1) & L(t2)
when ¢; < ty, and for each a € (—o00,T), t — L(a+1t) is a Loewner chain in D\ L(a)
(on OL(a)). Then we say L is an interior Loewner chain in D started from p. Suppose
L is a Loewner chain or interior Loewner chain defined on [0,7) or (—o0,T'). Let u
be a continuous (strictly) increasing function on [0,7") or (—oo,T") such that «(0) =0
or u(—o0) = —oo. Then t — L(u~%(t)) is still a Loewner chain or interior Loewner
chain, and is called a time-change of L through u. From the conformal equivalence
of extremal length, the conformal image of a (interior) hull or a (interior) Loewner

chain is still a (interior) hull or a (interior) Loewner chain.

2.2 Review of SLEs in the literature

2.2.1 Radial SLE

Radial SLE is first defined in the unit disc D = {# € C : |D| < 1}. Given a real

continuous function £(t) on [0, a), consider the following radial Loewner equation:

et + ¢y (2)

D (2 po(z) = 2. (2.2.1)

Drpir(2) = pi(2)

For t € [0,a), let K; be the set of points z in D such that the solution ¢,(z) blows
up before or at time t. ¢; and K, 0 < t < a, are called the standard radial LE
maps and hulls driven by &, respectively. We have 0 ¢ K;, and ¢; maps (D \ K;;0)
conformally onto (ID; 0) with ¢}(0) = e'. So K; is a hull in D. If K is a hull in a simply
connected domain D and p € D\ K, there is a unique function ¢ that maps (D\ K; p)
conformally onto (D;p) such that ¢'(p) > 1. Then we let Cp.,(K) := In¢'(w) be the
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capacity of K in D w.r.t. w. The capacity is 0 iff K = (). For standard radial LE
hulls (K;), we have Cpo(K;) =t for all ¢t.

C. Pommerenke proved in [10] that if (K}) is a family of standard radial LE hulls,
then t — K, is a Loewner chain in . On the other hand, if ¢ — K, is a Loewner
chain in D such that 0 ¢ K; and Cpo(K;) =t for all ¢, then (K}) is a family of radial
LE hulls. Moreover, if (t) is the driving function and ¢; is the corresponding map,
then

{660} = Mg (Fope N F). 2.2.2)

For t = 0, this formula means that ¢t — K, is started from e¥® In fact, if we
don’t assume that Cp,(K;) = t, but let u(t) := Cp,o(Ky), then u(0) = 0, and u is
continuous and increasing, and the capacity of K,-1(,) in D w.r.t. 0 is s for all s. Since
the property of Loewner chain is preserved under a time-change, (K,-1(y)) is a family
of standard radial LE hulls.

Suppose B(t) is a standard Brownian motion, i.e., B(0) = 0 and E (B(t)?) = t,
and k > 0 is a fixed number. The law of a family of standard radial LE hulls (K;)
driven by /kB(t), 0 < t < oo, is called the standard radial SLE,. It is a measure
on the space of Loewner chains in D started from 1. From Koebe’s 1/4 theorem,
the distance from 0 to K; tends to 0 as t — co. So we say that the standard radial
SLE, grows in D from 1 to 0. Suppose D is a simply connected domain, z, € D,
and z; is a prime end, then there is a unique conformal map W that maps (ID;1,0)
onto (D; 21, 2z3). The radial SLE,(D; z; — 23), or radial SLE, in D from z; to zy, is
defined as the image of the standard radial SLE, under the map W.

The radial SLE has the property of symmetry and conformally equivalent time-
homogeneity. The symmetry property means that the radial SLE,(D;z; — z) is
preserved under the self anti-conformal map of (D; z1, 22). The property of confor-
mally equivalent time-homogeneity means the following. Suppose (K}) and (K?) are
independent and both have the law of SLE,(D; z; — z3). Fix b > 0. Then there is a
random conformal map g from (D; z3) onto (D\ K}; 25) determined by (K}, 0 <t < b)
such that (K}') defined by K} = K} for 0 <t <band K}, = K Ug(K2,) fort > b
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also has the law of SLE.(D;z; — z3). A constant speed time-change of a radial
SLE also satisfies these two properties. On the other hand, the above two properties

determine a radial SLE up to the parameter x and a constant speed time-change.

2.2.2 Chordal SLE

Chordal SLE is first defined in the upper half plane H := {z € C : Imz > 0}.
Given a real continuous function £(t) on [0, a), consider the following chordal Loewner

equation:
2

pi(2) = &(1)
For ¢t € [0,00), let K} be the set of points z in H such that the solution ¢g(z) blows up

Orpr(2) = wo(2) = z. (2.2.3)

before or at time t. We call ¢; and K;, 0 <t < oo, the standard chordal LE maps and
hulls driven by &, respectively. For each t € [0,00), K; is a hull in H bounded from
00, and ¢y is the conformal map from H \ K; onto H that satisfies the Hydrodynamic
normalization,

t 1
oi(2) =2+ s O(W), z — 00, (2.2.4)

In fact for any bounded hull K in H, there is a unique conformal map ¢ from H \ K
onto H that satisfies (2.2.4) with ¢; replaced by ¢ and ¢ by some ¢ > 0. The constant
c is called the capacity of K in H w.r.t. oo, denoted by Cp..o(K). The capacity is 0
iff K =0. So for the standard chordal LE hulls (K}), Cy.oo(K;) =t for all t.

If (K;,0 <t < o0)is a family of standard chordal LE hulls, then t — K; is a
Loewner chain in H. On the other hand, if ¢ — K, is a Loewner chain in H such that
every K, is bounded and Cp.(K;) =t for all ¢, then (K;) is a family of chordal LE

hulls. Moreover, if £(¢) is the driving function and ¢, is the corresponding map, then

{€0)} = Nesopr(Kise \ Ky). (2.2.5)

So t — K is started from £(0). In fact, if we don’t assume that Cpy,oo(K;) =t for all
t, then after a time-change similar as that in the radial case, we can make (K3) to be

a family of standard chordal LE hulls.
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The law of a family of standard chordal LE hulls driven by /kB(t) is called the
standard chordal SLE,. It is a measure on the space of Loewner chains in H started
from 0. From Koebe’s 1/4 theorem, the spherical distance from oo to K; tends to 0 as
t — 00. So we say that the standard chordal SLE, grows in H from 0 to oco. If D is a
simply connected domain, and z; # 2, are two prime ends of D, then there is at least
one conformal map W from (H; 0, 00) onto (D; z1, 22). Then we call the image of the
standard chordal SLE, under the map W a chordal SLE, (D;z2; — z3), or a chordal
SLE, in D from z; to zo. Note that W is not unique. However, if W; and W, both
map (H; 0, co) conformally onto (D; 21, 22), then for some ¢ > 0, Wi(z) = Wy(cz). On
the other hand, the standard chordal SLE,, satisfies the scaling property. That means
(cK}) has the same law as (K 2;) if (K}) has the law of the standard chordal SLE,. So
(W1(Ky)) has the same law as W(K 2;). That means two chordal SLE,(D; z; — 22)
differ by a constant speed time-change.

Similarly as the radial case, a standard chordal SLE, (D; 2, — 2) is preserved un-
der the self anti-conformal of (D; z1, z5) whose derivatives at z; and zy are both equal
to 1, and has the property of symmetry and conformally equivalent time-homogeneity.
And these two properties determine a chordal SLE up to the parameter x and a con-

stant speed time-change.

2.2.3 Full plane SLE

Full plane SLE grows in the Riemann sphere C:=Cu {o0}. Suppose ¢ is a real
continuous function defined on (—oo,a). From [11], there are an interior Loewner
chain t — K;, —oco <t < a, in C started from 0, and a family of conformal maps ¢,

from (C \ K,; 00) onto (ID;0), —oo < ¢ < a, that satisfies

CiE(®)
at@t(z) = ‘Pt(z) eis(%m%

limy, o €'/ pi(2) = 2,Vz € C\ {0}.

(2.2.6)
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Such ¢; and K;, —oo < t < a, are unique, and are called the standard full plane LE

maps and interior hulls, respectively, driven by £. Moreover, we have
{€Z£(t)} = ﬂs>0@t(Kt+€ \ Kt) (227)

Let B(t) be as usual and B, (t) = B(t). Let B_(t) be a standard Brownian motion
independent of B, (t). Let x be a random variable uniformly distributed on [0, 27)
that is independent of By(t). For a fixed k > 0, let &(t) := x + \/EBsign(t)ﬂtD-
Then for any b € R, (e¥®+") /¢(®) has the same law as (eVFP®)). We call the law of
the standard full plane LE interior hulls driven by &, the standard full plane SLE,.
If (K;) has the law of the standard full plane SLE,, from Koebe’s 1/4 theorem, the
spherical distance from oo to K; tends to 0 as ¢ — oco. So we say that the standard
full plane SLE,, grows in C from 0 to co. Through a conformal map, we could define
full plane SLE, grows in C from one point to another.

The property of &, implies that for any b € R, (K44 \ K;) has the same law as the
image of the standard radial SLE, under some conformal map from ID onto C \ K.
So the increments of the full plane SLE, is always radial SLE,. One may consider a
standard full plane SLE,, as the limit as ¢ — 0% of the radial SLE,, in C \ eD from ¢

to oo.

2.2.4 Equivalence relations

Suppose (K;) has the law of the standard chordal SLE,. Let A be a hull in H that
is bounded from 0 and oco. Let (Ls) has the law of a chordal SLE,(H \ A4;0 — o0).
Let T be the first time (K;) hits A and S the first time that (L) hits A. If x = 6,
(K:;,0<t<T)and (Ls,0 < s < S) have the same law after a time-change. If K > 0
and k # 6, there exists a family of increasing stopping time {7},} and {S,} such that
T = VT,, S = VS,, and the laws of (K;,0 <t < T),) and (Ls,0 < s < S, are

absolutely continuous w.r.t. each other after a time-change.

Suppose D is a simply connected domain, z; and 2y are two distinct prime ends,

and z3 € D. Let (K;) have the law of a chordal SLE(€2; z; — 29) and (L) have the
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law of the radial SLE,(€; 21 — 23). Let T be the first time that K, swallows z3, S
the first time that L, swallows zo. If K = 6, (K;,0 <t < T) and (Ls,0 < s < 5)
have the same law after a time-change. If kK > 0 and k # 6, there exists a family of
increasing stopping time {7},} and {S,} such that T"= VT, S = V.S, and the laws
of (Ky,0<t<T,)and (Ls;,0 < s < S,) are absolutely continuous w.r.t. each other
after a time-change.

The above two equivalence relations are essentially the same thing. We also have
the equivalence relations between two radial SLE,. The most general form of the
equivalence is that we consider two simply connected domain that have a common
prime end, and two chordal or radial SLEs starting from this prime end and growing
in these two domains respectively with any possible targets. The strong equivalence
relation for k = 6 is called the locality property, which means that SLEg hulls do not
feel the boundary and the target before hitting them.

2.2.5 SLE traces

If (K;) has the law of the standard chordal SLE,, there is a.s. a random curve [
from [0, 00) into H such that 3(0) = 0, lim; ., 3(t) = oo, and for each t, K; is the
complement of the unbounded component of H \ 3(0,¢]. This 3 is called a standard
chordal SLE, trace. If K < 4, then (3 is a simple curve and intersect R only at 0. In
this case, K; = ((0,t]. If kK > 4, then f is not simple and intersect R at infinitely
many points. A general chordal SLE, also corresponds to a trace. If kK < 4, the trace
lies in the domain; if k > 4, the trace lies in the conformal closure of that domain.
If (K;) has the law of the standard radial SLE,, there is a.s. a random curve 3
from [0, 00) into D such that 3(0) = 1, lim; .., B(t) = 0, and for each ¢, K, is the
complement of the component of H\ 5(0, t] that contains 0. This (3 is called a standard
radial SLE, trace. If kK < 4, then 3 is a simple curve and intersect dD only at 1. In
this case, K; = ((0,t]. If K > 4, then § is not simple and intersect 0D at infinitely
many points. A general radial SLE, also corresponds a trace. If k < 4, the trace lies

in the domain; if k > 4, the trace lies in the conformal closure of that domain.
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If (K;) has the law of the standard full plane SLE,, there is a.s. a random curve
B from [—o00,00) into C such that f(—o0) = 0, limy_, 5(t) = oo, and for each ¢,
K; is the complement of the unbounded component of C \ ((0,¢]. This [ is called a
standard full plane SLE,, trace. If & < 4, then (3 is a simple curve, and K; = f(—o0, t].
If kK > 4, then (3 is not simple

2.3 Strip SLE

2.3.1 Definition

For a real valued continuous function £ on [0, c0), consider the following strip Loewner
equation:
z) —&(1)

_ ei(2)
Oupi(2) = coth(#

), wo(2) = 2. (2.3.1)
If 2 —¢£(0) € 2miZ, let 7(z) = 0; for other z € C, let 7(z) be such that [0,7(z)) is the
maximal definition interval of the solution ¢,(z). Since coth(z/2) is analytic, so for
each t € [0,00), ¢, must be analytic in {7 > t}. From the uniqueness of the solution
of ODE, ¢; must be conformal. Since coth(z/2) is bounded when z is away from
2miZ, so if 7(z) € (0,00), then ¢i(z) — &(t) — 2miZ as t — 7(z). Since coth(z/2)
has a period 27 and coth(Z/2) = coth(z/2), we have ¢, (z + 2mi) = @;(2) + 27i and
©:1(Z) = ¢4(2), and so 7(z+2mi) = 7(2) and 7(Z) = 7(2). For t € [0, 0), let J; be the
set of z € C such that 7(z) < ¢. Then each J; must be closed, and is symmetric w.r.t.
the lines kmi+ R, k € Z. Note that Im coth(z/2) = 0 on R and 27i + R except at the
poles 0 and 27i. Fora > 0, let S, ;== {z € C:0 <Imz < a}. Then for z € Sy, vi(2)
will never cross the lines R and 27i + R. So ¢, maps Sy \ J; conformally into Sy.
On the other hand, for a fixed ¢y > 0 and 2y € Sy, we set the initial value of (2.3.1)
to be ¢y, (2) = 2z and consider the solution for ¢ < ty5. Since £Im coth(z/2) < 0
when z € Sy, and £(Im z — ) < 0, so as t decreases, ¢;(z) — &(t) approaches the line
mi + R, which does not contain any pole of coth(z/2). This means that ¢;(z) will not
blow up in the backward direction. So z = ¢g(2) exists in Sy,. Thus ¢; maps So, \ J;

conformally onto S,,. Since Im coth(z/2) = 0 on i + R, so for z € mi + R, ¢(2)
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never blows up and stays on 7i + R. This means that ¢, maps 7i + R onto itself.
Finally, we let K; :=S,;NJ;. Then K, is a hull in S, and ¢, maps S, \ K; conformally
onto S;. We call ¢, and K; the standard strip LE maps and hulls driven by &.
Since coth(z/2) — £1 as z € S and Rez — o0, K, is bounded and ¢, satisfies

the normalization:

lim (pi(z) — 2) = +£t. (2.3.2)

z—Foo

Here 2 — +00 means that z € S and Re z — £00. And the limit is uniform in Im z.
In fact, if K is any bounded hull in S, such that K N (7i + R) = ), then there is a
unique conformal map ¢x that maps S; \ K conformally onto S;, maps mi + R onto
itself, and satisfies (2.3.2) with ¢, replaced by ¢k and ¢ by some ¢ > 0. This ¢ is
called the capacity of K in S; w.r.t. mi + R, denoted by Cs_..;4r(K). Thus for the
strip LE hulls Ky, Cs,.ritr(K;) =t for all ¢.

Proposition 2.3.1 The following two conditions are equivalent:

(i) (Ky) is a family of standard strip LE hulls.

(ii) t +— K, is a Loewner chain in S;, each K, is bounded, K, N7 +R = (), and
Cs,misr(Ky) =t for all t.

Moreover, {£(t)} = Nesops(Kiye \ Ky), where @, is the corresponding LE map. And
if we don’t assume that Cs_nivr(Ky) =t for all t in (i), then after a time-change,

(K}) can be made to be a family of standard strip LE hulls.

Proof. The method is very similar to the proof of its counterparts in the radial and

chordal cases. So we omit the proof. O

If £(t) = \/kB(t). Then the law of (K;) is called the standard strip SLE, maps.
Suppose D is a simply connected domain bounded by a Jordan curve, I is a boundary
arc and # € D\ I. Then there is a conformal map W from S, onto D which can be
extended continuously to R and 7i+R and satisfies W(0) = 2, W(mi+R) = I. Then
we call the law of (W (K})) the strip SLE,(D;x — I), or SLE, in D from z to I.

Similarly as the radial and chordal cases, the standard strip SLE.(D;x — I is

preserved under the self anti-conformal map of (D;x, ), and has the property of
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conformally equivalent time-homogeneity. And these two properties determine the

strip SLE up to the parameter x and a constant speed time-change.

2.3.2 Equivalence of strip and chordal SLE

Theorem 2.3.1 Suppose (L) has the law of a chordal SLE,(Sy;0 — 400). Let T be
the first time that LyNmi+R # 0. If k = 6, then up to a time change, (L;,0 <t <T)
has the same law as the standard strip SLE.. If kK > 0 and k # 6, then there is
an increasing sequence of stopping time {T,} such that T = VT,, and for each n,
(Ly,0 <t < T,) has the same law as the standard strip SLE, hull stopped at some

stopping time.

Proof. Note that W(z) = In(z + 1) maps (H; 0, 00) conformally onto (S;0,+00).
We may assume that L; = W(K}) and (K}) are the standard chordal LE hulls driven
by &£(t) = \/kB(t). Let (¢;) be the corresponding standard chordal LE maps.

For 0 <t < T, —o0 is not swallowed by L;, so —1 is not swallowed by K;, which
means that p;(—1) is defined. Note ¢; o W' maps (S, \ Ls; —00, +00) conformally
onto (H; ¢y(—1),00), and W~1(2) = €* — 1. Let

-~

Vi(2) = In(ps(e” = 1) — y(—1)) + ds.

e
o (ps(=1) =£&(s))

Then 1, maps (S, \ L;; —00, +00) conformally onto (S;; —00, +00), and 1(z) = 2.

We compute

Oe(z) = (Owpe(e 1) = Oupr(—1))/ (u( 1) —e(—1)) + (o(—1) — £(1))2
2 2 1
ey an e/ P D e e
—2 1
= +
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Let

Then

- - (i€ = 1) — (=) + (E(t) — u(—1))
coth((¥(2) = C)/2) = (D) o (C1) = (€)= wn(=1))

_ ol — 1) +E(0) — 20(-1)
SOt(ez - 1) - f(ﬂ

Now we make the time-change as follows. Let u(t) := [; 1/(ip(2) — &(s))?ds, and v

-~

be the inverse function of u. Let 14(z) := @//J\v(t)(z) and £(t) := &(v(t)). Then

= (pu(=1) = £(1))? O (2).

Oihi(2) = Ul(t)atﬁv(t)(z)

= Dthogay (2) /' (0(1)) = (20 (2) = E(W(1)))Dutbnin (2)

~

= coth((thuwy(2) = ((0(1)))/2) = coth((t(2) — ((1))/2).

Thus 1, and K, are the standard strip LE maps and hulls driven by (.

From Ito’s formula,

dC(t) = (dE(t) — Dupe(—1)dt) /(£() — pr(—1)) + S(g(t) __gf(_n)z

dt _ VRdB(t) ® dt
N R R S RGO

After the time-change, we have

dG(t) = VRdB(t) + (3 - 5)d.

where B(t) is some standard Brownian motion. If x = 6, then ((t) = \/&B(t). So
(Ky(t)) has the law of the standard strip SLEg. If £ > 0 and s # 6, ((t) = VEB(t)+

some drift term. The conclusion follows from Girsanov’s Theorem ([13]). O
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The equivalence theorem implies the existence of the standard strip SLE, trace.
That means if (K;) has the law of the standard strip SLE,, then there exists a.s.
a random curve ( : [0,00) — S; UR such that 5(0) = 0 and for each ¢, K; is the
complement of the unbounded component of S; \ 5[0,¢] in S;. And for k <4, [ is a
simple curve and intersects R only at 0. For k > 4, (3 is not simple and intersects R at
infinitely many points. We call 3 a standard strip SLE, trace. From the existence of
SLE, trace, we know that the boundary of S, \ K; is locally connected. Thus ¢, * has
a continuous extension to S,. Especially, ¢; '(£(t)) = 8(t). For strip SLE in general
simply connected domains, we define the traces as the image of standard traces under

a suitable conformal map.

2.3.3 Transience of the strip SLE,, trace

The goal of this section is to prove that for all k > 0, the standard strip SLE , trace
tends to a limit point on {Im z = 7} almost surely. Let K; and ¢; be the standard
strip LE hulls and maps driven by £(t) = \/kB(t). We may find C = C(w) > 0, such
that [£(t)| < 1+ Ct?3 for all t > 0. Let K, = U,K;, then we have

Lemma 2.3.1 K, s bounded.

Proof. First we may choose R > 0 such that Re coth(z/2) > 1/2 if Rez > R. Since
€(t)] < 14+C(w)t?3 for all t > 0, there is a = a(w) > 0 such that @ > R+1—t/2+&(t)
for all ¢t > 0. Now suppose z € S, and Rez > a, then Rez > R+ 1+ £(0). Suppose
that there is a first ¢y < 7(z) such that Reyi(z) — £(t) = R. Then on [0, Ty,
Repi(z) — £(t) > R, and so 0;Re ¢y(z) > 1/2. This implies that

Reps,(2) > Rez+ty/2 > a+ty/2 > R+ 1+ (to),

which is a contradiction. Thus Re p(2)—£(t) > R for all t < 7(z). So ¢:(z) will never
blow up, which means that z ¢ K; for all ¢t > 0. Similarly, z € S; and Rez < —a
implies that z ¢ K for all ¢ > 0. Thus K, C {|Rez| < a,|Imz| < 7} is bounded. O
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Let Xi(z) := Regy(z) — &(t). If z € mi + R, then

dX;(z) = tanh(X(2)/2)dt — d&(t).
Fix 2o = xo + mi € mi + R. Write X, for X;(2o) temporarily. Let

Co = /_+Oo(cosh(x/2))ﬁda:.

o0

Then 0 < ¢, < co. Define

fulz) = E /x (cosh(t/2))~~dt.

Cr J_oo

for x € R. Then f, is continuous and increasing and maps R onto (0,1). Let

W, = f.(X}), by Ito’s formula, we have
AW, = f1(X)dX, + g FUX)dt = —(cosh(X,/2))* JendE(t).

Thus W, is a local martingale. After a time-change, W, has the same distribution as
the Brownian motion starting from f(z¢), stopped when it hits {0,1}. This implies
that limy_., Wy = 0 or 1 a.s., and Pr{lim;_ W; = 1} = f.(20). Thus lim;_., X; =
+00 or —oo a.s., and Pr{lim; . X; = +oo} = f.(zo). Define

my =inf{z € R: tlim Re pi(z + mi) — &(t) = +o0};

m_ =sup{z € R: tlim Re pi(z + mi) — £(t) = —o0}.

Since x1 < x5 implies that Re ¢y (x1+7i) < Regy(xo+mi) for all t > 0, we have m_ <
my; forx <m_, X; tends to —oo as t — oo; and for x > m_, X; tends to +co ast —
oo. Hence Pr{m, < z} < f.(x) < Pr{m_ < x} for all z € R. Since f, is (strictly)
increasing, it follows that m_ = m, almost surely, and their distributions have the
density (cosh(z/2))"* /¢, with respect to the Lebesgue measure. By discarding an

event of probability 0, we may assume m_ = m, and denote it by m.
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Lemma 2.3.2 K, N (7i +R) = {m + mi}.

Proof. First we will prove m + 7i € K. If this is not true, then there are
b,c > 0 such that dist(x + mi, K;) > ¢, for all t > 0 and « € [m — b,m + b]. Since
Xi(m—b+mi) — —oo and Xy(m~+b+mi) — +o0 as t — 00, @i(m~+b+7i) — i (m—
b+ mi) — +o0 as t — co. By mean value theorem, we may find z; € [m — b, m + b
such that |¢}(x; + mi)| — 0o as t — oco. From Koebe’s 1/4 theorem, we conclude that
dist(z; + mi, K, UR) — 0 as t — oo. This contradiction shows m + 7i € K.

Then we will prove that K., contains no other point in 7i + R. First suppose
xo > m. Then as t — 0o X¢(xg+mi) — +00, and so Oypr(ro+ i) = tanh(X;/2) — 1.
Since |£(t)| < 1+ Ct*? for all t > 0, there is M = M (w), such that when t > M,
Xi(xo+7i) = @i(xo+mi) —E&(t) > t/2. Thus for all x > xg, Xy(v+7i) > Xy(xo+mi) >
t/2 when t > M. Taking the derivative w.r.t. z on both sides of equation (2.3.1), we

get
—1

= Zsimb((pr(e) — @) 2 )

Doy (2) (2.3.3)

It follows that for z € R,

oy (@ + 7i)| = exp (/Ot(l + cosh(X,(z + m’))_lds>

< exp </OM ds + /Moo<1 + cosh(t/Z))lds) < 00.

Then by Koebe’s 1/4 theorem, for all x > zy, 4+ mi is bounded away from K;
uniformly. Thus K., N [1g,+00) + R = (. This then implies that K., N (i +
(m, +00)) = 0. Similarly, K., N (i + (—oo,m)) = (. O

For x > 0, we have X;(x) > 0 before 7(x), and X;(x) satisfies:

dX(z) = coth(Xy(x)/2)dt — d&(t).
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We will use an argument similar to that before Lemma 2.3.2. Define g, on (0, 00)

such that

gu(x) = —/OO(Sinh(x/Z))_ids.

Then g, is continuous and increasing, and maps (0, +o00) onto (a,0). If x < 4,
then a, = —oo; otherwise, a, > —oo. Using Ito’s formula, we find that (g.(X;)) is
a local martingale. Thus if k < 4, then almost surely X;(z) — +oo as t — 7(z)
for all > 0. This also shows that a.s. 7(x) = oo for all x > 0. If k > 4, there
exists a.s. 7 > 0, such that for all x > r, X;(x) — 400 as t — 7(z) (which implies
that 7(x) = o0); and for all x < r, Xy(x) — 0 as t — 7(x). And the distribution
of 7 has a density (sinh(z/2))"~/|a,| with respect to the Lebesgue measure. Note
that Oppi(x) = coth(X;/2) > 1 for all 0 < t < 7(z). If 7(x) = oo, then X;(z) =
oi(x) —E(t) —t > x4+t — Ct?3 — 1 tends to +0o as t — oo. Thus 7(x) < oo for all
x < r. We will see later that 7(r) < oco.

Suppose now xy > 0 and there is a > 0 such that X;(x¢) > a for 0 < ¢ < co. Then
the extremal distance from [£(), pi(x0)] to i + R in S, is less than some b = b(a).
Suppose there is ¢ such that |3(t) — x| = p < 7. Here 3 is a standard SLE, trace that
generates (K;). We may suppose such ¢, is the first time this holds. Then the line
segment (((tg), xo) lies inside S, \ K;. The extremal distance between (3(t), x¢) and
mi+R in S, is no less than Inm —Inp. Now ¢; maps (g, 5(t)) to an open curve in S,
with two end points £(t) and ¢;(x¢). Thus the extremal distance of this curve from
{Imz = 7} in S is less than b. From conformal invariance of the extremal length,
we have Inm — Inp < b. Thus p is bounded from below by a constant depending on
a. As Xi(z) > Xi(xg) > a for all z > xy and t > 0, the above result implies that
the distance between [zg, 00) and ([0, 00) is positive. Thus [z, c0) is bounded away
from B[0,00) and K. Hence if x < 4, then for all x > 0, [z, 00) is bounded away
from (3]0, 00). And if kK > 4, then for all z > r, [z, 00) is bounded away from [0, c0).
Since for all z € (0,7), 7(z) < oo, so there is some ¢ = t(x) such that x € K;, which
implies that r is not bounded away from K. Thus X;(r) /4 oo, and so 7(r) < oo.

Now 7 is disconnected from 7i+R by [0, 7(r)] which does not hit (r, 00), so we must
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have B(7(r)) =r.

Similarly, almost surely we may conclude the following facts. When k < 4, (—o0, z]
is bounded away from ([0,00) for all z < 0. When k& > 4, there is [ < 0 such
that for all x € [[,0], 7(z) < oo, and B(7(l)) = [; and for all x < I, (—o0,z]| is
bounded away from [0, 00) and K.,. Moreover, the distribution of [ has a density
(sinh(—z/2)) "= /a, with respect to the Lebesgue measure. For x < 4, we define

r = [ = 0 for convenience.

Theorem 2.3.2 Almost surely lim;_,, 5(t) = m + mi.

Proof. Let M be the set of all limit points of 5(t) as t — oco. Then M = N,S]t, 00).
By Lemma 2.3.1 and 2.3.2, M is compact and M N7i+ R = {m + mi}. Suppose now
M ¢ mi+ R holds with a positive probability. We will use the conformally equivalent
time-homogeneity of strip SLE, to find a contradiction. Suppose 5 also has the law
of the standard strip SLE, trace, and is independent of (K;). Let £(¢) and @ be the
corresponding driving function and maps. Let {.7::15} be the filtration generated by
E (t). Then for any positive finite stopping time 7" w.r.t. {J’Et}, the curve 3, defined
by B.(t) = B(t) for 0 < t < T and B,(t) = 7 (&(T) + B(t — T)) for t > T has the
same law as 5. Let hp(z) = @}1(5(T) + z). Then hr(M) has the same law as M.
From the strip LE equation, for any z € S,, Im () > Im z. The strict inequality
holds when z € S,. For d € (0,1), let T be the first ¢ such that Im () = = — d.
Then hz,(0) = B(T,). Let aq be the biggest a < 0 such that hr,(a) € R. Let bg be
the smallest b > 0 such that hz,(b) € R. Then for ag < < by, Imhy,(z) > 0 =Imuz.
Since an annulus of inner radius d and outer radius 7 disconnects all curves in S,
from hg,(—00,a4) to hy,(0,+00), so the extremal distance from (—o0, aq) to (0, 00)
in S, is not less than (In(7) — In(d)) /7, which tends to oo as d — 0. Thus ag — —o0
uniformly as d — 0. Similarly, by — 400 uniformly as d — 0. Since M is a bounded
set, there is R > 0 such that M C {z: |Rez| < R} and M ¢ i+ R with a positive
probability. If d is small enough, we have |a4|, |b4| > R. Then for any z € M\ (mi+R),

either z € S; or ag < z < bg. In both cases, we have Im hr,(z) > Im z. Thus on this

event, hr, strictly increases minIm M. So hg,(M) cannot have the same law as M,
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which is a contradiction. Thus M C 7i+ R almost surely. So M has to be {m + i},

which means that lim; .., 3(t) = m + mi. O

Now we may define 3(co) = m + 7. Then 3 is a continuous path in S, which
grows from 0 to m -+ 7, and intersects 7i + R at only one point m +7i. And S; \ Ky
has two components. We denote the left one by S_, and the right one by S,. If
k < 4, ([ is a simple curve and intersects R only at 0. If K > 4, then [ is not a simple

path. The intersection of § with R has lower bound [ < 0 and upper bound r > 0.

Lemma 2.3.3 For all k > 0, if z € Sy, then 7(2) = oo, and Xi(z) — Foo as

t — o0.

Proof. For z € S, we may find a C' path  in S, from z to m + 1+ i with a finite
length. Denote d the distance of « from K., then d > 0. By Koebe’s 1/4 theorem,
| (a(s))] is bounded by 4Im z/ min{Im z,d} < 4(w/d+ 1). Thus the length of ¢; o«
is uniformly bounded in ¢. Hence |X;(z) — X;(m + 1 + mi)| is uniformly bounded.

