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Abstract

Modern string theory naturally gives rise to an assortment of dynamical geometrical

objects of various dimensions (collectively referred to as “branes”) embedded into space-

time. The aim of this thesis is to present a series of results (of varying novelty and rigor)

pertinent to dynamics of the low-dimensional geometrical objects of this kind. The processes

considered are the D0-brane recoil and annihilation, “local recoil” of D1-branes (which is a

peculiar effect manifested by one-dimensional topological defects in response to an impact,

and closely related to soliton recoil), and D- and F-string loop mixing. Apart from the

practical relevance within the formalism of string theory, such considerations are worthwhile

in that the quantum dynamics of the geometrical objects involved is complex enough to be

interesting, yet simple enough to be tractable. Furthermore, some of the results derived

here within the string theory formalism may give valuable insights into the dynamics of

low-dimensional field-theoretical topological defects.
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Introduction

String theory is both praised and denounced for its mathematical complexity, yet the fact

remains that it provides surprisingly simple solutions to some physically non-trivial problems.

Thus, the question of graviton scattering, which lies at the very heart of the subject, becomes

eventually reduced to the dynamics of free quantum fields in two dimensions.

Among such remarkable mathematical simplifications is the seminal discovery that certain

topological defects in space-time (D-branes) can be described by introducing Dirichlet bound-

ary conditions for strings [1]. The question of scattering in the presence of such topological

defects is thereby reduced to calculating correlation functions in a free two-dimensional field

theory (“worldsheet CFT”) with the Dirichlet boundary conditions.

As attractive as the description of the D-branes in terms of Dirichlet boundary conditions

may appear, it fails for the low-dimensional cases, due to the presence of infrared divergences.

The simplest example of this phenomenon is the case of D-instantons, which had received

a fairly complete treatment in [2]. It is one of the primary motivations for this thesis to

develop an adequate formalism for the cases of D0- and D1-branes, which, in analogy to the

D-instantons, suffer from an infrared failure of the worldsheet CFT description.

For the case of D0-branes, the presence of the infrared divergences in the worldsheet

CFT is intimately related to the motion of the D0-brane center-of-mass. The strategy we

adopt in handling this situation is then very similar to the case of D-instantons. Instead of

integrating over the positions of the D-instanton, as it has been done in [2], we shall integrate
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over the trajectories of the D0-brane. Such formalism was first introduced in [4], and it will

be described below in further detail.

Once the translational motion of the D0-brane is explicitly introduced, and the cor-

responding difficulties of the conventional CFT description are eliminated, there are two

processes (related by crossing symmetry) that naturally call for consideration: the D0-brane

recoil and the D0-brane annihilation. These subjects dominate the considerations in the first

three chapters of the present thesis.

The remaining chapters are devoted to the studies of the D1-branes. It appears to be

fairly little appreciated that the worldsheet CFT description of the D1-branes breaks down

in a manner very similar to the case of D0-branes. One should therefore expect that the

D1-brane exhibits response phenomena analogous to the D0-brane recoil. This subject will

be discussed in chapter 4, where such a response phenomenon exhibited by the D1-branes

(termed the local recoil) will be analyzed in detail.

Finally, in chapter 5, I’ll present some preliminary considerations pertinent to the ques-

tion of dynamical mixing of loops made of the D1-branes and fundamental strings, and its

potential role in the SL(2, Z) duality of the type IIB string in light of graviton uniqueness.

Mathematically, all the problems considered here deal with low-dimensional interacting

quantum geometrical objects embedded in space-time, as reflected in the title of this thesis.

The first three chapters focus on the interactions of particles and strings, whereas the latter

two focus on the interactions of two different types of strings. These quantum geometries are

certainly quite simple compared, say, to the (conjectural) quantum geometry of the space-

time itself. Nevertheless, working with quantum geometrical structures is certainly quite
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pleasing aesthetically.

All the considerations of this thesis are carried out for the case of bosonic string. It is

certainly true that, by itself, this theory suffers from the well-known tachyon problems, yet

the degrees of freedom relevant to the considerations of this thesis are the ones corresponding

to the space-time motion of the embedded geometrical objects whose dynamics is being

investigated, and thus these degrees of freedom should be present in a universal form in any

realistic string theory.

I have refrained from giving a detailed account of the basic dynamics of D-branes. This

material is widely known by now and presented in a number of textbooks. Another due orga-

nizational remark concerns the order of chapters. The results and considerations presented

in this thesis are interrelated in a number of ways, and it would be in any case impossible to

do justice to these interrelations while maintaining the linear exposition structure dictated

by the framework of a thesis. I have therefore chosen to present the various issues in order

in which they were investigated. It is for the lack of opportunity to do full justice to the

logic of the subject that one has to resort to the logic of autobiography.
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Chapter 1

Worldline approach to D0-brane

annihilation

The physics of topological defects in relativistic field systems is a rather accomplished area of

study [3], yet fairly little remains known about how such localized objects are pair-produced

in collisions of elementary particles, and how they annihilate. It is of very little use that

the scattering of the fundamental field quanta off a topological defect (a process related to

annihilation by crossing symmetry) has been analyzed in quite some detail. The masses

of the solitons are typically inversely proportional to the coupling constant, forcing the

annihilation products into the high-energy regions of the phase space. Transition between

the scattering and annihilation kinematic regions would then require an analytic continuation

non-perturbatively far in the phase space, and the perturbative expansion of the amplitude

in the scattering region will be essentially unrelated to the values of the amplitude in the

annihilation region.
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Even though there must exist a classical solution of the field equations describing the

annihilation process, it does not appear to be accessible to any degree of analytic control.

Indeed, there is apparently no straightforward way to prove that such a solution encapsulates

even the most fundamental features to be expected from the annihilation process, e.g. the

unitarity restrictions on the exclusive annihilation/pair-production amplitudes that we’ll

discuss below.

One may expect that the situation becomes even more involved for the solitonic objects

of string theory, the D-branes, since, in that case, we would have to deal with all the com-

plexities of quantum gravity in addition to the problems that plague the treatment of the

field-theoretical process. It has been known since the seminal work by Polchinski [1] that

the solitons of string theory admit a particularly simple description in terms of the Dirichlet

boundary conditions for open strings. Indeed, the analysis of elementary quanta scattering

in the presence of D-branes is substantially simpler than the corresponding problem in the

conventional relativistic field theory, as it merely amounts to computing the expectation

values of certain operators in a free two-dimensional field system. One may therefore hope

that worldsheet techniques would provide a valuable tool for understanding the D-brane

annihilation, a tool unavailable to the corresponding field theory considerations.

Here, we attempt to construct a computational scheme for the D0-brane annihilation

amplitude inspired by the simplicity of the CFT description of the extended D-branes. Since

the center-of-mass motion of the D0-branes is of a crucial importance for the processes we

intend to consider, it is only natural that we introduce an explicit functional integration

over the D0-brane worldlines, to which the string worldsheets are attached via the Dirichlet

7



Figure 1.1: A possible D0-brane annihilation diagram. The two incoming D0-branes are

converted into the two outgoing closed strings.

boundary conditions. A similar method has been employed by Hirano and Kazama in their

treatment of D0-brane recoil [4]. It has been shown that, for low-energy gravitational quanta,

the scattering amplitudes obtained via this method can be matched with the standard no-

recoil computation and respect the consistency requirements, such as BRST-invariance. The

goal of this chapter is to address the question of how instructive this kind of approach can

be for essentially high-energy processes, in particular, the D0-brane annihilation. Similarly

to Hirano and Kazama’s paper, we restrict ourselves to bosonic D0-branes, keeping in mind

that the generalization to the potentially physically interesting case of superstring theory is

likely to be conceptually straightforward, if only technically more challenging.

It is worth a notice that the attitude taken here is in many ways complementary to the
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attempts to address the same physical problem within the tachyon condensation paradigm

of string field theory [5]. Indeed, the tachyon condensation approach typically deals with the

initial state of coincident D-branes, whereas our aim is to analyze the genuine scattering1.

On the other hand, should there be a need to generalize the approach advocated here to

the case of higher dimensional D-branes, those will have to be wrapped around cycles in the

compactification manifold, a requirement that does not appear within the string field theory

considerations.

Speaking of the possible phenomenological applications, one should certainly mention

the kinetics of primordial topological defects. Even though the inflationary scenario suggests

that the density of primordial topological defects is dramatically diluted during the period

of exponential expansion [7], they could play an important role at the earlier stages of the

life of the Universe2. The problem we’re considering is also in a (somewhat indirect) relation

to the microscopic black hole pair-production, a subject of much theoretical controversy in

the recent past [9].

Determining the dependence of the annihilation amplitude on the coupling constant is

the central theme of this present investigation. It is a requirement imposed by unitarity

[10, 11] that the exclusive annihilation amplitudes for the topological defects must be non-

perturbatively suppressed, i.e., the amplitude should vanish identically when expanded in

powers of the coupling constant3. The general intuition about how such suppression could

1A scattering-like process in a tachyon condensation setting has been recently considered in [6].
2In the cosmological context, the medium in which the topological defects move may exert substantial

influence upon the annihilation process [8].
3Note that the total annihilation cross-section does not need to be non-perturbatively suppressed, and it
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arise dynamically appeals to the well-known property that the inverse mass of the topolog-

ical defects is typically much smaller (by powers of the coupling constant) than their size.

Therefore, the typical wavelength of the annihilation products will be much smaller than the

size of the objects they are produced by, resulting in exponential damping.

The problem with this kind of explanations is that the path integral includes arbitrar-

ily singular configurations, and those could easily upset the exponential damping, which is

supposed to underlie the non-perturbative suppression of the annihilation amplitude. (The

precise meaning of this statement will become more apparent once we proceed with con-

structing the actual formalism.) The saddle point estimate of the amplitude we obtain in

the following sections can be seen as a proof that the measure of those singular configura-

tions in the path integral is too small to alter the coupling constant dependence necessary

to maintain unitarity.

It is a fairly general principle that the processes involving topological defects upset the de-

creasing significance of the final states with large multiplicity familiar from the perturbative

Feynman calculus. Producing a large number of quanta may often turn out to be advanta-

geous compared to the low-multiplicity final states. A possibly more familiar manifestation

of this kind of behavior is the emission of a large number of gluons in the instanton-induced

processes of gauge theories [12]. In our context, the bias for producing O(1/gst) soft quanta

is even more dramatic, as we’ll be able to see after completing the saddle point evaluation

is expected to be comparable to the square of the size of the topological defect for the case of gauge theory.

This is one of the indications that the final state multiplicity distribution for topological defect annihilation

is typically rather non-trivial.
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of the amplitude.

1.1 Quantization of D0-brane worldlines

When dealing with extended D-branes, one does not have to worry much about the center-

of-mass motion: the infinite D-brane mass makes recoil impossible, at least when a localized

object scatters off the extended D-brane. The situation is different, however, for D0-branes or

compactified D-branes: for the low-energy scattering experiments, the recoil is considerably

suppressed by the mass of D0-brane (inversely proportional to the coupling constant), but

the center-of-mass motion becomes absolutely crucial in any essentially relativistic process,

such as annihilation.

In the context of field theory, this problem has been addressed in [13]. One introduces

the translational (center-of-mass) modes for the soliton explicitly, and performs quantization

with the center-of-mass coordinate treated as a canonical variable. It has been a subject of

some controversy how the center-of-mass degrees of freedom should be introduced for D0-

branes [14, 15]. Hirano and Kazama’s recipe [4] constitutes a specific proposal to this end.

(The various approaches will be further contrasted and compared in chapter 3.)

To account for the motion of the D0-brane as a whole, one introduces its coordinates

explicitly and integrates over all the possible worldlines fµ(t), with t being the proper time.

The boundaries of the string worldsheet are restricted to the D0-brane worldline, and the

emission of closed strings is described by insertions of the closed string vertex operators in

the interior of the worldsheet. Our main object of interest is the amplitude for two D0-branes
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starting off at the positions xµ
1 and xµ

2 to annihilate into m closed strings carrying momenta

k1 to km:

G(x1, x2| k1, · · · , km) =
∑ (gst)

χ

Vχ

∫
[Df ]

diff
DtDX δ (Xµ(θ)− fµ(t(θ)))

× exp [−SD(f)− Sst(X)]
m∏

a=1

{gstVa(ka)}
(1.1)

where SD is the action for the D0-brane to be discussed below, Sst is the standard conformal

gauge action

Sst =
1

4πα′

∫
d2σ∇Xµ∇Xµ

the integration with respect to fµ extends over all the inequivalent (unrelated by diffeo-

morphisms) curves starting at x1 and ending at x2, the boundary of the worldsheet is

parametrized by θ, and t(θ) describes how this boundary is mapped onto the D0-brane

worldline. The sum is over all the topologies of the worldsheets (not necessarily connected,

but without any disconnected vacuum parts) and χ is the Euler number. Vχ is the conformal

Killing volume (the negative regularized value of [16] should be used for the disk). The fully

integrated form of the vertex operators is implied. We work in the Euclidean space-time,

keeping in mind a subsequent analytic continuation to the Minkowski signature. The in-

tegration over moduli of the worldsheet is suppressed for the rest of this paper, as it does

not affect the qualitative results. The annihilation amplitude can be deduced from (1.1) by

means of the standard reduction formula:

〈k1, · · · , km|p1, p2〉

= lim
p2
1,p2

2→−M2

(
p2

1 + M2
) (

p2
2 + M2

) ∫
dx1dx2e

ip1x1eip2x2G(x1, x2| k1, · · · , km)

(1.2)

where M is the D0-brane mass.
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Several general questions have to be addressed regarding the expression (1.1). Firstly,

the issue with the Weyl invariance appears to be rather subtle. On physical grounds, one

would believe that making the D-branes fully dynamical reinforces the consistency of the

amplitudes, much in the same way as respecting the supergravity equations of motion makes

the non-linear σ-models consistent. We shall examine in chapter 3 how this works explicitly to

the lowest order of the recoil perturbation theory. The case of annihilation/pair-production is

considerably less computationally straightforward, and assessing the issues of Weyl invariance

there is likely to require some new ideas.

Of course, whether or not the integration over the D0-brane worldlines reinforces the

consistency of the string amplitudes depends crucially on the choice of the D0-brane worldline

action. It appears to be a fairly general principle [17] that the value of the effective action for

a background which couples to strings is given by (minus) the sum of all connected vacuum

string graphs evaluated in this background. Thus, very much in the spirit of [2]:

SD[f ] =
∑

connected

(gst)
χ

−Vχ

∫
DtDX δ (Xµ(θ)− fµ(t(θ))) exp [−Sst(X)] (1.3)

Again, the negative regularized value of the conformal Killing volume should be used for the

disk [16]. The exponentiation of the action in the path integral can be seen as a result of

summing up the disconnected graphs containing vacuum parts [2]. It can be shown4 that,

for nearly straight worldlines, the above action is reduced to the näıve point-particle result

M
∫

dt. For curved worldlines, (1.3) would take into account the back-reaction from the

4Essentially, M is a constant produced by the integration over the non-zero modes of t(θ), and
∫

dt comes

from the integration over the zero mode of t(θ). Similar considerations for the action functionals constructed

from string amplitudes will be quite important in chapter 5.
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space-time fields excited by the accelerating D0-brane. Some properties of this action will

become more apparent as we proceed with the computation of the amplitude.

Given the close relation between the integrand in (1.1) and the worldline action (1.3), it

is convenient to rewrite (1.1) in the following form:

G(x1, x2| k1, · · · , km) =
∑
all

C (gst)
χ

Vχ

∫
[Df ]

diff
DtDX δ (Xµ(θ)− fµ(t(θ)))

× exp [−Sst(X)]
m∏

a=1

{gstVa(ka)}

(1.4)

Here, the sum extends over all the string diagrams including arbitrary disconnected vacuum

parts. There is no explicit action for the D0-brane worldline, but it arises after resumming

the contributions from all the disconnected vacuum parts, which exponentiates to restore

the SD of (1.3). C is a combinatorial factor that can be deduced from (1.3).

Using the transformation properties of the vertex operators under the target space trans-

lations, it is easy to see that

G(x1, x2| ki) = exp
[
i

2
(xµ

1 + xµ
2)
∑

ki

]
G
(

x1 − x2

2
,−x1 − x2

2

∣∣∣∣ ki

)

The first term here merely provides for the momentum conservation δ-function in the Fourier

transform, and (1.2) can be rewritten as

〈k1, · · · , km|p1, p2〉 = (2π)26δ(p1 + p2 +
∑

ki)

× lim
p2
1,p2

2→−M2

(
p2

1 + M2
) (

p2
2 + M2

) ∫
dx exp

[
i

2
(p1 − p2)x

]
G
(

x

2
,−x

2

∣∣∣∣ ki

)
(1.5)

We shall work with this representation in our subsequent calculation of the amplitude.
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1.2 The Gaussian integration

By a direct inspection of (1.4), it is easy to see that the integration over X is Gaussian

and can be performed exactly. We will thus be able to recast the formalism into a (0+1)-

dimensional form. The Gaussian integration we have to perform is closely related to the

derivations in [17] and can be implemented by applying the formula

∫
DX δ (X(θ)− ξ(θ)) exp

[∫
d2σ

(
− 1

4πα′
∇X∇X + iJX

)]

= exp
[
−πα′

∫
J(σ)D(σ, σ′)J(σ′)d2σd2σ′ − i

∫
ξ(θ)∂nD(θ, σ′)J(σ′)dθd2σ′

− 1

4πα′

∫
ξ(θ)∂n∂n′D(θ, θ′)ξ(θ′)dθdθ′

]
(1.6)

(The derivation of this basic yet important formula together with a few underlying subtleties

is described in Appendices A and B.) Here, D is the Dirichlet Green function of the Laplace

operator ∆D(σ, σ′) = −δ(σ − σ′), and ∂n denotes the normal derivative evaluated at the

boundary (which is parametrized by θ). It is convenient to consider

G
(

x

2
,−x

2

∣∣∣∣ J) =
∑
all

C (gst)
χ

Vχ

∫
[Df ]

diff
DtDX δ (Xµ(θ)− fµ(t(θ)))

× exp
[
−Sst(X) + i

∫
d2σJµX

µ
] (1.7)

instead of (1.4). Indeed, differentiating with respect to the source J and setting it to

∑
kiδ(σ−σi) allows us to reproduce the amplitude for an arbitrary vertex operator insertion.
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Performing the integration in (1.7) by means of (1.6) yields:

G
(

x

2
,−x

2

∣∣∣∣ J) =
∑
all

C (gst)
χ

Vχ

exp
[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]
∫

[Df ]
diff

Dt exp
[
−i
∫

fµ(t(θ))∂nD(θ, σ′)Jµ(σ′)dθd2σ′
]

exp
[
− 1

4πα′

∫
fµ(t(θ))∂n∂n′D(θ, θ′)fµ(t(θ′))dθdθ′

]
(1.8)

It should be noted that D(σ, σ′), χ, C and V depend on the topology of the diagram corre-

sponding to each particular term in the sum. For diagrams with disconnected parts, D(σ, σ′)

is block diagonal in the sense that it vanishes whenever the two arguments belong to different

disconnected components.

