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Abstract

Applications imposing SU��� chiral symmetry on non	relativistic �eld theories are con	

sidered� The �rst example is a calculation of the self	energy shifts of the spin	�� decuplet

baryons in nuclear matter� from the chiral e�ective Lagrangian coupling octet and de	

cuplet baryon �elds� Special attention is paid to the self	energy of the 
 baryon near

the saturation density of nuclear matter� We �nd contributions to the mass shifts from

contact terms in the e�ective Lagrangian with coe
cients of unknown value� As a second

application� we formulate an e�ective �eld theory with manifest SU��� chiral symmetry

for the interactions of K and � mesons with pions at low energy� SU��� chiral symmetry

is imposed on the e�ective �eld theory by a matching calculation onto three	�avor chiral

perturbation theory� The e�ective Lagrangian for the �K and �� sectors is worked out

to order Q�� the e�ective Lagrangian for the KK sector is worked out to order Q� with

contact interactions to order Q�� As an application of the method� we calculate the KK

s	wave scattering phase shift at leading order and compare with chiral perturbation the	

ory� We conclude with a discussion of the limitations of the approach and propose new

directions for work where the matching calculation may be useful�
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Chapter �

Introduction

I once heard a wise man say �In the history of scienti�c endeavor� no problem has con	

sumed as much of mankind�s resources as the understanding of nuclear forces�� or some	

thing like that� In any case� for all the considerable e�ort poured into solving the mysteries

of the strong interaction� a number of signi�cant problems remain� The fundamental the	

ory of the strong interactions� Quantum Chromodynamics �QCD�� is solidly established

as a pillar of the Standard Model of particle physics and� to the extent that QCD is a

renormalizable gauge theory� is well understood in the perturbative regime� As a theory

with asymptotic freedom ��� ��� QCD is perturbative in the high	energy regime� for low

energies the coupling constant of the theory becomes large and perturbative treatments

break down� Some features of non	perturbative QCD which are still not fully understood

are quark structure of hadrons� dynamical symmetry breaking� and quark con�nement�

The special di
culties accompanying the non	perturbative regime require special meth	

ods for working within the theory� One direct approach is to formulate QCD on a lattice

of space	time points and use numerical techniques to perform the functional integrals�

The lattice QCD method ��� �� has great potential for shedding light on many of the

unanswered questions of QCD and has become an industry unto itself� A complementary

approach is to focus on the long	distance physics� and base the �eld theory description of

the physics on the directly observed degrees of freedom� Approaches of the second type

are generically called e�ective �eld theories and rely on a two	part foundation� I refer to

the �rst important concept as the Weinberg Hypothesis ���� the only content of quantum

�eld theory �apart from the choice of degrees of freedom� is analyticity� unitarity� cluster

decomposition� and the assumed symmetry principles� As a consequence� we can describe
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the strong interactions in terms of hadron degrees of freedom provided we write down

the most general Lagrangian consistent with the symmetries of QCD� The second key

concept is that we must identify some expansion parameter� typically a small momentum

or energy scale� which permits us to calculate to any given order in the expansion with

a �nite amount of work� The predictive power of an e�ective �eld theory arises from the

combination of the two underlying concepts� the symmetry restricts the parameters of the

theory to a meaningful set and the expansion parameter allows a systematic framework

in which we can include all contributions of a given order and estimate the size of the

contributions we have neglected� For a more detailed discussion of e�ective �eld theory

in general� see references ��� �� ���

In the case of QCD� the hope is that by experimental determination of the param	

eters of the e�ective Lagrangian� we can learn about the underlying theory in the non	

perturbative regime� possibly through lattice QCD as an intermediary� An alternative

possibility will also be considered in this work� If the  fundamental� theory at higher	

energy is known and calculable� then at a momentum scale where the theories meet the

parameters of the e�ective theory can be determined by matching onto the fundamental

theory� This is sometimes done because certain calculations are more easily performed

in the e�ective theory� either because of additional approximate symmetry in the low	

energy limit or because a non	relativistic framework may be used� For instance this sort

of matching calculation has been performed and applied with success in non	relativistic

QED �NRQED� ��� and non	relativistic QCD �NRQCD� �����

In this thesis we consider two applications of e�ective �eld theory to exploit the

SU���L � SU���R chiral symmetry of QCD� In Chapter � we cover the theoretical frame	

work upon which the e�ective �eld theories will be built� We discuss the symmetries

of QCD which constrain the e�ective Lagrangian� the principles for constructing an e�ec	

tive Lagrangian for the hadron degrees of freedom� and the power counting schemes that

apply to the sectors of the theory with only light �elds� one heavy �eld �static case�� or

more than one heavy �eld �non	relativistic case�� In Chapter � we present an e�ective �eld
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theory calculation of the self	energy shift of spin	�� decuplet baryons in nuclear matter�

With the exception of an expanded discussion of the 
	baryon self	energy� the material

in this chapter has already been published ����� In Chapter � we present new material on

an e�ective �eld theory for low	energy interactions of pions with kaons or an eta meson

as an alternative to the standard SU��� chiral perturbation theory� The objective is to

achieve better convergence for very low energies by treating the kaon in a non	relativistic

framework� To determine the parameters of the low	energy theory we perform a matching

calculation from the heavy kaon�eta theory onto SU��� chiral perturbation theory in the

spirit of NRQED or NRQCD� Finally� we consider KK scattering in the heavy kaon

formalism and discuss the utility of the matching calculation�
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Chapter �

Theoretical Background

In this chapter chiral perturbation theory ��PT� is introduced as the foundation for

describing interactions involving the light pseudoscalar meson octet� As an e�ective �eld

theory� �PT gets predictive power from the symmetries of the underlying theory �QCD�

and a consistent scheme for counting powers of  small� momenta� Section ��� reviews

the relevant symmetries of the QCD Lagrangian� In sections ��� and ��� we outline the

formulation of SU��� �PT and its extension to include heavy �elds� The momentum power

counting for diagrams with one or two heavy particles is brie�y discussed in section ����

��� Symmetries of QCD

An appropriate starting point is the Lagrangian of QCD�

LQCD � ��
�
G
A
��G

A�� ! qLi �DqL ! qRi �DqR � qRMqqL � qLMqqR ! � � � �����

in which the ellipsis denotes gauge	�xing and ghost terms� renormalization counterterms�

and the � term� As written LQCD is invariant under the Poincar"e group� SU���C gauge

transformations� and charge conjugation �C�� In addition the coe
cient of the � term is

known to be small ����� so we neglect it throughout� in this approximation LQCD is also

invariant under parity �P� and time reversal �T��

In the limit that N of the quark masses vanish� the chiral limit� LQCD acquires addi	

tional symmetries under independent U�N� rotations of the left	 and right	handed quark

�elds�

qL � LqL	 qR � RqR	 �����
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where L and R are unitary matrices restricted to acting in the massless sector� The

U���V subgroup of this symmetry corresponds to the conservation of quark number in

the massless �avors� A second subgroup� U���A� is broken in the quantum theory by

the axial	vector anomaly� The symmetries of LQCD relevant for our purposes are the

remaining SU�N�L � SU�N�R chiral symmetry and the discrete symmetries C� P� and T�

The quark masses appearing in LQCD are non	zero and explicitly break the chiral

symmetry� Even in the limit of massless quarks the vacuum expectation value of the

quark bilinear

h�j qLaqRb j�i � �
 �ab �����

spontaneously breaks the chiral symmetry SU�N�L � SU�N�R down to the vector sub	

group SU�N�V� The scale #� � � GeV� associated with spontaneous chiral symmetry

breaking� determines the relative importance of the quark masses in breaking the chiral

symmetry ����� Quark masses mq which are much less than #�� speci�callymu�d � �� MeV

and �� MeV � ms � ��� MeV ����� can be treated as perturbations about the chiral limit

mq � � by expanding in powers of mq�#�� For the rest of this chapter we identify the

chiral symmetry group as G� � SU���L � SU���R and drop any explicit reference to the

heavy quark �avors�

Invariance under C� P� and G� is imposed on the Lagrangian of the e�ective �eld

theory� invariance under T follows automatically from the CPT theorem�

��� Chiral Perturbation Theory

The spontaneous breaking of chiral symmetry to the SU���V subgroup implies the exis	

tence of eight massless Goldstone scalar �elds� However� because the chiral symmetry

is explicitly broken by the quark masses� these �elds acquire �small� �nite masses and

are commonly referred to as pseudo	Goldstone bosons� The pseudo	Goldstone bosons of

spontaneously broken chiral symmetry are identi�ed as the light pseudoscalar meson octet

of pions ���� ��� and ���� kaons �K�� K�� K�� and K
�
�� and the eta ���� Chiral perturba	
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tion theory is the e�ective �eld theory for describing the interactions of this meson octet

at energies much lower than the chiral symmetry breaking scale� #�� For reviews of this

subject see references ���� ����

The pseudo	Goldstone bosons are represented by a �� � special unitary matrix�

U � ei��F�� with

$ � �a
a �
p

�

�BBB�
���

p
� ! ��

p
� �� K�

�� ����
p

� ! ��
p

� K�

K� K
� ����

p
�

�CCCA �����

and F� � F� � �� MeV� The pion decay constant F� is determined from

h�j J�� j���p�i � i
p

�F�p
�
	 �����

where J
�

� � u�
�
��d is an octet axial	vector current associated with chiral symmetry� Un	

der the symmetries of section ��� the �eld U transforms as

U
G��� RULy	 U

P�� Uy	 U
C�� UT � �����

We introduce the quark mass matrixMq through the �eld � � �B�Mq� where the con	

stant B� is related to the vacuum expectation value in equation ����� and is approximately

B� � �
�F �
� � ���� MeV ����� For the purpose of constructing e�ective Lagrangians � is

assumed to transform in a way that preserves the symmetries of the QCD Lagrangian�

�
G��� R�Ly	 �

P�� �y	 �
C�� �T � �����

In treatingMq we neglect the quark mass di�erencemu �md and replace both mu and md

with the average %m � �
��mu ! md�� Because the corresponding SU��� subgroup of SU���V

is isospin symmetry� this approximation ignores isospin violation in the strong interaction�

Calculations in �PT are organized as expansions in powers of mq and Q� the charac	
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teristic momentum scale of the interaction� The terms in the Lagrangian of �PT �L�PT�

are grouped by the number of powers of mq and Q each contributes to diagrams when it

is present� For a suitable choice of regulator and subtraction scheme� such as dimensional

regularization with modi�ed minimal subtraction �MS�� each derivative contributes one

power of Q� In the expansions of L�PT �in powers of Q and mq respectively�� the �rst

terms are given by

L�PT �
F �
�

�
Tr�
�U


�
Uy� !

F �
�

�
Tr��Uy ! U�y� ! � � � �����

The �rst term yields a canonically normalized kinetic term for the pseudo	Goldstone

bosons �a� The role of the arbitrary coe
cient for the second term is played by the

empirically	determined constant B�� The second term gives the leading contribution to

the pseudoscalar masses�

m�
� � �B� %m ! � � � 	 �����

m�
K � B�� %m ! ms� ! � � � 	

m�
� � �

�B�� %m ! �ms� ! � � � 	

represented collectively as m�
��

The result for the pseudoscalar masses indicates that the dual expansion in mq and Q

is unnecessary� Since equation ����� shows m�
� � B�mq � � and we work in the relativistic

regime where Q� � m�
�� one factor of mq �i�e�� �� counts as a contribution of order Q��

Thus� the dual expansion is replaced with a scheme counting powers of Q only� The

expansion of the Lagrangian is written L�PT � L� ! L� ! � � � where Ld contains all terms

of order Qd and L� is given by equation ������ The conventional parameterization of L�
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i Lr
i �m��� ��� source

� ��� � ��� Ke�� ��� ��

� ���� � ��� Ke�� ��� ��
� ����� ��� Ke�� ��� ��
� ����� ��� Zweig rule �large Nc�
� ��� � ��� ratio FK � F�
� ����� ��� Zweig rule �large Nc�
� ����� ��� Gell	Mann&Okubo� with Lr

�� L
r
�

� ��� � ��� ratio �ms � %m� � �md �mu��
�m�

K� �m�
K��� with Lr

�

Table ���� Phenomenological values of the coe
cients Lr
i ���� renormalized in MS

at � � m�� taken from J� Bijnens et al� ���� �also see reference ���� for discussion��

is

L� � L�Tr�
�U

�
Uy�

�
! L�Tr�
�U
�U

y�Tr�

�
U


�
Uy� ������

! L�Tr�
�U

�
Uy
�U


�
Uy� ! L�Tr�
�U


�
Uy�Tr��Uy ! U�y�

! L�Tr�
�U

�
Uy��Uy ! U�y�� ! L	Tr��Uy ! U�y�

�

! L
Tr��Uy � U�y�
�

! L�Tr��Uy�Uy ! U�yU�y�

as �rst worked out by Gasser and Leutwyler ���� ��� ��� ���� Table ��� presents phe	

nomenological values of the coe
cients Li renormalized in MS� In Appendix A we present

Mathematica routines to symbolically expand L�PT in terms of the meson �elds to the

order necessary for this work�

The power counting rules for Feynman diagrams� determined by Weinberg ���� establish

the relative importance of diagrams in an arbitrary process� A diagram with NL loops�

N� meson propagators� and constructed from Nd vertices derived from Ld will contribute
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at order QD where

D � � ! �NL !
X
d

Nd�d� �� ������

� �NL � �N� !
X
d

dNd�

The leading	order contribution is given by the sum of all tree diagrams constructed ex	

clusively from operators in L�� At next to leading order one must include all one	loop

diagrams constructed exclusively from operators in L� and all tree diagrams with one

vertex from L� and any number of vertices from L�� Diagrams with more loops and more

powers of Q� at the vertices must be included at higher order�

On dimensional grounds� the powers of Q� which suppress higher	order contributions

must be accompanied by a mass scale squared �#�� in the denominator� For powers

of Q� generated by a loop integral� the factor which appears is #� � ���F���� When a

factor of Qd arises from an operator in Ld� the compensating powers of # are implicit

in the dimension of the coe
cient of the operator� We can represent the typical size

of coe
cients appearing in Ld as Cd � �#��d� where � is a dimensionless constant of

 natural� size �discussed below�� Since each successive order in the expansion of L�PT

serves to approximate physics at short distance better than the preceding order� the

scale relating coe
cients in di�erent orders of L�PT is characteristic of the short	distance

physics approximated� Thus� # represents scales like the mass of the � meson �m�� and

the chiral symmetry breaking scale �#��� We treat all of the scales which suppress powers

of Q �e�g�� ��F�� #�� m�� � � � � equally in terms of the power counting and refer to the

common scale as # � #� � ��F��

The convergence of calculations in �PT depends on the assumption of naturalness�

that the coe
cients appearing in L�PT are not much larger than their natural size� An

anomalously large coe
cient� by a factor of order �#��Q��� would indicate that the cor	

responding operator violates the power counting in equation ������ and the systematic

expansion breaks down� A priori� there is no reason to expect such large coe
cients
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and the occurrence of such an anomaly would indicate either the omission of a relevant

degree of freedom or �ne	tuning in the underlying theory� We get an extremely simple

estimate of the natural size of the dimensionless parameter � by recognizing C� � F �
� or

� � �F��#��� � ������� For instance� we expect the coe
cients in L� to be of about the

natural scale� Li � C� � �� Manohar and Georgi ���� give a more rigorous derivation of

the same estimate based on naive dimensional analysis� The phenomenological values

presented in Table ��� are slightly smaller than this estimate�

��� Coupling to Matter Fields

The so	called matter �elds are strongly interacting particles with masses which do not

vanish in the chiral limit� Further� in the applications we consider� the masses of the

matter �elds are large enough that the �elds can be treated in a non	relativistic formalism�

The matter �elds do not form representations of the full chiral symmetry group G��

but instead form irreducible representations under the approximate SU���V symmetry of

the vacuum� In this section we describe a prescription for including the baryon octet

�elds �the N � �� and ' isomultiplets and the #� and decuplet �elds �the 
� ��� and