Since X;(m + 1+ mi) — 400, so does X;(z). The case that z € S_ is similar. O

2.3.4 Cardy’s formula

Let h(z) = coth(z/2), Zi(2) = wi(2) — &(t), X; = ReZ; and Y, = Im Z;. Then
dX; = Reh(Z;)dt — d&(t), and dY; = Im h(Z;)dt. We have

Lemma 2.3.4 Suppose f is analytic in Sy, and satisfies f'h+ 5 f" = 0. Then f(Z;)

s a local martingale.

Proof. Let U =Refand V =Im f. Then U, =V, =Ref, -U, =V, =Im f’,
U,. = Re f”" and V,, = Im f”. By Ito’s formula,

dU(Z,) = UpdX, + U,dY; + gUmdt

— Re f'Re hdt — Re f'de(t) — Im f'Tm hdt + gRe Fdt

— Re (f'h + g F")dt — Re f'de(t) = —Re f/de(t);
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and

dV(Z,) = VydX, + V,dY, + ngdt
— Im f'Re hdt — Tm f'd€(t) + Re fTm hdt + gIm £t
= Im (f'p+ 5 f")dt — Im f'd€(t) = —Im f'de(0).
Thus df (Z;) = —f'(Z;)d¢(t), and so f(Z;) is a local martingale. O

Now we suppose k > 4 and ABC is a triangle with /B = ZC = %77. Suppose f
maps S, conformally onto ABC, such that f(0) = A, f(+o00) = B and f(—o0) = C.
We may check that f satisfies the condition of Lemma 2.3.4. In fact, let g(2) = f(In z).

Then g maps H conformally onto ABC and ¢(1) = A, g(occ) = B and ¢(0) = C. We

g'(z) _ 4 1 +<%_Q.£

J'(2) k z—1 K z

then have

Thus ¢'(z) = C(z — 1) =2+ L. Since f(z) = g(e?), we have

2
K

f(z) = C(e* — 1) (e*)* = C(sinh(z/2)) " x.

Hence f”(z) = —2p(z)f'(z) as desired. Note that f is bounded, and it extends
continuously to the boundary of S, and is analytic on [0, +00), (—00,0] and {Im z =

m}. Thus we have
Theorem 2.3.3 f(Z(z)), 0 <t < 7(2), is a martingale for z € S; \ {0}.

By Lemma 2.3.3, f(Z;(z)) may only tend to A, B, or C' depending on z € K,

S, or S_. Hence we have

Corollary 2.3.1 Suppose f(z) = aA + bB + ¢C with a,b,c € R, and a+ b+ c = 1.
Then the probability of z € Ky, 2 € S; or z € S_ is a, b or ¢, respectively. Thus
f(m + mi), f(r) and f(l) are uniformly distributed on the sides [B,C]|, [A, B] and
[A, C], respectively. And the expected area of f(Ko), f(Sy) and f(S_) are all equal
to area(ABC)/3.
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If k € [4/3,4], we choose A = oo and still let /B = ZC = 2x. And let f be
defined in the same way. Now ABC' is not a triangle. Theorem 2.3.3 holds with the
term martingale replaced by local martingale. For k = 4, ABC' is bounded by two
half lines and a line segment orthogonal to them. If we project f(Z;) to that line
segment, we also get a bounded martingale. If kK = 2, ABC' is a half plane. In all

above cases, from the definition of general strip SLE,, (f(K})) has the law of strip
SLE.(ABC; A — B(C).

2.4 Annulus SLE

2.4.1 Definition

Annulus SLE grows in a doubly connected domain. For p € (0, 00), we denote by A,

the standard annulus of modulus p:
Ay ={zeC:e? < |z <1}

Let C, := e P0D. So A, is bounded by Cy and C,. Every doubly connected domain
D is conformally equivalent to a unique A,,, where p = M (D) is the modulus of D.
We may first define SLE on the standard annuli, and then extend the definition to
arbitrary doubly connected domains via conformal maps.

Denote
N

. e 4 2
Sp(z) = lim _
N—oo v e2kp — z

Let € : [0,a) — R, a € (0, pl, be a continuous function. Consider the following annulus

Loewner equation:

Oou(2) = pu(2)Sp-eu(2) [e*V), o(2) = 2. (2.4.1)

For 0 <t < a, let K; be the set of z € A, such that the solution ¢4(z) blows up

before or at time t. We call K; and ¢;, 0 <t < p, the standard modulus p annulus
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LE hulls and maps driven by &.

We recall some facts about S,
(i) S, is analytic in C\ {0} \ {e**" : k € Z};
(ii) {e**" : k € Z} are simple poles of S,;
(iii) ReS, =1on C, ={z € C: |z| = e "};
(iv) ReS, =0 on Cy \ {1};
(v) ReS, > 01in A,; and
(vi) ImS, =0 on R\ {0} \ {poles}.

Moreover, suppose f is an analytic function in A,, Re f is non-negative, and

Re f(z) tends to a constant ¢ as z — C,, then there is some positive measure p = u(f)

on Cj of total mass ¢ such that

£2) = [, Siadut +iC. (2.4.2)

for some real constant C'. If Re f(z) tends to zero as z approaches the complement of
an arc «a of Cy, then pu(f) is supported by @. If f is bounded, then the radial limit of
f on Cy exists a.e., and du(f)/dm = f|g,. The proof is similar to that of the Poisson
integral formula.

Divide both sides of equation (2.4.1) by ¢;(z) and take the real part. We get
Oy In |y (2)| = ReSp_y(p1(2)/eD). (2.4.3)

From the values of ReS,_; on C,_; and C, we see that if z € Cy \ {1}, then p,(z) €
Co \ {1} until it blows up; if z € C,, then ¢:(z) € C,_; for 0 < ¢t < p. Thus for
z € A, p(z) stays between Cy and C,_; until it blows up. So ¢; maps A, \ K;
into A,_;. The fact that S,_, is analytic implies that for every t € [0,p), ¢ is a
conformal map of A, \ K;. By considering the backward flow, it is easy to see that ¢,
maps A, \ K; onto A,_;. Thus K, is a hull in A, on Cy. In general, if D is a doubly
connected domain with boundary components S and S’, and K is a hull in D on S,

then the capacity of K in D w.r.t. ', denoted by Cp ¢ (K), is defined as the value
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of M(D) — M(D \ K). The capacity is non-negative, and it is 0 iff K = (). Here we
have Cy,c, (K;) = t for all ¢.

Proposition 2.4.1 The following two statements are equivalent:

(i) (Ky) is a family of standard modulus p LE hulls;

(ii) t — Ky is a Loewner chain A, on Cy, and Cy, ¢, (K;) =1t for all t.

Moreover, {0} = Moo (Kiie \ Ky), where £(t) is the driving function, and @, is
the corresponding map. And if we don’t assume Ca, c,(K) =t for all t in (i), then

we can make (K;) to be a family of standard annulus LE hulls through a time-change.

Proof. The method is very similar to the proof of its counterparts in the radial and
chordal cases. So we omit the most part of it. One thing we want to show here is how
we derive ¢; from K; in the proof of (ii) implies (i). We first choose @; that maps
A, \ K; conformally onto A,_; such that $;(C,) = C,_; and @,(e”?) = e"P. Then we

can prove that @, satisfies the equation
0:1(2) = §u(2)(Sp-i(Be(2) V) —ilm S, (P /X)), Bol2) = 2,
for some continuous € : [0, p) — R. And {eig(t)} = Ne>0Pt(Kire \ K¢). Define
¢ ‘A
o(t) :/ ImS, (577 /e*(s))ds,
0

() =0(t) + g(t) and ¢, (2) = €?W3,(2), for t € [0,p). Then wo(z) = Po(2) = 2, @
maps A, \ K; conformally onto A,_;, {x¢} = Nus0@t(Kitu \ K¢), and

Oy Iny(2) = OrInpy(2) +40'(t) = Sp_t(@(z)/eig(t)) =S, i(1(2) /D).

Thus 9y0:(2) = 4(2)S,_1(0(2)/e%®). So K;, 0 <t < p, are the standard modulus p
annulus LE hulls, driven by &. O

If £(t) = /EB(t), 0 <t < p, then the law of the standard modulus p annulus LE

hulls driven by £ is called the standard modulus p annulus SLE,. It is a measure on
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the space of Loewner chains in A, started from 1. Suppose D is a doubly connected
domain with one boundary component S, and w is a prime end of D that does not
lie on S. Then there exists a conformal map from (A,;1,C,), where p = M(D),
onto (D;w,S). the annulus SLE,(D;w — 5) is defined as the image of the standard
modulus p annulus SLE,, under W.

The annulus SLE,(D;w — S) is preserved under the self anti-conformal map of
(D;w, S), and has the property of conformally equivalent time-homogeneity. The
meaning is the following. Suppose p = M(D). Fix b € (0,p). Let p, = p—0b. Suppose
(K;) has the law of the annulus SLE,(D;w — S), (K}') has the law of the standard
modulus p; annulus SLE,, and (K;) and (K}) are independent. Then there is a
conformal map g from A, onto D\ K that is determined by (K;,0 < ¢ < b); and the
process (K?) defined by K? = K for 0 < ¢t < band K? = K,Ug ' (K} ;) forb <t <p
also has the law of the annulus SLE,(D;w — S). The above two properties do not
determine a measure on standard annulus LE hulls up to a parameter k. For example,
suppose h is any continuous increasing function on [0, 00) such that h(0) = 0. For
p > 0, let £P(t) := B(h(p —t)) — B(h(p)). For each p > 0, let u? be the law of the
standard modulus p annulus LE hulls driven by &P. Then {uP} satisfies the above

properties, and p? is a standard modulus p annulus SLE only if h(t)/t is constant on

(0, p.

2.4.2 Equivalence of annulus and radial SLE

Suppose {2 is a simply connected domain, a is a prime end, and b is an interior point.
Suppose I 2 {b} is an interior hull in Q. Then Q\ F is a doubly connected domain
with two boundary components 02 and OF. Let p := M(Q2\ F'). For a fixed k > 0,
let (K;) has the law of radial SLE,(2;a — b), and (Ls) has the law of annulus
SLE.(Q2\ F;a — OF). Let T be the first time that K; intersects F. Then we have

Theorem 2.4.1 (i)If k = 6, the law of (K})o<t<Ty, is equal to that of (Ls)o<s<p, up
to a time-change.

(11))If k > 0 and k # 6, there exist two sequences of stopping times {T,,} and {S,} such
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that T =V, T, p = VpSy, and for each n € N, the law of (Ki)o<i<t, 5 equivalent to

that of (Ls)o<s<s,, up to a time-change.

By conformal invariance, we may assume that 2 = D, a = 1 and b = 0. Then
(K;,0 <t < 00) has the law of the standard radial SLE,. Suppose ¢; and £(t) =
VEB(t), 0 < t < oo, are the corresponding standard radial LE maps and driving
function, respectively. Suppose W maps D\ F' conformally onto A, so that W (1) = 1.
Since t — K;, 0 <t < 00, is a Loewner chain in D, it is clear that t — K, 0 <t < T,
is a Loewner chain in D\ " on Cy. By conformal invariance, t — W(K;), 0 <t < Tk,
is a Loewner chain in A, on Cy. Let u(t) := Cpor(K) = Ca,c,(W(K)). Then u is
a continuous increasing function and maps [0, Tr) onto [0, p). Let v be the inverse of
u. By Proposition 2.4.1, W(K,)), 0 < s < p, are the standard annulus modulus p
LE hulls driven by some continuous function ¢ : [0,p) — R. Let 15, 0 < s < p, be
the corresponding standard annulus LE maps.

Now ¢; maps D\ F'\ K; conformally onto D\ ¢(F). Let fi := by oW o ;b
Then f; maps D\ ¢;(F) conformally onto A, ), and f;(Cy) = Cy. By Schwarz
reflection, we may extend f; conformally to ¥;, which is the union of D \ ¢ (F),
Co, and the reflection of D \ ¢, (F') w.r.t. Cy. Note that f; maps ¢ (Kiiq \ Ky) to
Vuty(W (Kia) \ W(K,)) for a > 0. From Proposition 2.4.1, we see that {“®)} =
Na=0Vu(ty(W (Kita) \ W(K;)). And from formula (2.2.2), we know that {e*®} =
Na>0¢t(Kira \ 1), Thus 0 = £, ().

Recall that for a hull K in a dimply connected domain D and z € D\ K, Cp.,(K)

is the capacity of K in D w.r.t. z. Similarly as Lemma 2.8 in [4], using the integral
formulas for capacities of hulls in D and A, it is not hard to derive the following

Lemma:

Lemma 2.4.1 Suppose x,y € Cy, and G is a conformal map from a neighborhood U
of © onto a neighborhood V' of y such that G(U ND) =V ND. Fix any p > 0. For
every € > 0, there is v = r(e) > 0 such that if K is a non-empty hull in D on Cy and
K C B(x;r), which is the open ball of radius r about x, then G(K) is a hull in A,
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on Cy, and
Ca,c,(G(K))

CoolK) |G'(2)])?] < e.

Now ¢y (Kyiq \ Kp) is a hull in D, @444 0 ¢; " maps D\ ¢y (Ky4q \ K;) conformally
onto I, fixes 0, and (py40@; 1)/ (0) = e®. So the capacity of ¢;(K;iq\ K;) in D w.r.t.
0 is a. Similarly, ¢y (W (Kirq \ W(K¢)) is a hull in A,_, ) on Cy, and the capacity
is u(t + a) — u(t). From Lemma 2.4.1 we conclude that u/, () = | f/(e®®))]2.

Let H := {(t,2) : 0 <t < Tp,z € %} and G(§) = {(t,e®) : 0 < t < Tr}.
By the definition of f;, we see that (¢,z) — f/(z) is continuous in H \ G(x). Note
that f/ is analytic in ¥; for each t € [0,7%). The maximum principle implies that
(t,z) = f/(z) is continuous in H. In particular, t — f!(e®®) is continuous. So we

have
Lemma 2.4.2 u(t) is C* continuous, and u'(t) = | f/(e*®)|2.

The fact W (1) = 1 implies that () = 1. We may choose ((0) = 0, and lift f; to
the covering space. Let ¢! denote the function z — ¢, Let 2 := (¢')1(3,). There is
a unique family of conformal maps f; on & such that ¢io f, = f, 0 ¢, ﬁ(g () = (),
and f, takes real values on R. Then we have u/(t) = E’(f(t))z

Lemma 2.4.3 (t,z) — fi(z) is CV*° continuous on 0,TF) x R. And for all t €
0,Tr), Bfi€(t) = =3F{'(£(1)).

Proof. For any ¢t € [0,7F), and z € D\ F'\ K;, we have f; 0 p;(2) = ¥y 0o W(2).

Taking the derivative w.r.t. £, we compute

et + ()

0ufilit(2) + Fe (o2

=/ ()0uny (W (2))Sputty (Sun (W (2)) /€4D).

By Lemma 2.4.2, u/(t) = | f/(¢¥®)|2. Thus for any ¢t € [0,Tr) and z € D\ F \ K,

O fi(pi(2)) = |ft/(€i£(t))\2ft(90t(2))sp—u(t)(ft(SOt(Z))/ft(eis(t)))
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et + ¢y (2)
et — p(2)

For any t € [0, TF), and w € D\ ¢;(F), we have ¢, *(w) € D\ F\ K;. Thus

—fi(pi(2))p1(2)

e€® 4
O 1

Oufi(w) = [ £(e*D) fu(w)Spuiy (filw)/ fu(e*®)) = fi(w)w

Let ¢g:(w) be the right-hand side of the above formula for ¢t € [0,TF) and w € %; \
{e® ™}, Then for each t € [0, Tx), g;,(w) is analytic in 3, \ {e“®}. And (t,w) — g,(w)
is C%* continuous on H \ G(§).

Now fix to € [0, Tx). Let us compute the limit of g;,(w) when w — %), Since

fto (62'5(160)) + fto (w)
fto (eif(to)) - fto (’LU)

Sp-u(to) (fio (0)/ fro (1)) —

— 0, as w — Xy,

so the limit of g, (w) is equal to the limit of the following function:

! (il Fio@00) 1 fiy(w) ) 4y
|ft0(6 &( ))|2fto(w)ft0(6i§(t0)) _ fto(w) - fto(w)w—eif(to)

— w :
Let w = €', we may express the above formula in term of x, £(¢y) and ﬁo, as follows:

ift(&(t0)) + etfto (=) B ]?/ (x)eifto @) et (to) 4 e
) to eté(to) — pix

fi(E(to))2e @

eifto (f(to)) — ei]?to (CE

)~ Ty ot S0y

_ _ieiﬁo(z)[ﬁo(§<t0))2 Cot(fto('r) _tho(g(to))

By expanding the Laurent series of cot(z/2) near 0, we see that the limit of the
above formula is 3ieiﬁ0(§(t°))ﬁ(’) (E(to)) = 3i fto(eif(t(’)):’(’) (£(ty)). Therefore g; has an
analytic extension to ¥, for each ¢ € [0,Tr). The maximum principle also implies
that g;(w) is C®* continuous in H, and ; fi(w) = g;(w) holds in the whole H. Thus
fi(w) is C+* continuous on [0, T) x Cy, and f,(w) is C* continuous on [0, Tr) x R.
Finally,

_ 0 0) _igi(e®?) =3 (e ) f(£(1))

375};(5@))_ fi(e€) - Fi(e®) - Fi(e€®) :_3}2/(5(0)- 0
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Proof of Theorem 2.4.1. Note that ¢(¢) = f,(£(t)), £(t) = /&B(t), and from the
last lemma, 8, f,(£(t)) = —3/7(£(t)). By Itd’s formula, we have

dG(u(t)) = FEB)AE() + (5 = 3)F (1))t

Since u/(t) = f](£(t))?, so

AG() = €' (8) + (5 — 3)Fiio) (€()/ iy (€(1)) P,

where ¢'(t) = \/kB*(t), 0 < t < p, and B'(¢) is another standard Brownian motion.
Note that (o = 0. If K = 6, then ((t) = £'(t), 0 <t < p. Thus (W (Ky(s)))o<s<p has
the law of the standard modulus p annulus SLE,.—¢. So (Ky(s))o<s<p has the same law
as (Ls)o<s<p-

If K > 0 and k # 6, then d((s) = d¢'(s) + a drift term. The remaining part

follows from Girsanov’s Theorem. O

From this proof, it is clear that if a family of standard modulus p annulus LE hulls
(K}) is equivalent to radial SLE, in the sense of the above theorem, then the driving
function is \/kB(t) plus some C! continuous function. If the law of (K;) also satisfies
the properties of symmetry and the conformally equivalent time-homogeneity, then
the driving function must be y/kB(t). So the standard annulus SLE, is determined
by the three properties.

This equivalence theorem implies the a.s. existence of annulus SLE trace. Suppose
(K:) has the law of the standard modulus p annulus SLE,.. Then there is a.s. a random
curve 3 : [0,p) — A, U Cy with 5(0) = 1 such that for each ¢, K is the complement
in A, of the component of A, \ 5[0, ¢] whose boundary contains C,. If £ < 4, then
B is simple and K; = ((0,t]. Such f3 is called a standard modulus p annulus SLE,
trace. Through a conformal map, we could define annulus SLE, trace in an arbitrary
doubly connected domain.

From the strong equivalence for k = 6, if § is a standard modulus p annulus SLEg4

trace, then lim; ., 3(t) exists on C, a.s.. The same is true for k = 2 thanks to the
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convergence of LERW to SLE,( see Chapter 4). It is not known now whether this is

true for other k.

2.5 Disc SLE

2.5.1 Definition

Proposition 2.5.1 Suppose £ : (—o0,a) — R, —o0 < a < 0, is continuous. Then
there is an interior Loewner chain t — K;, —oo <t < a, in D started from 0, and a
family of maps p;, —oo <t < a, such that each ¢, maps D\ K; conformally onto Ay,
with ¢;(Cy) = Cyy, and

Drpe(2) = @t(z)s\t|(¢t(z)/ei£(t))a —00 <t <aq

(2.5.1)
lim; . €'/pi(2) = 2, Vz e D\ {0}.

Such K, and p, are uniquely determined by &, and {e¥®D} = Nesopy(Kiye \ Ky). We
call Ky and ¢, —o0 <t < a, the standard disc LE interior hulls and maps driven by

£,

Before the proof, we need the notation of convergence of plane domain sequences.
We say that a sequence of plane domains {2, } converges to a plane domain €2, or
Q, — Q, if
(i) every compact subset of 2 lies in €, for n large enough;

(ii) for every z € OS2 there exists z, € 082, for each n such that z, — z.
Note that a sequence of domains may have more than one limits. The following

lemma is similar to Theorem 1.8, the Carathéodory kernel theorem, in [12].

Lemma 2.5.1 Suppose 2, — Q, f,, maps ), conformally onto G,,, and f,, converges
to some function f on € uniformly on each compact subset of 2. Then either f is
constant on 2, or f maps Q conformally onto some domain G. And in the latter

case, G, — G and f7* converges to f=' uniformly on each compact subset of G.
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Proof of Proposition 2.5.1. For fixed r € (—o00,a), let ¢}, r < t < a, be the

solution of

0 (2) = @i (2)S1 (9 (2)/€*1), ¢(2) = 2. (2.5.2)

For r <t < a, let K] be the set of z € A, such that ¢}(z) blows up at some time

€ [r,t]. Then s — K], ,0<s < a—r,is a Loewner chain in A, on Cy, and ¢}
maps Ay, \ K] conformally onto A with ¢} (C,) = Cj. By the uniqueness of the
solution of ODE, if t; <ty < t3 < a, then 2 oyl (2) = ¢l (2), for z € Ay, \ K} For
t <0, define R;(z) = €'/z. Then R, maps A, conformally onto itself, and exchanges
its two boundary components. Define &} = R, 0" o R,, and K = R,(K"). Then K
is a hull in A},| on Cj,, and @} maps A, \ K7 conformally onto Ay with @7 (Co) = C.
We also have 32 o g1 (2) = $ji(2), for z € Ay, \Kg, if t1 <ty <t3 <a And ¢

satisfies

where §p(z) =1—-S,(e7?/z) for p > 0. A simple computation gives:
IS, (2)| < 8¢7?/|z|, if e < |z| < 1.
We then have
27 (2) — 2| <8, if r<t<0, and 12" < |z| < 1. (2.5.3)

Now let 121\{ be the inverse of @}. If t; <ty < t3 < a, then QZJ\E o Jg(z) = A,f; (2),
for any z € Ay,|. For fixed t € (—00,a), {4 : 1 € (=00, ]} is a family of uniformly
bounded conformal maps on Ay, so is a normal family. This implies that we can
find a sequence r, — —oo such that for any m € N, {{D\Tm} converges to some
J,m, uniformly on each compact subset of A,,. Let (5, = ?Zi”m(Cmp). Then (3, is
a Jordan curve in Ay, |\ K ™, that separates the two boundary components. So 0

is contained in the Jordan domain determined by [3,. Note that {{b\i"m} maps A, /o
onto the domain bounded by (, and Cy, whose modulus has to be m/2. So 3, is
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not contained in B(0;e~"/2). This implies that the diameter of /3, is not less than
e 2. So 1Z_m can’t be a constant. By Lemma 2.5.1, zz_m maps A, conformally onto
some domain D_,,, and ¢, (An,) — D_p,. Since ™ (A,) = A \K™ c D\ {0},
D_,, ¢ D\ {0}. Since M(A, \ K™.) = m, there is some a,, € (0,1) such that
B(0;e) U K™ B(0;e ) for all 7,. So A,, contains no boundary points of

~

A\ K™ = ¢™ (An). Since these domains converge to D_,, as n — 00, S0
A, , contains no boundary points of D_,,, which means that either A, C D_,, or
A, ND_, =0. Now let v, = zZ’;"m(Camp). For the same reason as (3,, we have
Y & B(0;e79m/2). So there is 2, € C,,, /5 such that [{" (z,)] > e /2. Let z be
any subsequential limit of {2,}, then z, € C,,,/2» C A, and |{/J\_m(z0)| > e"m/2 50
i,m(zo) €A, . Thus D_,,NA, # 0, and so A, C D_,,. Hence D_,, has one
boundary component Cy. Using similar arguments, we have 1@(00) = Cy.

~

If r, < —my < —mgy, then z/b\i"ml o 7:/1\:”";; = ¢’ . which implies {b\_ml o QZ:;Z; =
Q//J\_mz. For t € (—00,0), choose m € N with —m < t, define {/J\t = @Z_m o @/b\t_m and
D, = zzt (Ayy). It is easy to check that the definition of zZt is independent of the choice
of m, and the following properties hold. For all ¢ € (—o0,0), D, is a doubly connected
subdomain of D \ {0} that has one boundary component Cy, and &t(co) = Cy; A{"
converges to Jt, uniformly on each compact subset of Ay. If r < ¢t < 0, then
Jt = '(Zr OQE{? D, ; D,, and D, \ D, = @r(-’?{)

Let @; on D; be the inverse of ¢r. By Lemma 2.5.1, @, converges to @ as
n — oo, uniformly on each compact subset of D;. Thus from formula (2.5.3), we
have |9,(z) — z| < 8¢, if 12¢! < |z| < 1. Tt follows that lim; , o, $¢(2) = z, for any
z € D\ {0}. We also have $y(2) = ;™ 0 p_n(2), if —=m <t < 0 and 2z € D;. Let

¢ = Ry o @y on Dy. Then ¢, maps D, conformally onto Ay, takes Cq to Cyy, and
lim e'/oi(z) = im Pi(z) = z, for any z € D\ {0}.
If —m <t, then ¢i(2) = ¢, ™o R, 0 p_im(2), Yz € Dy. By formula (2.5.2), we have

pi(2) = @t(z)s\ﬂ(%(z)/ei&(t))a —m <t <0.
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Since we may choose m € N arbitrarily, formula (2.5.1) holds.

Let K; = D\ D;. Since D; is a doubly connected subdomain of D\ {0} with a
boundary component Cy, K, is an interior hull in D and 0 € K;. The fact M(D,) =
|t| — 0o as t — —oo implies that the diameter of K; tends to 0 as t — —oo. So
{0} =NK,. If t; <ty <a, then Ky, & Ky, as Dy, 2 Dy,. Fix any r € (—o0,a). For
t €[r,a), K,\ K, = D, \ D, = 1,(K7). From conformal invariance, s — 1@(}?&8),
0 <s<a-—r,isaLoewner chain in D, on 0K,. Thus t — K, is an interior Loewner
chain in D started from 0.

For any ¢t € (—o00,a) and € € (0,a — t), we have

SOt(Kt+a \ Kt) = @t(@t(f{ﬁs)) =Ri0p0 Jt © Rt(Kf+s) = K:+e'

Since (K},.,0 < ¢ < a —t) is a family of standard modulus p annulus LE hulls
driven by &(t + ), so we have {£(t)} = N.soK[,., from which follows that {£(t)} =
m5>090t(Ts\Kt)-

Suppose t — K, —oo < t < a, is an interior Loewner chain in D started from
0, and ¢}, —00 < t < a, is a family of maps such that for each ¢, p; maps D\ K/
conformally onto Aj and formula (2.5.1) holds with ¢; replaced by ¢;. By the
uniqueness of the solution of ODE, we have ¢} = ¢} o @y, if r <t < 0. So R, 0 ¢f =
@y o R, o ;. Now choose r = r, and let n — oo. Since R,, o ¢} — id by formula
(2.5.1), and @;" — @, so Ry o ¢y = &y, from which follows that ¢} = R; 0 ¢y = ¢4
and K} = K;. O

Proposition 2.5.2 Suppose t — K;, —oo < t < a, is an interior Loewner chain in
D started from 0 such that M(D\ K;) = |t| for each t. Then (K;, —co <t < a, is a
family of standard disc LE interior hulls. And if we don’t assume that M(D\ K3) = |t|
for each t, then after a time-change, we can make (K3) to be a family of standard disc

interior LE hulls.

Proof. We only need to consider the case that M (D \ K;) = |t|, for all —oco < < a.

For each ¢ € (—o00,a), choose g; which maps D \ K; conformally onto A so that
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gr(1) = 1. Let ¢} = R, o g/, where R;(z) = e'/z. Then ¢} maps D\ K; conformally
onto Ay with ¢; (Co) = Cpyj and p; (1) = €'. Forany r <t <0, let K, = ¢} (K \ K,).

Then for fixed r < a, s — K

s 0< s <a—r),is a Loewner chain in Aj,| on Cy.

Now @} o(¢;)~" maps A\ K}, conformally onto Ay, and satisfies ¢} o(¢}) ™" (e") = €’.
From the proof of Proposition 2.4.1, there exists some continuous & : [r,0) — R such

that for r <t <0,
Oepr o (97) 7 (w) = @7 o (97) " (W) ISy (¢ 0 (7)™~ (w) /e D) — ilm Sy (" /e V)],
It then follows that
i (2) = 91 (2)[S1 (¢ (2)/ €7 V) — im Sy (e /' D], r <t < 0.

So e ® = ¢ ® if 1y 1y < ¢. We then can construct a continuous & (—00,a) = R,

such that
Opi (2) = @1 (2)[Si(wi (2)/€*V) —ilm Sy (e’ /e V)], — o0 <t <a.
Consequently,
gt (2) = 9 (2)[S(p7 (2) /e ) —im Sy (1)), —oo <t <a.

Since \/S\|t‘(z)\ < 8¢ when 4e' < 2] < 1, ]Im§|t|(ei5*(t))\ decays exponentially as

t — —oo. Let 0(t) = [ _ Im Sy, (€€ @) ds, g,(2) = €D gz (2), and £(t) = £*(t) — O(¢).

Then g maps D\ K; conformally onto Ay with g:(Co) = Co, and
OiIngi(=) = 0 Ing; (2) +i8'(t) = Sy(g; /e~ V) = Syy(ipu/e ).
Thus 0;g:(2) = gt(z)§|t|(gt(z)/e*if(t)). From the estimation of §|t|, we have

19:(2) — g-(2)] < 8¢, if 12¢' <|g,(2)] <1, and r <t <.
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Since K; contains 0 and M (D \ K;) = |t|, the diameter of K, tends to zero as
t — —o0. Let D; = D\ K;. Then for any sequence t, — —oo, we have D, — D\ {0}.
Since gy, is uniformly bounded, there is a subsequence that converges to some function
g on D\ {0} uniformly on each compact subset of D\ {0}. By checking the image of
C; under ¢;, similarly as in the proof of Proposition 2.5.1, we see that g cannot be
constant. So by Lemma 2.5.1, g maps D\ {0} conformally onto some domain Dy which
is a subsequential limit of A\,| = g4, (D, ). Since ¢, — —o00, Dy has to be D\ {0} and
so g(z) = xz for some y € Cy. Now this x may depend on the subsequence of {t,}.
But we always have lim;,_ |g:(2)| = |z| for any z € D\ {0}. Now fix z € D\ {0},
there is s(z) < 0 such that when r <t < s(z), we have 12¢* < |g,(z)| < 1. Therefore
l9:(2) — g,(2)] < 8e! for r <t < s(z). Thus lim;_._, g:(z) exists for every z € D\ {0}.
Since we have a sequence t, — —oo such that {g;, } converges pointwise to z — yz
on D\ {0} for some x € Cy, so lim;_._ ¢1(2) = xz, for all z € D\ {0}. Finally, let
¢i(2) = Ry o gi(2/x). Then ¢, maps D\ K; conformally onto Ay, takes Cy to Cyy,
and satisfies (disc LC1). O

We still use B(t) to denote a standard Brownian motion. Let x be some uniform
random point on [0, 27), independent of B(t). For k > 0 and —oo < ¢t < 0, write
£.(t) = x+/kB(|t]). The process (e*1)) is determined by the following properties: for
any fixed 7 < 0, (e® /(") r < ¢ < 0) has the same law as (e’P*<(=) » <t < 0) and
is independent from e*("). If K, and ¢, —0o < t < 0, are the standard disc interior LE
hulls and maps, respectively, driven by &, then we call the law of (K;) the standard
disc SLE,. Suppose D is a simply connected domain and p € D. Let W map (ID;0)
conformally onto (D;p) and W'(0) > 0. Then the disc SLE,(D;p — 0D) is defined
as the image of the standard disc SLE,, under the map W. The existence of standard
annulus SLE, trace then implies the a.s. existence of standard disc SLE, trace, which
is a curve 3 : [—00,0) — D such that y(—oc0) = 0, and for each ¢t € (—00,0), K; is
the complement of the unbounded component of C\ y[—o0,t]. If x < 4, the trace is

a simple curve; otherwise, it is not simple.
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2.5.2 Equivalence of disc and full plane SLE

Theorem 2.5.1 Let (K;) has the law of the standard full plane SLEs. Suppose D
15 a simply connected domain that contains 0. Let T be the first t such that K; ¢ €.
Then (K, 0 <t < 1) has the law of the disc SLEg(D;0 — OD) after a time-change.