The path integral in (1.8) may appear rather cumbersome, as one of the functions to be

integrated over appears in the argument of the other one. Nevertheless, the integration over

fµ(t) can be performed exactly by means of a technique very similar to the treatment of the

free point-like particle in [18].

We first rewrite the measure on reparametrization equivalence classes of fµ(t) as

[Df ]diff = Df δ
[
ḟ 2 − 1

]
= Df

∫
Dz exp

− T∫
0

z(ḟ 2 − 1)dt


where δ[ḟ 2−1] is a product of δ-functions at every point (reinforcing t to be the proper time),

and, for each t, the integration over z(t) is along a contour going from c − i∞ to c + i∞

in the complex z plane, with c being an arbitrary (positive) constant. This contour can

of course be deformed, an opportunity implicit in our subsequent application of the saddle

point method.
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If we now introduce

N (t, t′) =
∫

dθdθ′∂n∂n′D(θ, θ′) δ (t− t(θ)) δ (t′ − t(θ′)) , d(t, σ) =
∫

dθ∂nD(θ, σ) δ (t− t(θ))

the f -integration in (1.8) can be recast into a manifestly Gaussian form:

G
(

x

2
,−x

2

∣∣∣∣ J) =
∑
all

C (gst)
χ

Vχ

exp
[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]
∫
DtDzDf exp

[
−
∫

z(ḟ 2 − 1)dt
]
exp

[
−i
∫

fµ(t)d(t, σ)Jµ(σ)dtd2σ′
]

exp
[
− 1

4πα′

∫
fµ(t)N (t, t′)fµ(t′)dtdt′

]
It is convenient to pass on to the integration over Dḟ by means of the relations

Df = dTDḟ δ

 T∫
0

ḟµdt + xµ

 fµ(t) =
x

2
+

t∫
0

ḟµdt

We should also keep in mind that

T∫
0

dtN (t, t′) = 0

T∫
0

dt d(t, σ) = −1

as ∫
dθ ∂n∂n′D(θ, θ′) = 0

∫
dθ ∂nD(θ, σ′) = −1

If we also perform the Fourier transform of (1.5), we arrive at the following representation

G(p1, p2|J) =
∫

dx exp
[
i

2
(p1 − p2)x

]
G
(

x

2
,−x

2

∣∣∣∣ J)

=
∑
all

C (gst)
χ

Vχ

exp
[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]
∫

dTDtDz e
∫

z dt
∫
Dḟ exp

i ∫ ḟµ(t)

pµ
1 −

t∫
0

d(t̃, σ)Jµ(σ)dt̃d2σ

 dt



exp
[
−
∫

ḟµ(t)B(t, t′)ḟµ(t′)dtdt′
]
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where we’ve introduced

B(t, t′) = z(t) δ(t− t′) +
1

4πα′

t∫
0

dt̃

t′∫
0

dt̃′N (t̃, t̃′)

At this point, the Gaussian integration becomes completely straightforward and yields

G(p1, p2|J) =
∑
all

C (gst)
χ

Vχ

exp
[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]
∫

dTDt(θ)Dz(t) det[B]−1/2 exp
[∫

z dt
]

exp

−1

4

∫ (
pµ

1 −
t∫

0

d(t̃, σ)Jµ(σ)dt̃d2σ
)
B−1(t, t′)

(
p1µ −

t′∫
0

d(t̃′, σ′)Jµ(σ′)dt̃′d2σ′
)
dtdt′


(1.9)

From this representation, it is apparent that the endpoints of the z integration contour can

be moved towards −∞. The contour itself cannot shrink to −∞, however, on account of the

singularities of (detB)−1/2. Should there be a discontinuity in t(θ), these singularities move

towards −∞ allowing the contour to be deformed arbitrarily far to the left in the complex

z plane. Then the integrand will vanish due to the last factor in the second line of (1.9).

This is as it should be, since discontinuous worldsheets do not give any contribution to the

original path integral (1.1).

The fact that we have been able to perform the integration over the D0-brane worldlines

exactly is rather remarkable, since, for any given worldline, the action SD featured in (1.1)

cannot be computed. This action however is itself constructed from string amplitudes and

can be completely eliminated from the path integral at the cost of including the disconnected

string worldsheets, as it has been done in (1.4). This peculiar simplification plays an impor-

tant role in making possible the saddle point evaluation of the annihilation/pair-production
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amplitudes.

1.3 The saddle point method

The presence of the p1 and J in the exponential of the last line of (1.9) alludes to the relevance

of the saddle point techniques, as those quantities become non-perturbatively large in the

annihilation kinematic region. This can be made more apparent by introducing ℘i = pi/M

and J = J/M (M being the D0-brane mass) and rewriting (1.9) as

G(p1, p2|J) =
∑
all

C (gst)
χ

Vχ

exp
[
−πα′M2

∫
J µ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]
∫

dTDt(θ)Dz(t) det[B]−1/2 exp
[∫

z dt
]

exp

−M2

4

∫ (
℘µ

1 −
t∫

0

d(t̃, σ)J µ(σ)dt̃d2σ
)
B−1(t, t′)

(
℘1µ −

t′∫
0

d(t̃′, σ′)Jµ(σ′)dt̃′d2σ′
)
dtdt′


The latter representation is still somewhat inconvenient, since the position of the saddle

point depends on the saddle point parameter M . This dependence is very simple, however,

and can be completely eliminated by rescaling5 z(t) → Mz(t/4πMα′), t(θ) → 4πMα′t(θ),

5It should be kept in mind that, from now on, the geometrical parameters of the worldsheet in physical

space are related to those represented by t(θ) through a factor of O(1/gst).
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T → 4πMα′T , which brings the above integral to the form

G(p1, p2|J) =
∑
all

C (gst)
χ

Vχ

exp
[
−πα′M2

∫
J µ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]
∫

dTDt(θ)Dz(t) det[B]−1/2 exp
[
4πα′M2

∫
z dt

]

exp

−πα′M2
∫ (

℘µ
1 −

t∫
0

d · J µdt̃d2σ
)
A−1(t, t′)

(
℘1µ −

t′∫
0

d · Jµdt̃′d2σ′
)
dtdt′


(1.10)

where

A(t, t′) = z(t) δ(t− t′) +

t∫
0

dt̃

t′∫
0

dt̃′N (t̃, t̃′) (1.11)

In view of the subsequent application of the saddle point method, it is necessary to specify

how the integrand is analytically continued to the complex t(θ). It may seem worrisome

that the definitions of N (t, t′) and d(t, σ) involve δ-functions, but these δ-functions appear

in integral convolution, and the result can be made manifestly analytic by expressing them

through their Fourier series on the interval [0, T ]. Such a representation defines N (t, t′) and

d(t, σ) as periodic with respect to shifting t or t′ by multiples of T . It is worth a notice

that analogous analytic continuation is not possible at the level of (1.8) due to the lack of

smoothness6 in fµ(t). In this respect, the summation over all the worldlines performed in

the previous section is a crucial prerequisite for the saddle point techniques to be applicable.

With these specifications, the saddle point equations can be readily derived by requiring

the sum of the two exponents in (1.10) to be stationary with respect to variations of t(θ)

6It is a familiar fact (related to the central limit theorem) that the measure on random paths is dominated

by curves of fractal dimension 2: see, for example, [19].
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and z(t). In this manner, one obtains

Pµ(t(θ))

∫ dθ′ ∂n∂n′D(θ, θ′)

t(θ′)∫
0

Pµ(t′)dt′ +
∫

∂nD(θ, σ)Jµ(σ)d2σ

 = 0 (1.12)

PµPµ = −4 (1.13)

where we’ve introduced

Pµ(t) =

T∫
0

dt′A−1(t, t′)

℘µ
1 −

t′∫
0

d(t̃′, σ′)J µ(σ′)dt̃′d2σ′


Multiplying (1.12) by δ(t− t(θ)) and integrating with respect to θ, we get

ż P2 +
1

2
z
(
P2
).

= 0

which, coupled with (1.13), implies z = const. The relevant value of the constant can be

determined from the following argument. Because of the subsequent application of the reduc-

tion formula, the value of the amplitude is determined by the divergent piece of G(p1, p2|J)

as the momenta go on-shell. This divergence can only come from large values of T in the

integral (which, of course, corresponds to the long distance propagation of the on-shell par-

ticles). For large values of T , there will always be parts of the worldline arbitrarily remote

from the location of the worldsheet. There, (1.13) will fix z = ±i
√

℘2/2 (with ℘2 = ℘2
1 = ℘2

2).

Since the saddle point value of z does not depend on t, we conclude that, for the purposes

of evaluating the amplitude, z can be set to ±i
√

℘2/2 everywhere.

Thus, we have two complex conjugate saddle points for z. After substituting the corre-

sponding values to (1.12), we should obtain two complex conjugate solutions for t(θ). The

equation (1.12) is clearly beyond the reach of analytic methods, but the saddle point con-

figuration of the disconnected vacuum components of the worldsheet can be easily identified
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as t(θ) = const. Indeed, for θ belonging to a disconnected vacuum component, the second

term in the brackets of (1.12) vanishes. Enforcing t(θ) = const makes the first term in the

brackets vanish as well, the equation being thereby satisfied.

Moreover, the values of the second functional derivative of the saddle point functional

with respect to t(θ) can be calculated for the parts of the worldsheet which do not emit any

final state particles. Indeed, if θ and θ′ both belong to a disconnected vacuum component

with t(θ) = t0,

δ2

δt(θ)δt(θ′)

∫ (
℘µ

1 +

t∫
0

d · J µdt̃d2σ
)
A−1(t, t′)

(
℘1µ +

t′∫
0

d · Jµdt̃′d2σ′
)

= −2P2(t0)∂n∂n′D(θ, θ′) = 8 ∂n∂n′D(θ, θ′)

Furthermore, if θ belongs to a disconnected vacuum component and θ′ belongs to any other

component of the worldsheet, the corresponding second derivative vanishes.

The above specifications in fact allow to perform a complete resummation (to the leading

order of the saddle point approximation) of the contributions to (1.10) coming from the

disconnected vacuum components. Indeed, for each disconnected component in a given

diagram, we’ll obtain a factor

∫
Dt(θ) exp

[
−8πα′M2

∫
t(θ)∂n∂n′D(θ, θ′)t(θ′)dθdθ′

]
(1.14)

The value of this integral is a constant7 (depending on the topology of each particular

disconnected vacuum component) times a factor of T , which comes from the integration

7One may argue that, for higher genus worldsheets, the modular integrations (that we do not write

explicitly) will exhibit a tachyonic divergence. The same problem arises if one tries to compute the higher

genus corrections to the D0-brane mass. Both problems will disappear in the superstring case, which we
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over the constant mode of t(θ). If we now recall that the combinatorial coefficients C in

(1.10) originated from expanding the exponential in (1.1), it is easy to see that, to the

leading order of the saddle point approximation, the effect of all the disconnected vacuum

components amounts to a factor of exp[µT ], where µ is a constant, which can be evaluated

by computing the Gaussian integral (1.14). In fact, it is easier to notice that G(p1, p2|J = 0)

is merely the D0-brane propagator, and, identifying its pole with the D0-brane mass M ,

conclude that µ = −4πα′M2.

For the parts of the worldsheet which do emit final state strings, it is not possible to

solve the equation (1.12) explicitly. However, valuable information can be extracted from the

mere assumption that a saddle point exists (this can be checked in the low-energy scattering

case). It is an important circumstance that, for the worldsheets located not too close to

the endpoints of the worldline, in the limit T → ∞, the value of the saddle point function

does not change under the shifts of t(θ) by a constant (we assume ℘2
1 = ℘2

2 = ℘2, as it is

on-shell). It is not hard to take into account this quasi-zero mode though, as the subsequent

application of the reduction formula discards everything but the term growing most rapidly

as T goes to ∞. Since extending the interval to which t and t′ belong to [−∞,∞] does not

introduce any singularities to (1.12), we should expect that, as T goes to ∞, the solutions

to (1.12) located not too close to the endpoints of the worldline approach a fixed shape. The

saddle point evaluation of the Dt and Dz integrals in (1.10) can be therefore written (up to

see as a conceptual rationale behind the formal identification of the value of the integral (1.14) with the

D0-brane mass, which we’re about to make.
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the pre-exponential factors) as

e−4iπα′M2T
√

℘2
(
Te−α′M2F [J ] + o(T )

)
(1.15)

where F does not depend on T and can be determined from the solution to the equation

(1.12) with t and t′ running from −∞ to ∞. The above expression is written for the saddle

point z = i
√

℘2/2, the contribution from z = −i
√

℘2/2 is the complex conjugate of this. We

shall omit the o(T ) term in the following, as it vanishes upon the application of the reduction

formula.

Assembling everything together, up to the pre-exponential factors, the saddle point esti-

mate of (1.10) is

[
G(p1, p2|J)

]
saddle

≈
∑ (gst)

χ

Vχ

exp
[
−πα′M2

∫
J µ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

× e−α′M2F [J ]

∞∫
0

T exp
[
−4πα′M2

(
1 + i

√
℘2

)
T
]
dT + c.c.

where the summation is once again performed only over those worldsheets which do not

contain any disconnected vacuum parts. Performing the T integration and applying the

reduction formula, we finally obtain

〈p1, p2|J〉saddle ≈
∑ (gst)

χ

Vχ

exp
[
−πα′

∫
Jµ(σ)D(σ, σ′)Jµ(σ′)d2σd2σ′

]

×
(
exp

{
−α′M2F [J/M ]

}
+ c.c.

) (1.16)

To compute the actual amplitude, one has to combine this expression and its functional

derivatives with respect to J so as to imitate the vertex operator insertions, as well as to

integrate over the worldsheet moduli and the positions of the vertex operators (these will be
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saddle point integrations themselves, in analogy to [20]). All these tasks are likely to require

numerical computations, as is the evaluation of the F -functional.

An essential piece of information contained in the expression (1.16) is, however, that it

identifies the dependence of the annihilation amplitude on the coupling constant. We can

see that, for a final state with the number of quanta fixed as gst → 0 and momenta growing

proportionally to the mass of the D0-brane, the amplitude diminishes as exp(−O(1/g2
st)).

Indeed, the anticipated non-perturbative suppression has become manifest8. It is worth

noting that the character of this coupling dependence is not at all obvious at the intermediate

stages of our computation. Only upon the application of the saddle point method can we

see that the qualitative arguments outlined in the introduction do, in fact, result in a non-

perturbative suppression of the amplitude.

It may appear rather surprising that the estimate of the amplitude obtained above is

exactly the same as if we had used the simplistic free particle action M
∫

dt in place of the

expression (1.3), which takes into account the emission and re-absorption of virtual string

states by the accelerating D0-branes. The qualitative explanation here is that, being objects

of effective size
√

α′, the D0-branes are not likely to emit virtual string states of energy much

higher than 1/
√

α′. These states will produce worldline curvatures of order gst and will not

therefore affect the leading order of the saddle point approximation. One may have suspected

8There doesn’t appear to be any straightforward way to prove that F is greater than zero in the entire

annihilation kinematic region (after the analytic continuation to Minkowski signature). Nevertheless, (1.16)

suggests that the amplitude is either non-perturbatively suppressed or non-perturbatively enhanced, and the

inherent absurdity of the latter option is quite apparent.
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that the worldline curvature could become large in the region where the final state strings are

emitted. Yet, the saddle point equation (1.12) implies that the amplitude is dominated by

worldsheets of physical size ∼ 1/gst (which corresponds to t(θ) being of order 1). Therefore,

the emission occurs from a segment of the worldline whose size is of order 1/gst, and the

relevant curvatures are of order gst again.

1.4 Emission of a large number of strings

One may be somewhat worried by the fact that the annihilation amplitudes computed via the

saddle point method are suppressed much stronger in the limit gst → 0 than exp(−O(1/gst)),

which is generally expected to be the order of the non-perturbative corrections in string

theory [23]. The resolution of this apparent paradox is that the actual annihilation is most

likely to proceed into a large (∼ 1/gst) number of quanta, whereas the number of strings

in the final state has been kept fixed as gst → 0 in our preceding considerations. Indeed,

as we could see in the above, the annihilation process was dominated by worldsheets of size

∼ 1/gst, and it would hardly be natural for such extended configurations to decay into a

small number of strings, a circumstance responsible for the anomalously strong suppression

of the amplitude (1.16).

We shall now obtain some estimates of the amplitude for the D0-branes to annihilate into

a large number of quanta, and show that those contributions are in fact likely to saturate

the bound of [23]. The analysis of the previous sections still applies, but the position of the

saddle point (and hence the functional F) now depends on gst, and therefore extra care needs
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to be taken in making statements about the coupling constant dependence of the amplitude.

It can be seen by inspecting the expression (1.16) that, unless all but an infinitesimal

fraction of the final state strings are emitted from disconnected worldsheet components

of disk topology with exactly one vertex operator on each of them, the gχ
st factor itself

will provide suppression of order exp(O(ln(gst)/gst)). The extent to which the dynamics

(accounted for by the saddle point estimates) enhances this suppression depends on the

topology of each particular diagram. When most of the final state strings are emitted from

disks with a single vertex operator, the non-perturbative suppression can only arise from the

value of the saddle point exponential. We shall now estimate the contribution from those

diagrams.

