
Robust Bilateral Trade and an Essay on

Awareness as an Equilibrium Notion

Thesis by

Jernej Čopič
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Abstract

The aim of this thesis is to analyze various effects of informational constraints. In

chapters 1 and 2 we consider a robust model of bilateral trade where traders have

private reservation values and utility functions are common knowledge. In chapter

1 we study direct-revelation mechanisms. Under incentive and participation con-

straints, we define the notion of ex-post constrained efficiency, which does not depend

on the distribution of types. Given ex-post incentive and participation constraints, a

sufficient condition for constrained efficiency is simplicity: the outcome is a lottery

between trade at one type-contingent price and no trade. For constant-relative-risk-

aversion environments, we characterize simple mechanisms. Under risk neutrality

they are equivalent to probability distributions over posted prices. Generically, sim-

ple mechanisms converge to full efficiency as agents’ risk aversion goes to infinity.

Under risk neutrality, ex-ante optimal mechanisms are deterministic, and under risk

aversion, they are not.

In chapter 2 we address indirect implementation. We define Mediated Bargaining

Game-a continuous-time double auction with a hidden order book. It is the optimal

bargaining game in the sense that its ex-post Nash equilibria in weakly undominated

strategies constitute the Pareto-optimal frontier of the set of all ex-post Nash equilib-

ria of all bargaining games. In Mediated Bargaining Game, type-monotone Bayesian

equilibria coincide with ex-post Nash equilibria. The inefficiency due to incomplete

information is manifested through delay. In contrast with the direct revelation mech-

anisms, in Mediated Bargaining Game the mechanism designer does not need to know

the agents’ risk attitudes.

Informational constraints may also be a result of agents’ subjective knowledge of
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the economic situation. In chapter 3 we study normal-form games, where each player

may be aware of a subset of the set of possible actions, and has a set of possible

awareness architectures. Awareness architecture is given by agents’ perceptions, and

an infinite regress of conjectures about others. Awareness equilibrium is a steady state

where neither actions nor awareness architectures can change. We provide conditions

under which awareness equilibria exists and study a parametrization of the set of

possible awareness architectures.
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Chapter 1

Ex-Post Constrained-Efficient
Bilateral Trade with Risk-averse
Traders

The work presented in this chapter has been done jointly with Clara Ponsat́ı.

1.1 Introduction

Bilateral trade is a fundamental problem of economics. A unit of an indivisible

commodity is to be traded between a seller and a buyer. The seller has a private cost

of producing the good, and the buyer has a private valuation, these are traders’ types.

Traders may be risk averse, the general shape of their utility functions determines

the environment, which is common knowledge. 1 A desirable model of this situation

ought to be robust, that is, not too sensitive to the details of the specification of

traders’ information.2 If trade is voluntary, agents have incentives to misrepresent

their private information, and efficient exchange is impossible. We provide optimality

bounds for the allocations that can be achieved in equilibrium.

Our work brings two innovations. First, we introduce ex-post constrained effi-

ciency as the optimality criterion which is congruent with robustness. Second, our

1Myerson and Satterthwaite [1983] address this problem under the assumptions that agents are
risk neutral, and that types are drawn independently from distributions which are common knowl-
edge.

2Wilson [1987] advocates detail-free approach to mechanism design. Robust mechanisms for the
bilateral-trade problem were first discussed by Hagerty and Rogerson [1987].
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method allows us to analyze risk-averse environments, and consequently allows for

making comparative statics across different environments. Clearly, risk aversion plays

an important role in many bilateral settings, such as wage bargaining or real-estate

markets. In the absence of noncooperative theories, applied economists have used

cooperative bargaining solutions to analyze such settings. Requiring robustness sim-

plifies the mechanism-design problem, and allows for the analysis of general environ-

ments with risk aversion.

There are two aspects to the question of what are the second-best allocations that

may be achieved in equilibrium. First, since under robustness the traders need not

know the distribution of types, the appropriate equilibrium constraints are the ex-

post incentive and participation constraints. In an environment with private values

(such as the present one), this observation is due to Ledyard [1978]. More recently,

Bergemann and Morris [2005], Chung and Ely [2005], and Jehiel et al. [2005], pro-

vide foundational work for robust implementation. Second, when the mechanism

designer does not know the distribution of agents’ types he can only Pareto maxi-

mize traders’ ex-post utility allocations, and the class of mechanisms that obtain is

the class of ex-post constrained-efficient mechanisms. Under interim incentive and

participation constraints, an analogous notion is the ex-post incentive efficiency, due

to Holmstrom and Myerson [1983], and ex-post constrained efficiency is its natural

extension. Ex-post constrained efficiency is defined via ex-post Pareto domination,

where a mechanism in order to dominate some other mechanism, must allocate bet-

ter utilities to all draws of types. In comparison, ex-ante domination requires that

the mechanism dominate another mechanism on average, which results in a much

stronger notion of constrained efficiency but depends on the distribution of agents’

types.3 Ex-post constrained efficiency is a Paretian criterion, allowing for general

statements about risk-averse environments, where utility is nontransferrable.

In Section 2, we provide sufficient conditions for ex-post constrained efficiency, un-

3Much of the discussion in Holmstrom and Myerson[1983], relating ex-post incentive efficiency to
other notions of efficiency, applies also to the present context with ex-post incentive and participation
constraints, e.g. every ex-ante constrained efficient mechanism has to satisfy ex-post constrained
efficiency, but the reverse need not be the case.
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der ex-post incentive and participation constraints. In additions to these constraints,

it suffices that the mechanism be simple, and that trade takes place with probability

one when reports are the lowest-cost and the highest-valuation. Simplicity means that

the mechanism can be described by two functions of traders’ reports: a probability

of transferring the object and the price at which to trade, conditional on the object

being transferred. Under risk neutrality, all mechanisms are representable in a simple

form, but in general environments, not all mechanisms are simple.4 An example of

a simple mechanism is a posted price, but except for risk-neutral environments, ran-

domizations over posted prices are neither simple, nor ex-post constrained efficient.

In a simple mechanism, the traders have incentives to report truthfully, as a result of

a tradeoff between the probability of trade, and the price that they obtain.

In Section 3, we analyze constant relative risk aversion environments. Under risk

neutrality, we first provide a general characterization of ex-post constrained-efficient

mechanisms, under ex-post incentive and participation constraints, as lotteries over

posted prices.5 We then provide a characterization of simple mechanisms for envi-

ronments with risk aversion, and these are no longer representable by lotteries over

posted prices. When agents become infinitely risk averse, the allocations generically

converge to full ex-post efficiency.

We conclude our analysis by an example of ex-ante constrained efficiency. That

example shows how the characterization of ex-post constrained efficiency can be used

as a tool in the analysis of ex-ante welfare. Under risk neutrality, for a given type dis-

tribution, the ex-ante constrained-efficient mechanism is a posted price, while under

risk aversion, it is a mechanism in which the trading price depends on traders’ valua-

tions. Assuming that in a world with stationary uncertainty, only ex-ante constrained-

efficient exchanges should be observed, this provides a positive observation. In mar-

kets with large risk, relative to agents’ wealth, we observe dispersed prices (correlated

4Under risk aversion, a nonsimple mechanisms may satisfy incentive constraints, but when it is
recast into a simple form (in equilibrium, via certainty equivalents), the resulting simple mechanism
need not satisfy incentive constraints.

5This is a generalization of the Hagerty and Rogerson [1987] results, who prove that under
additional conditions, mechanisms are representable as lotteries over posted prices. The conditions
they impose preclude efficiency assessments.
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to agents’ valuations), while in markets where risk is small, we observe posted pric-

ing. Anecdotal evidence, corroborating this observation is abundant: objects of small

value are generally exchanged at posted prices, while in markets for objects with

large values, such as real estate, the prices are generally negotiated; in markets of

the underdeveloped world, where there is arguably more risk, many more goods are

bargained at bazaars.

Section 4 provides a short conclusion.

1.2 The problem

A seller, s, and a buyer, b, bargain over the price of an indivisible commodity. A

trader i’s payoff from trading at a price p ∈ [0, 1] is given by utility function ui(vi, p),

and traders obtain 0 if no trade takes place. We assume that for i = s, b, ui(vi, p) :

[0, 1]× [0, 1] → R is twice continuously differentiable, and ui(p, p) = ui(vi, ωNT ) = 0,

where ωNT denotes the no-trade outcome. Furthermore, us(vs, p) is increasing in

p, decreasing in vs, concave in each parameter, and satisfying the single-crossing

condition ∂2us

∂vs∂vp
≤ 0. Similarly, ub(vb, p) is decreasing in p, increasing in vb, concave in

each parameter, and satisfying the single-crossing condition ∂2ub

∂vb∂vp
≤ 0. For instance,

if us(vs, p) = us(p − vs) and ub(vb, p) = us(vb − p), ui : [0, 1] → R, i = s, b, are

increasing, concave, and twice differentiable, then the above assumptions are satisfied.

We denote u = (us, ub), and we call u the environment.

Parameters vs and vb are traders’ private reservation values, or types. The inter-

pretation is that vs is the seller’s cost of producing the good, and vb is the buyer’s

valuation of the good. It is common knowledge that pairs of types v = (vs, vb) are

drawn from [0, 1]× [0, 1], according to some continuous joint distribution function F ,

with a strictly positive density f on [0, 1]× [0, 1].6 We stress that congruent with the

notion of robustness F need not be common knowledge, so that traders may have

different beliefs about F , and different beliefs about the beliefs of the other trader

6We could generalize our analysis to environments where vector v is drawn from [v, v]× [v, v] , v <
1/2 < v. This is equivalent to the requirement that F has support on [v, v] × [v, v]. Note also that
common knowledge of the support of F is sufficient for our analysis, but it might not be necessary.
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and so on. We abstract from these considerations by simply assuming that the de-

tails of F are unknown to the traders, and we use the appropriate equilibrium notion

consistent with this assumption.

A direct revelation mechanism (from now on a mechanism) is a game form, map-

ping agents’ reports of their reservation values into outcomes. Denote by ps the

payment received by the seller, and by pb the price charged to the buyer. We assume

that outcomes have to be feasible, so that ps ≤ pb; ωNT is always feasible. We denote

the vector of agents’ reports by ṽ = (ṽs, ṽb). Given agents’ reports, an outcome is

given by a lottery µ[ṽ] over the feasible set, {(ps, pb) | ps ≤ pb} ∪ {ωNT}. Note that

µ[ṽ] is the lottery which the agents face ex post, after having reported their types.

A mechanism m is thus a collection of lotteries m = {µ[ṽ] | supp(µ[ṽ]) ⊂ {(ps, pb) |

ps ≤ pb} ∪ {ωNT}, ṽ ∈ [0, 1]2}.

Given a mechanism m, when agents report ṽ, the expected utility of agent i with

the reservation value vi is

Um
i (ṽ, vi) = Eµ[ṽ]ui (vi, pi) , i = s, b,

where Eµ denotes the expectation with respect to the measure µ. We slightly abuse

the notation and denote by Um
i (v) the expected utility of agent i, i = s, b, when both

agents report truthfully, Um
i (v) = Um

i (v, vi). We again stress that the expectation

operator Eµ has nothing to do with the distribution of agents’ types: utility allocations

Um
i (ṽ, vi) are ex-post expected utilities that traders obtain in a mechanism m when

they report ṽ. Measure µ refers to the randomization over prices for a given reported

vector of valuations ṽ.

We consider mechanisms which are ex-post individually rational (XPIR) and ex-

post incentive compatible (XPIC). We thus require that trade be always voluntary ex

post, and reporting the reservation values truthfully be a dominant-strategy equilib-

rium.

(XPIR) Ex-post Individual Rationality.
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Mechanism m is ex-post individually rational if

supp(µ[ṽ]) ⊂ {(ps, ps) | ṽs ≤ ps ≤ pb ≤ ṽb} ∪ {ωNT}, ∀ ṽ ∈ [0, 1]2.

(XPIC) Ex-Post Incentive Compatibility.

m is ex-post incentive compatible if

Um
i (v) ≥ Um

i (ṽi, vj, vi)∀ vi∀ vj∀ ṽi, i = s, b, j 6= i.

From now on, whenever we write XPIRIC mechanism we mean a direct revelation

mechanism satisfying XPIR and XPIC. We remark that since we are in a private-

value setting XPIC is equivalent to dominant-strategy equilibrium of the game form

defined by the direct-revelation mechanism. An example of XPIRIC mechanism is a

posted price.

Example 1.2.1. In a posted price, the price is deterministic and is independent of the

agents’ reports. Once the traders observe the price, they can trade if they both find

it optimal to do so. Formally,

π(v) = p ∈ [0, 1], ϕ (v) =

 1 if vb ≥ p ≥ vs,

0 otherwise.

In a posted price, it is clearly optimal for each trader to report his valuation truthfully,

regardless of the report of the other trader, so that XPIC holds; XPIR is obviously

satisfied.

It is well known and immediate to prove that XPIC implies monotonicity. It is

also well known and easy to verify that XPIRIC imply uniform continuity of expected

utility of trader i w.r.t. i’s type (see Hagerty and Rogerson [1987], Theorem 1, for

the case when traders are risk neutral). We provide the proof of monotonicity.

Lemma 1.2.2. Let m be XPIC. Then Um
s (v) is strictly decreasing in vs, whenever

Um
s (v) > 0; and Um

b (v) is strictly increasing in vb, whenever Um
b (v) > 0.
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Proof. We provide the proof for the seller. Let Um
s (vs, vb) > 0, for some 0 < vs < vb

and let v′s < vs. Then it must be that µ[v] assigns a positive probability to some

feasible prices, so that by strict monotonicity of us in vs, we have Um
s (v′s, vb, vs) >

Um
s (vs, vb, vs). Hence, by XPIC,

Um(v′s, vb, v
′
s) ≥ Um(v′s, vb, vs) > Um(vs, vb, vs).

1.2.1 Efficiency and ex-post constrained efficiency

Next, we define the efficiency requirements. Ex-post efficiency is a standard require-

ment, albeit a very strong one.

(EFF) Ex-Post Efficiency.

m is ex-post efficient if the allocation (Um
s (v), Um

b (v)) is Pareto-optimal for each

v ∈ [0, 1]2.

Example 1.2.1, continued. No posted price satisfies EFF, since in a posted price it

can always happen ex post that either p > vb > vs or vb > vs > p.

XPIRIC and EFF mechanisms do not exist. The following proposition is a simple

extension of the Myerson and Satterthwaite [1983] impossibility result to the present

setup. The ex-post incentive and participation constraints are stronger than the

interim constraints considered in Myerson and Satterthwaite [1983]. For that reason,

the proof of the impossibility result is very simple in the present setup. Note that

the impossibility result stated here is general and relies only on u being monotonic;

Myerson and Satterthwaite [1983] result requires risk neutral traders.

Proposition 1.2.3. There does not exist a XPIRIC bilateral-trade mechanism satis-

fying EFF.
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Proof. Let m = {µ[v]; v ∈ [0, 1]2} be an XPIRIC and EFF mechanism. We show that

this is impossible. For v ∈ [0, 1]2 s.t. both traders are risk neutral on supp(µ[v]),

define π̄(v) = Eµ[v][p]. Clearly, for all such v, Um
i (v) = ui(π̄(v), vi). Next, for all

v ∈ [0, 1]2, s.t. at least one trader has a strictly concave utility function on supp(µ[v]),

it has to be that supp(µ[v]) is a singleton. Otherwise the allocation under lottery

µ[v] would not be Pareto efficient. Denote the price at which trade occurs by π̄(v),

and again Um
i (v) = ui(π̄(v), vi), for all such v. By Lemma 1.2.2, π̄(v) is increasing in

both vs and vb. By XPIR, it must be that π̄(x, x) = x, ∀ x ∈ [0, 1]. Now take a v =

(vs, vb), vs < vb. If π̄(v) > vs, then b would miss-report to v′b = vs, so XPIC for b would

be violated. If π̄(v) < vb, then s would miss-report to v′s = vb, a contradiction.

Since EFF is not possible we consider XPIRIC mechanisms that attain constrained-

efficient allocations. The constrained-efficiency criterion that we propose is the ex-post

constrained efficiency. This notion is an extension of the ex-post incentive efficiency,

due to Holmstrom and Myerson [1983].

(XPCE) Ex-Post Constrained Efficiency:

Denote the set of incentive and participation constraints by IP (these could be ei-

ther ex-post, interim, or any other set of participation and incentive constraints). A

mechanism m, satisfying IP , is ex-post dominated, under IP , by another mechanism

m′, m′ �xp|IP m, if m′ satisfies IP , and

Um′

s (v, vs) ≥ Um
s (v, vs) and Um′

b (v, vb) ≥ Um
b (v, vb) ,∀ v,

with a strict inequality for an open set of v’s, for at least one of the traders. A

mechanism m is ex-post constrained efficient under IP , if there does not exist a

mechanism m′ s.t. m′ �xp|IP m. We call XPCE mechanisms, under XPIRIC, cexpiric

mechanisms.

The notion of ex-post constrained efficiency is tailored to our assumption that the

joint distribution of traders’ valuations has a full support and is continuous (regardless

of the exact shape of the distribution). The requirement that the strict inequality
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hold for an open set of types is then equivalent to requiring that the event in which

at least one player is strictly better off have a nonzero probability. Equivalently we

could require that for at least one trader, the Lebesgue measure of the set of types

that are strictly better off be positive.

Example 1, continued. Let p̄ and ¯̄p be two posted prices, 0 ≤ p̄ < ¯̄p ≤ 1. Then

neither ¯̄p �xp|IP p̄ nor the other way around. To see for instance the former, observe

that under p̄ the draws of types v s.t. vs < p̄ < vb all obtain a strictly positive utility,

while under p̄ these pairs of traders obtain a 0 utility.

When IP are the interim incentive and participation constraints, this constrained

efficiency notion is equivalent to the ex-post incentive efficiency as defined by Holm-

strom and Myerson [1983]. Per se, XPCE does not depend on the specification of the

distribution of agents’ types, so that this is an optimality criterion that is suitable for

robustness. Moreover, since it is a Paretian criterion, no assumptions are made on

the interpersonal utility comparisons, which is important for the environments with

risk aversion (i.e., environments with nontransferable utility).

Clearly,

∅ = {m | m XPIRIC and EFF } ⊂ {m | m cexpiric},

where the first equality follows from Proposition 1.2.3. The requirements under XPIR

and XPIC defined above are the strongest participation and incentive-compatibility

criteria, but XPCE is the weakest constrained-efficiency notion; XPIR and XPIC are

stronger than their interim analogs, while XPCE is weaker than interim constrained

efficiency, which in turn is weaker than the ex-ante constrained efficiency. In other

words, regardless of what is specified by IP , the sets of the ex-ante and the interim

constrained-efficient mechanisms are supersets of EFF mechanisms, and subsets of

XPCE mechanisms.
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1.2.2 Sufficient conditions for cexpiric; Simple mechanisms

We start by a simple sufficient condition for cexpiric.

Proposition 1.2.4. Posted prices are cexpiric.

Proof. Let m be a posted price, given by some p∗ ≥ 0. That m satisfies XPIRIC is

obvious. We show that there are no XPIRIC mechanisms which ex-post dominate

posted prices.

Suppose there exists a m′ s.t. m′ �xp p∗, (we use p∗ to refer both to the mechanism

m and to the posted price). Since on the set {v | vs ≤ p∗ ≤ vb} the allocation under

m is Pareto optimal, the allocation under m′ has to coincide with the allocation

under p∗ on that set. In particular, on the line segments vs = p∗ and vb = p∗, m′ is

identical to p∗, since otherwise the XPIR constraints for m′ would be violated. Thus,

by monotonicity of Um′
i w.r.t. vi, Um′

s (v) = 0 for vs > p∗, and Um′

b (v) = 0 for vb < p∗.

Since m′ �xp p∗, by definition of ex-post constrained efficiency, there exists either

an open rectangle Γ ⊂ {v | p∗ ≥ vb > vs} s.t. Um′
s (v) > 0 for v ∈ Γ, or an open

rectangle Γ′ ⊂ {v | p∗ ≤ vs < vb} s.t. Um′

b (v) > 0 for v ∈ Γ′. Both of these two

cases are treated in exactly the same way so we consider the first possibility. Since

Um′

b (v) = 0 for vb < p∗ (by monotonicity of Um′

b and Um′

b (vs, p
∗) = 0), it is clear

that Um′

b (v) = 0 for v ∈ Γ, and since for v ∈ Γ, Um′
s (v) > 0, it must be that on Γ,

m′ is a mechanism that for the buyer randomizes between one price π′(v) = vb and

ωNT , and the probability on π′(v) = vb must be positive. Denote this probability by

ϕ′b(v). So fix a v̄ ∈ Γ. Clearly, vb = p∗ has incentives to report v̄b instead of p∗ since

ϕ′b(v̄)ub(v̄b, p
∗) > 0 = Um′

b (vs, p
∗), a contradiction.