Proof. Let ¢, and £ be the full plane LE maps and driving function corresponding
to (K;). Let F; be the o-algebra determined by {e®®) : s < t}. Since t — K,
—00 < t < oo is an interior Loewner chain in C started from 0, it is clear that
t — K;, —00 < t < 7, is an interior Loewner chain in D started from 0. Let
u(t) = —M(Q\ K;), for —oo < t < 7. Then u is continuous and increasing, and maps
(—o0,7) onto (—o0,0). Let v be the inverse of u. Then for any ¢ € (—o0,0), v(¢) is
a (F;) stopping time. Define F = Fowy- Let W map (D;0) conformally onto (ID;0).
By Proposition 2.5.2 (W (K, ())) is a family of standard disc LE hulls. Let 1), and { be
the standard disc LE maps and driving function corresponding to (W (Kys))). Define
ft == 0 W o (puu) . Similarly as before, we have f;(e'(&(v(t)))) = €'(¢(¢)). Then
(M), (1), and (f;) are (F;) adapted. We have f, that satisfies ¢! o f, = f, o ¢’ and
Fi(€(v(t)) = C(t). Then one can check that v/ (t) = (8, f,(£(v(t)))) 2 and 9, f,(E(v(t)) =
—302f,(£(w(1) /0 fo(€(v(t)). Now fix r < 0. Let £7(¢) := &(v(r+t))—&(v(r)). There is
a (Fy14,t > 0) standard Brownian motion B (¢) such that d¢"(t) = v/6v'(r+t)dB"(t).
From Ito’s formula, we see that ((r +t) — ((r) = v/6B"(t). This also implies that
C(r+41t)—C¢(r) is independent of €(®) s < r. Thus (¢*(")) has the same law as (e*®)).
So (W (Kyw))) has the law of the standard disc SLEg, from which follows that (K, q))
has the law of the disc SLE¢(D;0 — 0D). O

Corollary 2.5.1 The distribution of the hitting point of full plane SLEg trace at OS2

18 the harmonic measure valued at 0.

An immediate consequence of this corollary is that the plane SLEg hull stopped at
the hitting time of 0€) has the same law as the hull generated by a plane Brownian
motion started from 0 and stopped on exiting 2. This result has been announced

and proved in [19] and [8]. See them for details.
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Chapter 3

Harmonic random Loewner chain

3.1 Some notations

3.1.1 Finite Riemann surfaces and conformal structure

Suppose R is a compact Riemann surface. A subdomain D of R is called a finite
Riemann surface if R\ D is a union of finitely many mutually disjoint compact
contractible subsets of R, each of which contains more than one point. We call R the
underlying surface of D, and each component of R\ D an island of D. A compact
Riemann surface is also considered as a finite Riemann surface. The simply and
doubly connected domains are two special kinds of finitely Riemann surfaces.
Suppose f maps a finite Riemann surface D, conformally onto a finite Riemann
surface Dy. Then f induces a one-to-one correspondence ]/‘:from the set of islands of
D to the set of islands of Dy such that for any island A of Dy, z € D and z — A iff

~

f(z) — f(A). So Dy and D, have the same number of islands. If K is a hull in D,
on A, then f(K) is a hull in D, on f(A)

For any finite Riemann surface D, there exists f that maps D conformally onto a
finite Riemann surface E whose islands are all surrounded by analytic Jordan curves.
We call such f a boundary smoothing map of D. Suppose f; : D — Ej, j = 1,2, are
two boundary smoothing maps. Then f; o f;* maps E; conformally onto E,. Since

E; and E» are all bounded by analytic Jordan curves, each of which bounds an island,

so foo f; ' induces a one-to-one correspondence .J from the set of Jordan curves that
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bound E; to the set of Jordan curves that bound FEs such that for any one of these
analytic Jordan curves 7, z € F; and z — v iff fy0 f{'(2) — J(7). From Schwarz’s
reflection, f, o f; can be extended conformally across 7, and the extension maps 7y
onto J (7).

Now consider the set of all pairs (f, z) such that f is a boundary smoothing map
of D, and z € f(D). Two pairs (fi,2) and (fs, 2) are equivalent if the conformal
extension of fy o f{' maps z; to z,. Let D be the set of all equivalent classes. There
is a unique conformal structure on D such that for any boundary smoothing map f
of D, z — [(f,2)] is a conformal map from f(D) onto D. Then z — [(f, f(2))] is a
conformal map from D into D independent of the choice of f. So we may view D
as a subset of ZA?, and call D the conformal closure of D. From the construction, a
conformal map between finite Riemann surfaces can be extended to a conformal map
between their conformal closures.

We call 9D := 0D\ D the conformal boundary of D. It is clear that dD is a union
of finitely many mutually disjoint analytic Jordan curves, each of which is called a
side of D, and corresponds to an island A of D such that z € D tends to a side in D
iff z € D tends to the corresponding island. We call a point on oD a prime end of D.
This is equivalent to the prime ends defined in [1] and [12]. In fact, the definition in
[1] describes the property of a sequence of points in D that converges to a point on
§D, and the definition in [12] describes a neighborhood basis bounded by crosscuts
of a point on aD.

If zp € 0D, the boundary of D in its underlying surface R, corresponds to a prime
end w of D such that z € D and 2z — 2y in R iff 2 — w in lA), then we may also view
2o as the prime end w. This may happen if there is a neighborhood V' of 2y in R such
that 0D NV is a simple curve, and V is divided by that curve into two parts, one in
D, the other outside D; or there is a neighborhood V' of zy in R such that 9D NV is

a simple curve started from z.
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3.1.2 Hulls and Loewner chains

Suppose F'is an island of a finite Riemann surface D, and corresponds to the side
a of D. A closed subset K of D is called a hull in D on 0F or on o if FUK is a
compact contractible subset of R. Then D \ K is still a finite Riemann surface with
the underlying surface R, F'U K is an island of D \ K, and other islands of D \ K
are the islands of D other than F'. A compact contractible subset of D that contains
more than one point is called an interior hull.

A Loewner chain in D on an island F' is a function L from [0,T") for some T €
(0, 00] into the space of hulls in D on F such that L(0) = 0, L(t,) & L(ts) when t; < ty,
and for any fixed b € (0,7"), and any compact subset F' of D\ L(b), the extremal
length of the family of curves in D \ L(t + ¢) that separate F' from L(t 4 ¢€) \ L(t)
tends to 0 as ¢ — 0, uniformly in ¢ € [0,b]. An interior Loewner chain started from
2o € D is a function L from (—oo,T") for some T" € (—o0, 0] into the space of interior
hulls in D such that {z} = NL(t), L(t1) & L(t2) when t; < t5, and for any fixed
be (—o0,T), L(b+1),0<t<a—0b,is aLoewner chain in D\ L(b) on L(b). Let A
be a function on the sets of Loewner chains or interior Loewner chains such that the
definition interval of L is [0, A(L)) or (—oo, A(L)). The definitions of (interior) hull
and Loewner chain clearly extend those defined in Section 2.1.

Suppose L is a Loewner chain in D on a side . Fix t € [0,A(L)). Let d; be
a metric on DTL\(t). From the definition of a Loewner chain, we see that the d;-
diameter of L(t+¢)\ L(t) tends to 0 as ¢ — 0. So there is a unique prime end w(t)
of D\ L(t) that lies in the intersection of the closure of L(t + )\ L(t) in D/\L\(t).
We call w(t) the prime end determined by L at time ¢. Especially, w(0) € «, and we
say that L is started from w(0). For example, a radial or chordal SLE,(D;a — b) is
supported by the set of Loewner chains in D started from a.

If f maps D; conformally onto D, and K is a hull in D; on a side «, then f(K)
is a hull in Dy on the side f(«). From conformal invariance of extremal length, if L
is a Loewner chain in D; on a, then f o L is a Loewner chain in Dy on f(a). This

property holds even locally. That means if L is started from the prime end w on the
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side ay of Dy, U is a neighborhood in D of w such that L(t) C U for all 0 <t < A(L),
and f maps U conformally into a finite Riemann surface Dy such that z € U and
z — oq iff f(2) — ay for some side ap of Dy, then f o L is a Loewner chain in D,

started from f(w;) € as.

3.1.3 Topology and measure structure

Suppose D is a finite Riemann surface with the underlying surface R. Let d be
any metric on R. Then d induces a Hausdorff metric d’* on Cld*(R), the space of
nonempty closed subsets of R. Consider Cld(D), the space of closed subsets of D,
as a subspace of Cld*(R) through the inclusion map K +— K U (R\ D). Then d"*
restricted to Cld(D) induces a topology 7.¢ on Cld(D). It is easy to see that T/t is
independent of the choice of d, and is conformally invariant, which means that for
any conformal map f between two finite Riemann surfaces D; and Dy, K — f(K)
is a homeomorphism from Cld(D;) onto Cld(D;). The topology 7' then induces a
o-algebra FHi.

Let the o-algebra on the space of (interior) Loewner chains be generated by the
sets {L :t < A(L), L(t) € A}, wheret € Ror R, and A € F}}. The range of A could
be replaced by A = {NF = 0}, where F' is a compact subset of D.

Now we consider the radial Loewner equation. The map from £ to the family
of standard radial LE hulls (K};) driven by £ is a map dr from C]0,a) to the space
of Loewner chains in . Now fixed a ¢t and a compact subset F' of D. From the
equation, if dr(&)(t) N F = 0, then there is ¢ > 0 such that dr(§)(¢t) N F =  if
1€ — &ollt = max{|&(s) — &o(s)] : 0 < s <t} is less than €. So dr is a measurable
function. Since £(t) = /kB(t) gives a measure on C[0, 00), the standard radial SLE,
is a measure on the space of Loewner chains in ID. Similarly, the standard chordal
SLE, is a measure on the space of Loewner chains in H. By conformal invariance,
any radial or chordal SLE in a simply connected domain D is a measure on the space

of Loewner chains in D.
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3.1.4 Positive harmonic functions

Let D and R be as before. Suppose [ is a side or side arc of D. Then there is a
unique bounded continuous function H defined on D taking away the extreme points
of I such that H is harmonic and positive in D, H =1 on I, and H =0 on dD \ I.
This H is called the harmonic measure function in D of I. For any z € D, H(z) is
equal to the probability that a two-dimensional Brownian motion in D started from
2 hits T before D \ 1.

Suppose p € D. There is a unique continuous function GG defined on D \ {p} such
that G is harmonic and positive in D\ {p}, G = 0 on 9D, and the limit as z — p of
G(2) +In|z — p|/(2m) exists. This G is called the Green function in D with the pole
at p.

Suppose w € dD is a prime end. There is a continuous function M defined on
D\ {w} such that M is harmonic and positive in D and M =0 on D\ {w}. This M
is called a minimal function in D with the pole at p. The name comes from the fact
that if any other positive harmonic function f in D is bounded by M then f = c¢M
for some ¢ € (0,1]. If M is a minimal function in D with the pole at w, then any
minimal function in D with the pole at w is equal to ¢M for some ¢ € (0, 00).

There are various ways to normalize a minimal function in D with the pole at
w € dD. Suppose W is a conformal map from a neighborhood U of w in D into H
such that W (U N D) C R. Then there is a unique minimal function M in D with
the pole at p such that M oW =1(2) +Im1/(z —W(p)) — 0as z € W(U) and z — R.
We say this M is normalized by W.

Suppose [ is an arc of éD, and W maps a neighborhood U of I into H such
that W(U N dD) c R. For each w € I, let M, be the minimal function in D
with the pole at w normalized by W. Let H; be the harmonic measure function
in D of I. Then we have nH;(z) = [ M,(z)ds o W(w) for any z € D. Thus if
po € «, and I, is a descending sequence of subarcs of I such that xqg = NI,, then
M,y (z) = lim,, o mHy, (2)/|W(1,)|, where Hj, is the harmonic measure function in

D of I,.
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We may also relate minimal functions with Green functions. For ¢ € D, let G, be
the Green function in D with the pole at g. The limit of G,(2)/ImW(q) as ¢ € U

and g — pp is the minimal function in D with the pole at py normalized by W /.

3.2 Definition

3.2.1 Conformally invariant SDE

Suppose {F; : t > 0} is a filtration, Bi(t) is a {F;} standard Brownian motion.
Suppose T} is a {F;} stopping time, & (t) is an {F; : t > 0} adapted continuous
function defined on [0, 7}), Ry(t,x) isan {F; : t > 0} adapted C*? continuous function
defined on a neighborhood of {(¢,£(¢)) : t € [0,71)}, and they satisfy

Oa 1 (t, 61 (1))

d6,(t) = VRdBy(H) + (3 — w/2) =5

dt, £(0) =0. (3.2.1)

Let K} and ¢}, 0 <t < T}, be the standard radial LE hulls and maps driven by &;.
Let

ul(t)—/o Ri(s,&1(s)) %ds, (3.2.2)

0 <t < T;. Let v; be the inverse of uy. Let M(t) = Kil(t), then M is a Loewner
chain in D started from 1.

Now suppose W maps a neighborhood U of 1 in D that contains all M (t) con-
formally into D \ {0} such that W(U N oD) C 0D and W (1) = 1. Let vy(t) :=
Cp.o(W (M (1)), and us(t) be the inverse of vy(t). Let K7 = W (M (uz(t))). Then K?
is a family of standard radial LE hulls. Let ¢? and & be the corresponding radial LE
maps and driving function with £ (0) = 0. Note that W, := 901212(15) oW o 8011,1@) maps

v1

a neighborhood of €%(1(®) in D conformally onto a neighborhood of e*2(*2() in D

such that W, (e’ (1)) = ¢¥€2(2(0)) We may choose f, such that W, o e’ = e’ o f; and
fe(&1(v1(1))) = &(v2(2)).
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Theorem 3.2.1 We have us(t) = [ Ro(s, &(s))2ds, and

aﬂ?RQ (t7 52 (t))

déy(t) = VKdBy(t) + (3 — K/2) Ro(t,&(1))

dt, (3.2.3)

where By(t) is a {Fuyov, 1)} standard Brownian motion, and Ry is defined by

Ry (va(t), fi(w)) = Ra(vi(t), 2) /O fr(). (3.2.4)

Proof. Note that v} (t) = Ry(vi(t),& (vi(t))) ™2, we have

VidB; (t) K\ Ou Ry (v1(2), &1 (v ( mdt,

t
d&i(vi(t)) = Ry(vi(t), &1 (vi(2))) 6= 5) Ry(v1(t), &1 (vi(t)))

where B (t) is a {Fo.vy} standard Brownian motion. Similarly as before, we can

prove that v}(t)/v}(t) = O, f(&1(v1(¢)))?, and

—302f,(& (v1(1)))

O fe(a(v1(t))) = Ry(vi(t), & (ve(2)))?

Since fi(&1(v1(t))) = & (va(t)), from Ito’s formula, we have

Do o1 (1 (1)) V/RdBi (1) K

At = = . awm@) T2
A R@O.EOO) R 0)
[aa:ft(gl( 1(t))) R1<U1( ) ( ( )))3 Rl(vl( ) gl(vl(t))) ]dt

From (3.2.4), we have

0 Ra(a(t), fo(2))0s fo(x) = OuRi(v1(t), 2)/0u fi(x) — Ri(va(t), 2)0; fi(2) /s fo().

Let © = & (v1(t)), then fi(x) = & (vo(t)). Then we compute

O3 (03 (1), E2(v2(t)))

t
Rl (D), Glestr)p )

Ri(ui(t),& () Efil&a(vi(t))
Ri(vi(t),&u(va(t)))® Ra(vi(t), &a(vi(t)))?
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Thus

VrdB(t)

Ay (va(t)) = Ra(va(t), Sa(va2(t))) 8- 5) Ra(v2(1), &2(va2(1)))

Since

4(0) = (00,46 (0, (1))? = 2L &)

n Ry(vi(t), &1 (vi(t)))? = Ry (v2(t), &2(2(1))) ™7,

we have

d&a(t) = VkdBs(t) + (3 — §>%

for some {F, 00, 1)} standard Brownian motion By(t). O

dt

Now suppose D is a finite Riemann surface, « is a side of D. Fix py € D. Let Q
be a neighborhood of dD in D\ {0}, 3 a neighborhood of a in D\ {po}, and W map
2 conformally onto ¥ such that W (z) — «a iff z € Q and z — 9D. Given ¢ € C[0,a),
let gof and Kf, 0 <t < a, denote the standard radial LE maps and hulls driven by &.
If K¢ € Q, then W(Kf) is a hull in D on a. So D\ W(K?) is still a finite Riemann
surface which contains py. Let PEW denote the Green function in D\ W(K?%) with
the pole at po. As z € ©5(Q\ Kf) and z — 9D, we have PfW oW o (¢5)1(z) — 0.

~1 extends harmonicly across OD. Let A € R

By reflection principle, PEW oWo (gpf)
and A € C[0,00), we have the following theorem. The proof will be postponed to the

next section.

Theorem 3.2.2 The solution of the equation

aw:Aw+AA%Mw@xﬁWoWow®1wwamm. (3.2.5)

exists uniquely. Suppose [0,T(€)) is the maximum definition interval of £&. Then
U0§t<TK§ intersects every Jordan curve J in ) that together with 0D bounds a doubly
connected domain contained in Q. For any a > 0, let S, be the set of A € C[0,00)
such that T'(§) > a. Then S, is an open subset in the semi-norm || -||,. And the maps

Sa D A Eloa and S > A 9y(Piy o W o () 0 ) (E() leo are (- las I+ lla)
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continuous.

For a fixed k > 0, let A =3 — £/2 and A(t) = /kB(t), where B(t) is as usual the
standard Brownian motion. Suppose wy € « is a prime end. We choose W such that

W (1) = wyp. Let
u(t) = / (0,(Pyy 0 W o () 0 ¢1)(£(s)))2ds.

Let v be the inverse of u. Define L(t) := W(Kg(t)). From Theorem 3.2.2, the map
A+ L is measurable. So the law of A(t) which is a Brownian motion gives a low of L.
The law of L is called the local HRLC,; in D from wy to py, or HRLC(D;wy — po)
in the chart (X, W). In fact, From the next Corollary we see that the law does not

depend on W, so we may omit W.

Corollary 3.2.1 Suppose Ly and Ly have the laws of local HRLC.(D;wy — po) in
the (X1, Wh) and (Xq, Ws), respectively. For j = 1,2, let S; be the first t such that
L;(t) & Qs_j; or A(L;) if such t does not exist. Then Ly restricted to [0,S1) has the

same law as Lo restricted to [0, 55).

Proof. Let 3 = ¥, N Xy, then for j = 1,2, L; restricted to [0, S;) has the law of local
HRLC,(D;wo — po) in the chart (X, ;). So it suffices to show that if ¥ = 3, then
the law of L; is the same as that of Ly. Let ¥ :=%;, Q; = I/Vj_l(Zj), j=1,2, and
U := Wy 'oW,. Then U maps (€y; 1) conformally onto (€2; 1) and U (2, NOD) C ID.

From the definition, there is a standard Brownian motion B;(t), a random con-

tinuous function &; that satisfies
(1) = VRBL(1)+ 3= x/2) [ (0.0,/0)(Pliy o Wio (&) o) (6r(s))ds. (3:26)

And Ly(t) = Wl(Kfi(t)), where v; is the inverse of u;, and

w(t) = / 0, (P&, o Wy o () o )(6a(s)) 2ds.
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Let {F;} be the filtration generated by By(t), M(t) := K% = = W (L(t)), and

V1 (t)

Ri(t,x) := 9, (P, o Wi o (gf) ™ oe')(a).

Then By is an {F;} standard Brownian motion. From Theorem 3.2.2, & and R;
are all {F;} adapted, and formulas (3.2.2) and (3.2.1) are satisfied. Let vy(t) :=
Cpo(U(M(t))), and uy(t) be the inverse of vy(t). Let Ky := U(M (uz(t))). Then K, is
a family of standard radial LE hulls driven by some &;. Let U, := gpﬁz ) © Wo gpﬁi )
Then U, maps a neighborhood of ¢ (1®) in D conformally onto a neighborhood
of €€2(®) in D such that U(e1(1®)) = ¢i€2(2()) We may choose f; such that
Uioe' =e o fyand fy(&1(vi(t))) = Ea(va(t)).
From Theorem 3.2.1, We have us(t) = [ Ra(s, &(s))2ds, and

OaR(t, &5(1))

déy(t) = VKdBy(t) + (3 — K/2) Ro(t,&(1))

dt,

where Bs is a standard Brownian motion By(t), and Ry is defined by

Ry(va(t), fi(z)) = Ri(vi(t), 2) /0 fi().

After a simple computation, we have
Ro(t, ) = 0,(Piy, o Wao (¢?) ' o &) ().

Thus equation (3.2.6) holds with the subscript 1 replaced by 2. This implies that
Ly(t) = WQ(K&@)) has the same law as Ly. O

v2

There exists a sequence of neighborhoods {X,} of wq in D\ {po} that satisfy (i)
for each n, there is a conformal map W, from a neighborhood 2, of 1 in D\ {0} onto
5, such that W, (1) = wo and W, (€2, N D) C dD; and (ii) if K is any hull in D on
the side that contains wg and py € K, then there is at least one ¥,, that contains K.
From Corollary 3.2.1, there is a unique measure p on the space of Loewner chains L

in D started from wy avoiding py, i.e., po & L(t) for all 0 < t < A(L), such that if L
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has the law p then L restricted to any chart ¥ is a local HRLC,(D;wy — pg) in X.
This p is called the (global) HRLC,(D;wo — po).

There are some other possible definitions of PEW in (3.2.5) such that Theorem
3.2.2 and Corollary 3.2.1 hold with no changes or minor changes. For example, Let I
be a side arc of D such that wy & I. We may define PfW to be the harmonic measure
function of [ in D\W(Kf) as long as there is a neighborhood of I in 9D that does not
intersect W (K?). Then the law of L defined before Corollary 3.2.1 is called the local
HRLC,(D;wo — I) in 3. Let wy be a prime end of D other than wy, and J maps a
neighborhood of w; conformally onto a neighborhood of 0 in H such that J(w;) = 0.
If there is a neighborhood of w; in D that does not intersect W(Kf), then We may
define PEW to be the minimal function in D\ W(K?) with the pole w;, normalized
by J. Then the law of L is called the local HRLC,(D;wy — w;) in ¥, normalized
by J. In fact, two local HRLC,(D;wy — w;) in the same chart differ only by a
constant speed time-change. We may also define the (global) HRLC, (D;wy — I) or
HRLC,(D;wy — wq) normalized by J, similarly as the case that the target is a prime

end.

Proposition 3.2.1 Suppose (K7) has the law of the radial SLE,(D;wy — po). Then
t = Kj)yn2) has the law of the HRLC,,(D;wo — po). Suppose (Kf) has the law of a
chordal SLE.(D;wy; — wsy). Then t — Kf has the law of an HRLC,(D;w; — ws).
Suppose (K7) has the law of the strip SLE.(D;wy — I). Thent — K} . has the law
of the HRLC,,(D;wy — I). Suppose (K{) has the law of the annulus SLE,(D;wy —
S). Then t — Kp_m has the law of the HRLC,(D;wo — S).

Proof. The proof is similar as that of Theorem 3.2.1. O

3.2.2 Existence and uniqueness

The goal of this subsection is to prove Theorem 3.2.2. We need the following lemmas.

Lemma 3.2.1 For any a > 0 and compact subset F' of D, there are ,C > 0 de-
pending on a and F' such that if t € [0,a] and (,n € C[0,t] satisfy || — n; =
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SUPg< <y C(5) —n(s)| < 0, then for any z € F, @5 o ()Y (2) is well defined, and

12— % o () H(2)| < Ct|¢ —nlls, Yz € F,

where ] and <p§ are standard radial LE maps driven by n and ¢, respectively.

Proof. Choose ¢ € (0,1) such that F' C (1 —¢)D. Let d > 0 be the distance between

F and (1 —¢)0D. There is C. > 0 such that for x1, x2 € 0D and x1, 25 € (1 —¢)D,

X1+ Ty . X2 + X2

2
X1 — 1 X2 — T2

T1 S Ca(|X1 — X2| + |$1 — l‘gl) (327)

Fix z € F and t € [0,a]. Let so be the first s > 0 that is equal to t or
f(s) =gl o (¢])7H(2) = @t o ()7 (2)]
is equal to d. Then for 0 < s < s,
o2 o () (2) < Lt o () ()] = Izl.

From the definition of d, we see that for 0 < s < sg, ¢7 0 (¢])71(2), S 0 (0])7H(2) €
(1 —e)D. So ¢ o (¢~ (2) is well defined. Since ! = ¢§ = id, f(0) = 0. From
(2.2.1) and (3.2.7), we conclude that

£(5) < CelllC — nlles + / Cf(r)dr), 0< s < s

From a standard argument of differential equations, we get

f(s0) < 3(e* = D[IC = nlle < Cs0lI¢ = nlls, (3.2.8)

where C' := 3(e“*® —1)/a. Let § = d/(Ca). If |¢ —nl|; <, then f(so) < d, so so = t.
This ends the proof. O

Lemma 3.2.2 Suppose a > 0 and 3 is a Jordan curve in €0 such that the doubly
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connected domain bounded by 3 and 0D is contained in 2. There are 6,&,C > 0
depending on D, po, W, Q, [ and a, such that if t € (0,a] and {,n € C[0,t] satisfy
IC=nll: < 6 and KN B = 0, then for any z € D with |z| > 1 — ¢, we have
() (2), (1) () €9, and

[Piw o W o (1) () = Py o W o (9]) 7 (2)] < CHI¢ = -

Proof. We can find another Jordan curve v in € disjoint from [ such that the
doubly connected domain bounded by v and 0D is contained in 2 and contains
B. Let m be the modulus of the doubly connected domain bounded by ( and ~.
By conformal invariance and the comparison principle of moduli, the modulus of
the doubly connected domain bounded by ¢$(v) and 9D is at least m. So there is
g0 = £o(m) > 0 such that ¢$(y) C (1 —eo)D. Let J, = (1 —eo/k)ID, k = 1,2,3, and
Ji = /1 — &0/30D.

Let F' = mﬁ. From Lemma 3.2.1, we have C,6; > 0 depending on a
and F such that if || — ||, < 61, then for all z € F, ¢ o (o) "1(2) , ¢} o (¢$)7(2)

exist, and

|2 =95 o (¢ (@) 12 = @l o (95) T (2)] < CutlC =]l (3.2.9)

Since J; lies between () and D, so does Jz. Thus (p$)~'(J3) lies between ~
and OD. So for any z € D such that |z| > 1 —£¢/3, (¢¢)~'(2) lies in the domain
bounded by v and 0D, which is contained in Q. If || — ]| < 0 = min{d1, &0/ (6C1a)},
from ¢$(y) € F and (3.2.9) we have |¢](z) — ¢$(2)| < Cit||¢ — nlls < £0/6 for all
z € 7. Note ¢§(7y) C (1 —go)D. Thus ¢} () C (1 — £0/2)D. This means that .J, lies
between ¢} () and OD. Similarly, we have (¢])~!(z) lies in Q, for any 2z € D such
that |z] > 1 —e0/3. Thus Pf:W oW o ()" and Py, o Wo (@)~ are well defined
on a domain that contains {z € D : |z] > 1 —¢(/3} when || — ||, < J. It is clear

that they are harmonic, and they have vanished continuation at dD. Now suppose
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I¢ —nll: < 9, define

M = sup [Py, o W o (¢]) 7' (2) = Piy o W o (1) (2)l;

zeJ3
N'= sup [Py o Wo (¢ (2) = Paw o Wo (1)1 (2)].
z€Jq
Since a plane Brownian motion started from z € J; has probability 1/2 to hit J3
before 0D, so Ny < M, /2.

Note that P}, — Py is harmonic in D\ W(K} U K/ including the pole py, and
has vanished continuation on the sides of D other than « which contains wg. It is
clear that (¢])~'(J3) and (¢f)~*(Jy) are disjoint from K. Since J3,J; C F, and
1C=nlls < 8 < 81, 50 8o (0])~L(J3) and ¢ o (p])~1(J4) are defined. Thus (@7 )~ (J5)
and (p!)~'(Jy) are disjoint from K. Since Js,J; C {z € D : |z| > 1 — &¢/3}, so
from the last paragraph, (p})~!(Js) and (p})~(Jy) lie in Q. Thus W o (¢])~1(J3)
and Wo (p])~1(Jy) are two Jordan curves in D, and the latter disconnects the former

from W (KF)) UW (K] and the side that wy lies on. Now define

M’ = sup [Py o W o ()7 (z) = Py o W o ()7 (2)];

z€J3
N' = sup [Py, o Wo (0])7H(2) = Piy o Wo (¢]) 7 (2)]-
z€Jy ’ ’
From the maximal principle, we have M’ < N'.
Let A; be the closure of the domain bounded by v and J;. Since |(¢$) " (2)] < |2],
and J; lies between ¢ (v) and 9D, so (¢$) " (J;) C Ay. It is clear that wa < By, the

L on J; is bounded by

Green function in D with the pole at py. So Pf:w oW o (¢5)™
the maximum of Py oW on A;. Let Ay be the domain bounded by J; and 0D. Since
PEW oW o (gpf)_l vanishes on JD, by reflection principle and Harnack principle, the
gradient of PEW oWo (gof)*l on As is bounded by some Cy > 0 depending on D, p,

W, Ay and €. Since J3, Jy C F, so by (3.2.9), if || — n||: < I, then

|2 — @5 o (e1)L(2)] < C1td < 0/6, Vz € J3U Jj.
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It follows that the line segment [z, oS o (o)~ 1(2)] is contained in A, for z € J3 U J,.

We now have

(M = M| < sup |Piy 0 Wo (7)™ (2) = Py o W o () ' (2)]-

z€J3

< sup [V(Plyy 0 W o (95) ) (w)] - sup |2 — ¢ o (o) 71 (2)] < G100t — .

