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ABSTRACT
A special problem of panel flutter is considered by the method
of Galerkin. The solution to the supersonic, non-steady potential
equation is obtained by the approach of Garrick and Rubinow. Plate
equations of motion are obtained by use of the Lagrange equations.
Numerical solutions to the flutter determinant are presented for two
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LIST OF SYMBOLS

XeY92Z Cartesian coordinates

Ly . Streanwise length of the plate (x~direction)
L, Bay length of the plate (z-direction)

M Mach number (M= £)

U Free stream velocity

a Free stream velocity of sound

B=a/ M -1

t Time variable

Q Supersonic potential f'unction

®(xyy)  Plate mode shape

A n Plate mode amplitude factor

m Mode number in x=direction

n Mode number in z-direction

® - Angular frequency associated with flutter

Wy e Natural angular frequency associated with the plate

wl ;
k = -UJ' Reduced frequency

Wow Upwash

foe = Alseiw"' Generalized coordinates
T Kinetic energy

v Strain energy

Pe Plate density

h Plate thickness

L,s Summation indices
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p=—FH Plate flexural rigidity
12(1 = v9)
E Modules of elasticity
v Poisson's ratio
A -
&
: > Quantities used to evaluate Q'mnts
%
AL ym)
Q'mnﬂs Reduced generalized forces
el
B = -QF- Mass ratio
Py
1= n,cos 6 +y
~x=£
To =B
=1 (=Y
6 = cos (;:1:75 ) B
Pa Air density
g Dummy variable in x~direction
x -
'Cl = 2 (M - Sin e)
af
x =&
72 = 2 (M + sin 9)
ap
¥ = tan™! ( %§') Phase shift in upwash

/T

boalpsle Specified integrals

n

i



J Bessel's function of order zero

o.
dl \ Bessel's function of order one
o= W
Y
B
2 2
= 1 (ki o
b= ‘-r\/ﬁ3 ) +( R )
Nx’Ny Inplane plate stresses
Ly .
R =-"_'2' Aspect ratio

1

A = %cos [11'(-2—'—4—;—-1-)]

r Summation index

q Summation limit
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1. INTRODUCT ION

The problem of flutter of a thin elastic plate subjected to a
supersonic stream on one surface has received considerable study. It
seems that in most such considerations some approximation in addition
to those of linearizing the aerodynamic and plate equations is used.

In his Ph. D. thesis (1), Eisley carried out in detail the case of
"strip theory®. In the same work Eisley suggests a method for finding
the exact solution by supposition of two separate problems. The first
of these problems is that of a large number of bays side by side (and ‘
running at right angles to the flow direction) fluttering in phase with
each other (see fige 1). The second is the same except that the bays
now flutter out of phase with their neighboring bays by 7 radians (see
fige 2). The two solutions would then be added to give the solution
for discrete bays surrounded by non-fluttering plates.

The second of the problems has interest of itself since it seems
likely to be at léasi a first approximation to the way in which the
skin on wing or fuselage shell might flutter if the constraints at the
edge of each bay are close to the case of simple supports, And in addi-
tion it lends itself to a simple model analysis which may yield an
exact solution to the linearized, non-steady, supersonic potential
equation.

It is the purpose of this work to pursue the second problem men-
tioned above, i.e. the supersonic flutter of a plate divided into many
bays (at right angles to the flow direction) fluttering out of phase

with its neighboring bays by T radians.
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2. PROBLEM STATEMENT

The configuration to be studied here is depicted in fig. 2. It
is composed of a uniform elastic plate of thickness h mounted on rigid
simple supports at leading and trailing edges, and at a number of lines
spaced uniformly in the y-direction. The individual bays are of length
L, in the x or streamwise direction and L, in the y or spanwise direc-
tion. The upper surface of the plate is subjected to a supersonic
stream at Mach number M and density Pye

The plate has a flexural rigidity D and is subjected to inplane
stresses N in the x-direction and Ny in the y=direction.

