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Abstract

We prove the twisted weighted fundamental lemma for the group GL(4) x GL(1) relative to a certain
outer automorphism «, which yields GSp(4) as a twisted endoscopic group. This version of the
fundamental lemma is needed to stabilize the twisted trace formula for the pair (GL(4) x GL(1), «).
This stabilized twisted trace formula is required for Arthur’s classification of the discrete spectrum

of GSp(4) in terms of automorphic representations of GL(4).
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Chapter 1

Introduction

We give a brief outline of the trace formula and the problem of stabilization. Introductions to the
stabilization of the trace formula, from which much of this section is taken, can be found in [Art97]

and in the introduction to [Art02b].

1.1 The trace formula

We take GG to be a connected reductive algebraic group defined over a number field F. We let
A denote the ring of adeles of F'. Via the diagonal embedding G(F') embeds discretely in G(A).
The group G(A) of adelic points of G acts on the Hilbert space L?(Z(A)G(F)\ G(A)) by right
translation; here Z denotes the center of G. Automorphic representation theory is concerned with
the representations of G(A) that occur in this action. The trace formula is a powerful tool in this
study.

Suppose for the moment that G/F is anisotropic modulo the center, that is Z(A)G(F)\ G(A)
is compact, for example we could take G to be the group of units in a definite quaternion algebra
over Q. In this case the representation of G(A) on L?(Z(A)G(F) \ G(A)) decomposes discretely.

That is we have

LHZ(A)G(F)\GA) = D mar

7ell(G(A))
as a direct sum over irreducible representations of G(A) with finite multiplicities m, € Z>o. Let

f € CX(G(A)) be a smooth function on G(A) with compact support; we have a linear map
R(f): L(Z(A)G(F) \ G(A)) — L*(Z(A)G(F) \ G(A))

given by integrating f against the action of G(A), that is
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The map R(f) is of trace class and the trace formula, due in this case to Selberg, gives two expansions
for the trace of R(f). On the one hand we can write the trace of R(f) as a sum over representations
of G(A),

wR(f)= D metr(n(f)).

n€M(G(A))

On the other we have

wR(f)= Y vol(Z(A)G,(F)\G,(A)) flg™ ) dg.
YET(G(F)) Gy (ANG(A)
a sum over conjugacy classes in G(F) of orbital integrals; here G, denotes the connected component
of the centralizer of ~.

In the case that G is not anisotropic modulo the center the arguments above immediately break
down since the action of G(A) on L?(Z(A)G(F) \ G(A)) does not decompose discretely. The cusp
forms do, however, lie in the discrete spectrum and we have a trace formula due to Arthur that
applies to any reductive group G; see [Art78] and [Art80]. The trace formula gives an identity of

distributions,

Do Jolh) =D Ilf)

0cO XEX
for f a smooth function on G(A). The sum on the left is over conjugacy classes in G(F') while the
sum on the right is over automorphic representations of G and its Levi subgroups.
The first refinement of Arthur was to make the trace formula invariant, that is to write each of
the expansions above as a sum of invariant distributions. We take the invariant trace formula from
[Art88a]. The invariant trace formula gives two expansions for a certain linear form I(f); we have

a geometric expansion

() =>_ wWewg = Y. ™ Iuly. f)
M

YEL(M(F))

given as a sum over conjugacy classes of Levi subgroups M of G. The terms Ins (v, f) are built out

of weighted orbital integrals. And we have a spectral expansion
1) =S WEIWE [ oM@t ) dn
M TI(M)

given in terms of data associated to representations of the Levi subgroups M.

Some of the terms in the above expansions are entirely similar to the case that G/F' is anisotropic.
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On the geometric side we have, for v € G(F) which is semisimple and elliptic,

Ia(v, f) = / flg™"vg) dg.

G (A\G(A)

On the spectral side we have, for an irreducible representation 7 of G(A) which occurs discretely in
the representation of G(A) on L?, a®(r) equal to the multiplicity of 7 in the discrete spectrum and
Lo(r, f) = tr(n(f)):

The most powerful applications of the trace formula, for example to questions of functoriality,
come about when the trace formula is not used in isolation. Identities between the geometric
sides of the trace formula for different groups produce corresponding identities between the spectral
sides out of which one can hope to prove relationships (functorialities) between the automorphic
representations of the groups in question.

Suppose now that we have two groups G and G’. In order to match up the geometric sides of

the trace formula for G and G’ one needs to be able to
1. transfer conjugacy classes between the two groups, and
2. transfer functions between the two groups given by identities between orbital integrals.

We note that it is enough to treat 2 for functions of the form [], f, given as a product over the local
groups, this turns the problem of transferring functions into a local one.

This is precisely the strategy carried out by Jacquet and Langlands in [JL70] to prove functoriality
for G = D*, the group of units in a quaternion algebra D, and G’ = GL(2). The characteristic
polynomial for elements of G and G’ gives an injection i : T'(G(F)) — TI'(G'(F)). Jacquet and

Langlands also define a correspondence

f=1lfr=1I#
from C°(G(A)) to C(G'(A)), such that

Ier (', f') = 1a(v, f)

if 4/ = i(y) and is zero if 4" € T'(G'(F)) does not lie in the image of i. Using the trace formula they
then prove functoriality between G and G’.

There is a serious obstacle in applying this argument to prove functoriality for other groups; for
example between a group and its quasi-split inner form. The transfer of conjugacy classes between
G and @' is only defined up to conjugacy over the algebraic closure of F. For the cases considered by
Jacquet and Langlands this is not a problem; elements of GL(2, F') which are conjugate in GL(2, F)

are already conjugate in GL(2, F'). However, in general, the notion of stable conjugacy (conjugacy
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over F) is a strictly coarser equivalence relation. This is already apparent in the case of SL(2); see
[LL79).

In the same way one can only hope to transfer functions between groups up to their values on
stable orbital integrals, that is, the sum of the orbital integrals over the conjugacy classes within
a stable conjugacy class. One would therefore like to be able to write I(f) as a sum of stable
distributions parameterized by stable conjugacy classes in G(F).

The first problem is that I(f) is, in general, not stable. To see this let v € G(F') be semisimple
and elliptic. We take a finite set of places S of F'. Suppose that for each v € S we choose an element
7! € G(F,) such that v and 7/, are conjugate in G(F,). We can then define v/ = (7)) € G(A)
by setting v, = v € G(F,) for v ¢ S. In order for the distribution I(f) to be stable we need the
orbital integral I (', f) to appear in the geometric expansion of I(f). But this only happens if
~' is conjugate in G(A) to an element of G(F'), and in general one cannot guarantee that this will

happen. Therefore the distribution I(f) is not stable.

1.2 Stabilization

In [Lan83], Langlands suggested a stabilization of the geometric side of the trace formula, at least

for the M = G terms, of the form
I(f) =Y _uG. H)ST ().
H

Here the sum is over a certain family {H} of quasi-split groups, known as elliptic endoscopic groups,
attached to G via dual group considerations. The coefficients (G, H) are explicitly defined and the
distributions S¥ are stable distributions, which depend only on the group H. The existence of the
functions f# on H depend on certain local conjectures; see below.

In the case that G is quasi-split one can write this as

I(f) = S9(f) + D oG H)S™(F7).
H#G
Each of the groups H # G have dimension strictly smaller than G, and one can view this as writing
I(f) as a main stable term S¢(f) together with an explicit error term coming from the proper
elliptic endoscopic groups of G.
Such a decomposition for the M = G terms in the trace formula was achieved by Langlands

[Lan83] and Kottwitz [Kot86] subject to these local conjectures which we now describe. In order to
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obtain the existence of the function f above it is sufficient to consider functions of the form
f = H f v
v

on G(A), where f, is a smooth compactly supported function on G(F,), and f, is the characteristic
function of a fixed hyperspecial maximal compact subgroup of G(F,) for almost all v. To obtain
the function f we need to obtain functions f# on H(F,) for each v. The conjectural functions f
need to satisfy an identity between their stable orbital integrals on H and a certain unstable linear
combination of orbital integral of f. In the case that v is archimedean, this has been achieved by
work of Shelstad [She82], for non-archimedean v the existence of f is conjectural. This conjecture
is known in a limited number of cases. The fundamental lemma asserts that for almost all v we
can take f to be the characteristic function of a fixed hyperspecial maximal compact subgroup of

H(F,), which guarantees that the function
=11
v

is a function on H(A). Furthermore, Waldspurger in [Wal97] has shown that the analog of the
fundamental lemma for the Lie algebra of G implies the corresponding transfer conjecture.

Building on the work of Langlands and Kottwitz, Arthur [Art02b] has stabilized, subject to a
fundamental lemma for weighted orbital integrals, the remaining terms in the geometric expansion
for I(f).

In this thesis we will be interested in the stabilization of the twisted trace formula. This trace
formula applies to a pair (G, «) of a connected reductive group G and an automorphism « of G.
Roughly speaking, the twisted trace formula for (G, a) gives two expansions for the trace of the
operator R(a)R(f) on L?(G(F)\ G(A)), where R(«) acts on L? by composition with a~1.

The stabilization of the elliptic part of the twisted trace formula has been completed, subject to
appropriate local conjectures for twisted orbital integrals, by Kottwitz and Shelstad in [KS99] and
Labesse in [Lab04]. The stabilization of the remaining terms in the twisted trace formula is work in
progress; however, it relies on a fundamental lemma for twisted weighted orbital integrals given in

[Art02a]; see also Chapter 3.

1.3 Transfer from GSp(4) to GL(4)

We now specialize to the case of interest in this thesis. In [Art04] Arthur gives, subject to the
twisted weighted fundamental lemma proven in this thesis, a classification theorem for the automor-

phic discrete spectrum of GSp(4); this theorem applies to both generic and non-generic forms and



6

in particular applies to representations attached to holomorphic Siegel cuspforms. This classifica-
tion includes a parameterization of the representations of the local groups GSp(4, F,) into packets
together with a decomposition of the discrete spectrum of GSp(4) in terms of automorphic repre-
sentations of GL(4). This also gives a multiplicity formula for representations which appear in the
discrete spectrum of GSp(4).

Much is known about the automorphic representation theory of GL(4). Thus a knowledge of this
transfer allows one to obtain important information about automorphic representations of GSp(4)
from the known facts about GL(4). From the analytic point of view one is interested in properties
of the L-functions attached to cuspforms on GSp(4), for example the location of poles. On the
algebraic side one is interested in properties of the f-adic representations attached to holomorphic
Siegel cuspforms. We hope to explore some of the consequences of this transfer for these associated
objects.

The results of [Art04] are achieved by a comparison of the stable trace formula for GSp(4) with
a stable twisted trace formula for GL(4) x GL(1); see also [KS02, Remark 9.3]. This work is part of
a program of Arthur’s to prove functoriality between classical groups and the appropriate general
linear groups subject to the local conjectures required in the stabilization of the necessary trace
formulas.

For GSp(4) the fundamental lemma for invariant orbital integrals is proven in [Hal97]; see also
[Wei94]. The weighted fundamental lemma in [Art02b] required for the stabilization of the full
trace formula does not apply to GSp(4) since its proper Levi subgroups are products of general
linear groups, and hence do not possess proper elliptic endoscopic groups. Therefore, all the local
conjectures required for the stabilization of the trace formula for GSp(4) have been established.

For the stabilization of the twisted trace formula for GL(4) x GL(1) and the automorphism «
given in Section 3.2 below, the twisted fundamental lemma for invariant orbital integrals is proven in
[F1i99]. Flicker’s proof is for fields of odd residual characteristic, however, this is sufficient for global
applications. A weighted variant of the twisted fundamental lemma, stated in [Art02a], is also needed
for the stabilization of the full twisted trace formula. This is needed since there are Levi subgroups
of GL(4) x GL(1) that have elliptic twisted endoscopic groups. It is this fundamental lemma which
we prove in this thesis, we again restrict ourselves to local fields of odd residual characteristic. This
is the first such twisted weighted fundamental lemma to be proven when the twisting is of a group
theoretic nature, moreover the geometric methods used to prove the unweighted fundamental lemma,
for example in [LN04], do not apply to the weighted fundamental lemma.

In Chapter 2 we give some definitions and results used throughout this thesis, we also give enough

details in order to give the statement of the twisted weighted fundamental lemma in Chapter 3. The



conjectural identity is given by the formula

S AuxCRGE = Y (@650,
k€L G —reg(M(F)) G'e€ i (G)
The left hand side consists of a finite linear combination of twisted weighted orbital integrals on the
group G with respect to the Levi subgroup M. We take M’ to be an elliptic twisted endoscopic group
for M; the right hand side is then a finite linear combination of stable weighted orbital integrals on
certain groups G’ that contain M’ as a Levi subgroup.

From Chapter 4 onwards we specialize to the twisted weighted fundamental lemma for G equal
to GL(4) x GL(1). We begin in Chapter 4 by determining all endoscopic groups that appear in the
statement of the twisted weighted fundamental lemma, and in Chapter 5 we compute the necessary
weight functions, which appear in our weighted orbital integrals.

As above, the twisted weighted fundamental lemma applies to a pair (M, M") of a Levi subgroup
M of G and an unramified elliptic twisted endoscopic group M’ for M. There are four such pairs given

in the table below, here E denotes the unramified quadratic extension of the local nonarchimedean

field F.

M M’

(GL(2 )>< GL(2)) x GL(1) GL(2) x GL(1)
(GL(1) x GL(2) x GL(1)) x GL(1) GL(2) x GL(1)
(GL(1) x GL(2) x GL(1)) x GL(1) | Resg/r(GL(1)) x GL(1)

GL(1)* x GL(1) GL(1)?

We now outline the proof of the fundamental lemma for each pair (M, M’). We take F to be
a local field of characteristic zero. We let R denote the ring of integers in F'. We denote by ¢ the
cardinality of the residue field of F' that for now we assume is odd and greater than three.

In Chapter 6 we prove the fundamental lemma for the first pair. We begin by writing both sides
of the fundamental lemma in this case as untwisted orbital integrals on GL(2, F). The identity to

be proven then takes the form

indexed by elements A € GL(2, F'). Moreover, since both sides vanish if the conjugacy class of A in
GL(2, F) does not intersect GL(2, R) we may assume that A € GL(2, R). We split the proof into
two cases depending on whether A lies in a split or elliptic torus. In the former case we may assume

that

a
A:
d

is diagonal. We find that both L(A) and R(A) depend only on |a — 1|,|d — 1|,|a — d| and |ad — 1.

Since we are assuming that F' has odd residual characteristic we have the following three cases
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Case 1. ¢ M =|ad—1|=|a—d|=|d—1|>|a—1=¢ N
Case 2. ¢ M=la—1|=|d—1=|ad—1|>|a—d =q¢ N
Case 3. ¢ M=la—1=|d—1=|a—d| >|ad— 1| = ¢ V.

In each case we denote L(A) (resp. R(A)) by L(M,N) (resp. R(M,N)). In cases 1 and 3 we prove
that
qL(M,N +1) — L(M,N) = gR(M, N + 1) — R(M, N)

and in case 2 we prove that
L(M,N+1)—-L(M,N)=R(M,N +1)— R(M,N).

In each case we exploit cancellations between the integrals on either side of F'L(A) allowing us to
readily compute the differences. Thus the proof of the identity FL(A), when A lies in a split torus,

is reduced to proving the identity under the assumption
lad — 1| =la—d|=|d—1] = |a —1].

We then compute both sides of FL(A) under this assumption and show that they are equal. In the
case that A lies in an elliptic torus we again reduce the proof to certain cases, which we then prove,
by following a similar strategy.

The proofs of the fundamental lemma for the Levi subgroup
M = (GL(1) x GL(2) x GL(1)) x GL(1)

and both its unramified elliptic twisted endoscopic groups are given in Chapters 7 and 8. The proof
uses the twisted topological Jordan decomposition which is described in Section 5.6. We can write

any element ya with v € M(R) uniquely as
Yo = usa = sau,

where sa has finite order prime to ¢ and u is topologically unipotent, i.e., u?" — I as n — co. Using
this decomposition allows us to write the twisted weighted orbital integral at ya as an (untwisted)
weighted orbital integral at «w on the group Gsa, the centralizer of sa in G. The main part of the
proof of the fundamental lemma is when s is the identity. In this case the twisted weighted orbital
integrals become untwisted weighted orbital integrals on Sp(4). These integrals are of a type that
appear on the right hand side of the fundamental lemma treated in Chapter 6. We are then able to

use the calculations from there to prove the fundamental lemma for both pairs (M, M’). When s
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is not the identity, the groups G, have dimension strictly smaller than Sp(4) and the fundamental
lemma can be readily verified in these cases.

In Chapter 9 we prove the fundamental lemma for the diagonal torus in GL(4) x GL(1). We
again use the twisted topological Jordan decomposition. The main part of the proof comes down to
proving an identity between weighted orbital integrals on Sp(4) with respect to the diagonal torus.
We establish this identity by exploiting cancellations between the relevant integrals on Sp(4).

We delay to Chapter 10 the computation of certain p-adic integrals that are needed in the proof

of the fundamental lemma.
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Chapter 2

Preliminaries

In this chapter we give a few preliminary definitions and results that will be used throughout this
thesis, often without reference. We also give enough details so that the statement of the twisted

weighted fundamental lemma, given in Chapter 3, makes sense.

2.1 Twisted conjugacy

Let G° be a connected reductive group defined over F, a field of characteristic zero. We take o to
be a quasi-semisimple automorphism of G°. By definition this means that there exists a pair (B, T)
(not necessarily defined over F') with B a Borel subgroup of G° and T a maximal torus in B such
that a(B) = B and «(T) = T. Throughout we allow « to be trivial in which case we recover the
untwisted definitions.

We assume further that « is of finite order and form the semidirect product GT = G° x (a) and
take G to be the connected component GY x a. We say that v € G° is a-semisimple if the element
ya € G is semisimple, i.e., the automorphism of G° given by Int(7y) o a is quasi-semisimple in the
sense above.

The twisted conjugacy class of v € GO is
{97 valg) 1 g € G°}.

We note that for g € G° we have

9 'vag = g va(g)e,

and so the notion of twisted conjugacy of + is equivalent to conjugacy of ya by elements of G, we
will use these notions interchangeably.

The twisted centralizer of v € G is

Zgo(ya) ={g € G’ : g \yalg) =~} .
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We say that yo is strongly regular if Zgo (ya) is abelian. We denote by G, the connected component
of Zgo(ya).

2.2 Parabolic subgroups

Having fixed F' by a parabolic subgroup of G° we mean a parabolic subgroup defined over F.
Similarly by a Levi subgroup of G° we mean a Levi subgroup MY of a parabolic subgroup P° such
that both M and PP are defined over F. If MY is stable under o we denote by M the connected
component M x a of M? x (o). We say that ya € M is strongly G°-regular if yo is strongly regular
as an element of M and Gyo = M,q.

We denote by G the dual group of G°; see [Bor79, Section 2]. For a quasi-split group G° there
is a bijection between the parabolic subgroups of G° and the parabolic subgroups of GO the dual

group of G; see [Bor79, Section 3].

2.3 GSp(4) and Sp(4)

We let J denote the matrix

and we set

Sp(4) ={g € GL(4): J'g~'J ! =g},

and

GSp(4) = {g € GL(4) : Jlg~ 1T~ ! = Ag},.

The intersection with GSp(4) of the upper triangular Borel subgroup of GL(4) is a Borel subgroup
of GSp(4). The proper parabolics of GSp(4) that contain this Borel subgroup are the Siegel parabolic,

which has Levi decomposition

:g € GL(2),a € GL(1) »,
awtg lw 1
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where

1

and the Klingen parabolic which has Levi decomposition

1 =z r s

g "|.geccL@,acaLn)
a ldetg

The intersection of each of these parabolic subgroups with Sp(4) is a parabolic subgroup of Sp(4),
we refer to their intersection with Sp(4) by the same name.

The dual group of GSp(4) is GSp(4, C) and under the bijection between parabolic subgroups of
G and G the Siegel and Klingen parabolics are switched.

2.4 Weighted orbital integrals

We now assume that F' is a local nonarchimedean field of characteristic zero. Let M be a Levi subset
of G. We fix K a maximal compact subgroup of GY(F), which is admissible relative to M in the
sense of [Art81, Section 1]. Associated to (G, M) is a weight function

vy GH(F) — C

defined in [Art88b, Section 1]; see also Chapter 5. We do not give the definition here but note that
vy is left MT(F) invariant and right K invariant.
Let ya € M(F) be strongly G°-regular. We define

Dg(va) = det(1 — Ad(ya))

Q/g’Y(x )

where Ad(ya) denotes the adjoint action of ya on the Lie algebra g of G® and g, is the Lie algebra
of Gya-
Let f be a smooth complex valued function of compact support on G(F'). The weighted orbital

integral of f is defined by

(e, f) = |De(va)[} / F(g~Hag)oar(g) d.
GHa(F)\GO(F)

The integral depends on the choice of a Haar measure on G, (F'), however we suppress this from

our notation. We will usually take the measure on G.o(F) that gives its maximal compact sub-
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group volume one. We also note that since G, C M 0 the function vy descends to the quotient

Gra(F)\ G(F).

2.5 Endoscopy

We continue with F' local nonarchimedean of characteristic zero and we let Wr denote the Weil
group of F. Let GO denote the dual group of G% and L'G° = GO x W the L-group of G°. By duality
we obtain an automorphism & of (A?O; see [KS99, Section 1.2].

The definition of endoscopic datum (H, H, s, €) is found in [KS99, Section 2.1]. Here H is a quasi-

0 is an L-homomorphism

split group over F', H is a split extension of H by Wg and € : H — LG
which maps H isomorphically onto Z@O(sd)o, the connected component of the centralizer of s& in
G,

There are many issues that are dealt with by Kottwitz and Shelstad in the theory of endoscopy

that do not appear in our case. For us it will be sufficient to consider Zg,(s&)° together with a

Galois action on Zg,(s@)° given by a homomorphism
p: Gal(F/F) — Zgo(sd).

We use this homomorphism to form the L-group Zg, (s&)? x Wp and take H to be the quasi-split
group with this L-group.

Let H be a twisted endoscopic group for G°. Then by [KS99, Theorem 3.3.A] we have a canonical
map

Ay Clss(H) — Clgs(G°, )

from semisimple conjugacy classes in H(F') to semisimple twisted conjugacy classes in GO(F). This
map respects the action of Gal(F/F). If we take T to be a maximal torus in G°, which is stable
under o and Ty, a maximal torus in H, then the map Apy /¢ is given by a norm map N : T — Ty
which factors through T/(1 — «)T.

We say that v € H(F) is strongly G-regular if its image under Ama is a strongly regular
twisted conjugacy class in G°(F). The stable conjugacy class of a strongly G%regular + is the
intersection of H(F) with the conjugacy class of v in H(F), it is a finite union of conjugacy classes
in H(F). Similarly the stable twisted conjugacy class of § € G°(F), which is strongly regular, is the
intersection of G°(F) with the twisted conjugacy class of § in GY(F); it is a finite union of twisted
conjugacy classes in G°(F).

Kottwitz and Shelstad define a transfer factor A(v,d) in [KS99, Chapter 4]. The function A(v, 9)
depends only on the stable conjugacy class of v and the twisted conjugacy class of § in G°(F).

Moreover A(v,6) is non-zero if and only if 0 lies in Ag/g(7v). Thus it follows that if we fix v then
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there are only finitely many twisted conjugacy classes {§} in G°(F) for which A(y, ) is non-zero.

2.6 Notation

In addition to the notation introduced above we fix the following notation throughout this thesis.
Throughout F will be a local nonarchimedean field of characteristic zero. We let R denote the
ring of integers in F' and we let m denote a uniformizer in R. We fix the Haar measure on F' that
gives R volume one. We let ¢ denote the order of the residue field of F', which we take to have
characteristic p. We use v and | | to denote the additive and multiplicative valuations on F', which
we normalized so that v(m) = 1 and |7| = ¢~'. We let Up denote the group of units in R and U%

denotes the subgroups of Ur defined by

Ur, if m=0;
1+7a™R, ifm>0.

Up =

We fix an algebraic closure F of F' and denote again by | | the extension of | | to F. We will
frequently denote by I' the Galois group Gal(F/F). For a group G with an action of Gal(F/F) we
let G denote the elements of Gy that are fixed by T

For an algebraic group H we let X (H) denote the group of characters of H and H® denotes the
connected component of the identity in H. For a field extension E/F and H an algebraic group
defined over E' we let Resg,p H denote the restriction of scalars of H to F.

For a compact open subgroup of a p-adic group we use 1y or charg to denote the characteristic
function of K.

For ease of notation we frequently use blank entries in matrices to denote zeros. Given A; €
GL(n;), 1 < ¢ < k we let diag(Ay, ..., Ax) denote the block diagonal matrix in GL(ny + ...+ ng)

with block diagonal entries Ay, ..., Ag.
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Chapter 3

The twisted weighted fundamental
lemma

In this chapter we give the statement of the twisted weighted fundamental lemma from [Art02a]. As
remarked there it is stated in such a way that it includes the statement of the weighted fundamental

lemma found in [Art02b, Section 5].

3.1 The twisted weighted fundamental lemma

Let G° be a connected reductive algebraic group defined over F, a local field of characteristic zero.
We let a be a quasi-semisimple automorphism of G. We form the semidirect product G* = G x ()
and we take G to be the connected component G° x o of GT. We assume that G is unramified over
F. We fix a hyperspecial maximal compact subgroup K of G°(F). Let G denote the dual group of
GO and let & denote the automorphism of GO dual to a.

Let M = M x « be a Levi subset as defined in [Art88b, Section 1]. Equivalently M is a Levi
component of a parabolic subgroup P° (defined over F) of G® such that both M and P are stable
under a. We let M° denote the dual group of M°. Suppose now that M’ represents an unramified,
elliptic, twisted endoscopic datum

(M/,M'» 53%5?\4)

for MY; see [KS99, Section 2.1]. Here s, is a semisimple element in M=DM"xacG®xa We
suppose that M’ is an L-subgroup of “M° = M° x W and that &), is the inclusion of M’ in L0,
Let Z(Z/W\) = Z(M\O)‘S‘ denote the centralizer of M in M°. We define Em(G) to be the set of twisted

endoscopic data for GV of the form
(G/7 g’, 8/’ 5/)7

where ' € s, Z (]/\4\ )T, G is the connected centralizer of s’ in G and ¢ is the identity embedding of
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G’ = M'G’ into LGO. The clements of £/ (G) are taken up to translation of s’ by Z(G)T.

We now set

and
r§i (k) = Ja (k)
where k € M(F) is strongly G%-regular, and u = uk is the stabilizer in G(F) of the unit in the
Hecke algebra of G°(F).
Conjecture 3.1. (The twisted weighted fundamental lemma) Let ¢’ be a strongly G°-regular, stable

conjugacy class in M'(F). Then

> Apx(C RSk = Y w(G,G)s5 (1),

keFG77'eg(M(F)) GIEgM’(G)

where s%, (¢') is the function defined uniquely for the unramified connected pair (G', M") in [Art02b,
Section 5] and Ay is the twisted transfer factor for M°, normalized relative to the hyperspecial

mazimal compact subgroup K N M°(F) of M°(F).

The transfer factor A is defined as the product of the terms Ay, Ay and Ayyp from [KS99, Chapter
4]. We also remark that as in [Art99, (3.2)], the coeflicients ¢y (G, G') are zero unless G’ is elliptic.

The function s(]\;/[/, (¢") is inductively defined by

’ 7 Gll
sip () =Y () =D e (GG sy (),
V4 G

where the first sum is over representatives ¢; for the conjugacy classes in M'(F') within the stable

conjugacy class £ and the second sum is over G € &/ (G') with G # G'.

3.2 Our case

We now describe the situation we are considering in this thesis. We take G° = GL(4) x GL(1) and

we take a to be the automorphism of G° given by

a:(g,e) — (J'g~'J " edety),
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where J is the matrix

We have G° = GL(4, C) x GL(1, C) and the automorphism & is given by
a:(hyt)— (tJ'R 1T ).

When one takes M° = G° in the statement of the twisted weighted fundamental lemma one
recovers the statement of the twisted fundamental lemma proven in [F1i99]. Therefore we consider
only proper parabolic subgroups of G°. The proper standard parabolics P° of G°, which are stable

under « are those whose projection onto GL(4) are of the form

* ko ok X * ok ok X * ok ok X
* ok ok X * ok ok * ok X
) ’

* ok * ok ok * ok
* ok * *

We take M? to be the Levi component in each of these parabolic subgroups that contain the diagonal
torus in GY. We refer to these Levi subgroups as the (2,2) Levi, the (1,2,1) Levi and the diagonal
Levi.

The integrals r%(va) depend on the choice of a measure on G, there is a similar such depen-
dence in the definition of s%, (¢"). Within a stable conjugacy class these measures are chosen so
that stable conjugacy is measure preserving. Having done this, if we are now given ya € M (F') and
7' € M'(F), such that A(y/,v) # 0, we normalize the measures on M,, and M’/y’ such that under
this normalization the (unweighted) twisted fundamental lemma holds for the pair (M, M’).

For the proof of the twisted weighted fundamental lemma for (GL(4) x GL(1), o) we assume that

the residual characteristic of F' is odd.
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Chapter 4

Endoscopic groups

Throughout this chapter we adopt the notation of Section 3.2. We now determine the unramified
elliptic twisted endoscopic groups M’ for each of the Levi subgroups M of G° given in Section
3.2. We refer to [KS99, Section 2.1] for the definition of twisted endoscopic groups. For each such
endoscopic group M’ we also compute the set of elliptic twisted endoscopic groups for G° in £y (G),
which contain M’ as a Levi subgroup; and for each group G’ in &3/ (G) we compute the coefficient
v (G, G").

The elliptic twisted endoscopic groups for GV itself are computed in [F1i99, Section I.F]; these
results are recalled in Section 4.1. We use these results below in computing the sets £y (G) and the

norm maps from M to M’.

4.1 Twisted endoscopic groups for GL(4) x GL(1)

In this section we recall results from [F1i99, Section I.F] on the twisted endoscopic groups for G°.
First we note that given s& € CAT', assumed semisimple, the twisted centralizer Zz,(s&) depends only
on the component of s lying in GL(4, C). Moreover, after twisted conjugation, we can assume that

we have

s = (diag(1,1,¢,d),1).

Furthermore the é-conjugacy class of s does not change if ¢ is replaced by ¢!, d by d~! and (¢, d)
by (d,c). We recall that a twisted endoscopic group H is called elliptic if (Z (fI )F)? is contained in
A (@0). The elliptic twisted endoscopic groups of G° are given below.

1. ¢ = d = 1: The twisted centralizer of s is isomorphic to GSp(4, C) and we get GSp(4) as a

twisted endoscopic group.

2. ¢ = d = —1: The connected component of the twisted centralizer of s is isomorphic to
GL(2,C)?/C* with C* embedded via z + (z,2z7!). If we have a trivial Galois action then
we obtain (GL(2) x GL(2))’, where the prime denotes the subgroup of pairs (A, B) with
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det A = det B, as a twisted endoscopic group. We can also have a non-trivial Galois action
with I' acting through a quadratic extension E/F in which case we obtain Resg,r GL(2)’,

with the prime here denoting determinant in F'*, as a twisted endoscopic group.

3. ¢ =1,d = —1: The connected component of the twisted centralizer of s is isomorphic to
(GL(2,C) x GL(1,C)?)" with the prime denoting the subgroup of triples (A, a, b) with det A =
ab. In this case we only obtain elliptic endoscopic datum if ' acts through a quadratic extension
E/F; in which case we obtain (GL(2) x Resg,r GL(1))/ GL(1), with GL(1) embedded as

(2,271), as a twisted endoscopic group.

As noted in [F1i99, Section I.F| none of these groups, with the exception of GSp(4) (see 4.5), have
proper elliptic endoscopic groups. Let H be a twisted endoscopic group for G° and let Ty denote
the diagonal torus in H. Let T denote the diagonal torus in G°. The norm maps N : T — Ty are

given below.
1. H=GSp(4): N : (diag(z,y, 2,t), w)a — diag(xyw, xzw, tyw, ztw)
2. H = (GL(2) x GL(2)): N : (diag(x,y, 2,t), w)a — (diag(zyw, ztw), diag(zzw, ytw))
3. H = Resg,/rp GL(2)": N : (diag(z,y, 2,t), w)a — (diag(zyw, ztw), diag(rzw, ytw))

4. H = (GL(2) x Resg,r GL(1))/ GL(1): N : (diag(x,y, z,t), w)a — (diag(zw, tw), y, 2).

4.2 Twisted endoscopic groups for the (2,2) Levi

In this section we take MY to be the (2,2) Levi in G°. We have MO = GL(2,C)xGL(2,C)xGL(1, C),
which sits inside G as the (2,2) Levi. The restriction of & to MO is given by

(A, B, t) — (tw' B~ 'w, tw' A" w, ),

where

Lemma 4.1. The only elliptic twisted endoscopic group for M° is GL(2) x GL(1).

