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Abstract

Applications imposing SU(3) chiral symmetry on non-relativistic field theories are con-
sidered. The first example is a calculation of the self-energy shifts of the spin—% decuplet
baryons in nuclear matter, from the chiral effective Lagrangian coupling octet and de-
cuplet baryon fields. Special attention is paid to the self-energy of the A baryon near
the saturation density of nuclear matter. We find contributions to the mass shifts from
contact terms in the effective Lagrangian with coefficients of unknown value. As a second
application, we formulate an effective field theory with manifest SU(2) chiral symmetry
for the interactions of K and 1 mesons with pions at low energy. SU(3) chiral symmetry
is imposed on the effective field theory by a matching calculation onto three-flavor chiral
perturbation theory. The effective Lagrangian for the m K’ and 77 sectors is worked out
to order Q*; the effective Lagrangian for the KK sector is worked out to order Q* with
contact interactions to order *. As an application of the method, we calculate the K K
s-wave scattering phase shift at leading order and compare with chiral perturbation the-
ory. We conclude with a discussion of the limitations of the approach and propose new

directions for work where the matching calculation may be useful.
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Chapter 1

Introduction

I once heard a wise man say “In the history of scientific endeavor, no problem has con-
sumed as much of mankind’s resources as the understanding of nuclear forces,” or some-
thing like that. In any case, for all the considerable effort poured into solving the mysteries
of the strong interaction, a number of significant problems remain. The fundamental the-
ory of the strong interactions, Quantum Chromodynamics (QCD), is solidly established
as a pillar of the Standard Model of particle physics and, to the extent that QCD is a
renormalizable gauge theory, is well understood in the perturbative regime. As a theory
with asymptotic freedom [1, 2], QCD is perturbative in the high-energy regime; for low
energies the coupling constant of the theory becomes large and perturbative treatments
break down. Some features of non-perturbative QCD which are still not fully understood
are quark structure of hadrons, dynamical symmetry breaking, and quark confinement.
The special difficulties accompanying the non-perturbative regime require special meth-
ods for working within the theory. One direct approach is to formulate QCD on a lattice
of space-time points and use numerical techniques to perform the functional integrals.
The lattice QCD method [3, 4] has great potential for shedding light on many of the
unanswered questions of QCD and has become an industry unto itself. A complementary
approach is to focus on the long-distance physics, and base the field theory description of
the physics on the directly observed degrees of freedom. Approaches of the second type
are generically called effective field theories and rely on a two-part foundation. I refer to
the first important concept as the Weinberg Hypothesis [5]: the only content of quantum
field theory (apart from the choice of degrees of freedom) is analyticity, unitarity, cluster

decomposition, and the assumed symmetry principles. As a consequence, we can describe
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the strong interactions in terms of hadron degrees of freedom provided we write down
the most general Lagrangian consistent with the symmetries of QCD. The second key
concept is that we must identify some expansion parameter, typically a small momentum
or energy scale, which permits us to calculate to any given order in the expansion with
a finite amount of work. The predictive power of an effective field theory arises from the
combination of the two underlying concepts; the symmetry restricts the parameters of the
theory to a meaningful set and the expansion parameter allows a systematic framework
in which we can include all contributions of a given order and estimate the size of the
contributions we have neglected. For a more detailed discussion of effective field theory
in general, see references [6, 7, §].

In the case of QCD, the hope is that by experimental determination of the param-
eters of the effective Lagrangian, we can learn about the underlying theory in the non-
perturbative regime, possibly through lattice QCD as an intermediary. An alternative
possibility will also be considered in this work. If the ‘fundamental” theory at higher-
energy is known and calculable, then at a momentum scale where the theories meet the
parameters of the effective theory can be determined by matching onto the fundamental
theory. This is sometimes done because certain calculations are more easily performed
in the effective theory, either because of additional approximate symmetry in the low-
energy limit or because a non-relativistic framework may be used. For instance this sort
of matching calculation has been performed and applied with success in non-relativistic
QED (NRQED) [9] and non-relativistic QCD (NRQCD) [10].

In this thesis we consider two applications of effective field theory to exploit the
SU(3)r, x SU(3)r chiral symmetry of QCD. In Chapter 2 we cover the theoretical frame-
work upon which the effective field theories will be built. We discuss the symmetries
of QCD which constrain the effective Lagrangian, the principles for constructing an effec-
tive Lagrangian for the hadron degrees of freedom, and the power counting schemes that
apply to the sectors of the theory with only light fields, one heavy field (static case), or

more than one heavy field (non-relativistic case). In Chapter 3 we present an effective field
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theory calculation of the self-energy shift of spin—% decuplet baryons in nuclear matter.
With the exception of an expanded discussion of the A-baryon self-energy, the material
in this chapter has already been published [11]. In Chapter 4 we present new material on
an effective field theory for low-energy interactions of pions with kaons or an eta meson
as an alternative to the standard SU(3) chiral perturbation theory. The objective is to
achieve better convergence for very low energies by treating the kaon in a non-relativistic
framework. To determine the parameters of the low-energy theory we perform a matching
calculation from the heavy kaon/eta theory onto SU(3) chiral perturbation theory in the
spirit of NRQED or NRQCD. Finally, we consider K K scattering in the heavy kaon

formalism and discuss the utility of the matching calculation.



Chapter 2

Theoretical Background

In this chapter chiral perturbation theory (yPT) is introduced as the foundation for
describing interactions involving the light pseudoscalar meson octet. As an effective field
theory, xPT gets predictive power from the symmetries of the underlying theory (QCD)
and a consistent scheme for counting powers of ‘small” momenta. Section 2.1 reviews
the relevant symmetries of the QCD Lagrangian. In sections 2.2 and 2.3 we outline the
formulation of SU(3) xPT and its extension to include heavy fields. The momentum power

counting for diagrams with one or two heavy particles is briefly discussed in section 2.4.

2.1 Symmetries of QCD

An appropriate starting point is the Lagrangian of QCD,
A ~Apv —_ —_ _ _
’CQCD = _iGM/G g +ququL+ququR—qRquL—qLquR—I—--- (2.1)

in which the ellipsis denotes gauge-fixing and ghost terms, renormalization counterterms,
and the § term. As written Lqop is invariant under the Poincaré group, SU(3)c gauge
transformations, and charge conjugation (C). In addition the coefficient of the 6 term is
known to be small [12], so we neglect it throughout; in this approximation Lqqp is also
invariant under parity (P) and time reversal (T).

In the limit that NV of the quark masses vanish, the chiral limit, Loqp acquires addi-
tional symmetries under independent U(V) rotations of the left- and right-handed quark
fields;

q;, — Lqu qr — Rqu (2'2)
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where [ and R are unitary matrices restricted to acting in the massless sector. The
U(1)y subgroup of this symmetry corresponds to the conservation of quark number in
the massless flavors. A second subgroup, U(1),, is broken in the quantum theory by
the axial-vector anomaly. The symmetries of Loop relevant for our purposes are the
remaining SU(N), x SU(N)g chiral symmetry and the discrete symmetries C, P, and T.

The quark masses appearing in Lqoop are non-zero and explicitly break the chiral
symmetry. Even in the limit of massless quarks the vacuum expectation value of the

quark bilinear

<0| 91,980 |0> =-A 5ab (2.3)

spontaneously breaks the chiral symmetry SU(N);, x SU(N)g down to the vector sub-
group SU(N)y. The scale A, ~ 1 GeV, associated with spontaneous chiral symmetry
breaking, determines the relative importance of the quark masses in breaking the chiral
symmetry [13]. Quark masses m, which are much less than A, , specifically m, 4 < 10 MeV
and 75 MeV < m, < 170 MeV [14], can be treated as perturbations about the chiral limit
mgy — 0 by expanding in powers of m,/A,. For the rest of this chapter we identify the
chiral symmetry group as G, = SU(3);, x SU(3)g and drop any explicit reference to the
heavy quark flavors.

Invariance under C, P, and G, is imposed on the Lagrangian of the effective field

theory; invariance under T follows automatically from the CPT theorem.

2.2 Chiral Perturbation Theory

The spontaneous breaking of chiral symmetry to the SU(3)y subgroup implies the exis-
tence of eight massless Goldstone scalar fields. However, because the chiral symmetry
is explicitly broken by the quark masses, these fields acquire (small) finite masses and
are commonly referred to as pseudo-Goldstone bosons. The pseudo-Goldstone bosons of
spontaneously broken chiral symmetry are identified as the light pseudoscalar meson octet

of pions (7%, 77, and 7°), kaons (K*, K=, K°, and K"), and the eta (). Chiral perturba-
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tion theory is the effective field theory for describing the interactions of this meson octet
at energies much lower than the chiral symmetry breaking scale, A,. For reviews of this
subject see references [15, 16].

The pseudo-Goldstone bosons are represented by a 3 x 3 special unitary matrix,

U = eiq)/FO, with

/2 +n/V6 Tt K+
d=¢ ) =2 . N2+ V6 K (2.4)
K- K’ —2n//6

and Fy ~ F, >~ 93 MeV. The pion decay constant F} is determined from
(0] [7~(p) = iV2Fe, (2.5)

where J; = uy"y.d is an octet axial-vector current associated with chiral symmetry. Un-

der the symmetries of section 2.1 the field U transforms as

G

v ruLt, v Dot u-SuT, (2.6)

We introduce the quark mass matrix M, through the field y = 2By M, where the con-

stant By is related to the vacuum expectation value in equation (2.3) and is approximately

By ~ 2A/F3 ~ 1300 MeV [16]. For the purpose of constructing effective Lagrangians x is
assumed to transform in a way that preserves the symmetries of the QCD Lagrangian;

G P C

x = RxL', v = =t (2.7)

In treating M, we neglect the quark mass difference m,, — my and replace both m,, and my

with the average m = £(my + mq). Because the corresponding SU(2) subgroup of SU(3)y

is isospin symmetry, this approximation ignores isospin violation in the strong interaction.

Calculations in xPT are organized as expansions in powers of m, and (), the charac-
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teristic momentum scale of the interaction. The terms in the Lagrangian of xPT (£, pr)
are grouped by the number of powers of m, and ) each contributes to diagrams when it
is present. For a suitable choice of regulator and subtraction scheme, such as dimensional
regularization with modified minimal subtraction (MS), each derivative contributes one
power of ). In the expansions of £ pr (in powers of ) and m, respectively), the first
terms are given by
F? F?

Lopr = IOTr[aMUa“UT] + TOTr[XUT + U+ (2.8)
The first term yields a canonically normalized kinetic term for the pseudo-Goldstone
bosons ¢, . The role of the arbitrary coefficient for the second term is played by the

empirically-determined constant By. The second term gives the leading contribution to

the pseudoscalar masses,

m? = 2Byt (2.9)
my = Bo(m +mg)+---,

m? = 2By(i+42my) 4,

represented collectively as m3.

The result for the pseudoscalar masses indicates that the dual expansion in m, and @)
is unnecessary. Since equation (2.9) shows m3 ~ Bgm, ~ x and we work in the relativistic
regime where )* ~ mj, one factor of m, (i.e., x) counts as a contribution of order @*.
Thus, the dual expansion is replaced with a scheme counting powers of ) only. The
expansion of the Lagrangian is written ,CXPT =Ly, + L, + - where £, contains all terms

of order @ and L, is given by equation (2.8). The conventional parameterization of £,
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Li(m,) x 10°

source

04+03 | Ky, 7m — 7w
1.35+03 | Ky, mm — 7w
—35+1.1 | Ky, mm — 7w
—0.3+0.5 | Zweig rule (large N,)

1.44+0.5
—0.2£0.3
—0.4£0.2
0.9+0.3

ratio 'y : F,

Zweig rule (large N.)
Gell-Mann-Okubo, with LI, Lg
ratio (ms —m) : (mg — my,),
(m%"o B m?{+)7 with Lg

OO0 =1 O UL = W DN —

Table 2.1: Phenomenological values of the coefficients L%(y), renormalized in MS
at u = m,, taken from J. Bijnens et al. [21] (also see reference [20] for discussion).

is

£, = LTOU0UY + LTe[0,00,UNTe0" U U] (2.10)
+ LsTe[0,U0"UT0,U0"UT| + LyTx[0, U UT|Te[xUT 4 UxT]
+ LsTe[d,U0" U (y Ut + Ux)] + LeTelx Ut + UxT]

+ LT[y Ut — U + LeTe[y U UT + UxTU ]

as first worked out by Gasser and Leutwyler [17, 18, 19, 20]. Table 2.1 presents phe-
nomenological values of the coefficients L; renormalized in MS. In Appendix A we present
Mathematica routines to symbolically expand £, pr in terms of the meson fields to the
order necessary for this work.

The power counting rules for Feynman diagrams, determined by Weinberg [5], establish
the relative importance of diagrams in an arbitrary process. A diagram with Nz loops,

N, meson propagators, and constructed from Ny vertices derived from £, will contribute



at order QP where

D = 242N+ > Ny(d—2) (2.11)
d

— 4N; — 2N, + Zde.
d

The leading-order contribution is given by the sum of all tree diagrams constructed ex-
clusively from operators in £,. At next to leading order one must include all one-loop
diagrams constructed exclusively from operators in £, and all tree diagrams with one
vertex from £, and any number of vertices from £,. Diagrams with more loops and more
powers of Q% at the vertices must be included at higher order.

On dimensional grounds, the powers of )? which suppress higher-order contributions
must be accompanied by a mass scale squared (A?) in the denominator. For powers
of Q? generated by a loop integral, the factor which appears is A* ~ (47 [;)*. When a
factor of Q¢ arises from an operator in £, the compensating powers of A are implicit
in the dimension of the coefficient of the operator. We can represent the typical size
of coefficients appearing in £; as Cy = aA*™?, where a is a dimensionless constant of
‘natural’ size (discussed below). Since each successive order in the expansion of £ pr
serves to approximate physics at short distance better than the preceding order, the
scale relating coefficients in different orders of £, py is characteristic of the short-distance
physics approximated. Thus, A represents scales like the mass of the p meson (m,) and
the chiral symmetry breaking scale (A, ). We treat all of the scales which suppress powers
of Q (e.g., 4nkFy, Ay, m,, ...) equally in terms of the power counting and refer to the
common scale as A = A, ~ 4r[.

The convergence of calculations in yPT depends on the assumption of naturalness,
that the coefficients appearing in £ py are not much larger than their natural size. An
anomalously large coefficient, by a factor of order (A, /Q)?, would indicate that the cor-
responding operator violates the power counting in equation (2.11) and the systematic

expansion breaks down. A priori, there is no reason to expect such large coefficients
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and the occurrence of such an anomaly would indicate either the omission of a relevant
degree of freedom or fine-tuning in the underlying theory. We get an extremely simple
estimate of the natural size of the dimensionless parameter a by recognizing Cy ~ F§ or
a~ (Fy/A)? ~ (47)~2. For instance, we expect the coefficients in £, to be of about the
natural scale, L; ~ C4y = . Manohar and Georgi [22] give a more rigorous derivation of
the same estimate based on naive dimensional analysis. The phenomenological values

presented in Table 2.1 are slightly smaller than this estimate.

2.3 Coupling to Matter Fields

The so-called matter fields are strongly interacting particles with masses which do not
vanish in the chiral limit. Further, in the applications we consider, the masses of the
matter fields are large enough that the fields can be treated in a non-relativistic formalism.
The matter fields do not form representations of the full chiral symmetry group Gy,
but instead form irreducible representations under the approximate SU(3)y symmetry of
the vacuum. In this section we describe a prescription for including the baryon octet
fields (the N, ¥, and = isomultiplets and the A) and decuplet fields (the A, ¥*, and
= isomultiplets and the ©27) in the effective Lagrangian. For a review of this subject see
reference [13].

