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ABSTRACT 

To obtain accurate information from a structural tool 

it is necessary to have an understanding of the physical 

principles which govern the interaction between the probe 

and the sample under investigation. In this thesis a 

detailed study of the physical basis for Extended X-ray 

Absorption Fine Structure (EXAFS) spectroscopy is presented. 

A single scattering formalism of EXAFS is introduced which 

allows a rigorous treatment of the central atom potential. A 

final state interaction formalism of EXAFS is also 

discussed. Multiple scattering processes are shown to be 

significant for systems of certain geometries. The standard 

single scattering EXAFS analysis produces erroneous results 

if the data contain a large multiple scattering 

contribution. The effect of thermal vibrations on such 

multiple scattering paths is also discussed. From symmetry 

considerations it is shown that only certain normal modes 

contribute to the Debye-Waller factor for a particular 

scattering path. Furthermore, changes in the scattering 

angles induced by thermal vibrations produces additional 

EXAFS components called modification factors. These factors 

are shown to be small for most systems. 

A study of the physical basis for the determination of 

structural information from EXAFS data is also presented. 

An objective method of determining the background absorption 

and the threshold energy is discussed and involves 
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Gaussian functions. In addition, a scheme to determine the 

nature of the scattering atom in EXAFS experiments is 

introduced. This scheme is based on the fact that the phase 

intercept is a measure of the type of scattering atom. A 

method to determine bond distances is also discussed and 

does not require the use of model compounds or calculated 

phase shifts. The physical basis for this method is the 

absence of a linear term il'l the scattering phases. 

Therefore, it is possible to separate these phases from the 

linear term containing the distance information in the total 

phase. 
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CHAPTER I 

INTRODUCTION TO EXTENDED X-RAY ABSORPTION 

FINE STRUCTURE (EXAFS) SPECTROSCOPY 

The term extended x-ray absorption fine structure 

(EXAFS) refers to the modulations in the x-ray absorption 

coefficient which occur on the high energy side of an 

absorption edge. The first experimental observation of 

these oscillations was made by Fricke 1 and Hertz2 in 1920. 

The observed structure was confined to the near edge 

region3, howev€r, and thus could be readily explained by the 

theory of Kossel. 4 As experimental measurements improved, 

the structure was seen to extend many hundreds of electron 

volts past the edge with an amplitude of approximately 10% 

of the edge itself. Accordingly, a new description of this 

phenomenon was required. 

An explanation of the physical basis of the EXAFS 

effect in condensed matter was first proposed by Kronig.s 

In this case, the EXAFS was described in terms of a 

modification of the final state photoelectron or Bloch wave 

due to scattering at the boundary of the Brillouin zone. 

Since this description depends explicitly on the periodicity 

of the solid such an explanation became known as a long 

range (LRO) theory of EXAFS. To explain the observation of 

EXAFS in molecules Kronig also proposed6 a short range order 

(SRO) theory, in which the final state photoelectron wave is 

scattered by neighboring atoms. Apparently, Kronig never 
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realized that the same basic physics could be used to 

explain the observation of EXAFS in both solids and 

molecules. Indeed, as late as 1963, there was still a great 

deal of confusion as to which theory was the most 

appropriate description of EXAFS. 7 A major source of this 

confusion was the lack of quantitative comparison between 

theory and experiment. 

It is now generally accepted that, in most instances, a 

single scattering SRO theory is an adequate description of 

EXAFS. The normalized oscillatory component of the 

absorption coefficient above a K-edge may be expressed as: 

X(kl ,. z:ce.rjl2Nj1fj(k,lT) I sin(2krj + ej> 
j krj 

(1.1.1) 

This equation describes the modification of the 

photoelectron wave, which originates from an absorbing atom 

which is situated at the origin, and is scattered by Nj 

neighboring atoms at a radial distance rj away. The 

amplitude of the EXAFS oscillations is dependent on the 

ability I fj(TI,k) I of these atoms to backscatter the photo-

electron. Note that the EXAFS is expressed in terms of the 

photoelectron wavenumber k which is defined by k:[2m(hw-

E
0

) ] 1 1 2;h, where flw is the x-ray energy and E0 is the 

threshold energy. The argument of the sine wave in Eq. 

(1.1.1) is the total phase difference between the scattered 

and unperturbed photoelectron waves. This phase difference 

has a contribution due to the path difference (2krj) 

together with a phase functionS ej (k) which represents the 
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phase shift due to scattering off both the absorbing and 

neighboring atoms. As suggested by Schmidt,9 a term to 

account for thermal vibrations and static disorder should be 

appended to Eq. (1.1.1). Furthermore, since electrons which 

suffer inelastic losses may not contribute to the EXAFS, a 

mean -free path damping term must also be included in Eq. 

l 10 ( .l.l). 

The present interest in EXAFS began with the work of 

sayers, Stern and Lytlell who realized that if Eq. (1.1.1) 

is a valid description of the EXAFS, then it should be 

possible to invert this expression to obtain the distances 

rj. In particular, they showed that a Fourier transform of 

Eq. (l.l.l) is a form of radial distribution function in 

which the absorbing atom is located at the origin. 

Accordingly, there is a peak in the transform associated 

with each shell of atoms surrounding the central atom. 

These peaks do not occur at the true shell distances due to 

the presence of the phase function 9j(k) in the argument of 

each sine wave. Therefore, to obtain distance information 

from EXAFS the k dependence of these phase functions must be 

known. If in addition, coordination numbers are to be 

determined, some information on the scattering amplitudes is 

required, together with a knowledge of the Debye-Wallerand 

inelastic damping factors. In practice, however, model 

compoundsl2 and theoretical calculations 1 3 are used 

extensively to extract structural information from EXAFS 

data. 
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The increased understanding of the physical basis of 

the EXAFS effect has been paralleled by a rapid development 

in the instrumentation used to measure EXAFS spectra. 

In particular, the advent of synchrotron radiation sources 

has provided a major impetus for the development of EXAFS 

as a structural too1. 14 Furthermore, high flux laboratory 

spectrometers, which utilize rotating anode sources and 

large crystal monochromators, are now available These 

advances allow high signal to noise EXAFS spectra to be 

obtained in an acceptable period of time. 

In view of these developments, it has been our 

objective to carefully re-examine the physical basis for the 

EXAFS effect. In Chapter II we have introduced a rigorous 

scattering formalism for EXAFS, which accounts for the 

presence of the central atom potential in a quantitative 

manner. The formalism also demonstrates the close relation-

ship between EXAFS and the modulations observed in electron 

yield experiments. The contribution of multiple scattering 

processes to the observed EXAFS, which was neglected by 

earlier workers, is shown to be significant for systems of 

certain geometries • In such instances, the standard single 

scattering analysis methods are shown to be no longer valid. 

However, a careful study of such multiple scattering data 

should allow bond angles to be determined. 

A formalism, which does not explicitly. involve a 

scattering 

III. This 

description of 

scheme allows 

EXAFS, is introduced in Chapter 

an intuitive description of the 
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EXAFS in terms of the overlap between the initial and final 

states. At sufficiently high energies this description 

reduces to the standard EXAFS expression, Eq. (1.1.1). 

Unlike earlier theories, this formalism is valid over the 

complete energy range and may be used to describe both bound 

state transitions and shape resonances. Furthermore, the 

expression for the final state structure is an analytic 

function of k, and hence, may be used to calculate the 

damped or imaginary component of the photoelectron wave. 

Since multiple scattering effects may contribute 

significantly to the EXAFS, the simple treatment of the 

thermal vibration given by Schmidtg is no longer valid. In 

Chapters IV and V of this thesis we discuss in detail the 

effects of thermal vibrations on EXAFS. The correlated 

motion of the atoms involved in the scattering process is 

explicitly calculated. The manner in which one should 

analyze such data is also discussed. 

The remaining chapters of this thesis are concerned 

with the physical basis for the determination of structural 

information from EXAFS data. All the experiments described 

in this thesis were performed with the laboratory 

spectrometer which is discussed in Chapter VI. An objective 

method of determining the background absorption and the 

threshold energy is presented in Chapter VII. A novel 

scheme to establish the nature of the scattering atom is 

presented in Chapter VIII. Finally, Chapter IX demonstrates 

that it is possible, contrary to current belief, to obtain 
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bond distances from EXAFS data without the use of model 

compounds or calculated phase functions. 
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CHAPTER II 

THEORY OF EXTENDED ~-RAY ABSORPTION FINE STRUCTURE: 

SINGLE AND MULTIPLE SCATTERING FORMALISMS* 

2.1 Introduction 

Beginning with Kronig in 1932, a number of short range 

order theoriesl-11 have been proposed to explain the post-

edge fine structure--the extended x-ray absorption fine 

structure or EXAFS--of the x-ray absorption edge (see 

reviews of this subject by Lee et ~.,12 Sternl3 and 

With the exception of Lee's recent worklo, all 

these studies suffer from difficulties in their treatment of 

the outgoing photoelectron wave, the scattering potential, 

or the central atom phase shift. Nevertheless, each study 

arrives at essentially the same expression for the 

oscillatory component of the K-edge x-ray absorption cross 

section: 

x(k)"' IJ.-IJ.o =- 2,)e. 1)2 lf(rr,2k) I 
!J.o 1 kr1 

xsin[2kr1 + 21i 1(k) + ())(k)]. (2.1.1) 

where the symbols have the following meanings: k=[2m(flw-

E
0

)] 1 / 2;11 is the photoelectron wavenumber. E0 is the thres­

hold or binding energy of the K-shell and flw is the energy 

of the incident x-ray photon which is polarized in the 

direction e. The backscattering amplitude associated with 

atom j is given by the expression fj(rr,k) = lfj(rr,k) 1. 
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The phase shift due to the central atom 

potential is 2 o1 , and u (k) and u
0 

(k) represent the 

absorption coefficients in the presence and absence of 

neighboring atoms in the final state. 

In the case of polycrystalline samples, the geometric 

factor (e.rj)2, averages to a constant. Additional terms, to 

account for thermal effects1 5 and losses due to inelastic 

scatteringS, may also be appended to Eq. (2.1.1) 

Equation (2.1.1) embodies, among other assumptions, the 

single scattering approximation. That is, the photoelectron 

ejected upon absorption of an x-ray photon, is assumed to 

scatter off of only one neighboring atom. This description 

was recognized, by Lee and Pendry9 and Ashley and Doniacha, 

as being inadequate for the study of non-nearest neighbor 

atoms. These authors considered multiple scattering 

processes with pathlengths similar to those of single 

scattering processes but involving more distant atoms. The 

effect was noted to be of particular importance for multiple 

scattering involving the first and fourth shells in metallic 

copper, which are colinear with the absorbing atom. As the 

scattering amplitudes of all elements are strongly peaked in 

the forward direction, the presence of the first shell atom 

causes a significant amplification of the EXAFS at a 

frequency corresponding to the fourth shell distance. More 

recently, Teo28 demonstrated the need to consider multiple 

scattering effects in a variety of situations. No attempt, 

however, was made to introduce a rigorous multiple 
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scattering formalism. In fact , the form of the E XA F s 

expression assumed by Teo 2 8 is incorrect, since it 

neglects a geometrical factor which does not average out in 

polycrystalline materials (see Section 2.5). 

In this chapter we discuss an approach which separates 

the single and multiple scattering contributions of the 

general problem, and develops computational methods 

applicable to both. A general three-atom formalism is 

developed and employed in the discussion of two physically 

significant model systems. 

2.2 The General Formalism 

The x-ray absorption cross section in the dipole and 

the one-electron approximations is given by:l6 

(2.2.1) 

where a is the hyperfine constant, w is the angular photon 

frequency, and N(w) is the density of final states for the 

photoelectron. The initial and final states of the system 

(i and f) are both eigenfunctions of an approximate 

unperturbed Hamiltonian H: 

n 2 Ze2 
H-- -v2 - - + v - 2m r r (2.2.2) 

where v is the total final-state potential seen by the 

photoelectron. V is represented by a sum of non-

overlapping, spherically symmetric, finite range' potentials 

centered around each atomic site in the system, including 
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the absorbing or central atom c. A schematic representation 

of this final-state potential is shown in Fig. 1. The 

potential energy between the atomic sites is assumed to be 

constant and represents the zero of energy in the system. 

In order to calculate the matrix element in Eq. 

(2.2.1), it is necessary to find the appropriate 

eigenfunctions of H. At energies corresponding to bound K-

shell electrons (the only initial state considered here), 

the potentials of the neighboring atoms may be ignored, and 

the eigenfunction of the resulting Hamiltonian is the usual 

hydrogenlike wavefunction: 

(
z )3/2 

(rli)=rr"112 ao exp(-Zr/a0) (2.2.3) 

Two factors influence the nature of the final state: 

the potentials of the neighboring atoms and that due to the 

central or absorbing atom. For photoelectrons of 

sufficiently high energy (approximately three times the 

plasma frequency 6), the attractive potential of the central 

atom's nucleus, together with the influence of the other 

bound electrons (though these are not explicitly considered 

here), becomes negligible, and the Schrodinger equation 

reduces to: 

(2.2.4) 

where H0 is the free-particle Hamiltonian. This equation 

may be inverted to give the Lippmann-Schwinger equation 17 
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(2.2.5) 

where <rlk> are the normalized eigenfunctions of H0
• We 

shall use the minus form of Green's and T operators, so that 

<rlk> corresponds to the outgoing asymptote of the 

scattering process described by <r If>. The description of 

the EXAFS phenomenon is thus expressed in terms of the state 

of the photoelectron after the scattering process is 

complete. Furthermore, this choice of asymptote most 

clearly illustrates the close relationship between EXAFS and 

the modulations observed in electron-yield type experi­

ments.29 

The full T operator may now be expanded in terms of the 

operators tj associated with the individual scattering 

centers located at r=r·lB 
J 

(2.2.6) 

Note that successive scattering by the same potential is not 

permitted. 

Substitution of the first two terms of Eq. (2.2.6) into 

the Eq. (2.2.5) yields an expression which may be 

represented graphically as shown in Fig. 2. The first 

diagram in this figure represents the simplest single 

scattering case: a photoelectron ejected in the direction 

i'j, and scattered in some direction R by the atomic 

potential at r=rj. A similar interpretation applies to the 

second diagram. The remaining diagrams represent double 
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scattering processes in which the photoelectron is scattered 

successively by two atomic potentials. 

In particular, the third and fourth diagrams in Fig. 2 

represent processes for which the second scattering center 

is the absorbing atom potential. In such instances the 

scattering path length is identical with that in the 

corresponding single scattering process. Accordingly, such 

terms must also be considered within our single scattering 

theory. The term corresponding to secondary scattering by 

the absorber was first discussed by Lee 10 and allows a 

rigorous treatment of the effect of the central atom 

potential. The approach adopted, however, was not 

sufficiently general to be readily extended to multiple 

scattering problems. 

2.3 The Single Scattering Formalism 

The two single scattering terms of Eq. (2.2.6) may now 

be substituted into the matrix element in Eq. (2.2.1): 

<J- I e. r I i> = <k I e · r I i/ + .l)k I tjG;e · r I i> 
i 

+ L (k I t;G;t;G;e · r I i) , 
(2.3.1) 

J 

where we have taken the complex conjugate of Eq. ( 2.2.5) and 

* have noted that t(z )=[t(z)]t. 