On a more abstract level, one can think of a mechanism as an assignment of

feasible ex-post utility payoffs. Under risk neutrality, the standard parametrization

of these payoffs is by specifying, at each vector of reports, the probability of trans-

ferring the object, and the expected monetary transfer between the traders. Such

parametrization is without loss of generality only under risk neutrality, if XPIRIC

hold. A slightly different parametrization is more convenient here. In general envi-

ronments, we parametrize agents’ expected utilities by the probability of trade and
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the price at which to trade, conditional on trade taking place (both are functions of

agents’ reports). Under risk neutrality, this parametrization is equivalent to the stan-

dard one. In general environments, we call the mechanisms that can be parametrized

in this way simple mechanisms.7

We define a simple mechanism m as a mechanism where each µ[ṽ] is a binary

lottery between one price and ωNT . A simple mechanism m is represented by a pair

of functions (π, ϕ) : [0, 1]2 → [0, 1]2. Given agents’ reports, π(ṽ) is the price at which

the agents trade, ϕ(ṽ) is the probability of trading at that price, and 1− ϕ(ṽ) is the

probability of ωNT .

Example 1, continued. A posted price p̄ is a simple mechanism: π(v) = p̄, ∀ v ∈

[0, 1]2; ϕ(v) = 1 if and only if vb ≥ p̄ ≥ vs, and ϕ(v) = 0 otherwise.

As we have shown in Proposition 1.2.4, one (very strong) sufficient condition for

cexpiric is that a mechanism is a posted price. We can relax this condition consider-

ably. Under a mild assumption on the utility functions, simple mechanisms satisfying

XPIRIC, and s.t. the lowest-cost seller and the highest-valuation buyer trade ex-post

with certainty are cexpiric.

Theorem 1.2.5. Let us(vs, p) = us(p−vs) and let ub(vb, p) = ub(vb−p), let u′′i (x) < 0,

∀ x ∈ [0, 1] for at least one i, and let the following condition hold:

ui(x) 6≡ x ⇒ u′′′i (x) ≥ 0, i = s, b.

If m = (π, ϕ) is a simple, XPIRIC mechanism for the environment specified by u,

and ϕ(0, 1) = 1, then m is cexpiric.

Proof. See the Appendix.

In the following example, we provide two mechanisms. One mechanism is simple,

7Clearly, if IP are not imposed then such parametrization is always without loss of generality.
However, in a general environment, when a mechanism m satisfying XPIRIC, but which is not
simple, is reparametrized into a simple form, it may no longer satisfy XPIRIC.
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the other is not. In this example, the simple mechanism satisfies the assumptions of

Theorem 1.2.5 and it ex-post dominates the nonsimple mechanism.8

Example 1.2.6. Let us(p, vs) = (p − vs)
γ, us(p, vb) = (vb − p)γ, γ ∈ (0, 1]. Consider

the following two mechanisms. Let m be simple and given by π(vs, vb) = vs+vb

2
and

ϕ(vs, vb) = max{0, (vb − vs)
γ}. It is easy to check that m is XPIRIC. Next, let m̄ be

given by lottery Fp ≡ U [0, 1] over posted prices, where U [0, 1] denotes the uniform

distribution over [0, 1]. In other words, m̄ is a mechanism where the price is drawn

randomly from a uniform distribution, and the traders trade if it is individually

rational for both. When traders are risk neutral, i.e., γ = 1, Um
i (v) = U m̄

i (v),∀ v, i =

s, b, so that m, m̄ are equivalent. When γ < 1, m̄ is not simple, and it is ex-post

dominated by m. We return to this in Section 1.3.

1.2.3 Differentiable mechanisms and first-order conditions

If in a mechanism m the expected utilities of agents are differentiable, then the XPIC

can be specified as a first-order condition (FOC). In this subsection, we show that if a

simple mechanism is differentiable, then this FOC is necessary and sufficient, so that

all simple differentiable XPIRIC mechanisms are given as all possible differentiable

solutions (π, ϕ) to the FOC.

Given a mechanism m, we denote by Sm the set of types where both traders obtain

a strictly positive expected utility under truthful reports. When m = (π, ϕ), Sπ,ϕ can

be written as

Sπ,ϕ = {v | v ∈ [0, 1]× [0, 1], ϕ(v) > 0, vs < π(v) < vb}.

(DIFF) Differentiability. A mechanism m is differentiable if Um
i (v) are differ-

entiable on Sm.

We remark that a simple XPIRIC mechanism (π, ϕ) is differentiable if and only

8Our conjecture is that under the above assumptions on the environment, simplicity is also
necessary for ex-post constrained efficiency. Insofar we have been unable to prove this.
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if π and ϕ are both differentiable, which follows from the Implicit Function Theorem

and the fact that XPIC implies Um
i (v) is strictly monotonic in vi on Sm. Cexpiric

mechanisms that satisfy DIFF will be referred to as dexpiric.

Proposition 1.2.7. A simple and DIFF mechanism m = (π, ϕ) is XPIRIC if and

only if, ∀ v ∈ Sπ,ϕ,

∂ϕ(v)
∂vs

us(π(v), vs) = −ϕ(v)∂us(π(v),vs)
∂p

∂π(v)
∂vs

,

∂ϕ(v)
∂vb

ub(π(v), vb) = ϕ(v)∂ub(π(v),vb)
∂p

∂π(v)
∂vb

.
(1.1)

Proof. We derive the FOC for the seller. It is necessary that

∂Um
s (v, v′s)

∂v′s
|v′s=vs= 0,

which gives the desired condition. For sufficiency see the Appendix.

The interpretation of this FOC is that the agents are provided with the correct

incentives by a marginal tradeoff between the price and the probability of trade.

1.3 Constant relative risk-aversion environments

In this section, we analyze symmetric constant relative risk aversion (CRRA) en-

vironments. CRRA utility functions are specified by us(p, vs) = (p − vs)
γs and

ub(p, vb) = (vb − p)γb , where γi ∈ (0, 1], i = s, b, and by symmetry we mean that

γs = γb = γ. Note that when γ = 1 this is the standard risk-neutral environment,

and as γ tends to 0, agents’ risk aversion tends to infinity.

1.3.1 Risk neutrality

When traders are risk neutral, the set of cexpiric mechanisms is equivalent to the set

of probability distributions over posted prices, in terms of utility allocations to the

traders. A distribution over posted prices is a mechanism given by some distribution

function Fp : [0, 1] → [0, 1]. The posted price p is drawn at random according to Fp,
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independently from trader’s reports, and the traders then trade at p if and only if

trading at p is individually rational for both of them. Theorem 1.3.1 is a generalization

of the Hagerty and Rogerson [1987] results.9

Note that if Fp is a probability distribution over posted prices (i.e., Fp(1) = 1)

and (πFp , ϕFp) is a simple representation of this mechanism, then ϕ(0, 1) = 1. The

lowest-cost seller and the highest-valuation buyer trade with probability 1, regardless

of the specification of Fp. Since no types can trade with a probability higher than 1,

Fp(1) ≤ 1 is a feasibility restriction on the distributions.

Theorem 1.3.1. For ui(x) = x, i = s, b, a mechanism (π, ϕ) is XPIRIC if and

only if there exists a distribution function Fp over posted prices, i.e., an increasing

Fp : [0, 1] → [0, 1], with Fp(0) = 0 and Fp(1) ≤ 1, such that

π(v) = EFp [ω | ω ∈ (vs, vb)]

ϕ(v) = max {Fp(vb)− Fp(vs), 0} .

Proof. First, a distribution Fp(.) over posted prices satisfies XPIRIC, since every

posted price is XPIRIC and Fp is independent of traders’ reports. The simple rep-

resentation of the mechanism given by Fp is ϕ(v) = max {F (vb)− F (vs), 0} and

π(v) = EFp [ω | ω ∈ (vs, vb)], i.e., expected payoffs are the same as those generated

under Fp (it is very easy to verify this).

For the converse, take an XPIRIC (π, ϕ). It is enough to show that ϕ(v) = ϕ(0, vb)−

ϕ(0, vs) since we can then define Fp(ω) = ϕ(0, vb) and it follows immediately that

π(v) = EFp [ω | ω ∈ (vs, vb)].

XPIRIC implies that ϕ(.) is nonincreasing in vs and nondecreasing in vb. By

Lemma 1.2.2, Uπ,ϕ
i (v) is monotonic in vi, whenever Uπ,ϕ

i (v) is strictly positive. Take

9They establish that for a mechanism satisfying XPIRIC, and s.t. either (ϕ, π) are twice contin-
uously differentiable, or the image of ϕ is {0, 1}, there exists a payoff-equivalent distribution over
posted prices.
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the seller and let v′s > vs. By XPIC,

ϕ(vs, vb)(π(vs, vb)− vs) ≥ ϕ(v′s, vb)(π(v′s, vb)− vs), and

ϕ(v′s, vb)(π(v′s, vb)− v′s) ≥ ϕ(vs, vb)(π(vs, vb)− v′s).

By subtracting first the rhs, and then the lhs of the second inequality from the first

inequality, we obtain

ϕ(vs, vb)(vs − v′s) ≥ Uπ,ϕ
s (vs, vb)− Uπ,ϕ

s (v′s, vb) ≥ ϕ(v′s, vb)(vs − v′s).

Thus, ϕ is weakly decreasing in vs, and since ϕ is bounded this implies that Uπ,ϕ
s (vs, vb)

is Lipschitz in vs for each vb, so that it is absolutely continuous. Hence, it is an

integral of its derivative. Again, by above inequalities, ∂Uπ,ϕ
s (z,vb)
∂vs

= ϕ(v), whenever

this derivative exists. Thus, Uπ,ϕ
s (v) can be expressed as

Uπ,ϕ
s (v) =

∫ vb

vs

∂Uπ,ϕ
s (z, vb)

∂vs

dz =

∫ vb

vs

ϕ(z, vb)dz.

Similarly, we obtain Uπ,ϕ
b (v) =

∫ vb

vs
ϕ(vs, z)dz, and adding the two equations yields

ϕ(v) =
1

vb − vs

∫ vb

vs

ϕ(vs, z) + ϕ(z, vb)dz, ∀ v ∈ [0, 1]2 .

The claim now follows from the following theorem.

Theorem 1.3.2. Consider a function ϕ(vs, vb), which is bounded, increasing in vs,

decreasing in vb, and nonnegative, for (vs, vb) ∈ [0, 1]2. Let ϕ(vs, vb) satisfy,

ϕ(vs, vb) =
1

vb − vs

∫ vb

vs

ϕ(τ, vb) + ϕ(vs, τ)dτ, ∀ (vs, vb) ∈ [0, 1]2. (1.2)

Then ϕ(vs, vb) = ϕ̃(vb)− ϕ̃(vs),∀ vb ≥ vs, where ϕ̃(.) is some increasing function.

Proof. See the Appendix.

Each distribution function over posted prices is XPIRIC, but only the probability
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distributions are ex-post undominated. The proof follows directly from Theorem

1.3.1.

Corollary 1.3.3. A mechanism m is cexpiric if and only if m can be represented as

a probability distribution over posted prices.

Proof. A distribution over posted prices, which is not a probability distribution, is

ex-post dominated by some probability distribution. On the other hand, a probabil-

ity distribution over posted prices is not ex-post dominated by another probability

distribution over posted prices, the proof of which is the same as the proof that two

posted prices do not ex-post dominate each other.

We remark that by Corollary 1.3.3, the dexpiric mechanisms under risk neutral-

ity are given simply by continuously differentiable probability distributions Fp over

posted prices. Under risk neutrality, dexpiric mechanisms are therefore generic within

the class of cexpiric mechanisms. Nonetheless, if the distribution of types were known,

then the ex-ante optimal XPIRIC mechanism under risk neutrality is a degenerate

distribution over posted prices (see Section 1.3.3), which is a discontinuous mecha-

nism.

1.3.2 Risk aversion

We first treat the symmetric case, when both agents have the same risk-aversion

parameter, i.e., when ui(x) = xγ, i = s, b, γ ∈ (0, 1]. Then we can explicitly compute

all simple XPIRIC mechanisms. We use this result to show that in a sequence of

symmetric environments, when relative risk aversion of traders converges to ∞ point-

wise, every simple cexpiric m, satisfying Sm = {v | vs < vb}, converges to ex-post

efficiency (EFF).

Proposition 1.3.4. Let ui(x) = xγ for γ ∈ [0, 1], i = s, b. Then a simple mechanism

m = (π, ϕ) is cexpiric if and only if
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ϕ (v) =


(∫ vb

vs
dF (z)

)γ

, if vb ≥ p ≥ vs,

0, otherwise,

π(v) =
1

F (vb)− F (vs)

∫ vb

vs

xdF (x), if vs < vb,

(and π(v) = vs, for vs ≥ vb), for some probability distribution F : [0, 1] → [0, 1].

Proof. For ui(x) = xγ, i = s, b, wherever (π, ϕ) are differentiable, the first-order

conditions (1.1) are,

∂ϕ(v)
∂vs

(π(v)− vs) + γ ∂π(v)
∂vs

ϕ(v) = 0,

∂ϕ(v)
∂vb

(vb − π(v))− γ ∂π(v)
∂vb

ϕ(v) = 0.
(1.3)

By setting ϕ(v) = ϕ̄(v)γ we obtain exactly the same system of equations for (π, ϕ̄) as

under risk neutrality, and the claim follows from Theorem 1.3.1.

The following corollary is immediate.

Corollary 1.3.5. For ui(x) = xγ, γ ∈ (0, 1), i = s, b, no lottery over posted prices

is XPCE. Conversely, a simple IRIC mechanism m that is not a posted price is not

representable by a lottery over posted prices.

Observe that Proposition 1.3.4 implies that every mechanism m, with Sm = {v |

vs < vs}, satisfies the property that whenever agents become infinitely risk averse,

the allocation converges to full efficiency. Under risk neutrality, such mechanisms are

precisely probability distributions over posted prices with a full support.

1.3.3 Ex-ante optimality

We provide an example to illustrate the usefulness of the characterization in Proposi-

tion 1.3.4 in order to make statements about the ex-ante constrained-efficient mech-

anisms under risk aversion. We make two remarks. First, in order to perform ex-ante
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welfare analysis, one has to know the type distribution. The interpretation in the

context of robustness is that this is a positive observation: if there is an underlying

distribution of types, and we expect to observe only the constrained-efficient mecha-

nisms, then ex-ante constrained efficiency is an appropriate notion. As we mentioned

before, this class is a subclass of cexpiric mecanisms.

Second, we only proved that if incentive and participation constraints are met

and trade assured for the maximum valuation and minimum cost pair, simplicity is

sufficient - we did not prove that it is necessary. Thus, a nonsimple ex-post constrained

efficient mechanism may exist, and it may be that such mechanism is ex-ante optimal.

What the example shows is that necessarily, when agents are risk averse, the ex-ante

optimal mechanism is not deterministic (trade may happen with positive probability

not equal to 1). Namely, among the simple mechanisms the ex-ante optimal one is a

lottery, and the only deterministic mechanisms are posted prices.10

The analysis of the present CRRA example, with γs = γb = γ, is simple because we

have the closed-form solutions for all simple cexpiric mechanisms. A similar exercise

could be performed more generally, but the computations would be numerical at all

steps of the analysis.

We assume that the traders’ types are i.i.d., uniformly distributed on [0, 1], so that

f(vs, vb) = 1,∀ vs, vb ∈ [0, 1], where f(., .) is the density of F , the traders’ distribution

of types. To keep things simple we look at a utilitarian ex-ante social welfare function,

Wm =

∫
vs∈[0,1]

∫
vb∈[0,1]

(Um
s (vs, vb) + Um

b (vs, vb)) f(vs, vb)dvbdvs,

where m is a mechanism.

The problem of designing the ex-ante optimal simple IRIC mechanism can be

10Another way to view this result is in terms of linear programing. Solving for the ex-ante
optimal mechanism under risk neutrality is to solve a linear program on the convex set of cexpiric
mechanisms, so that it is not surprising that a solution is generically a “corner” of this set, i.e., a
posted price. When agents are risk averse, the ex-ante optimization is no longer a linear program,
and the optimal mechanisms are more interesting.
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written as

maxm Wm

s.t. m XPIRIC and simple.
(1.4)

Every m which is ex-ante constrained efficient has to be cexpiric. Hence, it is in

expression (1.4) enough to optimize over all cexpiric mechanisms. By Proposition

1.3.4 and since f(., .) ≡ 1, the problem (1.4) can be written as

max
Fp

∫ 1

0

∫ 1

0

(ϕ(vs, vb) [(π(vs, vb)− vs)
γ + (vb − π(vs, vb))

γ]) dvbdvs,

where ϕ(vs, vb) = (max{Fp(vb) − Fp(vs), 0})γ and π(vs, vb) = EFp [p | vs ≤ p ≤ vb].

This can be rewritten as

max
fp

∫ 1

0

∫ 1

vs

[(∫ vb

vs

(t− vs)fp(t)dt

)γ

+

(∫ vb

vs

(vb − t)fp(t)dt

)γ]
dvbdvs.

Denoting G(t) =
∫ t

0
Fp(τ)dτ , and letting

ν(vs, vb) = [G(vb)−G(vs)] (vb − vs) ,

we can rewrite the above expression (integrate by parts each of the two innermost

integrals and compute the appropriate derivatives) as

max
ν

∫ 1

0

∫ 1

vs

[(
−2

ν(vs, vb)

vb − vs

+
∂ν

∂vb

)γ

+

(
2
ν(vs, vb)

vb − vs

+
∂ν

∂vs

)γ]
dvbdvs (1.5)

The maximization problem (1.5) is a manageable optimization problem. We can in

principle compute its solutions, using the calculus of variations. Except when γ = 1,

we cannot compute the solutions in closed form. When γ = 1 the problem simplifies

substantially since only the terms involving the derivatives of ν remain. It is then

straightforward to compute that the ex-ante optimal mechanism is a posted price at

p = 1
2
, which we can also easily deduce directly: there is no reason to randomize over

suboptimal prices.

When γ < 1 the ex-ante optimal mechanism is not a posted price. To see this,
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compute the necessary first-order condition of (1.5),

∇.H∇ν = Hν ,

where H =
∫ 1

0

∫ 1

vs

[(
−2ν(vs,vb)

vb−vs
+ ∂ν

∂vb

)γ

+
(
2ν(vs,vb)

vb−vs
+ ∂ν

∂vs

)γ]
dvbdvs, and ∇ is the gra-

dient operator.11 The expression for the first-order condition is somewhat messy, but

it is immediate that, when γ < 1, a constant function does not solve this equation,

so that no posted price is a solution when γ < 1. Since the ex-ante optimal simple

mechanism is not a posted price it then follows that ex-ante optimal mechanism must

be probabilistic. It is also clear that a lottery over posted prices cannot be optimal

since when γ < 1 simple mechanisms dominate such lotteries by the representation

of Proposition 1.3.4. Thus an ex-ante optimal mechanism under risk aversion nec-

essarily has the feature that prices depend on agents valuations, so that if there is

dispersion of valuations we should also observe dispersion in prices.

1.4 Conclusion

We focused on the simplest exchange with a two-sided incomplete information. The

key to our analysis is the use of the distribution-free concept of ex-post constrained

efficiency, in conjunction with Theorem 1.2.5. These methods apply more generally.

Immediate is the extension to the problem of providing a public good with private

valuations, analogous to Mailath and Postlewaite [1990], but incorporating robustness

and risk aversion.

Present results provide lower bounds for efficiency of optimal Bayesian mecha-

nisms. We remark, however, that the results here hold for environments with corre-

lated types, whereas under interim incentive and participation constraints, with cor-

relation, full efficiency is possible (see Cremer and Maclean [1985,1988] and Mcafee

and Reny [1992]).

11Here, H∇ν denotes the vector of partial derivatives of H w.r.t. all the components of ∇ν, and
∇.H∇ν is the dot product of gradient operator with H∇ν - i.e., it is the sum of components of H∇ν ,
each differentiated w.r.t. the appropriate component of v.
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In the present paper, we addressed the case where the mechanism designer knows

the shape of the agents utilities. This information is necessary for the designer to

know, in order to be able to construct incentive-compatible direct-revelation mecha-

nisms. In chapter 2, we show that when the mechanism designer does not know the

shape of the traders’ utility functions, but this information is known to the traders,

the mechanism designer can construct an optimal indirect game form, the mediated

bargaining game. The equilibria of the mediated bargaining game implement the

ex-post constrained-efficient allocations described here.