When the worldsheet consists of many disconnected components each of which carries

away only a small fraction of the momentum, the independent displacements of those dis-

connected components cause only a small change of the saddle point function. We therefore

encounter quasi-zero modes very similar to the ones described above (1.15). One way to

account for these quasi-zero modes is to introduce the integration over them explicitly into

the path integral by inserting δ(
∫
i t(θ)dθ − t̄i

∫
i dθ) for each of the disconnected components

of the worldsheet (the θ integral runs over the ith component of the worldsheet, t̄i thereby

being the average position of its boundary). The variational problem of (1.12–1.13) has

then to be solved subject to the constraints specified by the δ-functions. (This would intro-

duce the corresponding Lagrange multipliers into the right-hand side of (1.12), but they are

inessential to our subsequent considerations.)

In order to obtain constraints on the value of the amplitude, let us expand the P(t) in
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(1.12) in Taylor series around t̄i (for each i). It is easy to see that unless more than O(1/g1−ε
st )

(with ε arbitrarily small and positive) of the t̄i’s come into an interval of size O(gst), the

solution to (1.12) for θ belonging to the ith disconnected component is given by9

t(θ) = t̄i +
1

4

∫
[∂n∂n′D(θ, θ′)]

−1
∂n′D(θ′, σ′)Pµ(t̄i)Jµ(σ′)d2σ′dθ′ + O(g1+ε

st )

(The second term here is closely related to the saddle point which dominates the low-energy

closed string scattering off a D0-brane to the lowest order in gst.) For the value of the saddle

point function (the exponential in the last line of (1.10)), we obtain

−πα′M2

 T∫
0

dt z(t)P2(t) +
∫

dθdθ′∂n∂n′D(θ, θ′)

t(θ)∫
0

P(t)dt

t(θ′)∫
0

P(t′)dt′


= −2πi α′M2

√
℘2 T

+
πα′

4

∑
i

∫
dθdθ′d2σd2σ′Pµ(t̄i)Jµ(σ)∂nD(θ, σ) [∂n∂n′D(θ, θ′)]

−1
∂n′D(θ′, σ′)Pν(t̄i)Jν(σ

′)

+O(1/g1−ε
st )

The second line here merely provides for the correct pole structure (and disappears after the

application of the reduction formula). Each term in the sum from the third line is of order

O(g0
st) and negative (P is imaginary to the lowest order in gst). However, since there are

O(1/gst) terms, we should expect a non-perturbative suppression of order exp(−O(1/gst)).

We still have to deal with the excluded region of integration over the t̄i’s, namely, the

configurations with more than O(1/g1−ε
st ) of the t̄i’s in an interval of size O(gst). The volume

9We are essentially demanding the variation of P to be small over the extent of a single disconnected com-

ponent of the worldsheet, and then using the expression for the saddle point value of t(θ) in the background

of a straight worldline.
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of this region is proportional to exp(O(ln(gst)/g
1−ε
st )), however, and this is the amount of non-

perturbative suppression provided regardless of the value of the saddle point exponential.

Barring any unfathomable cancellations, the sum of the contributions from the two regions

would be of order exp(−O(1/gst)), in accordance with the general estimates of the non-

perturbative effects in string theory.

1.5 Bosonic D0-brane decay

It is a notable feature of the worldline formalism that most of the results obtained in the

previous sections are immediately generalized to the case of bosonic D0-brane decay that

has received a large amount of attention within the tachyon condensation considerations.

Indeed, the natural proposal for the D0-brane decay amplitude is

〈k1, · · · , km|p〉 = lim
p2→−M2

∫
dx dx′ eipx G(x, x′| k1, · · · , km) (1.17)

where G(x, x′) is as it has been defined in (1.1). The meaning of this formula is that the

endpoint of the D0-brane worldline is unconstrained in the path integral, and the reduction

formula is applied only to the starting point. The path integral thus describes a “disappear-

ing” D0-brane.

Given the formal similarities between the expressions (1.2) and (1.17), it is not surprising

that the derivations presented above for the annihilation/pair-production case carry over to

the decay process with a formal substitution p1 = p, p2 = 0. One important difference is

that, for p2
1 6= p2

2 the quasi-zero mode described in the paragraph above (1.15) will be absent.

The saddle point configuration of the worldsheet will be localized near the endpoint of the
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D0-brane worldline, as one would expect on general grounds. For that reason, the factor

of T featured in (1.15) will not make an appearance for the case of D0-brane decay. This

is reassuring, since it precisely replaces the double pole necessary for the application of the

reduction formula (1.2) by a single pole necessary for the application of the reduction formula

(1.17). The conclusions regarding the coupling constant dependence of the amplitude to the

leading order of the saddle point approximation will remain intact, i.e., the exclusive decay

amplitudes will be non-perturbatively suppressed10 as exp[−O(1/g2
st].

It would be interesting to see to what extent the results obtained here are compatible

with the investigations of the closed string emission by a decaying D0-brane within the

tachyon condensation approach [5]. Unfortunately, the (non-self-consistent) neglect of the

closed string back-reaction that underlies the derivations of [5] makes it hard to judge which

features of the emission spectrum described there should be trusted.

Conclusions and speculations

As the calculations of this chapter reveal, the problem of D0-brane annihilation appears in

many ways much more tractable in our present context than the field-theoretical soliton-

anti-soliton annihilation or, more generally, any other topological defect annihilation process

that comes to mind. Indeed, the saddle point method provides rigorous results regarding the

coupling constant dependence for the annihilation with a fixed number of final state quanta,

10For the case of D0-brane decay, additional non-perturbative suppression is likely to arise from the

presence of an endpoint of the worldline, as it will be advocated in chapter 5.
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and certain qualitative estimates can be devised for final states whose multiplicity increases

as gst goes to zero. For a fixed number of final state closed strings (and for D0-brane pair

production), the amplitudes turn out to be suppressed as exp[−O(1/g2
st)], much stronger

than the näıve expectation exp[−O(1/gst)].

It is a somewhat dissatisfying feature of our present formalism that only exclusive am-

plitudes appear to be computationally accessible. Should one have had actual D0-branes at

one’s disposal, exploring the refined properties of their annihilation (such as final state mul-

tiplicity distribution) would certainly provide a valuable insight into their nature. Exclusive

annihilation amplitudes would be the relevant theoretical prediction to guide this sort of

experimentation. However, in most phenomenological applications (such as cosmology), the

most important quantity is the simplest characteristic of the annihilation process, namely,

the total cross-section.

It is the non-trivial nature of the final state multiplicity distribution, i.e. the dominant

role of the final states with a huge number of quanta, that makes the reconstruction of the

total cross-section from the exclusive annihilation amplitudes so hard. If one could overcome

this difficulty, it would be possible, for example, to examine in our setting the stretched D-

string interconnection, a process that has so far only admitted a semi-quantitative treatment

[24]. The generalization of our present formalism to the case of D-strings is not likely to

pose much difficulty. The problem is that, in the cosmological context, one is interested in

the total interconnection probability.

For the case of D0-brane pair production, we have established a very strong non-perturbative

suppression (of order exp(−1/g2
st)). It would be interesting to contemplate whether it may
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have anything to do with the exponential suppression of the microscopic black hole pair-

production amplitudes argued by one of the sides in the dispute [9].

Another amusing feature is that there does not appear to be a unitarity relation that

constrains the absolute normalization of the D0-brane annihilation amplitude. It is hard to

judge at this point whether or not this represents an actual non-perturbative ambiguity in

string theory.

Since many qualitative features of the topological defect annihilation, such as the non-

perturbative suppression of the exclusive amplitudes and the high mean multiplicity of the

final state, appear to be rather general, it is natural to ask whether our computation can

shed any light on the field-theoretical soliton annihilation, a process that has thus far defied

an analytic treatment. The Christ and Lee formalism of [13] provides a rather conspicuous

link to our approach, as it introduces explicitly the center-of-mass position of the soliton, a

worldline to be integrated over. It is certainly true that performing the path integral over the

fluctuations of the fields around the given trajectory of the soliton is a much more difficult

task than the worldsheet integrations pertinent to the D0-brane case. This circumstance is

also likely to undermine the direct applicability of the saddle point method, since it seems

to hinge upon the summation over the worldlines. Yet, one could try to develop some

intuition about the kinds of worldlines that contribute most, and establish some bounds,

say, on the coupling constant dependence. If such a program were to succeed, it would

effectively provide a path-integral derivation of certain non-trivial properties of the classical

annihilation solution. Mathematically and physically, such a derivation would present a fair

amount of elegance.
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Chapter 2

The Fischler-Susskind mechanism

String theories generically compute the S-matrix elements for the various scattering processes

as sums over the topologies of the worldsheet. It is important to realize that, under many

circumstances, the separate terms in these sums may be divergent. It is then imperative (as

far as the computation of physical observables is concerned) to implement the cancellation

of such divergences between the different terms in an explicit form. The cancellation of

divergences between the worldsheets of different topologies has been generally referred to as

the Fischler-Susskind mechanism.

The most familiar example of how such cancellations work comes from the analysis of the

divergences in the modular integration of the torus amplitude in closed string theory [21, 22].

This divergence is related to the non-vanishing torus tadpole and signifies an inconsistency

of the closed bosonic string theory in the flat space-time background. The resolution is to

introduce a small correction to the geometry of the background space-time in such a way

that it induces a divergence for the string theory amplitude on the sphere, which, in turn,

33



cancels the original divergence from the torus.

The situation for the divergences in the presence of the D-branes is somewhat analogous,

even though the physical interpretation is different. To the lowest non-trivial order in the

string coupling, the relevant divergence comes from the modular integration on the annulus.

This divergence is related to the propagation of virtual massless open string states, and it is

directly analogous to the infrared divergences appearing when the classical background of a

topological defect is introduced in field theories. This correspondence is helpful in developing

intuition about the nature of the infrared divergences. In particular, the divergence in the

presence of D0-brane is a manifestation of the D0-brane recoil, which is the string theory

analog of soliton recoil.

The purpose of this chapter is to demonstrate how the Fischler-Susskind mechanism is

implemented in the worldline representation of the D0-brane scattering amplitudes devel-

oped in the previous chapter. We’ll first go through the general derivation of the annular

divergence in the background of a general bosonic D-brane (keeping in mind the case of

D1-branes, which will be the primary focus of chapter 4). The consistency of the theory

will then require that this divergence should be matched against the divergence on the disk

arising in the Hirano-Kazama formalism at the next-to-leading order of the string coupling.

Note that the Hirano-Kazama formalism differs from the conventional Dirichlet CFT by the

presence of curved D0-brane worldlines in the path integral (1.1). It is precisely those world-

lines that induce the divergence on the disk. If not for them, the disk amplitude would have

been finite and there would have been nothing that the modular divergence on the annulus

could be cancelled against.
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2.1 D-branes and the annular divergence

The non-perturbatively large tension of the D-branes (∼ 1/gst) makes any background mod-

ification unnecessary to the lowest order in string coupling, when the D-brane is hit by

closed strings (whose masses are fixed as gst goes to zero). The infrared divergences (and

the corresponding need for the background modification) may arise however if one tries to

compute the next-to-leading order corrections to the scattering amplitude. In string theory,

these next-to-leading order corrections come from string worldsheets of annular topology.

In field theory, it is a familiar fact that the relevant infrared divergences in the loops

come from the large distance propagation of the zero modes corresponding to shifting the

entire topological defect. In string theory, such large distance propagation corresponds to

the small values of the modular parameter of the annulus, i.e., to the annulus degenerating

into a thin strip.

Arguably, the most intuitive and powerful method to analyze divergences from degener-

ating Riemann surfaces is the familiar Polchinski’s plumbing fixture construction [22], which

relates the divergences to the amplitudes evaluated on a lower genus Riemann surface. In

particular, the annulus amplitude with an insertion of the operators V (1), · · · , V (n) (in the

interior) can be expressed through the disk amplitudes with additional operator insertions

at the boundary as follows:

〈
V (1) · · ·V (n)

〉
annulus

=
∑
α

∫ dq

q
qhα−1

∫
dθdθ′

〈
Vα(θ)Vα(θ′)V (1) · · ·V (n)

〉
D2

(2.1)

where the summation extends over a compete set of local operators Vα(θ) with conformal

weights hα, and q is the gluing parameter that can be related to the annular modulus. (θ
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parametrizes the boundary of the disk.) The divergence in the integral over q coming from

the region q ≈ 0 (i.e., from an annulus degenerating into a thin strip) will be dominated by

the terms with the smallest possible hα.

Let us consider the annular divergence in a somewhat more general setting, when closed

strings scatter off a static Dp-brane with d non-compact Neumann directions, p + 1 − d

compact Neumann directions and 25 − p (non-compact) Dirichlet directions. Neglecting

the tachyon divergence, which is a pathology peculiar to the case of the bosonic string, we

identify (in close relation to the investigations of [14]) the following set of relevant operators

with conformal weights h = 1 + α′κ2/4 + π2∑n2
α/L2

α:

V i(θ, κi, nα) =: ∂nX
i(θ) exp

[
iκiX i(θ)

]
exp

[
2πinαXα(θ)

Lα

]
:

These operators correspond to the massless open string states carrying the momentum κi in

the non-compact Neumann directions and nα units of Kaluza-Klein momentum in the α’th

compact Neumann direction. Lα are the compactification radii.

It is easy to see that only the operators with nα = 0 will contribute to the leading

divergence in (2.1). Furthermore, for small values of q (which is the region we’re interested

in), only small values of κi will contribute into the integral. With these specifications, we
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can transform the annular divergence as follows:

〈
V (1) · · ·V (n)

〉
annulus

∼
∞∫
0

dq
∫

dκiq−1+α′κ2/4
∫

dθdθ′
〈
V i(θ, κi, 0)V i(θ′, κi, 0)V (1) · · ·V (n)

〉
D2

∼
∞∫
0

dq
∫

dκiq−1+α′κ2/4
∫

dθdθ′
〈
V i(θ, 0, 0)V i(θ′, 0, 0)V (1) · · ·V (n)

〉
D2

∼ P 2
〈
V (1) · · ·V (n)

〉
D2

∞∫
0

dq
∫

dκiq−1+α′κ2/4

(2.2)

where we’ve taken into account that the operator
∫

∂nX(θ)dθ merely shifts the position

of the D-brane and inserting it into any amplitude amounts to multiplication by the total

(Dirichlet) momentum P transferred by the closed strings to the D-brane during scattering.

We further notice that

∞∫
0

dq
∫

dκiq−1+α′κ2/4 ∼
∞∫
0

dq

∞∫
0

dκκd−1q−1+α′κ2/4 ∼
∞∫
0

dq

q (log q)d/2
(2.3)

where, once again, d is the number of non-compact Neumann directions1.

The divergences from the region q ∼ 0 in the above integral reveal the peculiarity of the

low-dimensional cases.

For d = 0, i.e., an instanton-like topological defect, introducing a cut-off ε on the lower

bound of the integral (2.3) reveals a log ε divergence first described in [2].

1Please note that the vertex operators corresponding to the D-brane gauge field do not contribute to

the divergence in the modular integration. Mathematically, this comes from the fact that the operator∫
dθ : ∂θX

i(θ) exp
[
iκiXi(θ)

]
: vanishes for small κi. Physically, it conforms to the notion that the infrared

divergences are related to recoil, i.e., an excitation of the scalar fields corresponding to the displacement of

the D-brane, rather than the gauge field.
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The divergence for d = 1, i.e., a particle-like topological defect, is
√
| log ε|. It is indicative

of recoil and will be our main focus in this and the subsequent chapter.

For d = 2, we observe a log | log ε| divergence that is a manifestation of the local recoil, a

peculiar phenomenon that will be further described and analyzed in chapter 4.

There are no annular divergences for d > 2. Once again, we’ll postpone the discussion of

the underlying physics until chapter 4 of this thesis.

2.2 The general structure of recoil perturbation theory

Let us now return to the setting of the previous chapter and examine how the Hirano-

Kazama description of the dynamical D0-branes works in the recoil regime, i.e., for closed

strings scattering off a D0-brane. Since the mass of the D0-brane diverges in the limit

gst → 0, it can be treated as static to the lowest order in gst (if we keep the momenta of

the incident closed strings fixed as gst → 0), and the corrections due to the motion of the

D0-brane’s center-of-mass (i.e. recoil) will appear as a perturbative expansion in powers of

gst. This is the familiar recoil perturbation theory.

The formalism of the previous section is, of course, perfectly applicable in this case.

Since the momenta of the closed string states (and hence J) are kept fixed as gst → 0 (and

hence M → ∞), J ≡ J/M can be treated as perturbation. The saddle point equation

(1.12) implies then that the saddle point configuration t(θ) = const + O(1/M), i.e., the

path integral (1.10) is dominated by nearly constant t(θ) (the fluctuations of t(θ) are of

order 1/M generically, and so is the saddle point value, as we’ve just remarked). One could
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look for solutions of the saddle point equation as an expansion in J . However, it is much

more efficient to generate the perturbation theory directly from the path integral (1.10) by

constructing a suitable expansion of the “effective action” functional of (1.10):

Seff [z(t), t(θ)] = −4πα′M2
∫

z dt

+πα′M2
∫ (

℘µ
1 −

t∫
0

d · J µdt̃d2σ
)
A−1(t, t′)

(
℘1µ −

t′∫
0

d · Jµdt̃′d2σ′
)
dtdt′

There is one difficulty one encounters in implementing such a program. It is a most

straightforward approach to try to construct a Taylor-like expansion of Seff in powers of

t(θ) around t(θ) = const:

Seff (const + t(θ))

= Seff (const) +
∫

dθ
δSeff

δt(θ)

∣∣∣∣∣
const

t(θ) +
1

2

∫
dθdθ′

δ2Seff

δt(θ)δt(θ′)

∣∣∣∣∣
const

t(θ)t(θ′) + · · ·

This strategy comes to mind in immediate relation to the computational techniques most

commonly used in σ-models, and it has been employed in [4] for the purposes we’re presently

pursuing here. Unfortunately, such an expansion does not exist. In [4], various ζ-function

prescriptions have been devised (in the lowest order) to deal with the infinities arising when

one tries to brute-force the Taylor-like expansion, but the situation quickly becomes hopeless,

if one tries to envisage the general structure of the recoil perturbation theory in such a

framework.

