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ABSTRACT

To obtain accurate information from a structural tool
it is necessary to have an understanding of the physical
principles which govern the interaction between the probe
and the sample under investigation. In this thesis a
detailed study of the physical basis for Extended X-ray
Absorption Fine Structure (EXAFS) spectroscopy is presented.
A single scattering formalism of EXAFS 1is introduced which
allows a rigorous treatment of the central atom potential. A
final state interaction formalism of EXAFS 1is also
discussed. Multiple scattering processes are shown to be
significant for systems of certain geometries. The standard
single scattering EXAFS analysis produces erroneous results
if the data contain a 1large multiple scattering
contribution. The effect of thermal vibrations on such
multiple scattering paths is also discussed. From symmetry
considerations it is shown that only certain normal modes
contribute to the Debye-Waller factor for a particular
scattering path. Furthermore, changes in the scattering
angles induced by thermal vibrations produces additional
EXAFS components called modification factors., These factors
are shown to be small for most systems.

A study of the physical basis for the determination of
structural information from EXAFS data is also presented.
An objective method of determining the background absorption

and the threshold energy is discussed and involves



Gaussian functions. In addition, a scheme to determine the
nature of the scattering atom iIn EXAFS experiments 1is
introduced. This scheme is based on the fact that the phase
intercept is a measure of the type of scattering atom. A
method to determine bond distances is also discussed and
does not regquire the use of model compounds or calculated
phase shifts. The physical basis for this methed is the
absence of a linear term in the scattering phases.
Therefore, it is possible to separate these phases from the
linear term containing the distance information in the total

phase.
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CHAPTER I

INTRODUCTION TO EXTENDED X-RAY ABSORPTION

FINE STRUCTURE (EXAFS) SPECTROSCOPY

The term extended x-ray absorption fine structure
(EXAFS) refers to the modulations in the x-ray absorption
coefficient which occur on the high energy side of an
absorption edge. The first experimental observation of
these oscillations was made by Frickel and Hertz? in 1920.
The observed structure was confined to the near edge
region3, however, and thus could be readily explained by the
theory of Kossel.? As experimental measurements improved,
the structure was seen to extend many hundreds of electron
volts past the edge with an amplitude of approximately 10%
of the edge itself. Accordingly, a new description of this
phenomenon was regquired.

An explanation of the physical basis of the EXAFS
effect in condensed matter was first proposed by Kronig.5
In this case, the EXAFS was described in terms of a
modification of the final state photoelectron or Bloch wave
due to scattering at the boundary of the Brillouin zone.
Since this description depends explicitly on the periodicity
of the solid such an explanation became known as a long
range (LRO) theory of EXAFS., To explain the observation of
EXAFS in molecules Kronig also proposed® 5 short range order
(SRO) theory, in which the final state photoelectron wave is

scattered by neighboring atoms. Apparently, Kronig never



realized that the same basic physics could be used to
explain the observation of EXAFS in both solids and
molecules. Indeed, as late as 1963, there was still a great
deal of confusion as to which theory was the most
appropriate description of EXAFS.” A major source of this
confusion was the lack of quantitative comparison between
theory and experiment,

It is now generally accepted that, in most instances, a
single scattering SRO theory is an adequate description of
EXAFS. The normalized oscillatory component of the

absorption coefficient above a K-edge may be expressed as:

LSRN LES (kM) |
X (k) —z J kg' J sin(2kry + 84) (1.1.1)
3 i

This equation describes the modification of the
photoelectron wave, which originates from an absorbing atom
which is situated at the origin, and is scattered by N5
neighboring atoms at a radial distance ry away. The
amplitude of the EXAFS oscillations is dependent on the
ability Ifj(n,k)l of these atoms to backscatter the photo-
electron, Note that the EXAFS is expressed in terms of the
photoelectron wavenumber k which is defined by k=[2m(hw-
Eo)]l/z/h, where huw is the x-ray energy and Eo is the
threshold energy. The argument of the sine wave in Eq.
(1.1.1) is the total phase difference between the scattered
and unperturbed photoelectron waves. This phase difference
has a contribution due to the path difference (2krj)

together with a phase function® ej(k) which represents the



phase shift due to scattering off both the absorbing and
neighboring atoms. As suggested by Schmidt,? a term to
account for thermal vibrations and static disorder should be
appended to Eg. (l.l.1). Furthermore, since electrons which
suffer inelastic losses may not contribute to the EXAFS, a
mean-free path damping term must alsc be included in Eg.
(1.1.1) .10

The present interest in EXAFS began with the work of
Sayers, Stern and Lytlell who realized that if Eq. (1.1.1)
is a valid description of the EXAFS, then it should be
possible to invert this expression to obtain the distances
ry- In particular, they showed that a Fourier transform of
Eq. {1.1.1) is a form of radial distribution function in
which the absorbing atom 1is located at the origin.
Accordingly, there is a peak in the transform associated
with each shell of atoms surrounding the central atom.
These peaks deo not occur at the true shell distances due to
the presence of the phase fun;tion ej(k) in the argument of
each sine wave. Therefore, to obtain distance information
from EXAFS the k dependence of these phase functions must be
known. If in addition, cocordination numbers are to be
determined, some information on the scattering amplitudes is
required, together with a knowledge of the Debye-Waller and
inelastic damping facters. 1In practice, however, model

12 and theoretical calculationsl3 are used

compounds
extensively to extract structural information from EXAFS

data.



The increased understanding of the physical basis of
the EXAFS effect has been paralleled by a rapid development
in the instrumentation wused to measure EXAFS spectra.
In particular, the advent of synchrotron radiation sources
has provided a major impetus for the development of EXAFS

as a structural tool.14

Furthermore, high flux laboratory
spectrometers, which utilize rotating anode sources and
large crystal monochromators, are now available . These
advances allow high signal to noise EXAFS spectra to be
obtained in an acceptable period of time.

In view of these developments, it has been ocur
objective to carefully re-examine the physical basis for the
EXAFS effect. In Chapter II we have introduced a rigorous
scattering formalism for EXAFS, which accounts for the
presence of the central atom potential in a guantitative
manner, The formalism also demonstrates the close relation-
ship between EXAFS and the modulations observed in electron
yvield experiments. The contribution of multiple scattering
processes to the observed EXAFS, which was neglected by
earlier workers, is shown to be significant for systems of
certain geometries . 1In such instances, the standard single
scattering analysis methods are shown to be no longer valid.
However, a careful study of such multiple scattering data
should allow bond angles to be determined.

A formalism, which does not explicitly involve a
scattering description of EXAFS, is introduced in Chapter

III. This scheme allows an intuitive description of the



EXAFS in terms of the overlap between the initial and final
states. At sufficiently high energies this description
reauces to the standard EXAFS expression, Eg. {l.1l.1).
Unlike earlier theories, this formalism is wvalid over the
complete energy range and may be used to describe both bound
state transitions and shape resonances. Furthermore, the
expression for the final state structure is an analytic
function of k, and hence, may he used tc calculate the
damped or imaginary component of the photoelectron wave.

Since multiple scattering effects may contribute
significantly to the EXAFS, the simple treatment of the
thermal vibration given by Schmidt? is no longer wvalid. In
Chapters IV and V of this thesis we discuss in detail the
effects of thermal vibrations on EXAFS. The correlated
motion of the atoms involved in the scattering process is
explicitly calculated. The manner in which one should
analyze such data is also discussed.

The remaining chapters of this thesis are concerned
with the physical basis for the determination of structural
information from EXAFS data. All the experiments described
in this thesis were performed with the laboratory
spectrometer which is discussed in Chapter VI. An objective
method of determining the background absorptien and the
threshold energy 1is presented in Chapter VII. A novel
scheme to establish the nature of the scattering atom is
presented in Chapter VIII. Finally, Chapter IX demonstrates

that it is possible, contrary to current belief, to obtain



bond distances from EXAFS data without the use of model

compounds or calculated phase functions.
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CHAPTER II

THEQRY OF EXTENDED ¥X-RAY ABSORPTION FINE STRUCTURE:

SINGLE AND MULTIPLE SCATTERING FORMALISMS®

2.1 Introduction

Beginning with Kronig in 1932, a number of short range
order theoriesl™ !l have been proposed to explain the post-
edge fine Structure--the extended x-ray absorption fine
structure or EXAFS--of the x-ray absorption edge (see
reviews of this subject by Lee et 21”12 Sterni3 and
Azaroff14). With the exception of Lee's recent worklo, all
these studies suffer from difficulties in their treatment of
the outgoing photoelectron wave, the scattering potential,
or the central atom phase shift. Nevertheless, each study

arrives at essentially the same expression for the

oscillatory component of the K-edge x-ray absorption cross

section:
= n aon [ Flm, R
x(k)suo.=_2(e. rj)z i (7, k)
Hy i k?"j
x gin[2ky, +26,(k) + (k)] | (2.1.1)

where the symbols have the following meanings: k={[{2m(hw-

Eo)]l/z/ﬁ is the photoelectron wavenumber. E_. is the thres-

o)
hold or binding energy of the K-shell and hw is the energy
of the incident x-ray photon which is peolarized in the
direction &. The backscattering amplitude associated with

atom j 1is given by the expression fj(n,k) = Ifj(n,k)L



exp[i¢j(k)]. The phase shift due to the central atom
potential is 2 §,, and u (k) and u,(k) represent the
absorption coefficients in the presence and absence of
neighboring atoms in the final state.

In the case of polycrystalline samples, the geometric
factor (é.Ej)z, averages to a constant. Additional terms, to
account for thermal effectsl® and losses due to inelastic
scatterings, may also be appended to Eq. (2.1.1)

Equation (2.1.1) embodies, among other assumptions, the
single scattering approximation. That is, the photoelectron
ejected upon abscrption of an x-ray photon, 1is assumed to
scatter off of only one neighboring atom. This description
was recognized, by Lee and Pendry9 and Ashley and DoniachB,
as being inadequate for the study of non-nearest neighbor
atoms. These authors considered multiple scattering
processes with pathlengths similar to those of single
scattering processes but inveolving more distant atoms. The
effect was noted to be of particular impertance for multiple
scattering involving the first and fourth shells in metallic
copper, which are colinear with the absorbing atom. As the
scattering amplitudes of all elements are strongly peaked in
the forward direction, the presence of the first shell atom
causes a significant amplification of the EXAFS at a
frequency corresponding to the fourth shell distance. More
recently, Teo28 Jemonstrated the need to consider multiple
scattering effects in a variety of situations. Noc attempt,

however, was made to introduce a rigorous multiple



10

scattering formalism. In fact, the form of the EXAFS

28 is incorrect, since it

expression assumed by Teo
neglects a geometrical factor which does not average out in
polycrystalline materials (see Section 2.5).

In this chapter we discuss an approach which separates
the single and multiple scattering contributions of the
general problem, and develops computational methods
applicable to both. A general three-—-atom formalism is

developed and employed in the discussion of two physically

significant model systems.

2.2 The General Formalism

The x-ray absorption cross section in the dipole and

the one-electron approximations is given by:l6

o, =4ntakiw |[(f|&- v | |*N(w), (2.2.1)

where « is the hyperfine constant, o is the angular photon
frequency, and N(w) is the density of final states for the
photoelectron, The initial and final states of the system
(i and f) are both eigenfunctions of an approximate

unperturbed Hamiltonian H:
H=—-geVi~—— V. (2.2.2)

where Vv is the total final-state potential seen by the
photoelectron. V is represented by a sum of non-
overlapping, spherically symmetric, finite range potentials

centered arcund each atomic site in the system, including



11
the absorbing or central atom c. A schematic representation
of this final-state potential is shown in Fig. 1. The
potential energy between the atomic sites is assumed to be
constant and represents the zero of energy in the system.

In order to calculate the matrix element in Egq.
(2.2.1), it is necessary to find the appropriate
eigenfunctions of H. At energies corresponding to bound K-
shell electrons (the only initial state considered here),
the potentials of the neighboring atoms may be ignored, and
the eigenfunction of the resulting Hamiltonian is the usual

hydrogenlike wavefunction:
'z 3/2
(rli>=7r'”2(a—) exp{—Zr/a,) (2.2.3)
0

Twe factors influence the nature of the final state:
the potentials of the neighboring atoms and that due to the
central or absorbing atom. For photcelectrons of
sufficiently high energy-(approximately three times the
plasma frequencys), the attractive potential of the central
atom's nucleus, together with the influence of the other
bound electrons (though these are not explicitly considered
here), becomes negligible, and the Schrodinger equation

reduces to:

0 —
(E-H)f=V|fs, (2.2.4)

where H® is the free-particle Hamiltonian. This egquation

may be inverted to give the Lippmann-Schwinger equation17



12
[f )= R+ GV |f2) = |k} + G3T* | k) , (2.2.5)

where <r|k> are the normalized eigenfunctions of H°. We
shall use the minus form of Green's and T 6perators, so that
<r|lk> corresponds to the outgoing asymptote of the
scattering process described by <r|f>. The description of
the EXAFS phenomenon is thus expressed in terms of the state
of the photoelectron after the scattering process 1is
complete, Furthermore, this choice of asymptote most
clearly illustrates the close relationship between EXAFS and
the modulations observed in electron-yield type experi-
ments.29

The full T operator may now be expanded in terms of the
operators ty associated with the individual scattering

centers located at r=rj18

T=D t,+2_ t,Got,+ 2 £,Got,Goly+-r+ . (2.2.6)
i

i#y 1#], 8%

Note that successive scattering by the same potential is not
permitted.

Substitution of the first two terms of Eq. (2.2.6) into
the Eq. (2.2.5) yields an expression which may be
represented graphically as shown in Fig. 2. The first
diagram in this figure represents the simplest single
scattering case: a photoelectron ejected in the direction

e and scattered in sSome direction R by the atomic

jl
potential at r=r;. A similar interpretation applies to the

second diagram. The remaining diagrams represent double
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scattering processes in which the photoelectron is scattered
successively by two atomic potentials.

In particular, the third and fourth diagrams in Fig. 2
represent processes for which the second scattering center
is the absorbing atom potential. In such instances the
scattering path length is identical with that in the
corresponding single scattering process. Accordingly, such
terms must also be considered within our single scattering
theory. The term corresponding to secondary scattering by
the absorber was first discussed by Leel® and allows a
rigorous treatment of the effect of the central atom
potential. The approach adopted, however, was not
sufficiently general to be readily extended to multiple

scattering problems.

2.3 The Single Scattering Formalism

The two single scattering terms of Eg. (2.2.6) may now

be substituted into the matrix element in Eg. (2.2.1):

(f=|er|d=(k|e- r|d+ 2 k|G- T|D)
i
(2.3.1)
+ 2 (k|eGyGE - T,
J
where we have taken the complex conjugate of Eq. (2.2.5) and
have noted that t(z*)=[t(z)]t.
The first matrix on the right-hand side of Egq. (2.3.1)
is responsible for the wusual unperturbed photoelectric
effect (i.e., for u,), and is evaluated in Appendix A with

the result:
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(klz-r|i) =Mk, 2)k- &
z 572
)V Sk(a_o) (2.3.2)
(22 +k2)3
a

The remaining terms in Egq. (2.3.1) may be expanded in a

M(E,Z)=—-

complete set of states to obtain:
Z@M G- r|
; (2.3.3)
:Zf(k|t}|ri)(r,|65|r)é- £(r{3) dr dr,
H

and

k|GG - T = 2 [ k] E |7y G3 |
J J

(2.3.4)
Xy | £ | ¥y |Gy ) & ©{v | D) dr dr dr,dry |

The EXAFS effect may be viewed as arising from a

difference in phase at the origin between the unperturbed

photoelectron and one that has scattered off of a
neighboring atom. This occurs because the initial state is
highly localized at the origin while the final state is a
photoelectron which interacts with the neighboring atom
potentials. To insure intensity for the EXAFS effect,the
initial and final states in Eg. (2.2.1) must overlap, and
hence, only the component of the scattered wave which is
directed toward the origin is important. The simplest
description of such a phenomenon is thus one in which all
the matrix elements are expressed in terms of thelir
effective values at the origin. The coordinate system,

was chosen accordingly (see Fig. 3).
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All that remains now is to evaluate matrix elements of

the forms:

@' |Gslv) and ('|g]9) .

The configuration-space matrix element of the Green's
operator are given by the corresponding free-particle

Green's function:

m eihlr‘-rl
|G == 5 T T - (2.3.5)

Note that |(r| in Eq. (2.3.5) is of the order of a,/Z or less

while r' is restricted to a domain of radius a. around r:

J J
{see Fig. 3). Hence '~ rj and |r'-r| may be expanded as:19
|r' =r|=7+7+ (0’ =1, =1) +Ola,/7)) (2.3.6)

Therefore, the Green's function in Eg. (2.3.5) may be

approximated by:

? + 1 3 r
<r|co|y)z_§-:—;‘?gr—jexp[zk,-(r -nl, (2.3.7)

where kj=k?j is the direction of propagation of the
photoelectron. The error in making this approximation,
aj/rj, is small since the core electrons of the neighboring
atoms are responsible for most cf the scattering in the
EXAFS energy regime.12

Substituting the approximate Green's function Eq.
(2.3.7) intco the matrix elements Egs. (2.3.3) and (2.3.4)

permits us to perform the space integrals in the manner
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described in Appendix A, with the results:

el 2m)? 1 . s .
);<klt,coe- r|z)=—;m;2ﬂ) EM(k,Z)(e- P k|| Ry (2.3.8)

g o : 2(2m) 1
D k|GG - r|z>=2’"h§4”) =Mk, Z)(2 - 7,)
] b f

AP WA P (2.3.9)

where ka =-k?j 1s the direction of propagation of the back-
scattered photoelectron.

We may now relate the matrix elements of ti(rj) to
those of tg(O) which represent the identical scattering

problem, but centered about the origin<0
(k| £ k) = explilk, ~K) - £, )k ||k} . (2.3.10)

Since only elastic scattering events (i.e., !k|=lkjl) are of
interest, the matrix elements of t?(O) form an on-shell T

matrix which may be expressed in terms of the
scattering amplitude fj(ej):zl

_ g2
k| 8] k)= o 116, (2.3.11)

where cosej=R.Rj=R.?j.

Equations (2.3.8) and (2.3.9) may now be rewritten as:
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(3.8) = LMk, 2) (2 - 7,)/68,)
J i

(2.3.12)
xexpﬁkrﬂl-cosﬂ,ﬂ,
and
1 . .
(3.9)=§:M(k,z)gte-r,)f,(ﬂ (2.3.13)

xfo(n —8,) exp(2ikr,) ,

where cos(ﬂ—ej)=R.Ri=—R.?j.

The complete matrix element in Eg. (2.3.1) is the sum
of three terms <corresponding to the  unperturbed
photoelectric effect Eg. (2.3.2); simple scattering by the
atom at r=rj Eq. (2.3.12); and secondary scattering by the

absorbing atoem Eq. (2.3.13):

o) [(f=|&-r|d]|?
= |M(k, Z)k- 2 +(3.12) +(3.13)|% .

(2.3.14)

The above treatment describes the absorption of a
single x-ray photon by an abscrber-scatterer atom pair. In
an EXAFS experiment, however, a large number of such events
will occur and the ejected photoelectrons will be scattered
into many different directions R. In order to compute the
average cross section of such a macroscopic system, it 1is
necessary to average over all such directions R in Egq.

(2.3.14)
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JIS P
{(2.3.15)

=ﬂM(k, Z)k- 2)+(3.12) + (3. 13)]2%

The four lowest order terms in rj in this spherical average

are evaluated in Appendix B with the results:

flm(k z)| ¥k %’-a LMk, 2)1?, (2.3.16)

f2Rela=(i- 2)x(3.12)) 22

47
2.3.17
ST ik 2 Im(exp(itr,)f,(m) +1,00)], ‘ :
o
f|(3 12)|=‘£'i IMPZ“* T’) flf: o) T (2.3.18)
-, 52
sze[M"'(l}-é)x(3.13)]%=-|‘¢4|22j:%
x Im{{exp(2i6,) - 1]£,(n) exp(2ikr )} . (2.3.19)

Note that in summing the above expressions, the forward
scattering term Ej(O) in Eq. (2.3.17) cancels with Eq.

(2.3.18) by wvirtue of the optical theorem.22 The
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macroscopic absorption coefficient W=ng, is proportional to

] 1
p=no,x5{M[?~ Z|M|2(é- 7 k]

J (2'3.20)
x Im {f,(r) expl2i(kr; +5,)|},

where n is the number density of absorbing atoms. By
cohventicn, the oscillatory component of the EXAFS is

normalized to u .23 Thus, the final expression for the

Q

single scattering EXAFS is obtained:

- 3
““0“ =% ! (2.3.21)

x sin[2ky, +26,(k) + o(k)] ,
where fj(w,k)=|fj(n,k)I.exp[i¢(k)]. We must append, onto
Eq. (2.3.21), a term which describes the effects of thermal
vibrations, the Debye-Waller factor; and also an additicnal
term which accounts for the finite mean-free path of the
photoelectron in the bulk. These Debye-Waller factors are

discussed at length in Chapters IV and V.

2.4 The Multiple Scattering Formalism

The requirement that the final state photoelectron must
gscatter back to the central atom severely restricts the
depth of penetration into the bulk. This is the origin of
the short-range sensitivity of the EXAFS effect, the
photoelectron can travel only a finite distance before it
will inelastically scatter. Accordingly, the significance

of multiple scattering events is limited by the total
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scattering path length. In certain instances, however, the
path length may be comparable to that associated with
observable single scattering channels, in which case the
multiple scattering contribution will dominate due to the
additional scattering amplitudes involved. In general, the
important multiple scattering events involve only a small
number of atoms in which scattering occurs in the near
forward direction., In this work we shall 1limit our
discussion to systems which contain three atoms, the
formalism developed, however, may be readily extended to

study more complicated systems.
The three-atom system to be considered is shown in Fig.
4, Various scattering paths among these atoms are
represented graphically in Fig. 5. Each path corresponds
to a term in the expansion of the full Lippmann-Schwinger

equation:

T=Zt;+;t:'60ti'*‘ Z LGt Gty + o - (2.4.1)
i i

idj, j%k

Low probability-amplitude processes involving long path
lengths and/or large scattering angles have been omitted
from Fig. S5, but may be treated in a manner similar to that
discussed below.

The complete matrix element for the three-atom system,

assuming the dipole approximation, may be written as:

(F-lz-r|d=(kle- vl + 2 (k|G- pld+ 20 k|GGG Pl (2.4.2)

LENY n=i,
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+ (B[ t]GytiGee - T |D) + (k

£Gyt;Goe - Ty + (|GGt Gee - T

i) (2.4.2)

+ R EGHIGHGE - i) + (k| 1JGiIGHGee - T |d) + (k| 121G GGt ;G - x4

The first term in Eq. {2.4.2) corresponds to the unperturbed
photoelectric effect, and the subsequent two terms
correspond to the single-scattering contributions from atoms
i and j. These terms have been treated in detail in the
previous section and will not be discussed further here.
The remaining terms in Eq. (2.4.2) involve scattering by
both neighboring atoms. Of these, the fourth and fifth terms
[those corresponding to diagrams (e) and (f) in Fig. 5] are
identical by virtue of time reversal symmetry, as are those
corresponding te¢ diagrams (g) and (h). The multiple=-

scattering terms in Egq. (2.4.2) may thus be written as:

2k |4G;Ge - iy + 2k | ;GGG > T 1)
( 2 - 4 . 3)
+ (k| t;GiG;Ge - T| i) + (| £2Got;GotiG it Gy » 7 |d) .

Each term in Eg. (2.4.3) may now be expanded in
complete States and the resulting Green's functions

evaluated in the manner described in Section 2.3, where

] m_ 1 . .
Q}Gﬂﬂ%—z%yzeqhh-h-wﬂ, (2.4.4)

Note that the vector r is localized about the origin, r' is
restricted to a radius aj about Ly, and kj=k?j. Those
Green's functions which represent free propagation between

two neighboring atom potentials may be evaluated by placing
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one or the other of these atoms at the origin fer the
purposes of the calculation.
Equation (2.4.3) may now be written as:

Mk, Z) (& 7)) m*(2n)*

2 ST 7t

AT CA LD

+2 Mk, Z)e- 7,) m*(27)¢

A AT I TS

——_ g {(2.4.5)
» MEZUETD LI ik 1 o )
+ M(k’i)rg. i2) m‘h(.zsrr)s IEREICATHE N AT IR IR TS

where ki = k(rj-r3)/lrj-ryl = -Kl5 ; ky = kB, = -kl ; n=i,j

and M(k,2Z) has been defined in Appendix A.
The matrix elements of t;(rn) associated with the
atomic potential at r=r, may be related to those of tJ(0) as

described in Section 2.3.
(k| ty] by = expli(k, ~ k) - 1, [k | 20|k, . (2.4.6)

Furthermore, these matrix elements may be expressed 1in

terms of their respective scattering amplitudes:

2
#1810, (2407

where cos e ,=R.R_ =R.f .. Substituting Egs. (2.4.6) and

(2.4.7) into Eq. {2.4.5) and rearranging terms gives:

m—w(i’-—gl(é - 7, exp(—ik- r,) explik |1, —T, |)f,(6,,',,”)exp(z'k*rj)fj(a)
Y%y {2.4.8)
L 2MR2) (o
rir,r”

7.8 k.k“) exp(ikr;) explik|r; - r,|)f;(8) exp(ikr,)f,(a)
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Aﬂk Z)

(2 7)) exp(= ik T))f, (84, ) exp(2ik ) - v, |)f, () exp(iky )f, ()
IS ¥

(2.4.8)

+ %;%Ji)(é EPACH J,.)exp(hk}r, -r,])f;(n) exp(2ikr )f §(a)

The average x~-ray abscrption cross section for the
three-atom system is proportional to the matrix element in

Eq. (2.4.2) averaged over all possible directions R of the

photoelectron:

S1-1e- vl 29 = [(ue.2e- by + T MEDNE T ;g )

n=i, f L

x expl2ikr,(1 — cosb,)] (2.4.9)

+ 3 MR ZNE T [ ryr (n -6,) explaikr,) + (4.8)[2 92

n=i, J n

The first three terms in Eqg. (2.4.2) were evaluated in

Section 2.3, and the results appear in the integrand on the

right-hand side of Eq. (2.4.9).
The methods required for the evaluation of the
integrals in Eq. (2.4.9) have been developed in Appendix B.