'� isomultiplets and the (�� in the e�ective Lagrangian� For a review of this subject see

reference �����

Under a G� transformation �L	R�� �elds in the fundamental representation of SU���V

transform as �� H� where H � SU��� is a function of L� R� and the pseudo	Goldstone

bosons U � The pure SU���V transformations correspond to taking H � L � R� The form

of H is determined by specifying the transformation property of u �
p
U � ei���F� as

u
G��� RuHy � HuLy ������

which� when solved for H� gives

H �
p
RULy L

p
Uy �

p
LUyRyR

p
U� ������
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�The �eld u is an alternative representation for the pseudo	Goldstone bosons� correspond	

ing to a di�erent choice for the spontaneously broken generators of G� in the CCWZ pre	

scription ��� ��� ����� Because the matrix H is a function of the pseudo	Goldstone boson

�eld U�x�� H also implicitly depends on the space	time coordinate x
�
� To compensate

for the x
�
	dependence of H� we introduce a vector �eld

V� � �
��uy
�u ! u
�u

y� ������

which transforms under G� as V� � HV�H
y � �
�H�Hy and construct the covariant deriva	

tive D�� � 
�� ! V�� such that D�� � H�D����

Armed with the SU���V formalism for the fundamental representation� incorporating

the spin	�
�

octet and spin	�
�

decuplet �elds is relatively straight forward� The octet baryons

are encoded as a � � � matrix of Dirac �elds

B �

�BBB�
���

p
� ! #�

p
� �� p

�� ����
p

� ! #�
p

� n

'� '� ��#�
p

�

�CCCA ������

and transform in the adjoint representation of SU���V� i�e��

B
G��� HBHy	 ������

D�B � 
�B ! �V�	 B�� ������

The spin	�
� decuplet baryons form a fully	symmetric rank	� tensor under SU���V charac	

terized by

T
abc G��� H

aa�
H

bb�
H

cc�
T
a�b�c�

	 ������

�D�T �abc � 
�T
abc ! V

aa�

� T
a�bc ! V

bb�

� T
ab�c ! V

cc�

� T
abc�

� ������

The components of T are Rarita	Schwinger �elds subject to the auxiliary constraint
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��T
� � � and are identi�ed as follows�

T
��� � 
��	 T

��� � ����
p

�	 T
��� � '���

p
�	

T
���

� 
��
p

�	 T
���

� ����
p

�	 T
���

� '���
p

�	

T
���

� 
��
p

�	 T
���

� ����
p

�	

T
��� � 
�	 T

��� � (��

������

The minimal	coupling Lagrangian for the B and T �elds is

L� � B�i �D �mB�B � T��i �D �mT �T
�

������

with implied pair	wise summation of the dangling chiral indices�

The e�ective Lagrangian for matter �elds will also explicitly include U and � which

transform under G� as O � ROLy� For convenience� we de�ne �elds eO � uyOuy such

that eO � H eOHy under G� transformations and coupling B and T to the new �elds eO
becomes transparent� The result for U is trivial� eU � uyUuy � �� for 
�U we get the more

interesting result

A� � i
�u

y
�Uu
y � �i

� u
�U
yu ������

� i
��uy
�u� u
�u

y�	

where the factor of i
� is included so A� is hermitian� To replace � �and �y� we choose the

�anti	�hermitian combinations

�� � uy�uy � u�yu� ������

As an example the order	Q� Lagrangian of �PT� equation ������ can be rewritten in terms

of A� and �� as L� � F �
�Tr�A�A

�
� ! �

�F
�
�Tr�����

We brie�y mention two relations which help to identify a minimal set of terms which
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are needed at higher order� see Fearing and Scherer ���� for a more complete account��

The �rst is the chain rule in the form

uy
�Ou
y � D�

eO � ifA�	
eOg ������

which allows the replacement of multiple derivatives of U with factors of A� and co	

variant derivatives of A�� e�g�� uy
�
�Uu
y � ��iD�A� � �fA�	 A�g� Two consequences of

equation ������ are �� D�A� is symmetric in ��	 �� and �� despite the dependence of ��

on u�x�� covariant derivatives of �� are unnecessary since D��� � ifA�	 ��g� The second

simplifying relation gives the �eld strength associated with V� in terms of the �eld A�

G
�V 

�� � 
�V� � 
�V� ! �V�	 V� � � �A�	 A��� ������

Because antisymmetric covariant derivatives result in factors of the �eld strength� like

�D�D� �D�D��� � G
�V 

�� � in the fundamental representation� we can treat all multiple

covariant derivatives of any �eld as implicitly symmetric without loss of generality� To

summarize� the G�	invariant e�ective Lagrangian for the baryon �elds B and T is written

in terms of the building blocks B� T � A�� ��� and fully	symmetric covariant derivatives

of them� The �eld strength G
�V 

�� and covariant derivatives of �� may be omitted in favor

of terms involving more factors of A��

��� Non�Relativistic Power Counting

The appearance of baryon masses in equation ������ wrecks the power counting of �PT�

Derivatives of heavy �elds would contribute factors of  hard� momenta� where p� 	 mB�

and loop diagrams could result in explicit factors of mB or mT in the numerator� These

diagrams are not suppressed relative to  lower order� diagrams since mB � mT � #��

We use a non	relativistic approach adapted from the heavy baryon chiral perturbation

�When using the external �eld method to impliment local chiral symmetry� these relations are modi�ed
by additional terms involving external �i�e�� non�propagating� gauge �elds�
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theory �HB�PT� developed by Jenkins and Manohar ���� ��� ��� ��� to address this

problem� We start with the velocity	dependent baryon �elds of HB�PT then specialize

to working in the rest frame of the baryons�

The momentum of a heavy baryon �eld is decomposed as p
�

� mBv
�

! k
�

in HB�PT�

where the residual momentum k
�

is assumed small and re�ects how much the baryon is

o� mass	shell� The velocity	dependent baryon �elds are de�ned using v
� as

Bv�x� �
� ! �v

�
eimBv�xB�x�	 ������

Tv�x� �
� ! �v

�
eimBv�x T �x�	

where the octet mass mB is used in the de�nition of the decuplet Tv to avoid x�	dependent

phases in the Lagrangian couplingBv to Tv� The factor of �
�
�� ! �v� projects out the particle

components of the Dirac spinors� The anti	particle components are implicitly integrated

out of the theory and the e�ects of virtual baryon loops are absorbed into terms of the

e�ective Lagrangian suppressed by powers of ��mB�

This representation of the heavy baryon �elds permits a sensible power counting

scheme� Derivatives of the velocity	dependent �elds give factors of the small residual

momenta k� in place of the hard momenta p�� The minimal	coupling Lagrangian corre	

sponding to equation ������ becomes

Lv � Bv�iv �D�Bv � Tv��iv �D�Tv
� ! 
mTv�Tv

� ! � � � 	 ������

where 
m � mT �mB � ��� MeV is considered of order Q and the ellipsis denotes

higher	order terms� such as �BvD
�Bv��mB� induced by the integration over anti	particle

degrees of freedom� By removing mB and mT from the baryon propagators� loop diagrams

will not introduce positive powers of the masses in diagrams �except in a case considered

toward the end of the section��

The Dirac structure of the �elds can be eliminated in favor of two	component spinors
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because we have integrated out the anti	particle components� We choose to explicitly work

in the frame v� � ��	 �	 �	 �� and drop the subscript v on heavy �elds� This choice of frame

simpli�es the spinor	related notation� for instance� the auxiliary condition on Rarita	

Schwinger �elds� ��T
�

� �� implies constraints which reduce to T
�

� � and �� � �T � �� In

this frame the resulting non	relativistic framework is equivalent to a Lagrangian formu	

lation of the time	ordered approach discussed by Weinberg ���� ����

The power counting for diagrams with a single heavy �eld generalizes equation �������

Since mB � mT � #� we do not need to distinguish between corrections suppressed

by Q�mB and Q�#�� As before� each meson propagator counts as Q�� and each loop

integration gives a factor of Q�� Heavy �eld propagators each contribute Q�� as seen

from equation ������� We let Ni represent the number of vertices in a diagram which con	

tribute di factors of Q and contain ni heavy �elds� A diagram in the single heavy	particle

sector with NL loops� N� meson propagators� and NI baryon propagators contributes at

order QD where ����

D � �NL � �N� �NI !
X
i

diNi ������

� � ! �NL !
X
i

Ni�di ! �
�ni � ���

The primary di�erence from equation ������ is that each order is suppressed by Q�#�

rather than �Q�#��� relative to the preceeding order�

For diagrams with two or more heavy particles� the power counting is complicated

by infrared divergences in some loop integrals ����� Consider a heavy	particle bubble

diagram� for octet �elds the loop integral takes the form

�
���
��

�
�

��
Z

ddq

����d
i

E ! q� ! i�

i

E � q� ! i�
�

i

�E

Z
dd��q

����d��
	 ������

where the incoming particles have energies E and momenta ��p� The divergence arises

as E � � because the q� contour is pinched between the poles of the static propagators� By
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resumming the kinetic energy operator� e�g��Byr�B��mB� into the heavy �eld propagator�

the infrared divergences are removed� In dimensional regularization the result for the

modi�ed loop integral becomes

Z
ddq

����d
i

E ! q� � j�q j���mB ! i�

i

E � q� � j��q j���mB ! i�
������

�

Z
dd��q

����d��
i

�E � q��mB ! �i�

�
�imB

��

���mBE � i��

��

�d��
�

)���d
�

� �
mB

p
�mBE

��

which is well	de�ned in the infrared� Setting E � p���mB ! � � �� the leading behavior of

the loop integral is �mBQ� not �Q� as expected from equation �������

By including the kinetic energy in the heavy �eld propagator we are treating the

operator r���mB on an equal footing with 
�� For consistency� powers of the integra	

tion variable q� should be counted as q� � Q��mB in loops leading to nearly	infrared	

divergent behavior� Heavy �eld propagators count as mB�Q
�� loop integrals now give

dq� d
�q � Q��mB� and meson propagators contribute ��Q� as before� Thus the loop in	

tegral above counts as ��Q��mB��mB�Q
��� � mBQ which reconciles the power counting

scheme with the result of equation ������� A general Feynman diagram with heavy par	

ticles in the initial and �nal states may contribute at order QD where

D � �NL � �N� � �NI !
X
i

diNi ������

with the same notation as used in equation ������� If the loop integrals in a diagram are not

infrared divergent� as with crossed pion exchange� the actual contribution will be of higher

order consistent with equation ������� The systematics of the power counting for diagrams

with two or more heavy particles is developed in references ���� ��� ��� ��� ��� ��� ����

The presence of a bound state or resonance near threshold can also complicate the power

counting ���� ��� ���� This complication arises in nucleon	nucleon scattering and the
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power counting was studied in that context by several authors� in particular Kaplan�

Savage� and Wise ���� ���� In this work we do not consider systems requiring this special

treatment and refer the reader to the literature for a discussion of the relevant power

counting schemes ���� ��� ����
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Chapter �

Decuplet Self�Energy in Nuclear Matter

Strong interaction e�ects shift the self	energy of hadrons in nuclear matter from the free	

space values� This e�ect for the spin	�
�

octet baryons was studied in an e�ective �eld

theory framework by Savage and Wise ����� Using the formalism reviewed in Chapter ��

we calculate the self	energy shifts of the spin	�
�

decuplet baryons in nuclear matter at

leading order� The self	energy shifts of the decuplet baryons� particularly of the 
 iso	

multiplet� are relevant in studies of meson	nucleus scattering ���� ��� and of stellar and

neutron star matter ���� ���� For the 
 isomultiplet the self	energy shifts have also been

examined in various phenomenological models ���� ��� ��� and in QCD sum rules �����

The work described here di�ers from the earlier approaches by extending the calculation

to multiplets of chiral SU���V and by including contact diagrams necessary for a consis	

tent and systematic momentum expansion� This chapter makes a minor correction to a

prior publication ���� and includes a more detailed discussion of the self	energy of the


 isomultiplet in nuclear matter near saturation density�

The �rst section discusses how e�ects of nuclear matter are described in the e�ective

�eld theory� In section ��� we determine what Feynman diagrams contribute to the self	

energy shifts at leading order and construct the relevant e�ective Lagrangian� Section ���

presents the main results of the calculation� Finally� a discussion and interpretation of

the results is contained in section ����

��� E	ects of Nuclear Matter

In nuclear matter the propagation of decuplet baryons is e�ected by interactions with

the background medium� In particular the self	energy E � i�e�� the location of the k� pole
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in the decuplet two	point function� is shifted relative to free space� As an additional

consideration� the background medium breaks Lorentz boost invariance by specifying a

unique frame� the zero	momentum frame of the nuclear matter� The self	energy in free

space of a decuplet baryon with momentum k � j�k j is

Evac�k�� �
q
m�

T ! k� � imT)vac �mB �����

�

�

m!

k�

�mT
! � � �

�
� i

�
)vac

�
� � k�

�m�
T

! � � �
�

!O�)�
vac�	

where )vac is the free	space decay rate and 
m � mT �mB� Throughout this chapter�

the octet mass mB has been implicitly subtracted whenever we refer to the decuplet

self	energy� as discussed in section ���� Equation ����� contains only two decuplet param	

eters� the full k�	dependence of the self	energy is determined by Lorentz invariance� The

corresponding expression for a decuplet baryon in nuclear matter can be written

Enm�k�� � �
m� ! �k� ! � � ��� i
�)��� ! �k� ! � � �� �����

in which the k�	dependence �e�g�� �� �� � � � � cannot be determined from symmetry argu	

ments alone�

Although invariance under Lorentz boosts is lost� the remaining rotational symmetry

constrains the spin	dependence of the self	energy Enm� Because the nuclear medium is

rotationally invariant� the only preferred spacial directions are along the decuplet baryon

three	momentum �k and spin �S� As a function of �k and �S� the self	energy depends on

only the combinations k� and �k � �S� �S� � ��
� is trivial�� Further� parity invariance of

the strong interaction dictates that the self	energy depends on even powers of �k� which

means replacing �k � �S with ��k � �S �� � k�h� in terms of the baryon helicity h� Consequently�

the self	energy in nuclear matter is diagonal in the baryon helicity states and takes the

values E �����
nm �k�� for h � ��

� and E �����
nm �k�� for h � ��

� � In the limit of vanishing momentum�

the rotational symmetry is elevated to full SU��� invariance� and the self	energy must

be independent of the decuplet spin projection along any direction� In terms of the
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parameters in equation ������ 
m� and )� are helicity	independent� while the coe
cients

of powers of k� �e�g�� �� �� � � � � depend on jhj�
The lowest order in a density expansion for nuclear matter is a Fermi gas of non	

interacting protons and neutrons with Fermi momenta p�p�F and p�n�F respectively� In this

framework� the characteristic momenta relevant in the chiral derivative expansion are p�p�F �

p�n�F � and k the decuplet baryon momentum� Since the density of a degenerate Fermi gas

is given by dF � p�F ���
�� the density expansion for nuclear matter is consistent with the

chiral derivative expansion� The static nucleon propagator in nuclear matter with Fermi

momentum pF is ����

eSnm�q�	 �q � �
i*�j�q j � pF �

q� ! i�
!
i*�pF � j�q j�

q� � i�
�����

at lowest order in the nuclear density� The modi�ed nucleon propagator re�ects the

presence of the background medium through two e�ects� nucleon states inaccessible due

to Pauli	blocking and nucleon	hole intermediate states allowed for j�q j 
 pF �

As the location of the k� pole in the exact decuplet two	point function� the self	energy

in nuclear matter is given by the solution of

Enm�k���
m� �nm�Enm�k��	 �k � � �	 �����

where �nm is the proper self	energy for nuclear matter� i�e�� �i�nm is the sum of connected

one	particle	irreducible diagrams in the two	point function� What we calculate is the

self	energy shift� �E � Enm � Evac� obtained from equation ����� by expanding the proper

self	energy for nuclear matter about the free	space pole Evac�

�E �k�� � �nm�Evac�k��	 �k �� �vac�Evac�k��	 �k � �����

!
n
Enm�k��� Evac�k��

o 



k�
�nm�k�	

�k �

����
k��Evac�k

�


! � � �

and in turn expanding Evac�k�� in powers of Q as shown in equation ������ Note that
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�a�

s s
�b�

��
��
u

Figure ���� Feynman diagrams for the self	energy shifts at leading order of decuplet
baryons in nuclear matter� �a� meson	nucleon loop diagrams and �b� contact diagrams�
Double lines represent decuplet baryons� single lines represent nucleons� and dashed lines
represent pseudo	Goldstone bosons�

only Feynman diagrams with an internal nucleon propagator contribute to the di�erence

on the �rst line� Because the chiral expansion of the proper self	energy �nm starts at

order Q�� successive terms in equation ����� only contribute at higher order� �A very

important exception to the last point is discussed in detail in subsection ������� The real

part of the self	energy shift �E�h��k�� modi�es the decuplet baryon energy	momentum

dispersion relation from the free	space form� The change in the decuplet decay rate is

given by �)�h��k�� � �� Im��E �h��k��� at leading order�

��� The E	ective Lagrangian

At leading order in the chiral expansion the self	energy shifts �E coincide with the

di�erence �nm�Evac	 �k ���vac�Evac	 �k �� For diagrams contributing to the proper self	

energies �nm and �vac� the power counting is given by equation ������ for the single

heavy	particle sector� Because a nucleon propagator is required for a non	zero di�er	

ence� the leading contribution arises from one	loop diagrams in which the vertices satisfy

d ! �
�n� � � � and contributes at order Q�� Topologically� the one	loop diagrams are con	

structed from either two three	leg vertices or a single four	leg vertex� the two possibilities

with a nucleon propagator are shown in Figure ����

The vertices of meson	nucleon loop diagrams are derived from operators coupling the