In the following work a solution for the aerodynamic potential
equation is found and from it generalized forces are calculateds These
generalized forces are then used with the Lagrange equations to deter-

mine the flutter determinate (2).
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3. AERODYNAMIC SOLUTION

The linearized, non-steady, supersonic potential equation is

2 2 2 2 2 |
RO % Y5, A% 8.0
ox dy az a® oxdt  adt

where BZ = W - 1, a is the velocity of soundy, and M is the Mach number
in the free stream. The three-dimensional solution of this equation
due to Garrick and Rubinow (3) is briefly outlined below and is then
applied to the problem under consideration.

The Garrick and Rubinow solution to equation | is obtained from
the solution of the simple wave equation by using a Lorentz transfor-
mation and a Galilean transformation of the solution to the wave equa-
tion. The boundary condition that the airflow must be tangent fo the
air wetted surface is used to evaluate the potential at the surface

2z ="'0+ in the form

W(t-fr:l) + w(t=t,)

?(an70 ’t) = - jx J 2 W(E, <= dndg | (2)
") )
where
_ M(x=E) (eny ) (np=n)
T T2 T -
af af
M(x=E) v(ﬂ'ﬂl)(ﬂz‘ﬂ)

MEY=Ng oy MEYEA, o N, =T e
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Garrick and Rubinow then use the substitution

-y
x =

n=mn,cos0+y , where 6= cos™! B

to obtain the potential equation in the form

9xsy,075t) = - 5,%;;[2 ]Z WIE, (0) Jlw(t= 1) +w(t-1,)Jd6dE  (3)

where
T x-8 (14 = sin 6)
= i = S1n )
1 332
(X-E)(NH i 6)
Ty = sin
2 352

It should be noted that this is an integral over a Mach cone.
By the nature of the problem to be examined, the mode shape to

be used is suggested as

Blxyyyt) = O (xyy) &'t

. Arm sin (%) sin('-nle > eimt (4)

From this the upwash is found to be

W(xyy,0 ,t) = [ U gﬂi' + jad'] o't (5)

the first term being due to the plate slope and the second due to the

plate motion. In more detail equation 5 becomes
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W(x,y90+at) = AmeimtSin(m )[Q.l._'l‘lli cqs("'n'g'lz') +iw sin(ﬂgl‘&)] , (6)

which may be written

W(xyy,07,1) :Am(%l)«/ men? = k2 sin(DT:sz) cos (mlz-[l_;; - Peiet 1)

where
. ol
= oamleike ipant §
\1/ = tan (m,n.) 9 k = U Y

When equations 3 and 7 are used together the expression for the

potential function becomes

‘P(X7Y10+’j}ﬁl
: 2 iot
. A _Ua/m -k“ e X T . .
=~ I " J‘Gfosin(ﬁi%n)cos(mt‘wli-\}f) [e™19F) 4+ ¢™'9%2]d0dE
TL,B
1

€3)]

Replacing 1, T and T, with the expressions following equation 2 and

simplifying, the expression for ¢ becomes

q;(x,y,O"',t)
2 2
A U A/mPme=k® . x .
_ A m oiot ,Jx e-x(Q/Ll)(X'E)cos(&Ll‘f.- vidg, 9
T LIB 0 1 °
where
ar

lO . . T
cos| ‘sin 0] sin (¥ (y + ncos )] d0 .
aE Ll y+ i,
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To evaluate | it is written in the following ways

n (n—l_?'rz-x) JJOT cos|[ % sin 6] cos [ 1&21’110 cos 0] do
. (10)
T
+ cos (DT_I;l) JO cos[:nTo sin 0] sin [%Z- 1, €0S 8] 46

As pointed out in reference | the second integral is identically zero.