Under a (7, transformation (L, R), fields in the fundamental representation of SU(3)y
transform as v — H where H € SU(3) is a function of L, R, and the pseudo-Goldstone
bosons U. The pure SU(3)y transformations correspond to taking H = L = R. The form

of H is determined by specifying the transformation property of u = VU = e'®/2/ a5

w2 Rult = HulL? (2.12)

which, when solved for H, gives

H = VRUL' LVU' = VLUIRt RVU. (2.13)
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(The field u is an alternative representation for the pseudo-Goldstone bosons, correspond-
ing to a different choice for the spontaneously broken generators of G, in the CCWZ pre-
scription [7, 23, 24].) Because the matrix H is a function of the pseudo-Goldstone boson
field U(z), H also implicitly depends on the space-time coordinate z". To compensate
for the 2"-dependence of H, we introduce a vector field

V =

1
" 2

(uTauu + u@MuT) (2.14)

which transforms under G, as V, = HV, HT — (QMH)HJr and construct the covariant deriva-
tive D o = 9, ¢ + V¢ such that D ¢ — H(Dﬁb)‘

Armed with the SU(3)y formalism for the fundamental representation, incorporating
the spin—% octet and spin—% decuplet fields is relatively straight forward. The octet baryons

are encoded as a 3 x 3 matrix of Dirac fields

S0/V2 4+ AV nt P
B= x- “XNVZHANG n (2.15)
=- =0 —2A/V6

and transform in the adjoint representation of SU(3)y, i.e.,

B2 HBHT, (2.16)
DB =09,B+[V,Bl. (2.17)

The spin—% decuplet baryons form a fully-symmetric rank-3 tensor under SU(3)y charac-

terized by
Tabc % [_[aa'[_[bb'[_[cc',‘zwa'b'c'7 (218)
(DMT)abc _ aMTabc + VZaITa/bC + V?;b'Tab'c + VZCITabC/. (219)

The components of T are Rarita-Schwinger fields subject to the auxiliary constraint
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’yMT“ = 0 and are identified as follows:

TH = AT T =y 3, T =203, (2.20)
T =AYV, T =06, T =2V,

T = A3, T =5 /V3,

T = A~ 7% = Q-

The minimal-coupling Lagrangian for the B and T' fields is
Ly = B(il) —mp)B — TM(MD — mq)T" (2.21)

with implied pair-wise summation of the dangling chiral indices.

The effective Lagrangian for matter fields will also explicitly include U and y which
transform under G, as O — ROLT. For convenience, we define fields O = u'Oul such
that O — HOH' under G transformations and coupling B and T to the new fields 9]

becomes transparent. The result for U is trivial, U=ulUul = 1; for QMU we get the more

interesting result

A = %uTaMUuT = %u@MUTu (2.22)

= %(uTaﬂu — u@MuT),

where the factor of % is included so Au is hermitian. To replace x (and x') we choose the

(anti-)hermitian combinations
y+ = ulyul £ uxlu. (2.23)

As an example the order-Q)? Lagrangian of YPT, equation (2.8), can be rewritten in terms
of A and xi as £, = FFTr[A A"] + TFeTr[x 4.

We briefly mention two relations which help to identify a minimal set of terms which
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are needed at higher order, see Fearing and Scherer [25] for a more complete account.'

The first is the chain rule in the form
ufd Out = D0 —i{A,, 0} (2.24)

which allows the replacement of multiple derivatives of U with factors of Au and co-
variant derivatives of Au’ e.g., uTauayUuT = —ZiDMAU — Q{AW A }. Two consequences of
equation (2.24) are 1) D A, is symmetric in (u,v) and 2) despite the dependence of x4
on u(x), covariant derivatives of y4 are unnecessary since D xe= i{Au’ X=x}. The second
simplifying relation gives the field strength associated with V in terms of the field A

V) _ _
GV =8V, — 9V, + [V, V]=[A,A). (2.25)

w? v

Because antisymmetric covariant derivatives result in factors of the field strength, like
(DMDU — DUDM);/) = GEX)@/) in the fundamental representation, we can treat all multiple
covariant derivatives of any field as implicitly symmetric without loss of generality. To
summarize, the G, -invariant effective Lagrangian for the baryon fields B and 7' is written
in terms of the building blocks B, T', Au’ Y+, and fully-symmetric covariant derivatives
of them. The field strength GEZ) and covariant derivatives of Y+ may be omitted in favor

of terms involving more factors of A .

2.4 Non-Relativistic Power Counting

The appearance of baryon masses in equation (2.21) wrecks the power counting of yPT.
Derivatives of heavy fields would contribute factors of ‘hard’ momenta, where p, > mp,
and loop diagrams could result in explicit factors of mp or my in the numerator. These
diagrams are not suppressed relative to ‘lower order’ diagrams since mp ~ m7p ~ A,.

We use a non-relativistic approach adapted from the heavy baryon chiral perturbation

!'When using the external field method to impliment local chiral symmetry, these relations are modified
by additional terms involving external (i.e., non-propagating) gauge fields.
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theory (HBYPT) developed by Jenkins and Manohar [26, 27, 28, 29] to address this
problem. We start with the velocity-dependent baryon fields of HBYPT then specialize
to working in the rest frame of the baryons.

The momentum of a heavy baryon field is decomposed as p" = mpv" + k" in HByPT,
where the residual momentum k" is assumed small and reflects how much the baryon is

off mass-shell. The velocity-dependent baryon fields are defined using v as

By(x) = 1;¢eim3v~x3(x), (2.26)
1) = o),

where the octet mass mp is used in the definition of the decuplet 7}, to avoid z"-dependent
phases in the Lagrangian coupling B, to T,,. The factor of %(1 + ¢) projects out the particle
components of the Dirac spinors. The anti-particle components are implicitly integrated
out of the theory and the effects of virtual baryon loops are absorbed into terms of the
effective Lagrangian suppressed by powers of 1/mp.

This representation of the heavy baryon fields permits a sensible power counting
scheme. Derivatives of the velocity-dependent fields give factors of the small residual
momenta k" in place of the hard momenta p”. The minimal-coupling Lagrangian corre-

sponding to equation (2.21) becomes
L, =By(iv- D)B, =T, (iv- DYI," + AmT, T, + -, (2.27)

where Am = my — mp ~ 300 MeV is considered of order () and the ellipsis denotes
higher-order terms, such as —B,D?B,/2mp, induced by the integration over anti-particle
degrees of freedom. By removing mpg and my from the baryon propagators, loop diagrams
will not introduce positive powers of the masses in diagrams (except in a case considered
toward the end of the section).

The Dirac structure of the fields can be eliminated in favor of two-component spinors
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because we have integrated out the anti-particle components. We choose to explicitly work
in the frame v" = (1,0, 0,0) and drop the subscript v on heavy fields. This choice of frame
simplifies the spinor-related notation; for instance, the auxiliary condition on Rarita-
Schwinger fields, ’yMT“ = 0, implies constraints which reduce to T°=0and &-T =0. In
this frame the resulting non-relativistic framework is equivalent to a Lagrangian formu-
lation of the time-ordered approach discussed by Weinberg [30, 31].

The power counting for diagrams with a single heavy field generalizes equation (2.11).
Since mp ~ mr ~ A, we do not need to distinguish between corrections suppressed
by @/mp and Q/A,. As before, each meson propagator counts as =2 and each loop
integration gives a factor of Q*. Heavy field propagators each contribute Q7! as seen
from equation (2.27). We let N; represent the number of vertices in a diagram which con-
tribute d; factors of () and contain n; heavy fields. A diagram in the single heavy-particle
sector with Ny, loops, N, meson propagators, and N baryon propagators contributes at

order QP where [30]

D = 4N, —2N,—N;+>» dN; (2.28)

The primary difference from equation (2.11) is that each order is suppressed by Q/A,
rather than (Q/A,)? relative to the preceeding order.

For diagrams with two or more heavy particles, the power counting is complicated

by infrared divergences in some loop integrals [31]. Consider a heavy-particle bubble

diagram; for octet fields the loop integral takes the form

O = [ o e e
E—I—q +1e B —q, +ic 28 (2m)t=t '

where the incoming particles have energies £ and momenta £p. The divergence arises

as I/ — 0 because the g, contour is pinched between the poles of the static propagators. By
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resumming the kinetic energy operator, e.g., B'V2B/2mp, into the heavy field propagator,
the infrared divergences are removed. In dimensional regularization the result for the

modified loop integral becomes

dq l l
/(2 d 1y , 5 : (2.30)
T B+ gy — |§12/2mp +ic B —qy— |~q|/2mp +ic

B / dd—lq 7
- (2m)i=1 2F — ¢*/mp + 2ie

—imp [ —2mpgll — i€ = 4y mpe\Vv2mgll
- () = e el
4 4 2 4

which is well-defined in the infrared. Setting F = p*/2mp + - - -, the leading behavior of
the loop integral is ~mp@), not ~(Q* as expected from equation (2.28).

By including the kinetic energy in the heavy field propagator we are treating the
operator V?/2mp on an equal footing with d,. For consistency, powers of the integra-
tion variable ¢, should be counted as g, ~ Q*/mp in loops leading to nearly-infrared-
divergent behavior. Heavy field propagators count as mp/Q? loop integrals now give
dg, d>q ~ Q°/mp, and meson propagators contribute 1/Q? as before. Thus the loop in-
tegral above counts as ~(Q°/mp)(mp/Q*)* = mpQ which reconciles the power counting
scheme with the result of equation (2.30). A general Feynman diagram with heavy par-

ticles in the initial and final states may contribute at order Q” where
D =5N, — 2N, —2N; + Y diN; (2.31)

with the same notation as used in equation (2.28). If the loop integrals in a diagram are not
infrared divergent, as with crossed pion exchange, the actual contribution will be of higher
order consistent with equation (2.28). The systematics of the power counting for diagrams
with two or more heavy particles is developed in references [10, 31, 32, 33, 34, 35, 36].
The presence of a bound state or resonance near threshold can also complicate the power

counting [37, 38, 39]. This complication arises in nucleon-nucleon scattering and the
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power counting was studied in that context by several authors, in particular Kaplan,
Savage, and Wise [40, 41]. In this work we do not consider systems requiring this special
treatment and refer the reader to the literature for a discussion of the relevant power

counting schemes [42, 43, 44].
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Chapter 3

Decuplet Self-Energy in Nuclear Matter

Strong interaction effects shift the self-energy of hadrons in nuclear matter from the free-
space values. This effect for the spin—% octet baryons was studied in an effective field
theory framework by Savage and Wise [45]. Using the formalism reviewed in Chapter 2,
we calculate the self-energy shifts of the spin—% decuplet baryons in nuclear matter at
leading order. The self-energy shifts of the decuplet baryons, particularly of the A iso-
multiplet, are relevant in studies of meson-nucleus scattering [46, 47] and of stellar and
neutron star matter [48, 49]. For the A isomultiplet the self-energy shifts have also been
examined in various phenomenological models [49, 50, 51] and in QCD sum rules [52].
The work described here differs from the earlier approaches by extending the calculation
to multiplets of chiral SU(3)y and by including contact diagrams necessary for a consis-
tent and systematic momentum expansion. This chapter makes a minor correction to a
prior publication [11] and includes a more detailed discussion of the self-energy of the
A isomultiplet in nuclear matter near saturation density.

The first section discusses how effects of nuclear matter are described in the effective
field theory. In section 3.2 we determine what Feynman diagrams contribute to the self-
energy shifts at leading order and construct the relevant effective Lagrangian. Section 3.3
presents the main results of the calculation. Finally, a discussion and interpretation of

the results is contained in section 3.4.

3.1 Effects of Nuclear Matter

In nuclear matter the propagation of decuplet baryons is effected by interactions with

the background medium. In particular the self-energy &, i.e., the location of the &, pole
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in the decuplet two-point function, is shifted relative to free space. As an additional
consideration, the background medium breaks Lorentz boost invariance by specifying a
unique frame, the zero-momentum frame of the nuclear matter. The self-energy in free

space of a decuplet baryon with momentum k = |E| is

EelF?) = \fmE k2 —img T, —mp (3.1)
k? i k?
- (A U I 1 ... O(T2
( m —I_ QmT —I_ > 2 vac ( Qm%—‘ —I_ > —I_ ( vac)?
where I' _ is the free-space decay rate and Am = my — mp. Throughout this chapter,

the octet mass mp has been implicitly subtracted whenever we refer to the decuplet
self-energy, as discussed in section 2.4. Equation (3.1) contains only two decuplet param-
eters; the full k?-dependence of the self-energy is determined by Lorentz invariance. The

corresponding expression for a decuplet baryon in nuclear matter can be written
Eom(E?) = (Am* + k> + ) = iT*(1 + B> + - -+) (3.2)

in which the k?-dependence (e.g., v, 3, ...) cannot be determined from symmetry argu-
ments alone.

Although invariance under Lorentz boosts is lost, the remaining rotational symmetry
constrains the spin-dependence of the self-energy & . Because the nuclear medium is
rotationally invariant, the only preferred spacial directions are along the decuplet baryon
three-momentum & and spin S. As a function of k and g, the self-energy depends on
only the combinations k? and k- S. (5% = % is trivial.) Further, parity invariance of
the strong interaction dictates that the self-energy depends on even powers of E, which
means replacing k- S with (l; : 5)2 = k?h? in terms of the baryon helicity 4. Consequently,
the self-energy in nuclear matter is diagonal in the baryon helicity states and takes the
values EL/2 (k?) for h = £1 and €72 (k?) for h = £3. In the limit of vanishing momentum,
the rotational symmetry is elevated to full SU(2) invariance, and the self-energy must

be independent of the decuplet spin projection along any direction. In terms of the
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parameters in equation (3.2), Am* and I'* are helicity-independent, while the coefficients
of powers of k? (e.g., @, 3, ...) depend on |h]|.

The lowest order in a density expansion for nuclear matter is a Fermi gas of non-
interacting protons and neutrons with Fermi momenta p¥ and p respectively. In this
framework, the characteristic momenta relevant in the chiral derivative expansion are p{?,
p%, and k the decuplet baryon momentum. Since the density of a degenerate Fermi gas
is given by dp = p}./37?, the density expansion for nuclear matter is consistent with the
chiral derivative expansion. The static nucleon propagator in nuclear matter with Fermi

momentum pg is [45]

e i®(|67| —pF) 4 iQ(PF - |67|)

Snm(%?i) = (3.3)

qo T i€ Gy — 1€
at lowest order in the nuclear density. The modified nucleon propagator reflects the
presence of the background medium through two effects, nucleon states inaccessible due
to Pauli-blocking and nucleon-hole intermediate states allowed for || < pp.
As the location of the £ pole in the exact decuplet two-point function, the self-energy

in nuclear matter is given by the solution of
Eun(K?) = Am = Sy, (K), k) = 0, (3.4)

where ¥, 1s the proper self-energy for nuclear matter, i.e., —3,,, is the sum of connected

one-particle-irreducible diagrams in the two-point function. What we calculate is the

self-energy shift, 6& =€ — &

vac?

obtained from equation (3.4) by expanding the proper

self-energy for nuclear matter about the free-space pole &,

SEY) = Sum(Epnelk?), k) = Svac(Epac(k?). ) (3.5)

0 =
—I_ {gnm(kz) - gvac(kz)} aTan(k(), k)

0

ko :gvac (k2)

and in turn expanding &£ (k*) in powers of () as shown in equation (3.1). Note that

vac
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Figure 3.1: Feynman diagrams for the self-energy shifts at leading order of decuplet
baryons in nuclear matter, (a) meson-nucleon loop diagrams and (b) contact diagrams.
Double lines represent decuplet baryons, single lines represent nucleons, and dashed lines
represent pseudo-Goldstone bosons.

only Feynman diagrams with an internal nucleon propagator contribute to the difference
on the first line. Because the chiral expansion of the proper self-energy .., starts at
order ()*, successive terms in equation (3.5) only contribute at higher order. (A very
important exception to the last point is discussed in detail in subsection 3.4.2.) The real
part of the self-energy shift § F™(k?) modifies the decuplet baryon energy-momentum
dispersion relation from the free-space form. The change in the decuplet decay rate is

given by 6I'™(k?) = —2Im[6E™ (k?)] at leading order.

3.2 The Effective Lagrangian

At leading order in the chiral expansion the self-energy shifts d€ coincide with the
difference X, (& l;) — Yvac(&

vac? vac?

l;) For diagrams contributing to the proper self-
energies Y., and Yy, the power counting is given by equation (2.28) for the single
heavy-particle sector. Because a nucleon propagator is required for a non-zero differ-
ence, the leading contribution arises from one-loop diagrams in which the vertices satisfy
d+ %n — 2 = 0 and contributes at order Q>. Topologically, the one-loop diagrams are con-
structed from either two three-leg vertices or a single four-leg vertex; the two possibilities
with a nucleon propagator are shown in Figure 3.1.