The origin of the above complication can be traced back to the non-analytic properties of

the worldlines in the path integral (1.8). Indeed, for non-analytic fµ(t) (most worldlines are

fractal and therefore non-differentiable [19]) the “effective action” in (1.8) does not admit

a Taylor-like expansion in t(θ) around any configuration of t(θ). The integration over fµ(t)
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improves the situation considerably: the resulting effective action can be expanded around

any t(θ) 6= const, but the non-analyticity still survives for the worldsheets whose boundary

shrinks to a single point. (One may become worried about whether such non-analyticity could

undermine the application of the saddle point method from the previous section. Whereas

any discussions of explicit contour deformation in multi-dimensional cases are necessarily

rather subtle, there are still good chances that the deformation implicit in the saddle point

evaluation of the integral can be attained, since Seff is analytic for any t(θ) 6= const.)

Luckily, the Taylor-like expansion is not the only way to generate a sensible perturbation

theory. Appearing as insertions in a Gaussian path integral, the exponentials of t(θ) are just

as tractable as powers of t(θ). We shall therefore resort to a combination of a Taylor-like

and a Fourier-like expansion. We first introduce

A(t, t′) = i

√
℘2

2
δ(t− t′) B(t, t′) = δz(t) δ(t− t′) +

t∫
0

dt̃

t′∫
0

dt̃′N (t̃, t̃′)

such that (cf. (1.11)) A(t, t′) = A(t, t′) + B(t, t′), and expand formally

A−1 =
1

A
− 1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ · · · (2.4)

(we work with one of the two saddle points in z(t), the other one will give a complex conjugate

contribution, as in the previous section). Upon inserting this expression in the Seff we can

isolate the following terms that need to be retained in the exponent (everything else is small

and may be treated perturbatively, as it will become apparent after we exhibit the powers
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of the expansion parameter 1/M):

S
(1)
eff = 4πiα′M2

√
℘2T

S
(2)
eff = −4πα′M2

∫
dtdt′

t∫
0

dt̃

t′∫
0

dt̃′N (t̃, t̃′) ≡ −4πα′M2
∫

t(θ)∂n∂n′D(θ, θ′)t(θ′)dθdθ′

S
(3)
eff = −8πiα′M2

√
℘2

∫
δz2dt

S
(4)
eff =

4πiα′M2

√
℘2

℘µ
1

∫
dt

t∫
0

d · Jµdt̃d2σ ≡ 4πiα′M√
℘2

℘µ
1

∫
t(θ)∂nD(θ, σ)J(σ)µdθd2σ

(2.5)

The first term here merely provides for the correct pole structure. It will disappear after

integration over T and application of the reduction formula. The remaining three terms

define a Gaussian integral with respect to z(t) and t(θ).

A general term in the expansion (2.4) can be constructed as follows. We should take a

certain number of factors
ti∫

0

dt̃

ti+1∫
0

dt̃′N (t̃, t̃′) (2.6)

and, for each i add a factor

(δz(ti))
ni

(i
√

℘2/2)−ni+1

where ni are non-negative integers. Then, for the first and last ti we either add a factor of

℘µ
1 or a factor of

ti∫
0

d(t̃, σ)J µ(σ)dt̃d2σ (2.7)

We then integrate over all ti’s and multiply the result by πα′M2.

We now proceed with the Gaussian integral over δz(t). As it can be seen from the expres-

sion for S
(3)
eff , each factor of δz(t) will produce a factor of 1/M in the result of the Gaussian
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integration. Where several δz’s occur at the same ti, divergences from the singularity of

the δz propagator (proportional to the δ-function) will be present. Just like in the case of

free particle considered in [18], these divergences will merely renormalize the saddle point

(expectation) value of z(t).

We are left with a Gaussian integral over t(θ). As we’ve remarked before, the structures of

the type (2.6) and (2.7) cannot be expanded in powers of t(θ) around t(θ) = const. Instead,

we’ll Fourier-trasform in ti’s:

ti∫
0

dt̃

ti+1∫
0

dt̃′N (t̃, t̃′) → 1

κiκi+1

∫
eiκit(θ)∂n∂

′
nD(θ, θ′)eiκi+1t(θ′)dθdθ′

ti∫
0

d(t, σ)J µ(σ)dt̃d2σ → 1

κi

∫
eiκit(θ)∂nD(θ, σ)J µ(σ)dθd2σ

At this point, the integration over t(θ) can be explicitly performed. The substitution t(θ) →

t(θ)/M , κi → Mκi reveals the additional powers of 1/M that each term will receive upon

the integration over t(θ).

2.3 Divergence cancellation in the Hirano-Kazama

formalism

Having sketched the general structure of the recoil perturbation theory, we shall now turn to

the important issue of how the consistency of the string amplitudes is respected to the lowest

non-trivial order. As we’ve remarked early on in the course of our present investigation, the

inclusion of curved D0-brane worldlines into the path integral (1.1) will generally induce a

Weyl anomaly thereby threatening the decoupling of the negative norm states, which is a
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crucial requirement for the consistency of the string theory S-matrix. The educated hope is

that (a suitable modification of) the familiar Fischler-Susskind mechanism [21, 22] will come

to rescue the formalism that has been constructed so far. Indeed, it is a well known fact that

there are singularities in the modular integration for the higher genus worldsheets coming

from the corners of the moduli space. Should we have chosen the D0-brane worldline action

correctly, the Weyl anomalies induced by those singularities would precisely cancel the Weyl

anomalies coming from the coupling to an accelerating D0-brane. Let us see how this works

out to the first non-trivial order of the recoil perturbation theory.

The Fischler-Susskind mechanism in our set-up implies a cancellation between an in-

frared divergence on a higher genus worldsheet and an ultraviolet divergence on a lower

genus worldsheet. To the lowest order, this means that we should examine the ultraviolet

divergences on a disk to the order 1/M and compare them with the modular integration

divergences from an annulus coupled to a straight D0-brane worldline (the curved worldlines

will only contribute to the higher orders in 1/M).

When we expand Seff (for a disk) according to (2.4) and treat all the terms except for the

ones indicated in (2.5) as a perturbation, we can identify the following insertions that can in

principle contribute to the order 1/M in the resulting recoil perturbation theory Gaussian
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integral:

F1 = −2πiα′M2

√
℘2

∫
dt

 t∫
0

d(t̃, σ)J µ(σ)dt̃d2σ

2

F2 =
8πα′M2

℘2
℘µ
∫

dtdt′
t∫

0

dt̃

t′∫
0

dt̃′N (t̃, t̃′)

t′∫
0

dt̃′′d2σd(t̃′′, σ)J µ(σ)

F3 =
1

2

8πα′M2

℘2
℘µ
∫

dtδz(t)

t∫
0

d(t̃, σ)J µ(σ)dt̃d2σ

2

After we integrate over δz(t) and Fourier-transform, these three terms become:

F1 ∼ α′
∫ dκ

(κ + i0)2

∣∣∣∣∫ eiκt(θ)∂nD(θ, σ)Jµ(σ)dθd2σ
∣∣∣∣2

F2 ∼ α′M℘µ
1

∫ dκ

κ + i0)2

∫
dθdθ′t(θ)∂n∂

′
nD(θ, θ′)eiκt(θ′)

∫
e−iκt(θ′′)∂nD(θ′′, σ)Jµ(σ)dθ′′d2σ

F3 ∼ α′
∫ dκ

κ + i0)2

∣∣∣∣℘µ
1

∫
eiκt(θ)∂nD(θ, σ)Jµ(σ)dθd2σ

∣∣∣∣2
(2.8)

We now have to compute the path integral

∫
Dt(θ) (F1 + F2 + F3) exp

[
−S

(2)
eff − S

(4)
eff

]

The relevant structure that is featured in all the three terms is∫ dκ

κ2

∫
Dt(θ̃) eiκ(t(θ)−t(θ′))

× exp

[
−4πα′M2

∫
t(θ̃)∂n∂n′D(θ̃, θ̃′)t(θ̃′)dθ̃dθ̃′ +

4πiα′M√
℘2

℘µ
1

∫
t(θ̃)∂nD(θ̃, σ)Jµ(σ)dθ̃d2σ

]

∼ 1

α′M
exp

[
−πα′℘µ

1℘
ν
1

∫
Jµ(σ)∂nD(θ̃, σ)[∂n∂n′D]−1(θ̃, θ̃′)∂n′D(θ̃′, σ′)Jν(σ

′)dθ̃dθ̃′d2σd2σ′
]

×
∫ dκ

κ + i0)2
exp

[
−2κ2 log ε + κh1(θ, θ

′) + κ2h2(θ, θ
′)
]

Where log ε ≡ ∂n∂n′D(θ, θ) is the regularized value of the singularity of the boundary-to-

boundary propagator (ε being the worldsheet cut-off), and h1,2(θ, θ
′) are certain (cut-off
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independent) functions. If we now substitute κ̃ = κ/
√

log ε, we observe that the functions

h1,2 do not contribute to the divergent piece of the path integral, which turns out to be

(θ, θ′)-independent and proportional to

√
log ε

α′M
e−πα′℘µ

1 ℘ν
1

∫
Jµ(σ)∂

n
D(θ̃,σ)[∂

n
∂n′D]−1(θ̃,θ̃′)∂n′D(θ̃′,σ′)Jν(σ′)dθ̃dθ̃′d2σd2σ′ (2.9)

Now, in the path integral of F2, the expression (2.9) will appear in convolution with

∂n∂n′D(θ, θ′), and, since the latter is orthogonal to constant modes, the path integral of F2

will not contain any UV-divergent piece. Both path integrals of F1 and F3 will simplify due

to the relation ∫
∂nD(θ, σ)Jµ(σ)dθd2σ = −

∫
Jµd2σ = pµ

1 − pµ
2

and the UV divergent part of the path integral of F3 will turn out to be of order 1/M2, not

1/M due to the relation 2℘1(℘1 − ℘2) = (℘1 − ℘2)
2. If we also notice that the exponential

in (2.9) is merely the value of the Gaussian integral

∫
Dt(θ) exp

[
−S

(2)
eff − S

(4)
eff

]

(without any insertions), we conclude that the UV divergent part of the disk amplitude to

the order 1/M is proportional to

(p1 − p2)
2

α′M
A0

D2

√
log ε (2.10)

where A0
D2

is the zeroth order value of the disk amplitude, i.e., the amplitude computed in

the background of a straight D0-brane worldline, in neglect of recoil.

We now have to compare this result with the divergence in the modular integration of the

annulus amplitude to the lowest order in 1/M , i.e., the annulus amplitude in the background
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of a straight D0-brane worldline. This is precisely the computation that has been performed

in section 2.1, and, for the case of D0-brane, the divergence was found to be proportional to

gst (p1 − p2)
2
〈
V (1) · · ·V (n)

〉
D2

√
log ε ≡ gst (p1 − p2)

2 A0
D2

√
log ε

To the order 1/M (i.e. to the order gst), we recognize precisely the same structure, as in

(2.10). We shall not work out here the actual coefficients that depend on a number of

conventions, but it is clear that the non-trivial dependencies on the momenta and the cut-off

do in fact match, as it is necessary for the successful implementation of the Fischler-Susskind

mechanism.

One cannot help but notice that the version of the Fischler-Susskind mechanism that

we’ve just described bears a strong resemblance to the investigations of [15]. Indeed, limiting

themselves to the lowest order of the string coupling expansion, the authors of [15] have shown

that, to that particular order, the consistency of the string S-matrix should be restored if the

background of a straight D0-brane worldline is augmented by an inclusion of the operator

VTF =
pµ

1 − pµ
2

M

∫
∂nXµ(θ)X0(θ) Θ(X0(θ))dθ

(where Θ(X0) is a step function). Heuristically, such an operator corresponds to the D0-

brane abruptly starting to move with the appropriate recoil velocity at the moment X0 = 0.

(Once again, the operators
∫

∂nX
i(θ)dθ with i being one of the Dirichlet directions shift the

entire trajectory of the D0-brane.) The UV divergence induced by this operator is precisely

what we’ve found in (2.10). Moreover, the divergent integral

∫ dκ

κ2
e−κ2 log ε
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makes an actual appearance in the derivations of [15]. These parallels should not be too

surprising since, for example, the structure

t∫
0

d(t̃, σ)Jµ(σ)dt̃d2σ

(entering the expression for the saddle point value of the D0-brane trajectory fµ(t)) develops

a discontinuity in its first derivative as the boundary of the worldsheet shrinks to a single

point.

It will be one of the primary objectives of the subsequent chapter to compare and contrast

the propositions of the Periwal-Tafjord paper with our present treatment. We’ll see that,

despite of the notable algebraic similarities, the two approaches are separated by essential

differences when it comes to their physical effect and implications. It will be explained, in

particular, why the Periwal-Tafjord approach in its straightforward form cannot provide an

adequate treatment of the D0-brane recoil.

Is it possible to reach a deeper understanding of how the Fischler-Susskind mechanism

works in our present formalism beyond the lowest order of the recoil perturbation theory?

Extending our above analysis to the higher orders in gst is likely to require a more systematic

picture of both the general structure of the recoil perturbation theory and the general struc-

ture of the divergences in the modular integration. Yet, conceptually, there doesn’t seem to

be anything puzzling about how the cancellations could actually occur.

Of course, the situation is much more intricate for the annihilation/pair-production case.

In that regime, the first non-trivial UV divergence will arise if we try to compute the pre-

exponential factor in the saddle point estimate (1.16). There doesn’t appear to exist any
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meaningful expansion of this pre-exponential factor in any small parameter. It is merely a

determinant of some integral operator, whose divergent part needs to be matched against the

modular divergences from the higher genus worldsheets. Any cancellations in this setting will

necessarily be rather subtle. In particular, they may require certain relations between the

values of the saddle point exponentials, and therefore certain relations between the solutions

to the saddle point equation (1.12) for worldsheets of different genera. We shall not pursue

this line of thought any further in this present investigation. Even though the considerations

related to the Fischler-Susskind mechanism are of a crucial importance for establishing the

consistency of the worldline formalism, they do not affect the estimates of the saddle point

exponential and, in particular, its coupling constant dependence, which is the main objective

of our present inverstigation of the annihilation process.
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Chapter 3

D0-brane recoil

The recoil of D0-branes has been essentially the primary concern of the previous chapter.

And, by analyzing the cancellation of divergences between the different worldsheet topologies,

we have established the Hirano-Kazama formalism as a viable approach to describing the

physical phenomenon of recoil.

The primary concern of this present chapter is to make contact between the implementa-

tion of recoil we have already developed and the work on this subject that has been previously

described in the literature1. To this end, we shall look at the same problem from a differ-

ent perspective. Namely, we’ll start with the worldsheet CFT description of the D0-brane,

observe its inconsistency (manifested by the infrared divergences in the modular integration

of the higher genus worldsheets), conclude that these divergences are indicative of recoil,

and, furthermore, ask the question of how the worldsheet CFT should be modified, to the

1This and the subsequent chapter rely crucially upon an extensive collaboration with Ben Craps and Shin

Nakamura.
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lowest non-trivial order in string coupling, in order to accommodate recoil. The results of

the previous chapter will provide guidance for this sort of undertaking.

The question of how the translational mode of the D0-brane is treated in the standard

CFT and its deformations relevant to the phenomenon of recoil will be completely central to

our investigations. To this end, it will be prudent to start this chapter with a brief reminder

on how the translational mode of solitons is treated in field theory. Such preliminary exercise

is instructive since, in field theory, the various versions of recoil perturbation theory (whether

infrared-divergent or properly accommodating the translational motion of the soliton) can

be derived from the fundamental field-theoretical Lagrangian. In string theory, this deeper

level of description is lacking, and one must be content with operating at the level of the

various forms of the worldsheet perturbative expansion themselves.

3.1 A few remarks on soliton recoil in field theory

It is a familiar fact that the solitonic quasi-particles in field theory arise as quantum descen-

dants of the static stable finite energy solutions of the classical equations of motion. For

convenience, let us generically denote such solutions as Φa
(0)(x) where Φa is a collective label

for all the fields taking non-trivial values in the solitonic configuration.

To investigate the impact such classical solutions have on the structure of the quantum

field theory, one examines the fluctuations of the fields linearized in the vicinity of the

classical solutions. One might be looking for a mode expansion with the terms of the form

φa(x, t) = eiEtφa(x)
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The typical structure of such a mode expansion is as follows:

• There will be a few modes with E = 0. In particular, the modes corresponding to the

displacement of the original solution (φa
i (x) = ∂Φa

(0)(x)/∂xi) are always present.

• There may be a few normalizable modes with E taking values in a discrete spectrum.

These modes correspond to “internal” quantum excitations of the soliton.

• There will be a continuous spectrum of modes approaching plane waves far away from

the soliton. These modes correspond to the quanta of the fundamental fields.

One therefore arrives at the picture of a solitonic quasi-particle with translational degrees

of freedom (and possibly some internal degrees of freedom) capable of interacting with the

quanta of the fundamental fields.

The presence of the E = 0 modes corresponding to the displacement of the solitonic

solutions may appear very natural and completely innocuous. Nevertheless, they introduce

a number of formal complications into the Feynman diagram representation of the scattering

amplitudes, since they make the propagators for the fields from which the solitonic solution

is constructed formally divergent.

The most straightforward attempt to deal with the complications from the translational

modes has become known as “näıve semiclassical quantization”. If one simply discards

the contribution of the translational mode from the functional determinants, then the lowest

order contributions to the scattering amplitudes are finite. Such scattering amplitudes would

ignore the recoil of the soliton (which is legitimate at the lowest order in coupling, due to

the large mass of the soliton).
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If one pursues this program to higher orders, one encounters infrared divergences com-

ing from the fact that the linearized wave operator in the background of the soliton is

non-invertible (on account of the zero-mode). One could try to regularize the Gaussian

integrations and work with the infrared-divergent theory. Performing the integral over the

translational mode as if it were a Gaussian integration would effectively treat the free soli-

tonic particle as if it were confined in a harmonic oscillator potential with a frequency tending

to zero. As we’ll see below, this picture is very similar to how the translational mode of the

D0-brane is treated in the worldsheet CFT.

One could try, however, to develop a more intelligent treatment of the translational mode.

This has been accomplished by Christ and Lee [13]. Instead of writing the näıve linearized

mode expansions in the background of the soliton, one introduces the following ansatz:

Φa(x, t) = Φa
(0)(x−X(t)) +

∑
k

′
ηk φa

k(x−X(t), t)

where the prime in the sum stands for the omission of the translational mode. Substituting

this expansion in the original Lagrangian of the field theory, one ends up with a description

in which the position of the center-of-mass of the soliton appears as a canonical variable

whose state can be explicitly specified. This is reminiscent of the Hirano-Kazama formalism.