Proof. Let s € M° be such that sa is semisimple. We may assume that s is diagonal, and after

twisted conjugacy in M we can assume that it is of the form

$= (dla‘g(lv ]-7 >\17 )‘2)7 82)‘
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We now compute Zg;,(sd&). We see that (A, B,t) € Zy;

770 (s@) if and only if we have

Aw'Bw =
t
and
A tA
| w'Aw = '
Ao tAo
Which is if and only if we have A = tw'!B~1w and
A A
| pl=|"
)\2 )\2

So if Ay = A9 then we have
Zszo(s6) = { (A, tw' A w,t) € M : A € GL(2,C) t € C* |,

while if A; # Ao then we have
, ,t e]\/J\O:x,y,teCX

Both of these centralizers are connected hence we can only have a trivial Galois action. Therefore
only when we have A; = Ay do we get elliptic twisted endoscopic data for MY. In this case we have
Zz0(s8&) = GL(2,C) x GL(1, C) and hence we get GL(2) x GL(1) as a twisted endoscopic group for
MO, O

We now compute &y (G).

Lemma 4.2. Let M’ represent the elliptic twisted endoscopic datum for MC. Then the elliptic
twisted endoscopic groups for G° in Exp(G) are GSp(4) and (GL(2) x GL(2))’, the prime denoting
the subgroup of pairs (A, B) with det A = det B. Fach group occurs with multiplicity one.

Proof. We may as well take s = (I,1,1) € M° which gives rise to M’ = GL(2) x GL(1). We need

to look at the translations of s& by elements in Z(M) taken modulo Z(G). We have
Z(M) = {(diag(a,a,b,b), ab)}

and

Z(G) = {(diag(a,a,a,a),a®)}.
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Thus we need to look for elliptic endoscopic datum for G° arising from elements of the form
(diag(1,1,\,\), N)a € G. So we get endoscopic datum only when we have A = £1 and we must have

a trivial Galois action in both cases. O

We note that M’ sits inside GSp(4, C) as the Siegel Levi, hence we have M’ = GL(2) x GL(1)
sitting inside GSp(4) as the Klingen Levi. We have M’ sitting inside (GL(2)xGL(2))" as (T'x GL(2))
where T is the diagonal torus in GL(2) and the prime again denotes the subgroup of pairs with equal

determinant. The coefficients ¢/ (G, G') are equal to 1 for G’ equal to GSp(4) and (GL(2)x GL(2))".

4.3 Twisted endoscopic groups for the (1,2,1) Levi

In this section we take M° to be the (1,2,1) Levi in G°. We have
M° = GL(1,C) x GL(2,C) x GL(1,C) x GL(1, C),
which sits inside G as the (1,2,1) Levi. The restriction of & to MO is given by
(a,g,b,t) — (tb~ 1, t(det g)"1g,ta™ ", 1).

Lemma 4.3. The unramified elliptic twisted endoscopic groups for M° are GL(2) x GL(1) and
GL(1) x Resg,p GL(1), where E/F is the unramified quadratic extension.

Proof. After twisted conjugacy in MP° we can assume that we have

1
s = 17 ) >\27 52
A1
Then (a,g,b,t) € Z35,(sd) if and only if
1 1 t
G;b, g (det g)g ) Clb)\g =1\t ) t)\2

)\1 t/\l
Hence we need ab =t and

1 . det g~ ¢

g g =

A det g~ 1\
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Therefore if A = 1 then we have g is any element of GL(2, C), while if A\; # 1 then

ge 5

Thus we see that if A\; = 1 then

Z50(5G) = {(a,g,a’l det g,det g) € MO g € GL(2,C),a € CX},

while if A\; = —1 then

and if \; # +1 then

~ z 1
Z 0 (800) = a, ,a” Ty, Ty

Y

When A1 = 1 we have a connected centralizer and hence we have a trivial Galois action. In this
case we have elliptic endoscopic data and we get GL(2) x GL(1) as a twisted endoscopic group for
MO,

When \; = —1 to get elliptic endoscopic datum we need to have a non-trivial Galois action

acting through a quadratic extension by

€z -1 Y -1
a7 7a/ xy? xy’ :I;y = a7 7a :Ey’ (Ey

In order for our endoscopic data to be unramified we need this quadratic extension to be unramified.
In this case we get GL(1) x Resp/r GL(1) as a twisted endoscopic group for M°,
Finally, when A\; # +1 the data is never elliptic. O

We now compute £y (G) for M’ = GL(2) x GL(1).

Lemma 4.4. Let M’ = GL(2) x GL(1). Then the only elliptic twisted endoscopic group for G° in
Enm (Q) is GSp(4) with multiplicity two.

Proof. Recall that M’ is given by the element s& = (diag(1,1,1, \3), s2)d € M. We have
Z(J\//.T) = {(diag(a, c,c,a”tc?), 02)}

and so we need to look for elliptic twisted endoscopic groups for GV given by translating s& by
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elements of the form (diag(l,)\,)\,)\g),/\z) € G° Thus we need to look at elements of the form
(diag(1, A\, A\, A2X9), A255) @ € G. After twisted conjugacy we can look at the elements of the form
(diag(l, 1,1,22)), 52) &. Since we must have a trivial Galois action we get elliptic endoscopic data

if and only if A2 = )\gl; in which case we get GSp(4). O

We have M’ sitting inside GSp(4, C) as the Klingen Levi and so we get M’ = GL(2) x GL(1)
sitting inside GSp(4) as the Siegel Levi. We also have vy (G, GSp(4)) = 1.

Lemma 4.5. Let M' = GL(1) x Resg,p GL(1). Then the elliptic twisted endoscopic groups for G°
in Eppr (G) consists of (GL(2) x Resp/p GL(1))/ GL(1) and Resg,r GL(2)'. Each group appears with

multiplicity two.

Proof. Recall that M’ is given by the element (diag(1,1,—1,A2),s2) & € M. We need to look for

elliptic twisted endoscopic groups for G° given by translating s& by elements of the form
(diag(1, A, A, A%),A%) .

Thus we need to look at elements of the form (diag(l,)\,—)\,)\QAg),)\232) & € G. After conju-
gacy we can look at the elements (diag(l, 1,—1,)\2)\2),32) & € G. Thus we get elliptic data if
A2 = £A;". When A? = \;' we get (GL(2) x Resp/r GL(1))/ GL(1), while if A2 = —\;" we get
Resg/p GL(2)'. dJ

In this case we have M’ sitting inside each group in y/(G) as the diagonal torus. And we have
tmr (G, G') =1 for both G' = (GL(2) x Resg/p GL(1))/ GL(1) and G" = Resg,r GL(2)".
4.4 Twisted endoscopic groups for the diagonal Levi

We now take M° to be the diagonal torus in G°. We have M° = GL(1, C)5, which sits inside G° as

the diagonal torus.
Lemma 4.6. The unramified elliptic twisted endoscopic group for M° is GL(1)3.

Proof. Since MO is abelian we see that for any s € MO we have
Zp0(sa) = {(z,y,z,w,t) € MO pw = yz = t}.

Hence we have Z;,(s@) = (C*)? and we get GL(1)? as the only twisted endoscopic group for M°.

Furthermore, it is both elliptic and unramified. O

We now compute Epp (G).
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Lemma 4.7. Let M’ = GL(1)3. Then the elliptic twisted endoscopic groups for G° in Epp(G) are
GSp(4) and (GL(2) x GL(2))’; each group appears with multiplicity two.

Proof. We have

Z(M) = {(diag(z,y, ty~ ", ta™ "), t) }.

Thus we need to look for the elliptic twisted endoscopic groups for G° given by elements of the form
(diag(l,y‘l, yw,w),w) aed.

We can conjugate such an element to (diag(l, 1, y%w, w), w) &. Since we must have a trivial Galois
action we get elliptic data when we have w = 1 and y? = 1, in which case we get GSp(4), or when

we have w = —1 and y? = 1, in which case we get (GL(2) x GL(2))". O

For G’ equal to both GSp(4) and (GL(2) x GL(2))" we have M’ sitting inside as the diagonal

torus and we have (jp (G,G) =1

4.5 Endoscopic groups for GSp(4)

We will also need to know the endoscopic groups for GSp(4). There is only one proper elliptic
endoscopic group for GSp(4) namely (GL(2) x GL(2))/ GL(1) with GL(1) embedded as a + (a,a™ 1),
see [F1i99, Section 1.F]. It is given by the element diag(1,—1,—1,1) € GSp(4, C). The norm map is
given by

diag(a,b,cb™ ", ca™ ') — (diag(1, (ab)~'c), diag(a,b)).

For each proper Levi subgroup M of GSp(4) we also need to compute the elliptic endoscopic
groups for GSp(4) in &€,/(GSp(4)). Since we are taking M as an endoscopic group for itself the

—

elements of £3;(GSp(4)) are given by elements s € Z(M) taken modulo translation by Z(GSp(4, C)),
which equals {diag(z,z, z,x)}.

Lemma 4.8. Let M be the Siegel Levi in GSp(4). Then the elliptic endoscopic groups in Ep(GSp(4))
are GSp(4) and (GL(2) x GL(2))/ GL(1) each with multiplicity one.

Proof. We have M sitting inside GSp(4, C) as the Klingen Levi. So we have
Z(M) = {diag(x, y7y,x_1y2)} )

And we get that the elliptic endoscopic groups in € (GSp(4)) are GSp(4) and (GL(2) xGL(2))/ GL(1)

each with multiplicity one. O
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We have M sitting inside (GL(2) x GL(2))/ GL(1) as (T'x GL(2))/ GL(1) where T is the diagonal
torus in GL(2). And we have 15 (GSp(4), (GL(2) x GL(2))/ GL(1)) = 3.

Lemma 4.9. Let M be the Klingen Levi in GSp(4). Then the only elliptic endoscopic group in
Er(GSp(4)) is GSp(4) with multiplicity one.

Proof. We have M sitting inside GSp(4, C) as the Siegel Levi. So we have

Z(M) = {diag(z,z,y,y)} -

The only elliptic endoscopic group given by such an element is GSp(4) itself which we obtain when

r=y=1. O

Lemma 4.10. Let M be the diagonal Levi in GSp(4). Then the elliptic endoscopic groups in
Em(GSp(4)) are GSp(4) and (GL(2) x GL(2))/ GL(1), each with multiplicity one.

Proof. We have M sitting inside GSp(4, C) as the diagonal torus. So we have
Z(M) = {diag(z,y,y'z,27'2)},

and we get that the elliptic endoscopic groups in £a7(GSp(4)) are GSp(4) and (GL(2)xGL(2))/ GL(1),
each with multiplicity one. O

We have M sitting inside (GL(2) x GL(2))/ GL(1) as the diagonal torus and we have

12r(GSp(4), (GL(2) x GL(2))/ GL(1)) = 5.
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Chapter 5

Weight functions

In this chapter we compute all the weight functions needed in the proof of the fundamental lemma.

5.1 Notations and definitions

We recall the necessary notations and definitions from [Art88b, Section 1] needed to define the
weight functions.

Let G° be a connected reductive algebraic group over F. Let a be a quasi-semisimple automor-
phism of G defined over F. We form the semidirect product G = G° x () and take G to be the
connected component G° x o C GT.

A parabolic subgroup of G is the normalizer in Gt of a parabolic subgroup of G°. A parabolic
subset of G is by definition a non-empty set of the form P™ N G where P is a parabolic subgroup
of GT defined over F. Let P = PT NG be a parabolic subset of G, a Levi component of P will be a
set M = M+ NP where M7 is the normalizer in G* of some Levi component of P® = G°N P which
is defined over F'. We call such an M a Levi subset of G. We denote by Np the unipotent radical of
P%in G°.

Let M be a Levi subset of G. We define F(M) to be the collection of parabolic subsets of G
which contain M, and let £(M) denote the collection of Levi subsets of G which contain M. Any
P € F(M) has a unique Levi component Mp in L(M). We write P(M) for the set of P € F(M)
with Mp = M. Let Ap; denote the split component of the centralizer of M in M° = M+t NGP. Let
X (M)F denote the group of characters of M+ defined over F and set

Ay = HOIn(X(M)F, ].:{)7

a real vector space of dimension equal to the dimension of Ay;. Since Ay; C Ajpso we get a canonical
embedding ap; — appo. We fix a Weyl invariant Euclidean metric on a maximal such space, the

restriction of this metric provides a Euclidean metric on any subspace.
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By restriction we have a canonical identification
ayr = HOIII(X(A]V[), R)

We set ay, = X(M)r @z R = X(Aum) ®z R.

We now fix a Levi subset M of G. Let P € F(M), then we write Ap = A, and ap = ap,.. Let
Ap C a}, denote the simple roots of (P, Ap). Let @ be a parabolic subset of G containing P. Then
we have Ag C Ap and by restriction we have a map X(Ap) — X(Ag), which yields a surjection
ap — ag and hence an embedding ag < ap. On the other hand, since P C @ we have by restriction

an injection ag, = X(Mg)r ®z R — X(Mp)r ®z R = a}. This gives rise to canonical splittings

ap = ag @ a?

and

We also have the set of “coroots”
0
{ﬂ(\)/ S Clgo 1By € APO},

where P? = P+ N G°. We recall the definition of these coroots from [Art78, Section 1]. Let Py be
a minimal parabolic subgroup of G® contained in P°. Each By € Apo is the restriction to ugz of a
unique root 31 € Ap,. We then define 3y to be the projection onto agg of BY € ug;).

We have a natural inclusion ap C apo and so for each 8 € Ap we can define
BY=> "5,
Bo

where the sum if over those 3y € Apo which equal 3 when restricted to ap. We define A}, C a$ to
be the set of such 3¥ and note that A}, is a basis of a&. Let apc = ap @r C, then for \ € apc we

define

0p(\) = vol(aZ/Z(A%) ™" T A(BY).

BEAP

We have a homomorphism

HM:M+(F)—>U.M
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defined by
(Hyi(m), x) = log [x(m)|

for y € X(M)p. Let P € P(M) then using the Iwasawa decomposition

GT(F) = Np(F)M*(F)K
we can extend Hj; to a map

Hp:GY(F) — ayn

by taking Hp to be zero on Np(F') and K. Then we set

vp(\, @) = exp(—A(Hp(z)))
for A € ap ¢ and x € GT(F). We now set

o (A ) = Z vp(\, z)0p(N) L.
PeP(M)
By [Art81, Lemma 6.2] for each x € GT(F') this function extends to a smooth function on ia%j,. We
define vps(z) to be the value of the function vyr(A,x) at A = 0. We note that vy (mak) = vy (z)

for allm e M*(F) and k € K.

5.2 Twisted weight functions

In this section we adopt the notation of Section 3.2 and compute the weight functions for the relevant
Levi subgroups of G = GL(4) x GL(1). We will use the following basic fact in computing the weight

functions below.

Lemma 5.1. Forv = (v1,...,v,) € F™ define [v| = max{|v1],...,|vn|}. Then for all k € GL(n, R)
and v € F™ we have |vk| = |v].
Proof. We clearly have |vk| < |v| and replacing v by vk~! yields the result. O

5.2.1 The (2,2) Levi

In this section we take M9 to be the (2,2) Levi in G°. We have M = MY x a. Let P° (resp. Q°) be

the upper (resp. lower) block triangular parabolic in G° with M? as its Levi component. We have



29

M = M° x o and if we set P = P° x « and Q = Q° x « then we have P(M) = {P,Q}. We let Np
(resp. Ng) denote the unipotent radical of PV (resp. Q°). Let x € GY(F) and write

xr = Tlpmpkp = anQkQ

with obvious notation. We write mp = (Ap, Bp,cp) € GL(2) x GL(2) x GL(1) and similarly we

write mqg = (AQ, Bg, CQ).

Lemma 5.2. With notation as above we have

vpr(x) = vol(a%/Z(AY)) (log | det Ag| — log | det Ap|).

Proof. For (A, B,c) € M° we have
a: (A, B,c)— (w' B 'w,w' A" w, cdet AB),

and hence

Ay = {a = (diag(ar, a1), diag(a; ' a; ")), a2) } -

We fix the basis {x1, x2} of X(Apr) given by x; : a — a;. We have
AMO = {b = (diag(bl, bl),diag(bg, bg)), bg)}

and we fix the basis {1, @2, 3} of X(Ap0) given by ¢; : b — b;. We have Apo = {¢1 — p2}.
We now compute (p1 — ¢2)¥. Let 0y, , 0y, ,0,, denote the basis of a},, given by d,,(¢;) = d;5, the
Kronecker delta symbol.

To determine (p; — p2)Y we may as well work inside GL(4). We set Py equal to the upper
triangular Borel subgroup of GL(4) and we take My to be the diagonal torus in Py. We have

AMO = MO = {C = diag(617627c37c4)}

and we fix the basis {1, 82, B3, B4} of X (M) given by 3; : ¢ — ¢;. We define dg, € ayy, similarly.
We now describe the splittings aj, = apo © (ag{f)* and ap, = apo B agj. The map X(Apo) —
X (M) is given by

Bi— 1 Porr 1 Bz w2 Pa o
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and the map apo — ap, is given by

11— 5(B1+B2) @2 — 5(B3+ PBa)-

Thus we have
0
ap, = apo P allzo = Span{égl + 6327633 + 6ﬁ4} S Span{égl - 6ﬂ276ﬁ3 - 654}

and

ap, = Gpo @ (QJPD;))* = Span{B3; + (2, #3 + Ba} ® Span{fy — B2, B3 — P4}
Therefore we have
1 1 1 1
Y1 — p2 = 5(31 + f2) — 5(53 +B4) = P2 — 3+ 5(51 — fa2) + 5(53 — B4)

equal to the projection of 33 — B3 onto ap,. Now (82 — f3)¥ = dg, — dg, whose projection onto apo
is

1 1
5(6,@1 + (Sﬁz) - 5(653 + 6,34)'

Hence we have (o1 — ¢2)Y = 1(8,, — 0p,).

The map X (Ap0) — X(Anr) is given by
Pr— X1 P2 X1 P37 X
We have Ap = {2x1}, Ag = {—2x1} and
2x1)V: x1— 3 x2— 0

Hence for A =a1x1 + azx2 € aysc We have

PN = g ol Z(A))
and
PN = ol Z AR

We now make explicit the isomorphism between X (Ay) ®z R and X(M)r ®z R. We have a
basis for X (M) given by the characters

Y1 : (A, B),c) — det Adet B~ w5 : ((A,B),c) —c
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of MY. The restriction map X (Ay;) — X (M)p is given by 1 — 4x; and 9 — Y2. Now we have
Hpy(mp): x1+ tlog|det ApBp'| x2+— log|ep|-

Therefore,
a

vp(A, &) = exp ( 1

log |det ApBp'| — as log |cP|>
and similarly for vg (A, ). Hence var (A, z) equals

2vol(af/Z(A}))

ai

[exp (7% log|det ApBp'| — as log |ep|> — exp <72—1 log | det AQB(51| — a2 log |eQ\>] .

Taking the limit as A = a1 x1 + asx2 — 0 we get

_vol(a/Z(AY))

5 <log |det ApBp'| — log | det AQB521|) .

v () =
But we have |det ApBp| = |det AgBg| and hence

v (z) = vol(a$/Z(AY)) (log | det Ag| — log | det Ap|),

which completes our computation. O

We now compute vy on the unipotent radical of P°.

Lemma 5.3. We have

1 1 X2
1 Tr3 X4 Ie. v
VAL . ,1 | =vol(ap/Z(Ap))logmax{l, |z1|, ||, |x3], |x4l, |x124 — T23]}.
1

Proof. We write

1 xry X2 1
1 Trs T4 1 AQ
= ko.
1 yioy2 1 Bq
1 Y3 Y4 1

Applying the vector (1,0,0,0) A (0,1,0,0) and using Lemma 5.1 allows us to deduce that

log | det Ag |=logmax{1, |z1],|z2l, |x3|, ||, |T124 — 22235]}
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and the result follows. O

5.2.2 The (1,2,1) Levi

In this section we take MY to be the (1,2,1) Levi in G. Let P° (resp. Q") be the upper (resp. lower)
triangular parabolic in G° with MY as its Levi component. We have M = M° x o and if we set
P =P%xaand Q = Q° x a then we have P(M) = {P,Q}. We let Np (resp. Ng) denote the
unipotent radical of P? (resp. Q°). Let z € G°(F) and write

xr = npmpkp = anQkQ
with obvious notation. We write mp = (ap, Bp,cp,dp) € GL(1) x GL(2) x GL(1) x GL(1) and
similarly we write mqg = (ag, Bg, ¢, dg).
Lemma 5.4. With notation as above we have

vol(a§ /Z(AY _ _
vy () = w <log \anQ1| —log \apcP1|) .

Proof. We have
Ay = {a = (al,l,afl,ag)}.

We fix the basis {x1, x2} of X(Ap) given by x; : a — a;. We have
Appo = {b = (b1, diag(bz,b2), b3, ba)}

and we fix the basis {¢1, p2, 3,04} of X(Ap0) given by ¢; : b+— b;. We have

Apo = {p1 — @2, 02 — p3}.

We now compute (@1 —¢2)" and (g2 —@3)Y. Let 0y, 00y, 0py, 0y, denote the basis of a},, given by

5% (Spj) = 62]

To determine (7 — ¢2)V

and (p2 — ¢3)¥ we may as well work inside GL(4). We set Py equal to
the upper triangular Borel subgroup of GL(4) and we take Mj to be the diagonal torus in Py. We
have

Ay, = Mo = {c = diag(c1, o, c3,¢4)}

and we fix the basis {61, 82, B3, B4} of X (M) given by 3; : ¢ — ¢;. We define dg, € apy, similarly.
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We now need to describe the splittings ap = apo @ (ag{?)* and ap, = apo @ a?:. The map

X(Apo) - X(My) is given by

Br—= w1 Paro w2 B3 pa Ba pss

and the map apo — ap, is given by

p1— B w2 3(Ba+B3) 3 Bu

Thus we have
0
ap, = apo O allio = Spa‘n{aﬁl ) 552 + 5537 554} S5 Span{6ﬁ2 - 553}7

and

ap, = apo D (0113;)* = Span{f1, B2 + B3, B4} ® Span{fBs — B3}.

Therefore we have

s01—902:[31—%(52+53):ﬂ1—52+%(52—53)

equal to the projection of #; — (2 onto a},. Now we have (81 — (2)" = d3, — dg, whose projection

onto apo is

1
551 - 5(6ﬂ2 + 653)'

Hence we have (o1 — ¢2)" = 64, — 30,,. Now
1 1
p2 =93 =5(B2+ B3) = 1= 05 = P+ (B2 = Fs)

equals the projection of #3 — 84 onto aj,. Now we have (83 — 34)" = dg, — 93, whose projection

onto apo is

1
5(5& + 6,33) - 5ﬁ4‘

Hence we have (p2 — ¢3)Y = 16, — 6,,.

The map X (Ap0) — X(Apr) is given by

pr—=x1 p2—0 @3= —x1 Q4 X2
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We have Ap = {x1}, Ag = {—x1} and

x1)V: xi—1 x2—0

Hence for A = a1x1 + azx2 € aysc We have

PN = gz
and
P = ez

We now make explicit the isomorphism between X (Ay) ®z R and X (M)r @z R. We have a
basis for X (M) given by the characters

¥ 1 (a,B,e,d) — ac™t, g : (a,B,c,d) — acd®det B
on M°. The restriction map X (Ay) — X (M)p is given by 91 — 2x; and 99 — 2x2. Now we have
Hy(mp): x1+— %log|apc}_,1| X2 — %log\apq:d% det Bp|-

Therefore,
vp(A,x) = exp (—% log l[apbpt| — % log lapcpd det Bp\)

and similarly for vg(A, ). We can set az = 0 and take the limit as a; — 0 to give

vol(a/Z(A}))

vy () = 5 <log |anél| —log |apcl§1\)

as wished. O

We now compute vy on the unipotent radical of PY.

Lemma 5.5. We have

1 T
UM ! , 1
1 I5
1
equal to
vol(al/Z(A}))

5 (logmax{1,|z1]|,|z2|, |z3]|} + log max{1, |x4|, |x5], |v124 + 225 — 23]}) .
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Proof. We write

1 1 X9 I3 1
a
1 T4 y1 1 N
1 s Y2 1
€Q
1 Ys Y4 Ya 1

Applying the vector (1,0,0,0) allows us to deduce that
log |ag| = logmax{1, |z1], |z2|, |x3|}.

Taking the transpose inverse of the above matrix equation and applying the vector (0,0,0,1) allows
us to deduce that

log |cé1\ = logmax{1,|z4]|, |z5|, |T124 + 225 — 23|}

and the result follows. O

5.2.3 The diagonal Levi

Let MY be the diagonal Levi subgroup in G°. For the proof of the fundamental lemma, it is
(essentially) sufficient to compute vy, on elements of G° fixed by «, i.e., elements of the form
g = (91,92) € Sp(4) x GL(1). For now we show that for such a g vas(g) is, up to a scalar, equal to
v, (g1) where M is the diagonal Levi in Sp(4). We will then compute vy, on the unipotent radical
of the upper triangular Borel subgroup in Sp(4).

Let BY (resp. Bj) denote the upper triangular Borel subgroup of G° (resp. Sp(4)).

Lemma 5.6. For g € (g1,92) € G*(F) with g1 € Sp(4) we have

vol(a§/Z(AY))
vol(ay?™ /Z(AY,))

UM, (gl)

vm(g) =

Proof. We have

Ay = {a = (diag(al,ag,agl,afl),ag)} ,

and we fix the basis {x1, x2, x3} of X(Ap) given by x; : a — a;. We have

AMO = {b = (diag(b13b27b37b4)7b5)}7
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and we fix the basis {¢1,...,¢5} of X(Ap0) given by ¢; : b — b;. The map X (Apyo) — X(Anm)

given by restriction is given by

Pr— X1 Y2~ X2 @3 —X2 @4 —X1 P5— X3

We have

Ay, = {a = diag(a1, as, a; ', afl)} :

We identify aps, with the subspace of ajs of elements which are zero on x3 and we identify aj, with
the subspace {a1x1 + a2x2} of a};.

We now compute 0 () for A = aix1 + asx2 + asxs € ays.c- We have

Apo = {1 — v2,02 — ¥3,03 — @4},

and
Ap = {x1 — x2,2x2}-
We have
(x1—x2)V: x1—2 x2—= -2 x3—0,
and

(2x2)Y: x1—0 x2—1 x3—0.
On the other hand
Ap, = {x1 — x2,2x2},
and we have
xi—x2)": xi—1 xar——1,
and
2x2)Y: x1—0 x2—1.

Hence we see that for A = A1 +azxs € aj, ¢ with Ay € aj, o we have Op(\) = 0p,(A1). Now
each Borel subgroup of G°, which is a stable and which contains M? is of the form w~!B%w with
w = (wy,1) where w; is an element of the Weyl group of Sp(4). Hence we deduce that for each

Borel subgroup P of G° which contains M° we have
S
vol(af/Z(A}))0p(N) = vol(air ™ /Z(A},))0p, (M),

where P; denotes the Borel subgroup of Sp(4) which is contained in P°.
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Next we compute vp(A,g) and vp,(A1,91). In order to compute vp(A,g) we need to write
g =npmpkp with np € Np(F), mp € M°(F) and kp € K. But if we write g; = np,mp, kp, with

obvious notation then we have
9= (91,92) = (np,, 1)(mp,;, g2)(kpy, 1)
Hence we have for A = A\ + azx3 that
vp(A, g) = vp (A1, 91)|g2[ .
Thus we get

/UM(Aag) = Z UP()‘ag)gP()‘)_l

PeP(M)
vol(a§/Z(AY, —a -
= gpﬁ{ ( B\g) g2 Z vp, (A1,91)0p, (A1) g
vol(ap ™ /Z(AY))) PieP(M))
And now taking the limit as A — 0 gives the result. -

We now compute vy, on the unipotent radical of B;. We set

1 r1 To+T174 I3

1 T T
n= ! > | € Np, (F).
1 —X1
1

In order to do this we need to write n = nymqk; for each Borel subgroup of Sp(4) containing M;
and then if we write

my = diag(a,b,b',a™1)

we need to compute |a| and [b].

The Weyl group of Sp(4) is isomorphic to Dg with generators
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Explicitly the Weyl group is given by

{e, (12)(34), (23), (14), (1243), (1342), (13)(24), (14)(23)},

where we have

e w = e. In this case we have |a| = |b] = 1.

e w = (12)(34). In this case we have

1 Y2 — Y1Ys Y4
1
wilNBlw _ Y1 Y3 Y2
1
-1 1

Multiplying n on the left by such an element we can put n in the form

1 T
1
1 —T1
1
For m > 0 and u € Ur we have
1 ur™™ 1 T Vi
1 wlgm 1 i —y~ !

and hence we deduce that

|a] = max{1, |z}
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and

b7t = max{1, |z}
e w = (23). In this case we have

1 =y Y3

1
w ' Np,w = u

Y1 1 y2—vy1ya
1

Multiplying n on the left by such an element we can put n in the form

And as above we deduce that

la] =1

and

|b] = max{1, |x4]|}.
e w = (14). In this case we have

1

w N, w = Yyay1 —y2 1w

Y1 1
—Ys y1 oy2 1

Using the vector (1,0,0,0) we deduce that
‘a’| = max{]-a |5E1|7 |{E2 + 1’1.’E4|, |£L’3|}
and using (1,0,0,0) A (0,0,1,0) we deduce that

|ab_1| = max{1, |:r1|27 |xs + z120 + x%x4|}.
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e w = (1243). In this case we have

1 hn
— 1
w- 1 NBl w — Y2 Y3 Y1
1

—Y4 Y2 —y1ya 1

Using the vector (0,0, 1,0) we deduce that
b = max{1, [z:]} 1,
and using (1,0,0,0) A (0,0, 1,0) we deduce that

lab™'| = max{1, |21|?, |z3 + 122 + 2i24]}.

e w = (1342). In this case we have

1 viya— 92 Ya
4 1
w " Np,w=
Y1 —Y3 1
Y1 1

Using the vector (0,1,0,0) we deduce that
|b] = max{1, [z4], x4},
and using (0,1,0,0) A (0,0,0,1) we deduce that

la=tb| = max{1, |z4|}.

e w = (13)(24). In this case we have

1 —U1
1 1
w " Np,w=
—Y2 —Ys3 1

Y4 Y1Ya — Y2 1
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Using the vector (0,1,0,0) we deduce that
|b] = max{1, [z2], x4},
and using (1,0,0,0) A (0,1,0,0) we deduce that

|ab] = max{1, |xa|, |z4], |25 — T122], |x§ — T3Ty + T12224]}.

e w = (14)(23). In this case we have

1

= 1
w ' Np,w = v

Yiysa—Y2 —Ya 1
—Y3 -y y1 1

Using the vector (1,0,0,0) we deduce that
‘Cl| = max{l, |1‘1|, |332 + 1‘1$4|, |'T3|}7
and using (1,0,0,0) A (0,1,0,0) we deduce that

lab| = max{1,|za|,|z4|, |23 — T122], |$§ — T3T4 + T1T2Z4|}.

Let’sset A = a1 x1+asxs € a}‘whc. Where yx; is the character of M7 mapping diag(as, az, afl, afl)
to a;. Let & € Sp(4, F) and let P; be a Borel subgroup containing M. We write © = np,mp, kp,

with the usual notation where mp, = diag(ap,, bpl,bl_gll, a;ll). Then we have
Hp () : x1—loglap,| x2 — loglbp |-
Hence we have vp, (A, 7) = [ap, |*'|bp, |** and therefore for A = Bazx1 + a2x2 € a}, ¢ We have
ve, (A, z) = (lap|°|bp,]).

Next we compute fp, for each of these Borel subgroups P; = wlByw and A = Bagx1 + asxe €

ajs - These functions are given in the table below.
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w Ap, Op, (N\)/a3

e 2x2, X1 — X2 p—=1
(12)(34) | 2x1,x2—x1 B(1—p)
(23) —2x2,x1+x2 | —(B+1)
(14) 2x2,—x1—Xx2 | —(B+1)

(1243) | —2x1,xa+x2 | —B(B+1)
(1342) | 2x1,—x1—x2 | —B(B+1)
24) | —2x1,x1—x2 | B(1—=05)
23) | —2x2, —x1 + X2 p-1

For 3 € C we set 0p, (3) = 0p(\)/a%. We have

Vol(agSpM)/Z(Aé )

1 1 B az
v, (T, ) = E ap |”bp |)*2.
" ( ) P a%0P1 (ﬂ) (| r | | r |)

The value at as = 0 of this expression is equal to

1 Sp(4) Z(AY,
o () = "B JEEB)) 5 ;S eglar, | +log br, )
P 1

2

for any value of 3. The calculations above give the following.