Appendix

Proof of Theorem 1.2.5.

We will need the following Lemma to show that a nonsimple mechanism cannot ex-

post dominate a simple one.

Lemma 1.4.1. Assume utilities depend only on the net surplus, us(vs, p) = us(p−vs)

and ub(vb, p) = us(vb − p), ui : [0, 1] → R, i = s, b. Also assume that u′′i (y) < 0,∀ y ∈

[0, 1], for at least one i, and u′′′i (y) ≤ 0,∀ y ∈ [0, 1], i = s, b. Next, let µ be a measure

with supp(µ) ⊂ [0, 1], let Let ui satisfy u′′i (y) < 0,∀ y ∈ [0, 1], for at least one i, and

u′′′i (y) ≤ 0,∀ y ∈ [0, 1], i = s, b. Next, let µ be a measure with supp(µ) ⊂ [0, 1], let

Uµ
s = Eµ[us(y)],

Uµ
b = Eµ[ub(y)],

and define p, σ ∈ [0, 1] by σus(p) = Uµ
s , σub(1 − p) = Uσ

b . Then at least one of the

following must be true:

1. µ is a degenerate point-mass at p and σ = µ[{p}],

2. σu′s(p) < Eµ[u′s(y)], or

3. σu′b(1− p) < Eµ[u′b(1− y)].
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Proof. Suppose µ is nondegenerate. First note that p and σ are uniquely defined.

Next, we can assume without loss of generality that by normalization, µ([0, 1]) = 1.

Since u′′i (y) < 0, it follows by Jensen’s inequality that

us (Eµy) ≥ Eµ[us(y)] = σus(p),

ub (Eµy) ≥ Eµ[ub(y)] = σub(1− p),

where at least one of the inequalities is strict, and σ < 1. If Eµy ≤ p, then by

convexity of u′s and Jensen’s inequality,

Eµu
′
s(y) ≥ u′s(Eµy) ≥ u′s(p) > σu′s(p).

Alternatively, if Eµy ≥ p, then by convexity of u′b,

Eµ[u′b(1− y)] ≥ u′b (1− Eµy) ≥ u′b(1− p) > σu′b(1− p).

Now we are ready to prove Theorem 1.2.5.

Proof. By XPIRIC, Um
i (v) is uniformly continuous and monotonic w.r.t. vi, at each

v ∈ [0, 1]2, s.t. Um
i (v) > 0, implying that the left and the right limit of the partial

derivative of Um
i (v) w.r.t. vi exist. Thus, the XPIC constraints can be written as:

∂+Um
s (v)

∂vs

≤ −Eµ[v][u
′
s(x− vs)] ≤

∂−Um
s (v)

∂vs

≤ 0,

∂−Um
b (v)

∂vb

≥ Eµ[v][u
′
b(vb − x)] ≥ ∂+Um

b (v)

∂vb

≥ 0.

This is easily verified using standard arguments. A mechanisms m = {µ[v] | v ∈

[0, 1]2} is differentiable at v ∈ [0, 1]2 if and only if the incentive constraints hold at v
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with equalities, i.e.,
∂Um

s (v)

∂vs

= −Eµ[v][u
′
s(x− vs)],

∂Um
b (v)

∂vb

= Eµ[v][u
′
b(vb − x)].

As in the case of risk neutrality, Um
i (v) is absolutely continuous. Hence, for each vj,

∂Um
i (v)

∂vi
exists almost everywhere, and Um

i (v) is the integral of its derivative w.r.t. vi.

By XPIRIC, this gives

Um
s (vs, vb) =

∫ vb

vs
Eµ[τ,vb] [u

′
s(x− τ)] dτ,

Um
b (vs, vb) =

∫ vb

vs
Eµ[τ,vs] [u

′
b(x− τ)] dτ.

(1.6)

Now let m be simple, m = (ϕ, π), and the allocation at v = (0, 1) be Pareto

optimal. Assume there exists an m̃ which ex-post dominates m. Assume first that m̃

is simple, m̃ = (ϕ̃, π̃).

At v = (0, 1) the allocation assigned by m̃ must be the same as the allocation under

m, by Pareto optimality. Take the line Ls(1) = {(vs, 1) | vs ∈ [0, 1]}. By assumption,

Um
s (v) ≤ U m̃

s (v),∀ v ∈ Ls(1), and since the seller’s XPIC constraints for m and m̃

hold almost everywhere on Ls(1) with equality, we have by representation (1.6), that

Um
s (v) = U m̃

s (v),∀ v ∈ Ls(1). Thus,

∂Um
s (v)

∂vs

=
∂U m̃

s (v)

∂vs

,∀ v ∈ Ls(1).

Since ∂Um
s (v)
∂vs

= −ϕ(v)u′s(π(v)− vs), we therefore have

ϕ(v)us(π(v)− vs) = ϕ̃(v)us(π̃(v)− vs) and

ϕ(v)u′s(π(v)− vs) = ϕ̃(v)u′s(π̃(v)− vs), almosteverywhereonLs(1).

These imply that ϕ(v) = ϕ̃(v), π(v) = π̃(v), almosteverywhereLs(1), so that Um
b (v) =

U m̃
b (v), almosteverywhereonLs(1).
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Similarly, define Lb(0) = {(0, vb) | vb ∈ [0, 1]}, and by an analogous argument we

obtain Um
b (v) = U m̃

b (v),∀ v ∈ Lb(0) and Um
s (v) = U m̃

s (v), almosteverywhereonLb(0).

Now take for instance a v = (0, vb) ∈ Lb(0) s.t. Um
s (v) = U m̃

s (v) and let Ls(vb) =

{(vs, vb) | vs ∈ [0, 1]}. As before, we obtain Um
s (v) = U m̃

s (v),∀ v ∈ Ls(vb). Thus,

the set where Um
s (v) 6= U m̃

s (v) has Lebesgue measure 0 and hence cannot be open.

Similarly, the set where Um
b (v) 6= U m̃

b (v) has Lebesgue measure 0, so that m̃ cannot

ex-post dominate m.

Assume then that m̃ is not simple. Again, by Pareto optimality at v = (0, 1), m̃ has

to be simple at (0, 1). Thus,

v̄ = sup
vs

inf
vb

{v | m̃ simple at v}

is well defined, and v̄ ∈ [0, 1]. Moreover, by (1.6), Um
i (v̄) = U m̃

i (v̄), i = s, b, so that

Lemma 1.4.1 applies, and m̃ cannot ex-post dominate m.

Proof of sufficiency of Proposition 1.2.7.

Proof. Consider Us (v, v′s). We show that for all all v′s 6= vs the derivative of Us (v, v′s)

w.r.t. v′s is decreasing whenever Us (v, v′s) > 0 (deviations that give negative expected

utility cannot be profitable). We consider v′s > vs (the case v′s < vs is analogous).

Thus compute

∂Us (v, v′s)

∂v′s
= ϕ(v′s, vb)

∂us (π (v′s, vb) , vs)

∂p

∂π (v′s, vb)

∂v′s
+

∂ϕ(v′s, vb)

∂v′s
us (π (v′s, vb) , vs) .

From the first order condition we can express

∂π (v′s, vb)

∂v′s
= −

∂ϕ(v′s,vb)
∂v′s

us (π (v′s, vb) , v′s)

ϕ(v′s, vb)
∂us(π(v′s,vb),v′s)

∂p

.
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Substituting this into the previous expression we get

∂Us (v, v′s)

∂v′s
=

∂ϕ (v′s, vb)

∂v′s

[
us (πs (v′s, vb) , vs)−

∂us(π(v′s,vb),vs)
∂p

us (π (v′s, vb) , v′s)

∂us(π(v′s,vb),v′s)
∂p

]

Observe that ∂us(π(v′s,vb),vs)
∂p

< ∂us(π(v′s,vb),v
′
s)

∂p
. Moreover by XPIC ∂ϕ(v′s,vb)

∂v′s
< 0. To see

this, one can use the standard argument of writing down the XPIC constraints for two

types of the seller and then expressing the derivative of ϕ as the limit of taking one

of the two types toward the other. Thus, whenever us (π (v′s, vb) , vs) > 0, ∂Us(vs;v′s,vb)
∂v′s

is a decreasing function of vs, implying that the local maximum of Us is unique, and

is also a global maximum. Similarly for Ub.

In the proof of Theorem 1.3.2 we apply the following simple Lemma a few times.

Lemma 1.4.2. Let a function g : [0, 1]2 → [0, 1] have the property that

g(v1, v2) =
1

v2 − v1

∫ v2

v1

g(τ, v2)dτ, ∀ v1, v2 ∈ [0, 1], v1 < v2. (1.7)

Then g(v1, v2) = g(v′1, v2),∀ v1, v
′
1, v2 ∈ [0, 1], v1, v

′
1 < v2.

Proof. It is enough to prove that if a function ḡ : [0, 1] → [0, 1] has the property that

ḡ(x) = 1
x

∫ x

0
ḡ(t)dt, then ḡ(x) must be a constant. We show that ḡ is continuous and

differentiable on (0, 1] and that it’s derivative is 0 on (0, 1]. We first show that ḡ is

continuous on (0, 1]. Take an ε̄ > 0, and for ε > 0 take x, x′ ∈ [ε̄, 1], |x−x′| < ε. Since

ḡ is nonnegative and bounded by 1 we have

|ḡ(x)− ḡ(x′)| =

∣∣∣∣∣ 1

xx′

(∫ x′

0

(x′ − x)ḡ(t)dt +

∫ x′

0

x′ḡ(t)

)
dt

∣∣∣∣∣ ≤ 2ε

ε̄2
,

implying that ḡ is continuous on [ε̄, 1],∀ ε̄ > 0, so that it is continuous on (0, 1]. Now

observe that on (0, 1], ḡ is a product of two continuously differentiable functions,

hence it is continuously differentiable. Since

xḡ(x) =

∫ x

0

g(t)dt,
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we can take derivatives to obtain xḡ′(x) = 0,∀ x ∈ (0, 1], so that ḡ′(x) = 0,∀ x ∈

(0, 1], and the claim follows.

Proof of Theorem 1.3.2.

Proof. We prove the Theorem in a few steps. To understand the logic it is best to

think of ϕ̃(.) as a distribution, which induces a measure µ̃. We know that ϕ̃(.) is

continuous if and only if µ̃ is continuous with respect to the Lebesgue measure, and

that in general, µ̃ can be decomposed into µ̃l + µ̃o, where µ̃l is continuous w.r.t.

the Lebesgue measure, and µ̃o is orthogonal w.r.t. the Lebesgue measure (i.e., the

jumps in ϕ̃(.)). Moreover, ϕ̃(.) is continuous if and only if ϕ(vs, vb) is continuous

in each of the two dimensions (i.e., vs and vb). In case 1, we treat the problem

when ϕ(vs, vb) is continuous. In case 2, we treat the general problem when ϕ(vs, vb)

can be discontinuous. If ϕ(vs, vb) is not continuous in each dimension the set of

discontinuities of ϕ(vs, vb) could be very complex. Then, the fact that ϕ(vs, vb) can

be represented by ϕ̃(.) implies that the discontinuities of ϕ(vs, vb) have a very specific

structure. That is, if for a fixed vs, ϕ(vs, τ) is discontinuous at some τ̄ ≥ vs, then

ϕ(v′s, τ) is discontinuous at τ̄ for all v′1 < τ̄ (step 2.1), and ϕ(τ, vb) is discontinuous

at τ̄ for all vb > τ̄ (step 2.2).

Case 1. Let ϕ(vs, τ) and ϕ(τ, vb) be continuous in τ , for every (vs, vb) ∈ [0, 1]2.

We define φ(vs, vb, t) = ϕ(vs, t)+ϕ(t, vb)−ϕ(vs, vb), and we prove that φ(vs, vb, t) =

0,∀ t ∈ [vs, vb]. Note that φ is continuous in each of its arguments, in particular it

is continuous in t. We proceed as follows. In step 1.1 we show that there exists a

t̄ ∈ (vs, vb) s.t. φ(vs, vb, t̄) = 0. In step 1.2 we show that ∂φ(vs,vb,t)
∂t

= 0 everywhere

by showing that the derivative of φ(vs, vb, t) w.r.t. t from the left is equal to that

derivative from the right everywhere (and both are equal to 0). From the definition

of φ it is clear that its derivative from the left w.r.t. t will be equal to 0 if and only

if the derivative from the left of f(vs, t) w.r.t. t is equal the derivative from the left

of f(t, vb) w.r.t. t, which is precisely what we show in step 1.2. Similarly for the

derivative from the right. Thus, φ is differentiable, its derivative is 0, and it is equal
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to 0 at some point by step 1.1 - then φ must be equal to 0 everywhere. While step

1.1 is straightforward, step 1.2 involves some calculus.

Step 1.1. There exists a t̄ ∈ (vs, vb) s.t. φ(vs, vb, t̄) = 0.

Proof. Now (1.2) can be written as

0 =
1

vb − vs

∫ vb

vs

φ(vs, vb, τ)dτ.

By the mean value theorem (MVT), there exists a t̄ ∈ (vs, vb), s.t. 1
vb−vs

∫ vb

vs
φ(vs, vb, τ)dτ =

φ(vs, vb, t̄), which concludes the proof of step 1.1.

Step 1.2. φ(vs, vb, t) is differentiable in t and ∂φ(vs,vb,t)
∂t

= 0, for all t ∈ (vs, vb).

Proof. Denote by

∂+ϕ(vs, t)

∂t
= lim

ε→0, ε>0

ϕ(vs, t + ε)− ϕ(vs, t)

ε

the derivative from the right of ϕ(vs, t) w.r.t.t. Similarly, let ∂−ϕ(vs,t)
∂t

denote the

derivative from the left. We will show that for every t ∈ (vs, vb),

∂+φ(vs, vb, t)

∂t
=

∂−φ(vs, vb, t)

∂t
= 0.

We will do that by showing that ∂+ϕ(vs,t)
∂t

= −∂+ϕ(t,vb)
∂t

and ∂−ϕ(vs,t)
∂t

= −∂−ϕ(t,vb)
∂t

, for

all t ∈ (vs, vb). Note that the left and the right-derivatives of ϕ(vs, t) and ϕ(t, vb)

w.r.t.t exist for all t since ϕ is continuous and monotonic.

We first show that

∂+ϕ(vs, t)

∂t
=

∂ϕ+(v′s, t)

∂t
,∀ v′s, vs < t. (1.8)
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To see this, we write by definition,

∂+ϕ(vs, t)

∂t
= lim

ε→0, ε>0

1

ε
(ϕ(vs, t + ε)− ϕ(v1, t)) .

We now use (1.2) and compute

ϕ(vs, t + ε)− ϕ(vs, t) =

∫ t+ε

vs

ϕ(vs, τ) + ϕ(τ, t + ε)

t + ε− vs

dτ −
∫ t

vs

ϕ(vs, τ) + ϕ(τ, t)

t− vs

dτ

=

∫ t+ε

t

ϕ(vs, τ) + ϕ(τ, t + ε)

t + ε− vs

dτ +

∫ t

vs

ϕ(vs, τ) + ϕ(τ, t + ε)

t + ε− vs

− ϕ(vs, τ) + ϕ(τ, t)

t− vs

dτ

=

∫ t+ε

t

ϕ(vs, τ) + ϕ(τ, t + ε)

t + ε− vs

dτ +

∫ t

vs

−ε(ϕ(vs, τ) + ϕ(τ, t))

(t + ε− vs)(t− vs)
+

ϕ(τ, t + ε)− ϕ(τ, t)

t + ε− vs

dτ

=

∫ t+ε

t

ϕ(vs, τ) + ϕ(τ, t + ε)

t + ε− vs

dτ − εϕ(vs, t)

t + ε− vs

+

∫ t

vs

ϕ(τ, t + ε)− ϕ(τ, t)

t + ε− vs

dτ

From this last expression we can see that limε→0,ε>0
1
ε
(ϕ(vs, t + ε)− ϕ(vs, t)) = 1

t+ε−vs

∫ t

vs

∂+ϕ(τ,t)
∂vb

dτ ,

since

lim
ε→0,ε>0

1

ε

∫ t+ε

t

ϕ(vs, τ) + ϕ(τ, t + ε)

t + ε− vs

dτ − ϕ(vs, t)

t + ε− vs

= 0,

by the MVT.

By Lemma 1.4.2 this implies that indeed (1.8) holds. Similarly, we obtain ∂+ϕ(t,vb)
∂t

=

∂ϕ+(t,v′b)

∂t
,∀ v′b, vb > t.

Now take a monotonic sequence εn, n = 1, ...,∞, s.t. limn→∞ εn = 0, and let v′b,n =

t + εn. By above, for each n,

lim
l→∞,l≥n

ϕ(t + εl, v
′
b,n)− ϕ(t, v′b,n)

εl

=
∂+ϕ(t, v′b,n)

∂t
=

∂+ϕ(t, vb)

∂t
.

Then, by the Cauchy diagonalization theorem,

lim
n→∞

ϕ(t + εn, v
′
b,n)− ϕ(t, v′b,n)

εn

=
∂+ϕ(t, vb)

∂t
. (1.9)

Next, since ϕ(t, t) = 0, and also applying (1.8), we have for εn sufficiently small (i.e.,
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n large enough),

ϕ(t, v′b,n) = ϕ(t, t + εn) = ϕ(t, t) +
∂+ϕ(t, t)

∂vb

εn + O(ε2) =
∂+ϕ(vs, t)

∂vb

εn + O(ε2
n).

Note that ∂+ϕ(t,t)
∂vb

is understood as limvb→t,vb>t
∂+ϕ(t,vb)

∂vb
. We insert this into (1.9), also

noting that ϕ(t + εn, v
′
b,n) = ϕ(t + εn, t + εn) = 0, to obtain

∂+ϕ(t, vb)

∂t
= lim

n→∞

ϕ(t + εn, v
′
b,n)− ϕ(t, v′b,n)

εn

= lim
n→∞

−∂+ϕ(vs,t)
∂vb

εn + O(ε2
n)

εn

= −∂+ϕ(vs, t)

∂vb

.

Thus we have shown that at every t ∈ (vs, vb),
∂+ϕ(t,vb)

∂t
= −∂+ϕ(vs,t)

∂vb
, which implies

that ∂+φ(vs,vb,t)
∂t

exists and is equal to 0. Similarly, we show that ∂−φ(vs,vb,t)
∂t

exists and

is equal to 0, which proves that φ(vb, vb, t) is differentiable w.r.t.t. This concludes the

proof of step 1.2. and case 1.

Case 2. We complete the proof by showing that ϕ(vs, vb) can only be discontinuous

in a way which still admits a representation by some ϕ̃(.). In particular, we show

that there exists a step function ϕ : [0, 1] × [0, 1] → [0, 1] s.t. ϕ(vs, vb) − ϕ(vs, vb) is

continuous, and ϕ(vs, vb) = ϕ̃(vb) − ϕ̃(vs), for some step function ϕ̃ : [0, 1] → [0, 1].

We proceed in 2 steps, both involve applying the Monotone Convergence Theorem

(MCT), and some tedious calculus.

Step 2.1. If ∃ vs ∈ [0, 1], and τ̄ > vs s.t. ϕ(vs, τ̄+)−ϕ(vs, τ̄−) = ∆s(vs, τ̄) > 0, then

ϕ(v′b, τ̄+)− ϕ(v′s, τ̄−) = ∆s(vs, τ̄) > 0, ∀ v′s < τ̄ .

Proof. We write

ϕ(vs, τ̄+) = lim
ε→0

1

τ̄ + ε− vs

∫ τ̄+ε

vs

ϕ(vs, τ) + ϕ(τ, τ̄ + ε)dτ,

ϕ(vs, τ̄−) = lim
ε→0

1

τ̄ − ε− vs

∫ τ̄−ε

vs

ϕ(vs, τ) + ϕ(τ, τ̄ − ε)dτ,
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and since

lim
ε→0

1

τ̄ + ε− vs

= lim
ε→0

1

τ̄ − ε− vs

=
1

τ̄ − vs

,

we have

∆s(vs, τ̄) =
1

τ̄ − vs

[
lim
ε→0

∫ τ̄+ε

τ̄−ε

ϕ(vs, τ)dτ + lim
ε→0

∫ τ̄+ε

vs

ϕ(τ, τ̄ + ε)dτ −
∫ τ̄−ε

vs

ϕ(τ, τ̄ − ε)dτ

]
.