We’ll keep in mind the analogies between the different ways to treat the translational mode

in field theory and string theory as we proceed with the analysis of the D0-brane recoil.
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3.2 Worldsheet CFT and the translational mode

of D0-brane

It is a conventional statement in relation to D-branes that their dynamics is described by

the massless scalar vibrational states of the open strings attached to them. For the purposes

of evaluating the S-matrix, such massless scalar vibrational states should be represented by

their vertex operators: ∫
dθ : ∂nX

i(θ) exp [ikµX
µ(θ)] :

(where the index i runs over the Dirichlet directions and the index µ — over the Neumann

directions).

Indeed, for the higher-dimensional D-branes, such massless states of open strings at-

tached to the D-brane can be identified with one-particle states of the worldvolume fields

corresponding to the deformations of the D-brane (plus the gauge field). It is also quite

intuitive: the open strings move at the speed of light in the Neumann directions, and so do

the excitations of the worldvolume. Furthermore, should one be willing to specify the initial

and final vibrational states of a higher-dimensional brane in a scattering process involving,

say, closed strings, this can be immediately accomplished by including the appropriate open

string states into the initial and final states of the string theory S-matrix.

One must, however, realize that a significant subtlety is encountered if one attempts to

extend this picture to the case of D0-branes. Indeed, the only dynamical degree of freedom

of the D0-brane is the translational mode (i.e. the spatial co-ordinate of the D0-brane). The

quantum mechanical spectrum of such mode is well known to be the spectrum of momentum
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eigenstates. This spectrum is continuous and it cannot be straightforwardly matched to

the discreet spectrum of open strings attached to the D0-brane. To fully appreciate the

difficulty it may be illuminating to contemplate the question of how one would use open

strings attached to the D0-brane to specify the quantum state in which the D0-brane moves

at 1 mile-per-hour.

One would sometimes hear that the translational motion of the D0-brane should corre-

spond to some “condensate of the open strings”. While such statements are not necessarily

completely meaningless, their practical value is limited, unless one is capable to specify a

recipe for how the open strings should be used to describe the moving D0-branes.

It is an important (even if trivial) observation that the energy of the “massless scalar”

open string state attached to the D0-brane, namely,

∫
dθ : ∂nX

i(θ) exp
[
ik0X

0(θ)
]

:

is exactly 0. Adding more “massless scalar” open strings will not change energy either. One

ends up with a (formally) discrete spectrum of evenly infinitesimally spaced energy levels.

This is the spectrum of a harmonic oscillator with a frequency tending to 0 — a hardly

surprising finding, given that the translational degree of freedom of the D0-brane is freely

moving. Using open strings to describe the translational mode of the D0-brane would thus

be the same as using the frequency-goes-to-0 limit of the harmonic oscillator to describe a

free particle.

One cannot help but notice the analogy between the situation I’ve just described and

the näıve quantization of a soliton that does not go through the trouble of carefully treating
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the zero-mode. The resulting description features, in particular, a harmonic oscillator of

zero frequency, which, in turn, introduces a number of infrared pathologies. What would be

the string theory analog of the Christ-Lee method that has been described in the previous

section?

Well, it is precisely the Hirano-Kazama formalism. One explicitly forbids open strings

attached to the D0-brane in the initial and final states. Instead, one introduces the trans-

lational mode as an explicit dynamical variable, much in the same way as the Christ-Lee

method does for the case of solitons. The resulting amplitudes are free of the infrared

pathologies.

One must realize that there is a direct analogy between this approach and the standard

treatment of D-instantons [2]. Namely, in the latter case, one does not attempt to describe

the translational zero-modes of the D-instantons in terms of open strings. Instead, one

introduces the collective coordinate (i.e. the position of the D-instanton) explicitly and

integrates over it. The resulting amplitudes are free of infrared pathologies. The Hirano-

Kazama formalism is a direct analog of this procedure for the case of D0-branes.

Even though it may be rather cumbersome to specify the final state of the D0-brane in

terms of open strings in the worldsheet CFT, one may still ask the question what is the initial

and final state of the D0-brane implied in the standard Dirichlet CFT formalism when one

computes the matrix elements for closed strings to scatter off it, without any open strings.

This question is relevant inasmuch as we’re trying to implement recoil within the CFT, in

order to make contact with the existing literature on the subject. As we’ll see below, the

answer to this question is not completely trivial, and, in order to deduce the answer, we’ll
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make an appeal to the well-known low-energy description of the D-branes, the DBI action.

3.3 The DBI picture of D0-brane recoil

Since the state of the translational mode of the D0-brane is specified in a rather implicit

way in the worldsheet CFT computations, one needs to resort to some external framework

in order to identify which initial and final states of the translational mode correspond to,

say, a worldsheet scattering amplitude that does not contain any open strings.

To this end, we’ll appeal to the DBI action that reproduces the low-energy limit of the

string amplitudes and introduces the translational mode very explicitly. The question we’ll

ask is what initial and final states for the translational mode of the D0-brane one needs

to specify (in the DBI language) in order to make the resulting DBI amplitude mimic the

low-energy limit of the worldsheet CFT amplitude without open strings. As I’ve already

mentioned, the answer will not be completely trivial; for example, the näıve guesses that

the state of the D0-brane in the worldsheet CFT is the momentum eigenstate with a zero

momentum, or a coordinate eigenstate with the D0-brane located at the origin are incorrect.

I’ll start with the DBI action (Polchinski, v.1 p.270):

SDBI = −τ
∫

dp+1ξ e−Φ(X(ξ))

{
det

[
∂Xµ

∂ξa

∂Xν

∂ξb
(Gµν(X(ξ)) + Bµν(X(ξ))) + 2πα′Fab

]}1/2

and restrict myself, for the sake of convenience, to scattering of one dilaton off a (non-
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relativistic) D0-brane2. In this case, the relevant part of the above action is

M
∫

dt
(

1

2

(
Ẋ
)2
− Φ

(
t,X i(t)

)
+

1

2

(
Φ(t,X i(t))

)2
)

(3.1)

The interactions of the dilaton and the translational mode involving time derivatives are

omitted, as they do not contribute to infrared divergences. We further Taylor expand:

Φ
(
t,X i(t)

)
= exp

[
X i(t)

∂

∂xi

]
Φ(t, 0) (3.2)

When embedded into Feynman diagrams, ∂/∂xi will turn into the momentum flowing from

the closed strings into each particular vertex.

Let me consider the contribution to the dilaton scattering from the last term in (3.1). In

the operator language (I’ll work in the interaction picture), it is just

〈f, k2|
M

2

∫
dt exp

[
X i(t)

∂

∂xi

]
(Φ(t, 0))2 |i, k1〉 (3.3)

where 〈f | and |i〉 describe the initial and final state of the D0-brane, and 〈k2| and |k1〉 describe

the outgoing dilaton of momentum k2 and incoming dilaton of momentum k1. Furthermore,

〈k2|
(
Φ(t, xi)

)2
|k1〉 ∼ exp

[
i(k0

2 − k0
1)t
]
exp

[
−i(ki

2 − ki
1)x

i
]

(the overall coefficient of the amplitude will not interest us here) and (3.3) can be rewritten

as

〈f |
∫

dt exp
[
−i(ki

2 − ki
1)X

i(t)
]
exp

[
i(k0

2 − k0
1)t
]
|i〉 (3.4)

2Note that even though there are higher derivative corrections to the DBI action, they would not have a

major bearing upon any infrared issues, such as recoil. Indeed, adding derivative interactions to any given

process will soften the infrared behavior, and hence will only be able to introduce subleading contributions

(compared to the ones coming from the DBI action).
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I will simply specify the initial and final states of the D0-brane to be spatially broad

Gaussian wave packets (of width d at t = 0) with momentum centered around 0 and P

respectively. We’ll see that the inverse width of the wave packets should be identified in a

particular way with the infrared cut-off imposed in the worldsheet theory.

It is most convenient to compute the matrix element in (3.4) in the “Schrödinger” picture3

and in the momentum representation, since the expressions for the Schrödinger (momentum)

wavefunctions of the initial and final states we’ve chosen are well known:

Ψf (p, t) ∼ dD/2 exp

[
−(p− P2)

2d2

2

]
exp

[
ip2t

2M

]

Ψi(p, t) ∼ dD/2 exp

[
−(p− P1)

2d2

2

]
exp

[
ip2t

2M

] (3.5)

where D is the number of spatial dimensions. Moreover, in the momentum representation,

the operator exp[i(k1 − k2)X] is nothing other than a shift of the wavefunction by k1 − k2.

Hence, (3.4) becomes

〈f |
∫

dt exp
[
−i(ki

2 − ki
1)X

i(t)
]
exp

[
i(k0

2 − k0
1)t
]
|i〉

=
∫

dt exp
[
i(k0

2 − k0
1)t
] ∫

dp Ψ∗
f (p, t)Ψi(p + k2 − k1, t)

∼ exp

[
−(P2 + k2 − P1 − k1)

2d2

2

]

×
∫

dt exp

[
i

(
k0

2 − k0
1 +

P 2
2

2M
− P 2

1

2M

)
t

]
exp

[
−t2 ζ (Pi, ki) /d2

]
where ζ is some function of the momenta whose precise form will drop out of the final

result. The important point is that, as d goes to infinity, the integral over dt becomes just

3It’s in quotation marks because it’s the Shrödinger picture of the free particle, not of the particle

described by (3.1).
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the energy conserving δ-function, and, as one should have expected, the DBI expression for

the particular amplitude we’re considering (scattering of one dilaton off the D0 due to the

contact interaction term in the DBI action) becomes proportional to

δ

(
k0

2 − k0
1 +

P 2
2

2M
− P 2

1

2M

)
exp

[
−(P2 + k2 − P1 − k1)

2d2

2

]
(3.6)

(Note that, because we’ve been considering the normalized wavepacket states rather then

the momentum states, the momentum conservation δ-function does not appear in the am-

plitude in the d → ∞ limit: rather, the amplitude is finite (in this limit) if the momentum

conservation is satisfied, and vanishes otherwise.)

The question is now how this amplitude should be expanded to match the structure of

the IR-divergent CFT-based worldsheet perturbation theory. One important circumstance

to realize is that the CFT amplitude is recovered in the limit d →∞ and there is an identi-

fication between the worldsheet cut-off ε and d (which specifies which particular amplitude

on the DBI side we’re considering) of the type

d2 ∼ gstα
′
√

log ε (3.7)

Note that this relation is not obvious a priori and the identification needs to imposed precisely

because it makes the structure of the IR-divergent worldsheet perturbative expansion visible

at the level of the DBI action. This IR-divergent structure is extremely unnatural from the

standpoint of the DBI description, but it is forced upon us by the worldsheet CFT, where it

is implemented by construction.

With the above identification, one can readily expand the amplitude (3.6) in powers of

gst (or 1/M) and observe the emergence of the IR-divergent structure reminiscent of the
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CFT. The lowest-order term is just

δ
(
k0

2 − k0
1

)

which is obviously just one of the terms in the low-energy expansion of the worldsheet disk

amplitude (please keep in mind that we’ve restricted our analysis to the dilaton contact

interaction term in the DBI Lagrangian). There are two corrections to the above δ-function

arising at the first order of gst:

(
P 2

2

2M
− P 2

1

2M

)
δ′
(
k0

2 − k0
1

)
(3.8)

which arises from expanding the energy conservation δ-function and

d2(P2 + k2 − P1 − k1)
2δ
(
k0

2 − k0
1

)
(3.9)

which arises from expanding the exponential (please keep in mind that d2 ∼ gst if one is

match the DBI and CFT descriptions).

If P1 = P2 = 0, which is precisely the case of the standard Dirichlet CFT, (3.8) vanishes,

whereas (3.9) reproduces the IR-divergence in the modular integration of the annulus. The

conclusion (reached here through an appeal to the DBI formalism) is then that the standard

Dirichlet CFT amplitudes without open strings describe a D0 brane whose initial and final

states are Gaussian wavepackets centered around P = 0, X = 0, and the width should be

identified with the CFT infrared cut-off as in (3.7) and taken to infinity.
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3.4 Critique of the previously advocated

approaches to recoil

Let me now summarize the points of dissatisfaction that I believe should arise upon a scruti-

nizing examination of the recipes aimed at incorporating the phenomenon of recoil into the

worldsheet CFT description of the string amplitudes that have been previously advocated

in the literature. Three publications are usually mentioned in relation to this subject, with

their authors being Periwal and Tafjord [15]; Fischler, Paban and Rozali [14]; and Hirano

and Kazama [4].

It must be evident that, of the three aforementioned treatments of the subject, the paper

by Hirano and Kazama bears the closest similarity to the pursuits undertaken in this thesis.

I shall nevertheless emphasize that the presentation given in that paper cannot be satisfac-

tory for someone with a specific interest for the problem of recoil. Indeed, as it has been

repeatedly highlighted throughout the exposition of this thesis, the cancellations between

the divergences coming from worldsheets of different topologies are extremely essential to

the implementation of recoil in string theory. The authors of [4] do not recover the disk

divergence in a form that would make it possible to see how it cancels the divergence in the

modular integration of the annulus. The second chapter of this thesis is specifically dedicated

to making up for this shortcoming.

The paper by Periwal and Tafjord is also quite essential to our present considerations in

that it gives particular attention to the role of the Fischler-Susskind mechanism for the formal

implementation of recoil in string theory. It has been already mentioned chapter 2 that the
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version of the Fischler-Susskind mechanism that naturally arises from the Hirano-Kazama

formalism bears a strong resemblance to the considerations of the Periwal-Tafjord paper. We

will eventually see that an algebraically minor (even though essential) modification of the

Periwal-Tafjord approach reconciles it completely with the considerations building upon the

Hirano-Kazama formalism. However, it is important to understand that, as it is presented

in [15], the Periwal-Tafjord approach does not provide an adequate treatment of recoil. Let

me describe below some of its essential failures.

In order to cancel the modular integration divergence coming from the annulus, Periwal

and Tafjord suggest to introduce a background correction of the form

VPT ∼
∫

dθ ∂nX
i(θ)F i(X0(θ)) (3.10)

where F (t) is some function and the index i, once again, labels the Dirichlet directions.

Periwal and Tafjord make a particular choice

F i(t) =
pi

2 − pi
1

M
t Θ(t)

(where p1, p2 and M are the initial and final momentum and the mass of the D0-brane

respectively, and Θ(t) is the step function). However, as we’ll see below the divergence

cancellation only depends on the asymptotic behavior of F (t) in the infinite past and future.

Note the absence of normal ordering in (3.10).

The physical interpretation of this background correction (“the recoil operator”) is that

the D0-brane starts to move along the trajectory F (t). In particular, the choice of F (t) made

in [15] corresponds to the D0-brane abruptly starting to move at the moment t = 0. The
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authors then express a minor dissatisfaction with the abruptness of recoil which is manifest

in their implementation.

As we’re about to show, the divergence cancellation does not depend on the detailed

shape of the D0-brane trajectory F (t) and, therefore, the abruptness of the particular tra-

jectory chosen in [15] can hardly be a problem. However, the operator (3.10) indeed exhibits

unattractive features, even at the purely heuristic level:

• in an actual recoil process, the D0-brane does not move along a classical trajectory;

• the operator (3.10) explicitly breaks the time translation invariance.

Let us now show that these pathologies indeed lead to unacceptable behavior of the physical

amplitudes.

If one starts with F (t) satisfying the asymptotic conditions

F i(t → −∞) ∼ 0 F i(t → +∞) ∼ vit + xi
∗

the Fourier transform of F (t) can be written in the form

F i(ω) =
vi

(ω + i0)2
+

xi
∗

ω + i0
+ ϕi(ω) (3.11)

where ϕ(ω) is analytic at ω = 0. Correspondingly, the operator (3.10) can be rewritten in

the form

VPT ∼
∫

dθ dω F (ω) ∂nX
i(θ) exp [−iωX0(θ)] (3.12)

Let us now insert this operator into the disk amplitude containing the closed string vertex

operators V1(σ1),· · ·,Vn(σn) carrying momenta k1,· · ·,kn with P =
∑

ki:

〈VPT V1(σ1) · · ·Vn(σn)〉D2

63



Performing first the path integral over X0, we obtain

∫
dθ F i(P 0) ∂nX

i(θ) exp
[
(P 0)2 log ε + P 0h(θ, σi, ki)

]
〈V1(σ1) · · ·Vn(σn)〉

∫
X0

D2
(3.13)

Here, the (P 0)2 log ε term in the exponent comes from the self-contraction in the recoil

operator, all the contractions among the various vertex operators are symbolically assembled

as 〈V1(σ1) · · ·Vn(σn)〉
∫

X0

D2
, and the P 0h(θ, σi, ki) term comes from the contractions between

the recoil operator and the vertex operators. We shall not need the explicit form of the

function h(θ, σi, ki). Let us only note that it is non-singular as long as σi’s stay away from

the boundary of the worldsheet. I shall briefly comment below on the important subject of

integration over the positions of the vertex operators. Note also that the integration over ω

present in (3.12) has disappeared in (3.13) due to the energy conservation δ-function.