The first matrix on the r:ight-hand side of Eq. (2.3.1) 

is responsible for the usual unperturbed photoelectric 

effect (i.e., for 11 0 ), and is evaluated in Appendix A with 

the result: 
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(kle· rli>=M(k,Z)k· e, 
. (z )s'2 

M(k, Z) ~ - (
2 
)'"; (;:o )3 . 
1T - + k2 

ao 

(2.3.2) 

The remaining terms in Eq. (2.3.1) may be expanded in a 

complete set of states to obtain: 

L (k I t;c~e · r I i) 
J 

= L:f<k I t;lrt><rtl c;l r> e · r<rli> drdrt 
J 

(2.3.3) 

and 

L (k I t;c;t;c;e · r I i) = L J<k It; I r 3)(rsl c; I r2> 
J J (2.3.4) 

X (r21 t; I Yt)(rl I c; I r) e. r(r I i) dr drt dr2 drs 

The EXAFS effect may be viewed as arising from a 

difference in phase at the origin between the unperturbed 

photoelectron and one that has scattered off of a 

neighboring atom. This occurs because the initial state is 

highly localized at the origin while the final state is a 

photoelectron which interacts with the neighboring atom 

potentials. To insure intensity for the EXAFS effect,the 

initial and final states in Eq. (2.2.1) must overlap, and 

hence, only the component of the scattered wave which is 

directed toward the origin is important. The simplest 

description of such a phenomenon is thus one in which all 

the matrix elements are expressed in terms of their 

effective values at the origin. The coordinate system, 

was chosen accordingly (see Fig. 3). 
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All that remains now is to evaluate matrix elements of 

the forms: 

(r'IGolr> and (r'lt;!r). 

The configuration-space matrix element of the Green's 

operator are given by the corresponding free-particle 

Green's function: 

e'•lr' -rl 

(r'IGolr>=- 2~2 lr'-ri · (2.3.5) 

Note that I r I in Eq. (2.3.5) is of the order of a
0

/Z or less 

while r' is restricted to a domain of radius aj around rj 

(see Fig. 3). Hence r'"" rj and I r'-rl may be expanded as:l9 

(2.3.6) 

Therefore, the Green's function in Eq. (2.3.5) may be 

approximated by: 

(r' I G0 lr> ~ -
2

m"' 2 ...!:_ exp(ik1 • (r'- r)] , 
rr" r1 

(2.3.7) 

the direction of propagation of the 

photoelectron. The error in making this approximation, 

aj/rj, is small since the core electrons of the neighboring 

atoms are responsible for most of the scattering in the 

EXAFS energy regime.12 

Substituting the approximate Green's function Eq. 

(2.3.7) into the matrix elements Eqs. (2.3.3) and (2.3.4) 

permits us to perform the space integrals in the manner 
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described in Appendix A, with the results: 

(2.3.8) 

L (k I t;c;t;c;e · r I i) = L m~~rr)4 

_;.M(k, Z)(e. 1) 
J J rj 

X (kIt~ I k;)(k; I t;l kJ) ' (2.3.9) 

where k) =-krj is the direction of propagation of the back­

scattered photoelectron. 

We may now relate the matrix elements of tj<rj) to 

those of tj(O) which represent the identical scattering 

problem, but centered about the origin20 

Since only elastic scattering events (i.e., lkl=lkjll are of 

interest, the matrix elements of tj(O) form an on-shell T 

matrix which may be expressed in terms of the 

scattering amplitude fj(9j):21 

(2.3.11) 

where cosej=R.Rj=R.rj. 

Equations (2.3.8) and (2.3.9) may now be rewritten as: 
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(3. s) =L:M(k, z).!.(e · 1)fJ(eJ) 
J YJ (2.3.12) 

xexp(ikrJ(1-cos81)], 

and 

(3. 9) = LM(k, Z) ~ (e • 1)!1 (rr) 
J rJ (2.3.13) 

X/0 (7r- il1)exp(2ikrJ) , 

where cos(n-ej)=R.R1=-R.rj. 

The complete matrix element in Eq. (2.3.1) is the sum 

of three terms corresponding to the unperturbed 

photoelectric effect Eq. (2.3.2): simple scattering by the 

atom at r=rj Eq. (2.3.12); and secondary scattering by the 

absorbing atom Eq. (2.3.13): 

a.(k) a: I (f -I e · r I i) 12 

= IM(k,Z)k· €+(3.12)+(3.13)1 2
• 

(2.3.14) 

The above treatment describes the absorption of a 

single x-ray photon by an absorber-scatterer atom pair. In 

an EXAFS experiment, however, a large number of such events 

will occur and the ejected photoelectrons will be scattered 

into many different directions R. In order to compute the 

average cross section of such a macroscopic system, it is 

necessary to average over all such directions R in Eq. 

(2.3.14) 
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(2.3.15) 

= /IM{k, z)(k · e> + (3.12) +(3.13) 1
2 ~~·. 

The four lowest order terms in rj in this spherical average 

are evaluated in Appendix B with the results: 

j2 Re[M*(k • e) X (3. 12)) ~~· 

I "<e· ~y =- jM 2 L: k~ Im(exp(2ikr1)/1(rr) + / 1(0)], 

j2Re[M*(k· e)x(3.13)]:• =-1Mj 2 ~(e~k)
2 

xrm{fexp(2ili 1) -l]f/rr) exp(2ikr1)}. 

(2.3.16) 

(2.3.17) 

(2.3.18) 

(2.3.19) 

Note that in summing the above expressions, the forward 

scattering term fj(O) in Eq. (2.3.17) cancels with Eq. 

(2.3.18) by virtue of the optical theorem.2 2 The 
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macroscopic absorption coefficient ~=noa is proportional to 

1 
j.J. =naao: tIM 12

- L IMI 2(e. r,)2 krf 
J (2.3.20) 

x 1m {t1(7T) exp[2i(kr1 + 15 1)]} , 

where n is the number density of absorbing atoms. By 

convention, the oscillatory component of the EXAFS is 

normalized to ~ 0 • 23 Thus, the final expression for the 

single scattering EXAFS is obtained: 

x(k)= j.J.- j.l.p =- k~-' (e · r1)2!f,(7T, k) I 
j.l.p Tj 

x sin(2kr, + 215 1 (k) + ib(k)] , 
(2.3.21) 

where fj(lf,k)=lfj(rr,k)l.exp[i<P{k)]. We must append, onto 

Eq. (2.3.21), a term which describes the effects of thermal 

vibrations, the Debye-Waller factor; and also an additional 

term which accounts for the finite mean-free path of the 

photoelectron in the bulk. These Debye-Waller factors are 

discussed at length in Chapters IV and v. 

2.4 The Multiple Scattering Formalism 

The requirement that the final state photoelectron must 

scatter back to the central atom severely restricts the 

depth of penetration into the bulk. This is the origin of 

the short-range sensitivity of the EXAFS effect, the 

photoelectron can travel only a finite distance before it 

will inelastically scatter. Accordingly, the significance 

of multiple scattering events is limited by the total 
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scattering path length. In certain instances, however, the 

path length may be· comparable to that associated with 

observable single scattering channels, in which case the 

multiple scattering contribution will dominate due to the 

additional scattering amplitudes involved. In general, the 

important multiple scattering events involve only a small 

number of atoms in which scattering occurs in the near 

forward direction. In this work we shall limit our 

discussion to systems which contain three atoms, the 

formalism developed, however, may be readily extended to 

study more complicated systems. 

The three-atom system to be considered is shown in Fig. 

4. Various scattering paths among these atoms are 

represented graphically in Fig. 5. Each path corresponds 

to a term in the expansion of the full Lippmann-Schwinger 

equation: 

(2.4.1) 

Low probability-amplitude processes involving long path 

lengths and/or large scattering angles have been omitted 

from Fig. 5, but may be treated in a manner similar to that 

discussed below. 

The complete matrix element for the three-atom system, 

assuming the dipole approximation, may be written as: 

(f-Ie. r I i) = (k I e. r I i) + L (k I t~Goe. r I i) + L (k I t;c;t~Goe. r I i) 
n~i,J n=i.J 

(2.4.2) 
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+ (k I t;c;t;c;e · r I i) + (k I t;c~t;c;e · r I i) + (k I t;c;t;c~t;c;e · r I i) (2.4.2) 

The first term in Eq. (2.4.2) corresponds to the unperturbed 

photoelectric effect, and the subsequent two terms 

correspond to the single-scattering contributions from atoms 

i and j. These terms have been treated in detail in the 

previous section and will not be discussed further here. 

The remaining terms in Eq. (2.4.2) involve scattering by 

both neighboring atoms. Of these, the fourth and fifth terms 

[those corresponding to diagrams (e) and (f) in Fig. 5] are 

identical by virtue of time reversal symmetry, as are those 

corresponding to diagrams (g) and (h). The multiple-

scattering terms in Eq. (2.4.2) may thus be written as: 

(2.4.3) 

Each term in Eq. (2.4.3) may now be expanded in 

complete states and the resulting Green's functions 

evaluated in the manner described in Section 2.3, where 

(r'IGalr>"='-
2

m ... 2 _!_exp[ik1 • (r'-r)], rr,. r 1 

{2.4.4) 

Note that the vector r is localized about the origin, r' is 

restricted to a radius aj about and k·=kf'·. J J Those 

Green's functions which represent free propagation between 

two neighboring atom potentials may be evaluated by placing 
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one or the other of these atoms at the origin for the 

purposes of the calculation. 

Equation (2.4.3) may now be written as: 

2M(k,Z)(e· r,) m2(2rr)'(klt•lk )(k lt•lk) 
r r 1i 4 1 11 tJ J J 

J I J 

+ 2 M(k, Z)(e. r,) m
3

(
2.rr)

6 
(k I t•l k' )(k' I t•l k )(k I t•l k > 

y r r Ji6 c I I I 1J I J J J 
I J I J (2.4.5) 

where kij = k(ri-rjl/1 ri-rj I = -klj : kn = kf'n = -kh: n=i,j 

and M(k,Z) has been defined in Appendix A. 

The matrix elements of t~(rnl associated with the 

atomic potential at r=rn may be related to those of tg(o) as 

described in Section 2.3. 

<kIt; I k.> = exp[i(k,- kl · r .l<k 1 t~ 1 k.) . (2.4.6) 

Furthermore, these matrix elements may be expressed in 

terms of their respective scattering amplitudes: 

(2.4.7) 

Substituting Eqs. (2.4.6) and 

(2.4.7) into Eq. (2.4.5) and rearranging terms gives: 

(2.4.8) 
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The ave~age x-~ay abso~ption c~oss section fo~ the 

th~ee-atom system is p~opo~tional to the mat~ix element in 

Eq. (2.4.2) ave~aged ove~ all possible di~ections R of the 

photoelect~on: 

]i <t-ie· rji) 1 2 dn 11 = ]iM(k,Z)(e · k) + L M(k, z)(e · r.) t.<a.) 
41T "~•,1 r., 

xexp(2ikr.(l-cosa.)] (2.4.9) 

The fi~st th~ee te~ms in Eq. (2.4.2) were evaluated in 

Section 2.3, and the results appear in the integ~and on the 

right-hand side of Eq. (2.4.9). 

The methods ~equi~ed fo~ the evaluation of the 

integ~als in Eq. (2.4.9) have been developed in Appendix B. 

The results fo~ the lowest order terms in r are: 

"'IMI 2(e·r)J - drl 2 LJ Re{exp[ikr.(l-cosa.)]f.(B.)(e· kl}~ 
,. .. ,.,J r., 

(2.4.11) 
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(2.4.12) 

(2.4.14) 

exp(ik I r 1 - r 1 I )/1 (.B)f1(a )[ exp(2io1) - 1]} , 
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Several cancellations occur in the summation of the 

terms in Eq. (2.4.9). The non-oscillatory term containing 

fn(O) in Eq. (2.4.11) cancels with the spherically averaged 

squared term lfn(O) 1 2 , by virtue of the optical theorem. 

The second term in Eq. (2.4.13) is cancelled by the average 

of the single scattering cross term arising from atoms i and 

j. The corresponding term in Eq. (2.4.15) also cancels, but, 

in this instance, with the average cross terms from the 

scattering processes shown in diagrams (a) and (e) of Fig. 

5. 

The expression obtained upon summation of the remaining 

terms in Eqs. (2.4.10) to (2.4.16) is proportional to the 

absorption coefficient of the system, and may be normalized 

to ~ 0=1/3 IM(k,Z) 1 2 , to yield the expression for the EXAFS: 

where fn<anl=lfn(an)l.exp(i4>nl and n=i,j. Note that we have 

assumed that the phase of the scattering amplitude is 

independent of the scattering angle (i.e., arg[fn(al)]= 

This assumption is not strictly 

valid,28 but may be used to gain some understanding of the 

physical significance of these multiple scattering 
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processes. 

In the case of polycrystalline materials an average 

over all possible polarization direction must be performed. 

The x-ray polarization directions in the dot products in Eq. 

(2.4.17) may be spherically averaged, with the results: 

(2.4.18) 

2.5 Results and Discussion 

A straightforward derivation of the basic EXAFS 

equation has been presented. The simplicity of our approach 

lies in the expansion of the scattering amplitudes of 

neighboring atoms about the origin. Accordingly, the phase 

factor reflecting the difference in path length between 

unperturbed photoemission and various scattering processes 

arises in a natural manner. 

The form of the Lippmann-Schwinger equation is of 

particular significance. In our scheme, <r I k> represents 

the outgoing asymptote and corresponds to the state of the 

photoelectron after the scattering process. This form has 

permitted us to describe the scattering in a simple 

diagrammatic fashion (Fig. 2). It also emphasizes the 

interference nature of the EXAFS effect, expressed in Eq. 

(2.3.1), in which the probability amplitude for x-ray 

absorption is given by the sum of three independent 
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scattering processes. Such a sum is required due to the 

indistinguishability of the individual events: the ejection 

of a photoelectron in some direction R upon ionization is 

completely indistinguishable from a process in which the 

ejected electron scatters off an adjacent atom and is 

subsequently scattered into the same direction K by the 

central atom. 

Within our formalism, the central atom phase shift 

cancels in the interference terms since the direct and 

scattered photoelectron waves are both outgoing in nature. 

It is thus necessary to include the secondary scattering 

term in order to retrieve this phase shift. In the 

alternative form of the Lippmann-Schwinger equation [i.e., 

the use of <rlf+> in Eq. (2.2.5)], however, the term 

corresponding to the scattered photoelectron is an incoming 

wave, and no such cancellation occurs. In this latter 

approach, <rlk> corresponds to the incoming asymptote of the 

scattering process, and the phase does not expl ic i tl y occur 

within the formalism. 

An expression for the oscillatory component of the 

absorption for the three-atom system has been given in Eq. 

(2.4.17). The first term corresponds to the independent 

single scattering events by atoms i and j. The second term 

results from scattering from atoms i and j, and vica versa. 

Note that this term retains a geometrical dependence even 

for experiments involving polycrystalline samples [see Eq. 

(2.4.18)]. The double scattering term vanishes when the 
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angle a is 90°. The expression assumed by earlier workers28 

omits this geometrical factor and hence overestimates the 

contribution of this term to the total EXAFS. The 

neglection of this factor, however, greatly facilitates the 

analysis of multiple scattering data. The third term in Eq. 

(2.4.17) results from a more complex scattering path: the 

photoelectron scatters sequentially off of atoms j and i, 

and then off of atom j once again (where we have assumed 

that I r ·I 
J < 

The cancellation of terms which occurred in Eq. (2.4.9) 

is of particular significance, since it insures that each 

term in the EXAFS expression is dependent on the sum of the 

interatomic distances that it represents. These processes 

are shown diagrammatically in Fig. 6: the first term in Eq. 

(2.4.17) corresponds to the sum of the diagrams 6(a) and 

6(b), and the second and third terms correspond to diagrams 

6(c) and 6(d), respectively. These diagrams are analogous 

to those of Fig. 5, but each is the spherically averaged sum 

of several of the latter diagrams. Note that no scattering 

is shown by the central atom, since the spherical average of 

Eq. (2.4.9) projects out the return path to the origin 

(shown as a straight 1 ine in Fig. 6). 