�elds TByA� in the order	Q Lagrangian� The most general Lagrangian of that form�
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invariant under G� and parity� is ���� ���

La � �C�abc
�
�A
ad � �Bybe �T

cde
� ! �A

da � ��T ycdeB
eb

�
�
	 �����

where square brackets denote summation on spinor indices� The value of the coe
cient�

jCj � ����� is empirically determined from T � B� decays ����� The meson	nucleon loop

diagrams contribute to the self	energy shifts of the 
 and �� isomultiplets only� the

Lagrangian La does not couple '� or (� baryons to a nucleon and single pseudo	Goldstone

boson� a consequence of strangeness conservation�

For contact diagrams the vertex contributes d � � powers of Q� so the relevant La	

grangian contains only simple products of �eld operators TB�TB�y� To construct the

four	baryon operators we start with the spin and chiral structures of the product TB�

The operator product decomposes under rotational SU��� as �

�
� �

�
� �� � and under

chiral SU���V as �
� � � ��� �	� �
� �� By coupling products TB and �TB�y to

form chiral and rotational singlets� we �nd eight linearly	independent four	baryon oper	

ators which contribute to the self	energy shifts at leading order� We choose to write the

e�ective Lagrangian which contains these operators as�

Lb � � d�
�F �

�

�T yj abc T
j abc��ByedB

de�� d�
�F �

�

�T yj abc�
k
T
j abc��Byed�

k
B
de� �����

� d�
�F �

�

�T yj abc T
j abd

��ByedB
ce

�� d	
�F �

�

�T yj abc�
k
T
j abd

��Byed�
k
B
ce

�

� d�
�F �

�

�T yj abc T
j abd

��ByceB
ed

�� d

�F �

�

�T yj abc�
k
T
j abd

��Byce�
k
B
ed

�

� d�
�F �

�

�T yj abc T
j ade��BybdB

ce�� d�
�F �

�

�T yj abc�
k
T
j ade��Bybd�

k
B
ce�	

where �j�k� are vector indices� �a&e� are chiral indices� and square brackets indicate sums

over spinor indices� Factors of F��
� are included in Lb to make the coe
cients di dimen	

sionless�

�In our prior publication we used a di�erent convention for the pion decay constant� speci�cally
f �

p
	F� � 
�	 MeV�
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The values of the eight coe
cients di have not yet been experimentally determined�

However� because the baryon helicity is conserved in the self	energy diagrams� the terms

in Lb of the form �T yj�
k
T
j��By�

k
B� do not generate self	energy shifts and the results

are independent of d�&d�� Values for the remaining four coe
cients d�&d� are important

for quantitative predictions� Unfortunately� knowledge of the values will likely have to

wait until low	energy octet	decuplet scattering data become available� In section ��� we

discuss constraints on the coe
cients di from the further assumption of SU��� spin	�avor

symmetry�

Two characteristics of the contact diagrams allow some predictions which are inde	

pendent of the coe
cients di� In a contact diagram there is no  intermediate state� which

corresponds to an allowed decay of the decuplet baryon so the di do not appear in the

imaginary part of the self	energy shift� Also the contact diagrams are independent of the

momentum on the external line so the di	dependence is restricted to the k�	independent

parts of the self	energy shifts� In terms of the parameters in equation ������ at leading

order only the helicity	independent quantity 
m� depends on the coe
cients di� Quan	

tities independent of the coe
cients di� for which we present quantitative results� are the

helicity	splitting of the self	energy shifts 
�h�E � �E����� � �E����� and the decuplet decay

rates in nuclear matter )�h�
nm � )vac ! �)�h��

��� Self�Energy Shift Results

From the e�ective Lagrangians� equations ����� ����� we calculate the self	energy shifts �E�h�

and �)�h� of the spin	�� decuplet baryons in nuclear matter to leading order ��Q�� in the

chiral momentum expansion� For convenience we introduce the two  threshold� mass scales

� �
q

�m� �mN�� �m�
� � ��� MeV	 �����

�� �
q
m�

K � �m�� �mN�� � ��� MeV	
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and present the results in terms of the functions

g �
�
�k	 p	m� �

�

��m�k�
�m��p�!k��

n
�m��p�!k��� ! �m�k�

o
	 �����

G �
�
�k	 p	m� �

��

��m�k�

n
��m��p�!k��� � �k��p�!�k���m��

o
!
m

p
g �
�
�k	 p	m� ln

����m� � �p � k��

m� � �p ! k��

���� 	
g �
�
�k	 p	m� �

��

��m�k�
�m��p�!k��

n
�m��p�!k��� � ��m�k�

o
	 ������

G �
�
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The helicity splitting of the 
� and ��� self	energies are graphed as functions of p�n�F and k

in Figure ����

At leading order the imaginary part of the self	energies� or resonance widths� are

shifted in nuclear matter for the 
 isomultiplet only� We �nd the 
� resonance widths

are

)�h�

nm���
�
n
�
�



� ! gh�k	 p

�n�

F 	 ��
�

*


k!p�n�F ���*



����p�n�F �k��
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������
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��p�n�F �k�! *



k�p�n�F ���o)vac���

where )vac��� � ��C�����F �
� is the 
� resonance width in free space at leading order�

Figure ��� presents the resonance widths as functions of p�n�F and k�

Results for the other baryons in the decuplet can be determined from the expressions

for the negatively	charged members� For the member of each isomultiplet with the most

positive charge �
��� ���� and '��� the self	energy shifts are obtained by exchanging p�p�F

and p�n�F in equations �����&����� ������ The self	energy shifts of the remaining decuplet

baryons are given by the following relations�

�E�� � �
�

���E��� ! �E��� 	 ������

�E�� � �
� ��E��� ! ��E��� 	 ������

�E��� � �
� ��E��� ! �E���� � ������

Clearly� in neutron	proton symmetric nuclear matter the baryons within isomultiplets

remain degenerate up to the splitting between helicity states�



��

100

200

300

400

100

200

300

400

20

40

60

�a�

�

�h
�
E
�
�

�M
eV
�
�

p �n�
F MeV ��

k MeV
��

100

200

300

400

100

200

300

400

4

8

12

�b�

�

�h
�
E
�
�
�

�M
eV
�
�

p �n�
F MeV ��

k MeV
��

Figure ���� Leading	order helicity splitting of the decuplet baryon self	energy in nuclear
matter 
�h�E � �E����� � �E����� as a function of neutron Fermi momentump�n�F and baryon
momentum k� �a� for the 
� baryon and �b� for the ��� baryon�

100

200

300

400

100
200

300
400

40

80

120

�a�

)
��
�
�
�

n
m
��
�

M
eV
�
�

p �n�F
M

eV ��

k MeV
��

100

200

300

400

100
200

300
400

40

80

120

�b�

)
��
�
�
�

n
m
��
�

M
eV
�
�

p �n�F
M

eV ��

k MeV
��

Figure ���� Leading	order 
� resonance widths in nuclear matter as functions of neu	
tron Fermi momentum p�n�F and baryon momentum k� �a� for helicities ��

� and �b� for
helicities ��

��



��

�a�

�
s s

�

� s s �

�b�

�
s s

�

� s s �

Figure ���� �a� Infrared divergent baryon	meson box diagram and �b� overlapping meson	
loop diagram obtained from the box diagram by contracting nucleon lines � and �� The
two	loop diagram in �b� avoids the infrared divergence of �a��

��� Discussion and Conclusion

����� Corrections at Higher�Order

Contrary to the discussion in our prior work� the leading corrections to our results are

not from infrared divergent two	loop diagrams� We previously thought diagrams with

overlapping meson loops would be a+icted with the infrared divergence that appears in

baryon	meson box diagrams� see Figure ���� That the two	loop diagrams avoid the di	

vergence is most easily seen in terms of time	ordered perturbation theory as discussed by

Weinberg ���� ���� where �eld propagators and integrals over four	momenta are replaced

by intermediate	state energies in the denominator and integrals over three	momenta�

In the time	ordered approach� infrared divergences arise from intermediate states with

 small� energies of order Q��mB� however� in loop diagrams contributing to the proper

self	energy ��k�	
�k � all intermediate states contain mesons with energies on the char	

acteristic scale Q� Consequently the two	loop diagram in Figure ����b� is governed by

equation ������ and is suppressed relative to the leading	order result by �Q�#��� and not

by mBQ�#�
� � Q�#��

The leading	order results ��Q�� presented in section ��� are determined from the

di�erence �nm�
m	�k �� �vac�
m	�k �� A priori� we would expect corrections at order Q�

from three sources� �� the chiral expansion of the proper self	energies �nm and �vac

based on the power counting of equation ������� �� the expansion of �nm about Evac in

equation ������ and �� the Q	expansion of Evac as Evac � 
m! k���mT !O�Q��� In the

following two paragraphs we argue that the corrections from the �rst two expansions do
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not occur until order Q�� The only corrections of order Q� arise from the third expansion

and are included by making the replacements

� �� � !

�

m

�

�
k�

�mT
������

�� �� �� �
�


m

��

�
k�

�mT

in the leading	order results for the 
 and �� isomultiplets� The results for the '� isomul	

tiplet and the (� baryon do not receive corrections at order Q��

The chiral expansion of the proper self	energies �nm and �vac would contribute at

order Q� through one	loop diagrams obtained from Figure ��� by replacing a single vertex

with one which satis�es d ! �
�
n � �� The only relevant operators� invariant under rota	

tions� P� and G�� are constructed from products of the form �i
��TB
yA� for the meson	

nucleon loop diagrams or �i
��TB�TB�y for the contact diagrams� Partial integration and

baryon �eld rede�nitions can be used together to eliminate both classes of operators in

favor of terms higher	order in the expansion of the e�ective Lagrangian� �Such �eld re	

de�nitions are reviewed in Chapter ��� Consequently� there are no corrections at order Q�

from the chiral expansion� Order	Q� corrections arise from one	loop diagrams with a

single vertex which satis�es d ! �
�
n � � and two	loop diagrams� such as in Figure ����b��

The primary corrections from the expansion of �nm about Evac are suppressed by

powers of Q contributed by 
�nm�
k� in equation ������ Because the Q	expansion of �nm

begins at order Q�� e�g�� through an insertion of the kinetic energy operator� we would

expect the corrections to be suppressed by Q� or to contribute at order Q�� However� all

k�	dependence of �nm can be moved into loop diagrams which are order Q� or higher by

suitable rede�nitions of the decuplet baryon �eld� Thus� 
�nm�
k� � Q� and the primary

correction contributed by the expansion of �nm about Evac is order Q��

Throughout this calculation we have made the assumption that the power counting in

equation ������ applies� However� large scattering lengths for nucleon	nucleon or nucleon	
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delta interactions will require a revised power counting scheme�� as seen in references ����

���� Using the revised power counting for the problem considered here is presently not

tractable� How these e�ects may be taken into account remains to be seen� the work

presented here is the best that can be done at the present time and uses the power counting

of equation ������� We hope that the discussion of some technical details� particularly

those presented in the next subsection� will be useful in further studies of the decuplet

self	energy�

����� � Self�Energy Near Saturation Density

One important feature of the self	energy shifts of the 
 isomultiplet� not apparent in

Figure ����a�� is a logarithmic divergence when �k � � at a  threshold� Fermi momentum p�F

�coincident with the discontinuity of the widths�� The divergence arises due to degeneracy

of the 
 baryon with a pion and a nucleon on the surface of the Fermi sea� for static

baryons p�F � �� which is just the solution of m� � mN !
p
m�

� ! p�F � To the extent

that the divergence complicates the analysis of the self	energy shifts� it is unfortunate

that p�F � ��� MeV is so close to the Fermi momentum associated with nuclear matter

at saturation density� p
�sat

F � ��� MeV ����� In contrast� the �� isomultiplet self	energy

shifts do not have a similar divergence because the �� � NK decay is kinematically

forbidden for any p�n�F and p�p�F �

In the 
� self	energy shift� equation ������� the divergence manifests itself as a can	

cellation among quantities of order Q in the argument of the logarithm� i�e�� when

�p
E � �m�

� � pF

����
E��m

� �� pF � �� ������

The divergence is resolved by keeping higher	order terms in the argument of the logarithm�

speci�cally the imaginary part in the expansion of E about 
m� When the imaginary

part is kept� the logarithmic divergence is replaced by a logarithmic enhancement of

�We thank M� Wise for bringing this point to our attention�
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the self	energy shift and the result is order Q� lnQ�� For Fermi momenta su
ciently

below p�F � the cancellation is not signi�cant and we expect equation ������ to provide

a good description of the 
� self	energy shift� The e�ect of the cancellation becomes

important when �� pF � Q�� or approximately for pF � �����p�F � ��� MeV�

The logarithmically divergent term can be traced to the proper self	energy in nuclear

matter �nm�E 	 ��� At the threshold Fermi momentum p�F � �nm is singular when E � 
m

and the expansion in equation ����� fails� To calculate the self	energy Enm in the vicinity

of p�F � we evaluate �nm at Enm and expand �vac�Evac	 �� about Enm ��vac is smooth in this

region��

Enm � Evac ! �nm�Enm	 ��� �vac�Enm	 �� ������

! �Enm � Evac�




k�
�vac�k�	 ��

����
k��Enm

! � � �

As in equation ������ all the terms of order Q� appear on the �rst line and the second line

may be neglected at leading order�

In equation ������ we pay a price to determine the self	energy Enm near the threshold

Fermi momentum� Enm is the solution of a transcendental equation and must be found

numerically� Figure ��� presents a numerical calculation of the self	energy shift �E�� com	

pared with the divergent behavior of equation ������� Both curves are plotted as functions

of p�n�F with �k � � and we assume the coe
cients of the contact terms are d� � d� � �� Be	

cause the contributions of the contact diagrams are e�ectively omitted� the results plotted

in the �gure are not model	independent in the sense of e�ective �eld theory� Until the

values of the coe
cients d� and d� are determined� there is little motivation for further

numerical study of equation �������

Having resolved the logarithmic divergence in the real part of the 
� self	energy shift�

next we consider the behavior of the resonance width )nm��� near p�F � The basic features

of the plots in Figure ��� are easily understood in terms of the nucleon momentum in


 � N� decay� When the momentum of the 
� baryon is �k� then up to recoil correc	
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Figure ���� Self	energy of the 
� baryon at rest in nuclear matter� omitting contact
diagrams �d� � d� � ��� The solid curve is the numerical solution of equation ������� the
dashed curve is a plot of equation �������

tions the nucleon and pion momenta in the �nal state are respectively �k ! �� and ����

where j�� j equals the mass parameter �� Naively� when j�k j! � 
 pF all the nucleon �nal

states are occupied by nucleons in the Fermi sea� the 
� baryon becomes stable against