The vertices of meson-nucleon loop diagrams are derived from operators coupling the

fields TBTAM in the order-¢) Lagrangian. The most general Lagrangian of that form,
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invariant under (7, and parity, is [27, 28]

a

[ = (et <A’ad ) [BTbe fcde] n Ada [T’TcdeBeb]> 7 (3.6)

where square brackets denote summation on spinor indices. The value of the coefficient,
|C| ~ 1.53, is empirically determined from 7" — Bm decays [29]. The meson-nucleon loop
diagrams contribute to the self-energy shifts of the A and ¥* isomultiplets only; the
Lagrangian £, does not couple =% or )~ baryons to a nucleon and single pseudo-Goldstone
boson, a consequence of strangeness conservation.

For contact diagrams the vertex contributes d = 0 powers of (), so the relevant La-
grangian contains only simple products of field operators T'B(T B)!. To construct the
four-baryon operators we start with the spin and chiral structures of the product T'B.
The operator product decomposes under rotational SU(2) as %@ % =21 and under
chiral SU(3)y as 10 ® 8 =35 4 27 ¢ 10 & 8. By coupling products T'B and (TB)Jr to
form chiral and rotational singlets, we find eight linearly-independent four-baryon oper-
ators which contribute to the self-energy shifts at leading order. We choose to write the

effective Lagrangian which contains these operators as!

dl d5

L, = — E[Tﬂ abe i abcHBTedBde] B E[Tﬂ abe .k i abcHBTedo_dee] (3.7)
B %[Tﬂ abe i abd][BTedBce] B %[Tﬂ abe K i abd][BTedo_che]
B %[Tﬂ abe i adeBTceBed] B %[Tﬂ abe K i abd][BTceo_kBed]
B %[Tﬂ abe i ade][BdeBce] B %[Tﬂ abe .k i ade][Bdeo_cheL

where (7,k) are vector indices, (a—e) are chiral indices, and square brackets indicate sums
over spinor indices. Factors of Fj;? are included in £, to make the coefficients d; dimen-

sionless.

Tn our prior publication we used a different convention for the pion decay constant, specifically

f=+V2F, ~ 132 MeV.
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The values of the eight coefficients d; have not yet been experimentally determined.
However, because the baryon helicity is conserved in the self-energy diagrams, the terms
in £, of the form [T " T7][Bic*B] do not generate self-energy shifts and the results
are independent of ds—ds. Values for the remaining four coefficients dy—d; are important
for quantitative predictions. Unfortunately, knowledge of the values will likely have to
wait until low-energy octet-decuplet scattering data become available. In section 3.4 we
discuss constraints on the coefficients d; from the further assumption of SU(6) spin-flavor
symmetry.

Two characteristics of the contact diagrams allow some predictions which are inde-
pendent of the coefficients d;. In a contact diagram there is no ‘intermediate state” which
corresponds to an allowed decay of the decuplet baryon so the d; do not appear in the
imaginary part of the self-energy shift. Also the contact diagrams are independent of the
momentum on the external line so the d;-dependence is restricted to the k*-independent
parts of the self-energy shifts. In terms of the parameters in equation (3.2), at leading
order only the helicity-independent quantity Am™ depends on the coefficients d;. Quan-
tities independent of the coefficients d;, for which we present quantitative results, are the
helicity-splitting of the self-energy shifts A™ [ = §E®/? — §E®/? and the decuplet decay

rates in nuclear matter ' =T 4 §I'™.

3.3 Self-Energy Shift Results

From the effective Lagrangians, equations (3.6, 3.7), we calculate the self-energy shifts § £
and 6T'™ of the spin-2 decuplet baryons in nuclear matter to leading order (~@?) in the

chiral momentum expansion. For convenience we introduce the two ‘threshold” mass scales

U= \/(mA —mpy)? —m2 =~ 255 MeV, (3.8)

=
I
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and present the results in terms of the functions

1
gi(k,p,m) = 16m3k3(m2—p2+k2){(mz—p2+k2)2+4m2k2}, (3.9)
~1
Gi(k,p,m) = W{i’)(m P+k2) 2k*(p* 43k =9 )}
m —(p—k)°
—I__ lk? 2 1 —7
PR P —(p+k)?
ga(kpym) = 16_3k3(m2—p2—|—k2){(m PPk - 12m2k2} (3.10)
1
Gy (k) = 5 {3(m2—p2—|—k2)2 - 2k2(p2+3k2+15m2)}
m m® — (p —k)?
+ —ga(k,p,m)In )
PREAE P (ptk)?

which are constructed such that G,(k,p,m) — 0 as k& — 0%.
For the negatively-charged member of each isomultiplet we find the real parts of the

self-energy shifts are

1 23 m3
SEW. = T {(3d1)p(F) + (3dy + 3dy)pty) } (3.11)

C2 _ a2 L2
_I_ {IMSIH‘(M p(};))z
e —

4872 ¢

4 7 3 7 7 7
+ gp%) + 4Pl + /«sz%)gh(k,p%),u)} :

1
(SE = T {(3d1 + dg)p(Fp)3—|— (3d1 + 2d2 + d3 + d4)p(}?)3} (312)

= 1872 k¢

N C2 2~3 M? + kz
grzpg | \/(/12 + it k2) — dkp)?

4 03 2w ~2 (n e
+ gp%) — At — /«sz%)gh(k,p%),w)} :

1

3 "3
iz = Toapm {(3d1 4 2d3)p® >+ (3dy + dy + 2d5 + dy)p) } , (3.13)

1 3 m3
0
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The helicity splitting of the A~ and ¥* self-energies are graphed as functions of p%’ and k
in Figure 3.2.
At leading order the imaginary part of the self-energies, or resonance widths, are

shifted in nuclear matter for the A isomultiplet only. We find the A~ resonance widths

are
Fina- = {% (1+ gn(k, pi’ s 1)) ©(k+pi’ —p) O (1 = (pf’ —k)?) (3.15)
+O(u—pf k) + O (k=pf =)} Typea
where I' | (- = p?C? /127 F¢ is the A~ resonance width in free space at leading order.

Figure 3.3 presents the resonance widths as functions of p{ and k.

Results for the other baryons in the decuplet can be determined from the expressions
for the negatively-charged members. For the member of each isomultiplet with the most
positive charge (A**, ¥** and Z*°) the self-energy shifts are obtained by exchanging p?
and p}? in equations (3.11-3.13, 3.15). The self-energy shifts of the remaining decuplet

baryons are given by the following relations:

55A+ — % (255A++ ‘I‘ 55A_) 5 (316)
(Sng - % (55A++ —|— 255A_) y (317)
0 = L(6Egm + 685, (3.18)

Clearly, in neutron-proton symmetric nuclear matter the baryons within isomultiplets

remain degenerate up to the splitting between helicity states.
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Figure 3.2: Leading-order helicity splitting of the decuplet baryon self-energy in nuclear
matter AWE = § /2 — §EC/ as a function of neutron Fermi momentum p} and baryon
momentum k, (a) for the A~ baryon and (b) for the ¥*~ baryon.

Figure 3.3: Leading-order A~ resonance widths in nuclear matter as functions of neu-
tron Fermi momentum p%’ and baryon momentum k, (a) for helicities +1 and (b) for
helicities :I:%.
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I

Figure 3.4: (a) Infrared divergent baryon-meson box diagram and (b) overlapping meson-
loop diagram obtained from the box diagram by contracting nucleon lines 2 and 3. The
two-loop diagram in (b) avoids the infrared divergence of (a).

3.4 Discussion and Conclusion

3.4.1 Corrections at Higher-Order

Contrary to the discussion in our prior work, the leading corrections to our results are
not from infrared divergent two-loop diagrams. We previously thought diagrams with
overlapping meson loops would be afflicted with the infrared divergence that appears in
baryon-meson box diagrams, see Figure 3.4. That the two-loop diagrams avoid the di-
vergence is most easily seen in terms of time-ordered perturbation theory as discussed by
Weinberg [30, 31], where field propagators and integrals over four-momenta are replaced
by intermediate-state energies in the denominator and integrals over three-momenta.
In the time-ordered approach, infrared divergences arise from intermediate states with
‘small” energies of order Q?/mp; however, in loop diagrams contributing to the proper
self-energy Z(ko,l;) all intermediate states contain mesons with energies on the char-
acteristic scale ). Consequently the two-loop diagram in Figure 3.4(b) is governed by
equation (2.28) and is suppressed relative to the leading-order result by (/A )? and not
by mBQ/Ai ~ QA

The leading-order results (~@Q®) presented in section 3.3 are determined from the
difference ¥, (Am, l;) — Yac(Am, l;) A priori, we would expect corrections at order Q*
from three sources: 1) the chiral expansion of the proper self-energies ¥, and ..
based on the power counting of equation (2.28), 2) the expansion of X, about &£_. in

equation (3.5), and 3) the Q-expansion of € __ as &, = Am + k*/2mr + O(Q?). In the

C

following two paragraphs we argue that the corrections from the first two expansions do
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not occur until order °. The only corrections of order Q* arise from the third expansion

and are included by making the replacements

AmY\ k?
wo— p+ 7 S (3.19)
. . AmY\ k?
oo p— ~
i) 2my

in the leading-order results for the A and ¥* isomultiplets. The results for the =* isomul-
tiplet and the 2~ baryon do not receive corrections at order Q*.

The chiral expansion of the proper self-energies Y., and ¥, would contribute at
order Q* through one-loop diagrams obtained from Figure 3.1 by replacing a single vertex
with one which satisfies d 4 %n = 3. The only relevant operators, invariant under rota-
tions, P, and G, are constructed from products of the form (i@O)TBTAM for the meson-
nucleon loop diagrams or (:9,)T B(T B)' for the contact diagrams. Partial integration and
baryon field redefinitions can be used together to eliminate both classes of operators in
favor of terms higher-order in the expansion of the effective Lagrangian. (Such field re-
definitions are reviewed in Chapter 4.) Consequently, there are no corrections at order Q*
from the chiral expansion. Order-Q° corrections arise from one-loop diagrams with a
single vertex which satisfies d 4 %n =4 and two-loop diagrams, such as in Figure 3.4(b).

The primary corrections from the expansion of ¥, about & . are suppressed by
powers of () contributed by 0¥, /0k, in equation (3.5). Because the Q-expansion of ¥,
begins at order %, e.g., through an insertion of the kinetic energy operator, we would
expect the corrections to be suppressed by (), or to contribute at order Q*. However, all
k,-dependence of X, can be moved into loop diagrams which are order ) or higher by
suitable redefinitions of the decuplet baryon field. Thus, 0¥,m/0k, ~ Q* and the primary
correction contributed by the expansion of X, about & is order .

Throughout this calculation we have made the assumption that the power counting in

equation (2.28) applies. However, large scattering lengths for nucleon-nucleon or nucleon-
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? as seen in references [40,

delta interactions will require a revised power counting scheme,
41]. Using the revised power counting for the problem considered here is presently not
tractable. How these effects may be taken into account remains to be seen; the work
presented here is the best that can be done at the present time and uses the power counting
of equation (2.28). We hope that the discussion of some technical details, particularly

those presented in the next subsection, will be useful in further studies of the decuplet

self-energy.

3.4.2 A Self-Energy Near Saturation Density

One important feature of the self-energy shifts of the A isomultiplet, not apparent in
Figure 3.2(a), is a logarithmic divergence when k = 0 at a ‘threshold’ Fermi momentum P
(coincident with the discontinuity of the widths). The divergence arises due to degeneracy
of the A baryon with a pion and a nucleon on the surface of the Fermi sea; for static
baryons p}. = p, which is just the solution of ma = mpy + \/m To the extent
that the divergence complicates the analysis of the self-energy shifts, it is unfortunate
that pj. ~ 255 MeV is so close to the Fermi momentum associated with nuclear matter
at saturation density, p;fat) ~ 262 MeV [53]. In contrast, the ¥* isomultiplet self-energy
shifts do not have a similar divergence because the ¥* — NK decay is kinematically
forbidden for any p%” and p'.

In the A~ self-energy shift, equation (3.11), the divergence manifests itself as a can-

cellation among quantities of order () in the argument of the logarithm, i.e., when

<m — pF>‘ =p—pr= 0. (3.20)

The divergence is resolved by keeping higher-order terms in the argument of the logarithm,
specifically the imaginary part in the expansion of € about Am. When the imaginary

part is kept, the logarithmic divergence is replaced by a logarithmic enhancement of

2We thank M. Wise for bringing this point to our attention.
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the self-energy shift and the result is order Q®In Q% For Fermi momenta sufficiently
below p%., the cancellation is not significant and we expect equation (3.11) to provide

a good description of the A~ self-energy shift. The effect of the cancellation becomes
important when y — pp ~ @Q°, or approximately for pr > (0.7)p} >~ 180 MeV.

The logarithmically divergent term can be traced to the proper self-energy in nuclear
matter ¥,m(E,0). At the threshold Fermi momentum p}., ¥y is singular when € = Am
and the expansion in equation (3.5) fails. To calculate the self-energy &£, in the vicinity

of p}., we evaluate ¥, at &, and expand Y.,(&,,.,0) about &, (Yyac is smooth in this

vac?

region),

gnm = gvac —I_ an(gnm7 0) - EVaC(E"nm? 0) (321)
d
+ (gnm - gvac) Zvac(k 70) +oe
ako 0 k0=5nm

As in equation (3.5), all the terms of order )° appear on the first line and the second line
may be neglected at leading order.

In equation (3.21) we pay a price to determine the self-energy &£ near the threshold
Fermi momentum; &€ is the solution of a transcendental equation and must be found
numerically. Figure 3.5 presents a numerical calculation of the self-energy shift 6 /2, _ com-
pared with the divergent behavior of equation (3.11). Both curves are plotted as functions
of p(]?) with & = 0 and we assume the coefficients of the contact terms are di = dy = 0. Be-
cause the contributions of the contact diagrams are effectively omitted, the results plotted
in the figure are not model-independent in the sense of effective field theory. Until the
values of the coefficients d; and d; are determined, there is little motivation for further
numerical study of equation (3.21).

Having resolved the logarithmic divergence in the real part of the A~ self-energy shift,

next we consider the behavior of the resonance width I' | near pj.. The basic features

m,A~

of the plots in Figure 3.3 are easily understood in terms of the nucleon momentum in

A — N7 decay. When the momentum of the A~ baryon is lg, then up to recoil correc-
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Figure 3.5: Self-energy of the A~ baryon at rest in nuclear matter, omitting contact
diagrams (d; = dy = 0). The solid curve is the numerical solution of equation (3.21); the

dashed curve is a plot of equation (3.11).

tions the nucleon and pion momenta in the final state are respectively k+ i and —/i,
where |fi | equals the mass parameter p. Naively, when |lg | + 1 < pp all the nucleon final
states are occupied by nucleons in the Fermi sea; the A~ baryon becomes stable against
A — N7 decay and the width in nuclear matter vanishes. When pp < ‘|E| — /,L‘ all the
nucleon states are available for decay and the width in nuclear matter is the same as the
free-space width I' .. For values of pr between those two cases, the Fermi sea partially
obscures the shell of nucleon momenta and 0 <T'| - <l When k=0 the width

transitions abruptly from I' . (for pr < p) to zero (for pr > p) creating the discontinu-

ities in Figure 3.3.

The pitfall in the simple analysis of the previous paragraph is determining the momen-
tum transfered to the intermediate-state nucleon (i in terms of the free-space energy of
the A baryon. More rigorous consideration of equation (3.4) shows that the A resonance
width is non-zero for any pr, although it may decrease sharply near pj.. Setting k= 0,

E.m 1s the solution of

Am = € — Som(€) (3.22)

20,2 _ ©2\2 _
¢ (;Z:T?Ff ) {arccos<m—g> — 2arctan(m};7F52> } + f(€,pr),
0 T T
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which is analytically continued to & > m, by assigning m? an infinitesimal imaginary part,
m2 — m2 — ie. The last term, f(&,pr), is an analytic function of £ below the threshold
for N7t production from a virtual A baryon and does not influence our reasoning. The
only real-valued solutions of equation (3.22) satisfy either € < m, or pp > m;
however, as pp is decreased with Am fixed, none of these solutions flow continuously to
the physical, complex-valued solution for small pr. Starting with & . at ppr =0, as pg
is increased the physical solution bypasses the region of real-valued solutions by passing
onto a different sheet of the Riemann surface.

The main result of this subsection is the logarithmic divergence of £, .- and the
discontinuity of I’ m.a-» seen in section 3.3, can be removed by changing how the evalu-
ation of ¥, is handled. Quantitative predictions for &€, near py, by numeric solution
of equation (3.21) or (3.22), require values for the coefficients dy and dy. Independent
of d; and dy, however, we conclude that the resonance width of the A isomultiplet is
non-zero for any pr; the decay channel A — N is never fully blocked by the presence of

the nuclear medium.