In order to examine the relative importance of the 

various terms in Eq. (2.4.17), two model systems, Fe-0-Fe 

and Cu-S-Cu, were considered. The respective metal atoms 

were taken to be the absorbing atoms and the bond lengths 

fixed at 1.76 )!l for the iron system {the distance found in 
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the binuclear complex u-oxo-bis [tetraphenylporphine­

iron(III)] and similar compounds} and 2.3 ~ for the copper 

system. The scattering amplitudes were taken from the 

International Tables for X-Ray Crystallography, Vol. Iv,25 

and the phase shift functions from the parametrizations of 

Lee et a1. 26 These scattering amplitudes were calculated 

using the Born approximation. While this is an over-

simplification it does not, however, significantly affect 

the results presented below. 

The calculated contribution of each term to the EXAFS 

at a particular value of the bridging angle (140°) are shown 

in Figs. 7 and 8. The relative amplitudes of the various 

terms may be seen from the Fourier transforms in Fig. 9. No 

corrections were made for damping at large r due to 

inelastic scattering, but any such correction would affect 

the three terms involving the second-shell atom almost 

equally (the first shell peak would be relatively higher, 

however). Compared to the second-shell single scattering 

term, multiple scattering is significant in systems in which 

the ratio of the scattering power of the first- and second­

shell-nearest neighbors is large or when the three atoms are 

nearly colinear. 

Note also the relative linewidths of the various terms. 

The peaks due to multiple scattering processes are broader, 

primarily because of the additional scattering amplitudes 

involved. Scattering amplitudes in the Born approximation, 

decrease as a function of k in an approximate exponential 
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manner, and hence the effect on the Fourier transform is 

similar to that of a Debye-Waller factor. 

Figures 10 and 11 show the variations of the peak 

positions and amplitudes in the Fourier transform as a 

function of bridging angle for both the iron and copper 

systems. Note that, in Figs. lO(a) and lO(b), there is a 

point where the additional phase shift incurred during the 

multiple scattering process is exactly offset by the 

additional path length involved in that process. This 

occurs because, the effect of the scattering phases in the 

sine argument of Eq. (2.4.17), is to shift the peaks in 

the Fourier transform to smaller distances, since these 

phase are largely monotonically decreasing functions of k.26 

The condition required for this crossover point is 

given by: 

lr·l- lr·l- lr·- r·l = ilr("'·) 
1 J 1 J "'J (2.5.1) 

where 6r(¢jl is the effective displacement of the peak in 

the Fourier transform due to the phase of the scattering 

amplitude associated with atom j. This quantity, 6r(tl>j), is 

independent of the geometry of the system (provided the 

phase of the scattering amplitude is independent of the 

scattering angle, as discussed earliel:}, and varies over a 

limited range for different atom types j. The primary 

dependence of the crossover point is on the bond lengths; as 

the distances in the system increase, the crossover point 

occurs at larger bridging angles. 

At bridging angles greater than the crossover point, 
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the multiple scattering terms are of particular importance. 

As shown in Fig. 11 these terms have large amplitudes at 

high angles and, above the crossover point, the 

corresponding peaks in the Fourier transform occur at 

smaller distance values than does the second-shell single 

scattering peak. In general, the three peaks involving the 

second-shell atom will be close enough to overlap in the 

transform. The presence of the multiple scattering 

components will then cause an apparent increase in the 

amplitude of the second-nearest neighbor peak in addition to 

shifting this peak to anomalously small distances. 

Therefore, if an analysis of EXAFS data which contain a 

significant multiple scattering contribution, is attempted 

using single scattering theory, one would overestimate the 

coordination number of the second-shell and underestimate 

the distance to that shell. Recently, Co et al.27 studied a 

series of ~-oxo bridged iron system~ using single scattering 

theory, their results are shown in Fig. 12. For a linear 

system, Co et al. predict an error in the coordination 

number of a factor of four and an underestimation of the 

distance by 0.2 ~. These results may be compared directly 

with the calculations for the ~-oxo system shown in Figs. 

lO(a) and ll(a). Since, when the system is linear, both 

multiple scattering components have comparable amplitudes 

and clearly dominate the second-shell EXAFS, the position of 

the composite second-shell peak may be taken as the average 

of the positions of the double and triple scattering peaks. 
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Therefore, we calculate from Fig. lO(a) that the average of 

the multiple scattering peak positions is smaller than that 

of second-shell single scattering peak by an amount of 0.21 

~. This is in excellent agreement with the observations of 

Co et al. A similar analysis when applied to the peak 

amplitudes in Fig. ll(a) yields an overestimation of the 

second-shell coordination number by a factor of eight. The 

calculated peak amplitudes are clearly inconsistent with the 

experimental observations. 27 The origin of this discrepancy 

is the omission of both the Debye-Waller and inelastic 

damping factors from the theoretical calculations. Chapters 

IV and V present a detailed study of the nature of the 

Debye-Waller factors in EXAFS. 

At bridging angles which are smaller than the crossover 

po in t, the compos i t e second-she 11 . peak w i 11 occur at a 

larger distance than the second-shell single scattering 

peak; the effect is less significant, however, since the 

multiple scattering components have smaller amplitudes in 

this reg ion. 

In conclusion, multiple scattering effects need to be 

considered in many problems in which non-nearest neighbor 

shells are of interest. If such considerations are not 

made, serious errors may be incurred in the analysis of the 

data. Careful analysis of these effects, however, may allow 

the elucidation of geometrical information, such as bond 

angles, which is not otherwise available from the single 

scattering theory. 
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Appendix A 

We wish to evaluate the integral 

I = J<k I r) e . r(r I i) dr (Al) 

which appears in Eq. (3. 1); where (r I k) = (217)"312 

x exp(ik · r) and (r I i) = (1T)"112 (~a0 )312 exp(- Zr/ a0). 

Expanding Eq. (Al) in terms of spherical harmonics, 
I may be rewritten as 

xexp(-Zr/a0)r2dr jY~'"(Q-)Y 1 (Qr)(r· e)dP.,, 

(A2) 
where dr = r2 dr dQr. 

The angular integration in Eq. (A2) may be performed 
using the additional theorem for spherical harmonics: 

I2 L f y ~'"(Q~)Y'J'(P.r)(r. e) dQ, 
I '" 

.,. I 1 

= 
4
;r;;=]; {; Yf(P..)Y~'"(n~>jYr'<nr)Y'I'(P.r)dP., 

1 

= 
4;r L Yf(n.)fi''"(Q~)o,,,o 1 , 1 = r(k · e) • (A3) 

, ... 1 

Substituting Eq. (A3) into Eq. (A2), the expression for 

I becomes 

I=(21T)-3'24(1T)112(-i)(!}'z<k. e) 

x J- j 1(kr) exp(- Zr/a 0)yl dr , 
0 

(A4) 

where it(kr) = (kr)"2 sin kr- (kr)"1 cos kr. Making use of 
the definite integral, 

1• x" e·•n dx = nl iJ.- !n•!> , Re iJ. > 0 
0 

the radial integration in Eq. (A4) may be performed to 
obtain 

I=M(k,Z)(k· e), 

where M(k, Z) =- i[(2)112 /1T] [8k(Z/a0)512 /(Z2 I a~+ k2)3], 
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Appendix B 

In this appendix, the angular integrals in Eq. (3.16), 
(3.17), and (3.19) are evaluated. 

The first of these corresponds to 1.1. 0, the hypothetical 
absorption coefficient in the absence of neighboring 
atoms. Placing e along the z direction: 

l.l.oa: :rrfiMI 2k· ednk 

Lwlzj 2 • 'I < 12 =~ cos BksmBkdBkd<b•=3 M k,Z) . 

The following result is required in Eq. (3. 1 7): 

l=J<e· k)exp(-ik· r 1lf(B1)'!!&. 
(e · k) may be expanded in spherical harmonics, and 
setting r1 along the z axis, the azimuthal integration 
yields them =0 component in the expansion. Hence: 

1=-(e· t)iJd(cosB,)cosB.exp(-ik· r 1)f(B1), (B1) 

where cosB.=(k· ;). exp(-ik· r 1) and/(8 1) may be ex­
pressed in terms of Legendre polynomials: 

exp(-ik· r 1)=L(21+1)(-i)1j 1(kr1)P1(cos8k), (B2) 
I 

f(B 1) = Lf1.P,.(cos Bk) , (B3) ,. 
and 

(B4) 

Substituting the above into Eq. (B1) yields 

~ ~ ~ t . I ( 47T )1/2 ( 47T )I/2(47T)I/2 
l=fr,(e·r1h(21+1)(-t) 21 + 1 21,+ 1 3 

xj,(kr1)J,.j Y~.(nk)Yf(n.)Y~(n,)d(- cosek), (B5) 

where an, =d(- cos8,)d¢_, and g• (d¢,/2rr) = 1. The 
angular integral in Eq. (B5) may be evaluated using the 
properties of Clebsch- Gordan coefficients24

: 

J Y~. (nk)Y~(n,)Y~(n,) lin. 

[
(21'+1) 3 ] 1

'
2 

1 , 2 = 
4

rr (21 + 1) [C(Z, 1, 1, 0, 0, 0)] , 
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where ll-l'l :Sl:Sil+l'l and l+l'+1=2n (nan inte­
ger). The summation over land l' may be replaced by 
a single sum that has two components l ± 1. Using the 
explicit forms of the Clebsch-Gordan coefficients 
above, 

1 = ~ (e • 7)!1 [<- i)
1

•
1(;t+ \)il•1(kr1) 

+(-1)1-1~l~ 1 )il-t(krJ)] =~(e• r1}fr[:2l! 1 jl-t(kr1) 

( l+l). ( )~( •)1-1 
- 21+1 Jl•tkrJ~ -z . (B6) 

Using the asymptotic form of the spherical Bessel func­
tion: 

I= (e · r
1

) -
1-h[exp(ikr;lf(lT) + exp(- ikr,)f(O)] . 

kr, . 

Hence: 

J2 Re[M"'(k • e)(3. 12)] ~~/ 

= -l: \M \2 k~ (e · ri Im(exp(2ikr1)/(1T) + f(O)] . 
J J 

The third angular integration necessary is given in 
Eq. (3.19): 

(B7) 

where fc( 1T - e J) = (- 1) 1/c(e ,) 

= L i: (- ~) 1 
(41T)[exp(2i1i 1) -l]i'';'(nk)Y ;"'(nr1) • 

I m•·l 2zk 

Expanding (e • k) in spherical harmonics: 
1 

(e· ~>= 41T L: Yf'(n.)Y~,..(nk). 
3 m" •-1 

Equation (B7) may be written: 
I 1 

I'= (- ~)
1 41T L L L [exp(2i1i 1) - l]Y ;"'(nr,)Yj' (n,) 

2zk 3 1 m•-1 m'•-1 

due to the orthogonality of spherical harmonics. Hence: 

!2 Re[M"'(k, Z)(e • k)(3. 13)] ~a 

"<e · r )2 
} =- \M j 2 L.. / Im{[exp(2i1i1) -1]/1(1T) exp(2ikr1) , 

J k J 
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Figure 1. 
Schematic representation of the final state potential 

v. About each atomic site, including the central atom c, 
there exists a sphere of radius a beyond which no scattering 
will occur. The atomic potentials are assumed to be 
spherically symmetric. 
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Figure 2. 
Diagrammatic representation of the first and second 

order terms in the expansion of the full T operator in Eq. 
(2.2.6). The scattering paths shown are those that occur in 
a system with two neighboring atoms i and j. 
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Figure 3. 
The vectors pertaining to the evaluation of the Green's 

function shown in Eq. (2.3.5). Upon absorption of an x-ray 
photon, the photoelectron propagates freely from r, within a 
domain of radius ac, to r•, within a domain of radius aj 
about the atom at r=rj. 
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I 
I 

I 
A 

I 

I 

The three-atom system. The central or absorbing atom 
is c. There are two neighboring atoms, i and j, where it is 
assumed that I rj_l~l ri I. The bridging angle i.s given by rr -::.:. 
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Figure 5. 
The most significant scattering paths within the three­

atom system. The operators shown with eaco diagram 
represent the corresponding term in the exp9nsion of the 
full T operator in the Lippmann-Schwinger equation [Eq. 
(2.4.1) ). 
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I~ 
c• 

(a ) (b) (c) (d) 

Figure 6. 
Schematic representation of the terms in the EXAFS 

expression for the three-atom system. Note that no 
scattering is shown by the central atom since the spherical 
average in Eq. (2.4.9) projects out the return path to the 
origin (shown as a straight line). 
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I - ---- (a) 

( b) I 

( c ) 

(d) 

(e) 

4 8 12 16 

Figure 7. 
Calculated EXAFS spectra for the Fe-0-Fe system. The 

bridging angle is 140° and the bond distances r·=ri ·=1.76~. 
Curves (a) and (b) are the single scattering ccfntrtbutions 
from the oxygen and iron atoms. Curves (c) and (d) are the 
double and triple scattering contributions. Curve (e) is 
the sum of all the above an represents the total EXAFS of 
the three-atom system. 
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Figure 8. 
Calculated EXAFS spectra for the Cu-S-Cu <;;ystem. The 

bridging angle is 140° and the bond distances r ·=ri ·=2.3 ~. 
The individual curves are analogous to those shi>wn Jin Fig. 
7. 



47 

Fe-0-Fe 
Fe~':-Fe "--'' 

170" 
140° 

w.J w.J 
0 0 
::J ::J 
I- f::: 
...J ...J 

\ ~\' 
CL CL 
:::E ::;;: 
<l: <l: 

w.J w 
> > 
I- ~ <l: 

/ I \\ ...J 

j\ 
...J 

w w 
a: a: I' \ 

' ' 
' 

\ 
1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 

(a) r (A) (b) r (A,) 

~ 
0 

FeC'Fe /s, 100" Cu '-___./ Cu 
w.J 

1\ 
w II 

100c 
0 0 
::J 

I I 
::J I I f::: I-

...J 

I I ...J 

I I CL CL 
::;;: I I :::E 
<l: 

I I 

<l: I I . 
w.J I I w I I . 2: > 
I-

I ~ i= 

I I I 
<( / 

<l: 
...J 

...J w w 

I 0:: I I . a: I 
) I / .· \~n//',, __ I / 

~ //~ .. ,.. ...... .....,-'""""""'"""''""''' .......... ~---- ' . .,.,.,_~ 

1.0 4.0 5.0 1.0 2.0 3.0 4.J 5.0 
(c) :d:' r (A) 

Figure 9. 
Representative Fourier transforms of the bridged iron 

and copper systems at a series of bridging angles. The bond 
distances are the same as those in Figs. 7 and 8. Solid 
curves are the single scatter1ng contributions. The dotted 
and dashed curves are the double and triple scattering 
contributions, respectively. 
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i60° 140° 120° 

(a) Fe-0-Fe ANGL:: 
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(b) Cu-S-Cu ANGLE 

Peak positions in the Fourier transform as a function 
of bridging angle. The solid curve is the second shell 
single scattering, while the dotted and dashed curves are 
the double and triple scattering pathways. (a) Fe system. 
(b) Cu system. 
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triple scattering pathways, respectively. (a) Fe system. 
(b) Cu system. 
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Figure 12. 
A plot of the amplitude enhancement of the iron EXAFS 

in a series of Fe-0-Fe systems together with the error in 
the di~ta~9e which is predicted by a single scattering EXAFS 
analys1s. 
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CHAPTER III 

THEORY OF EXTENDED X-RAY ABSORPTION FINE STRUCTURE: 

FINAL STATE INTERACTION FORMALISM 

3.1 Introduction 

It is now well established that the EXAFS observed on 

the high frequency side of an x-ray absorption edge is due 

to an interference phenomenon in which the outgoing 

photoelectron wave is scattered by neighboring atom 

potentials. In this picture, the initial probability of the 

electron absorbing the photon is independent of the nature 

of the final state. After absorption occurs, however, the 

outward propagating photoelectron wave encounters the 

neighboring atoms and is scattered by them. This scattering 

process is then understood to interfere with the initial 

absorption probability, and in this manner, produces the 

observed modulations in the absorption coefficient. This 

description is unsatisfactory, however, since it involves a 

time evolution which is absent from the formalism which is 

used to calculate the EXAFS. Furthermore, since the 

radiation field is quantized, either the electron absorbs 

the whole quantum of energy or it does not absorb at all; 

there can be no fractional absorption. Therefore, it is 

difficult to imagine how such a spatially localized 

scattering phenomenon can bring about an increase or 

decrease in the macroscopic absorption coefficient. 