To evaluate the first integral the relation

J {4/ Y +a° } = %J‘ cos[a cos 0] cos [y sin 6] dO , (1)

which follows from page 21 of reference 5, is used to arrive at the

expression

I, = sin ( ﬂ——¥) J «\/// ki )%, n-Z-T) } (12)

To determine the generalized forces the pressure distribution must be

calculated from the supersonic potential by means of the momentum

equation

Dy 1
t@" paGRAD(P),

where
d = GRAD ¢
then
D -1
t@=- 7P, (13)



or

— a_ a.
P=-p,Ugco™ 5T® - (13a)

Introducing equations 9 and 12 into 13a yields

P == p H[U{1_ + cos( '“,f’l" - P} + iwly] (14)
where

| = -j: -1 /L)) (8D o 1“-’—’-—5 -0 ¥ x o[ (x - 8]

L
+Lutb -0l &

1y = [ TV ER g (BLE_ )y [ & x - )] &

0° Ly o~ B
/2 2
A 1T2_k .
H:--ﬂ'— sm(w)ew‘)t
L, Ly

2 2
r= {l\/kgﬁ:) + ()

The Bessel functions in these expressions are replaced by the

following approximate expressions:

q
r 1 ,
ol -0k 3 E_l coslh, (x = B + 20y [ f (x = 8]
9
GIE & -01= & T cos m( Z=L) sin I (x - 8]
- B 9 =

gy [F =B+ Y[ § < - 8]

= 'Ecos‘n'(zra ) (15)
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in which the trailing terms are estimates of the error in taking q
terms of the series as an approximation to the Bessel function.

. The expression for the pressure distribution associated with the

mn? mode is the rather lengthy expressions

. A . .
P = Pa{ -8 2 A/ men? - k2 sin( D'LJI;L )em’t}{ccs( ﬁgl-& -¥)

r(e-i(gyl'l)(lx-g)cos( m-\y) cos [N _(x = E)]dE
r=1°0 Y r

4 X
2 |

L e~
9 r=1 “0

i (Q/Ll ) (x-‘i)cos( ﬂlﬁi - {)cos T (zzgl)sin[?\r(x-{) ]dE}

(16)
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4, PLATE EQUATIONS OF MOTION
The equations of motion for a single bay subjected to the pres-
sure distribution calculated from the full group of bays are to be de-
rivede This is a correct procedure since the assumed mode shapes- for
the adjacent bays only differ in sense.

The assumed mode shape is

@(xyy,t) = 5% figsin -{'_’—25) sin( %’;l) a7
_ x oot
Frs = Aee®

while the generalized forces are given by

)sm(-—l)dydx (18)

L

Q, 5A u'—z OB (
Is ls z zn J s sin

and the Lagrange equations are

< (aT }ti‘-’- =qQ (19)
dt afﬂs afﬂs s

The kinetic energy for a plate is given by

p.h L L

=g )

J 2 (‘1.3)2 dxdy
0%o0

_-_--—3— ; ) J J (fls (Erlx)sm (%_Ezl)dydx (20)
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which yields

)(5) 13 b

The strain energy, V, calculated from the linearized plate theory
has two contributions: one from bending, Vg, and one from the in plane
stresses, Vro |

The strain energy due to bending is

L L 2
B () e B
2 6y2 ‘

6x2 ay2

2 :
2 - |
21 = ) (g—%) Jaydx (21)

or, performing the indicated operations,

DLlLZ

5., 0 2 22
p=—2 ¥ Ty + (E)] (21a)
and 3
: Eh
D= —=t—sm
12(1 - v9)

v being Poisson's ratio and E, Young's modulus.
If N, and Ny are the in plane stresses in the x= and y~directions

respectively the strain energy due to them may be expressed as

L L
v = - %JOIJOZ[NX( z ) N (5 ) Idydx (22)
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Again performing the indicated operations

11'2L1L2

L 200 ¢ 42 2
B bl OB RN %l) 1, ()7 (222)

If the relations for strain energy and kinetic energy are sub-

stituted in equation 19 the equations of motion are found to be

L,L
o 2 Pet1-2
(fﬂ,s + mlsfﬁs) 4 - Qﬁs (23)

with Wpe being the natural plate frequency defined by

2 -

(@, )% = I (DL £)% (21202 (L)% +n (2)?)