(1.10)

Now

lim
ε→0

∫ τ̄+ε

τ̄−ε

ϕ(vs, τ)dτ = lim
ε→0

∫ 1

vs

1(τ̄−ε,τ̄+ε)ϕ(vs, τ)dτ = 0,

by the (MCT). Similarly, we apply the (MCT) to the other part of (1.10), so that

lim
ε→0

∫ τ̄+ε

vs

ϕ(τ, τ̄+ε)dτ−
∫ τ̄−ε

vs

ϕ(τ, τ̄−ε)dτ = lim
ε→0

∫ 1

vs

1(vs,τ̄+ε)ϕ(τ, τ̄+ε)−1(vs,τ̄+ε)ϕ(τ, τ̄+ε)dτ

=

∫
[vs,τ̄)

ϕ(τ, τ̄+)− ϕ(τ, τ̄−)dτ.

Therefore,

∆s(vs, τ̄) =
1

τ̄ − vs

∫
[vs,τ̄)

ϕ(τ, τ̄+)− ϕ(τ, τ̄−)dτ =
1

τ̄ − vs

∫
[vs,τ̄)

∆s(τ, τ̄)dτ. (1.11)

The claim now follows for vs < v̄s < τ̄ , by Lemma 1.4.2. This concludes the proof of

step 2.1.

Step 2.2. If ∃ vs ∈ [0, 1], and τ̄ > vs s.t. ϕ(vs, τ̄+) − ϕ(vs, τ̄−) = ∆ > 0, then

∃ vb > τ̄ s.t. ϕ(τ̄−, vb)− ϕ(τ̄+, vb) = ∆.

Proof. Since ϕ(0, τ) is bounded and monotonic, there exists a v̄b s.t. ϕ(0, τ) is

continuous for τ ∈ (τ̄ , v̄b]. By step 2.1, ϕ(vs, τ) is continuous for τ ∈ (τ̄ , v̄2],∀ vs < v̄b.

We can proceed as in step 2.1 to obtain for each vb,

∆b(vb, τ̄) =
1

vb − τ̄

[
lim
ε→0

∫ vb

τ−ε

ϕ(τ̄ − ε, τ)dτ −
∫ vb

τ+ε

ϕ(τ̄ + ε, τ)dτ

]
.
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Next,

lim
ε→0

∫ vb

τ−ε

ϕ(τ̄−ε, τ)dτ−
∫ vb

τ+ε

ϕ(τ̄+ε, τ)dτ = lim
ε→0

∫ vb

τ+ε

ϕ(τ̄−ε, τ)−ϕ(τ̄+ε, τ)dτ+

∫ τ+ε

τ−ε

ϕ(τ̄−ε, τ)dτ

= lim
ε→0

∫ vb

τ+ε

ϕ(τ̄ − ε, τ)− ϕ(τ̄ + ε, τ)dτ =

∫
(τ,vb]

lim
ε→0

ϕ(τ̄ − ε, τ)− ϕ(τ̄ + ε, τ)dτ,

where the second equality follows by MCT, and the third one by the bounded con-

vergence theorem. Thus, for every vb,

∆b(vb, τ̄) =
1

vb − τ̄

∫
(τ,vb]

lim
ε→0

ϕ(τ̄ − ε, τ)− ϕ(τ̄ + ε, τ).

For each k = 1, ...,∞, by continuity and monotonicity of ϕ(τ̄ + 1
k
, τ), and since

ϕ(τ̄ + 1
k
, τ̄ + 1

k
) = 0, there exists a v

(k)
b > τ̄ + 1

k
, s.t. ϕ(τ̄ + 1

k
, v

(k)
b ) < 1

k
. On the other

hand, ϕ(τ̄ − 1
k
, v

(k)
b ) ≥ ∆, so that

∆b(v
(k)
b , τ̄) > ∆− 1

k
,

which by step 2.1 implies that ∆b(vb, τ̄) ≥ ∆. By a symmetric argument, it must be

that ∆ ≥ ∆b(v2, τ̄). This concludes the proof of step 2.2.

Now we wrap up the proof of the Theorem. Define ϕ̃(x) by the Lebesgue integral

ϕ̃(x) =

∫ x

0

∆b(0, y)dy.

By steps 2.1. and 2.2., ϕ(vs, vb)−
(
ϕ̃(vb)− ϕ̃(vs)

)
is continuous, and we apply step 1

to conclude the proof of the Theorem.
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Chapter 2

Optimal Robust Bargaining Games

The work presented in this chapter has been done jointly with Clara Ponsat́ı.

2.1 Introduction

Bargaining between two impatient traders is a fundamental problem of economics.

Since Rubinstein’s [1982] result on the alternating-offers game with perfect infor-

mation, many economists have been concerned with providing a similarly effective

and tractable framework for settings with imperfect or incomplete information where

agents’ reservation values are private information. By the Myerson and Satterthwaite

[1983] impossibility theorem, the outcomes are then necessarily inefficient, which is

different from the perfect-information setup.

Most of the incomplete-information bargaining literature has focused on charac-

terizing Bayesian equilibria of different versions of the alternating-offers game, with

risk-neutral agents. This approach has three shortcomings. Such games have many

Bayesian equilibria, which are hard to characterize.1 In Bayesian approaches, agents

are assumed to have precise knowledge of the distribution of each others’ reservation

values, or types. The effect of risk aversion on equilibrium contracts may matter, and

in many relevant situations agents have different levels of risk aversion. Examples of

such situations are wage bargaining between a worker and a firm, a large block-trade

between a market maker and an investor, a real-estate trade, and bilateral peace

1See Cramton [1984], Cho [1990], and Ausubel and Denekere [1992].



35

talks. In the absence of adequate mechanism-design machinery, such contracts have

been studied in the literature, but generally without imposing incentive constraints.

In this paper, we study robust equilibria for bargaining games in environments

where agents are impatient and can be risk averse. We assume that the players’ utility

functions are common knowledge but that their reservation values are private. By

robustness we mean that both the equilibrium concept and its efficiency are robust

to traders’ beliefs. We thus require an equilibrium of such a game to be an ex-post

equilibrium, and that its outcome be no worse, in the Paretian sense, than any ex-

post equilibrium outcome of any bargaining game. We call this equilibrium efficiency

requirement ex-post constrained efficiency.

We define Mediated Bargaining Game as a continuous-time double auction in

which the Mediator prevents traders from seeing each other’s bids until the time of

agreement.2 The agreed price is then made public, and the trade takes place. The

key feature of Mediated Bargaining Game is that the information flow between the

agents is minimized, so that agents recognize the surplus only upon agreement, when

the game is over. The main result of our analysis is that Mediated Bargaining Game

is the optimal robust bargaining game.

We characterize regular equilibria of Mediated Bargaining Game. A regular equi-

librium is an ex-post Nash equilibrium in undominated and type-monotone strategies.

We show that the set of outcomes of Mediated Equilibria under risk neutrality is dense

in the set of outcomes of ex-post constrained-efficient equilibria of all dynamic bar-

gaining games. Due to incomplete information, delay arises endogenously as a part of

every equilibrium, and delay causes the inefficiency. All equilibrium outcomes of Me-

diated Game are ex-post individually rational to both traders. Under risk neutrality

all Mediated Equilibria have simple closed-form expressions, but this is true only for

special cases of risk aversion. Nonetheless, when agents are risk averse or discount

the future at different rates, regular equilibria are constrained efficient. For a rich

set of environments with risk aversion, there exists a unique linear equilibrium with

2A version of Mediated Bargaining Game where the set of possible prices is finite was first
proposed by Jarque, Ponsat́ı, and Sákovics [2003]. In our model the prices are not restricted.
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a simple closed form, suitable for embedding in other models.

Under risk aversion there is risk sharing in equilibrium, and if an agent becomes

more risk averse, the outcomes become closer to full efficiency. The effect on equi-

librium outcomes is the same if agents are more impatient or if they are more risk

averse, i.e., an external observer cannot distinguish between a more impatient and

a more risk-averse agent just by observing an equilibrium outcome. Under perfect

information, this is also a feature of the subgame-perfect Nash equilibrium in the

Rubinstein alternating-offers game.

The Mediated Bargaining Game is a decentralized game form implementing ex-

post individually rational, incentive compatible, and constrained-efficient direct rev-

elation mechanisms. Ledyard [1978] proves that if a game has an ex-post Nash

equilibrium then the corresponding direct-revelation mechanism is ex-post incentive

compatible.3 Ex-post constrained efficiency of ex-post equilibria is equivalent to the

ex-post constrained efficiency of an ex-post individually rational and incentive com-

patible direct revelation mechanism. Hence, for each regular equilibrium, there is a

direct revelation mechanism that is ex-post constrained efficient under ex-post incen-

tive compatibility and individual rationality. Under risk neutrality, such mechanisms

can be represented as probability distributions over posted prices (Theorem 1.3.1).

Since Mediated Bargaining Game implements all constrained-efficient mechanisms

and nothing else, it is the optimal robust bargaining game.

As a model, direct revelation mechanisms are not equivalent to the indirect Medi-

ated Bargaining Game. First, to construct a specific ex-post individually-rational and

incentive-compatible mechanism, the designer has to know the agents’ utility func-

tions, but neither rationality nor preferences have to be common knowledge among the

agents. In Mediated Bargaining Game, the designer does not need to know anything

about the agents, and just lets them play the game, but the preferences, rationality,

and the equilibrium have to be common knowledge between the two traders. The sec-

ond important difference is that Mediated Bargaining Game is free of a commitment

3A regular equilibrium is not a dominant-strategy equilibrium of Mediated Bargaining Game,
so that the relation to direct revelation mechanisms is not simply a consequence of the revelation
principle. In fact, Mediated Bargaining Game has no equilibria in dominant strategies.
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problems that affect the direct revelation mechanism. Generically, direct revelation

mechanisms prescribe lotteries at the ex-post stage, and the agents can invert each

lottery to figure out the type of the opposing player that they are facing. The assump-

tion in a direct revelation mechanism is that agents can commit to ex-post lotteries

even though they can obtain something better once they know each other’s types.

But ex-post individual rationality requires that they cannot commit to ex-post pay-

ments, which will make them better off at the interim stage. Thus, ex-post individual

rationality is inconsistent with commitment to ex-post lotteries. Such criticism does

not apply to regular equilibria because they specify deterministic trade every time

it occurs, and time cannot be reversed to ameliorate the inefficiency resulting from

delays.

As a final remark, we show that the set of regular equilibria coincides with the

set of separating perfect Bayesian equilibria of Mediated Bargaining Game. Per-

fect Bayesian equilibria are outcome equivalent to Bayesian equilibria because out-

of-equilibrium deviations cannot affect the updating of beliefs. Thus, imposing a

weaker equilibrium notion and additional sequential rationality on the players does

not change the set of equilibrium outcomes of Mediated Bargaining Game, so that

this set is robust to weaker equilibrium notions.

Mediated Bargaining Game is the optimal robust bargaining game, and is ob-

served in practice. One can interpret the Mediator as an order book that is closed.

Several electronic exchanges, e.g. Nasdaq, Frankfurt, Stockholm, and others, allow

for hidden orders which are put in the book but are not observable by other traders.

The justification is that hidden orders are supposed to enhance efficiency, and to

our knowledge there is no theoretical foundation in the existing literature. Albeit a

very stylized model of exchange, our analysis of Mediated Bargaining Game provides

a strong theoretical support for that claim. Mediation is also widely used in con-

flict resolution, and practitioners point to the fact that effective mediation requires

restricting direct information flows between the two parties.4 That is precisely the

4For example, Francesc Vendrell-the UN envoy to Central America, Namibia, Timor and
Afganistan-says: “I prefer to negotiate separately with each party, rather than with both parties
talking face to face.” (El Páıs 30/12/01). See also Dunlop [1984].
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defining feature of Mediated Bargaining Game.

In Section 2.2 we review the literature. In Section 2.3 we give definitions of robust

bargaining games and ex-post constrained efficiency. In Section 2.4 we review direct

mechanisms under risk neutrality. In Section 2.5 we analyze Mediated Bargaining

Game under risk neutrality. In Section 2.6 we extend the results to risk aversion, and

prove the existence of the unique linear regular equilibrium. In Section 2.7, we show

that Bayesian equilibria of Mediated Bargaining Game are ex-post equilibria.

2.2 Related literature

Our work is related to the literature on robust mechanism design, see Hurwicz [1972],

Ledyard [1978], D’Aspremont and Gerard-Varet [1979], Neeman [2004], Chung and

Ely [2003], Bergemann and Morris [2004] and Jehiel et al. [2005]. The recent liter-

ature studies ex-post implementation in common value problems, where ex-post im-

plementation does not imply dominant-strategy direct mechanisms, which is different

from our setting. Čopič and Ponsat́ı [2005] characterize ex-post individually-rational,

incentive-compatible and constrained-efficient mechanisms for bilateral trade with

risk aversion and generalize the results of Hagerty and Rogerson [1987]. The latter

establish payoff equivalence to distributions over posted prices for a subclass of ex-post

individually-rational and incentive-compatible mechanisms under risk neutrality.

Our work is also related to the literature on non-cooperative bargaining under in-

complete information (see Ausubel, Cramton, and Denekere [2002] for a survey). The

closest are Cramton [1992] and Wang [2000]. Cramton [1992] extends the continuous-

time game of Admati and Perry [1987] to two-sided uncertainty and constructs a

separating equilibrium where trade occurs, with delay, whenever gains from trade ex-

ist. In the game of Wang [2000], each side chooses exactly one time at which they are

willing to concede to the opponent. In equilibrium types are revealed by the choice

of time, and the price is a linear combination of types. In that game, there exists

a class of outcome-equivalent separating ex-post equilibria. The outcome coincides

with that of the linear regular equilibrium under risk neutrality. In Example 2.5.8 we
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compare the efficiency (in ex-ante terms) of regular equilibria with the equilibrium

in Wang [2000] and Cramton [1992]. We show that regular equilibria can dominate

both of these, although the latter is not robust.

Comparison to cooperative bargaining is also relevant. The allocation in the linear

regular equilibrium coincides with the Nash bargaining solution only when agents have

the same risk aversion. Still, in asymmetric environments the risk sharing in the Nash

bargaining solution goes in the same direction as in our model. But the approach of

cooperative bargaining theory is nevertheless quite different. There is no incomplete

information, incentives are not modeled explicitly, and outcomes are assumed to be

efficient, so that there is no obvious way to model delay.

2.3 Dynamic bargaining games and robustness

The problem, preferences, and information structure. Two traders, a

seller and a buyer i = s, b, bargain over the price p ∈ [0, 1] of an indivisible good. The

seller’s cost of producing the good vs, and the buyer’s valuation of the good vb are

private information. We denote v = (vs, vb). We assume that it is common knowledge

that v is distributed according to some continuous G with a continuos density g, and

support supp(g) = [0, 1]2. We stress that common knowledge of the specific G is

not necessary-it is necessary that the support of types is [0, 1]2 and that is common

knowledge.

We assume that the agents are risk neutral, and they discount the future expo-

nentially. When an agreement to trade at price p is reached on date t ≥ 0, the seller’s

payoff upon trading at price p at t is us(vs, p, t) = e−t(p − vs) and the buyer’s is

ub(vb, p, t) = e−t(vb − p). In Section 2.6 we relax these assumptions.

Robust equilibrium and efficiency requirements. Given some dynamic bar-

gaining game form Γ, we impose that the equilibrium and efficiency notions be robust.

Therefore, strategies and outcomes must be independent of beliefs, implying that the
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equilibrium be an ex-post equilibrium. We define the ex-post equilibrium and the

robustness notion for a general dynamic bargaining game Γ, so that our definitions

are a bit loose. In this section we say nothing about the existence of such games. In

Section 5 we construct a dynamic bargaining game with robust equilibria that are

optimal.

A dynamic bargaining game Γ is in our setup defined by the sets of traders’

strategies, contingent on their type, the set of histories for each player, given past

play of the game, and the outcome function, mapping strategy profiles into outcomes

(i.e., terminal histories). Let Hi,t be the set of possible histories at time t for player i.

A strategy of player i is a mapping from his type vi, time t, and history hi(t) ∈ Hi,t

into price bids,

pi : [0, 1]× [0,∞)×Hi,t → [0, 1] , i = s, b.

Each outcome is specified by a time τ(ps, pb, vs, vb) and a price at which trade oc-

curs at that time, p̄(ps, pb, vs, vb). If the trade never happens that is equivalent to

τ(ps, pb, vs, vb) = ∞.5

We say that strategies (p∗s, p
∗
b) constitute an ex-post Nash equilibrium (XPEQ) if

they are mutual best responses for each pair of types (vs, vb). More precisely, given

the equilibrium strategy of the buyer, p∗b , the seller’s strategy p∗s satisfies:

p∗s = arg max
ps

e−τ(ps,p∗b ,vs,vb) (p̄(ps, p
∗
b , vs, vb)− vs) ,∀ vs, vb.

Denote p∗ = (p∗s, p
∗
b), and by Ui(v; p∗) the equilibrium payoff to agent i, given strategies

p∗ and types v.

Note that every XPEQ is also a Bayes-Nash equilibrium, but not necessarily the

converse.

In a dynamic bargaining game Γ, it can never be an XPEQ for a trader to trade

at a price which gives him a negative utility, so that every XPEQ outcome must be

individually rational to both agents.

5For an extensive discussion of when games in continuous time are well defined see Simon and
Stinchcombe [1989]. For a discussion on admissible strategies and sensible outcomes in bargaining
games with continuous time see Sákovics [1993].
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The robust efficiency notion we impose is ex-post constrained efficiency,6 which

in the present context says the following. Take a dynamic bargaining game Γ and

an XPEQ (p∗; Γ). We say that this XPEQ is ex-post constrained efficient (XPCE) if

there does not exist another pair (p̃∗; Γ′), Γ′ a dynamic bargaining game and p̃∗ an

XPEQ of Γ′, such that

Ui(v; p∗) ≤ Ui(v; p̃∗),∀ v ∈ [0, 1]2, i = s, b, and

Ui(v; p∗) < Ui(v; p̃∗),∀ v ∈ V open ⊂ [0, 1]2, for at least one i.

One could impose additional sequential rationality requirements by requiring that

the XPEQ be a subgame-perfect Bayes-Nash equilibrium (PBE) of Γ, for every prior

G. However, such requirement would not have any bite-all XPEQ satisfy this prop-

erty, which is easy to verify. In general PBE need not be robust.

A stronger requirement is that for an XPEQ profile p∗, XPCE is satisfied at every

t, given what is common knowledge at t. Denote by B0 the initial bargaining problem

as specified at the beginning of this section (i.e., agents’ types, utility functions, the

initial information structure, etc.). Common knowledge at t defines the continuation

bargaining game Γ|t and also the continuation bargaining problem, B|t. Also denote

by p∗|t the continuation of the play of the traders’ strategies from time t on, given the

profile p∗.7

We say p∗, an XPEQ of Γ satisfies dynamic ex-post constrained efficiency (DXPCE),

6This notion is related to ex-post incentive efficiency of direct revelation mechanisms, due to
Holmstrom and Myerson [1983]. The difference is that ex-post incentive efficiency means ex-post
constrained optimality of a mechanism given Bayesian incentive compatibility. Thus, it does not
employ individual rationality, and incentive compatibility is imposed at the interim while XPEQ is
equivalent to XPIC of the direct revelation mechanism. We use a different name in order to keep
the distinction clear.

7The play of the agents until time t defines the histories for each player, which determine the
information sets for each player. These describe what is common knowledge, and what is private
information to each trader. Private information to each trader will in this case be rich-different
types might have different knowledge, and might also attach different knowledge to different types
of the other player, and so on. However, if one insists on the ex-post equilibrium, what matters is
the payoff-relevant type of each trader. Moreover, in the present private-values environment, the
fact that there is no common implies that ex-post equilibrium is the weakest possible equilibrium
concept. See Bergemann and Morris [2005] for a comprehensive discussion of ex-post implementation
on rich type spaces.
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if p∗|t in Γ|t is XPCE for the problem B|t for all t ≥ 0.

DXPCE can be interpreted as a strong renegotiation-proofness requirement: at no

time would the traders want to shift to playing another ex-post equilibrium of some

other bargaining game.

To determine the bounds on possible XPCE allocations (and consequently on DX-

PCE allocations) we can consider direct revelation mechanisms. By the revelation

principle and Ledyard [1978], for each dynamic bargaining game Γ, and each ex-post

equilibrium (p∗, Γ), there exists a direct revelation mechanism (mechanism) m, which

is ex-post incentive compatible, and such that Ui(v; p∗) = Um
i (v),∀ v ∈ [0, 1], i = s, b,

where Um
i (v) is the payoff to agent i in mechanism m, under truthful reporting.