It is important to note that our criticism lies with 
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the current interpretation of the EXAFS formalism. The 

formalism itself is a completely accurate description of the 

EXAFS phenomenon. In this chapter we introduce a new 

formalism which allows an intuitive description of the EXAFS 

in terms of a modulated overlap between the initial and 

final states. This description is valid over a wide energy 

range, and at sufficiently high energies it reduces to the 

standard EXAFS expression. 

3.2 Final State Interactions 

A comprehensive treutment of the theory and application 

of final state interactions has been given by Gillespie.l 

In this section we will restrict ourselves to a brief 

introductory discussion of the theory. Final state 

interaction theory is most readily applicable when the total 

potential may be conveniently split into two components one 

of which is considered to be the primary interaction. The 

second potential is then seen to modify the reaction caused 

by the primary potential. This latter potential is called 

the final state interaction potential. Thus, in general, the 

total potential may be written as: 

where vp and vf are the primary and final state potentials, 

respectively. 

To illustrate the qualitative features of final state 

interaction theory we shall now consider the simplest 
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possible example: the photoionization of atomic hydrogen. 

The primary interaction in this case is that between the 

electron and the electromagnetic radiation field while the 

final state interaction is the Coulomb potential between the 

proton and electron in the final state. It is particularly 

interesting to consider the back reaction in which the 

electron and proton recombine and emit a photon. Clearly, 

the initial state Coulomb interaction between the electron 

and proton increases the probability of hydrogen atom 

formation. By virtue of time-reversal invariance, however, 

the probability of the forward reaction must also be 

enhanced by the presence of the Coulomb interaction. Thus, 

the attractive interaction between the electron and proton 

actually increases the cross section for photoionization. 

This is a general result, and reflects the fact that, to 

first order in the vector potential describing the radiation 

field, a free particle cannot absorb or emit electromagnetic 

radiation. It is for this reason that the absorption cross 

section continually decreases beyond an x-ray absorption 

edge, since as the energy of the photon increases the 

electron effectively appears less tightly bound. 

Let us now consider a process in which a particle 
~ ~ 

incident in direction k is scattered into the direction k' 

by the full potential V = Vp + Vf• 

this scattering event is given by: 

Tk' ,k = <k' IVIk+> 

The full T matrix for 

(3.2.2) 
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where <rlk'> is the outgoing asymptote of the scattering 

process described by <r I k+>. The Lippmann-Schwinger 

equation for Vf alone may be written as: 

(3.2.3) 

where G0 is the free particle Green's operator. Equation 

(3.2.3) may be substituted into Eq. (3.2.2) to yield 

(3.2.4) 

From the Lippmann-Schwinger equation of the full potential 

V, G0 VIk+> may be written as lk+>- lk> to give 

(3.2.5) 

But the last term in Eq. (3.2.5) is just T~, ,k the exact 

matrix element for the scattering process involving 

potential V f alone. Thus the T matrix for the full 

scattering potential may be written as: 

= (3.2.6) 

This is the celebrated two potential formula of Gell-Mann 

and Goldberger.2 Equation (3.2.6) is exact, and merely 

represent an alternative means of expressing Eq. (3.2.2). 

However, as we shall see in the next section, by judiciously 

choosing the breakdown of the total potential into vp and 

Vf, we can greatly simplify the description of the 

scattering process. 
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3.3 The Jost Function Formalism 

In this section we shall develop a formalism to 

describe the process of x-ray absorption in the presence of 

neighboring atoms. The primary interaction is chosen to be 

that due to the interaction of the electromagnetic field 

with the K-shell electron which absorbs the incident photon. 

Vp(r) = - ~c p.A(r) (3.3.1) 

where p is the momentum operator of the electron whose 

position vector is r with respect to the origin (the center 

of mass of the absorbing atom). A(r) is the vector potential 

associated with the quantized radiation field. The final 

state interaction is assumed to be the potential seen by the 

photoelectron in the final state. 

(3.3.2) 

where the first term represents the Coulomb interaction 

between the electron and the core hole while the second term 

represents the final state potential associated with the 

neighboring atoms located at r = rj• Equations (3.3.1) and 

{3.3.2) may now be substituted into Eq. (3.2.6) to obtain 

the full T matrix for the absorption process. Note, however, 

that the initial state, <rlk>, is a highly localized bound 

K-shell electron while the final state, <rlk'>, is an 

electron which has absorbed a quantum of energy from the 

radiation field. Given the breakdown of the total potential 
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chosen above, it is clear that the matrix element, T~, ,k• is 

identically zero; that is, the potential Vf in Eq. (3.3.2), 

cannot induce transitions between the initial and final 

states. The T matrix for the full potential is then given 

by: 

Note that the effect of Vf is still present in <r I kf>. This 

form of the T matrix is of little value since it still 

contains <rlk+>, which requires us to solve the Schrodinger 

equation in the presence of the full potential. 

Fortunately, we can approximate <rlk+> by <rlkf+> and hence 

neglect the effect of the radiation field on the initial 

state. This approximation is equivalent to a first-order 

perturbation theory treatment of the problem. 

An expression for the x-ray absorption cross section in 

the dipole approximation 3 may be obtained using Eqs. (3.3.3) 

and (3.3.1) 

(3.3.4) 

where we have neglected the subscript f and replaced 

<rlkf'-> and <rlkf+> by <r:lk-> and <r:li>, respectively, to 

demonstrate the relationship to the formalism developed in 

Chapter: II. In Eq. (3.3.4) o. is the hyperfine constant, w is 

the frequency of the incident x-ray photon and N(w) is the 

density of final states for: the photoelectron. 

The final state, <r:lk->, is the distorted wave of the 
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photoelectron in the field of the final state potential. By 

analogy with the expansion of a plane wave in terms of 

spherical harmonics, the final state may be written as: 4 

<rlk-> = (2rr)3/2L(2L+l)iL 1)JL(k,r)PL(LR) 
L 

(3.3.5) 

where 1jl L(k,r) is the normalized radial solution of the 

Schrodinger equation containing the final state interaction 

potential. When the final state potential is zero, 1)1 L(k,r) 

reduces to the spherical Bessel function jL(kr). The 

boundary conditions: 

1)/L(k,r)- constant x jL(kr) 

1)1 L ( k , r )- h ( k r) + k f L ( k) h t ( k r) 

r-o 
(3.3.6) 

define 1)/L(k,r) as the physically significant solution of 

the radial equation where fL(k) is the partial wave 

amplitude and ht(k) is a spherical Hankel function of the 

first kind. 

Mathematically, however, it is more convenient to 

introduce another radial solution which is defined by the 

boundary condition at a single point: 

(3.3.7) 

This solution is called the regular solution and is 

obviously proportional to the physical solution, 

(3.3.8) 

where the coefficient o~ proportionality, FL(k), is called a 
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Jost function. The advantage of using the regular solution 

lies in the fact that the boundary condition, Eq. (3.3.7), 

is independent of k and thus <~>t(k,r) is an entire (or 

regular) function of k • In general, the physical solution 

defined by Eq. (3.3.6) is not an entire function of k. 

The matrix element in Eq. (3.3.4) may now be 

conveniently calculated by substitution of Eq. (3.3.5) for 

the final state. Assuming the initial state, <rli>, to be a 

spherically symmetric ls state, the angular integration may 

be performed. 

f rlk->*e.r<rli>d.r = CCZl fl<..el J~ (k r)e-Zr/a r3dr 
F

1 
k) 1 ' (3.3.9) 

where C(Z) is a constant that depends on the atomic number z 

of the absorbing atom and we have used the fact that the 

Jost function is not a function of the coordinate r [see Eq. 

(3.3.8)]. Since the initial state is highly localized about 

the origin it is permissible to rep~ace ~ 1 (k,r) with j 1 (kr) 

in accordance with Eq. ( 3. 3. 7). The remaining radial 

integration in Eq. (3.3.9) may then be completed 

J<rlk->*e.r<rli> dr = M(k,Z) (R.e);F1 (k) (3.3.10) 

where F 1 (k) is the L=l Jost function and M(k,Z) has been 

defined in Appendix A of Chapter II. But ljJL(k,r) reduces 

to j L (kr) only when the final state interaction potential 

vanishes [see Eq. (3.3.6) ]. Consequently, the numerator in 

Eq. (3.3.10) is simply the amplitude for x-ray absorption in 

the absence of any final state interactions. In other 
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words, the sole effect of the final state interaction 

potential, Vf, is to modify the amplitude by a factor of 

1/F l ( k) • 

The problem of calculating the x-ray absorption cross 

section is now reduced to the evaluation of F 1 (k) for the 

final state under consideration. Note that Eq. (3.3.10) is 

completely general, for at this point no assumptions have 

been made as to the exact nature of the final state 

interaction. An explicit expression for the Jost function 

may be obtained from Eqs. (3.3.6) through to (3.3.8) and is 

given by: 5 

(3.3.11) 

Clearly, as the final state potential, Vf(r), becomes 

vanishingly small, FL(k) approaches unity and the amplitude 

in Eq. (3.3.10) reduces to that of the unperturbed system. 

For large values of k both ~L(k,r) and ht(kr) vary as 1/k; 

therefore, from Eq. (3.3.11), FL(k) also tends to unity as 

I kl approaches infinity. 

It may be readily shown from Eq. (3.3.11) that for a 

purely attractive final state potential [i.e., Vf(r) < 0 for 

all r] the associated Jost function has a modulus of less 

than or equal to one and attains the unity value only in the 

limit of large k. In this instance, the total amplitude is 

everywhere greater than that for the same process in the 

absence of final state interactions. Physically, this 

enhancement factor represents the increased amplitude for 
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finding the electron in the region where the primary 

interaction (x-ray absorption) takes place. For a wholly 

repulsive final state potential the corresponding Jost 

function has a modulus greater than or equal to unity and 

the total amplitude is reduced. 

3.4 The EXAFS Regime 

In this section we shall derive an expression for the 

EXAFS which is based on the Jost function formalism 

discussed above. Since the absorption coefficient is given 

by the square of the modulus of Eq. (3.3.10), all that 

remains is to calculate the Jost function F 1 (k) for the 

apropriate final state potential. 

From Eqs. (3.3.11) and (3.3.8) we may write the 

reciprocal of this Jost function as: 

(3.4.1) 

Note that the physical solution in Eq. (3.4.1) has been 

written as [lji !<k,r)] * to emphasize the outgoing nature of 

the final state as described in Eqs. (3.3.5) and (3.3.10). 

It may be shown that the ingoing and outgoing asymptotes are 

related by: 6 

+ lji 1 (k,r) (3.4.2) 

Furthermore, from elementary scattering theory it may be 

shown that: 7 
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= <k-IV (3.4.3) 

where T- is the T operator associated with the evolution of 

the scattering state <rlk-> into the outgoing asymptote 

<rlk>. Using Eq. (3.4.2) and by analogy with Eq. (3.4.3) 

above, we may write: 

(3.4.4) 

where we have noted that [T-]t =T+. This equation 

represents the L=l partial wave radial component of Eq. 

(3.4.3). The T operator may now be expanded in terms of the 

individual operators associated with the different 

scattering atoms in the final state as described in the 

previous chapter [see Eq. (2.2.6)]. 

Now that we have expressed the final state potential in 

a convenient form we ~ust write down an explicit expression 

for the Hankel function. 

(3.4.5) 

Furthermore, in the EXAFS energy range kr>>l and the Bessel 

function in Eq. (3.4.1) may be expressed as a sum of ingoing 

and outgoing spherical waves: 

(3.4.6) 

Since the final state of interest is outgoing in nature we 

shall neglect the second term in Eq. (3.4.6). Using Eqs. 

(3.4.4), (3.4.5) and (3.4.6) we may write down an expression 

for the Jost function in Eq. (3.4.1) due to the final state 
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interaction which involves the neighboring atom j alone. 

Note that we have included a factor of 4" in the denominator 

and converted the radial integration in Eq. (3.4.1) into a 

volume integral. Since tj is highly localized about r=rj, 

the integral is non-zero only at this point. We may now 

make the plane wave approximation. This involves writing 

the spherical waves in Eq. (3.4.7) as: 

eikr = (2 rr)3/2 <rlk> = eik.r (4.3.8) 

where the factor (2rr)-3/ 2 is a normalization constant. With 

these approximations, the integration over r may be readily 

performed to yield: 

im(2rr)3k 
1/Fi (k) = 

where k·=kr·. 
J J 

As described 

<-k · Itt I k. > 
J J J 

(3.4.9) 

in the previous chapter ,this 

matrix element may be translated to the origin and then 

expressed in terms of its associated scattering amplitude. 

The final form of the Jost function is then given by: 

1/Fi(k) (3.4.10) 

where fj(rr,k) is the backscattering amplitude from atom j. 

To obtain the central atom phase shift we must go to 

the next order in the T matrix as described in Chapter II. 

The contribution to the Jost function from this term may be 
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written as: 

where t6 is the T matrix associated with the central atom 

potential. Note that it is no longer valid to write the 

Bessel function in the manner shown in Eq. (3.4.6) since kr 

is small, as r is restricted to the vicinity of the origin. 

Equation (4.3.11) may now be expanded in a complete set of 

states and the Hankel function may be approximated by a 

plane wave: 

1/Fi (k) = 

where the configuration space matrix element of the Green's 

operator was calculated in the manner described in Chapter 

II. Note that <r I k 1 > is the L=l partial wave component of 

the plane wave. Therefore, the central atom scattering 

amplitude associated with the matrix element <k 1 1t61-kj> has 

only an L=l component. Thus we may write [see Eq. (2.3.11)] 

3 
ll-<-r .. R1 J 

2ik J 
(4.3.13) 

where o1 is the L=l partial wave phase shift. Furthermore, 

as described above, the tj matrix element may be expressed 

as: 

(3.4.14) 
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Substituting Eqs. (3.4.13) and (3.4.14) into Eq. (3.4.12) 

yields the final form for this contribution to the Jost 

function. 

The complete Jost function may now be obtained by 

adding the contributions from Fi(k) and fi(k), with the 

result: 

(3.4.16) 

This equation may now be substituted into Eq. (3.3.10), 

which when squared, yields the standard EXAFS expression 

X ( k) = 
3(iLRjJ 2 

k r . 2 Im { f j (", k) ex p [ 2 i ( k r j +0 1 ) ] } 

J 

(3.4.17) 

Note that Eq. (3.4.17) has been normalized to 1/3 M(k,Z) as 

described in Chapter II. 

3.5 Analytical Properties of the Jost Function 

The analytical properties of radial wave functions has 

been discussed in detail by Newton. 8 It may be shown that 

the physically significant Jost function FL(k) (k positive 

and real) is continuously connected to the analytic function 

FL(k) in {Im k>O}. Under more restrictive assumptions 

concerning the asymptotic behaviour of the final state 

potential at large distances, FL(k) may be shown to be an 

entire function of k. Therefore, it is possible to expand 
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the Jost function in a Taylor series about a given point 

and study the behavior of the function in the neighborhood 

o f t h i s po in t . In particular, it is possible to move off 

the real axis and explore the imaginary component of the 

photoelectron's wavevector. In this manner,the damping 

characteristics of the photoelectron may be studied. 