S
vol(ai2 " /Z(AY,))
2

Lemma 5.7. We have vy, (n) equal to times

—(A? +2B%* +2C? + D* 4+ 2FE* + F?) + 2(AB + AE + BD + CD + EF)
where

A =logmax{1,|zsl, |z4|, |73 — 2122, |75 — 2324 + T17274]}
B = logmax{1,|z1]|, |22 + x124], |z3]}

C =logmax{l, |z1|}

D = logmax{L, 112, [z + 2122 + 2324}

E =logmax{1, |z2|,|z4|}

F = logmax{1, |z4|}.

Combining Lemmas 5.6 and 5.7 we get the following.
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Corollary 5.8. For

1 1 2o+ 71224 23

1 T T
n= ! 1.1 enNg(F)
1 —I1
1
we have vpr(n) equal to w times

—(A? 4+2B%? +20? + D* + 2E? + F?) + 2(AB + AE + BD + CD + EF).

where A,..., F are as in Lemma 5.7.

5.3 Weight functions for GSp(4)

In this section we compute the weight functions for the Levi subgroups of GSp(4).

5.3.1 The Siegel Levi

In this section we take M to be the Siegel Levi in GSp(4). Let P (resp. Q) be the upper (resp.
lower) triangular parabolic in GSp(4) with M as its Levi component. Then we have P(M) = {P, Q}.
We let Np (resp. Ng) denote the unipotent radical in P (resp. Q). Let € GSp(4, F') and write

x =npmpkp = ngmqgkq

with obvious notation. We write

Ap

bpthl_glw
and similarly for mg.

Lemma 5.9. With notation as above we have

opr(z) = vol(aS3PW /Z(AY)) (log | det Ag| — log | det Ap|) .

Proof. We have

Ay = {a = diag(a1,a1, a7 "as, a7 'as) } .
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We fix the basis {x1,x2} of X(Ap) given by x; : a — a;. We have Ap = {2x; — x2} and
Ag = {—2x1 + x2}. We now compute (2x1 — x2)".
Let 6y, 0y, denote the basis of a}; given by d,, (x;) = d;;. We set Py equal to the upper triangular

i

Borel subgroup of GSp(4) and we take My to be the diagonal torus in Py. We have
Apn, = My = {c = diag(cy, ca, cglc&cflcg)}

and we fix the basis {1, 82, 33} of X (My) given by 3; : ¢ — ¢;. We define dg, € ayy, similarly.
We now need to describe the splittings a}, = ap @ (af)* and ap, = ap @ afy. The map

X(Ap) —» X (M) is given by
Bi—x1 Bar—x1 B3 X2

and the map ap — ap, is given by

X1~ 301+ 02 X2 B

Thus we have

ap, =ap® allzo = Span{@gl + 6527653} @ Span{(551 - 6ﬂ2}’

and

ap, = ap @ (ago)* = Span{f; + (2, B3} @ Span{f3; — f2}.

Therefore we have

2x1 —x2 = P14+ P2 — B3 =202 — B3+ (61 — )

equal to the projection of 23 — 33 onto ap. Now we have (232 — 33)¥ = d3, whose projection onto

ap is 2(6g, + 6p,). Hence we have (2x1 — x2)V = 6.
Hence for A = ayx1 + asxe € “*M,c we have
a
Op(N) =
P = oGz (AR
and
a
Oo(\) = — .
o) = olag/Z(AY))

We now make explicit the isomorphism between X (A,7) ®z R and X(M)r ®z R. We have a
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basis for X (M)p given by the characters

A
Wy : — det A
bwt A~ Tw

and

A
Pa — b.

bwt A 1w

The restriction map X (M)r — X (Ayps) is given by 91 — 2x; and ¢g — x2. Therefore,

Hy(mp): x1+— 3log|det Ap| x2+ log|bpl,

and so

vp(A,x) = exp (—% log | det Ap| — ag log \bp\) .

We have a similar expression for vg (A, z). Taking as = 0 and letting a; — 0 gives
_ GSp(4) v .
v (z) = vol(ag J/Z(Ap)) (log | det Ag| —log|det Ap|)

as desired. O

The computation of vy; on the unipotent radical of P follows directly from the proof of Lemma

5.3.

Lemma 5.10. We have

1 T T
I r s GSp(4) v 2
Vs X = vol(ap J/Z(Ap)))log max{1, |z|,|r],]|s|, |xs — r°|}.
1

5.3.2 The Klingen Levi

In this section we take M to be the Klingen Levi in GSp(4). Let P (resp. Q) be the upper (resp.
lower) triangular parabolic in GSp(4) with M as its Levi component, then we have P(M) = {P, Q}.
We let Np (resp. Ng) denote the unipotent radical in P (resp. Q). Let € GSp(4, F') and write

xr = nmekp = anQkQ
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with obvious notation. We write

ap

a;l det Bp
and similarly for mq.

Lemma 5.11. With notation as above we have

v (@) = vol (@™ /Z(AY)) (loglag| — logap])

Proof. We have

A]W = {a, = diag(a1, ag, a2, aflag)} .

We fix the basis {x1,x2} of X(Ap) given by x; : a — a;. We have Ap = {x1 — x2} and Ap =

{x2 —x1}. We now compute (x1 —x2)".
Let dy, , dy, denote the basis of a},; given by d,, (x;) = d;5. We set Py equal to the upper triangular
Borel subgroup of GSp(4) and we take My to be the diagonal torus in Py. We have

Ay, = My = {c = diag(cy, c2,¢5 'e3,¢7 M es) }

and we fix the basis {1, 82, B3} of X (My) given by G; : ¢ — ¢;. We define dg, € apy, similarly.
We now describe the splittings a}, = ap@(ap )* and ap, = ap®ap,. The map X (Ap) — X (M)
is given by

Br—=x1 Barx2 B3+ 2xe,

and the map ap — ap, is given by

X1 B1 x2+— %/33'
Thus we have
ap, =ap P ago = Span{dg, ,ds, + 203, } & Span{dgs, },

and

ap, = ap @ (afy)* = Span{f, B3} ® Span{28, — G5}

Therefore we have

X1—X2=51—%ﬁ3=51—ﬁ2+(ﬁz-%ﬁs)
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equal to the projection of 31 — B2 onto aj. Now we have (8 — 52)¥ = 63, — 03, whose projection
onto ap is dz,. Hence we have (x1 — x2)" = 0y, -

Therefore for A = ayx1 + asxe € a?\/[,c we have

a1

) = oG /zan)

and
a1
P = =g/ ziay))

We now make explicit the isomorphism between X (A7) ®z R and X(M)r ®z R. We have a
basis for X(M)p given by the characters

Py B —a
a~tdet B

and

Pa B — det B.
a~tdet B

The restriction map X (M)pr — X (Ap) is given by 91 — x1 and ¢ — 2x2. So we have

Hy(mp) @ x1 — log|detap| x2+— 3log|det Bpl,

and therefore,

vp(A, ) = exp (—a1 log |ap| — (12—2 log | det Bp|) .

We have a similar expression for vg (A, z). Setting as = 0 and taking the limit as a3 — 0 gives
as
oar(x) = vol(ap ™ /Z(A})) (loglag| — loglar))

as desired. 0

The computation of vy; on the unipotent radical of P follows directly from the proof of Lemma

5.9.
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Lemma 5.12. We have

Y = vol(a™"Y /Z(A}))) log max{1, [z], |r], 5]}

5.3.3 The diagonal Levi

In this section we take M to be the diagonal Levi in GSp(4). We will compute v,s on the unipotent
radical of the upper triangular Borel subgroup of GSp(4). We follow the strategy in the twisted
case; we first relate the function vys to vy, where My is the diagonal torus in Sp(4) and then use
Lemma 5.7.

Let B denote the upper triangular Borel subgroup of GSp(4) and let By denote its intersection
with Sp(4).

Lemma 5.13. For g € Sp(4, F) we have

oo (o) = YOl Z(AR)
M(g) - Vol(aSBIi(‘l)/z(A%l)) M, (g)

Proof. We have

Ay = {a = (diag(al,ag,aglag,aflag)}
and we fix the basis {x1, x2, x3} of X(Ap) given by x; : a — a;. We have
Ay, = {a = diag(al,ag,agl,afl)} .

We identify as, with the subspace of aps given by those elements which are zero on x3 and we
identify a}, with the subspace {aix1 + aax2} of aj;.

We now compute 05(A) for A € aj; o. We have

Ap = {x1— x2,2x2 — X3}

and

(Xl—XQ)\/I x1—1 x2——-1 x3—0
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and
(2x2—x3)Y: x1—0 x2—1 x3—0.
We have
Ap, = {x1— X2, 2x2}
and
(x1—=x2)": xa—=1 xo——1,
and

2x2)V: x1—0 x2r—1.

Hence we see that for A = Ay + aszxs € aj; o, With A1 € a};, o, we have 0p(N\) = 0p,(\1). Now
each Borel subgroup of GSp(4) is of the form w~! Bw with w an element of the Weyl group of Sp(4).
Hence we deduce that for each Borel subgroup P of GSp(4) that contains M we have

vol(a ™™™ /Z(A%))0p(N) = vol(a ™ /Z(AY,))0p, (M),

where Py = PN Sp(4).
Next we compute vp(A, g) and vp,(A1,g). In order to compute vp(A, g) we need to write g =
npmpkp with np € Np(F), mp € MY(F) and kp € K. Since we are assuming that g € Sp(4) we

can do this inside Sp(4) and assume that mp € M; for each P. Hence we have for A = Ay + azxs

that
vp(A,g) = vp, (A1, 9)-
And we get
UM()‘a g) = Z UP()‘v g)GP(A)_l
PEP(M)
1(a§/Z(AY,
— YOMARZBE) S (0 g ()

vol(ag, " /Z(AR,)) p cpan)

Taking the limit as A\ — 0 gives the result. O

Since the unipotent radical of B lies inside Sp(4) we conclude the following Corollary of Lemmas

5.13 and 5.7.
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Corollary 5.14. Let

1 T T
n= ! > | e Np(F)
1 —I1
1

vol(aS3P™) /Z(AY))
2

Then vp(n) is equal to times

—(A® +2B* +2C* + D* + 2E* + F?) + 2(AB + AE + BD + CD + EF),
where

A =logmax{1,|zs|, |z4|, |73 — 2122, |73 — 2324 + T17224]}
B = logmax{1, 21|, [z2 + z124], [23[}

C = logmax{l, |z1]}

D = logmax{L,|z1]? [x3 + 122 + 27xa|}

E =log max{1,|za|, |x4|}

F =logmax{l, |z4]}.

5.4 Other groups

We will also need to compute weighted orbital integrals on groups closely related to GL(2). We now
compute vys for M the diagonal torus in GL(2).

Lemma 5.15. Let M be the diagonal torus in GL(2) and B the upper triangular Borel subgroup

containing M. Then we have
x
UM = Vol(agL(Q)/Z(A)é)) log max{1, |x|}.
1
Proof. Let @ denote the lower triangular Borel subgroup of GL(2). Then we have P(M) = {P, Q}.

We have
Ap ={a = (a1,a2)}



51

and we let x; € X (M) be given by x; : a — a;. We have Ap = {x1 — x2}, Ag = {x2 —xa} and

(x1—x2)¥: x1—1 x2— -1

Let A=a1x1 + azx2 € @y c then

ag — ay

PN = ltag/z(an)

We set
1 =z

1

If x € R then we have n € GL(2, R) and vps(n) = 0. Next we note that for m > 0 and u € Up we

have
- ") e No(F)M(F)GLE2, R)

Therefore, if x € R then

vol(a/Z(A}))

exp (—aq log || + ag log|z|)
az —a1

vam(aix + azxe,n) =

and taking the limit as A — 0 gives vps(n) = vol(a$/Z(A})) log |z| as required. O

5.5 Normalization of volumes

Let M° be one of our Levi subgroups of G° and let M’ be a twisted endoscopic group for MP.
We need to normalize vol(a%/Z(A})) for P a parabolic subset of G with Levi component M with
vol(aG, /Z(AY,)) where G’ € Ey(G) and P’ is a parabolic subgroup of G with levi component M.
The norm map gives an isomorphism between ap and ap/; and restricts to give an isomorphism
between aIGD and ag:. We choose measures on these spaces, which are preserved by this isomorphism.
First we take M° to be the (2,2) Levi in G° and P° the upper triangular parabolic in G° with

M?O as a Levi component. Then we have

Ay = {a = ((diag(ar, a1),diag(a; " a7 ")), a2)},

and

N(ac) = diag(a?ag, as, az,ay >az) € GSp(4),
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and

N(aa) = (diag(aias, a *az), diag(as, az)) € (GL(2) x GL(2))".
Using this we see that we have
as G GL(2))
vol(af/Z(A})) = vol(ag, " JZ(A})) = vol(als, DX yZ(AY, ).

Next we take MY to be the (1,2,1) Levi in G and P° the upper triangular parabolic in G° with
MO as a Levi component. First we take M’ = GL(2) x GL(1). Then we have

Ay = {a = (diag(a1, 1,1, al_l), ag)} ,

and

N(ac) = diag(aiaz, araz,a; *ag, aj taz) € GSp(4).
Using this we see that we have
vol(af/Z(AY)) = 2vol(aii™V /Z(A})).

Next we take M° to be the (1,2,1) Levi in G° and P the upper triangular parabolic in G° with
M"Y as a Levi component. We take M’ = GL(1) x Resg,p GL(1). Then we have

Ay = {a = (diag(a, 1, l,afl),ag)} ,

and

N(aa) = (diag(aiaz,a; 'as), diag(araz, a; 'as)) € Resp/r GL(2),

and

N(ae) = (diag(a1as, ay 'az),1,1) € (GL(2) x Resp,r GL(1))/ GL(1).

Using this we see that we have
vol(a§/Z(AY})) = vol(a%, /Z(A}))

for each elliptic endoscopic group G’ € £y (G).
Next we take M° equal to the diagonal Levi in G° and P° the upper triangular parabolic in G°

with M© as a Levi component. We have

Ay = {a = (diag(al,ag,agl,afl),ag)} ,
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and

N(aa) = diag(aiasas, aia; *as, ay *azas, aj tay taz) € GSp(4),

and

N(ac) = (diag(aiazas, aj a; taz), diag(aia; tas, a) tasaz)) € (GL(2) x GL(2))'.

Using this we see that we have
vol(af/Z(A})) = 2vol(ai ™V /Z(AY,)),

and

vol(af/Z(A})) = 2vol(afs @z (aY,)).

We also need to do the same for GSp(4) and its elliptic endoscopic group (GL(2) x GL(2))/ GL(1).
First we take M equal to the Siegel Levi in GSp(4). Then we have

Ay = {a = diag(a1,a1, a7 "as, a7 'an) },

and

N(aa) = (diag(1, ay 2az), diag(a1, a1)) € (GL(2) x GL(2))/ GL(1).

Using this we see that we have
vol(af D [Z(AY)) = 5 vol(al XSO G 7 Ay, ))
Next we take M equal to the diagonal Levi in GSp(4). We have
Ay = {diag(al,ag, ag_lag, al_lag)} ,

and

N(a) = (diag(l,al_laglag),diag(al,ag)) € (GL(2) x GL(2))/ GL(1).

Therefore we have

1
vol(aBP W /Z(AY)) = 5 vol(a{GH@*CLEN/GL) 7 (A Y, Yy,

5.6 Weighted orbital integrals

In this section we prove a couple of lemmas that will be useful in the computation of our weighted

orbital integrals. We begin with the following lemma, which allows us to write our weighted orbital
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integrals as integrals over the Levi subgroup itself. We continue with the notation of Section 5.1.

Lemma 5.16. Assume further that Np and K are stable under . Let Kyy = M°(F)N K. For
a € MO(F) for which ac is strongly G°-regular let @, : N — N denote the inverse of the bijection

N — N :n+— a 'naa(n) and define

op(a) = /N o D)

where the Haar measure on N(F') is normalized to give N(F) N K volume one. Let ya € M(F) be
strongly GY-regular then

GO0 = DuGet [ am)op(m ™ qa(m) dm,

where the Haar measure on M°(F) gives Ky volume one.

Proof. By the Iwasawa decomposition we have G(F) = M°(F)N(F)K and we can write the Haar

measure on G°(F) as dg = dm dn dk. By definition we have

r$,(va) = |Do(ra)| / 1 (g™ va(9))on (g) dg

Gy (F)\GO(F)

= |Dg(ya) %/ /N(F /M e L (k™ 'ntm Yya(m)a(n)a(k))vy (mnk) dm dn dk

MI»—A

= |Dg(ya)| /N(F / K(nflmflfya(m)oz(n))vM(n) dm dn.

F)\NMO(F
If we set a = m~ya(m) € M°(F) then we have

nt*m™ya(m)a(n) = a(a”'n"raa(n)),

which lies in K if and only if @ € K3 and a~'n~taa(n) € N(F) N K. Hence we have

S, (va) = | Da(va) [} /

1KM(m_17a(m))/ Inv(mnx (@™ 'n" aa(n))va(n) dn dm.
Moo (F)\MO(F) N(F)

Let n’ = a~'n"laa(n) so that n = ¢,(n’) then we have

1, -1 on

[ asimeta o) dn = [ el |55 ant
N(F) N(F)NK n

But we have
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and hence

r$i(va) = | Dar(va)| 2 / iy, (m™ ya(m)) / UM (Pm-15a(m)(n)) dn | dm
Moo (F)\MO(F) N(F)NK
)|

=

= [Dum(yer L, (m™ ya(m))op(m™ ya(m)) dm

/MW(F)\MO(F)

as wished. O

We now give a reduction for weighted orbital integrals using the topological Jordan decomposi-
tion; see [BWWO02, Section 3].

We continue with the notation above and assume that G° is defined over R and let K = G°(R).
Assume further that the automorphism « has order prime to the residual characteristic of F' and

that K is stable under a. For v € G°(R) we can write yoa € G uniquely as
Yo = usa = sou

with sa absolutely semisimple (i.e., sa has finite order prime to the residual characteristic of F') and
u topologically unipotent (i.e., u¢" — 1, the identity in G, as n — o0).

We now make the assumption of [BWWO02, Lemma 5.5]. That is, we assume that if sy and
sqa for s1,89 € K are residually semisimple and conjugate by an element of GY(F) then they
are also conjugate by an element of K. This is automatic in the case that « is trivial. In the
case that G® = GL(4) x GL(1) and « is as in Section 3.2 this is verified in [BWWO02]; see also
[F1i99, Section L.H]. Under this assumption we have for g € G°(F) that if g~ 'va(g) € G°(R) then
g € Zgo(sa)(F)K. For g € Zgo(sa) we have

9" 'usa(g) = g 'ugs.

1 1

Hence g 'usa(g) € K if and only if g~ ug € K. Furthermore, if we fix sa and set G1 = Zgo(sa)
then we have

Zgo(usa) = Zg, (u).

Assume now that v € M°(R). Then we have u, s € M°(R) and, as in Lemma [BWW02, Lemma
5.5],

v, (us) = | Do (use)| / L, (9 ug)uar(9) do,
G1,u(F)\G1(F)

where G ,, denotes the connected component of the centralizer of v in G and the measure on G (F)
is taken to give Ky = G1(F) N K volume one.
We now assume further that Gy is connected. We note that this is the case if G° = GSp(4)
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and « is trivial or if G° = GL(4) x GL(1) and « is as in Section 3.2. Then K; is a hyperspecial
maximal compact subgroup of G1(F) and P, = Zpo(sa) is a parabolic subgroup of G;. Hence by

the Iwasawa decomposition we again have
G1(F) = P (F)K;.

Moreover, P; has Levi decomposition M7 Ny where M7 = Zpo(sa) and Ny = Zn, (sa). We normal-
ize the Haar measures on M7 (F') and Ny (F') to give M1 N K; and N3 N K; volume one. We can now

mimic the proof of Lemma 5.16 to deduce the following.

Lemma 5.17. For a € M(F) strongly Gi-regular let p, : N1 — Np denote the inverse of the

1 1

bijection N1 — N1 :n+— a”"n~ " an and define

With the notations above we have

rzc\;/[(usa) = |Dx, (u)\% Ly, (rrflum)ap1 (mflum) dm.

/Ml,u(F)\Ml(F)
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Chapter 6

The fundamental lemma for the
(2,2) Levi

In this chapter we take M° to be the (2,2) Levi in G°. We have

A
M° = ,¢| + A, B e GL(2),c € GL(1)
B

and we write such an element as a triple (A, B, ¢). The restriction of a to M? is given by
a: (A B,c)— (w'B 'ww A w, cdet AB),
where

1

We set M’ = GL(2) x GL(1) the unramified elliptic twisted endoscopic group for M. In this chapter

we prove the fundamental lemma for the pair (M, M’).

6.1 Twisted integrals
In this section we concentrate on the calculation of the twisted integrals. Note that we have
(I,B,1)"Y(A, B,c)a(I,B,1) = (Aw'B~'w, I, cdet B),

and hence every twisted conjugacy class in MY contains a representative of the form (4, 1,c). We

now determine the stable twisted conjugacy class of such an element.

Lemma 6.1. Assume that ya € M(F) be semisimple. Let m € M(F) such that m~'ya(m) €
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M(F). Then there exists my € M(F) such that

mya(m™) = miya(m;?).

Proof. We may assume that v = (A4,1,c). We take m = (D, E, f) € M(F) and assume that
m~L(A, I,c)a(m) € M(F). We have

m~ YA, I,c)a(m) = (D" Aw' B~ w, E7'w! D w, cdet DE).
Hence we have By = E~'w!D~'w € GL(2, F') and therefore,
GL(2,F) > D' Aw'E~'w = D' ADw' Eyw

from which it follows that D=*AD € GL(2,F). Now there exists D; € GL(2,F) such that
D;'AD; = D='AD. Then we can take m; = (D1, w'D; *wE; !, 1). 0

Thus the stable twisted conjugacy class of a strongly regular element 7y is equal to the twisted
conjugacy class of 7. We now show that the twisted orbital integrals on G° can be written as

untwisted orbital integrals on GL(2).

Lemma 6.2. Let ya = (A,I,c)a € M(F) be semisimple and strongly G°-regular. Then if ¢ ¢ Ur

we have 7§ (ya) = 0. Otherwise, let Ty denote the centralizer of A in GL(2) then we have

r$ (va) = \DM(»ya)ﬁ/ large,r) (CT1AC)op(C~TAC, I1,1) dC.
T, (F)\GL(2,F)

Proof. By Lemma 5.16 we have
1 - _
rir(ya) = |DM(W)|2/ 1, (m™ ya(m))op(m™ ya(m)) dm.
T(F)\M°(F)
But now let m = (C, D,e) € M°(F) then we have
m~ya(m) = (C~rAw' D w, D™ 'w!C w, cdet CD).

Thus we see that if m~ya(m) € Ky then we have D~ 'w!C~1w € GL(2, R) from which it follows
that we must have det CD € Up. But this then forces ¢ € Up and hence if ¢ ¢ Up then r§;(ya)

vanishes.
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Now assume that ¢ € Up. Then we have that m~!ya(m) € Ky, if and only if D™ w!C~tw =
C; € GL(2,R) and
C'Aw'D™'w = CTACw'Ciw € GL(2, R).

Which is if, and only if, C~'AC € GL(2, R) and D = w'C~'wC; with C; € GL(2, R). So we have

m~tya(m) € Ky if, and only if,
m = (C,w'C  w,e)(I,Cy,1)

with C™1AC,C; € GL(2, R).
Now we note that for & € Kj; and n € N(F) we have

Pr—1ya(k) (n) = k_lsp’*/(a(k)na(k‘)_l)kv

and hence

op(kak)) = / ont (o trag (n) dn

N(F)NK
= / v (b oy (a(k)na(k) ™1 )k) dn
N(F)NK
= [ oule,altnak) ) dn.
N(F)NK
which equals op(7) after a suitable change of variables.

Therefore the integrand in r§; (ya) is invariant under right multiplication of m by an element of

Kjr. Thus if we set T3 equal to the centralizer of A in GL(2) then we have

r%(va) = |DM('ya)|%/ 1GL(27R)(C_1AC)O'P(C_1AC,I7].) dC
T, (F)\GL(2,F)

as wished. O

6.2 Explicit statement of the fundamental lemma

We now give an explicit statement of the fundamental lemma for the pair (M, M’). Let ya =

(A,I,c)ac € M(F) be semisimple. Under the norm maps we have

cdet A
N(ya) = cA € M'(F) c GSp(4, F),
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and to
cdet A
N(ya) = ,cA| € M'(F) C (GL(2,F) x GL(2,F))".
c
By Lemma 6.1 the fundamental lemma for the pair (M, M’) is the assertion that for all A €

GL(2, F) and ¢ € F* for which (A, I,c)a € M is strongly G°-regular we have
r$ (A, I, c)a) = rfﬁpw(diag(c det A,cA,c)) + TE\?,LQ)XGL(Q))/ (diag(cdet A, ¢), cA).

From Lemma 6.2 we know that the twisted integral vanishes if ¢ € Up. It is also clear from Lemma
5.16 that the integrals on GSp(4) and (GL(2) x GL(2))" vanish if ¢ ¢ Up. Thus the fundamental
lemma is proven in this case. Moreover, if ¢ € Ur then all integrals that appear in the statement of
the fundamental lemma are independent of ¢ and so we may assume that ¢ = 1. Furthermore, we
may as well assume that A € K; = GL(2, R). Having fixed A we let T; denote the centralizer of A
in GL(2). Then we can write

GL2.F) = [[ Ti(F)zmK:

m>0
for an explicit set of representatives z,, to be given below.
Let Py (resp. P») denote the upper triangular parabolics in GSp(4) (resp. (GL(2) x GL(2))’) of

which M’ is a Levi component. By abuse of notation we write

B
op(B)=o0p ,1
I
det B
UPI(B) =0p B
1
det B
op,(B) =0p, , B
1

for B € GL(2, F).

Therefore the fundamental lemma we wish to prove is given by the following.

Proposition 6.3. Let A € GL(2, R) be such that ya = (A, I,1)a is strongly GO-regular. Assume
that we have z,,t Az, € GL(2, R) if and only if m < N(A). Then

N(A)
|Dar(va)|2 Z vol(K1 N 2, ' T (F) 2z \ K1)op (2,  Azm)
m=0
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18 equal to

N(A)
| Dy (N(ya))ﬁ Z vol(K1 M 2, Ty (F)zp \ K1) (0p, (27, Azin) 4+ 0p, (2, Az -
m=0

We label the identity of this Proposition by FL(A). We now proceed to prove FL(A). We split
the proof into two cases, in the first we assume that A lies in a split torus, while in the second we

assume that A lies in an elliptic torus.

6.3 Computation of op, op, and op,

In this section we give the expressions for op, op, and op,. For ease of notation we set vol(a%/Z(A}))
equal to @, which has the effect of replacing log by log, below. We suppress the ¢ from our notation
and for the rest of this chapter take log to be log to the base q. We normalize the other volumes as

in Section 5.5.

6.3.1 Calculation of op

We have
1 r1 T2
1 z3 =
NP: ° ! 71
1
1

If we identify Np(F) with F4 using 21,...,74 as our coordinates then for z = (A4,1,1) € M°(F)

with
a b
A =
c d
the map n — z~n"1za(n) is given by
X1 —d 0 b det A I
T 0 det A —d 0 b T
| = det A71 ?
T3 c 0 detA—a 0 T3
T4 det A c 0 —a T4

Let B denote this matrix then we have

det B = —det A=%(det A — 1)(det A — tr A + 1);
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and after a change of variables we have, for A € GL(2, R), op(A) equal to

|(det A—1)(det A—tr A+1)] charga (B (21, 79, 73, 74)) logmax{1, |z1|, |za|, |23, |z4], | 2174 —2273]}.

F4
1 =z r s
1 r
Np, =
1 —=x
1

We identify Np, with F*® using z, 7 and s as our coordinates. For

6.3.2 Calculation of op,

We have

det A
Y= A
1
with
a b
A =
c d
the map n — vy~ 'n"'yn is given by
x (det A — a)x —cr
folr|—deta™? —bx + (det A — d)r
s (det A —1)s + bz + (d — a)zr — cr?

Therefore after a change of variables we have

op, (A) = |(det A — 1)(det A — tr A + 1) / charga (f(z,r, s)) logmax{1, |z, |r|, |s|}.
F3

6.3.3 Calculation of op,

In this case we have

op,(A) =|det A — 1\/ charp((det A — 1)x)vpm T
F 1

= |det A — 1] log max{1, |z|}.
|z|<|det A—1]—1



63
6.4 Proof of the fundamental lemma for split tori

In this section we prove Proposition 6.3 when A lies in a split torus. After conjugation we may
assume that A lies in the diagonal torus T7. We begin by giving a double coset decomposition for

GL(2, F).

Lemma 6.4. For each m > 0 let z,, € F be an element of valuation of —m. Then we have

Lm

1
GL(2,F) = [ Tu(F) K.
m>0 1

Proof. By the Iwasawa decomposition we have GL(2, F) = T1(F)U(F)K;, where U denotes the

subgroup of GL(2) of upper triangular unipotent matrices. But for u € Up and = € F' we have

To check that the union of double cosets is disjoint we note that

1 -z, a 1 =z, a ax, — br,
1 b 1 b ’
and for this matrix to lie in K; we would need a,b € Ur and m = n. O

We now fix a sequence of elements (z,,) as in Lemma 6.4 and we set

Note that we have

and therefore,
1, if m=0;

vol(Ky N2, Ty (F)zm \ K1) =
(g —1)gm™t, if m>0.

We now set

A=
d

then in the notation of Proposition 6.3 we have N(A) = v(a — d). Using the action of the Weyl
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group in GL(2) we can assume that we have |a — 1| < |d —1|. We recall that we are assuming that F’
has odd residual characteristic, so we can split the proof of Proposition 6.3 into the following three

cases

Case 1. |ad—1|=|a—d|=|d—1| > |a— 1]
Case 2. l[a—1|=|d=1]=]ad — 1] > |a—d|
Case 3. l[a—1|=|d—1|=|a—d| > |ad — 1].

Our strategy will be to show that each case follows from proving the identity FL(A) when |ad—1| =
la —d| = |d — 1| = |a — 1|. We then prove that the identity F'L(A) holds in this case.

In order to guarantee that, for any M > 0, there exists a,d € Up such that
lad—1|=la—d|=|d—1|=la—1|=¢ M

we need to make the additional assumption that ¢ > 3. See Remark 6.9 below for the case that
q=3.

We will need to compute op, op, and op, at elements of the form

a b
d

with a,d € Up and 0 < |a — d| < |b| < 1. For op the matrix B of Section 6.3.1 equals

—d 0 b ad
0 da-1) 0 b
0 0 ad—1) 0
ad 0 0 —a

0 0 b oad—1
0 (a—1)d 0 b
0 0 d—1 0
d 0 0 -1

Since the function vy is invariant under right multiplication by K we may assume that z; = d~'xzy.

After multiplying o by d~! we get that op(A) is given by |a — 1||d — 1||ad — 1| times the integral of

log max{1, |za|, |z3|, |z4], |25 — zow3|}
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over the region in F given by
o |zg] <d—1|7
o (ad—1)xy +bxs € R
o (a—1)xo +bxy € R.

We have op, at the element

equal to |a — 1||d — 1||ad — 1] times the integral of
log max{1, ||, |r], |s|}

over the region in F given by
o [z <ld—1]7"
e ~br+dla—1)reR

e (ad—1)s+z(bx — (a—d)r) € R.

6.4.1 Reduction in case 1

We assume that we have N > M and
g M=lad—1=la—d =|d—1|>]a—1=q¢ V.

We let L(M,N) (resp. R(M,N)) denote the left (resp. right) hand side of the identity FL(A)
in this case. We will see that L(M, N) and R(M, N) are well defined. In this section we prove the

following Proposition.

Proposition 6.5. For all N > M we have
qL(M,N +1) = L(M,N) =3¢™ -3+ (3M + N +1)(¢— 1) = qR(M,N +1) — R(M, N).
Proof. We begin by considering the twisted integrals op(z,,' Az,,). We need to integrate
log max{1, |za|, |z3|, |z4], |27 — zox3|}

over the region given by
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o |z3| < |d—1]7!
o b+ (ad—1)zys € R
e (a—Dxo+bxy €R
where b € R with |a —d| < [b] < 1.

We first consider when |b|~! < |z3] < |d — 1|~!. Then we have

ry = —(ad — 1) bazu,

with uy € Up """ and |24| = |ad — 1|~ |bxs| > |b|~!. Therefore,
_ -1 _ ~1 —1;2
29 =—(a—1)""bxgus = (a —1)" " (ad — 1) "b*x3usug
with ug € U;U(b“) and |z3| = |a — 1|7 Yad — 1|71|b?x3|. Therefore,
2% — xoxz = b223uy (ad — 1) (a — 1) ((a — Vuy — (ad — 1)us)
Since

[(@ —1)uy — (ad — Dug| = |d — 1|
for all such u; and ugy we have
2§ — wows| = |(ad — 1) (a — 1)~ ||bas|*.