2.4 Direct revelation mechanisms

In this section we briefly review the results on ex-post incentive compatible (XPIC),

ex-post individually rational (XPIR), and ex-post constrained-efficient (XPCE) mech-

anisms (under XPIR and XPIC). Note that XPCE is imposed at the ex-post stage,

and should not confuse this with the ex-ante or interim notions of optimality. Note

also that ex-post incentive compatibility is equivalent to equilibrium in dominant

strategies and should not confuse that with the interim incentive compatibility which

is equivalent to Bayesian equilibrium. We also remark that XPCE is weaker than

either the ex-ante or interim constrained-efficiency notions (XPCE is necessary for

either of these two). XPCE is the only notion among the three which is robust. For

a more detailed discussion of the issues reviewed here see chapter 1.

We first note the well known fact that under risk neutrality, each XPIRIC mech-

anism can be represented by a pair of functions (π, δ) : [0, 1]2 → [0, 1]2, where π(v)

is the price and δ(v) is the probability of trade at that price; with complementary

probability no trade occurs, and the agents obtain 0 utility. We remark that in an

XPEQ (p∗, Γ), δ(v) corresponds to the shrinking of the surplus due to discounting, so

that δ(v) = e−τ(p∗(v)). Denote by Uπ,δ
s (v′s, vb; vs) = δ(v′s, vb)(π(v′s, vb) − vs) the payoff



43

to the seller under a mechanism (π, δ) when the reported types are (v′s, vb) and seller’s

true type is vs. Similarly for the buyer, Uπ,δ
b (v′s, vb; vb) = δ(v′s, vb)(vb−π(v′s, vb)). Also

denote Uπ,δ
i (v) = Uπ,δ

i (vi, vj; vi), i, j ∈ {s, b}, i 6= j. XPIC and XPIR of a mechanism

m = (π, δ) are now formulated as follows:

Uπ,δ
s (v′i, vj; vi) ≤ Uπ,δ

i (v),∀ vi, v
′
i, vj, i, j ∈ {s, b}, i 6= j; (XPIC)

δ(v) > 0 ⇒ vs ≤ π(v) ≤ vb,∀ v. (XPIR)

The ex-post constrained efficiency under individual rationality (XPCE) of mechanisms

is formulated similarly as the XPCE of a dynamic game. An XPIRIC mechanism

(π, δ) satisfies XPCE if

6 ∃ (π′, δ′), XPIRIC and s.t.Uπ,δ
i (v) ≤ Uπ′,δ′

i (v),∀ v, i = s, b, and

Uπ,δ
i (v) < Uπ′,δ′

i (v),∀ v ∈ V open
0 ⊂ [0, 1]2, for at least one i.

We recall Theorem 1.3.1 from chapter 1.

Theorem 2.4.1. A mechanism (π, δ) is XPCE if and only if there exists a probability

distribution Fp, supp(Fp) ⊂ [0, 1], such that δ(v) = Fp(vb)−Fp(vs) and π(v) = EFp [p |

vs ≤ p ≤ vb]. Here EFp [. | .] denotes the conditional expectation w.r.t. Fp.

2.5 Mediated Bargaining Game

In this section we introduce Mediated Bargaining Game (MBG), we define regular

XPEQ of MBG, and we show that all of these are XPCE. Thus, MBG is an optimal

robust bargaining game.

The game. MBG is a dynamic double auction in continuous time, which can heuris-

tically be described as a game with a mediator. The mediator is a dummy player

whose only role is to receive bids, keep them secret while they are incompatible, and
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to announce the agreement as soon as it is reached. When the mediator announces

that an agreement has been reached, trade takes place at the agreed price, and the

game ends. In MBG, the mediator imposes a restriction on the agents’ updating of

beliefs. In particular, the agents can only update through the passing of time, and

observable history is for each player at time t completely specified by t.

In MBG, a strategy of player i is a function pi(.), mapping i’s types and time into

bids, pi : [0, 1]× [0,∞) → [0, 1], i = s, b. In order for outcomes to be well defined, it

is necessary to require that pi be left continuous w.r.t. time t, for each vi (see Simon

and Stinchcombe [1989]).

Outcomes of MBG are given by terminal histories. Given a profile of strategies p

and a draw of valuations v, MBG ends at t∗ < ∞ if t∗ = min{t ∈ [0,∞) | ps(t, vs) ≤

pb(t, vb)}. At t∗ traders trade at a pre-specified p̄ ∈ [ps(t, vs), pb(t, vb)], e.g. p̄ =

1
2
(ps(t, vs) + pb(t, vb)).

We consider XPEQ of MBG. We restrict attention to regular XPEQ of MBG,

which we define next.

First, observe that for each XPEQ profile p, a profile p′ constructed by adding a

standstill interval [0, T ), i.e., p′i (vi, t + T ) = pi (vi, t), is an XPEQ as well, for every

T < ∞. That is, as the opponent does not concede any positive amount until T ,

no concession prior to T is useful. For T < ∞, such strategy profiles p′ are weakly

dominated. We say that an XPEQ is undominated if it does not have a standstill

interval. We can similarly define undominated profiles under Bayesian Equilibrium

(BE) and perfect Bayesian Equilibrium (PBE) concepts (see Section 6 for precise

definitions).

A Regular ex-post equilibrium (REQ) is an undominated XPEQ such that pi are

differentiable w.r.t. t and vi, strictly type monotone, ps is strictly decreasing w.r.t.

t, pb is strictly increasing w.r.t. t, and such that if vb > vv, then ∃ t < ∞ such that

p∗s(vs, t) = p∗s(vs, t).

In the Appendix we show that every Bayesian equilibrium (BE) of MBG has to
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be weakly type monotone (see Proposition 2.7.2). Since every XPEQ is a BE, this

implies that all XPEQ have to be weakly type monotone. In the rest of this section

we characterize the REQ of MBG and show that they exist. We also show that the

set of outcomes of REQ is dense in the set of outcomes of XPEQ of MBG, so that the

restriction to REQ is made purely for analytical convenience. First, we show that if

a REQ of MBG satisfies XPCE, then it satisfies DXPCE.

Proposition 2.5.1. Suppose p∗ is an REQ profile of MBG. Then p∗ satisfies DXPCE.

Proof. Take a v ∈ [0, 1]2 and t < t∗(v; p∗). Then at t, it is common knowledge only

that v ∈ [0, 1]2. Take for instance the seller, who at t knows that vb is such that

p∗b(vb, t) < p∗s(vs, t). Thus, the seller knows that vb ∈ [0, v̄b(vs)), by type monotonicity

of the buyer’s strategy, where p∗b(v̄b(vs), t) = p∗s(vs, t). The seller also knows that the

buyer’s type vb = 0 only knows at t that vs ∈ [0, 1]. Similarly, the buyer at t knows

that seller may be of a type vs = 1 which at t only knows that vb ∈ [0, 1]. Thus, at t

it is common knowledge only that v ∈ [0, 1]2. Hence, the bargaining problem Bt at t

is the same as at time 0, and since the profile p∗ satisfies XPCE, it satisfies XPCE at

each t.

Next, we characterize the REQ of MBG.

Proposition 2.5.2. Let p be a strategy profile such that both ps and pb are both strictly

type monotone and differentiable w.r.t. t and and types, and such that ps(vs, t) and

pb(vb, t) cross at t < ∞ iff vs < vb. Then, p is a REQ if and only if

1. pi(vi, t), i = s, b satisfy the first-order conditions

(ps(vs, t)− vs) = ∂pb(vb,t)
∂t

,

(vb − pb(vb, t)) = −∂ps(vs,t)
∂t

;
(2.1)

∀ v, t, s.t.ps(vs, t) = pb(vb, t);

2. ps(0, 0) = pb(1, 0).
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Proof. Let p∗ be a REQ profile, and take a v ∈ [0, 1]2. We have to verify that if

strategies p∗ are differentiable, strictly time-monotone, and are best replies, then they

satisfy the above first-order condition. We do that for the seller, a mirror argument

works for the buyer. In an XPEQ, it is clear that if a pair of agents with types v

agree at time t, then they agree with equality, i.e.,

p∗s(vs, t) = p∗b(vb, t), (2.2)

Otherwise either one of the agents could profitably deviate against the given type

of the opponent-to obtain all of the difference between the proposed prices. From

equation (2.2), we can then define by the implicit function theorem, vs = vs(vb, t),

and we have ∂ps

∂vs

∂vs

∂vb
= ∂pb

∂vb
.

Next, given p∗b , again by (2.2), the seller maximizes

max
t∈[0,∞)

e−t (p∗b(vb, t)− vs) ,

which implies the first-order condition (FOC). It is also easy to check that the second

derivative of the objective function is negative so that the FOC is indeed necessary

and sufficient. The condition ps(0, 0) = pb(1, 0) follows from (2.2) and strict type

monotonicity.

Theorem 2.5.3. If a strategy profile p∗ is a REQ of MBG then the correspond-

ing mechanism is a lottery Fp over posted prices, with a continuous density fp, and

supp(Fp) = [0, 1]. For the converse, take a lottery Fp, cont. density fp, supp(Fp) =

[0, 1]. Then there exists a unique p∗ which is a REQ of MBG p∗, and such that Fp is

the mechanism corresponding to p∗.

Proof. We first show that (2.1) is equivalent to XPIC. We will focus on the seller, the

proof for the buyer is identical. Let p∗ be a REQ profile, that is differentiable strictly

type-monotone profile satisfying (2.1). Define for each v, t̃(v) = min{t | p∗b(vb, t) =

p∗s(vs, t)}, where min{} = ∞. Since p∗ is a REQ profile, t̃ is well defined, and it

is differentiable, by the Implicit Function Theorem. Now let π(v) = p∗s(vs, t̃(v)) =
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p∗s(vs, t̃(v)) so that taking the derivative w.r.t. vs we obtain ∂π(v)
∂vs

= ∂pb

∂t
∂t̃
∂vs

. Therefore,

∂pb

∂t
=

1
∂t̃
∂vs

∂π(v)

∂vs

.

Defining δ(v) = e−t̃(v), substituting this and the expression for ∂pb

∂t
into (2.1), and

multiplying by e−t̃(v) we obtain

δ(v)
∂π(v)

∂vs

= −∂δ(v)

∂vs

(π(v)− vs).

This is precisely the necessary and sufficient FOC for XPIRIC mechanisms given in

Section 4, when π and δ are both differentiable. Since in a REQ p∗s(0, 0) = p∗b(1, 0),

this implies that t̃(0, 1) = 0, so that (π, δ) must be a XPCE mechanism, so it is

representable by some probability distribution Fp. The other properties of Fp follow

immediately. For the converse, if Fp is a continuously differentiable distribution with

supp(Fp) = [0, 1], then we can construct the equivalent representation (π, δ). Now we

can do the above substitutions in the other direction, and thus construct a unique pair

of strategies p∗ satisfying (2.1), so that p∗ is a REQ. Thus, the solutions to (2.1) exist,

and implement precisely all the allocations that are implementable by differentiable

XPCE mechanisms.

Corollary 2.5.4. The REQ equilibria of MBG are XPCE.

Proof. Take a REQ of MBG, (p∗; MBG). Suppose there existed a dynamic bargaining

game Γ and an XPEQ profile (p̃∗; Γ), dominating (p∗; MBG). Now let m be the

mechanism corresponding to (p∗; MBG), and let m̃ be the mechanism corresponding

to (p̃∗; Γ). Since (p̃∗; Γ) dominated (p∗; MBG), it must be that m̃ dominates m, which

is a contradiction by Theorem 1.3.1 and Proposition 2.5.3.

Theorem 2.5.3 implies that the set of outcomes of REQ is dense in the set of

outcomes of XPEQ of MBG. To see this take an XPEQ of MBG, and the associated

XPIRIC mechanism, which is representable as a distribution Fp over posted prices

by Theorem 1.3.1. Then there exists a sequence of continuously differentiable distri-
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butions converging to Fp pointwise (on [0, 1]), and the outcomes of the mechanisms

converge pointwise (in the type space) to the outcomes under Fp. By Theorem 2.5.3,

for each continuously-differentiable distribution over posted prices there is an REQ

of MBG implementing the allocation of utilities under the distribution Fp. See also

Example 2.5.8.

In the next example we show that there is a unique REQ which is linear in agents’

types and the allocation is consistent with the Nash solution for all draws of types

(and thus with the limit of the allocations in the Rubinstein bargaining game, as the

time between the offers goes to 0). Note that in the present setup with incomplete

information, the delay occurs almost surely (i.e., except when vs = 0 and vb = 1).

We will show in the next section that a unique linear REQ exists under more general

circumstances.

Example 2.5.5. There is a unique Nash-solution consistent REQ. It is given by the

following type-contingent strategy profile:

ps (vs, t) = min

{
1, vs +

e−t

2

}
,

pb (vb, t) = max

{
0, vb −

e−t

2

}
.

The Nash solution prescribes π(v) = vb+vb

2
. Taking a uniform distribution over

posted prices in [0, 1] yields the mechanism π(v) = vb+vs
2

, δ(v) = max {vb − vs, 0} .

Checking that (2.1) holds is a straightforward computation. It is also easy to check

that no other positive density over [0, 1] can sustain π(v) = vb+vb

2
.

We remark that our model admits an interpretation as the limit of a game of

alternating moves à la Rubinstein [1982], when the length of the period goes to zero

and proposals are submitted to the Mediator. Example 2.5.5 describes the unique

REQ profile consistent with such interpretation, since agreement at vb+vb

2
prevails

uniquely at subgames where types have been revealed (See Binmore, Rubinstein, and

Wolinsky [1986]). However, note that this linear equilibrium outcome only coincides

with the Nash solution when agents are risk neutral or they have the same risk
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aversion, see Proposition 2.6.1 in section 2.6 and the subsequent comment.

Example 2.5.6. In this example we construct two REQ in non-linear strategies. In

the first one the strategies can be explicitly computed. The second one is symmetric,

but the strategies cannot be computed in closed form. Take a lottery over posted

prices given by a pdf fp(x) = 2x, x ∈ [0, 1]. Note that fp is differentiable and strictly

positive, so that the corresponding strategies of MBG will satisfy all the conditions

for a REQ. To construct the strategies proceed as follows. First,

δ(v) =

∫ vb

vs

fp(τ)dτ = v2
b − v2

s , and

π(v) = Efp [p | p ∈ [vs, vb]] =
1

v2
b − v2

s

∫ vb

vs

τfp(τ)dτ =
2

3

v2
b + vsvb + v2

s

vb + vs

.

Since δ(v) = e−t, where t is the time of agreement between types vs and vb, we get

ṽb(vs, t) =
√

e−t + v2
s , where ṽb(vs, t) is the type of buyer who agrees with the seller

vs at time t. Noting that ps(vs, t) = π (vs, ṽb(vs, t)) we obtain

ps(vs, t) =
2
(
e−t + 2v2

s + vs

√
e−t + v2

s

)
3
(
vs +

√
e−t + v2

s

) .

Similarly, we could compute the strategy of the buyer.

For the second example consider fp(x) = 6x(1−x). Then π(v) =
2(v3

b−v3
s)− 3

2
(v4

b−v4
s)

3(v2
b−v2

s)−2(v3
b−v3

s)

and τ(v) = − ln δ(v), where δ(v) = F (vb) − F (vs) = (3v2
b − 2v3

b ) − (3v2
s − 2v3

s).

Thus, the strategy of the buyer is pb(vs, t) = π(vb, χ(vb, t)) where χ(vb, t)) solves

3v2
b − 2v3

b − e−t = 3χ2(vb, t)− 2χ3(vb, t), and similarly for the seller.

Next, we provide a simple example of an XPEQ which is not a REQ.

Example 2.5.7. Let p∗ ∈ [0, 1], and consider the following strategies of the traders.

The seller’s types vs ≤ p∗ commit to always demanding p∗, and the types vs > p∗

commit to always demanding 1. Similarly, the buyer’s types vb ≥ p∗ always bid p∗,

and vb < p∗ always bid 0. It is trivial to check that this is an XPEQ of MBG, and it is

clearly not a REQ. The direct-revelation mechanism corresponding to this XPEQ is a
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degenerate distribution Fp (by virtue of Theorem 1.3.1) with point mass at p∗ ∈ [0, 1].

Using this logic, and the representation of Theorem 1.3.1, the reader can construct

more contrived examples at will. That is, take some distribution Fp which is not

continuous w.r.t.the Lebesque measure, and there exists an XPEQ (which is not a

REQ) of MBG, such that the direct mechanism corresponding to that XPEQ is the

given Fp.

Finally, we present a standard example of welfare analysis in terms of ex-ante

constrained efficiency. We again stress that XPCE is necessary for ex-ante constrained

efficiency. Thus, it is enough to look for optimal mechanisms within the class of

probability distributions over posted prices. Moreover, under risk-neutrality, the ex-

ante optimal mechanism is a deterministic posted price (i.e., a point-mass at the

ex-ante optimal posted price). By the previous example, the corresponding XPEQ is

not a REQ. (In contrast, under risk aversion the ex-ante optimal XPEQ is generically

a REQ, see Example 2.6.3 of Section 2.6, and Čopič and Ponsat́ı [2005].)

Example 2.5.8. Let vb and vs be iid, uniform on [0, 1]. For simplicity we find the ex-

ante constrained-efficient mechanism that maximizes the sum of expected utilities.

In this case it is quite obvious that the only candidate is by symmetry a posted price

p∗ = 1
2

(i.e., a degenerate distribution over posted prices with a point-mass at 1
2
).

The welfare under this mechanism is

∫ 1
2

0

∫ 1

1
2

(
1

2
− vs) + (vb −

1

2
)dvbdvs =

1

8
.

From the previous example we know that there is an XPEQ of MBG correspond-

ing to this mechanism, but this XPEQ is not an REQ. On the other hand, it is

straightforward that for each continuously differentiable Fp with full support, there

is an REQ of MBG which implements that Fp. Therefore, there exists a sequence of

REQ, approximating the outcome under p∗ = 1
2

(pointwise in the type space)-take

for instance fn = knx
n(1 − x)n, n = 1, 2, ..., and kn is chosen so that fn integrates

to 1. Thus, the outcome under p∗ is a limit point of the set of REQ outcomes. The

welfare under the linear REQ is 1
12

, and the welfare under the REQ corresponding to
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fp(x) = 6(1 − x)x is 1
10

. For comparison, in this same environment, Cramton [1992]

computes a symmetric stationary separating PBE where expected benefits equal to

3
32

, so that the ex-ante ranking of welfare in these equilibria is 1
8

> 1
10

> 3
32

> 1
12

( the

optimal robust XPEQ � symmetric non-linear REQ of Example 2.5.6 � Cramton’s

PBE � the linear REQ). Note that the PBE in Cramton [1992] is not an XPEQ

(thus it is not robust). Also note that when agents are risk averse, the linear REQ

is ex-ante more efficient than the most efficient posted price-see the continuation of

this example, Example 2.6.3 of Section 2.6.

2.6 Risk aversion and unequal discount rates.

In this section, we discuss MBG in a slightly richer model. The agents’ static

preferences display constant relative-risk aversion (CRRA), i.e., us(vs, p) = (p −

vs)
γs , ub(vb, p) = (vb − p)γb , where γi ∈ (0, 1], i = s, b. The agents are allowed to

discount the future differently, so that time preference of i is given by ρi ≥ 1- agent

i discounts according to e−ρit, i = s, b. The restriction that ρi ≥ 1 is without loss of

generality since all that matters are relative rates of discounting. Parameters γ and

ρ are common knowledge. We will show that risk aversion and time preference act as

substitutes, so that behaviorally, an agent that is more impatient acts as if he were

more risk averse. In particular, this is true in a static direct mechanism, so that the

mechanism has to be adjusted for risk aversion and impatience-even though the game

is static. The point is that it matters that a direct mechanism is a reduced form of a

dynamic game.

We limit ourselves to the present setup mostly for the sake of tractability and

also because the present case exhausts the environments where MBG admits REQ

in linear strategies.8 It is worth noting that in a dynamic game, for agents to dis-

play preferences that are consistent in the intertemporal sense, we have to restrict

the agents instantaneous utility functions to display constant relative-risk aversion

8One could consider a richer model, where each agent has some concave utility function and some
discounting criterion.
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(CRRA) (See Fishburn and Rubinstein [1982]). Nonetheless, redoing the present

exercise under other behavioral assumptions may be interesting.