The results for the lowest order terms in r are:

JInate, 2) |26 - 12528 = 5 |Mk, 20| =, (2.4.10)
2";4‘ 1M (e 7 )_[Re{exp[zk'r (1 —cos8,)|f. (6, E)}%

| (2.4.11)
-3 'ﬂ—r,—n- Im[exp(2ikr,)f, (1) +£,(0)] ,

Ll Y
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2
2 E IMIHe- 7 )IR Amf(m—0,) exp(2ikr, (& - k)]

nef , J
er’(

=— 2 ﬁ_u_k Im{[exp(28,) - 1]f,(7) exp(2ikr,} , (2.4.12)

naf, g

s,
dmite n)fﬂe exp(zk?’,)exp(lkfri -r,[)f,(a)exp(-zk R k)f‘ ‘“‘u)]d_n-k

147’
A ANCIRNCRED , _ |
kr’r;“e " 1m{explikr,) explit|r, - r, ), (@) 2.a13)
lexp(ikr, )f, () + exp(=ikr ), (n - B)|},
4 Il\:ilrjr” __LfRe [exp(ikr;) exp(ikr,) exp(zk] - r;f)f«(ﬁ)f,(a)f (6,, k‘)(e k)]_J

2IMI%e- 7)(&- 7)) (2.4.14)

krir,r,,

Im{explikr,) exp(ikr,)

explik |, — v, |)f,(B)f (@) exp(2i8,) - 1]},

2IMI%(&: 7))

= fRe[exp(ik'r,) exp(2ik|r, —r,|)f,(n)f (@) exp(—-ik - 1) (2 - k) ,(9,,',,“)]%
iy

(2.4.15)

25, 22

=- %e;!‘i Im{exp(ikr,) exp(2ik| r, — r;| )f, (7)f,(a)
17y

[exp(ikr,)f (@) + exp(—ikr,)f (7 — )]},

2IMi*z - 7)) fRe[exp(Zikr,) exp(2ik |r; —r,|)f, (n)f Ha )fc(sk,k;)(é . Z?)]i_s:rk
1Yy {2.4.16)

IMEI:(& o) Im{exp(2iky)) exp(2ik|r; - r,| ), (n)f (o) [exp(2:6,) - 1]}
et



25

Several cancellations occur in the summation of the
terms in Eg. (2.4.9). The non-oscillatory term containing
£,(0) in Eq. (2.4.11) cancels with the spherically averaged
squared term Ifn(O)lz, by virtue of the optical theorenm.
The second term in Eq. {2.4.13) is cancelled by the average
of the single scattering cross term arising from atoms 1 and
j. The corresponding term in Eq. (2.4.15) also cancels, but,
in this instance, with the average cross terms f£rom the
scattering processes shown in diagrams (a) and (e} of Fig.
5.

The expression obtained upon summation of the remaining
terms in Egs. (2.4.10) to (2.4.16) is proportional to the
absorption coefficient of the system, and may be normalized

to u,=1/3 [M(k,2) 1%, to yield the expression for the EXAFS:

s m A2
) = - 3 28T 1 0 pijsin(2er, +25,(8) + 0,(4)]

n=f, f

_ 6(e- ?J(é- ¥;)
kY7 ¥y

17,08, )| [f (e, &) sin(k(y, + 7, + 7)) +204(k) + &, (k) + o,(k)]
(2.4.17)

3(e. #)* |1f, . 1) | si ,
-_—‘IZ?J_k =) |fi(m, )| | fy(e, k) |? sin[2k(r, + 7;,) + 26, (k) + ¢, (B) + 20,(k)] ,

where fn(en)=|fn(9n)hexp(i¢n) and n=1i,3j. Note that we have
assumed that the phase of the scattering amplitude is
independent of the scattering angle (i.e., argl[f (9y)]=
arg[f,(85)] where n=i,j). This assumption is not strictly
valid,28 but may be used to gain some understanding of the

physical significance of these multiple scattering
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processes.
In the case of polycrystalline materials an average
over all possible pclarization direction must be performed.
The x-ray peolarization directions in the dot preducts in Eqg.

(2.4.17) may be spherically averaged, with the results:

(2.4.18)

2.5 Results and Discussion

A straightforward derivation of the basic EXAFS
equation has been presented. The simplicity of our appreoach
lies in the expansion of the scattering amplitudes of
neighboring atoms about the origin. Accordingly, the phase
factor reflecting the difference in path length between
unperturbed photoemission and wvarious scattering processes
arises in a natural manner.

The form ¢f the Lippmann-Schwinger equation is of
particular significance, In our scheme, <rlk>» represents
the outgoing asymptote and corresponds to the state of the
photoelectron after the scattering process. This form has
permitted us to describe the scattering in a simple
diagrammatic fashion (Fig. 2}. It also emphasizes the
interference nature of the EXAFS effect, expressed in Eq.
(2.3.1), 1in which the probability amplitude for x-ray

absorption is given by the sum of three 1independent



27

scattering processes. Such a sum is required due to the
indistinguishability of the individual events: the ejection
of a photoelectron in some direction R upon ionization is
completely indistinguishable from a process in which the
ejected electron scatters off an adjacent atom and is
subsequently scattered into the same direction R by the
central atom.

Within our formalism, the central atom phase shift
cancels in the interference terms since the direct and
scattered photoelectron waves are both outgeing in nature.
It is thus necessary to include the secondary scattering
term in order to retrieve this phase shift. In the
alternative form of the Lippmann-5chwinger equation [i.e.,
the use of <r|£f+> in Eg. (2.2.5)], however, the term
corresponding to the scattered photoelectron is an incoming
wave, and no such cancellation occurs. In this latter
approach, <rlk> corresponds to the incoming asymptote of the
scattering process, and the phase does not explicitly occur
within the formalism.

An expression for the oscillateoery component of the
absorption for the three-atom system has been given in Eq.
(2.4.17). The first term corresponds to the independent
single scattering events by atoms i and j. The second term
results from scattering from atoms i and j, and vica versa.
Note that this term retains a geometrical dependence even
for experiments involving polycrystalline samples [see Eq.

(2.4.18)1]. The double scattering term vanishes when the
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angle o is 90°. The expression assumed by earlier workers28
omits this geometrical factor and hence overestimates the
contribution of this term to the total EXAFS. The
neglection of this factor, however, greatly facilitates the
analysis of multiple scattering data. The third term in Eq.
(2.4.17) results from a more complex scattering path: the
photoelectron scatters sequentially off of atoms j and i,
and then off of atom j once again (where we have assumed
that Irjl < lryh).

The cancellation of terms which occurred in Eg. (2.4.9)
is of particular significance, since it insures that each
term in the EXAFS expression is dependent on the sum of the
interatomic distances that it represents. These processes
are shown diagrammatically in Fig. 6: the first term in Eq.
(2.4.17) corresponds to the sum of the diagrams 6(a) and
6(b), and the second and third terms correspond to diagrams
6(c) and 6(d), respectively. These diagrams are analogous
to those of Fig. 5, but each is the spherically averaged sum
of several of the latter diagrams. Note that no scattering
is shown by the central atom, since the spherical average of
Eq. (2.4.9) projects out the return path to the origin
(shown as a straight line in Fig. 4).

In order to examine the relative importance of the
various terms in Eq. (2.4.17), two model systems, Fe-0-Fe
and Cu-8-Cu, were considered. The respective metal atoms
were taken to be the absorbing atoms and the bond lengths

fixed at 1.76 & for the iron system {the distance found in
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the binuclear complex p-oxo-bis[tetraphenylporphine-
iron(III)] and similar compounds} and 2.3 ® for the copper
system. The scattering amplitudes were taken from tﬁe

International Tables for X-Ray Crystallography, Vol. 12,25

and the phase shift functions from the parametrizations of

Lee et al.?

These scattering amplitudes were calculated
using the Born approximation. While this is an over-
simplification it does not, however, significantly affect
the results presented below.

The calculated contribution of each term to the EXAFS
at a particular value of the bridging angle (140°) are shown
in Figs. 7 and 8. The relative amplitudes of the various
terms may be seen from the Fourier transforms in Fig. 9. No
corrections were made for damping at large r due to
inelastic scattering, but any such correction would affect
the three terms inveolving the second-shell atom almost
equally (the first shell peak would be relatively higher,
however). Compared to the second-shell single scattering
term, multiple scattering is significant in systems in which
the ratio of the scattering power of the first- and second-
shell-nearest neighbors is large or when the three atoms are
nearly colinear,

Note also the relative linewidths of the various terms.
The peaks due to multiple scattering processes are broader,
primarily because of the additicnal scattering amplitudes
involved. Scattering amplitudes in the Born approximation,

decrease as a function of k in an approximate exponential



39
manner, and hence the effect on the Fourier transform is
similar to that of a Debye-Waller factor.

Figures 10 and 11 show the variations o¢f the peak
positions and amplitudes in the Fourier transform as a
function of bridging angle for both the iron and copper
systems. Note that, in Figs. 10(a) and 10(b), there is a
point where the additional phase shift incurred during the
multiple scattering process is exactly offset by the
"additional path length involved in that process. This
occurs because, the effect of the scattering phases in the
sine argument of Eq. (2.4.17), is to shift the peaks in
the Fourier transform to smaller distances, since these
phase are largely monotonically decreasing functions of k.20

The condition required for this crossover point is
given by:

Ifj_l - |l’j| - l!‘i - rjl = Ar(cpj) (2.5.1)

where Ar(¢j) is the effective displacement of the peak in
the Fourier transform due to the phase of the scattering
amplitude associated with atom j. This quantity, Ar(@j), is
independent of the geometry of the system (provided the
phase of the scattering amplitude is independent of the
Scattering angle, as discussed earlier), and wvaries over a
limited range for different atom types 7. The primary
dependence of the crossover point is on the bond lengths; as
the distances in the system increase, the crossover point
occurs at larger bridging angles. ‘

At bridging angles greater than the crossover point,
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the multiple scattering terms are of particular importance.
As shown in Fig. 11 these terms have large amplitudes at
high angles and, above the <crossover point, the
corresponding peaks in the Fourier transform occur at
smaller distance values than does the second-shell single
scattering peak. In general, the three peaks involving the
second-shell atom will be c¢lose enocugh to overlap in the
transform. The presence of the multiple scattering
components will then cause an apparent increase in the
amplitude of the second~nearest neighbor peak in addition to
shifting this peak to anomalocusly small distances.
Therefore, if an analysis of EXAFS data which contain a
significant multiple scattering contribution, is attempted
using single scattering theory, one would overestimate the
coordination number of the second-shell and underestimate
the distance to that shell. Recently, 60 et 53.27 studied a
series of u-oxo bridged iron systems using single scattering
theoryy their results are shown in Fig. 12. For a linear
system, Co et al. predict an error in the coordination
number ¢f a factor of four and an underestimation of the
distance by 0.2 &. These results may be compared directly
with the calculations for the u-oxo system shown in Figs.
10(a} and 1ll(a). Since, when the system is linear, both
multiple scattering components have comparable amplitudes
and clearly dominate the second-shell EXAFS, the positicn of
the composite second-shell peak may be taken as the average

of the positions of the double and triple scattering peaks.
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Therefore, we calculate from Fig. 10(a) that the average of
the multiple scattering peak positions is smaller than that
of second-shell single scattering peak by an amount of 0.21
2. This is in excellent agreement with the observations of
Co et al. A similar analysis when applied to the peak
amplitudes in Fig. ll(a) yields an overestimation of the
second-shell coordination number by a factor of eight. The
calculated peak amplitudes are clearly inconsistent with the
experimental observations.2’ The origin of this discrepancy
is the omission of both the Debye-Waller and inelastic
damping factors from the theoretical calculations. Chapters
IV and V present a detailed study of the nature of the
Debye-Waller factors in EXAFS.

At bridging angles which are smaller than the crossover
point, the composite second-shell peak will occur at a
larger distance than the second-shell single scattering
peak; the effect is less significant, however, since the
multiple scattering components have smaller amplitudes 1in
this region.

In conclusion, multiple scattering effects need to be
considered in many problems in which non-nearest neighbor
shells are of interest, If such considerations are not
made, serious errors may be incurred in the analysis of the
data, Careful analysis of these effects, however, may allow
the elucidation of geometrical information, such as bond
angles, which is not otherwise available from the single

scattering theory.
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Appendix A
We wish to evaluate the integral
1=f(k|r>é~r(r|i>dr (A1)
which appears in Eq. (3.1); where {r|&) =(2m)%?

x exp(ik- r) and (r1d) = (7)"V2(Z/a,)*"? exp(= Z7/a,).

Expanding Eq. (Al) in terms of spherical harmonies,
I may be rewritten as

U ) L L [0

xexp(-Zr/at dr [ YIMQ)Y (0, ) ae, ,

(A2)
where dr =7’ drdQ,.

The angular integration in Eq. (A2) may be performed
using the additional theorem for spherical harmonics:

Z ZIY*"‘ YR )Nr - &) dq,

4’”’2 S 3 vt @y [rie)rr@,) de,

mz=l ga=l

4’”’2 YHR) T ™0, 0, = (ke 2) . (A3)

£2-1
Substituting Eq. (A3) into Eq. (A2), the expression for
I becomes

. ) Z_312,\ .
1=(27) 3’24(1r)“2(—1)(a0) (k- 28)
X f-ji(kr) exp{— Zr/a)r dr , (A4)
0

where j,(k7) = (k7)"? sinkr - (kr) ! coskr. Making use of
the definite integral,

f e T dy=nlpy "™ Reu>0
0

the radial integration in Eq. (A4) may be performed to
ohtain
1=Mk, 2)k- 2,

where M(k, Z) = - i[(2)V% /7] [8R(Z /a,)*? /(22 /a} + BD)P).
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Appendix B
In this appendix, the angular integrals in Eq. (3.186),

(3.17), and (3.19) are evaluated.

The first of these corresponds to u,, the hypothetical
absorption coefficient in the absence of neighboring
atoms. Placing € along the z direction:

1 s
Hg™~ EIIMP’?' eda,

IMI1?

o fcosza,,sina,,de,,dfp,,: 5 Mk, 2)|? .

The following result is required in Eq. (3.17):
1=/ (- B expl-ik- T8, T8
(e- ;z) may be expanded in spherical harmonics, and

setting r; along the z axis, the azimuthal integration
yields the m =0 component in the expansion. Hence:

I==(&- ?,)%fd(cosek) coséd,exp(—ik- r,)f(8,) , (B1)

where cosf,=(k* 7). exp(-ik.r,) and f(6,) may be ex-
pressed in terms of Legendre polynomials:

exp(-ik- r,)=Z(21 +1)(-4)j,(kr,)P,(cos8,), (B2)
1

f(9,)=;f1-Pu(cos 6,) . (B3)
and
172
P,(cos8,) = (2—19%) YiQ,) . (B4)

Substituting the above into Eq. (Bl) yields

_ o AL af 4m )1/2( 47 )1/2(4_,”)1/2

i, 1

Xy (k7 e f Y3 (2,)Y{(Q,) Y }{R,)d(~ cos6,) , (B5)
where d, =d(- cos8,)d¢,, and [3 (d¢,/27)=1. The

angular integral in Eq. (B5) may be evaluated using the
properties of Clebsch- Gordan coefficients?4:

f Yl (@)Yl rie,) a,

_ [(21' +1) 3
- 47 (21+1)

1/2
] [c(,1,1,0,0,0],
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where [I=1"l=1=|I+1'l and I +1'+1=2% (» an inte-
ger). The summation over ! and I’ may be replaced by
a single sum that has two components [ +1. Using the
explicit forms of the Clebsch-Gordan coefficients
above,

P wf l1+1
I= )Z(e . T,)f: [ )l 1(21-:_ 1)],,1(kr,)

- i . A .
ey NC) B MICRE v S A e

(zll-:_ll)]n](krj)] (-i)‘_1 . (BS)

Using the asymptotic form of the spherical Bessel func-
tion:

[=(&-7) k—l;*%i[exp(ikr,)f(n) + exp( - ikr,)f(0)] .
J B
Hence:

Joreiarei 013, 1215

:_21M|2 (2« 7,)t Imexp(2ikr,)f(m) +7(0)] .

The third angular integration necessary is given in
Eq. (3.19):

[,_—,f(‘é'%)fc(ﬂ—aj)%v (BT)
where f (7 - 9,)—(-1)lf (6,

= Z z: ( (41r Y exp(2i8,) = L1¥T(QYY T Q) .

Expanding (& - &) in spherical harmonies:

1
4
(2 B)=3"2_ 11”{“(::9)1’?‘"“ (R4 .
Equation (B7) may be written:

,_ =) 4rr22 Z [exp(2i6,) = 1]¥ ;™ (Qr YT (R,)

21'k 3 ! ma=| m’'==1

) 1 - - o~
me(Q,,)Y‘"' (Q,,)dﬂ.,, = - m[exp(Zzbl) - 1](8 . Tj)
due to the orthogonality of spherical harmonics. Hence:

f2re(are i, 22 - B)(3.19) 152

) o exp(2ity) - 1] fy(n) expi2ikr )}
=- M| 2’:?3— m{exp(2:6 AT 1
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Figure 1.

Schematic representation of the final state potential
V. About each atomic site, including the central atom c,
there exists a sphere of radius a beyond which no scattering
will occur. The atomic potentials are assumed to be
spherically symmetric.
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Figure 2.

Diagrammatic representation of the first and second
order terms in the expansion of the full T operator in Eq.
(2.2.6). The scattering paths shown are those that occur in
a system with two neighbering atoms i and j.
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o

Figure 3.

The vectors pertaining to the evaluation of the Green's
function shown in Eg. (2.3.5). Upon absorption ¢of an x-ray
photon, the photoelectron propagates freely from r, within a
domain of radius ao, to r*, within a domain of radius a-

about the atom at r=rj. ]
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Figure 4.

The three-atom system. The central or absorbing atom
is ¢. There are two neighboring atoms, i and j, where it is
assumed that |fj|£|ri|~ The bridging angle is given by n -a.
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Figure 5.
The most significant scattering paths within the three-
atom system, The operators shown with each diagram

represent the corresponding term in the expansion of the

full T operator in the Lippmann-Schwinger equation [EQgQ.
{(2.4.1)7.
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Figure 6.
Schematic representation of the terms in the EXAFS
expression for the three-atom system. Note that no

scattering is shown by the central atom since the spherical

average in Eq. (2.4.9) projects out the return path to the
origin (shown as a straight line).



k X (k) (Relative Amplitude)

Figure 7.

Calculated EXAFS spectra for the Fe-0-Fe systenm. The
bridging angle is 140° and the bond distances r-=ri-=l.763.
Curves (a) and (b) are the single scattering c&%tr?butions
from the oxygen and iron atoms. Curves ({c¢) and (d) are the
double and triple scattering contributions, Curve (e) is
the sum of all the above an represents the total EXAFS of
the three-atom system.
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Calculated EXAFS spectra for the Cu-S5-Cu system. The
bridging angle is 140° and the bond distances r-=rij=2.3 8.
The individual curves are analogous to those shown “in Fig.
7.
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Figure 9,

Representative Fourier transforms of the bridged iron
and copper systems at a series of bridging angles. The bond
distances are the same as those in Figs, 7 and 8. Solid
curves are the single scattering contributions. The deotted
and dashed curves are the double and triple scattering
contributions, respectively.
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Peak positions in the PFourier transform as a function
of bridging angle. The solid curve is the second shell
single scattering, while the dotted and dashed curves are
the double and triple scattering pathways. (a) Fe system.
(b) Cu system.
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Relative amplitudes of the peaks in the Fourier
transform as a function of bridging angle. The solid,
dotted and dashed curves represent the single, double and

triple scattering pathways, respectively. (a) Fe systemn.
{b) Cu system.
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A plet of the amplitude enhancement of the iron EXAFS
in a series of Fe-0-Fe systems together with the error in
the distaaﬁe which is predicted by a single scattering EXAFS
analysis.
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CHAPTER III

THEORY OF EXTENDED X-RAY ABSORPTION FINE STRUCTURE:

FINAL STATE INTERACTION FQORMALISM

3.1 Introduction

It is now well established that the EXAFS observed on
the high frequency side of an x-ray absorption edge is due
te an interference phenomenon in which the outgoing
photoelectron wave 1is scattered by neighboring atom
potentials. In this picture, the initial probability of the
electron absorbing the photon is independent of the nature
of the final state. After absorption occurs, however, the
cutward propagating photoelectron wave encounters the
neighboring atoms and is scattered by them. This scattering
process is then understood to interfere with the initial
absorption probability, and in this manner, produces the
observed modulations in the absorption cocefficient. This
description is unsatisfactory, however, since it involves a
time evolution which is absent from the formalism which is
used to calculate the EXAFS. Furthermore, since the
radiation field is gquantized, either the electron absorbs
the whole quantum ¢of energy or it does not absorb at all;
there can be no fractional abscorption. Therefore, it is
difficult to 1imagine how such a spatially localized
scattering phenomenon can bring about an increase or
decrease in the macroscopic absorption coefficient.

It is important to note that our criticism lies with
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the current interpretation of the EXAFS formalism. The
formalism itself is a completely accuraﬁe description of the
EXAFS phenomenon. In this chapter we introduce a new
formalism which allows an intuitive description of the EXAFS
in terms of a modulated coverlap between the initial and
final states. This description is valid over a wide energy
range, and at sufficiently high energies it reduces to the

standard EXAFS expression.

3.2 Final State Interactions

A comprehensive treatment of the thecry and application
of final state interactions has been given by GillesPie.1
In this section we will restrict ocurselves to a brief
introductory discussion of the theory. Final state
interaction theory is most readily applicable when the total
potential may be conveniently split into two components one
of which is considered to be the primary interaction, The
second potential is then seen to modify the reaction caused
by the primary potential. This latter potential is called
the final state interaction potential., Thus, in general, the

total potential may be written as:

o * Vg (3.2.1)

where Vp and V¢ are the primary and final state potentials,
respectively.
To illustrate the qualitative features of final state

interaction theory we shall now consider the simplest
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possible example: the photoionization of atomic hydrogen.
The primary interaction in this case is that between the
electron and the electromagnetic radiation field while the
final state interaction is the Coulomb potential between the
proton and electron in the final state. It is particularly
interesting to consider the back reaction in which the
electron and proton recombine and emit a pheton. Clearly,
the initial state Coulomb interaction between the electron
and proton increases the probability of hydrogen atom
formation. By virtue of time-reversal invariance, however,
the probability of the forward reaction must alsc be
enhanced by the presence of the Coulomb interaction. Thus,
the attractive interaction between the electron and proton
actually increases the c¢ross section for photoionization.
This is a general result, and reflects the fact that, to
first order in the vector potential describing the radiation
field, a free particle cannot absorb or emit electromagnetic
radiation, It is for this reason that the absorption cross
section continually decreases beyond an x-ray absorption
edge, sSince as the energy of the photon increases the
electron effectively appears less tightly bound.

Let us now consider a process in which a particle
incident in direction k is scattered into the direction k'

by the full potential V = V, + Vg. The full T matrix for

P
this scattering event is given by:

Tk"k = <klfV|k+> (3-2-2)
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where <rlk'> is the outgoing asymptote of the scattering
process described by <rlk+>, The Lippmann-Schwinger

equation for Vg alone may be written as:
lkE=> = |k'> + G°Vglki-> (3.2.3)

where G° is the free particle Green's operator. Equation

(3.2.3) may be substituted intoc Egq. (3.2.2) to vyield
Tir k= <kE=1VIk+> - <kp-|VeGoVik+> (3.2.4)

From the Lippmann-Schwinger equation of the full potential

V, G°VI|k+> may be written as |k+> - !k> to give
Tk',k = <kf—|vplk+> + <k%-lvflk> : (3.2.5)

But the last term in Eg. (3.2.5) is just TE.rk the exacﬁ
matrix element for the scattering process involving
potential Vg alone. Thus the T matrix for the full

scattering potential may be written as:

T = Tho g + <kilvplke> (3.2.6)

This is the celebrated two potential formula of Gell-Mann

2

and Goldberger. Equation (3.2.6) 1is exact, and merely

represent an alternative means of expressing Eqg. (3.2.2).
However, as we shall see in the next section, by judiciocusly
cheoeosing the breakdown of the total potential inte Vp and
Vg, we can greatly simplify the description of the

scattering process.
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3.3 The Jost Function Formalism

In this section we shall develop a formalism to
describe the process of x-ray absorption in the presence of
neighboring atoms. The primary interaction is chosen to be
that due to the interaction of the electromagnetic field

with the K-shell electron which absorbs the incident photon.
Vp(r) = - f= P-A(r) (3.3.1)

where p is the momentum operator of the electron whose
position vector is r with respect to the origin (the center
of mass of the abscrbing atom). A(r) is the vector potential
associated with the quantized radiation field. The final
state interacticon is assumed to be the potential seen by the
photoelectron in the final state.

ze?
VE(r) = — + D _V4(r-ry) (3.3.2)
r 2
J

where the first term represents the Coulomb interaction
between the electron and the core hole while the second term
"represents the final state potential associated with the
neighboring atoms located at r = rj. Equations (3.3.1) and
(3.3.2) may now be substituted into Eg. (3.2.6) to obtain
the full T matrix for the absorpticon process. Note, however,
that the initial state, <rlk>, is a highly loccalized bound
K-shell electron while the final state, <q|k'>, is an
electron which has absorbed a gquantum of energy from the

radiation field. Given the breakdown of the total potential
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chosen above, it is clear that the matrix element, TEHK' is
identically zéro; that is, the potential Ve in Eg. (3.3.2),
cannot induce transitions between the initial and final
states. The T matrix for the full potential is then given

by:

Note that the effect of V¢ is still present in <rlkp. This
form of the T matrix is of little value since it still
contains <rlk+>, which requires us to solve the Schrodinger
equation in the presence of the full potential.
Fortunately, we can approximate <r|k+> by <rlkg+> and hence
neglect the effect of the radiation field on the initial
state. This approximation is equivalent to a first-order
perturbation theory treatment of the problem.

An expression for the x-ray absorption cross section in

3

the dipole approximation” may be obtained using Egs. (3.3.3)

and (3.3.1)
o = 4m0hw|<k=-[8.r]1i> %N (uw) (3.3.4)

where we have neglected the subscript £ and replaced

<rlkg'-> and <rrkf+> by <rl|lk-> and <r]i>», respectively, to

demonstrate the relationship to the formalism developed in

Chapter 1II. In Eq. (3.3.4) o is the hyperfine constant, w is
the frequency of the incident x-ray photen and N(w) is the

density of final states for the photoelectron.

The final state, <r|k->», is the distorted wave of the
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photoelectron in the field of the final state potential. By
analogy with the expansion of a plane wave in terms of

spherical harmonics, the final state may be written as:?
<rik-> = (2m)3/2(2L+1) il vZ(k, )Py (2.R) (3.3.5)
L

where wE(k,r) is the normalized radial solution of the
Schrodinger equation containing the final state interaction
potential. When the final state potential is zero, v (k,r)
reduces to the spherical Bessel function Jp(kr). The

boundary conditions:

Vr(k,r)— constant x Jj(kr) r—-a
+ (3.3.6)
wL(k,rL_~..jL(kr) + ka(k)hL(kr) r = =
define v (k,r) as the physically significant solution of
the radial equation where f; (k) is the partial wave
amplitude and ht(k) is a spherical Hankel function of the
first kind.
Mathematically, however, it is more convenient to

introduce another radial solution which is defined by the

boundary condition at a single point:

¢L(k’r)

jpkr) r - 0 (3.3.7)

This solution is called the regular sclution and is

obviously proportional to the physical solution, ¢ (k,r);
$pik,r) = Fp(k) ¥p(k,r) (3.3.8)

where the coefficient of proportionality, F;(k), is called a
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Jost function., The advantage of using the regular solution
lies in the fact that the boundary condition, Eé. {3.3.7),
is independent of k and thus ¢ (k,r) is an entire (or
regular) function of k . In general, the physical solution
defined by Eg. (3.3.6) is not an entire function of k.
The matrix element in Eq. (3.3.4) may now be
conveniently calculated by substitution of Egq. (3.3.5) for
the final state. Assuming the initial state, <rli>», to be a
spherically symmetric 1ls state, the angular integration may
be performed.
.];rlk—>*é.r<rli>dr = Qi%i%%félllﬁl(k,r)e‘Zf/a r3dr  (3.3.9)
where C(Z) is a constant that depends on the atomic number 2
of the abscrbing atom and we have used the fact that the
Jost function is not a function of the coordinate r [see Eq.
{3.3.8)]. Since the initial state is highly loccalized about
the origin it is permissible to replace ¢l(k,r) with j;(kr)
in accordance with Eg. (3.3.7). The remaining radial

integration in Eg. (3.3.9) may then be completed
_[;rlk->*é.r<rli> dr = M(k,2) (R.&)/F (k) (3.3.10)

where Fl(k) is the L=1 Jost function and M(k,Z) has been
defined in Appendix A of Chapter 1II. But V¥ (k,r) reduces
to jL(kr) only when the final state interaction potential
vanishes [see Egq. (3.3.6)]. Consequently, the numerater in
Eg. (3.3.10) is simply the amplitude for x-ray absorption in

the absence of any final state interactions. In other
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words, the sole effect of the final state interaction
potential, Ve, is to modify the amplitude by a factor of
l/Fl(k).