3.4.3 Conclusion

To complete the description of the self-energy shifts of the spin—% decuplet baryons in
nuclear matter, the coefficients d; of the contact terms must still be determined. In the
absence of low-energy octet-decuplet scattering data, one way to estimate the values of
the coefficients may be through appealing to a larger symmetry group, in this case the
approximate SU(6) spin-flavor symmetry. Because the spin—% octet and spin—% decu-
plet baryons form a single 56-dimensional representation of spin-flavor SU(6), the SU(6)-
invariant Lagrangian determines the octet-decuplet coefficients d;—ds, the Savage-Wise
coeflicients ¢;—¢g for octet-octet interactions [45], and 14 coefficients for decuplet-decuplet
interactions. The SU(6)-invariant Lagrangian contains only two four-baryon contact terms

of dimension six, with coefficients ¢ and b as defined by Kaplan and Savage [54]. In terms
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of a and b, the octet-decuplet coefficients in equation (3.7) are

dy =2a+3b, ds="1b, (3.23)
dy = —2b, ds = —1b,
dsy = —2b, dr = =1,
dy = —2b, ds = —2b.

Unfortunately, neither a nor b is reliably known; therefore, for the phenomenologically-
interesting A isomultiplet, we have exchanged unknowns d; and d; for unknowns a and b.
What we gain from spin-flavor SU(6) is relations between the octet-octet coefficients ¢; and
the octet-decuplet coefficients d;. A determination of a subset of the coefficients ¢; from
low-energy octet-octet scattering would permit an estimate of the desired octet-decuplet
coeflicients d;.

In summary, we have calculated the leading-order shift in the self-energy of the spin—%
decuplet baryons in nuclear matter. Our work differs in two ways from earlier calcula-
tions of the A isomultiplet self-energies in nuclear matter; we use chiral SU(3) symmetry
to extend the calculation to include ¥*, =%, and 2 baryons and find new momentum-
independent contributions from four-baryon operators in the effective Lagrangian. We
have identified quantities independent of the coefficients d;, the helicity-splitting of the A
and X* self-energy shifts and the resonance width of the A isomultiplet, which are pre-
sented in Figures 3.2 and 3.3. In section 3.4 we discuss the origin and resolution of
a logarithmic divergence of the A self-energy near nuclear saturation density, which is
particularly relevant for future work when the coefficients d; and d, are known. The two
major short-comings of our results are that the coefficients d; of the four-baryon operators

have not yet been determined and possible effects of the large nucleon-nucleon scattering

lengths have not been included.
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Chapter 4
Heavy Kaon/Eta Effective Theory

In this chapter an effective field theory for treating kaon and eta interactions in a non-
relativistic framework is developed. The relevant effective Lagrangians are derived to
an order sufficient for one-loop calculations of 7mn, 7K, and KK scattering processes.
Coefficients in the effective Lagrangians at low orders are determined from a matching
calculation with SU(3) yPT and used to predict K K scattering phase shifts.

In section 4.1 we present the motivation for developing the non-relativistic theory,
describe the three key ideas which form the foundation, and outline the overall program
to be followed. Sections 4.2 and 4.3 establish the elements and principles from which the
effective Lagrangian is developed then detail the construction of the first several orders
of the Lagrangian. The coefficients of the effective Lagrangian in the lowest orders of the
chiral expansion are determined from a matching calculation in section 4.4. A prediction
of the s-wave K K scattering phase shift and brief concluding remarks on the outlook for

the heavy kaon/eta effective theory are contained in section 4.5.

4.1 Prospectus

For the range of momenta () < m, the rate of convergence of the chiral expansion in
SU(3) chiral perturbation theory is limited by approximately the ratio of mass scales
(my/Ay)? ~ 0.3. For processes involving only pions with momenta @@ < m, chiral pertura-
bation theory based on a smaller SU(2);, x SU(2)g chiral symmetry provides an alternative
description. One advantage of using SU(2) xPT for low-energy pion interactions is a better
rate of convergence; generalizing the power counting arguments in section 2.2 the expan-

sion parameter is approximately (m,/mg)* ~ 0.1. However, compared to SU(3) xPT, a
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drawback of SU(2) xPT is the great reduction in the variety of processes to which the
theory can be applied with only a slight reduction in the number of coefficients to be
determined in the Lagrangian. Today, SU(2) xPT and SU(3) yPT are considered com-
plementary descriptions of pion interactions at low-energy and the relations between the
coefficients in the two order-Q* effective Lagrangians are known [20].

Motivated by the comparison above, we seek an effective field theory tailored for low-
energy interactions () < m;) of pions with kaons or eta mesons to exploit the relatively
small ratio m,/myg. One key ingredient of the effective field theory, as an expansion
in 1/my, is a non-relativistic treatment of the kaon and eta degrees of freedom. Because
the momentum scale dictates a relativistic treatment of the pion field, we cannot build the
G, = SU(3)L x SU(3)r chiral symmetry of QCD into the effective Lagrangian explicitly;
flavor rotations in SU(3)y would map relativistic pions into non-relativistic kaons and
vice versa. However, we are able to include the smaller GG = SU(2)r, x SU(2)r chiral
symmetry of QCD and a description of the pion degrees of freedom based on SU(2) yPT
becomes the second key ingredient of the effective field theory.

The non-relativistic field theory naturally divides into a number of n-body sectors
distinguished by strangeness and the number of heavy fields n in the initial state. Sectors
of the theory in which the number of heavy fields is not conserved present a problem
for the momentum expansion; the annihilation of a heavy particle introduces pions with
‘hard” momenta (~my,) in intermediate states and the power counting scheme breaks
down. This problem afflicts sectors involving either KK pairs or the eta meson, which is
subject to pion conversion as in n/' — 7K. The exception to the general rule proscribing
the eta meson is for a single eta meson interacting with any number of pions; in that case
the eta meson is protected by G-parity [55]. (When isospin-violating effects are included,
the decays n — 37 create new problems in the single-eta sector.) We focus on applying
the effective field theory to the unaffected one- and two-body sectors, i.e., to mnp, 7K, K K,
and the sectors related by charge conjugation.

When constructing the Lagrangian for the heavy kaon/eta effective theory, we must
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introduce coefficients, or low-energy constants, which are not determined by the imposed
symmetries. Even at low orders in the chiral expansion, several low-energy constants will
appear in each of the independent sectors we consider. Due to the scarcity of experimen-
tal data in some sectors, the standard method for extracting values for the low-energy
constants is impractical. The alternative is to pursue a matching calculation onto a
better-known theory at higher energy to determine the low-energy constants in terms of
known parameters of the high-energy theory. In the regime of non-perturbative QCD,
SU(3) xPT is the natural choice for the ‘high-energy’ theory. An additional benefit of
matching onto SU(3) yPT is that the full G chiral symmetry is implicitly restored to
the effective Lagrangian through constraints on the low-energy constants. Because the
matching calculation enhances the predictive power of the heavy kaon/eta effective the-
ory, we consider it the third (and final) key ingredient of the theory. The essence of heavy
kaon/eta effective theory is a reorganization of the chiral expansion in SU(3) yPT, keep-
ing order-by-order only the terms relevant to the low-energy regime, which should result
in improved convergence.

The steps in the program we follow are to establish the effects of symmetry transfor-
mations on the fields of the theory, detail the rules for constructing a minimal effective
Lagranian, build the Lagrangian for the sectors of interest to order Q*, perform the match-
ing calculation onto SU(3) yPT, extract values for the low-energy constants of the heavy
kaon/eta effective theory, apply the results to scattering problems near threshold, and
finally look for further problems to which the theory can be profitably applied. For the
7K sector, this program has been started independently by Roessl [56]; however, we find
he has omitted terms from the effective Lagrangian at higher order (> @?). Several topics
relevant to developing the effective field theory are addressed in the discussion: field redef-
initions (or use of equations of motion); reparameterization invariance constraints on the
effective lagrangian; reconciling relativistic and non-relativistic treatments in the match-
ing calculations; and consequences of differences between the power counting schemes of

SU(3) xPT and of the heavy kaon/eta effective theory.
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To conclude a section titled “Prospectus” by considering future applications for the
heavy kaon/eta effective theory seems appropriate, so we briefly skip ahead to the final
step in the program. While the effective Lagrangians written out for the 7 K" and KK sec-
tors include isospin-violating terms for generality, the values of the associated low-energy
constants have not been determined in the matching calculations. Extending the matching
to determine the low-energy constants for isospin violation and electromagnetic interac-
tions would be straight forward and suitable for studying processes such as 1K — y7 K
and yK — 77 K near threshold. In another application, baryon isomultiplets from the
spin—% octet and spin—% decuplet can be coupled to the heavy kaon effective theory with
the coefficients in the Lagrangian matched to the G,-invariant theory in sections 2.3, 2.4.
Unfortunately, in many interesting kaon-baryon systems, strangeness-exchange reactions
do not conserve the number of heavy particles, e.g., NK — Y7 [57], resulting in a break-
down of the power counting scheme; however, the NK and AK sectors are protected
by strangeness conservation and are compatible with the heavy-kaon framework. On a
more speculative note, phenomenological models inspired by and incorporating elements
of the heavy kaon/eta effective theory may be developed for the problematic sectors
like KK [58]. For example, similar work has been done on 7*7~ atoms [59], and by inte-
grating out 7° pairs and allowing for a non-hermitian effective Lagrangian [60]. Finally, if
experimental data for the threshold energy region become available in abundance, extract-
ing the low-energy constants of the heavy kaon/eta effective theory from the data may
provide insights into SU(3) yPT. Knowing values for the low-energy constants would per-
mit verification of the constraints on the low-energy constants imposed by the matching

calculation and would provide a means of testing the SU(3) chiral expansion.
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4.2 Elements and Principles

The Lagrangian of heavy kaon/eta effective theory is divided into sectors by the heavy

fields present,
L =L _I_EWI( _I_EWIT _|_£7r77 _I_EWI(I( 4. (41)

and the Lagrangian for each sector is subdivided as £* = E]‘ ,C}X in a chiral expansion. All
the purely pionic interactions are derived from L™ where j = 2,4, ..., which is identically
the Lagrangian of SU(2) yPT. The effective Lagrangians for interactions of a single heavy
field with any number of pions are characterized by the chiral expansion 5 =1,2,3,...;
the expansion of L™K is similar except that the expansion starts with j = 0 due to
heavy-field contact terms. In this section we briefly establish our notation and identify
the principles used to construct the effective Lagrangians.

The building blocks of the heavy kaon/eta effective theory are introduced in direct
analogy to SU(3) yPT. The three pseudo-Goldstone bosons of SU(2) yPT are intro-

duced in the exponential representation; the most elementary constituents are u = e*®/2¥
and y = 2BM, where
7° V2t m, 0
b=rr1 = , M, = , (4.2)
V27— = 0 my

and the parameters F' and B are non-trivially related to the SU(3) yPT parameters Fy
and By. (The relations between the parameters were obtained by Gasser and Leutwyler [20];
we review them in section 4.4.) In the purely pionic sector, the effective Lagrangian is
written in terms of the fields U/ = u? and Y as in section 2.2. Because the kaon fields are
treated as matter fields which transform in the fundamental representation of SU(2)y, for

coupling pions to kaons we adopt the notation used in section 2.3 and reintroduce

- %(uTaﬂu + u@MuT), (4.3)

=

(uTauu — u@MuT), (4.4)

=
b |
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ye = ulyul +uyu. (4.5)

Throughout this chapter this notation is reserved for the SU(2) versions of the fields. The
heavy fields are the n meson and the kaons, which form two SU(2)y doublets
K = A ., K.= K . (4.6)
K° —K-
As non-relativistic fields, the creation and annihilation operators are treated separately,
thus we distinguish KT from K..

The symmetries which we explicitly build into the effective Lagrangian are 7 chiral
symmetry, parity (P), charge conjugation (C), and reparameterization invariance. The
implementation of reparameterization invariance is discussed separately in the next sub-
section. The transformations of the fields under G, P, C, and hermitian conjugation (f)
are collected for reference in Table 4.1 along with the power of (), i.e., the chiral index,
associated with each field. Under each of the transformations listed, a covariant deriva-
tive of a field D O transforms in the same way as O provided, in the case of parity, the
Lorentz index of the derivative is also raised or lowered. The number of low-energy con-
stants required is restricted sector-by-sector by imposing the constraints of hermiticity
and invariance under z and P on the effective Lagrangian. Within sectors of non-zero
strangeness charge conjugation does not restrict the form of the effective Lagrangian, but

determines £ - from L,
K ™

. and ,Cﬂ?]? from L _jp-

4.2.1 Reparameterization Invariance

By treating the kaon and eta mesons as non-relativistic (heavy) fields we have performed
an implicit rephasing, as in section 2.4, compared to the relativistic counterparts K,

and 7n,,

K(z)~V2M eiM”'xK,,(:I;), n(x) ~V2M' eiM/”'l’K,,(:zj). (4.7)



field G, P C T | index
U RUL? Ut ur 0
X Rx L' N 2
v, [av i —@ [V v v [ 1
I I n I I
A HA HT —A* AT A 1
I I o I
X+ Hy HT TX+ | X+ X+ 2
X- Hy_HT —x— | x-" | exo | 2
K HK -K | K. | Kt 0
K, K.Hf ~K.| KT | K] 0
Ui Ui -n | 7 0t 0

Table 4.1: Transformations of fields and under G chiral symmetry, parity P, charge
conjugation C, and hermitian conjugation f, and the chiral index associated with each

field.

Reparameterization invariance (RPI) [61, 62, 63, 64] is a consequence of arbitrariness in
the choice of the velocity v* used in the rephasing. The choice of a different velocity in
the relations between the relativistic and heavy fields is compensated by a shift in the
residual momentum £* of the heavy field. Lagrangians written in terms of heavy fields
rephased with different velocities must still give the same result for physical S-matrix
elements, which implies invariance of the Lagrangian under shifts of v*. A consequence of
RPI symmetry in the effective Lagrangian is that coefficients of terms at different orders
in the Q-expansion are related [62] and by building reparameterization invariance into an
effective Lagrangian we reduce the number of low-energy constants to be determined. In
this subsection we use the kaon as a representative example; all of the arguments apply
equally well to the case of the eta meson.

To construct a RPI Lagrangian it is necessary and sufficient, as shown by Luke and
Manohar [62], that the rephasing velocity and derivatives of the kaon fields appear only

in the following combinations:

VK = (—iMv,+D,)K, (4.8)

VKT = (+iMv,+ D KT,
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where we will refer to the operator V, as the RPI-covariant derivative. V, is a valid

derivative in the sense that it satisfies the chain rule,
D(K'OK) = (V,K"OK + K'(D,0)K + KTO(V,K), (4.9)

which permits the use of partial integration and total derivative arguments with respect
toV,. Only after building the effective Lagrangian in terms of the RPI-covariant derivative
and expanding each term in powers of the mass M do we make any particular choice of
frame, i.e., explicitly setting v, = (1,0,0,0).

Superficially, developing the effective Lagrangian in terms of the RPI-covariant deriva-
tive presents a problem for power counting. An infinite tower of possible terms, such
as KTK, KTVMV“K, KTVMVUV“VUK, ..., will contribute to each order of the chiral expan-
sion of the Lagrangian. On closer inspection, the fact that RPI guarantees a particular
relationship between coefficients of terms in the effective Lagrangian assures that the
effect of adding another term with more factors of V, can always be compensated by a re-
definition of the coefficients already present. As an explicit example we consider the effect
of adding the term 6L = b KTWVMVUVVK, where /* represents an unspecified combination
of light degrees of freedom, to the interaction Lagrangian £, , = a KTWVMK. Expanding

the combined result gives

Ly +0L = —iM(a—bM?) K (v-l)K + (a —bM?) K" D K (4.10)

int

— 20M? K™ (v-0)(v-DK) — ibM K'(0-0)D, D" K + - - -,

where we have used v,v* = 1. A subsequent change of a, a — a + bM?, absorbs the con-
tribution of 0L to the terms already present in £, ,. The addition of another term,
5L = CVA]&”TWVMVUVVVAK, would be followed by a change of @ and b to restore the form
of the terms present before the addition of §£’. Generally, RPI makes the possibility of
such redefinitions certain to all orders in the expansion of the effective Lagrangian and in

every sector of the theory.
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The procedure just proposed is an iteration of adding new terms to the effective
Lagrangian then redefining the coefficients of the terms already present. An equivalent
and more practical procedure is to subtract the contribution to terms already present in

the effective Lagrangian from each new term when it is added, for instance

VYETY V V'K (4.11)
— VRV YV'K - M (KUK 4+ MAKTR)

+ M? <VMKTV“K — M%’U{) + M*KTK.