We shall now examine the ε → 0 limit of the expression (3.13). In this limit, it vanishes

unless P 0 = 0 and should therefore be thought of a distribution (made of the δ-function

and its derivatives) rather than an ordinary function. Hence, to analyze the ε → 0 limit,

we’ll examine the convolution of (3.13) with an arbitrary smooth function G(P 0) admitting

a Taylor expansion

G(P 0) = G(0) + P 0G ′(0) + · · ·

It is important to keep in mind the expression (3.11) for the function F . Only a few terms

of the Taylor expansion will contribute to the final answer, since

∫
dP 0

(
P 0
)n

exp
[
(P 0)2 log ε

]

goes to 0 in the limit ε → 0 if n ≥ 0. Some other relevant formulas for the integral expressions
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we’ll have to use are

∫
dP 0 exp [(P 0)2 log ε]

(P 0 + i0)2 ∼
√
| log ε|

∫
dP 0 exp [(P 0)2 log ε]

P 0 + i0
∼ 1

If we now contract (3.13) with G(P 0):

∫
dθ dP 0 G(P 0) F i(P 0) ∂nX

i(θ) exp
[
(P 0)2 log ε + P 0h(θ, σi, ki)

]
〈V1(σ1) · · ·Vn(σn)〉

∫
X0

D2

and use the above integral formulas, we obtain a few distinct terms:

1) The only term that diverges in the limit ε → 0 is proportional to

√
| log ε| vi G(0)

∫
dθ ∂nX

i(θ) 〈V1(σ1) · · ·Vn(σn)〉
∫

X0

D2

After integration over X i, this becomes

√
| log ε| G(0) viP i 〈V1(σ1) · · ·Vn(σn)〉D2

The corresponding term in the expression (3.13) itself (rather than its convolution with

G(P 0)) is √
| log ε| δ(P 0) viP i 〈V1(σ1) · · ·Vn(σn)〉D2

This is precisely the structure that, in [15], has been claimed to be responsible for cancelling

the annular divergence after the final recoil velocity v is adjusted to the value P/M . Note,

however, that, by itself, this argument does not even determine the velocity v, but only its

component along P . Already at this stage, there are discrepancies between the intuitive

notion of recoil and the mathematical structure provided by the Periwal-Tafjord operator.

2) Another contribution comes from the P 0G ′(0) term in the Taylor expansion for G(P 0) and

is proportional to

δ′(P 0) viP i 〈V1(σ1) · · ·Vn(σn)〉D2
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This term should correct the energy conservation in such a way that the final energy of

the D0-brane (proportional to viP i) is taken into account. Note the similarities with the

corresponding term found in the DBI formalism in the previous section.

3) The last contribution we shall consider here come from the second term in (3.11). It is

proportional to

δ(P 0) xi
∗P

i 〈V1(σ1) · · ·Vn(σn)〉D2

The essential feature that needs to be highlighted here is that the above expression depends

on x∗, the parameter that shifts the D0-brane trajectory. Different values of x∗ would produce

different contributions to the finite part of the closed string scattering amplitude.

However, there is clearly no preferred physical choice for x∗. The D0-brane is a quantum

particle that does not have a definite position in space as long as its final velocity v is

specified. An attempt to implement the Periwal-Tafjord approach to recoil thus leads to

an apparent absurdity: an infinite-fold ambiguity in the values of the physical amplitudes

governed by the value of the fictitious position of the quantum D0-brane.

Further examination is likely to reveal additional pathologies introduced by shifting the

classical trajectory of the D0-brane in a manner inconsistent with time translation invariance.

In particular, the above consideration did not pay the due attention to the integration over

the positions of the vertex operators. The limit of this integration when the closed string

vertex operators approach the boundary is likely to produce specific singularities due to the

presence of the recoil operator. It is to be anticipated that the study of such singularities

will exhibit additional inconsistencies of the Periwal-Tafjord approach. I shall not pursue
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this line of thought further in this present exposition.

Finally, let me briefly comment on the paper [14] by Fischler, Paban and Rozali. In

its spirit and general attitude to implementing the Fischler-Susskind mechanism, it is very

similar to the Periwal-Tafjord paper. However, many of the mathematical details there have

been reportedly found obscure by a number of readers. In particular, the authors of [14]

claim that it is necessary to introduce simultaneously a few different recoil operators, one of

which is bilocal (and resembles, but is not quite identical to the one we’re about to introduce

in relation to the Hirano-Kazama formalism), the other one is a shift of the classical D0-brane

trajectory analogous to the Periwal-Tafjord approach. The rationale behind such algebraic

excesses is not too apparent. There are further computational details that are hard to agree

with. For example, it is claimed that the annular divergence is proportional to log ε/T (where

T is designated as a “large time cut-off”). As it has been shown in the previous chapter, the

correct form of the annular divergence is
√
| log ε|.

3.5 Hirano-Kazama formalism and the worldsheet CFT

As it has been already remarked, the most natural way to deal with the translational mode

of the D0-brane is to introduce the corresponding dynamical degree of freedom explicitly in

the path integral. However, it may be convenient to derive a certain recipe that would allow

to compute the relevant amplitudes by a suitable deformation of the conventional worldsheet

CFT. This would also bring us in contact with the previous work on the subject.

This line of pursuit should be encouraged by the similarity between the version of the
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Fischler-Susskind mechanism that arises in the Hirano-Kazama formalism and has been

described in chapter 3 on one hand and the considerations of [15] on the other hand. (Note,

however, that these similarities do not amount to identity.) To complete the picture, it

suffices to realize that the structure of divergence cancellation found in chapter 3 can be

mimicked by deforming the worldsheet CFT with the following bilocal operator:

Vbilocal =
1

M

∫
dθdθ′G(0+1)

(
X0(θ)−X0(θ′)

)
∂nX

i(θ)∂n′X
i(θ′) (3.14)

Here, G(0+1) is the retarded Green function of the free particle:

G(0+1)(t) = t Θ(t)

If one inserts the operator (3.14) into the CFT path integral for a closed string scattering

amplitude, performs the integration over the values of X0(σ) in the interior of the worldsheet,

and then identifies X0(θ) → t(θ) and p1 → (M, 0), one concludes that Vbilocal is the same as

the operator F1 of (2.8), which was found to be responsible for the divergence cancellation

within the Hirano-Kazama formalism.

Heuristically, the operator (3.14) can be understood as follows. ∂n′X
i(θ′) is the operator

of momentum density flowing out of the point θ′ of the boundary of the worldsheet (integrated

over θ′, it gives the total transferred Dirichlet momentum P ). Then,

∫
dθ′G(0+1)

(
X0(θ)−X0(θ′)

)
∂n′X

i(θ′) (3.15)

evaluates the displacement (in the Dirichlet directions) of the point on the D1-brane world-

surface with the co-ordinates X0(θ) and X1(θ) due to the momentum influx from the closed
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strings. Finally, the remaining ∂nX
i(θ) actually displaces the point on the D0-brane world-

line with the co-ordinate X0(θ) by the amount (3.15). Overall, the operator (3.14) deforms

the D0-brane worldline precisely in the way that intuitively corresponds to its response to

the impact by the closed strings.

Of course, the above description merely serves to relate the background modification

we’re proposing to the intuitive notion of recoil, and its precise justification comes from the

corresponding cancellation of divergences.

It is not hard to check that the operator (3.14) does in fact induce the appropriate

divergence on the disk:

gstP
2
〈
V (1) · · ·V (n)

〉
D2

√
log ε (3.16)

(we shall not concern ourselves with the coefficients in this treatment). The algebraic con-

siderations leading to this result are essentially identical to what has been done for the

Periwal-Tafjord recoil operator in the previous section. Note, however, that the bilocal op-

erator itself is by no means identical to the Periwal-Tafjord recoil operator. In particular, it

is manifestly time-translation invariant and does not correspond to a classical deformation

of the worldsheet trajectory.

An important question to be asked here is what is the physical meaning of the closed

string scattering amplitudes that the (divergence-free) CFT deformed with the bilocal recoil

operator computes, or, more precisely, what are the initial and final quantum states of the

D0-brane that correspond to such amplitudes.

This question is closely related to the considerations of the section 3.3, and, again, there
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is a (minor) subtlety. One could näıvely guess that, after the recoil operator is introduced

as a deformation of the worldsheet CFT, the resulting closed string scattering amplitudes

should imply D0-brane at rest as the initial state, and D0-brane moving with the appropriate

velocity (developed in the course of recoil) in the final state. In other words, one could think

that the initial and final states of the D0-brane are momentum eigenstates.

This näıve guess cannot be correct, however, since the amplitude to transition between

the zero momentum state and a state carrying the amount of momentum transferred by the

incident closed strings must be infinite on account of the momentum conservation δ-function,

whereas the amplitude computed by the worldsheet CFT deformed with the recoil operator

is finite by construction. (Note that the presence of the momentum conservation δ-function

is closely related to the non-normalizability of the momentum eigenstates.)

The resolution here is that (in close parallel to the considerations of the section 3.3)

the CFT deformed with the recoil operator really describes the transition between normal-

ized wavepacket states (in the limit of spatial extent of the wavepacket going to infinity),

rather than the momentum eigenstates. The difference between these amplitudes is precisely

that the limit of the wavepacket amplitude does not contain the momentum conservation

δ-function (yet it does contain the energy conservation δ-function). This is precisely what

makes such amplitudes into an adequate interpretation for the closed string scattering com-

putations within the worldsheet CFT deformed by the bilocal operator.
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Summary

Worldsheet CFT with the D0-brane Dirichlet boundary conditions suffers from loop di-

vergences indicative of recoil. The most natural way to deal with this complication is to

introduce explicitly the collective co-ordinate corresponding to the translational motion of

the D0-brane. This leads to the Hirano-Kazama formalism.

Nevertheless, one could try to come up with a recipe that, to the lowest non-trivial

order in the string coupling, would reproduce the physical amplitudes involving a recoiling

D0-brane by means of deforming the CFT with an appropriate “recoil operator”.

The ansätze for such recoil operators that have been previously put forward in the lit-

erature suffer, upon a closer examination, from pathologies that make them unacceptable

for the role for which they’ve been proposed. Building on the considerations within the

Hirano-Kazama formalism presented in the previous chapter, it is possible to deduce the

appropriate form of the recoil operator, which, in particular, does not lead to the aforemen-

tioned pathologies.
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Chapter 4

Local recoil of extended D-branes

The phenomenon of soliton recoil has been familiar for a few decades by now [3]. The solitons

in quantum field theory are quantum descendants of the topologically non-trivial solutions

of the classical field equations. In attempting to examine the scattering of fundamental field

quanta in the background of these classical solutions, one discovers infrared divergences at

higher orders of perturbation theory. These divergences signify a need for a background

modification. This is not surprising, since the soliton has a finite mass and necessarily starts

moving as a result of the impact by the incident particles. The original classical solution

does not properly accommodate this detail of scattering dynamics. Hence the need for the

background modification.

The string theory analog of the above phenomenon is the D0-brane recoil under the

impact of the incident closed strings. Indeed, if one starts with a background of a D0-brane

at rest, the modular integrations on the higher genus worldsheets exhibit divergences, thus

signalling the need for a background modification. This background modification precisely
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corresponds to the D0-brane recoil, which has been a primary subject of the previous two

chapters.

Extended topological defects cannot recoil due to their infinite mass. Nevertheless, by

energy-momentum conservation, during the impact, the incident particles necessarily trans-

fer to the extended topological defect a certain amount of momentum in the transverse

directions. This momentum influx will, of course, induce a wave-like perturbation propa-

gating along the worldvolume. The fate of this perturbation depends dramatically on the

dimensionality of the topological defect under consideration.

For topological defects with more than one spatial dimension, the worldvolume pertur-

bation will decay into spherical waves leaving no trace in the final state of the system.

However, spherical waves do not exist when there is only one spatial dimension available.

Therefore, for one-dimensional topological defects (vortex lines), the perturbation produced

by the impact of the incident particles will not decay in the asymptotic future, and the

classical background of a stationary vortex line will then have to be modified, much in the

same way as for the case of soliton recoil. If one tries to perform the computation in the

stationary classical background, the loop diagrams will exhibit infrared divergences.

A more formal statement about the behavior of the perturbation of the vortex line pro-

duced by the incident particles can be derived by inspecting the Green function of the (1+1)-

dimensional wave operator describing the propagation of small transverse perturbations of

the vortex line:

G(1+1)(t, x) ∼ θ(|x| − t) (4.1)

73



Figure 4.1: A pictorial representation of the local recoil. The closed strings scattering off a

D1-brane induce two waves propagating away from the point of impact (denoted by x).

where θ(x) is the step function. The Green function (4.1) describes the response of the

vortex line to a kick at t = 0 and x = 0. Quite obviously, it does not decay for large times.

Rather, the system exhibits two kink-like waves propagating towards infinity and shifting

the vortex line by a finite distance off its initial position as they pass along. The pictorial

representation of this process is given in Fig. 4.1. We shall term it “local recoil” in the

subsequent discussions.

One may wonder why the local recoil wave does not decay into radiation. (As it happens,

for example, to the excitations of macroscopic strings in a cosmological context.) One in-

tuitive explanation invokes the non-oscillating character of the local recoil wave. Moreover,

by momentum conservation, the momentum transferred to the topological defect by the in-

cident particles is purely space-like. There is no assortment of outgoing particles into which
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an excitation carrying such momentum can decay.

It is precisely the purely kinematic nature of the local recoil phenomenon that makes

it so universal. One should expect that a generic vortex line configuration will undergo a

local recoil whenever particles scatter off it, to a great extent irrespectively of the dynamical

contents of the theory. In particular, local recoil should occur in a string theory setting when

closed strings scatter off a D1-brane.

In the remainder of this chapter, I shall examine the local recoil of a (bosonic) D1-

brane in some detail. It will be shown how the infrared divergences signalling the need for

a background modification arise, and how they can be resummed in a way that enforces

momentum conservation.

4.1 The limited role of the Fischler-Susskind

mechanism

The general structure of the divergences in the annular modular integration in the presence of

D-branes has been presented in section 2.1. In particular, we could see that the divergences

were absent for Dp-branes with p ≥ 2, in accord with the general kinematic considerations

given in the introduction to this chapter.

As it has been emphasized throughout the exposition in this thesis, for the case of the

D0-branes, the annulus divergence is indicative of the failure of the worldsheet CFT to

describe the translational motion of the D0-brane, and it is most properly dealt with by

introducing the corresponding collective co-ordinate explicitly, as per construction of the

75



Hirano-Kazama formalism. Equivalently, to the lowest order in string coupling, one could

deform the worldsheet CFT by an appropriate recoil operator, so that the annular divergence

is cancelled and the final state of the D0-brane is changed in such a way that the momentum

is conserved.

Does this strategy translate in a meaningful way to the case of D1-brane? The most

practical answer is no, and the reason is twofold. First, unlike for the case of the D0-brane,

for a D1-brane one can explicitly specify its vibrational state by including the corresponding

incoming and outgoing open strings into the scattering amplitude. Second, unlike for the

case of the D0-brane, there is no unique momentum-conserving final state of the D1-brane.

Hence, even if some sort of recoil operator is introduced, one would still need to specify the

final vibrational state of the D1-brane in terms of open strings. Deforming the CFT with a

recoil operator will merely re-shuffle the assignment of the various open sting states to the

various vibrational modes of the D1-brane.

What is then the appropriate way to deal with the double-log annular divergence present

in the background of a D1-brane? One could simply construct (to the lowest order in

gst) the various assortments of open strings that carry the appropriate amount of Dirichlet

momentum and show that the amplitude to scatter into such states is manifestly finite.

In fact, an even clearer picture of the inner workings of the divergence cancellation

emerges, if such computations are performed at the level of the DBI action (with the mo-

menta of the incident closed string restricted to values much smaller than the string scale).

Such considerations are similar to what has been done in the section 3.3 for the case of

D0-branes. Indeed, the DBI formalism allows to work with the infrared divergences to all
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orders in the string coupling, and, as a result, it becomes apparent that the infrared di-

vergences in the worldsheet computations arise from the attempt expand in a Taylor series

the non-analytic dependences appearing in the scattering amplitudes. Such non-analytic

momentum dependences are a direct consequence of momentum conservation (and a direct

analog of the momentum conservation δ-function familiar from the case of the D0-brane).

The presence of the infrared divergences in the CFT formalism is thereby related to the

physical underpinnings of the local recoil phenomenon.

4.2 The final state of D1-brane, effective field theory

and divergence cancellation.

The effective field theory description of the D-branes is a very powerful framework to study

the infrared divergences associated with recoil, because the resummed non-polynomial form

of the low energy effective action (the DBI action) allows to analyze the structure of the

infrared divergences to all orders in coupling. A drawback inherent to this kind of approach

is that the momenta of the incident closed strings must be restricted to values much smaller

than the string scale. Considering this kinematic region is nevertheless sufficient to corrob-

orate the qualitative description of the local recoil outlined in the introduction.