)

wEA2 z€J3

Similarly, ’N — N/’ < ClcQtHC — 77Ht Thus
M < M' 4 C1Cit[|¢ — e < N+ C1Cot||¢ — ],

< N +2C,Cot||C = |y < M /2 + 2C1Cat]|C — ],

which implies that M < 4C,C5t||¢ — n||;. Let C = 4C1C5 and € = £¢/3. The proof of

this lemma is completed by the maximal principle. O

Lemma 3.2.3 Let a and 3 be as in Lemma 3.2.1. Then there are §,C > 0 depending
on D, po, W, Q, 8 and a, such that ift € (0,a] and ¢,n € C0,t] satisfy || —nls <9
and KS N3 =0, then

S o 0 < _106i
(8:0,/0,)(Pryy o W o (¢7) >(C(t))| (3.2.10)

—(0:0,/0,)(Ply, o W o (p]) " oe)(n(t)] < C(L+1)IC—nll

Proof. Let gy, Jp, k =1,...,4, and A;, [ = 1,2, be defined as in the proof of Lemma
3.2.2. In that proof we see that for all £ € C0,t], 0 <t < a, PEWoWo(wf)_l on Jp is
uniformly bounded. By reflection principle and Harnack principle, this implies that
Ok0, (P oW o (¢5)toel), k = 0,1,2, are uniformly bounded on R. Let P(z) denote
the Green function with the pole at pg, in the subdomain of D that is bounded by
W (Jy) and the sides of D that does not contains wy. Then PgW(z) > P(z) > Cy on
W (Jy), for some Cy > 0. This implies that |8y(RSWoWo(gpf)*1oei)| on R is uniformly
bounded from below by Cp/(—In(1—¢)). Since 0,(9,0,/9,) = 920,/0, — (8.0,/9,)?,
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we proved that for some C' > 0,
102(0:0,/0,) (Pryy 0 W o () Fo€')(2)| < C. (3.2.11)
By Lemma 3.2.2 there are d,C; > 0 such that
By 0 W o (¢)71(2) = Plhy o W o () ()] < Ctll¢ =l

for t € (0,a] and z € J;3. By Harnack principle, there is Cy > 0 such that for all

z € R,
10, (Piy 0 W o (9f) ™" o e')(2) = 8,(Ply o W o (¢]) ™ o e')(2)] < Catl|¢ — 1l

1020, (Pl 0 W o (1)~ 0 €)(2) = 820, (Pl o W o (9}) o €')(2)] < Cat[¢ — -

From the first part of the proof, 9, and 0,0, are uniformly bounded, and 9, is uni-

formly bounded from zero, so we have

(9:0,/0,) (P 0 W o ()~ 0 €')(2)

. (3.2.12)
—(020,/0y)(Plyy o Wo (¢f)Hoe)(2)] < Ct[¢—nll

The proof is completed by combining (3.2.11) and (3.2.12). O

Lemma 3.2.4 There are a,C > 0 such that for z € R, t € (0,a], and {,n € C|0,1],
the inequality (3.2.10) holds.

Proof. There is a Jordan curve (8 in 2 such that the doubly connected domain
bounded by § and 0D is contained in 2. We can find a > 0 such that any hull in D
of capacity w.r.t. 0 less a is disjoint from (. Thus for any ¢t € (0,a] and £ € C|0, ],
KN g = 0. From Lemma 3.2.3, the inequality (3.2.10) holds when ¢,n € C/0,]
with || — 75|l < 0 for some 6 > 0. The condition || — n||; < J can be dropped
because we can choose & = (, &1, ...,§, =1 in C[0,t] such that ||{;_1 — ;|| < é and

21 18-1 = &lle = 1€ = nlle- O



53
Proof of Theorem 3.2.2. Let {; = A. Define &, inductively:

Enin(t) = A(t) + A /0 t(axay J0,)(Psy oW o (¢5) o e)(&u(s))ds.  (3.2.13)

Compare Pf_kevwoWo(goerg)*l with PfWoWo (¢5)~" in the similar way as we compare
Py oWo(gf) ™t with Pyy,0Wo(y)~!, and we find that (9,0,/0,)(PSy 0 Wo(g) Lo
e')(&,(t)) is continuous in ¢. Thus &, are well defined and continuous.

Choose gy > 0 such that (1 —¢)0D C Q for € € (0,&¢]. Let a and C be in Lemma
3.2.4 depending on ¢y. We may chose a small enough such that Lemma 3.2.4 implies
1ént2 — Entilla < ||&ns1 — &nlla/2. Thus {£,} is a Cauchy sequence in C|0,a]. Let
¢ € C[0,a] be the limit of {&,}. Then & solves (3.2.5) for ¢ € [0, a]. If there is another
solution & on [0, a] of (3.2.5), then a similar argument gives || — &||la < |1€ — &' ||a/2,
which forces that & = €. Thus the solution of (3.2.5) exists uniquely on [0, a.

Now suppose (3.2.5) has two different solutions &; and &. Let b > 0 be the biggest
t such that & (t) = &(t). Let wy be the prime end of Dy, := D\ W (K5') determined by
the Loewner chain ¢ — W (KF") at time b. Then X := X\ W(K5') is a neighborhood
of wy in Dy. Moreover, €, := ' (2 \ K5') is a neighborhood of %) in D, and
Wy :=Wo (gpg)_l maps {2, conformally onto ¥, and can be extended conformally to
the boundary such that W(e®1®) = w, and W,(X, N OD) C ODy. Let ID}:Wb be the
Green function in Dy \ W (KF) with the pole at po. For j = 1,2, let ¢;(t) := & (b+1).

gj = K U (¢8)"Y(K{7). Thus ]55{% = szit,w- So we

Then ¢}, = gpf” o gpgj, and Kfit

have

Py, o Wyo (¢f) ™ = Pyl o Wo (g3 )7

Let A(t) = A(b+t) — A(b) + & (b). Then for j = 1,2, (; solves the equation

Gt) = A(t) + A/0 (2:0,/0,)(PZ 0 Wy o (65) ™" 0 e')((s))ds. (3.2.14)

From the first part of this proof, we see that (;(t) = ((t) for ¢ € (0,c), for some
¢ > 0. Thus & (t) = &(t) for 0 <t < b+ ¢, which contradicts the choice of b. Thus

the solution of (3.2.5) is unique.
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Now let [0,7") be the maximal definition interval of the solution £ of (3.2.5).
Suppose that U0§t<TKf does not intersect some Jordan curve J; in €2 such that the
doubly connected domain bounded by J; and 0D is contained in €. Then we can find
another Jordan curve .J; that has the above properties that .J; has, and is disconnected
by J; from 0D. Let m > 0 be the modulus of the doubly connected domain bounded
by Ji and J. Then for any ¢t € [0,T'), the modulus of the doubly connected domain
bounded by oD U Kf and Jy is greater than m. There is g = go(m) > 0 such that
©5(J2) € (1 —eo)D for all 0 < ¢ < T. Let a depending on £y be as in the first part
of this proof. Choose b € [0,T) so that T < b+ a. Let Q = ¢$(Q\ K:). Then
(1—€)0D C Q for 0 < € < gp. Thus (3.2.14) has a solution ¢ on [0, a]. Let £'(t) = &(t)
for 0 <t < b, and &(t) = ((t —b) for b <t < b+ a. Then & solves (3.2.5). Note
T < b+ a. By the uniqueness of the solution, ¢'(t) = &(t) for 0 < ¢t < T. So the
solution ¢ can be extended to [0,b+ a]. This contradicts the assumption that [0,7)
is the maximal definition interval of the solution.

Suppose &y is the solution for Ay and is defined on [0, a]. To prove that S, is open
in || -l and S, 3 A = ljoa i (|| - [las || - |la) continuous, it suffices to show that if
A, — Ao in || - ||a, and &, are solutions for A,, then &, is defined on [0, a] for n big
enough and ||&, —&|le — 0. Let 8 be a Jordan curve in © disjoint from K% such that
the doubly connected domain bounded by (3 and 9D is contained in 2. Let § > 0 be
as in Lemma 3.2.3. If ||§, — &||; < d for ¢t € (0,a], then from Lemma 3.2.3,

6(5) — &0(s)] < 14w — Aofle +C / lea(r) — &) dr.

for some C' > 0 and s € [0,¢]. This implies that |£,(s) — &(s)| < e“%|| A, — Aglla. If
n is big enough, then ||A, — Aglls < e=%5. Suppose &, is not defined on [0, a, then

there is some ty € [0, a) such that Kfo" N 3 # 0. However, since

I6n = Eolley < el An — Aolla <6,



55

and Kfoo NG =0, from Lemma 3.2.1, Kfon does not intersect 4. The contradiction
shows that &, is defined on [0, a]. From a similar argument, we conclude that there is
no t € [0, a] such that |&,(t) — & ()] > §. It follows that ||&, — &lla < 94| An — Aol
Thus &, — & in || - ||o- From the proofs of the Lemmas it is clear that £ — @(wa o
W o (5) " oe)(E(t))]reio.a 15 (|| llas || - [la) continuous on the set of & € [0, a] such that
K¢ C Q. So it is also true if the first £ in ghe above sentence is replaced by A € S,.
O

Suppose PEW is defined to be the harmonic function of some side arc I of D in
D\ W(L%) such that wy ¢ I, or the minimal function in D \ W (L$) with the pole
at some prime end w; # wy, normalized by (J,¢q,1). If I or w; does not lie on a,
then Theorem 3.2.2 holds without any change, and the proof is also the same. If [
or wy lies on «a, then Theorem 3.2.2 holds with the change of the long-range behavior
of Lf, which is UOSKTLf either intersects every Jordan curve [ in €2 such that the
doubly connected domain bounded by # and JD is contained in €2, or intersects every
neighborhood of I or wy. The proof is a bit more complicated, but the basic idea is

the same. And we choose to omit the proof.

3.2.3 Interior HRLC

A harmonic random interior Loewner chain in a finite Riemann surface extends the
notations of full plane SLE and disc SLE. It is a law of random interior Loewner
chains module time-changes. In another word, it is a measure on the equivalence
classes of interior Loewner chains, where two interior Loewner chains are equivalent
iff one can be converted into the other through a time-change.

Suppose D is a finite Riemann surface, and py # p; € D. Let W map a neighbor-
hood of Q of 0 in D conformally onto a neighborhood ¥ of pg in D \ {p1} such that
W(0) = py. For any £ € C(—o0,a), let Lf and wf, 0 <t < a, be the standard full
plane LE hulls and maps driven by &, respectively. Let QEW be the Green function
in D\ W(Lf) with the pole at p;. We then have
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Theorem 3.2.3 For any A € C(—00,00) and X € R, the solution of

t

€0 = A0 +A [ @0,/0)(@ 0 Wo W) oc)(El)ds  (3:215)

— 00

exists uniquely. Suppose (—oo,T(§)) is the mazximal definition interval of &, then
Ut<TL§ 158 not contained in any closed Jordan domain in 2. For any a € R, let U, be
the set of A such that T'(§) > a. Then U, € F,, which is in the o-algebra determined
by A(t), t < a. Moreover, Uy 3 A &|(—oo,q 5 (Fa, Fa) measurable.

Sketch of the proof. Let £, = A and define &,, inductively:

t

Euna() = AW+ [ (0.0,/0,)(@%h oW o (05) T 0 )&u())ds

—0o0

Note that QE’W oW o (§)~! is positive and harmonic in D \ C1e*D for some C; > 0.
It follows that

1(8:0,/0,)(QS 3 0 W o (15) ™ 0 ') (2)] < Colsle”

for some Cy > 0 and all z € R, when s < 0 and |s| is big enough. So all &, are well
defined on (—o0, a) for some a € R, and are continuous. Especially, ||&;—&||; < Cs|t]e!

for t € (—o0, a]. We may choose b < a such that for ¢ < b,

M (020y/0,)(Qf 0 W o ()™ 0 €)(¢(1)) (3.2.16)
|

—(0:0y/0,)(Qy o Wo () oe)(n(t))] < [IC = nlle/4.

From || — &lle < Csltle! for t € (—o0,b], we have ||§,1 — &alle < Cslt|e’/2™ for all
n € Nand t € (—o0,b]. Thus {&,} is a Cauchy sequence in C(—o0,b]. The limit &
solves (3.2.15) on (—oo,b]. If another function £ also solves (3.2.15), then ¢ must
agree with & on (—o0, b].

To find the value of € after b, we define Dy, := D\ W(Ls) and W, := W o (¢5) .
Let Ay(t) = A(b+t) — A(b) + £(b). Let ¢f and K} be the radial LE maps and hulls
driven by £. Let ESWb be the Green function in Dy \ Wy(KF) with the pole at p;.
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From Theorem 3.2.2, the solution of the equation

)=o)+ (0,0,/0,) (Bop,  Woo (o)1 0 €)(C(s))ds

exists uniquely. We define £(t) = ((t — b) for t > b. Then this £ solves (3.2.15). The

other parts of this theorem can be proved similarly. O

Now fix £ > 0. Let A(t) = & (t) defined in Section 2.2.3, and A = 3 — k/2. Let
¢ be the solution of (3.2.15) and [0,7") the maximal definition interval. Then the
law of [0,T) 3 t — W(L!) is called the local interior HRLC,, in D from py to py, or
HRLC,(D;py — p1), in the chart (X, ).

Theorem 3.2.4 Suppose Ly and Lo have the laws of local HRLC.(D;py — p1) in
(X1, W1) and (3q, Ws), respectively. For j = 1,2, let S; be the first t such that
L;i(t) & Qs_j; or A(L;) if such t does not exist. Then Ly restricted to [0,5,) has the

same law as Lo restricted to [0,S2), after a time-change

Proof. The idea of the proof is a combination of the proof of Theorem 3.2.1 and the
proof of Theorem 2.5.1. O

The (global) HRLC,(D;py — p1) is the measure on the space of interior Loewner
chains module time-change that are started from py and disjoint from p; such that
when restricted to any (2 it has the law of local HRLC,(D;py — p1) in (2, W) module
the time-change. From the last theorem, such a measure exists uniquely.

If we define Qf,w to be the harmonic measure function in D \ W(L%) of a fixed
side arc I of D, then we obtain HRLC,(py — I). If we define in be the minimal
function in D\ W(L$) with the pole at a fixed prime end w; of D, normalized by
(J,wy, 1), then we obtain HRLC(py — wy).

3.3 HRLC in canonical plane domains

If the underlying surface of a finite Riemann surface D is the Riemann sphere C

and oo € D, then D is called a multiply connected (plane) domain, or n-connected
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domain, if D has n sides. There are some special types of multiply connected domains,
which are determined by finitely many real parameters. A circular canonical domain
is obtained by removing from a open disc or annulus finitely many mutually disjoint
arcs on the circles centered at the center of the disc or annulus. If the disc is the unit
disc D, it is called a type D domain. If the annulus is the standard annulus A, for
some p > 0, it is called a type A domain. A flat canonical domain is obtained by
removing from an open half plane or open strip (a domain bounded by two parallel
lines) finitely many mutually disjoint line segments that are parallel to the boundary
line(s) of the half plane or strip. If the half plane is the upper half plane H (right
half plane —iH, or lower half plane —H, resp.), then it is called a type H (RH, or LH,
resp.) domain. If the strip is a standard strip S, for some p > 0, then it is called a
type S domain.

Suppose « is a side of D, and p € D. Then there is g that maps D conformally
onto a type D domain such that g(a) = 0D and g(p) = 0. Such ¢ is unique up
to a rotation. Suppose a1 # ao are two sides of D. Then there is g that maps D
conformally onto a type A domain such that g(o;) = 0D and g(ay) = C,, the inner
boundary component of m Such ¢ is also unique up to a rotation. Suppose w is
a prime end of D. Then there is g that maps D conformally onto a type H, RH, or
LH domain such that g(w) = co. Such ¢ is unique up to a translation and a dilation.
Suppose w_ # w, are two prime ends of D on one side «, then there is g that maps
D conformally onto a type S domain such that g(wy) = +00. Such g is unique up to
a translation and a dilation.

Now we focus on type D domains. For m € N, let 7,,, denote the set of (py, ..., pm;

Do O0i 07,0, 05) € R¥ such that for each 1 < j < m, p; <0, 0; <6 <
0; +2m, and
Fj:={exp(p+i6) : 0; <0 <6}, 1<j<m, (3.3.1)

are mutually disjoint. Let

Qw) =D\ UL Fj(w).

Then each (m + 1)-connected type D domain is (w) for some w € 7,,,.



59
For each w € 7, and x € JD we can find S(w, x, -) that maps Q(w) conformally
onto a type RH domain so that x is mapped to oo and

lim S(w, x, z) — Xtz
z—X X —z

— 0. (3.3.2)

Under this normalization, S(w, x,-) is uniquely determined. And S(w,y,-) corre-
sponds each Fj(w) to one vertical line segments.
S(w, X, -) has continuation at the two ends of Fj(w), and the values have the same

real part. For w € 7,, and £ € R, We may denote

gj(w,§) +i05 (w,6) = S(w, e, exp(p;(w) + 65 (w)));

V(w, &) = (qu,--,Gm; 01,0500, ...,00) (w,E).

(3.3.3)

So V is a R¥™ valued function on 7,, x R.

Lemma 3.3.1 Suppose h is a real harmonic function in M (w) for some w € Ty, such
that the harmonic conjugates of h exist. And h is continuous on Q(w) = D so that

the value of h on each Fj(w) is constant C;. Then we have

hz) = [ OO ReS (.. 2)dmix), (33.4)
oD
where m is the uniform probability measure on OD.

Proof. Let I(z) be equal to the right hand side of (3.3.4). Then I(z) = I,(z) + I(z),

where
X+ =z

X — <

dm(y), and

L(z) = /{m h(x)Re

L) = [ heore (Stx2) - 25 ) dm(y).

X —z
From the property of Poisson kernel we know that /(z) is harmonic in D, and the
continuation of I to dD coincides with h. From the definition of S(w, x, z), we may

check that for fixed w € 7,,, Re (S(w, x, 2) — ifz) tends to 0 as z € Q(w) tends to

0D, uniformly in x. Thus the continuation of I to 0D is constant 0. Therefore the
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continuation of I to dD coincides with h. Since Re S(w, x, z) has constant continu-
ation to each Fj(w) by definition, so does I(z) by formula (3.3.4). And the same is
true for h(z) by assumption. Thus I — h has constant continuation to each Fj(w).
We have proved that I — h has constant 0 continuation to 0. Now both I and A
has harmonic conjugate, so does I — h. Thus the constant continuation of I — h to
each boundary component of Q(w) has to be equal. So they are all equal to 0, which

implies h = I, as desired. O

Theorem 3.3.1 Suppose wy € T,, and L is a Loewner chain in Q(wq) started from
e’ € 0D that avoids 0. Then after a time-change of L, there are a real valued
continuous function & and a differentiable T, valued function w defined on [0, A(L))
with £(0) = & and w(0) = wy, a family of ¢, that maps Q(wo) \ L(t) conformally
onto Qw(t)) such that ¢ol2) = 2, @i(0) = 0, @u(Fylw)) = Fyw®), 1 < j < n,
0<t<A(L), and

Oupi(2) = pu(2)S(w(t), ¥, i (2)). (3.3.5)

The time-change, £, w, and @, are uniquely determined, and W'(t) = V(w(t),£(t)).

Proof. For each t € [0, A(L)) we can find p(t) € 7,, and a function 1, that maps
Q(wo) \ L(t) conformally onto Q(p(t)) such that ¥,(0) = 0 and ;(0) > 0. Then
Q(p(t)) and 9 are uniquely determined. For ¢ = 0, Q(p(0)) = Q(wp) and 1)y is the
identity.

Now fix a € [0, A(L)). Define

Lo(t) = i(L(a+1t)\ L(a)) and tha; = eyt 0, "

Then L, is a Loewner chain in (p(a)) started from 0D and ), maps Q(p(a))\ La(t)
conformally onto Q(p(a+t)). If r > 0 is smaller than the absolute value of the first m
coordinates of p(a+t) then we define p"(a+t) = p(a+t)+(r,...,7;0,...,0;0...,0) €
Tm. The function z — e "z maps Q(p"(a + t)) conformally onto a subdomain of

Q(p(a +1t)), and it corresponds F;(p"(a +t)) with Fj(p(a +t)) for 1 < j < m. Now
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define
ni(2) = =g i (e72) /2| = —Re In(¢,; (e7"2)/2)

on Q(p"(a+1t)). Then Q7 ; is a real harmonic function in €(p"(a +t)) with harmonic
conjugates, and @, has a constant continuation to each Fj(p"(a + t)). And for

x € 0D, Q7 (x) = —In[tha(e7"x)| > 0. By Lemma 3.3.1, we have

at(2) = [ Qu(X)ReS(p"(a +1), x, 2)dm(x) = / ReS(p"(a +1), X, 2)dp . (X),
” ” (3.3.6)
where p, , is a measure on JD so that duj, ,/dm = Q7 ;. So py,, is a positive measure.
Note that @7, ,(0) = 7 +1Inv;, (0). As 7 — 07, S(p"(a +1t),x,0) — S(p(a + 1), x,0),
uniformly in y € dD. And ReS(p(a + t),x,0) is positive, uniformly in x € dD. So
we may find b,e > 0 such that for r € (0,0), ReS(p"(a +t),x,0) > . We may
choose C' > 0 so that Q7 ,(0)| < C for r € (0,b). Then formula (3.3.6) implies that

Tn

\pg| < CJe for r € (0,b). So there is a sequence 7, — 0 such that pg" converges

to some positive measure j,; on OD in the weak™ topology. Since for each fixed
2 € Qp(t), Qui(2) — —Inlpg;(2)/2] and S(p™(a +1),x,2) — S(p(a +1),x,2),

uniformly in y € 9D, so we have

~Infid)/2 = | ReS(o(t) x. (33.7)

From this we see that p,, is independent of the sequence {r,}, so it is the weak*

limit of yf , as r — 0%, If y1g, = 0 then wa_%(z) = xz for some y € 0D, from which

follow that L,(t) = (), which is impossible. Thus p, is strictly positive. This implies
nit(0) > 47 (0), and so t — ;(0) is increasing on [0, A(L)).

Consider t, € [0,A) and a sequence t,, in [0, A(L)) that converges to t. Since
{4, } is uniformly bounded, so is a normal family. We may find a subsequence of v,
that converges to some v uniformly on each compact subset of Q(wp) \ L(t). Since
¥y (0) > 1 for all n, so ¢ can’t be a constant map. By Lemma 2.5.1, v is a conformal
map, and a subsequence of Q(p(t,)) converges to ¥(Q(wp) \ L(tx)), which must be a
(m+ 1)—connected domain since Q(wy) \ L(too) is. Thus ¢¥(2(wp) \ L(ts)) = Q(p) for
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some p € Tp,. Since all ¥, (0) = 0 and ¥y (0) > 0, we have 1»(0) = 0 and 9'(0) > 0.
Thus ¢ = 1, and Q(p) = Q(p(t)). Since all subsequential limits of ¥y, is ¥y, we
conclude that v, converges to 1, uniformly on each compact subset of Q(wp)\ L(ts)
and Q(p(t,)) — Qp(tx)). We may change p(t) without changing Q(p(t)) such that
p(0) = wo and p(t) is continuous on [0, A(L)). Then ¢, maps Fj(wp) onto F;(p(t))
for each j. Thus S(p(t), x, z) is continuous in both ¢ and y. The continuity of v, in
t implies that ¢ — ;(0) is continuous. We have proved that it is increasing. After a
time-change of L, we may assume that 1;(0) = e’ for all ¢t € [0, A(L)).

Fix T € (0,A(L)). Choose T" € (T, A(L)). Let J be a Jordan curve in Q(wp) \
L(T") that surrounds U"Fj(we) U {0}. For a € [0,T] and ¢ € (0,7" — T, let T, be
the family of curves in Q(wp) \ J \ L(a+t) that disconnect J from L(a+t)\ L(a) and
touch DU L(a+t). From the definition of Loewner chains and conformal invariance
of extremal length, the extremal length of ¢4 (T'; ) and 94+(T'7,) tend to 0 as t — 0T,
uniformly in a € [0,7]. These two curve families both lie in D, whose area is finite,
so the minimum length of 14 (") ;) and v,4:(I"],) tends to 0 as t — 0T, uniformly in
a € [0,T]. So there is a positive function { on (0, 7T with lim; .+ [(¢) = 0 such that
for all a € [0,T] and t € (0,T" — T7, there is aq; € 1a(I'y,) and B,s € Yaye(T],) with
lengths less than [(t). Since o, disconnects ©,(L(a + 1) \ L(t)) = La(t) from 1,(.J),
so the diameter of L,(t) is less than I(t) when [(¢) is small enough. Thus for fixed
a € [0,T), Ng>oLa(t) is a single point on 9D, denoted by x(t). Especially, x(0) = e%.
Now we consider 3,,. The set of points on JD that are not disconnected by f3,,; from
Yate(J) is an open arc, denoted by I2,. Let 17, = OD\I2,. Since 1, ; maps Q(p(a+t))
conformally onto Q(p(a))\ La(t) and 1, (Ba,) disconnects L, (t) from t,(J), 80 ¥q(2)
approaches 9D as z approaches I7,. Thus Q) ,(x) = —In [t (e7"x)] — 0 asr — 0F
for all x € I7,. Since piq is the weak® limit of pf , with duf,,/dm = Q},, S0 fay is
supported by I;,. We may choose t; > 0 so that [(t) < 1/5 if ¢ < t;. Now suppose
t € (0,t1). That the diameter of L,(t) is less than [(¢) implies that for xy € I}, the

a,ty

upper limit of @ ,(x) when 7 — 0% is less than —In(1 —[(¢)). Note that the length
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of I, , is less than 2I(t), so m(I,,) <I(t)/m. Thus

|tadl = pas(lay) < —In(1—1O)I(E)/m < U(t)".

Formula (3.3.7) implies that

—In(y;(2)/2) = / S(pla+1t), X, 2)dpat(x) + iCay,

oD

for some C,, € R. Since (¢,;)'(0) = —t, we may set —In(¢,,(z)/z) =t for z = 0.
Thus
Cus == [ 1mS{pla+ 1), ,0)ds0)
oD

From the definition of S(w, x, 2), we see that

_X+z
X —Z

S(p(a+1t),x,2) —ilmS(p(a+1t),x,0)

is uniformly bounded in @ € [0,T], t € (0,%1), x € ID, and z € Q(p(a +t)). Thus
there is C' > 0 such that

S(p(a +1), x,2) = ilmS(p(a + 1), x,0)] < C/z = x|-

We may choose d > 0 such that the distance of 1, (.J) from 9D is greater than d
for all w € [0,7"]. Then there is t5 € (0,t;) such that I(t) < min{d/(5C),1/10} for
t € (0,t3). From now on, we always suppose a € [0,7] and ¢t € (0,t3). Since [, has
length less than [(¢) and touches 0D, we may choose a crosscut 7, in D with two
ends on 0D separating 9,4+(J) from [, so that the distance from any point of 7,
to Bar is between C1(t) and 3CI(t). Now ~,, divides Q(p(a + t)) into two parts. Let
2.+ denote the component that contains 3,;. Then the diameter of €2, is not bigger

than that of ~,:, which is less than 7i(¢). For z € Q(p(a +t)) \ Qa4+, the distance
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between z and I, , is at least Cl(t). Thus for all z € Q(p(a +1)) \ Qay,

[ In(v; (2)/2))] S/ S(p(a+1),x,2) —ilmS(p(a +1), x, 0)|dpas(x)

< C/(CUD)) | pas| < 1(D),

which implies that |1, (2) — 2| < e'® —1 < 2i(t) as I(t) < 1/10. Since this is true
for 2 € 74y, so the diameter of ¥, (7a,) is less than 11{(t). Note that the image of
Q. under 1, Lis the domain bounded by V. {(Ya) and L, (t) U 0D, whose diameter
is not bigger than that of w;tl (Var). It follows that for all z € Qg ,

W1 (2) — 2| < (T4 2+ 11)I(t) = 201(¢). (3.3.8)

a,t

The above formula is in fact ture for z € Q(p(a +t)). Suppose 0 < a; < ay < T and
do = as — ay < t3/2. Note that

Lay(t2/2) = tha, (L(az +12/2) \ L(az)), and

La, (t2/2 + do) = ta, (L(az + t2/2) \ L(ax)).

Choose zy € L(ay + t2/2) \ L(az) C L(ay + t2/2) \ L(a1), then v, (20) € La,(t2/2),
Wy, (20) € Lgy (t2/2 + dy), and |y, (20) — 4, (20)] < 201(t) by formula (3.3.8). Since
X(a2) € Lay(ta/2), x(a1) € Lq, (ta/2 + dy), and the diameters of Lg, (t2/2 + do) and
L,,(ty/2) are both less than I(t), so |x(t1) — x(t2)| < 22I(t). Consequently x is

continuous.

Similarly, the distance between I, and Lq(t) is less than 201(t). Since x(t) € Lq(t)
and the diameters of I, and Lo(t) are both less than I(t), so I, , lies in the ball of

radius 22((t) about x(t). Now we return to the formula

) = [ Sl 0,2) — i S(ola+ 0 0. (389

It

a,t



65
Set z = 0 and let both sides be divided by ¢, we then have

dfta,
1=/ ReS(p(a+ 1), x,0) 2 (x).
I,

Let t — 07, then the support of ji,, tends to x(a), so |pa:|/t — 1/ReS(p(a), x(a),0).
This then implies that

weak™ — m piq;/t = dy(a)/ReS(p(a), x(a), 0).

Thus
S(p(a),€(a), z) — idmS(p(a), x(a),0)
Re S(p(a),€(a),0) '

From the definition of v, , and the fact that x is continuous, we have

0/ (—=In(¥g; (2)/2))le=0 =

at ln(wt<z)) — S(p(t), X(t)fa{its(ji))(t;’ gzl),Séf(t)v X(t)v O) ) (331())

This formula holds for ¢ € [0,7]. However, since we may choose T to be arbitrarily
close to A(L) and define £(t) accordingly, formula (3.3.10) then holds for all ¢ €
[0,A(L)). Now for ¢t € [0, A(L)], define

h(t):/o ReS(p(s), xs,0)ds.

After a time-change through h, formula (3.3.10) becomes

Oy In(v(2)) = S(p(t), x(£),¥e(2)) — ilm S(p(t), x(£), 0). (3.3.11)

Finally, we define 3(t) = fot Im S(p(s), xs,0)ds, let o, = POy, 1(t) = ePOx(t),
and w(t) = p(t) + (0,...,0; B(t),...,B(t); B(t),...,B(t)). Since 5(0) = 0, so py = o
is the identity, ¢(0) = x(0) = €% and w(0) = wy. We may choose a continuous
real valued function ¢ such that ¢« = € and £(0) = &. Since Fj(w(t)) and Q(w(t))
are rotations of F;(p(t)) and Q(p(t)), respectively, by e, so o, maps Q(wp) \ L(t)
conformally onto 2(w(t)) and corresponds Fj(wp) with Fj(w(t)) for each j. Moreover,
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S(w(t), t(t), pi(2)) = S(p(t), x(t),¥(2)). Thus from (3.3.11),

Orlnpy(z) = 0 Inpy(2) + (1) = S(w(t), (1), e(2)),

from which follows that 9,¢:(2) = ¢(2)S(w(t), e¥®, p,(2)).

Suppose for k = 1,2, there are a continuous increasing function hy on [0, A(L))
with hi(0) = 0, a continuous real valued function & and a 7, valued function wy
on [0, hi(A(L)) with &(0) = &, wr(0) = wp, and ¥ that maps Q(wo) \ L(hi(t))
conformally onto Q(wy(t)) and fixes 0 so that ©f is identity and

ey (2) = ¢ (2)S(w(t), €V, o7 (2)). (3.3.12)

Note that gpfl,l maps Q(wp) \ L(t) conformally onto a type D domain and fixes 0.
k

()
Therefore goi,l(t)(z) = Q(t)go}fl(t)(z) for some Q(t) € OD. Let h = h{' o hy. Then
2 1

pi(2) = Q(ha(t))ppy(2). Tt is clear that Q is continuous and Q(0) = 1. We may
write Q(t) = e™® so that 7 is continuous and 7(0) = 0. Then

In @7 (2) = in(ha(t)) +In @p (2)-

Formula (3.3.12) implies 0 In ¢ (2) = S(wg(t), e ©F(2)). This then implies that

T :=mno hy and h are differentiable, and
O In?(z) =i’ (t) + h'(t)9; In go,ll(t)(z), (3.3.13)
from which follows that
S(wa(t), €W, i (2)) = ir'(t) + B (t)S(wi(h(t)), e "), gy (2)). (3.3.14)
Now use p?(z2) = e”(t)gp,ll(t)(z). Let

w3(t) =wal(t) — (0,...,0;7(t),...,7(t); 7(t),...,7(t))
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and &3(t) = &(t) — 7(t), then

S(wa(t), e, 97 (2)) = S(ws(t), e, g} (2))-
This together with (3.3.14) implies that
S(ws(t), €@ 2) = ir'(t) + W (£)S(wi(h(t)), e, 2),

for any z € Q(w; (h(t))). Let z — €1® then the right hand side tends to oo, so does
the left hand side. Thus e (®) = ¢ Recall that S(ws(t), e®), z) — £20+2 fends

Y ()

to 0 as z — €% Thus

. .y ’ i&1(h(?)) - -
lim (ZT (t) + B (t)S(wi(h(t)), e %) et (h(t) —

eiﬁl(h(t)) + Z) 0
2= (h(t)) '

On the other hand, S(w; (h(t)), 11 2) — % tends to 0 as 2 — x'(h(t)). We
must have 7/(t) = 0 and A'(t) = 1. Thus Q(t) = 1, hy = hy, €' = €1 ¢l = ¢? and
Qwi(t)) = Qwsa(t)). Since wy and &, are continuous and wy(0) = wy, &(0) = &, so

w; = wy and & = &.