RPI-covariant derivatives contracted with Lorentz indices on light degrees of freedom are
never dropped. We implicitly make such subtractions from every term when we include
the term in the effective Lagrangian.

Having resolved the issue of infinitely many contributions to each order of the chi-
ral expansion of the effective Lagrangian, we turn now to determining the proper power
of @) to associate with the leading contribution of a term in RPI form. Occurrences
of RPI-covariant derivatives are divided into two classes, those contracted with another
RPI-covariant derivative and those contracted into the light degrees of freedom. In the ex-
pansion of a contracted pair of RPI-covariant derivatives, the contribution from (+iMwv)?
is cancelled by the subtracted terms; the leading contribution to the power counting
comes from v-D so each contracted pair contributes Q!. The leading-order contribution
from expanding a RPI-covariant derivative contracted with the light degrees of freedom
is unaffected by the subtraction; the RPI-covariant derivative is counted as one power
of v, or order Q°. To determine the effective Lagrangian to order Q. in terms where the
operators for the light degrees of freedom contribute d powers of ) and carry n Lorentz

indices, we must consider some terms with as many as
N=n+2(D—d) (4.12)

added RPI-covariant derivatives. Toward the upper limit of the necessary number of
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RPI derivatives, some relief comes from the fact that total derivative arguments will
allow replacing some terms with alternates where a derivative is moved onto the light
degrees of freedom and the alternate terms may be neglected to the order we are working.

In addition to the ambiguity in the choice of the rephasing velocity v, we have free-
dom to choose the mass M used in the rephasing relation, equation (4.7). This freedom
was exploited in equation (2.26) to avoid awkward z#-dependent phases in the heavy
baryon Lagrangian. The only constraint on the choice of M is that any residual mass § M
is small (<)) to prevent failure of the power counting scheme. In the context of heavy
kaon /eta theory, we perform the rephasing of the kaon and eta fields with the masses M
and M, respectively, where My and M, are defined as the meson masses in the SU(2) chi-
ral limit m, 4 — 0 and m, finite. With this choice, the residual masses of the K and 7
mesons at tree-level are generated through interactions with the field x4 and are included
perturbatively. Because the residual masses vanish in the SU(2) chiral limit, by definition,
the effective Lagrangian does not include any explicit residual mass term —§M KTK; in

this sense our choice for the rephasing mass is the ‘natural’ choice.

4.2.2 Use of Field Redefinitions

Redefinitions of the fields of the theory can be used in two ways to potentially improve
or simplify the effective Lagrangian. The first class of field redefinitions eliminates terms
from the effective Lagrangian which are proportional to a classical equation of motion;
this class of field redefinitions, combined with total derivative arguments, is a powerful
method for reducing the number of unknown coefficients required. The technique is well-
documented in the literature [65, 66, 67, 68] for simplifications of effective Lagrangians
and we have nothing to add aside from identifying the general form of the terms we
eliminate by this method. Terms with an explicit factor of DMA“, VMV“K, VMV“n, or the
hermitian conjugates can be combined with contributions from other terms in the effective
Lagrangian to form complete equation of motion terms and are subsequently eliminated.

The second class of field redefinitions allows the elimination of all time-like derivatives
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of the heavy fields from the interaction Lagrangian [31, 35, 69]. The principle is closely
related to the elimination of equation of motion terms, and if all equation of motion terms
have already been eliminated by redefinitions of the first class then further redefinitions
from the second class will permit a re-expression of the effective Lagrangian but not
the further elimination of any low-energy constants present. Instead, the motive for
considering field redefinitions in the second class is to simplify the application of the
effective Lagrangian by replacing time-like derivatives of the heavy fields with spatial
derivatives. Spatial derivatives permit a more transparent power counting for ) in loop
diagrams than is possible when time-like derivatives occur in vertices.

Considering the free field theory of a (complex) heavy scalar is sufficient to illustrate
the general method and highlight conclusions relevant to how the matching calculation
between relativistic and non-relativistic theories is performed. The free-field Lagrangian

for the heavy scalar, after rephasing as in equation (4.7), becomes

. \Y%r 0-0)?
L, = o |ivd+ #
m

Po (4.13)
where the spatial derivative V. is defined by 9,0" = (v-0)* — V2. After substituting a
field redefinition ¢ = ¢; + d¢, we find the well-known result that d¢ = ﬁiv-@qﬁ cancels

the time-like derivatives from terms at order 1/m and gives

P Vi 30 (wd)Vi o1 /m)| 41, (4.14)

! 2m 16m?2 4m?

(A slightly different approach is taken in references [35, 69].) Substituting a second
field redefinition ¢; = ¢ + d¢', dependence on time-like derivatives is canceled in £,
through order 1/m? by ¢/ = (4V2 + 3(iv-0)?*)¢/32m?>. Repeating this process, time-like
derivatives of ¢ can be eliminated to any arbitrary order in an expansion in terms of (9/m).

Our original contribution to this discussion is the observation that the infinite series
of field redefinitions can be formally summed and a relatively simple expression for the

field redefinition ¢g = f[qg] can be obtained. The approach is based on substituting a
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series representation for F|[¢|, and deriving recursion relations from the constraint that
all time derivatives cancel from ,C(g. Here we present a brief plausibility argument for
the inverse solution ¢ = F~eol; the actual recursion relations generated are presented
in Appendix B with a short description of their solution. The first step is to complete the

square for the time-like derivative appearing in equation (4.13);

L, = Lo {(w-a +m)? —m?+ v‘ﬂ o (4.15)

= Lol [iwo+m— mP= VT [i00+m o+ /T = V| .

Second, observing (\/m— m) is the relativistic kinetic energy operator ]/&’\’, we
recognize the first expression in brackets is the kernel of the desired Lagrangian for ¢,
’C(;s = QBT(Z'U@ — [A&’)qg The second term in brackets is (iv-0 + K + 2m) which we divide
between ¢q and qb;r) and finally use to identify qg;

,C(bo _ \/—w-a—l— K +2m qb;r) <ZU8 B f() \/w-@—l— K +2m qbo (4.16)

2m 2m

s b= Jlivd+ R +2m)/2m g0 =F 0.

The explicit form for the redefinition resolves some differences between the perturba-
tive field theories of the heavy fields ¢o and o. Developing the field propagator from the
complete free-field Lagrangian in equation (4.13) results in two poles in the propagator,
at iv-d = +(m + ]/&\’) Only one pole is relevant for the non-relativistic treatment and the
second pole is eliminated differently in the ¢g and qg theories. The second pole is com-
pletely absent from the Lagrangian ,C(g; the disappearance of the second pole is traced to
a singularity of the field redefinition .7:[95] which causes ¢ to vanish at the location of the
second pole. In the ¢, theory, the pole is removed by treating the operator (iv-9)?/2m
in L, as a perturbative correction to the ¢y two-point function; the second pole does
not appear at any finite order. The second difference between the two non-relativistic

theories is the normalization of one-particle states relative to the normalization of the rel-
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ativistic one-particle state [33, 35], which becomes relevant when we pursue the matching
calculation between the non-relativistic heavy kaon/eta theory and fully relativistic yPT.
We determine the relative normalization by evaluating b= F o] at the location of
the relevant pole, (iv-0) = K=F-— m, which gives v2m ¢ = V2E ¢. Which factor is
included in matching calculations between relativistic and non-relativistic theories de-
pends on whether relativistic corrections to the propagator are included as insertions
of (iv-0)?/2m in the ¢y theory or as insertions of V4 /8m®+ VS /16m® +--- in the ¢
theory.

As stated above, the motivation for eliminating time-like derivatives of heavy fields
is to simplify the power counting of loop diagrams involving both light- and heavy-field
propagators. However, the field redefinitions required to eliminate time-like derivatives
are not reparameterization invariant. We consider the question open as to whether RPI
can be reformulated as a principle of the redefined ¢ scalar field theory. Without explicit
RPI symmetry of the qg effective Lagrangian, the relations between coefficients of different
orders in the ()-expansion are not guaranteed. As a consequence, we forego using further
non-RPI field redefinitions and treat the heavy kaon and eta fields in analogy with the
¢o scalar field theory described in this subsection.

4.3 The Effective Lagrangians

The approach we take to developing the effective Lagrangians is based on the work of
Fearing and Scherer [25] extending £, pp to order QQ°. We begin by addressing two points
where we use a different approach, specifically when performing the SU(2)y contractions
and when using total derivative arguments to eliminate terms. After discussing those
issues we give a brief summary of the overall procedure then present the explicit con-
struction of the effective Lagrangians £™, L™, and L™8E,

Given a product of field operators, Fearing and Scherer form G -invariant contractions

by taking traces of all possible permutations of the matrix fields. (Roessl applies the
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same method for L™ by introducing a matrix field K KT for the kaons [56].) Then trace

relations, such as

Tr[ABC] + Tr[AC B (4.17)
= Tr[AB|Tr[C] + Tr[C A]Tr[B] + Tr[BC|Tr[A] — Tr[A]Te[B] Tr[C]

for 2 X 2 matrices, can be used to eliminate some of the resulting terms in favor of others
in the set. For the relatively simple case of SU(2)y, we prefer to form a minimal set of
contractions by appealing to the algebra for addition of angular momenta. We prefer the
second method because 1) it permits a clean separation between isospin-conserving and
isospin-violating terms, 2) the connection between generated terms and physical processes
is more meaningful and direct, and 3) the method is more familiar.

A general matrix field O transforms under SU(2)y as 0@ 1, where the 0 component
is identified as Tr[O]. To separate out the 1 component of a matrix field, we define the

notation

O =0 —LTx[0]. (4.18)

Since Tr[A ] and Tr[V ] both vanish, these fields transform in just the 1 representation.
This notation is particularly helpful when applied to y+; we find that Tr[y4] and x_ are
proportional to m, but Tr[x_] and Y4 are proportional to (m, — mgy) and give isospin-
violating terms.

As a simple illustration of the method, the product of fields KKTAMX_ transforms
as % R % © 1@ (06 1) which contains three singlet representations; the resulting set of
contracted forms is Tr[)%_AM]KTK, Tr[X_]KTAMK, and KT[y_, A K. We choose to take
K [)A(_,AM]K instead of the equally suitable form KT)A(_AMK because the commutator
projects out just the 1 component of the product (y_ x Au)‘ Also, we can distribute
any covariant derivatives which are present after performing all SU(2)y contractions since
they do not change the SU(2)y transformation of the field on which they operate. (How-

ever, antisymmetric expressions such as [Au’ A"] must be kept until derivatives have been
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distributed across the fields.)

The second point to discuss is how to select terms which are to be eliminated by adding
total derivatives to the effective Lagrangian. Clearly, the set of selected terms should
contain as few terms proportional to an equation of motion (EoM terms) as possible,
since such terms will be eliminated anyway by subsequent field redefinitions. Fearing
and Scherer [25] take an approach driven by intuition, and apply rules such as all terms
where more than half of the derivatives act on a single field may be eliminated, and use
Lorentz index exchange arguments to preserve as many KoM terms as possible from the
remaining set. Because our power counting scheme permits many more derivatives at any
order than appear in £ py, the intuitive approach is vulnerable to questions of whether
every possible total derivative was used to eliminate a term and whether the set of terms
retained contains the most EoM terms possible.

We present an algorithm which reduces the use of total derivative arguments to linear
algebra and assures that no EoM terms are eliminated at the expense of keeping another
term (and low-energy constant) in the effective Lagrangian. We view the set of m terms
prior to any eliminations as the basis of a m-dimensional vector space 2, and the set
of coefficients of those terms in the effective Lagrangian represents an arbitrary vector
in . Also, each total derivative, when expanded by the chain rule, is represented by a
vector in §2; we define w to be the n-dimensional sub-space of {2 spanned by the complete
set of total derivatives. The key ideas are that the vector representing the most general
effective Lagrangian is arbitrary up to the addition of any vector from w and any set
of m — n terms which spans the complementary sub-space 2/w is sufficient for the most
general effective Lagrangian.

We construct a matrix P from the column vectors of a complete set of total deriva-
tives, not necessarily linearly independent. A complete set of total derivatives for terms
containing k derivatives can always be generated by explicitly taking the derivatives of
each possible term with k—1 derivatives. For any matrix O we define the operation NS[O]

which returns a matrix whose columns span the (right) null space of O. Then, trivially, the
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columns of the (m — n) x m matrix NS[PT] span the desired sub-space Q/w. A particular
choice of m — n terms from the original set also spans Q/w if the matrix R constructed
from the column vectors representing the terms satisfies the relation det[RT - NS[PT]] # 0.
Thus we can guarantee a complete set of total derivatives and test any particular choice
of terms for suitability as a basis of /w. The remaining hurdle is to establish a means for
identifying which choices of terms contain the maximum number of EoM terms; because
the number of acceptable sets grows combinatorially with the number of derivatives and
fields in each term, exhaustive testing of the possible sets is impractical.

By definition the columns of NS[O] represent the linear combinations of the columns
of O which vanish. The key observation is if we construct a matrix ) from the rows
of NS[PT] which correspond to the EoM terms, then the columns of NS[Q)] represent all
independent linear combinations of the columns of NS[P?] with vanishing projection onto
the EoM terms. The result is the columns of the matrix NS[PT]-NS[Q] span the sub-
space of /w which is orthogonal to all of the EoM terms, and the number of columns is
exactly the minimum number of non-EoM terms which must be included in the effective
Lagrangian.

One considerable advantage of the algorithm just described is that the computations,
from developing the complete sets of terms and total derivatives to selecting a single op-
timal basis of terms to include in the effective Lagrangian, are easily programmed with
software for symbolic mathematics. We also note that for very large sets of terms, the
problem can be broken into two smaller problems by dividing the full set of terms consid-
ered {¢;}1<j<m into disjoint sets {t; + t;r} and {i(t; — t;r)} and applying the algorithm to
each smaller set. Finally, if the full set of terms forms a hierarchy of ‘better’ terms and
‘lesser’ terms (beyond the distinction between EoM and non-EoM terms), the steps for
removing a maximal set of EoM terms from the basis of 2/w can be repeated for each
level in the hierarchy to assure the minimum number of terms must be selected from each
of the successive ‘lesser’ sets of terms.

In summary, we list the steps of the procedure, based on Fearing and Scherer [25],
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E TKK

which we apply to construct the minimal effective Lagrangians £™ and order by

order in ().

1. Identify all simple (uncontracted) products of fields and derivatives consistent with

parity and of the proper power of ().

2. For each product, form a minimal set of forms contracted over SU(2)y indices in

analogy to addition of angular momenta.

3. For each contracted form, distribute the derivatives over the fields and contract
Lorentz indices all possible ways, keeping in mind that derivatives of x4 are unnec-

essary and D A and all multiple derivatives are implicitly symmetrized.

4. For sets of terms with many derivatives, the power counting may indicate that some
contractions of Lorentz indices yield terms higher order in () than the order to which

we are working; drop all such terms.

5. Replace each pair of terms ¢ and ¢7 with the hermitian combinations (¢ + ¢T) and
i(t —th).

6. For each set of terms, apply the total derivative algorithm to select a basis set

containing the most EoM terms possible.

7. Eliminate EoM terms, proportional to either DMA“, VMV“K, or VMV“KT through use

of implicit field redefinitions.

8. Expand RPI-covariant derivatives of the kaon fields as Vu = :I:iMKUM + Du then set
v, = (1,0,0,0).

In practice, after identifying a product of fields in step (1.), we work out all the terms
generated by adding covariant derivatives to the product of fields up to the highest relevant

order in () before moving on to the next product of fields.
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4.3.1 The 7k and 7 Sectors

In the interest of transparency, so that the process and results can be independently
verified and because some knowledge of intermediate results is necessary to extend the
Lagrangian to higher order, we present details on some of the steps in the construction
of the effective Lagrangian. After the discussion related to each product of fields, we list
the RPI forms of the terms which are kept, together with the coefficient associated with
each. The particular coefficient we assign to a given term depends on the leading power
of () contributed by the term after the RPI-covariant derivatives are expanded.