is psh { L1 , L2 X Ll y L2 }
An equivalent form of equation 23 which will be more useful in

calculating the flutter determinate is

Qﬂ.s PaLlLZ 2 2
;TcTat =Py %: % Am&mnﬂs = Als 4 [“)Qs -] (232)

Representation of the Generalized Forces
At this point the principal remaining difficulty is to find a
usable representation for the generalized forces. 1t will be recognized
that substitution of equation 16 into equation 18 yields a rather cum-
bersome relation containing both double and triple integrations. The .
exponential is replaced by use of Euler's formula while the products of
trigonometric functions are converted to sums of trigonometric functions.

In this form the integration over £ can be carried out conveniently,
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After considerable manipulation there are left some thirty integrals
which must be carried out over x and y. These integrations yield re~

sults of the following form:

. Lyl . L7 \1
cos ¥ + sin ¥ [ sm{L (%1' M= T_-llr)} , sxn{Ll (gl.;l- At E:lg)} j
3 - L

(9 At ) 2(Q M= 1) 2(%l-xr+-fl—”)

. - 2

it (f-n =g #0 (24)

and
H
5 cos ¥ Q T
lf. ( L - k - ) = 0
( %1 =N * T“.‘-l’-’ o

When all these terms are combined and simplified to a certain extent,

the representation for Q, _ is

Q
;ﬁtzpa% % Amngrmls

u2 «/ 22 - k2 J L3
Unts = [ B ][Al"' (':g)é'rzx Sl 'Erz 1A3] (25)

The representations for A}, A, and Ay are given in Appendix A.
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5¢ The Flutter Determinant
The condition that the flutter represented thus should exist is

that the amplitudes, A, have a non-vanishing value. This means that
the determinant formed from the coefficients of A __ in equation 23a

should vanish identically. This condition may be written as

4
J - =
l an.s[.( ) (k“) ] =2 Q= 0 (26)
k11
where
Qt = s Pal)
mn s U2L2 ? p,h

] if m=g andn=s
o =
mnLs 0 if m#2 orn#s

The term containing b, comes in because By, =R, at d=m and

S = Ne
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6. NUMERICAL CALCULATIONS

Numerical calculations have been carried out for a two mode analy-
sis of two casest R=1, M=2and R=1, M=J2

The first stage of these calculations was to determine the values
of Qim* from equation 25 where q is taken as three. This value for g
was chosen since it will allow a good representation for the Bessel's
function approbximations without making the computational routine ex-

cessively lengthy. The range of the reduced frequency parameter, k,

was from 0,1000 to 0.5000 in this calculation. For the values of @"!Lm

thus obtained see tables | and Il.
Stage number two in the calculation was solution of the two mode
flutter determinant using the results of the first stage. As a matter

of convenience the notation K = -E'Z and ¥y =‘k£2 is introduced and the
11 11

solution of the flutter determinant is carried out in terms of these
parameters. Since W is a ratio of real masses only those values of K
and y which lead to a real value of u correspond to the existance of

flutter. Solutions of the flutter determinants are presented in tables

Il and 1V,

[}
*Qr:“_ is written in place of L e} .

2, ..
UL,
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7. DISCUSSION OF RESULTS

An interesting limit case can be obtained from the expression for
Qim if the aspect ratio is allowed to approach infinity. First let
equation 23a be divided by —2-2- o Then we see that what concerns us is
the limit of %2 Q. as the aspect ratio (or L,) tends to infinity.
Then if equation 25 and expressions for A, (which are given in the
appendix) are considered it is seen that a factor -2-2- is present in
each 1'\.i to cancel the L, factor we have in front of Q‘mn)s’ Examina=-

tion of the remaining expression shows that 'ZL-ZAI is now independent

of aspect ratio, while -2':2A2 and -l2_-2A3 depend on aspect ratio through

2 2"
I‘/p=ti—g \/(—’fgi) + (I,

In the limiting case of infinite aspect ratio then I'/B is re~

the parameter

plaéed by D'V/B = LBI%Q (which is equal to the parameter ¢ used by Shen (8)
and Eisley (1) ). Thus the limiting case is achieved by replacing I’
by I'* in the equations for '%Z-Ai. This causes a change in the terms
I’y N, and @20 But none of these terms is a function of L or m so
that the form of the expression for Q’}m is not altered.