The problem of calculating the x-ray absorption cross
section is now reduced to the evaluation of Fl(k) for the
final state under consideration. Note that Egq. (3.3.10) is
completely general, for at this point no assumptions have
been made as to the exact nature of the final state
interaction. An explicit expression for the Jost function
may be obtained from Egs. {3.3.6) through to (3.3.8) and is

given by:5

Fr(k) = 1 + 2mk/h2fh{(kr)vf(r) op(k,r) rldr (3.3.11)

Clearly, as the final state potential, Vel(r), becomes
vanishingly small, FL(k) apprecaches unity and the amplitude
in Eq. (3.3.10) reduces to that of the unperturbed system.
For large values of k both ¢, (k,r) and ht(kr) vary as 1/%;
therefore, from Eq. (3.3.11), Fp(k) also tends to unity as
|k{ approaches infinity.

It may be readily shown from Egq. (3.3.11) that for a
purely attractive final state potential [l.e., Vg(r) < O for
all r] the associated Jost function has a modulus of less
than or equal to one and attains the unity value only in the
limit of large k. 1In this instance, the total amplitude is
everywhere greater than that for the same process In the
absence of final state interactions. Physically, this

enhancement factor represents the increased amplitude for
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finding the electron in the region where the primary
interaction (x~ray absorption) takes place. For a wholly
repulsive final state potential the corresponding Jost
function has a modulus greater than or equal teo unity and

the total amplitude is reduced.

3.4 The EXAFS Regime

In this section we shall derive an expression for the
EXAFS which 1is based on the Jost function formalism
discussed above. Since the absorption coefficient is given
by the sgquare of the modulus of Eq. {(3.3.10), all that
remains is to calculate the Jost function Fl(k) for the
apropriate final state potential.

From Egs. (3.3.11) and (3.3.8) we may write the

reciprocal of this Jost function as:
2f.+ - * 2
l/Fl(k) =1 - 2mk/h.jhl(kr) Vel(r) [wl(k,r)] r<dr (3.4.1)

Note that the physical solution in Eg. (3.4.1) has been
written as Dbi(k,r)]* to emphasize the outgoing nature of
the final state as described in Egs. (3.3.5) and (3.3.10).
It may be shown that the ingoing and outgoing asymptotes are

related by:6

Ik, )1 = wi(k,r) (3.4.2)

Furthermore, from elementary scattering theory it may be

shown that:7
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<k [TT] = <k-|V (3.4.3)

where T~ is the T operator associated with the evolution of
the scattering state <r|k=> into the ocutgoing asymptote
<rlk>. Using Egq. (3.4.2) and by analogy with Eq. (3.4.3)

above, we may write:
Ve(r) vi(k,r) = 1™ 3, (kr) (3.4.4)

where we have noted that [T~]T =1%. This equation
represents the L=1 partial wave radial component of Eq.
(3.4.3). The T coperator may now be expanded in terms of the
individual operators asscociated with the different
scattering atoms in the final state as described in the
previous chapter [see Eq. (2.2.6)].

Now that we have expressed the final state petential in
a convenient form we must write down an explicit expression

for the Hankel function.
hi(kr)y = —i/kr elk? (3.4.5)

Furthermore, in the EXAFS energy range kr>>1 and the Bessel
function in Eq. (3.4.1) may be expressed as a sum of ingoing

and outgoing spherical waves:
jy(kr) = -1/2kr[elKT 4+ eT1lkr) (3.4.6)

Since the final state of interest is outgoing in nature we
shall neglect the second term in Eg. (3.4.6). Using Egs.
(3.4.4), (3.4.5) and (3.4.6) we may write down an expression

for the Jost function in Eq. (3.4.1) due to the final state



62

interaction which involves the neighboring atom j alone.
1/F{(k) = 1 - imk/{47h?)[1/kr elKF ed 1/kr elkr ar (3.2.7)

Note that we have included a factor of 47 in the denominator
and converted the radial integration in Eg. (3.4.1) into a
volume integral. Since tg is highly 1localized about r=r;,
the integral is non-zero only at this point. We may now

make the plane wave approximation, This involves writing

the spherical waves in Eq. (3.4.7) as:
elkf = (573372 ¢r|k> = elk.r (4.3.8)

where the factor (211)"3/2 is a normalization constant. With
these approximations, the integration over r may be readily
performed to yield:

im(2m 3k

kY = 1 — k. lt¥k.
1/F{(k) = 1 < letJ|k3> (3.4.9)

4ﬂh2k2rj2

where kj=k?j. As described in the previous chapter ,this
matrix element may be translated to the origin and then
expressed in terms of its associated scattering amplitude.

The final form of the Jost function is then given by:

1/Fi(k) = 1 = i/(2krj2) E4(m,k) e21KF] (3.4.10)

where fj(W,k) is the backscattering amplitude from atom j.
To obtain the central atom phase shift we must go to
the next order in the T matrix as described in Chapter II.

The contribution to the Jost function from this term may be
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written as:

1/F] (k) = -2mk/(anh?) [3) (kr) £f 6} tf elkF/kr dar  (4.3.11)

where tg is the T matrix associated with the central atom
potential. Note that it is no longer valid to write the
Bessel function in the manner shown in Eq. (3.4.6) since kr
is small, as r is restricted to the vicinity of the origin.
Equation (4.3.11) may now be expanded in a complete set of
states and the Hankel function may be approximated by a
plane wave:
2mk (27) % (-m)

1/Fy(k) = <kl|tg|-kj><—kj|t§|kj>

2 2 2

(4.3.12)

where the configuration space matrix element of the Green's
operator was calculated in the manner described in Chapter
IT. Note that <rlk;> 1s the L=1 partial wave component of
the plane wave. Therefore, the central atom scattering
amplitude associated with the matrix element (klltZI—k-> has

]
only an L=]1 component. Thus we may write [see Eg. (2.3.11)]

2 3
<kylthl-ks> = ———— [exp(2i6y) = 1]——(-2:.R,) (4.3.13)
17 e™ ™ m(2n) 2 1 2ik 4t

where &, is the L=1 partial wave phase shift. Furthermore,
as described above, the tg matrix element may be expressed

as:

<—kyledlky> = -h2/[m(2m) 2] £5(r,k) e2IKF; (3.4.14)
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Substituting Egs. (3.4.13) and (3.4.14) into Eq. (3.4.12)
yields the final form for this contribution to the Jost

function.

1/F](k) = i/(2kry2) [exp(2i8)) - 1] £5(mk) e2IKF5 (3.4.15)

The complete Jost function may now be obtained by
adding the contributions from F{ (k) and Fj(k), with the

result:

1/F (k) = 1 + i/(2krj2)fj(n,k)exp(2ikrj+2idl) (3.4.16)

This eguation may now be substituted into Eq. (3.3.10),

which when squared, yields the standard EXAFS expression

3(é.kj)2
X(k) = -——-——Im{fj(rr,k)exp[zi(krj+61)]} (3.4.17)

2
krj

Note that Eqg. {3.4.17) has been normalized to 1/3 M(k,Z) as

described in Chapter II.

3.5 Analytical Properties of the Jost Function

The analytical properties of radial wave functions has
been discussed in detail by Newton.8 It may be shown that
the physically significant Jost function Fy(k) (k positive
and real) is continuously connected to the analytic function
Fr (k) in {Im k>O0}. Under more restrictive assumptions
concerning the asymptotic behaviour of the final state
potential at large distances, FL(k) may be shown to be an

entire function of k. Therefore, it is possible to expand
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the Jost function in a Taylor series about a given point
and study the behavior of the function in the neighborhood
of this point. 1In particular, it is possible to move off
the real axis and explore the imaginary component of the
photoelectron's wavevector. In this manner,the damping
characteristics of the photoelectron may be studied.
Furthermore, the behaviour (i.e., k dependence) of the Jost
function, and hence the absorption coefficient, may be
predicted in the region of the threshold or in the vicinity
of a bound state.?

Note that if the Jost function vanishes at given point
the matrix element in Eq. (3.3.10) blows up. Let us suppose
that this occurs at some point k' (Im k'>0). In accordance
with the properties of the radial wavefunctions developed
in Section 3.3 above, the asymptotic form of the reqular

solution may be written as:
op(k,r) = -i/2 Fr(-k') hi(k'r) f— o0 (3.5.1)

where we have noted that FL(k)=[FL(—k*)]* by wvirtue of the

Schwartz reflection principle.lO

Iin the region Im k'>0,
ht(k'r) is an exponentially decreasing function. Since the
regular solution vanishes at r=0, Eg. (3.5.1) 1is a
normalizable solution of the radial Schrodinger equation
with energy hzk'2/2m and angular momentum L. Since the
eigenvalues of the Hamiltonian must be real, k' must be pure

imaginary, k'=ix, and the energy —h2x2/2m corresponds to

that of a bound state.
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In the case o0f x-ray absorption spectroscopy, the

photoelectron wavenumber is defined as:
k = [2m(hew - E,)]11/2/m (3.5.2)

where E, is the threshold energy of the absorption edge.
When the energy of the x-ray photon is less than the binding
energy Eg;, then k as defined by Eg. (3.5.2), 1is pure
imaginary. Therefore, if the system has a bound state of
enerqgy h2k2/2m with respect to the threshold, there will be
a corresponding zerc in the Jost function, and the
absorption coefficient, defined by Eq. (3.3.10), will
sharply increase. The cross section will not be infinite at
this energy, however, due to damping and finite lifetime
effects. If the initial state is a X (L=0) state, the
dipole allowed transitions may be calculated from F,{k). On
the other hand, the Qquadrupocle allowed bound state
transitions may be determined from Fz(k). In this manner,
the Jost function formalism is not restricted to describing
the EXAFS region of the spectrum but may be used to

calculate the absorption coefficient at any energy.

3.6 Discussion

In this chapter we have presented a novel formalism
which may be used to describe the final state interactions
which occur in x-ray absorption spectroscopy. At high
energies this formalism was seen to reduce to the standard
EXAFS expression, Furthermore, bound state transitions and

the thresheold behavior of the absorption coefficient could
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be described using this schenmne. If the final state
potential may be accurately modeled, thé inelastic damping
of the photoelectron wave may be calculated.

The origin of the EXAFS phenomenon may be readily
explained within the framework of the formalism. In Section
3.3 we showed that for a purely attractive potential, the
associated Jost function has a modulus less than unity.
Physically, this corresponds to an enhanced overlap between
the initial and final states, since the amplitude of the
photoelectron wave at the origin is increased by the
attractive interaction., 1In this case, the absorption is
greater at all energies than it would be in the absence of
such an interaction. For a repulsive final state potential,
the copposite is true, and the absorption is decreased
everywhere. It is important to note that these conclusioens
are valid only if the final state potential is centered
about the origin. In the case of EXAFS, however, the final
state potential is centered on each of the neighboring
atoms. To observe the effect 0of the presence of these atoms
on an absorption process which occurs at the origin, the
final state potential must bé translated to the origin. 1In
doing so, however, a phase factor e21KFj, is incurred.
Accordingly, the overlap between the initial and final
states is modulated due to the presence of these atoms. As
a result, there is no net increase in the integrated
absorption since the modulated overlap simply results in a

modulation of the absorption coefficient.
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CHAPTER IV

THE EFFECT OF THERMAL VIBRATIONS ON EXTENDED X~RAY

ABSORPTION FINE STRUCTURE: DEBYE-WALLER FACTORS"

4.1 Introduction

In recent years Extended X-Ray Absorption Fine
Structure (EXAFS) spectroscopy has been used extensively as
a structural tool. Although the existence of the extended
structure has been known for many vyears, it was not until
Savers, Stern and Lytlel introduced a simple
parameterization of the structure that the informational
content of EXAFS was realized., 1In addition, the development
of synchrotron and laboratory EXAFS facilities has made the
technique available te a large number of investigators and
provided a major impetus towards the development of EXAFS as
a Structural tool.

Much of the present interest in EXAFS stems from its
short range nature which allows the technique to be applied
in instances where other structural tools are not suitable.
The sensitivity to short range corder insures that the EXAFS
contribﬁtions from distant shells are small, which in turn,
greatly simplifies an analysis of the extended £fine
structure. The ability to change the x~ray frequency over a
large energy range allows structural information te be
obtained on the local environment about each absorbing atom
in the sample. In principle, bond distances, coordinaticn

numbers and the types of neighboring atoms present may be
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determined from an EXAFS study.2

The purpose of this paper is to provide a detailed
study of the nature of the Debye-Waller factor in EXAFS. 1In
general, the Debye-Waller factor has components due to
static and wvibrational disorder. This paper will address
the problem of thermally excited vibrations and their effect
on EXAFS spectra. Previocus studies of the Debye-Waller
factor in EXAFS were concerned solely with single scattering
events., >~ ° Recently, however, there has been considerable
interest in multiple scattering EXAFS processes and the
determination of bond angles from an analysis of the
extended structure.’’8 The possibility of determining
accurate bond angles from an EXAFS study is obviously
dependent on an understanding of the relative motion of the
atoms involved. This present work will discuss the nature
of the Debye~-Waller factor in EXAFS spectra which contain a

significant multiple scattering component.

4.2 The General Formalism

The problem of thermal diffuse scattering is important
in any structural tool which uses the difference in the
phase of a scattered wave from different scattering sites to
obtain structural information. The £frequency of the
incident wave is typically many orders of magnitude greater
than the frequency of wvibration of the scattering centers.
The observed scattered intensity thus provides & measure of

the instantaneous configuration of the scattering centers
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averaged over all possible confiqurations. 1In general, the
effects of thermal vibrations are included by setting the
distance between the scattering sites to their equilibrium
values and multiplying each term representing the scattered
intensity by a factor of the form exp(-M), where M is the
Debye-Waller factor for the scattering process. We present
below a general formalism which may readily be applied to
most scattering problems including the EXAFS effect.

Consider the following general scattering problem.
Suppose we have an N-particle system with masses m;(i =
l1,...,N). Let r; denote the position vector of the ith arom
in its equilibrium position with respect to some arbitrary
origin, If u; is the displacement vector of the ith atom

from its equilibrium position then the instantaneous

position of this atom is given by:
r=r; +u,. (4.2.1)

Let us consider now the scattering process whereby a
particle incident in the direction k is scattered by atom i
into the directien k', The probability amplitude a; for

this event in the absence of thermal vibrations is:

a, = (k'|T,|ky =al™ ", (4.2.2)

where T; is the T operator associated with the scattering

potential at r=r;. a? is the probability amplitude for the

same scattering event but located at the origin.lo At
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finite temperatures, however, the position of the ith atom
is given by Eqg. (4.2.1) so that the time dependent

probability amplitude A; may be written as:

A =ale™ " M =aet, (4.2.3)

where K = k-k' and HhK represents the momentum trans-
ferred to the scattering atom. The total probability
amplitude is then the sum of the amplitudes A; due to the

individual scattering centers:

L=ZAH=ZQJF (4.2.4)

The total scattered intensity is then proportional to:

uP:Zzarﬁ“‘. (4.2.5)

Throughout this present work the harmonic or gquadratic
approximation is assumed. While this approximation 1is
strictly valid only for small displacement or amplitudes of
vibration, it does however, provide a reasonably accurate
description of most solids and molecules, particularly at
low temperatures.9 To study further the temperature
dependence of the scattered intensity in the gquadratic
approximation, it is convenient to introduce the nermal
coordinates 0, (n = l,...,3N). These coordinates have the

advantage that they diagonalize both the potential and
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kinetic energy matrices of the system. The displacement

vectors u; may be expressed in this coordinate system as:

uml?=3 €@,

or (2.4.6)
ul' = z e?Qn’

where e? = é?/mil/z and represents the amplitude vector of

the ith atom in the nth

normal mode. The transformation
between mass weighted and normal coordinates is orthogonal
and therefore the amplitude vectors €2 form an orthonormal

i
set defined by:ll

Ze?-e;"=5”.. (4.2.7)

This property of normal c¢oordinates eliminates the inter-
action or cross—-terms which occur in the potential and
kinetic energies of the system. Equatien (4.2.7) also
serves to normalize the amplitudes of vibration of the atoms
in each normal mode.

With the aid of Eq. (4.2.6) the expression for the

scattered intensity, EgQ. {4.2.5), may be rewritten as:

4= T aa,* [ 7, (4.2.8)
i n

where u?j = K.(ef] - eg) and the sum in the exponent of Egq.
(4.2.5) has been expressed as a product of exponential
terms.

To obtain the experimentally observed intensity we must

perform an ergodic average of Eq. (4.2.8) over a time period
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which is short on a microscopic scale but which is long
compared with the period of vibration of the atoms involved.
In practice, however, it 1s more convenient to perform an
ensemble average of Eg. {4.2.8) over a canonical ensemble
defined by the Hamiltonian of the system. Classically, this
average 1is understood to be a mean over all possible initial
states weighted with the corresponding Beltzmann factor.
Assuming that the vibration of the atoms may be described by

a quadratic Hamiltonian it may be shown thatl2

(expliu} @,)) = exp| — s (Q2. D), (4.2.9)

where the brackets <...> denote the ensemble or thermal
average.

In the case of an harmonic oscillator the mean-square
amplitude of vibration <Qn2> may be related to the average

energy of the oscillator <En>,13

) _ 1 v,

2y —
(Qnr = w? w? lexp{fiw,/kpT) — 1

+ ifiw, |, (4.2.10)

where w,. is the frequency of the nth

n normal mode and kB is

Boltzmann's constant. The expression for the thermally

averaged scattered intensity may now be written as:
(|A12)=Zzaiaj'e—uij’ (4.2.11)
LI

where Mij = 1/2 E:(p?j)2<Qn2> and the product of
n
exponential terms in Eg. (4.2.8) has been replaced by a sum

in the exponent of Eq. (4.2.11). The exponent, Mij'
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represents the Debye-Waller factor for the scattering
process.
For computational purposes Eg. (4.2.10) may be

conveniently written in terms of an hyperbolic cotangent

2N ﬁ mn
(@) = 2, °°th(2k,r)' (4.2.12)

For 1low frequency modes or at high temperature the mean-

square amplitude of vibration may be approximated by:

(Q2ymky T/} (4.2.13)

and the Debye-Waller factor wvaries 1linearly with
temperature. At low temperatures or for very high frequency
modes the mean-square amplitude of vibration may be written

as:
(@D =iflw, (4.2.14)
and the Debye-Waller factor is temperature independent.

4.3 The EXAFS Problem

While EXAFS is primarily a single scattering probe, in
certain instances, low-order multiple scattering events
contribute significantly to the extended structure, Teo”
and Boland et 51,8 have shown that a three-atom system
comprised of an absorbing atom and two neighboring atoms is
sufficient to account for all significant multiple
scattering effects in EXAFS. The phase and the amplitude of

the multiple scattering compenents were shown to be a



76

function of the geometry of the triatomic system.8 An EXAFS
analysis based on a knowledge of these components will then
allow bond angles to be determined.

To study the effect of thermal vibrations on these
multiple scattering EXAFS components let us consider the
three-atom system shown in Fig. 1. We shall first consider
the general case in which the system has CS symmetry. A
photoelectron of energy 100 eV has a velocity of approx-

imately 6 x 10% & psec—!

which justifies our assumption that
the scattering process provides an instantaneous snapshot of
the configuration of the system even for long scattering
paths. The instantaneous positions of the atoms with
respect to each other are alsoc shown in Fig. 1. The

expression for the EXAFS of the three-atom system in the

absence of thermal vibrations is given by:8
x°k.2) = x(k.2) + 2xp (k,8) + x7(k.2). (4.3.1)

The superscript zero indicates the absence of thermal
vibrations and k is the photoelectron wavenumber defined by
k=[2m(hw—Eo)]l/2/h where w is the photon frequency and Eois
the threshold energy. The subscripts 8, D and T refer to
single, double and triple scattering events, respectively,
and e is the unit vector in the direction of polarization of
the incident x-ray beam.

The single scattering EXAFS, xg(k,é), consists of two
terms each corresponding to single scattering events

invelving the neighboring atoms at r = £ and r = r, (see
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Fig. 2(a) and 2(b)). xJ(k,8) may be expressed as:

Xiké = ¥ xi (k@)

=i}

where (4.3.2)

3(%, -é)z( — m(zﬂ)z)
k2 #
xIm [ ( = k.| T, |k, Y "e*® ]

Xga (k9é) = -

and k = k? . The T-matrix element represents the probability
amplitude for scattering a photoelectreon incident in
direction k 1into direction -k and &, is the phase shift
due to the central atom potential. The double scattering
EXAFS, xR(k,8), involves events in which the photoelectron
successively scatters off one neighboring atom and then
scatters off the other remaining neighboring atom. The
order in which the scattering occurs does not affect the
probability amplitude so that this term is counted twice 1in
Eq. (4.3.1) [see Fig. 2(c) and 2(d)]. x3{(k,&) may be

written as:

. AR miam
e =320
Xolke) kr.r,r; #
le{("kilTilkij)(kq‘nMj) (4.3.3)
Xexp[itk;r; + kyory; + kor) e,
where kij kfij k(ti - rj)/lrl - t’ji. The triple

scattering EXAFS term, x%(k,é), describes a process in which
the outgoing photoelectron first scatters off the nearest

neighboring atom j then scatters off atom I and finally
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scatters off atom j once again [see Fig. 2(e)]. x%(k,é) may

be written as:

— 3(7;-)? _dﬂuﬂﬁlm{( k|T,| —k,)
— Begl Ep) v
krrs =) s
X(_kUITilkU)(kulT}lkj) foe
Xexp[Zi(k,-r, + kfj'ru)]ezi&'l-

¥ 4 g'(k'é )=

An expression for the EXAFS due to the instantaneous
configuration of three-atom system shown in Fig. 1 may be
obtained by replacing the relative equilibrium position
vectors of the atoms by their respective instantaneous
position vectors. Retaining only the lowest order terms in
the displacement, the EXAFS, x(k,€), due to this

configuration is given by:

yik.8) = x° exp[ 2ikP, -(u, — uo)] + 21
X expfik [#-(w; — wp) + 7;;+(w; — ;)] }
X exp{ik [?l'(“l = “o)]] +Xg'
X exp{ 2ik [7;(u, — ug) + F;;-(u; — w))] L,

(4.3.5)

where a = i,j and uy, uj and u, are the displacement vectors
of neighboring atoms i and j and the central atom from their
respective equilibrium positions. Note that we have
neglected any changes that occur in the scattering angles
due to the displacement of the atoms. Such angular changes
are a higher order effect and may be treated separatelyﬂ9

We may now proceed as described in the previous section by

expressing the displacement vectors in terms of normal
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coordinates. Thus

N g (4.3.6)
and we may rewrite Eq. (4.3.5) as:
xtka) = xPexp 20k 3 o2 )
+2rp exp[r’kztu;, +#$}+.u’b)Q..] THW

ey exP[Zik S wh +#£})Q..],

?J = fij.(ein- e?)

effective change in the distance along the equilibrium

where u and represents the maximum
internuclear axis between atoms i and j in the nth normal

mode of vibration. A similar interpretation applies to the

terms “go and Hioe For the three-atom system under
consideration there are in total nine degrees of freedom so
that the sum over n above extends to three terms for non-
linear systems and four terms for linear systems.

The experimentally observed EXAFS may be obtained by
performing an ensemble average of Eq. (4.3.7) as described
in Section 4.2. Using Eq. (4.2.9) above, the thermally
averaged EXAFS for the general system of Cy symmetry is then

given by:

elk2)) = 20 exp [ > tu;oﬂQi)]

+2x%exp[_ik22(yj'o+y—;}+#".o)2(Qp2-)] {4+38)

+ 45 exp [ _2S +#1})2(Q5)].
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The exponential terms in Egq. (4.3.8) correspond to the
Debye-Waller factors for each of the scattering processes.
The Debye-Waller factor obtained for the single scattering
EXAFS 1is identical ¢to that found by previous

investigators.3'4

4.4 Application to Model Systems

For our present purpose it is convenient to write out

Eg. (4.3.8) in detail:
(k) = 12 exp [ C22S [(Fael) ~ (P -e;)ﬁQi)]

+ 2xbexp [ kTS (B €) — (F€5) + B €l — (7€) + (Fe) — (7, -e2) ] Q2 >]
" (4.4.1)
+ ¢S exp [ ~ 2k [Fel) — (7 el) + (7, ) — (7, €] Q)

where o= 1i,j. Now consider that the three-atom system is
symmetric and bent with a bridging angle s and belongs to the
C,, Point group. The normal modes of vibration transform

as:

rvib=2Al+Bl' (4.4.2)

The two totally symmetric Aq modes correspond to a symmetric
stretching and bending mode of wvibration. The B; mode is
associated with the asymmetric stretch. A schematic
representation of the normal modes of the three-atom system
are shown in Fig. 3. Note that all displacement vectors are
confined to the plane defined by the three atoms.

The symmetry of the system results in a simplification
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of Eq. (4.4.1) which is dependent on the normal mode in
question. All normal modes in the C,, point group are

subject to the following conditions;

For all modes my=m; =m,
i 1 . Ry __ 1 (4-4-3)
ina C,, point group: |ej| = |e]|,

where m, and m; are the masses of the central atom and
neighboring atom i, respectively. In addition, a study of
either Fig. 3(a) or 3(b) shows that the following

restrictions apply to both A; type modes of vibration:

(%,
A, mode: (7

(7,

) (P"'e")’

= — (P, €"), (4.4.4)

€3
e
) = — (Frel).