The only product of fields permitted at order Q° is K1K. Because covariant derivatives
can be freely moved from one field to the other, sophisticated total derivative arguments
are unnecessary regardless of the number of derivatives distributed on the kaon fields;
in each order of the ()-expansion, only a single term of this form needs to be retained.
For no derivatives or two derivatives, the terms we keep are KTK and VMKTV“K. By
definition, the coefficient of the mass term is the square of the mass used in the heavy
field rephasing, i.e., the mass of the kaon in the chiral limit m, 4 — 0. For four or more
derivatives, we can always move all derivatives except a single contracted pair off the kaon
field leaving only the EoM term which is subsequently eliminated. The only combination

of terms generated from the product KTK (at any order) is
Y KWK — Mi(KTK).

No product of fields at order Q' is consistent with RPI and parity invariance. At or-
der () two products of field operators must be taken into account, K KTy, and KKTAMAU.

For the field product K KTy, we use the contracted forms
TGIETE (65),  KYSGE ().

Because y 4 is effectively ‘transparent’ to covariant derivatives (since D x4 is equivalent to

alternate terms we consider elsewhere), we can freely move covariant derivatives between
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the kaon fields just as with the product KTK. Consequently, for any number of derivatives
distributed on this form, we can always reduce the set of terms to a single FoM term
proportional to VMV“K.

For the field product KKTAMAU we choose the contracted forms Tr[AMAU]KTK and
KT[AM, A JK, and up to order Q* in each case we can distribute up to six derivatives over
the fields. First we consider the form Tr[AMAU]KTK; adding two derivatives, we must
keep a total of seven terms of which five may be EoM terms; adding four derivatives, we
must keep a total of nine terms at order Q* of which eight may be EoM terms; adding six
derivatives, we must keep a total of four terms at order Q* of which three may be EoM

terms. The terms we select after all eliminations are

Tr[AMA“]KTK (e3™),
Tr[A“A”]VM[&”TVUK (),
Tr[DMAUD“A”]KTK (e3™),

Te[A"D" AWKV VK +he. (e57),

VA 4R - - K

Te[D*A"D" A ]VMVUATVAVH[& (e7).

The second form KT[AM, A K vanishes unless derivatives are added; adding two deriva-
tives, we must keep three terms of which two may be EoM terms; adding four derivatives,
we must keep six terms of which five may be FoM terms; adding six derivatives, we only

need to keep two EoM terms. The terms we select after all eliminations are

VKA A"V K (d5),
Y KTA", D" AV VK +h.c. (di¥).

The only product of fields consistent with RPI and parity invariance at order Q7 is
KKTAMX_. The product results in three contracted forms, Tr[)%_AM]KTK, KTx_, AM]K,

and Tr[X_]KTAMK, which up to order Q* can be combined with either one or three
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derivatives. Because all three of the contracted forms are a product of the same four
distinguishable fields (no exchange symmetry), the total derivative arguments are exactly
the same in each case; with one derivative we must keep two terms of which one may
be an EoM term; with three derivatives we may keep only two EoM terms. The three

non-EoM terms which we elect to keep are

Tr[x-A"JKTY K 4 h.c. (d5"),
iKY, A"V K 4 hee. (df9),
Tr[X_]KTA“VMK + h.c. (dZ).

At order Q* four products of field operators are taken into account: K KTy, v,
KKty_x_, ]&”KTAMADX_|_7 and KKTAMAUAAAH. The first two products will only ap-
pear without any additional derivatives, and are both contracted the same way under
SU(2)y. When coupling the representations of the two matrix fields, only the symmetric
combinations (06 1) ® (05 1)]s =06 0 F 1s & 2 will appear resulting in three SU(2)y

contractions for each product. The six terms generated in this fashion are

Tr[ys*KTK (e7k), Tr[V_R_]KTK (e7%),
T KT K (e7F),  Te[y_]K1Y_K (e55),
DGETE (65). TRPETE ().

The product of fields [&”KTAMAUX+ permits six distinct SU(2)y contractions and un-
der the exchange Au ¢+ A three are symmetric and three are antisymmetric. For the six
contracted forms, the power counting permits the addition of two derivatives. The three
antisymmetric forms are Tr[)%+AMAU]KTK, Tr[X_|_]KT[AM,AU]K, and KT[yy, (A, AJIK
which all vanish if no derivatives are included. In each of the three cases, when two
derivatives are included, the symmetry allows only a single term of order Q* which can

be eliminated by total derivative arguments. The three symmetric contracted forms are

Tr[X+]Tr[AMAU]KTK, Tr[A A JKT{L K, and KT(AM)AGAU + A X+A K. With the addi-
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tion of two derivatives to each of the symmetric forms, we are required to keep only a
single non-EoM term. The three symmetric forms result in a total of six terms in the

effective Lagrangian at order Q*,

Te ] Te[A, ATTRTR (ef]), Te[x ] Tr[A"A Y, KTV K (),
Te[A, A|KTXG K (€77), Tr[A" A"V KTV K (e58),
KA X4 A"K (e5), VKT A LAY+ A AV K (55,

The final product of fields, KKTAMAUAAAH, transforms as % R % RIVIR1IR1
which contains nine singlet representations. Three of the nine SU(2)y contractions cor-
respond to Tr[AMAU]Tr[AAAH]KTK under distinct permutations of Lorentz indices; the
remaining six contracted forms are distinct permutations among the Lorentz indices of
Tr[AMAU]KT[AA, A K. In each of the two cases, the power counting permits distribut-
ing up to four derivatives on the fields, but the power counting also prohibits any EoM
terms in the set of terms which can contribute at order Q*. First we consider the second,
commutator-type form. The contributions of order Q* from this term vanish if either
no derivatives or four derivatives are distributed on the fields; in the case of adding two

derivatives, a single term of order Q* must be kept. The term we choose to keep is
iTr[A A" TKTA", ATV VK +hee. (e3").

For the double-trace contracted form, there are two ways to contract the Lorentz indices
without adding derivatives of the fields. In addition, with two derivatives on the fields
we must keep two terms at order Q*; with four derivatives we must keep a single term
at order @Q*. The net contribution to the effective Lagrangian is five terms; we select the

following terms for this set:

Tr[AMA“]Tr[AUAy]KTK (ex™),
Tr[AMAU]Tr[A“Ay]KTK (ez™),
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Te[A, A"Te[A” AN Y KTV K (e55),
Te[A, A |Te[A“AN Y KTV K (e59),

Te[ A" A" TR [ A A"V Y KTV VK (e55).

We collect the terms of L™ listed above and present the complete results for the
chiral expansion L™ = o ,C;rK to order Q*. We expand the RPI-covariant derivatives
to separate the terms which contribute with different powers of (). We also explicitly
symmetrize the multiple derivatives and derivatives of A wherever necessary and absorb
some constant factors into the coefficients where convenient. Finally, all of the isospin-

violating terms are collected together at the end of each equation, offset with parentheses.

LN = iKTDK (4.19)
MiL3® = 1D K'D'K 4 [ Tr[A"A"IKTK + ¢ Tr[A A" KTK (4.20)
+ 5Ty ] KTK ( + KT >2+K>
MELIE = (0" Te[A°AY(KTD K —h.c.) +id]"K1A°, D A°|K 4.21
K 3 1 s 1 0
+idy (KA, AY1D K +h.c.) +id; " Tr[{ - A"| KT
AR, A (i Taly KT AK)
MLis = "Tr[A*A]D KD, K (4.22)
L {KT([A“, D,A") + [A°, DyAM] + [A°, DM A”])D, K — h.c.}
+d3" D, K'[A", A")D K — L5 Tr[{_A")(K'D K —h.c.)
+ 2di (KT[X=, A"]D K — h.c.) + 7" Te[ D, A" D, A"| KT I
+ 5 Te[A" DA’ (KD, K + h.c.) + e Te[ A" A”| Te[A°A°| KT I
+ €5 Te[D, A (D" A” + D" A" KK + el"Tr[A° A" Tr[A A"KTK
e Te[A°A | Te[APA") KK + e e A, A")Te[ A, A"] KT K
+ g Tr[A A T A" A" KTK + e Tr[APA JKT[A°, A" K

+ TS T[4 ] Tr[A°A° | K TR + e’f{"Tr[X+]Tr[AMA“]KTK
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+ X[ 4 P KK 4 eIXTr[v_x_]KTK
( — 3d7"Tr[x_J(KTA"D, K — h.c)
TK ,71' 0 A 04~ TK ,71' A 12 v TK 0,40 ,71' A v
+ el KTAXGATK + efs KTA Ny ATK + efg Te[ A AT KT K
+ e Te[A AY KT K 4 ef8 Tr[y 4 J KT K 4 i Tr[y ] KT K

+ 5o Tr[X e X4 ] K TR + engr[X_]QKTK>

This procedure does not need to be repeated for the mn sector. The construction
of L™ is identical to the construction of L™ with three exceptions: the eta transforms
as a singlet under SU(2)y; all isospin-violating terms must be omitted as discussed in
section 4.1; and the effective Lagrangian within the 77 sector is invariant under charge
conjugation. From the results for L™ we construct £ directly by simply dropping
all terms which violate isospin conservation or are not proportional to the general form
(D™ KTD"K), replacing My by M, and each occurrence of (D™ KTD"K') by (0™nT0"n),

and finally checking the remaining terms for charge conjugation invariance.

L7 = it (4.23)

M, L3 = 10 n'0"y + " Tr[A°A%nTy (4.24)
+ 5" Te[A, A Ty + ST Te[x 4 In'y

ML = ie]"Tr[A°A")(nT0,n — h.c.) + d™Te k- A%]n"y (4.25)

MPLT" = "Te[A*A”)0 n'0,n — 2d™Tr[{-A"](nTd,n — h.c.) (4.26)

+ e[ DyA° Dy A" + 3" Te[AY D A%) ('O m + hec.)

+ 5" Te[D, A, (D" A" + D" A")Ipty + e Tr[A° A”| Te[A” Ay
+ g Tr[A" A" Te[ A A¥]ny + e Tr[A°A JTe[A”A"]nTy

+ eI Te[A AMTr[A, A ]nTy 4 g Tr[A A JTe[A* ATy

+ e Telx  Te[A° A%y + €]y Te[x 4 Te[A A"ty

+ el Telx)'n'n + T3 Tr[v—x-In'n
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4.3.2 The n KK Sector

In the 7 K K sector, the full expression for the effective Lagrangian to order Q* is not
necessary to treat 2 <» 2 scattering processes until very high order. For instance terms
involving four factors of Au only appear with at least two closed pion loops and will be
suppressed by at least a factor of Q°. We develop the full effective Lagrangian to order Q%
at orders Q® and Q* we consider only those terms which give rise to four-kaon contact
terms. To distinguish contact terms from pion interactions, we note that an expansion
of quantities in the number of pion fields gives Au o~ —QMW/ZF, X- ~ —dmBr/F, and
Tr[x-] ~ —4i(m, — mq)Br°/F.

Also, we choose to couple the kaon annihilation operators together as KeK and
Ker; K, where ¢ = i1, before contracting with the other fields present for the advantage
of greater symmetry under exchanges, antisymmetric and symmetric respectively. Cou-
pling four kaon operators together in this way gives six representations under SU(2)y.
The three representations involving an antisymmetric contraction of fields are simple
products of the two forms above and transform as 0 ¢ 1 ¢ 1; the remaining three
combinations of fields are (Ker; K)/(Ker; K) (a 0), ic;u(Ker; K)1(Ker,K) (a 1), and
(([&’erj[x’)T([&”ch]&”) + ([&”erkK)T([(eij)> (a 2), where use of ¢z, the three-dimensional
Levi-Civita symbol, is always clear from context. For brevity of notation we define the

combinations

( [(1 [(2 | [(3 [(4 ) = ( [(1 €75 [(2 ) f ( [(3 €75 [(4 ) 5 (4 .2 7)

([(1 [(2|O|[(3 [(4) == Z.ij[(l(lGT]‘I(Q)TTI’[T]CO]([(367'[](4) (428)

where K; represent general fields in the 1 representation of SU(2)y and O is any SU(2)y
matrix operator.

Without any factors of Au or Y+ there are two contracted forms of four kaon field
operators, (KeK)(KeK) and (K K|K K). To determine all contact operators up to

order Q* requires distributing up to eight RPI-covariant derivatives on each form. (Many
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with several derivatives contribute only at much higher order in tree diagrams; however,
we include them for completeness regardless.) The algorithm for making optimal use of
total derivative arguments serves us very well in this endeavor; we need to deal with as
many as 221 candidate terms restricted by 179 linearly independent total derivatives. We
consider the symmetric contracted form first and count the terms left after total derivative
arguments; one term with no derivatives is necessary; adding two derivatives, we must
keep three terms of which two are EoM terms; adding four derivatives, we must keep nine
terms of which seven are FoM terms; adding six derivatives, 20 terms are required of
which 18 are EoM terms; finally adding eight derivatives, 42 terms are required of which
39 are EoM terms. After all redundant terms are eliminated, we select the following set

of terms:

(K KK K) (a™F), (K V,K|KV'K) (b75),
VKV K, KV'K) (efF), (VEVKV'EV'K) (c55),
VK YVEV'EVVE) (%),  (VEKVYVWKV'KV'V'K) (d5<e),
(VYK VY.EVVEVVE) (79,
VWK VYKV EVVE) (%),
(VY E VYV KVV.EVYVK) (e5%).

For the antisymmetric contracted form the term with no derivatives vanishes; adding two
derivatives, we must keep a single non-EoM term; adding four derivatives, we must keep
four terms of which three are EoM terms; adding six derivatives, twelve terms must be
retained of which ten are EoM terms; adding eight derivatives, 28 terms must be retained
of which 26 are EoM terms. After all redundant terms are eliminated, we select the

following set of terms:

(KeV K)(KeV'K) (e5*7),

(KeV, K)' (Y, KeV'V") + hoe. (df*F),
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(VK VKN (V' KV VI K) (d5<5),
VKV V' KNV KEVVE) (559,

VYKV V) (VY KVVK) (e555),
VKV V' KWV KV V'VK)

The final term in the above list does not contribute until order ()°, so we do not list an
associated coefficient for that term.

The next product of fields we consider is K K K'TK Ty, which results in five contracted
forms and each form must be considered with up to four derivatives. Because x4 is trans-
parent to covariant derivatives, three of the contracted forms yield terms analogous to a
product of fields K K KTKT. The contracted forms Tr[y,](K K|K K) and (K K|x.|K K)

give four terms each after all redundant terms are eliminated in analogy to (K K|K K);

Tr[x4 (K KK K) (c7675), (K K|x1|K K) (755,
Te[x4 (K V,K|KVK) (dF""), (K V,K|x+|K V'K) (d5<),

Te[x]J VK V'KV KV'K) (eg"7),  (VEV'K|x4|V,KV'K) (efi"),
Te 4 VKV KV K VK) (e57%), (VK VKIx+V'KV'K) (ei5%).

The contracted form Tr[x,](KeK)T(KeK) gives two terms after all redundant terms are

eliminated in analogy to (KeK)T(KeK);

TI’[X-I—] (I(GVM [&’)T(A’GV“K) (eérKI\")7

Tr[x 1 (K eV, K)T(V, KeV*V'K).

Again, the final term in the list contributes only beyond order Q*. The final two contracted
forms for the product K K KTK Ty, are the hermitian conjugate pair (K ¢K)T(Kex, K) and
(Kexy K)(KeK). Each of the forms vanishes without derivatives; adding two derivatives,
in each case only one EoM term is required; adding four derivatives, four EoM terms are

required. These final two contracted pairs do not result in any necessary terms in the
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effective Lagrangian.

The only remaining terms we will consider at order Q* are derived from the field
product K K KTK Ty, x, without any derivatives. Considering the SU(2)y couplings gives
eight distinct contractions, but four vanish due to antisymmetry. The remaining four

terms contributing to the effective Lagrangian at order Q* are

Tl PR KIK K) (e559), Tely (K KR4 IK K) (e750),
T (K KIK K) (), (Keiy K)(Ket k) ().

The final product of fields in the 7 K K sector is ]&”[&”[&”TKTAMAU and to derive the La-
grangian to order )* we only need to consider adding up to two derivatives. The SU(2)y
contractions yield six independent forms, two of which are related by hermitian conju-
gation. Without adding any derivatives to the product of fields, four of the contracted
forms vanish due to an antisymmetry under an exchange of fields. Adding two derivatives
to each of these four contracted forms gives terms which only appear at higher order
than Q?; we list the terms derived with the power of ) at which it would first contribute.