Furthermore, the behaviour (i.e., k dependence) of the Jost 

function, and hence the absorption coefficient, may be 

predicted in the region of the threshold or in the vicinity 

of a bound state.9 

Note that if the Jost function vanishes at given point 

the matrix element in Eq. (3.3.10) blows up. Let us suppose 

that this occurs at some point k' (Im k'>O). In accordance 

with the properties of the radial wavefunctions developed 

in Section 3.3 above, the asymptotic form of the regular 

solution may be written as: 

r-oo (3.5.1) 

* * where we have noted that FL(k)=[FL(-k )] by virtue of the 

Schwartz reflection principle. 10 In the region Im k'>O, 

h!(k'r) is an exponentially decreasing function. Since the 

regular solution vanishes at r=O, Eq. (3.5.1) is a 

normalizable solution of the radial Schrodinger equation 

with energy ~ 2 k• 2 ;2m and angular momentum L. Since the 

eigenvalues of the Hamiltonian must be real, k' must be pure 

imaginary, k'=ix, and the energy -~2x 2/2m corresponds to 

that of a bound state. 
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In the case of x-ray absorption spectroscopy, the 

photoelectron wavenumber is defined as: 

k = [2m(flw- E
0

) J 11 2;n (3.5.2) 

where E
0 

is the threshold energy of the absorption edge. 

When the energy of the x-ray photon is less than the binding 

energy E
0

, then k as defined by Eq. (3.5.2), is pure 

imaginary. Therefore, if the system has a bound state of 

energy n2k 2/2m with respect to the threshold, there will be 

a corresponding zero in the Jost function, and the 

absorption coefficient, defined by Eq. (3.3.10), w i 11 

sharply increase. The cross section will not be infinite at 

this energy, however, due to damping and finite lifetime 

effects. If the initial state is a K (L=O) state, the 

dipole allowed transitions may be calculated from F1 (k). On 

the other hand, the quadrupole allowed bound state 

transitions may be determined from F2 (k). In this manner, 

the Jost function formalism is not restricted to describing 

the EXAFS region of the spectrum but may be used to 

calculate the absorption coefficient at any energy. 

3.6 Discussion 

In this chapter we have presented a novel formalism 

which may be used to describe the final state interactions 

which occur in x-ray absorption spectroscopy. At high 

energies this formalism was seen to reduce to the standard 

EXAFS expression. Furthermore, bound state transitions and 

the threshold behavior of the absorption coefficient could 
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be described using this scheme. If the final state 

potential may be accurately modeled, the inelastic damping 

of the photoelectron wave may be calculated. 

The origin of the EXAFS phenomenon may be readily 

explained within the framework of the formalism. In Section 

3.3 we showed that for a purely attractive potential, the 

associated Jost function has a modulus less than unity. 

Physically, this corresponds to an enhanced overlap between 

the initial and final states, since the amplitude of the 

photoelectron wave at the origin is increased by the 

attractive interaction. In this case, the absorption is 

greater at all energies than it would be in the absence of 

such an interaction. For a repulsive final state potential, 

the opposite is true, and the absorption is decreased 

everywhere. It is important to note that these conclusions 

are valid only if the final state potential is centered 

about the origin. In the case of EXAFS, however, the final 

state potential is centered on each of the neighboring 

atoms. To observe the effect of the presence of these atoms 

on an absorption process which occurs at the origin, the 

final state potential must be translated to the origin. In 

doing so, however, a phase factor e 2 ikrj, is incurred. 

Accordingly, the overlap between the initial and final 

states is modulated due to the presence of these atoms. As 

a result, there is no net increase in the integrated 

absorption since the modulated overlap simply results in a 

modulation of the absorption coefficient. 



68 

References 

1. J. Gillespie, Final State Interactions (Holden-Day, San 

Francisco, 1964). 

2. J.R. Taylor, Scattering Theory (Wiley, New York, 1972) 

p. 271. 

3. E. Mertzbacher, Quantum Mechanics (Wiley, New York, 

1970) p. 466. 

4. See for example; ref. 3, p. 185. 

5. Reference 3, p. 206. 

6. Reference 3, p. 209. 

7. Reference 3, p. 169. 

8. R.G. Newton, J. Math. Phys. 1, 319 (1960). 

9. Reference 3, p. 229. 

10. Reference 3, p. 219. 



69 

CHAPTER IV 

THE EFFECT OF THERMAL VIBRATIONS ON EXTENDED X-RAY 

ABSORPTION FINE STRUCTURE: DEBYE-WALLER FACTORS* 

4.1 Introduction 

In recent years Extended X-Ray Absorption Fine 

Structure (EXAFS) spectroscopy has been used extensively as 

a structural tool. Although the existence of the extended 

structure has been known for many years, it was not until 

Sayers, Stern and Lytlel introduced a simple 

parameterization of the structure that the informational 

content of EXAFS was realized. In addition, the development 

of synchrotron and laboratory EXAFS facilities has made the 

technique available to a large number of investigators and 

provided a major impetus towards the development of EXAFS as 

a structural tool. 

Much of the present interest in EXAFS stems from its 

short range nature which allows the technique to be applied 

in instances where other structural tools are not suitable. 

The sensitivity to short range order insures that the EXAFS 

contributions from distant shells are small, which in turn, 

greatly simplifies an analysis of the extended fine 

structure. The ability to change the x-ray frequency over a 

large energy range allows structural information to be 

obtained on the local environment about each absorbing atom 

in the sample. In principle, bond distances, coordination 

numbers and the types of neighboring atoms present may be 



determined from an EXAFS study. 2 

The purpose of this paper is to provide a detailed 

study of the nature of the Debye-Waller factor in EXAFS. In 

general, the Debye-Waller factor has components due to 

static and vibrational disorder. This paper will address 

the problem of thermally excited vibrations and their effect 

on EXAFS spectra. Previous studies of the Debye-Waller 

factor in EXAFS were concerned solely with single scattering 

events. 3- 6 Recently, however, there has been considerable 

interest in multiple scattering EXAFS processes and the 

determination of bond angles from an analysis of the 

extended structure. 7 •8 The possibility of determining 

accurate bond angles from an EXAFS study is obviously 

dependent on an understanding of the relative motion of the 

atoms involved. This present work will discuss the nature 

of the Debye-Waller factor in EXAFS spectra which contain a 

significant multiple scattering component. 

4.2 The General Formalism 

The problem of thermal diffuse scattering is important 

in any structural tool which uses the difference in the 

phase of a scattered wave from different scattering sites to 

obtain structural information. The frequency of the 

incident wave is typically many orders of magnitude greater 

than the frequency of vibration of the scattering centers. 

The observed scattered intensity thus provides a measure of 

the instantaneous configuration of the scattering centers 
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averaged over all possible configurations. In general, the 

effects of thermal vibrations are included by setting the 

distance between the scattering sites to their equilibrium 

values and multiplying each term representing the scattered 

intensity by a factor of the form exp(-M), where M is the 

Debye-Waller factor for the scattering process. We present 

below a general formalism which may readily be applied to 

most scattering problems including the EXAFS effect. 

Consider the following general scattering problem. 

Suppose we have anN-particle system with masses mi(i = 
l, ••• ,N). Let ri denote the position vector of the ith atom 

in its equilibrium position with respect to some arbitrary 

origin. If ui is the displacement vector of the i th atom 

from its equilibrium position then the instantaneous 

position of this atom is given by: 

r=r, +u,. (4.2.1) 

Let us consider now the scattering process whereby a 

particle incident in the direction k is scattered by atom i 

into the direction k'. The probability amplitude ai for 

this event in the absence of thermal vibrations is: 

a,= (k'/T,/k) =a?e'1k-k'J·•,, (4.2.2) 

where Ti is the T operator associated with the scattering 

potential at r=ri. a~ is the probability amplitude for the 

same scattering event but located at the origin. 10 At 
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finite temperatures, however, the position of the i th atom 

is given by Eq. (4.2.1) so that the time dependent 

probability amplitude Ai may be written as: 

0 iK·(r, + u,) iK·u 
A; =a;e =a;e ', (4.2.3) 

where K = k-k' and fiK represents the momentum trans-

ferred to the scattering atom. The total probability 

amplitude is then the sum of the amplitudes Ai due to the 

individual scattering centers: 

(4.2.4) 

The total scattered intensity is then proportional to: 

{4.2.5) 

Throughout this present work the harmonic or quadratic 

approximation is assumed. While this approximation is 

strictly valid only for small displacement or amplitudes of 

vibration, it does however, provide a reasonably accurate 

description of most solids and molecules, particularly at 

low temperatures.9 To study further the temperature 

dependence of the scattered intensity in the quadratic 

approximation, it is convenient to introduce the normal 

coordinates Qn {n = 1, ••• ,3N). These coordinates have the 

advantage that they diagonalize both the potential and 
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kinetic energy matrices of the system. The displacement 

vectors ui may be expressed in this coordinate system as: 

u1m)12 = ~ e7Q • 
• 

or (2.4.6) 

where e? = £7/mi 1/ 2 and represents the amplitude vector of 

the ith atom in the nth normal mode. The transformation 

between mass weighted and normal coordinates is orthogonal 

and therefore the amplitude vectors E7 form an orthonormal 

set defined by:ll 

" • ... - " k £ 1 E1 - """'. (4.2.7) 
' 

This property of normal coordinates eliminates the inter-

action or cross-terms which occur in the potential and 

kinetic energies of the system. Equation (4.2.7) also 

serves to normalize the amplitudes of vibration of the atoms 

in each normal mode. 

With the aid of Eq. (4.2.6) the expression for the 

scattered intensity, Eq. (4.2.5), may be rewritten as: 

lA 1
2 = ~~ a,a1 • IJ e'~'ijQ., (4.2.8) 

I j n 

where u?j = K.(e7 - ej) and the sum in the exponent of Eq. 

(4.2.5) has been expressed as a product of exponential 

terms. 

To obtain the experimentally observed intensity we must 

perform an ergodic average of Eq. (4.2.8) over a time period 
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which is short on a microscopic scale but which is long 

compared with the period of vibration of the atoms involved. 

In practice, however, it is more convenient to perform an 

ensemble average of Eq. (4.2.8) over a canonical ensemble 

defined by the Hamiltonian of the system. Classically, this 

average is understood to be a mean over all possible initial 

states weighted with the corresponding Boltzmann factor. 

Assuming that the vibration of the atoms may be described by 

a quadratic Hamiltonian it may be shown thatl 2 

(4.2.9) 

where the brackets < ••• > denote the ensemble or thermal 

average. 

In the case of an harmonic oscillator the mean-square 

amplitude of vibration <Qn 2> may be related to the average 

energy of the oscillator <En>, 13 

(4.2.10) 

where wn is the frequency of the nth normal mode and kB is 

Boltzmann's constant. The expression for the thermally 

averaged scattered intensity may now be written as: 

( lA 1
2

) = II a,a
1
*e- M,1, (4.2.11) 

• 1 

where the product of 

exponential terms in Eq. (4.2.8) has been replaced by a sum 

in the exponent of Eq. (4.2.11). The exponent, Mij• 
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represents the Debye-Waller factor for the scattering 

process. 

For computational purposes Eq. (4.2.10) may be 

conveniently written in terms of an hyperbolic cotangent 

(Q ~) = ___!___ coth ( w. )· 
2t.J. 2k8 T 

(4.2.12) 

For low frequency modes or at high temperature the mean-

square amplitude of vibration may be approximated by: 

(4.2.13) 

and the Debye-Waller factor varies linearly with 

temperature. At low temperatures or for very high frequency 

modes the mean-square amplitude of vibration may be written 

as: 

(4.2.14) 

and the Debye-Waller factor is temperature independent. 

4.3 The EXAFS Problem 

While EXAFS is primarily a single scattering probe, in 

certain instances, low-order multiple scattering events 

contribute significantly to the extended structure. Teo 7 

and Boland et a1. 8 have shown that a three-atom system 

comprised of an absorbing atom and two neighboring atoms is 

sufficient to account for all significant multiple 

scattering effects in EXAFS. The phase and the amplitude of 

the multiple scattering components were shown to be a 
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function of the geometry of the triatomic system.8 An EXAFS 

analysis based on a knowledge of these components will then 

allow bond angles to be determined. 

To study the effect of thermal vibrations on these 

multiple scattering EXAFS components let us consider the 

three-atom system shown in Fig. l. We shall first consider 

the general case in which the system has Cs symmetry. A 

photoelectron of energy 100 ev has a velocity of approx­

imately 6 x 104 ~ psec-1 which justifies our assumption that 

the scattering process provides an instantaneous snapshot of 

the configuration of the system even for long scattering 

paths. The instantaneous positions of the atoms with 

respect to each other are also shown in Fig. 1. The 

expression for the EXAFS of the three-atom system in the 

absence of thermal vibrations is given by:8 

(4.3.1) 

The superscript zero indicates the absence of thermal 

vibrations and k is the photoelectron wavenumber defined by 

k=[2m(~w-E0 )]l/2;b where w is the photon frequency and E
0

is 

the threshold energy. The subscripts S, D and T refer to 

single, double and triple scattering events, respectively, 
A 

and e is the unit vector in the direction of polarization of 

the incident x-ray beam. 

The single scattering EXAFS, X~(k,e), consists of two 

terms each corresponding to single scattering events 

involving the neighboring atoms at r = rj and r = ri (see 
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Fig. 2 (a) and 2 (b)). X~ (k,~) may be expressed as: 

x~(k,e) = 2: x~.(k,e), 
a-l,j 

where (4.3.2) 

and k = kr . The T-matrix element represents the probability 

amplitude for scattering a photoelectron incident in 

direction k into direction -k and o1 is the phase shift 

due to the central atom potential. The double scattering 

EXAFS, x g(k,~), involves events in which the photoelectron 

successively scatters off one neighboring atom and then 

scatters off the other remaining neighboring atom. The 

order in which the scattering occurs does not affect the 

probability amplitude so that this term is counted twice in 

Eq. (4.3.1) [see Fig. 2(c) and 2(d)]. x 'b<k,e) may be 

written as: 

where k .. 
1 J = k f' .. 

1 J = 

(4.3.3) 

- r·)/lr· J 1 - r · I. J 
The triple 

scattering EXAFS term, x~(k,e), describes a process in which 

the outgoing photoelectron first scatters off the nearest 

neighboring atom j then scatters off atom i and finally 
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scatters off atom j once again [see Fig. 2(e)]. x ~(k,e) may 

be written as: 

(4.3.4) 

An expression for the EXAFS due to the instantaneous 

configuration of three-atom system shown in Fig. 1 may be 

obtained by replacing the relative equilibrium position 

vectors of the atoms by their respective instantaneous 

position vectors. Retaining only the lowest order terms in 

the displacement, the EXAFS, x(k,e), due to this 

configuration is given by: 

x(k,e) =X~ exp [ 2ikr a ·(.ua - Do)] + 2x~ 
xexp{ik [r1·(u1 - Do)+ r;1·(ut- u1)] l 
xexp{ik [rt·(ul- Do)] l + x} 
xexp{2ik [r1·(u1 - Do)+ r;1·(ut- u1)] ), 

(4.3.5) 

where a = i,j and ui' uj and u
0 

are the displacement vectors 

of neighboring atoms i and j and the central atom from their 

r e spec t i v e e q u i 1 i b r i u m po s i t ions. Note that we have 

neglected any changes that occur in the scattering angles 

due to the displacement of the atoms. Such angular changes 

are a higher order effect and may be treated separately)9 

We may now proceed as described in the previous section by 

expressing the displacement vectors in terms of normal 
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coordinates. Thus 

and we may rewrite Eq. (4.3.5) as: 

where IJT}· lJ 

x(k,e) = x~exp ( Uk ~ P.:O Q") 

= 

+ 2x~ exp[ ik ~ (Jl}> + p.ij + p.~)Q,.] 

+ i} exp[ 2ik ~ (Jl}> + p.ij)Q" ]. 

f · · • ( e .n- e t:l) lJ l J and represents 

(4.3.6) 

(4.3.7) 

the maximum 

effective change in the distance along the equilibrium 

internuclear axis between atoms i and j in the nth normal 

mode of vibration. A similar interpretation applies to the 

terms n 
lJ i 0. For the three-atom system under 

consideration there are in total nine degrees of freedom so 

that the s~m over n above extends to three terms for non-

linear systems and four terms for linear systems. 