 � N� decay and the width in nuclear matter vanishes� When pF 
 jjj�k j � �jj all the

nucleon states are available for decay and the width in nuclear matter is the same as the

free	space width )vac� For values of pF between those two cases� the Fermi sea partially

obscures the shell of nucleon momenta and � � )nm��� � )vac� When �k � � the width

transitions abruptly from )vac �for pF � �� to zero �for pF � �� creating the discontinu	

ities in Figure ����

The pitfall in the simple analysis of the previous paragraph is determining the momen	

tum transfered to the intermediate	state nucleon �� in terms of the free	space energy of

the 
 baryon� More rigorous consideration of equation ����� shows that the 
 resonance

width is non	zero for any pF � although it may decrease sharply near p�F � Setting �k � ��

Enm is the solution of


m � E ��nm�E � ������

�
C��m�

� � E ��
�
�

����F �
�

	
arccos
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! f�E 	 pF �	
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which is analytically continued to E � m� by assigning m�
� an in�nitesimal imaginary part�

m�
� � m�

� � i�� The last term� f�E 	 pF �� is an analytic function of E below the threshold

for N�� production from a virtual 
 baryon and does not in�uence our reasoning� The

only real	valued solutions of equation ������ satisfy either E � m� or pF �
p
E � �m�

� �

however� as pF is decreased with 
m �xed� none of these solutions �ow continuously to

the physical� complex	valued solution for small pF � Starting with Evac at pF � �� as pF

is increased the physical solution bypasses the region of real	valued solutions by passing

onto a di�erent sheet of the Riemann surface�

The main result of this subsection is the logarithmic divergence of �Enm��� and the

discontinuity of )nm���� seen in section ���� can be removed by changing how the evalu	

ation of �nm is handled� Quantitative predictions for Enm near p�F � by numeric solution

of equation ������ or ������� require values for the coe
cients d� and d�� Independent

of d� and d�� however� we conclude that the resonance width of the 
 isomultiplet is

non	zero for any pF � the decay channel 
 � N� is never fully blocked by the presence of

the nuclear medium�

����� Conclusion

To complete the description of the self	energy shifts of the spin	�
� decuplet baryons in

nuclear matter� the coe
cients di of the contact terms must still be determined� In the

absence of low	energy octet	decuplet scattering data� one way to estimate the values of

the coe
cients may be through appealing to a larger symmetry group� in this case the

approximate SU��� spin	�avor symmetry� Because the spin	�� octet and spin	�� decu	

plet baryons form a single ��	dimensional representation of spin	�avor SU���� the SU���	

invariant Lagrangian determines the octet	decuplet coe
cients d�&d�� the Savage	Wise

coe
cients c�&c	 for octet	octet interactions ����� and �� coe
cients for decuplet	decuplet

interactions� The SU���	invariant Lagrangian contains only two four	baryon contact terms

of dimension six� with coe
cients a and b as de�ned by Kaplan and Savage ����� In terms
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of a and b� the octet	decuplet coe
cients in equation ����� are

d� � �a ! �
�
b	 d� � �

�
b	

d� � ��
�
b	 d	 � ��

�
b	

d� � ��
�
b	 d
 � ��

�
b	

d� � ��
�
b	 d� � ��

�
b�

������

Unfortunately� neither a nor b is reliably known� therefore� for the phenomenologically	

interesting 
 isomultiplet� we have exchanged unknowns d� and d� for unknowns a and b�

What we gain from spin	�avor SU��� is relations between the octet	octet coe
cients ci and

the octet	decuplet coe
cients di� A determination of a subset of the coe
cients ci from

low	energy octet	octet scattering would permit an estimate of the desired octet	decuplet

coe
cients di�

In summary� we have calculated the leading	order shift in the self	energy of the spin	��

decuplet baryons in nuclear matter� Our work di�ers in two ways from earlier calcula	

tions of the 
 isomultiplet self	energies in nuclear matter� we use chiral SU��� symmetry

to extend the calculation to include ��� '�� and (�baryons and �nd new momentum	

independent contributions from four	baryon operators in the e�ective Lagrangian� We

have identi�ed quantities independent of the coe
cients di� the helicity	splitting of the 


and �� self	energy shifts and the resonance width of the 
 isomultiplet� which are pre	

sented in Figures ��� and ���� In section ��� we discuss the origin and resolution of

a logarithmic divergence of the 
 self	energy near nuclear saturation density� which is

particularly relevant for future work when the coe
cients d� and d� are known� The two

major short	comings of our results are that the coe
cients di of the four	baryon operators

have not yet been determined and possible e�ects of the large nucleon	nucleon scattering

lengths have not been included�
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Chapter �

Heavy Kaon�Eta E�ective Theory

In this chapter an e�ective �eld theory for treating kaon and eta interactions in a non	

relativistic framework is developed� The relevant e�ective Lagrangians are derived to

an order su
cient for one	loop calculations of ��� �K� and KK scattering processes�

Coe
cients in the e�ective Lagrangians at low orders are determined from a matching

calculation with SU��� �PT and used to predict KK scattering phase shifts�

In section ��� we present the motivation for developing the non	relativistic theory�

describe the three key ideas which form the foundation� and outline the overall program

to be followed� Sections ��� and ��� establish the elements and principles from which the

e�ective Lagrangian is developed then detail the construction of the �rst several orders

of the Lagrangian� The coe
cients of the e�ective Lagrangian in the lowest orders of the

chiral expansion are determined from a matching calculation in section ���� A prediction

of the s	wave KK scattering phase shift and brief concluding remarks on the outlook for

the heavy kaon�eta e�ective theory are contained in section ����

��� Prospectus

For the range of momenta Q � m� the rate of convergence of the chiral expansion in

SU��� chiral perturbation theory is limited by approximately the ratio of mass scales

�m��#��� � ���� For processes involving only pions with momentaQ � m� chiral pertura	

bation theory based on a smaller SU���L � SU���R chiral symmetry provides an alternative

description� One advantage of using SU��� �PT for low	energy pion interactions is a better

rate of convergence� generalizing the power counting arguments in section ��� the expan	

sion parameter is approximately �m��mK�� � ���� However� compared to SU��� �PT� a
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drawback of SU��� �PT is the great reduction in the variety of processes to which the

theory can be applied with only a slight reduction in the number of coe
cients to be

determined in the Lagrangian� Today� SU��� �PT and SU��� �PT are considered com	

plementary descriptions of pion interactions at low	energy and the relations between the

coe
cients in the two order	Q� e�ective Lagrangians are known �����

Motivated by the comparison above� we seek an e�ective �eld theory tailored for low	

energy interactions �Q � m�� of pions with kaons or eta mesons to exploit the relatively

small ratio m��mK� One key ingredient of the e�ective �eld theory� as an expansion

in ��mK � is a non	relativistic treatment of the kaon and eta degrees of freedom� Because

the momentum scale dictates a relativistic treatment of the pion �eld� we cannot build the

G� � SU���L � SU���R chiral symmetry of QCD into the e�ective Lagrangian explicitly�

�avor rotations in SU���V would map relativistic pions into non	relativistic kaons and

vice versa� However� we are able to include the smaller G �
� � SU���L � SU���R chiral

symmetry of QCD and a description of the pion degrees of freedom based on SU��� �PT

becomes the second key ingredient of the e�ective �eld theory�

The non	relativistic �eld theory naturally divides into a number of n	body sectors

distinguished by strangeness and the number of heavy �elds n in the initial state� Sectors

of the theory in which the number of heavy �elds is not conserved present a problem

for the momentum expansion� the annihilation of a heavy particle introduces pions with

 hard� momenta ��mK��� in intermediate states and the power counting scheme breaks

down� This problem a+icts sectors involving either KK pairs or the eta meson� which is

subject to pion conversion as in �K � �K� The exception to the general rule proscribing

the eta meson is for a single eta meson interacting with any number of pions� in that case

the eta meson is protected by G	parity ����� �When isospin	violating e�ects are included�

the decays �� �� create new problems in the single	eta sector�� We focus on applying

the e�ective �eld theory to the una�ected one	 and two	body sectors� i�e�� to ��� �K� KK�

and the sectors related by charge conjugation�

When constructing the Lagrangian for the heavy kaon�eta e�ective theory� we must
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introduce coe
cients� or low	energy constants� which are not determined by the imposed

symmetries� Even at low orders in the chiral expansion� several low	energy constants will

appear in each of the independent sectors we consider� Due to the scarcity of experimen	

tal data in some sectors� the standard method for extracting values for the low	energy

constants is impractical� The alternative is to pursue a matching calculation onto a

better	known theory at higher energy to determine the low	energy constants in terms of

known parameters of the high	energy theory� In the regime of non	perturbative QCD�

SU��� �PT is the natural choice for the  high	energy� theory� An additional bene�t of

matching onto SU��� �PT is that the full G� chiral symmetry is implicitly restored to

the e�ective Lagrangian through constraints on the low	energy constants� Because the

matching calculation enhances the predictive power of the heavy kaon�eta e�ective the	

ory� we consider it the third �and �nal� key ingredient of the theory� The essence of heavy

kaon�eta e�ective theory is a reorganization of the chiral expansion in SU��� �PT� keep	

ing order	by	order only the terms relevant to the low	energy regime� which should result

in improved convergence�

The steps in the program we follow are to establish the e�ects of symmetry transfor	

mations on the �elds of the theory� detail the rules for constructing a minimal e�ective

Lagranian� build the Lagrangian for the sectors of interest to order Q�� perform the match	

ing calculation onto SU��� �PT� extract values for the low	energy constants of the heavy

kaon�eta e�ective theory� apply the results to scattering problems near threshold� and

�nally look for further problems to which the theory can be pro�tably applied� For the

�K sector� this program has been started independently by Roessl ����� however� we �nd

he has omitted terms from the e�ective Lagrangian at higher order �	 Q��� Several topics

relevant to developing the e�ective �eld theory are addressed in the discussion� �eld redef	

initions �or use of equations of motion�� reparameterization invariance constraints on the

e�ective lagrangian� reconciling relativistic and non	relativistic treatments in the match	

ing calculations� and consequences of di�erences between the power counting schemes of

SU��� �PT and of the heavy kaon�eta e�ective theory�
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To conclude a section titled �Prospectus� by considering future applications for the

heavy kaon�eta e�ective theory seems appropriate� so we brie�y skip ahead to the �nal

step in the program� While the e�ective Lagrangians written out for the �K and KK sec	

tors include isospin	violating terms for generality� the values of the associated low	energy

constants have not been determined in the matching calculations� Extending the matching

to determine the low	energy constants for isospin violation and electromagnetic interac	

tions would be straight forward and suitable for studying processes such as �K � ��K

and �K � ��K near threshold� In another application� baryon isomultiplets from the

spin	�
� octet and spin	�� decuplet can be coupled to the heavy kaon e�ective theory with

the coe
cients in the Lagrangian matched to the G�	invariant theory in sections ���� ����

Unfortunately� in many interesting kaon	baryon systems� strangeness	exchange reactions

do not conserve the number of heavy particles� e�g�� NK � �� ����� resulting in a break	

down of the power counting scheme� however� the NK and 
K sectors are protected

by strangeness conservation and are compatible with the heavy	kaon framework� On a

more speculative note� phenomenological models inspired by and incorporating elements

of the heavy kaon�eta e�ective theory may be developed for the problematic sectors

like KK ����� For example� similar work has been done on ���� atoms ����� and by inte	

grating out �� pairs and allowing for a non	hermitian e�ective Lagrangian ����� Finally� if

experimental data for the threshold energy region become available in abundance� extract	

ing the low	energy constants of the heavy kaon�eta e�ective theory from the data may

provide insights into SU��� �PT� Knowing values for the low	energy constants would per	

mit veri�cation of the constraints on the low	energy constants imposed by the matching

calculation and would provide a means of testing the SU��� chiral expansion�



��

��� Elements and Principles

The Lagrangian of heavy kaon�eta e�ective theory is divided into sectors by the heavy

�elds present�

L � L�� ! L�K ! L�K ! L�� ! L�KK ! � � � �����

and the Lagrangian for each sector is subdivided as LX �
P

j LX
j in a chiral expansion� All

the purely pionic interactions are derived fromL�� � where j � �	 �	 � � � � which is identically

the Lagrangian of SU��� �PT� The e�ective Lagrangians for interactions of a single heavy

�eld with any number of pions are characterized by the chiral expansion j � �	 �	 �	 � � � �

the expansion of L�KK is similar except that the expansion starts with j � � due to

heavy	�eld contact terms� In this section we brie�y establish our notation and identify

the principles used to construct the e�ective Lagrangians�

The building blocks of the heavy kaon�eta e�ective theory are introduced in direct

analogy to SU��� �PT� The three pseudo	Goldstone bosons of SU��� �PT are intro	

duced in the exponential representation� the most elementary constituents are u � ei���F

and � � �BMq where

$ � �a� a �

�� ��
p

���

p
��� ���

�A 	 Mq �

�� mu �

� md

�A 	 �����

and the parameters F and B are non	trivially related to the SU��� �PT parameters F�

and B�� �The relations between the parameters were obtained by Gasser and Leutwyler �����

we review them in section ����� In the purely pionic sector� the e�ective Lagrangian is

written in terms of the �elds U � u� and � as in section ���� Because the kaon �elds are

treated as matter �elds which transform in the fundamental representation of SU���V� for

coupling pions to kaons we adopt the notation used in section ��� and reintroduce

V� � �
��uy
�u ! u
�u

y�	 �����

A� � i
�
�uy
�u� u
�u

y�	 �����
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�� � uy�uy� u�yu� �����

Throughout this chapter this notation is reserved for the SU��� versions of the �elds� The

heavy �elds are the � meson and the kaons� which form two SU���V doublets

K �

�� K�

K�

�A 	 Kc �

�� K
�

�K�

�A � �����

As non	relativistic �elds� the creation and annihilation operators are treated separately�

thus we distinguish Ky from Kc�

The symmetries which we explicitly build into the e�ective Lagrangian are G �
� chiral

symmetry� parity �P�� charge conjugation �C�� and reparameterization invariance� The

implementation of reparameterization invariance is discussed separately in the next sub	

section� The transformations of the �elds under G �
�� P� C� and hermitian conjugation �y�

are collected for reference in Table ��� along with the power of Q� i�e�� the chiral index�

associated with each �eld� Under each of the transformations listed� a covariant deriva	

tive of a �eld D�O transforms in the same way as O provided� in the case of parity� the

Lorentz index of the derivative is also raised or lowered� The number of low	energy con	

stants required is restricted sector	by	sector by imposing the constraints of hermiticity

and invariance under G �
� and P on the e�ective Lagrangian� Within sectors of non	zero

strangeness charge conjugation does not restrict the form of the e�ective Lagrangian� but

determines L
�K

from L�K and L
�KK

from L�KK �

����� Reparameterization Invariance

By treating the kaon and eta mesons as non	relativistic �heavy� �elds we have performed

an implicit rephasing� as in section ���� compared to the relativistic counterparts Kr

and �r�

K�x� �
p

�M eiMv�xKr�x�	 ��x� �
p

�M � eiM
�v�xKr�x�� �����
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�eld G �
� P C y index

U RULy Uy UT �

� R�Ly �y �T �

V� HV�H
y��
�H�Hy !V � �V�T �V� �

A� HA�H
y �A�

A�
T A� �

�� H��H
y !�� ��

T �� �
�� H��H

y ��� ��
T ��� �

K HK �K Kc
T Ky �

Kc KcH
y �Kc KT Ky

c �
� � �� � �y �

Table ���� Transformations of �elds and under G �
� chiral symmetry� parity P� charge

conjugation C� and hermitian conjugation y� and the chiral index associated with each
�eld�

Reparameterization invariance �RPI� ���� ��� ��� ��� is a consequence of arbitrariness in

the choice of the velocity v� used in the rephasing� The choice of a di�erent velocity in

the relations between the relativistic and heavy �elds is compensated by a shift in the

residual momentum k� of the heavy �eld� Lagrangians written in terms of heavy �elds

rephased with di�erent velocities must still give the same result for physical S	matrix

elements� which implies invariance of the Lagrangian under shifts of v�� A consequence of