)
)

\r _ﬁ)

H

An analogous set of conditions apply to the B; mode of

vibration [see Fig. 3(c)]

! (4.4.5)

With the aid of Egs. (4.4.3), (4.4.4) and (4.4.5) the
thermally averaged EXAFS, Eq. (4.4.l1), for a three-atom

system of C,p,, Symmetry may be reduced to:
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ke, = exp | ~ 2% S [14) ~ (0] 03) )

A,
exp { — 2k *[(7,-e7) — (F,-e51]%(Q 3.}

+ 2 EXP[—ZkZZ[-’-(?.--e:")]Z(Qi,)] (4.4.6)

A,

b enp [~ WS (20,0 + 20e) + 20 €O, |

Fihesp | — 27T (20,60 + 20,4113,

where Xg; and ij are the single scattering contributions
to the EXAFS from atoms i and j, in the absence ofthermal
vibrations., The Debye-Waller factors in Eg. (4.4.6) have
been factored into two terms to emphasize the separate
contributions of the A; and B, type modes. Note that the
double and triple EXAFS components receive no contribution
to their Debye-Waller factors from the By normal mode. The
asymmetric Bl mode contributes only to the single scattering
Debye-Waller factor for the first shell atom. This fact may
also be discerned from symmetry considerations. Since the
By, mode is asymmetric with respect to reflection in the
plane of symmetry which passes through atom j, any
scattering path which crosses this plane will receive no
contribution to its Debye-Waller factor from this mode.
This occurs because the increase in pathlength on one side
of this plane is exactly cffset by a corresponding decrease
on the other side.

A calculation cof the Debye-Waller factors for the Coy

system requires a full normal mcde analysis. Before deoing
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so it is interesting to consider a linear symmﬁric
configuration as a limiting case of a system with C,,
symmetry. Suppose that the interatomic distances r; and rij
are equal and the terminal atoms are of the same kind. Then
the system belongs to the D,, point group and the normal

modes of vibration transform as:

Fopw=27+2"+1,. (4.4.7)

A schematic representation of the normal modes of the system
are shown in Fig. 4. The bending modes T, are degenerate
and may be interconverted by a rctation of 90° about the
axis of the molecule,

The symmetry of the system requires that the following

condition must always be satisfied:

For all modes: ;}=F,'=F|‘jl {4.4.8)

inaD_,group |e
In addition, the feclleowing restrictions apply to each of the
normal modes of vibration (see Fig. 4).

= (F;-¢;") = 0. (4.4.9)

With the above conditions satisfied, the expression for

the thermally averaged EXAFS in a three-atom system of
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symmetry D,, is given by:

(k@) o, = x2 expl — 2k (7e5 QL ) expl — 2k [ (37 ) — (631 ] Q%))
+xdexp | — 2k2[2(;-.,.efe+)]2(Q2£; )
+yFexp| — 2k2[2(F,-e,‘»T';)]2(Qi;)l

+ 25 exp | — bk 2[4 €7 )] Q3 )

(4.4.10)

The degenerate bending modes of vibration do not contribute
to any of the Debye-Waller factors in Eq. {4.4.10). This
occurs because the displacement vectors in these modes have
no components along the axis of the three-atom systenm.
Furthermore, the asymmetric stretching mode Zz contributes
only to the Debye Waller factor in the first shell single
scattering EXAFS.

To analyze the normal modes of the Coy three-atom
system 1t 1is convenient tco introduce the internal
displacement coordinates Ry and R, together with an angle
bending coordinate d3. Ry and R, represent the change in
the bond 1lengths Ly and rij from theilr respective
equilibrium wvalues, The bending c¢oordinate §43 represents
the change in the bridging angle 8. For small amplitudes
of vibration both the kinetic and potential energies of the
system may be expressed as quadratic functions of these
coordinates. In the instance of a C,, three-atom system the

potential energy may be written as:

= 2 2 2
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where the force constant a,;; = aso and there is no
interaction force constant between the displacement and
bending ceordinates.

For computational purposes it is more convenient to
introduce the symmetry coordinates §8;, S, and Sy shown in
Fig. 5. Note that S; and S, transform as A; in the C,,
point group while S3 transforms as By. The potential and

kinetic energies may bhe written as:

2V =C,; 8% + Cy283 + €383 + 261555, (4.4.12)

and
2T=dns-7‘+d22$§+d3y§§+2d12§15'2- (4.4.13)

The two sets of force constants in Egs. (4.4.11) and

(4.4.12) are related to each other by:15

Ci, = 2sin’(8 /2)[a,, + a,,] + 4 cos}(@ /2)ay/r,

Ci2 = [2a,,p — 4pay,/r} + 2a,, p]sin(8 /2)cos(6 /2),
Cyy = 2p° cos™(8 /2)[a,, + a,,) + 4p? sin*(@ /2ass/rf,
Cyy =27%a,, —ayy),

(4.4.14)

where p = 1 + 2m/mj and r = 1 + [2m/mj] sin2(9/2). The
coefficients in the expansion of the kinetic energy, Eg.

(4.4.13), may also be evaluated.

dy=2m, dy=2mp, dy,=2mr,

4.4.15
d12=d|3=d23=0- ( )
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The frequency cf each normal mode of vibration may now

be expressed in terms of the force constants aj and the

bridging angle o :

/13=4172€2V§ = ['l— + _%_sinz(B/Q}] (@ —aga)
m m;

J

At ay= 4] 432 = |-+ Lcortle2)]
m mj
1 2 ., a3,
X(a1|+a|2)+‘2 — -4 —=3In (9/2) —_— (4-4.16)
m m; rf
4.4 1 2 Q3
m mm; rf

A1 and *, are associated with the A; stretching and bending
modes of vibration while X3 is associated with the
asymmetric B; stretching mode. The normal modes of
vibration may then be calculated from the secular equation

defined by Egs. (4.4.12) and (4.4.13).

Q,ql (’11) =(Cp — 'lxdzz}sl - (Czl - Ald2l)32:
QA, Aa) = (Cy — Ady)S) — (Cay — A2d5))S,
Qa. (’lal = [(Cn —i3d11)(C22 - flsdzz)

— €y — A3d5))(Cy; — A,5d,,) 18,

(4.4.17)

For the linear symmetric system of point group D, the
symmetry coordinates are identical to the normal coordinates
shown in Fig. 4. The explicit form of the symmetrized force
constants and the frequencies of the normal modes may be

obtained by substituting a bridging angle of 180° in Egs.
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(4.4.14) and (4.4.16), respectively.

To perform a complete normal mocde analysis of any
system it is necessary to solve the secular equation. A
solution of this equation, however, requires a knowledge of
all the force constants in the system. In practice, the
force constants are unknown and the only information
available are the frequencies of the normal modes. As the
number of force constants is typically greater than the
number of normal modes, the secular equation 1is
underdetermined. For systems which possess some symmetry the
number of force constants will be reduced by symmetry
considerations. 1In general, it is necessary to ignore some
force constants or to measure the normal fregquencies in an
isotopically substituted system.

The approach we shall adopt in this present work is as
follows. Given the normal modes of vibration for a linear
symmetrical system we can calculate all the force constants
from Eq. (4.4.16) when o = 180° is substituted for the
bridging angle. These force constants are then used to
calculate the frequencies of the normal modes and the
symmetrized force constants in Egs. (4.4.16) and (4.4.14)
for a system of C,,, symmetry with a bridging angle 8. It is
implicitly assumed that the force constants are independent
of 8 for the angular range of these calculations, & = 100°
- 180°, This approximation is least valid for a description
of the bending modes. Given this information, the explicit

form of the normal moedes may be calculated from the secular
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equation in Eq. (4.4.17). The calculated frequency of each
normal mode allows the mean-square amplitude of vibration to
be determined [Egq. (4.2.12)1. The contribution of the
Debye-Waller factors from each normal mode may then be
summed to obtain the total factor in Eq. {4.3.6) for each
scattering path.

The systems chosen for this study are shown in Table I.
The Debye-Waller factor at 10°K for each of these three-atom
systems was calculated using Eq. (4.4.6) together with the
normal modes calculated as described above. The results of
these calculations are shown in Fig. 6. The calculated
frequency of each of the normal modes of the BeBr, compound
as a function of bridging angle are shown in Fig. 7. This
compound was chosen for a detailed study as its mass ratio
is typical of that encountered in instances where multiple
scattering is significant. The temperature dependence of
the Debye-Waller factor for the BeBr, system with three

different bridging angles is shown in Fig. 8.

4.5 Discussion

We have presented a general description of the nature
and origin of the Debye-Waller factor. The formalism
developed is quite general and may be applied to any
scattering problem. The form of the Debye-Waller factor in
EXAFS was discussed in detail. An expression was cobtained
. for the Debye-Waller factor in a general three—-atom system.

The form of this factor was shown to be dependent on the
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geometry and symmetry of the system. The formalism as
presented is readily applicable to multiple scattering
events involving more than three atoms and may alsc be
extended to describe systems of arbitrary symmetry.

The Debye-~-Waller factors for the series of three-atom
systems described in Table I are shown in Fig. 6. Note that
the double scattering factor has been divided by four so
that the Debye-Waller factor for each scattering path has
the standard form exp(-2k202) [see Eq. (4.4.6)]. At all
temperatures the Debye-Waller factors associated with the
second shell single scattering, the double scattering and
the triple scattering EXAFS components converge to a single
value at a.bridging angle of 180°. This convergence 1is
required by Eq. (4.4.10) which describes the Debye-wWaller
factor for a linear system as a limiting case of that for a
similar but bent system.

The relative magnitudes of the Debye-Waller factors
associated with the various scattering paths deserves
comment. A normal mode analysis of each system shown iIn
Table I indicates that for all mass ratios (m/mj), at a
bridging angle of 100°, the displacement vectors of the
terminal atoms in the A; stretch make an angle of about 40°
with the base of the isosceles triangle which represents the
system. As the system approaches linearity this angle
decreases until it is zero when the bridging angle is 180°.
In the case of the Ay bend this angle depends on the mass

ratio of the system. For small mass ratios the displacement
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vectors of the terminal atoms make an angle of about 150°
with the base ¢f the triangle. When the mass ratio is
larger this initial angle is closer to 180°. 1In both cases,
as the system becomes less bent this angle decreases until
it is 90° when a bridging angle of 180° is achieved.

The contribution of a given mode to the Debye-Waller
factor for a particular scattering path is dependent on the
frequency of the mode due to the presence of the Beltzmann
factor in Egq. (4.2.10). In general, both the asymmetric
stretch and symmetric bend increase in frequency as the
system becomes less bent while the frequency of the
symmetric stretch decreases (see Fig. 7). Furthermore,
different scattering paths show different degrees of
sensitivity te the displacements of the atoms that occur in
a given normal mode. For instance, the triple scattering
path receives a large contribution te its Debye-Waller
factor from the A, stretching mode. This scattering path
is, however, very insensitive to the Ay bending mode except
perhaps at small bridging angles (100°) where the frequency
of the bend is low and the displacement vectors of the
terminal atoms still have significant components along the
internuclear axes. At large mass ratios the contribution to
the triple scattering Debye-Waller factor from the A,
stretch increases as the frequencies of the two A; modes
become comparable (see Table I). On the other hand, the
second shell single scattering Debye-Waller factor receives

a large contribution from the A; bend. This is particularly
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true at small bridging angles (where the frequency is low)
and at high mass ratios where the displacement vectors of
the terminal atoms have large components along the base of
the isosceles triangle.

From Fig. 6 it is apparent that the first shell single
scattering and the triple scattering Debye-Waller factors
increase as the mass ratio increases. This occurs because
both of these scattering paths are sensitive to the A,
stretch whose frequency drops relative to the A; bend as the
mass ratio increases. When the frequency of the Aq bend is
greater than the A; stretch, the magnitude of the triple
scattering Debye-Waller factor surpasses that of the second
shell single scattering ([(see Fig. 6(e)]. The docuble
scattering factor, however, is sensitive te both A, type
modes. At small angles this scattering path receives a
large contribution to the Debye-Waller factor from the A,
bend. As the system approaches linearity the frequency of
the Ay bend increases and the components of the displacement
vectors of the terminal atoms diminish so that the
contribution from this mode decreases. The contribution to
the Debye-Waller factor from the A, stretch increases,
however, due to the reduced frequency of this mode at large
angles.

The temperature dependence of the Debye-Waller factors
for the BeBr, system 1s shown in Fig. 8. The low frequency
of the bending mode at small bridging angles (100°) causes

the second shell single scattering Debye~-Waller factor to
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have the observed sharp temperature dependence. The
interplay of both A, modes in determining the Debye-Waller
factor for the double scattering path is evident from Figqg.
8. At small bridging angles the temperature dependence of
the double scattering term is more severe than that for the
triple scattering term. This occurs because the double
scattering path is sensitive to the A; bend which has a low
frequency at these angles while the triple scattering path
is most sensitive to the A stretch which occurs at much
higher frequencies (see Fig. 7). As the system approaches
linearity, however, the temperature dependence of both the
double and triple scattering paths become very similar due
to the dominant contribution of the A; stretch to each
Debye-Waller factor. In general, it is apparent that the
Debye-Waller factors for each scattering path are strong
functions of temperature. At sufficiently low temperatures
each Debye-Waller factor is independent of temperature while
at higher temperature the Debye-Waller factors vary linearly
with temperature in agreement with Egs. (4.2.13) and
(4.2.14) .

The purpose of this present study is to provide an
understanding of the Debye-Waller factor in EXAFS so that
accurate bond angles may be determined. A standard method
of analysis for EXAFS data that contain a significant
multiple scattering component has not yet been presented.
Teo7 has suggested that the terms involving the second shell

atom in Egq. (4.3.1) may be combined and that the resulting
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expression can be analyzed as though it described a single
scattering EXAFS process with a modified amplitude and
phase. This results in a considerable simplification of the
data analysis. This approach, however, neglects the polar-
ization terms in Eg. (4.3.3). In addition, it assumesS that
the Debye-Waller factors for all scattering paths involving
the second shell atom are the same. To study the
significance of this latter assumption the resulting
modification in the amplitude of the double and triple EXAFS
components in the BeBr, system were calculated and are shown
in Fig. 9. All amplitude calculations were carried out at
k = 10 RB°!, the amplitude modification is smaller and
larger at smaller and larger values of k, respectively. The
errors involved are clearly larger at small bridging angles
and high temperatures., At low temperatures, the larger
modification occurs in the amplitude of the double
scattering component while at higher temperatures the
amplitude of the triple scattering component 1iIs more
sensitive, This observation is consistent with the above
mentioned dependence of the triple scattering Debye-Waller
factor on the A; stretching mode. For a bridging angle of
120° the amplitudes of the double and triple scattering
terms are reduced by a factor of 11l.1 and 19.4 respectively,
at room temperature. The reductions in the amplitudes are
considerably less for a system that is approximately linear,
especially at low temperature [see Fig. 9(d)].

The calculations in Fig. 9, however, assume that both
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the double and triple scattering paths contribute equally to
the EXAFS. The ratic of the intrinsic amplitudes of the

double and triple scattering terms is:

[2x/xF| =

2p R r, | fBK) (4.5.1)
i .5.

Slak)|| flmk)’

r;

where o and 8 are the scattering angles at atoms j and i and
the T-matrices in Eqgs. (4.3.3) and (4.3.4) have been written
in terms of their respective scattering amplitudes. In
instances where multiple scattering is important,1209¢ g

<180°, we may approximate the scattering amplitude through
angle g with the backscattering amplitude.7 For symmetric
systems ry = rjj and r; = 2rj(?i.?j) so that the ratio is

given by:
125/~ /1 flak). (4.5.2)

The triple scattering EXAFS component will dominate when the
bond distance Y3 is small or when the scattering amplitude
through an angle o 1is large for the intervening atom j. In
general, the multiple term which dominates is dependent on
the geometry of the system and the nature of the intervening
atom. If one term completely dominates the EXAFS, then the
other terms may be neglected and Teo's approximation is
always valid. The errors shown in Fig. 9 are significant
only if the both multiple scattering terms and the single
scattering terms are comparable or if one multiple

scattering term and the single scattering terms are
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comparable while the remaining multiple scattering term is
small., If both multiple scattering terms are comparable in
magnitude and greater than the single scattering term, then
we must compare the difference in the Debye-Waller factors
of the multiple scattering terms to obtain the error in the
amplitude. This error is typically smaller than those found
in Fig. 9 (see Fig. 8).

A study of the temperature dependence of the Debye-
Waller factors reveals that there exists a point at which
the double and triple scattering factors are equal. This
crossover point occurs because the triple scattering factor
is less sensitive than the double scattering factor to the
low frequency bend mode. Since the frequency of the bend
mode increases as the system becomes less bent the
temperature of the crosscver point also increases (see Fig.
). Provided the single scattering contribution to the
EXAFS is small, an analysis of data collected at this
temperature, and based on Teo's assumption, is rigorous and
should vyield accurate results.

Recently, Alberding and Crozierl® discussed the
analysis of EXAFS data which contained a significant amount
of multiple scattering. They considered a u1-0XCc sSystem,
Fe,0O, and a dihydroxy bridged system, Fez(OH)z. The Fe,0
system is approximately symmetric with a bridging angle of
164° and an Fe-0 bond length of 1.8 BR. Using an analysis
similar to that described by Teo7, Alberding and Crozier

obtained a bridging angle of 180° and an Fe-Fe distance of
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3.63 8 (compared to an actual distance of 3.55 &). These
results are not surprising since Teo's analysis is not
strictly valid in this instance, especially at high
temperatures [see Eq. (4.5.2) and Fig. 8]. A calculated
bridging angle of 180° might be explained by the fact that
the Debye-Waller factors associated with each scattering
path, which are constrained to be equal by the analysis, are
in fact, equal only at this bridging angle. A second model
analysis invelving a bending mode was also proposed. This
latter method yielded a better Fe-Fe distance and bridging
angle. The residual surface was brocad and ill-defined. The
physical basis for this method of analysis is discussed in
the next -—<hapter.

In conclusion, the Debye-Waller factors in EXAFS
spectra which contain a significant multiple scattering
component are sensitive to the geometry of the system. The
accuracy of Teo's approximation depends on which term or
terms dominate the EXAFS for the system in question. 1In
general, there will be a significant discrepancy if any two
or more of the scattering paths involving the second shell
have comparable amplitudes. The magnitude of this error is
smallest for systems with large bridging angles or at low
temperature. In instances in which the contribution to the
observed EXAFS from the single scattering path is small,
there exists a range of temperatures over which the above

approximation is very accurate.
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Figure 1.

The general three-atom systenm. The equilibrium
positions of the central atem (Q), first nearest-neighbor
atom {j} and second nearest neighbor atom (i) are shown as
filled circles. The displacement of these atoms from their
respective equilibrium positions are shown as open circles.
8 represents the equilibrium bridging angle. The equilibrium
position of the central atom was chosen to represent the
corigin of the system.
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Figure 2.

The five significant scattering paths in a system of
three atoms. (a) and (b) represent the single scattering
paths from atoms i and j. The two double scattering paths
(c) and (d) are identical by wvirtue of time-reversal
symmetry. The triple scattering path is shown in (e).
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(a) A, STRETCH (b) A, BEND

(c) B, STRETCH

Figure 3.

Schematic of the normal modes in a three-atom system of
Cpy Symmetry. There are three normal mode two of A, type
symmetry and a single B; mode.
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-~—e— g —e— 3 STRETCH

[1, BEND

o ﬁD <+—§0
h_4'4>
— 0O -——@-—-

— @

+
-—— o< > . STRETCH
o | |
Figure 4.
Schematic of the normal modes in a three-atom system of
Dep Symmetry. The symmetric stretch, =t invelves no

motion of the intervening atom j. The deg%nerate bendlng
modes, 1,, may be interconverted by a rotation of 90° about
the molecular axis. The asymmetric stretch, Z :, is the
limiting case of the single B; mode in a C,, system.
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Figure 5.
The symmetrized coordinates used in a normal mode

analysis of the three-atom system. S; and S, transform as A;
in a C v System while S, transforms as B, and is identical,
apart %rom a constant factor, to the asymmetric stretching

mode.
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Calculated Debye-Waller factors at 10°K as a function
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Table I. Normal frequencies of wvibration for t?g
linear model systems discussed 1in the text.
The mass ratio of the central to the interven-
ing atom is also shown.

SYSTEM  v;(cm™1) vy (em™1) vy (em™1) m/ms
AuBr 209 77 254 0.40
CuBr, 193 81 322 1.26
Cse, 364 313 1303 6.58
BeBr, 230 220 1010 8.88

BeI, 160 175 873 14.11
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CHAPTER V

THE EFFECT OF THERMAL VIBRATIONS ON EXTENDED X-RAY

ABSORPTION FINE STRUCTURE: MODIFICATION FACTORS*

5.1 Introductiocon

Extended X-Ray Absorption Fine Structure (EXAFS) refers
to the modulations cobserved in the absorption coefficient on
the high frequency side of an x-ray absorption edge. The
origin of this structure was first explained by Kronigl who
described the EXAFS in terms of a modification of the photo-
electron's wave function due to the presence of neighboring
atoms. Despite this early work, the potential of EXAFS to
vield local structural information went unnoticed until
Sayers, Stern and Lyt1e2 presented a parameterization of the
extended structure in terms of physically significant
quantities. Since then EXAFS has emerged as an important
structural tool with applications in many areas of physics,
chemistry and bioloqy.3

EXAFS vields structural information about the local
environment of the atomic species which absorbs the x-ray
photon. The modulations ohserved in the absorption
coefficient are due to an interference phenomenon in which
the outgoing photoelectron wave is scattered by neighboring
atom potentials. The amplitude of the scattered wave
returning to the absorption site is inversely proportional
to the product of the individual scattering path lengths

during which the photoelectron propagates freely. This
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ensures that the contribution to the EXAFS from distant
"shells is small. In addition, the limited coherent path
length due to inelastic scattering and the finite lifetime
of the core hole further serve to restrict the depth of
penetration of the photoelectron into the bulk. Since
multiple scattering events necessarily involve large path
lengths this contribution te the EXAFS was generally
considered to be small. Exception was taken to the case in
which the abscrbing atom and two neighboring atoms lined up
such that the large forward scattering amplitude of the
intervening atom compensated for the decrease in flux due to
the long scattering path.4 The short range nature of the
EXAFS effect thus facilitates an analysis of the extended
structure. The predominance of single scattering and the
relatively few distances involved make EXAFS amenable to the
methods of Fourier analysis. The Fourier transform of an
isolated EXAFS pattern yields a form of radial distribution
function in which the central atom is located at the origin.
The distribution function is distorted, however, due to the
presence of phase shifts incurred by the photoelectron
during the scattering process. From such an analysis it is
possible to determine bond distances, coordination numbers
and the types of neighboring atoms involved.

Recently, however, there has been considerable interest
in multiple scattering events in EXAFS. Teo> and Boland et
al.® have shown that a three-atom system comprised of an

absorbing atom and two neighboring atoms is sufficient to
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describe all significant multiple scattering effects. The
amplitude and phase of the multiple scattering components
were shown to be sensitive to the geometry of the system.
When data analysis is based on a single scattering model,
spectra which contain a significant degree of multiple
scattering often appear to have anomalous Fourier
coefficients. In such instances, however, a multiple
scattering analysis should make possible a determination
of the complete local geometry, including bond angles, about
the absorbing atom. The frequency of the single and
multiple scattering EXAFS components may be sufficiently
similar that a Fourier analysis is unable to resolve the
individual components, It is this problem which makes an
accurate treatment of such EXAFS data difficult.

To develop a method of analysis for multiple scattering
EXAFS data it is necessary to understand the factors which
affect the amplitude and phase of each EXAFS component.
Teo® has suggested that the scattering paths involving the
second shell atom may be combined and analyzed as though
they described a single scattering process with a modified
amplitude and phase. This method results in a considerable
simplification of the data analysis. More recently,
Alberding and Crozier’ discussed separately the effects on
the observed EXAFS of changes in bond distances and
scattering angles. This present paper will address the
problem of thermal vibrations and their effect on EXAFS

8

spectra. In a previous paper (discussed in detail in
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Chapter 1V) we showed that, to lowest order, the Debye-
Waller factor associated with changes in the internuclear
distances may be treated separately from changes in
scattering angles. The purpose ¢f this present work is to
describe the effects of changes in bond angles and the
correlation that exists between such changes and the

accompanying changes in bond distances.

5.2 Formal Considerations

Toe study the effects of thermal vibrations let us
consider the general three-atom system shown in Fig. 1.
Systems of this type have been discussed previously by Teo?>
and Boland et 5136. In the absence of thermal vibrations,

the EXAFS for such a system may be described by:
x%(k,8) = xZ(k,8) + 2x(k,8) + xJ(k,8) (5.2.1)

The superscript zero indicates the absence of thermal
vibrations and k is the photoelectron wave number defined by

the free electron dispersion relation:
k = [2m(hw - E;) 1172 /B (5.2.2)

where hw is the energy of the x-ray photon and Eg is the
threshold energy. The subscripts S, D and T refer to single,
double and triple scattering events and & is the unit vector
which specifies the direction of peolarization of the
incident x-ray beam.

A schematic representation of the scattering paths
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within this three-atom system is shown in Fig. 2. The
single scattering EXAFS, x §(k,&), consists of two terms each

of which correspond to a single scattering event inveolving

the neighboring atom located at ¥ = 7 or T = ?j' x g(k,8)
may be expressed as:

Qe = 20 2 k8

g=1,] g

where . (5.2.3)

-3(2_-8&)* 2ik -r  2i§,

xg (k,8) = —3— Im[f mk) e 9 Je
g kr 2 g
g

where Eé = kFé and ng(k,é) represents the contribution to

the total single scattering from atom g. The probability
amplitude of atom g scattering the incident photoelectron
through an angle 7 is given by fg(v,k). The double
scattering EXAFS, Xg(k,é), involves events in which the
photoelectron successively scatters of one neighboring atom
and then off the other remaining neighbeoring atom. By
virtue of time reversal invariance, the order in which this
scattering sequence occurs does not affect the probability
amplitude so that this term is counted twice in Egq. (5.2.1)

[see Fig. 2(c) and 2(d4)]. Xg(k,é) may be written as:

o, . T3 &) (2.-8)
Xp(ki8) = —m——d Im(£; (a k) £, (B,K)
i371]

(5.2.4)

2i8; i(k.eT, + K..+r.. + k.=
. 1 . ( 55 i3 3:'1_:l kl rﬂ
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—

where kij = k?ij = k(?i - ?j)/l?i - ¥:| and o and g are the

3]
scattering angles at atoms j and i, respectively. The
triple scattering EXAFS term, X%(k,é), describes a process
in which the outgoing photoelectron wave first scatters off
the nearest neighboring atom j then scatters off atom i and
finally scatters off atom j once again [see Fig. 2(e)].
X3(k,8) may be expressed as:
-3(2,-8)?
Xo(k,8) = _1;3?_2 In (£ (e, £; (n)0)

J 713
(5.2.5)

2i8, 2ik(k.-T. + K..-%..
. 1 . { : 1.':| klj rlj)]

To obtain an expression for the EXAFS corresponding to
the configuration o¢f the three atoms shown in Fig.1l the
relative equilibrium position vecters of the atoms must be
replaced by their respective instantaneocus position vectors.
The EXAFS is then described in terms of the instantaneous
bond angles and distances of the system. To describe the
effect such configurations have on the observed EXAFS
spectrum, it is necessary to express the instantaneous wvalue
of any factor in terms of its equilibrium value together
with a time dependent expression describing the deviation of
this factor from equilibrium, Consideration of Egs. (5.2.3)
through (5.2.5) shows that there are four such factors,
common to all equations, which are sensitive to the
instantaneous geometry of the system. We shall now identify

and estimate the importance of each of these four factors.
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First let us consider the polarization terms which are
common to all EXAFS expressions. Note that there are
essentially two types of polarization factors. The instant-
aneous values of these dot products may be expressed in
terms of their equilibrium values by expanding the products
in a Taylor series. Since we are primarily concerned with
polycrystalline samples these dot products must be averaged
over all possible pelarization directions. It may be shown
that to first order, changes in the position vectors of the
atoms do not effect the spherically averaged polarization
factor. These factors will not be discussed further, to the
order of the present calculations they are sufficiently well
approximated by their equilibrium wvalues. When single
crystal or directionally oriented samples (e.g., surfaces)
are being studied, however, it is necessary to explicitly
calculate each of the terms in the Taylor serlies.