Finally, we need to prove that w'(t) = V(w(t),£(t)). Suppose «; is the side
of Q(wp) that corresponds to Fj(wp), 1 < j < m. Since ¢, corresponds Fj(wp) with
F;(w(t)), and F;(w(t)) is locally connected (see [12]), ¢ can be extended continuously
to aj, 1 < j < m. Under the map ¢, each end point of some F}(wy) has exactly
one pre-image, and other points of Fj(w) all have two pre-images. Suppose ij (t) =
o; Hexp(p;(t) + z@f(t))) Note that Gy := S(e%®,.) o ¢, maps Q(wy) conformally
onto a type RH domain, and each «; corresponds with a vertical line segment. So
G can be extended continuously to all ;. And we have 0;p.(2) = p1(2)Gi(2) for all
z € Ua;. We may find 1, defined on Ua; such that ¢ = exp o)y, 0phi(z) = Gi(2),

and

Yi(ay) = [pi(w(t)) + 165 (w(B), p(w(t)) + i (w(t))].

Thus p;(w(t)) = Retp(ay), 05 (w(t)) = minIm py(a;), and 6 (w(t)) = max Im py(c;).
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Let 2z (t) € a; be the unique prime ends such that (2 (t)) = p;(w(t)) +

z@f(w(t)) From the definition of G, ¢; and a]i, we see that

Gz (1) = ¢;(w(t), £(1)) + o5 (w(t), £(1))- (3.3.15)

Now fix to € [0, A(L)). We have

dipj(w(t))li=t, = OrRe (25 (to))li=te = Re Gy, (25 (t0)) = g;(w(to),{(t0)).  (3.3.16)

Suppose f; maps a neighborhood Uj of z; (t) in m conformally onto a neigh-
borhood of 0 in H such that fi(z;7) = 0and f;(U;Na;) CR. For 2 € a; near 2; (to),
Y1,(2) behaves like 9y, (25 (o)) + iCj f;(2)* for some C; € R. This implies that for
z e U;Naj,

Im 1y, (2) — Im iy, (25 (to)) > Cfi(2)*.

On the other hand, G, is Lipschitz on «;, so for z € o;,
|Gy (2) = Gio (25 (t0))] < Cj1f5(2)]
for some C} > 0. Since 9;1:(2) = Gy(z), so
Im gy 1(2) — Iy, (2) = elm Gy (2) + ofe).
Thus for all z € By,

Im 1)y, +(2) = Im gy, (25 (t0)) + €Im Gy (25 (o)) + 0(e) + Cj f3(2)* — eCjl fi(2)]

(€5 ,

> Iy, (25 (to)) + elm Gy, (25 (t0)) + o(e) — 4—6']-8 :

This implies that

07 (w(to +€)) = minIm ¢y, (o) > Imapy, (25 (to)) + elm Gy, (25 (t0)) + o(e).
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On the other hand

05 (w(to + €)) < Im e (2 (o)) = Im ey, (25 (t0)) + elm Gy, (25 (f0)) + o(e).

Thus by the definition of 2; (¢9) and formula (3.3.15), we have
i (W (1) |1=to = I Giy (25 (t)) = 05 (w(to), X (t0))-

Similarly, we can prove the above formula when the superscript — is replaced by +.

These together with formula (3.3.16) finish the proof. O

Now suppose L has the law of the HRLC, (22(wp; 1 — 0) for some £ > 0. From
Theorem 3.3.1, there are a continuous increasing function v on [0, A(L)), a real valued
function ¢ and a 7, valued function w on [0,v(A(L)) with £(0) = 0 and w(0) = wy,
and a family of maps ¢; that maps Q(wp) \ L(u(t)) conformally onto Q(w(t)), where

u is the inverse function of v, such that ¢, is an identity and

Opr(2) = pu(2)S(w(t), ¥, i(2)).

And they are all uniquely determined by L. For w € 7,,, let G, be the Green function
in Q(w) with the pole at 0.

Theorem 3.3.2 There is a standard Brownian motion B(t) such that

§(t) = VEB() + (3 - £/2) / (9:0,/0,) (Gt 0 €)(€(5))ds.
And u'(t) = 1/0y(Gup © e’)(&(1))3.

Proof. The idea of the proof is similar as those of all equivalence theorems that we

have encountered. So we omit the proof. O

Now write A(w, &) := (0,0,/9,)(Gy 0 €")(§) for w € T,, and £ € R. Let d(t) :=
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&(t) — /kB(t). Then w and d satisfy the differential equations:

W(t) = V(w(t),d(t) + VEB(t));

(3.3.17)
d(t) = (3—r/2)A(w(t),d(t) + VEB(1)),

with the initial value w(0) = wy and d(0) = 0. Now it is interesting to ask whether we
can start from a standard Brownian motion B and get w and £ by solving the system
(3.3.17). The answer is not known now. The difficulty is that it is not obvious that
V and A are Lipschitz. So we may not be able to apply the existence and uniqueness
theorem for the solution of an ordinary differential equation.

We may also consider other types of canonical domains. Let 7,2 be the set of
(Pos P1s- -y Pms 075,007, ...,0%) € R¥ ! such that for each 1 < j < m, py <

p; <0,0; <6 <67 +2r, and
Fy:={exp(p+i0): 0; <0 <0/}, 1<j<m,
are mutually disjoint. Let
Q(w) 1= Ayl \ U F5(w)-

Then each (m + 2)-connected type A domain is Q(w) for some w € 7,,,.
For w € 72 and x € 9D, let S(w,X,"), ¢j(w,x) and oF(w,x), 1 < j < m, be
defined in exactly the same way as in the case of type D domains. We let ¢o(w, x) be

the real part of S(w, x, Cjpy(w)), and

V(w,X) = (o, @1y Qm; 0q 5 --- ,a;;af, o ,a:;)(w,x).

Then Theorem 3.3.1 still holds with 7,, replaced by Z2. If m = 0, then the equation
becomes the annulus Loewner equation.
Suppose L has the law of HRLC,(Q(wo);1 — Cjpyy)) for some £ > 0. Then

from Theorem 3.3.1 for 7,2, there are a continuous increasing function v on [0, A(L)),
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a real valued function ¢ and a 77! valued function w on [0,v(A(L)) with £(0) = 0
and w(0) = wy, and a family of maps ¢, that maps Q(wp) \ L(u(t)) conformally onto

Q(w(t)), where u is the inverse function of v, such that ¢ is an identity and

Oipu(2) = u(2)S(w(t), €Y, py(2)).

For any w € 7,2, let H,, be the harmonic measure function of Cjpy ) in Q(w). Then
Theorem 3.3.2 holds for type A domains with G replaced by H.

For the type H or S domains, we need differential equations similar to the chordal
and strip Loewner equations. Let 7% be the set of (p1,...,pm; 01 ,...,0;07,...,65)

€ R*" such that for each 1 < j <m, p; >0, 67 <6, and
Fy = 0] +ip;, 0] +ips], 1 <5 <m,

are mutually disjoint. Let

Qw) :=H\ U;"Zle(w).

Then each (m + 1)-connected type H domain is Q(w) for some w € 71, We then
have the following theorem.
For w € TH and ¢ € R, there is a unique R(w, ¢, ) that maps Q(w) conformally

onto a type LH domain such that ¢ is mapped to oo, and
R(w,£,2) — —— — 0 ¢
w,,2)——— —0, as z — &
) Z _ 5

Then we may denote

U;-E(w,g)vLin(W,g) = R(w,f,ef(w)—i—ipj(w));

(3.3.18)
V(w, &) = (q1y- s qm;0p ey 00 00 ) (W, €).
So V is a R*™ valued function on 77 x R.

Theorem 3.3.3 Suppose wy € T2 and L is a Loewner chain in Q(wy) started from

& € R. Then after a time-change of L, there are a real valued continuous function
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¢ and a differentiable TH valued function w defined on [0, A(L)) with £(0) = & and
w(0) = wy, a family of ¢ that maps Qwy) \ L(t) conformally onto Q(w(t)) such that
wo(2) = 2, pi(00) = 00, @i(Fj(wo) = Fj(w(t)), 1 <j<n,0<t<A(L), and

Ahpi(2) = R(w(t), £(1), pu(2)). (3.3.19)

The time-change, w(t), £(t) and ¢, are uniquely determined by L. And W'(t) =
V(w(t),&(1))-

Suppose L has the law of an HRLC;(Q(wp);0 — o0) for some x > 0. From
Theorem 3.3.3 there are a continuous increasing function v on [0, A(L)), a real valued
function ¢ and a 7% valued function w on [0,v(A(L)) with £(0) = 0 and w(0) = wy,
and a family of maps ¢, that maps Q(wp) \ L(u(t)) conformally onto Q(w(t)), where

u is the inverse function of v, such that g is an identity and

8tg0t(z) - R(w(t)v €<t>7 ()Ot<z))'

For w € 7,,, let M, be the minimal function in Q(w) with the pole at oo, normalized

by z +— —1/z.

Theorem 3.3.4 There is a standard Brownian motion B(t) such that
t
£(0) = VRB() + (3= 1/2) [ (0.0,/0,) Moo (€(9)ds
0

And W/ (t) = a*/0, M) (£(t))? for some a > 0.

The case of type S domain is similar as that of type H domains. Let 7% be the
set of (o, P1y-- -, Pm; 07, ..., 0:0F,...,0+) € R¥*! such that for each 1 < j < m,

rYm)

— +
po>p; > 0,0, <67, and

Fj = [0]_ —l—zp],9j+ ‘l"lpj], 1 S] S m,
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are mutually disjoint. Let
Q(w) = Spy \ UL Fj(w)-

Then each (m + 1)-connected type S domain is Q(w) for some w € T°. For w € 79
and £ € R, let R(w, &, ), ¢; and af be defined in exactly the same way as that in the

case of type H domains. Let

V(w,§) = (O,ql,...,qm;af,...,U;L;UI“,...,G;;)(w,f).

Then Theorem 3.3.3 still holds with 7,/ replaced by 7,5. Since the first coordinate
of V' is 0, so po(w(t)) = po(wo). If m = 0 and py = 7, then this becomes the strip
Loewner equation.

Suppose L has the law of the HRLC,(Q(wp); 0 — ipo(wo) + R) for some x > 0.
From Theorem 3.3.3 for 7,7 domains there are a continuous increasing function v
on [0,A(L)), a real valued function ¢ and a 7,5 valued function w on [0,v(A(L))
with w(0) = wp and £(0) = 0, and a family of maps ¢; that maps Q(wg) \ L(u(t))
conformally onto Q(w(t)), where u is the inverse function of v, such that ¢ is an

identity and
Orpr(2) = R(w(t), £(1), ¢e(2)).

For w € 7,,, let H,, be the harmonic measure function of ipy(w) + R in 2(w). Then
Theorem 3.3.4 holds for type S domains with M replaced by H and the arbitrary
a > 0 be replaced by 1.
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Chapter 4

Loop-erased random walk and
HRLC,

4.1 Loop-erased random walk

The graphs that we will consider in this chapter are connected simple nondirected
graphs such that the degree of each vertex is finite. We use V(G) and E(G) to denote
the vertex set and edge set of a graph G. If two vertices v; and v, of G are adjacent,
we write v, ~ vg.

A path X on G is a map from N := NU {0} or N,,, := {n € N:n < m} for some
m € N to V(G) such that X (n) ~ X(n —1). X is called a simple path if the map is
an injection. The edges of X are those {X(n), X(n+ 1)}. We say the length of X is
oo if X is defined on N; or m if X is defined on N,,.

The loop-erasure of a path X of length m is defined as follows. Let o(0) be
the biggest n such that X(n) = X(0). When o(k) is defined, if o(k) = m then
let 7 = o(k) and we stop here; otherwise, let o(k 4 1) be the biggest n such that
X(n) = X(o(k) +1). The loop-erasure LE(X) of X is defined on N, such that
LE(X)(j) = X(0(j)). Tt is clear that LE(X) is a simple path, and starts and ends
at the same points as X. See [3] for details.

A (simple) random walk on a graph G started from vy € V(G) is a random infinite

path X such that X (0) = vy, and

Pr[X(n+1) = v|X(0),..., X(n)] = 1/deg(X(n), if v~ X(n).
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A subset A of V(G) is reachable if for a random walk X on G started from vy € V(G)
will hit A almost surely. This property in fact does not depend on the choice of vy. If
A is reachable, then A could be set as the boundary of GG, and the pair (G, A) is called
a graph with boundary, where the points of A are called boundary vertices, and the
points of V(G) \ A are called interior vertices. A random walk in G started from wvg
stopped on hitting A is called a random walk in (G, A) started from vy. This random
walk only hits one point of A, and has finite length almost surely. The loop-erasure
of this stopped random walk is called the LERW in (G, A) started from vy.

Now suppose D is a multiply connected (plane) domain, 0 € 9D and there is a > 0
such that the line segment (0,a] C D. Then as z — 0D along (0, a], z converges to
a prime end of D. Let 0, denote that prime end. For § > 0, we consider 6Z? be as
a graph whose edges are the pairs of nearest points of 6Z%. Each edge of §Z? could
also be considered as a closed line segment. If 0 < § < a, then § = (6,0) € §Z*> N D.
Let D be the biggest connected subgraph of §Z? containing § whose vertices and
edges are all contained in D. Let dpD? be the set of pairs {p,v} where p € D and
v € V(D?) such that there is an edge e of §Z? satisfying [v,p) C eN D. Let 9y D°
be the set of p € OD that is contained in any edge of OzD?. We let D° be the union
of D’ with the edge set OpD? and the vertex set dyD°. Then D? is called the grid
approximation of D in 6Z2. It is a connected graph, and the degree of each vertex is
at most 4.

The vertices and edges of D? are called interior vertices and edges of D?; and
Oy D° and 05 D° are called the sets of boundary vertices and edges of D°. From the
recurrence property of a random walk on 0Z2, we see that 0y D° is reachable, so it
could be set as a boundary set of D?. And as z — 9D along any edge e € d5D°, 2
converges to a prime end of D. We say that e intersects or hits dD at that prime end.
From the construction of D?, for any v € V(D?) there is a path on D° connecting §
and v whose edges are all contained in D with the only possible exception at the last
edge when v € 0D.

Now suppose py € D N ¢Z? for some ¢ > 0. Then if n € N is big enough, we
have py € V(D’), where &, = ¢/n. Let X be an LERW on (D% 9y D’ U {po})
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started from ¢,, conditioned to hit pg, i.e., conditioned on the event that X stopes
at py, which should have a positive probability because there is a path on D’ from
8, to po without passing 9y D% . It is also the loop-erasure of the random walk on
(D%, 0y D% U{py}) started from 4, conditioned to hit py. We construct a curve from
X which is the union of all edges of X and the line segment [0,0,]. This curve is
a simple path from 0, to pg. We expect that as n — oo, this curve converges to
HRLCy(D; 0, — pg) trace in a suitable sense.

Suppose [ is a side arc of D. Then if § > 0 is small enough, there exist edges
of 9D’ that intersect 9D at I. Let X be an LERW on (D°, 8y D%) started from &
conditioned to hit D at I. We construct a curve from X which is the union of all
edges of X and the line segment [0,6]. This curve is a simple path from 0 to a prime
end on I. We expect that as ¢ — 07, this curve converges to HRLCy(D;0, — 1)
trace in a suitable sense.

Suppose p; € 0D N ¢Z? for some ¢ > 0, and AD is flat near p;, which means that
there is some € > 0 such that (p; +eD) N D = p; + (eD N uH), where u = +1 or
+i. Then p; represents a prime end of D. And if n € N is big enough, we have
p1 € V(D%), where 4, = ¢/n. Let X be an LERW on (D%, 9y D’") started from 4,
conditioned to hit p;. We construct a curve from X which is the union of all edges of
X and the line segment [0, §,,]. This curve is a simple path from 0, to p;. We expect
that as n — oo, this curve converges to HRLCy(D; 0, — p;) trace in a suitable sense.

Now we suppose 0 € D instead of 0 € D and let D? be the biggest connected sub-
graph of §Z?2 containing 0 whose vertices and edges are all contained in D. Construct
D® from DS in the same way as before. Suppose [ is a side arc of D. Let X be an
LERW on (D, 8y D?) started from 0 conditioned to hit D at I. We construct a curve
from X which is the union of all edges of X. We expect that as e — 0T, this curve
converges to the interior HRLCy(D;0 — I) trace in a suitable sense. Similarly, we
may construct LERW that is supposed to converge to the interior HRLCy(D;0 — p)

trace for an interior point p or a prime end p.
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4.2 Observables

4.2.1 Observables for LERW

Suppose f is defined on V(G), the vertex set of G. Then Asf is defined by

wn~v

Suppose S1, So, S are subsets of V(G), let ng’& denote the path X of finite length m
for some m € N such that X (0) € S, X(m) € Sy, and X(n) € Ssfor 1 <n <m—1.
Suppose X is a path of finite length m. The reversal of X is a path R(X) defined on

N,, such that R(X)(n) = X(m —n). Let Fy, P, and P, be defined by

m—1 1 m—1 1 m 1
B0 = gy 0 = sy 09 = U gy
Then Py(X) = Py(R(X)) and Py(X) = Py(R(X)).

Lemma 4.2.1 Suppose A and B are disjoint subsets of V', and AUB 1is reachable. Let
f(v) be the probability that the random walk on (G, AUB) started from v hits A. Then
f is the unique bounded function on V' that satisfies f =1 on A, f =0 on B, and
Agf=0o0nC:=V(G)\ (AUB). Moreover ) . Acf(v) = =3 ,calaf(v) > 0.

Proof. The proof is elementary. For the last statement, note that ) . Agf(v) =
>~ Py(X) where X runs over the non-empty set I'G 4; and — > - Agf(v) = 3 Po(X)
where X runs over Fi - The values of the two summations are equal because the
reverse map R is a one-to-one correspondence between I'g 4 and T 5, and Py(X) =

Py(R(X)). O

Lemma 4.2.2 Let A, B, C and f be as in Lemma 4.2.1. Fiz x € C. Let h(v) be
equal to the probability that a random walk on (G, AU B) started from v hits x. Then

S Ach(v) = f(2)(~Ach(x).

vEA
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Proof. From the proof of Lemma 4.2.1, we have

and

1= Z P (X) = Z Py(Y) Z Py(Z) = Z Py(Y)(=Agh(x)).

C C
7 AUB YEFIYZ ZEFS,X{S}B YEFI,I

So we proved this lemma. O

Let L(A,B) =), .5 Acf(v) for the f in Lemma 4.2.1. Then L(A, B) = L(B, A)
is non-decreasing in both A and B. If A or B is finite, then L(A, B) < co. Suppose
L(A,B) < o0. Ifx € C =V (G)\ A\ B, then L(AU{z}, B) < L(A, B)+ L(z, B) < .
Thus if A"\ A and B’ \ B are both finite, then L(A’, B") < cc.

Lemma 4.2.3 Let A, B, C and f be as in Lemma 4.2.1. Suppose L(A, B) < co. Fix
x € C such that f(x) > 0. Then there is a unique bounded function g on V such that
g=lonA;g=00nB; Agg=0onC\{z}; and ) ., Agg(v) = 0. Moreover, such
g is non-negative and satisfies 3¢ p iy Acg(v) =0 and Agg(x) = —L(A, B)/f(z).

Proof. Suppose g satisfies the first group of properties. Let I = g — f. Then [ is
bounded, / =0 on AU B and Agl =0 on C \ {z}. Thus I(v) = I(z)h(v), where h
is as in Lemma 4.2.2. Then by Lemma 4.2.1 and 4.2.2,

0= Aag(v) = 3 Aall + f)(v) = ~1(2) f(2)Ach(x) — LA, B).

vEA vEA

Thus I(z) = L(A, B)/(—f(z)Agh(x)) is uniquely determined. Therefore g is unique.
On the other hand, if we define g = f + hL(A, B)/(—f(x)Agh(z)), then from
the last paragraph, we see that ¢ satisfies the first group of properties. Since f and
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h are non-negative, and —Agh(z) = L(z, AU B) > 0 by Lemma 4.2.1, so ¢ is also
non-negative. By Lemma 4.2.1 and 4.2.2,

Y. Acg(v) = LA, B) + Acf(z) + D Ach(v)L(A, B)/(~f(x)Ach(z))

veBU{z} vEBU{z}

= L(A,B) = Y Ach(v)L(A, B)/(— f(z)Ach(z)) = L(A, B) — L(A, B) = 0.

veEA

Finally, Ag(x) = Aah(z) - L(A, B)/(—f(2)Agh(x)) = —L(A, B)/f(x). O

Let A, B and f be as in Lemma 4.2.1. Suppose vy € V(G) is such that f(vg) > 0.
Then a random walk on (G, AU B) started from v, hits A with a positive probability,
and so does the LERW on (G, AUB) started from vy. Let X be a LERW on (G, AUB)
started from vy conditioned to hit A. Suppose X (n) is defined and does not lic on A.
Then from [3] we know that

fn(v)
ZwNX(n) fa(w)’

Pr[X(n+1) =v/X(0),...,X(n)] = if v~ X(n);
= 0if v o X(n), where f, is the f in Lemma 4.2.1 with B replaced by B, =
BU{X(j),0 <j<n}.

Now we assume that L(A,B) < oco. Let f, and B, be as above. Let C, :=
V(G)\ A\ B,. Let g, be the g in Lemma 4.2.3 with x = X (n) and B replaced by B,,_1.
One should note that L(A, B,) < oo because B, \ B is finite, and f,_1(X(n)) > 0
because X (n + -) is a path from X (n) to A without passing through B,,_;.

Theorem 4.2.1 Let A be the union of A with all vertices of G that are adjacent
to A. Fiz any wy € V(G) \ B\ {w}. Conditioned on the event that X (j) = v;,
0<j<k vi&A, and fr(wy) > 0, the expectation of gry1(wo) is equal to gi(wp),
which is determined by v;, 0 < j < k. Thus gi(wo) is a discrete martingale up to the

first time X hits A, or By, disconnects wg from A.

Proof. Let S be the set of v such that v ~ v and fi(v) > 0. Then the conditional
probability that X(k + 1) = u is fy(u)/ > ,cq fu(v) for u € S. For v € S, let g},
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be the g in Lemma 4.2.3 with = v and B replaced by Bj. Then with probability
fe(w)/ D pes fu(v), ges1 = gity1- Thus the conditional expectation of g1 (wp) is equal

to gr(wp), where

Gr(v) =D fulu)gisa (0)/ Y fu(w):

u€esS ueS
Then g, =0on By, = 1on A; Aggr =00n Cp\ S, and >, Aggr(v) = 0. Moreover,
~ Je(0)Aggiia (v) L(By, A)

Balelt) = T ) T s Sl €S

by Lemma 4.2.3. Now define g, on V(G) such that gp(wi) = L(Bk, A)/ > ,cs fu(uw);
gr(v) equals to gx(wy) times the probability that a simple random walk on G started
from v hits wy before By_; for those v € C such that fi(v) = 0; and gi(v) = gr(v)
for all other v € V(G). Then Aggr, = 0 on Cy, g, = 0 on By \ {wy}, and gy = 1 on A.
Since wy, € A, and for v € Cy, such that f,(v) = 0 we have v & A, so > 4 Aggi(v) =
Y vea Agr(v) = 0. Now g, satisfies all properties of gi. The uniqueness of g; implies

that gy = gi. Since fi(wo) > 0, we have gi(wo) = g(wo) = gr(wp). O

Remark. The functions g; are called observables for this LERW. We may have
different kinds of observables for an LERW. Let A (v) be the probability that a random
walk on (G, AU By) started from v hits X (k). Let g, (v) = cxhi(v), where ¢, > 0 is
chosen so that ) _, Agg,(v) = 1. Then g;, =0 on AU By, \ {X(k)} and Agg), =0
on C. The definition of g; does not require that L(A, B) < co. And Theorem 4.2.1

still holds if g is replaced by g;.

4.2.2 Observables for HRLC,

Suppose D is a finite Riemann surface, po € D and wy is a prime end of D. Let L
has the law of HRLCy(D; wg — po). For each ¢t € [0, A(L)), let w(t) be the prime end
(of D\ L(t)) determined by L at time ¢t. Let M; be the minimal function in D\ L(¢)

with the pole at w(t), normalized by M;(py) = 1.

Theorem 4.2.2 For any fized z € D, (My(2),0 < t < T,) is a local martingale,
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where T, is the fist t such that z € L(t) ort = A(L).

Proof. Suppose «a is the side of D that contains wy. Let €2 be a neighborhood of dD
in D\ {0}, ¥ a neighborhood of « in D \ {po}, and W map 2 conformally onto X
such that W(9D) = a and W(1) = wy. Let Ly, be the part of L that is contained in
Y. Let L' be a time change of Ly, such that the capacity of K; := W~1(L/(t)) in D
w.r.t. 0is t. Let w'(t) be the prime end determined by L’ at time ¢t. Let M, be the
minimal function in D\ L'(t) with the pole at w’(t) normalized by M/(py) = 1. Since
the property of local martingale does not change after a time-change. It suffices to
show that M/(z) is a local martingale for any z € D.

Now (K}) is a family of standard radial LE hulls driven by some function £ with
€(0) = 0. Let ¢; be the corresponding LE maps. From the definition of HRLC, there

is a standard Brownian motion B(t) such that
AE(t) = V2AB() + 2(0:0,/0,)(Gro W o o 0 ) ((1) ),

where G is the Green function in D\ L'(t) with the pole at py.

Note that W o ¢, ' maps D to the side a; of D\ L/(t) that contains w'(t), and
w'(t) = Wogp; oel(£(t)). Let S(t,w;-) be the minimal function in D\ L'(¢) with the
pole at W o ¢, ! o e'(w), normalized by S(t,w;py) = 1. Then M/(z) = S(t,£(t); 2). Tt
is standard to check that S is C*° continuous. Thus M](z) is a semi-martingale.
We may write dM/(z) = I} (2)dB(t) + I?(z)dt. Since all M/ are harmonic and vanish
on the sides of D other than «, so I and I? should also have these properties.

Define £(t,w; 2) = S(t,ws W o ot o €i(2)). Then MI(W(e)) = £(t, £(t); Gul=)),
where @; is a conformal map that satisfies e’ o @, = ; o ¢’. From radial Loewner
equation, we have that ¢, satisfies 0,0:(z) = cot((p:(2)—£&(t))/2). From Ito’s formula,

we have
dM](W (e?)) = Oy fdt + O f - 2(0:0,/0,)(Gr o W o ;' 0 ) (£(t))dt + 02 fdt

+0, fRe cot( )dt + 0, fIm cot(

@t(z)gf(t) )dt + O, f - V2dB(t),

pi(2) — €(1)
2
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where all derivatives of f are valued at (¢,£(t); $:(2)) and 0, and 0, are derivatives

with respect to the last parameter z € C. Define

Dif(2) = 0uf + 05 f + 0uf - 2(02/0.)(Gro W ot o e')(&(1))

z—¢&(t) z—¢&()
2 2

+0, fRe cot( )dt + 0, fIm cot(

),

where all derivatives of f are valued at (¢,£(t); z). Then
dM{(W (€)= Do f(§u(2))dt + 0, f (1, £(2); 2i(2)) - V2dB(¢). (4.2.1)

Note that f(¢,w;-) has simple poles at w + 2k, vanishes otherwhere on R, and
has period 27. So we may write f(t,w; z) = p(t,w; z)+r(t, w; z) such that p(t,w; z) =
c(t,w)Im cot((z — w)/2) for some c(t,w) € R and r(t,w;-) vanishes everywhere on
R. It is clear that D, f vanishes on R\ {{(t) + 2kn : k € Z}. Now Dyf = Dyp + Dyr.

D,r contributes at most a simple pole at £(¢), which comes from the terms

0.1 (t,£(t); z)Re cot(

)dt + Oyr(t,&(t); 2)Im cot(

z—§(t)
2 )

z—§(t)
2

D;p contributes poles of order at most 3 at £(¢). The pole of order 3 comes from the

terms

z—¢&() —&(1)
2 2

O2p(t,E(1); 2) + Dup(t, (1) 2)Re cot( )t + Byp(t, £(¢); 2)Tm cot ().

Plug in p(t, w; z) = ¢(t,w)Im cot((z —w)/2). We find that the same pole comes from

zZ—w z—&(t)

9 Nw=e@) + 0 cot( z — ()

c(t, €(t))Im (02 cot(

) cot(

),

which is in fact constant 0. Thus Dyp contributes no pole of order 3 at £(¢). Now the

pole of order 2 comes from the terms

Oup(t,€(1); 2) + 0up(t, §(£); 2)2(02/0:)(Ge o W o o, 0 €)(E(1)),
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which has the same coefficient in 1/(z — w)? as

Z—w

20y,¢(t, &(t)) 0y, cot(

Z—Ww

+e(t, §(1)) O cot( Nw=e02(02/0:)(Gro W o gt 0 €')(£(1))-

We now want to prove that the pole of order 2 vanishes, we need that
OpInc(t,E(t) = =0, In(9,(Gro W o ;! o)) (£(2)).

It suffices to show that c(t,w)d,(G; o W o ¢; ! o €')(w) is constant in w.

Choose an analytic Jordan curve 3y in ¥ such that the domain bounded by a and
[y is contained in Y. Choose J that maps a neighborhood of 0 in C conformally onto
some neighborhood of py such that J(0) = py. For € > 0 small enough, 5. = J(cdD)
is well defined. Let V be the subdomain of D bounded by 3y, 8. and the sides of D
other than a. Apply Green’s formula to the region V. We compute

. S(t,w; 2)0nGi(2)ds(z) = . G(2)0a5(t, w; 2)ds(2),

n denoting the outward unit normal vector on V. Since G; and S(¢,w;-) vanish
on sides of D other than «, so the integrations above can be restricted to 5y U (..
Since on f., Gi(z) = O(—1ne¢), OnStw(z) = O(1), and the length of 3. is O(e), so
as ¢ — 0%, we have fﬂe Gi(2)OnStw(2)ds(z) — 0. On the other hand, we find that
5. 10nG1(2)|ds(z) is uniformly bounded in ¢, and [, OnGy(2)ds(2) = 1. Since the
value of S;,, at (. tends to Si,(a) =1, so fﬁa St (2)0nGi(2)ds(z) — 1 as e — 07.
Thus
1= ; Gi(2)OnStw(2)ds(z) — \ St (2)0nGi(2)ds(2)
0 0

_ / Gy oW oo (2)aS(t w; ) o W o g (2)ds(2)
wroW —1(Bo)

St W o ()nGr o W o (2is(2)
wtoW=1(6o)
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For simplicity of notations, we write h; = Gy o W o o7t hy = hy o€, and f(t, w; ) =
S(t,w;-) o W o ;' Then we see that f = f o €.
For € > 0 small, let 7. be the image of {w+¢ee? : 0 <O < w}Uw+e,w+ 21 — €]
under the map ¢’. Let U denote the domain bounded by ¢; 0 W~1(3) and 7.. Apply
Green’s formula to U. Note that the outer unit normal vectors for V' and for U at

each point of ¢; o W™1(3,) are opposite to each other. Thus
1= / Tu(2)0nf (t,w; 2) — f(t,w;2)Onhy(2)ds(2)
e

_ / Tu(2)BaF (t, w3 2) — J(t, w5 2)Ouhe(2)ds(2)
el ({w+ee?:0<0<r})

_ / ha(2)0n f (1 w3 2) — F(t, w3 2)0ha(2)ds(2),
{w+eei?:0<0<7}

where n is the unit normal vector pointed towards w. Remember that f(t,w;z) =
p(t,w; z) + r(t,w; z), p(t,w; z) = c(t,w)Im cot((z —w)/2), and r(t,w;-) has no pole
and vanishes every where on R. Let p(t, w; z) = ¢(t, w)Im (2/(z —w)), and 7(t, w; z) =

f(t,w;z) — p(t,w; z). Then 7 has the similar property as r. And we have

1= / he(2)Onp(t, w; 2) — p(t, w; 2)Onht(2)ds(z).
{w+eei?:0<0<7}

There is an analytic function F; in w + €D such that h; = Im F; and Fy(w) = 0.
Then F/(w) = 0yhi(w). We may write Fy(z) = 0,h(w)(z — w) + Fy(z). On the
circle w + 0D, |Fi(2)| = O(£2), |0uFy(2)] < |F/(2)] = O(e), plt,w;z) = O(7),
Oap(t,w;2) = O(e7?), and [ . _,»ds = O(e). Thus

/ Im F,(2)0ap(t, w; z) — p(t, w; 2)0uIm Fy(2)ds(z) = O(e),
{w+eet?:0<0<r}
from which follows that

1 =20,hi(w)c(t,w) lim Im (z — w)0yIm
yhe(w)e(t, w) lim sei0cnen) ( po—

ds(z)
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—20,hy(w)e(t, w) lim Im Onlm (z — w)ds(z
et B [ (= w)s()
Now
1
/ Im (z — w)0uIm ds(z) = —m/2;
{w+eet?:0<0<r} Z—w
and
1
/ Im Onlm (2 —w)ds(z) = —7/2.
{w+eei?:0<0<r} - w
Thus

c(t,w)9,(Gro W o, oe')(w) = c(t, w)d,hi(w) = —1/(27)

is constant in w.