It is also to be noticed that this form for Q') is such that
Qj #-Ql,, aresult which does not agree with Shen and Eisley.

Phase angle relations of @} in the case R =1, M =2 are shown
in figure 3. It is seen that @, and @}, have a stronger phase depen-
dence on k than do either @}, or @3, Tﬁis difference of dependence
on k can be seen by examining the expressions for Ai in the two cases

m=L andm#L as shown in the appendixe
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The results of the numerical calculations indicate that for the
range of k considered, no flutter exists at M= 2, R= 15 while for
M =42, R=1 flutter does not exist except in the neighborhood of
k = 0,250, These results show the need for further calculations; first
in the neighborhood of k = 0.250 for R=1, M =2, and secondly ex=
tending the range of k for R= 1, Ml = 2, These calculations have not

been carried out to date because of their rather extensive nature,



l.
2.

3.

4,

5.

6.

7.
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APPENDIX A
In the representation for Q‘J\n gy three terms Ay Ny, Ay are used.
In each of these the terms sin { and cos ¥ appear. Since these functions

are given by

. ik i
sm\y=7-%7——7 3 cos V¥ = I
A/ mm -k ’ :;mﬁ-kl2

it will be convenient to give the representations for ./ m2712- k2 Ai
rather than for Ai'
It should also be noted that the expressions Ai are composed of

terms which have different values under the conditions o equal or not

equal to (’%—T- ), where
1

Then the expressions for m211'2 - k2 Ai are given below with the con-

dition that L, be set equal to unity which is really the same as using
L

a nondimensional length system Ll' = 'l:i' y Lot = -LT .

A1=A2=A3=0 if s#n

L Al=-;-2-(ik) if m=)

-;—2-[: fzm ][1 Ol Ty
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(=1) 417'22m(a + ik) sin a
2 ] 1
- k& AL === 1 - 1i)
m by 16{L (a _lznzxal 2 ] !

8)) 4ﬂ2,0.m[a2(1 - ) + i(m 7+ k)] sin ay -

‘L L. (a,? = 1) ]

Q2eth )+x 2(en )= )2 (e ) -

" Q4m
2][1"(“) :H_ @ 21T2)(a2_

If a, =0, replace the first term by

mvr(az-k)

ol -

If &2 = lm, replace the second term by

az(m T - k)

2 - mln?

a2

If m= L, replace the third term by

. [ K\, (alo:z m21r2) ---2-t1121r2(c1,l + a2 - 2112):l
= ﬁ - m2112) (a2 - m21r2)
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| (—l) 417'2ﬁm sin a — (m T= k)+i'a (.k. -1)=
/ 211-2-k2A3_L2003[n.(__l)]{[ 7> 2] 21; i ]

2

(-1) 41129.m sin a, : l)(l i)
+[ = : ][ ]

n Qajay - K -n2?) o
oty I - I s

If o =R, replace the first term by

i2m1T (k - (12)

If a; =4m, replace the second term by

iZCLI(k + m’IT)

AR

If m=0 , replace the third term by

14)\ (Qm'ﬂ'- alaz - m 1[2)

-? %) (°2 112)

The techniques used to determine these representations for A,
will be illustrated by a specific example which is typical. To es=

tablish a useful representation for Ay the expression



21
J:z lesin(%)sin('g{%)sin(ﬂ{ﬁzﬁ) J:e-im)(x-"g)cos(&g_g 9

sin[h, (x-E) Joos =1 ] o€ ox dy

must be carried out. To do this we first consider the last integral

which we write as:

(e)- i) cos [m( 2= ]