From the hermitian-conjugate pair of contracted forms we get two EoM terms and

(KGVMK)T(KG[A“,AU]VUK) (~Q?, twice),
(KGVMIX’)T(KG[AU,D“AU]K) (~Q*, twice);

each form contributing both as (O + OT) and as (O — OT). The other two contracted
forms with a pair of fields antisymmetric under exchange give two EoM terms and the

higher-order terms

(KV,K[A"A"|K YV, K) (~Q?),
Te[A, A"(K eV, K) I (KeV'K) (~Q),
Te[A“A")(KeV, K) (KW, K) (~Q*).
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The two terms without any derivatives which do contribute to LIJX% are
Te[A A')(K K|K K) (cf"F),  (KeA K)'(KeA"K) (cj*).

When two derivatives are distributed on either form, we must retain eleven terms of which
five may be EoM terms. Of the twelve terms appearing in the effective Lagrangian, the

only four contributing to LJ*% are

TI’[A“AV]([( VMI(H( Vy[() (CZI\"I\")7
Te[A"A")(K K|V K V,K) +h.c. (c5*7),
(KeA"K)'(V KeA"V K) + h.c. (¢577),
(KeA"V, K) (K eA"V, K) + (KeA"V, K) (K eA"V K) (c5°5).

From the product of fields [&”]&”KTKTAMAU, the remaining eight terms derived are

(Te[A"A")(K K|V, K V,K) +h.c. (~Q%),
(K eA"K)(V KeA"V K) +h.e. (~Q%),
Te[A, A"J(K K[V, KV'K) (~Q?, twice),
([&”GAMK)T(VUKGA“VVK) (~Q?, twice),
Te[DA D"A"|(K K|K K) (~Q"),
(KeD A K)(KeD"A"K) (~Q*).

We collect the terms listed above and present the results for L3755 through LIEF.
The contact terms of LXK are easily derived from the enumerated terms above; we do

not present the fully-expanded form of LI5%.

MELTEE = @K K|K K) (4.29)

My LTRE = o (K K|K D,K)—h.c.} (4.30)
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Mg L3RR = b (K D, K|K D*K) + ¢ (KeD, K) (KeD"K) (4.31)
+ (e]™" + 255" )(K Dy)K|K D)K)
— " {(K K|D,K D,K)+h.c.}
+ (ef™ + ") Te[A AN (K KK K) + cg“"Tr[AMA“](K K|K K)
+ (4 FNKeAK) (KeA K ) + ¢ (KeA K (KeA"K)

1)

MR LR = el {(K DyK|D,K D*K) —h.c.} (4.32)

2

+ g " Tr[x4+ (K K|K K) < + 7 (K K+

+ 2ic]{(K D,K|D,K D"K) —h.c.}
+ i(d] + d5F) { (K K|D,K D,D,K)— (K D,K|K D,D,K)
— 2K DK DK D)~ hee. |

+idy " {(KeD,K)"(KeDyD,K) — h.c.}

+ id7eE { (KeD, K) (KeD\D"K) + (KGDMK)T(KGD“DOK)
+2KeD, K){(D,KeD* ) — }

+ id7" Tr[x 4 {(K K|K D,K) —h.c.}

( Hidg (K KR4 |K DK) )

+ other terms involving Au

Having worked out the forms of the effective Lagrangians, we turn in the next section to a

matching calculation to determine the coefficients which appear in terms of the parameters

of the ‘high-energy’ theory, SU(3) yPT.

4.4 Matching Calculations

A topic which needs to be addressed before setting up the matching calculations be-
tween the heavy kaon/eta theory and SU(3) chiral perturbation theory is the difference

between the expansions of the two theories. The heavy kaon/eta effective theory is an
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expansion in /M, where ) represents the generic scale of m, and external momenta |p|,
and M represents the scale of heavy masses My ,. In contrast, SU(3) xPT is an ex-
pansion in (¢)/A)? where @) represents the scale of external momenta and the full set of
pseudo-Goldstone boson masses. To reconcile the two effective field theories in the low-
energy regime |p | < m,, we must recognize three distinct mass scales (), M, and A which
represent respectively external momenta and m,, My and M, and the chiral symmetry
breaking scale.

Distinguishing the scales in xPT is trivial. We compute scattering amplitudes to a
given order in 1/A, then in each order separate the expression by powers of ms;By ~ M?2.
In contrast, the role of A in the heavy kaon/eta effective theory is buried in the coefficients
of the effective theory, just as the coefficients of yPT are implicitly unknown functions
of Aqep and the heavy quark masses [13]. From within the heavy kaon/eta theory there
is no way to determine the dependence of the coefficients on A via scaling arguments as in
section 2.2 because the dependence is obscured by the intermediate scale M. The matching
calculation provides a direct way to establish the relationship between the coefficients and
the chiral symmetry breaking scale.

We match the theories by equating on-shell scattering amplitudes and the locations
and residues of poles in the heavy field propagators of the two theories. (Off the mass-
shell, the scattering amplitudes depend, in an unphysical way, on how the meson fields
are defined and matching would require including all of the EoM terms eliminated by field
redefinitions.) We choose to match amplitudes with a relativistic normalization; so a factor
of \/2MF, is included for each external heavy-particle state in the heavy kaon/eta theory,
consistent with the discussion in subsection 4.2.2. For the amplitudes calculated in yPT
we perform a non-relativistic expansion, making the replacement P = (Mg, + ko). The
expansions for an arbitrary amplitude A of mass-dimension d, in yPT and in heavy

kaon/eta theory respectively, are (symbolically)

25 pp2(k=J) Q% M2k
q Z - Q q Z Z )
AXPT = M OéQj,k 7/\2]“ = M Mz] OQ]J“W’ (433)
J k

5k
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Avp = M*Y an—j, (4.34)

where the (1/A)-expansion of xPT has been reorganized as an expansion in M/A within an
expansion in (/M. Equating the expansions in powers of () determines the combinations
of terms «;Q = >, a; Q' (M?*/A*)* for even j and «;Q’ =0 for odd j. Solving for
the coefficients in the heavy kaon/eta effective theory, we find that matching gives the
coefficients as an expansion in powers of (M/A)?. This behavior is seen explicitly in the
results for matching F' and B to the parameters of SU(3) xPT by comparing amplitudes

for pion interactions. The matching relations were derived by Gasser and Leutwyler [20];

M2 M2 M2
F = Fy{1-— K _n—& 18— K 1+ O(M*/A* 4.35
{1 ot n S5 4 SLZE L O(MYAY | (4.35)

M? M? M2
_ n n r r K 4 4
B = 30{1— S I~ 1601 = 205 T+ O(M/A )}. (1.36)

(X)

The leading-order results from xP'T' determine coeflicents of the effective Lagrangians £;_3
to leading order in (M/A)* (with the exception of coefficients for terms with time-like
derivatives). Next-to-leading order results from xyPT determine the same coefficients at
the next order in (M/A)? and the leading order of a further set of coefficients from the
heavy kaon/eta theory.

We present the results for the leading order matching calculation then apply the results
to make a prediction for KK scattering phase shifts in the next section. The parameters

of L™ are, up to corrections of order (M/A)?,
M} =m,By, =0, ¢"=-1/4, " =-1/16, (4.37)

and dj" = d;* = d7* = 0. The parameters appearing in L™ are, up to corrections of
order (M/A)?,
M? =2m,By, ¢"=¢"=0, ¢ =-1/16. (4.38)

n 3
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The coefficients di* and d™ are not determined until matching at next-to-leading order
in YPT. For L™K we only perform the matching for the coefficients of the four-kaon

contact terms and find the leading order results are

rKK __ _mSBO rKK __ _mSBO TKK __ TKK __
= = it =0,

1652 8F2

with corrections of order (M/A)*.

In effect, the heavy kaon/eta effective theory becomes a dual expansion in (/M
and (M/A)? through the matching calculation. Applying the theory to physical processes
requires establishing a relative weight to the two expansion parameters. The relative
weight dictates to what order of the expansion in powers of (M/A)?* one must work for
a consistent result to a particular order in /M. Equivalently we introduce a common
expansion parameter ¢ and assign /M and M/A each a characteristic power of . The
ratio of masses m, /My ~ 0.3 and the typical size of SU(3) symmetry breaking effects [20]
suggest assigning the ratios of mass scales Q /M and (M/A)?* equal powers of the param-

eter £, so we take { ~ Q/M ~ (M/A)? ~ 0.3.

4.5 Application: KK Scattering

L™EE we calculate the K K scattering amplitudes

From the effective Lagrangians £ and
in the isospin 1=0,1 channels to order )?. Using the results of the matching calculations
of section 4.4, we make a prediction for the K'K' s-wave scattering phase shift in the [=1
channel. We plot a comparison of the leading order results of the heavy kaon/eta theory
and SU(3) xPT and comment on the usefulness of this approach.

Initially we calculate the KK scattering amplitude as an expansion in powers of ¢}/ M,
treating all coefficients as intrinsically O(£°). The leading-order contribution to the scat-

TKK

tering amplitude is order Q° and arises from the tree diagram with an a™*-vertex. Be-
cause time derivatives on external legs contribute 2, the effective Lagrangian results in

no contribution from tree diagrams at order (). At order Q? we include tree diagrams with
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Figure 4.1: Feynman diagrams contributing to the K K scattering amplitude in the heavy
kaon/eta effective theory; (a) order Q° tree diagram, (b) order () kaon-bubble diagram,
(c) order Q* tree, double-bubble, and pion exchange diagrams.

TKK TKK TKK
™ IR or i .

a vertex from LT8F or L3855 and which give one of the coefficients
Because the two-body sector admits nearly-infrared-divergent behavior, the appropriate
power counting for loop diagrams is given in equation (2.31). The power counting shows
that kaon-bubble diagrams are suppressed by a single power of @, so to order Q% we

TKK

take double- and single-bubble diagrams with only the a™*-vertex included. Finally,
one-pion loop diagrams are suppressed by only the powers of () generated at the vertices,
which means double pion exchange is included with vertices from the order-() effective
Lagrangian £7%. The set of relevant diagrams is illustrated in Figure 4.1.

Integrations over loop energies dq,, are performed by contour integration and the result-
ing momentum integrals dq are evaluated in dimensional regularization. The scattering
amplitudes are calculated in the center-of-mass frame and the order-Q? equation of mo-

tion, 2Mg E), = k* — 16¢55m B, gives the kaon energy of the external states. The results

for AE\I,)R are

Lk cos O
A (k) = 325 00 (4.40)

2
K
2Ek (aTrI\"I\")22Ek
7T2AzK 7T2AzK
mB  om2ME . om?

64T =R 956 K jp—=,
My ME 16m2Ft 2

AL (k) 32ia”  { 1 4 ia™F (4.41)
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From the matching calculation we determined ¢3** ~ 0; consequently, the (I=0) p-wave
scattering amplitude and phase shift vanish to the order we are working. Including the
&-scaling of the coefficients, the leading contribution to Ag\lf}% comes from the order-Q° tree
diagram and counts as order £. The next terms in the phenomenological expansion in &,
of equation (4.41), are the order-@) kaon-bubble diagram and the order-Q? tree diagram.
To work consistently at this order would require extending the matching of the coefficient
in the leading-order result, "*, by two orders in (M/A)%.

For comparison, the result for the scattering amplitude in yPT is

(1 R
AR = 3T SMZ + 12k — 2(m, + 170) Bo| - (4.42)
The leading-order results for the s-wave phase shift in both the heavy kaon/eta theory
and SU(3) yPT are presented together in Figure 4.2. The s-wave K K scattering length

determined from the phase shift plotted in the figure is
aV =0.45 x 1073 cm, (4.43)

which is consistent with a repulsive K-K interaction potential. In both cases the leading
corrections are suppressed by ~(M/A)? ~ 0.3. In light of the fact that the heavy kaon/eta
theory is determined directly from the scattering amplitudes of yPT, the agreement of
the two expansions to within the expected 30% corrections is not surprising.

The calculation of the s-wave phase shift in both yPT and the heavy kaon/eta theory
has illustrated a fundamental point relevant to the utility of the matching calculation.
The motivation for developing the heavy kaon/eta theory was to achieve a better expan-
sion in the threshold regime by virtue of the better ratio of scales (Q/M)* ~ .1 versus
(M/A)?* ~ .3. In effect, the price for the improved convergence was an increase in the num-
ber of low-energy constants, i.e., coefficients in the Lagrangian, to be determined. The
initial proposal was made to determine the unknowns of the low-energy theory by perform-

ing a matching calculation onto a theory with fewer unknown parameters, SU(3) yPT.
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Figure 4.2: (a) Leading-order calculations of the KK s-wave (I=1) scattering phase
shift do(k) in degrees as a function of center-of-mass momentum k; the dashed line is
heavy kaon/eta theory, the solid line is SU(3) yPT. (b) Relative error between the results
607 — & /166"

However, by matching onto yPT we guarantee that the heavy kaon/eta theory is limited
to converging no better than the theory to which it is matched. Indeed, we find that
the matching calculation explicitly reintroduces the mass-scale ratio (M/A)? that we at-
tempted to circumvent. The matching calculation appears to be both the savior and the
Achilles’ heel of the heavy kaon/eta effective theory.

For a wide variety of processes, including K K scattering, the heavy kaon/eta effective
theory does not provide a computational advantage over yPT, and the additional work
required to carry out the matching calculation cannot be justified. However, the outlook
for the heavy kaon/eta theory or for the use of matching calculations is not entirely bleak.
The approach is useful is two senses that were suggested in section 4.1. The first is that
independent of the matching calculation, when data are available for a direct empirical
determination of the low-energy constants, then taking advantage of the better rate of
convergence in the non-relativistic theory will be possible. For a short-term perspective,
the available data on 7w K scattering [70, 71] may be useful in this way.

The second way in which the non-relativistic effective theory may be useful is calculat-
ing quantities for which the relativistic formalism of yPT is awkward. An example where
a non-relativistic treatment has proven beneficial is calculating the properties of bound-

state systems [9, 32, 72, 73]. In applications of this sort, reviving the matching calculation
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approach has merit because the motive for using the non-relativistic effective theory is
not solely to improve the convergence of the expansion. Since bound state formation
always involves summing an infinite number of Feynman diagrams, the power counting
considered here cannot be directly applicable for these problems. Two cases should be
considered regarding bound states in the heavy kaon/eta effective theory. First, the effec-
tive field theory cannot be applied to deeply bound systems because they lie outside the
range of the momentum expansion. Second, for shallow bound states, the power counting
scheme needs to reflect the fine-tuning which is implicit in the associated large scattering
length. In systems with a shallow bound state, the matching calculation will not provide
an estimate of coefficients of the terms responsible for binding the system, but may per-
mit the determination of coefficients which contribute perturbatively to properties of the
bound state. The interesting possibilities for strong-interaction bound states, KK and
K N, both suffer kaon annihilation and are not suitable candidates. Another possibility
is to calculate strong-interaction perturbations to a Coulomb bound state with a kaon,
for instance 7~ K+ or K~X*, or kaon electromagnetic form-factors via e” K*.

In conclusion, we have presented the foundations and laid out the principles for an
effective field theory to describe the interactions of pions with non-relativistic kaons and
eta mesons. The effective Lagrangians for few-body sectors were constructed explicitly
for the first several orders in a chiral expansion. Much work remains to be done both
in applying the theory to systems of interest and in generalizing the theory to include

electromagnetic interactions, couplings to baryons, and the study of isospin violation.
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Appendix A

Symbolic Expansion of £ pr

This appendix presents Mathematica® routines [74] for the symbolic expansion of the
SU(3) chiral lagrangian in terms of the embedded chiral SU(2) fields in the sincere
hope that they will prove useful to others. The source code is divided into two files,
lagrangian.math on page 72 which specifies the sequence of steps in expanding and
saving the desired parts of the lagrangian and definitions.math on pages 73-74 which
defines the functions called to perform the expansion and simplify the results. Currently,
the chiral Lagrangian £, in equation (2.8) is expanded out to terms including six boson
fields; £, in equation (2.10) is expanded to four boson fields. The source code can be
applied to higher-order parts of the chiral Lagrangian or to terms involving more bosons
by adding transformation rules to the trace routine in definitions.math at line 42.
The routines are of very limited use without a brief description of the symbols appear-
ing in the input and output files. In addition to the obvious parameters F, B, and L1-18

defined as in section 2.2, the quark masses are included as
mhat — m = %(mu + my), mdiff — (m, — my), ms — m;.
The correspondences for the boson fields are
pion — 7w T, kaon — K, kbar — K, eta — 7.