The second factor to be considered is the exponential
term representing the total scattering path length. Since
each term of this type is similar, we shall focus on a given
term and generalize the results. In single scattering
events involving atom j the exponential term in Egq. (5.2.3)
corresponding to the instantaneocus configuration shown in

Fig. 1 may be written as:

L= —p . — - -
e21k5.r5 = e21k|rj+uj-uol (5.2.6)
where Ea = k?5 and ?3 is the instantaneous position vector

corresponding to the equilibrium position vector rs The

J.
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displacement vectors of the central atom and atom j are

given by 30 and Ej, respectively. The path length may be

written as:
-— —_ 2

Irj+uj—u0l = (rj +Uj

2 2 - - - - - — l 2

+UO +2rj.uj-2rj.uo—2uj.uo) / (5.2.7)
Retaining only the lowest order terms in the displacement,
this distance may be approximated using a binomial

expansion.

— —

trj+uj—uol 2z rj+rj.(uj—uo) (5.2.8)

Substituting Eq. (5.2.8) into Egq. (5.2.6) reveals that the
original exponential term is factored into the equilibrium
separation of the atoms and the projection of the displace-

ment vectors along the bond defined by these atoms.

. — e d —
e21k|r-+u--u

j+45 ol = e2ikrs o2ikPs.{u

j j+ {83=u5) (5.2.9)

A similar treatment may be applied to the remaining terms of
this type.

The next quantity which must be discussed in our treat-
ment of thermal vibrations is the effect of the
instantaneous distances which occur in the denominator of
each EXAFS component. Using the approximations developed in
Eq. (5.2.8) above, it may be shown that such corrections are
negligible and we may replace the instantaneous distances in
the demoninator by their equilibrium values.

The remaining factor to be considered is the effect on

the scattering amplitude cf small changes in the directions
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of the incident and scattered photcelectron wave induced by
thermal vibrations. The instantaneous scattering amplitude
of atom j may be expressed in a Taylor series about the

equilibrium scattering angle a:

£5(a+aa,k) = £5(u,k) + (fj(a"k)) + 0(aa?) (5.2.10)
a

da'

where Aa 1s the deviation from the equilibrium value. Note
that in instances where the equilibrium scattering angle is
m, the instantaneous angle is also m so that such scattering
amplitudes need not be discussed further.

To estimate the magnitude of the lowest order term in
Eg. (5.2.10) it is necessary to express the angular
deviation in terms of the displacement vectors of the three
atoms shown in Fig. 1. The scattering angle o may be

written in terms of the unit vectors of the system
cosa = ?j.?ij {S.2.11)
Equation (5.2.11l) may be differentiated to yield:

AcosSa = -gsina da= P,, AP

3 ij + A?j.?ij (5.2.12)

so that the change in the angle from its equilibrium wvalue

is given by:

P P.s + PP
i
pa = — —3 L3 1 1] (5.2.13)
sina
Noting that each unit vector may be written as ?j = ?j/fj'

an expression for the deviation in angle may be readily
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obtained. Separating the contribution to Ac form each of
the displacement vectors allows Eg. (5.2.13) to be written

in the form

Ao = a].uo + bj.ui + cj.uj
P..-P.cosa
- i
where aj ] ]
r:sina
J
P..cosa-P.:
- i
by = J ] (5.2.14)
rijsina
- rj(?j—?ijcosa) + rij(?jCOSa-?ij)
J
fjfij

. - — -— g
It is important to note that the vectors a:, b: and c.: are

1 "] ]
functions only of the equilibrium geometry of the three atom
system. An expression of this type also exists for As, the

deviation in the scattering angle about atom i, in which

. _ ?ij—?jCOSB
ai = - -
rj51n8
- ri(?i+?ijcosg) + rij(?ij+?icosg)
ririjsins
N ?i+fijCOSB
Ci = -

rijs1ne
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5.3 EXAFS Modification Factors

OQur discussion of the significance of the four factors
present in each EXAFS component is now complete. These
factors represent the possible ways in which thermal
vibrations may modify EXAFS spectra. With the above
information in hand we may write out in detail an expression
for the EXAFS due to the instantaneous configuration shown
in Fig. 1. To obtain the experimentally cbserved EXAFS,
however, we must perform an ensemble average of this
expression over the cancnical ensemble defined by the
Hamiltonian of the three-—atom system. Retaining only the
lowest order terms Iin the angulaer displacement, this average
may be written as:

24 > . - T
ik  (u u_) J.k[fj (uj uo) +2i. {u, u.)]

xk,8)>=xge T T %4 ndce 17

ik[i‘-i-(ui - a)) Zik{fj-(ﬁj - 30) + fi.-(ﬁi - 0.)]

xe > +X$ <e ] 3N,
6(F.+8) (P. «8) Af. (a',k) ik(r. +r.. + )
—_ J 1 3 r . . r.) 2161
krir.r_ . Im { fl (Blk) (—%a—r——)a e ] 1] 1 e
J 1]
ik[f, o (0, - U) + £, {0 —0) + 8 (3 -2 (5.3.1)
e an o8 B ey T s -

6(E.°8) (£.+ &) (af. (s'.k)) ik(r, +r,, +r.) ..
R | i i 3j ij i’ 2ié
e, M {Ges\ S =

. - > > - - > >
ik ([T, (uj - uo) + P.'ij-(ui - uj) + fi-(ui - uj)]

X <AB e >

|
}
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6(£.-8)% af. (a'k) 2ik{r. + r..
- I.m{fi(n,k) £. (a,k) (—15-—) e 3+ Ty
i Tij ] A
(5.3.1)
. 2ik[®.+(u. - u . (. - .
y 92151 e o [rJ (uJ u)) + 213 (ul uj)]>}

where the brackets <...»> denote the ensemble or thermal
average of the quantity enclosed, The first three terms in
Eg. (5.3.1) above correspond to the case in which the only
contribution to the Debye-Waller factor is due to changes in
the interatomic distances. Note that these terms are
described by the usual type of Debye-Waller factor in which
the EXAFS expression in the absence of vibrations is
multiplied by a damping term to account for the effects of
thermal wvibrations. These terms have been discussed
previously in Chapter IV and they will not be discussed
further in this present work. The remaining terms represent
the combined effect of changes in beoth angles and distances.
These variations are strongly correlated and this fact must
be taken into account when the appropriate thermal averages
are performed. Note that these latter terms involve only
the double and triple scattering EXAFS components, Since
these terms must be added to the damped EXAFS expression
defined by the first three terms in Eg. (5.3.1) it 1is
inappropriate to refer to these terms as Debye-Waller

factors. For the purpose of the present discussion, we
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shall call such terms modification factors, since each has a
modified amplitude and phase when compared to the
corresponding term in the dambed EXAFS expression. An
amplitude modification occurs due to the presence, in each
of these factors, of a derivative of the scattering
amplitude together with an angular variation term in the
thermal average. The phase of each factor is modified
because the phase of a derivative of the scattering
amplitude may be different from the phase of the amplitude
itself.

We shall now focus attention on the thermal averages
which occur within each modification factor. To explicitly
calculate such averages, it is necessary to know the
potential energy surface governing the motion of the three
atom system. Throughout this work the harmonic or quadratic
approximation is assumed. This approximation consists of
expanding the potential energy in a Taylor series about its
eguilibrium value and truncating the expansion after the
first non-zero term. This is consistent with our expansion
of the scattering amplitudes about the equilibrium
scattering angle in which only the first order term was
retained. Each of these approximations is then strictly
valid only for small departures from equilibrium. There-
fore, it is possible to approximate Eg. {5.2.14) by:

Ada = 1/21 {exp{l(aj.u0+bj.ui+cj.uj)}

- exp{—i(aj.uo+bj.ui+cj.uj)}]

(5.3.2)
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A similar expression may be obtained for ag.
Since the form of the potential energy surface is
harmenic it is convenient to express the displacement

vectors in terms of the normal coordinates Qn (n = l,...,3N)

4. =Y. 2n
uj g;ej On (5.3.3)

where N is the number of atoms in the system and Eg is the
amplitude vector of the jth atom in the nth normal mode.
The properties and advantages of this coordinate system have
been discussed in Chapter IV. 1In the case of our three atom
system there is a total of nine degrees of freedem so that
the sum over n above extends to three terms for nen-linear
systems and four terms for linear systems. The remaining
terms represent translation and rotation of the system as a

whole and do not contribute to the EXAFS. For harmonic

systems it may be shown that9
<expl[if(n)Q,1> = exp-{1/2[f(n)]1%<Q %>} (5.2.4)

where f(n) is the some function of the normal mode n and

<Qn2> is the mean-square amplitude of vibration in the nth

normal mode. Furthermore, <Qn2> may be written as:lO

<Q,%> = (h/2w,) coth(hw,/2kgT) (5.3.5)

where w, 1s the frequency of the nth

n normal mode and kB is

Boltzmann's constant.
The explicit form of the thermal averages may now be

determined. For convenience of notation let us define <Aa>D
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to be the thermal average that occurs within the double
scattering modification factor in which the angle o changes
by 4a . Substituting Eg. (5.3.3) into Egq. (5.3.2) and then
into the appropriate term in Egq. (5.3.1) an expression for

<Aa>p is obtained:

D 21

P
21

and represents

In the preceding equation, “?j= p -n #?)

ij-ley -
the maximum effective change in the distance along the

th

internuclear axis between atoms i and j in the n normal

mode. The contribution to the change in the scattering

angle at atom i due to the displacement of atom j‘in the nth
normal mode is given by oqj 3&.3%. A similar

interpretation applies to the remaining terms of these
types. Note that each of the two terms in Eg. (5.3.6)
contains a summation in the exponent which may be replaced
by a product of exponential terms. This product extends
over all of the normal modes ¢f the system. Since there is
no correlation between the individual normal modes the
average of each product is just the product of the averages.
Using Egq. {(5.3.4) we can determine the thermal average
associated with each normal mode in Egq. (5.3.6), calculate

the product of these averages and thus determine <ladp.
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. W ) n n n
ie lﬁk; (l.ljo + ulj + uicf <an>

42 @h + o0 + Py2p 2
e n Jo Ji %J) <% {5.3.7)

> =
<MxD

b 4
x sinh ey 3o + ufy + 0, + oy + o0 9.2

The remaining thermal averages, <ag>p and <Aad>q, may be
determined in a similar fashion.

Several features of this equation deserve comment,
Equation (5.3.7) has been written in a manner which
emphasizes the individual contributions to the thermal
average due to changes in bond lengths and scattering
angles, Note that the magnitude of the exponential damping
term, which inveolves a change in scattering angle, is not
dependent on the energy of the photoelectron. The physical
reason for this 1s due to the fact that EXAFS involves the
scattering of spherical waves, so that when the scattering
angle varies the atoms are constrained to move along an arc
of a spherical wavefront. Therefore, nc dependence is
expected on the wavelength o¢f the photoelectron. In
constrast, however, the motion of the atoms described by
Debye-Waller type factors involve large displacements normal
to the wavefront. Accordingly, such factors have a severe
dependence on the wavelength of the photoelectron.

The hyperbolic sine term represents the fact that there
is a correlation between a change in bond léngth and a

change in scattering angle. Note also that the thermal
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average is a pure imaginary quantity; this has the effect of
shifting the phase of the EXAFS oscillations due to the
modification factors by n/2. Therefore, thesine wave
oscillations of the original EXAFS take the form of a cosine
wave in the modification factors.
It is now possible to write down a complete expression

for the averaged modification factors in Eq. (5.3.1)

-6(F, + &) (B, - 8 IO+ R + 1020 2

a1s = 3 i n'jo 1] - Tio

<xM(k,e)> kr.r.r.. e J J * qgn
i 3713

SHZ(pL 4+ poy + pRl)2<Q 2

xe 111(9]0 le pjj) <Qn >

, n n

X Sth[kg(ujo + “ij

af.(a',k)) elk(rj + rij + ri) eZiﬁx}
a

n,, n n n 2
+ “ij)(pjo + pji + pjj)<Qn >]

oa’

x Re{fi(B,k) (

“6lE, - 88 -8 kg (u’.’O + u?j + u20)2<Qn2>

A
kr.r.r,. e ]
1]1)

(5.3.8)
“LT(p2 o+ P+ )2
xe 0 10 ii plj) <an>

. n n n I n 2
X Sth[Zkg(ujo + “ij)(ojo + pji + ojj)<C§1>]
' i I .
3f. (a ,k))el eZlk(rJ rlj) 92151}

x Re{f; (m,k)£; (a,k) ( —

_ -~ . A 2 - 2 n
6 (L. 8) . Zk x}%(“jo
kr.“r..
J 1)

n,:z 2
+ u..) <Q >
”13) Q,

% L (0T + pn, R y2egp?
N A L TR TU N
. n n n n n n 2
x 51nh[k§(ujo + My + Uy, topyy pij)< Q"]
af. (B',k) ik(r., + r.. + r.) .
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The subscript M refers to that fact that Egq. (5.3.8)
represents only the modified portion of the total EXAFS
expression given in Eq. (5.3.1) for a general three-atom

system of Cg symmetry,

5.4 Application to Model Systems

A series of model systems will be considered to
determine the contribution of the modification factors in
Eg. (5.3.8) to the observed EXAFS. To 1illustrate the
symmetry properties of these factors, let us consider a
three~-atom system which is symmetric and bent with a
bridging angle 8 = 171-a . A plane of symmetry of the
molecule passes through atom j such that the central atom
(0) and the second nearest-neighbor (i) are of the same
type. This system then belongs ﬁo the C,,, point group and

the normal modes of vibration transform as:

Tyip = 2A1 + By (5.4.1)

The two totally symmetric A; modes correspond to a symmetric
stretching and bending mode of vibration. The single By
mode is associated with the asymmetric stretch. A schematic
representation of the normal modes of the three-atom system
is shown in Fig. 3.

The symmetry of the system allows us to simplify the
modification factors in Eq. (5.3.8). All modes in a C,,

peint group are subject to the following conditions:



For all modes in a M. = m: = m

. - (5.4.2)
C,, Point group: |eny

-n
leif

where m, and m; are the masses of the central atom and
neighboring atom i, respectively, The symmetry properties
of the terms “?j have been discussed fully in Chapter IV. In
this present work we shall only consider the additional
symmetry properties due to the terms p?j. The properties of
these latter terms, however, depend on the symmetry
properties of the vectors a, B and ¢ in Egs. (5.2.14) and

(5.2.15). Note that £for any system
a. + by + ¢, =0 t=i,j (5.4.3)

which represents the requirement that the center of mass is
fixed during a pure vibration, The symmetry properties of
p?j are also dependent on the normal mode in question and
the atom at which the scattering angles varies,

We shall consider first the case in which the angular
variation occurs at atom j. For a symmetric system of the

type being discussed, Fig. 4 shows that Ej bisects the

bridging angle 8 in all normal mecdes. Furthermore, Ej and
gj are equal in magnitude and the angle between them is also

bisected by c Therefore, all Ay type modes satisfy the

jn
following conditions (see Fig. 3):

TS RS |
aj.eo = bj.ei
or
Ay Ay
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Al modes: (5.4.4)
Aq All ) pé%

J3
The first part of Egq. (5.4.4) expresses the fact that
displacement of atom i and the central atom in an A; mode
produce the same change in the scattering angle at atom j.
The sign of the second part of this equation is determined
by whether the mode is a bend or a stretch. In the single
By mode, however, the contribution to the change in angle a
due to the displacements of the central atom and atom i,
cancel exactly. In addition, Ej is perpendicular to eB1 so

J
that the following conditions must be satisfied:

B B
D.l = - D].-
Jo J1
Bl mode: (5.5.5)
B B
- =1 1
Cj-ej = DJJ =0

Thus the B; mode does not contribute to a change in the
scattering angle a.

No symmetry arguments may be applied to the
modification factor which involves a change in the
scattering angle g. This is because no symmetry element,
other than the plane of the system, maps atom i onto itself.
To determine this modification factor it is necessary to
explicitly calculate all of the terms shown in Egq. (5.3.8).

There are essentially two separate calculations

necessary to determine the modification facters in Eg.



131
{5.3.8). The first involves a calculation of the
exponential and hyperbolic sine terms and requires a full
normal mode analysis of the system. The details, and the
manner in which such an analysis may be performed has been
discussed in Chapter IV. The second calculation requires a
determination of the contribution of the scattering
amplitude to the amplitude and phase of the modification
factors. This latter calculation requires a knowledge of
the modulus and phase of the scattering amplitudes as a
function of scattering angle and wavenumber k. Assuming a
plane wave approximation the scattering amplitude may be

written as:
£5(a,k) = F5(a,k) elolark) (5.4.6)

where Fj(a,k) i1s the modulus of the scattering amplitude
and ¢ (o ,k) is the phase of the amplitude. This approx-
imation is wvalid for large bond distances or small
scattering atoms. The derivatives in Eq. (5.3.8) now take

the form:

(_J___af'(a"k)) IRETICRS (Fj(“"k))
o a

3a’ aa’

aeicb(a',k)) (5.4.7)
* Fyladk) (T o

Values of the modulus and phase of the scattering amplitude
as a function of scattering angle have been reported only
for carben and oxygen atoms.ll Since we are concerned with

bridged systems in which the central atom and atom i are
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heavy atoms we have insufficient information to calculate
the modification factors in Eq. (5.3.8). However, Tec> has
shown that the scattering amplitude at atom i may be

approximated by:
£i(8,k) = £;(m,k) 120° < < 180° (5.4.8)

which includes the angular range in which multiple
scattering is most likely to be important. In this approx-
imation, the rate of change of the scattering amplitude at
‘atom i with respect to the scattering angle 8 is zero.
Therefore, the modification factor inveolving a change in
this angle 8 is also zero. Equation (5.3.8) then reduces to
two terms corresponding to the double and triple scattering
modification factors in which angle o changes by Aec. In the
case of heavy elements, structure tends to be developed in
the angular range of Eq. (5.4.8) making the validity of this
approximation questionable.5 Despite this, we shall assume
Eq. (5.4.8) to be valid since no information exists on the
angular dependence of the scattering amplitudes for such
elements.

The model system to be studied is Br,0, which we shall
consider to be representative of oxygen bridged systems. We
shall assume that the symmetric stretch and bend occur at
250 em~1 and 245 cm'l in the linear system while the
asymmetric stretch occurs at 800 cem~1. The normal
frequencies of the linear bridged system are then used to

generate a set of force constants as described in Chapter
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IV. These force constants are assumed to be independent of
the geometry of the molecule and are used to calculate the
normal frequencies at any bridging angle e¢. This assumption
is least valid for a description of the bending mode of
vibration. The frequencies chosen above are typical of those
found in linear oxygen bridged systems.l2

The calculated frequency of each of the normal modes as
a function of bridging angle is shown in Fig. 5. The
angular-depersion of the normal frequencies agrees well with
earlier calculations and observations of oxygen bridged

systems.l2

The calculated Debye-Waller factors and angle-
related amplitude factors are shown in Figs., 6 and 7,
respectively. The modulus and phase of the scattering
amplitudes together with their derivatives are shown in
Figs. 8 and 9. Finally, Figs. 10 and 11 illustrate the
angle and temperature dependence of the amplitude of the

EXAFS corresponding to each scattering path including the

associated modification factors.

5.5 Discussion

We have presented a general description of the effect
of thermal vibrations on Extended X-Ray Absorption Fine
Structure. The formalism developed 1s general and may be
applied to any scattering problem in which there exists a
correlation between a change in distance and a change in
scattering angle. An expression was obtained for the EXAFS
in a general three-atom system of Cg symmetry.Variations in

the scattering angle were shown to give rise to additional
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EXAFS terms which we called modification factors. The form
of these modification factors was shown to be dependent on
the geometry and symmetry of the system. The formalism, in
its present form, 1is readily applicable toe multiple
scattering events involving more than three atoms. Systems
of other than C,, symmetry may be considered by determining
the symmetry properties ¢of the Debye-Waller and modification
factors subject to the peint group in question.

The Debye-Waller factors which reflect the damping of
the EXAFS amplitude due to thermally induceq changes in the
internuclear distances of the system are shown in Fig. 6.
The double scattering factor in Fig. 6 has been divided by
four such that the Debye-Waller factors asscciated with each
scattering path has the standard form exp(-Zkzoz) [see Eg.
{5.3.8)]. It 1is 1important to note that there are two
quantities which determine the contribution of a given
normal mode to the Debye-Waller factor for a particular
scattering path. The frequency of the normal mode
determines the mean-square amplitude of vibration in
accordance with Egq. (5.3.5). In addition, the amplitude and
direction of the displacement vectors of the atoms in a
given normal mode determine the projection of these vectors
along the internuclear axes. From Fig. A(a) it may be seen
that the Debye-Waller factors associated with each
scattering path increases as the bridging angle decreases.
This increase can, in part, be attributed to a decrease in

the frequency of the bending mode at these angles. The
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three scattering paths invelving the second shell atom,
however, show different degrees of sensitivity to the Ay
bend. The triple scattering path is the least sensitive
since a change in the bridging angle does not appreciably
change the length of the scattering path. The second shell
single scattering path, however, is very sensitive to this
bending mode since it induces a large change in the bromine-
bromine distance. The double scattering path, on the other
hand, 1is sensitive to both A, type modes. At low bridging
angles the A, bend dominates primarily due to the low
frequency of this mode when compared to the A; stretch at
these angles. As the system approaches linearity the
frequencies of both A, modes become comparable but the
displacement vectors in the bending mode tend to become
orthogonal to the internuclear axes. In such instances, the
A; stretch dominates the double scattering Debye-Waller
factor.

The temperature dependence of the double and triple
scattering Debye-Waller factors is shown in Fig. 6(b). The
second shell single scattering factor {which is not shown in
Fig. 6(b)] has the most severe temperature dependence due to
the large contribution of the bending mode to this Debve-
Waller factor. As described in the previous chapter, the
double and triple scattering factors are equal in magnitude
at all temperatures when the bridging angle is 180°. At
high temperatures and low bridging angles the double

scattering factor is dominant. This occurs because the
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double scattering factor receives a large contribution from
the A, bend which is a low frequency mode at these small
angles. The triple scattering factor, however, is dominated
by the higher £frequency stretching mecde. As the bridging
angle increases the double scattering Debye-Waller factors,
like the triple scattering factor, becomes dominated by the
stretching mode such that both factors exhibit the same
temperature dependence in the limiting case of a linear
system.

The hyperbolic sine terms reflect the degree of
correlation that exists between a change in scattering path-
length and a change in scattering angle. Fig., 7(a) shows
both the double and triple scattering hyperbolic sine terms
together with the angular damping factor which is the
exponent of the exponential term which represents the
damping of the EXAFS due solely te a change in scattering
angle. As described in the previous section, we shall only
consider changes in the scattering angle . Note that both
the hyperbolic sine terms and the exponential damping term

are dependent on the bond distance r The magnitude of the

e
hyperbolic sine terms is inversely proportional to the bond
distance [see Eg. (5.3.14)]. The angular damping factor
varies inversely as the bond distance squared. Throughout
the present discussion a bond distance of 2.0 & is assumed.
Since the magnitude of each hyperbolic sine term may be

approximated by its arguments at these angles, the effect of

a change in bond distance may be readily calculated. Note
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also that the argument of the hyperbolic sine terms increase
linearly with k while the angular damping £factor 1is
independent of k.

An understanding of the functional form of the
hyperbolic sine terms requires a knowledge of the degree of
correlation that exists, within each normal mode, between a
change in distance and a change in scattering angle. On the
basis of qualitative considerations we may conclude that a
positive correlation exist in the A, stretching mode; that
is, an increase in the scattering path length is accompanied
by an increase in the scattering angle o (see Fig. 3). 1In
the A, bend mode a negative correlation exists whereby an
increase in the path length results in a decrease in the
scattering angle a. Both of these conclusions are confirmed
by a rigorous normal mode anlaysis. Since the Ay bend
contributes significantly to the double scattering Debye-
Waller factor, the total correlation due to both Ay modes
represented by the double scattering hyperbolic sine term,
is negative. The triple scattering hyperbolic sine term is
positive, however, due to the dominant contribution of Ay
stretch which has a positive correlation. Note that for
comparison purposes both the double and triple scattering
hyperbolic sine terms are shown to be positive in Fig. 7.
From Fig. 7(a) it may be seen that the magnitudes of both
the double and triple scattering hyperbeolic sine terms
decrease rapidly as the system approaches linearity. This

behavior may be readily explained in terms of the normal
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modes of a linear symmetric system, In this configuration
the displacement wvectors in the stretching mode produce no
change in the scattering angle «. The displacement vectors
of the atoms in the bending mode, however, produce a large
change in a, but there is no change in distance as these
vectors are orthogonal to the molecular axis. Therefore,
hoth the double and triple hyperbolic sine terms tend to
zero as the bridging angle of the system approaches 180°.

The angular damping factor increases as the three-atom
system becomes less bent [see Fig. 7(a)]l. As the bridging
angle increases the contribution to this factor from the
bending mode alsoc increases. This occurs because the
displacement vectors of the atoms in this mode tend to move
increasingly perpendicular to the internuclear axes thereby
inducing large changes in the scattering angle. The change
in this angular damping factor as a function of angle is
slow since the frequency of the bending mode increases as
the bridging angle increases.

The temperature dependence of the double and triple
scattering hyperbolic sine terms together with the angular
damping factor is shown in Fig. 7(b)-{(d). Note that the
magnitude of the triple scattering hyperbolic sine term
decreases with increasing temperature. The negative
correlation due to the A; bend increases as the temperature
rises thereby increasing the contribution of this mode to
the hyperbolic sine terms. The contribution of the

stretching mode also increases, but less sharply since the
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frequency of the stretch is greater than that of the bend.
Since the total correlation of the triple scattering path is
positive an increase in temperature only serves to reduce
the magnitude of the corresponding hyperbolic sine term.
The opposite, of course, is true in the case ¢f the double
scattering term where the existing negative correlaticn is
further enforced by an increase in temperature.