The contribution to the integral is

la — 1|7 ad — 1\_1/ log |(ad — 1) "' (a — 1) 7| |bas|?.
b=t <|z3|<|d—1|~1

We are now left with the region given by
o |zs] < o7

o |24 < lad — 1|7

e (a—1)xg +bxy € R.

We now consider the case that |z4] > |b|™!. Then we have

zo = (a — 1) tbagu
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with u € U;v(b“) and |z2| = |a — 1|7Ybz4|. Now
|2 — wows| = |za||xfzy ! — wal,
and
|2yt = [a = 1|[b| x| <[5

Therefore making the change of variables 3 — 3 — x3z5 ! gives the contribution to the integral as

|a*1|71/ / log max{|a — 1|7 baa|, |a — 1]~ |bza||z3]},
|z <|b| =1 J|b] =1 <|z4|<|ad—1| 1

which we can write as the sum of

|a71|*1|b|*1/ log a — 1| b,
b= 1<|za|<|ad—1|~1

and

fa= 11 (ad — 11~ o) [ log 4]

1<|zs|<[b| !

Finally we are left with the remaining contribution, which is

[ log max{1, 2], [as], [, o2 — w225}
[z3|<|b] =1 /x| <[b|7F  |z2|<[a—1|71

We note that the integrals above depend only on M, N and |b]. We now compute the difference
qL(M,N +1) — L(M, N). For b with |b| = ¢~* where 0 < k < M we set

a b
d

UP(M7N7k) =0op

We need to compute gop(M,N + 1,k) — op(M, N,k). From the first contribution to the integral

the difference is given by
q_M'H/ (M + N +1-2k+2log|xs|)
gk <|z3|<qM

minus

q—M/ (M + N — 2k + 2log |3]).
gk <|z3|<qM

The difference between the second contributions is given by

q—2M+k+1/ (N+1—k;+log|x4|)
qF<|za|<qM
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plus

M - ) [ log 3.

1<|zs|<qP

minus

| (N — s + log 4])

gk <|z4|<qM
minus
@ =) [ oga).
1<|zs|<q*

And the difference between the third contributions is

q*2M*N‘/ / / log max{1, |za|, |23 — zo25]}.
|zs|<q* J]zal<qk J|z2|=¢NT!
2

We note that |25 23| < ¢** V=1 < ¢* and so making the change of variables x3 +— x3 + x5 'z in

this last integral gives

q_QM_N/ / / N + 1+ logmax{1,|z3|}.
lzs|<g® Jlz4|<q* J|2a|=¢N+?

Using Lemma 10.1 we get
qop(M,N +1,k) —op(M,N,k) = (3M + N — 2k +1)(q— 1) — 1 + ¢~ M.

Now we have qL(M, N + 1) — L(M, N) equal to ¢~ times
M-1
(qop(M,N +1,M) —op(M,N,M)) + (¢ —1) >_ (qop(M,N +1,k) — op(M, N, k))g" +~".

k=0

Using the fact that

m
- ) m qm_l
(1—q¢ ")) ig" =mq™ - o
1=0

for all m > —1 we get
qL(M,N +1) = L(M,N) =3¢ ™+ (3M + N +1)(¢— 1) - 3.

We now consider the right hand side of the identity F'L(A). First we consider the relevant

integrals on GSp(4). Here we need to integrate
logmax{1,|z|, ||, |s|}

over the region in F given by
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o |z <|d—17
e —br+dla—1)reR
e (ad—1)s+z(bx — (a—d)r) € R.
First we suppose that [b|~! < |z|. Then r = d='(a — 1)~ bzu with u € Up""". We have
br — (a —d)r = bz — (a — d)d (@ — 1) " bazu = br(a — 1)"rd"(d(a — 1) — (a — d)u)
and we note that

|d(a = 1) = (a — d)u| = |d - 1]

v(bx)

for all w € Uy . Hence we must have |s| = |a — 1|~![b2?|. Thus the contribution to the integral

is
\a—1|_1\ad—1|_1/ log |a — 1]~ ba?.
b1 <|w|<]d—1|-1
We are now left with the region
o [z < b~
o [r]<la—1["
e (ad—1)s+z(bx—(a—d)r) € R

to integrate over. Making the change of variables s — s — (ad — 1) "'z (bz — (a — d)r) we see that

the contribution to the integral is

/ / / log max{1, |z|, |r|,|s — (ad — 1) a(bx — (a — d)7)|}.
|z|<|b] =1 S|r|<|a—1]|~1 J|s|<|ad—1|1

Multiplying z,r and s by suitable units this integral equals

/ / / log max{1, |z|, ||, |s — 7~ Mz (bx — 7Mr)|}.
lz|<lb| =t Jr|<[a=1]7" J]s|<[ad—1]~*

The integral on (GL(2) x GL(2))’ is given by

op, (2,  Azy) = |ad — 1 log |z|.
1<|z|<]ad—1|~1

We note that the integrals above depend only on M, N and |b|. For |b| = ¢ %, 0 <k < M, we
define op, (M, N, k) and op,(M, N, k) as we did for op(M, N, k). We now compute

(gop, (M, N +1,k) = op, (M, N, k) + (gop, (M, N + 1,k) — op, (M, N, k).
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First we compute gop, (M, N + 1,k) — op, (M, N, k). The first part of the integral contributes
q_M+1/ N —k+1+2log|z|
q*<|z|<qM

minus

qu/ N — k +2log|z|.
aF<|z|<qM

While the second part of the integral contributes

q*N*QM/ / / logmax{l,|x\|r|,|3—ﬂ'fMJ:(bx—ﬂ'Mr)|},
[z|<gk J|r|=gN+1 J|s|<qM
which equals

N2 / / / log max{|r], |s — zr]},
lz|<gk J|r|=¢N+t J|s|<qM

q_N_M/ / N + 1 + log max{1, |z|},
|z|<g® J|r|=gN+1

which equals

since Kk < M < N.
Putting this together and using Lemma 10.1 gives

(qUP1(M»N+ lak> _UPI(M’N’k>) +(qUP2<M7N+1’k) _UPz(MvNak))

equal to

BM+N —k+1)(g—1)—2+2¢ M.

And we get gR(M,N + 1) — R(M, N) equal to
3¢ M -3+(BM+N+1)(g—1)

as required. O

6.4.2 Reduction in case 2

We assume that N > M and
q_M:|a—1\:\d—1|:|ad—1\z\a—d|:q_N.

We let L(M,N) (resp. R(M,N)) denote the left (resp. right) hand side of the identity FL(A)
in this case. We will see that L(M, N) and R(M, N) are well defined. In this section we prove the
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following Proposition.

Proposition 6.6. For all N > M we have

L(M,N +1)— L(M,N) =0 = R(M,N + 1) — R(M,N).

k

Proof. We begin by analyzing the twisted integrals op. For b with [b] = ¢~" we write

Up(M,N,k) =0op

and we define, for 0 < kK < N,
G(M,N,]f) ZO'p(M,N—F 1,](3) —UP(M,N,]{).

Now we have

N
"M L(M,N+1)=0p(M,N+1,N+1)+(q— 1) op(M,N+1,k)¢" "
k=0

N
—op(M,N+ LN+ 1)+ (q— 1) op(M, N,k " + (g = 1) 3 e(M, N, k)g"
k

k=0

=op(M,N+1,N+1)—op(M,N,N)+¢"""L(M,N)+ (¢—1)> e(M,N, k)¢" "

M L

ES
Il

0

and therefore,

N
¢ (L(M,N +1) = L(M,N)) = 0p(M,N+1,N+1)—op(M,N,N)+(g—1) ¥ _ e(M,N,k)g"*.
k=0

Thus we will be done with the left hand side if we can show that op(M,N+1, N+1) = op(M, N, N)
and e(M, N, k) =0 for all k.
Now recall that op(M, N, k) is given by ¢3M times the integral of

log max{1, |za|, |z3|, |z4], |27 — zox3}

over the region given by
o |z3| < g
o bus+ (ad —1)z4 € R
o (a—1)xg +bxy € R.

We now consider the integral over this region for |b| = ¢~*. First suppose that ¢* < |x3] < ¢™.
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Then we have

ry = —(ad — 1) basu,
with u; € U;U(bw:") and
zo = —(a—1)"tbrgus = (a — 1) (ad — 1) D2 23u01u,

v(bxy)

with up € Up . Therefore,

x3 — woxs = (ad — 1) 2b*23ui — (a — 1) (ad — 1) b2 23uquy

= (ad — 1) 2(a — 1) "'b*23u;1 ((a — V)uy — (ad — 1)us).

We have
[(a — Duy — (ad — Dug| = |d — 1|

for all u; and up and hence in the range ¢* < |z3| < ¢™ we have
log max{1, |za|, |z3|, |z4], |25 — z2w3} = log|2z] — zox3| = 2M — 2k + 2log |z3].

We are now left to integrate over the region
o |z3] <min{q", ¢}

o |z4| < g™

e (a—1)xo +bxy € R.

Next we suppose that ¢* < |z4] < ¢™. Then we have
Ty = —(a — 1) bxsu
with u € U;”(b‘“). Hence,
22 — zox3 = 23 + (a — 1) 'brguzs = (a — 1) tbrgu(u (@ — 1)b tay + x3).
Now |u=!(a — 1)b~ ay| < ¢~ M+k¢M = ¢k, Hence making the change of variables

r3 a3 —u (a—1)b " lay
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gives the integral over this region as

qM/ / (M — k + log max{|z4|, |x324|}) .
|zs|<gk J gk <|za|<gM

And finally we are left with the integral

/ / / log max{1, [za], |z3], |4, |22 — zams]}.
|z3|<min{g®,qM} J|z4|<min{gk,qM} J|z2|<qgM

It’s clear from above that op(M, N, k) does not depend on N and hence we have e(M, N, k) = 0

for all k. Moreover, we see that

op(M,N,N) =q3M log max{1, |za|, |z3|, |z4], |27 — zox3|}
|z2|,|zs],|zal <q™

and hence we have op(M,N +1,N +1) = op(M, N, N).
Now we turn to the right hand side of the identity F'L(A). Let Ry(M,N) (resp. Ra(M,N))
denote the contribution to R(M, N) from the sum over the op, (resp. op,).

First we consider the integral on (GL(2) x GL(2))’. We have for 0 <m < N

op, (Z;LlAZm> =gM log max{1, |z|}

|z|<gM

and it’s clear from this that we have Ro(M, N) = Ro(M, N + 1).
Now we consider the integral on GSp(4). For [b| = ¢~ %, 0 <k < N, we set

Upl(M7N,k):O'p1 5

and define
er(M,N,k) =op,(M,N + 1,k) —op, (M, N, k).

As above we have

N
¢ (R(M,N +1) = R(M,N)) = op, (M, N+1,N+1)—0p,(M,N,N)+(q—1) > _ ex(M, N, k)" *.
k=0

We now show that this expression is equal to zero.

Having fixed M we set, for m € Z,

I(m) :q_3M/ / || log max{1, |r|, |s — 7™r?|}.
Ir|<q™ J|s|<q™

We note that I(m) is constant for m > 2M. We will express op, (M, N +1,N +1) —op, (M, N, N)
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and e; (M, N, k)¢ =% in terms of I(m).
We begin by computing e; (M, N, k). Recall that op, (M, N, k) is equal to ¢~ times the integral
of
log max{1, |z|, |r|,|s|}

over the region
o [z < g™
e —br+dla—1)reR
o (ad—1)s+z(bx — (a—d)r) € R.

First we suppose that ¢* < |z| < ¢*. Then we have
r=d 'a—1)"tbzu
with u € U "), Therefore,
z(bx — (a — d)r) = br?d " (a — 1) " (d(a — 1) — (a — d)u)

and we have

ld(a—1) — (a — dyu| = |d — 1|

for all such u. Hence over this region the integrand is equal to log |ad — 1|~!|bz?| and therefore the
contribution to e; (M, N, k) is zero.
We are now left with the region

o || < min{qk7qM}

. ‘T| <q
e (ad—1)s+x(bx — (a —d)r) € R.

So after scaling our variables by suitable units we can take this region to be

o |z < min{q", ¢}

e 1] <gq

o M5t x(nkz — 7Nr) € R.

Making the change of variables x — x + %TFN ~*r and 7 — 27, which doesn’t change the integrand,

this region becomes
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o || < min{qk,qM}

o 7| <q

o M5 7k (x4 7VN"kr)(x — 7N Fr) € R.

Thus we see that if |z| > |7V ~*r| then we have
|78 (x + 7N 7Er) (@ — 7N TR)| = |7ha?| = |7f (@ + 7V Re) (o — VLR

and the contribution to ej (M, N, k) is zero. Therefore eq (M, N, k) is equal to the difference between
the integral of

g *Mlog max{1, |r|, |s|}
over the regions

o [r]<q"

o [z < g Nr|
o M5 k(x4 pNHL=kp) (g — pNHL=kp) € R,

and

o 7| <q

o [a| <" N

o s ak(x+aNFr)(z —7aNFr) € R.

Over the first region the integral is equal the sum of

g Mg N1 — ¢ HI@2N - k),

the contribution when |z| = ¢*~V|r|,

g MG N=2 [N — k4 2)

k=N=2|p| and

the contribution when |z| < ¢

q—quk—N—1<1 - 3q_1)I(2N —k4+ 2) 4 q—3qu—N—1 Z 2q_a(1 — q_l)I(QN —k+2+ a)

a=1

the contribution when |z| = ¢~V =1|r|.
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Over the second region the integral is equal to the sum of
q—3qu—N—1I(2N _ k)
the contribution when |z| < ¢*~N~1|r|, and

g Mg N (1 =3¢ YIERN — k) +q M 27 (1 - ¢HI@2N — k +a)

a=1

the contribution when |z| = ¢*=V|r|.

Hence we have e, (M, N, k)gV ~F equal to ¢~>M times
¢ 'I2N —k)+q "1 -2 DNIC2N —k+2)+q " qu (1-¢ "Y(I2N—-k+2+a)—I2N —k+a)),
which equals ¢73™ times the sum of
¢ 'I(2N — k) — ¢ 'I(2N — k +2),
and

207 (1—q ")) ¢ IQN —k+2+a)—2¢"'(1—q ") ¢ “I2N —k+1+a).
a=0 a=0
We now sum from k = 0 to N. By telescoping we have
N
> ¢ 'I(@N —k)— ¢ 'I2N —k+2) =q 'I(N)+ ¢ ' I(N +1) - 2¢" ' I(2M).

k=0

While we have

N oo
qu IQN —k+2+a) =Y Y ¢ “I2N —k+1+a)

k=0 a=0 k=0 a=0
equal to
N+1 oo
DD T UI(N+k+1+a)- qu I(N+k+1+a),
k=1 a=0 k=0 a=0

which equals

Zq I(2N +2+a) — Zq I(N +1+a),

which equals

1
g1 Zq I(N+1+a),
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using the fact that I(m) is constant for m > 2M. Putting this altogether we get

N
qSM(q - 1) Z 61(M7 N7 k)quk
k=0
equal to
oo
(=g )IN) + (1= g DIV +1) 201 — ¢ 123 g I(N +1+a)
a=0
Next we compute op, (M, N+1, N+1)—op, (M, N, N) in terms of I(m). We have op, (M, N, N)
equal to ¢73M times the integral of

log max{1, |z|, ||, |s|}

over the region
o |zf,|r] < ¢V
o s+ aNg(x—1r)€ER,
which becomes, after the change of variables r — x — r that doesn’t affect the integrand,
o |z],|r] < ¢V
o ™Ms + 7Nar € R.

Since the region and integrand are symmetric in « and r we can compute this integral as twice the

integral when |z| < |r| minus the integral when |z| = |r|. The contribution from when |z| < |r| is

o0
>/ oL @Dl logmax{1, s = x4,
a=0"17l:ls|<q

which equals

S 41— g I +a).

While the contribution when |z| = |r| is equal to (1 — ¢~1)I(N). Hence we have
op,(M,N +1,N + 1) — op, (M, N, N)

equal to ¢—3M times

22 (1 —g HIN+1+a)—(1—q )I(N+1)
a=0
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minus

2Y (=g HIN +a)) = (1—qg HI(N).

But we have

2Zq (1—g¢ HI(N+1+a) —2Zq (1—q¢ HI(N +a)

a=0
equal to
21—¢ ")’ (¢ “I(N +1+a)) —2(1 — ¢ HI(N),
a=0

and hence we have ¢* (op, (M,N +1,N + 1) — op, (M, N, N)) equal to
21 —¢* Zq I(N+1+4a)—(1—q¢gHI(N+1)—(1—qg HI(N).

Thus Rq(M,N +1) — R1(M,N) = 0 as required. O

6.4.3 Reduction in case 3

We assume that N > M and
=la—1l=|d—1|=|a—d|>|ad -1 = ¢ .

We let L(M,N) (resp. R(M,N)) denote the left (resp. right) hand side of the identity FL(A)
in this case. We will see that L(M, N) and R(M, N) are well defined. In this section we prove the

following Proposition.

Proposition 6.7. For all N > M we have
qL(M,N +1) = L(M,N) =2¢ ™ =24+ 2(M + N +1)(¢ — 1) = ¢qR(M,N + 1) — R(M, N).
Proof. We begin by considering the twisted integrals op(2,,} Az,,). Again we need to integrate
log max{1, |za|, |z3|, |z4], |22 — zox3|}

over the region in F given by
(] ‘xg‘ S |d— 1|71
o brg+ (ad—1)zy € R

e (a—1)xzo +bxy € R.
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We first consider the contribution when |b|~! < |x3]. Then we have
ry = —(ad — 1) basu,

with u; € U;v(bm)

. Therefore |z4| = |ad — 1|7t[bx3| > |b|~! and hence

ry = —(a— 1) basus = (a — 1) (ad — 1)~ b2 w301 us

with ug € Up "™, Thus,

x5 — xoxs = (ad — 1) "%(a — 1)~ 0%23ui (us(a — 1) — (ad — 1)uy).

Since

|lui(a —1) — (ad — Dug| = |d — 1|

for all u; and us we have

|22 — zox3| = |(ad — 1) 2b%23].

So the contribution when |[b|™! < |z3| is

|ad71|71|a71|71/ log |(ad — 1)"2bx3).
b=t <Jxs|<|d—1]~*
We are now left to integrate over

o Josl < b

o |z4| < lad — 171

e (a—1)zo +bxy € R.

Suppose that |z4] > [b|~!. Then we have
zy = —(a — 1) bxsu

vbea) and

with v € Up

22 — xox3 = x5 + (a — 1) Mbagurs = v4(zy + (a — 1) buas).

So after multiplying z3 by a suitable unit the contribution to the integral is

la — 1|71 / / log max{|7~Mbxy|, |xs(xs + 7 Mbrs)
lzs|<[b] =1 J[b| 7! <|za|<|ad—1| "

1.
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Finally, when |z4] < [b|~! the contribution is

/ / / log max{L, [z2], |3, [zal, |22 — z22s]}.
feal< b=t Jwal<lpl=1 JJza|<lam1] 1

We define op(M, N, k) as before and now compute gop(N + 1, M, k) — op(N, M, k). From the

first contribution to the integral the difference is given by

q—M+1/ (2N — 2k 4+ 2 + 2log |z3])
gk <|z3|<qM

minus

q_M/ (2N — 2k + 2log |x3]).
gk <|zs|<qM

The difference between the second contributions is

9g M- N+ / log |4,
|zg|=gN+1

and the difference between the third contributions is zero. Using Lemma 10.1 we get
qgop(M,N +1,k) —op(M,N,k) =2(M + N —k+1)(g—1),

and we compute
qL(M,N +1) = L(M,N) =2¢"M —242(M + N +1)(q — 1).

We now turn our attention to the right hand side of the identity FL(A). First we look at

computing the integrals op, (z,,' Az,,). We are integrating the function
log max{1, [x[, |r[, [s[}

over the region
o || <|d—1]7"
e bx+dla—1)reR
o (ad—1)s+z(bx — (a —d)r) € R.

If |b| =1 < |2| then we have
r=d '(a—1)"tbzu
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with u € UEU(M). Then
br — (a —d)r = bxd *(a —1)" (d(a — 1) — (a — d)u),

and we have

|d(a = 1) = (a = d)u| = |d - 1]

for all such u. Hence we have

|s| = |ad — 1|71 |bz?.

Therefore, the contribution to the integral is

|ad—1|71|a—1|71/ log |ad — 1|7 bz?|.
[b] =t <|z|<|d—1|~*

The region that’s left is given by
o lo] < [b!
o |r|<|a—1]71
e (ad—1)s+z(bx — (a —d)r) € R.

Making the change of variables s — s — (ad — 1)"12(bz — (a — d)r) gives the remaining integral as

/ / / logmax{1, |z, |r|,|s — (ad — 1) *z(bx — (a — d)r)|}.
jel< b= Jiri<la—1]-1 J|s|<Jad—1] 2

And making the change of variables 7 + 7 + (a — d) ~'bz gives this integral as
/ / / log max{1, |z, |7 + (a — d) ‘bz, |s — (ad — 1)~ (a — d)zr|}.
[e]<[b[=t r|<la=1]~* J]s|<|ad—1] 1
We see that if |zr| > |a — d|~! then the integrand equals
log lad — 1|7 a — d||zr|,
and so the contribution to the integral from this region is

ad — 1|71 log lad — 1| |a — d||zr].
g
1<|z|<|b|= Sja—1]=1z|~1<|r|<|a—1|~1

Now we look at the contribution when |zr| < |a — d|~!. This is given, after suitable change of



82

variables in x and s, by

/ / / log max{1, |z, |r + 7Mbz], |s|}.
1< bl=1 Jri<la—1]=1 Jzr|<la1]-1 J|s|<[ad—1]1

We define op, (M, N, k) as before and we now compute gop, (M, N + 1,k) — op, (M, N, k). The

difference between the first contributions to the integrals gives

q_M'H/ (N+1—Fk+2loglz]) —q¢ M (N —k+2log|z]).
a* <|z|<qM

gk <|z|<qM

The difference between the second contributions is

Mg —1) / (N — M + log y)) / 2!
M <|y|<gM+F g Mly|<|z|<qF

:qufl(q_l)z/ (N +log|y))(k+ 1 —logly|)
1<]y|<q"

plus

q”MH/ / 2|7t =q M (g - 1)/ k+1—logly|.
qM <|y|<gM+k Jq=My|<|z|<qF 1<]y|<q*

And the difference between the third contributions is
o[ [ sl
le]<q¥ J|r|<qM.|zr|<qM J]s|=qN+!
Putting these altogether gives
qop,(M,N +1,k) —op,(M,N,k) = 2M + N —k+1)(¢— 1) — 14+ ¢ M.
We note that we have
gop,(M,N + 1,k) —op,(M,N,k) = (N +1)(¢ — 1)
and hence
qlop,(M,N + 1,k)+op,(M,N + 1,k)) — (6p,(M,N + 1,k) + op,(M,N + 1,k))

equals

(2M +2N —k+2)(g—1) —1+q¢ M.

We now compute

qR(M,N+1)—R(M,N)=2¢M —242(M + N +1)(g—1)
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as desired. 0

6.4.4 Proof when M = N

We assume that we have
la—1=|d=1|=]ad—1] = |d—1| = ¢ ™.

We let L(M) (resp. R(M)) denote the left (resp. right) hand side of the identity FL(A). We now
prove the following Proposition which completes the proof of Proposition 6.3 in the case that A lies

in a split torus.

Proposition 6.8. For all M > 0 we have

l—q’M

L(M)=4M —4
q—1

= R(M).
Proof. We begin by computing the left hand side of FL(A). For b with |b| = ¢=* we set

a b
d

O'p(M,k) =0op

As we have seen op(M, k) is equal to the sum of

M / log (¢?M~2* |52,
gk <|z3|<gM

and
q‘zM““/ log (g™ ~*|aal),
gk <|z4|<qM
and
(M- q‘““’“)/ log |23],
1<|z3]|<q¥
and

q_3M/ / / log max{1, [za], |zs], |4, |22 — zams]}.
lzs|<q* J|za|<qF J|z2|<qM

Putting this altogether gives

3k—3M —3M
q —q

1
op(M,k) = (4M — 2k) + q——l(_z M g BRmIMYy o
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And we get

g

—1
1_ —M
LM)=op(M,M)+(q—1) Y op(M, k)¢ 1 =4aM — 4—‘11.
-
0

b
I

We now compute R(M). We define op, (M, k) and op, (M, k) similarly. First we note that

1—q_M
Mk)y=M — ————.
UPQ( ) ) q*l

We now compute op, (M, k). As we have seen this is equal to the sum of

M / log (g™ ~*[x[2),
gt <|z|<qM

and

qiSM/ / / log max{1, |z|, ||, |s — (ad—l)flx(bx— (ad — 1)r)|}.
|z|<g* J|r|<qM J|s|<qM

We turn our attention to computing this latter integral. It’s clear that if |z(bx — (ad — 1)r)| > 1
then the final term dominates. We begin by computing the contribution to the integral in this case.
We need to compute the volume of z and r such that |z(bx — (a — d)r)| = ¢ for m > 0.

Making the change of variables
1 -1
a:r—>:c+§(ad71)b r, r—2r
turns this into
1b] bz — (a — d)r||bxz — (a — d)r|.

We now make the change of variables u = bz — (ad—1)r and v = bx + (ad — 1)r, which multiplies the

integral by |b|~!|ad — 1|7!. Given m with 0 < m < k the volume of u and v such that |uv| = ¢~™ is

> vol(ju| = ¢ ™) vol([v| = g™ ") = (m + 1)g ™ (1 — g )2
n=0

Thus the contribution to op, (M, k) when |z(bx — (ad — 1)r)| > 1 is
k-1

N (m A )M+ k—m)g (1 - g,

m=0

We are now left the range of integration

o |z| < ¢F, |r| < g™, 2(bx — (ad — 1)r) € R

o |s] <qM
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and after making of change of variables in s we can take our integrand to be
log max{1, |z|, |r],|s|}.

We set | = |k/2], so that |bz?| > 1 if and only if |x| > ¢!. We define, for a > 0,

a

M M —q
F(¢*) = / logmax{q®, |s|} = Mq¢" — 1
s|<qM q

Let us first consider the case that ¢ < |z| < ¢*. Then in order that x(bx — (ad — 1)r) € R we
need r = (ad — 1) 'bzu with u € U;“(bxz). The volume of such r equals |(ad — 1)71z~!| and the

contribution to the integral is
[ ltad =1 e p (b)),
q'<|z|<q*

Now we consider the contribution when |x| < ¢'. In this case we need to have that (ad—1)zr € R.

When |z| < 1 the contribution is

R )

Finally we are left with the region 1 < |z| < ¢! and |r| < ¢M|z|~1. Let’s set |z| = ¢’ with 1 <i <.
Then |r| < ¢™~*. Note that for all such i we have ¢* < ¢™~%. If we split up the cases that |r| < ¢’

and ¢* < |r| < ¢M then the contribution to the integral is

3" vol(ja| = ¢ (cmq’) o F<r|>> .

q

Putting this altogether gives op, (M, k) + op,(M, k) equal to

34 4g—M _ g~ M—k+l ~M—l _ ,—3M —3M 43142 _ ,—3M+2
(40— )4 3T q Bl B 4
q—1 ¢ -1 (¢+1)(¢® - 1)

And we compute the right hand side of F'L(A) to be

M

-1
AMgM — 44

qg—1

as required. O

Remark 6.9. We made the assumption that ¢ > 3 in order to ensure that we could reduce to this
M = N case. However, in the case that ¢ > 3 the reductions made are still valid. The identity

proven in the Proposition above is again valid, it’s just that it doesn’t actually represent a case of
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the fundamental lemma. Hence the fundamental lemma for the (2,2) Levi is proven in the case that

q = 3 as well.

6.5 Proof of the fundamental lemma for elliptic tori

In this section we prove Proposition 6.3 in the case that A lies in an elliptic torus. In this case we

may assume that

a bD
A= € GL(2,R)
b «a

with v(D) = 0 or 1 and Ep = F(v/D) a quadratic extension of F. We note that for v = (A,I,1) €
MPO(F) we have
[Dar(ya)[* = [6v/D] = [Dar (N (ya)) |

We take the following from [F1i99, Section LI]. Let 77 denote the torus in GL(2) with
D
Ty(F) = € GL(2,F):z+yVD € E

Let z,, = diag(1,7"™) then we have the double coset decomposition

GL(2,F) = [[ Tv(F)zm K1,

m>0
where K; = GL(2, R). We have
1 a 7"bD
Zpy Az, =
T™b a

and so z,,' Az,, € K; if and only if m < v(b). We have
KlﬂZn_,LlTl(F)Zm: e K,

So if we set vol(D,m) = vol(K1 N z,,' T4 (F)zm, \ K1) then we have

1, if Ep/F unramified and m = 0;
vol(D,m) = ¢ (q+1)¢™~!, if Ep/F unramified and m > 0;
qm™, if Ep/F ramified.
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We set T(A) = det A — tr A+ 1. Then we have

op(2m' Azn) = | det A— 1\|T(A)|/ charpa (B (21, w2, 23, x4)) log max{1, [z1], | 22|, |23], [€4], |2124 — wow3]},
4

where B is the matrix

—a 0 b D det A

0 detA—a 0 b D
b 0 detA—a 0
det A T~™b 0 —a

We have op, (2,,' Azy) equal to |det A — 1||T(A)| times the integral of
log max{1, |z, r[, |s|}

over the region in F given by
o (detA—a)zr—7"br € R
o —1"bDx + (det A—a)r € R
o (det A—1)s —7~™b(r? — 7™ D2?) € R.

And we have

op, (2, Azy) = | det A — 1 log |x|.
1<|z|<|det A—1|~1

As in the case that A lies in a split torus we will reduce the proof of FL(A) to certain cases.
We find, in the course of the proof, that the integrals in the identity F'L(A) depend only on |b| and
|det A — 1|. We first prove the equality in the case that b is a unit. Using similar reductions as
above we reduce the proof of FL(A) when |b| < |det A — 1] to the case that |b|] = |det A — 1]; we
then prove F'L(A) in this case. Similarly we reduce the proof of FL(A) when |det A — 1| < [b?D| to
the case that |det A — 1| = [b?>D|; we then prove FL(A) in the case that [b*?D| < |det A — 1| < |b|.

We again need to make the assumption that ¢ > 3. However the same argument as in Remark

6.9 allows us to deduce the fundamental lemma in the case that ¢ = 3 as well.

6.5.1 Proof when b is a unit
We begin by proving Proposition 6.3 under the assumption that b € Up.

Proposition 6.10. Let A be as above with b € Up. If we have |T(A)| =1 then both sides of FL(A)
are equal to

2|D|2|det A — 1| log max{1, |z|}.
|z|<|det A—1|~1
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Otherwise we must have v(D) = 1 and a € Uy, then if we set |det A — 1| = ¢=* we have both sides

of FL(A) equal to

1 IS e
DI} (2k 4+ 14+ g7 -2t ).
q—

Proof. We first compute the twisted integral. In this case after applying row operations invertible

over R we get B in the form

0 0 a—1 b
0 0 (detA-—1)T(A) 0
b 0 det A —a 0
0 b —detA(detA—a) —ab

Hence we have

|z3] < |(det A — 1)T(A)|~*

and we can take bry = —(a — 1)x3, bx; = —(det A — a)x3 and
b’zy = (det A% — adet A — a® 4 a)xs.

Then
b (2174 — 273) = — det AD*T(A)x3

and hence |z124 — x223| = |T(A)23]. So we have

op(A) =|det A —1||T(A)] log max{1, |z3|, |T(A)z3|}.
3| <|det A=1|=1|T(A)[~*

The integral on (GL(2) x GL(2))’ is
|det A — 1] log max{1, |z|}.

|z|<|det A—1|—1

In order to compute the integral on GSp(4) we need to integrate
log max{1, |z[, |r[,[s[}
over (z,r,s) € F? such that

detA—a -b T
—bD det A —a T
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and

(det A —1)s + b(Dx?* —r?) € R.

Doing the row operation R2 — bR2 + (det A — a)R1 in the matrix above gives

detA—a —b
T(A)detA 0

Hence we need |z| < |T(A)|~! and (det A — a)z — br € R.
Therefore if |T(A)| = 1 we have

op (A) =|det A—1| log max{1, |s|}
|s|<|det A—1|—1

and the result follows.

Let oy = a + bvD and as = a — bv/D be the eigenvalues of A in Ep. We have T(A) =
(a1 — 1)(az — 1) and hence if |T(A)] < 1 we must have v(D) = 1 and a € U}. It follows that
|T(A)| = q~!. We now assume that this is the case and set |det A — 1| = ¢~*. The twisted integral
is

DlEg [ ogmax(l,gfuaP’)
|z3|<gk+?
and the integral on (GL(2) x GL(2))’ is

DJt g / log(max{1, |z]}).
|z|<q*

For the integral on GSp(4) we first note that b(r? — Dz?) € R if and only if z and r are in R,

and hence if and only if € R. The integral on GSp(4) is therefore the sum of
|D|%q_’“_1/ log max{1, |s|},
[s|<q*

the term contributing when |z| < 1, and

D[z / k+1
lz|=q

the term contributing when |z| = q.