So we proved that the pole of D;f at £(t) of order 2 vanishes. From formula
(4.2.1), I2(W(e#)) = Dy f(@e(2)). Thus I? o W o ;' o ¢’ = D,f. This means that
I2oW o ;! oe vanishes on R\ {£(t) + 2k7 : k € Z}, and has at most simples at
{&(t) + 2k : k € Z}. So I? is equal to some ¢; € R times M. Since M/(py) = 1,
we have IZ(po) = 0, so ¢; = 0 and I? = 0. Thus dM/(z) = I}dB(t), which means
that M](z) is a local martingale. After a time-change, we have proved that M;(z) is
a local martingale up to the time that L(t) is not contained in . Since we can find
a sequence of ¥, such that A(L) = VT, where T,, is the first time L leaves %, so
M;(z) is a local martingale for ¢ € [0, A(L)). O

The functions M; are called observables for L. Now suppose L has the law of
HRLCy(D;wy — wy), where w; is a prime end of D other than wy. Let (Q maps a
neighborhood U of w; conformally onto H such that Q(U N éD) C R. Let M, be the
minimal function in D \ L(¢) with the pole at w(t), the prime end determined by L
at time ¢, normalized by 9,M; o @ '(Q(p1)) = 1. Then Theorem 4.2.2 also holds.

Suppose I is an side arc of D such that wy € I. Let L have the law of HRLCsy(D; wy
— I). Let M; be the minimal function in D \ L(t) with the pole at w(t), the prime
end determined by L at time ¢, normalized by [, 9aM;(w)ds(w) = 1, where n is the
inward unit normal vector. Then Theorem 4.2.2 still holds. Suppose [ is a whole side

of D. Let h; be the harmonic measure function of I in D\ L(t). There is ¢; > 0 such
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that M := hy+ ¢, M, satisfies [, 9,M/ (w)ds(w) = 0. Then Theorem 4.2.2 holds with
M, replaced by M}.
If L has the law of an interior HRLC, aiming at an interior point, a prime end, or a
side arc, then we could define functions M, or M| in the same way as we define them for
HRLC, started from a prime end. Then for any fixed z € D, (M;(2),—c0 <t < T,)

is a local martingale, and the same is true for M;.

4.2.3 Resemblance

We now consider the LERWSs on D? defined in Section 4.1. Suppose X is an LERW on
(D% 9y Do U{po}) started from 6, conditioned to hit py € DNcZ?, where 6, = ¢/m.
Let A= {py}, B=0yD’", B, =BU{X(j):0<j<n}and C, = V(D’)ND\B,.
Let g, be as in Theorem 4.2.1. Then g, is discrete harmonic on C,, vanishes on
B,_1, and g,(po) = 1. So when m is big, g, is closed to the minimal function M in
D\ Up_[X(j — 1), X(j)] with the pole at X (n), normalized by M(py) = 1. And M
is similar to the observable M; for HRLCy(D; 04 — py).

Suppose X is an LERW on (D% 9, D) started from §,, conditioned to hit
p1 € 0D N cZ?, where 8D is flat near p;, and 6,, = ¢/m. Let A = {p;}, B =
Oy D\ A, and B, and C,, be defined similarly as above. Let ¢/, be as in the remark
after Theorem 4.2.1. Then g, is discrete harmonic on C,,, vanishes on A U B,,_1,
and Ag,(p1) = 1. So when m is big, d,,9, is closed to the minimal function M in
D\ Uj_,[X(j — 1), X(j)] with the pole at X (n), normalized by 9,M(p1) = 1. And
M is similar to the observable M; for HRLCy(D; 04 — p1).

Suppose X is an LERW on (D°, 9y D?) started from &, conditioned to hit a side
arc I of D. Let A be the set of vertices of 9y D? that lie on I, B = 0y D? \ 4, and B,
and C,, be defined similarly as above. Let g/, be as in the remark after Theorem 4.2.1.
Then g, is discrete harmonic on C,,, vanishes on AU B,,_;, and ) _, Ag(v) = 1. So
when § is small, g, is closed to the minimal function M in D\Uj_,[X (j—1), X (j)] with
the pole at X (n), normalized by [, 9,Mds = 1. And M is similar to the observable
M; for HRLCy(D; 0, — I). If I is a whole side of D, we could let g,, be as in Theorem
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4.2.1. Then when ¢ is small, g, is closed to M’, which is linear combination of M and
the harmonic measure function of I in D\ U7_,[X(j — 1), X(j)] such that M’ =1 on
I'and [, 0,Mds = 0. This M’ is similar to the observable M for HRLC,(D; 04 — I).
Similarly, in the case that 0 € D, the observables for an LERW on D? started from
0 conditioned to hit certain vertex set resemble the observables for the corresponding

interior HRLCy in D started from O.

4.3 Convergence of LERW to HRLC,

It is proved in [7] that a LERW on a discrete approximation of a simply connected
domain D started from 0 € D stopped on hitting the boundary converges to radial
SLEs(D;x — 0) trace, where x is a random point on dD that has harmonic measure
in D valued at 0. In that proof, first the observables for LERW are given; then they
are proved to converge to some continuous harmonic functions; these facts are then
used to show that the driving function of the LERW converges to a Brownian motion
with speed 2; finally some nice behaviors of LERW paths are used to show that the
LERW curve converges to the radial SLE, trace uniformly in probability.

In that paper, some subgraph of Z? is used to approximate the simply connected
domain, and the inner radius with respect to the target point (which is 0 there) is used
to describe the extent that the graph approximates the domain. After a rescaling,
the inner radius means the distance from 0 to the boundary of the domain divided by
the length of the mesh. However, it seems not easy to find counterparts of the inner
radius for other types of HRLCs.

In this section we will show that when a doubly connected domain D has the
property as in Section 4.1 with 0 € D, I, is the side that contains the prime end 0,
and I, is the other side of D, the LERW on (D? 9y D) started from & conditioned
to hit I converges to the annulus SLE2(D;0, — I) trace as § — 0. The content is
chosen from the paper [20]. We will follow the order of the proof in [7]. To prove the
convergence of observables for LERW to a continuous harmonic function, we use the

method of domain convergence. Although it is still about a special case, the proof
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seems more likely to be extended to general cases.

For § > 0 small enough, let X° be the LERW on (D° dyD?%) started from &
conditioned to hit I;. Let v be the length of X°, i.e., X°(v) € I,. Let X°(—1) = 0.
We may extend X° to be a continuous function on [—1,v] such that X? is linear on
[n—1,n],0 <n <wv. For —1 < s < v, let T(s) be the capacity of X°(—1, s] in D w.r.t.
I, then T is a continuous increasing function and maps [—1,v) onto [0, p), where p
is the modulus of D. Let S be the inverse function of T. Let 3°(t) = X°(S(t)). Let
3% be an annulus SLEy(D; 0, — I5) trace.

Theorem 4.3.1 For every q € (0,p) and € > 0, there is a 69 > 0 depending on q
and & such that for § € (0,08) there is a coupling of the processes (3° and 3° such that

Prsup{|3°(t) = 8°(t)] : t € [g,p)} > €] <e.

Moreover, if the impression of the prime end 0, is a single point, then the theorem

holds with ¢ = 0.

Here a coupling of two random processes A and B is a probability space with
two random processes A’ and B’, where A’ and B’ have the same law as A and B,
respectively. In the above statement (as is customary) we don’t distinguish between
A and A’ and between B and B’. The impression (see [12]) of a prime end is the

intersection of the closures in C of all neighborhoods of that prime end.

4.3.1 Convergence of the driving functions

For a < b, let A, be the annulus bounded by C, and C;. For any 0 < ¢ < p, there
is a smallest [(p,q) € (0,p) such that if K is a hull in A, on Cy with the capacity
(w.r.t. Cp) less than ¢, then K does not intersect Cy(,q). Using the fact that for any

0 < s <r, ReS, attains its unique maximum and minimum on A,, at e™* and —e™?,

respectively, it is not hard to derive the following Lemma.

Lemma 4.3.1 Fiz 0 < g < p, letr € (I(p,q),p). There are v € (0,1/2) and M > 0

depending on p, q and r, which satisfy the following properties. Suppose p;, 0 <t < p,
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are some modulus p standard annulus LE maps driven by & on [0,p). Then we have

10.S,_+(p:(2)/e®®)| < M, for allt € ]0,q] and z € A,.,. Moreover,

Ayp—t)p—t D @t(Ar,p) D Au-yp-tp-t; VIE [0, q].

We may lift the ¢; to the covering space, and find a conformal map ¢; such that

et o P, = @, 0 €', @y is an identity map, and @, is continuous in ¢. Then we have

0ipr(2) = Spi(pr(2) = £(1)),

where S, (z) = 1S, (). If we let Agp = (¢") 7 (Auy), then with the assumption of

the above lemma, we have

Ayp—t)p—t D Pt(Arp) D A(l—b)(p—t)vp—tv vt € [0,q].

It is clear that S, has period 27, is meromorphic in C with poles {2k7r + i2mr :
k,m € Z}, ImS, = 0 on R\ {poles}, and ImS, = —1 on C, := ri + R. It is also
easy to check that S, is an odd function, and the principal part of S, at 0 is 2 /z. So
S,(z) = 2/z+az 4+ O(2%) near 0, for some a € R. It is possible to explicit this kernel

using classical functions in [2]:

S, (2) = 20(2) — 2¢(m)= = - 2

z ar

o’ )

where ( is the Weierstrass zeta function with basic periods (27, i2r), and 6 = 6(v, 7) is
Jacobi’s theta function. The following lemma is a direct consequence of the heat-type
differential equation satisfied by 0: (9? — 4iwd,)0 = 0. The symbols ' and ” in the

lemma denote the first and second derivatives w.r.t. z.

Lemma 4.3.2 Grgr — §T§/ — S/ =0.

T T
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Let K} = 3°(0,t], for 0 <t < p. Suppose W maps D conformally onto A, so
that W(04) = 1. Then ¢ — W(K?) is a Loewner chain in A, on Cy such that
Ca,c,(W(K}?)) = t. By Proposition 2.4.1, (W(K?),0 < ¢ < p) is a family of modulus
p standard annulus LE hulls driven by some real continuous function & on [0, p) with
€(0) = 0. Let ¢ be the corresponding LE maps. We want to prove that as § — 0,

the law of £° converges to the law of v/2B, where B(t) is a standard Brownian motion.

Define
Eil = a‘/l)(S N Ila FuS == aVD(S N 127 Nil = V(DJ) N D’

and

E} = E° U{X%0),...,X%k)}, N)=N° \{X%0),...,X°(k)},

for 0 < k < v. Let f;, be the f in Lemma 4.2.1 with G = D°, A = F° and B = EJ;
let gi be the g in Lemma 4.2.3 with G = D°, A= F° B =FE} |, and x = X°(k),
for 0 < k < v. Note that one of I; and I, must be bounded, so one of F° and E,i1
must be finite, which implies L(E? |, F°) < oo. And since X°(k + ) is a path on D?
from X°(k) to F without passing through E{ |, we have f,_1(X°(k)) > 0, so g is
well defined. From Theorem 4.2.1, (gx) is a {Fx} martingale, where F;, denotes the
o-algebra generated by X°(0), X°(1), ..., X°(k Av).

Now fix ¢ € (0,p). Let ¢ = (qo + p)/2. Choose p; € (I(p,q1),p), and let
p2 = (p1 +p)/2. Denote a; = W(C,,), j = 1,2. Then a; and ay are disjoint
Jordan curves in D such that «; disconnects ag_; from I;, j = 1,2. For j = 1,2, let
U; be the subdomain of D bounded by «; and I;, and V) = V(D°) N U;. Let L° be
the set of simple lattice paths w on D? of finite length such that w(0) € I, w(n) € V{
for all n > 0, and there is a path on D° from the last vertex P(w) of w to I, without

passing through I; or other vertices of w. For w € L° of length k, denote

B =B Uu{w(0),...,w(k)}, and N2 = N° \ {w(0),...,w(k)}.
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Let g, be the g in Lemma 4.2.3 with G = D°, A = F°, B = E \ {P(w)}, and
x = P(w) = w(k). Now define D, = D\ U¥_ [w(j — 1), w(j)]. Let u, be the non-
negative harmonic function in D,, whose continuation is constant 1 on I, constant 0
on Uh_g[w(j — 1), w(j)] U I except at P(w), and 1, Ontis(2)ds(z) = 0. Tt is intuitive
to guess that g, should be close to u,. In fact, we have the following proposition.

The proof is postponed to the next section.

Proposition 4.3.1 Given any € > 0, there is 6(¢) > 0 such that if 0 < § < 6(¢) and

w € L2, then |gw(v) — uy,(v)| <&, for any v € V3.

Let noo = [S(qo)], where [x] is the smallest integer that is not less than x. Then
Neo 18 & {Fi} stopping time. For 0 < k < ny — 1, T(k) < qo < q1, so from the
choice of p;, we see that W (X°(k)) lies in the domain bounded by C,, and Cy, so
X°(k) lies in the domain bounded by I; and «a;. Note that X°(—1) =0 € I;. So for
—1 < k < ng — 1, if 6 is small, then [X°(k), X°(k + 1)] can be disconnected from
I, by an annulus centered at X°(k) with inner radius ¢ and outer radius dist(ay, I).
So as § — 0, the conjugate extremal distance between I and [X°(k), X°(k + 1)] in
D\ Up<j<k[X°(j — 1), X°(j)] tends to 0, uniformly in —1 < k < n,, — 1. It follows
that T'(k + 1) — T(k) and max{|€°(t) — &(T(k))| : T(k) <t < T(k+ 1)} tend to 0
as 0 — 0, uniformly in —1 < k < ny — 1. Since T'(ne — 1) < o, we may choose
§ small enough such that T'(n.) < q;. Since p; € (I(p,q1),p), and a; = W=(C,,),
so X°[—1,k]Na; =0 for 0 < k < ny. So for 0 < k < ny, wy, := Xo(- — 1)

|Nk+1 18

contained in L°, and g,, = gi. Since gp‘sT(k) o W maps (D, , P(wy)) conformally onto

(Ap—T(k) , eif‘;(T(k))) , SO

i S5
Uiy (2) = Sp—T(k)(¢6T(k) o W(z)/e® TEN)Y,

Now fix d > 0. Define a non-decreasing sequence (n;);>¢ inductively. Let no = 0.
Let n;.q be the first integer n > n; such that T'(n) — T'(n;) > d?, or [&(T(n)) —
&(T(n;))| > d, or n = n,, whichever comes first. Then n;’s are stopping times w.r.t.

{F}, and they are bounded above by n. If we let § be smaller than some constant
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depending on d, then T'(n;1) — T'(n;) < 2d? and [£°(T'(s)) — £(T(n;))| < 2d for all
s € [nj,nj41] and j > 0. Let Fj = F,,. Then for any v € V3, (gn,(v),0 < j < 00) is
an {F7} martingale. By Proposition 4.3.1 for any z € W(V3’) and 0 < j <k,

E [Re S, 10y (V) (2)/€ ") F]] = Re Sy (9 (2)/€57 ) 4 05(1).

As § tends to 0, the set W (V) tends to be dense in A,, ,. So for any z € A, ,,, there is
some zg € W (VZ) such that |z — 2| = 0s(1). Note that T'(n;) < T'(nx) < T(nw) < q1
for 0 < 7 < k. Using the boundedness of the derivative in Lemma 4.3.1 with ¢ = ¢;

and 7 = po, we then have that for all z € A, ,,
i€ (T(n i€ (T (n;
E [Re Sp1(n) (¢, (2) /€ THMNNFI] = Re Sy, (9 (2) /5 T0) 4 05(1).

Then we have for all z € Am,p,

E [Im S, 70 (P (2) = € (T )| F] = TS0, (B, (2) = € (T(ny))) + 05(1).
(4.3.1)
In Lemma 4.3.1, let ¢ = ¢; and r = p,, then we have some ¢ € (0,1/2) such that

Aty ot O B (Apsp) D Aa_iyp—ty oty (4.3.2)

for 0 <t < gq.

Proposition 4.3.2 There are an absolute constant C' > 0 and a constant 6(d) > 0

such that if § < 6(d), then for all j >0,
[E[(T(nj1)) — (T (ny))|Fj]| < Cd®, and

[E[(€(T(n541)) = €(T(13)))*/2 = (T(ny41) = T(ny) )| F| < O,
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Proof. Fix some j > 0. Let a = T'(n;) and b = T'(n;41). Then 0 <a <b < ¢. And
if § is less than some d;(d), we have |b — a| < 2d? and [£%(c) — £%(a)| < 2d, for any

¢ € [a,b]. Now suppose z € A,, ,, and consider

F =8, 4(F(2) — € (b) = Sp-a(@h(2) — £(0)).
Then F = F, + F,, where

Fi =8, 4(@)(2) — £(b) = S, 0(@(2) — &(a),

Fy =8, 4(3%(2) — €2(a)) — Sp-a(F(2) — £(a)).

Then for some ¢; € [a,b], F} = F3 + F; + F5, where

Fy =S, y(@h(2) — € @)[(@(2) - F(=) - (€() - £ ()],

And for some ¢y € [a, b], we have

Fy = —0,8,-(23(2) = (@) (b — a) + 9IS, o,(Po(2) — E(a)) (b — a)?/2.  (4.3.3)

Now for some ¢35 € [a, b], we have

Po(2) = Bal(z) = 0,30, (2)(b — @) = Spca (B0, (2) = €'(e3)) (b — a). (4.3.4)

For some ¢4 € [c3,b], we have

Spes (B2, (2)=€°(c3)) = Sposl(2, (2) =€ (¢3)) +0,Sp-c, (20, (2) =€ (e3)) (b—c3). (4.3.5)
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For some ¢5 € [a, c3], we have

Sp-8(2,(2) = €°(c3)) = Spb(@a(2) — €°(a))

+S, (B2 (2) — E (), (2) — Bo2)) — (€2(es) — E2(a)))- (4.3.6)

Once again, there is ¢g € [a, ¢3] such that

20,(2) = Bal2) = 0,8, (2)(e5 — @) = Sy (B0 (2) = €(c6)) (3 — a). (4.3.7)

We have the freedom to choose d arbitrarily small. Now suppose d < (1 —¢)(p —
¢1)/2. Then

p—a<p-b+2d<(p-b)+(1-t)p—a)<(2-1)(p-0)
Thus for any m < M € [a,b], p—m < (2 —¢)(p — M). By formula (4.3.2),
on(2) = €2(m) € Auipmm) p-m C Autp-rn),2-0p-11)-
So the values of S,_ys, 8,S,_n1, 92S, 1, ASJ;HM, ASJ;,LM and ASJZLM at @2 (2) — &%(m)
are uniformly bounded. In formula (4.3.3), consider m = a and M = ¢y. Since
|b —a| < 2d?, we have
Fy = —0,8,(33(2) = £ (@) (b — a) + O(d*).
Similarly, formula (4.3.7) implies
Pey(2) = Galz) = Oles —a) = O(d?).

This together with formulae (4.3.5),(4.3.6) and &(c3) — €(a) = O(d) implies that

Spes (72,(2) = €(c8)) = Spon(@5(2) = €(a)) + O(d).
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By formula (4.3.4), we have

Po(2) = al(2) = Spos(Pa(2) = €(@) (b — a) + O(d®) = O(d?).

Thus F5 = O(d?),

~I

Fi =8, (#a(2) = €())(€(b) = €°(a)*/2 + O(d’), and

~/ ~

Fy =S, (§a(2) — €(a))[Sp-s($a(2) — £(a)) (b — a) — (£°(b) — & (a))] + O(d?).
Note that F' = Fy 4+ F3 + F, + F5. Using Lemma 4.3.2, we get

~I

F =S8, (@a(2) = €(a)[(€(0) — €(a))*/2 — (b~ a)]

—S, (@ (2) — (@) (1) — &(a)) + O(d®).

By formula (4.3.1), if ¢ is smaller than some d2(d), then the conditional expectation

of

ImS, (7 (2)—€3(a)[(E°(b) — € (a))?/2— (b—a)] ~Im S, _,(F}(2) — £ (a)) [ (b) —€(a)]

w.r.t. Fj is bounded by Cyd°.

By formula (4.3.2), for any w € &(1_L)(p_a),p_a, the conditional expectation of

IS, _,(w)[(E°(b) — €(a)?/2 — (b — )] — ImS,_,(w)[E°(B) — E¥(a)]  (4.3.8)

w.r.t F; is bounded by Cyd?, if ¢ is small enough (depending on d).
Now suppose d < (p — q1)¢/(4 — 4¢). Then

(L-0(p—a)<(1—1/2(p-b) <p—a.
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Thus i(1 —¢/2)(p —b) € A(I—L)(p—a),p—a- We may check

Im AS/;Lb(z'(l —1/2)(p—10)) >0, and Im As/;fb(i(l —1/2)(p—1b)) =0.

So we can find Cy > 0 such that for all b € [0, ¢], Imﬂslsz(i(l —1/2)(p = b)) > Cs.
Let w =i(1 —¢/2)(p — b) in formula (4.3.8), then we get

[E[(£°(b) - €(a))*/2 — (b - a)|F]]| < Csd’.
Since Im gg_b(w) is uniformly bounded on 6(1_L/2)(p_b), so for all w € é(l_b/g)(p_b),
tmS, ,(w)[E[€' () — £ (a)|F])| < Cud®, (4.3.9)
We may check that
zp =Tm S, y(r +i(1 = 1/2)(p — b)) — Im S, 4(i(1 — 1/2)(p — b)) > 0.

So 1z, is greater than some absolute constant Cs > 0 for b € [0, ¢;]. Then there exists

wy € é(l*L/2)(p7b) such that
~1 ~
Im'S, ,(wy)| = [0 Im S, 4(wy)| = /7 > C5 /7.

Plugging w = wj in formula (4.3.9), we then have [E [£°(b) — £(a)|F]]| < Csd®. D

The following Theorem about the convergence of the driving process can be de-
duced from Proposition 4.3.2 by using the Skorokhod Embedding Theorem. It is very

similar to Theorem 3.6 in [7]. So we omit the proof.

Theorem 4.3.2 For every qo € (0,p) and € > 0 there is a &g > 0 depending on qo
and & such that for § < &y there is a coupling of the processes £ and /2B such that

Prlsup{|€°(t) — V2B()}] : t € [0,q0]} > €] < e
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4.3.2 Convergence of the curves

In this subsection, we will prove Theorem 4.3.1. We need two well-known lemmas
about random walks on §Z2. The metric by default is the Euclidean metric. The

superscript # is used to denote the spherical metric.

Lemma 4.3.3 Suppose v € 0Z% and K is a connected set on the plane that has
FEuclidean (spherical, resp.) diameter at least R. Then the probability that a random
walk on 0Z2 started from v will exit B(v; R) (B¥ (v; R), resp.) before using an edge of
872 that intersects K is at most Co((6+dist(v, K))/R)* (Co((6+dist? (v, K))/R)",

resp.) for some absolute constants Cy, Cy > 0.

Lemma 4.3.4 Suppose U is a plane domain, and has a compact subset K and a
non-empty open subset V. Then there are positive constants oy and C depending on
U,V and K, such that when § < &y, the probability that a random walk on 6Z* started
from some v € §Z* N K will hit V before exiting U is greater than C.

The following lemma about random walks on D? is an easy consequence of the above

two lemmas and the Markov property of random walks.

Lemma 4.3.5 For every d > 0, there are dy,C > 0 depending on d such that if
§ < &y and v € 6Z*> N D s such that dist* (v, 1) > d, then the probability that a

random walk on D? started from v hits I, before I, is at least C.

Lemma 4.3.6 For every q € (0,p) and € > 0, there are d, 0y > 0 depending on q and
e such that for § < &, the probability that dist” (3°[q,p), 1) > d is at least 1 — €.

Proof. For k =1,2,3,let J, = W~(C,/x). Then Ji, Jo, Js are disjoint Jordan curves
in D that separate I from I;. And J; lies in the domain, denoted by A, bounded by
J1 and J3. Moreover, the modulus of the domain bounded by J; and I is p — q/k.
Let 7° be the first n such that the edge [X°(n — 1), X°(n)] intersects J,. Then 7°
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is a stopping time. If § is smaller than the distance between J; U J3 and Js, then
X°(7%) € A and X°[—1,7°] does not intersect J;. Thus M(D \ X°(—1,7°]) > p —q,
and so T(7%) < ¢. So it suffices to prove that when § and d are small enough, the
probability that X°® will get within spherical distance d from I, after time 79 is less
than . Let RW’ denote a random walk on (D°, 9y D?) started from v, and CRW?
denote that RWfZ conditioned to hit ;. Since X? is obtained by erasing loops of
CRWg, it suffices to show that the probability that CRWg will get within spherical
distance d from I; after it hits A, tends to zero as d,d — 0. Since CRW? is a Markov
chain, it suffices to prove that the probability that CRWi will get within spherical
distance d from I; tends to zero as d,d — 0, uniformly in v € §Z*> N A. By Lemma
4.3.5, there is a > 0 such that for  small enough, the probability that RW?, hits
I, before I, is greater than a, for all v € §Z%2 N A. By Markov property, for every
v € 0Z2 N A, the probability that CRWg will get within spherical distance d from Iy

is less than
1
— - sup{Pr[RW? hits I, before I;] : w € V(D°) N D and dist*(w, I,) < d},
a

which tends to 0 as d,6 — 0 by Lemma 4.3.3. So the proof is finished. O

Lemma 4.3.7 For every q € (0,p) and € > 0, there are M,dy > 0 depending on q
and € such that for § < &, the probability that 3°[q,p) C B(0; M) is at least 1 — ¢.

Proof. We use the notations of the last lemma. It suffices to prove that the prob-
ability that RW° ¢ B(0; M) tends to zero as § — 0 and M — oo, uniformly in
v €0Z*NA. Let K =C\ D, then K is unbounded, and the distance between v € A
and K is uniformly bounded from below by some d > 0. Let » > 0 be such that
A C B(0;7). For M > r, let R = M — r, then for v € 6Z*> N A, RW? should exit
B(v; R) before B(0; M). By Lemma 4.3.3, the probability that RW? ¢ B(0; M) is
less than Cy((d + d)/(M — 1)), which tends to 0 as § — 0 and M — oo, uniformly
invedZ*NA. O

Lemma 4.3.8 For every ¢ > 0, there are ¢ € (0,p) and dy > 0 depending on € such
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that when § < &y, with probability greater than 1 — ¢, the diameter of [q,p) is less

than €.

Proof. The idea is as follows. Note that as ¢ — p, the modulus of D\ 3°(0, ¢] tends
to zero. So for any fixed a € (0,p), the spherical distance between (3°[a,q] and I,
tends to zero as ¢ — p. By Lemma 4.3.7, if M is big and ¢ is small, the event that
B]a, q] does not lie in B(0; M) is of small probability. Thus on the complement of
this event, the Euclidean distance between (3°[a, ¢] and I tends to zero, which means
that 3° gets to some point near I, in the Euclidean metric before time ¢. By Lemma
4.3.3, RWi does not go far before hitting 9D if v is near I,. The same is true for
CRWg because by Lemma 4.3.5, RWg hits I, before I; with a probability bigger than
some positive constant when v is near I,. Since X? is the loop-erasure of CRWg, X0
does not go far after it gets near I, nor does (3°. So the diameter of 3°[q, p) is small.

O

Definition 4.3.1 Let z € C, r,e > 0. A (z,7,¢)-quasi-loop in a path w is a pair
a,b € w such that a,b € B(z;r), |a —b| < ¢, and the subarc of w with endpoints a
and b is not contained in B(z;2r). Let L°(z,r, ) denote the event that 3°[0, p) has a

(z,7,€)-quasi-loop.

Lemma 4.3.9 If B(z;2r) N1, = 0, then lim._o Pr[£%(z,r,€)] = 0, uniformly in 6.

Proof. This lemma is very similar to Lemma 3.4 in [15]. There are two points of
difference between them. First, here we are dealing with the loop-erased conditional
random walk. With Lemma 4.3.5, the hypothesis W N I; = () guarantees that
for some v near 9B(z; 2r), the probability that RW?, hits I5 before I; is bounded away
from zero uniformly. Second, our LERW is stopped when it hits I3, while in Lemma

3.4 in [15], the LERW is stopped when it hits some single point. It turns out that

the current setting is easier to deal with. See [15] for more details. O

Proposition 4.3.3 For every q € (0,p) and € > 0, there are 6y, a9 > 0 depending on
q and € such that for § < &y, with probability at least 1 — ¢, 3° satisfies the following
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property. If ¢ <t; <ty <p, and |3°(t1) — B°(t2)| < ao, then the diameter of (°[t1, ts]

1s less than e.

Proof. For d, M > 0, let Ay denote the set of z € B(0; M) such that dist*(z, ;) >
d, and Ag’M denote the event that 3°[q,p) C Ag . By Lemma 4.3.6 and 4.3.7, there
are do, Mo, 6y > 0 such that for § < &g, Pr[AY ,,] > 1—¢/2. Note that the Euclidean
distance between Ay, p, and I is greater than dy/2. Choose 0 < r < min{e/4,d,/4}.
There are finitely many points z1,..., 2, € Ag, s, such that Ay a, C UTB(25:7/2).
Fora > 0,1 < j < n, let nya denote the event that (°[0,p) does not have a
(z;,7,a)-quasi-loop. Since r < dy/4, we have W NI, = (. By Lemma 4.3.9,
there is ag € (0,7/2) such that Pr(BS, ] > 1 —¢/(2n) for 1 < j < n. Let C° =
B, MAS 4, Then PriC’] > 1 —¢if § < §. And on the event C°, if there
are t; < ty € [q,p) satisfying |3°(t1) — B°(t2)| < ao, then 3°(¢;) lies in some ball
B(zj;71/2), so B (ts) € B(zj;7) as ag < r/2. Since 3° does not have a (zj, r, ag)-quasi-
loop, B°[t1,ta] C B(z;;2r). This then implies that the diameter of 3°[t;,t,] is not

bigger than 4r, which is less than . O

Proof of Theorem 4.3.1. Let K} = 3°(0,t], 0 <t < p. Then (W (K?)) has the law
of modulus p standard annulus SLE,. Let £° be the driving function. Then £° = /2B
for some standard Brownian motion B. By Theorem 4.3.2, we may assume that all
€9 and ¢° are in the same probability space, and for every ¢ € (0,p) and € > 0 there

is an dp > 0 depending on ¢ and € such that for § < 4y,

Prfsup{|¢°(t) — €(8)] : t € [0,q]} > €] < <.