Each occurrence of a boson field is multiplied by a tag, boson, which simplifies expand-

ing the lagrangian and separating the lagrangian into parts by the number of bosons

! Mathematica is a registered trademark of Wolfram Research, Inc.
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appearing. Also, two matrices are given symbolic names in the input files; one refers to

the 2 x 2 identity matrix and tau3 refers to the Pauli matrix 7, = o, which appears in

3

isospin violating terms. Finally, the following notation appears in the output:

o derivatives, d[A,x] — J A,

d[pion,mu] — (8M7ra)7' d[kaon,nu] — 0 K

a’

Tr[AB],

e isovector products, v[A,B] — %

vlpion,pion] — ir m,Tr[r 7] =7 -, vld[pion,mu],taud] — 9, 7°

e isospinor contractions, m[A,B,C] — AaBaﬁCﬁ,

m[kbar,d[kaon,mu]] — K@MK, m[kbar,pion,kaon] — 7 - (KTK)

e commutators, c[A,B] — [A, B,
v[c[pion,d[pion,mul],tau3d] — Wa(auwb)(%eab:g) =20 (m X aﬂw) “Ta,

m[kbar,c[d[pion,mu] ,d[pion,nul] ,kaon] — 2: (8M7r x O m)- (KTK)

The output is written to the file lagrangian.save and breaks the lagrangian into
pieces of manageable size. The different parts of the lagrangian are named LXyZ, where
X is the chiral order as in £, versus £,, Z is the number of boson fields appearing in the
terms, and y is a letter which indicates the number of factors of M, occurring in place

of derivatives. A few select lines of lagrangian.save are given below to illustrate.

L2a2 = d[eta, mul~2/2 + m[d[kbar, mu]l, d[kaon, mul] +
vld[pion, mul, dlpion, mull/2

L2b2 = eta"2*(-(B*mhat)/3 - (2*B*ms)/3) + (-(B*mhat) - B*ms)*m[kbar, kaon] -
B#mhat*v[pion, pion]

The translation of the lines above is

Loy = %aﬂﬁ SO+ QL[?@“K + %@778“77,

Ly, = —Bomm-m— Bo(m,s+m) KK — %Bo(Qms + ) 772.
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Gk kkrkdkkrkkrkrkkrd* lagrangian.math *kkrkdrkrkdrkrkdkrkkktrrs)

(* symbolically expands the SU(3) ChPT lagrangian in terms of the *)
(* embedded SU(2) fields, out to 6 bosons for L2 and 4 bosons for L4 *)
<< "definitions.math"; timetag["Session started:"];

mdiff=0; (* drops all isospin violating terms, remove line to keep them *)
X=Xd=2*B*{{mhat*one+mdiff*tau3/2,0},{0,ms}};

P=boson*Sqrt [2] *{{pion/Sqrt[2]+eta*one/Sqrt [6],kaon},{kbar,-2*xeta/Sqrt[6]}};
U=matrixseries[Exp[(I/F)*#]&,P,{boson,6}]; Um=derivative[U,mu];
Ud=matrixseries[Exp[(-I/F)+*#]&,P,{boson,6}]; Udm=derivative[Ud,mul;
timetag["Defined the basics:"];

(* Calculate L2a *)
UmUdm=product [dot,Um,Udm,{boson,6}]; L2a=trace[UmUdm]*(F/2)"2;
{L2a2,L2a4,L2a6}=Map[reduce[Coefficient [L2a,boson,#]1]1&,{2,4,6}];
L2aN=Expand [reduce[L2a/.boson->1]-(L2a2+L2a4+L2a6)];
Save["lagrangian.save'",L2a2,L2a4,L2a6,L2aN];
{Um,Udm, UmUdm}=Map [truncate[#,{boson,4}]1&,{Um,Udm, UmUdm}] ;
Clear[L2a,L2a2,L2a4,L2a6,L2aN]; timetag["Calculated L2a:"];
(* Calculate L2b *)
XUd=dot[X,Ud]; UXd=dot[U,Xd]; L2b=tracel[XUd+UXd]*(F/2)"2;
{L2b0,L2b2,L2b4,L2b6}=Map[reduce[Coefficient [L2b,boson,#]1]1&,{0,2,4,6}];
L2bN=Expand [reduce [L2b/.boson->1]-(L2b0+L2b2+L2b4+L2b6)];
Save[”lagrangian.save”,L2b0,L2b2,L2b4,L2b6,L2bN];
{XUd,UXd}=Map[truncate[#,{boson,4}]1&,{XUd,UXd}];
Clear[U,Ud,L2b,L2b0,L2b2,L2b4,L2b6,L2bN]; timetag["Calculated L2b:"];
(* Calculate L4a *) TUmUdm=trace [UmUdm] ;
TUmUdn=trace[product [dot,Um, (Udm/.mu->nu) ,{boson,4}1];
L4a=(Li*product [Times, TUmUdm, (TUmUdm/.mu->nu) ,{boson,4}]
+L2*product [Times,TUmUdn, TUmUdn, {boson,4}]
+L3*trace[product [dot,UmUdm, (UmUdm/ . mu->nu) ,{boson,4}1] );
L4a4=reduce[Coefficient [L4a,boson,4]]; L4aN=Expand[reduce[L4a/.boson->1]-L4a4];
Save["lagrangian.save',L4a4,L4al];
Clear[Um,Udm,TUmUdn,L4a,L4a4,L4aN]; timetag['Calculated L4a:"];
(* Calculate L4b *)  TpXU=trace[XUd+UXd];
L4b=(L4*product [Times, TUmUdm, TpXU, {boson,4}]
+L5*trace[product [dot,UmUdm, (XUd+UXd) ,{boson,4}]1] );
{L4b2,L4b4}=Map[reduce[Coefficient [L4b,boson,#]1]1&,{2,4}];
L4bN=Expand[reduce[L4b/.boson->1]-(L4b2+L4b4)];
Save["lagrangian.save'",L4b2,L4b4,L4bN];
Clear [UmUdm, TUmUdm,L4b,L4b2,L4b4,L4bN]; timetag["Calculated L4b:"];
(% Calculate L4c *) TmXU=trace[XUd-UXd];
TpXUXU=trace[product [dot,XUd,XUd,{boson,4}]+product[dot,UXd,UXd,{boson,4}] 1;
L4c=(Lé*product [Times, TpXU,TpXU,{boson,4}]
+L7*product [Times,TmXU, TmXU, {boson,4}]1+L8*TpXUXU ) ;
{L4c0,L4c2,L4c4} = Map[reduce[Coefficient[L4c,boson,#]]1&,{0,2,4}];
L4cN = Expand[reduce[L4c/.boson->1]1-(L4c0+L4c2+L4c4)];
Save["lagrangian.save'",L4c0,L4c2,L4c4,L4cN]; timetag['"Calculated L4c:"];
(kxrkokkkkkrdkkkkkkdds  end of File  kkkkkdkkkkkskokkdkkkkdkkkkrk)
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(kskkkokkokokdkkkkokkkokkakkk definitions. math #kkskkkskkskokkkkkkkokkokskokkksk )
(* defines functions called by "lagrangian.math" *)

(* time-stamp printing function *)
timetagl[msg_]:=(Print[]; timenew=SessionTimel[];
If[untimed, (timeorigin=timeold=timenew; untimed=False); ];
Print[ StringTake[msg<>spaces,20],PaddedForm[(timenew-timeold),{9,3}],
PaddedForm[(timenew-timeorigin),{9,3}],PaddedForm[TimeUsed[],{9,3}] 1;
timeold=timenew );

untimed=True; spaces= ;

(* catagories of symbols which are used in simplifying rules *)
fields={pion,kaon,kbar,eta}; ident={{one,0},{0,1}};
structs={pion,kaon,kbar,one,tau3}; bras={kbar}; kets={kaon};

(* functions called directly from "lagrangian.math" *)
truncate[exp_,xpn_J:=Expand[Normal [Series[exp,{First[xpn],0,Last[xpn]}]]1];
derivativelexp_,var_]:=(D[exp,var,NonConstants->fields]

//. Dot[___,0,___1->0 //. Literal[D]1[f_,v_,___1->d[f,v] );

dot[x_,y_1:=(distribute[{

{Dot[x[[1,11],y[[1,111]1+Dot[x[[1,2]1],y[[2,1]]1],
Dot[x[[1,11]1,y[[1,2]1]1]1+x[[1,2]1]1*y[[2,2]1]},

{Dot[x[[2,11],y[[1,11]1]+x[[2,2]1]*y[[2,1]1],
Dot[x[[2,11],y[[1,2]11]+x[[2,2]1T*y[[2,2]1]1} }1);

product [mult_,x_,y_,xpn_J]:=(Module[{i, j,coeff,result=0},(
coeff=Coefficient [#1,First[xpn],#2]&;

For[i=0,i<=Last[xpn],i++, For[j=0, j<=1i,j++,
result+=mult[coeff[x,j],coeff[y,(i-j)]1]1*First[xpn]l~i; 1;];

Return[Expand[result]] );]1);

matrixseries[func_,matr_,xpn_J]:=(Module[{x,i=0,m={truncate[matr,xpnl}}, (

While[Union[Flatten[Last[m]]]!={0},

(AppendTo[m,product[dot,Last [m],First[m],xpnll; i++); 1;

Return[ReleaseHold[Expand[ truncate[func[x],{x,0,1i}]
+Limit [func[x],x->0]*(Hold[ident]l-1) 1 /. x"n_.:>Hold[m[[n]]] 11);1);

tracelexp_]:=(Expand[ExpandAll[tr[expl[[1,1]1]1]+tr[exp[[2,2]1]1]]

// Atr[x_7?(FreeQ[#,any[structs]]&)]->x,
trlx:(_Plus|_Times)]:>Map[tr,x], tr[x_"n_Integer]->tr[x]"n }

/. trlx_Dot]:>isoscalars[Apply[List,x]]

// . {trlonel->2, trl[tau3|pion|d[pion,_11->0, trix_,y_1->2*v[x,y],
trix_,a__,x_1->vix,x]*tr[al, trla___,x_,x_,b___J1->v[x,x]*tr[a,b],
mla__,x_,x_,b__1->v[x,x]*m[a,b] }

/. {trlx_,y_,z_1->vlclx,yl,2], trizx_,y_,x_,y_,z_1->2*v[x,yl*vlc[x,y],z],
trix_,y_,z_,w_]1->2+v[x,yl*vlz,w] -2%v[x,z] *v[y,w]+2*v[x,wl*v[y,z],
mla_,x_,y_,b_]->v[x,yl*m[a,b]l+m[a,c[x,y],bl/2,
mla_,x_,y_,z_,b_1->v[clx,y],z]*m[a,bl/2

+vx,yl*m[a,z,b]-v[x,z]l*m[a,y,b]l+v[y,z]*m[a,x,b],
mla_,x_,y_,x_,y_,b_1->v[x,yl*m[a,c[x,y],b]
+2xv[x,yl*v[x,y]l*mla,b]l-v[x,x]*v[y,yl*m[a,b] }

/. {v[tau3,tau3dl->1, m[_,clx_,x_1,_1->0,
vliclx_,y_1,2z_1:>0/; ((x===y) | | (x===2) | | (y===2)) }]1);

reducel[exp_]:=(Module[{terms,forms,freeq=FreeQ[#,any[fields]]1&>}, (
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terms=Map[commonform,Flatten[{
Replace[ExpandAll[exp],x_Plus:>Apply[List,x]] }1];

forms=Union[DeleteCases[terms,_7freeq,{1}] //. _7freeq*x_->x];

Return[Collect[Apply[Plus,terms] ,forms]] );]1);

(* functions used internally to simplify and reduce expressions *)
any[list_]:=Apply[Alternatives,list];
indexed[form_]:=(MatchQ[form, ( any[structs]|dlany[structs],__]
[Dot[_7?(FreeQ[#,any[bras]]&),__1|Dot[__,_7(FreeQ[#,any[kets]]&)] )]1);
distributel[exp_]:=(ExpandAll[exp] //. Dot[___,0,___1->0
// . {Dot[w___,x_Plus,y___]:>Distribute[Dot[w,x,y],Plus],
Dot[w___,a_*(x_7indexed),y___]->a*Dot[w,x,y],
Dot[w___,one,y___]->Dot[w,y] });
isoscalars[list_]:=(Module[{olist,break=Map[First,Position[list,any[bras]]]}, (
If [break=={},Return[Apply[tr,list]];];
olist=RotateLeft[list,First[break]-1];
break=Append [break-First [break]+1,Length[olist]+1];
Return[Product[ Apply[m,Take[olist,{break[[i]],break[[i+1]1]-1}]11],
{i,1,Length[break]l-1} 11);1);
commonform[exp_] :=(Module[{vars,swaps,array}, (
array={1,exp} //. List[a_,b_7(FreeQ[#,any[fields]]&)*x_]1->{a*b,x}
/) Ha__,x_*xy_,z___}>{a,x,y,2}, {a__,x_"n_Integer,y___}—>{a,x " (n-1),x,y}};
array=Apply[Union[Flatten[Outer[Times,##]]1]1&,Map[Union, Map[List,array]
/. {{mla_,clx_,y_1,b_1}>{m[a,c[x,y],b],mla,cly,x],bl},
{vlclzx_,y_1,z_1}>{vlclx,y],2],-vlcly,x],z],
vlicly,z],x],-vlclz,y],x],vlclz,x],y],-vlc[x,z],y1>},
{vlz_,y_ 1}>{vix,yl,vly,x1} >
/. {m[a_,c[tau3,x_]1,b_1->-mla,c[x,tau3],bl, v[itau3,x_]->v[x,tau3],
(vlc[tau3,x_1,y_1lvlcly_,tau3],x_1)->vlclx,yl,tau3] }11;
vars=Union[Cases[exp,(d[_,x_]1->x),Infinityl];
swaps=Map[Thread[Rule[vars,#]]&,Permutations[vars],{1}];
Return[First[Union[Flatten[Map[(#/.swaps)&,arrayl1]1]]); 1);
(ko ko o okokok o ook ok ook o okok ok end of file ok ok ok okok ok ok okok ok ok okok ok ok ok ok okok ok ok o )
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Appendix B

~

Recursion Relations for ¢ — F|¢]

We start with the free-field Lagrangian for a (complex) heavy scalar field,

_ it
£¢_¢ 2m

2 a2
iv@+y£i&2@1¢

where v* is the scalar-field velocity and aﬂa“ = (v-9)* — V2. We seek a redefinition of the

scalar field ¢ = f[qg] which eliminates secondary time-like derivatives of the heavy scalar
in favor of higher powers of the space-like derivative V7,

— 4t
L;=0

. vy -
-0 +m Zgj <m> .
7=1
The general field redefinition we consider here is
~ Ooooliv-ajVik~
Flol=3 > 1 (7> (m—) 2

and constraints on the form of ’C(;s give recursion relations for the coefficients f,ﬁ Using

integration by parts, we find the recursion relations are

(f8)2:17 f(}:_if(?v f?:_%f(}v

j—1
—fofT = AR ALY (T2 R,

p=0
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-1 k
[ = IR IO (PR 2 T + AT
p=0 ¢=0
k

+i <fk—|—1f] " 1+2fk-|—1 ‘|‘%Z ]+1—|_fq—|—1fk q>

p

k—1
—fofe = AR RID A (F L 2000 )

%~
,_.

Il
=]

9=0

k
0 r0
gk+1 = %qufk—q?
9=0

and determine the coefficients in the sequence f§, f&, 0, f&, f1, 19, /3, ...
Solving for f[qg] is simplified by recognizing that the coefficients ¢g; must reproduce

the kinetic energy and well-known relativistic corrections; ’C(;s = QBT(Z'U@ — [g’)qg where

A

K = mQ—Vi—m

We postulate that the field redefinition is a function of one of the combinations (iv-0 + V?)
or (1v-d £ R’) only, then verify that only the form (iv-0 + R’) satisfies the recursion rela-
tions. We construct the solution through trial and error, guided by comparing expansions

of the trial function with the recursion relations above, and find

_1
2

-0 + K

2m

Fld) =+ |1+

Inspired by hindsight we present a formal, and much shorter, derivation of this result in

Chapter 4.
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