We compute the twisted integral to be

1 k=1 r1 ¢t -1 k=1 k1
[D|= (2q (k+1)q -1 )¢ (@ =1)).
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The integral on (GL(2) x GL(2))" equals

k1
IDlzq* (kiq’“ -4 )
qg—1

and the integral on GSp(4) equals

DI (74 (i - q;_‘f) DI,

Hence we get both the left and right hand sides of the identity FL(A) equal to

N Ch 1 _q—k—l
DI= (2k+1+q7 -2
q—

and we are done. O

For the rest of this chapter we assume that 5] < 1.

6.5.2 Reduction when [b| < |det A — 1|

In this section we reduce the proof of Proposition 6.3 in the case that |b] < |det A — 1| to the case
that |b] = | det A — 1|. We note that if we have |b| < 1 and |det A — 1] = 1 then we have |T(A)| =1
and |det A — 1| = 1. It follows that both sides of FL(A) vanish in this case. Thus we may as well
assume that we also have |det A — 1| < 1.

Under the assumption |b| < |det A — 1| < 1 we have
|det A—a|=1]a—1|=|det A—1|=¢ M
and hence [T(A)| = |a — 1% = ¢~ 2. We set n = det A then
n—ala—1)(n—a)"t=n—-a)ala—1)*@+1) = b*D(n+ala —1))).

Hence if |b| < |a — 1| we have

In—a(a—1)(n—a)™'|=|n—1].

On the other hand if |b| = |a— 1| then, provided ¢ > 3, given b we can choose a such that |a—1| = |b|
and
=]

n —a(a—1)(n—a) n—1|,

we make this further assumption in the case that |b| = |a — 1].
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We now assume that N > M and
¢V =1p <|detA—1| =q¢ M.
We let L(M, N) (resp. R(M,N)) denote the left (resp. right) hand side of the identity FL(A) in

this case. We now prove the following Proposition.

Proposition 6.11. With the notations and assumptions above we have, for all N > M > 1,

M —3M

1—g ™M 1-
L(M,NH)L(M,N)qu1|D|é<2M (O

- 1 )R(M,N+1)R(M,N)

where f = f(Ep/F) is the degree of the residue field extension.

Proof. We begin by seeing how to compute op (2.t Az,,). Recall we have

—a 0 7"bD det A
0 detA—a 0 ©"bD
B =
T~ ™bh 0 det A —a 0
det A =™ 0 —a

We now do a series of row operations invertible over R to get F in a suitable form. The row operation

R1+— n=Y(R1 — (7™bD)(n — a) "' R3) gives

—(a—1)(n—a)™? 0 0 1
0 n—a 0 7™bD

T~ ™b 0 n—a 0

n ™D 0 —a

Now we do R2 — R2 — (#™bD)R1 and R1 — aR1 + R4 to give

n—ala—1)(n—a)™t 77™b 0 0
(a—1)(n—a)"'7™bD n—-a 0 0
i) 0 n—a 0

n T~™bh 0 —a

Now

n—ala—1)(n—a)' =—n-a)"(—ala —1)*(a+1) +b*D(n + ala — 1)))
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and therefore provided a — 1 € Ur we have
In—ala—1)(n—a)™|=|n—a|a—1]* = |n—a| > |7™bD].

Next we do R2 +— R2 — (a — 1)7™bD(a — a® + n? — an) 1 R1 to give

(n—a)~Y(a—a®+n?—an) 7™ 0 0
0 n—a—(a—1)(a—a?+n?—an)"1v’D 0 0
7~ ™b 0 n—a 0
n T—™b 0 —a
But now

l(a —1)(a —a® +n? —an)"'0?D| = |a — 1|7 b2 D).

After multiplying row 2 by a suitable unit and adding row 1 to row 4 and multiplying it by a=' we

get
(n—a)Ha—a®*+n®—an) = ™b 0 0
0 n—a 0 0
b 0 n—a 0
(a—1)(n—a)~? 0 0 -1

Therefore in order to compute the twisted integral we need to integrate the function
log max{1,|z1], |22, 23], |[z4l, |2174 — T225]}

over the region

o |w2| < |n—1]7F

e (n—a)"Ya—a®+n?—an)r; + 7 ™bry € R

o T "bxy 4+ (n—a)xs €R

e (a—1)(n—a)try —x4 €R.
Note that we can set 74 = (a—1)(n—a)~*x; and make the change of variables x3 — (a—1)(n—a) ‘a3
to give our integral as the integral of

logmax{l, |1'1|, |1’2|, |$3|7 ‘13% - $2333|}

over the region

o |z <|n—1]7t
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e (n—a) Y(a—a®>+n?—an)z; + 7 "bzy € R

o 7 "bxy + (a — 1)x3 € R.

First we note that for m such that |7~™b| < |n — 1] this region becomes
o [z2f < [n— 1|7

o fo1] < fn— 17"

o |z3] < |n—1]71.

Now assume that |[7~™b| > |n — 1|. First suppose that |7=b|~! < |zo| < |n — 1|7}, Then we
have

x1 = —(n—a)(a—a®+n?®—an) tn"bruy

with u; € U;v(ﬂimb“) and

|z1] = |n — a7t 7™ bwg| > |7 bt

hence
r3=—(a— 1) 'm ™ bxuy
=(a—1)"'(n—a)(a—a*+n?—an) 'n 2"V rouiug

(m~™bxy)

with us € Up ; and therefore |z3| = |(n — 1) 72||7~™b|?|z2|. Now we have 23 — zox3 equal to

2 2" uy(a — 1) (n —a)(a — a® +n? — an) %((n — a)(a — Vuy — (a — a® +n? — an)uy).

And since

(n—a)(a—1)—(a—a®+n*—an) = —nT(A)

SO

(n—a)(a—Duy — (a —a® +n* — an)uz| = [n — 1?

for all u; and us. Hence we deduce that
|22 — 2zox3| = |77 "b(n — a) " tas)?.
Thus the contribution to the integral is

In — 1|*2/ 2log [7=™b(n — 1)~ as].
[r=mb|=1 <[] <[n—1] 1
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So we are now left with the region
o |zo| < [m7mb7
o |z1] < [n—17

o 7 "bx1 + (a — 1)z3 € R.

We first consider the case that |[77b|7! < |z1| < |n — 1|7, Then we have
r3=—(a—1)" " "bx1u
with u € U™, Hence |as| = |(n — 1)~ 7~™b||z;|. Then

22 — zoxs = 22 + (a — 1) "t Mbxoziu

= (a — D)7 ' 7v 7 ™buz ((a — D)7™b u™ ey + ).
Now |(a — 1)7™b~tu=tzq| < |7~™b|~! and so making the change of variables
T = oy — (@ — D)r™b " ey
gives the integral as

|n_1|*1/ / log max{|(n — 1)~ =™z, |(n — 1)~ La~"bay ||2s]}.
[r=mb| =t <]z [<[n—1|71 J]za|<[r=mb[ L

Finally we are left with the region
o |1o] < |7 mp| 7t

o |zy| < 7™t

o |z3] < |n—1]7L

M

We see that the integrals above depend only on [b], |n — 1| and m. For |a — 1] = ¢~ and

|b| = ¢~V we set

op(M,N,m) = op(z,' Azy)

then it’s clear from above that we have

op(M,N+1,m+1)=0p(M,N,m)
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for all m with 0 < m < N. So we have

N+1 N
ID|"2¢" (qL(M,N + 1) — L(M, N)) = > vol(D,m)op(M, N +1,m) — Y vol(D,m)op(M,N,m),
m=0 m=0

which equals
N
vol(D,0)op(M,N +1,0) + > (vol(D,m + 1) — vol(D,m))op(M, N,m)).
m=0

In the case that |D| = ¢~ we have vol(D, m) = ¢™ for all m and hence we see that
VYD 77 (L(M,N +1) — L(M,N)) = op(M, N +1,0).
In the case that |D| = 1 we have vol(D,0) = 1 and vol(D,m) = (¢ + 1)¢™~*. Hence
vol(D, 1) — vol(D,0) =
and if m > 0 then
vol(D,m +1) —vol(D,m) = (¢ + 1)¢™ — (¢ + 1)¢" ™" = (¢ = (g + 1)¢" .
So we see that if |D| = 1 then
ID|"2gN T (L(M,N + 1) — L(M, N)) = op(M,N +1,0) + op(M, N, 0).
Now for N > M we have

op(M,N,0) :q_BM/ / / logmax{l,|x1|,|x2\7\x3|,|x§—x2x3|}.
|z1|<qM J x| <gM Jlaz|<qM

Hence we get from Lemma 10.7 that

N1y -1 1—qg™ 1-¢3M

We now turn to computing the right hand side of FL(A). First we consider the integral on
GSp(4). Recall we need to integrate

log max{1, |z[, |r[, |s|}

over the region in F'® given by
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e (n—a)xr—7 ™breR
o —1™bDx+ (n—a)re€R
o (n—1)s — 7 "b(r? — w2mDx?) € R.

Now consider
n—a )

—m™bD n-—a

Doing the row operation R2 +— R2 + n™bD(n — a) ' R1 gives

n—a -~ ™

0 (n—a) nT(A)
Note that |T(A)| = |n — 1]? and hence we need to integrate
logmax{1,|z|, ||, |s|}

over the region in F given by
o I < -1
e (n—a)r—7m ™breR
o (n—1)s — 7 ™b(r? — 7™ Dz?) € R.
First suppose that |7=b|™! < |r| < |n —1]7!. Then we have
r=(n—a)'r"bru

with u e U, ") S0

(n—1)s — 7 "b(r? — 7*™Da?) = (n — 1)s — 7 "b(r? — 72" D((n — a) " 7~ ™bru)?)

=(n—1)s — 7 ™br*(1 — DV*(n — a) 2u?).
Hence the contribution to the integral is

|n—1|_2/ log |n — 1|~ Hm~™br?|.
fr=mb] =1 << 1]

We are then left with the region

o |r| <min{|n — 1|7, |7~ ™b| 71}
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o lol < 1]
o (n—1)s — 7 ™b(r? — w>™Dz?) € R.

-M

The integrals above depend only on |b| = ¢~ |n — 1| = ¢~™ and m. We set

op, (M, N,m) =op, (2,  Azy)

and write

UPl(MaN+1am+1) :0P1(M7N7m)+e(M’N7m)'

Let R1(M, N) denote the contribution of the GSp(4) integral to the right hand side of the identity
FL(A). Then we have |D|~2 (¢V T Ri(M,N +1) — ¢V R (M, N)) equal to

N N
op,(M,N +1,0) + > (vol(D,m + 1) — vol(D,m))op, (M, N,m) + > _ vol(D,m + 1)e(M,N,m).
m=0 m=0

Thus when |D| = ¢~! we have ¢V *!|D|~2(Ry (M, N + 1) — Ry (M, N)) equal to
N
op (M, N +1,0) + > vol(D,m + 1)e(M, N, m)
m=0
and when |D| = 1 we have ¢V T!|[D|~2(Ry(M,N + 1) — Ry(M, N)) equal to
N
op (M, N +1,0) + op, (M,N,0) + > _ vol(D,m + 1)e(M,N,m).
m=0

We now set about computing e(M, N, m), which is given by the difference between integrating
q M log max{1, |z|,|r],|s|}

over the region

e |r| < min{¢M, ¢V}

o [z <q¥

o 7Mgs —gN=m(p2 _ D(xr™+1)2) € R,
and over the region
M gN-m}

e |r| < min{g™,

o |z| <M
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o 7Ms — gN=m(y2 _ D(x7™)2) € R.

When |r| > |7™x| we have
|72 = D(ar™)?| = |r[* = [r* = D(an™*1)?|
and the integrals cancel. Hence e(M, N, m) is given by the difference between integrating
g *" logmax{1, |z, [s|}

over the regions
o |z] < ¢
o Ir|<q ™zl
o 7Mg —gN=m(p2 _ D(xr™+1)2) € R,
and
o |z] < g™
o |r|<q "zl

o Mg — gN=m(p2 — D(xr™)?) € R.
Now note that when |r| < ¢~ 2|x| we have
2~ Dlax™ 1| = |D(ar™ Y
and
|72 = D(xn™)?| = | D(zn™)?|.
Hence e(M, N, m) is given as the difference between integrating

q_3Mq_m_2\x| log max{1, |z|, |s|}

over the region

o |z[ < g

o Mg — gN+m+2Dy2 ¢ R
and

o |z| <M
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o M5 gNtmD22 ¢ R
plus the difference between integrating

—3M (]

q ¢ g~ x| log max{1, x|, |s[}

over the region
. ‘ml < qM
o 7Mg — gN+m+2,2 ¢ R
and
o |z| <M
o TMs — gN+tmDg2 ¢ R.
But adding all this together gives e(M, N, m) as the difference between integrating

q_3Mq_'"’_2\a:| log max{1, |z|, |s|}

over
o [z < g™
o 7Mg —gN+m+2Dg2 ¢ R
and
o |z| <M
o 7Mg _ gN+m+2,2 c p
plus the difference between integrating

q_3Mq_m_1\a:| log max{1, |z|, |s|}

over the region

o |z] < ¢

o Mg — gN+m+222 c R
and

o |z| <M
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o Mg _gNtmpDL2 c R

Having fixed M, N and D we set I(k) equal to the integral of
|z| log max{1, |z|,|s|}

over the region
o |z| <M
o 7Mg — gN+tkg2 ¢ R.

Then if |D| = 1 we have
e(M,N,m) = ¢ 3M=""1(I(m + 2) — I(m))
and if |D| = ¢~ we have
e(M,N,m) = q "= 2(I(m + 3) — I(m +2)) + ¢ M7 (I(m +2) = I(m + 1)).
We need to compute

N
Z vol(D,m + 1)e(M, N, m).

m=0

When |D| =1 this sum is equal to
N
MY g+ 1)g I(m+2) = I(m)) = (1+¢ Y(I(N +2) + I(N + 1) — I(1) — I(0))
m=0
while if |D| = ¢~! this sum is equal to
N

g MY (g I(m+3) = I(m+2)+ I(m+2)—I(m+1)) = ¢ "(I(N+3) = I(2)) + (N +2) - I(1).

m=0

Finally we also need to compute op, (M, N,0), which equals ¢~3* times the integral of

logmax{1,|z|, ||, |s|}

over the region
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This equals

[ tog max{1, 1.1, ||}
lz|<|r|<gM JrMs—gN(r2—Dzx2)eR

plus

[ tog maxx{1, |l || ]}
[r|<|z|<gM JaMs—nN(r2—Dz2)ER

which equals the sum of

[ ./ I log max {1, |r], 3]}
|r|<gM JaMs—gNr2eR
and

q_l/ / |x| log max{1,|z|, |s|}.
|z|<gM JaMs—nNDz2€R

Hence we get op, (M, N,0) = ¢ 3™ (1 + ¢ 1I(0) and op, (M, N +1,0) = ¢ 3M(1 + ¢~ 1)I(1) if
|D| = 1. While if |D| = ¢! we get op, (M, N +1,0) = I(1) + ¢ *1(2).

We note that when m > N we have

I(m) :/ / |z| log max{1, |z|, |s|}
|z|<gM J]s|<gM

which by Lemma 10.4 is equal to

q ngM_qu—l
q+1 ¢ -1 )

Therefore we have

1 1 — g—3M
|D|"2¢N T (R (M, N + 1) — Ry (M, N)) :f(M_%)'

We now compute the integrals on (GL(2) x GL(2))’. We have

opy (2 Az) = ¢ M log max{1, |z|}

|z|<qM
1-— q_M

qg—1

=M

Thus if we set op,(M, N,m) = op,(z,,} Azy,) then we have

op,(M,N+1,m+1) =o0p,(M,N,m).

Hence if we let Ro(M, N) equal the contribution to the right hand side of FL(A) from the integral
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on (GL(2) x GL(2))’ then we have

qN+1|D|—% (Ro(M,N +1)— Ro(M,N)) = f (M_ 1;#) .

Putting these together gives

N1 . N1 N 1_q—Z\/f 1_q—3M
¢ D72 (R(M,N +1)— R(M,N)) = fq |D|2 | 2M — -1 F-1

as required. O

6.5.3 Proof when || = |det A — 1]

In this section we prove Proposition 6.3 under the assumption that |b] = |det A — 1|. It follows
that we have |a — 1| = |det A — a| = |b| and |T'(4)| = |b|>. Let N > 1 and assume that we have
|b| = |det A —1] = ¢~ N. We let L(N) (resp. R(N)) denote the left (resp. right) hand side of the
identity FL(A). We now prove the following Proposition.

Proposition 6.12. With the notations and assumptions above for all N > 1 we have L(N) and
R(N) equal to

|D|% (4Nq— 2Nq7N N _4q+3qu+1 _|_2qu _q72N N quJrS _q4N>
qg-1 (¢—1) (¢—1)(¢*—-1)

if |D| = ¢~ and equal to

AN —2Nq¢ V" —4(q+ D) +q¢ V'3 +6g+1)—2¢ " g NP —g*N N1
g+1 + 12 — (2N +1)gq
( ) g—1 (g —1)2 (g—1)(¢®-1) ( )

if D] = 1.

Proof. We begin by computing the integrals op(2,,'Az,,). As we saw in the proof of Proposition

6.11 we can make row operations to put the matrix B in the form

n—ala—1)(n—a)"t 77™b 0 0
(a—1)(n—a)"t7™bD n—a 0 0
T b 0 n—a 0

n T~ "b 0 —a
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Next we do R2 +— R2 — (7~™b)~!(n — a)R1 and multiply the second row by a suitable unit to get

n—ala—1)(n—-a)~t 77™b 0 0

7T (A) 0 0 0
T~™b 0 n—a 0
n ™ 0 —a

Next we do R4 + a~1(R4 — R1) to give

n—ala—1)(n—-a)™t 7™ 0 0

b 1T(A) 0 0 0
b 0 n—a 0
(a—1)(n—a)"? 0 0 -1

So we wish to integrate
log max{1, [z, |22|, [x3], [zal, 2124 — T223[}

over the region given by
o o] < [7"0TIT(A)TH = |70
o T bry+ (n—ala—1)(n—a) )x1 € R
e (n—a)rs+7 ™bx; €ER
e —z5+(a—1)(n—a) 'z, € R.

Thus we can take 4 = (a —1)(n —a)~'x; and make the change of variables 23 +— (a—1)(n—a) ‘a3

to give it as the integral of
log max{1, |1, |z2|, |z3], |23 — zox3|}

over the region
o |ay] < |wmp~!
o T bry+ (n—ala—1)(n—a)"Ha; € R

e (a—1)xg + 7 "bxy € R.

Let’s see how to compute this integral. Recall that [n — a(a — 1)(n —a)~!| < |b]. First suppose
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that |z1] > [n — a(a — 1)(n — a)~1|~!. Then we have
zy = —71"b " (n—ala—1)(n—a) Hzuy

v((n—a(a—1)(n—a)~)z1)

with v, € U and we note that |z3| < |z1]|. Moreover since

In—ala—1)(n—a)~ |7 > b

we also have |z1| > |[r~™b|~! and hence
r3=—(a— 1) 7 ™ba uy
with ug € U;v(ﬂ_mmﬂ and we have |z3| = |77 ™z1| > |z1|. Now
22 —xoxz =21 — (n—ala—1)(n—a) ) (a—1)" 23uius
=22(1—(n—ala—1)(n—a) " H(a—1)" uus)
and since

l—-(n—ala—Dn—-a)Na-1)""t=@-1)" (n-a)((a—1)(n—-a)—n(n—a)+ala—1))
=(a—1)7 (n—a)" (-n)T(A)
we have
1—(n—ala—1)(n—a)(a—1)" uus| =1

for all u; and up. Hence when |z1] > [n — a(a — 1)(n — a)~!|~! the integrand is equal to 2log |z1]|.

Now suppose we have |b|~! < |z1| < |[n—a(a—1)(n—a)~|~. Then we have |z3] < |7™b~!| and

r3=—(a— 1) "bx1u
with u € U;v(ﬂimbwl). Therefore |x3| = |7~ ™x1| > |z1]. Now
23— xox3 = 27 + (a — 1) 7 ™bxy 20U
=21(z1 + (a — 1) ™ bagu)
but

l(a — 1)~ tr mbrou| = |77 ™as| < b1 < |21]

and hence when [b|~! < |x1] the integrand is equal to 2log |x1].
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So the contribution to the integral when |[b|~! < |z1| < |7™b| 7! is

2|7r_mb2|_1/ log |z1].
[b| =1 <[z [<[mmb| 1

We are now left with the region
o |za] < [b|7}
o |1o] < |7 mp| 7t

e (a—1)xzg+ 7 "bxy € R.

Next we suppose that |z1| > [7~™b|~1. Then we have

r3=—(a—1)"'m™bx u

7~ "bxy)

with u € U;v( and so |zs| > |x1| > |z2|. Now

22— xoxs = 23 + (a — 1) " bux 2o

=ur ™(a— 1)y (v m™ (@ — )b ey + )
and
lu™tr™ (@ — Db oy | = |7y | < |77 ™b T

so making the change of variables xo — xo — u~!'7™(a — 1)b~'x; gives the contribution when

|T=™mb| 7t < |aq] < || 7T as

\b|‘1/ / log max{|7~™z1], [x~" 1 ||z},
bl < <ol S sl < b

which equals the sum of

1B~ |1 / log |72,
|1 < < bl

and
B e [ log .
1<|zs|<|m—™b|—1
Finally we are left with the region
° \371\ S |7T_mb|_1

o |aw2| < |70

o |z3| < |b]7L.
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With |b| = ¢~ we have op (2} Az,,) equal to the sum of

—N—m
2q / log |21
gN <|z1[<gN+m

and
v | (m + log [z1])
qN—7n<|11|§qN
and
(¢ - q*N’m)/ log ||
1<]za|<gN—m
and

q‘3N/ / / log max{1, |z1|, |z2|, |z3], |22 — 223}
|z |<gN =™ J|zg|<gN—m J|z3|<gN

Putting these together we get

-N —3m —3m —3N
-1 _ ¢ T+ =2 ¢ =g
op(z,, Azm) = (2N +2m) + 1 - 71

Now we compute the left hand side of FL(A). When |D| = ¢~! we get

. ANag — 2N —N —4 3 —N+1 2 —-N _ ,—2N —N+3 _ ,—4N
L(N):|D|2< q ¢ " | ~4q+3g +2g q q q )

_l’_
q—1 (¢—1) (=1 -1
and when |D| =1 we get L(N) equal to

4N —2Ng V! LA+ )+ g V' (3¢% +6g+1) —2¢7N +2q’N+3 —q N

q—1 (¢ —1)2 (q—l)(q3—1)_(2N+1)q_ -

(g+1)

We now look to compute the right hand side of FL(A). We have op, (2,,} Az,,) equal to ¢—3V

times the integral of

log max{1,|z|, ||, |s|}
over the region in F given by
o |z < [x™b| 7
o T "br —(n—a)xr € R

e (n—1)s — 7 ™b(r? — n>™Dz?) € R.

First suppose that |b|~! < |z| < |7#™b|~!. Then we have |r| = |7 x| and

|7=™b(r? — 72 D2?)| = [bn™2?| > 1.
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Therefore |s| = |7™2?| and the contribution to the integral is
|7T_mb2|_1/ log |7 2|,
b1 <[] <|mb| 1

which equals

[ (21og o] — m).
gN <fol<gN+m

We are then left to compute, after multiplying s by a suitable unit, the integral of
log max{1, |zl, |r[,[s[}

over the region in F® given by
o |z[ < [b]7"
o |r| <|rmb|7t
o 7Ns—aN=m(r2 — D(n™z)?) € R.

The contribution when |r? — D(7™x)?| > ¢V =™ is

N+m
q / log |z|g, + m.
2€Ep,qN " <|z|p, <g?V =™

Having fixed N and m we set [ = |52 ]. If |D| = 1 then 7~ ™b(r? — D(7™z)?) € R if and only

if || < ¢! and |x| < ¢!™™ and the contribution to the integral is

/ / / log max{1, |z, |rl, |s|}.
|z|<gttm Jr|<qt J]s|<gN

If D] = ¢! then we have 7= ™b(r?> — D(7™z)?) € R if and only if |[r| < ¢! and |z| < ¢l t™ where

L= L%J and the contribution to the integral is

/ / / log max{1, |zl, |r[,|s|}.
[z|<glrtm™ Jir|<qt J|s|<qV

When |D| = q~1, if N —m = 2l we get op, (2,,' Azy) equal to ¢V times

2q3N _ q3N7m 2m+31+1 1 3142

q q
+ + + ,
q—1 ?—-1  @#-1 (¢+1)(¢—-1)

(2N +m)¢*N —

while if N —m = 2] + 1 we have op, (2, Az,,) equal to g3V times

2q3N _ q3N7m 2m+31+3 1 3142

q q
+ + + .
q—1 ?—-1  ¢@#-1 (¢+1)(¢#—-1)

(2N +m)¢*N —
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We compute the contribution of the integral on GSp(4) to R(N) to be

DI

, <3Nq —(N=2)¢gN  —3¢+3¢N ¢ N_ q‘4N)
-1 (¢—1)2 (¢-D(¢*-1)/)"

Now suppose that |D| = 1. Then we have op, (2, Az,,) equal to ¢~V times the sum of

2 3N _ 2 3N—m N+m~+21
2N +m)g*N + (N —m — 2 —2)gN+m+2 — X ql _ 4 -
q- q-

and

_2q3N7m _ gN+m2t2 . q . . q
?—1 @?—-1  @#-1 (¢+1)(¢®—-1)

3l+2m+1 1 3l+2

We compute that the contribution of the integral on GSp(4) to R(N) is equal to

3N(qg+1)—2Ng N1 N -3¢ -3+ (2¢> —2q+6)gN g N3 4N —2¢72N

—2Ng N-1_24 +
q—1 (q—1)? (¢—1)(¢* 1)

Now we compute the contribution of the integral on (GL(2) x GL(2))" to R(N). We have
-1 -N 1—gV
op, (2, Azm) = ¢ logle| =N — ————

1<]o|<q" ¢—1

And we compute that the contribution when |D| = ¢! is

_ ,—N 1— —-N
D%&(N_iq)
q—1 q—1

while when |D| =1 it is

o) o-257)

Putting these calculations together gives the computation of R(N) and finishes the proof. O

6.5.4 Reduction when |det A — 1| < [b?D)|

We now assume that we have | det A — 1| < [b?D|. In this section we reduce the proof of Proposition
6.3 in the case that |det A — 1| < |b®>D| to the case that |det A — 1| = [b*D|.

So we assume that we have N > M and
¢ N =|detA—1| < |¥®*D| = ¢ *M|D].

We let L(M,N) (resp. R(M,N)) denote the left (resp. right) hand side of the identity FL(A).
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We note that under the assumption that | det A—1| < |[b>D| we have |a—1|, |det A—a| < [b*>D| and

so |T(A)| = [b?>D|. For ease of notation we set n = det A. We now prove the following Proposition.

Proposition 6.13. With the notations and assumptions above we have, for all M > 1 and N >
2M +v(D),

—M

gL(M,N+1)—L(M,N) = |D|? ((2N +2M +3)g— (2N +1)g M — 2%) = qR(M,N+1)—R(M, N)

qg—1
when |D| = ¢~ and

1_g M
qL(M,N41)—L(M,N) = (2N +2M+2)(q+1)— (4N +4)qg~ M —2(q+1) qfl = qR(M,N+1)—R(M,N)
when |D| = 1.

Proof. We begin by computing the twisted integrals op(z,,' Az, ). As above we have

We now do a series of row operations invertible over R to get B in a suitable form. First we do

R2— R2 — (n —a)(7~™b)"'R4 and then divide by n to give

—a 0 b D n
—(n —a)r™b! 0 0 (a—1)7mb~1!
T 0 n—a 0
n ) 0 —a

Next we do R3 — aR3 + 7~ ™bR1 and then divide by n to give

—a 0 b D n
—(n—a)r™mb™! 0 0 (a—1)7mp~!
0 0 a—1 T
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Next we do R2 +— aR2 — (n — a)7™b"'R1 to give

—a 0 b D n

0 0 —(n—a)7*™D (a®> —a—n?+an)r™b!
0 0 a—1 T~ b

n 7w ™b 0 —a

Now we note that
a*>—a—n*+an=—ala—1)*(a+1)+b*D(n+ala—1))
and since |a — 1] < ]b] < 1 so
la® —a —n® + an| < max{|a — 1%, [*D|} < |b?|.

Thus we can do R2 — R2 — (a? —a — n? + an)7*™b~2R3 to give

—a 0 7o D n

0 0 a(n —1)T(A)x?mp=2 0

0 0 a—1 T~ ™b
n 7w b 0 —a

Thus we need to integrate
log max{1, [z, |2|, [w3], |24, 21224 — T223[}

over the region
o los] < |(n— 1) D21
o T by + (a—1)z3 € R
e —axi +7"bDxs +nxy € R
e nri+7m "bxry —axy € R.

Therefore we can take £; = a '7™bDx3 + a~'nz, and then we need to integrate
log max{1, |zal|, |z3|, |24, |a" na3 + (a~'7™bDxy — x2)x3|}

over the region

o |z3| < |(n—1)Dr?m |71
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o T "bxy+ (a—1)x3 €R
o a 'nm™bDxs + a"'n?xy + 7 ™Mby — azy € R.

Now we make the change of variables x5 — a " 'nzs+a~'7™bDz, to give our integral as the integral
of

log max{1, |za|, |z3|, |z4], |27 — zox3|}
over the region
o 2] < [(n — 1) Dr?m |1
o T by + (a—1)z3 € R
o T Mbxy + ™bDxs+ (n— )xy € R
and we have op(2,,' Az,) equal to ¢~V =2M|D| times this integral.

First suppose that |z3| > |a — 1|7!. Then we have

|z4] = |70 (a — 1)as| < |z3].

Now
[(n — Day| < [bD7"(a — 1)z3| < |7™bDx3|,
hence
|[7™bDx3 + (n — 1)zy| = |7 bDxs| > 1,
and so |xs| = |72™ Dx3|. Therefore we have

|za? = 727072 (a — 1)%23| < |waas| = [7°" Daj|
and the integrand equals log |72 Dx3]|.
We are now left with the region
e |z3| < min{|p?D?*7?™ |71 |a — 1|71}
o |z < x|t
e 7 "hxo + m"bDx3 € R.

If |z3| > |7™bD|~! then we have

|zo| = |72 D3|

and so

|waws| = |7 Dag| > [pPD[F > x| 7 >
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therefore the integrand is equal to log|7?™Dx%| in this case as well. So the contribution to the

integral when |7bD|~! < |x3| < |(n — 1)D7?™|~ ! is

e [ log [ D3],
[7rmbD|~1<|z3|<|(n—1)Dn2m|—1

which equals
q2M*2m/ (2log |x3| — 2m + log|D|) .
gM+m| D= <Jz3|<gN+2m D]t
We are then left with the region
o |zs| < [7"0D| ! = ¢M*™|D| !
o Jaa] < bt = gt

7mb|71 — M-m

o |zof <|m q

to integrate over.
Thus we see that op(z,,' Az,,) depends only on m, |b| and |n — 1|. We define op(M, N,m) =

op(z,'Az,,) and we see that
gop(M,N +1,m) —op(M,N,m) = (¢ — 1)(2N + 2m + 2 — log | D|).
So we have

M
qL(M,N +1) — L(M,N) = ¢"™|D|> 3" vol(D,m)(q — 1)(2N + 2m + 2 — log| D)),
m=0

which equals

M
ID[? ((QN +2M +3)g— (2N + )¢ M — 2%)
-

if |D| = ¢! and

i

(2N +2M +2)(g+ 1) — (4N +4)g™ — 2(g + 1
qg—1

if |[D|=1.
We now turn to the computation of the right hand side of the identity F'L(A). First we consider
the integrals op, (2} Azy,), which are equal to |n — 1[|b?>D| times the integral of

logmax{1,|z|, ||, |s|}

over the region in F given by

o (n—a)xr—7m "breR



113
o —7"bDx+ (n—a)r € R
o (n—1)s — 7 ™b(r? — w>™Dz?) € R.
We consider

n—a )

—mmbD n-—a

then doing R2 +— R2 + (n — a)m™b™ ' R1 gives

n—a -~ ™

™D + (n — a)T™b~ ! (n — a) 0

Now

—7™bD + (n — a)7™b " (n — a) = 7™b (=b2D + (n — a)?)