Since 3% and (° are determined by &% and £°, respectively, all 3% and 3° are also in
the same probability space. For the first part of this theorem, it suffices to prove that
for every g € (0,p) and € > 0 there is dy = do(q,€) > 0 such that for § < dy,

Pr[sup{|3°(t) — °(t)| : t € [¢,p)} > €] < e. (4.3.10)
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Now choose any sequence 9,, — 0. Then it contains a subsequence d,, such that
for each ¢ € (0,p), & converges to £° uniformly on [0, ] almost surely. Here we
use the fact that a sequence converging in probability contains an a.s. converging
subsequence. For simplicity, we write ¢,, instead of 9,,. Let 4,0?” (Y, resp.), 0 <
t < p, be the modulus p standard annulus LE maps driven by £ (€9, resp.). Let
Q= A, \ W(B%(0,1]), and Q0 := A, \ W(5°(0,]). Fix q € (0,p). Suppose K is a
compact subset of Qg. Then for every z € K, ¢?(z) does not blow up on [0, ¢]. Since
the driving function £°» converges to £ uniformly on [0, ¢], so if n is big enough,
then for every z € K, ¢"(z) does not blow up on [0, ¢], which means that K C Qg”.
Moreover, gog” converges to cpg uniformly on K. It follows that Qg" N Qg — Qg as

n — oo. By Lemma 2.5.1, (i)~

converges to (¢9)~" uniformly on each compact
subset of A,_g, and so Q0 = (%) (Ap—y) — () (Ap—g) = Q. Now we denote
D" =D\ 3%(0,t] = W=1Q"), and DY := D\ £°(0,¢] = W=1(Q)). Then we have
D?r — DY for every q € (0, p).

Fixe > 0and ¢; < ¢z € (0,p). Let g0 = ¢1/2 and g3 = (g2 + p)/2. By Proposition
4.3.3, there are ny € N and a € (0,£/2) such that for n > ny, with probability
at least 1 — /3, % satisfies: if o < t; < to < p, and |3 (t;) — 3 (t2)] < a,
then the diameter of 3%[t;,t,] is less than /3. Let A, denote the corresponding
event. Since 3° is continuous, there is b > 0 such that with probability 1 — &/3, we
have |3°(t1) — B%(t2)| < a/2 if t1,t2 € [qo,q3] and |t; — t3| < b. Let B denote the
corresponding event. We may choose gy < tp <ti=q1 < - <tpmo1 =q <ty < q3
such that ¢; — t;_1 < b for 1 < j < m. Since 3°(¢;) &€ °(0,t;_4] for 1 < j < m, there
is 7 € (0,a/4) such that with probability at least 1 —¢/3, B(3%(t;);r) C D?j_l for all
0 < j < m. We now use the convergence of Df" to D for t = tg,...,t,,. There exists
ny € N such that for n > ng, with probability at least 1 — &/3, Wtj);r) C Df;il,
and there is some 27 € 8ij’? NB(B(t;);r), for all 1 < j < m. Let C, denote the
corresponding event. Then on the event C,, 2} € 5)D§" \ 8D§Zl, so 2 = (3% (s7) for

some s7 € (tj_1,t;]. Let D, = A, N BNC,. Then Pr[D,] > 1 —¢, for n > ny + ny.
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And on the event D,

|5} = 2l <2 +18°(t) = B(tjp)| < 2r+a/2<a, VIS j<m—1,

as |t; —tj 11| < b. Thus the diameter of 3°[s7, s7,,] is less than /3. It follows that

for any t € [s,s7 4] C [tj—1,tj41],
8°(t) = B2 (1) < [8°(t) = B°(t5)| + 18°(ty) — 2| + |2} = B (H) S af2+7+e/3 <e.

Since [q1, g2] = [t1, tm—1] C U7 [s7, s7,,], we have now proved that for n big enough,
with probability at least 1 —e¢, |3%(t) — 3°(t)| < e for all t € [q1, ¢2]. By Lemma 4.3.8,
for any € > 0, there is g(¢) € (0,p) such that if n is big enough, with probability
at least 1 — ¢, the diameter of 3°'[q(e),p) is less than . For any S € [q(¢),p),
by the uniform convergence of 3 to 3° on the interval [¢(¢),S], it follows that
with probability at least 1 — ¢, the diameter of 3°[¢(¢),S) is no more than &, nor
is the diameter of 3°[q(¢),p). Now for fixed ¢ € (0,p) and ¢ > 0, choose ¢q; €
(g,p) N (q(¢/3),p). Then with probability at least 1 — /3, the diameter of 5°[q;, p)
is less than £/3. And if n is big enough, then with probability at least 1 — £/3, the
diameter of 3°[q;, p) is less than /3. Moreover, if n is big enough, we may require
that with probability at least 1 —¢/3, |3 (t) — 8°(t)| < /3 for all t € [q,¢1]. Thus
3% (t) — B°(t)| < e for all t € [q,p) with probability at least 1 — ¢, if n is big enough.
Since {0,} is chosen arbitrarily, we proved formula (4.3.10).

Now suppose that the impression of 0, is the a single point, which must be 0.
From [12], we see that W~!(z) — 0 as z € A, and z — 1. From above, it suffices to
prove that for any € > 0, we can choose ¢ € (0,p) and ¢y > 0 such that for § < o,
with probability at least 1 — ¢, the diameters of 3°(0, q] and 3°(0, ¢| are less than .
Since W1 is continuous at 1, we need only to prove the same is true for the diameters
of W(B°(0,q]) and W(3°(0,¢q]). Note that they are the modulus p standard annulus
LE hulls at time ¢, driven by x? and x?, respectively. By Theorem 4.3.2, if § and ¢ are
small, then the diameters of x°[0, q] and x°[0, ¢] are uniformly small with probability
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near 1, so are the diameters of W (3°(0, ¢]) and W (5°(0,¢]). O

4.4 Convergence of observables

The goal of this section is to prove Proposition 4.3.1. The proof is sort of long. The
main difficulty is that we need the approximation to be uniform in the domains. The
tool we can use is Lemma 2.5.1. However, the limit of a domain sequence in general
does not have good boundary conditions, even if every domain in the sequence has.
Prime ends and crosscuts are used to describe the boundary correspondence under
conformal maps. Some ideas of the proof come from [7].

We will often deal with a function defined on a subset of Z2. Suppose f is such

a function. For v € §Z% and 2 € Z?, if f(v) and f(v + z) are defined, then define

Vif(v) = (f(v+62) = f(v))/5,

We say that f is 6-harmonic in Q C C if f is defined on §Z2NQ and all v € §Z? that
are adjacent to vertices of 6Z% N Q so that for all v € §Z> N Q,

flo+0)+ flv—20)+ flv+1i6)+ f(v—1id) =4f(v).

The following lemma is well known.

Lemma 4.4.1 Suppose € is a plane domain that has a compact subset K. Forl € N,
let z1,...,2 € Z2. Then there are positive constants dy and C depending on Q, K,
and 21, ..., 2, such that for 6 < &y, if [ is non-negative and 6-harmonic in §2, then
for all vi,vs € 0Z>N K,

ViV F() < Of (va).

This is also true for | =0, which means that f(vy) < Cf(vq).

For a,b € 07Z, denote

Sj,b ={(z,y):a<z<a+6b<y<b+d}.
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Suppose A is a subset of §Z2, let S be the union of all Sg}b whose four vertices are in

A. If f is defined on A, we may define a continuous function CE’ f on S%, as follows.

For (z,y) € S, C 59, define

CE f(z,y) = (1—s)(1—1t)f(a,b)+ (1 —s)tf(a,b+0)
+s(1—t)f(a+9,b)+ stf(a+0,b+9),

where s = (z — a)/§ and t = (y — b)/5. Then CE’f is well defined on S9, and
agrees with f on S9 N A. Moreover, on Sg’b, CE’f has a Lipschitz constant not
bigger than two times the maximum of \V‘(SLO)f(a, b)|, |V?0,1)f(a, b)|, ’V?Lo)f(a? b+0)],

V0.1 f(a+08,b)|. And for any u € Z?,
CE’V,f(2) = (CE’f(z + du) — CE’f(2)) /4,

when both sides are defined.

Proof of Proposition 4.3.1. Suppose the proposition is not true. Then we can
find 9 > 0, a sequence of lattice paths w, € L% with 6, — 0, and a sequence of
points v, € V3", such that |gy, (Vn) — U, (vn)| > o for all n € N. For simplicity of
notations, we write g, for g, u, for u,,, and D, for D, . Let p, be the modulus

of D,,. The remaining of the proof is composed of four steps.

4.4.1 The limits of domains and functions

By comparison principle of extremal length, we have p > p, > M(U;) > 0. By
passing to a subsequence, we may assume that p, — po € (0,p]. Then A, — A,.
Let @), map D,, conformally onto A, so that Q,(2) — 1 as z € D,, and z — P(w,).
Then u, = ReS,, 0 Q,. Now Q,;! maps A, conformally onto D,, C D. Thus {Q,'}
is a normal family. By passing to a subsequence, we may assume that Q! converges
to some function J uniformly on each compact subset of A, . Using some argument

similar to that in the proof of Theorem 4.3.1, we conclude that J maps A, conformally
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onto some domain Dy, and D,, — Dy. Let Qy = J~! and ug = Re Sy, © Qo. Then @,
and u,, converge to (g and ug, respectively, uniformly on each compact subset of Dy.
Moreover, we have Uy Uay C Dy C D. Thus I, is a side of Dy. Let I and I? denote
the other side of D,, and D, respectively.

Let {K,,} be a sequence of compact subsets of Dy such that Dy = U,, K,,, and for
each m, K,, disconnects I? from I and K,, C int K,,,1. Let K" = K,, N,Z*. Now
fix m. If n is big enough depending on m, we can have the following properties. First,
K., C D, and K", C V(D%), so g, is d,-harmonic on K,,. Second, K" disconnects
all lattice paths on D% from I, to I?'. Now let RW! be a random walk on D°" started
from v € V(D%), and 7% the hitting time of RW” at I, U K". By the properties
of gn, if v is in D and between K,, and I, then (g,(RW(5)),0 < j < 7/")is a
martingale, so g,(v) = E[g,(RW, (7*)]. Now suppose g,(v) > 1 for all v € K.
Choose vy € V(D) N D that is adjacent to some vertex of F° = V(D% )N I,. Then
gn(vo) = E [g,(RW™(77))] > 1. The equality holds iff there is no lattice path on D%
from vy to K™. By the definition of D%, we know that the equality can not always
hold. It follows that s, Apsngn(u) > 0, which contradicts the definition of gs,.
Thus there is v € K], such that g,(v) < 1. Note that g, is non-negative. By Lemma
4.4.1, it n is big enough depending on m, then g, on K is uniformly bounded in n.
Similarly for any z,...,% € Z2, Vﬁ; e Vﬁ; gn on K is uniformly bounded in n, if
n is big enough depending on m, and z1,..., 2 € Z>.

We just proved that for a fixed m, if n is big enough depending on m, then
gn on K is dp-harmonic and uniformly bounded in n. We may also choose n big
such that every lattice square of §,Z? that intersects K, is contained in K,,,1, and so
CE’" g, on K,, is well defined, and is uniformly bounded in n. Using the boundedness
of Vg, on K, for u € {1,i}, we conclude that {CE’g,} on K, is uniformly
continuous. By Arzela-Ascoli Theorem, there is a subsequence of {CE’"g,}, which
converges uniformly on K,,. By passing to a subsequence, we may assume that CE’" g,
converges uniformly on each K,,. Let gy on Dy be the limit function. Similarly, for
any zi,...,2 € Z?, there is a subsequence of {CE‘S"VZL -+ Vi g,} which converges

uniformly on each K,,. By passing to a subsequence again, we may assume that for
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Z1yees2]

any zi, ...,z € Z2, CE(S"VZL e Vﬁf gn converges to g, on Dy, uniformly on each

K,,. Tt is easy to check that
ggl,...,zl = (alaa, + blay) o (al({)m + blﬁy)go,

if z; = (a;,b;), 1 < j <. Since g, is d,-harmonic on K,, for n big enough, we have
(V" Vo + VoV g, = 0 on K. Thus (02 + 93)go = 0, which means that gy is
harmonic.

Now suppose x, € V(D’) N D — I, in the spherical metric. Since the spherical
distance between K; and I, is positive, the probability that a random walk on D%
started from z,, hits K before I; tends to zero by Lemma 4.3.3. If n is big enough,
K is a subset of D,, and disconnects I, from I]". We have proved that g, is uniformly
bounded on §,Z* N K, if n is big enough. And by definition g, = 1 on V(D) N I,.
By Markov property, we have g, (z,) — 1. Since g is the limit of CE’"g,, this implies
that go(z) — 1 as z € Dy and z — I in the spherical metric. Thus ggo J(z) — 1 as
z€ Ay, and 2 — C,.

Now let us consider the behavior of u,, and ug near Iy. If z € D,, and z — Iy in
the spherical metric, then @, (2) — C,, , and so u,(z) = ReS,,, 0@, (2) — 1. Using a
plane Brownian motion instead of a random walk in the above argument, we conclude
that u,(z) — 1 as z € D, and z — I, in the spherical metric, uniformly in n.

Suppose {v,}, chosen at the beginning of this proof, has a subsequence that
tends to Iy in the spherical metric. By passing to a subsequence, we may assume
that v, — I3 in the spherical metric. From the result of the last two paragraphs,
we see that g,(v,) — 1 and u,(v,) — 1. This contradicts the hypothesis that
|gn(vn) —un(vn)| > 9. Thus {v,} has a positive spherical distance from I5. Since the
domain bounded by «a; and ay disconnects Us from 1Y, and {v,} C Us,, so {v,} has a
positive spherical distance from I; too. Thus {v,} has a subsequence that converges
to some zy € Dy. Again we may assume that v, — zo. Then wuy(z9) = limu,(v,)
and go(z0) = lim g, (v,,), and so |ug(20) — go(20)| > 0. We will get a contradiction by

proving that go = ug in Dy.
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Note that gq is non-negative, since each g, is non-negative. We can find a Jordan
curve 3 in Dy which satisfies the following properties. It disconnects I from IY; it
is the union of finite line segments which are parallel to either x or y axis; and it
does not intersect U,0,Z%. From the fact that ZveV(Dén)mg Aps,gn(v) = 0, and the
uniform convergence of Vf” Jn t0 .90, and Vf” gn to 0ygo on some neighborhood of g,
we have [ 3 Ongods = 0, where n is the unit norm vector on 3 pointed towards ;. Thus
go has a harmonic conjugate, and so does gp o J. We will prove gy o J = Re S,,, from
which follows that gy = ug. We have proved that ggpo J(z) — 1 as A,, 3 2 — C,,. It
suffices to show that ggo J(2) — 0 as A, \U 3 z — C, for any neighborhood U of 1.

4.4.2 The existence of some sequences of crosscuts

For a doubly connected domain €2 and one of its boundary component X, we say that
v is a crosscut in € on X if v is an open simple curve in D whose two ends approach
two points (need not be distinct) of X in Euclidean distance. For such 7, '\~ has two
connected components, one is a simply connected domain, and the other is a doubly
connected domain. Let U(y) denote the simply connected component of D\ . Then
OU () is the union of v and a subset of X.

Now Qg maps Dy conformally onto A, , and Qo(I{) = Cy. Similarly as Theorem
2.15 in [12], we can find a sequence of crosscuts {7y*} in Dy on I{ which satisfies
(i) for each k, ¥F+1 N vk = () and U(y*+) C U(4%);

(ii) Qo(v*), k € N, are mutually disjoint crosscuts in A,, on Cy; and

(iii) U(Qo(7%)), k € N, forms a neighborhood basis of 1 in A, .

Note that U(Qo(v*)) = Qo(U(7*)), so U(Qo(v**1)) C U(Qo(1*)), for all k € N. We
will prove that there is some crosscut v* in each D,, on I? such that ¥ and Q,,(7*)
converge to v¥ and Qy(7*), respectively, in the sense that we will specify.

Now fix k € N and € > 0. Parameterize v and Qo(7*) as the images of the
functions a : [0,1] — D UIY and b : [0,1] — A,, U Cy, respectively, so that b(t) =
Qo(a(t)), for t € (0,1). We may choose s; € (0,1/2) such that the diameters of a0, s1]
and a[l — sy, 1] are both less than /3. There is 71 € (0,£)N (0, (1 —e ) /2) such that
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the curve b[s1, 1 — s1] and the balls B(b(0); ;) and B(b(1);r1) are mutually disjoint.
Suppose 7" is contained in B(0; M) for some M > e. There is Cj; > 0 such that the
spherical distance between any 21, zo € B(0;2M) is at least Cys|z1 — 22]. So for every
smooth curve 7 in B(0;2M), we have L# () > Cy/L(v), where L and L# denote the
Euclidean length and spherical length, respectively. Let ry = 71 exp(—7272/(C%,£?)).
Then we may choose so € (0,s1) such that b[0,se] C B(b(0);72) and b[1 — s9,1] C
B(b(1);72).
For j = 0,1, let I'; be the set of crosscuts v in A, on Cy such that

B(b(j);r2) "D C U(y) C B(b(j);71)-
Then the extremal length of I'; is less than
21 /(Inry — Inry) = C3,e%/(367).

If n is big enough, then B(b(j);r) ND C A, , so all v € I'; are in A,,. Then the
extremal length of @, (T;) is also less than C%,e%/(367). Since the spherical area of
Q,,1(A,,) is not bigger than that of C, which is 4n, there is some 3, ; in @, '(T;) of
spherical length less than C)ye/3. Since

J(bsa, 1 — s3]) = alsa, 1 — s9] € +* € B(0; M),

and Q' converges to J uniformly on b[sy,1 — ss], so if n is big enough, then
Q@  (b[s2, 1 — s3]) € B(0;1.5M). Every curve in I'; intersects b[s2, 1 — s3], so 3, €
Q,, 1 (T';) intersects @, (b[s2, 1 — s2]) C B(0;1.5M). If §,; ¢ B(0;2M), then there
is a subarc v of 3, ; that is contained in B(0;2M/) and connects 0B(0;1.5M) with
OB(0;2M). So L#(y) > CyL(y) > CyM/2. This is impossible since L#(vy) <
L#(B3,,) < Cype/3 < CoyyM/2. Thus (,; C B(0;2M), and so L(B,,;) < L*(8n;)/Cu
< g/3. Since 3, ; has finite length, it is a crosscut in D,, on I". Let s, be the biggest s
such that Q' (b(s)) € B0, and s,, 1 the biggest s such that Q' (b(1—s)) € B,.1. Then

5n,0,5n,1 € [S2,81]. Let () 5 and 3}, ; denote any one component of Bro\{Q; (b(sn0))}
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and B,1 \ {@Q, (b(1 — s,.1))}, respectively. Let

AR = Q  (b[sno, 1 — 5p1]) U BroY B

Then ~¥ is a crosscut in D,, on IT. As r; < &, the symmetric difference between
Qn(VF) and Qo(7*) is contained in B(b(0);e) U B(b(1);¢). Since b[sn, 1 — S,.1] is
contained in b[ss, 1 — s3], which is a compact subset of Dy, so if n is big enough, then
the Hausdorff distance between Q' (b[s,0,1 — sn1]) and a[s, 0, 1 — s,.1] is less than
/3. Now the Hausdorff distance between Q,1(b[sn0,1 — sn.1]) and ¥ is not bigger
than the bigger diameter of 3 ; and 3, ;, which is less than /3. And the Hausdorft
distance between a[s,o,1 — s,1] and ~* is not bigger than the bigger diameter of
al0, sn0] and a[l — s,.1,1], which is also less than £/3. So the Hausdorff distance
between 7* and ~* is less than . Now we proved that we can choose crosscuts v in
D,, on I such that v* converges to ¥, and the symmetric difference of @, (v*) and
Qo(v*) converges to the two end points of Qq(7*), respectively, both in the Hausdorff

distance, as n tends to infinity.

4.4.3 Constructing hooks that hold the boundary

Now fix k > 2. We still parameterize 7% and W as the images of the functions
a:[0,1] - DUIY and b: [0,1] — A, U Cy, respectively, such that b(t) = Qo(a(t)),
for t € (0,1). Let QF denote the domain bounded by Qu(v*~!) and Qu(+**!) in
A,,. Then 90F is composed of Qo(7*1), Qo(7*!), and two arcs on Cy. Let pf and
ot denote these two arcs such that b(j) € ,Of, j = 0,1. If n is big enough, from
the convergence of Q,(v5*) to Qo(v**!), we have Q,(v5~1) N Q,(v4*+1) = 0, and
U(Qn(vE+)) C U(Qn(7F1)). Let QF denote the domain bounded by @, (v*~!) and
Qn(7") in A, . Then the boundary of QF is composed of Q,(7%71), Qo(7*), and

n n

two disjoint arcs on Cgy. If n is big enough, then each of these two arcs contains one
of b(0) and b(1). Let pf , and pf ; denote these two arcs so that b(j) € pf ;, 7 =0, 1.
Now suppose ¢ : (—1,+1) — QF is a crosscut in QF with ¢(£1) € Qo(7**'). Then
c(—1,+1) divides Q¥ into two parts: QF and QF, so that pf C 89?, j=0,1. If n
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is big enough, then c(+1) € Q,( 1), and ¢(—1,+1) € QF. Thus ¢(—1,+1) also

n

divides QF into two parts: QF ; and QF |, so that pf; ; C 9QF ;. Let A; (An;, resp.) be

n,l»

the extremal distance between Qo(v*™1) (Q,(7*71), resp.) and Qo(7* ™) (Qn(751),
resp.) in QF (QF

nhj ’

Thus {\,;} is bounded by some Ej, > 0.

resp.), j = 0,1. It is clear that A, ; — A; as n — oo, and \; < oo.

Since v* N A1 = () and R converges to 4! in the Hausdorff distance, there

is d,, > 0 such that the distance between 7% and ~*+!

»*is greater than dy, if n is

big enough. For z € Dy and r > 0, let Bo(z:r) and B, (z;7) denote the connected
component of B(x;r) N Dy and B(z;r) N D,, respectively, that contains x. Since
D, — D, it is easy to prove that ﬁn(x;r) — Eg(x;r). Let ep = dyexp(—2wEy).
Suppose sy € (0,1) is such that the diameter of a(0,sg) is less than e;. By the
construction of v¥, we have QF — QF so Q- 1(QF) — Q1 (QF). Now a(sg) € +* C
Qy (%), Hence a(sg) € Q;1(QF) if n is big enough. Since the distance from a(sy)

to v*1! is bigger than dy, > e, B,(a(so); ex) is contained in Q1(02F). We claim that
B, (a(so); exr) C @, (2% ), if n is big enough.

Since a(0) € 9Q; (%), a(0) — a(so)| < ex, and Q1 (QF) — Qy*(QF), so the
distance from a(sy) to 9Q; (%)) is less than ey, if n is big enough. Now choose
z, € 0Q,;1(QF) that is the nearest to a(sg). Then the line segment [a(sg), z,) C
B, (a(so); ex). Hence Qula(so), z,) is a simple curve in QF such that Q,(z) tends to
some 2z, € 00 as z € [a(sg), z,) and z — z,. Since 2, € Y 20 & Q,(v¥1). Thus
2y, is on pf;  for some j € {0,1}. Since Qn(Ba(a(so): ex)) — Qo(Bola(so): ex)) 3 b(so),
and b(sg) € QF o, so if n is big enough, Qn(Bo(a(so); e;)) intersects QF ;. For such
n, if 2}, € pl,, then all curves in Q' (2 o) that go from v,~' to 7i~! will pass
B, (a(so); ex). And so they all cross some annulus centered at a(sy) with inner radius
er and outer radius greater than di. So the extremal distance between ’yﬁ_l and
it in Q1 (QF ;) is greater than (Ind, — Ineg)/(2m) = E;. However, by conformal
invariance, this extremal distance is equal to A, j, which is not bigger than Ej, if n is big
enough. Thus 2], € p} ; for n big enough. Similarly, z/, € pf ; and Qn(Bo(a(so): ex))N
@71 # () can not happen at the same time when n is big enough. So if n is big enough,

Qn(Bn(a(so); ex)) is contained in QF ;. Similarly, we let s1 € (so, 1) be such that the
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diameter of a(s1, 1) is less than ez, then Q. (B, (a(s)); e;)) C QF

m.1, if m is big enough.

For j = 0,1, a(s;) and a(j) determine a square of side length [; = |a(j) — a(s;)|
with vertices vg; = a(s;), ve,, v1, and vz, in the clockwise order, so that a(j)
is on one middle line [(vo; + v3;)/2, (v1; + va;)/2]. This square is contained in

B(a(s;);v2l;) C B(a(s;);0.8¢;), since [; < e;/2. And the union of line segments

[v0.4, V1], [v1,4,v2,5] and [vg ;, v5 ;] surrounds B(a(j);1;/8).

For j = 0,1, let N; be the [;/20-neighborhood of [vg ;, v1 ;] U vy, 0] U [va;, 3 ).
Then N; C B(a(s;);er). Choose g; € (0,1;/30) such that B(a(s;); ;) C Qp ().
For m = 0,1,2,3, let W,,; = B(vmm;¢;). When n is big enough, Wy; C Q;'(F),
and B(a(j);1;/30) intersects 9Q,,'(QF). Suppose f; is a curve in N; which starts
from Wy ;, and reaches Wi ;, Wy ; and Ws; in the order. Then (; disconnects a
subset of 9Q;,1(QF) from oo, if n is big enough. Since @, 1(QF) is a simply connected
domain, 3; hits Q' (€2)). Let 87 be the part of 3; before hitting 0Q; ' (€2};). Then
By C ﬁn(a(sj); er) C Q;I(wa-), if n is big enough. So @, (3}) is a curve in Qfm that

tends to some point of Q2 ; at one end. This point is not on Qy (75!

»=1), because the

distance between 7* and v*!

+ ! is greater than e;. Hence Q,(3}) intersects p’fL’j.

Suppose B is a closed ball in Qal(Qk). For 7 = 0,1, let II; be a subdomain of
Qo (%) that contains B U W, ; such that II; is a compact subset of Qy'(22¥). Then
IT; is contained in Q,'(QF) for n big enough. For = € 0,Z° N B, let A? ; be the set
of lattice paths of ,,Z* that start from z, and hit Wy ;, Wy, Wa,; and W3 in the
order before exiting IT; U ;. We may view 3 € A7 ; as a continuous curve. Let BPn
denote the part of 3 € A7, before exiting @Q,"(€2%). Then 3”» can be viewed as a
lattice path on D% . We proved in the last paragraph that if » is big enough, m
intersects pfm, for any 8 € A} ;, v € 0,22 N B, j =0,1. Thus for any 3, € A7 o and

By € Az, B U AP disconnects 7! from ! in @ 1(QF).

4.4.4 The behaviors of gy o J outside any neighborhood of 1

Let P;; be the probability that a random walk on 0,72 started from x belongs to

A ;- By Lemma 4.3.4, if n is big enough, then Py, is greater than some a; > 0 for
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all z € §,Z*N B, j = 0,1. We may also choose n big enough such that V(D% )N B is
non-empty, and g, () is less than some by, € (0, c0) for all z € 6,,Z*NB. We claim that
if n is big enough, then g, (z) < max{by/ax, 1} for every x € 6,Z> N (D, \ U(y~1)).
Suppose for infinitely many n, there are x,, € 6,Z*N D, \ U(75~1) such that g, (x,) >
M > max{by/ax,1}. Since g, is discrete harmonic on 6,Z* N D,,, and g, < 1 on the
boundary vertices of D,, except at P(wy,,), the tip point of w,, so there is a lattice path
B, in D, that goes from z,, to P(w,) such that the value of g, at each vertex of 3, is

not less than M. By the construction of v5*1, if n is big enough, then U(Q, (7**1)) is

n n

some neighborhood of 1 in A, , and so U(y¥*!) is some neighborhood of P(w,,) in D,,.

n

Thus 3, intersects both v*=1 and ~**!. Choose vy € 6,Z? N B. For every p, ¢ € Ao

vo

o, . Therefore p23 U p2n

the path p. U ply disconnects 4%~ from yf+!

and p, 1 €

V0
,Jn?

intersects (3,. This implies that for some j, € {0, 1}, for every p € A we have
pPr intersects (3,. Thus the probability that a random walk on §,,Z? started from vy
hits 3, before 0D,, is greater than ay. Let 7, be the first time this random walk hits
B3, UOD,,. Since g, is non-negative, bounded, and discrete harmonic on 8,72 N D,,,
50 gn(vo) = E[gn(RWy (7))] > axM > by, which is a contradiction. So the claim is
proved.

By passing to a subsequence depending on k, we can now assume the following.
U(v¥*1) is some neighborhood of P(w,,) in D,; the value of g, on 6,Z2N D, \ U(yf+1)

is bounded by some My > 1; U(y*™) C U(y*) C U(yF!); the spherical distance

n

between v* and 757! is greater than some Rj > 0; and the (Euclidean) distance

n

between ¥ and v*+1

is greater than 6,,. Since the end points of v* and v*~! are on I7,
the spherical diameter of I is at least Ry. Let R be the spherical distance between I,
and as. Then the spherical distance between Iy and I7 is at least R, as s disconnects
I, from I7. Suppose v € V/(D%) N D, \ U(y 1), and dist? (v, IT) = d < R/2. Then
dist? (v, Iy) > R/2. Let RW! be a random walk on §,Z? started from v, and 7% be
the first time that RW! leaves D,, \ U(7%). Then RW(7¥) is either on I, or on I7,
or in U(y¥). In the first case, g,(RW"(7*)) = 1, and v should first exit B*(v, R/2)
before hitting 5. In the second and third cases, since RW?(7F — 1) € D, \ U(¥%),

and the Euclidean distance between 7* and v5*1 is greater than § by construction, so

n
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[RW?” (7% —1), RW?(7%)] does not intersect v5*1. Thus in the second case, RW”(7%) #

P(w,), and so g,(RW"(7¥)) = 0. In the third case, RW!(7¥) € D, \ U(y**1), so
gn(RW2(TF)) < Mj,; and RW first uses some edge that intersects v*~!, then uses
some edge that intersects 7* at time 7*. So the spherical diameter of RW? [0, 7¥] is at
least Ry. This implies that RW” should exit B# (v; Ry/2) before hitting U(7*). Let

R, = min{R/2, Ry/2}, then by Lemma 4.3.3,
Pr[RW; (1) & I7] < Co((8n + d)/Ry)",

for some absolute constants Cp, C; > 0. So we have g,,(v) < M,Co((6, + d)/R})°".
Suppose 2z € Do\ U(v*~1)\7*71, and dist*(z, I?) = d < R/4. Choose r € (0,d/2)
such that B#(z,7) is bounded and B¥(z;r) C Do\ U(7*~1)\7*~1. If n is big enough,

then B¥(z;7) C D, \ U(v571), and the spherical distance from every v € B¥(z;7) to
I is less than 2d < R/2. Thus

gn(v) < MpCo((0, + 2d)/ R}, Yv € 6,Z> N B#(2;7).