The experimentally observed EXAFS may be obtained by 

performing an ensemble average of Eq. (4.3.7) as de'5cribed 

in Section 4.2. Using Eq. (4.2.9) above, the thermally 

averaged EXAFS for the general system of Cs symmetry is then 

given by: 

(x(k,e)) = x~ exp [- 2k 
2 ~ (Jl:0)

2
(Q! >] 

+ 2x~ exp [- !k 2 ~ (Jlp +p.ij +,u~)2 (Q!)] 

+ x'} exp [- 2k 2 ~ (Jlp + p.'ij)2(Q!)]. 

(4.3.8) 
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The exponential terms in Eq. (4.3.8) correspond to the 

Debye-Waller factors for each of the scattering processes. 

The Debye-Waller factor obtained for the single scattering 

EXAFS is identical to that found by previous 

investigators.3,4 

4.4 Application to Model Systems 

For- our- present purpose it is convenient to write out 

Eq. (4.3.8) in detail: 

+ 2x'bexp {- !k 2 ~ [('1 ·e;l- (r1 ·e~) + (r, 1 ·e7)- (r, 1 ·e;l + (r,·e7)- (r,·e~W(Q~)} 
(4.4.1) 

where a= i,j. Now consider- that the three-atom system is 

symmetric and bent with a bridging angle a and belongs to the 

c2v point group. The normal modes of vibration transform 

as: 

rvib = 2.4, + B,. 
(4.4.2) 

The two totally symmetric A1 modes cor-respond to a symmetric 

stretching and bending mode of vibration. 

associated with the asymmetric stretch. 

The s 1 mode is 

A schematic 

representation of the normal modes of the three-atom system 

are shown in Fig. 3. Note that all displacement vectors are 

confined to the plane defined by the three atoms. 

The symmetry of the system results in a simplification 
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of Eq. (4.4.1) which is dependent on the normal mode in 

question. All normal modes in the c 2 v point group are 

subject to the following conditions: 

For all modes 

in a C zv point group: 1e;; I = le~l. (4.4.3) 

where m0 and mi are the masses of the central atom and 

neighboring atom i, respectively. In addition, a study of 

either Fig. 3(a) or 3(b) shows that the following 

restrictions apply to both A1 type modes of vibration: 

(r,-~·) = - (r;1·e1·), 

A 1 mode: (r,·e;''l = -lr;1·e/'), 

(r,-~·) = - (r;·e1•). 

(4.4.4) 

An analogous set of conditions apply to the B1 mode of 

vibration [see Fig. 3(c)] 

(r1 ·e%'i = (r;1 ·e~·), 

B1 mode: (r;1 ·ef') = (r,·ef•), 

(r; .eg. 1 = (r; -e~· ). 
(4.4.5) 

With the aid of Eqs. (4.4.3), (4.4.4) and (4.4.5) the 

thermally averaged EXAFS, Eq. (4.4.1), for a three-atom 

system of c 2v symmetry may be reduced to: 
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exp { - 2k 2 
[ (r1·ef')- (r1 ·eg')] 2(Q ~, >} 

+ x~, exp {- 2k 2 ~ [2(r,·e~'W<Q~)} (4.4.6) 

+ 2x'l, exp {- !k 2 I [21r,1·e1'l + 2(r,·e1'l + 2(r,-e1'W<Q~, >} 
A, 

+ x~ exp {- 2k 2 ~ [2(r,,·e1'l + 2(r,·e1'W<Q~) }• 

where Xsi and x8 j are the single scattering contributions 

to the EXAFS from atoms i and j, in the absence ofthermal 

vibrations. The Debye-Waller factors in Eq. (4.4.6) have 

been factored into two terms to emphasize the separate 

contributions of the A1 and s 1 type modes. Note that the 

double and triple EXAFS components receive no contribution 

to their Debye-Waller factors from the s1 normal mode. The 

asymmetric s1 mode contributes only to the single scattering 

Debye-Waller factor for the first shell atom. This fact may 

also be discerned from symmetry considerations. Since the 

s 1 mode is asymmetric with respect to reflection in the 

plane of symmetry which passes through atom j, any 

scattering path which crosses this plane will receive no 

contribution to its Debye-Waller factor from this mode. 

This occurs because the increase in pathlength on one side 

of this plane is exactly offset by a corresponding decrease 

on the other side. 

A calculation of the Debye-Waller factors for the c 2v 

system requires a full normal mode analysis. Before doing 
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s o i t i s i n t e r e s t i n g t o c o n s i d e r a 1 i n e a r s ymm e t r i c 

configuration as a limiting case of a system with c 2 v 

symmetry. Suppose that the interatomic distances rj and rij 

are equal and the terminal atoms are of the same kind. Then 

the system belongs to the Doch point group and the normal 

modes of vibration transform as: 

(4.4.7) 

A schematic representation of the normal modes of the system 

are shown in Fig. 4. The bending modes rru are degenerate 

and may be interconverted by a rotation of 90° about the 

axis of the molecule. 

The symmetry of the system requires that the following 

condition must always be satisfied: 

m0 =m1 =m. 

For all modes: r, = r, = i-,1 , 

inaD,.hgroup le~l = le71-
(4.4.8) 

In addition, the following restrictions apply to each of the 

normal modes of vibration (see Fig. 4). 

It mode:(i-1-e:·-)= -(r,,·e~·-), 1e:t1 =0. 

n. mode: (r1·e:!"l = (r,·e~") = (r1·e:'"l = o. 

I.+ mode:(r, .e; t) = (r, -e~ .- ). 

(4.4.9) 

With the above conditions satisfied, the expression for 

the thermally averaged EXAFS in a three-atom system of 
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symmet~y D~h is given by: 

The degene~ate bending modes of vib~ation do not cont~ibute 

to any of the Debye-Walle~ factors in Eq. (4.4.10). This 

occu~s because the displacement vectors in these modes have 

no components along the axis of the th~ee-atom system. 

Fu~the~more, the asymmetric st~etching mode !: ~ cont~ ibutes 

only to the Debye Waller factor in the first shell single 

scattering EXAFS. 

To analyze the normal modes of the c 2v three-atom 

system it is convenient to introduce the internal 

displacement coordinates R1 and R2 togethe~ with an angle 

bending coordinate R1 and R2 represent the change in 

the bond lengths rj and rij from thei~ ~espective 

equilib~ium values. The bending coordinate 5 3 represents 

the change in the bridging angle a • For small amplitudes 

of vibration both the kinetic and potential energies of the 

system may be expressed as quadratic functions of these 

coordinates. In the instance of a c 2v three-atom system the 

potential ene~gy may be written as: 

(4.4.11) 
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where the force constant and there is no 

interaction force constant between the displacement and 

bending coordinates. 

For computational purposes it is more convenient to 

introduce the symmetry coordinates 8 1 , 8 2 and s 3 shown in 

Fig. 5. Note that 8 1 and 8 2 transform as A 1 in the c 2v 

point group while 8 3 transforms as B1• The potential and 

kinetic energies may be written as: 

(4.4.12) 

and 

(4.4.13) 

The two sets of force constants in Eqs. (4.4.11) and 

(4.4.12) are related to each other by:l5 

C" = 2 sin2(0 /2)[a 11 + a 12 ] + 4 cos2(0 /2)a 3~rf. 
C,2 = [2a"p- 4panlrf + 2a, 2 p ]sin(O /2)cos(O /2), 

c22 = 2p2 cos2(0 /2)[a,, +au] + 4p2 sin2(0 /2)a33/rf, 

C33 = 2r(a, 1 -au), 

(4.4.14) 

where p = 1 + 2m/mj and r = 1 + [2m/mjl sin 2 (a/2). The 

coefficients in the expansion of the kinetic energy, Eq. 

(4.4.13), may also be evaluated. 

d 11 =2m, d 22 = 2mp, d 33 = 2mr, 

d12 =dl3 = d23 =0. 
(4.4.15) 
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The frequency of each normal mode of vibration may now 

be expressed in terms of the force constants aij and the 

bridging angle a : 

A.,+ A. 2 = 4rc2(~ + ~) = [..!.. + ..2... cos2(8 /2)] 
m m1 

X(au +a 12)+2 [..!.. + ..2...sin2(8/2)] a 33
, 

m m1 1 
(4.4.16) 

AtA2 = 161r4C4~~ = 2 (~ + - 2
-) (au+ au) a 33 . 

m mm1 1 

:-. 1 and :\ 2 are associated with the A1 stretching and bending 

modes of vibration while \ 3 is associated with the 

asymmetric s 1 stretching mode. The normal modes of 

vibration may then be calculated from the secular equation 

defined by Eqs. (4.4.12) and (4.4.13). 

Q .. , (A.tl = (C22- A.,dzz)S,- (Cz,- A.tdzt)Sz, 

Q .. , (Az) = (Czz- A~zz)St - (Czt - A~zt)Sz, 

Qs, (A.3) = [ (Cu - A3du)(C22 - A3d22) 

- (Czt- A.3dztHCtz- A.3dtzllS3. 

(4.4.17) 

For the linear symmetric system of point group D~h the 

symmetry coordinates are identical to the normal coordinates 

shown in Fig. 4. The explicit form of the symme~rized force 

con·stants and the frequencies of the normal modes may be 

obtained by substituting a bridging angle of 180° in Eqs. 
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(4.4.14) and (4.4.16), respectively. 

To perform a complete normal mode analysis of any 

system it is necessary to solve the secular equation. A 

solution of this equation, however, requires a knowledge of 

all the force constants in the system. In practice, the 

force constants are unknown and the only information 

available are the frequencies of the normal modes. As the 

number of force constants is typically greater than the 

number of normal modes, the secular equation is 

underdetermined. For systems which possess some symmetry the 

number of force constants will be reduced by symmetry 

considerations. In general, it is necessary to ignore some 

force constants or to measure the normal frequencies in an 

isotopically substituted system. 

The approach we shall adopt in this present work is as 

follows. Given the normal modes of vibration for a linear 

symmetrical system we can calculate all the force constants 

from Eq. (4.4.16) when 9 = 180° is substituted for the 

bridging angle. These force constants are then used to 

calculate the frequencies of the normal modes and the 

symmetrized force constants in Eqs. (4.4.16) and (4.4.14) 

for a system of c 2v symmetry with a bridging angle e. It is 

implicitly assumed that the force constants are independent 

of 9 for the angular range of these calculations, 9 = 100° 

- 180°. This approximation is least valid for a description 

of the bending modes. Given this information, the explicit 

form of the normal modes may be calculated from the secular 
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equation in Eq. (4.4.17}. The calculated frequency of each 

normal mode allows the mean-square amplitude of vibration to 

be determined [Eq. (4.2.12} ]. The contribution of the 

Debye-Waller factors from each normal mode may then be 

summed to obtain the total factor in Eq. (4.3.6} for each 

scattering path. 

The systems chosen for this study are shown in Table I. 

The Debye-Waller factor at 10°K for each of these three-atom 

systems was calculated using Eq. (4.4.6) together with the 

normal modes calculated as described above. 

these calculations are shown in Fig. 6. 

The result<;; of 

The calculated 

frequency of each of the normal modes of the BeBr 2 compound 

as a function of bridging angle are shown in Fig. 7. This 

compound was chosen for a detailed study as its mass ratio 

is typical of that encountered in instances where multiple 

scattering is significant. The temperature dependence of 

the Debye-Waller factor for the BeBr 2 system with three 

different bridging angles is shown in Fig. 8. 

4.5 Discussion 

We have presented a general description of the nature 

and origin of the Debye-Waller factor. The formalism 

developed is quite general and may be applied to any 

scattering problem. The form of the Debye-Waller factor in 

EXAFS was discussed in detail. An expression was obtained 

for the Debye-Waller factor in a general three-atom system. 

The form of this factor was shown to be dependent on the 
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geometry and symmetry of the system. The formalism as 

presented is readily applicable to multiple scattering 

events involving more than three atoms and may also be 

extended to describe systems of arbitrary symmetry. 

The Debye-Waller factors for the series of three-atom 

systems described in Table I are shown in Fig. 6. Note that 

the double scattering factor has been divided by four so 

that the Debye-Waller factor for each scattering path has 

the standard form exp(-2k2cr2) [see Eq. (4.4.6) ]. At all 

temperature~ the Debye-Waller factors associated with the 

second shell single scattering, the double scattering and 

the triple scattering EXAFS components converge to a single 

value at a bridging angle of 180°. This convergence is 

required by Eq. (4.4.10) which describes the Debye-Waller 

factor for a linear system as a limiting ca~e of that for a 

similar but bent system. 

The relative magnitudes of the Debye-Waller factors 

associated with the various scattering paths deserves 

comment. A normal mode analysis of each system shown in 

Table I indicates that for all mass ratios (m/mj)' at a 

bridging angle of 100°, the displacement vectors of the 

terminal atoms in the A1 stretch make an angle of about 40° 

with the base of the isosceles triangle which represents the 

system. As the system approaches linearity this angle 

decreases until it is zero when the bridging angle is 180°. 

In the case of the A1 bend this angle depends on the mass 

ratio of the system. For small mass ratios the displacement 
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vectors of the terminal atoms make an angle of about 150° 

with the base of the triangle. When the mass ratio is 

larger this initial angle is closer to 180°. In both cases, 

as the system becomes less bent this angle decreases until 

it is 90° when a bridging angle of 180° is achieved. 

The contribution of a given mode to the Debye-Waller 

factor for a particular scattering path is dependent on the 

frequency of the mode due to the presence of the Boltzmann 

factor in Eq. (4.2.10). In general, both the asymmetric 

stretch and symmetric bend increase in frequency as the 

system becomes less bent while the frequency of the 

symmetric stretch decreases (see Fig. 7). Furthermore, 

different scattering paths show different degrees of 

sensitivity to the displacements of the atoms that occur in 

a given normal mode. For instance, the triple scattering 

path receives a large contribution to its Debye-Waller 

factor from the A1 stretching mode. This scattering path 

is, however, very insensitive to the A1 bending mode except 

perhaps at small bridging angles (100°) where the frequency 

of the bend is low and the displacement vectors of the 

terminal atoms still have significant components along the 

internuclear axes. At large mass ratios the contribution to 

the triple scattering Debye-Waller factor from the A1 

stretch increases as the frequencies of the two A1 modes 

become comparable (see Table I). On the other hand, the 

second shell single scattering Debye-Waller factor receives 

a large contribution from the A1 bend. This is particularly 
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true at small bridging angles (where the frequency is low) 

and at high mass ratios where the displacement vectors of 

the terminal atoms have large components along the base of 

the isosceles triangle. 

From Fig. 6 it is apparent that the first shell single 

scattering and the triple scattering Debye-Waller factors 

increase as the mass ratio increases. This occurs because 

both of these scattering paths are sensitive to the A1 

stretch whose frequency drops relative to the A1 bend as the 

mass ratio increases. When the frequency of the A1 bend is 

greater than the A1 stretch, the magnitude of the triple 

scattering Debye-Waller factor surpasses that of the second 

shell single scattering (see Fig. 6(e)]. The double 

scattering factor, however, is sensitive to both A1 type 

modes. At small angles this scattering path receives a 

large contribution to the Debye-Waller factor from the A1 

bend. As the system approaches linearity the frequency of 

the A1 bend increases and the components of the displacement 

vectors of the terminal atoms diminish so that the 

contribution from this mode decreases. The contribution to 

the Debye-Waller factor from the A1 stretch increases, 

however, due to the reduced frequency of this mode at large 

angles. 

The temperature dependence of the Debye-Waller factors 

for the BeBr 2 system is shown in Fig. 8. The low frequency 

of the bending mode at small bridging angles (100°) causes 

the second shell single scattering Debye-Waller factor to 
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have the observed sharp temperature dependence. The 

interplay of both A1 modes in determining the Debye-Waller 

factor for the double scattering path is evident from Fig. 