= ( J; cos[ %l(x - £)] cos (Lﬂ_LT.TiE.. - V) sin[)\r(x -E)] &

i f:sin[ %1 (x - &)Jcos(m-c—rlg - Psinlr (x - €) ]d€> cos[ﬂ(zz-;l)]

And then let us consider E)e The triple product of trigonometric

funétions can be expanded and recombined to give the following relation

g = % sin(alx) :;{cos[g(aﬁ —r Y]+ cos[E(al L, UL yy Q{]}d&

- % cos(alx)‘ ism[&(aﬁ ) =Y+ sm[&(al- n ) 'HH}

+% cos ()| Q;{sm[i(az L)-yl+ sxn[E(az L L) +‘¥]}

- -‘l“ sin(azx):;{c%[ﬁ(ag nT‘_llT‘ ) =yl + °°s[g(“2';'nf1ir' ) + ‘lf]} &

These integrals are easily carried out and after some manipulation

there results
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2 2 , ‘ :
}\I’D\L%-( l'fl‘L_:Tl_T_ ) "3( %\) ] cos ( mf"n;x - \'y) . cf)s(ajgx - \1/)
[y ™ (FE)%lay BF)%) (e - B

cos(ayx + )

cos(ayx +y) cos(a;x =) }

+ -
o7 L OT _oT

To achieve the final representation for Ay integrals of the sort

L, oL
2 71 . odx sy . Ny
€,(x) sin (=) sin ( ) sin ( ) dx dy
are carried out to give the results which have already been stated.
The expressions for A1 and A, are obtained by a procedure similar

to the one outlined above for determining A3.
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FIG. |
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k.
0.1000

0.1667

0.2500

0.3333

0.5000

k

0.1000

0.1667

0.2500

0.3333

0.5000

e

-0,023911
-0.068941i

-0.011462
~0,061320i

0.003678
-0.051217i

. 0.018689

~0,055691i

0.050360
-0,077861i

GENERALIZED FORCES @ M

|
Q)
-2.60936
2.70814i

=1,13992
0.84016i

-0.54580
0.16111i

-0,12151
~0,51170i

-1.21504
3.19141i
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TABLE |
GENERALIZED FORCES @ M = 2,

QiZ
0.40824
0.034359i

0.41283
0.0356271

0.41976
0.,037817i

0.42849
0.040660i

0.45452
0.048176i

TABLE |

Q"iz,

-1,60305
0.24492i

-0.36107
0.24925i

:0.13062
0.24716i

0.50912

0.26758i

~0.81620
0.29459i

=
Q)

~0,42902
-0.034625i

~0.42416
-0,036082i

-0.41843
-0,038552i

'0.41311
-0.041659i

-0,40380
-0.049903i

-0.81356
-0,24685i1

-0.79826
-0.254111

-0.78195
-0,26563i

~0,76859
-0.28034i

-0,75334
=0.31717i

)
0.018476
0.037010i

0.016834
0.0529701

0.,014785
0.072896i

0.012784
0.092746i

0.0091158
0.13193i

W,

0.047273
0,042873i

0.057302
0.046122i

0.069655
0,04358i

0.082915
0.031751

0.05449
0.050221
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TABLE |11
RESULTS OF THE FLUTTER DETERMINANT

emM=2y =1
k K Y
0.1000 5.30832 -2.09951
2.43099i 0.726361
0.1667" 4,18323 =2,60242
3.404551 0.25052i
0.2500 3.84935 ~2,62275
-46,081461 7.9242%
0.3333 2.00135 =2.,30937
-3.18392i 0.82689i
0.5000 1.76031 =2.33974
~3,663031 1.030111
TABLE 1V
RESULTS OF THE FLUTTER DETERMINANT
eM=42, =1
k K Y
0.1000 6.18286 0.055945
-0,0285021 0.108723
0.1667 5.96745 0.020169
0.24015i 0.51767i1
0.2500 2.,40872 0.62436
03333 6.27609 -0.12757
0.5000 6.16529 0.036006
0.015593i 0.16634i