Since gq is the limit of g, go(z) < MCo(2d/R)¢*. Thus for every k > 2, go(2) — 0,
as 2 € Do\ U(y* 1)\ 7*!, and z — I; in the spherical metric, and so gooJ(2) — 0 as
z € Ay \ U(Qo(7*71)), and 2 — Cy. Since U(Qo(7*)), k € N, forms a neighborhood
basis of 1 in A, so for any r > 0, goo J(z) — 01if z € A,, \ B(1,7) and z — C,.
This is what we need at the end of 4.4.1. O

4.5 Some discussions

Suppose an HRLCy(D;wy — T') is proved to be the scaling limit of the corresponding
LERW. Then we could obtain some geometric behaviors of the trace. First, the limit
set of the trace in the conformal closure is a single point on the target set 1. If T is
an interior point or a prime end, then itself is the limit point. If 7" is a side arc then
the distribution of the limit point is the hitting point of a plane Brownian motion

(or Brownian excursion, resp.) in D started from wy conditioned to hit 7" if wy is an
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interior point (or a prime end, resp.). Here the Brownian excursion is the limit as
D > z — wy of a plane Brownian motion in D started from z conditioned to hit 7.
We will study more about Brownian excursion in the next chapter. Moreover, if T}
is a subarc of T', then the trace conditioned to hit 77 is a HRLCy(D;wg — T}) trace.
We may even have HRLCy(D;wy — T) = [, HRLCy(D;wy — w)dp(w), where p is
the hitting distribution of an HRLCy(D;wy — T') trace at T

From the reversibility of LERW in [3], we find that for any p; # ps € D, the
reversal of an HRLCy(D;p; — pg) trace has the same lap as an HRLCy(D;ps — p1)
trace after a time-change. If the target is a side arc, the reversibility can only be stated
for SLE,. For a standard strip SLE, trace 3, if we let m + 74 be the hitting point of
B at mi + R, then the reversal of 3 —m has the same law as a strip SLEy(S;; 7i — R)
trace after a time-change. For a modulus p standard annulus SLE, trace 3, let xq
and x,, be uniform random points on Cy and C,, respectively, then the reversal of an
annulus SLEy(A,;xg — C,,) trace has the same law as an annulus SLEy(A; x, — Cy)
trace after a time-change. Similarly, the reversal of a standard disc SLE, trace has
the same law as a radial SLE,(ID; x — 0) trace after a time-change.

We may also consider the reflection boundary condition. For example, suppose
0 € 9D and (0,a] C D for some a > 0, po € D N cZ? and I is a side of D that
does not contain the prime end 0. Let D’ be defined as usual for §, = ¢/n. Let
5VD5” = Oy D% \ I, ie., the set of boundary vertices not on I. Let X° be the
LERW in (D%, 8y D% U {po}) conditioned to hit po. As n — oo, the curve of X%
should converge to a random continuous curve that can be described by an equation
similar to that of HRLCy(D; 0, — pg). To construct such a curve, we let PfW in the
definition of HRLC to be the modified Green function in D \ W (K?¢) with the pole
at po and with a reflection boundary I. This means that va’t is a positive harmonic
function in D\ {po}; it behaves like —In|z — po|/(27) for z near py; PEW(Z) — 0 as
z— dD\ I; and 8nPt§7W(z) =0 for z € I.
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Chapter 5

Random Loewner chains and
restriction measures

It is proved in [8] that the chordal and radial SLEs /3 satisfy the restriction property.
For example, suppose 3 is a standard SLEg/3 trace, i.e., an SLEg/3(H;0 — oo) trace.
Let €2 be a simply connected subdomain of H that contains some neighborhoods of
0 and oo in H. Then with a positive probability, § stays in 2, and the law of 3
conditioned to stay in €2 is the same as an SLEg/3(€2;0 — o0) trace, after a time-
change. If the trace is considered as a random set, then we don’t need to worry about
the time-change. So the law of that trace (set) is a conformally invariant restriction
probability measure. The authors of [8] also studied other conformally invariant
measures, which are not supported on simple paths, in simply connected domains.
Since all simply connected domains are conformally equivalent to each other, so there
is no much freedom to construct a restriction measure. The restriction measures other
than chordal SLEg/3 trace can be constructed from some chordal SLE,, 0 < x < 8/3,
by adding Brownian bubbles to the trace.

In this chapter we will imitate the work in [8], and study the restriction properties
of HRLC, in a plane domain started from a prime end. Since a subdomain is in
general not conformally equivalent to the whole domain, there could be a lot of
different kinds of conformally equivalent restriction measure. We are only interested

in those restriction measures that are most closed to HRLC.
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5.1 Preparations

5.1.1 Brownian motion and Brownian excursion

We will use the notations and symbols in Section 3.1. It is known ([13]) that plane
Brownian motions are conformally invariant up to a time-change. So a Brownian
motion in a Riemann surface can be defined up to time-changes. For a finite Riemann
surface D, we first consider a Brownian motion in its underlying surface R. The
Brownian motion almost surely leaves D in a finite time, and hits a prime end of D.
This Brownian motion stopped at the time it leaves D is called a Brownian motion
in (D, D). We will consider such a (stopped) Brownian motion as a random closed
subset of D or D. So the its law is a measure on the space of closed subsets of D
or D. We use BM(D; z — OD) to denote the law of a Brownian motion in (D, D)
started from z € D. For any side arc I of D, the probability that the above Brownian
motion hits I is the harmonic measure function of I/ in D valued at z, and so is
positive. The law of a Brownian motion in (D, D) conditioned to hit I is denoted
by BM(D; z — I).

Suppose w is a prime ends of D. We may find a decreasing sequence of side arcs
I,, such that {w} = N, I,. Then the weak limit of BM(D;z — I,,) as n — oo exists
and is independent of the choice of {I,,}. We use BM(D; z — w) to denote the limit
measure. A random set with this law is called a Brownian motion in (D, éD) started
from z conditioned to hit w.

Suppose w is a prime end of D, I is a side arc of D, and w ¢ I. Then the weak
limit of BM(D;2z — I) as D 3 z — w exists, and is denoted by BE(D;w — I). A
random set that has this law is called a Brownian excursion in D started from w
conditioned to hit I.

Suppose w; # wy are two prime ends of D. Then the weak limit of BM(D; z — ws)
as D 5 z — w exists, and is denoted by BE(D;w; — wy). It is also the weak limit
of BE(D;w; — I,) as n — oo for any decreasing sequence of side arcs I, such
that {we} = N,I,. A random set that has this law is called a Brownian excursion

in D started from w; conditioned to hit ws. In fact, we have BE(D;w; — wy) =
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BE(D;wy — wy).
Let S(D) be the set of nonempty F' € Cld(D) which is a union of finitely many
mutually disjoint closed Jordan discs. Since we could use sets in S(D) to approximate

any closed subset of D, so we have the following lemma.

Lemma 5.1.1 Let juy and ps be two finite positive measures on FR with 1] = |psl.

Suppose 1 and py agree on {NF = 0} for any F € S(D). Then u = ja.

For F € S(D), D\ F is still a finite Riemann surface. And all sides of D are sides
of D\ F. Let H(D, I;-) denote the harmonic measure function of I in D. Then for

any ' € S(D),
H(D\ F,I;z)

BM(D;2 = D{NF = 0}) = =75

Suppose w is a prime end of D and h maps a neighborhood U of w in D conformally
into H such that 2(U N dD) C R. Let M(D,w, h;-) denote the minimal function in
D with the pole at w normalized by h. Then we have

M(D\ F,w, h; z)
M(D,w,h;z)

BM(D; 2z — w)({NF = 0}) =

If I is a side arc of D such that w ¢ I then

Oy(H(D\ F,1;-) o h™")(h(w))

BE(D,U) — ])({ﬂF = ®}> = 8y(H(D7[, ) o hil)(h(w))

Suppose wy # wsy are two prime ends of D, and h; maps a neighborhood U; of w; in

Dconformally into H such that h(U; N D) C R. Then

Oy(M(D\ F\ 1, ;) o by ') (a (wy))

BE(D;w; — w,)({NF = 0}) = 0,(H(D, 1, ha; -) o hy D) (hy (wy))

The Brownian motion and Brownian excursion have the restriction property. For
example, suppose K has the law of BM(D;p — I) and D’ is a subdomain of D that
contains p and a neighborhood of I. Then K conditioned to stay in D’ has the law

of BM(D'; p — I). The case of Brownian excursion is similar.
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5.1.2 Brownian bubble

Suppose w is a prime end of a finite Riemann surface D. As usual, let h map a
neighborhood U of w conformally into H so that h(U N D) C R. Let & = h(w).
Choose a sequence p,, € U N D so that p, — w. Suppose R > 7, \, 0 and {|z — | <
7m} N H is contained in the image of h. Let U,, = h™'({|z — &| < r,,} NH). Let
pnm denote the measure BM(D;p, — w)/|h(p,) — &|? restricted to the subspace
{¢ Uy} of Cld(D). Let z, = h(p,), Mp(z) = M(D,w,h;h (2)) and M, (z) =
MUy, w, h; h=1(2)). Then

|| = Mp(zn) — My (25)
ol = e = €M o)

As z — 0 in H, from the normalization of M (D,w, h;-), we have

Mp(2) = 2z (1+ O(1z = )

On the other hand, Mp— M, has no pole around &, so it is the real part of an analytic

function in a neighborhood of £. So we have
Mp(z) — Mp(2) = 0yle(Mp — Mp,)Im z(1 + O(]z — &),

as z — & in H. Thus
nh_{{.lo |Hnn| = Oyle(Mp — My,).

So for any m € N, {jn, : n € N} is uniformly bounded. So it has a subsequential
weak limit 11, With |po.m| = Oyle(Mp — M,y,).
Suppose F' € S(D). Then {NF = 0} is an open subset of Cld(D). And

pnm({NF = 0}) = BM(D; p — w)({Z Un, NF = 0})/|1(pn) — &I

= (BM(D;pp — w)({Z Un \ F}) = BM(D; p, — w)({NF # 0}))/|h(pa) — €I*.
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So we have
7111_{1; g ({NF = 0}) = 0y|e(Mp — My, p) — Oyle(Mp — Mp),
where M,, p(2) = M(U,, \ F,w, h; h='(2)) and Mg(z) = M(D\ F,w, h; h~*(2)). Thus
pom({NF = 0}) < 0yle(Mp — M) — 9yle(Mp — Mp).

We could find a decreasing sequence F; in S(D) such that F' = N;F; and F' is contained
in the interior of each F;. For each I, {NintF;, = (} is a closed subset of Cld(D), we

have

tom({NF = BY) > ptg n({Pint By = 0}) > lim sup i ({Nint 7y = 0})

> Oyle(Mp — My, 1) — Oyle(Mp — Mp,).

It can be proved that
i 8y|e(Mp — My.r,) = Oyle(Mp — M r);

i 8y|e(Mp — M) = 9y|e(Mp — Mp).

We conclude that
pom({NF = 0}) = 0yle(Mp — My, ) — Oyle(Mp — Mp).

By Lemma 5.1.1, p9,, is uniquely determined, which means any subsequential weak
limit of {ftnm : n € N} is the same fig . S0 pig,m is the weak limit of j,, ,,, as n — oo.

If m’ < m, then similarly as above, we have

MO,m({C Um’}) = ay|§(]\/[D - M,,) — ay’f(MD - Mm/) = ’/LO,m’ - ‘MO,m"'

Thus po,m({Z Une } = |po,m |- Since piym > pinmy for all n € N, we have pig,, > o -
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It follows that g, restricted to the set {¢ U, } is no less than pg,, restricted to
{Z U}, which is pg ., itself. However, from i ,,({Z Up} = |p40.m|, we must have
Moml{¢u, 4 = tom - This is true for any m’ < m € N.

Finally, note that {{¢ U,}} is an increasing subsequence of closed subsets of
Cld(D), and the union of them is {# 0@}. So there is a unique measure ppo on F5
so that poo({0}) = 0 and pooliev,.} = pom for any m € N. This pgp is positive
and o-finite but not finite. It in fact does not depend on the choice of p, or U,,.
But it depends on the choice of h. We call p the Brownian bubble measure in D
hanging at w, normalized by h. Let it be denoted by BB(D, h;w). In fact, for any

two normalizing function h; and ho, we have
BB(D, hi;w) = |(hy o hy) (hi(w))|?BB(D, ho; w).

If D’ is a subdomain of D that contains a neighborhood of w in D, then BB(D, h; w)
restricted in D’ is equal to BB(D', h; w). And

BB(D, h;w)({¢ D'}) = 0,((M(D,w, h;-) — M(D',w, h;-)) o k=) (h(w)).

The Brownian bubble defined here is similar to the Brownian bubble defined in
[8] for the upper half plane. The main difference is that we don’t fill in the holes of

a Brownian bubble to make it a hull, so the information inside will not be lost.

5.2 A martingale for HRLC,

Suppose L has the law of HRLC,(D;w — I), where x > 0 and D is a finite Riemann
surface with a prime end w and a side arc I such that w ¢ I. The case that the target
is a prime end can be studied similarly. Let o be the side that contains w. Let W
map a neighborhood € in D\ {0} of D conformally onto a neighborhood ¥ in D of
a and satisfy W(0D) = a and W (1) = w. Let T%x be the first ¢ such that L(t) € X
ort = A(L). Let Ly be that L restricted on [0,7%). Let Ly w be a time-change of
Ly such that (K; := Ly w(t)) is a family of standard radial LE hulls. Let [0, 7% w)
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be the range of Ly w. Let £ be the driving function with £(0) = 0 and ¢; be the

corresponding LE maps. Then for some standard Brownian motion B(t), we have

920y Ji(£(1))

dt,

where J; := H;oW oy, o€ and H, := H(D \ W(K;),I;-). Let w(t) be the prime
end determined by Ly, at time t. Then W o ¢; ' o ¢’ maps a neighborhood of £(t)
conformally onto a neighborhood of w(t) in D\ W (K;), and w(t) = Wog; oel(£(t)).
Let h; be a local inverse of W o ¢; ! o ¢’ near w(t). Then h; is a normalizing function
for minimal functions in D \ W (K;) with the pole at w(t). We let M; be the minimal
function as above normalized by h;. Suppose F' € S(D). Let T% w r be the first ¢ such
that W(K,)NF # @ ort = Tsyw. For 0 <t < Tsw.p, let Hy := H(D\F\W(K,), I;-).
Let J, := H,0o W o ;" ot and M, be the minimal function in D\ F \ W(K,) with

the pole at w(t), normalized by h;. Then we have the following lemma.

Lemma 5.2.1
O Hi(2) = —20,J1(&(t)) - My(2), for 0<t<Tyw and z€ D;

O Hy(2) = =20, J,(£(t)) - My(2), for 0<t < Tswyp and z€ D\ F.

Proof. The proof is not immediate. But the picture is clear. The change of Hy(z)
comes from a disturbance at the prime end w(t), which contributes the minimal

function in D \ W (K;) with the pole at w(t). So we omit the proof. O

We may choose a family of conformal maps 1), such that e’ o1, = ¢, 0 €, 1)y is an

identity, and ¢/, is continuous in ¢. Then it satisfies the differential equation

Ore(2) = cot((¢r(z) — £(1))/2).
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And J, 04, = H, 0o W o ¢e'. Applying O, on both sides of this equality, we have

Ui(z) — €(t)

OrJi 0 Yi(z) + 01 (1e(2))Re cot( 5

)+

Pi(2) — £(t)

+0,Jt (Y (2))Im cot( 5

) = =20, Ji(&(t)) My o W o €'(2).

Let p = ¢;(2) and Q; := M; o W o e’ 01/, *. Then

p—&(1) p—&(t)
9 9

O Ji(p) + 0. Ji(p)Re cot( )+ 0y Ji(p)Im cot( ) = —20,J¢(£(1))Qu(p).

Suppose J; and @, are some analytic functions in a neighborhood of &(t) (or
without the point £(¢)) such that J;, = Im J; and Q; = Im @,. Then £(¢) is a simple
pole of Q,, and the principle part is —1/(z — &(t)) thanks to the normalization of M,.

The above displayed formula becomes

01 7, (p) = ~20, K€ Qy(p) — Im (2.7,(p) cor ()

where 0, means the complex derivative. Applying 0, on both sides, we get

0,0.7,(p) = —20,J,(£(1))0.Q,(p) — 0.(0.T(p) cot(? —25 ®),
— o) o7 p—£&(1) 9. 7,(p)/2
= —20,7/(£(1))2:Qu(p) — 02J1(p) cot(—=7) + 2l = €D (5.2.1)

For j =1,2,3, let a;(t) := &1J,(£(t)). So a;(t) = 82719,J;(£(t)). Suppose b(t) is such
that Qy(p) = —1/(z = £(1)) + C + b(t)(p — £(t)) + O((p — &(1))*). Then

0:Q,(p) = TEEOEN b(t) + O(p — &(1));

0:14(p) = ar(t) + as(t)(p — &(1)) + as(t)/2(p — £(8))* + O((p — &(1))*);

02 J4(p) = ax(t) + as(t)(p — £()) + O((p — £(1))*).



Note that

= — g Ol - €0

1/2 2 1
(D)) - —c@y 5 T OP )

Plugging these equalities into formula (5.2.1), we get

00y T (£(t)) = 0,0:T,(£(1)) = (1/6 — 2b(t))ar (t) — as(t).
From Ito’s formula, we have
das (1) = do, Ji(E(1)) = 00, Ji(E(E))dt + /2020, I, (€(1) )t

0,0, HED)(VraB(D) + (3 — ) 20D

9y J1(&(1))
= ((1/6 — 20(t))as (t) — as(t))dt + r/2as(t)dt
K. as(t)?
+(3 — 5) (0] dt + as(t)V/kdB(t).
Thus
. dal(t) ag(t)z ag(t)
dlnay(t) = o) /4;/2al(t)2dt O VKkdB(t)
+(é —ob(t) — 2 - /ezj_gg +(3—#) ngz)dt.
Similarly, let a@; and b be defined for Jt and M Then we have

A = 2VRIBE + (5 - 20 - 23520

Vo) an  2mnr ™
Let
6(5)262—’;; a(x) = (6—/@)2(5 3K) Cand B(x) 3(6 /;)K(n—Q)
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Then we compute

p (61(2€)>6(“)/ (51(75))6(@ _ e(,i)&?(t) — aQ(t))\/EdB(t) — a(r)(b(t) — b(t))dt

ai(t) ai(t)

~ 1 53(t> ag(t)

_B() {(b(t) ey — L

If K =2, then e(k) =1, a(k) = 2, and (k) = 0. So we have

aMy /(@M _ o5 W) ),
d(al(t)>/(a1(t)) 2(b(t) — b(t))dt + (= al(t))\/_dB(t). (5.2.4)

So we have the following Lemma

Lemma 5.2.2 For k = 2,

aq (t)
aq (t)

exp(=2 [ (b(s) = (s))ds)

15 a bounded continuous martingale for 0 <t < Txwp.

Proof. From formula (5.2.4) we know this is a local martingale. Note that a;(t)/ay(t)
= BE(Dy;wy — a)({NF =0} <1 ; and b(t) —g(t) = BB(Dy, hy; w)({NF # 0}) > 0.
So the local martingale is bounded by 1. It must be a bounded continuous martingale.

O

Now we suppose £ = 2. So L has the law of HRLCy(D;w — I). From the above

lemmas, we obtain the following proposition.

Proposition 5.2.1 Let Tr be the first t such that L(t) N F # 0 or t = A(L). For
0<t< TF, let

p(t) = BE(D\ L(t); wr(t) — D)({NF = 0}),
q(t) = BB(D \ L(t), g; wr () {NF 7 0}),

where wy(t) is the prime end of D\ L(t) determined by L at time t, and g; maps a
neighborhood of U, of wi(t) in D\ L(t) conformally into H so that ¢,(U,NOD) C R),
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and

0y(H(D\ L(t), ;) 0 g, ) (ge(wey (1)) = 1.

Then p(t) exp( 2f0 s)ds) is a bounded continuous martingale for 0 <t < Tp.

Proof. Note that Ly is a time-change of Ly, y, and the choice of g; compensates the
effect of the time-change. So from Lemma 5.2.2, p(t) exp(—2 fo ) is a bounded
continuous martingale for 0 < ¢ < T, p, where Ty, r is the first ¢ such that L(t) € %,
or L(t)NF # 0, or t = A(L). Since there is a sequence of %, such that Tr = V,, T, r,

so the proof is completed. O

5.3 Adding Brownian bubbles to HRLC,

We only consider HRLC; in a plane domain D. We may assume that D is a subdomain
of H and H \ D is a compact subset of H. Let I be as side arc of D. Suppose L
has the law of HRLCy(D;0 — I). Let L. on [0,7,) be a time change of L such that
(Lc(t)) is a family of standard chordal LE hulls. Let £ be the driving function, and
¢; be the corresponding LE maps. Then for some standard Brownian motion B(t),

we have

_ 950, J1(&(1))
dé(t) = V2dB(t) + 2 5 ED) dt,

where J; ;= H,o W o, ', Hy:= H(Dy,I;-), and D; := D\ Lc(t).
Suppose F' € S(D). Let T, r be the first ¢ such that L.(t) N F # ( or t = T,. For
0<t<T,p,let
plt) = BE(Dy wy, (t) — D({NF = 0}),

q(t) = BB(Dy, oy wy, (1)) ({NF # 0}),

where wy_(t) is the prime end determined by L. at time ¢. Similarly as Lemma 5.2.2,

we have

Lemma 5.3.1 For 0 <t <T.p, p(t)exp(—2 fo s)ds) is a bounded martingale.
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Let 8 be the curve in D such that L.(t) = (3(0,t]. Then for p € D\ L.(t),
p — wg (t) iff p— B(t). We may write §(t) for wg, (t). We have

Lemma 5.3.2 If §(t) — z € OF ast — T , then lim, - p(t) = 0.

Proof. This is similar to the proof of Lemma 6.3 in [8]. O
Lemma 5.3.3 If 3(t) — wo € int I ast — T ., then lim, - p(t) = 1.

Proof. Suppose v is an open simple curve in D disconnecting wy from F in D and
the two ends of 7 converge to two different points of I. Let T, be the last t such
that 3(t) € 7. Let U be a connected component of D \ v\ 5(0,7,] that has a prime
end wy. Then U is simply connected, and the boundary of U in D is composed of a
subarc of [ that contains zy, part of v, and part of 3(0,T]. Let I:=1ndU. Suppose
t > T.,. By definition,

p(0) = lim BM(Dsiz = D{NF = 0})

Let U, := U \ B(7%,t]. Then we have

BM(Dy; z — OD;)({NF # 0, hits I})
BM(Dy; z — dD,)({hits I})

BM(Dy; 2z — I({NF # 0}) =

< BM(Di;z — oD)({¢ U}) ~ BM({Us;z — OUy) ({hits y U B(0,T3]})
= BM(Dy; z — 9D,)({hits T}) ~ BM(Uy; 2 — OU,) ({hits T}) '

The last inequality comes from the fact that BM(D,; z — 3Dt) stopped on leaving U,
has the same law as BM(Uy; 2 — 0U;). As z — ((t), the right-hand side of the above

inequality tends to

1= BE(D; (1) — 90U, \ ST, 1]) ({hits 7})'
BE(Dy; B(t) — 0U: \ BT, t])({hits I})

To show that BE(Dy; 8(t) — I)({NF = (}) tends to 1 as t — T, it suffices to prove
that BE(Dy; 5(t) — dU, \ BT}, t])({hits I}) tends to 1 as t — T}.
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Note that U, is simply connected, and 0U, = 0U U 3(T,,t]. The two sides of
B[T,t] correspond two side arcs of U, which have a common side point 3 (). Suppose
Q) maps U, conformally onto D so that Q;(3(t)) = 1 and the two sides of §[T’,, ] are
mapped to the arc < 1,+i > and < 1, —2 >, respectively, where < a,b > denotes the
shorter arc of D bounded by a,b € dD. Suppose I is mapped to < er+® eir-®) >

where 7/2 <1y (t) < r_(t) < 3w/2. By conformal invariance,
BE(Dy; 8(t) — 0U, \ BT, 1])({hits T})

= BE(D; 1 —< 44, —i >)({hits < e™® =0 >1),

We now only need to show e+®) — 44 as t — T.. Write 5 for Q; (< 1,4i >)
and of for Q7' (< +i,e"+® >). Ast — T, every curve in U, from I to 5 must
cross an annulus centered at zp with modulus tends to co. So the extremal distance
between o and 5 in U, tends to co. By conformal invariance, the extremal distance
between < 1,44 > and < i, e *® > in D tends to co as t — T,. Thus the length of

< Fi,e"F® > tends to 0, i.e., =" — 4 ast — T.. O

From the discussion of the last chapter, it is reasonable to assume that () con-
verges to some interior point of I as t — A(L). Combining the last three lemmas, we

conclude
Proposition 5.3.1 p(0) = E[l{s0,1,)nr=0} exp(—2 f0T° q(s)ds)].

Consider a Poisson point process X on Cld(H) x [0, o0) with mean 2BB(H, id; 0) x

dt, where dt is Lebesgue measure. Let

~

Xp = {7 (K +£@1),1) : (K1) € X, t € [0,T0), 0, (K +£(t) € D}.

Roughly speaking, Xp is a Poisson point process with mean 2BB(Dy, ¢;wr, (1)) X dt.
Let = be the union of 5(0,7,) and all K such that (K,t) € Xp for some ¢.
Choose any F € S(D). The probability that =N F = () is the probability that
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o (K +£(t)) ¢ D or NF = () for each (K,t) € X and t € [0,7.), which is equal to

Ellgs0.m)nr=0} eXp(—2/0 BB\ Le(t), @i wr, (1) ({C D,OF # 0})di)].

From the definition of Brownian bubbles; BB(H \ L.(t), ¢:; wr, (t)) restricted to the
event {C D} is BB(Dy, ¢y wp, (t)). By Proposition 5.3.1, the above formula is equal

to

Te
B[l s0.1.)07—0) exp(—2 / BB(D,. or; wr, (1)) ({NF # 0})dt)]

= BE(D;0 — «o)({nF = 0}).
Theorem 5.3.1 The law of = is BE(D;0 — «).

Proof. By Lemma 5.1.1, we only need to show that a.s. = is a closed subset of D.
For any t € [0,00), let =f denote the union of 3(0, min{T,,¢}] and all K such that
(K, s) € Xp for some s € [0,4], let =, be the union of 3(0,T,] and all K such that
(K, s) € Xp for some s € [t,T.). A proof similar to that of Theorem 7.3 in [8] shows
that Z' is a.s. closed for any ¢t. Since = = =' U 5, so if Z is not a.s. closed, then
there is some F' € S(D) such that with a positive probability 5(0,7.) misses F but Z;
intersects F' for all t. However, the probability that (0, 7.) misses F' but =Z; intersects

F' is the value of

Te
1— E[l{B(O,TC)mF:@} eXp(—Q/ BB<DS) Pss ws)({mF 7é (Z)})ds)]
t

=1— E[ligom)nr=0BE(Dy; wy — a){NF =0})] — 0, as t =T, .

This is because p(t) — 1 on the event {5(0,7,) N F = 0}. So = is closed. O

5.4 Other values of the parameter x

In this section we only consider the HRLC, in a plane domain D from one prime
end to another prime end, and the two prime ends are on the same side of D. We

assume that D is a subdomain of H that contains some neighborhoods of 0 and oo
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in H. Let A denote all domains of this kind. We study the HRLC,(D;0 — oo) for
k € (0,8/3]. If L has the law of HRLC,(D;0 — o), then UL(t) is a random simple
curve in D started from 0. If D is a simply connected domain, then L is a chordal
SLE, so the curve ends at co. Now we assume that L ends at oo for all D € A. With
this assumption, HRLC, generates a measure on I'(D), the space of simple curves in
D connecting 0 and oo.

For any D € A, let M?, be a minimal function in D with the pole at 0, normalized
such that

1
MY(2) +Im = — 0, as z — 0;
z

let M7y be a minimal function in D with the pole at co, normalized such that
MP(z) —=Imz — 0, as z — 0.

Let
1
BB(D) := —9,(M}(z) + Im ;)|Z:0;

_ %0,M5(0) §(Mﬁ°(0>)2
2

(
Sh(D) :=
0, M (0) 9, M7 (0)
In fact, BB(D) = BB(H,id; 0)({Z D}) > 0. And if D is simply connected, we have
—BB(D) = Sh(D)/6. Now let

J(D) := —BB(D) — Sh(D) /6.

One may check that J(D) is conformally covariant in the sense that if D, D" € A,
and f maps (D;0,00) conformally onto (D';0,00), then J(D) = f(0)2J(D").

Suppose v € I'(D). We may parameterize 7 such that (v(0,¢],0 <t < o0) is a
family of standard chordal LE hulls. Let £ and ¢; be the driving function and LE
maps. Let D] := D\ 7(0,t] and Q] := ¢/ (D;) — £7(t). Then Q] € A. Now we
assume that for any v € ['(D), [;* J(Q])dt exists and is finite. Let

Ap(7) = exp! /0 T QD)) and Op(y) = exp( /0 T _BBO))db).



130
Then Ap is conformally invariant in the sense that if D, D’ € A, and f maps (D;0, c0)
conformally onto (D';0,00), we have Ap(vy) = Ap/(f(y)) for any v € I'(D). For ¢ >
0, let X be a Poisson point process on Cld(H) x [0, 0o) with mean ¢BB(H, id; 0) x dt.
Let
== U{()) HK +€(1),t) : (K,t) € X,,t €[0,00)} U~.

Then ZY is called the union of v with a Poisson cloud of Brownian bubbles in H with
density c. And the probability that = stays in D is equal to Op(y)¢. We now use
the symbols e(k), a(k) and (k) in (5.2.2). Suppose D’ C D are two domains in A.

Using an argument similar to that of the last section, we get

BE(D' e(x) O (k) AN B(x)
)L () e
where p” is the measure on I'(D) given by HRLC,(D;0 — oo), and BE(D) :=
BE(H;0 — oo)({C D}). If k = 8/3, then e(k) = 5/8, a(r) = 0 and f(k) = 5/4.

Let D; C Dy be two domains of A and D’ C D; is a simply connected domain in A.
Then Ap = 1. From (5.4.1), we have

BE(D')\”* diig?
( ( )> :/ TS//j’ for j=1,2.
BE(D;) (D) AD]_

Let 175?/3 be defined by dﬂé:;?’ = ABS/ 4d,uSD/g. Since pl), and Ap are conformally

invariant, so is ?7833. Assume it is a bounded measure. Then we have

ToL(D")/PA(D') = (BE(Dy)/BE(D,)) %,

Note that two bounded measure on I'(D) are equal iff they agree on the set {C D'}

for all simply connected D" € A. So we find that ﬁgf}% restricted to I'(D;) is equal
to (BE(Dl)/BE(DZ))WSDé%. If we let V§7/3 be equal to DSD/?)/|§53|. Then V8D/3 is a

conformally invariant restriction probability measure.
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For k € (0,8/3), we have a(k) > 0. From (5.4.1), we may guess that

BE(D1)“ (Bp,) " (Ap,) )" = BE(Dy) " (Op,) " (A p,) P dpr?
(5.4.2)
on I'(D;). Now let P be a probability measure so that dv? = C(Ap,) P du? for

some C' > 0. Then v? is conformally invariant. And for some C' > 0, we have
(Bp,) "W dv = C(Op,) ™ Wdy,”.

Let «; be a random curve with the law of V,? 7. Consider a Poisson point process

X on Cld(H) x [0, 00) with mean a(x)BB(H,id;0) x dt. Let

X7 = {0 ) K +&(1),) « (K1) € Xt € [0,00), (9]) (K +87(t) € Dj}-

J

Let =; be the union of 7; and all K such that (K,t) € )/5]7 for some ¢. Then for any
D" € A and D" C Dy, the probability that =; stays in D’ is equal to

b(k)
/ (—DD, ) dvPsi.
r(on) \Hb;

So there is a C' = C(Dy, Dy) > 0 such that the probability that =Z; stays in D’ is
equal to C' times the probability that =5 stays in D', for any D’ € A and D' C D;.
So =, conditioned to stay in =; has the same law as =Z;. Thus by adding a Poisson
cloud of Brownian bubbles with density a(k) to a random curve with the law of v/?,
we obtain a conformally invariant restriction Probability measure. If D = H, then

after filling all holes, this measure agrees with the restriction measure constructed in

[8] from a chordal SLE,.
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