We shall start with the familiar DBI action:

SDBI = −τ
∫

dp+1ξ e−Φ(X(ξ))

{
det

[
∂Xµ

∂ξa

∂Xν

∂ξb
(Gµν(X(ξ)) + Bµν(X(ξ))) + 2πα′Fab

]}1/2

and restrict ourself, for the sake of convenience, to scattering of one dilaton off a (non-

relativistic) D1-brane. In this case, the G and B fields can be set to their (Minkowski)
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background values. Since the energy of the incident closed strings is small, the D1-brane

will be perturbed off its stationary configuration only slightly:

X0(x, t) = t X1(x, t) = x X i(x, t) = Y i(x, t)

(we’re considering a D1-brane stretched in the 1st spatial direction, and the Dirichlet direc-

tions are labelled by i). As it was remarked in section 2.1, the D-brane gauge fields do not

contribute to the infrared divergences. At the level of effective field theory, this originates

from the fact that the gauge fields only interact with the closed string fields through terms

in the Lagrangian that contain the derivatives in the Neumann directions. Such derivatives

will soften the infrared behavior in the loops. We shall therefore omit the gauge fields from

the Lagrangian for the purposes of our analysis. If we further limit ourselves, for the pur-

poses of demonstration, to one dilaton scattering off the D1-brane, the relevant part of the

Lagrangian is

τ
∫

dt dx
{

1

2
(∂tY )2 − 1

2
(∂xY )2 − Φ

(
t, x, Y i(t, x)

)
+

1

2

(
Φ(t, x, Y i(t, x))

)2
}

(4.2)

where τ is the tension of the D1-brane. The interactions of the Y -scalars involving derivatives

in the Neumann directions have been omitted as they do not contribute to the infrared

divergences (in analogy to the gauge fields). We further formally Taylor expand:

Φ
(
t, x, Y i(t)

)
= exp

[
Y i(t)

∂

∂yi

]
Φ(t, x, yi)

∣∣∣∣∣
yi=0

Φ2
(
t, x, Y i(t)

)
= exp

[
Y i(t)

∂

∂yi

]
Φ2(t, x, yi)

∣∣∣∣∣
yi=0

To analyze the pattern of infrared divergence resummation, let us examine the contribution

to the dilaton scattering amplitude from the last term in (4.2). In the operator language
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(we’ll work in the interaction picture), it is just

〈f, k2|
τ

2

∫
dtdx exp

[
Y i(t, x)

∂

∂yi

]
(Φ(t, x, 0))2 |i, k1〉 (4.3)

where 〈f | and |i〉 describe the initial and final state of the D1-brane, and 〈k2| and |k1〉 describe

the outgoing dilaton of momentum k2 and incoming dilaton of momentum k1. Furthermore,

〈k2|
(
Φ(t, x, yi)

)2
|k1〉 ∼ exp

[
i(k0

2 − k0
1)t
]
exp

[
−i(k1

2 − k1
1)x

]
exp

[
−i(ki

2 − ki
1)y

i
]

(the overall coefficient of the amplitude will not interest us here) and (4.3) can be rewritten

as

〈f |
∫

dxdt exp
[
−i(ki

2 − ki
1)Y

i(t, x)
]
exp

[
i(k0

2 − k0
1)t
]
exp

[
−i(k1

2 − k1
1)x

]
|i〉 (4.4)

Let us choose |i〉 to be the vacuum state |0〉 of the stretched D1-brane, and let |f〉 be a

coherent state corresponding to the complex amplitude vi(κ) for the D1-brane oscillation of

wavelength κ:

|v(κ)〉 = exp
[
−1

2

∫
dκ|v(κ)|2

]
exp

[∫
dκ vi(κ)ai†(κ)

]
|0〉

where ai† are the creation operators corresponding to the excitations of the D1-brane:

Y i(t, x) =
∫ dκ√

2τ |κ|

(
ai(κ)ei(κx−|κ|t) + ai†(κ)e−i(κx−|κ|t)

)

If we now take into account that an exponential of the field creates a coherent state, we can

rewrite (4.4) as

∫
dxdt exp

[
i(k0

2 − k0
1)t
]
exp

[
−i(k1

2 − k1
1)x

] 〈
v(κ)

∣∣∣∣∣−i(ki
2 − ki

1)√
2τ |κ|

e−i(κx−|κ|t)
〉

(4.5)
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where ∣∣∣∣∣∣−i(ki
2 − ki

1)√
2τ |κ|

e−i(κx−|κ|t)
〉

is the coherent state in which (for every κ) the oscillation of the string with the wave vector

κ is excited with the complex amplitude

−i(ki
2 − ki

1)√
2τ |κ|

e−i(κx−|κ|t)

The inner product of the two coherent states in (4.5) can be evaluated using the standard

formula. Once this is done, (4.5) becomes

∫
dxdt exp

[
i(k0

2 − k0
1)t
]
exp

[
−i(k1

2 − k1
1)x

]

× exp

−1

2

∫
dκ


∣∣∣∣∣∣vi(κ)− i(ki

2 − ki
1)√

2τ |κ|
e−i(κx−|κ|t)

∣∣∣∣∣∣
2

+ i Re

v(κ)(ki
2 − ki

1)√
2τ |κ|

e−i(κx−|κ|t)





The apparent feature of the above amplitude that is important for our purposes is that the

integral in the exponential of the second line will diverge at small κ for a generic v(κ). This

behavior is not surprising, since, for a generic v(κ), the final state of the D1-brane does not

satisfy momentum conservation, and the corresponding amplitude should vanish.

To investigate further into this matter, let us write

vi(κ) =
Ai

√
κ

+ ṽi(κ)

where A is a constant1 and ṽ(κ) is less singular than 1/
√

κ as κ goes to 0. The amplitude

1Note that, for A 6= 0, the state |v(κ)〉 (as constructed above) formally vanishes on account of the

divergence in the normalization factor. This is directly analogous to the situation with the infinitely broad

wave packet states considered in section 3.3, and is merely an artifact of our attempt to normalize a state
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(4.5) can then be rewritten as

∫
dxdt exp

[
i(k0

2 − k0
1)t
]
exp

[
−i(k1

2 − k1
1)x

]

× exp

−1

2

∣∣∣∣∣Ai − i(ki
2 − ki

1)√
2τ

∣∣∣∣∣
2 ∫ dκ

|κ|
+ (finite terms)

 (4.6)

the integral of dκ/|κ| is obviously divergent, so the amplitude will vanish unless

Ai =
i(ki

2 − ki
1)√

2τ
(4.7)

What’s the meaning of this condition?

Consider the Dirichlet momentum carried by the D1-brane:

P i = τ
∫

dx ∂tY
i(x, t) = −i lim

κ→0

√
τ |κ|
2

(ai(κ)− ai†(κ)) (4.8)

If we now compute the expectation value of P for our final state |v(κ)〉, we get

〈v(κ)|P i|v(κ)〉 = −i
√

2τAi

Therefore, (4.7) is nothing other than the momentum conservation condition:

P + k2 − k1 = 0

In other words, we have proved that the scattering amplitude (4.3) vanishes unless the mo-

mentum conservation condition is satisfied. (Please note that our argument has technically

been restricted to the contribution of the last term in the action (4.2) into the dilaton scat-

tering amplitude. However, similar arguments can be devised for the other contributions.)

from a continuous spectrum. Note, however, that it is the physical contents of the state |v(κ)〉 that interests

us, and not the normalization (which can, after all, be adjusted at the end of the computation whichever

way one pleases).
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Can we relate the property that the amplitude vanishes unless the momentum conser-

vation condition is satisfied to the annular divergences in the string diagrams found in the

previous section? To answer this question, we should see how the (IR-divergent) perturba-

tive expansion in 1/τ (equivalent to a perturbative expansion in gst) is implemented in our

present effective field theory setting.

Let us turn back to the action (4.2). Since the kinetic term for the Y -field is accompanied

by the D1-brane tension τ , the powers of Y entering the various matrix elements contributing

to the amplitude will be translated into the powers of 1/τ . Let us concentrate for a moment

on the case when the initial and final states of the D1-brane are vacuum, since this is

the amplitude we’ve been studying in the string theory context. Then, the lowest order

contribution (in 1/τ) to the amplitude (4.3) is

〈0, k2|
τ

4

∫
dtdxY i(t, x)Y j(t, x)

∂2

∂yi∂yj
(Φ(t, x, 0))2 |0, k1〉 (4.9)

This is a divergent expression proportional to

(k1 − k2)
2
∫ dκ

|κ|
(4.10)

We immediately recognize the same dependence2 on the transferred Dirichlet momentum

(k1 − k2)
2 as we found for the annular divergence (2.2). In fact, (4.9) is nothing other than

the contribution from the particular process we’re considering to the string annular diagram.

2The analog of
〈
V (1) · · ·V (n)

〉
D2

of (2.2) in our present computation is

〈0, k2|
1
2

∫
dtdx (Φ(t, x, 0))2 |0, k1〉

which is momentum-independent.
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The annular diagram is divergent, and so is our present contribution. (Please note that one

needs to be careful in relating the cut-off parameter used to regularize the divergent integral

in (4.10) to the world-sheet cut-off employed in string theory).

What happens to this divergence (in the context of the effective field theory) when the

higher order corrections are included? In fact, we have already derived the full resummed

expression (4.6). If all the powers of 1/τ are kept in the expression of the amplitude (4.3),

the result vanishes if the initial and final states of the D1-brane are vacuum. This is in

accord with momentum conservation.

Moreover, if we include more general final states of the D1-brane, we notice that the

amplitude is only non-vanishing for the final states of the D1-brane that carry the amount

of Dirichlet momentum dictated by the momentum conservation. This is the local recoil

phenomenon we’ve described in the introduction.

4.3 Relation to the kinematic peculiarities

of low-dimensional field theories

It has been repeatedly emphasised throughout the above presentation that the infrared

divergences of the string perturbative expansion in the presence of a topological defect are

related to the momentum conservation. This statement may seem paradoxical, since the

momentum is conserved for all possible D-branes, yet the divergences are present only for

Dp-branes with p < 2.

One can furthermore examine, at the level of the DBI action, the higher-dimensional

83



analog of the expression (4.6) derived in the previous section for the case of the D1-brane

and observe, for the case of higher dimensional branes, that the transition amplitude is non-

vanishing, for example, when both initial and final state of the D-brane are chosen to be

vacuum. Does it mean that the momentum conservation is compromised?

The answer to the above question is most certainly no. However, the resolution of the

paradox is instructive and somewhat subtle. One just needs to be conscious about what

states of the D-branes appear in the CFT amplitudes. And this is, in turn, related to the

kinematic properties of the free massless scalar field theories in various dimensions.

Let us start with the intuitively straightforward case of the D0-brane. In this case, the

dynamics of the topological defect is described by a free massless (0+1)-dimensional scalar

field X i(t), which is simply the position of the D-brane. The momentum conservation is

due to the translational symmetry of X i(t), and the scattering states of the D0-brane are

momentum eigenstates. The scattering amplitudes contain the momentum conservation δ-

function, and, as it was described in the previous chapter, the worldsheet CFT “attempts”

to expand this δ-function in a Taylor series thereby producing the infrared divergences.

Imagine now we are to examine closed string scattering off a Dp-brane with p ≥ 2. Again,

the deformations of its worldvolume are described by a free massless (p+1)-dimensional scalar

field X i(ξ, t), and the (Dirichlet) momentum conservation is due to the field translation sym-

metry X i → X i + ai. However, this symmetry is spontaneously broken! The ground state of

a Dp-brane with p ≥ 2 is localized in the Dirichlet directions and does not have a definite

value of the Dirichlet momentum. This explains why, even though momentum is conserved

irrespectively of which D-brane one works with, for the higher dimensional D-branes, the
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amplitude for the D-brane to remain in its vacuum state (as the closed strings scatter off it)

is non-vanishing, the general scattering amplitude does not contain the momentum conser-

vation δ-function, and the infrared divergences in the worldsheet CFT are absent.

Why doesn’t the case of the D1-brane fall into the same category as the higher-dimensional

branes? The deformations of a D1-brane worldsheet are once again described by a free mass-

less (1+1)-dimensional scalar field X i(ξ, t), and the (Dirichlet) momentum conservation is

due to the field translation symmetry X i → X i + ai. However this symmetry is not spon-

taneously broken, since, according to the well-known result by Coleman [25], spontaneous

breaking of continuous symmetries is impossible in two dimensions. The ground state of

a D1-brane is not localized in the Dirichlet directions, and it does have a definite value of

the Dirichlet momentum. Hence the discontinuous momentum dependence of the scattering

amplitudes and the associated infrared divergences in the worldsheet CFT. Mathematically,

these statements about scattering of closed strings off a D1-brane are intimately related to

the much-discussed kinematic peculiarities of free massless scalar fields in two dimensions

[26, 27].

Summary

Contrarily to what one might have näıvely expected, the behavior manifested by the extended

D-branes in response to the impact by the incident closed string is vastly different for the

D1-branes and the higher-dimensional branes. This difference is purely kinematic in nature

and, therefore, it pertains to the case of non-string-theory topological defects as well.
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In response to impact by the closed strings, the D1-branes develop specific wave patterns

propagating away from the point of incidence. These wave patterns do not decay in the

asymptotic future and cause infrared divergences, if one tries to compute scattering ampli-

tudes in the background of a static D1-brane. Such situation is directly analogous to the

(considerably) more familiar case of D0-brane recoil. We have therefore termed it the local

recoil, and described how it should be accommodated within the formalism of string theory.
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Chapter 5

String loop mixing

It is a much-exercised conjecture that the type IIB superstring theory admits an SL(2, Z)

self-duality group, which, in particular, acts on the complexified dilaton as

τ → aτ + b

cτ + d

with some relatively prime integers a, b, c and d satisfying ad− bc = 1. This transformation

law implies, in particular, that the weak coupling regime can be mapped to a finite or even

strong coupling.

Another important aspect of the conjectured duality action is the transformation it in-

duces upon the various branes. Type IIB theory is known to possess a rich spectrum of

1-dimensional geometrical entities known as (p,q)-branes, which can be thought of as bound

states of p fundamental strings and q D1-branes with relatively prime p and q. It is conjec-

tured that the SL(2, Z) self-duality should permute such (p,q)-branes according to(
p

q

)
→
(

a b

c d

)(
p

q

)
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This brings us to a subtlety (perhaps even with a touch of paradox) which will be the

primary concern of this chapter. Indeed, it is well known that, in the perturbative string

expansion, the graviton appears as a particular vibrational state of a loop made of the

fundamental string (F-string). It should then be natural to expect that, at strong coupling,

the graviton should be a vibrational state of a loop made of the D1-brane (D-string). How

would the transition between the two pictures work?

Since we’re still lacking a non-perturbative extension of string theory, the answer to this

question can hardly be obvious. Nor does it need to be unique. Nevertheless, one could

hope that the transition occurs smoothly, without an abrupt switching, say, between the

F-string graviton and the D-string graviton. If that is the case, the physical graviton should

be a mixture of the various (p,q)-loop states, which, at small string couplings, will be almost

entirely an F-string loop; at strong string couplings, will be almost entirely a D-string loop;

and, at finite rational string couplings p/q, will be a loop made of the (p,q)-string1.

In the rest of this chapter, I will present some preliminary considerations intended to

corroborate the picture of dynamical mixing between string loops. Once again, the setting

will be the bosonic string theory rather then the superstring. In this case, there is no SL(2, Z)

duality. Nevertheless, the F- and D-string are still present, and one could pose the question

of their dynamical mixing. The issue is then whether the relevant mixing patterns can be

identified in a way that allows to make contact with how the string loop mixing should work

1I owe this qualitative picture to an incidental conversation with Steven Gubser. It does not appear

to have been extensively discussed in the literature, and should perhaps be seen as a concept of folklore

extraction.
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in the context of the type IIB superstring.

5.1 The fully dynamical worldsheets

In describing the vibrational states of a stretched D-string in the previous chapter, we have

successfully employed the open fundamental strings. It is hard to see how such program

would work for a D-string loop. One should therefore be compelled to resort to a description

in which the spatial configuration of the D-string loop appears explicitly. This is a direct

generalization of the Hirano-Kazama formalism of chapters 1 and 2 to the case of D1-branes.

Of a central importance to our present investigation is the D-string-F-string mixing am-

plitude, which describes a transition between a state containing one D-string loop and a

state containing one F-string loop. The formal expression for such an amplitude can be

constructed along the lines of (1.1), with the dynamical degrees of freedom of the D1-brane

replacing those of the D0-brane:

∫
DΞDX Ds1Ds2 δ [Xµ(θ)− Ξµ(s1(θ), s2(θ))] exp [−SD(Ξ)− SF (X)] (5.1)

In this formula, the embedding of the F-string worldsheet into space-time is described by the

function Xµ(σ), and the embedding of the D-string worldsheet into space-time is described

by the function Ξµ(s). The δ-function enforces the Dirichlet boundary conditions on the

F-string: each boundary point θ is attached to the D-string worldsheet, and the coordinates

of the junction (on the D-string worldsheet) are given by (s1(θ), s2(θ)). The topology of the

F-string-D-string transition diagram is presented on Fig. 5.1a. Note that suitable boundary

conditions should be specified on the open ends of the both cylindrical worldsheets.
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Figure 5.1: Examples of worldsheet diagrams relevant to D-string-F-string loop mixing: a)

D-string-F-string loop transition; b) D-string propagation; c) mass correction for the F-string

loop.

Once again the action SD should be constructed from the string amplitudes themselves,

as it was done in (1.3)

SD[Ξ] =
∑

connected

(gst)
χ

−Vχ

∫
DX Ds1Ds2 δ [Xµ(θ)− Ξµ(s1(θ), s2(θ))] exp [−SF (X)] (5.2)

This choice of action will, in particular, provide for the non-perturbative suppression of the

mixing amplitude. (Note the close analogy with how, in [2], this choice of action played a

central role in making the D-instanton contribution into string scattering non-perturbatively

small.)
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To understand what physical effects are induced by the mixing amplitude (5.1), it is

instructive to recall momentarily how the dynamical mixing of particles occurs in the familiar

setting of quantum field theory. One can start with a Lagrangian containing two species of

particles with masses m and M , and then turn on an interaction which induces mixing

between these two species. In this case, the relevant quantity is the one-particle irreducible

two-point function µ(k2) corresponding to the transition between the two species of particles

occuring at the value of the 4-momentum k. The exact propagator will be given by a familiar

sum of the “geometrical progression” terms of the form

· · · 1

k2 −m2 − i0
µ(k2)

1

k2 −M2 − i0
µ(k2)

1

k2 −m2 − i0
· · ·

The series can, as usually, be resummed, and, if the mm-, mM - and MM -propagators are

arranged in a matrix:  Dmm DmM

DmM DMM


The resummed expression can be conveniently written as

1

k2 −M2 − i0

where

M2 =

 m2 µ(k2)

µ(k2) M2


Since the masses of the physical states are determined by the positions of the poles of

the propagator, the spectral analysis for the case of mixing between two particle species is

reduced to diagonalizing the matrix M2, which would yield the eigenvalues λ1,2(k
2). With
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these eigenvalues, the masses of the physical particle states can be determined by solving

the two equations

m2
1,2 = λ1,2(m

2
1,2)

If we now turn to the case of F-string-D-string mixing bearing in mind the above field-

theoretical consideration, we must realize that, besides the mixing matrix element (5.1),

we shall need to know the spectra of the D-string loop, which can be extracted from the

cylindrical diagram Fig. 5.1b. Furthermore, the interactions with the D-string loop will

introduce corrections to the graviton two-point function, Fig. 5.1c. These diagrams should

be used to extract the entries of the F-string-D-string mixing matrix: m2 µ

µ M2


where m2 and M2 are the masses of the F-string and D-string loop states (in neglect of the

mixing), and µ is the mixing.

The condition of graviton uniqueness can now be formulated in terms of the mixing

matrix. After the diagonalization procedure, one of the two eigenstates must be massless,

and the other one should have a non-perturbatively large mass. The first condition requires

that

m2M2 = µ2 (5.3)

The second condition requires that M should be non-perturbatively large. Furthermore, the

massless eigenstate (the physical graviton) should be predominantly made of an F-string

loop, with a non-perturbatively small admixture of the D-string loop (as long as we stay in

the weak coupling regime). This requres that µ should be non-perturbatively suppressed.
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5.2 The mixing matrix

Unfortunately, no rigorous derivations can be given at this point on the basis of the path

integral (5.1). One complication (in comparison to the D0-brane case analyzed in chapter

1) is that the diffeomorphism-invariant measure for the D1-brane worldsheets is harder to

construct explicitly than the diffeomorphism-invariant measure for the D0-brane worldlines.