RPI symmetry in the e�ective Lagrangian is that coe
cients of terms at di�erent orders

in the Q	expansion are related ���� and by building reparameterization invariance into an

e�ective Lagrangian we reduce the number of low	energy constants to be determined� In

this subsection we use the kaon as a representative example� all of the arguments apply

equally well to the case of the eta meson�

To construct a RPI Lagrangian it is necessary and su
cient� as shown by Luke and

Manohar ����� that the rephasing velocity and derivatives of the kaon �elds appear only

in the following combinations�

V�K � ��iMv� ! D��K	 �����

V�Ky � �!iMv� ! D��Ky	
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where we will refer to the operator V� as the RPI	covariant derivative� V� is a valid

derivative in the sense that it satis�es the chain rule�

D��KyOK� � �V�Ky�OK ! Ky�D�O�K ! KyO�V�K�	 �����

which permits the use of partial integration and total derivative arguments with respect

to V�� Only after building the e�ective Lagrangian in terms of the RPI	covariant derivative

and expanding each term in powers of the mass M do we make any particular choice of

frame� i�e�� explicitly setting v� � ��	 �	 �	 ���

Super�cially� developing the e�ective Lagrangian in terms of the RPI	covariant deriva	

tive presents a problem for power counting� An in�nite tower of possible terms� such

as KyK� KyV�V�
K� KyV�V�V�V�

K� � � � � will contribute to each order of the chiral expan	

sion of the Lagrangian� On closer inspection� the fact that RPI guarantees a particular

relationship between coe
cients of terms in the e�ective Lagrangian assures that the

e�ect of adding another term with more factors of V� can always be compensated by a re	

de�nition of the coe
cients already present� As an explicit example we consider the e�ect

of adding the term �L � bKy��V�V�V�
K� where �� represents an unspeci�ed combination

of light degrees of freedom� to the interaction Lagrangian Lint � aKy��V�K� Expanding

the combined result gives

Lint ! �L � �iM�a� bM��Ky�v���K ! �a� bM��Ky��D�K ������

� �bM�Ky�v����v�DK� � ibM Ky�v���D�D
�
K ! � � � 	

where we have used v�v
� � �� A subsequent change of a� a� a! bM�� absorbs the con	

tribution of �L to the terms already present in Lint� The addition of another term�

�L� � cV	Ky��V�V�V�V	
K� would be followed by a change of a and b to restore the form

of the terms present before the addition of �L�� Generally� RPI makes the possibility of

such rede�nitions certain to all orders in the expansion of the e�ective Lagrangian and in

every sector of the theory�
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The procedure just proposed is an iteration of adding new terms to the e�ective

Lagrangian then rede�ning the coe
cients of the terms already present� An equivalent

and more practical procedure is to subtract the contribution to terms already present in

the e�ective Lagrangian from each new term when it is added� for instance

V�
KyV�V�V�

K ������

�� V�
KyV�V�V�

K �M�
�
KyV�V�

K ! M�KyK
�

! M�
�
V�KyV�

K �M�KyK
�

! M�KyK�

RPI	covariant derivatives contracted with Lorentz indices on light degrees of freedom are

never dropped� We implicitly make such subtractions from every term when we include

the term in the e�ective Lagrangian�

Having resolved the issue of in�nitely many contributions to each order of the chi	

ral expansion of the e�ective Lagrangian� we turn now to determining the proper power

of Q to associate with the leading contribution of a term in RPI form� Occurrences

of RPI	covariant derivatives are divided into two classes� those contracted with another

RPI	covariant derivative and those contracted into the light degrees of freedom� In the ex	

pansion of a contracted pair of RPI	covariant derivatives� the contribution from ��iMv��

is cancelled by the subtracted terms� the leading contribution to the power counting

comes from v�D so each contracted pair contributes Q�� The leading	order contribution

from expanding a RPI	covariant derivative contracted with the light degrees of freedom

is una�ected by the subtraction� the RPI	covariant derivative is counted as one power

of v� or order Q�� To determine the e�ective Lagrangian to order QD� in terms where the

operators for the light degrees of freedom contribute d powers of Q and carry n Lorentz

indices� we must consider some terms with as many as

N � n ! ��D � d� ������

added RPI	covariant derivatives� Toward the upper limit of the necessary number of
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RPI derivatives� some relief comes from the fact that total derivative arguments will

allow replacing some terms with alternates where a derivative is moved onto the light

degrees of freedom and the alternate terms may be neglected to the order we are working�

In addition to the ambiguity in the choice of the rephasing velocity v�� we have free	

dom to choose the mass M used in the rephasing relation� equation ������ This freedom

was exploited in equation ������ to avoid awkward x�	dependent phases in the heavy

baryon Lagrangian� The only constraint on the choice of M is that any residual mass �M

is small ��Q� to prevent failure of the power counting scheme� In the context of heavy

kaon�eta theory� we perform the rephasing of the kaon and eta �elds with the masses ,MK

and ,M� respectively� where ,MK and ,M� are de�ned as the meson masses in the SU��� chi	

ral limit mu�d � � and ms �nite� With this choice� the residual masses of the K and �

mesons at tree	level are generated through interactions with the �eld �� and are included

perturbatively� Because the residual masses vanish in the SU��� chiral limit� by de�nition�

the e�ective Lagrangian does not include any explicit residual mass term ��M KyK� in

this sense our choice for the rephasing mass is the  natural� choice�

����� Use of Field Rede�nitions

Rede�nitions of the �elds of the theory can be used in two ways to potentially improve

or simplify the e�ective Lagrangian� The �rst class of �eld rede�nitions eliminates terms

from the e�ective Lagrangian which are proportional to a classical equation of motion�

this class of �eld rede�nitions� combined with total derivative arguments� is a powerful

method for reducing the number of unknown coe
cients required� The technique is well	

documented in the literature ���� ��� ��� ��� for simpli�cations of e�ective Lagrangians

and we have nothing to add aside from identifying the general form of the terms we

eliminate by this method� Terms with an explicit factor of D�A
�� V�V�

K� V�V�
�� or the

hermitian conjugates can be combined with contributions from other terms in the e�ective

Lagrangian to form complete equation of motion terms and are subsequently eliminated�

The second class of �eld rede�nitions allows the elimination of all time	like derivatives
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of the heavy �elds from the interaction Lagrangian ���� ��� ���� The principle is closely

related to the elimination of equation of motion terms� and if all equation of motion terms

have already been eliminated by rede�nitions of the �rst class then further rede�nitions

from the second class will permit a re	expression of the e�ective Lagrangian but not

the further elimination of any low	energy constants present� Instead� the motive for

considering �eld rede�nitions in the second class is to simplify the application of the

e�ective Lagrangian by replacing time	like derivatives of the heavy �elds with spatial

derivatives� Spatial derivatives permit a more transparent power counting for Q in loop

diagrams than is possible when time	like derivatives occur in vertices�

Considering the free �eld theory of a �complex� heavy scalar is su
cient to illustrate

the general method and highlight conclusions relevant to how the matching calculation

between relativistic and non	relativistic theories is performed� The free	�eld Lagrangian

for the heavy scalar� after rephasing as in equation ������ becomes

L
�
� �y�

�
iv�
 !

r�
� ! �iv�
��

�m

�
�� ������

where the spatial derivative �r� is de�ned by 
�

� � �v�
�� �r�

�� After substituting a

�eld rede�nition �� � �� ! ��� we �nd the well	known result that �� � ��
�miv�
� cancels

the time	like derivatives from terms at order ��m and gives

L
�
� �y�

�
iv�
 !

r�
�

�m
� ��iv�
��

��m�
� �iv�
�r�

�

�m�
!O���m��

�
��� ������

�A slightly di�erent approach is taken in references ���� ����� Substituting a second

�eld rede�nition �� � �� ! ���� dependence on time	like derivatives is canceled in L
�

through order ��m� by ��� � ��r�
� ! ��iv�
�������m�� Repeating this process� time	like

derivatives of � can be eliminated to any arbitrary order in an expansion in terms of �
�m��

Our original contribution to this discussion is the observation that the in�nite series

of �eld rede�nitions can be formally summed and a relatively simple expression for the

�eld rede�nition �� � F � ��� can be obtained� The approach is based on substituting a
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series representation for F � ���� and deriving recursion relations from the constraint that

all time derivatives cancel from L�

� Here we present a brief plausibility argument for

the inverse solution �� � F������� the actual recursion relations generated are presented

in Appendix B with a short description of their solution� The �rst step is to complete the

square for the time	like derivative appearing in equation �������

L
�
� �

�m�
y
�

h
�iv�
 ! m�� �m� !r�

�

i
�� ������

� �
�m
�y�

h
iv�
 ! m�

p
m� �r�

�

i h
iv�
 ! m !

p
m� �r�

�

i
���

Second� observing �
p
m� �r�

� �m� is the relativistic kinetic energy operator bK � we

recognize the �rst expression in brackets is the kernel of the desired Lagrangian for ���

L�

� ��y�iv�
 � bK���� The second term in brackets is �iv�
 ! bK ! �m� which we divide

between �� and �y� and �nally use to identify ���

L
�
�

��s�iv�
 ! bK ! �m

�m
�y�

���iv�
 � bK�
��siv�
 ! bK ! �m

�m
��

�� ������

�� �� �

q
�iv�
 ! bK ! �m���m �� � F�������

The explicit form for the rede�nition resolves some di�erences between the perturba	

tive �eld theories of the heavy �elds �� and ��� Developing the �eld propagator from the

complete free	�eld Lagrangian in equation ������ results in two poles in the propagator�

at iv�
 � ��m! bK�� Only one pole is relevant for the non	relativistic treatment and the

second pole is eliminated di�erently in the �� and �� theories� The second pole is com	

pletely absent from the Lagrangian L�

� the disappearance of the second pole is traced to

a singularity of the �eld rede�nition F � ��� which causes �� to vanish at the location of the

second pole� In the �� theory� the pole is removed by treating the operator �iv�
����m

in L
�
as a perturbative correction to the �� two	point function� the second pole does

not appear at any �nite order� The second di�erence between the two non	relativistic

theories is the normalization of one	particle states relative to the normalization of the rel	
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ativistic one	particle state ���� ���� which becomes relevant when we pursue the matching

calculation between the non	relativistic heavy kaon�eta theory and fully relativistic �PT�

We determine the relative normalization by evaluating �� � F������ at the location of

the relevant pole� �iv�
� � bK � E �m� which gives
p

�m �� �
p

�E ��� Which factor is

included in matching calculations between relativistic and non	relativistic theories de	

pends on whether relativistic corrections to the propagator are included as insertions

of �iv�
����m in the �� theory or as insertions of r�
���m

� !r	
����m� ! � � � in the ��

theory�

As stated above� the motivation for eliminating time	like derivatives of heavy �elds

is to simplify the power counting of loop diagrams involving both light	 and heavy	�eld

propagators� However� the �eld rede�nitions required to eliminate time	like derivatives

are not reparameterization invariant� We consider the question open as to whether RPI

can be reformulated as a principle of the rede�ned �� scalar �eld theory� Without explicit

RPI symmetry of the �� e�ective Lagrangian� the relations between coe
cients of di�erent

orders in the Q	expansion are not guaranteed� As a consequence� we forego using further

non	RPI �eld rede�nitions and treat the heavy kaon and eta �elds in analogy with the

�� scalar �eld theory described in this subsection�

��� The E	ective Lagrangians

The approach we take to developing the e�ective Lagrangians is based on the work of

Fearing and Scherer ���� extending L�PT to order Q	� We begin by addressing two points

where we use a di�erent approach� speci�cally when performing the SU���V contractions

and when using total derivative arguments to eliminate terms� After discussing those

issues we give a brief summary of the overall procedure then present the explicit con	

struction of the e�ective Lagrangians L�K � L��� and L�KK �

Given a product of �eld operators� Fearing and Scherer form G�	invariant contractions

by taking traces of all possible permutations of the matrix �elds� �Roessl applies the
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same method for L�K by introducing a matrix �eld KKy for the kaons ������ Then trace

relations� such as

Tr�ABC� ! Tr�ACB� ������

� Tr�AB�Tr�C� ! Tr�CA�Tr�B� ! Tr�BC�Tr�A��Tr�A�Tr�B�Tr�C�

for �� � matrices� can be used to eliminate some of the resulting terms in favor of others

in the set� For the relatively simple case of SU���V� we prefer to form a minimal set of

contractions by appealing to the algebra for addition of angular momenta� We prefer the

second method because �� it permits a clean separation between isospin	conserving and

isospin	violating terms� �� the connection between generated terms and physical processes

is more meaningful and direct� and �� the method is more familiar�

A general matrix �eld O transforms under SU���V as 
� �� where the 
 component

is identi�ed as Tr�O�� To separate out the � component of a matrix �eld� we de�ne the

notation bO � O � �
�
Tr�O�� ������

Since Tr�A�� and Tr�V�� both vanish� these �elds transform in just the � representation�

This notation is particularly helpful when applied to ��� we �nd that Tr���� and %�� are

proportional to %m� but Tr���� and %�� are proportional to �mu �md� and give isospin	

violating terms�

As a simple illustration of the method� the product of �elds KKyA��� transforms

as �

�
� �

�
� �� �
� �� which contains three singlet representations� the resulting set of

contracted forms is Tr�%��A��K
yK� Tr����KyA�K� and Ky� %��	 A��K� We choose to take

Ky� %��	 A��K instead of the equally suitable form Ky%��A�K because the commutator

projects out just the � component of the product �%�� �A��� Also� we can distribute

any covariant derivatives which are present after performing all SU���V contractions since

they do not change the SU���V transformation of the �eld on which they operate� �How	

ever� antisymmetric expressions such as �A�	 A
�� must be kept until derivatives have been
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distributed across the �elds��

The second point to discuss is how to select terms which are to be eliminated by adding

total derivatives to the e�ective Lagrangian� Clearly� the set of selected terms should

contain as few terms proportional to an equation of motion �EoM terms� as possible�

since such terms will be eliminated anyway by subsequent �eld rede�nitions� Fearing

and Scherer ���� take an approach driven by intuition� and apply rules such as all terms

where more than half of the derivatives act on a single �eld may be eliminated� and use

Lorentz index exchange arguments to preserve as many EoM terms as possible from the

remaining set� Because our power counting scheme permits many more derivatives at any

order than appear in L�PT� the intuitive approach is vulnerable to questions of whether

every possible total derivative was used to eliminate a term and whether the set of terms

retained contains the most EoM terms possible�

We present an algorithm which reduces the use of total derivative arguments to linear

algebra and assures that no EoM terms are eliminated at the expense of keeping another

term �and low	energy constant� in the e�ective Lagrangian� We view the set of m terms

prior to any eliminations as the basis of a m	dimensional vector space (� and the set

of coe
cients of those terms in the e�ective Lagrangian represents an arbitrary vector

in (� Also� each total derivative� when expanded by the chain rule� is represented by a

vector in (� we de�ne � to be the n	dimensional sub	space of ( spanned by the complete

set of total derivatives� The key ideas are that the vector representing the most general

e�ective Lagrangian is arbitrary up to the addition of any vector from � and any set

of m� n terms which spans the complementary sub	space (�� is su
cient for the most

general e�ective Lagrangian�

We construct a matrix P from the column vectors of a complete set of total deriva	

tives� not necessarily linearly independent� A complete set of total derivatives for terms

containing k derivatives can always be generated by explicitly taking the derivatives of

each possible term with k�� derivatives� For any matrix O we de�ne the operation NS�O�

which returns a matrix whose columns span the �right� null space of O� Then� trivially� the



��

columns of the �m� n��m matrix NS�P T � span the desired sub	space (��� A particular

choice of m � n terms from the original set also spans (�� if the matrix R constructed

from the column vectors representing the terms satis�es the relation det�RT �NS�P T �� 
� ��

Thus we can guarantee a complete set of total derivatives and test any particular choice

of terms for suitability as a basis of (��� The remaining hurdle is to establish a means for

identifying which choices of terms contain the maximum number of EoM terms� because

the number of acceptable sets grows combinatorially with the number of derivatives and

�elds in each term� exhaustive testing of the possible sets is impractical�

By de�nition the columns of NS�O� represent the linear combinations of the columns

of O which vanish� The key observation is if we construct a matrix Q from the rows

of NS�P T � which correspond to the EoM terms� then the columns of NS�Q� represent all

independent linear combinations of the columns of NS�P T � with vanishing projection onto

the EoM terms� The result is the columns of the matrix NS�P T ��NS�Q� span the sub	

space of (�� which is orthogonal to all of the EoM terms� and the number of columns is

exactly the minimum number of non	EoM terms which must be included in the e�ective

Lagrangian�

One considerable advantage of the algorithm just described is that the computations�

from developing the complete sets of terms and total derivatives to selecting a single op	

timal basis of terms to include in the e�ective Lagrangian� are easily programmed with

software for symbolic mathematics� We also note that for very large sets of terms� the

problem can be broken into two smaller problems by dividing the full set of terms consid	

ered ftjg��j�m into disjoint sets ftj ! tyjg and fi�tj � tyj�g and applying the algorithm to

each smaller set� Finally� if the full set of terms forms a hierarchy of  better� terms and

 lesser� terms �beyond the distinction between EoM and non	EoM terms�� the steps for

removing a maximal set of EoM terms from the basis of (�� can be repeated for each

level in the hierarchy to assure the minimum number of terms must be selected from each

of the successive  lesser� sets of terms�

In summary� we list the steps of the procedure� based on Fearing and Scherer �����



��

which we apply to construct the minimal e�ective Lagrangians L�K and L�KK order by

order in Q�

�� Identify all simple �uncontracted� products of �elds and derivatives consistent with

parity and of the proper power of Q�

�� For each product� form a minimal set of forms contracted over SU���V indices in

analogy to addition of angular momenta�

�� For each contracted form� distribute the derivatives over the �elds and contract

Lorentz indices all possible ways� keeping in mind that derivatives of �� are unnec	

essary and D�A� and all multiple derivatives are implicitly symmetrized�

�� For sets of terms with many derivatives� the power counting may indicate that some

contractions of Lorentz indices yield terms higher order in Q than the order to which

we are working� drop all such terms�

�� Replace each pair of terms t and ty with the hermitian combinations �t! ty� and

i�t� ty��

�� For each set of terms� apply the total derivative algorithm to select a basis set

containing the most EoM terms possible�

�� Eliminate EoM terms� proportional to either D�A
�� V�V�

K� or V�V�
Ky through use

of implicit �eld rede�nitions�

�� Expand RPI	covariant derivatives of the kaon �elds as V� � �i ,MKv� ! D� then set

v� � ��	 �	 �	 ���

In practice� after identifying a product of �elds in step ����� we work out all the terms

generated by adding covariant derivatives to the product of �elds up to the highest relevant

order in Q before moving on to the next product of �elds�
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����� The �K and �� Sectors

In the interest of transparency� so that the process and results can be independently

veri�ed and because some knowledge of intermediate results is necessary to extend the

Lagrangian to higher order� we present details on some of the steps in the construction

of the e�ective Lagrangian� After the discussion related to each product of �elds� we list

the RPI forms of the terms which are kept� together with the coe
cient associated with

each� The particular coe
cient we assign to a given term depends on the leading power

of Q contributed by the term after the RPI	covariant derivatives are expanded�

The only product of �elds permitted at order Q� is KyK� Because covariant derivatives

can be freely moved from one �eld to the other� sophisticated total derivative arguments

are unnecessary regardless of the number of derivatives distributed on the kaon �elds�

in each order of the Q	expansion� only a single term of this form needs to be retained�

For no derivatives or two derivatives� the terms we keep are KyK and V�KyV�
K� By

de�nition� the coe
cient of the mass term is the square of the mass used in the heavy

�eld rephasing� i�e�� the mass of the kaon in the chiral limit mu�d � �� For four or more

derivatives� we can always move all derivatives except a single contracted pair o� the kaon

�eld leaving only the EoM term which is subsequently eliminated� The only combination

of terms generated from the product KyK �at any order� is

V�KyV�
K � ,M�

K�KyK��

No product of �elds at order Q� is consistent with RPI and parity invariance� At or	

der Q� two products of �eld operators must be taken into account� KKy�� and KKyA�A��

For the �eld product KKy�� we use the contracted forms

Tr����KyK �c�K� �	 Ky%��K �c�K� ��

Because �� is e�ectively  transparent� to covariant derivatives �since D��� is equivalent to

alternate terms we consider elsewhere�� we can freely move covariant derivatives between
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the kaon �elds just as with the product KyK� Consequently� for any number of derivatives

distributed on this form� we can always reduce the set of terms to a single EoM term

proportional to V�V�
K�

For the �eld product KKyA�A� we choose the contracted forms Tr�A�A��K
yK and

Ky�A�	 A��K� and up to order Q� in each case we can distribute up to six derivatives over

the �elds� First we consider the form Tr�A�A��K
yK� adding two derivatives� we must

keep a total of seven terms of which �ve may be EoM terms� adding four derivatives� we

must keep a total of nine terms at order Q� of which eight may be EoM terms� adding six

derivatives� we must keep a total of four terms at order Q� of which three may be EoM

terms� The terms we select after all eliminations are

Tr�A�A
��KyK �c�K� �	

Tr�A�
A
� �V�KyV�K �c�K� �	

Tr�D�A�D
�
A
�
�KyK �e�K� �	

Tr�A
�
D

�
A
	
�V	KyV�V�K ! h�c� �e�K� �	

Tr�D�
A
�
D

	
A
��V�V�KyV	V�K �e�K� ��

The second form Ky�A�	 A��K vanishes unless derivatives are added� adding two deriva	

tives� we must keep three terms of which two may be EoM terms� adding four derivatives�

we must keep six terms of which �ve may be EoM terms� adding six derivatives� we only

need to keep two EoM terms� The terms we select after all eliminations are

V�Ky�A�
	 A

��V�K �d�K� �	

V�Ky�A�
	D

�
A
	�V�V	K ! h�c� �d�K� ��

The only product of �elds consistent with RPI and parity invariance at order Q� is

KKyA���� The product results in three contracted forms� Tr�%��A��KyK� Ky� %��	 A��K�

and Tr����KyA�K� which up to order Q� can be combined with either one or three
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derivatives� Because all three of the contracted forms are a product of the same four

distinguishable �elds �no exchange symmetry�� the total derivative arguments are exactly

the same in each case� with one derivative we must keep two terms of which one may

be an EoM term� with three derivatives we may keep only two EoM terms� The three

non	EoM terms which we elect to keep are

Tr�%��A
��KyV�K ! h�c� �d�K� �	

iKy� %��	 A
�
�V�K ! h�c� �d�K� �	

Tr����KyA
�V�K ! h�c� �d�K� ��

At order Q� four products of �eld operators are taken into account� KKy�����

KKy����� KKyA�A���� and KKyA�A�A	A�� The �rst two products will only ap	

pear without any additional derivatives� and are both contracted the same way under

SU���V� When coupling the representations of the two matrix �elds� only the symmetric

combinations ��
� ��� �
� ���S � 
� 
� �S � � will appear resulting in three SU���V

contractions for each product� The six terms generated in this fashion are

Tr�����KyK �e�K�� �	 Tr�%��%���KyK �e�K�� �	

Tr����Ky%��K �e�K�� �	 Tr����Ky%��K �e�K�� �	

Tr�%�� %���KyK �e�K�� �	 Tr�����KyK �e�K�� ��

The product of �elds KKyA�A��� permits six distinct SU���V contractions and un	

der the exchange A� � A� three are symmetric and three are antisymmetric� For the six

contracted forms� the power counting permits the addition of two derivatives� The three

antisymmetric forms are Tr�%��A�A��K
yK� Tr����Ky�A�	 A��K� and Ky� %��	 �A�	 A���K

which all vanish if no derivatives are included� In each of the three cases� when two

derivatives are included� the symmetry allows only a single term of order Q� which can

be eliminated by total derivative arguments� The three symmetric contracted forms are

Tr����Tr�A�A��K
yK� Tr�A�A��K

y%��K� and Ky�A�%��A� ! A� %��A��K� With the addi	
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tion of two derivatives to each of the symmetric forms� we are required to keep only a

single non	EoM term� The three symmetric forms result in a total of six terms in the

e�ective Lagrangian at order Q��

Tr����Tr�A�A
��KyK �e�K�� �	 Tr����Tr�A�

A
� �V�KyV�K �e�K�� �	

Tr�A�A
�
�Ky%��K �e�K�
 �	 Tr�A

�
A
�
�V�Ky%��V�K �e�K�	 �	

KyA� %��A
�
K �e�K�� �	 V�Ky�A� %��A

� ! A
� %��A

��V�K �e�K�� ��

The �nal product of �elds� KKyA�A�A	A�� transforms as �

�
� �

�
� �� �� �� �

which contains nine singlet representations� Three of the nine SU���V contractions cor	

respond to Tr�A�A��Tr�A	A��K
yK under distinct permutations of Lorentz indices� the

remaining six contracted forms are distinct permutations among the Lorentz indices of

Tr�A�A��K
y�A		 A��K� In each of the two cases� the power counting permits distribut	

ing up to four derivatives on the �elds� but the power counting also prohibits any EoM

terms in the set of terms which can contribute at order Q�� First we consider the second�

commutator	type form� The contributions of order Q� from this term vanish if either

no derivatives or four derivatives are distributed on the �elds� in the case of adding two

derivatives� a single term of order Q� must be kept� The term we choose to keep is

iTr�A�A
�
�Ky�A

�
	 A

	
�V�V	K ! h�c� �e�K� ��

For the double	trace contracted form� there are two ways to contract the Lorentz indices

without adding derivatives of the �elds� In addition� with two derivatives on the �elds

we must keep two terms at order Q�� with four derivatives we must keep a single term

at order Q�� The net contribution to the e�ective Lagrangian is �ve terms� we select the

following terms for this set�

Tr�A�A
��Tr�A�A

��KyK �e�K
 �	

Tr�A�A��Tr�A
�
A
�
�KyK �e�K� �	
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Tr�A�A
��Tr�A�

A
	�V�KyV	K �e�K� �	

Tr�A�A
��Tr�A�

A
	�V�KyV	K �e�K	 �	

Tr�A
�
A
�
�Tr�A

	
A
�
�V�V�KyV	V�K �e�K� ��

We collect the terms of L�K listed above and present the complete results for the

chiral expansion L�K �
P

j L�K
j to order Q�� We expand the RPI	covariant derivatives

to separate the terms which contribute with di�erent powers of Q� We also explicitly

symmetrize the multiple derivatives and derivatives of A� wherever necessary and absorb

some constant factors into the coe
cients where convenient� Finally� all of the isospin	

violating terms are collected together at the end of each equation� o�set with parentheses�

L�K
� � iKyD�K ������

,MKL�K
� � �

�
D�K

yD
�
K ! c�K� Tr�A�

A
��KyK ! c�K� Tr�A�A

��KyK ������

! c�K� Tr����KyK
�

! c�K� Ky%��K
�

,M�
KL�K

� � ic�K� Tr�A
�
A
�
��KyD�K � h�c�� ! id�K� Ky�A

�
	D�A

�
�K ������

! id�K� �Ky�A�
	 A

��D�K ! h�c�� ! id�K� Tr�%��A
��KyK

! d�K� Ky� %��	 A
��K

�
! id�K� Tr����KyA

�
K
�

,M�
KL�K

� � c�K� Tr�A
�
A
�
�D�K

yD�K ������

� �
�
d�K�

n
Ky��A�

	D�A
�� ! �A�

	D�A
�� ! �A�

	D
�
A
���D�K � h�c�

o
! d�K� D�K

y�A
�
	 A

�
�D�K � �

�d
�K

� Tr�%��A
�
��KyD�K � h�c��

! i
�d

�K

� �Ky� %��	 A
�
�D�K � h�c�� ! e�K� Tr�D�A

�
D�A

�
�KyK

! e�K� Tr�A
�
D�A

�
��KyD�K ! h�c�� ! e�K� Tr�A

�
A
�
�Tr�A

�
A
�
�KyK

! e�K� Tr�D�A��D
�
A
� ! D

�
A
���KyK ! e�K� Tr�A�

A
��Tr�A�A

��KyK

! e�K	 Tr�A�
A��Tr�A�

A
��KyK ! e�K
 Tr�A�A

��Tr�A�A
��KyK

! e�K� Tr�A�A��Tr�A
�
A
�
�KyK ! ie�K� Tr�A

�
A��K

y�A
�
	 A

�
�K

! e�K�� Tr����Tr�A
�
A
�
�KyK ! e�K�� Tr����Tr�A�A

�
�KyK
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! e�K�� Tr�����KyK ! e�K�� Tr�%��%���KyK�
� �

�
d�K� Tr�����KyA

�
D�K � �h�c�

! e�K��K
yA

�
%��A

�
K ! e�K��K

yA�%��A
�
K ! e�K�	 Tr�A

�
A
�
�Ky%��K

! e�K�
 Tr�A�A
�
�Ky%��K ! e�K�� Tr����Ky%��K ! e�K�� Tr����Ky%��K

! e�K�� Tr�%�� %���KyK ! e�K�� Tr�����KyK

�

This procedure does not need to be repeated for the �� sector� The construction

of L�� is identical to the construction of L�K with three exceptions� the eta transforms

as a singlet under SU���V� all isospin	violating terms must be omitted as discussed in

section ���� and the e�ective Lagrangian within the �� sector is invariant under charge

conjugation� From the results for L�K we construct L�� directly by simply dropping

all terms which violate isospin conservation or are not proportional to the general form

�DmKyDnK�� replacing ,MK by ,M� and each occurrence of �DmKyDnK� by �
m�y
n���

and �nally checking the remaining terms for charge conjugation invariance�

L��
� � i�y
�� ������

,M�L��
� � �

�
��
y


�
� ! c��� Tr�A�

A
���y� ������

! c��� Tr�A�A
�
��y� ! c��� Tr�����y�

,M�
�L��

� � ic��� Tr�A
�
A
�
���y
�� � h�c�� ! d��Tr�%��A

�
��y� ������

,M�
�L��

� � c��� Tr�A�
A
��
��

y
�� � �
�
d��Tr�%��A

����y
�� � h�c�� ������

! e��� Tr�D�A
�
D�A

���y� ! e��� Tr�A�
D�A

����y
�� ! h�c��

! e��� Tr�D�A��D
�
A
�

! D
�
A
�
���y� ! e��� Tr�A

�
A
�
�Tr�A

�
A
�
��y�

! e��� Tr�A
�
A
�
�Tr�A�A

�
��y� ! e��	 Tr�A

�
A��Tr�A

�
A
�
��y�

! e��
 Tr�A�A
��Tr�A�A

���y� ! e��� Tr�A�A� �Tr�A�
A
���y�

! e����Tr����Tr�A�
A
���y� ! e����Tr����Tr�A�A

���y�

! e����Tr������y� ! e����Tr�%��%����y�
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����� The �KK Sector

In the �KK sector� the full expression for the e�ective Lagrangian to order Q� is not

necessary to treat � � � scattering processes until very high order� For instance terms

involving four factors of A� only appear with at least two closed pion loops and will be

suppressed by at least a factor of Q	� We develop the full e�ective Lagrangian to order Q��

at orders Q� and Q� we consider only those terms which give rise to four	kaon contact

terms� To distinguish contact terms from pion interactions� we note that an expansion

of quantities in the number of pion �elds gives A� � �
����F � %�� � ��i %mB��F � and

Tr���� � ��i�mu �md�B���F �

Also� we choose to couple the kaon annihilation operators together as K�K and

K��jK� where � � i��� before contracting with the other �elds present for the advantage

of greater symmetry under exchanges� antisymmetric and symmetric respectively� Cou	

pling four kaon operators together in this way gives six representations under SU���V�

The three representations involving an antisymmetric contraction of �elds are simple

products of the two forms above and transform as 
 � � � �� the remaining three

combinations of �elds are �K��jK�y�K��jK� �a 
�� i�jkl�K��jK�y�K��kK� �a ��� and

�K��jK�y�K��kK� ! �K��kK�y�K��jK�

�
�a ��� where use of �jkl� the three	dimensional

Levi	Civita symbol� is always clear from context� For brevity of notation we de�ne the

combinations

�K� K�jK� K�� � �K���jK��
y�K���jK��	 ������

�K� K�jOjK� K�� � i�jkl�K���jK��
yTr��kO��K���lK�� ������

where Kj represent general �elds in the �

�
representation of SU���V and O is any SU���V

matrix operator�

Without any factors of A� or �� there are two contracted forms of four kaon �eld

operators� �K�K�y�K�K� and �K KjK K�� To determine all contact operators up to

order Q� requires distributing up to eight RPI	covariant derivatives on each form� �Many
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with several derivatives contribute only at much higher order in tree diagrams� however�

we include them for completeness regardless�� The algorithm for making optimal use of

total derivative arguments serves us very well in this endeavor� we need to deal with as

many as ��� candidate terms restricted by ��� linearly independent total derivatives� We

consider the symmetric contracted form �rst and count the terms left after total derivative

arguments� one term with no derivatives is necessary� adding two derivatives� we must

keep three terms of which two are EoM terms� adding four derivatives� we must keep nine

terms of which seven are EoM terms� adding six derivatives� �� terms are required of

which �� are EoM terms� �nally adding eight derivatives� �� terms are required of which

�� are EoM terms� After all redundant terms are eliminated� we select the following set

of terms�

�K KjK K� �a�KK�	 �K V�KjK V�
K� �b�KK�	

�V�K V�
KjV�K V�

K� �c�KK� �	 �V�K V�KjV�
K V�

K� �c�KK� �	

�V�K V�V	KjV�
K V�V	

K� �d�KK� �	 �V�K V�V	KjV	
K V�V�

K� �d�KK� �	

�V�V�K V	V�KjV�V�
K V	V�

K� �e�KK� �	

�V�V	K V�V	
KjV�V�

K V�V�
K� �e�KK� �	

�V�V�K V�V�
KjV	V�K V	V�

K� �e�KK� ��

For the antisymmetric contracted form the term with no derivatives vanishes� adding two

derivatives� we must keep a single non	EoM term� adding four derivatives� we must keep

four terms of which three are EoM terms� adding six derivatives� twelve terms must be

retained of which ten are EoM terms� adding eight derivatives� �� terms must be retained

of which �� are EoM terms� After all redundant terms are eliminated� we select the

following set of terms�

�K�V�K�y�K�V�
K� �c�KK� �	

�K�V�K�y�V�K�V�V�� ! h�c� �d�KK� �	
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�V�K�V�V	K�y�V	
K�V�V�

K� �d�KK� �	

�V�K�V�V�
K�y�V	K�V�V	

K� �e�KK� �	

�V�V�K�V	V�K�y�V�V�
K�V	V�

K� �e�KK� �	

�V�K�V�V�
K�y�V	V�K�V�V	V�

K��

The �nal term in the above list does not contribute until order Q�� so we do not list an

associated coe
cient for that term�

The next product of �elds we consider is KKKyKy�� which results in �ve contracted

forms and each form must be considered with up to four derivatives� Because �� is trans	

parent to covariant derivatives� three of the contracted forms yield terms analogous to a

product of �elds KKKyKy� The contracted forms Tr�����K KjK K� and �K Kj��jK K�

give four terms each after all redundant terms are eliminated in analogy to �K KjK K��

Tr�����K KjK K� �c�KK�� �	 �K Kj��jK K� �c�KK�� �	

Tr�����K V�KjK V�
K� �d�KK� �	 �K V�Kj��jK V�

K� �d�KK	 �	

Tr�����V�K V�
K jV�K V�

K� �e�KK	 �	 �V�K V�
Kj��jV�K V�

K� �e�KK�� �	

Tr�����V�K V�KjV�
K V�

K� �e�KK
 �	 �V�K V�Kj��jV�
K V�

K� �e�KK�� ��

The contracted form Tr�����K�K�y�K�K� gives two terms after all redundant terms are

eliminated in analogy to �K�K�y�K�K��

Tr�����K�V�K�y�K�V�
K� �e�KK� �	

Tr�����K�V�K�y�V�K�V�V�
K��

Again� the �nal term in the list contributes only beyond order Q�� The �nal two contracted

forms for the product KKKyKy�� are the hermitian conjugate pair �K�K�y�K�%��K� and

�K�%��K�y�K�K�� Each of the forms vanishes without derivatives� adding two derivatives�

in each case only one EoM term is required� adding four derivatives� four EoM terms are

required� These �nal two contracted pairs do not result in any necessary terms in the
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e�ective Lagrangian�

The only remaining terms we will consider at order Q� are derived from the �eld

product KKKyKy���� without any derivatives� Considering the SU���V couplings gives

eight distinct contractions� but four vanish due to antisymmetry� The remaining four

terms contributing to the e�ective Lagrangian at order Q� are

Tr������K KjK K� �e�KK� �	 Tr�����K Kj%��jK K� �e�KK�� �	

Tr�%��%����K KjK K� �e�KK�� �	 �K�%��K�y�K�%��K� �e�KK�� ��

The �nal product of �elds in the �KK sector is KKKyKyA�A� and to derive the La	

grangian to order Q� we only need to consider adding up to two derivatives� The SU���V

contractions yield six independent forms� two of which are related by hermitian conju	

gation� Without adding any derivatives to the product of �elds� four of the contracted

forms vanish due to an antisymmetry under an exchange of �elds� Adding two derivatives

to each of these four contracted forms gives terms which only appear at higher order

than Q�� we list the terms derived with the power of Q at which it would �rst contribute�

From the hermitian	conjugate pair of contracted forms we get two EoM terms and

�K�V�K�y�K��A
�
	 A

�
�V�K� ��Q�	 twice�	

�K�V�K�y�K��A�	D
�
A
��K� ��Q�	 twice��

each form contributing both as �O ! Oy� and as i�O � Oy�� The other two contracted

forms with a pair of �elds antisymmetric under exchange give two EoM terms and the

higher	order terms

�K V�KjA�
A
�jK V�K� ��Q��	

Tr�A�A
�
��K�V�K�y�K�V�

K� ��Q��	

Tr�A�
A
���K�V�K�y�K�V�K� ��Q���
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The two terms without any derivatives which do contribute to L�KK
� are

Tr�A�A
�
��K KjK K� �c�KK	 �	 �K�A�K�y�K�A

�
K� �c�KK� ��

When two derivatives are distributed on either form� we must retain eleven terms of which

�ve may be EoM terms� Of the twelve terms appearing in the e�ective Lagrangian� the

only four contributing to L�KK
� are

Tr�A�
A
���K V�KjK V�K� �c�KK� �	

Tr�A�
A
���K KjV�K V�K� ! h�c� �c�KK� �	

�K�A
�
K�y�V�K�A

�V�K� ! h�c� �c�KK
 �	

�K�A
�V�K�y�K�A

�V�K� ! �K�A
�V�K�y�K�A

�V�K� �c�KK� ��

From the product of �elds KKKyKyA�A�� the remaining eight terms derived are

iTr�A
�
A
�
��K KjV�K V�K� ! h�c� ��Q��	

i�K�A
�
K�y�V�K�A

�V�K� ! h�c� ��Q��	

Tr�A�A
���K KjV�K V�

K� ��Q�	 twice�	

�K�A�K�y�V�K�A
�V�

K� ��Q�	 twice�	

Tr�D�A�D
�
A
�
��K KjK K� ��Q��	

�K�D�A�K�y�K�D
�
A
�
K� ��Q���

We collect the terms listed above and present the results for L�KK
� through L�KK

� �

The contact terms of L�KK
� are easily derived from the enumerated terms above� we do

not present the fully	expanded form of L�KK
� �

,M�
KL�KK

� � a�KK�K KjK K� ������

,M�
KL�KK

� � ib�KKf�K KjK D�K�� h�c�g ������
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,M�
KL�KK

� � b�KK�K D�KjK D
�
K� ! c�KK� �K�D�K�y�K�D

�
K� ������

! �c�KK� ! �c�KK� ��K D�KjK D�K�

� c�KK� f�K KjD�K D�K� ! h�c�g
! �c�KK� ! c�KK� �Tr�A�A���K KjK K� ! c�KK	 Tr�A�A

�
��K KjK K�

! �c�KK
 ! c�KK� ��K�A�K�y�K�A�K� ! c�KK� �K�A�K�y�K�A
�
K�

! c�KK�� Tr�����K KjK K�
�

! c�KK�� �K Kj%��jK K�
�

,M�
KL�KK

� � i
�
c�KK� f�K D�KjD�K D

�
K�� h�c�g ������

! �ic�KK� f�K D�KjD�K D
�
K�� h�c�g

! i�d�KK� ! d�KK� �
n

�K KjD�K D�D�K�� �K D�KjK D�D�K�

� ��K D�KjD�K D�K�� h�c�
o

! id�KK� f�K�D�K�y�K�D�D�K�� h�c�g
! id�KK�

n
�K�D�K�y�K�D�D

�
K� ! �K�D�K�y�K�D

�
D�K�

! ��K�D�K�y�D�K�D
�
K�� h�c�

o
! id�KK� Tr����f�K KjK D�K�� h�c�g�

! id�KK	 f�K Kj%��jK D�K�� h�c�g
�

! other terms involving A�

Having worked out the forms of the e�ective Lagrangians� we turn in the next section to a

matching calculation to determine the coe
cients which appear in terms of the parameters

of the  high	energy� theory� SU��� �PT�

��� Matching Calculations

A topic which needs to be addressed before setting up the matching calculations be	

tween the heavy kaon�eta theory and SU��� chiral perturbation theory is the di�erence

between the expansions of the two theories� The heavy kaon�eta e�ective theory is an
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expansion in Q�M � where Q represents the generic scale of m� and external momenta j�p j�
and M represents the scale of heavy masses ,MK��� In contrast� SU��� �PT is an ex	

pansion in �Q�#�� where Q represents the scale of external momenta and the full set of

pseudo	Goldstone boson masses� To reconcile the two e�ective �eld theories in the low	

energy regime j�p j � m�� we must recognize three distinct mass scales Q� M � and # which

represent respectively external momenta and m�� ,MK and ,M�� and the chiral symmetry

breaking scale�

Distinguishing the scales in �PT is trivial� We compute scattering amplitudes to a

given order in ��#� then in each order separate the expression by powers of msB� �M��

In contrast� the role of # in the heavy kaon�eta e�ective theory is buried in the coe
cients

of the e�ective theory� just as the coe
cients of �PT are implicitly unknown functions

of #QCD and the heavy quark masses ����� From within the heavy kaon�eta theory there

is no way to determine the dependence of the coe
cients on # via scaling arguments as in

section ��� because the dependence is obscured by the intermediate scale M � The matching

calculation provides a direct way to establish the relationship between the coe
cients and

the chiral symmetry breaking scale�

We match the theories by equating on	shell scattering amplitudes and the locations

and residues of poles in the heavy �eld propagators of the two theories� �O� the mass	

shell� the scattering amplitudes depend� in an unphysical way� on how the meson �elds

are de�ned and matching would require including all of the EoM terms eliminated by �eld

rede�nitions�� We choose to match amplitudes with a relativistic normalization� so a factor

of
q

� ,MK�� is included for each external heavy	particle state in the heavy kaon�eta theory�

consistent with the discussion in subsection ������ For the amplitudes calculated in �PT

we perform a non	relativistic expansion� making the replacement p� � � ,MK�� ! k
��� The

expansions for an arbitrary amplitude A of mass	dimension d� in �PT and in heavy

kaon�eta theory respectively� are �symbolically�

A�PT � Md
X
j�k

,��j�k
Q�jM��k�j


#�k
� Md

X
j

Q�j

M�j

X
k

,��j�k
M�k

#�k
	 ������



��

ANR � Md
X
j

�j
Qj

M j
	 ������

where the ���#�	expansion of �PT has been reorganized as an expansion in M�# within an

expansion in Q�M � Equating the expansions in powers of Q determines the combinations

of terms �jQ
j �

P
k ,�j�kQj�M��#��k for even j and �jQ

j � � for odd j� Solving for

the coe
cients in the heavy kaon�eta e�ective theory� we �nd that matching gives the

coe
cients as an expansion in powers of �M�#��� This behavior is seen explicitly in the

results for matching F and B to the parameters of SU��� �PT by comparing amplitudes

for pion interactions� The matching relations were derived by Gasser and Leutwyler �����

F � F�

�
��

,M�
K

����F �
�

ln
,M�
K

��
! �Lr

�

,M�
K

F �
�

!O�M��#��

�
	 ������

B � B�

	
��

,M�
�

����F �
�

ln
,M�
�

��
� ���Lr

� � �Lr
	�

,M�
K

F �
�

!O�M��#��



� ������

The leading	order results from �PT determine coe
cents of the e�ective Lagrangians L�X

j��

to leading order in �M�#�� �with the exception of coe
cients for terms with time	like

derivatives�� Next	to	leading order results from �PT determine the same coe
cients at

the next order in �M�#�� and the leading order of a further set of coe
cients from the

heavy kaon�eta theory�

We present the results for the leading order matching calculation then apply the results

to make a prediction for KK scattering phase shifts in the next section� The parameters

of L�K are� up to corrections of order �M�#���

,M�
K � msB�	 c�K� � �	 c�K� � ����	 c�K� � �����	 ������

and d�K� � d�K� � d�K� � �� The parameters appearing in L�� are� up to corrections of

order �M�#���

,M�
� � �

�msB�	 c��� � c��� � �	 c��� � ������ ������
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The coe
cients d�K� and d�� are not determined until matching at next	to	leading order

in �PT� For L�KK we only perform the matching for the coe
cients of the four	kaon

contact terms and �nd the leading order results are

a�KK �
�msB�

��F �
�

	 b�KK �
�msB�

�F �
�

	 c�KK� � �	 c�KK�� �
msB�

���F �
�

	 ������

with corrections of order �M�#���

In e�ect� the heavy kaon�eta e�ective theory becomes a dual expansion in Q�M

and �M�#�� through the matching calculation� Applying the theory to physical processes

requires establishing a relative weight to the two expansion parameters� The relative

weight dictates to what order of the expansion in powers of �M�#�� one must work for

a consistent result to a particular order in Q�M � Equivalently we introduce a common

expansion parameter � and assign Q�M and M�# each a characteristic power of �� The

ratio of masses m��MK � ��� and the typical size of SU��� symmetry breaking e�ects ����

suggest assigning the ratios of mass scales Q�M and �M�#�� equal powers of the param	

eter �� so we take � � Q�M � �M�#�� � ����

��
 Application� KK Scattering

From the e�ective Lagrangians L�K and L�KK we calculate the KK scattering amplitudes

in the isospin I���� channels to order Q�� Using the results of the matching calculations

of section ���� we make a prediction for the KK s	wave scattering phase shift in the I��

channel� We plot a comparison of the leading order results of the heavy kaon�eta theory

and SU��� �PT and comment on the usefulness of this approach�

Initially we calculate the KK scattering amplitude as an expansion in powers of Q�M �

treating all coe
cients as intrinsically O����� The leading	order contribution to the scat	

tering amplitude is order Q� and arises from the tree diagram with an a�KK	vertex� Be	

cause time derivatives on external legs contribute Q�� the e�ective Lagrangian results in

no contribution from tree diagrams at order Q� At order Q� we include tree diagrams with
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Figure ���� Feynman diagrams contributing to the KK scattering amplitude in the heavy
kaon�eta e�ective theory� �a� order Q� tree diagram� �b� order Q kaon	bubble diagram�
�c� order Q� tree� double	bubble� and pion exchange diagrams�

a vertex from L�KK
� or L�KK

� and which give one of the coe
cients b�KK� c�KK� � or c�KK�� �

Because the two	body sector admits nearly	infrared	divergent behavior� the appropriate

power counting for loop diagrams is given in equation ������� The power counting shows

that kaon	bubble diagrams are suppressed by a single power of Q� so to order Q� we

take double	 and single	bubble diagrams with only the a�KK	vertex included� Finally�

one	pion loop diagrams are suppressed by only the powers of Q generated at the vertices�

which means double pion exchange is included with vertices from the order	Q e�ective

