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Abstract 

This dissertation focuses on fundamental research in two areas of magnetism, the 

technologically advanced field of magnetic resonance imaging (MRI) and the nascent 

discipline of molecular magnetic materials.  Contrast agents for MRI based on the 

gadolinium(III) ion were designed and studied to gain insight into the parameters that 

may be modulated to control contrast agent efficacy.  Two parameters in particular, the 

inner-sphere coordination environment and the electronic relaxation of the 

gadolinium(III) ion, were examined.  Investigations into the electronic relaxation of the 

gadolinium(III) ion led to insights that were applied to the synthesis and evaluation of a 

low dimensional magnetic material based on ruthenium(III) and nickel(II) ions. 

Manipulation of the gadolinium(III) coordination sphere provided the basis for an 

MRI contrast agent designed to be sensitive to the oncologically relevant enzyme β-

glucuronidase. This agent functions by restricting water access to the inner-sphere 

coordination sites of the gadolinium(III) ion.  The design, synthesis, magnetic properties 

and biochemistry of the agent are described in detail.  The agent displays good enzyme 

kinetics and complicated coordination equilibria with water and carbonate ion. 

A second approach to modulating contrast agent efficacy consisted of varying the 

electronic relaxation time of the gadolinium(III) ion.  Towards this goal, ligand 

frameworks were designed and synthesized to influence the relaxation time of the 

gadolinium(III) ion via remote redox activity.  Structural characterization and in vitro 

assays of these ligand-metal constructs indicated more robust ligands were required for 

complex stability.  Initial steps toward a ligand that fulfills these requirements proved 

successful. 



 v

The structural data from the electronic relaxation studies led to the synthesis of a 

one-dimensional coordination polymer comprised of chelated ruthenium(III) and 

nickel(II) ions bridged by cyanide ligands.  The compound was studied by X-ray 

crystallography and its magnetic properties indicated that the ions were ferromagnetically 

coupled. 
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