One can nevertheless contemplate at the qualitative level how the correct mixing matrix

structure described in the previous section could emerge from the path integral representation

for the mixing amplitudes.

Let us start with the non-perturbatively large value of the D-loop mass M . At the very

first sight, it may appear rather counterintuitive given the definition of the action (5.2).

Indeed, for a nearly flat worldsheet, if we first fix the zero modes of the functions s1 and

s2, the integration over the non-zero modes will produce a constant (independent on the

values of the zero-modes). The integration over the zero modes will then give the area of

the worldsheet A. Thus, for nearly flat worldsheets, one should expect

SD = τA (5.4)

where τ ∼ 1/gst. This is the standard area action, and if it were the whole story, one would

end up with massless excitations, as one does for the fundamental string. Note, however,

that the tension τ is non-perturbatively large. Hence, the typical spatial extent of the D-

string loop will be very small compared to the string scale, and the D-string worldsheet will

be highly curved. Therefore, the approximations made in deriving (5.4) would be invalid.

The non-perturbatively large tension of the D-string suggests that the dynamics of the
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D-string loop will be dominated by tube-like worldsheets with the diameter of the tube much

smaller then the string scale. For a “probe” string appearing in the path integral (5.2), such

thin tube D-string worldsheets will be indistinguishable from a D0-brane worldline (which

would be produced if the diameter of the tube were actually reduced to 0). One should

therefore expect that a sensible estimate for the action of the thin-tube worldsheet will be

SD = M0T + SA

where M0 is the D0-brane mass, T is the length of the tube, and SA vanishes as the area of the

worldsheet goes to 0. Note that all the dependence on the vibrational state of the D-string

loop (and hence all the information on the vibrational excitation spectrum) is contained in

SA. However, regardless of the exact vibrational state of the D-string loop, its mass will

receive additional contribution M0, on account of the difference between the action (5.2) and

the näıve area action (5.4). Since M0 is non-perturbatively large, this explains qualitatively

why the mass of a D-string loop state M should be large.

We shall now turn to the question of mixing. As it has been remarked above, for the

F-strings (whose typical worldsheets are of the size
√

α′), the thin-tube worldsheet of the

D-string appears as though it were a 1-dimensional worldline. The estimate SD = M0T of

the action (which, for a worldline, is given by the expression (1.3)) comes from looking at

the integral over the constant mode of the function t(θ). One must realize, however, that, for

worldsheets located near the endpoints of the worldline, the integral over the non-constant

modes of t(θ) will be different from the worldsheets attached to the interior of the worldline.
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For that reason, the endpoints will give a contribution to the action:

SD = M0T + Sendpoint

where Sendpoint ∼ 1/gst does not depend on T . Hence, each endpoint will contribute a

factor of exp[−Sendpoint] = exp[−O(1/gst)] to the amplitude. (Note the close similarity of

this supression with the non-perturbative suppression of the hard D-instanton amplitudes

suggested in [2].)

The above consideration explains why the mixing µ deduced from the diagram in Fig. 5.1a

is non-perturbatively suppressed. It also suggests that the non-perturbative suppression (by

the factors of exp[−Sendpoint]) is co-ordinated between the diagram on Fig. 5.1a and the

one on Fig. 5.1c precisely in the way suggested by (5.3). Indeed, the thin-tube D-string

worldsheet has one “endpoint” in Fig. 5.1a and two “endpoints” in Fig. 5.1c.

One can therefore conclude that the general kind of coupling constant dependences that

arise in the worldsheet representation for the D-string-F-string mixing problem appear to

be compatible with the educated physical expectations. Of course, one would still need a

more thorough analysis of how the relation (5.3) is fulfilled. More importantly, the various

statements about the asymptotic behavior of the action SD made above would certainly

benefit from strengthening the rigor of the derivations. This would require a more explicit

understanding of the properties of the relevant geometrical path integrals.
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Concluding remarks

The exposition of the previous five chapters has traversed a wide range of topics, and it is

only appropriate to present here a concise summary of the central ideas and results described

in this thesis:

1. Attempts to describe the dynamics of low-dimensional D-branes encounter subtleties

due to the infrared divergences which plague the conventional worldsheet approach.

2. For D0-branes, these infrared divergences signify the failure of the Dirichlet CFT to

describe the D0-brane translational motion.

3. As a powerful remedy against this complication, one can introduce an explicit dy-

namical degree of freedom corresponding to the translational motion of the D0-brane.

The resulting system is described by a geometrical path integral involving dynamical

worldlines and dynamical worldsheets coupled via the Dirichlet boundary conditions.

4. In application to the process of D0-brane annihilation, such formalism permits to

identify the coupling constant dependence of the amplitudes. In particular, one can

exhibit the saddle point structure of the relevant path integration and establish the non-

perturbative suppression of the form exp[−O(1/g2
st)], which is required by unitarity.

5. In application to the process of D0-brane recoil, this formalism allows to clarify how

the Dirichlet CFT should be deformed to accommodate the translational motion of

the D0-brane to the lowest order of gst. The appropriate deformation deduced in this
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thesis is different from the ones previously described in the literature. This is all for the

better, since the deformations previously described in the literature lead to pathological

features of the physical amplitudes, as advocated in chapter 3.

6. For the case of D1-branes, the infrared problems of the Dirichlet CFT description

signify that the response to the D1-brane to the impact by closed strings is of such

nature that the background of a static D1-brane is inadequate when it is bombarded

by the closed strings. This kind of dynamical behavior is closely related to the D0-

brane recoil, and we called it the local recoil. The nature of this phenomenon is purely

kinematical and, therefore, it should be manifest for other 1-dimensional topological

defects, such as the field theory vortex lines.

7. Finally, some preliminary considerations have been given for the question of mixing

between the D1-brane and F-string loops, and how such mixing can be relevant to

the issue of graviton uniqueness in the context of the SL(2, Z) duality of the type IIB

string.
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Appendix A

Identities for the Green functions of

Laplace equation on a unit disk

In evaluating path integrals over the open string worldsheets in flat spacetime, it proves

useful to employ certain identities relating the Neumann and Dirichlet Green’s functions of

the Laplace equation describing the dynamics of the string. The general reason for such

identities to exist is that the difference between Neumann and Dirichlet Green’s functions

satisfies the equation 4σ(N(σ, σ′)−D(σ, σ′)) = const (where the constant accounts for the

constant mode part) and therefore can be expressed through the boundary values of the

Neumann Green function and the normal derivative of the Dirichlet Green function. We

thus arrive at the representation

N(σ, σ′)−D(σ, σ′) =
∫

dθ̃ ∂ñD(σ, θ̃)N(θ̃, σ′)− 1

π

∫
D(σ, σ̃) d2σ̃ (A.1)

where θ parametrizes the boundary (for definiteness, we work with a unit disk in these notes:

σ = (r, θ), 0 ≤ r ≤ 1, 0 ≤ θ < 2π; 4σN(σ, σ′) = δ(σ − σ′)− 1/π, 4σD(σ, σ′) = δ(σ − σ′)).
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In order to resolve this equation with respect to D, we have to prove that ∂nN(θ, θ′) =

−δ(θ − θ′). This relation may appear to contradict the Neumann boundary conditions for

N(σ, σ′), but, in fact, it doesn’t, because of the subtleties of how the on-boundary limits are

taken. Indeed,

N(σ, θ′) ≡ lim
r′→1

N(σ, σ′) ∂nN(θ, θ′) ≡ lim
r→1

∂rN(σ, θ′) = lim
r,r′→1
r<r′

∂rN(σ, σ′)

Now, by virtue of the Neumann boundary conditions,

lim
r,r′→1
r>r′

∂rN(σ, σ′) = 0

(note the different order in which the on-boundary limits are taken!).

Let’s integrate the Laplacian of the Neumann Green function N(σ, σ′) with respect to σ

over the region M = (r0 < r < 1, θ1 < θ < θ2), r0 < r′:

∫
∂M

(d~n·~∇σ)N(σ, σ′) =
∫
M

4σN(σ, σ′)d2σ =
∫
M

(
δ(σ − σ′)− 1

π

)
d2σ =

θ2∫
θ1

δ(θ−θ′)dθ−Area(M)

π

Since N satisfies Neumann boundary conditions and is non-singular away from σ = σ′, in

the limit r0, r
′ → 1, r0 < r′, this reduces to

−
θ2∫

θ1

lim
r,r′→1
r<r′

∂rN(σ, σ′) dθ =

θ2∫
θ1

δ(θ − θ′) dθ

Because θ1 and θ2 are arbitrary, we are forced to conclude that

∂nN(θ, θ′) = −δ(θ − θ′) (A.2)

It is now a matter of rather straightforward manipulations to resolve (A.1) with respect

to D and obtain further useful identities. We first take σ′ to the boundary, differentiate with
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respect to r and take σ to the boundary. This yields

−δ(θ − θ′) =
∫

∂n∂ñD(θ, θ̃)N(θ̃, θ′) dθ̃ − 1

π

∫
∂nD(θ, σ̃) d2σ̃

The second term should not depend on θ by the symmetries of the disc and can therefore be

evaluated by first integrating over θ and then dividing by 2π. This gives 1/2π, i.e.,

∫
∂n∂ñD(θ, θ̃)N(θ̃, θ′) dθ̃ = −

(
δ(θ − θ′)− 1

2π

)

It can be proved via exactly the same method as we used for evaluating ∂nN(θ, θ′) that

∂n∂ñD(θ, θ̃) is orthogonal to the constant modes (in θ and θ̃). It is also known [17] that

N(θ, θ′) on a disk is orthogonal to constant modes and invertible in the sense of integral

convolution. We therefore have to conclude that

∂n∂n′D(θ, θ′) = −N−1(θ, θ′)
∫

dθ̃N(θ, θ̃)N−1(θ̃, θ′) ≡ δ(θ − θ′)− 1

2π
(A.3)

We now differentiate (A.1) with respect to σ and take it to the boundary, which yields

∂nD(θ, σ′) =
∫

dθ̃N−1(θ, θ̃)N(θ̃, σ′) +
1

2π
(A.4)

Substituting this back into (A.1) gives the expression for D:

D(σ, σ′) = N(σ, σ′)−
∫

dθ̃dθ̃′N(σ, θ̃)N−1(θ̃, θ̃′)N(θ̃′, σ′)− 1

2π

∫
N(θ̃, σ′) dθ̃+

1

π

∫
D(σ, σ̃) d2σ̃

∫
D(σ, σ̃) d2σ̃ equals in fact −

∫
N(σ, θ̃) dθ̃/2, since the difference of the two is zero at the

boundary and satisfies Laplace equation in the interior (it should also be evident from ana-

lyzing the symmetries of the above equation with respect to permuting σ and σ′). With this

in mind, we arrive finally at a representation for the Dirichlet Green’s function completely
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in terms of the Neumann Green’s function:

D(σ, σ′) = N(σ, σ′)−
∫

dθ̃dθ̃′N(σ, θ̃)N−1(θ̃, θ̃′)N(θ̃′, σ′)− 1

2π

∫ (
N(σ, θ̃) + N(θ̃, σ′)

)
dθ̃

(A.5)

This relation and the ones derived above occur ubiquitously in evaluating path integrals over

the open string worldsheets.
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Appendix B

Path integrals over the interior

of the open string worldsheet

Path integrals over the string worldsheets can certainly be handled in a variety of ways.

When the interactions/non-linearities are restricted to the worldsheet boundary (systems

with accelerating D-branes or open string backgrounds, e.g.), it is most efficient to perform

first the integral over the interior of the worldsheet (which can be done exactly). Such an

integral can be evaluated once and for all, regardless of what kind of dynamics takes place

at the boundary. We will thus be interested in

I[ξ, J ] =
∫
DXδ(X| boundary − ξ) exp

[
−
∫

d2σ (∇X∇X + iJX)
]

(B.1)

i.e. we’ll be considering the string action with sources, integrated over all the worldsheets

with a given boundary. We parametrize the worldsheet by mapping it to a unit disk. The

boundary is then a unit circle with the coordinate 0 ≤ θ < 2π.

We first revisit the subtleties with how the path integral (B.1) is defined. The fact that
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the action does not depend on derivatives higher than the first suggests that we have to

integrate over all the continuous functions regardless of whether or not their first derivative

has breaks (“fault lines”). Indeed, the most physical way to define the path integral, explic-

itly preserving locality and implementing the finite resolution of a realistic experiment, is

provided by latticization. Then, the path integral is just a multiple integral over the values

of X specified at each lattice cite independently. This allows to approximate any function

X(σ). However, as the lattice spacing is taken to 0, the action will diverge unless X(σ) is

continuous. Therefore, only configurations with continuous X(σ) (regardlessly of whether

or not its first derivative has breaks) will contribute to the path integral.

Whereas latticization provides a rather operational definition of the path integral, it is

not particularly convenient for mathematical manipulations. We are therefore forced to

look for a different, more handy representation. We may try to expand X(σ) in terms of the

eigenfunctions of Laplace operator on the unit disk satisfying Neumann boundary conditions:

X(σ) =
∑
I

xIXI(σ) 4XI = −ω2
IXI ∂nXI | boundary = 0

∫
XIXJd2σ = δIJ

(B.2)

Analogously to the standard Fourier expansion on a unit interval, a wide class of functions

will be amenable to this kind of decomposition. For continuous X(σ), the convergence will

be uniform, which will allow for termwise differentiation. Furthermore, if the first derivative

of X(σ) does not have singularities stronger than breaks, we’ll be able to rewrite the action

as ∫
∇X∇Xd2σ =

∑
IJ

xIxJ

∫
∇XI∇XJd2σ =

∑
I

ω2
Ix

2
I

103



We finally notice that all the continuous X(σ) will be taken an account of if we integrate

over xI ’s, and the above series for the action will only converge to a finite value for contin-

uous configuration, integration over xI ’s will exactly amount to doing the path integral over

configurations suggested by the lattice considerations. We therefore rewrite the integral of

interest as

I[ξ, J ] =
∫

dxIδ(X| boundary − ξ) exp

[
−
∑
I

ω2
Ix

2
I − i

∫
JXd2σ

]
(B.3)

Two side remarks may be in order here. First, the choice of Neumann eigenfunctions is

singled out be the fact that any function appearing in the path integral can be expanded

in that basis with a uniform convergence of the series. If we tried to use, for example,

the Dirichlet eigenfunctions, for any X(σ) not satisfying the Dirichlet boundary conditions,

convergence of the resulting series would not be uniform near the boundary, and the action

for the series representation would diverge instead of converging to the action of the original

configuration X(σ). Second, the choice of Neumann eigenfunctions does not imply at all that

we impose Neumann boundary conditions in the path integral. In fact, since we have allowed

for breaks in the first derivative of X(σ), it is impossible to impose Neumann boundary

conditions in the path integral: a break approaching the boundary will change ∂nX| boundary =

0 to any other value we like. The Neumann boundary conditions are not imposed, but emerge

as an operator identity in this approach—as we would expect—since they could be obtained

from the variational principle in the classical theory.

The path integral (B.3) has been evaluated in [17], although in a less general set-

ting. We first substitute the integral representation for the on-boundary δ-function δ(µ) =
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∫
Dν exp[−i

∫
µνdθ]. After performing the Gaussian integration over xI , we get:

I[ξ, J ] =
∫
Dν δ

(∫
J(σ)d2σ +

∫
ν(θ)dθ

)
exp

[
1

4

∫
J(σ)N(σ, σ′)J(σ′)d2σd2σ′

+
1

2

∫
ν(θ)N(θ, σ′)J(σ′)dθd2σ′ +

1

4

∫
ν(θ)N(θ, θ′)ν(θ′)dθdθ′ + i

∫
ν(θ)ξ(θ)dθ

]
(B.4)

where N is the Neumann Green function:

4σN(σ, σ′) = δ(σ − σ′)− 1

π
N(σ, σ′) = −

∑
I 6=0

XI(σ)XI(σ
′)

ω2
I

We first integrate over the constant mode of ν taking into account that N(θ, θ′) does not

have a constant mode on the boundary of the unit disk:

I[ξ, J ] =
∫
Dν̃ exp

[
1

4

∫
J(σ)N(σ, σ′)J(σ′)d2σd2σ′ +

1

2

∫
ν̃(θ)N(θ, σ′)J(σ′)dθd2σ′

+
1

4

∫
ν̃(θ)N(θ, θ′)ν̃(θ′)dθdθ′ + i

∫
ν̃(θ)ξ(θ)dθ

− 1

4π

∫
J(σ)d2σ

∫
dθ
(
2iξ(θ) +

∫
N(θ, σ′)J(σ′)d2σ′

)]
(B.5)

where ν̃ does not contain the constant mode. Upon the final integration,

I[ξ, J ] = exp
[
1

4

∫
J(σ)N(σ, σ′)J(σ′)d2σd2σ′

−1

4

∫ (
2iξ(θ) +

∫
N(θ, σ)J(σ)d2σ

)
N−1(θ, θ′)

(
2iξ(θ′) +

∫
N(θ′, σ′)J(σ′)d2σ′

)
dθdθ′

− 1

4π

∫
J(σ)d2σ

∫
dθ
(
2iξ(θ) +

∫
N(θ, σ′)J(s′)d2σ′

)]
(B.6)

Or, by virtue of the identities from Appendix A:

I[ξ, J ] = exp
[
1

4

∫
J(σ)D(σ, σ′)J(σ′)d2σd2σ′ − i

∫
ξ(θ)∂nD(θ, σ′)J(σ′)dθd2σ′

+
∫

ξ(θ)N−1(θ, θ′)ξ(θ′)dθdθ′
] (B.7)
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We can readily check that these expressions allow to reproduce the conventional results for

the Neumann and Dirichlet partition functions:

ZNeumann[J ] ≡
∫
Dξ I[ξ, J ] ZDirichlet[J ] ≡ I[0, J ]

The appearance of the Dirichlet function in the final result is not, in fact, surprising, since

an alternative way to do the computation would be to shift the integration variable in (B.1)

by a solution to the Laplace equation, so that the Dirichlet boundary condition δ(X| boundary)

is enforced for the new X(σ). Then we would be justified to expand in the set of Dirichlet

eigenfunctions. The Gaussian integration will give the first term in the exponent of (B.7),

and the last two terms would be surface contributions arising from the shift of the integration

variable.
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