We first derive the FOC for a REQ in this environment (the argument is identical

to the argument in the Proof of Proposition 2.5.2 above). So let p∗ be a REQ profile.

Now, given p∗b , the seller considers the problem

max
t∈[0,∞)

e−ρst (p∗b(vb, t)− vs)
γs ,

which yields the first-order condition (similarly for the buyer)

(p∗b(vb, t)− vs) =
γs

ρs

∂p∗b(vb, t)

∂t
. (2.3)

Observe that it is impossible to distinguish the first-order condition for agents

that are risk averse from the first-order condition for impatient agents. In particular,

in the direct mechanism, we need to consider γ′i = γi

ρi
as the risk-aversion parameter

of agent i.

Consider first the case when ρs = ρb = ρ, so that γ′i = γi

ρ
, δv = e−ρt̃(v), and

π(v) = p∗b(vb, t̃(v)) = p∗s(vs, t̃(v)), where again t̃(v) = min{t | p∗b(vb, t) = p∗s(vs, t), to

obtain

(π(v)− vs)
∂δ(v)

∂vs

= −γ′sδ(v)
∂π(v)

∂vs

. (2.4)

By differentiability of the profile p∗ both δ and π are differentiable, and (2.4) is

precisely the XPIRIC condition for differentiable mechanisms when γ′ are the risk

aversion parameters, which is easy to check along the lines of Section 4.

When γ′i 6= 1 for at least one i there is no representation of XPIRIC mechanisms

in terms of distributions over posted prices as in Theorem 1.3.1. Still, for each mecha-

nism m = (δ, π), satisfying (2.4), we can construct by the above substitutions exactly

one strategy profile p∗ satisfying the necessary and sufficient conditions (2.3) for a

REQ. Thus, the analog to Theorem 2.5.3 holds. For a more detailed treatment of

XPIRIC mechanisms under risk aversion see Čopič and Ponsat́ı [2005], where we also
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prove that the mechanisms described by equation (2.4) are XPCE. 9

Since δ(v) = e−ρt̃(v), each trader perceives the deterministic trade at price π(v)

and time t̃(v) exactly the same as instantaneous trade at price π(v) with probability

δ(v). The price is distorted due to risk sharing, and the probability may be affected

by impatience as well. Notice that we could also reparametrize time to τ = ρt, and

under this new time-scale there would be no distortion of perceived probability (i.e.,

agents getting older faster or being more impatient is formally equivalent).

Similarly, when ρs 6= ρb what matters is the γ′i = γi

ρi
, i = s, b, and Equation 2.4 still

describes the XPIRIC condition for the direct mechanisms. Therefore, the difference

of the relative impatience also has an effect on pricing, as well as on the probability

of trade. Again, even in the static setup of direct mechanisms we have to take into

account the impatience, and not only the risk aversion of the agents. Behaviorally,

more impatient agents act as if they were more risk averse. Now there does not exist

a rescaling of time units that would work for both traders. See also Example 2.6.2 at

the end of this section.

For the rest of this section we limit ourselves to the unique mechanism (and REQ of

MBG) where pricing is linear in agents’ types. We remark that in environments where

agents’ risk attitudes are not CRRA or they do not discount the future exponentially,

no linear pricing mechanism exists (see Čopič and Ponsat́ı [2005]).

Proposition 2.6.1. Given the environment described by (γ, ρ), there exists a unique

solution (δ, π) to (2.4) such that δ(v) is linear in v and δ(0, 1) = 1. More precisely,

π(v) =

√
γ′s√

γ′s +
√

γ′b
vb +

√
γ′b√

γ′s +
√

γ′b
vs, δ(v) = (vb − vs)

√
γ′sγ′b , vb ≥ vs. (2.5)

Proof. Let π(v) = αvs + (1− α)vb, and insert this into (2.4). This gives

∂ log δ(v)

∂vs

= − γ′sα

1− α

1

vb − vs

,

9The main problem is that in a non-linear environment there are XPIRIC mechanisms that cannot
be represented as binary lotteries (since an agent is no longer indifferent between the lottery and
its mean, both on and off the equilibrium path). In Čopič and Ponsat́ı [2005] we prove that the
mechanisms that are binary lotteries are XPCE.
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∂ log δ(v)

∂vb

=
γ′b(1− α)

α

1

vb − vs

.

By integrating the first equation we obtain log δ(v) = γ′sα
1−α

log(vb − vs) + Ks(vb), and

from the second we obtain log δ(v) =
γ′b(1−α)

α
log(vb − vs) + Kb(vs), where Ks(vb)

and Kb(vs) are integration constants. But then it must be that Ks = Kb = const.

(determined from δ(0, 1) = 1) and
γ′b(1−α)

α
= γ′sα

1−α
. Therefore α is uniquely determined.

Observe that pricing under the linear mechanism is different from the Nash-

solution pricing, which is γ′s
γ′s+γ′b

vb +
γ′b

γ′s+γ′b
vs, and is still attainable as the limit of

SPNE of the Rubinstein alternating offers game, when vs and vb are known. This

difference is not surprising since the contraction independence property that is re-

quired in the (generalized) Nash solutions, and implied by equilibrium conditions in

the Rubinstein game, is clearly not equivalent to the incentive constraints. However,

it is remarkable that risk sharing goes in the same direction for both allocations:

the more risk averse agent obtains less surplus. Note also that in both models (the

present one and the Rubinstein alternating-offers model) risk sharing and impatience

have an effect on pricing which goes in the same direction: the more impatient agent

gets less, and the more risk-averse agent gets less. We conclude this section with two

examples.

Example 2.6.2. Let γs

ρs
= γ′s = γb

ρb
= γ′b = γ′, so that the unique linear mechanism is

given by π(v) = 1
2
(v1 + v2), δ(v) = (v2 − v1)

γ′ . The strategies of the agents in the

appropriate REQ of MBG are given by

p∗s(vs, t) = vs +
e−γ′t

2
, p∗b(vb, t) = vb −

e−γ′t

2
.

Thus, there is a two-parametric family of environments where the utility outcome is

invariant, and it is the same regardless of whether each agent is impatient or risk

averse. We remark that while in the static direct mechanism sense we have to adjust

for dynamic time preference, in the dynamic setting we have to adjust for the static

risk aversion, even though at each time the outcome is deterministic.
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In the last example we show that when agents are risk averse the ex-ante optimal

(under a utilitarian social welfare function) XPEQ of MBG is a REQ. Computing

the ex-ante optimal mechanism is a bit complicated (and can in general only be done

numerically), and we refer an interested reader to Čopič and Ponsat́ı [2005].

Example 2.6.3. Let γs = γb = γ, γ ∈ (0, 1] and ρs = ρb = 1, and as before, let the

social welfare be given by us + ub. Also, let vb and vs be iid, uniform on [0, 1]. Then,

by symmetry, the most ex-ante efficient posted price is p∗ = 1
2
. The ex-ante social

welfare under p∗, as a function of risk aversion γ is

W p(γ) =
1

2(γ + 1)

(
1

2

)γ+1

,

and the social welfare under the linear REQ is

1

2(γ + 1)(2γ + 1)

(
1

2

)γ

.

These two expressions are equal when γ = 1
2
. For more risk-averse traders (i.e. γ < 1

2
)

social gains are higher under the linear REQ. In fact, the linear REQ approaches ex-

post efficiency as the traders’ risk aversion goes to infinity.

2.7 Separating PBE are REQ

We now show that every separating perfect Bayesian equilibrium (PBE) of MBG must

be a REQ. We note that in MBG, the off-equilibrium deviations are unobservable so

that the set of outcomes of PBE and the set of outcomes of BE coincide.

Beliefs. Recall from Section 2 that it is common knowledge that types are

drawn from some distribution with support [0, 1]2. In this section, we assume that

the specific pdf G is also common knowledge. Agent i updates her beliefs over the

distribution of the opponent’s types over time. As described in Section 4, the histories

depend only on t. Thus, given a strategy profile p, the beliefs of a player about the

opponent are updated only as a function of time. We denote by Gj (vj|vi, t; p) the
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distribution of the belief of agent i of type vi about agent j at time t, conditional on

no agreement until time t. By gj (vj|vi, t; p) we denote the density of Gj, whenever it

exists. Finally, we denote by Hj (vi, t; p) the mass of types of player j with whom agent

i has agreed with by time t. We will economize the notation and omit parameters

vi and p whenever that is unambiguous. Note that if the strategies of both players

are differentiable with respect to both parameters, and these partial derivatives are

non-zero, the beliefs will be differentiable with respect to time.

Bayes and perfect Bayes-Nash equilibrium. Denote by EUi (vi; p, G) the

expected payoff of player i of type vi, when agents play according to strategy pro-

file p and types are distributed according to G. Let Gj (vi) denote the conditional

distribution of j’s types. Thus,

EUi (vi; p, G) =

1∫
0

ui (p̄i (p, vi, vj) , vi) e−τ(p,vi,vj)dGj (vi) ,

or alternatively

EUi (vi; p, G) =

∫
t∈[0,∞)

ui (pi (vi, t) , vi) e−tdHj (vi, t) ,

where both of these integrals have to be understood as Lebesgue integrals.

Denote by Πi the set of strategies for player i, and by Π = Πs × Πb the set

of strategy profiles. A strategy profile p = (pi, pj) ∈ Π constitutes a Bayes-Nash

equilibrium if and only if

EUi (vi; p, G) ≥ EUi (vi; p
′
i, pj, G) , ∀ p′i ∈ Πi,

∀ vi ∈ [0, 1], i = s, b, j 6= i.

A careful definition of the PBE in our setting requires specifying agents’ expected

utility in every subgame, which in our setup means at every time t. Let EUi (vi, t; p, G)

denote the expected payoff to player i of type vi in the subgame starting at t, when

agents play strategies p (note that p, vi, and t also specify the history observed by
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agent i):

EUi (vi, t; p, G) =

∫
τ∈[t,∞)

ui (pi (vi, τ) , vi) e−τdHj (vi, τ)

A strategy profile p ∈ Π constitutes a perfect Bayesian equilibrium if

EUi (vi, t; p, G) ≥ EUi (vi, t; p
′
i, pj, G) ,

∀ p′i ∈ Πi s.t.p′i (vi, t
′) = pi (vi, t

′) for all t′ ≤ t,

for all t ≥ 0, for all vi ∈ [0, 1], i = s, b, j 6= i. As we noted earlier, BE and PBE are

outcome equivalent in MBG.

We impose the following conditions and restrict attention to BE in strongly regular

strategies. Note that a BE in regular strategies is a BE of MBG which we show in

Corollary 2.7.7, in the Appendix.

R We say that a strategy is strongly regular if ∂pi(vi,t)
∂vi

is continuous ∀ t ∈ [0,∞)

and limt→∞ pi (vi, t) is a left-continuous function of vi, for all vi ∈ [0, 1].

SEP We say that a strongly regular strategy is separating if ∂pi(vi,t)
∂vi

6= 0, ∀ t ∈ [0,∞)

and ∀ vi ∈ (0, 1).

The regularity condition R imposes a pattern of behavior that rules out dramatic

changes when types change only marginally, which is a natural requirement since types

and dates take values in a continuum. The second part of R is roughly an indifference

breaking rule: if an agent of some type is at the horizon indifferent between two

concessions to the opponent, she will concede more. In Lemma 2.7.3 in the Appendix

we show that this condition is enough to assure the continuity of the demands with

respect to types at the time horizon and that in a regular equilibrium the agents’ bids

asymptotically approach the reservation values.

With the main theorem of this section we wrap up our paper.

Theorem 2.7.1. All strongly regular and separating PBE (and thus BE) of MBG

are REQ.
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The sketch of the proof goes roughly as follows. First, we show that a differential

first-order condition for a strongly regular BE is well defined. Then we show that

the strategies resulting from this first-order condition must be belief independent so

that a BE is an XPEQ. The intuition behind this is that a separating equilibrium is

fully revealing, i.e. for each proposal and each date the seller will know exactly the

valuation of the opponent with whom she agrees at that proposal and date. Thus,

once the agreement occurs the agents know each other’s types, and since this is

common knowledge ex-ante, they must play best-replies against the strategy of each

type of the other player. For details see the Appendix.

Appendix

Proposition 2.7.2. Weak Type Monotonicity: In every BE, ∂pi(vi,t)
∂vi

≥ 0, for

all times t ∈ (0,∞) and types vi ∈ [0, 1], which satisfy the condition that Hj (vi, t) is

strictly increasing at t.

Proof. Fix the buyer strategy at some pb (., .). Denote by Hb(vs, t; ps) the mass of

buyer’s types with whom vs enters in agreement until time t if she plays the strategy

ps (., .). Observe that at any t, s.t.∃ vb with ps (vs, t) = pb (vb, t), Hb(vs, t; ps) is strictly

increasing if and only if ps (vs, .) is strictly decreasing or pb (vb, .) is strictly increasing

in t. This follows from continuity of ps (., .) and pb (., .) w.r.t. v. Moreover, Hb(vs, t; ps)

has a jump at t if and only if ∃ v′b, v
′′
b s.t.ps (vs, t) = pb (vb, t) for all vb ∈ (v′′b , v

′
b).

We have to show that ps (vs, t) ≥ ps (v′s, t) for any vs ≥ v′s and any t s.t.Hb(vs, t; ps)

is strictly increasing at t (at any vs, where the condition in the statement of the lemma

is satisfied, Hb(vs, t; ps) is strictly increasing, and it can have a jump).

We proceed by contradiction. Assume there are vs > v̂s and t̂ s.t.ps(vs, t̂) <

ps(v̂s, t̂) and Hb(vs, t̂; ps) is strictly increasing at t̂. Denote by

t0 = inf
{
t|Hb(vs, t; ps) > 0, t < t̂, and ps (vs, t) < ps (v̂s, t) for all τ ∈ (t, t′)

}
,

t1 = min
{
t|t > t̂, ps (vs, t) = ps (v̂s, t)

}
.
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In other words, t0 is the largest time until which the demands of vs and v̂s are

monotonic, and t1 is the first time after t0 at which these demands are equal. First,

by continuity of ps (vs, .) and ps(v̂s, .) it is clear that t0 < t̂ < t1. Moreover, t1 < ∞

since by the previous lemma, limt→∞ ps (vs, t) = vs > v̂s = limt→∞ ps(v̂s, t), hence, by

continuity there exists a t̄ < ∞ s.t.ps (vs, t) > ps(v̂s, t) for all t ≥ t̄. Since Hb(vs, t̂; ps)

is strictly increasing at t̂, it is also clear that Hb(vs, t0; ps) < Hb(vs, t1; ps).

If some seller type bids lower at time t she will have agreed with a larger mass of the

buyer’s types. In other words, ps (vs, t) ≤ ps(v̂s, t) ⇒ Hb(vs, t; ps) ≥ Hb(v̂s, t; ps) for all

t and all vs and v̂s, which follows from the monotonicity of ps (., .) and pb (., .) w.r.t.

t. Applying this twice at t0 and t1, we get Hb(vs, t0; ps) = Hb(v̂s, t0; ps) and that

Hb(vs, t1; ps) = Hb(v̂s, t1; ps). By construction, we have ps (vs, t) < ps(v̂s, t) for all

t ∈ (t0, t1). This implies that Hb(vs, t; ps) ≥ Hb(v̂s, t; ps) for all t ∈ (t0, t1).

In equilibrium, ps (vs, .) is the optimal strategy for type vs, and ps(v̂s, .) is optimal

for type v̂s on the interval (t0, t1). In particular (from now on we omit subindexes and

write ps (vs, t) = p(t), ps(v̂s, t) = p̂(t), Hb(vs, t; ps) = H (t) and Hb(v̂s, t; ps) = Ĥ (t))

∫ t1

t0

e−t (p (t)− vs) dH (t) ≥
∫ t1

t0

e−t (p̂ (t)− vs) dH (t) (2.6)

and ∫ t1

t0

e−t (p̂ (t)− v̂s) dĤ (t) ≥
∫ t1

t0

e−t (p (t)− v̂s) dĤ (t) . (2.7)

Subtracting these two inequalities, we obtain

∫ t1

t0

e−tdH (t) ≤
∫ t1

t0

e−tdĤ (t) .

Integrate by parts to get
∫ t1

t0
e−tdH (t) = H (t1) e−t1−H (t0) e−t0 +

∫ t1
t0

e−tH (t) dt, and

similarly for the right hand side. Now we use H (t0) = Ĥ (t0) and H (t1) = Ĥ (t1), to

obtain ∫ t1

t0

e−tH (t) dt ≤
∫ t1

t0

e−t
b Ĥ (t) dt.

But since H (t) ≥ Ĥ (t) for all t ∈ (t0, t1) the last inequality implies that it must
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in fact be H (t) = Ĥ (t) for almost all t ∈ (t0, t1). Now take for example (2.6), and

rewrite it as ∫ t1

t0

e−t (p (t)− p̂ (t)) dH (t) ≥ 0.

But p̂ (t) > p (t) for t ∈ (t0, t1) , which implies that

∫ t1

t0

e−t (p (t)− p̂ (t)) dH (t) < 0,

which is a contradiction.

Lemma 2.7.3. Total concession at infinity: In a regular PBE,

limt→∞ pi (vi, t) = vi for all vi ∈ [0, 1] .

Proof. Denote Pi (vi) = limt→∞ pi (vi, t). The proof is divided into three steps. In

step 1 we show that Ps (1) = 1 (which holds trivially) and the continuity at 1 imply

that Ps (0) = 0. In step 2 we show that Ps (.) is a continuous function, hence it attains

all values in the interval [0, 1]. Finally, in step 3 we show that the claim is true for

the seller. An analogous proof works for the buyer.

Step 1: Ps (0) = 0. Suppose this isn’t the case, i.e. Ps (0) = K > 0 in equilib-

rium. Denote by ps (0, t) such equilibrium strategy for the seller, and by pb (vb, t) the

equilibrium strategy of the buyer of type vb. By individual rationality we have that

Pb (0) = 0. Also by individual rationality, we have that Pb (vb) is bounded above, i.e.

Pb (vb) ≤ vb. Since Pb (vb) ≥ 0, these imply that Pb (vb) is continuous at point vb = 0.

From continuity of Pb around vb = 0 we get that there is a positive mass of types

vb ∈ [0, 1] for which Pb (vb) < K. But then the seller of type 0 could improve her

expected payoff by playing ps until some large time t′, and then lowering her demand

to 0, according to some strategy p′s. To see this, notice that ps and pb are continuous

and for all vb, ps (0, t) is non-increasing and pb (vb, t) is non-decreasing in t. Thus the

support of gb (vb|t) is shrinking as time elapses. When t is very large, the support of

gb (vb|t) will be very close to the ex-post belief when no agreement has been reached.

Hence t′ is given as the moment when the expected continuation payoff of playing ps,

conditional on vb ≥ K, is lower than the expected continuation payoff of playing p′s,
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conditional on vb > 0. This establishes the contradiction. The same argument shows

that Ps (vs) is continuous in a neighbourhood of the point vs = 0.

Step 2. Assume thus that Ps (vs) is discontinuous at v̄s, i.e., Ps (v̄s) = l̂ and

limvs↘v̄s = l̄, where l̄ > l̂. Then there must exist an v̄b s.t.Pb (v̄b) = l̄, and limvb↗v̄b
Pb (vb) =

l̂ (same argument as in step 1, left continuity of Ps and right continuity of Pb). Take

a v̂s > v̄s. By continuity of ps in t, there exists an Ms s.t.ps (v̄s, t) − l̂ < ε for all

t ≥ Ms. Also, notice that ps (v̂s, t) ≥ l̄. Now fix ε = l̄−l̂
4

> 0 and take a t ≥ Ms. Then

at t, ps (v̄s, t) < l̂ + ε while ps (v̂s, t) ≥ l̄ for all v̂s > v̄s, contradicting the continuity of

ps in vs. This proves that Ps (vs) has to be right-continuous. By assumption, Ps (vs)

is left-continuous,10 hence it is continuous. In step 1 we proved that Ps (1) = 1 and

Ps (0) = 0, so by Rolle’s theorem it attains all values between 0 and 1.

Step 3: Ps (vs) = vs for all vs ∈ [0, 1]. Take an vs ∈ (0, 1). By steps 1 and 2, Ps

takes all the values in the interval [0, 1] and is continuous (thus measurable), strictly

positive on (0, 1]. Thus we can define the measure µs

µs (V ) =

∫
V

Ps (v) dm(v) for each mesaurable V ⊂ [0, 1],

where m (.) denotes the usual Lebesgue measure. By strict positivity, continuity,

and boundedness of Ps (vs), µs is an equivalent measure to m. Now suppose that

Ps (vs) > vs. By equivalence of µs to m there exists a positive mass of types vb

s.t.pb (vb) ∈ (vs, Ps (vs)). To see this define B = {vb|pb (vb) ∈ (vs, Ps (vs))}. Since µs

and m are equivalent, m (B) > 0. Now repeat the same argument as in step 1 to get

a contradiction. Hence indeed Ps (vs) = vs.