The modulus and phase of the scattering amplitude for
oxygen as a function of scattering angle and k are shown in
Fig. 8 and Fig. 9. All calculations in these figures are
based on the reported values of the amplitude and phase.lO
A detailed description of these functions has been given by
Teo.>

Figure 8({(a) shows the modulus of the scattering
amplitude for oxygen as a function of scattering angle for a
series of k values, In this angular range, the modulus is
well described by the Born amplitude for the scattering of
fast electrons off atoms. The modulus in the forward
direction 1s independent of k and becomes increasingly
peaked in this direction at higher Kk wvalues. Outside this
angular range, however, the modulus tends to develop complex
structure which is related to the sampling cf the oxygen
core by the photoelectron. Figures8({c) and (d) show the
derivative of the modulus with respect to scattering angle
as a function of k and scattering angle. Since the the
modulus has a local maximum at o = 0° [see Fig. 8(a)] the

derivative is zero at this angle for all energies. Note



149

that the sign of the derivative is negative while the
derivative itself peaks at increasingly smaller scattering
angles as the photoelectron wavenumber increases.

The phase of the scattering amplitude for oxygen as a
function of k and a series of scattering angles is shown in
Fig., 9(a). The derivative of the phase with respect to
scattering angle as a function of scattering angle and k are
are shown in Fig. 9(b) and (c¢), respectively. The sign of
the derivative is positive at all scattering angles. The
magnitude of the derivative is small in the near forward
scattering direction but becomes appreciable at larger
scattering angles and shows complex structures as a function
of k and scattering angle, The peaks which occur in the
derivative of the phase occur at smaller scattering angles
as the photoelectron wavenumber increases. In addition,
subsidiary maxima occur at larger scattering angles, the
number of such maxima increases at higher k values.

Before discussing the contribution to the observed
EXAFS due to the various amplitude terms described above, we
must consider the effect these terms have on the phase of
the EXAFS oscillations. As described in the previous
section [see Eq. (5.3.7)] the phase of the oscillations in
the modification factors is shifted by T/2 when compared
to the oscillations of the original EXAFS. From Eg. (5.4.7)
the derivative of the scattering amplitude in each

modification factor may be written as:
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(af.(a',k)) i (a,k) (BF.(a',k))
= e
o ¢ )

90 da
(5.5.1)

+ iF, (a,k) e ?(arK) (——3“’(3‘;:“)3

The first term on the right-hand side of Eq. (5.5.1) vields
EXAFS oscillations that are shifted #»/2 from the original.
We shall refer to such terms as type I modification factors.
The remaining term on the right-hand side gives rise to
EXAFS oscillations that are n out of phase with the original
and are called type II modification factors. Note that
these latter factors serve to directly reduce the amplitude
of the associated original EXAFS oscillations,

The amplitudes of the EXAFS oscillations for each
scattering path, including the associated modification
factors, are shown in Figs. 10 and 11. The amplitudes are
calculated at three bridging angles and two temperatures.
The parameterizations of Teo et gl.13 and Lee et gl,l4 were
nsed to describe modulus and phase of the backscattering
amplitude for bromine. No damping terms reflecting the
finite mean-free path of the photoelectron have been
included in these calculations. Since the double scattering
hyperbelicsine term is negative, and the derivative of the
amplitude is also negative, the double scattering type I
modification factor remains n/2 out of phase with respect teo
original double scattering EXAFS oscillations [see Egq.
{5.3.8) and (5.5.1)}. However, since the derivative of the

phase is positive the double scattering type II modification
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factor 1is exactly in phase with the original double
scattering EXAFS oscillations. The triple scattering
modification factors have exactly the opposite behavior
since the associated hyperbolic sine term 1is always
positive. Thus the triple scattering type I modification
factor is 3m/2 out of phase while the type II factor is
exactly out of phase with the original triple scattering
EXAFS oscillations.

Figure 10 shows that the amplitude of the second shell
single scattering EXAFS component increases gradually as the
bridging angle increases. This increase is more pronounced
at high k wvalues and reflects the angular dependence of the
Debye-Waller factor for this scattering path [see Fig.
6(a)]. The amplitudes of the double and triple scattering
EXAFS components show a more dramatic increase with bridging
angle and reflect a decrease in the Debye-Waller factor for
these scattering paths together with an increased amplitude
for scattering through small angles [see PFPig. 8(a)]. At
sufficiently large bridging angles the amplitudes of the
double and triple scattering paths surpass that of the
single scattering path.

The amplitudes of the modification factors are also
shown in Fig. 10. The detailed structure observed in these
factors may be attributed te the complex Structures present
in the amplitude and phase and their derivatives. The
triple scattering medification factors increase in magnitude

as the bridging angle increases due to the presence of the
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oxygen scattering amplitude which is absent in the
correspending double scattering factors [see Eg.{5.3.8)].
Furthermore, the triple scattering hyperbolic sine term
falls off more gradually than the double scattering term as
the bridging angles increase [see Fig. 7(a)]. In general,
the magnitude of each modification factor is substantially
smaller than that of the original damped EXAFS. When the
bridging angle is 180° the amplitude of each modification
factor is zero since both the correlation terms and the
derivative of the scattering amplitude are zero at this
angle,

A comparison of Figs., 10 and 11 reveals the temperature
dependence of the EXAFS amplitude factors. Note that the
magnitude of the second shell single scattering component is
greatly diminished at higher temperatures. This is due
primarily to the large dependence of this scattering path on
the low frequency bending mode of vibration. The magnitude
of the double and triple scattering components exhibit a
less severe temperature dependence, The double and triple
scattering modification factors show different temperature
dependences. Both double scattering modification factors
increase with temperature while the triple scattering
factors decrease. As described earlier, the double
scattering modification factors serve to increase the total
amplitude of the double scattering EXAFS. The triple
scattering modification factors, however, reduce the total

triple scattering amplitude. Therefore in general, the
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contribution to the total EXAFS due to the modification
factors of both the double and triple scattering paths
increases as the temperature increases.

7 introduced an

Recently, Alberding and Crozier
integrated multiple scattering (IMS) approach to data
analysis in which they explicitly considered variations in
the scattering angle o¢. The authors, however, failed to
recognize that such angular variations are a second order
effect and that to lowest order only distance variations are
important [see Egs. (5.2.9) and (5.2.10)]. Furthermore,
these second order terms are negligible due to the lack of
correlation (particularly in the forward direction) between
changes in the scattering path length and the scattering
angle «. Accordingly, the physical basis for this approach

i1s unclear. The authors7

also introduced a mean multiple
scattering (MMS) approcach to the analysis of EXAFS data.
The failure of this approach to yield satisfactory results
was discussed earlier in Chapter 1IV.

In conclusion, a change in the scattering angle e,
induced by thermal vibrations, produces a large change in
the scattering amplitude, particularly in the near forward
direction. However, the correlation that exists between
such an angle change and the associated change in distance
for a given scattering path is small, especially at large
bridging angles. It is the degree of correlation which

determines the contribution of the modification factors to

the observed EXAFS. Since the degree of correlation is
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small, the modification factors may be neglected in an
analysis of multiple scattering EXAFS data. Accordingly,
for systems of this type it is sufficient to wuse the
multiple scattering analysis proposed by Teo> provided an
adequate treatment is given to the Debye-Waller factors

which involve a change in scattering pathlength.8
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Figure 1.

The general three-atom system. The equilibrium
positions of the central atom (o), first nearest-neighbor
atom (j) and second nearest neighbor atom (1} are shown as
filled circles. The displacement of these atoms from their
respective equilibrium positions are shown as open circles,
® represents the equilibrium bridging angle. The
equilibrium position of the central atom was chosen to
represent the origin of the system.
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(d) (e)

Figure 2.

The five significant scattering paths in a system of
three atoms. (a) and (b) represent the single scattering
paths from atoms 1 and j. The two double scattering paths
{c) and (d) are identical by virtue of time-reversal
symmetry. The triple scattering path is shown in (e).
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(a) A, STRETCH (b) A, BEND

(c) B, STRETCH

Figure 3.

Schematic of the normal modes in a three-atom system of
Coy Symmetry. There are three normal modes, two of A; type
symmetry and a single B; mode.
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Figure 4,

Schematic representation of the vectors which determine
the change in scattering angle a at atom j due to the

displacement of all the atoms in a given normal mode ([see
Eq. (5.3.8)].
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The argument of the hyperbolic sine terms for the
double and triple scattering paths. The angular damping
factor is the exponent of the exponential terms which
represent the damping of the EXAFS due to a change in the
scattering angle a. The hyperbolic sine terms were
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Amplitude of the individual terms which contribute to
the EXAFS of the Br,0 system. All calculations were carried
out at 10°K and a bond distance of 2.0 &, The sign of the
modified triple scattering type I and II terms is positive
while all other terms are negative. Note that the modified
type I termsS are to be multiplied by a cosine of the
appropriate argument while the type II terms are multiplied
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bridging angles of (a) 120°. (b) 150°9. (c) 180°.
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CHAPTER VI

THE CALTECH LABORATORY EXAFS SPECTROMETER

6.1 Introduction

In recent years extended x-ray absorption fine
structure (EXAFS) spectroscopy has been used extensively as
a structural tool.l Although the existence of this extended
structure has been known for many years,2 the low £flux
available from conventional sealed tube x-ray sources
severely hampered the growth of the technique. Most of the
early EXAFS data suffered from poor signal to noise such
that early investigators were mainly concerned with the
gualitative variations in the data from one material to
another.

Much of the present interest in EXAFS is due to the
pioneering work of Sayers, Stern and Lytle3 who introduced a
simple parametrization of the fine structure in terms of
physically significant quantities. An egqually important
facter in the development of EXAFS, however, was the
emergence of the synchrotron radiation 1laboratory at
Stanford University, which provided large fluxes of highly

collimated and polarized x—rays.4

Together, these advances,
combined with the appealing shert range nature of the probe,
provided a major impetus towards the development of EXAFS as
a structural tocl.

The subsequent interest in EXAFS, however, placed a

considerable burden on the synchrotron facilities, and as a
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result, it became difficult to obtain beam time to perform
experiments. Even when beam time became available there were
considerable time constraints within which each experiment
was to be completed. Investigators did not have the luxury
of being able to repeat experiments and it was difficult for
students to learn under such conditions. Furthermore, the
analysis routines developed at these synchrotrons became
widely used throughout the EXAFS community and 1little
consideration was given to new methods of analysis,

The laboratory EXAFS spectrometer has developed into an
important alternative to the use of synchrotron radiation.
Clearly, such a spectrometer cannot compete with a
synchrotren facility in terms of flux. What is important,
however, is the fact that the investigator has now
sufficient time to try out new experimental ideas, ideas
which might not have received beam time at a synchrotron
facility. In any case, a laboratory EXAFS spectrometer has
sufficient flux and resolution to be useful in the study of
a large number of materials. This has allowed synchrotron
facilities to concentrate on the study of more complex
materials which require the large flux and high resolution
available at such centers.

In this chapter we shall describe the Caltech
laboratory EXAFS spectrometer. The considerations governing
the design of the instrument are discussed in detail
together with an analysis of the components which make up

the spectrometer.
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6.2 General Description of the Spectrometer

A schematic of the laboratory spectrometer is shown in
Fig l. The spectrometer is based on the Rowland circle
geometry in which the source, monochromator and the exit
slits all lie on the circumference of a circle.? The radius
of the Rowland circle was chosen to be 75 cm which reduces
the effects of both vertical divergence and the effective
source size as seen by each point on the crystal.
Furthermore, this choice of radius increases the resolving
capabilities of the spectrometer. Unfortunately, however,
the large path lengths in a Rowland circle of this size
results in a significant amount of x-ray scattering by air.
For 8 KeV x-rays, a 30 cm path length in air reduces the
initial intensity of the beam by 50%. To overcome this
problem helium beam lines have been employed along the path
of the x-rays.

Tc obtain an EXAFS spectrum both the incident (I,) and
the transmitted (I) intensities must be monitored as a

function of the x-ray wavelength ) according to the equation
I(x) = I (r)expl-u(r)X] (6.2.1)

where u{a) is the linear absorption coefficient, which
contains the EXAFS oscillations. Both I, (i) and I(x) are
measured using gas ionization chambers. To scan the x-ray
wavelength, » , the source, the monochromator and the slits

must be moved aleng the circumference of the Rowland circle,
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satisfying Bragg's law for diffraction at each point. The
distances from the source to the center of the crystal and
slits must be equal to insure focusing of the diffracted x-
rays onto the exit slits. In this configuration the
condition for diffraction of x-rays of wavelength 1 1is

given by:5

D =nxR/d = 2R sineg (6.2.2)

where D and R are the distances from the source to the
crystal and the radius of the Rowland circle, respectivelv.

Since the source is fixed both the monochromator and
the exit slits must be moved to satisfy Eq. (6.2.2). This
motion is accomplished by mounting both the monochromator
and the slits on lead screws, which are in turn, driven by
stepping motors. Figure 2 is a scaled drawing of the
spectrometer and shows the stepping motors and the positions
of the spectrometer components at three different energies.
A single stepping motor (known as the 8 motor} serves to
maintain the correct Bragg angle for diffraction. Two other
stepping motors, which lie along the chords of the circle
defined by the source, the monochromator and the slits,
serve to adjust these chord lengths in accordance with Eq.
(6.2.2). A fourth motor (called the 26 motor) allows one to
adjust the position of the detector stage, which contains
the exit slits, until the correct scattering angle (20p) is
defined.

The positions of three of these stepping motors are
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software controlled. The 28 motor, however, proved too
remote from both the source and crystal and we were unable
to accurately predict its correct position as a function of
X-ray energy. As a result a calibration procedure 1is
necessary in which the three other motors are moved to their
appropriate positions for a given energy and then the 28
motor is scanned until the maximum intensity is registered
through the exit slits. This 26 position is then recorded
and the procedure is repeated over the remaining energies of
interest. The calibration file which is created remains
valid for as 1long as the experimental parameters are
unchanged.

To perform an EXAFS scan, all four motors are initially
moved to the position which corresponds to the first energy
at which the absorption measurement 1s required. The
intensity of the x-rays passing into the ionization chambers
is then registered. After sufficient counts have been
accumulated, the stepping motors move the spectrometer
components to the next energy setting where the procedure is
repeated. The energy difference between subsequent
positions of each stepping motor is typically 2 eV. The
data are stored on a floppy disk in the form: energy, counts
in chamber I,, counts in chamber I. From these data, ., (2)

may be determined from Eg. (6.2.1).
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6.3 X-Ray Source

The x-ray source consists of a commercially available
12 KW Rigaku RU-200 rotating anode x-ray generator.6-This X-
ray Source has many advantages over the conventional sealed
tube sources., The emission currents in these latter sources
are limited by the amount of heat that can be dissipated by
the target. In the case of rotating anodes, this heat is
spread over a rotating target. Furthermore, rotating anodes
may be interchanged, and hence, the cutput characteristics
of the source may be readily varied. These anodes may also
be polished so that contaminants, such asthose due to
Sputtering from the filament, may be removed.

The output of both reotating anode and sealed tube
sources consists of a broad continuum of x-ray frequencies
superimposed upon which lies a number of sharp character-

istic lines.’

The continuum radliation or Bremsstrahlung
originates from the deceleration of the electrons, which are
emitted by the filament, as they penetrate the target
material. The characteristic lines result from discrete
transitions in the target atoms, due to electron impact
ionization of various electronic energy levels of these
atoms. A sharp high frequency cutoff exists and corresponds
to the complete energy gained by the electrons as they are
accelerated between the filament and the anode.

In EXAPS studies only the smooth continuum radiation is

used. The sharp, intense characteristic lines represent a

problem since the detector system responds non-linearly to
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the sudden increase in intensity. Accordingly, it is
important to have some means of removing the unwanted
effects of these lines. One possible solution is the
introduction of an attenuation device which reduces the
intensity of the beam passing through the exit slits at
energlies corresponding to these 1lines. The device itself
consists of a lucite wedge which is driven in and out of the
beam by a stepping motor. The incident Bremsstrahlung
intensity is measured and recorded as a function of energy.
The observed intensity is then extrapolated through all of
the characteristic lines in the spectrum. 1In the region of
such a line, the wedge position is given by thatwhich
reproduces the extrapolated intensity. 1In this manner a
look-up table of wedge positions is generated which
ultimately yields a smooth intensity distribution.

As an alternative to this wedge method, it is possible
to choose a target material which has no characteristic
lines in the energy range of interest. Such a material must
also be a good thermal conductor since, most of the energy
of the incident electrons is dissipated as heat.® silver
proved to be just such a material. Apart from having the
highest thermal conductivity of any substance it also has no
characteristic lines in the energy region from 2 KeV to 22
Kev.? This energy region is sufficiently large to allow
EXAFS studies on almost all elements.

There is, however, another source of characteristic

lines. The electrons which bombard the target are produced
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by thermionic emission from the filament. This emission is

described by the Richardson-Dushman equation:lo

J = AT? expl[-E,/kT] (6.3.1)

where J is the emission current, A is a constant and E, is
the workfunction of the filament material. The filament is
heated by passing a current through it and, as a result,
electrons are boiled off. Due to the high temperature of
the filament, however, atoms from the filament are sputtered
onto the anode. Consequently, over a period of time,
characteristic lines of the filament material appear in the
output of the x-ray source. 1In the case of tungsten, the
most common filament material, a large number of
characteristic lines appear between 8 KeV and 12 KeV which
is an important energy region for the study of first row
transition metal compounds.

To counteract this problem thoriated-tungsten filaments
have been constructed., The thorium atoms are believed to
reside near the surface and markedly reduce the
workfunction of the filament. For a given emission current,
the required filament current was observed to be half that
required for a Ppure tungsten filament. The operating
temperatures of these new filaments is, therefore, reduced
by a factor of four. We have observed experimentally, that
only after months of continuocus operation does the degree of
contamination of the anode become so severe that polishing

is necessary.
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6.4 Monochromator System

The x-ray monochromator employed in the spectrometer is
of the Johansson type shown in Fig. 3. The front surface is
ground and polished to the diameter of the Rowland circle.
The crystal is then bent to the diameter of the circle such
that the polished surface lies on the circumference. In
this configuration, all x-rays incident on the crystal from
the source, which is a distance D away, are focussed down to
a point, the same distance from the c¢crystal, but on the
other side of the circle (see Fig. 13). Accordingly, each
point on the crystal diffracts x-rays of the same
wavelength, which is defined by Eg. (6.2.2}. The Johansson
arrangement, therefore, results in an intense, fully
diffracting monochromator, the intensity of which is some
three to four hundred times greater than that of a similar
but flat crystal.

The mechanism for bending the crystal is shown in Figqg.
4. Note that bending moments are applied at both ends of
the crystal with cylindrical couples. Each bending element
may be adjusted by a micrometer independently of the other
elements. This allows translation of one or both ends of
the crystal in addition to bending. This bending mechanism
is convenient since several bending geometries are possible
(e.g., cylindrical, logarithmic spiral etc.) with the same
bender and crystal. There is a trade off involved in the
use of bending couples, however. The closer the bending

elements of the couple are to each other the better the
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approximation to a cylinder, but the greater the strain
placed on the crystal. Furthermore, note that the crystal
being bent is not uniformly thick, and hence, a perfect
cylindrical bend 1is not possible. Accordingly, bending
mechanisms of this type are most appropriate for
spectrometers which require a large Rowland circle radius.

As an alternative to the bending mechanism discussed
above, it is possible to obtain ground and polished crystals
which have been fixed to a backing block of the correct
curvature. In this manner large (3 cm x 15 cm) Johansson
crystals may be obtained. There are often problems with
monoechromators of this kind, however, since dust particles
or dirt in the epoxy introduce local strain on the crystal,
and hence, distort the Bragg planes. Such distortions
result in diffuse x-ray scattering and ultimately contribute
to an aberration in the focus.

In the case of our labeoratory spectrometer, the bending
mechanism discussed above is used to bend a thin (0.2 x 2.5
Xx 5.0 cm) Si(lll) crystal, and allows EXAFS data to be
obtained in the 6 KeV to 12 KeV energy range, The fixed
curvature monochromator consists of a four by one inch
Ge(220) crystal which is affixed te an aluminum backing
block. This latter crystal is operative in the 13 KeV to 20
KeV energy range.

In choosing a suitable monochromator the guestion of
harmonic generation must be considered. The presence of

harmonics in the diffracted beam tends to smear out the
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EXAFS oscillations and distorts the amplitude information
they contain. The problem of harmonics may be eliminated by
operating the x-ray generator at a voltage below the energy
of the harmonic. This, however, limits the maximum emission
current, due to space charge effects and also reduces the
lifetime of the filament. The Si(111) crystal has no second
order reflection, and hence, may be used at relatively high
voltages. The Ge(220) crystal, on the other hand, reflects
in second order, but since it is operative at high energies,

this is not a serious restriction.

6.5 X-Ray Detectors

At present, ionization chambers are used to detect both
the incident and transmitted x-ray intensities. A schematic
of an ionization chamber is shown in Fig. 5. X-rays
entering such a chamber, ionize the gas inside, and produce
a certain number of electron-ion pairs. The average energy
required for the formation of each electron-ion pair is
approximately 30 eV and is roughly independent of the nature
of the gas.ll When a bias voltage is applied across the
chamber the electron-ion pairs drift apart under the
influence of the applied field. The total charge at the
collection electrode 1is dependent on the applied voltage.
Ionization chambers operate at a voltage which allows every
electron-ion pair produced to be <collected at the elec-
trodes. At voltages lower than the ionization chamber

voltage, recombination is important while at higher voltages



173

secondary ionization occurs. The currents obtained from such
ionization events are typically in the picoampere range.

It is possible to calculate the degree of absorption in
each chamber which provides the best signal to noise ratio.l
The ionization chamber which detects the intensity should
absorb 20% of the beam while the sample absorbs 80% of the
remaining intensity. The rear ionization chamber, which
detects the intensity of the transmitted beam through the
sample, should absorb as much as possible of this intensity.
The first ionizatien chamber has a path length of 7 cm and
contains a 20:80 mixture of argon and nitrogen. The rear
chamber has a pathlength ¢f 13 cm and contains pure argon.
These chambers satisfy the criteria for maximum signal to
noise at 8 KeV. At higher energies, however, chambers with

longer path lengths or heavier gases are required.

6.6 Spectrometer Performance

The present performance of the EXAFS spectrometer is
characterized by a photon flux of 107 photons per second and
an energy resolution cf 5 eV (see Fig. 6). These values are
for 8 KeV x-rays using the Si(lll) monochromator described
earlier. At higher energies the photon flux is greater but
the resolution is decreased. There are many factors which
influence the spectrometers performance, but in our case, by
far the most important of these, is the monochromator
system.

The x-rays produced from a rotating anode by electron

bombardment are 47 emitted. In what follows, we shall
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assume that the energy distribution of photons is the same
within each solid of the beam. Such an assumption is well
justified in view of the large potential energy of the
incident electrons, which tends to make polarization and
other effects insignificant.

We shall limit our discussion te the performance of the
spectrometer at 8 KeV. At this energy the chord length, D,
from the source to the monochromator is 35 cm, The focus on
the anode is 1.0 x .05 cm, which when viewed at a 6° take
off angle, vyields an effective focus width of 50 microns.
At a distance of 35 ¢m, each point on the crystal see
intensity within an angular range of 30 seconds of arc. The
monochromator crystal may or may not be capable of
diffracting intensity within this angular range. The
angular range over which a crystal can diffract is called
the acceptance angle wg of the crystal. From dynamical

theory we obtain an expression for mslz

2¢2  \2|F|
wg = 5 - (6.6.1)
V51n263

where F is the structure factor and 8 is the Bragg angle
for diffraction. Note that wg is directly proportional to
|Fl, and hence, the larger the angular range over which the
crystal can diffract, the brighter the crystal. Using Eg.
(6.6.1) we can calculate the aéceptance angle for Si(111).
For this crystal, at a Bragg angle 9 g '= 14.217°,

corresponding to copper K, radiation, we obtain an
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acceptance angle of 6.9 seconds of arc. Since our beam has
an angular range of 30 seconds of arc, we are in principle,
only using one gquarter of the beam intensity.
We must also consider the factors which determine the
resolution of the spectrometer, From Bragg's law we can

readily derive the dispersion relation:
a9 = 8Xx/Xx tan ap (6.6.2)

In the 1limiting case, where the angular spread A8 corres-
ponds to the acceptance angle, maximum resolution ax/Xx is
obtained and full use is made of incident intensity. In the
case of Si(l1l1l) using copper Karadiation we calculate a
resolution of 1l.06 eV froﬁ Eq. (6.6.2).

From the above discussion, however, it is clear that
such a resolving power may not be achieved with our
spectrometer. Using a beam with an angular spread of 30
seconds of arc we predict an experimental resoclution of 4.6
evV. This resolution will be achieved only if the whole
system is working perfectly, any misalignments or vibrations
will tend to increase this value, Accordingly, the observed
resolution of 5 eV (see Fig. 6) indicates that the
spectrometer is functioning as well as can be expected.
Note, however, We are still using only one quarter of the
beam so that if we use a 3% take off angle the resolution
will increase by a factor of two while the flux remains
unchanged. This is not entirely feasible, however, since in

the case of a rotating anode, even a slight wobble in the
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axis of rotation would be critical at such low angles,

6.7 Conglusions

The laboratory EXAFS spectrometer describedabove,
provides both sufficient flux and resolution to perform
studies on a wide wvariety of samples, All the data
presented in this thesis have been obtained using this
spectrometer. The systems which were studied are
relatively simple and probably could not have been studled
at a synchrotron facility. However, a careful study of
these systems has revealed a hidden wealth of information in
EXAFS, information which had not been uncovered in ten years
of work using synchrotron sources, The detailed
experimental work which was performed using this
spectrometer is described in Chapters VII through IX of this

thesis.
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Figure 1.

A schematic of the laboratory EXAFS spectrometer. The
distances shown are for diffraction of 8 KeV x-rays.
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A scaled drawing of the laboratory spectrometer,
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Note the positions of the four stepping motors which

shown.
are used to move the components of the spectrometer.
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Figure 3.
The Johansson configuration of the monochromator. 1In

this arrangement, x-rays which are incident upon the
crystal from one side of the Rowland circle, are focussed

onto the other side of the circle.
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Crystal bending appartus with two bending moments. The
upper drawing shows the bend as seen from the top. The
arrows indicate the direction of the force which induces the
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diffraction.
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Schematic of a parallel plate gas ionization chamber.
The applied voltage is V,. If the capacitance of the
chamber is C;, then the total capacitance is C=C;+C'. The
output voltage is then Q/C, where Q is the total charge
collected during the gas lonization process.
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CHAPTER VII

DATA ANALYSIS IN EXTENDED X-RAY ABSQORPTION FINE STRUCTURE:
DETERMINATIONOF THE BACKGROUND ABSORPTION

AND THE THRESHOLD ENERGY

7.1 Introduction

Extended X-Ray Absorption Fine Structure (EXAFS) refers
to the modulations observed on the high energy side of an
x-ray absorption edge. EXAFS has been shown to be sensitive
to the local environment of the absorbing atom.l An
expression for the single scattering EXAFS may be written

63:2

Xk)=— 3 N; |fj(k2,ﬂ")| e—lasze—ZR}/d
i kR
(7.1.1)

where Nj is the number of equivalent scatterers of type j
at distance Rj, fj(k,n) is the backscattering function,
exp(-2k202) is a Debye-Waller factor for thermal fluctuation
and static disorder, e'sz/d is a term which accounts for
inelastic scattering, where d is the photoelectron mean-free
path and sin [2kRj + 6j(k)] is the interference term, with
éj(k),the composite phase shift function. k is the photo-
electron wave number defined by k = [2m(hw —Eo)]l/z/ﬁ,where
Eo 1s the threshold energy and m is the electron mass.