=7"b"nT(A),
which has absolute value |7™bD|. So after more row operations we get the matrix

0 -~ ™
TmbD 0

Therefore op, (2, Az,,) is equal to |(n — 1)b?D| times the integral of
log max{1, |x|, |r], |s|}

over the region in F given by
e |z| < |7™bD| !
o [r] < [mmb| !
e (n—1)s — 7 ™b(r? — Dr?>m2?) € R.
We set op, (M, N,m) = op, (2, Azy,). Then we have
¢P*MN|\ D7 (qop, (M, N +1,m) — op, (M,N,m))

equal to the sum of

(N +1)gN (g — 1) vol({w,r : |[7~™b(r* — D(x™x)?)| < 1}),
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the contribution when |7=™b(r? — D(7™x)?)| < 1, and the sum of

@ =" [ N +log |7 "b(r? — D(r")?)|
z,r:m=mb(r2—D(w™mx)2)|[>1
and

gV rvol({z,r ¢ |77 ™b(r? — D(n™x)?)| < 1}),
which is the contribution when |[7=™b(r? — D(7™x)?)| > 1. Putting these contributions together
gives qop, (M,N 4+ 1,m) — op, (M, N,m) as the sum of

(N+1D(g-1)

and

q_2M+m|D|(q—1)/ 10g|r2—D332|—M+m

|| <gM|D|=1,|r|<gM—™,|r2—Da?|>¢M—m
and

q_2M+m|D| vol{|z| < qM|D|_1, Ir] < gt \7“2 — D2?| > qM_m}.

The integral above can be written as the sum of

q_M|D|(q — 1)/ log |D2?| — M +m

M- <|z|<gM|D|?

and

qﬂmﬂwm—n/ log 2], — M +m

meED’qJW—7n<|x|ED SqQ(I\/I—Vn)

And we have vol{|z| < ¢™|D|71,|r| < ¢M~™ : |r? — Dz?| > ¢™ =™} equal to
M (@MDI = M)+ vol{z € Ep 1 ¢V < 2], < M)
Now we compute qop, (M, N + 1,m) — op, (M, N, m) equal to
(N+M+m+2)g—(N+M+m+3)+¢ ™

if |D| = ¢='. And when |D| = 1 we have gop, (M, N + 1,m) — op, (M, N,m) equal to

-m _ ,—M+2
(N+M+m+1)g— (N+M+m+2)+2™—2g M+ 4 =M _ 94 qfl
when M — m is even and equal to

q q
q+1

-m _ ,—M+1
(N+M+m+1)g—(N+M+m+2)+2¢ " —¢gM-2"0 -
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when M — m is odd.

With similar notation we have

qop,(M, N +1,m) —op,(M,N,m) = (N +1)(g = 1).

Using these computations we get

_ M
QR(N—FLM)—R(N,M):‘D‘% <(2N+2M“"3)q—(2N+1)qM—2qqi]1 )
when |D| = q*1 and
M 1—q ™
qR(N+1,M) — R(N,M) = (2N +2M +2)(g+1) — (4N +4)g " —2(q¢+1) P
when |D| = 1. 0

6.5.5 Proof when |0?D| < |det A — 1| < ||

In this section we assume that we have |b>D| < |det A — 1| < |b| and we prove Proposition 6.3 in
this case. We set |b] = ¢~ and |det A — 1| = ¢=. We then have |T(A)| = [®D| = ¢ 2M|D|. We
let L(M,N) (resp. R(M,N)) denote the left (resp. right) hand side of the identity FL(A). Again

for ease of notation we set n = det A. We now prove the following Proposition.

Proposition 6.14. Let M and N be such that M < N < 2M +v(D). Then L(M,N) and R(M,N)

are equal to

\D|* ((2N+ 2M A4 1)g= 2N+ 1)g"™  dg=2q+1)g ™ =g "4V g7 - q’N’gM’1>
qg—1 (q—1) (¢—1)(¢®—1)
if D] = q~! and are equal to
2N+ M)(g+1) _ (UN+2)q ™ 4lg+1) —4g M(g+1) =2 " +2g7 g7V =g N
q—1 q—1 (¢—1)? (@—1)(¢*—1)

if |D| =1.

Proof. We begin by computing op (2, Az,,). As we saw in the proof of Proposition 6.13, we have

op(2, Az equal to |(n — 1)b? D] times the integral of
log max{1, |zo|, |z3|, |z4], |23 — zow3|}

over the region

o |z3| < |(n—1)Dr?m |71
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o T "bxy+ (a—1)x3 €R
o T "bxy + mmbDxs + (n — 1)z4 € R.

As we saw above the contribution to this integral when |z3| > |7™bD| ™! is

|7r*2mb2|71/ log |7*™ Da3|.
|7mbD| 1< |z3|<|(n—1)w2m D|~1

We are then left to integrate over the region

o |z3| < |7™mbD| 7!

o T "bxy+ (a—1)z3 €R

o T Mbxy + (n—1)xs € R.
We note that if [7™bD|~! < |n — 1|7! then this region becomes

o |z3| < |7™mbD| 7!

o |1y < 7™t
o |zof < w7

On the other hand if |[7™bD|~! > |n — 1|71 then when |n — 1|7 < |z3| < |[7™bD|~! we have
Ty = —71"”b_1(a — 1)asu
with u € U;v((nfl)zﬁ and |z3| < |[7~™b| L. The integrand in this case equals

log max{|z3|, |23 — zox3|}.

But for x3 in this range we have |23||z3|~1 < |[7~™b|~! and so after a change of variables in x5 the

integral over this range becomes

|7r*mb|*1/ / log max{|zs|, |zaxs|}.
=111 <Js| <|wmbD| =1 J|zz|<|r=mb|-1

We can write this integral as the sum of

|2 / log [«3]
[n—1|71<|zs|<|xmbD| 1

and

|7~ (|7™bD| " — |n — 1|*1)/ log max{1, |z2]|}.

[z |<|m=mb| !

And finally we are left to integrate over
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o |ws] < |n—1[7

o |za] < |mmm0[7

o |zo| < |mrmb| 7Ll

We let e € {0,1} be such that |D| = ¢=¢. Using the results of Chapter 10 we get op(z,,' Azy,)

equal to g~V 72M—¢ times

Naomse 2qNTEMte _ 3M=dmo_g2Mibe o g3M=3m
2N + 2m e _ B
(2N + +e)g = 1

And we compute L(M, N) to be equal to

+

D2 ((2N +2M +1)g— 2N +1)g ™  dg—2(q+1)g M —g " 4NV N2 q’N’3M’1>
qg—1 (g—1)2 (@—1)(¢* - 1)

when |D| = ¢~! and to be equal to
2N+ M)(g+1) _ (AN+2)q™  4g+1) —4g M(g+1) =2~ " +2g7 "M g7V — g N
q-1 q-1 (¢—1)? (¢—D(¢*-1)
when |D| = 1.

We now turn to the computation of the right hand side of FL(A). We begin with the integrals

op, (21 Az,,), which equal |(n — 1)b?D| times the integral of
log max{1, |z[, [r[, |s|}

over the region
o [z| < |7™bD[
o T "br —(n—a)r €R
e (n—1)s — 7 ™b(r?> — Dr?"2?) € R.

For |n — 1|7t < |z| < |#™bD|~! we have
[ = |7~ (n — 1)z

and

|s| = |(n — 1)~ tbDr™2?).

Hence the contribution to the integral is

In — 1|—1|7T—mb|—1/ log(|(n — 1)~1bDx™22]).
In—1]-1<[a|<|zmbD| 1
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We are then left with the region
e |z| < min{|n — 1|7, |7™bD|~ 1}
o [rf < [mmb !
o (n—1)s— a7 ™b(r? — Dr?™2?) € R

and we can compute this integral as in the proof of Proposition 6.12 when |n — 1| = |b|.

Having fixed M, N and m we set [ = | 2= | When |D| = ¢~! we compute op, (2,,' Az,) equal

to
92 _ q—m—l N q—N—2M—1 N q—N—l N q—N—2M+3l+1
qg—1 ¢ -1 ?—-1 (q+1)(¢®—-1)

and when |D| = 1 we have op, (2,,' Az,,) equal to the sum of

N+M+m+1+qg ™=

N 2 2q—m+1 g~ N-2M
- er_q—lJr q2_1+ B -1
and
B B 2 +1 g N-2M3l2mtl g~ N—2M 43142
M — 21 —m — 2)g2MH24m | —2M+204m n .
( ) q+1 -1 (g+1)(¢* - 1)

We now assume that |D| = ¢~1. We compute the contribution of the integral on GSp(4) to the
right hand side of FL(A) to be equal to |D|z times

(N 4+2M +1)g— N¢g~M 3¢- g MHL _9q—M . g~ N+2 _ g~ N-3M-1
q—1 (q—1)2 (q—1)(¢®—1)

when |D| = ¢~'. And when |D| = ¢~! the integral on (GL(2) x GL(2)) contributes |D|z times

- M __ _—N
q—q N_1-4d .
q-—1 q—1

The sum of these expressions equals L(M, N).

We now assume that |D| = 1. The contribution of the integral on GSp(4) to R(M, N) is equal

to the sum of
2g~M g N-3M

N+ Mg M
(N + M)q 2 1 g1
and
N 2M) — (N M —-M 1— —M 2M —M —N—-2M _ ,—N—-3M
(q+1><( +2M) - (N+M)g™  ,1-g M ;1 >
q—1 (¢—1) ? -1 (¢—1(¢* 1)
and
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The integral on (GL(2) x GL(2))" contributes

(N— 1;#) (q‘M + (g + 1)%)

to R(M, N). Adding these together we find they are equal to L(M, N).
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Chapter 7

The fundamental lemma for the
(1,2,1) Levi I

In this chapter we take M° to be the (1,2,1) Levi in GY. We have
MO = A ce| : AeGL(2),a,b,e € GL(1)

and we write such an element as a tuple (a, A, b, e). The restriction of a to M? is given by

a:(a,Abe)— (b1 det A7PA a7t abedet A).

We set M’ = GL(2) x GL(1) an unramified elliptic twisted endoscopic group for M. In this chapter

we prove the fundamental lemma for the pair (M, M’).

7.1 Stable conjugacy

We begin by determining the stable twisted conjugacy class of an a-semisimple element -y

(a,A,b,e) € M(F). For m = (a1, A1,b1,e1) € M° we have

m ™ ya(m) = ((a1by) " ta,det AT AT AAL, (a1b1)71b, a1by det Aje).

Now if we assume that m] 'ma(m;) € M°(F) then it’s clear that we must have a;b; € F and

det A; € F*. Moreover, after twisted conjugation over F, we can assume that A is either diagonal

or else lies in an elliptic torus of the form

x D
Y cx+yVD e B

y T



121

with v(D) € {0,1} and Ep = F(v/D) a quadratic extension of F.

Lemma 7.1. Assume that A lies in the diagonal torus. Then the stable twisted conjugacy class of

v s equal to the twisted conjugacy class of .

Proof. Let T denote the diagonal torus in GL(2). Then the question is given A; € GL(2, F') with
ATTAA; € GL(2,F) and det A; € F* does there exist B € GL(2, F) such that B~'AB = A['AA,
and det B = det A;. We know there exists C' € GL(2, F) such that C~1AC = AflAAl; and by
multiplying C on the left by an element of T(F') we can insist that det C = det A;. O

For v = (a,A,b,e) with A diagonal we take the Haar measure on M, (F), which gives its

maximal compact subgroup volume one.

Lemma 7.2. Assume that A is non-central and lies in an elliptic torus as above. Then the stable
twisted conjugacy class of v is equal to the disjoint union of the twisted conjugacy classes of v =

(a, A,b,e) and (a,c™*A,b,ce) with c € F*\ Ng,, /rE}.

Proof. Let T denote the torus in GL(2) containing A. First it’s clear that (a, 4,b, e) and (a,c 1A, b, ce)
are not twisted conjugate over F. It’s also clear that they are stably conjugate, since we can conju-
gate them by an element of the form (1, B,1,1) with B € T'(F) such that det B = c. Next we show
that every element of the stable twisted conjugacy class of « is conjugate to one of these elements.

Let
1 =m Yya(m) = ((a1by) ta,det ATTATLAAL, (a1b1)7tb, aqby det Aje)

lie in the stable twisted conjugacy class of 4. Then we can find B € GL(2, F') such that Al_lAAl =
B~'AB. We can change our choice of B by multiplying B on the left by an element of T'(F) and
hence change det B by an element of Ng,,, r(Ef). Thus 71 is twisted conjugate over F' to either
(a, A,b,e) or (a,c tA, b, ce). O

We continue with the assumption that A lies in an elliptic torus as above. First suppose that
Ep/F is ramified. Then we may take ¢ € Ur. We note that the weighted orbital integral at the
element (a,c 1A, b, ce) is the same as the weighted orbital integral at the element (ca, A, cb,c™te),
having multiplied by the element (c,diag(c, ¢), ¢,c™2) which lies in Z(G°)N K. But now conjugating
this element by m = (¢, I, 1,1) gives (a, A, b, e). Thus the weighted orbital integral along the twisted
conjugacy class of ¥ = (a, 4, b, ) is equal to the weighted orbital integral along the twisted conjugacy
class of (a, cA, b, ce). For such an A we take the measure on M, (F') that gives its maximal compact

subgroup volume two.
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Next we assume that Ep/F unramified and we take

c Dd
d ¢

A:

with v(D) = 0. In this case (a,7A,b, 7~ 'e) is stably conjugate but not conjugate to v = (a, 4, b, €).
Conjugating this element by

gives

a, ,b,e
7 d c
If the stable twisted conjugacy class of v = (a, A, b, ) intersects MY(R) then we can assume that we
have a,b,e € Ur and A € GL(2, R) with A as above. If we assume that (a, 4,b,e) € M°(R) then
we see that the twisted conjugacy class of (a,7A,b, 7 'e) intersects M°(R) if and only if v(d) > 1;
this is clear from the double coset decomposition found in Section 6.5. For such an A we take the

measure on M, (F) that gives its maximal compact subgroup volume one.

7.2 Statement of the fundamental lemma

In this section we give the statement of the fundamental lemma for the pair (M, M').
We recall that M’ sits inside GSp(4) as the Siegel Levi and we have £y (G) equal to GSp(4) with
multiplicity two. Thus in this case the fundamental lemma states that for ¢/ a strongly G-regular,

stable conjugacy class in M’'(F') we have
S rGi(ka) = 25570 (¢)
k

where the sum on the left is over those twisted conjugacy classes in M?(F) for which N(ka) = ¢'.

We now compute the function sfﬁp(‘l) (¢) whose definition is given in [Art02b, Section 5]. From

Lemma 4.8 we see that for

V' = diag(g, aw'g'w)

a (stable) conjugacy class in M'(F) we have
’ GSp(4) [ 4 _ 1 g .. _
s§(0) = erp( )(dlag(g,awtg Lw)) — 5716\';[, (diag(1,adet g™'), g)

where G = (GL(2) x GL(2))/ GL(1). Therefore the fundamental lemma for the pair (M, M’) is
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given by the following Proposition.

Proposition 7.3. For ya = (a,g,b,e)a € M(F) semisimple and strongly G°-regular we have

eag

Z (Y a) = QTJC\;/IS,p(4) —r$ ,eay
" ebdet g wig™tw a='b

where the sum on the left hand side is over representatives for the twisted conjugacy classes within

the stable twisted conjugacy class of ~y.

For o/ = diag(eag, ebdet gw'g~'w) € M'(F) we take the Haar measure on M/, (F) that gives its

maximal compact subgroup volume one.

For PP the upper triangular (1,2,1) parabolic in G° we set vol(a$/Z(AY)) = loéq and normalize

the other volumes as in Section 5.5. This has the effect of replacing log by log, below. We suppress
the ¢ from our notation and for the rest of this chapter take log to be log to the base g.

7.3 Proof of the fundamental lemma

In this section we prove Proposition 7.3. We begin by noting that for v = (a, g,b,e) € M°(F) the
stable twisted conjugacy class of v does not intersect M°(R) if |a| # |b|. It’s clear that the integrals
on GSp(4) and (GL(2) x GL(2))/ GL(1) also vanish in this case.

If |a| = |b| then we may, after twisted conjugation, assume that a,b € Up. Then the stable
twisted conjugacy class of «y intersects M°(R) if and only if eg is conjugate in GL(2) to an element
in GL(2, R). It’s also clear that if eg is not conjugate to an element in GL(2, R) then the integrals
on GSp(4) and (GL(2) x GL(2))/ GL(1) also vanish.

We now assume that we have v € M°(R). We use the twisted topological Jordan decomposition

to prove the fundamental lemma. We can write ya € M (R) uniquely as
Yo = usa = sau

with u € MY(R) topologically unipotent and sac € M(R) absolutely semisimple. The twisted
weighted orbital integrals can now be computed using 5.17. We set N equal to the unipotent radical
of the upper triangular parabolic of which M9 is a Levi component, we define N’ in GSp(4) similarly.

Given s = (a1, g1,b1,e1) we have
Zypo(sa) = {(a,g,a  e) € M : g1 g19 = g1,det g = 1}.

For u = (a,g,a1,e) € Zy0(sa) topologically unipotent we have that the norm of ya in GSp(4)
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is equal to the product of the absolutely semisimple element

g1
aieéx

ay tby det grwtgy tw

and topologically unipotent element

ae

a=2det gwtg~lw

We can then also use Lemma 5.17 to compute the weighted orbital integrals on GSp(4).

We now proceed to prove the fundamental lemma by analyzing the possibilities for s.

7.3.1 s equal to the identity

We first consider the case that s is the identity. In this case we have Zgo(a) = Sp(4) x GL(1) and

we take v = (u, e) € Sp(4, R) x U topologically unipotent.
Lemma 7.4. Suppose that s is the identity, then the fundamental lemma holds.

Proof. We have

topologically unipotent. By Lemma 5.17 we have

Sp(4
r$(u, e)ar) = rpht® | (u)

and hence for v = (u,e) we have
Sp(4
Z TI\G/I (’Y a Z TKl?l(ng)en '
,y/

where {u’} is a set of representatives for the conjugacy classes within the stable conjugacy class of
u. But now using Lemma 5.16 and the double coset decompositions for SL(2, F') given in [F1i99,

Lemma I.1.3] we have

Sp(4 GSp(4
Klii(ng)en (u') = TKliE,t(;ezl (u)

w'

From the fundamental lemma for the (2,2) Levi proven above we have

GSp(4 GL(2)xGL(2
TKIiEéeZl(u) =r (2 2)((dlag(a’ga )a 1) ) TgTX(G;jEQ))’ ' (dlag(a 1) ag)
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Therefore to prove Proposition 7.3 we need to show that
1.2 ((diag(ag, 1), Da) —r(gEE 0™ (diag(a?, 1), ag) = 2557 (diag(ag, w' (ag) ™ w))—r (diag(a,a™ "), 9).
First we note that

T - GL(2)xGL(2))" / 4.
T]C\/;f' (dlag(a’) a 1)79) = TETX(G%/?Q))’( )) (dlag(a2, 1)’ ag)

Next we note that the element

ag
€ GSp(4)

w*(ag)~w

lies in Sp(4) and by Lemma 5.16 we have

QTAG48,p(4) (diag(ag, w'(ag)™ 1 w)) = 27‘?}3,(4) (diag(ag, w'(ag) *1w)).

Since this element is topologically unipotent we can apply Lemma 5.17 to get

2ry Y (diag(ag, w'(ag) " w)) = 1§ 5 ((diag(ag, w' (ag)~"w), 1)a).

After twisted conjugation we have

13,0 (diag(ag, w'(ag) ~'w), a) = r{ 4 (diag((ag)?, 1), 1)a)

and from the calculations of Chapter 6 we have

r872)((diag((ag)2, I),1)a) = Tgyz)((diag(ag, I),1a)

and we are done. O

7.3.2 s central

We now assume that s = (a1, g1, b1,e1) with g; a scalar matrix. Therefore we have u = (a,g,a™ !, e)
with a,e € GL(1) and g € SL(2). In this section we prove Proposition 7.3 for v = us either by
reducing the proof to Lemma 7.4 or by showing that both sides of the identity in Proposition 7.3

vanish. We begin with the following Lemma.

Lemma 7.5. Let ya = (a,g,b,e)a € M(F) be semisimple and strongly G°-reqular. Then for



126

A i € Up we have

i (va) = r§1((Aa, g, Ab, e)ar).

Proof. Since we are free to scale by an element of Z(G°)N K without changing the value of r§; (ya)

we have

rfj(()\a, g, A\b,e)a) = rf{(()\u_la, g, \u b, )\_lue)a).

But now for m = (A, I, u~1, 1) we have
m~ \u"ta, g, \um o, X pe)a(m) = (a, g, b, €)
and we are done. O

Now suppose that a; = b;. Then by Lemma 7.5 we have r§, (ya) = 7§, (ua) and the fundamental

lemma in this case follows from Lemma 7.4. Proposition 7.3 in the case that a; # by follows from

the following.

Lemma 7.6. With notation as above assume that we have ay # by. Then both sides of the funda-

mental lemma vanish.

Proof. We first compute N N Zgo(sa), by abuse of notation we work inside GL(4). For

1 Tr1 X9 I3

1 Ty
n = eN
1 Is
1
we have
1 —x5 x4 x3—T1T4 — X275
1 To
a(n) =
1 —T7
1
and
-1 -1 -1
1 aj czi a] cize aj bizs
1 1 blcflm
s 'ns = )
1 blcl_ Is

1
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Thus we need

T = —b16;11‘5
_ -1

2o = bic] T4
_ -1

Ty = Q1 C1T2

T5 = fal_lclxl.

From which it follows that x1 = al_lblxl and x9 = al_lblxg. But since we are assuming that a; # by,
it follows that x1 = 9 = x4 = x5 = 0. But now we need z3 = a;lblxg, and hence z3 = 0 in this
case as well. Thus when a; # b; the twisted integral vanishes by Lemma 5.17.

We now consider the right hand side of the fundamental lemma. First we consider the integral

on GSp(4). The absolutely semisimple part of N(ya) is

g1
S1 = a€ 1 1
aj by det gywigy 'w
We now compute Zggp)(s1) N N'. For
1 xry T2
n— 1 rs3 I c N/
1
1
we have
1 al_lblxl al_lbl.’l,’g

-1 -1
1 aq bll’g aq blxl

sy 'ns =

1

from which it follows that Zggpy(s) N N’ = {I} if a; # by and hence by Lemma 5.17 the integral
on GSp(4) vanishes.

Finally we consider the integral on (GL(2) x GL(2))/ GL(1). The norm of the element yo in
(GL(2) x GL(2))/ GL(1) is equal to

serareagrg | € (GL(2) x GL(2))/ GL(1).
a‘zaflbl

And therefore if a; # b; then al_lbl ¢ U}, and since u is topologically unipotent a=2 € U}. Hence

we have a=2a; 'b; ¢ U}, and the integral on (GL(2) x GL(2))/ GL(1) vanishes. O



7.3.3 s diagonal

In this section we prove Proposition 7.3 in the case that s is diagonal but not central. So we take

with ¢; # di. After twisted conjugation we may assume that a; = ¢; = 1. We now compute

ai,
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(&1

7b1>€1
dy

N; = NN Zg(sa); by abuse of notation we consider N C GL(4).

Lemma 7.7. Let s = (1,diag(1,d1),b1,e1). Then we have the following possibilities for Ni.

1. Ifbl = dl = —1 then

2. Ifbl = dl 7£ —1 then

3. Ifby =dy* # —1 then

4. If by =1 and dy # 1 then

5. In all other cases Ny = {I}.

Ny

N; =

N

r1r T2 —T1x2

1 —T9
1 —x1
1
1 =7 O 0
1 0
1 —x
1
1 0 =z 0
1 d1zo
1 0
1
1 0 0 =z3
1 0
1 0
1




Proof. For

we have

and

Hence we need
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1 r1 T2 X3

1 —T5 X4 T3 — T1T4 — T2T5

1 T
a(n) = ’
1 —T1
1
1 T d1$2 b11'3
_1 1 bizy
S ns=
1 b1d1_1565
1
_ -1
1 = —b1d1 Is
T = bixy
x4 = di1x2
Iy = —X1.

Thus unless by = d; we have z1 = x5 = 0. And unless b; = dl_1 we have 29 = x4 = 0. And the only

way both can happen is if b = dy = —1 (since we are assuming that d; # 1). We also need to have

and hence we need to have

bll'g = T3 — T1T4 — T2T5

(]. — bl)(ﬁg = 21%4 + ToT5 = (dl — 1)$1£E2.

Putting this all together completes the proof. O

We now compute the twisted integral in each of the above cases. We have
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and so the stable twisted conjugacy class of v = us is equal to the twisted conjugacy class of ~.
Lemma 7.8. With notation as in Lemma 7.7 the twisted integral r$;(ya) is given by the following.

1. If by = dy = —1 then
v (va) = lac — Lfjac™ — 1] / log max{1, 2], [, [z122]}.
jo1|<lac=1=1]=1 J]as | <[ac—1]
2. Ifbl = dl 7& —1 then

r$(va) = lac™ — 1] e | log max{1, |z1]}.
z1|<|ac—1-1|71

3. Ifby =dy* # —1 then

rf{(’ya) = |ac — 1|/ logmax{1, |z2|}.

w2l <lac—1|~1

4. If by =1 and dy # £1 then

TAG/I('yoz):|a71| S log max{1, |z3]|}.
z3|<|a—1|"1

5. In all other cases r§;(ya) = 0.

1

Proof. In each case we compute u~'n~tun for n € N. In the first case we have

1 (1-ato)ry A—ate oy —(1—ate)(l—ate Yo
IR 1 —(1—ate Yy
uTnTun =
1 —(1—-a"te)zy
1

In the second case we have

uwInTlun =
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In the third case we have

1 0 (1—ate ), 0
1 -1 o 1 (1 — ailcfl)dlmg
u n un =
1 0
1

In the fourth case we have

And of course in the fifth case the integral vanishes.

is

dy

S1 = €1

by
bidy

Now we turn to the corresponding integrals on GSp(4). The absolutely semisimple part of N(vya)

Lemma 7.9. With notation as above we have the following possibilities for N| = Zggpay(s1) " N'.

1. If by =1 then

1 I 0
1 0 =z
N = !
1
1
2. Ifbl = dl = —1 then
1 O T2
1 23 O
N, = ’
1
1
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3. [fbl = dl € {1, —1} then

1 0 O
1 23 O
N, = ’
1
1
4. Ifby =d;' & {1,—1} then
1 O T2
, 1 0 0
Ni =
1
1
5. In all other cases N{ = {I}.
Proof. For
1 xr1T X2
1 z3 =z
n= P e
1
1
we have
1 bl.’El dlbll'g
_1 1 bldl_ll‘g bll‘l
51 nsy =
1
1

and the result follows.

We now need to compute the weighted integral on Zggy4)(s1) at the element

ac

These integrals are given in the following Lemma.

Lemma 7.10. With notation as above the integral 27‘1(\?18,1)(4) (N (ya)) is given by the following.

1. If by =1 then
2r PV (N (va)) = 2la — 1 log max{1, |z1]}.
P
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2. [fbl = dl = —1 then

GSp(4)

2ry 0 (N (va)) = lac—1]|ac™ — 1| log max{1, |xal, |z3], |z23]}-

|z2] <|ac—1|-1 /m3|§|ac1—1|1
3. Ifbl = dl 7é —1 then

25 D (N (y0)) = Jac™" - 1 log max{1,|z3], }.

|zs|<[ac1—1|~1
4. Ifby =d;' # —1 then

2r]C\}/IS,p(4)(N(7a)) = |ac — 1| log max{1, |z2, }.

|z2|<lac—1]~1

5. In all other cases 2TAG/IS,p(4)(N(fya)) =0.

Proof. We take n € Ni. In the first case we have

1 (1—a=2)x 0
11 1 0 (1—a"%)a,
u o nTun =
1
1
In the second case we have
1 0 (1—a"2c?)xy
T 1 (1—-a2c?)ws 0
uwnT o un =
1
1
In the third case we have
1 0 0
I 1 (1—-a2c)x3 0
u o nTun =
1
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In the fourth case we have

1 0 (1-a2c ),
1 0 0
utnTlun =
1
1
And in the fifth case it’s clear that the integral vanishes. O

For the integral on (GL(2) x GL(2))/ GL(1) the norm of vy« is

3y ,ereadiag(c,dic™t) | € (GL(2) x GL(2))/ GL(1).

Thus we see that the integral vanishes unless by = 1 in which case it equals
la — 1] log max{1, |z|}.
lz|<[a—1]7"

Combining the above lemmas proves Proposition 7.3 in this case.

7.3.4 s elliptic

We now assume that we have g1 € GL(2, F') which is non-central and lies in an elliptic torus. After
stable twisted conjugation we can assume that we have
C1 Ddl

g1 = € GL(2,R)
dl C1

with d; # 0 and v(D) = {0,1}. We let Ep = F(v/D). For sa to be absolutely semisimple we need

to have

for some x € F and k prime to the residual characteristic of F'. But then, as an element of Ep, we
have g, = Cx for some k" root of unity ¢. Since we’re assuming that ¢; is non-central we must have
¢ € F*. Hence we must have Ep/F unramified and v(D) = 0. After twisted conjugation we can

take

s = 17 7b1761
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We now compute N3 = N N Zgo(sa), which by abuse of notation we consider as a subgroup of
GL(4).
Lemma 7.11. With notation as above we have the following possibilities for Ny
1. If by = —1 and ¢y =0 then

1 21 2o (Da?—23)/2

1 Dl‘l
Ny
1 —X92
1
2. If by =1 then
1 0 O I3
1 0
Ny =
1 0
1

3. In all other cases we have Ny = {I}.

Proof. For
1 r1 T I3
1 Ty
n =
1 Is
1
we have
1 —T5 X4 T3 — T1X4 — T2X5
1 T
a(n) )
1 —T1
1
and
1 c1x1 + X9 D(El “+ c1x9 bl.’ﬂg
1 _ 1 (C% — D)_l(b101$4 — b1D$5)
s ns=

— D)_l(—b1$4 + b161$5)
1
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Hence we need

xr| = —(C% — D)_l(—b1$4 + b101$5)
To = (C% — D)_l(b101$4 — leLL'g,)
x4 = Dz + c122

Iy =— —C1T1 — X2.

So we have

(¢ — D)x1 = b1z — bieras

and from the third and fourth equations we get
(cf — D)z = —x4 — 125.

Hence we have

(1 +b1)zs+c1(1 —br)xs = 0.

We also have

(¢ — D)xy = bicywg — by Das
and from the third and fourth equations we get
(¢ — D)xy = c1w4 + Dxs.
So we have

(1 + b1)$4 + 01(1 — b1)$5 =0

c1(by —1)xqg — D(1+b1)zs = 0.

Hence we deduce that

(A1 —=b)? =DA+b)Hazy =0

and

(2(1—b1)? = D(1+by)?)as = 0.

Thus unless by = —1 and ¢; = 0 we have 1 = 250 = z4 = x5 = 0. Now we also need to have

T3 — T1Xx4 — 25 = bll'g.
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Thus if by = 1 then we can take x3 to be anything we like. On the other hand if by = —1 and ¢; =0

we have 24 = Dzy, 5 = —x2 and z3 = & (Da? — 23). O
We take
¢ Dd 1
u= | a, ,a” e | € Zyo(sa)
d ¢

to be topologically unipotent, so ¢ € UL and d € (7). We have

cc1 +Dd D(c+dey) .
us = | aaq, ,a by, eeq
c+dey cc1 + Dd

Now c+dc; € Up and hence we deduce that it is only the twisted conjugacy class of us that intersects
MPO(R), i.e., the other twisted conjugacy class within the stable twisted conjugacy class of us does

not intersect M°(R). The twisted integrals at the element us are given by the following lemma.
Lemma 7.12. With notation as above the twisted integrals r$;(ya) are given by the following.

1. If by = =1 and ¢y =0 then

r$ (70) = 2D (v0)| / log max{1, |21, [z}

over the region
e (1—ato)ry —aldey € R
e —a'dDx; + (1 —a"'c)ry € R.
2. If by =1 then
r$(ya) = |a — 1] log max{1, |z3]|}.

les|<la—1]~1

3. In all other cases r$;(ya) = 0.

Proof. First suppose we have by = —1 and ¢; = 0 then we have

1 (1—-ate)ry —atdrs —a 'dDzi+ (1 —a )z *

L 1 *
u o nTun =
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If by = 1, then we have

1 0 0 (1 — aiz)l‘g

U n oun =

And in all other cases it’s clear that the integral vanishes.

Next we look at the integrals on GSp(4). The absolutely semisimple part of N(ya) is

b161 —le

—b1 b1 C1

Lemma 7.13. With notation as above we have the following possibilities for Ni = Zgsp(a)(s1)NN".