Recall that the entry time tEi (vi) is the first time when vi could agree with some

type of player j, tEi (vi) = min {t | ṽj (vi, t) 6= ∅}. It is easy to see that at tEi (vi) the

10Type v̄s is at t = ∞ indifferent between demanding l̂ and l̄; the former does not improve her
probability of reaching an agreement since the mass of opposing types with bids between l̄ and l̂ is
0. However, by an argument similar to the proof of step 1, we can argue, that she does not lose
anything by bidding l̂, which gives us left continuity of Ps. Left continuity of Ps is thus essentially
an assumption on how agents resolve their indifference at the horizon.
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demand of type vi must be compatible exactly with that of the weakest type of the

opponent.

Lemma 2.7.4. Initial proposal and entry time: In an undominated regular

BE ps(vs, t
E
s (vs)) = pb(1, t

E
s (vs)) and pb(vb, t

E
b (vb)) = ps(0, t

E
b (vb)), for all vi ∈ [0, 1].

Proof. Denote by γi (vi) the starting point of the bids of type vi: γi (vi) = limt↘0 pi (vi, t).

We will prove that γs(0) = γb(1), which proves the Lemma. In an undominated BE

the type vs = 0 at time 0 demands a share that will give her a positive probability of

agreement in an infinitesimal amount of time. On the other hand, it cannot be that

at t = 0, the seller vs = 0 bids a price which meets the bid of some buyer of type

v0
b < 1-meaning that γs (0) = γb(v

0
b ). The reason is that type vs = 0 could profitably

deviate by starting with a bid that meets type vb = 1 and then in an infinitesimal

time lower her bid to γb(v
0
b ). By type monotonicity of buyer’s strategy, such deviation

would be profitable.

We remark that in each undominated strongly regular BE tEi (vi) < ∞ if and only

if vs < 1, vb > 0. Otherwise the strategy of vi would be strictly dominated.

We now write down the dynamic-optimization problem. In equilibrium, agents

maximize payoffs, given the type-contingent strategies of the other player. Thus,

agents are picking optimal functions pi(vi, ·), i = s, b, determining how bids change

over time.

An important step in the proof of proposition 2.7.5 below is to show that for every

(vi, t) ∈ [0, 1]× [tEi (vi) ,∞),ṽj (vi, t) is a function (and not a correspondence), defined

by

pj(ṽj (vi, t) , t) = pi(vi, t). (2.8)

This is a consequence of the assumption that the opponent plays a strictly type-

monotone strategy, and the implicit function theorem.

Proposition 2.7.5. Optimization Program: If the strategy of agent j is strongly

regular and separating, then the best reply of agent i of type vi solves the following
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optimization program

Maxpi(vi,·)∈Πi

∫
[tEi (vi),∞)

e−tui(pi(vi, t), si)gj(ṽj (vi, t))
∂ṽj (vi, t)

∂t
dt,

s.t. (2.8) and tEi (vi) defined by ṽb

(
vs, t

E
s (vs)

)
= 1 or ṽs

(
vb, t

E
b (vb)

)
= 0.

Proof. Consider the seller and fix her type to be vs. When entering into negotiations

at tEs (vs), she decides her optimal concession plan ps (vs, t), t > tEs (vs), in order to

maximize her expected discounted future payoff. Denote by Hb (t) the probability of

seller vs reaching agreement up to time t (we omit the parameter vs in Hb (t; vs)).

The seller is solving the following program

Maxps(vs,·)∈Πs

∫
[tEs (vs),∞)

e−t(ps(vs, t)− vs)dHb (t) .

But the possibility of reaching an agreement at some t > tEs (vs) is exactly the possi-

bility that the seller’s bid will at t meet the bid of some type of the buyer. For each

t ≥ tEs (vs), recall that ṽb (vs, t) is the type of buyer with whom vs reaches agreement

at moment t. Thus ṽb (vs, t) is implicitly defined from the relation

pb(ṽb (vs, t) , t) = ps(vs, t).

Type monotonicity implies that at every instant there will be at most one type

reaching agreement with each type of the other agent. Thus, by definition of tEi

ṽb

(
vs, t

E
s (vs)

)
= 1, and by Lemma 2.7.3 limt→∞ ṽb (vs, t) = vs. Taking the derivative

with respect to t, we can express

∂ṽb (vs, t)

∂t
=

∂ps(vs,t)
∂t

∂pb(ṽb(vs,t),t)
∂vb

.

By assumption, ∂pi

∂t
are both finite, ∂ps

∂t
≤ 0 and ∂pb

∂t
≥ 0. Hence type monotonicity,

and the implicit function theorem imply that, for each t ≥ tEi (si), ṽb (vs, t) is a well-
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defined differentiable function of time, with 0 ≤
∣∣∣∂ṽb(vs,t)

∂t

∣∣∣ < ∞. In other words, at

every t ≥ tEs (vs) there exists exactly one type ṽb (vs, t) of the buyer, with whom vs

would reach agreement at that moment. These facts have two consequences. First,

the probability of reaching an agreement by t, Hb (t), has no mass points because the

distribution of types of the buyer has no mass points. Second, the marginal increase

in Hb (t), dHb (t), is equal to the marginal increase of the mass of buyer’s types that

the seller would agree with by moment t. Also, the seller knows that before tEs (vs)

her bids were unrealistic, so she cannot update her beliefs until that moment. Since

ṽb is differentiable with respect to time, the beliefs are updated continuously and

differentiably from tEs (vs) on. In other words, we have established that at tEs (vs) the

belief of the seller is exactly Gb(vb), and at every moment dHb (t) = dGb (ṽb (vs, t)) =

gb (ṽb (vs, t))
∂ṽb(vs,t)

∂t
dt. This completes the proof for the seller. The case of the buyer

is analogous.

The optimization problem stated in Proposition 2.7.5 can be best approached as

a problem where i is choosing two unknown functions pi(vi, ·) and ṽj (vi, .) which are

bound by the constraint (2.8), where pj(·, ·) is a given and fixed function (the strategies

of all possible types of agent j). A good reference for the calculus of variations is

Elsgolts [1973].

The optimality condition at the lower boundary of optimization is given by defi-

nition of tEi (vi)-implicitly written as ṽb(vs, t
E
s (vs)) = 1 or ṽs(vb, t

E
b (vb)) = 0. In the

following lemma we provide the first-order condition for the optimization program of

agent i, for t > tEi (vi). To save on cumbersome notation we omit several unambiguous

arguments in the functions.

Lemma 2.7.6. First-order condition: In a regular and separating BE, strategies

pi(vi, .), i = s, b, satisfy the following first-order conditions

(ps − vs) =
(

∂pb(ṽb,t)
∂ṽb

dṽb

dt
− ∂ps

∂t

)
,∀ vs ∈ [0, 1] ,∀ t > tEs (vs) ;

(vb − pb) = −
(

∂ps(ṽs,t)
∂ṽs

dṽs

dt
− ∂pb

∂t

)
,∀ vb ∈ [0, 1] ,∀ t > tEb (vb) .

(2.9)
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Proof. We fix vi and economize the notation to write ṽj (vi, t) = ṽj and
∂ṽj(vi,t)

∂t
=
·
ṽj.

We write the Hamiltonian

Hi(t) = e−tui(pi(vi, t), vi)gj(ṽj)
·
ṽj

−µ(t) (pj(ṽj, t)− pi(vi, t)) ,

and compute the Euler conditions for the unknown functions

∂Hi

∂ṽj

= e−tui(pi(vi, t), vi)g
′
j(ṽj)

·
ṽj −µ

∂pj(ṽj, t)

∂ṽj

,

d

dt

∂Hi

∂
·
ṽj

= e−tui(pi(vi, t), vi)g
′
j(ṽj)

·
ṽj

+e−t ∂ui(pi(vi, t), vi)

∂p

∂pi(vi, t)

∂t
gj(ṽj)

−e−tui(pi(vi, t), vi)gj(ṽj),

∂Hs

∂pi

= e−t ∂ui(pi(vi, t), vi)

∂p
gj(ṽj)

·
ṽj +µ,

∂Hs

∂
·
pi

= 0.

Whence we have the two Euler equations

−µ
∂pj(ṽj ,t)

∂ṽj
− e−t ∂ui(pi(vi,t),vi)

∂p
∂pi(vi,t)

∂t
gj(ṽj) + e−tui(pi(vi, t), vi)gj(ṽj) = 0,

e−t ∂ui(pi(vi,t),vi)
∂p

gj(ṽj)
·
ṽj +µ = 0.

From the second Euler equation we can eliminate µ and the density gj also disap-

pears from the first to obtain the condition

ui (pi, vi) =
∂ui (pi, vi)

∂pi

(
∂pj(ṽj, t)

∂ṽj

dṽj

dt
− ∂pi

∂t

)
,

for t ≥ tE (vi) , i = s, b.

Lemma 2.7.6 has two important implications. The first is that a best response to

a strictly type-monotone strategy is strictly type monotone.
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Corollary 2.7.7. If pi (., .) is a best response to a regular strategy pj (., .), such that

∂pj

∂vj
> 0, then ∂pi

∂vi
> 0.

Proof. Let i = s and assume that ∂ṽb

∂t
= 0. By assumption, ∂pb(ṽb,t)

∂vb
> 0 and ∂ps

∂t
≤ 0,

so that ∂ṽb

∂t
= 0 contradicts equation (2.9).

The second implication of Lemma 2.7.6 is that the equilibrium strategies must be

independent of players’ beliefs. Hence the following is immediate (see for instance

Ledyard [1978]).

Corollary 2.7.8. A PBE in regular and strictly type monotone strategies must be an

ex-post equilibrium.

Combining Corollary 2.7.8 with Lemma 2.7.3 yields Theorem 2.7.1.
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Chapter 3

Awareness as an Equilibrium
Notion

The work presented in this chapter has been done jointly with Andrea Galeotti.

3.1 Introduction

Awareness defines the way that individuals perceive the world. In this paper, we

address normal-form games, where agents may have limited awareness of strategies

available to them and to others. In such world, the agents then need to conjecture

the strategies that the others are aware of, conjecture the others’ conjectures, and

so on. We call such infinite regress an awareness architecture. While the modeler

may be unsure about the agents’ awareness architectures, he may know something

about them. We describe this by the set of possible awareness architectures. Given

an awareness architecture, each player adapts his play accordingly. However, in equi-

librium, neither the agents’ awareness architecture nor their play can change.

In Section 3.2 we define awareness as an equilibrium notion in the following way.

Awareness equilibrium is a situation where the play of the game is, from the per-

spective of each agent, consistent with rationality of all players, and consistent with

the awareness architectures. Awareness architectures need to be consistent (an agent

cannot make a conjecture about a fact he is not aware of) and they have to be in the

set of possible awareness architectures. The play of the game should be consistent

with the awareness architectures, and with each player best responding (within the
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set of actions he is aware of) to the others’ actions. We then provide conditions on

the set of possible awareness architectures under which an equilibrium exists.

Although our approach to awareness is quite different, it is related to the epistemic

models of unawareness, in particular those concerned with multi-person settings. Af-

ter the seminal contribution of Dekkel et al. [1998], showing that standard state-space

representation precludes non-trivial forms of unawareness, this literature has focused

on providing general state-space models which are able to overcome this negative re-

sult. Recent papers on this are Heifetz et al [2005], Li [2004], Modica and Rustichini

[1999]. In these models, general state-space representations of unawareness are the

core; in specific situations, agents’ unawareness structure is a primitive that models

agents’ states of minds. Feinberg [2004] provides a an approach that is more similar

to ours-in particular, he also models agents’ awareness as an awareness architecture.

In his approach, agents awareness might change after having observed an outcome,

so that we can think of this as a dynamic approach. There are two key differences

between these approaches and ours. First, in our approach, the agents’ awareness

cannot change in equilibrium, which can be thought of as a steady state of situa-

tions when it can. Second, through the specification of the set of possible awareness

architectures, we model the modeler’s knowledge about the agents’ awareness and

conjectures.

Revealed awareness is conceptually the core of our approach and is consistent with

other notions of equilibrium. Awareness equilibrium is close to the equilibrium models

where off the equilibrium deviations are only conjectured but never actually observed

(see Rubinstein and Wolinsky [1991], Fudenberg and Levine [1993], and Battigalli and

Guaitolli [1998]). That is a very natural weakening of standard notions of equilibrium,

and awareness equilibrium weakens it further by not requiring that the model itself be

common knowledge. As all equilibrium models, awareness equilibrium can be thought

of as characterizing steady states of dynamic processes-in these case, processes where

agents adjust their actions and awareness.

In Section 3.3 we provide a simple class of sets of possible awareness architectures

for which the awareness equilibrium exists. Each player may be aware of a fixed
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number of strategies of every player, which is a parameter of the model. We interpret

the level of awareness of agents, i.e. how many actions they are aware of, as the

agents’ cognitive bound. We then study the equilibrium outcomes for different levels

of cognitive bounds. This gives a specific method to measure awareness from observed

outcomes. We demonstrate that generically the set of action-awareness equilibrium

outcomes is a much larger superset of the set of Nash equilibria. As the agents’

cognitive bound increases, the former set shrinks towards the latter. Nevertheless,

there do not exist restrictions on games which would make these two sets coincide

for a given cognitive bound while allowing for the games to have an arbitrary size of

action sets. We conclude in Section 3.4.

3.2 Awareness equilibrium in normal-form games

In this section we provide a formal definition of the awareness equilibrium in normal-

form games where actions might not be common knowledge. We consider the simplest

case where we allow awareness to be defined only with respect to players’ actions.

The set of agents is common knowledge. Each agent may be aware only of some

actions and the corresponding outcomes. The mapping from outcomes into payoffs

is common knowledge, so that if an agent is aware of a profile of actions, he is aware

of the corresponding payoffs to all agents. Here we focus on games with complete

information, so that the awareness equilibrium builds on Nash equilibrium in the

sense that agents play and conjecture best responses (given their awareness). We

present this section in terms of 2-player finite games to make the section easier to

read.

Let N = {1, 2} be the set of agents, let A = A1 × A2 be the set of action

profiles, where An is finite for each n ∈ {1, 2}, A1 = {1, ..., K} and A2 = {1̄, ..., K̄},

a = (a, ā) is a typical element of A, and σ = (σ, σ̄) is a mixed strategy profile.

The set of pure-strategy outcomes corresponds to A, and denote by ∆(A) the set of

mixed-strategy outcomes, i.e. corresponding to lotteries over pure strategies. Payoffs

over pure-strategy outcomes are represented by a mapping u : A → <2, u(a) =
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(u1(a), u2(a)) ,∀ a ∈ A. Payoffs associated to a mixed strategy profile σ are U(σ) =

(U1(σ), U2(σ)) = Eσ[u(a)].

If N,A,u were all common knowledge then this would be a standard game. Play-

ers’ awareness restricts the set of actions of each player, and players make conjectures

about others’ awareness and others’ conjectures and so on, which we call an awareness

architecture. Denote by A(n) = A
(n)
1 × A

(n)
2 ⊂ A the action-awareness of player n, so

that A
(n)
1 are actions of player 1 that player n is aware of, n ∈ {1, 2}. A player is aware

of u(a) = (u1(a), u2(a)) if and only if he is aware of a. A first-order conjecture of agent

n about m’s awareness A(m) is denoted by A(n,m) = A
(n,m)
1 ×A

(n,m)
2 , and so on. Define

the awareness architecture of agent n by cn = (A(n), A(n,m), A(n,m,n), ...), n,m ∈ {1, 2}.

The set of all possible awareness architectures for player n is Cn ⊂ {0, 1}A×{0, 1}A×...

and the space of possible awareness architectures is C = C1 × C2. A normal form

game with action awareness is U = (N,A,u,C).

For a finite sequence k of length x let (k, n) be a sequence of length x + 1, such that

(k, n)i = ki for each i ≤ x and (k, n)i+1 = n.

Definition 3.2.1. The Action-awareness equilibrium (AAE) is an outcome σ ∈ ∆(A)

and awareness architectures (c1, c2) ∈ C1 × C2 such that

AAE1 A
(k,m)
l ⊂ Ak

l , and if k = (n, ..., m), then A(k,m) = Ak, ∀ l ∈ N, for all k ∈

Nx,∀ x < ∞, n,m ∈ N.

AAE2 a ∈ Ak,∀ k ∈ Nx,∀ x < ∞, ∀ a ∈ supp(σ).

AAE3 σ = arg maxσ′∈∆(Ak
1) U1(σ

′, σ̄), σ̄ = arg maxσ̄′∈∆(Ak
2) U2(σ, σ̄′),∀ k ∈ Nx,∀ x <

∞.

An AAE is a situation where the agents’ perception of the world is internally

consistent (AAE1), consistent with the outcome (AAE2), and consistent with the

aspects that are common knowledge (AAE3). The requirement AAE1 is that agents

cannot reason about facts that they are not aware of. For example, if player 1 is not

aware of action a, then he cannot conjecture that player 2 is aware of that action.



74

This is very different from knowledge, where a player may not know a fact, but is

allowed to make conjectures about this fact. AAE1 also requires that if 1 is aware of

some actions, he cannot conjecture otherwise about himself. AAE2 requires that in

equilibrium the players are aware of the action profile that is realized, and correctly

conjecture that others are aware of that action profile, and so on at all orders of

conjectures. AAE3 requires that the action profile that obtains is consistent with

agents’ optimization, at every order of conjectures.1

U is a different and more complex object than the standard game Γ = (N,A,u).

Nonetheless there is a relationship between Nash equilibria of Γ and AAE of U . Nash

equilibria of Γ are AAE of U that are not sensitive to the details of the specification of

C. Observe that in general, by virtue of AAE1, for every C, we can restrict attention

to CE ⊂ C, such that AAE1 holds for every element of CE. We from now on restrict

attention to architecture spaces C such that CE 6= ∅.2

Proposition 3.2.2. Given Γ = (N,A,u), the profile σ is a Nash equilibrium of Γ if

and only if it is supportable in AAE for every U = (N,A,u,C), such that there exist

(c1, c2) ∈ CE with supp(σ) ⊂ ∩x<∞ ∩k∈Nx Ak.

Proof. We provide the proof for pure strategies, the proof for mixed strategies is

analogous. Let (a, b̄) be a Nash equilibrium of Γ and suppose ∃ (c1, c2) ∈ CE such

that (a, b̄) ∈ ∩x<∞∩k∈Nx Ak. Since (a, b̄) is a Nash equilibrium there are no profitable

deviations to either of the two players even if their action sets are restricted, so that

AAE3 is satisfied. AAE1 and AAE2 are satisfied by assumption. For the converse,

(a, b̄) is supportable on the architecture space C, where A(1) = A(2) = A, in which

case players must be playing a Nash equilibrium by AAE3.

The above proposition states that a Nash-equilibrium profile is the only one for

which players can make any conjectures that are internally consistent (in the sense

of AAE1), and consistent with the given profile (in the sense of AAE2), and such

1This could be restated into saying that the agents must conjecture that at every order of aware-
ness, each player is playing a best reply to the actions of the other players.

2It is very easy to provide examples of C such that CE = ∅. For instance, that is true if
A(n) ∩A(n,m) = ∅.
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conjectures along with the action profile constitute an AAE. That is, for a strategy

profile that is not a Nash equilibrium in Γ we can find an architecture space C such

that even if this strategy profile satisfies AAE2 (is feasible) it does not constitute a

part of an AAE.

We now turn to the question of existence of AAE. Existence of AAE may depend

on the specification of C. There are two very different situations at the opposite

extremes of the possible specifications of C. The first situation is one where Cn =

{0, 1}A × {0, 1}A × .... This corresponds to the case where an omniscient outside

observer sees the game, but has no indication on the agents’ awareness of the game.

In this case, existence is not an issue, since for instance the outcomes associated with

Nash equilibria of Γ will be supported in AAE of U . However, in this case, every

outcome will be supportable in AAE-simply take Ak = {a, b̄},∀ k. At the other

extreme is the situation where Cn = {0, 1}{a,b̄} × {0, 1}{a,b̄} × ..., n ∈ N, then the

outcome corresponding to {a, b̄} is the unique outcome supportable in AAE, but this

is a very restrictive case where agents’ awareness is trivial. The interesting cases

are somewhere in between, where some restriction on C is exogenously specified.