8. At small bridging angles the temperature dependence of 

the double scattering term is more severe than that for the 

triple scattering term. This occurs because the double 

scattering path is sensitive to the A1 bend which has a low 

frequency at these angles while the triple scattering path 

is most sensitive to the A1 stretch which occurs at much 

higher frequencies (see Fig. 7). As the system approaches 

linearity, however, the temperature dependence of both the 

double and triple scattering paths become very similar due 

to the dominant contribution of the A1 stretch to each 

Debye-Waller factor. In general, it is apparent that the 

Debye-Waller factors for each scattering path are strong 

functions of temperature. At sufficiently low temperatures 

each Debye-Waller factor is independent of temperature while 

at higher temperature the Debye-Waller factors vary linearly 

with temperature in agreement with Eqs. (4.2.13) and 

(4.2.14). 

The purpose of this present study is to provide an 

understanding of the Debye-Waller factor in EXAFS so that 

accurate bond angles may be determined. A standard method 

of an a 1 y s i s for E XA F S data that con t a in a sign i fica n t 

multiple scattering component has not yet been presented. 

Teo7 has suggested that the terms involving the second shell 

atom in Eq. (4.3.1) may be combined and that the resulting 
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expression can be analyzed as though it described a single 

scattering EXAFS process with a modified amplitude and 

phase. This results in a considerable simplification of the 

data analysis. This approach, however, neglects the polar-

ization terms in Eq. (4.3.3). In addition, it assumes that 

the Debye-Waller factors for all scattering paths involving 

the second shell atom are the same. To study the 

significance of this latter assumption the resulting 

modification in the amplitude of the double and triple EXAFS 

components in the BeBr 2 system were calculated and are shown 

in Fig. 9. All amplitude calculations were carried out at 

k = 10 ~-1, the amplitude modification is smaller and 

larger at smaller and larger values of k, respectively. The 

errors involved are clearly larger at small bridging angles 

and high temperatures. At low temperatures, the larger 

modification occurs in the amplitude of the double 

scattering component while at higher temperatures the 

amplitude of the triple scattering component is more 

sensitive. This observation is consistent with the above 

mentioned dependence of the triple scattering Debye-Waller 

factor on the A1 stretching mode. For a bridging angle of 

120° the amplitudes of the double and triple scattering 

terms are reduced by a factor of 11.1 and 19.4 respectively, 

at room temperature. The reductions in the amplitudes are 

considerably less for a system that is approximately linear, 

especially at low temperature [see Fig. 9(d)]. 

The calculations in Fig. 9, however, assume that both 
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the double and triple scattering paths contribute equally to 

the EXAFS. The ratio of the intrinsic amplitudes of the 

double and triple scattering terms is: 

(4.5.1) 

where ~ and 6 are the scattering angles at atoms j and i and 

the T-matrices in Eqs. (4.3.3) and (4.3.4) have been written 

in terms of their respective scattering amplitudes. In 

instances where multiple scattering is important,l20°< s 

<180°, we may approximate the scattering amplitude through 

angle 6 with the backscattering amplitude.7 For symmetric 

systems rj == rij 

given by: 

(4.5.2) 

The triple scattering EXAFS component will dominate when the 

bond distance rj is small or when the scattering amplitude 

through an angle ~ is large for the intervening atom j. In 

general, the multiple term which dominates is dependent on 

the geometry of the system and the nature of the intervening 

atom. If one term completely dominates the EXAFS, then the 

other terms may be neglected and Teo's approximation is 

always valid. The errors shown in Fig. 9 are significant 

only if the both multiple scattering terms and the single 

scattering terms are comparable or if one multiple 

scattering term and the single scattering terms are 
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compar-able while the r-emaining multiple scatter-ing ter-m is 

small. If both multiple scatter-ing ter-ms ar-e compar-able in 

magnitude and gr-eater- than the single scatter-ing ter-m, then 

we must compar-e the differ-ence in the Debye-Waller factor-s 

of the multiple scattering ter-ms to obtain the err-or in the 

amplitude. This er-r-or- is typically smaller- than those found 

in Fig. 9 (see Fig. 8). 

A study of the temper-ature dependence of the Debye­

Waller- factors r-eveals that ther-e exists a point at which 

the double and tr-iple scatter-ing factor-s ar-e equal. This 

crossover- point occur-s because the triple scatter-ing factor 

is less sensitive than the double scattering factor to the 

low fr-equency bend mode. Since the fr-equency of the bend 

mode incr-eases as the system becomes less bent the 

temperature of the cr-ossover point also increases (see Fig. 

8). Pr-ovided the single scatter-ing contribution to the 

EXAFS is small, an analysis of data collected at this 

temper-atur-e, and based on Teo's assumption, is r-igor-ous and 

should yield accur-ate r-esults. 

Recently, Alber-ding and Cr-ozierl8 discussed the 

analysis of EXAFS data which contained a significant amount 

of multiple scatter-ing. They consider-ed a u-oxo system, 

Fe 2o, and a dihydr-oxy br-idged system, Fe 2 (0H) 2• The Fe 2o 

system is appr-oximately symmetric with a br-idging angle of 

164° and an Fe-0 bond length of 1.8 ~. Using an analysis 

similar to that described by Teo 7 , Alberding and Cr-oziec 

obtained a br-idging angle of 180° and an Fe-Fe distance of 
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3.63 ~ (compared to an actual distance of 3.55 ~). These 

results are not surprising since Teo's analysis is not 

strictly valid in this instance, especially at high 

temperatures [see Eq. (4.5.2) and Fig. 8]. A calculated 

bridging angle of 180° might be explained by the fact that 

the Debye-Waller factors associated with each scattering 

path, which are constrained to be equal by the analysis, are 

in fact, equal only at this bridging angle. A second model 

analysis involving a bending mode was also proposed. This 

latter method yielded a better Fe-Fe distance and bridging 

angle. The residual surface was broad and ill-defined. The 

physical basis for this method of analysis is discussed in 

the next ·~na pte r. 

In conclusion, the Debye-Waller factors in EXAFS 

spectra which contain a significant multiple scattering 

component are sensitive to the geometry of the system. The 

accuracy of Teo's approximation depends on which term or 

terms dominate the EXAFS for the system in question. In 

general, there will be a significant discrepancy if any two 

or more of the scattering paths involving the second shell 

have comparable amplitudes. The magnitude of this error is 

smallest for systems with large bridging angles or at low 

temperature. In instances in which the contribution to the 

observed EXAFS from the single scattering path is small, 

there exists a range of temperatures over which the above 

approximation is very accurate. 
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0 

Figure 1. 
The general three-atom system. The equilibrium 

positions of the central atom (0), first nearest-neighbor 
atom (j) and second nearest neighbor atom (i) are shown as 
filled circles. The displacement of these atoms from their 
respective equilibrium positions are shown as open circles. 
a represents the equilibrium bridging angle.The equilibrium 
position of the central atom was chosen to represent the 
origin of the system. 
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Figure 2. 

•· I 

(b) (c) 

0 
(d) (e) 

The five significant scattering paths in a system of 
three atoms. (a) and (b) represent the single scattering 
paths from atoms i and j. The two double scattering paths 
(c) and {d) are identical by virtue of time-reversal 
symmetry. The triple scattering path is shown in (e). 
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Figure 3. 
Schematic of the normal modes in a three-atom system of 

c 2v symmetry. There are three normal mode two of A1 type 
symmetry and a single s 1 mode. 
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• • • • .. ""+ Lg STRETCH 
0 j 

! 8------------t!~-----8! } IIu BEND 
. 

0 j 

• .... • ~+ STRETCH u 
0 

. 
J 

Figure 4. 
Schematic of the normal modes in a three-atom system of 

Dooh symmetry. The symmetric stretch, :E +, involves no 
motion of the intervening atom j. The deg~nerate bending 
modes, nu, may be interconverted by a rotation of 90° about 
the molecular axis. The asymmetric stretch, :E ~, is the 
limiting case of the single B1 mode in a c 2v system. 
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Figure 5. 
The symmetrized coordinates used in a normal mode 

analysis of the three-atom system. 5 1 and 5 2 transform as A1 
in a c 2v system while s 3 transforms as B1 and is identical, 
apart from a constant factor, to the asymmetric stretching 
mode. 



1134 

(a) 

SINGLE SCATTERING 
I FIRST SHELL) J 

1.0'!-:--~---:-:!-:::--~--.,-~~~--,-:!::::---~ 
180 160 140 120 100 

~ 
1-
u 
tt: 
a:: 
~2.0 
....J 

ii 
J.J 
ib 
w 
0 

BRIDGING ANGLE 8 (DEGREES) 

160 140 120 
BRIDGING ANGLE 8 (DEGREES) 

Figure 6. 

'10 

(b) Cu IO•K 
/B-'\ 

"' 'O 

0:: 

:=: 
~ 4.0 
c._ 

0:: 
w 
....J 
....J 

~ 3.0 
I 

w 
>-
CD 
w 
0 2.0 

180 

Br Br 

160 140 120 
BRIDGING ANGLE 8 (DEGREES) 

(d)~-~ 

180 

Br Br 

I_ DOUBLE 
SCATTERING 

160 140 120 
BRIDGING ANGLE IJ (DEGREES) 

100 

100 

of 
(a) 

Calculated Debye-Waller 
bridging angle for a 
AuBr 2• (b) CuBr 2• (c) 

factors at l0°K 
series of three 

as a 
atom 

(e) 

function 
systems. 

CSe 2 • (d) BeBr 2 • Be r 2 • 



!") 

'0 

X 

n::: 
0 
1-­
u 

6.0 

Lt 4.0 

n::: 
w 
_j 
_j 

<! 
~ 3.0 

I 

w 
>­
CD 
w 
0 

(e) /~~ 
I I 

SINGLE SCATTERING 
(FIRST SHELL) 

HIS 

TRIPLE 
SCATTERING 

SINGLE 
SCATTERING 

(SECOND SHELL) 

DOUBLE 
SCATTERING 

180 160 140 120 100 
BRIDGING ANGLE 8 (DEGREES) 

Figure 6, continued. 



900 

-
I 

E 
u 

>­
u 
z 500 w 
:J 
0 
w 
0::: 
LL 

300 

100 

180 

Figure 7. 

ASYMMETRIC 
STRETCH 

Be 

le\ 
Br Br 

HJ6 

160 140 

SYMMETRIC 
STRETCH 

SYMMETRIC 
BEND 

BRIDGING ANGLE 8 
120 

(DEGREES) 

Calculated frequencies of the normal modes of vibration 
for the BeBr 2 system as a function of bridging angle a. 



Figure B. 

~ 

'o 

N 

"" 0:: 
0 
>--
~ 12.0 

"-
0:: 
w 
_j 
_j 

4 8.0 
~ 
' w 

>-
aJ 
w 
0 4.0 

~-

IQ 7.0 
X 

N 

"" 
0:: 
0 
>-

~ 
"- 5.0 
0:: 
u.J 
_j 
_j 

~ 
' u.J 

>-
8ho 
a 

0 

(b) 

0 

107 

9 ° 120" 

SINGLE SCATTERING 
(SECOND SHELL) 

l,"-_ 

00 200 300 

TEMPERATURE ('K I 

Be 8=150° 
Br ---::_ 8 ;--_ Br 

L SiNGLE SCATTERING 
I FIRS7' SHELL) 

100 2:JO 3CJ 

TEMPERATURE ( "K) 

Temperature dependence of the Debye-Waller factors for 
the BeBr 2 system at three different bridging angles. 
{a) 120°. (b) 150°. (c) 170°. 



I<) 

10 

X 

-
0:::: 

~ 
u 
~ 3.0 

0:::: w 
~ 
~ 
<! 
~ 

I 
w 
>­
CD 

~ 2.0 

0 

lfll8 

(c) 

Be e = 170° 
Br~8r-sr 

SINGLE SCATTERING 
(SECOND SHELL) 

SINGLE SCATTERING 
(FIRST SHELL) 

100 200 

TEMPERATURE (°K) 

Figure 8, continued. 

300 



180 160 140 12C 

BRIDGING ANGLE 8 (DEGREES) 

(c) 

N 
~ 

~ 
a. 
~ 

"' 
UJ 
0 
:::> 
f-
:::; 
0.. 
::;; 
<! 
<f) 

"-
<! 
X 
UJ 

0 

""' "-
i5 
0 
::;; 

1.0 
0 100 200 

TEMPERATURE ("K) 

Figure 9. 

1~9 

00 

300 

' 
Nbf./'1 16.0 

"'~ 
~ 

a. 
M 

cu 12.C 
w 
0 
::J 
f-
_J 

0.. 
::;; 8.0 
<! 
<f) 

"-
<! 
X 
w 
0 
w 
"-
Ci 
0 
::;; 

"' ~ 
~ 

Q. 
M 

" 
w 
0 
:::> 
f-
:::; 
0.. 
::;; 
<! 
<f) 

"-
<! 
X 
w 
0 
w 
"-
Ci 
0 
::;; 

IOC 2CO 300 
TEMPERATURE ("Kl 

(d) 

e~1?0". k:IQA- 1 

0 00 200 3CO 
TEMPERATURE ( "K l 

Modification in the EXAFS amplitude of the double and 
triple scattering terms in the BeBr 2 system due to the 
assumption that the second shell single scattering Debye­
Waller factor ( o 8 ) may be used to approximate the double 
( a 0 ) and triple ( crT) scattering Debye-~aller factors. All 
amplitudes were calculated at k = 10 ft- . (a) Modification 
in the amplitudes of the double and triple scattering terms 
at 10°K as a function of bridging angle a. (b) temperature 
dependence at a bridging angle of 120°. .(c) 150°. 
(d) 170°. 
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Table I. Normal frequencies of vibration for t~~ 
linear model systems discussed in the text. 
The mass ratio of the central to the interven­
ing atom is also shown. 

SYSTEM 

AuBr 2 209 77 

cusr 2 193 81 

cse 2 364 313 

BeBr 2 230 220 

Ber 2 160 175 

254 

322 

1303 

1010 

873 

m/m· 
J 

0.40 

1. 26 

6.58 

8.88 

14.11 
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CHAPTER V 

THE EFFECT OF THERMAL VIBRATIONS ON EXTENDED X-RAY 

ABSORPTION FINE STRUCTURE: MODIFICATION FACTORS* 

5.1 Introduction 

Extended X-Ray Absorption Fine Structure (EXAFS) refers 

to the modulations observed in the absorption coefficient on 

the high frequency side of an x-ray absorption edge. The 

origin of this structure was first explained by Kronig 1 who 

described the EXAFS in terms of a modification of the photo­

electron's wave function due to the presence of neighboring 

atoms. Despite this early work, the potential of EXAFS to 

yield local structural information went unnoticed until 

Sayers, Stern and Lytle 2 presented a parameterization of the 

extended structure in terms of physically significant 

quantities. Since then EXAFS has emerged as an important 

structural tool with applications in many areas of physics, 

chemistry and biology.3 

EXAFS yields structural information about the local 

environment of the atomic species which absorbs the x-ray 

photon. The modulations observed in the absorption 

coefficient are due to an interference phenomenon in which 

the outgoing photoelectron wave is scattered by neighboring 

atom potent i a 1 s. The amplitude of the scattered wave 

returning to the absorption site is inversely proportional 

to the product of the individual scattering path lengths 

during which the photoelectron propagates freely. This 
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ensures that the contribution to the EXAFS from distant 

shells is small. In addition, the limited coherent path 

length due to inelastic scattering and the finite lifetime 

of the core hole further serve to restrict the depth of 

penetration of the photoelectron into the bulk. Since 

multiple scattering events necessarily involve large path 

lengths this contribution to the EXAFS was generally 

considered to be small. Exception was taken to the case in 

which the absorbing atom and two neighboring atoms lined up 

such that the large forward scattering amplitude of the 

intervening atom compensated for the decrease in flux due to 

the long scattering path. 4 The short range nature of the 

EXAFS effect thus facilitates an analysis of the extended 

structure. The predominance of single scattering and the 

relatively few distances involved make EXAFS amenable to the 

methods of Fourier analysis. The Fourier transform of an 

isolated EXAFS pattern yields a form of radial distribution 

function in which the central atom is located at the origin. 