1. If by = =1 and ¢y =0 then

1 Iy D.Ig
N{ _ 1 I3 T
1
1
2. If by =1 then
1 0 —Dl‘g
1 =z 0
N ’
1
1
3. In all other cases N{ = {I}.
Proof. For
1 1 T
1 r3 X1
n =
1
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we have
1 by (C% + D).’L’l —bicirg — b1y Daxs —2bic1Dxqy + blc%xg + b1D2I3
1 9 1 1 721)1011’1 + bl.’ﬂg + C%bl.’ﬂg bl(C% + D)(El — blclmg — blch.’Kg
s~ ns = (c;—D)
1
1
Hence we need
(2—D) 1= bi(c2+D) x1 — bex 22 — biayD a3
(C% — D) o= —2bje;D a1 + blc% To + b1D2 T3
(C% — D) Tr3 = —2b101 T + bl To + C%bl xIs3.
That is
(blc% +b:D+D — C%) x|y — bicy To — bic1D rz3 =0
—2bic1 D r1 + (D + b1C% — C%) To + b1D2 z3 =0
721)101 r1 -+ b1 Tro + (C%bl + D — C%) I3 = 0.

Equation 1 times D plus equation 2 times c; gives
D(D — (1 +by)xy +c1(1—b1)(D — )z =0
and since D — ¢} # 0 we have
D +b))z1+c1(1=0b1)za =0
Next we do equation 2 times c2b; + D — ¢} minus equation 3 times b; D? to give
201c1D(1 — b1)(c? — D)xy + (b1 — 1)(ci — D)(—(c? — D) 4+ by(c? + D))xy =0

and since D — ¢3 # 0 we have

2b1¢1D(1 — by)xy + (b1 — 1)(—(c? — D) + by(c? + D))xy = 0.
Thus we have

D(l + b1)$1 + 01(1 — b1>$2 =0

2b1¢1D(1 — by)xy + (b1 — 1)(—(c? — D) + by(c? + D))xy = 0,



140
which yields
(D(bl + 1)2 — C%(bl — 1)2)581 =0

and

(bl — ].)(C%(bl - 1)2 - D(bl + 1)2)1'2 =0.
Therefore if ¢ = 0 and b; = —1 we can take x1 and x5 to be whatever we like; and then we have
Dxzs = 9. Now if by = 1 then we have 1 = 0 and 2o = —Dzs3. In all other cases we have
r1 = Ty = T3 = 0. O

Now we compute the integrals on GSp(4). We need to compute the relevant integrals at the

element
ac adD

ad ac

Lemma 7.14. With notation as above 2T]C\;/[S,p(4)(N(7a)) s given by the following.

GS

1. If by = —1 and ¢; = 0 then we have QTM/p(4)(N(’YOé)) equal to

2 Daspia (N (7a)| / log{(1, [z1], ]3]}

over the region
o (a> —c®> — Dd?*)x1 + 2cdDz3 € R
e 2cdry + (a® — ¢ — Dd*)z3 € R.

2. If by = 1 then we have 2rjc\}/fs,p(4)(N(7a)) equal to

2|a — 1| logmax{1, |x3|}.

|zs|<|a—1]71

3. In all other cases we have 2TAG/IS,p(4)(N(’ya)) =0.

Proof. Let’s consider the first case. We have

1 (a® — c* — Dd?)xy + 2cdDxs  *
1 2cdzy + (a® — ® — Dd*)zs =
1

U noun =
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In the second case we have

1 0 —-D(1 —a"?)z3
I 1 (1-a?)xs 0
uTnT un =
1
1
And it’s clear that in the third case that the integral vanishes. O

Again we recall that the integral on (GL(2) x GL(2))/ GL(1) vanishes unless by = 1 in which
case it equals

la — 1] log max{1, |z|}.
|z|<la—1]~"

Thus it’s clear that the fundamental lemma holds in all cases except perhaps when b; = —1 and
c1 = 0. We have |Dg(va)| = [Dggpay(N(ya))| and in this case we need to show that the integrals

of logmax{1, |z, |y|} over the regions in F? given by

€ R?
—dD a-—c Y
and
a?® — ¢ — Dd? 2cdD x 5
€ER
2cd a’® — ¢ — Dd? Y
are equal.
We have
a—c —d 9 |2
det = max{|a — c|*, |d|"}
—dD a-—c
and
a’? — ¢ — Dd? 2cdD
det = max{|a® — ¢ — Dd??,|d|*}
2cd a’® — 2 — Dd?

— max{la® — 2, |d?}

= max{|a — cf?, |d|*}

since a, ¢ € Uf..
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Thus if |d| > |a — ¢| both these matrices lie in
GL(2, R)

d
and if |d| < |a — ¢| then both these matrices lie in

GL(2, R)

Hence the integrals above are equal and the proof of Proposition 7.3 is now complete.
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Chapter 8

The fundamental lemma for the
(1,2,1) Levi II

In this chapter we again take M° to be the (1,2,1) Levi in G°. We have
MO = A e | : AeGL(2),a,b,e € GL(1)

and we write such an element as a tuple (a, A, b, e). The restriction of o to M? is given by
a:(a,Abe)— (b1 det A7PA a7t abedet A).

We set M’ = GL(1) x Resg/r GL(1) an unramified elliptic twisted endoscopic group for M°. In this

chapter we prove the fundamental lemma for the pair (M, M").

8.1 Statement of the fundamental lemma

Let E denote the unramified quadratic extension of F. We fix D € F with v(D) = 0 such that
E = F(V/D). Let Rg denote the ring of integers in E and Ug the group of units. We let | |z denote
the multiplicative valuation on E normalized such that |r|g = ¢~2. Given 8 € E we let 3 denote
its Galois conjugate. We fix the Haar measure on E that gives Rg volume one.

We recall from Lemma 4.5 that the elliptic twisted endoscopic groups for G® in &y/(G) are
G1 = Resg,p GL(2)" and Gy = (GL(2) x Resg,p GL(1))/ GL(1). Moreover each group appears with
multiplicity two and we have M’ sitting inside both of these groups as the diagonal torus.

The stable twisted conjugacy classes in MY(F), which transfer to M’(F), are those with repre-
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sentatives of the form

Moreover as we saw in Section 7.1 the stable twisted conjugacy class of v is the disjoint union of the

twisted conjugacy classes of v and

a br lD

And we have, using [KS99, Chapter 4], A(N(ya),v) = (=1)*®) and A(N(ya),~') = (=1)?®)+1,
We let 3 = a+bv/D € EX. Then since neither G or G have proper elliptic endoscopic groups

the fundamental lemma is given by the following Proposition.

Proposition 8.1. Let v and ' be as above then we have

cef ce
rir(va) = rp(y ) = (=1)" | 2057, | e B
def3 de
For PP the upper triangular (1,2,1) parabolic in G° we set vol(a$/Z(AY)) = lo;;q and normalize

the other volumes as in Section 5.5. This has the effect of replacing log by log, below. We suppress
the ¢ from our notation and for the rest of this chapter take log to be log to the base g.

8.2 Proof of the fundamental lemma

We note that both sides of the identity in Proposition 8.1 vanish if the stable twisted conjugacy

class of v does not intersect M°(R). Thus we may assume that we have
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We now compute 2r$ (N (ya)) and 2r$2 (N (ya)). We have

2r57 (N(va)) = [ef — dB\E/ ~ logmax{1,|z|g}
lz|<|eB—dB| 5"
and
232 (N(ya)) = e —d log max{1, |z]}.
lz|<]e—d| 1

As in the previous chapter we use the twisted topological Jordan decomposition of ya to prove
the fundamental lemma. So we write ya = usa = sau as a commuting product of an absolutely
semisimple element sa and a topological unipotent element u. We again analyze the possibilities for
sa and prove the fundamental lemma for each such sa and every topologically unipotent element u

that commutes with it.

8.2.1 s equals the identity

We now assume that s is equal to the identity. With a slight change in notation we take

Y= , € ESp(4,R)XUF

with ¢,e € Uf, B=a+b/D e Ut and a? — Db? = 2.
In order to use the calculations and reductions of Chapter 6 we make the further assumption
that ¢ > 3. However, arguing as in Remark 6.9 will give the fundamental lemma in the case ¢ = 3

as well.

We set [b = ¢~ and |c — 1| = ¢~V. Then we have

“3N=M_if N < M,

N

1 q
D (va)|} =
g N3M i N > M.
IDa(va)|z =g~ M
—2N i N < M;
IDa, (N(ya))t =4 =
g 2M i N> M.
-

|De, (N (ya))| 2

Using Lemma 5.17 we note that the twisted weighted orbital integrals we need to compute on
G° are equal to the weighted orbital integrals on GSp(4) with respect to the Klingen Levi. Let M;
denote the Klingen Levi in GSp(4) and P; the upper triangular parabolic of which M; is a Levi
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component. We also set N7 equal to the unipotent radical in P;. We let op, denote the function

op, ((1) = / U,y (‘pa(n)) dn
N1 (F)NGSp(4,R)

1

where ¢, : Ny — Nj the inverse of the map Ny — Ny : n+— a~ n~lan. By abuse of notation we

identify v with it’s component lying in Sp(4); then we have r§;(v) — 7{;(7') equal to |Dys (va)ﬁ

times

M

op,(V) + (g +1) > (=1)"q" o, (2 v2m)
m=1

where

1

1
Zm =
ﬂ.m

And Proposition 8.1 says that it equals

2N_1 qN—l
_1\M (942N N2N_q N [ NN —
(1) (q ( q 1)1 q o1

if N < M and equals

if N> M.

We now set about computing

M
op,(V) + (g +1) D> (=1)"q"  op, (2 v2m).
m=1

To put us in the same shape as Chapter 6 we scale our element v by ¢ to give

which of course doesn’t change the value of o p, (2,,}72,). And in the notation of Chapter 6 we have

a bD
n = det = c°.
b a
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We have [n — 1| = |c — 1| = ¢~ and |b| = ¢~*. Note also that we have |3 — 1| = max{|a — 1|, |b|}.
But since a? — b2D = ¢? it follows that |3 — 1| = max{|c — 1], |b|}.
We begin by proving Proposition 8.1 under the assumption that |b]? < |n — 1| < |b]. So we have

M < N. As we have seen in Section 6.5.5 op, (2,,}v2) for 0 < m < M equals the sum of

2 q—m+1 q—N—2M
N+ M — 2
+ M +m q—1+ q271+ Fo1
and
- _ 2q+1 g N2MA3i+2mtl g~ N-2M+31+2
M — 2] — -9 2M+214+m 2M+4-2l4+m
| e o G+l @ @)

N—m
2

where [ = | |. Using this we compute that

M
UPI Q+1 Z m " 101’:’1( ;llyzm)
m=1

equals
2M 1

()M (24~M quM_q 4 g NM NqN_qN—1
¢* -1 q-1))"

And since | Dy (ya)| = ¢~ Proposition 8.1 follows in this case.

In proving the fundamental lemma for the (2,2) Levi in the case of an elliptic torus we reduced
the proof to this case. We now follow these same reductions for the fundamental lemma here. First

we assume that we have |c — 1| < [b]?. We set
ory (M, N,m) = o5, (577m)

and

L(M,N)=q M <0P1(NM0)+ q+1 Z )™ 1op1(NMm)>.

We now compute gL(M, N + 1) — L(M, N). As we have seen in the proof of Proposition 6.13 we
have gop,(M,N + 1,m) — op, (M, N, m) equal to

-m _ ,—M+2
(N+M+m+1)g— (N+M+m+2)+2¢™ -2~ M+ 4 g 24 qfl
if M —m is even and equal to
—m —M+1
(N+M+m+1)g—(N+M+m+2)+2¢™—qM 24 qfl

if M —m is odd.
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Using this we compute that ¢L(M, N + 1) — L(M, N) equals (—1)™ times the sum of

_N+M Ne1 VTP N+M Ny V-1
s ) )

and
2M 1

M+1 oM 4T — M 2M ‘IQM*1
2 +(Mq _q2—1>_2q (Mq _q2—1>

as required.

Now assume that we have ¢~V = |c — 1| = |n — 1| > |b] = ¢=™. Again we set
op, (Mv N, m) =0p (Z;Llfyzm)

and

M
L(M,N) =0p,(M,N,0) + (g+1) Y _ (~=1)"¢" op,(M,N,m).
m=1
We denote, as in the case of the (2,2) Levi,
e(M,N,m)=o0p,(M+1,N,m+1)—op, (M,N,m),
and we have
M
L(M +1,N)+ L(M,N) = op, (M +1,N,0) = op,(M,N,0) + (g+1) Y _ (=1)" " ¢g"e(M,N,m).
m=0
And as we have seen in the proof of Proposition 6.11
e(M,N,ym) = q >N """ (I(m +2) — I(m))
where I(m) is equal to the integral of
|z| log max{1, |z|, |s|}

over the region
o |z| < gV
o 7Ns —qamtMa2 ¢ R,
And we have op, (M, N,0) = ¢ 3N (1 + ¢ 1)I(0) and op, (M + 1, N,0) = ¢ 3N (1 + ¢~ 1) I(1).

Hence we have

L(M+1,N)+L(M,N) = (g+ )¢ >N (-1)M' (M +2) + (-)MI(M +1)).
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But since I(m) is constant for m > M so we have L(M + 1, N) + L(M, N) = 0 as required.

The proof of Proposition 8.1 is now complete under the assumption that s equals the identity.

8.2.2 s not equal to the identity

We now analyze the other possibilities for s. Let’s take
s = (a1, 91,b1,€1).

First we assume that g; € Z(GL(2)). Then we have u € M°(F) topologically unipotent and

a(u) = u. If a3 = by then from Lemma 7.5 we have

r$ (usa) = r§ (uc).

It’s clear that when a; = b; we also have
rip (N (usa)) = rih (N (ua))

and

ri (N (usa)) = i (N (uc)).

Hence in this case Proposition 8.1 follows from the case that s is equal to the identity.

Next we assume that g1 is central and a; # b;. Then from Lemma 7.6 we see that the left hand
side of the identity in Proposition 8.1 vanishes. It’s clear that the corresponding integrals on G
and G4 also vanish. Thus we are done with the case that g; is the identity.

Now we suppose that g1 € Z(GL(2)). Then we can take

C1 D

s = la 7b1761
1 C1
¢ Dd =
u=|a, ,a " ,e
d ¢

topologically unipotent with ¢ — Dd? = 1. In this case, as remarked before Lemma 7.12, the other
twisted conjugacy class within the twisted conjugacy class of usa does not intersect M°(R). The
twisted integrals in this case have been computed in Lemma 7.12.

We now compute the integrals on G; and Gs.
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Lemma 8.2. We have ZTJC\;/Il,(N(usa)) = 0 unless by = —1 and ¢; = 0 in which case it equals

max{|a — ¢|g, |d|g} logmax{1, |z|g}.
|z| e <max{|a—c|e,|d|z} !

Proof. We have the norm of s in GL(2, E)’ equal to

e(c1 + \/E)
eby(c1 — \/5)

If we let N’ denote the unipotent radical of a Borel subgroup containing M’ then we have N’ N
Za,(N(sa)) = {I} unless
e(c1 + VD) = ebi(¢c1 — VD);

which is if and only if ¢; = 0 and by = —1. Let 8 = ¢+ d+v/D then when ¢; = 0 and b; = —1 we have

QTﬁl,(N(usoz)) =laf — a_lﬁ_1|E/ logmax{1, |z|g}

lz|p<|aB—a=18-1| 5"

= \1—a71571|E/ logmax{1, |z|g}
le|p<|1—a=1p-1|5"

— max{la — o], |dl s} log max {1, o]}
|z| g <max{|a—c|g,|d|p} !

as required. O

Lemma 8.3. We have 2T1C\;/[2,(N(usa)) = 0 unless by =1 in which case it equals

la — 1] logmax{1, |z|}.
lz|<Ja—1]~"

Proof. We have the norm of s in (GL(2, F) x E*)/F* equal to
; C1 + \/5

If we let N’ denote the unipotent radical of a Borel subgroup containing M’ then N'NZq, (N (sa)) =

{I} unless b; = 1. In this case we see from above that we have

2r$2 (N (usa))) = |a — 1| log max{1, |z|}

lz|<]a—1|~*

and we are done. O
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So unless either by = 1 or by = —1 and ¢; = 0 all integrals vanish and the fundamental lemma

holds. If we have by = 1 then by Lemma 7.12 the twisted integral is equal to

la — 1] log max{1, |z3|}
|zz|<la—1]~1

and we are done in this case.
Now suppose that by = —1 and ¢; = 0. Then by Lemma 7.12 we need to show that the integral
of

2/1ogmax{1, 2], |22}
over the region
e (a—c)xy —dza €R
e —dDzx1+(a—c)z2 € R
is equal to

/ logmax{1, |z|g}.
|z|p<max{la—c|z;|d|z}

If we let max{|a — ¢|, |d|} = ¢~ ™, then this latter integral is equal to
2n
" —1
2 (ng* — — .
( ! ¢> -1 >
We now turn to the first integral. As we saw in Section 7.3.4 this integral is equal to

2/ / log maxc{1, [z1], |5},
|z1|<max{|a—c|,|d|} = /|z2|<max{|a—c]|,|d|} !

which equals, by Lemma 10.8,

2n 2n+1 2
q q 1 q
2 (ng®" — + + + ,
(q g—1 -1 ¢F-1 (¢g+1)(¢*-1)

2n

" —1
2 o )
(nq q2—1>

The proof of Proposition 8.1 is now complete.

which equals
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Chapter 9

The fundamental lemma for the
diagonal Levi

In this chapter we prove the fundamental lemma for M° equal to the diagonal torus in G° and M’
equal to GL(1)3, the unique unramified elliptic twisted endoscopic group for M. The restriction of

a to MY is given by

a: (diag(a,b,c,d), e) — (diag(d™', ¢ 1,071, a™1), abede).

9.1 Statement of the fundamental lemma

We note that for v = (diag(a, b, ¢,d),e) € M°(F) and m = (diag(a1,b1,c1,d1),e1) € M°(F) we have
m~*(diag(a, b, ¢, d), e)a(m) = (diag((a1dy) ' a, (brc1) ™', (bicy) P, (ardy) ™ d), arbicidye).

It’s clear from this that the stable twisted conjugacy class of v is equal to the twisted conjugacy class
of v. Therefore the fundamental lemma for the pair (M, M’) is given by the following Proposition.

Proposition 9.1. For (diag(a,b,c,d),e)a € M(F) which is strongly G°-reqular we have

r$ ((diag(a, b, ¢, d), e)a) — 2TJ(\;4$/;>(4) (diag(abe, ace, bde, cde))

equal to
QTE\?,L(Q)XGLO))/(diag(abe,cde),diag(ace,bde)) — TEV?,L(Q)XGL@))/GL(U(diag(l, a~'d), diag(abe, ace)).
We set vol(a%/Z(AY)) = @ and normalize the other volumes as in Section 5.5. This has the

effect of replacing log by log, below. We suppress the ¢ from our notation and for the rest of this
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chapter take log to be log to the base q.

9.2 Proof of the fundamental lemma

As above for m = (diag(ay, b1, c1,d1),e1) € M°(F) we have
mfl(diag(a, b,e,d),e)a(m) = (diag((aldl)*la, (blcl)*lb7 (blcl)*lc, (aldl)*ld), arbicrdye).

Hence we see that the twisted conjugacy class of (diag(a,b,c,d),e) € M°(F) intersects M°(R) if
and only if we have |a| = |d|, |b| = |¢| and |abe| = 1. Tt’s clear that unless these conditions are met
then the same is true of the conjugacy class of N(y«) in M'(F'). Thus we may as well assume that
we have

v = (diag(a, b, c,d),e) € M°(R).

Under the assumption that v € M°(R) we have
ZTJ(\?,L(Q)XGL@))/(diag(abe,cde),diag(ace,bde)) — rg\?,L(Q)XGL(Q))/GL(l)(diag(l, a~td), diag(abe, ace)).
equal to

2|ab — cd||ac — bd| log max{1, |z|} log max{1, |y|}
|| <ab—cd|~1 ly|<|ac—bd]|~*

minus

2|la —d||b— | log max{1, |z|} log max{1, |y|}.
|z|<|a—d|~* ly|<[b—c| !

We now prove Proposition 9.1 using the twisted topological Jordan decomposition. As before we
write ya = usa = sau and analyze the possibilities for s.
9.2.1 s equal to the identity
We begin by proving Proposition 9.1 in the case that s is the identity. We take v = (u,e) €
Sp(4, R) x GL(1, R) topologically unipotent. We write

u = diag(a, b, b1, a™1).

Then with the normalizations above we have, from Lemma 5.17, r§,(ya) = 27“](\;;/@(4) (w). Thus in

order to prove Proposition 9.1 in this case we need to prove that

27“1?48,1)(4) (diag(a,b,b™*,a™ 1)) — 2r]C\}/[S,p(4) (diag(ab,ab™*,a"tb,a™ b7 1))
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is equal to

2|ab — 1||a — b] logmax{1,|x\}/ log max{1, |y|}
|

|z|<|ab—1|~1 y|<la—b|~!
minus

2|la — 1]]b — 1| log max{1, |z|} log max{1, |y|}.
|z|<la—1]~" ly|<[p—1|1

We have |a — 1| < 1 and |b— 1| < 1. Since we are in odd residual characteristic we have at least
three of |ab — 1|, |a — b|, |a — 1| and |b — 1] equal. For N > M we define I(N, M) to be equal to
2r$5P™) (diag(a, b,b=1,a")) for a and b such that

la—=1l=q¢ " -1 =a—-b=lab-1 =g
and we define I(M, N) to be equal to 25" (diag(a, b,b=1,a~1)) for a and b such that
lab—1]=q ™, Ja—1]=b—1] = |a— b = g,
Using the action of the Weyl group in Sp(4) we see that in order to prove Proposition 9.1 in the

case that s is the identity it suffices to prove the following Lemma.

Lemma 9.2. For N > M we have I(N,M) — I(M,N) equal to
M_q M_1 N1 M_1
2~ | MgM — q MgM — q —9g~N-M [ NgN — q MgM — q .
q—1 qg—1 q—1 q—1

GS

We now see how to compute 27"M,p(4)(a7 b,b=1 a~1). Using the notation of Lemma 5.7 we need

to integrate
—(A?+2B*+2C? + D* +2E* + F?) + 2(AB+ AE+ BD + CD + EF)

over the region
o |z1| <|a—0b7?
o Ja < b1
o (ab—1)xgs +bla—b)x1z4 € R
o (a® — 1wz +ab (1 —b*)z129 € R.

We assume that |a — b = [b— 1|. We first note that if |z124] > |b—1|~! then we must have both
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|z1] > 1 and |z4] > 1. Now

lz1za| > [b— 1|71 = |22| = |ab — 1|7 a — b||x124| > |w1224] > |0 — 1|77

= |zymo| > [b— 17"
So if |z124] > |b— 1|71 then we have

xy = —(ab—1)" (a — b)bxiz4u

((b—1)z124)

with v € U v and we have

3= —(a® —1)7 (1 = bv*)ab "z w00
=(a®—=1)"Yab-1)"1(1 = v*)(a — b)azizsuv

with v € U (b Dme2),

Now suppose that |z124] < |b— 1|71, then we have |zo| < |ab — 1|71. Now if |z129| > |b— 1|71
then we have
r3=—(a® — 1)1 (1 - bv*)ab 'z 20w
with w € U;v((b_l)“m).
And finally if we have |x1z4| < |[b— 1|71 and |2y22| < |b— 1|71 then we have |x3| < |a — 1|71,

So we have divided our region of integration into three regions. The first is given by
o |zyay| >|b—1]71
e x5 = —(ab—1)"(a — b)briz4u, u € U;v((bfl)““)
o 23=(a?—1)"1(ab—1)"1(1 - b?)(a — b)azizsuv, v € U;U((b_l)wm).
The second is given by
o [ziza| < b —1|7
o |1o| < ab— 171, |wyaa] > |0 — 1|71
o 3= —(a2— 1)1 (1 = b)ab 'myzow, w € UL E7HT02)
And the third by
o |zimg| < [b—171

o |wo <lab— 171, |z1aa] < |0 — 171
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o |zs| <fa—17"
We now compute I(N, M) — I(M, N) over each of these three regions.

9.2.1.1 Region 1

Over the first region we clearly have

B = log |u]
C = log|z:|
E = log |2,
F =log |z4]
for both I(N, M) and I(M,N).
Next we compute A over region 1 under the assumption that |a — b = |b — 1| < 1. We have

A = log max{|za|, |x3 — x122|, |x§ — x3x4 + T12224]}.
Now

T3 —T3ra+T1Tomy = prxiu(ab—1)"*(a>—1) " (a—b)((a—b)(a®> —1)b’u—(ab—1)(1—b*)av—(ab—1)(a* —1)b)

and
(a—b)(a® = 1)b* — (ab —1)(1 — b*)a — (ab —1)(a* — 1)b = (a — b)(1 — b?).
Therefore
T3 — 2334 + T12074] = |2i05||ab — 1|72 — 1|7 - 1)?
and so

A =log (Jzfz]|lab — 1|72|a® — 1|7 b — 1]?).

For D we note that
T3+ r120 + 23wy = 23w4(a® —1) " (ab— 1) (1 =) (a —b)awv — (a® —1)(a—b)bu+ (a®* —1)(ab—1))

and
(1—b%)(a—b)a— (a* —1)(a—b)b+ (a® —1)(ab— 1) = (b* — 1)(ab — 1).
First we look at I(IN, M). In this case over region 1 we have

o A=2logl|zi|+2loglza| + N - M
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B =2log|z1| +log|z4| + N — M

C = log |z

D =2log|z1| +log|xa| + N = M

E = log|z1| + log |x4]
o F =log|x4|

and so

—(A% +2B? +2C* + D* + 2F* + F?) + 2(AB+ AE + BD + CD + EF)

equals
A(N — M)log 21| + 2(N — M)log|xa| + 4(log |z1])* + 8log 1| log |x4] + 2(log |z4)*.

Next we compute I(M, N) over region 1. In this case we have

A =2log|z1| + 2log |z4| +2(N — M)

B =2log|zi| 4+ log|zs| + N — M

C = log|a1|

E =log |z1| + log|za| + N — M
o F =log|x4|

For D, we have

x3+z1ze +aias = (a® —1)" (ab—1)""zizsu ((1— b*)(a — b)av + (a® —1)(ab — Du" " — (a® = 1)(a — b)b) .

Now
v=1+(b—1)"2(ab— D%z 'y
with y € R, so
(1—b%(a—Db)av = (1 —b*)(a —b)a+ (1 —b*)(a — b)a(b —1)"?(ab — a2z 'y
and
(1= b*)(a = bla(b —1)7*(ab — Dy a3 'yl = [(ab — Dy *zi y| < ¢ M7
Since

(a—b*)(a—b)a+ (a®> —1)(ab—1) — (a* — 1)(a — b)b = (ab— 1)(b* — 1)
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we get

|T3 + 2100 + 2ixy| = |22

and so D = 2log |z1| + log|z4]. Therefore for I(M, N) over region 1 we have
—(A?+2B*+2C? + D* +2E* + F?) + 2(AB+ AE+ BD + CD + EF)
equal to
4(N — M)log|z1| + 4(N — M)log |z4| + 4(log |2z1])? + 8log |z1|log 24| + 2(log |z4])?.

Hence we see that the contribution from region 1 to I(N, M) — I(M, N) is equal to

2(M—N)q*M*N/ / log [74]
1<|z4|<qgM J qM|z4| 71 < |21 <qgM

which equals
20 = Nyg ™ | (1 fos] ™) log 4]
1<|za| <gM
9.2.1.2 Region 2

We now compute the contribution from the integrals over region 2 to I(N, M) —I(M,N). We begin
by computing the contribution to I(N, M). In this case region 2 is given by

b ‘m1‘7 |.132|, |.’134| < qM

o |z1w4| < ¢M < |10

o z3=—(a® = 1)1 - b*)ab~ 120w, w € U;U((b_l)““),

We note that we have |z1|,|z2| > 1, |z4] < |22| and |z3]| = ¢V M |z125] > ¢V. So we have

A =logmax{|zs|, |x3 — z12o]|, |23 — z32y4 + T1T02T4}
B =N — M +log|z1| + log |z2|

C = log |z

D = logmax{|z;|?, |z3 + z122 + xiz4|}

E = log |z,

F = log max{1, |z4|}.
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For A we have
r3— 2120 = —(a® — )77 H(1 = b?)aw + (a* — 1)b)x 122
and since
(1—-0%)a+ (a* — 1)b= (a — b)(1 + ab)

SO

XT3 — T1X2| = qN*M|:c1x2\.
And we have

1’3 — T3T4 + X1 ToTy = :L'g + (a2 - b2)ab71wx1z2x4 4+ 21ToT4

=2o(z2 + (a = D771 = b¥)aw + (a® — 1)b)x114).
We note that
(1—b%a+ (a*> —1)b = (a —b)(1 + ab)

and hence that |(1—b2)aw+ (a® —1)b| = ¢~ M for all w. Therefore after scaling 1 and x5 by suitable

units, which doesn’t affect B or E, we get

A=log max{qN_M|x1x2|, |xo (2o + 7TM_N{L‘11'4)|}.

N-—-M

We now make the change of variables x4 — x4 — 7 mflx% which again doesn’t affect B or FE,

to give

A= N — M + log |z1| + log |x2| + log max{1, |x4|}.
For D we have
r3 4 2120 + 2224 = 21(((@* — )b — (1 — b?)aw)(a® — 1)1 Loy + z124).

Since

(a®> = 1)b— (1 —b*a = (a+b)(ab—1)

we have

I((a®> = 1)b— (1 = baw)(a® = 1) = ¢V M

for all w. Thus after scaling x2 by a suitable unit we have

D =logmax{|z1|?, |z, (7™M Ny + z124)|}.
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So we have

A= N — M +log|z1| + log |x2| + log max{1, |z4|}
B =N — M + log |z1]| + log |z2]

O = log||

D =log|z1| + log max{|z, |, |7 Ny + z124|}

E = log|z2|

F =log max{1, |x4|}.
If we have |z2| > ¢ =% then

D =N — M +log|zy| + log |z2]

M—-N 1

on the other hand if |73 < ¢ =% then we can do the change of variables z4 +— x4 — 7 x]  wg,

which doesn’t change the value of B or C, to give
D =2log|z1| + log max{1, |z4]|}.
The difference between the integrand
—(A%2 +2B? +2C% + D* + 2F* + F?) + 2(AB+ AE + BD + CD + EF)

when

D =N — M +log|z1| + log |z2|

and

D = 2log |z1| + log max{1, |x4|}

is

(N — M +log |zo| — logmax{1, |z4|})* — (log|z1])?.

Lemma 9.3. The integral of
(N — M +log |z2| — logmax{1,|z4]})?* — (log |z1])?

over the region
o |z, x| < g

o loa] < 2N
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o |ziz4] < gM < |29
1S zero.

Proof. We assume that N < 2M so that this region is non-empty. We note that we must have

|z1| > ¢V =M. The volume of x1, x5, x4 such that log || = k with N — M < k < M is

qk(l _ qfl)(q2M7N _ quk)quk —_ (1 _ qfl)(qiiMfN _ q2M7k)'

We now the volume of z1, z2, x4 such that log |z2| — logmax{1, |x4|} = M — N + k, with N — M <

k < M, is the sum of

MR =g (@M =gV = (=@M =M,

the contribution when |z4] < 1, and

2M—N

L= @™ =" > =0=g )" =d" PN =MV,
i=M—N+k+1

the contribution when |z4| > 1. This sum equals

(1—q (M N =Mk
as required. O

Therefore we can assume that D = N — M + log |z1| 4 log |x2]| in all cases and then we have
—(A%2 +2B? +2C%* + D* + 2F* + F?) + 2(AB+ AE + BD + CD + EF)
equal to
2(N — M) log |z1z2| + 4(log 21| + log max{1, |z4|}) log |z2| — 2(log max{1, |z4|})?.

So I(N, M) is equal to ¢~>M times the integral of this function over the region
o |z1], |z, 24| < g™

o |z124| < M < |z179|.
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We compute the contribution from the 2(N — M)log|xi22| term. If we make the change of

variables z = x1x5 then the integral becomes

2 — a0y [ / / 2] log 2],
1<z |<gM Jza|<gMz1 |71 JgM <|2|<gM |21 ]

which equals the integral of

M 1 N e 2
2(N — M)q (M + log |z1|)|1] Mz |77 - — 1

over 1 < |z < ¢™. We will compute the remaining terms when we compute (M, N) over region
2.

We now compute the contribution to I(M, N) over region 2. This region is given by
o |z, |za] < M, |zra4| < g™
o |zg| < ¢V, |w1aa| > ¢
o 23=—(a?—1)"1(1 - b?)ab lz120w, W € U;U((b71)$1$2).
We note that we must have |zo| > 1, |z3| = |x122| and |z4| < |z2]. So we have
A =logmax{|zs|, |r3 — 2122, |75 — X324 + T1T274]}
B = logmax{|xi22], |x2 + z124]}
C =log max{1, ||}
D =logmax{l,|z;|?, |x3 + z120 4+ x3x4|}
E = log|»|

F = log max{1, |z4|}.