In a transmission experiment, one measures u(k)x =

1n(I°/I), where (k) is the total absorption cross section,
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x is the sample thickness, I, is the incident x-ray beam
intensity and I is the intensity after the beam passes

through the sample. w(k) in Egq. (7.1.1) is actually

obtained as:

(o) — otk
Xty = et —polk)

polk) (7.1.2)

where uelk)= u(k)-u,(k). Hy (k) is a correction for
absorption of x~-rays by electrons other than those of the
edge under study. This contribution may be calculated by
fitting the pre-edge data to the so called Victoreen
formula, uv=ak3—bx4, where a and b are constants and » is
the x-ray wavelength. A data set of length equal to that of
the experiment is generated, using the calculated parameters
a and b above, and is subsequently subtracted from the
experimental spectrum to give u,, the corrected absorption
coefficient, uo(k) 1s the slowly varying background
abscorption of the absorbing atom in the absence of
interfering neighbering atoms for the same sample thickness.
It is evident, that in order to compare the theoretical
expression for the EXAFS with the experimental data, an
accurate estimate of u, is essential.

There is no standardized technique for background
determination in EXAFS. Since there i3 no analytical
expression for u (k) that is adequate for all systems, the

investigator must judge the pecints that represent the

background absorption. These points, in most cases, are
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subsequently subjected to a cubic spline fit to produce a
data set of equal 1length to that of the experimental

3 Recently, Cook and Sayers4 introduced an

spectrum.
empirical set of criteria for background removal using the
cubic spline method. The above methods, however, are highly
flexible and ultimately depend on the discretion of the
investigator.

The EXAFPS expression, Eg. (7.1l.1), 1is written as a
function of the photoelectron wavenumber k. The k range 1is
dependent on the value chosen for the threshold energy Eg.
Since E, is a non-linear function of k, the value of E_
determines the frequency of the data in k space. Various
approaches have been applied to the E, problem. In
instances where model compounds are used, the same value of
E, is chosen for both the unknown and the model compounds.
Provided the compounds dc not differ greatly, this method
works reasonably well.® An alternative approach has been to
vary E, until the peaks in the real and imaginary parts of
the Fourier transform coincide.® This 1latter method,
however, requires a knowledge of too many parameters to be
useful in a study of unknown compounds. A third approach
invokes the concept of phase transferability by assuming
that the phase difference between the unknown and model
compound is a linear function of k and passes through the
origin. The value of E; is varied until the best fit to

such a line is obtained. Another approach has been to

numerically differentiate the edge region and locate the
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inflection points.7 In all cf these metheds, the data are
weighted by k3 to minimize any error in the choice of E,.

In the present chapter we present two approaches to the
problem of background removal in EXAFS. Both methods
involve the convolution of the EXAFS spectrum with a
Gaussian function, the width of which determines the extent
of the damping in the observed spectrum. The first approach
originated from the experimental observation that a low
resolution EXAFS spectrum results from increasing the
spectrometer slit width. In the second method, the EXAFS
damping is achieved via the discrete convolution of the
spectrum with a calculated Gaussian function, This latter
method alsc gives a unique intersection at the absorption
edge which is shown to be a measure of the threshold energy,

Eqye

7.2 Experimental Approach

In this approach, twe data sets are employed for a given
sample, one collected with a narrow slit width (150 um)
while the second set is collected with a larger slit width
(lmm) yielding a spectrum of lower resolution. In accordance
with Egq. (7.1.1), the EXAFS modulations are damped around

u and the intersection points of the two spectra are then

o'
nodal points that lie on the background absorption. This
can be illustrated by considering the distribution of
energies diffracted by the monochremating crystal ([Silicon

(111)] around secme nominal position. In Fig. 1, this

distribution (rocking curve) is shown at 9500 eV. It is
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obvious that opening the slit will include more photons of
different energies, accounting for the observed damping of
the EXAFS.

To illustrate this method ¢f background removal, the
analysis of the EXAFS data from a 12.5 um thick copper foil
is presented. A1l measurements were made at room
temperature and in the transmission mode utilizing the
Caltech Laboratory EXAFS Spectrometer (which is described in
Chapter VI). The energy scale of the spectrometer was
calibrated by assigning the energy of the copper Kaemission
line the value of B066 eV. Figure 2 shows a plot of the
abscorption as a function of energy for copper cocllected with
a slit width of 125 ym. Preliminary data analysis involves
removing the absorption due to electrons other than the K-
shell of copper. This is accomplished by using the
Victoreen formula as discussed earlier, and allows the EXAFS
to be normalized as given in Eq. (7.1l.1).

Figure 3(a) displays the absorption spectra of copper
for slit widths of 125 um and 1 mm. The first peak above
the edge in the high resolution spectrum is washed out when
the slit is opened. Beyond this point, however, the two
spectra are matched peak for peak, with the amplitude of the
low resolution spectrum being noticeably damped.

It is important to note that not all intersection
points in a given pair of spectra are true nodal points.
This is because there are different frequency components of

different amplitudes contributing to the EXAFS at each point
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in k space. The frue isosbestic points become apparent if
an additional spectrum is recorded with a third siit width,
as shown in Fig. 3(b), and will become more evident in
Section 7.3 below. In practice, however, we have found
that the extra intersection points 1lie symmetrically
about the true background and contribute negligible errors
if they are included in the smoothing spline fit. The loss
of the first peak after the edge is not a serious problem
since a typical range for data analysis is from k = 4 to 16
8~1, To obtain the background absorption a computer program
is used to calculate the difference in the absorption of the
two spectra in Fig. 3(a). Only those points satisfying
the average difference of the two spectra in the smooth
high k region are chosen for the calculation. These points
are then used to generate the background by means of a cubic
spline with a high smoothing factor [a small smoothing
factor would make the background follows the data more
closely, (see Cook and Sayers4)]. The Victoreen-generated
contribution to the absorption is also subtracted from this
background to give Mo in EQ. (7.1.2).

Figure 4 displays the post-edge absorption of the
copper foil sample as a function of k, together with the
splined background , calculated as described above.
Subtracting this background from the total absorption in
Fig. 4 yields the desired EXAFS after dividing the

difference by u, (Fig. 5). Division by rather than a

Ho

constant is necessary if a rigorous comparison to the
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theoretical EXAFS expression is to be attempted. This
normalization makes the EXAFS amplitude independent of the
central atom and effectively weights the data more at higher
k values.

The modulus of the Fourier transform of the data shown
in Fig. 5 is presented in Fig. 6. The data points were
weighted by k3, which is frequently used to balance cut the
approximate k=2 dependence o¢f the scattering amplitude at
high k and the k™l factor in Egn. (7.1.1). This weighting

scheme also makes the choice of E, less critical.

7.3 Computational Approach

The experimentally observed slit function of the EXAFS
spectrometer is approximately Gaussian in shape, with full
width at half maximum of about 8ev for a 100 vm slit width
(Fig. 1l}). The observed damping of the EXAFS shown in Fig. 3
is the result of increasing the width of this Gaussian
distribution as the slit width o¢of the spectrometer 1is
increased. The observed EXAFS is effectively a conveolution
of the true spectrum with the experimental slit function.
In this section we introduce a background determination
scheme, which is similar to that described above, except
that the convolution is performed by means of a convolution
algorithm.

The convolution of a function £(x) with a function

g(x) is defined by the convolution integral

o0

h(x) = ff(t)q(x-t)dt (7.3.1)
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For finite functions, the integration limits are determined
as follows: If L, and L, are the Jlower non-zero values of
the two functions and U; and U, are their upper non-zero
values, then the lower integration limit is chosen as
max(L;,L,) and the upper integration limit as min(U;,U,).
For large data arrays, the convolution integral is readily
calculated by means of the fast Fourier transform (FFT)
and the convolution theorem. If F{y}) and G{y) are the
Fourier transforms of f(x) and g(x), respectively, then the
convolution theorem states that, the convolution integral
[Eg. (7.3.1)] is the Fourier transform of the product of
F(y) and G(y). For details on the convolution process, See
Brigham.8

For the purpose of background determination, the
experimentally obtained EXAFS spectrum of a 12.5 um thick
copper foil (Fig. 2) was convolved with a series of Gaussian
functions of different widths. A Gaussian distribution
function was chosen in view of the shape of the observed
slit function, Fig. 1. Furthermore, the smooth tails of the
Gaussian distribution help minimize edge effects in the
convolution process, To normalize the results of the
convolution to the original data, the area of the slit
function is set equal to one.

Figure 7(a) illustrates the effect of convolving the
experimental EXAFS (shown as dots}) with a series of
Gaussian functions of different slit widths. Note that the

EXAFS is progressively damped as the width of the Gaussian
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function is increased. The intersection points of these
spectra are not all unique and deo not represent true
isobestic points. These results are in complete agreement
with the experimental observation made in Section 7.2
above. The effect of this convolution process on the
copper absorption edge is shown separately in Fig. 7(b).
The sharp rise in the edge 15 smeared out as the width of
the Gaussian function is increased. Note that there is a
unique intersection point approximately mid-way through the
edge. This intersection point was taken to be the threshold
energy E, [See Section (7.4)]. The rest of the analysis is
identical to that discussed in the previous section. Figure
7(c) shows the EXAFS plotted aiong with the background.
Note the difference in the background absorption calculated
by the two methods [Fig. 4 and Fig. 7(c))]. The k range is
smaller in the computational method compared to that in the
experimental method. This is due to the slight edge effect
resulting from the convolution of the EXAFS with a wide
Gaussian function. The distorted points in the computed
convolution at high k were discarded. In addition, the
background determined by the computational approach deoes not
bisect the peaks in the low k region (below 4 & 1), The
origin of this difference, is the need to choose a single
point that lies on the background in the low k region, where
no intersection points occur due to the dominant effect of
the absorption edge. This is acceptable, however, as the

simple EXAFS expression, Eq. (7.1l.1), is not valid beyond
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this range. In Fig. 7(d), the modulus of the Fourier
transform is shown, and agrees well with results obtained by

other investigators.4'9

7.4 Discussion

The background determination scheme employed above,
takes advantage of the fact that all EXAFS components have
much higher frequencies than the background. By
successively convolving the observed spectrum with a series
of increasingly wider Gaussians, the higher frequency
components are gradually removed. Eventually all of the
EXAFS will be removed and what remains is simply the low
fregquency background. This method of background deter-
mination is not very useful, since serious edge effects
occur, due to the large widths of the Gaussians required to
smooth out all of the EXAFS. Fortunately, however, there is
alimit to the lowest fregquency EXAFS component that can
exist and is determined by the smallest distance in the
system. When only this lowest frequency compeonent remains,
increasing the width of the Gaussian, only serves to further
dampen this component. The intersection points of these
dampened spectra are unigque due to the presence of the
single remaining EXAFS component, These points are then
used to generate the background. It is important to note
that the intersection points are not unigque until the
Gaussian function is sufficiently wide to eliminate all

EXAFS components other than the lowest frequency EXAFS
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component.

Improper background removal in EXAFS can cause
erroneous interpretation of the Fourier transform results,
even for data with a high signal-to-noise ratio. In both
the experimental and the computational methods described
above, the Fourier transform contains structural information
up to the fifth shell of copper. There is a low amplitude
peak in the 0-1 R region of the transform indicating the
presence of a spurious low frequency component in the
isolated EXAFS, This peak is smaller for the computational
method than in the experimental technique. The size and
position of this peak, however, does not distort the peaks
at higher R values which contain the structural information.
While the magnitude of such a peak is a measure of
successful background removal, it is not the only criterion
which must be satisfied. It is important that the
calculated background does not add or subtract frequency
components which may distert the true EXAFS. The transforms
shown in Figs. 6 and 7(d) satisfy the empirical criteria for
background subtraction set by Cook and Sayers.4

Other experimental methods of damping the observed
EXAFS are also possible. 1If a variable temperature study is
performed over a wide range, the nodal points of these data
sets may be used to generate the background absorption
curve. The damping, however, is more pronounced at high k
making the variable slit method more reliable. In

laboratory EXAFS systems it is also possible to vary the
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bias voltage on the x-ray tube and change the focus size on
the anode. This method is equivalent to the variable slit
method due to the symmetry of the Johansson geometry.
Frequently, however, the dynamic range of the bias voltage
is too small to cause sufficient defocusing.

The computational approach 1is prefered over the
experimental method for various reasons. With the variable
slit method, the scattered radiation may present a problem
so that the ratio of I/I, is not the same for all slit
widths in a smooth region of the spectrum. Also, the
experimental approach to the background removal effectively
doubles the time necessary for data acquisition. Although
this does not present a serious problem in the case of
laboratory EXAFS systems, it may restrict the use of this
method when data are collected at synchrotron facilities,
Furthermore, the peak positicns in the low resolution
experimental spectrum may not match those in a high
resolution spectrum if the spectrometer slit does not open
symmetrically with respect to the beam.

The presence of a unique intersection point in Fiqg.
7{(b) may be understood in terms of the theoretically
predicted functional form of the x-ray abscorption edge. The
absorption edge may be constructed from a series of discrete
Lorentzians due to bound state transitions. The
contribution to the absorption edge, due te transitions into
the continuum, may be described 1in terms of the integral of

a Lorentzian, weighted by the appropriate density of states
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function. This integral takes the form of an arctangent
function.l9 The absorptionedge, therefore, consists of a
series of discrete Lorentzian functions superimpesed on an
arctangent function.® The convolution process described
above is normalized so that the area under each absorption
curveis the same, regardless of the width of the Gaussian
slit function used. Since the width of the slit functions
are much greater than the width of the Lorentzian peaks
describing the bound state transitions, the convolution
process is insenitive to these features. The normalization,
however, constrains the convoluted spectra to pass through
the inflection peoint of the arctangent curve and thus
maintains the same integrated absorption for all slit
functions. The existence of a unique intersection point can
be demonstrated by considering the convolution of a
Gaussian function g(x) of width parameter w and an
arctangent function c¢(x), with a sharpness parameter s. The
convolution integral is given by:

g(x)*c(x) = fexp[—(x—t)z/w]tan'l(t/s)dt (7.4.1)

- o
where the asterisk (*) represents the convolution of the two
functions. Note that the arctangent function c(x) has an
inflection at x=0. From symmetry considerations , the
value of the convolution integral Eq. (7.4.1), is zero at
this inflection peoint (x=0) and is independent of the width
parameter of the Gaussian slit function. This prediction is

in complete agreement with the computationally derived
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spectra in Fig., 7(b).

Theoretical studiesl? have shown that the inflection
point of the arctangent function is a good measure of the
threshold energy E,. Numerical differentiation techniques
have been used to locate this inflection point.7 In
practice, these methods are hampered by the presence of
bound state transitions. The convolution process, however,
is insensitive to these details and provides a good estimate
of E,. Problems occur, however, when the amplitude and the
density of states corresponding to the bound state
transitions do not differ appreciably from those of the
continuum states. In such instances, the bound states may
be included in the summation (integration) over the
continuum, and hence, become buried iﬁ the arctangent
function. The unique intersection point will then occur at
smaller énergies than the threshold energy. In a series of
related compounds, the observed intersection point, may be
used as a measure of the relative threshold energy.

Advantage may also be taken of the convolution apprcach
presented above to enhance spectral resolution. If the
instrumental line shape or slit function is accurately
known, a deconvolution algorithm may be used, for instance,
to obtain edge structures from data collected with
spectrometers that have insufficient resolving power. This
is easily achieved by the use of the convolution theorem.
If f{(k) and g(k) represent the true EXAFS and the

experimental slit function, respectively, then the observed
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EXAFS 1is given by:

(Spxars)obs. = E(K)*g(k) (7.4.2)

If (Sgpxars)prr F(D) and G(r) are the Fourier transforms of

(SEXAFS)obs.' f(k) and g(k), respectively, then

(Sgxars) pr = F(r).G(r) (7.4.3)

Provided that g(k) is known, the true EXAFS, f(k), can be
obtained by the Fourier transformation of {SgxaFs) pr/G(r).

The use of the deconvolution approach described above
to improve resolution is currently being tested. This
treatment would be a great advantage in laboratory EXAFS
systems since a laboratofy spectrometer in which, for
example, a channel-cut arrangement 1 is used to improve the
resolution, suffers a loss of flux which leads to a lower
signal-to-noise ratio. The deconvelution method would offer
an alternative that facilitates data acquisition in a
reasonable length of time.

In summary, the convelution approach offers a simple
and straightforward method for calculating the background
absorption in EXAFS. Furthermore, a unique estimate of the
threshold energy E, is obtained. The deconvolution approach
coffers the possibility of extracting information with

improved resclution from experimental spectra.
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Figure 1.

Spectral distribution of energies diffracted by the
monochromator at 9500 eV. This curve was obtained by
rocking the Si(l1ll1l) Johansson crystal about the Bragg angle
for diffraction of 9500 eV photons. A narrow slit was used
such that the intensity ccllected from every point on the
crystal has a very small angular spread. Note the
distribution is slightly asymmetric indicating the increased
flux from the source at higher energies (lower Bragg
angles).
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Figure 2.

Plot of the absorption as a function of x-ray energy
for a 12.5 micron thick copper foil. The slit width is 125
microns.
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Figure 3.

Plot of the post-edge absorption as a function of the
photoelectron wave number, (a) Scolid and dashed curves
refer to slit widths of 125 microns and 1 mm, respectively.
(b) Dashed, dotted and solid curves refer to slit widths of
125 micrens, 1 mm and 1.5 mm, respectively. Note that in
{(b) only one unique intersection point occurs (indicated by
the arrow) and represents the only true isosbestic point.
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Figure 4.

Plot of the original EXAFS, obtained using a 125 micron
slit width, together with the calculated background
absorption. The smooth background was obtained by a cubic-
spline interpeolation of the intersection points of the two
curves shown in Fig. 3(a).
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Figure 5.
Plot of the EXAFS as a function of photoelectron
wavenumber. The isolated EXAFS was obtained by substracting

the two curves shown in Fig.4 and dividing the result by
the calculated background.



207

8522
—

"BGLT

PN

4 #°
Bset

BSL

BGe

~_

F (fé
<

I -

I

%

1.8 3.0 3.8 7.8 8.2

r, Angatroms

Figure 6.
Modulus of the Fourier transform of the iselated EXAFS
from the copper foil sample. The EXAFS was weighted by k3.
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Figqure 7.

The background and threshold energy determinations
using the computational approach. (a) The experimental EXAFS
is shown as dots. Curves 1-3 represent the conveolution of
the observed EXAFS with Gaussian functions of FwWHM cf 16,
32, and 48 eV, respectively. (b) The effect of convolution
on the absorption edge. Curves 1-4 represent the
convolution of the edge with Gaussians functions of FWHM of
16, 32, 48, and 64 eV, respectively. (c) The observed EXAFS
together with the calculated background. {(d) Modulus of the
Fourier transform as determined by the computational method.
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CHAPTER VIII

IDENTIFICATION OF NEIGHBORING ATOMS IN EXTENDED

X-RAY ABSORPTION FINE STRUCTURE"

8.1 Introduction

Extended X-Ray Absorption Fine Structure (EXAFS)
spectroscopy, the modulation 1in the x-ray absorption
coefficient at energies above the absorption edge, has been
applied to a wide range of structural problems in recent
years. The use of the method is not limited by the physical
state of the sample, and hence, it is a valuable tool for
determining local structure, in instances where conventional
x-ray diffraction methods are not applicable. Such cases

include, certain metallo-proteins,l=3 4,6

gases.7

solutions and
The single scattering EXAFS expression may be written

as:

x(k) = -1/kZAjsin[2kry + §'5(K)] (8.1.1)
J

where Aj is the amplitude function. Aj contains the number
of atoms of type j, the Debye-Waller factor and the
inelastic loss term. k is the photoelectron wavenumber

defined by:
k = [2m(he - E;)11/2/A (8.1.2)

where w is the frequency of the x-rays and E, is the

threshold energy. Ej(k) is the composite phase shift
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function given by:

8'5(k) =8y(k) + §5(k) (8.1.3)

§5(k) is the phase change in the photoelectron wave due to
the absorbing atom potential and 6j(k) is the phase of the
scattering amplitude associated with atom j.

Model compounds are used extensively in EXAFS to deter-
mine atom types as well as bond distances. Chemical
intuition and information available from other techniques
usually reduce the number of model compounds that are
required. There is usually, however, no independent metheod
to determine the nature of the scattering atom . The
backscattering amplitude may exhibit a Ramsauer-Townsend
type resonance, and in this manner, the scattering atoms
may be identified.? These resonances, however, are
experimentally observable for heavy scattering atoems only.
The identification of light atoms is more difficult since
their backscattering amplitudes are small and do not exhibit
such structure. A method for distinguishing light atoms (as
scatterers) would thus be a valuable addition to EXAFS. For
example, differentiating between carbon, nitrogen, or oxygen
atoms in metalloproteins or in surface chemistry,

In this chapter, we present a method for identifying
scattering atoms by comparing their phases with those of
known compounds. We exploit the information contained in
the non-linear phases through least squares curve-fitting to

show the distinguishability c¢f carbon, nitrogen, and oxygen
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in a series of cobalt complexes. Theoretical calculations of
the scatterer phases by Teo and LeelO clearly demonstrate
this point, We now show that such an identification is
possible from phases which are properly extracted from EXAFS
data. We also introduce a new approach for isclating peaks
in R space which minimizes distortion of the phase during

the back-transformation process.

8.2 Physical Basis for The Atom Identification Scheme

The total phase of an absorber-scatterer pair in an

unknown ccempound is given by:

b 350k = 2krd + 8,(k) + 55(K) (8.2.1)

where the superscript u denotes an unknown, and the
subscripts a and j denote an absorbing and scattering atom,
respectively. The absorbing atom can easily be identified
by its absorption edge, and is assumed to be known. For a

known (model) compound with the same absorber,

8aj(k) = 2kry + &,(k) + 85(k) (8.2.2)

We will assume that Sa(k) and Gj(k) can be expressed as

pelynemials in k.

2
8 4 (k) + ajk + agk® + ...,

= 2

T

(8.2.3)

Substituting §,(k) and Sj(k) inte Eq. (8.2.2) yields

2
¢aj(k) = (ao+bo) + (2rj+al+bl)k + (a2+b2)k + Laaa (8.2.4)
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or
$a23(k) = co + cpk + cok? + ... (8.2.4)

Similarily for an unknown compound

55(k) = c§ + cfk + cPkZ + .. (8.2.5)

Note that the c; coefficient contains the distance
information.

If the scatterers are the same in both the unknown and
model compounds, the corresponding coefficient in Egs.
(8.2.4) and (8.2.5) will be the same provided that the phase
isclation is done adequately. In general, the phase
difference bhetween neighboring atoms in the Periodic Table
is a smooth function cf atomic number, the larger the atomic
number the more positive the phase. This monotonic behavior
is especially true at high k values.10 Therefore, the
scattering phase of, for example, oxygen, 1is larger at all
practical k values than that of carbon.

The method employed in this work, expleoits the
difference in scattering phase between atoms as a means for
their identification. To illustrate this last point, we
show in Fig. 1, the calculated scatterer phase functions of
Teo and Leel® for carbon and oxygen. Note that the curves
converge slightly at lower k wvalues. It is apparent that
the region of maximum phase separation, and hence the best
range for our calculation,is from k = 6 8-l to k = 13 &L,
It is also apparent that a least squares fitting method,

should give c, terms that are well separated for carbon and
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oxygen, since their scatterer phases are slowly varying.
This is the basis for the present work. The value of the ¢,
coefficient of an unknown coempound may be compared to that
of a series of model compounds. In this manner the nature
of the scattering atom may be established. Note that since
c, is the phase intercept at k =0 81, this atom identi-

fication scheme is insensitive to the absorber-scatterer

distance.

8.3 Data Acquisition and Analysis

All EXAFS measurements were made at room temperature
and in the transmission made using the Caltech laboratory
EXAFS spectrometer (see Chapter VI). The cobalt in the
cobalt complexes used in the present study is in the +3
formal oxidation state. All compounds were analytical grade
reagents. EXAFS samples were prepared by dissolving a known
weight of material in a solvent to make a saturated
solution. Another solvent (in which the compound 1is
sparingly soluble) 1is then added, to precipitate the
compound in fine powder form. The powder was filtered,
dried, and stored on a polycarbonate membrane. The
thickness of the samples was calculated to absorb 70% of
the x-ray beam 100 eV above the absorption edge. This
method of preparing the sample was found superior, for
example, to grinding the sample material to obtain a
uniform particle size.

In transmission experiments, the total absorption co-

efficient p{(k) is measured as:
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w(k) X = 1n(I, /1) (8.3.1)

where X 1s the sample thickness, I, is the incident x-ray
beam intensity and I is the intensity after the beam passes

through the sample. u(k) in Eq. (B.l.l1) then calculated as:
ulk) = [u (k) - ug(k)]/ug(k) (8.3.2)

where u.(k) is the absorption coefficient corrected for
absorption by electrons other than those of the edge under
study. This correcticn is done by using the Victoreen

formula:
ne (k) = w(k) - u, (k) (8.3.3)

where by = ax3 - bx% and a and b are constants and A is the
wavelength of the x-ray photon. wu (k) is the background
absorption of the absorbing atom in the absence of ligands
for the same sample thickness.

There are several problems that have to be overcome
before a successful interpretation of the EXAFS data 1is
possible. It is apparent from Egs. (8.1.1) and (8.3.2}) that
a knowledge of u, is essential before a comparison may be
made between the theoretical expression and the experimental
data. It is also evident from the definition of k [Eq.
(8.1.2)], that an accurate estimate of E, is necessary for a
correct k scaling. An accurate k scaling is important since
the data are typically PFourier transformed to give peaks in

R space; the position ¢f these peaks will depend on the
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choice of E,. An incorrect k scale will also hamper
attempts to least-squares fit the theoretical expression
[Egq. (8.l1l.1)] to the data. The presence of non-linear phase
shifts also complicates the data analysis, and results in a
distribution of frequencies in k space. The transformed
peaks in R space are thus broad and asymmetric. This non-
linearity will also affect the peak positions in R space if
different k ranges are taken for transformation, For this
reason, data analyses of model compounds and unknowns are
typically Fourier transformed with the same k range.

In an earlier communication,11

we presented a method
for the determination of both ., and E, (see Chapter VII).
In that method, the raw EXAFS is convoluted with a series of
Gaussian functions, resulting in a damped EXAFS spectrum.
The intersection points of this series of transformed
spectra are used to generate the background absorpticon. We
have also demonstrated that, a unique intersection point
exists at the absorption edge, and that this intersection
point provides a relative measure of the threshold energy.
An example of such an intersection point is shown in Fig. 2
for Co(acac)3. The distortions that occur at the edges of
the data arise from the nature of the coenvolution
algorithm.ll The convolution method represents a
straightforward approach for the determination of both u,
and E;, and is the method used throughout this present work.