Lagrangian L�K
� � The set of relevant diagrams is illustrated in Figure ����

Integrations over loop energies dq� are performed by contour integration and the result	

ing momentum integrals d�q are evaluated in dimensional regularization� The scattering

amplitudes are calculated in the center	of	mass frame and the order	Q� equation of mo	

tion� � ,MKEk � k� � ��c�K� %mB� gives the kaon energy of the external states� The results

for A�I

NR are

iA��

NR�k� � ��ic�KK�

k� cos �

,M�
K

	 ������

iA��

NR�k� � ��ia�KK

���� ! ia�KK
s

�Ek

�� ,MK

� �a�KK���Ek

�� ,MK

��� ������

! ��ib�KK
Ek

,MK

! ���ic�KK��

%mB

,M�
K

� i
m�

�
,M�
K

����F �
ln
m�

�

��
�



��

From the matching calculation we determined c�KK� � �� consequently� the �I��� p	wave

scattering amplitude and phase shift vanish to the order we are working� Including the

�	scaling of the coe
cients� the leading contribution to A��

NR comes from the order	Q� tree

diagram and counts as order �� The next terms in the phenomenological expansion in ��

of equation ������� are the order	Q kaon	bubble diagram and the order	Q� tree diagram�

To work consistently at this order would require extending the matching of the coe
cient

in the leading	order result� a�KK� by two orders in �M�#���

For comparison� the result for the scattering amplitude in �PT is

iA��

�PT �

��

�F �
�

h
�M�

K ! ��k� � ��ms ! %m�B�

i
� ������

The leading	order results for the s	wave phase shift in both the heavy kaon�eta theory

and SU��� �PT are presented together in Figure ���� The s	wave KK scattering length

determined from the phase shift plotted in the �gure is

a��
 � ����� ����� cm	 ������

which is consistent with a repulsive K	K interaction potential� In both cases the leading

corrections are suppressed by ��M�#�� � ���� In light of the fact that the heavy kaon�eta

theory is determined directly from the scattering amplitudes of �PT� the agreement of

the two expansions to within the expected ��- corrections is not surprising�

The calculation of the s	wave phase shift in both �PT and the heavy kaon�eta theory

has illustrated a fundamental point relevant to the utility of the matching calculation�

The motivation for developing the heavy kaon�eta theory was to achieve a better expan	

sion in the threshold regime by virtue of the better ratio of scales �Q�M�� � �� versus

�M�#�� � ��� In e�ect� the price for the improved convergence was an increase in the num	

ber of low	energy constants� i�e�� coe
cients in the Lagrangian� to be determined� The

initial proposal was made to determine the unknowns of the low	energy theory by perform	

ing a matching calculation onto a theory with fewer unknown parameters� SU��� �PT�
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Figure ���� �a� Leading	order calculations of the KK s	wave �I��� scattering phase
shift ���k� in degrees as a function of center	of	mass momentum k� the dashed line is
heavy kaon�eta theory� the solid line is SU��� �PT� �b� Relative error between the results
j�NR
� � ��PT� j�j��PT� j�

However� by matching onto �PT we guarantee that the heavy kaon�eta theory is limited

to converging no better than the theory to which it is matched� Indeed� we �nd that

the matching calculation explicitly reintroduces the mass	scale ratio �M�#�� that we at	

tempted to circumvent� The matching calculation appears to be both the savior and the

Achilles� heel of the heavy kaon�eta e�ective theory�

For a wide variety of processes� including KK scattering� the heavy kaon�eta e�ective

theory does not provide a computational advantage over �PT� and the additional work

required to carry out the matching calculation cannot be justi�ed� However� the outlook

for the heavy kaon�eta theory or for the use of matching calculations is not entirely bleak�

The approach is useful is two senses that were suggested in section ���� The �rst is that

independent of the matching calculation� when data are available for a direct empirical

determination of the low	energy constants� then taking advantage of the better rate of

convergence in the non	relativistic theory will be possible� For a short	term perspective�

the available data on �K scattering ���� ��� may be useful in this way�

The second way in which the non	relativistic e�ective theory may be useful is calculat	

ing quantities for which the relativistic formalism of �PT is awkward� An example where

a non	relativistic treatment has proven bene�cial is calculating the properties of bound	

state systems ��� ��� ��� ���� In applications of this sort� reviving the matching calculation
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approach has merit because the motive for using the non	relativistic e�ective theory is

not solely to improve the convergence of the expansion� Since bound state formation

always involves summing an in�nite number of Feynman diagrams� the power counting

considered here cannot be directly applicable for these problems� Two cases should be

considered regarding bound states in the heavy kaon�eta e�ective theory� First� the e�ec	

tive �eld theory cannot be applied to deeply bound systems because they lie outside the

range of the momentum expansion� Second� for shallow bound states� the power counting

scheme needs to re�ect the �ne	tuning which is implicit in the associated large scattering

length� In systems with a shallow bound state� the matching calculation will not provide

an estimate of coe
cients of the terms responsible for binding the system� but may per	

mit the determination of coe
cients which contribute perturbatively to properties of the

bound state� The interesting possibilities for strong	interaction bound states� KK and

KN � both su�er kaon annihilation and are not suitable candidates� Another possibility

is to calculate strong	interaction perturbations to a Coulomb bound state with a kaon�

for instance ��K� or K���� or kaon electromagnetic form	factors via e�K��

In conclusion� we have presented the foundations and laid out the principles for an

e�ective �eld theory to describe the interactions of pions with non	relativistic kaons and

eta mesons� The e�ective Lagrangians for few	body sectors were constructed explicitly

for the �rst several orders in a chiral expansion� Much work remains to be done both

in applying the theory to systems of interest and in generalizing the theory to include

electromagnetic interactions� couplings to baryons� and the study of isospin violation�
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Appendix A

Symbolic Expansion of L�PT

This appendix presents Mathematica� routines ���� for the symbolic expansion of the

SU��� chiral lagrangian in terms of the embedded chiral SU��� �elds in the sincere

hope that they will prove useful to others� The source code is divided into two �les�

lagrangian�math on page �� which speci�es the sequence of steps in expanding and

saving the desired parts of the lagrangian and definitions�math on pages ��&�� which

de�nes the functions called to perform the expansion and simplify the results� Currently�

the chiral Lagrangian L� in equation ����� is expanded out to terms including six boson

�elds� L� in equation ������ is expanded to four boson �elds� The source code can be

applied to higher	order parts of the chiral Lagrangian or to terms involving more bosons

by adding transformation rules to the trace routine in definitions�math at line ���

The routines are of very limited use without a brief description of the symbols appear	

ing in the input and output �les� In addition to the obvious parameters F� B� and L�&L�

de�ned as in section ���� the quark masses are included as

mhat� %m � �
�
�mu ! md�	 mdiff� �mu �md�	 ms� ms�

The correspondences for the boson �elds are

pion� �a� a	 kaon� K	 kbar� K	 eta� ��

Each occurrence of a boson �eld is multiplied by a tag� boson� which simpli�es expand	

ing the lagrangian and separating the lagrangian into parts by the number of bosons

�
Mathematica is a registered trademark of Wolfram Research� Inc�
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appearing� Also� two matrices are given symbolic names in the input �les� one refers to

the � � � identity matrix and tau� refers to the Pauli matrix � � � �z� which appears in

isospin violating terms� Finally� the following notation appears in the output�

� derivatives� d�A�x�� 
xA�

d�pion�mu�� �
��a�� a� d�kaon�nu�� 
�K

� isovector products� v�A�B�� �
�
Tr�AB��

v�pion�pion�� �
��a�bTr�� a� b� � � � �� v�d�pion�mu��tau��� 
��

�

� isospinor contractions� m�A�B�C�� A�B�
C
�

m�kbar�d�kaon�mu��� K
�K� m�kbar�pion�kaon�� � � �K�K�

� commutators� c�A�B�� �A	B��

v�c�pion�d�pion�mu���tau��� �a�
��b���i�ab�� � �i �� � 
��� � � ��
m�kbar�c�d�pion�mu��d�pion�nu���kaon�� �i �
�� � 
��� � �K�K�

The output is written to the �le lagrangian�save and breaks the lagrangian into

pieces of manageable size� The di�erent parts of the lagrangian are named LXyZ� where

X is the chiral order as in L� versus L�� Z is the number of boson �elds appearing in the

terms� and y is a letter which indicates the number of factors of Mq occurring in place

of derivatives� A few select lines of lagrangian�save are given below to illustrate�

L�a� � d�eta� mu����� � m�d�kbar� mu�� d�kaon� mu�� �

v�d�pion� mu�� d�pion� mu����

L�b� � eta��	
�
B	mhat��
 � 
�	B	ms��
� � 
�
B	mhat� � B	ms�	m�kbar� kaon� �

B	mhat	v�pion� pion�

The translation of the lines above is

L�a� � �
� 
�� � 


�
� ! 
�K


�
K ! �

� 
��

�
�	

L�b� � �B� %m� � � �B��ms ! %m�KK � �
�B���ms ! %m� ���
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																				 lagrangian�math 																								�


	 symbolically expands the SU

� ChPT lagrangian in terms of the 	�


	 embedded SU
�� fields� out to � bosons for L� and � bosons for L� 	�

�� �definitions�math�� timetag��Session started����

mdiff��� 
	 drops all isospin violating terms� remove line to keep them 	�

X�Xd��	B	��mhat	one�mdiff	tau
���������ms���

P�boson	Sqrt���	��pion�Sqrt����eta	one�Sqrt����kaon���kbar���	eta�Sqrt������

U�matrixseries�Exp�
I�F�	����P��boson����� Um�derivative�U�mu��

Ud�matrixseries�Exp�
�I�F�	����P��boson����� Udm�derivative�Ud�mu��

timetag��Defined the basics����


	 Calculate L�a 	�

UmUdm�product�dot�Um�Udm��boson����� L�a�trace�UmUdm�	
F������

�L�a��L�a��L�a���Map�reduce�Coefficient�L�a�boson���������������

L�aN�Expand�reduce�L�a��boson�����
L�a��L�a��L�a����

Save��lagrangian�save��L�a��L�a��L�a��L�aN��

�Um�Udm�UmUdm��Map�truncate����boson�������Um�Udm�UmUdm���

Clear�L�a�L�a��L�a��L�a��L�aN�� timetag��Calculated L�a����


	 Calculate L�b 	�

XUd�dot�X�Ud�� UXd�dot�U�Xd�� L�b�trace�XUd�UXd�	
F������

�L�b��L�b��L�b��L�b���Map�reduce�Coefficient�L�b�boson�����������������

L�bN�Expand�reduce�L�b��boson�����
L�b��L�b��L�b��L�b����

Save��lagrangian�save��L�b��L�b��L�b��L�b��L�bN��

�XUd�UXd��Map�truncate����boson�������XUd�UXd���

Clear�U�Ud�L�b�L�b��L�b��L�b��L�b��L�bN�� timetag��Calculated L�b����


	 Calculate L�a 	� TUmUdm�trace�UmUdm��

TUmUdn�trace�product�dot�Um�
Udm��mu��nu���boson������

L�a�
L�	product�Times�TUmUdm�
TUmUdm��mu��nu���boson����

�L�	product�Times�TUmUdn�TUmUdn��boson����

�L
	trace�product�dot�UmUdm�
UmUdm��mu��nu���boson����� ��

L�a��reduce�Coefficient�L�a�boson����� L�aN�Expand�reduce�L�a��boson�����L�a���

Save��lagrangian�save��L�a��L�aN��

Clear�Um�Udm�TUmUdn�L�a�L�a��L�aN�� timetag��Calculated L�a����


	 Calculate L�b 	� TpXU�trace�XUd�UXd��

L�b�
L�	product�Times�TUmUdm�TpXU��boson����

�L�	trace�product�dot�UmUdm�
XUd�UXd���boson����� ��

�L�b��L�b���Map�reduce�Coefficient�L�b�boson�������������

L�bN�Expand�reduce�L�b��boson�����
L�b��L�b����

Save��lagrangian�save��L�b��L�b��L�bN��

Clear�UmUdm�TUmUdm�L�b�L�b��L�b��L�bN�� timetag��Calculated L�b����


	 Calculate L�c 	� TmXU�trace�XUd�UXd��

TpXUXU�trace�product�dot�XUd�XUd��boson�����product�dot�UXd�UXd��boson���� ��

L�c�
L�	product�Times�TpXU�TpXU��boson����

�L�	product�Times�TmXU�TmXU��boson�����L�	TpXUXU ��

�L�c��L�c��L�c�� � Map�reduce�Coefficient�L�c�boson���������������

L�cN � Expand�reduce�L�c��boson�����
L�c��L�c��L�c����

Save��lagrangian�save��L�c��L�c��L�c��L�cN�� timetag��Calculated L�c����


																				 end of file 																								�
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																								 definitions�math 																								�


	 defines functions called by �lagrangian�math� 	�


	 time�stamp printing function 	�

timetag�msg����
Print��� timenew�SessionTime���

If�untimed� 
timeorigin�timeold�timenew� untimed�False�� ��

Print� StringTake�msg��spaces�����PaddedForm�
timenew�timeold��� �
���

PaddedForm�
timenew�timeorigin��� �
���PaddedForm�TimeUsed���� �
�� ��

timeold�timenew ��

untimed�True� spaces�� ��


	 catagories of symbols which are used in simplifying rules 	�

fields��pion�kaon�kbar�eta�� ident���one�����������

structs��pion�kaon�kbar�one�tau
�� bras��kbar�� kets��kaon��


	 functions called directly from �lagrangian�math� 	�

truncate�exp��xpn����Expand�Normal�Series�exp��First�xpn����Last�xpn������

derivative�exp��var����
D�exp�var�NonConstants��fields�

��� Dot�������������� ��� Literal�D��f��v��������d�f�v� ��

dot�x��y����
distribute��

�Dot�x��������y���������Dot�x��������y���������

Dot�x��������y���������x�������	y���������

�Dot�x��������y���������x�������	y��������

Dot�x��������y���������x�������	y�������� ����

product�mult��x��y��xpn����
Module��i�j�coeff�result����


coeff�Coefficient����First�xpn�������

For�i���i��Last�xpn��i��� For�j���j��i�j���
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Appendix B

Recursion Relations for �� F � ���

We start with the free	�eld Lagrangian for a �complex� heavy scalar �eld�

L
 � �y

�
iv�
 !

r�
� ! �iv�
��

�m

�
�

where v� is the scalar	�eld velocity and 
�

� � �v�
�� �r�

�� We seek a rede�nition of the

scalar �eld � � F � ��� which eliminates secondary time	like derivatives of the heavy scalar

in favor of higher powers of the space	like derivative r�
��
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The general �eld rede�nition we consider here is
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	X
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f jk
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and constraints on the form of L�

give recursion relations for the coe
cients f jk � Using

integration by parts� we �nd the recursion relations are
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and determine the coe
cients in the sequence f�� 	 f
�
� 	 f

�
� 	 f

�
� 	 f

�
� 	 f

�
� 	 f

�
� 	 � � �

Solving for F � ��� is simpli�ed by recognizing that the coe
cients gj must reproduce

the kinetic energy and well	known relativistic corrections� L�

� ��y�iv�
 � %K��� where

%K �
q
m� �r�

� �m

� �r
�
�

�m
� r�

�

�m�
� r	

�

��m�
� � � �

We postulate that the �eld rede�nition is a function of one of the combinations �iv�
 �r�
��

or �iv�
 � %K� only� then verify that only the form �iv�
 ! %K� satis�es the recursion rela	

tions� We construct the solution through trial and error� guided by comparing expansions

of the trial function with the recursion relations above� and �nd

F � ��� � �
�

� !
iv�
 ! %K

�m

�� �
�

���

Inspired by hindsight we present a formal� and much shorter� derivation of this result in

Chapter ��
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