We note that

B =log |za| + logmax{1, |z1]|}.

As we saw above |r3 — x122| = |x122] and so
A = logmax{|zs|, |z122], |22 — 2374 + 212024|}.
We have

T2 — 2324 + 10014 = To(20 + (@ — 1) 70 2124 ((1 — bP)aw + (a* — 1)b))
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and we note that

(1 —0%)a+ (a* — 1)b= (a —b)(1 + ab).

Hence

l(a? = )7 i (1 — bP)aw + (a® — 1)b| = |z124]

for all w. So after multiplying x4 by a suitable unit we can take
A =log|za| 4+ log max{1, |z1|, |xe — x124]}-
Making the change of variables x4 — x4 + $1_1I2 when |22 < ¢™ gives

2log |z2|, if |2o| > ¢™;

log |71 | + log |x2| + logmax{1, |z4|}, if |xa] < ¢M.

Now we look at D. We have
r3 4 2120 + 2224 = 21((a® — 1) 707 ((a® — )b — (1 — b*)aw)xg + x124).

We write

w=1+atbx; ;e

with 2| < ¢M. Then

T3+ x129 + wiry = x1((a® — 1) 7 (a4 b)(ab — 1) + bay toy ta)xs + 2124)

=(a®* -1 a+b)(ab— Dayzs + (a* — 1)1 — 1)z + 2324.
Multiplying x5 and x by suitable units gives
xr3 +x129 + x%x4 = 7TN7MSC1ZE2 + 7 Mg + x%x4.

Now if |z1] > 1 then this equals

2

22 (zy + 7N M

-1 —2
] Ta+xr]”)

N—-M M

and we can make the change of variables x4 — x4 — 7 xl_lxg + 7 I’Il_2 to get x%x4. On the

other hand if |z1]| < 1 then we have

T+ 7TN_M£E1.’E2 + x%x4
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N—-M

and we can make a change of variables x — © — 7 T1To — x%m to get . So we have

2log |z1| + logmax{1, |x4|}, if |z1] > 1;
log max{1, |z|}, if |z1| < 1.

Putting this altogether gives

Ao 2log |z2|, if || > ¢™;

log |z2| + log |1 | + logmax{1, |z4|}, if |zo| < ¢M.
B = log|z2| + log max{1, |z1|}
C =logmax{1, |z1|}

2log |z1| + log max{1, [x4|}, if |z1] > 1;
log max{1, |z|}, if |z1] < 1.

E = log|z2|

F =logmax{1, |z4]}
and we need to integrate the function
—(A?+2B*+2C? + D* +2E* + F?) + 2(AB+ AE+ BD + CD + EF)

over the region

i ‘l‘|, |$1|, ‘x4‘ < qM7 IxQ‘ < qN

o |r124] < g™ < |2y29|.

When |z1| <1 the integrand is equal to

2(log max {1, |z|} + logmax{1, |z4|}) log|z2| — (logmax{1, |z|})* — (log max{1,|z4|}).

But if we have |z1]| < 1 then integrating over x is the same as integrating over z4 and we can replace
this function by
4log max{1, |z4|} log |xa| — 2(log max{1, |z4|})?.

If we now assume we have || < ¢M so that |z;| > 1 then we are in the situation considered above,

when computing I(N, M), and we take our integrand to be

4(log |z1| + log max{1, |x4|}) log |xa| — 2(log max{1, |z4|})?.
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Finally we have the region |zo| > ¢ and |z1| > 1 then the integrand is equal to
4(log max{1, |z4|} + log |z1]) log |x2| — 2(log max{1, |z4|})?.
Thus we can take our integrand to be
4(log max{1, |z4|} + logmax{1, |z1|})log |z2| — 2(log max{1, |x4|})?
in all cases. Therefore the contribution to I(M, N) from region 2 is given by ¢~V =2M times the
integral of this function over the region
o [x1], fza] < ¢V, |zias| < g™

o |z2| < ¢V, |x1aa| > ¢M.

So the contribution from region 2 to I(N, M) — I(M, N) is equal to the integral of

- -M -1 —2 1|7 = a2
2(N — M)q (M + log |z1])]z1| M|z1| B —

over 1 < |z1]| < ¢M, plus the integral of
g (4(log |z1] + log max{1, |z4|}) log |z2| — 2(log max{1, [x4]})*)

over the region
o |a1], o], [za] < g™
o |z124| < ¢M < |z170]

minus the integral of

g N (4(log max{1,|z1|} + log max{1,|z4|}) log |z2| — 2(log max{1, |:1:4|})2)

over the region
4 ‘x1‘7|x4| Squ ‘.’IJQ| SqN
. ‘I11}4| < qM < |171£C2|.

We now compute the difference of these integrals. We begin with the logmax{1,|z1|}log |z2]

M|£L’1|_1

term. Given |z1| > 1 the volume of z4 is ¢ . So over the first region we compute

M / 21~ log [z / log |12
1<|zy|<gM qM |z |71 <|ze | <qM
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while over the second we compute

N el gl | log|z2|
1<z |[<gM M|z [T < w2 <N

The integral over x5 over the first region gives

qM _ qM|x1|_1

Mg — (M = log e ) | ! = T2

while over the second region we get

N M —1
My -1 4 —a T
Ng" — (M —log |z1])¢" |21 1—q—|1|

2 N—

Multiplying the first by ¢~=2™ and the second by ¢~ and subtracting gives

N M
_ N 0 onemdY —q
(M — N)g™M 4+ ¢ VMM — g™ (M —log |z |)|z1 | + ¢V M—q

_1 |$1|_17

which we then need to multiply by |z1|~!log|z;| and integrate over 1 < |z;| < ¢M.
Next we consider the logmax{1,|z4|}log|zz| term. Given |z4| > 1 and z2 with |z2] > |z4] the
M(

volume of x1 is ¢™ (|z4]7! — |z2|™1). So over the first region we need to compute

M / / 4]~ log [za]log [za] — |2~ log [z4] log |z2]
1<|za|<gM Jza|<|z2|<qgM

while over the second we need to compute

| 24| 1og fa o faa] ~ faa] " og].zslog |
1<]zq|<qM S| <|z2|<qV

We consider the |z4] 71 log |x4]log |x2| term. Taking the difference over these two regions means we

need to compute the integral of

—2M —-N-M
— 49

(R e L

ol el og
over the region 1 < |z4] < ¢™. Next we consider the |zo|~!log|z2|log|z4| term. Taking the

difference over these two regions means we need to compute the integral of (1 — ¢~!)log |x4| times

NN+1) _n_p loglog|(loglza| +1) _nopy MM +1) oy loglzg|(logloa +1) oy
g - ; e ; ’

over the region 1 < |z4| < ¢™.
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Finally we consider the (logmax{1, |z4|})? term. Given |z4] = ¢* > 1 the volume of z; and x5

in the first region is

M—k M M—k
dq*tt—q ) Y dl-g )= ¢"0-qg " - "
a=1 b=M—a+1 a=1
MR M4
-0 (T - - )

=@M M - (M —k)M(1-q).

While the volume of x7 and x4 in the second region is

M—k N M—k
o tt-ghH D Qfu-aH= > -gaH" -¢"
a=M—-N+1 b=M—a+1 a=M—N+1

="M M (N = k)1 - g )M
Thus in computing the difference between the two regions we need to integrate
(@M =g+ (N —loglaal)(1 — ¢~ VM — (M —log|za])g™* (1 — ¢71)) (log |z4])?

over 1 < |z4] < ¢M. Adding this altogether gives the contribution to I(N, M) — I(M, N) over region

2 as the integral of the sum of

6(M — N)g~Mz| ! log ||,

N—M M N QN—QM
1 (M = 0) 4 T2 el P

g2M g N-M
2 <2T + NN +1)(1 =g g VM- MM +1)(1— ql)q”) log |,

4q N M(gN — ¢™M)|z| 7 (log |z])?,
2(Mq*M — (M + 1)g M~ = Ng V"M 4 (N + 1) VM) (log |z])?,

and

-1 2
2 = 2y (el = a2 - 2
=

over the region 1 < |z| < ¢™.

9.2.1.3 Region 3

We have I(N, M) given by ¢~V 3™ times the integral of

—(A? +2B* +2C* + D* + 2E* + F?) + 2(AB+ AE + BD + CD + EF)
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over the region
o |21, |22, |24 < ¢V
o |zy24],|120| < gM
o |z3] < gV
And we have I(M, N) given by ¢~V ~3M times the integral of the same function over the region
o |z1],|z4] < M, |ziza] < M
o |zo| <N, |wrma] < ¢M

o |z3| < qM.

Thus after removing the common region we need to compute the integral of our function over

the region
o |21, |22, |24 < ¢V
o |zyayl, |z1ma| < g™
o ¢ < x| < gV
and subtract from it the integral over the region
o o], |za] < M, |z12a] < M
o ¢ <o < gV, |mima] < M
o |z3] < M.
We first compute the integrand over the first of these subregions. We have
A = log max{|zs|, |22 — z324 + 17274}
B = log |z
C =log max{1, |x1|}
D =logmax{1,|z1|?, |x3 + T129 + x3x4|}

E =logmax{1, |za|, |z4|}

F = log max{l, |z4|}.
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After the change of variables x3 — x3 £ x1x2, which doesn’t change the region of integration, we

have

A = log max{|z3|, |23 — x324|}

B = log |z3]

C =log max{1, ||}

D =logmax{1, |z |?, |x3 + 324}
E =logmax{1, |za|,|z4|}

F = log max{1, |z4|}.
We can make the change of variables x4 — x4+ x%xgl which doesn’t alter E since xzxgl € R to get

A = log |z3| + log max{1, |z4|}
B = log |z3|

C =logmax{l, |z1|}

D = logmax{|z;|?, |z3 + z7z4|}
E =logmax{1, |z2|,|z4|}

F = log max{1, |z4]}.

If |z3] > ¢™|z1| then D =log|z3|. On the other hand if |x3] < ¢ |z| then we can do a change
of variables in x4 to get

D = 2log |z1| + log max{1, |x4|}.

The difference in the integrand between taking
D = 2log |z1| + log max{1, |x4|}
and taking D = log |x3]| is
(log o3| — (log 1| + log max{1, [x4]}))* — (log a1 )*.
Lemma 9.4. The integral of
(log 3] — (log |z1] + log max{1, |z4[}))* — (log|a1])®

over the region
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o 1<z <gM
o |z, |za| < gMzy| ™!
o ¢M < |zs] <min{g"|z,],¢"}
S zero.
Proof. We fix k with 0 < k < M and set M; = min{M + k, N}. The volume of z1, zs,x3, x4 with
1] = ¢~ is
¢"(1—=q g *M (M = gM) = (1= g ) (PR = PR,
Now we compute the volume of x1, z2, x3, x4 such that log|z3| — (log |x1|+log max{1, |z4|}) = k.
If |x4] <1 then the volume is
My —k
> =g M =) = (1= (MM = M),
i=M—k+1
Now assume that |z4| > 1. Then the region is given by
o 1< |my| <Mk
o ¢M a7t < o] < gMaa T

o ¢M <z < min{g™ 21|71, ¢V}

So we need

" < || = ¢"lzras] < min{gM |17 ¢V}

So the total volume of 1, 7, 73, 74 With |z4] > 1 and |z3| = ¢*|z124] is

M—k Mi—k—1i
dodl—=q¢ ) Y. FU-g M-,
i=1 J=M—k—it1

which equals

(1— g L)(@@MAMi—k _ 3M—k _ (M+My 4 2M)

q

as required. O

By this lemma we can assume that we have D = log|zs|. Then over the first subregion we have

—(A%2 +2B? +2C%* + D* + 2F* + F?) + 2(AB+ AE + BD + CD + EF)
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equal to

2(logmax{1, |z1|} + logmax{1, |xa], |z4|}) log |23]

plus
—2(log max{1, \:cl\})2 — 2(logmax{1, |xa], |z4|} — log max{1, |x4|})2.

The contribution from the 2log max{1, |z1|}log |x3| term is

gV — M
2¢°M <NqN — MgM - —) / |:131|72 log |z1].
qg—1 1<z |<gM

The contribution from the —2(log max{1,|z1|})? term is

“2?M (g — M) / 1] 2 (log 1))
1<|z1|<qgM

The contribution from the 2log max{1, |zs|, |x4|} log |z3| term is

gV — M
4q™ (NqN — Mg" - —)/ log | 4]
q—1 1< |q|<gM

plus
g — M
—2¢™(1—q7") (NqN — Mq¢™ - 7> / log |z4].
q—1 1<|za|<qM

The contribution from the —2(log max{1, |z2], |x4]|} — log max{1, |z4|})? term is

“2gM(gN — M) / 2|~ (log maxc{L, 5]} — log max{1, [za|})?,

|za|<|z2|<qM

which equals

2 =) [ el g aal?
1<|za|<qM

plus

20" - ") [ o] " (tog [y )2
1<|zg|< w2 |<qM
Making the change of variables y = :chgl, this latter term equals
—2¢M(¢" ~ qM)/ I~ @™yl = a (log [y])*.
1<]y|<qM
Adding this altogether gives the integral of

—(A? +2B*+2C? + D* + 2E* + F?) + 2(AB+ AE+ BD + CD + EF)
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over the first subregion as the integral of

M N o dY =™ 2 2M( N _ M 2 2
20 (N0 = Mg~ T ) ol og el - 402 (6" — el (g

plus
¢V —q"
2¢" (g +1) (NqN - Mg — 7) log |z|
q—

over 1 < |z| < ™.

We now compute the integral over the second subregion. This subregion is given by

o |z |zl < g™

o ¢M < |xo| < gV

o |z1| < gM|wo| 7t

We note that |z1] < 1 and we have, after a change of variables,

A = 2log|z2|
B = log |22
C=0

D = log max{1, |z3|}
E = log [z|

F =logmax{1, |z4|}.

And
—(A?+2B*+2C? + D* +2E* + F?) + 2(AB+ AE+ BD + CD + EF)

equals
—(log max{1, |z4]})? 4 2log |z2| log max{1, |x4|} + 2log |zs| log max{1, 3|} — (log max{1, |z3|})?.
But integrating over x4 is the same as integrating over x3. Hence we can replace this function by

—2(logmax{1, |x4|})? + 4log |z2| log max{1, |z4|}.
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2M|.’I}2|_1

Thus to compute the integral we need to multiply this function by ¢ and integrate over

gV < |z3] < ¢V and |24| < ¢™. We have

and so the integral of —2(log max{1, |z4|})? yields

AN =M [ (gl
1<|zq|<qM

We have

_ N(N +1 M(M+1 _
/ |u|w%m2=< W+l M ))u—qh
qM <|za|<gN 2 2

and so the contribution of 4 log |z2|log max{1, |z4|} is

2(N(N +1)— MM +1))¢*M(1 —q*l)/ log |z4].

1<]z4|<qM

Thus the integral over the second subregion is equal to the integral over 1 < |z| < ¢M of
2(N(N +1) = M(M + 1)) ¢*M(1 — ¢~ ") log | = 2(N — M)¢* (1 — ¢~*)(log ).

Combining this together we get that the contribution to I(N, M) — I(M,N) over region 3 is

equal to ¢~*M~N times the integral over 1 < |z| < ¢ of

N

g — gV M—1 N M g~ — ¢V
2¢4*M (NqNMqMﬁ> || log || +2¢™ (g + 1) (Nq — Mg 7) log |z|

plus
2 (N(N +1) = M(M +1)) (1 — g~ logz| +26*" (V= M)(1 ™)~ 2q™ ~ ")[a| ") (log |a])*.

9.2.1.4 Putting it altogether

Gathering together the computations above we get that I(N, M) — I(M, N) is equal to the integral
of the sum of

2(M — N)g~ " log x|,
2(—(M?*+M—N)g M+ (N+M? + M+ 1)g M1+ M2 VM — (M +1)2¢ VM) log 2],
4(M — N)gM|z| " log ||,

gV — M
2 M <MqM + (N —2M)g™ + (1_71> |z[~*1og ||,
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2(M (g™ — ¢V — (M + 1)(¢7*M 7 = 7N (log [))?,

and

-1 —2
2M(N — M)qg~M|z|~t —2M(N — M)q~M|z|72 — 2(N — M)q_M—Lx T+ 2(N — M)g ™M _(I;‘I ;

over the region 1 < |z| < ¢™. Using the results of Chapter 10 we compute this integral to be equal

to

M _ 1] M _q , N_1 M _1
2q~2M MqM_q MgM — q _9q~N-M NqN_q MqM_q
q—1 q—1 q—1 q—1

and the proof of Lemma 9.2 is now complete.

9.2.2 s not equal to the identity

We now assume that s is not the identity. After twisted conjugation we may assume that we have

by

with a} = b¥ = ¢ = 1 for some k prime to the residual characteristic of F' and with a; and b; not
both 1. Since M? is abelian u € M (F) commutes with sa if and only if a(u) = u and hence if and

only if w is of the form

We take N equal to the unipotent radical of the upper triangular Borel in G° and compute the
possibilities for Ny = N N Zgo(sa). By abuse of notation we consider N C GL(4).

Lemma 9.5. With notation as above we have the following possibilities for Ni.

1. If a3 =1 then we have
1 0 0

—_
&
N

- o o O
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2. If a1 = by = —1 then we have

1 xrpy T2 —XT1T9

1 —I1

3. If a1 # +1 and by = a1 then we have

4. If a1 # £1 and by = afl, then we have

1 0 X9 0
1 0 a1To

1 0

Ny

5. If by =1 then we have
1 0 0 T3

10 0
1 0

Ny

6. In all other cases we have Ny = {I}.

Proof. We take
1 1 zo+x124 23

1 Ty T5
n=
1 Te
1
We have
1 —Xg X5 — T4Teg X3 — X2Xg — TL1T5
1 T4 To
a(n) =
1 —T1

1
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and
1 X (ll(l'g -+ 1'1.%4) bll'g
1 1 a1xT4 b1$5
S ns = 1
1 blal_ Te
1

We now find n such that a(n) = s~'ns. First we note that
o I = —xg
e 1 = x¢ = 0 unless a1 = by
e 4 =0 unless a; = 1.

Let’s first assume that a; = 1. Then we have b; # 1 and so z1 = zg = 0, 3 = x5 = 0 and
x3 = 0. We now assume that we have a; # 1. Therefore we must have x4 = 0. We have o = x5 =0

unless a; = by * and we also need to have
(1 — bl)xg = X2Xg + T1T5 = (bl_l — 1)1’11‘2.
The result now follows. O

We now compute the integral 7{;(usa) in each of these cases.
Lemma 9.6. With notation as above we have the following possibilities for r§;(usa).

1. If a; = by = —1 then

r$) (usar) = 4|a — b||ab — 1| log max{1, |z1]|} log max{1, |z2|}.
|z1|<|a—b|~1 |a|<|ab—1|1

2. In all other cases 7$;(usa) = 0.

Proof. We let n € Ny(F) and compute vps(n). When a3 = 1 we have n € Sp(4) and vas(n) = 0 by
Corollary 5.8. Similarly when a; # +1 and by = a; we have n € Sp(4) and vs(n) = 0 by Corollary
5.8. When a7 # +1 and b; = afl we have

1 0 =z 0 1 1 0 zo O 1
1 0 axs 1 1 0 =z 1
1 0 1 1 0 1

1 afl 1 ay



and
1 0 ) 0
1 0 =z
UM ? =0
1 0
1

by Corollary 5.8. Finally when a; = b; = —1 we have

1 r1 T —T1T2

1 0 —XT2
n =
1 —X1
1

and one can compute as in the proof of Lemma 5.7 that

vrt(n) = 41og max{1, 21|} log max{1, |za]}.

Moreover for u = diag(a,b,a"1,b~1) we have

1 1—-atb)r; (I—a v Hry —(1—a )1 -a 1o Va2
L 1 0 —(1—a v Y,
uT'n T un =
1 —(1—a"tb)zy

1

and the result now follows.

We now consider the integral on GSp(4). We have N(usa) equal to the product of

ay
S1 —=C1

b1

a1by

and
ab

a1t

We take N’ equal to the unipotent radical of the upper triangular Borel in GSp(4) and we
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compute the possibilities for N = N N Zggp4(s1)-
Lemma 9.7. With notation as above we have the following possibilities for Ny.

1. If a3 =1 then we have

1 T 0 0
) 1 0 0
N, =
1 —X
1

2. If a1 = by = —1 then we have

Nj =

1001‘3
1{E4 0
1 0
1
1 0 0 O
12640
1 0
1

1

4. If a1 # £1 and by = afl, then we have

Ny =

3. If a1 # +1 and by = a1 then we have

0
1 0
1

N{l
1 0 i) 0
1 0 =z
N = 215
1 0
1

6. In all other cases we have Ni = {I}.

5. If by = 1 then we have
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Proof. We take

1 r1 o+ T124 I3

1 Ty i)
n =
1 —T
1

and we have
1 aix bl(ﬂfg + 3311‘4) a1bixs

_1 1 blal_lx4 blllfg
§1 NSy =
1 —a121
1

So if we have sl_lnsl = n then we have the following implications
e a;#1: 21 =0
e b #£1: 29=0
ea #b ' a3=0
e a; #by: x4=0

and the result now follows. O

We now compute the integral 27"1%18,10(4)(]\7 (yar)) in each of these cases.

Lemma 9.8. With notation as above we have the following possibilities for QTJC\;/IS,p(4)(N('ya)),

1. If a; = by = —1 then

27’1(548,13(4)(N(usa)) = 2|a—b||ab—1| log max{1, |z4|} log max{1, |z3]|}.

4] <la—b| -1 o3| <[ab—1]~1

2. In all other cases we have QTJC\;/IS,pM) (N(ya)) = 0.

Proof. We let n € Ny(F). Suppose first that a; = b; = —1 then

1 0 0 T3
1 T4 O
v = 2log max{1, |z3|} log max{1, |x4|}.
1
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Now for u = diag(ab,ab™t,a=1b,a=1b~!) and n as above we have

10 0 (1—a"2b"?)a3
T 1 (1—a2?)zy 0
u”'nT un =
1 0
1

and the result is clear in this case. In all other cases one can check that for n € N{ we have

vpr(n) = 0. O

Finally we consider the integrals on (GL(2) x GL(2))" and (GL(2) x GL(2))/ GL(1). We have
v = us = diag(a, b, a1b~1,bjat) and as we saw above the integral on (GL(2) x GL(2))’ is equal to

2lab — a1b~tbia"t||aa b~ — bbya!| times

/ log max{1, |z|} log max{1, |y|}.
|z|<|ab—a1b—1bia—1|~1 ly|<laa1b—1—bbia—1|~1
and the integral on (GL(2) x GL(2))/ GL(1) is equal to

9la — bra~Y||b — ab!| log max{1, |z|} log max{1, [y[}.
|z|<|a—b1a—1] -1 ly|<|b—aib=1| =1

Now it’s clear that the integral on (GL(2) x GL(2))/ GL(1) vanishes unless we have a; = b; =1
and the integral on (GL(2) x GL(2))" vanishes unless a; = by = £1 in which case it is equal to

2lab — 1||a — b| log max{1, |x|}/ log max{1, |y|}.
|

|| <[ab—1|~1 yl<la—b|~1

And the fundamental lemma is now proven!
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Chapter 10

Some p-adic integrals

In this chapter we compute certain p-adic integrals that were required in the proof of the fundamental
lemma. All these integrals are over open subsets of F™. In each case we take the measure on F"
that gives R™ volume one; and we suppress it from our notation. Also throughout log denotes the

logarithm taken to the base gq.
Lemma 10.1. For k > 0 we have

¢ -1

/ log |z| = kq® — .
1<|z|<q* q—1

Proof. We have

k k—1 k
. _ X q° —1
log|z| =Y ig'(1—q") = kd* =) ' =kq" -
/1§1|§‘1k i=0 i=0 q_]-

as wished. O

As a corollary we have the following.
Lemma 10.2. Assume that 0 < a < b then

qb_qa

/ log |z| = bg® — ag® — .
q°<|z|<q® q—1

Lemma 10.3. Let M > 0. Then we have

. - Mq(M+1)(k+1) gMAD (D) _ gkt
/1<|x|<qM|x| ogle] = (1— g >( T - )

if k # —1 and
M(M +1)

[l ol = HE -,
1<[a] <™ 2
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Proof. We have

M
[ laloglel = (1) Y mgom
1<|z|<qM m=1
If K = —1 then it’s clear that this integral is equal to
M(M+1 _
( 5 )(1 —q 1)-
On the other hand if k # —1 then we have
M M (M+1)(k+1) _ m(k+1)
(k+1)m _ q q
S mgterm = 3~ I
m=1 m=1
(M41)(k+1) M m(k+1)
- <Mq B+ _ 1 Z qk+1_1>
q m=1 4
gMAD (k1) _ gkt

_( gMAD (4 1) -

qk+1 -1
as wished.

Lemma 10.4. Let M > 0 then we have

(qk-i-l _ 1)2

/ / 2 log max{1, |z, |s|}
lz|<qM J|s|<qM

equal to

q s 4
2 (M _
q+1 < 1 q

Proof. We write this integral as the sum of

3M_1
-1 ’

/|<| . |z| log max{1, |z|}
S|IS|T|Sq

and

/ g |z| log max{1, |z|, |s|}.
x| <|s|<q

The first integral equals

/|< y |z|? log max{1, |z|}.
z|<q

The second equals

/|< y logmax{1, |s|}
s|<q

)
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which equals

q’l

qg+1

/|< y |s|? log max{1, |s|}.
s|<q

Thus the sum of the two integrals is

-1

q 2
1+ )/ x| logmax{1, ||},
( ) II\SqM‘ {1, [=[}

q quMiq?’M—l
q+1 -1

which equals

by Lemma 10.3.

Lemma 10.5. Let M > 0 then we have

2M =)™ M —¢ 1
log |z 2:]\42qM—( + 2 + .
/<L|<q (tog |=1) q—1 (-1 q¢-1

Proof. We have

(log |z|)? K2R (1 —¢7h)
/1<I|<q Z

M—-1
IR N
k=0
M—-1
= M?*¢M — Z(2k+1)qk
k=0
_ M _ M
:quM_2<(M 1)g g Q) q 1
g—1  (¢—1)? q—1
2M - 1)g™ M —¢ 1
:quM—( +2 +
q—1 (-1 q-1

as wished.

Lemma 10.6. Let M > 0 then we have

(M+1)(k+1) _ 1

k N
2 =01-q¢ ) ————
/1Sw|SqM| "= T

if k # —1 and we have
[ elt=orena-gt,
1<|z|<q™
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Proof. Assume that k # —1 then we have

M
k _ -1 (k+1)m
=(1
o 0 2

- 71)q(M+1)(k:+1) 1
- q qk+1 1

And when k = —1 the result is clear. O

Lemma 10.7. Assume that 0 < k < M. Then

/ - M/ - k/ - klogmax{l, |x2|,|x3|,|x4|,|xi—x2x3|}
T2|Sq r3|Sq Ta|xq

2qM+2k _

equals
M+l Bk Bk

q—1 N

(M+k)qM+2k _

Proof. We first consider the contribution when ¢* < |x5] < ¢™. Then the integral is

[ ] log max{rs, [v2l[2325 " — ws}.
lzz|<qh Jza|<qP Sk <|za|<qM

Now |z3z5 | < ¢ and so we can make a change of variables x3 — x3 + 235 ! to give

/ / / log ma{ |5, |2 |73},
|ws|<gk J]za|<gk Sk <|zo|<gM
which equals

| log ozl + (™ ~ ") [ loglaal.
gk <|z2|<gM 1<|z3|<q*

So we are now left with |2s], |z3], |74] < ¢*. Since the integrand is symmetric in x5 and z3 we may
as well take twice the integral with |z3| < |x2| plus the integral with |x3| = |z2|. The contribution

when |z3| < |z2| is

/ / / log max{1, |z, |z4|, |23 — waz3}.
|za] <k Jms|<|z2| J|z2|<gk

If |xo| > |x4] then |23 — zox3] = |2a||z5 *2] — 23] and |25 '23| < |z4| < |22|. Hence we can make the

change of variables x5 — x5 4+ =5 1:::?1 to get the integral

/ / / log max{L, ||, ||z},
|za|<|w2| J|23|<|z2| /|22 <qF
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which equals

/ (\ﬂxg\)z log |z2| + / / log |z3].
1<|za|<qF |za] <|z2| J1< 3] <|@2| J1< 2| <g*

Now suppose that || < |x4] then |23| > |z273| and hence the integral in this case is

/ / / 2logmax{1,|z4|}.
|za|<|wal /23| <|wa] /22| <q"

Thus the total contribution to the integral in the lemma is the sum of

2[ (ol loglaal + 2 / [ el
1<|@2|<q* |za|<|z2| J1<]es|<|z2| J1< 22| <q*

4/ / / logmax{1, |z4]}.
|z2|<|za| /|2z3|<|z2| J|22|<g*

Now we look at the contribution when |zo| = |z3]. We split it up into three cases

and

(a) |z2| < |74], integrand equals log max{1, |z4|*}
(b) [aa] = |2l
(¢) |w2| > |z4|, integrand equals log max{1, |x5|?}.

In case (a) the contribution is

/ / / log max{1, |z4|?}
[z |<|za|<g* J|as|=|za] /|22 |<q"

while in (c) the contribution is

/ / / log max{1, |z|?}.
lzal<gk Jws|=|ze| J|za|<|z2|<qF

Now we consider case (b). In this case the contribution is

1

/ log |a| + log max{1, |23z5* — x3|}.
1<|z2|=|z3|=|za]<g"

So the integral is given by the sum of the following terms
M m _
1' q2k Z7n=k+1 mq (1 - q 1)
k m _
2. " (g™ = ¢") Xy ma™ (1= g7

3. 92 2221 mq2mf2qm(1 _ qfl)
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4250 (L= g g o g (1 — 7Y
5.4k m(l—q )2 /(1 - q7?)
6. 230 i m@® 21— ¢ )P/ (1 —q )+ 25k m@® T (1 — g7 )?
T Y mg* ™ (1= )?
8 S (=g 2 m(l— g7 = (¢ =g /(1 =g 7).

We can combine terms 5, 6, 7 and 8 to give

k k
> 2mg®m (g - D D S T s [ i}
m=1

m=1

We can then combine this with term 3 to give

k
Z 2mg®™(1—¢ %)+ Y " (L+q ) (=g "+ ™).
m=1

Combining this with term 4 gives

k-1 3k—1
SIS W
m=0 m=0
And combining with term 1 gives
k—1
qugk_z 3m __ 2kzq _|_q2k M_k_qk)7
m=0

which equals

3k M
1 g —1

kakiq 2k 2k M _ kY.

q —q3 1 q T—l +q™" (Mg q)

And we have term 2 equal to

Hence the integral is equal to

(M N k)qM+2k B 2qM+2k _ qM+k: _ qSk B q3k -1
q—1 P -1

as claimed.

Lemma 10.8. Assume that 0 <a <b<c. Then

a-+b+c q

a+2b+1 1

3a+2

q
log max{1, |z|, |r|,|s|} = cqtbte— + +
/Iréq“ /mgqb /s|gqc g-1 ¢-1 ¢

(q+1)(¢®=1)
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Proof. The contribution when ¢® < |s| < ¢¢ is

c__ b
qa+b/ log|s| — qa+b ch _ bqb _ q q ]
a*<|s|<qe q-—1

/ / / log max{1, |z, |r], ]},
lz|<q® J|r|<q® J|s|<q®

We are now left with

which equals

2 / / log max{1, ], |s|} / / log max{L, ], |s|}.
lz|<qe J|r|<|s|<qb lz|<qe J|r|=|s|<qb

This equals

2 / / 15| log max {1, [z |s]} — / / (1 — ¢~ Y)]s|log max{1, |z, |s]},
lz]<q® J|s|<q® |z|<qe J|s|<q®
which equals

(1+q7 / / s/ log max{L, ], s}.
|z|<q® J|s|<q®

Now the contribution when |s| > ¢* is

(1+q ) / sl 1o s] = ¢* (b® — (a+ 1?2 - L
qo<|s|<q” q 1

by Lemma 10.3.

We are now left with

3a
_ g —1
(1+q 1)/ / |s|log max{1, |z, |s|} = ag®® — =
lz|<qe J|s|<q® ¢ —1

by Lemma 10.4.
Thus

/ / / log max {1, |zl, ||, |s|}
jel<q Jiri<q? Jisi<qe

J b
qa—i-b <ch _ bqb _ u) 7
q—1

2 20 -
q* (bq —(a+1)q a—W>a

is equal to the sum of

and
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Adding these terms together gives

a+b+c a+2b+1 1 3a+2

a+b+c q q q

+ + + :
“ q—1 ?-1 ¢G-=1 (¢+1)(¢®—1)

as wished.
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