This atom identification scheme requires the

measurement of the phase intercept to an accuracy of at



216

least 0.1 radians (see Fig. 1). The method used to isolate
the data range to be transformed should minimize spuricus
sidelobes in the Fourier transform and Kkeep the phase
unchanged. In the forward transform (FPT of EXAFS data from
k space to R space) this may be accomplished by ensuring
that the data begin and end at a node. For the back
transform, however, the problem is more difficult because of
the presence of side lobes about the base of the peak which
is to be isolated. In this case, only the undistorted part
of the peak [shaded area in Fig. 4(a)-(e)] 1is transformed.
To avoid distortions which result from applying a window
for the isolation, the desired regicn of the peak 1is
translated down to the distance axis. The rest of the data
in R space are set equal to zero. The peak now starts and
ends at zero modulus wvalues (nodes in both real and
imaginary parts). In practice, this is accomplished by
substracting the lowest modulus value 1in the reglon to be
backtransformed, from the modulus at every point in that
region. This can be performed without changing the phase.
If we denote the lowest modulus value by A,, then we require

that for each point:
A: = A; - A (8.3.4)

where the subscript j denotes a new value and i the old one.

Requiring that the phase remains unchanged implies that

$(k) = tan~l[(Im;)/(Re;)] (8.3.5)
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is invariant. But since we may write A; and Aj in the form:

A; = [(Rej)? + (Imy)?2 1172 (8.3.6)

we can construct an expression for the new real and
imaginary parts of the data, in terms of the original

amplitude and phase:

) = 32 - y271/2
(Img) = tans(k) [(Ay)2 - (Imy)?] 8.3.7)
(Img) = + {((a5)2 tan%s1/[tans + 11}1/2

L) = )2 - y2 11/2
(Res) = + [(A)2 - (Im5)? ) (8.3.8)

The signs in Egs. (8.3.7) and (8.3.8) are chosen such that
the original signs of the real and imaginary components
remain unchanged. It is evident that the amplitudes will be
smaller using this window method. This is not a serious
problem in our present goal of identifying atoms from their
phases since the phases remain unchanged. In the next
section, we shall show that other windowing technigues also

change the amplitude.

8.4 Results and Discussion

The isolated EXAFS patterns for the cobalt series of
compounds: Co(acac) 3, [Co(en)3]C13 and K3[C0(CN)6] are shown
in Fig. 3. The modulus of the k> weighted FT of each of
these compounds is presented in Fig. 4. The shaded portion
of the first-shell peak in each transform represents the
region of R space which was backtransformed into k space

using the procedure described in the previous section. The
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total phase was extracted from the first-shell EXAFS using
the method described by Lee et 35”12 and was subsequently
fitted to a pelynomial in k [Eq. (8.2.5)]. The fit was
tried for several polynomials with different degrees in k.
We have found that a second order polynomial gives an
adequate fit. Figure. 5 shows the isclated phase together
with the polynomial fit for each of the three compounds.
Table I contains the coefficients of the polynomial fit for
several fitted ranges of k space.

Table I shows that the constant coefficient in the
polynomial fit for each of the three compounds 1is
approximately independent of the fitted k range, provided
the minimum k value in the fit is greater than 6.5 8-1, rhis
observation is in agreement with the calculated phases shown
in Fig. 1. Since §nly high k data are analyzed, the
coefficients obtained from the fit are relatively
insensitive to the choice of the threshold energy E,.
Furthermore, the small spread in the wvalues of the
coefficients in Table I may be attributed to a small higher-
order component in the phase. Note that the difference in
the phase intercepts between the oxygen and carbon compounds
is approximately 0.7 radians. This difference is smaller
than that predicted by Fig. 1 but is quite acceptable since
the phases of oxygen and carbon converge somewhat at lower k
values (Fig. 1). Lee et 51,13 have shown that the composite

phase shift may be fitted to the function,



219

3'(k) = ¢y + cpk + ck? 4 cy/k3 (8.4.1)

and that the coefficients obtained are linear functions of
atomic number over small regions c¢f the Perioedic Table. The
quadratic form of Egq. (8.2.5), was used instead of
Eq. (8.4.1), since the latter function is not defined at the
origin. Despite this, we have found that the phase
intercept of the nitrogen compound lies approximately in
between that of the oxygen and carben compounds, so that the
constant coefficient is still an approximately linear
function of atomic number (see Table I). This quadratic
function, however, does not accurately describe the
scattering phase for heavy atoms especially in the low k

region.13

Since EXAFS data from such heavy scatterers
extend out to high k values, it is still possible to use
the gquadratic form of Eg. (8.2.5) provided only the high k
data are fitted. This forms the basis for identification of
scattering atoms which are heavier than those discussed
here.

It shcould be noted,11 however, that the phase can only
be calculated to within an arbitrary factor of m., If 3 nm
iz added to the phase intercepts for the oxygen and carbon
compounds, intercepts of 1.756 and 1.049 radians are
obtained, respectively. These 1intercepts are in good
agreement with the values calculated by Lee et _i”l3

especially when the range of the fitted data is considered.

A factor of n# should, however, be ecasily identifiable,
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since the separation between the phases of carbon and oxygen
in Table I (see also Fig. 1) is 0.7 radians, which is small
in comparison to m. 1In practice, we have found that if the
same data range is transformed for all compounds, there is
no need to add or substract multiples of .

The ability to distinguish between and identify
different scattering atoms is dependent on the manner in
which the EXAFS data are treated. The isolated phase
extracted from experimental data is sensitive to windowing
effects. In the forward transform no window function was
used; the data analyzed began and ended at a node. This
procedure ylields good results provided an accurate
background absorptieon has been determined and subtracted,
such that the end points chosen for the analysis are true
nodal points.

The isolation of a peak in R space is more difficult,
however, since the peak amplitude rarely drops rapidly to
zero because of the non-linearity in the phase. Further-
more, the peak usually contains side lobes due ¢to
termination errors in the transform. Any 1solation
procedure results in the data in the inverse space being the
convolution of the FT of the isolated data with the FT of
the window function. If a high percentage Gaussian window
is used, the FT of the isolated peak is convoluted with a
narrow Gaussian in k space. In addition, the data in k
space also contain much of the infermation which was present

in the side lobes around the base of the peak. To eliminate
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this problem, a low percentage Gaussian window may be used.
However, the FT of the isoclated peak is then conveoluted with
a wide Gaussian in k space. 1In principle, it is possible to
remove the effects of the window function by a deconvolution
precess. In practice, however, this procedure introduces
noise and suffers from the same problems as those found in
the original transform.

As an alternative to the above methods, we have
introduced a new isolation procedure. As described in the
previous section, the phase information is constrained to be
the same as that in the original peak in R space while the
amplitude is reduced such that the real and imaginary parts
of the transform begin and end at a node. A comparisén of
this method with other isolation methods is shown in Fig. 6.
The data shown in this figure are from the isolated first-
shell peak in [Co(en)3]Cl3. Note the distortions present in
the amplitude and phase of the isolated peak when a 20%
{dotted curve) and a 5% Gaussian windew (dashed curve) are
used. As noted by previous investigators the distortion
appears to be greatest in the first and last oscillations in
k space.12 This, however, does not guarantee that the data
in between are undistorted, since the sides of the peak
which are multiplied by a Gaussian window function in R
space , receive a contribution to their intensity from aill
points in k space. The distortieon is greatest in the first
and last oscillation in k space because the amplitude of the

original data is smallest in these regions. The present
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method (so0lid curve) does not introduce such distortions
since no window function has been emplovyed. This methed,
however, deoes suffer from the usual termination effects due
to the finite data range in the discrete transform.

We have found this new peak isclation technique to be
superior when an accurate phase measurement is required.
Since the atom identification scheme requires an accurate
knowledge of the phase intercept, slight distortions in the
phase due to the usual windowing procedures are sufficient
to make such a measurement impractical. The coefficients
obtained from the quadratic fit are moderately sensitive to
the width of the peak transformed in R space. This can be
explained by considering the nature of the peak shape. Each
peak in R space contains, due to phase non-linearity, a
distribution of frequencies from k space. The quadratic
form used here may contain the most significant terms in
such a distribution, but not all of them. 1It is clear then
that FT of peaks in R space with different widths may
contain wvariable contributions of higher-order terms in k.
Accordingly, the most reliable phase intercepts are obtained
when the peaks in R space are transformed with the same
width (base of dashed area in Fig. 4).

Toillustrate the quantitative nature of this atom
identification scheme, a fourth compound, [Co(NH3}g]Cly, was
studied. The isolated EXAFS and the k3 weighted FT of this
compound are shown in Fig. 7. Using the procedure described

abdve, the phase of the first-shell peak was extracted and



223

fitted to a gquadratic function. The coefficients of the fit
are shown in Table II for a series of fitted k ranges. Note
that the phase intercept for this compound is virtually
identical to that obtained for [Co(en)3]Cl; (see Table 1I).
Therefore, if [Co(NH3)6]C13 were an unknown compound, a
comparison of its phase intercept with the three model
compounds studied earlier would reveal that [Co(en)4]Cly is
the appropriate model compound, and that the scattering atom
is a nitrogen.

In many instances, however, the first cocordinatioen
sphere is comprised of different types of atoms. If the
separation in distance is greater than 0.4 &, the FT will
distinguish between the different distances, and the above
analysis may be applied to each separate peak. Often this
is not the case and only one first shell peak is observed in
the FT. When this happens, the isolated phase is dependent
upon the amplitude of the individual components which make
up the peak. Consider a two component first shell
consisting of N, atoms of type A and N atoms of type B.

Clearly,

where N is the coordination number of the first shell. Let
A(k) and B{(k) be the EXAFS amplitude of components A and B,
respectively. The EXAFS corresponding to the first shell-

peak is given by:

Z(k) = A(k)sindgp(k) + B(k)sineg(k) (8.4.3)
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where ¢,(k) and 4pg(k) are the total phases of components A
and B, If Eq. (8.4.3) is Fourier transformed and only the
positive distances are retained, then the back transformed

EXAFS may be described by:12

Z(k) = 172i[A(k)el®(K) 4 B(xyeltg(k)

(8.4.4)

12 (k) el OK)

where e(k) 1is the observed total phase which may be

expressed as:

= -1 [A(k)singa (k) + B(k)sineg(k)
°(k) = ran {A(k)cos¢:(k) ¥ B(k)cos¢gkk)} -2 (8.4-9)

A factor of n/2 is typically added to Egq. (8.4.5) to vyield
the physically significant phase 9'(k).12 If each of the
phase functions can be parameterized as follows:
dalk) = ag + ajk + agk?
2 (8.4.6)
¢B(k) = bO + blk + bzk
Then the extrapolated value of the phase intercept is given

by:

0'(0) = tan—1 jA(Q)sina, + B(0)sinb,) (8.4.7)
B(0)cosa, + B(O)cosboj

If the total coordination number is known, and we assume

that

NgA(K) = NpB(k) (8.4.8)
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then the nature of the coordination sphere may be determined
since we have two equations, Egs. (8.4.2) and (8.4.7), and
two unknowns, N, and Np. Using the phase intercepts shown in
Table I, Egq. (8.4.7) has been plotted in Fig. 8 as a
function of N, and Np, assuming the approximation in Eq.
(8.4.8) to be valid. For any observed phase intercept 8'(Q)
in Fig. 8, there are two possible compositions of the first
shell. In general, however, only one of these compositions
will correspond to an integer number of atoms.

Unfortunately, the approximation in Egq. (8.4.8) is not
generally valid. In the worst case of a coordination sphere
made up of oxygen and carbon atoms, the scattering amplitude
of the oxygen can be approximately 30% greater than that of
the carbon.l® The metal-carbon bond distance, however, is
typically shorter than the corresponding oxygen distance,
which partially offsets the difference in the scattering

amplitudes. 1In general, Eq. (8.4.8) should be rewritten as:
NgA(k) = NpB(k) X (8.4.9)

where X is a factor, assumed to be constant, which
represents the difference between the EXAFS amplitudes cof
components A and B. Equation (8.4.9) must be substituted
into Egq. (8.4.7) to obtain the true dependence of the phase
intercept on the number of atoms in each component. If
component A is oxvygen and component B carbon, then Table
IITI shows the observed phase intercepts for several X values.

Note that 1increasing the value of X shifts the phase
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intercept to a more positive value, and hence, weights more
strongly the contribution of the oxygen atoms to the
observed phase. This shift, however, is small so that even
if the EXAFS amplitude due to oxygen is 50% greater than
that due to carbon the composition of the shell will still
be distinguishable from other possible compositions (see
Table III).

It should be noted, however, for this method to yield
reliable atom identification, several criteria must be met.
The raw data must be of high quality for both the model and
unknown systems. The subsequent analyses of the data should
be performed in the same manner for all coempounds. An
incorrect estimation of E, presents a major problem. The
method of determining E; discussed in Chapter VII should be
adequate, provided the compounds do not differ greatly in
their edge structure. If a known compound exhibits edge
structure which differ from that of the unknown, this
compound must be viewed as an unsuitable model compound for
the latter.

The identification scheme introduced here represents a
contribution to current methods for EXAFS data analyses.
The examples shown demonstrate the distinguishability of
carbon, nitrogen and oxygen in a series of cobalt complexes,
These three atoms represent important scatterers, the
identification of which may help to resolve significant
structural problems. For example, in metalloproteins, the

first-shell metal ligands consist primarily of nitrogen,
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oxygen and sulfur from the protein amino acids. Since this

approcach can be readily extended to other scattering atoms

there should be numerous chemical applications of this

identification scheme.
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The scattering phases of carbon (o) and oxygen (X) as
calculated by Teo and Lee, The solid curves are spline

fits to the calculated data.
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Determination of the threshold energy (E,) for
Co(acac)3. The solid line is the original data. The dotted
and dashed curves correspond to conveluting the data with
Gaussian functions of FWHM of 16 eV and 32 eV, respectively.
The unique intersection point at the edge corresponds to the
E, used in this work.
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total phase to a quadratic equation.

kgringe Coefficient Co(acac) 5 [Co(en)3]C13 K3[Co(CN)6]
(&™)

4.0"10.5

5.0-10.5

6.0_10n5

7.0-10.5

8.0-10.5

~7.746"
2.777

0.0057

-7.722
2.771

0.0061

-7.682
2.762

0.0066

2.751

0.0073

2.760

0.0066

-8.030
2.962

0.0041

-8.022
2.960

0.043

2.956

0.0045

20949

0.0049

2.956

0.0045

-8.517
2.767

0.0044

-8.475
2.756

0.0050

2.741

0.,0059

-8.320
2.720

0.0071

-8.393
2.736

0.0062

Typical errors determined by the 1
+ 0.004, c; *+ 0.001, cy + 5x107

€o

gast—squares fit:
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Table II. Coefficients from the least-square fit
of the total phase extracted from the amine
[Co(NH3)gICl; complex to a quadratic function.

k range (a°"1) c, cy cy
4.0-10.5 -8.087* 2.957 0.0058
5.0-10.5 -8.065 2.952 0.0054
6.0-10.5 -8.034 2.944 0.0058
7.0-10.5 -7.983 2.932 0.0065
8.0-10.5 -8.041 2.945 0.0058

* Typical errors determined by the lgast-squares fit
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Table III. Calculated phase intercepts
ponent system. Component
B is oxygen.

for a two com-
A is carbon and component

Ny Ng 8' (X=1.0) o' (X=1.25) 8' (X=1.5)
0 6 -7.6690" -7.6690 -7.6690
1 5 -7.7812 -7.7613 -7.7474
2 4 -7.8998 -7.8654 -7.8398
3 3 ~8.0220 ~7.9811 ~7.9484
4 2 -8.1442 -8.1068 ~8.0746
5 1 -8.2629 -8.2396 -8.2178
6 0 -8.3750 -8.3750 -8.3750

Phases for the pure components are the average of

those shown in Table I.
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CHAPTER IX

POSSIBILITY OF BOND-LENGTH DETERMINATION IN EXAFS

WITHOUT THE USE OF MODEL COMPOUNDS OR CALCULATED PHASES"

9.1 Introduction

Extended X-Ray Absorption Fine Structure (EXAFS) refers
to the modulatien observed on the high frequency side of an
Xx-ray absorption edge. The origin of this structure is due
to an interference phenomenon in which the final state
photoelectron is scattered by neighboring atoms, Thus the
phase difference between the scattered and unperturbed
photoelectron waves is given by the product of the
photoelectron wavenumber and the path difference together
with any phase changes which occur during the scattering
process, The normalized oscillatory component of the

absorption coefficient is given byl

N, €, (nk) [T TR
X(k) = —:}i:. - sm(2k.ri + ei(k)) (9.1.1)
i

where N; is the number of equivalent scatters of type i at a

distance r.

i from the absorbing atom. fi(m,k) is the back-

scattering function and o; is a Debye-Waller factor which
accounts for thermal vibrations and static disorder. The
argument of the sine term represents the total phase
difference between ¢the scattered and unscattered
photoelectron waves where 8 (k) is the composite phase
shift function.

The PFourier transform (FT) of Eg. (9.1.1) is a form of
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radial distribution function (RDF) in which the absorbing
atom is located at the origin. The position of each peak in
the RDF does not coincide with the true interatomic distance
due to the présence of the phase function s;(k) in the sine
argument. The correct distance is usually obtained by using
a known (model) compound with the same absorber-scatterer
pair. The phase function is assumed to be transferable from
the model compound to the unknown.2 Calculated phase shift
functions are also used for this purpose. In this case, it
is assumed that these phases can be accurately calculated
and that the plane wave approximation inherent in these

calculations is justified.3

Chemical binding effects are
assumed to be unimportant in each case. Furthermore, each
of the proposed methods for determining the distance assume
an a priori knowledge of the scattering atom (the absorbing
atom may be always identified by the observed energy of
the absorption edge).

In this chapter we present a method of determining bond
distances in EXAFS which does not rely on model compounds
or theoretical phase shifts. In addition, there is no
assumption concerning the nature cof the scattering atom; in
fact, during the distance determination process, the
observed phase intercept is a measure of the type of

scattering atom involved (see Chapter VIII).

9.2 Physical Basis for The Method

The physical basis for this scheme is the absence of a

linear term in the phase function 6; (k). This fact 1is
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4

expressed by Levinson's Theorem™® which states:

§.(0) = 8p(=) = npn (9.2.1)

where n; is the number of bound states of angular momentum L
and $&y(k) is the pth partial wave phase shift. Levinson's
Theorem is an expression of the fact that each partial wave
pPhase shift is bounded, and thus, every atom has a finite
scattering power. Since the scatterer phase may be expressed
as a sum of partial waves, the total phase function 6 (k)
must also be bounded. The presence of a linear term would
cause the phase to diverge as k approaches infinity; and
hence violate Levinson's Theorem. There is no reason why
the phase, in a finite k range, cannot be parameterized-by
an equation containing a linear term as discussed by the Lee
et 2}35 However, it must be realized that the parameter-
ization dces not represent the true functional form of the
phase. If the phase does not contain a linear term, why
then do the peaks in the FT occur at shorter distances than
the true interatomic distances? The observed peak position
is a reflection of the fact that the FT is a linear integral
transform. The FT attempts to linearize the data but since
the phase 9;(k) is a non-linear, decreasing function of k,
the result is a peak which is shifted to smaller distances.
The intrinsic non-linear nature of the phase, however, is
evident from the peak shapes, which are broad and
asymmetric.

To exploit the absence of linear terms in the phase
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8j(k) let us write the total phase function ¢;(k) as:
¢; (k) = 2kr; + 65 (k) (9.2.2)

where r; is the true interatomic distance. We may now
define a function gi(k) such that:

30, (k} ¢, (k)
gy (k) = —5— - 3¢ (9.2.3)

where the subscript i is a shell index. Since 9;(k) is non-
linear there is no loss of phase information in constructing
gj(k). The linear term in Eq. (9.2.2), however, 1is
completely absent from gi(k). Thus gi(k) is essentially a

differential equation in the phase 6;(k)

a8, (k) 8, (k)

= - 9.2.4
g; ) = —x K ( )

The general solution of a differential equation of this kind

is given by:

8; (k) = k[K +fgi(k)/k dk] (9.2.5)

where K is the constant of integration. Since the phase
6j(k) is bounded by Levinson's Theorem, the constant of
integration must be zero since otherwise the phase will
diverge at large k. We may thus solve Eg. (9.2.4) for
%}k), substitute into Eg. (9.2.2) and obtain the true
distance rj.

To solve Egq. (9.2.4) we must find a functional form for
8; (k) which satisfies the criteria outlined above. It is

important to note that for K-edge EXAFS, ¢;(k) is comprised
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of the L = 1 partial wave phase shift, 28y, due to the
central atom potential, together with the phase of the
scattering amplitude, v;(k), associated with the ith she11
of atoms. At sufficiently high energies each partial wave

phase shift may be approximated by:
5p(k) = —2mk/(n2)_[jL(kr) V(r) jg(kr) rdr (9.2.6)

where j;(kr) is a spherical Bessel function and V(r) is the
scattering potential. Equation (9.2.6) is the Born
approximation for the phase shift, in which the radial
solution of the full Schrodinger equation is replaced by the
free radial solution jp(kr). It may be shown that, for any
potential V{(r), the partial wave phase shift varies as the
inverse of the photoelectron wavenumber at high energies.
We shall demonstrate this fact for the simple case of a
square well potential.

V, 0<r<a
v(r) = (9.2.7)

At sufficiently high energies the spherical Bessel function

may be written as:
jL(kr) ~ 1/kr sin{kr - L®/2) (9.2.8)

Substituting Eqgs. {(9.2.7) and (9.2.8) into Egq. (9.2.6) it
may be shown, by elementary integration, that to lowest

order, the phase shift for any L is given by:

5L (k) = mVga/(hZ%k) + 0(1/k?) (9.2.9)
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Therefore, the central atom phase shift approaches zero as
1/k, when k tends to infinity.

We must still calculate the asymptotic behaviour of the
phase of the scattering amplitude, Assuming the phase
shifts are real, ¥;(k) may be written as:

(2L+1) 2sin25; Py (cosm)

=

1| C

bi(k) = tan"t (9.2.10)
Z (2L+1)sin26y Py(cosm

Since §p is small for large k and independent of L, the sine
terms in Eq. (9.2.10), may be replaced by their arguments.
Furthermore, the partial wave phase shifts may be removed
from both summaticns. Using Eg. (9.2.9) the scatterer phase

may then be expressed as:
v (k) = tan"Y(mv a/(n%k)] (9.2.11)

For large k, the argument of the tangent is small and maybe
used to appreoximate the tangent itself. The scatterer phase
varies as 1/k and, therefore, the composite phase shift
function, e;j(k), also approaches zero like 1l/k as k tends to
infinity.

A functional form which satisfies the above criteria

is:
8;(k) = A + B exp(-Ck) {9.2.12)

This function may be expanded in a Taylor series to
demonstrate its approximate 1/k behaviour at large k. If

the composite phase is of the form shown in Eg. (9.2.12)
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then the function gj (k) takes the form:
g; (k) = -A/k - (BC + B/k) exp(-Ck) (9.2.13)

where A, B and C are now adjustable parameters in the fit of
Eq. (9.2.13) to the experimentally determined function
gj (k). When these parameters are determined, the phase
function may be calculated from Eg. (9.2.12) and the

distance from Eq. (9.2.2).

9.3 Application to Model Systems

To 1illustrate the ability of this scheme to determine
accurate bond distances, a series of cobalt complexes were
studied. In this chapter, however, we will discuss just one
of these complexes, Co(acac)3. A more detailed description
of this technique, together with the manner in which
accurate phase information may be extracted from EXAFS data,
will be presented in a later publication. The Co(acac) 4
sample used in this study was prepared from analytical grade
reagent. The EXAFS measurement was made at room
remperature, in the transmission mode, using the Caltech
Laboratory EXAFS Spectrometer (described in Chapter VI}.
The background absorption and the threshold energy were
determined using the convolution method introduced earlier.®
The first-shell peak in the transform, corresponding to the
cobalt-oxygen distance was isolated using the peak isolation
scheme discussed previously.7 The total phase was

determined using a scheme due to Lee et gl.l and the
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function gl(k) was constructed. Figure 1 shows a plot of
the total phase together with the function g;{k). Table I
shows the parameters of the fit of gi(k) to the functional
form shown in Egq. (9.2.12) for several fitted data ranges.
Using these parameters, the phase function el(k) was
generated and the cobalt-oxygen bond distance was determined
from Eq. (9.2.2)

The observed bond distance is dependent on the data
range used in the fit. The largest deviations from the true
distance occur when exclusively high k data is analyzed. It
is possible, however, to determine which data should be used
in the distance analysis. The derivative of the total
phase ¢i(k), is simply the derivative of the scattering
phase function together with a constant (2r;). If the
exponential form in Egq. (9.2.12) is to describe the
scattering phase function, then any deviations from this
functional form may readily be seen from the derivative of
the total phase. At high k values this derivative is often
seen to differ markedly from that of a simple exponential
function. Therefore, it not surprising that the distances
obtained from an exclusive analysis of such data are wrong,
since Eg. (9.2.12) is not a valid description of the
scattering phases in this region. The origin of these
deviations, however, is more likely to bhe due poor qgquality
data rather than additional structure in the scattering
phase at high k values.
is

An accurate estimation of the threshold energy, Eg,
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also required for this method. It is important to note that
an error in E, cannot contribute to an error in the k scale
which varies linearly with k., This may readily be seen from
a binomial expansion of the free electron dispersion
relation which relates the x-ray energy to the photoelectron
wavenumber by this quantity E,. Changing E_, by AE, will

change a given k value into a new value k' defined by:

k' = (k2 - 22E,/7.62]1/2
, (9.3.1)
~ k(1 - AE,/(7.62 k?)]

Clearly, an error in Ej cannot produce a linear change in k,
and therefore, such an error will persist in the
differential equation Egq. (9.2.4). The present approach is
to accept this uncertainity in E, and to correct for it 1in
the latter part of the analysis, The manner in which such
an analysis may be performed will be discussed in detail in
a forthcoming publication.

The phase intercept has been shown to be a gquantitative

7 In

means of determining the nature of the scattering atom.
this case, the intercept is given by the sum of the A and B
coefficient. Therefore, it is possible to simultaneously
derermine the bond distance and the type of neighboring atom
involved. The observed phase intercept for oxygen with

cobalt as the absorbing atom agrees with the wvalue

previously reported.7
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9.4 Discussion

In conclusion, this method may be used to determine
bond distances from EXAFS data to within 1% (for single
shell systemé), without resorting to model compounds or
calculations. No assumption 1s made concerning the nature
of the scattering atom; 1indeed, it is possible to identify

such atoms from the observed phase intercept.
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Figure 1.

Plot of the total phase (solid curve) and the function

gl(k)as a function of k.

These data are for the Co(acac)

complex. Note that the total phase appears linear due to

the dominant 2krl term.
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Table I. The parameters obtained in the fit of Eq.
{9.2.3) to the function g,(k) which iscalculated
from the total phase of %he first shell peak in
the Co(acac), complex.

Fitted k Range A B C ry (&) "
3.1 - 5.5 -83.870 76.130 0.0133 1.891
5.0 - 10.4 -82.262 74.551 0.0136 1.889
7.0 - 10.4 -83.908 76.233 0.0153 1.917

*R(Co-0) = 1.888 ® determined by x-ray diffraction.®