For example, an experimenter tells each player something about A, in which case

Cn ⊂ {0, 1}A × {0, 1}A × ..., where A(n) has to equal to what player n was told. The

following example illustrates that in such situation, an AAE may fail to exist.

Example 3.2.3. Let Γ be described by the following normal-form representation.

1\2 1̄ 2̄

1 6, 4 8, 7

2 5, 9 10,10

Observe that Γ has a unique pure-strategy Nash equilibrium, (2, 2̄). If C is such

that A(1) = {1, 2, 1̄} and A(2) = {1, 1̄, 2̄}, then no AAE exists. The reason is that

regardless of A(2,1), player 2 would always play 2̄, which would violate AAE2.

In contrast, if C is such that A(1) = {1, 1̄, 2̄} and A(2) = {1, 2, 1̄}, then {1, 1̄} can be

supported in an awareness equilibrium. An awareness architecture that supports it

is A(12) = A(21) = Ak = {1, 1̄},∀ k, s.t. k ∈ Nx, x ≥ 3, k = (n,m, ...), n 6= m. Note
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that not all awareness architectures will be equilibrium architectures, for instance if

A(12) = A(1), no such AAE will exist.

Finally, we remark that if C is such that A(1) = A(2) = A then the only AAE outcome

is the Nash-equilibrium outcome of Γ.

It is natural to ask what sets of possible awareness architectures will give existence

of AAE.

Proposition 3.2.4. Given U = (N,A,u,C), an AAE exists, if and only if there ex-

ists (c1, c2) ∈ CE, and ∃ σ, supp(σ) ⊂ ∩x=1,2,...∩k∈NxA(k), with σ = arg maxσ′∈∆(Ak) U1(σ
′, σ̄),

for k ∈ {(1), (21)} and σ̄ = arg maxσ̄′∈∆(Ak) U2(σ, σ̄′), for k ∈ {(2), (12)}.

Proof. The only if part follows from the fact that if such (c1, c2) did not exist, then

for every outcome satisfying AAE2, there would be a player n ∈ N, such that either

n would deviate given A(n), or m 6= n would deviate under n’s conjecture A(n,m). In

either of these cases, AAE3 is violated.

The if part follows from AAE1. If n does not have a profitable deviation under A(n)

and under A(m,n), then he does not have a profitable deviation under S, ∀ S ⊂ A(n)

nor under P , ∀ P ⊂ A(m,n), so that the claim follows by AAE1.

Proposition 3.2.4 shows that generically, a restriction on C for which AAE will

exist, will be much stronger than just requiring that there exist an outcome in the

intersection of all the players’ conjectures. There must exist such outcome, which is

also consistent with players’ own optimization, and the first-order conjecture that the

other agent optimizes.

Proposition 3.2.4 also illustrates that admissible restrictions on C in general depend

on the specification of Γ. As we noted earlier, one class of such restrictions on C is

to impose the awareness of the agents.3 Another possibility is to restrict the number

of actions that a player can be aware of, but not which actions these are. Such

3One could also consider the possibility that the experimenter also tells the players what he told
the other player, and possibly lies about that, but this might not be enough to control the players’
conjectures if they see a reason not to trust the experimenter. This consideration does not apply to
their awareness, since if the experimenter tells them something he is sure that they are aware of it.
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restriction has the interpretation that the agents have bounded cognitive abilities,

but the experimenter does not control their awareness directly. For example, the

subjects in an experiment might be confronted with a very large normal-form game,

only a fraction of which fits on the computer screen. This approach has the advantage

that the existence of AAE will not be in question, regardless of the specification of Γ.

In the next section we study how many outcomes may never be supported in AAE

under such restrictions on the architecture space.

3.3 A model of cognitive bounds

In this section we focus on pure strategies simply because the question of cardinality of

the set of outcomes that may never be supported in AAE is much more straightforward

to define. Let ` be the number of actions of each agent that agent i is aware of, and

assume that the number of actions that agents are aware of is common knowledge.

Definition 3.3.1. Fix an ` ≥ 1. An `-Action-awareness equilibrium, `-AAE, is an

AAE where |A(n)
l | = `, and this is common knowledge.

By Proposition 3.2.2, a Nash-equilibrium profile would be an `-AAE whenever

the corresponding Nash-equilibrium action profile a is in the awareness sets of both

players. This observation only holds for Nash-equilibrium profiles of Γ. This motivates

the next definition.

Definition 3.3.2. Fix an ` ≥ 1 and let a∗ = (a∗, ā∗) be a pure-strategy Nash equilib-

rium of the game Γ = (N,A,u). An `∗-Action-awareness equilibrium, `∗-AAE, is an

`-AAE where a∗ ∈ A(n), n = 1, 2.

That is an `∗-AAE, is an `-AAE which is an equilibrium even if some Nash-

equilibrium profile is in the awareness sets of both players.

We are interested in comparing how the sets of `-AAE and `∗-AAE change as

we vary `. Such comparison is useful for providing a measure of how strength-

ening the restriction on the architecture space strengthens the equilibrium notion.

This comparative-statics approach also provides a method of estimating the cognitive
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bound ` of the agents. In the absence of other considerations, if a certain outcome

is observed, then ` has to be low enough, in order to support that outcome as an

`-AAE. The following result simplifies our analysis.

Lemma 3.3.3. A profile of actions a is an `-AAE if and only if it is an `-AAE with

Ak = Ak′ ,∀ k ∈ Nx,∀ x < ∞.

Proof. The if part is trivial and we omit it. The only if part is as follows. Let a be an

`-AAE outcome under some awareness architecture, different from those specified in

the claim. This implies that there at least `− 1 deviations by each player to which a

is a best reply. But then a can be supportable also with some awareness architecture

where all agents are aware of the same actions and make the correct conjectures about

others.

We will further restrict our analysis to generic games. Namely, it is possible to

construct non-generic and non-trivial games where there is a unique Nash equilibrium

in the game (N,A,u), but for every ` < K every outcome can be supported in an

`∗-AAE. We illustrate this with the next example.

Example 3.3.4. For each K there exists a Γ = (N,A,u), |An| = K, ∀ n ∈ {1, 2}, such

that the following holds. Γ has a unique pure-strategy Nash equilibrium, let (1, 1̄)

be the unique NE. Then for each `, 2 ≤ ` < k, every outcome is sustainable as an

l∗-AAE.

To see this, consider the following game. To define u, take first the matrix for the

row player, u1(p, q̄), 1 ≤ p, q ≤ K. Let u1(1, q̄) = 1, u1(q, 1̄) = 0, q = 1, ..., K. For

each column p = 2, ..., K, assign a 1 in precisely one unassigned location in such a

way that the assigned 1’s do not lie in only one row. This can obviously be done.

Let u1(p, q̄) = 0 for all the other locations. Take player 2 and do exactly the same,

but also take care so that (u1(p, q̄), u2(p, q̄)) 6= (1, 1) for (p, q̄) 6= (1, 1̄). Since the 1s

assigned to columns of player 1 are not in the same row, such assignment is possible

(reader can easily verify that). See Figure 2 for an example of such a game.
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1\2 1̄ 2̄ 3̄

1 1, 1 1, 0 1, 0

2 0, 1 1, 0 0, 1

3 0, 1 0, 1 1, 0

Figure 2

Now we have to show that u has the desired properties. Clearly, the profile

s = (1, 1̄) is a pure-strategy NE of Γ. To show that this is the unique pure-strategy

NE of Γ observe that for every (p, q) ∈ {1, ..., K}2, (p, q) 6= (1, 1), at least one player

gets a 0. Suppose (wlog) it is the row player 1. Then, by construction there is another

column q′ such that u1(p, q̄
′) = 1 so that 1 would want to deviate.

To show that every outcome is an `∗-AAE, for all ` < K, observe first that if an

outcome is an `∗-AAE, ` > 2 then it must be an (`−1)∗-AAE (reduce the supporting

awareness set of each player by one action). Thus, it is enough to show the claim for

` = K − 1. So take an outcome (p, q̄) ∈ {1, ..., k}2, (p, q) 6= (1, 1), and suppose that

u1(p, q̄) = 0 (if it is 1, then there is no deviation for player 1 anyway). This is not

column 1, since there player 1 gets 1. By construction there are K − 2 other rows in

column p such that player 1 gets 0 in those rows, and taking those K − 2 rows and

row p also includes row 1. Similarly for player 2, so that we have constructed the

awareness sets which include action 1 for both players, and no player has a profitable

deviation from the profile (p, q̄).

We say that a game is generic if the following no-indifference condition holds. Let Γ

be a K ×K game. We say that Γ satisfies the no-indifference condition if u1(p, q̄) 6=

u1(p
′, q̄),∀ p 6= p′,∀ q (and similarly for player 2).

Theorem 3.3.5. Let Γ be a generic K × K game. Denote by e`(Γ) the number of

distinct `-AAE outcomes of Γ, for each ` ∈ {1, ..., K}. Then K2 − 2(` − 1)K ≤

e`(Γ) ≤ K2 − (`− 1)K, ∀ ` ∈ {1, ..., K}.

Proof. See the Appendix.
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As is evident from the proof, the bounds in Theorem 3.3.5 are tight. Theorem

3.3.5 shows that as ` increases, in a generic game the set of `-AAE shrinks, which is

not too surprising. In particular, when ` converges to K, the set of `-AAE generically

converges to the set of Nash equilibria of Γ. However, it is a simple corollary that

when ` is substantially smaller than K, the set of `-AAE is strictly larger than the

set of Nash equilibria.

Corollary 3.3.6. Let K ≥ 3, and let Γ be a generic K × K game, then the set of

`-AAE outcomes of Γ is a strict superset of the set of pure-strategy Nash-equilibrium

outcomes of Γ, ∀ ` ≤ K
2
.

Proof. A generic K × K game can have at most K pure-strategy Nash-equilibrium

outcomes, and the claim follows.

Theorem 3.3.5 says nothing about the bounds on the number of `-AAE relative

to the number of pure-strategy Nash equilibria. When pure-strategy Nash equilibria

exist, the lower bound on the number of `-AAE may be in some cases improved, since

every Nash equilibrium is also an `-AAE, for all `. Nevertheless, the main point of

Theorem 3.3.5 is that it is impossible to provide general conditions on game forms

which would assure that the set of `-AAE equals the set of Nash equilibria, without

tying ` to K.

In contrast, the number of `∗-AAE is linked to the number of pure-strategy Nash

equilibria. The lower bound on the number `∗-AAE is always equal to the number

of Nash equilibria, regardless of how large ` is. In the following result we denote by

floor[x] the largest integer that is smaller than x ∈ <, and by mod[y, r] the leftover

from integer division of an integer y with integer r.

Theorem 3.3.7. Let Γ be a generic K ×K game. Denote by eN(Γ) the number of

pure-strategy Nash equilibria of Γ and by e`∗(Γ) the number of `∗-AAE of Γ. Then

eN(Γ) ≤ e`∗(Γ) ≤ floor[ K−1
K−`+1

](K − ` + 1)2 + (mod[K − 1, K − ` + 1])2 + 1.

Proof. See the Appendix.
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The upper bound as stated in Theorem 3.3.7 is independent of the number of Nash

equilibria. However, if a generic game has a unique Nash equilibrium this imposes

additional structure on the game, and the upper bound may never be attained. We

illustrate this with an example of potential games.4 Potential games are a very

natural class to consider since a subgame of a potential game is also a potential game,

and every potential game has at least one pure-strategy Nash equilibrium. Many

commonly studied games are potential games, e.g., prisoners’ dilemma, congestion

games, or Cournot games with quasilinear demand.

Example 3.3.8. Let Γ be the following 4× 4 potential game with eN(Γ) = 2, given by

the following matrix P .

P 1̄ 2̄ 3̄ 4̄

1 10 0 2 6

2 1 3 5 2

3 2 4 6 3

4 5 8 7 9

Figure 4

Let ` = 2, so that by Theorem 3.3.7 the upper bound on e`∗(Γ) = 10. Clearly, the

9 right-lower-corner outcomes of Γ along with the left-upper-corner Nash equilibrium

constitute the set of 2∗-AAE of Γ, so that the upper bound is tight in this case. Also

note that it is easy to extend the example to general potential games with at least 2

Nash equilibria and different `.

Consider now the potential game Γ with a unique pure-strategy Nash equilibrium,

given by the matrix P̃ below. The unique Nash equilibrium of Γ is the profile (1, 1̄).

4A game Γ is an ordinal potential game if there exists a potential function P : A → < which
represents Γ in the following way: u1(p, q̄) − u1(p′, q̄) > 0 ⇐⇒ P (p, q̄) − P (p′, q̄) > 0, and
u2(p, q̄)−u2(p, q̄′) > 0 ⇐⇒ P (p, q̄)−P (p, q̄′) > 0,∀ p, p′ ∈ A1,∀ q, q′ ∈ A2. A profile (p, q̄) is a pure-
strategy Nash equilibrium of Γ if and only if P (p, q̄) ≥ max{P (p′, q̄); p′ = 1, ...,K} ∪ {P (p, q̄′); q′ =
1, ...,K}. In particular the maximum of all elements of matrix P is a pure-strategy Nash equilibrium
of Γ.
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P 1̄ 2̄ 3̄ 4̄

1 10 9 2 6

2 1 3 5 2

3 2 4 6 3

4 9 8 7 4

Figure 5

Now observe that the path of best replies from each profile (p, q̄) eventually ends up

in (1, 1̄). This is in fact a property of potential games with a unique Nash equilibrium.

At some point such path enters either column or row 1, suppose that the path enters

column 1 in row p (in P̃ , p = 3). But this implies that P (p, 1̄) > P (p, q̄), q > 1, so

that no element in row p can be sustainable as an `∗-AAE outcome, which means

that the upper bound may never be attained in a potential game with a unique Nash

equilibrium. Nonetheless, the additional structure imposed by uniqueness of Nash

equilibrium eliminates only one additional row (or column), so that in a large game

this effect is negligible.

3.4 Conclusion

Here we presented a model of awareness equilibrium for normal-form games, when

the set of players is common knowledge. A natural extension, allowing us to model

Bayesian games, is to model situations where agents may be unaware of other agents.

The awareness of agents can then be represented as an infinite collection of directed

networks. One question that one may ask in that model is whether in equilibrium

an agent may be unaware of the moves of nature. Our conjecture is that whenever

moves of nature are payoff relevant to the agent in equilibrium, the agent has to be

aware of the moves of nature.

Appendix

Proof. (Theorem 3.3.5) By Lemma 3.3.3 we can focus on `-AAE with the property

that agents are aware of the same actions and make correct conjectures. Let player 1
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be the row player. Given an ordered set S, Denote by S(r) the r th order statistic of

S.

Step 1. A profile (p, q̄) is supportable as an `-AAE if and only if

u1(p, q̄) ≥ {u1(1, q̄), ..., u1(K, q̄)}(`) and u2(p, q̄) ≥ {u1(p, 1̄), ..., u2(p, K̄)}(`). (3.1)

For illustration, suppose first that ` = 2. Under genericity, the claim is that a

strategy profile (p, q̄) is then sustainable as a2-AAE if and only if

u1(p, q̄) > min
p′∈{1,...,K}

u1(p
′, q̄) and

u2(p, q̄) > min
q′∈{1,...,K}

u2(p, q̄
′).

To see the only if part, suppose that u1(p, q̄) = minp′∈{1,...,K} u1(p
′, q̄). By genericity

of Γ it is therefore u1(p, q̄) < u1(p
′, q̄),∀ p′ 6= p. This implies that regardless of what

other row p′ comprises A(1), player 1 will at the profile (p, q̄) deviate to p′.

To see the if part suppose that a profile (p, q̄) satisfies the above condition. There

exist a p′ 6= p and a q′ 6= q such that u1(p, q̄) > u1(p
′, q̄) and u1(p, q̄) > u1(p, q̄

′).

Let A(1) = A(2) = {p, p′, q̄, q̄′}, and (p, q̄) is a 2-AAE outcome supported by such

awareness structure. Similarly, we prove the claim for general `. Note that we do not

need genericity in this step. End of Step 1.

By genericity of Γ, there exists a strict ordering of 1’s payoffs in each column, and

a strict ordering of 2’s payoffs in each row.

Step 2. e`(Γ) ≥ K2 − 2(`− 1)K.

Fix an ` ∈ {1, ..., K}. By Step 1, we will minimize the number of outcomes that can

be supported under `-AAE by “optimally” assigning the `−1 lowest payoffs to player

1 in each column and ` − 1 lowest payoffs to player 2 in each row. An allocation

which minimizes the number of outcomes supportable as `-AAE is one where all

these payoffs are allocated to different profiles. Since there are K columns, ` − 1

worse payoffs to 1 in each column, K rows, and `− 1 worse payoffs to 2 in each row,
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there are in total at most 2K(`−1) action profiles that can be eliminated. This gives

the desired lower bound on e`(Γ).

Step 3. e`(Γ) ≤ K2 − (`− 1)K.

Fix ` ∈ {1, ..., K}. By Step 1, we will maximize the number of outcomes by allocating

the `− 1 lowest elements of each row and each column in a way which takes the least

space in the game matrix. That is achieved for instance by having every outcome

which is the worst payoff in a given row for the column player to also be the worst

payoff in the given column for the row player. Since there are K rows and columns

and there are by genericity `− 1 strictly worst payoff in each, we can thus eliminate

at least K(`− 1) outcomes, which gives the desired upper bound on e`(Γ).

Proof. (Theorem 3.3.7) The lower bound is a consequence of the following simple

Lemma.

Lemma 3.4.1. eN(Γ) = e`∗(Γ) if and only if the following condition holds. For every

profile (p, q̄) and every Nash-equilibrium profile (p∗, q̄∗), either u1(p, q̄) ≤ u1(p
∗, q̄) or

u2(p, q̄) ≤ u2(p, q̄
∗).

Proof. The if part is obvious:regardless of what Nash equilibrium is taken along with

a strategy profile (p, q̄), one of the players has incentives to deviate (also by genericity)

to the Nash-equilibrium strategy.

To see the only if part, take a profile (p, q̄) and suppose there exists a Nash

equilibrium (p∗, q̄∗) 6= (p, q̄) such that the above condition does not hold. Take A(1) =

A(2) = {p, p∗, q̄, q̄∗} and it is clear that (p, q̄) is an `∗-AAE profile for ` = 2.

The upper bound is constructed via a “geometric” argument. Fix an `, 2 ≤ ` < K,

and we show by induction on ` and K that e`∗(Γ) ≤ floor[ K−1
K−`+1

](K − ` + 1)2 +

(mod[K − 1, K − ` + 1])2 + 1. Consider first a Γ, such that eN(Γ) = 1, and assume

without loss of generality that (1, 1̄) is the Nash-equilibrium profile.
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Suppose first that ` = 2. Then we can for every K do the following. By genericity

of Γ all the outcomes in the row 1 and column 1 cannot be sustained as `∗-AAE. Also,

without loss of generality, we make a construction where as many `∗-AAE profiles

as possible are concentrated in the lower right hand corner of the game bimatrix.

Consider a profile (K, K̄). This profile can be supported if in row K there is 1

outcome which is worse for player 1, and in column K there is 1 worse outcome for

player 2. Moreover, (1, K̄) and (K, 1̄) have to be worse for the corresponding player

(since {1, 1̄} ⊂ A(i) by definition of `∗-AAE). By the same logic, all other outcomes

in Kth row and Kth column can be sustained. Similarly, in all the rows K − 1, ..., 2

the first outcome cannot be sustained but all the others can. The same applies to the

columns.

Now let 2 < ` < K. Exactly as before, the outcomes in rows `, ...,K and columns

`, ...,K are sustainable. If 2` −K − 1 ≤ 1 then all the outcomes in rows 2, ..., ` − 1

and columns 2, ..., `−1 can also be sustained as `∗-AAE by making them higher than

`− 1 outcomes in the succeeding rows and columns. In the first row and column only

the Nash equilibrium is sustainable.

If 2` − K − 1 > 1, then consider the game Γ′ obtained by taking the first ` − 1

rows and ` − 1 columns of Γ and let `′ = 2` − K − 1. Now, the outcomes of Γ′

that are sustainable as `∗-AAE of Γ must be sustainable as (`′)∗-AAE of Γ′, so that

e`∗(Γ) ≤ (K − ` + 1)2 + e(`′)∗(Γ
′). The claim now follows from induction.

Note that the assumption that Γ has a unique Nash equilibrium was made only

for convenience, since if there are more Nash equilibria, we can first rearrange the

players’ actions so that all of those lie on the diagonal.
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