The distribution function is distorted, however, due to the 

presence of phase shifts incurred by the photoelectron 

during the scattering process. From such an analysis it is 

possible to determine bond distances, coordination numbers 

and the types of neighboring atoms involved. 

Recently, however, there has been considerable interest 

in multiple scattering events in EXAFS. TeoS and Boland et 

al.6 have shown that a three-atom system comprised of an 

absorbing atom and two neighboring atoms is sufficient to 
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describe all significant multiple scattering effects. The 

amplitude and phase of the multiple scattering components 

were shown to be sensitive to the geometry of the system. 

When data analysis is based on a single scattering model, 

spectra which contain a significant degree of multiple 

scattering often appear to have anomalous Fourier 

coefficients. In such instances, however, a multiple 

scattering analysis should make possible a determination 

of the complete local geometry, including bond angles, about 

the absorbing atom. The frequency of the single and 

multiple scattering EXAFS components may be suff ic ientl y 

similar that a Fourier analysis is unable to resolve the 

individual components. It is this problem which makes an 

accurate treatment of such EXAFS data difficult. 

To develop a method of analysis for multiple scattering 

EXAFS data it is necessary to understand the factors which 

affect the amplitude and phase of each EXAFS component. 

Teo5 has suggested that the scattering paths involving the 

second shell atom may be combined and analyzed as though 

they described a single scattering process with a modified 

amplitude and phase. This method results in a considerable 

simplification of the data analysis. More recently, 

Alberding and Crozier 7 discussed separately the effects on 

the observed EXAFS of changes in bond distances and 

scattering angles. This present paper will address the 

problem of thermal vibrations and their effect on EXAFS 

spectra. In a previous paper 8 (discussed· in detail in 
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Chapter IV) we showed that, to lowest order, the Debye-

Waller factor associated with changes in the internuclear 

distances may be treated separately from changes in 

scattering angles. The purpose of this present work is to 

describe the effects of changes in bond angles and the 

correlation that exists between such changes and the 

accompanying changes in bond distances. 

5.2 Formal Considerations 

To study the effects of thermal vibrations let us 

consider the general three-atom system shown in Fig. 1. 

Systems of this type have been discussed previously by Teo5 

6 and Boland et al. • In the absence of thermal vibrations, 

the EXAFS for such a system may be described by: 

(5.2.1) 

The superscript zero indicates the absence of thermal 

vibrations and k is the photoelectron wave number defined by 

the free electron dispersion relation: 

(5.2.2) 

where ~w is the energy of the x-ray photon and E0 is the 

threshold energy. The subscripts s, D and T refer to single, 

double and triple scattering events and e is the unit vector 

which specifies the direction of polarization of the 

incident x-ray beam. 

A schematic representation of the scattering paths 
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within this three-atom system is shown in Fig. 2. The 

single scattering EXAFS, X~(k,e), consists of two terms each 

of which correspond to a single scattering event involving 

....... ~ ~ ..... 0 ... 
the neighboring atom located at r = ri or r = rj• X 5 (k,e) 

may be expressed as: 

x~ Ck,el = L: x~ Ck,el 
g=i,j g 

where 
0+ + ] 2ik ·r 2io 1 

e g g e 

(5.2.3) 

where kg= krg and xSg(k,e) represents the contribution to 

the total single scattering from atom g. The probability 

amplitude of atom g scattering the incident photoelectron 

through an angle rr is given by fg(rr,k). The double 

scattering EXAFS, X g(k,~), involves events in which the 

photoelectron successively scatters of one neighboring atom 

and then off the other remaining neighboring atom. By 

virtue of time reversal invariance, the order in which this 

scattering sequence occurs does not affect the probability 

amplitude so that this term is counted twice in Eq. (5.2.1) 

[see Fig. 2(c) and 2(d)]. xg(k,e) may be written as: 

-3(ro ·e> cro·el 
x0° (k, e) = --.==~~---"""'--­krororo o 

~ J ~] 

rm[f 0 (cx,k) f 0 (S,k) 
J J 

.... -+- .... ... 
i (k o • r 0 + k 0 0 • r 0 0 

e e J J ~J .l.J 

(5.2.4) 
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where kij = kf'ij = k(ri - rj)/lri - rjl and a and 8 are the 

scattering angles at atoms j and i, respectively. The 

triple scattering EXAFS term, X ~(k,e), describes a process 

in which the outgoing photoelectron wave first scatters off 

the nearest neighboring atom j then scatters off atom i and 

finally scatters off atom j once again [see Fig. 2 (e)]. 

X~(k,e) may be expressed as: 

e 

........................ + 
2ik(k.•r. + k .. •r .. )] 

e J J ~J ~J 

(5.2.5) 

To obtain an expression for the EXAFS corresponding to 

the configuration of the three atoms shown in Fig. 1 the 

relative equilibrium position vectors of the atoms must be 

replaced by their respective instantaneous position vectors. 

The EXAFS is then described in terms of the instantaneous 

bond angles and distances of the system. To describe the 

effect such configurations have on the observed EXAFS 

spectrum, it is necessary to express the instantaneous value 

of any factor in terms of its equilibrium value together 

with a time dependent expression describing the deviation of 

this factor from equilibrium. Consideration of Eqs. (5.2.3) 

through (5.2.5) shows that there are four such factors, 

common to all equations, which are sensitive to the 

instantaneous geometry of the system. We shall now identify 

and estimate the importance of each of these four factors. 
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First let us consider the polarization terms which are 

common to all EXAFS expressions. Note that there are 

essentially two types of polarization factors. The instant-

aneous values of these dot products may be expressed in 

terms of their equilibrium values by expanding the products 

in a Taylor series. Since we are primarily concerned with 

polycrystalline samples these dot products must be averaged 

over all possible polarization directions. It may be shown 

that to first order, changes in the position vectors of the 

atoms do not effect the spherically averaged polarization 

factor. These factors will not be discussed further, to the 

order of the present calculations they are sufficiently well 

approximated by their equilibrium values. When single 

crystal or directionally oriented samples (e.g., surfaces) 

are being studied, however, it is necessary to explicitly 

calculate each of the terms in the Taylor series. 

The second factor to be considered is the exponential 

term representing the total scattering path length. Since 

each term of this type is similar, we shall focus on a given 

term and generalize the results. In single scattering 

events involving atom j the exponential term in Eq. (5.2.3) 

corresponding to the instantaneous configuration shown in 

Fig. 1 may be written as: 

(5.2.6) 

where ki"· and r'· is J J 
the instantaneous posit ion vector 

corresponding to the equilibrium position vector rj. The 
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displacement vectors of the central atom and atom j are 

given by Uo and uj, respectively. The path length may be 

written as: 

I r-+-;;. _;; I 
J J 0 

(5.2.7) 

Retaining only the lowest order terms in the displacement, 

this distance may be approximated using a binomial 

expansion. 

(5.2.8) 

Substituting Eq. (5.2.8) into Eq. (5.2.6) reveals that the 

original exponential term is factored into the equilibrium 

separation of the atoms and the projection of the displace-

ment vectors along the bond defined by these atoms. 

(5.2.9) 

A similar treatment may be applied to the remaining terms of 

this type. 

The next quantity which must be discussed in our treat-

ment of thermal vibrations is the effect of the 

instantaneous distances which occur in the denominator of 

each EXAFS component. Using the approximations developed in 

Eq. (5.2.8) above, it may be shown that such corrections are 

negligible and we may replace the instantaneous distances in 

the demoninator by their equilibrium values. 

The remaini~g factor to be considered is the effect on 

the scattering amplitude of small changes in the directions 
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of the incident and scattered photoelectron wave induced by 

thermal vibrations. The instantaneous scattering amplitude 

of atom j may be expressed in a Taylor series about the 

equilibrium scattering angle a: 

fj (a+l'>a,k) = fj (a,k) + 
(
fj (a' ,k)) 

aa' a 
(5.2.10) 

where <'>a is the deviation from the equilibrium value. Note 

that in instances where the equilibrium scattering angle is 

~, the instantaneous angle is also ~ so that such scattering 

amplitudes need not be discussed further. 

To estimate the magnitude of the lowest order term in 

Eq. (5.2.10) it is necessary to express the angular 

deviation in terms of the displacement vectors of the three 

atoms shown in Fig. 1. The scattering angle a may be 

written in terms of the unit vectors of the system 

cos a = r .. r .. 
J 1 J (5.2.11) 

Equation (5.2.11) may be differentiated to yield: 

"'cos a = -sin a I', a = r j • "'r i j + "' r j • r i j (5.2.12) 

so that the change in the angle from its equilibrium value 

is given by: 

<'>a= - (5.2.13) 
sin a 

-Noting that each unit vector may be written as rj = rj/rj, 

an expression for the deviation in angle may be readily 
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obtained. Sepat"ating the contribution to t:,a. form each of 

the displacement vectors allows Eq. (5.2.13) to be written 

in the form 

where --aj = 

-b· = 
J 

r · ·-r •COS a 
1] J 

rjsina 

r · · COSCL-r · 
1] J 

rijsine< 

r j ( r r r i j cos().) + r i j ( r j co sa.- r i j) 

r j r i j 

(5.2.14) 

It is important to note that the vectors aj, bj and cj are 

functions only of the equilibrium geometry of the three atom 

system. An expt"ession of this type also exists for !:>B, the 

deviation in the scattering angle about atom i, in which 

rij-rjcoss 

rjsins 

ri(ri+rijcoss) + rij(rij+ricoss) 

ririjsins 

ri+rijcose 

rijsins 

(5.2.15) 
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5.3 EXAFS Modification Factors 

Our discussion of the significance of the four factors 

present in each EXAFS component is now complete. These 

factors represent the possible ways in which thermal 

vibrations may modify EXAFS spectra. With the above 

information in hand we may write out in detail an expression 

for the EXAFS due to the instantaneous configuration shown 

in Fig. 1. To obtain the experimentally observed EXAFS, 

however, we must perform an ensemble average of this 

expression over the canonical ensemble defined by the 

Hamil toni an of the three-atom system. Ret.aining only the 

lowest order terms in the angular displacement, this average 

may be written as: 

2ikr 
..... u ) ik[r .. (u. u ) ... (u - + f" .. ·(u. 

<x(k,el> = ~<e g g 0 > + 2X0 <e J J 0 ~J ~ 
D 

ik[r. • (~. 
... 2" [~ ..... ... ..... ... - u ) l 

+~ 
ikr.•(u. -u) + r ..• (u. u.) l x e ~ ~ 0 > <e J J 0 ~J ~ J > 

kr.r.r .. 
~ J ~J 

{ (
Clf.(a',k)) ik(r. +r .. +r.) 

Im fi (S,k) Cla' a e J ~J ~ e 

... 
u.) l 

J 

ik[r.·(~.- ~ > + .r .. ·(~.- ~-> + r.·(~.- ..... u ll (5.3.1) 

x <lia e J J o ~J ~ J ~ ~ j >} 

- ki.r.r .. 
~ J ~J 

{ (
3f. (S',k)) ik(r. + r .. + r.) 2 Im fj(a,k) ~ S' S e J ~J ~ e iol 

o A (+ ~ ~ ~ ~ ~ 
ik[r.• u.- u) + r .. •(u. - u.) + r.•(u. - u.)] 1 

x <liS e J J 0 ~J ~ J ~ ~ J > j 
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(
af. (a 'k)) 

Irn {f. (7T,k) f. (a,k) 
~ J dCL 1 CL 

2ik(r. + r .. ) 
e J ~J 

(5.3.1) 

2i0 1 
2ik[r.·<~. -~l +~;J· <~. -~.JJ} 

x e <lla e J J 0 ... ~ J > 

where the brackets < ••• > denote the ensemble or thermal 

average of the quantity enclosed. The first three terms in 

Eq. (5.3.1) above correspond to the case in which the only 

contribution to the Debye-Waller factor is due to changes in 

the interatomic distances. Note that these terms are 

described by the usual type of Debye-Waller factor in which 

the EXAFS expression in the absence of vibrations is 

multiplied by a damping term to account for the effects of 

thermal vibrations. These terms have been discussed 

previously in Chapter IV and they will not be discussed 

further in this present work. The remaining terms represent 

the combined effect of changes in both angles and distances. 

These variations are strongly correlated and this fact must 

be taken into account when the appropriate thermal averages 

are performed. Note that these latter terms involve only 

the double and triple scattering EXAFS components. Since 

these terms must be added to the damped EXAFS expression 

defined by the first three terms in Eq. (5.3.1) it is 

inappropriate to refer to these terms as Debye-Waller 

factors. For the purpose of the present discussion, we 
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shall call such terms modification factors, since each has a 

modified amplitude and phase when compared to the 

corresponding term in the damped EXAFS expression. An 

amplitude modification occurs due to the presence, in each 

of these factors, of a derivative of the scattering 

amplitude together with an angular variation term in the 

thermal average. The phase of each factor is modified 

because the phase of a derivative of the scattering 

amplitude may be different from the phase of the amplitude 

itself. 

We shall now focus attention on the thermal averages 

which occur within each modification factor. To explicitly 

calculate such averages, it is necessary to know the 

potential energy surface governing the motion of the three 

atom system. Throughout this work the harmonic or quadratic 

approximation is assumed. This approximation consists of 

expanding the potential energy in a Taylor series about its 

equilibrium value and truncating the expansion after the 

first non-zero term. This is consistent with our expansion 

of the scattering amplitudes about the equilibrium 

scattering angle in which only the first order term was 

retained. Each of these approximations is then strictly 

valid only for small departures from equilibrium. There-

fore, it is possible to approximate Eq. (5.2.14) by: 

6a 
-+ ~ -')> --? -+ -+ 

= l/2i [exp{i(aj.u0 +bj.ui+cj.uj)} 

- exp{-i(aj.uo+bj-~i+~j.uj)}] 
(5.3.2) 
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A similar expression may be obtained for ~6. 

Since the form of the potential energy surface is 

harmonic it is convenient to express the displacement 

vectors in terms of the normal coordinates Qn (n = 1, ••• ,3N} 

(5.3.3} 

where N is the number of atoms in the system and ej is the 

amplitude vector of the jth atom in the nth normal mode. 

The properties and advantages of this coordinate system have 

been discussed in Chapter IV. In the case of our three atom 

system there is a total of nine degrees of freedom so that 

the sum over n above extends to three terms for non-linear 

systems and four terms for linear systems. The remaining 

terms represent translation and rotation of the system as a 

whole and do not contribute to the EXAFS. 

systems it may be shown that9 

For harmonic 

(5.2.4} 

where f(n} is the some function of the normal mode n and 

<Qn 2 > is the mean-square amplitude of vibration in the nth 

normal mode. Furthermore, <Qn 2 > may be written as: 10 

(5.3.5} 

where wn is the frequency of the nth normal mode and k8 is 

Boltzmann's constant. 

The explicit form of the thermal averages may now be 

determined. For convenience of notation let us define <~a> 0 
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to be the thermal average that occurs within the double 

scattering modification factor in which the angle ~ changes 

by t; ~ • Substituting Eq. (5.3.3) into Eq. (5.3.2) and then 

into the appropriate term in Eq. (5.3.1) an expression for 

<t>~>n is obtained: 

i.k ) [ n n n 1 n n n 
1 ir (lJjo + ).Jij + ).Jio) + k (p · + P · · + P · · l l ~ 

<lla>D = 2i <e ]O ]l. ]] > 

. ) [ n n n 1 n n n (5.3.6) 
_ .L <ei.k"'n' ().Jjo+ lJij +)Jib- k (pJ.O +pJ.i + PJ·J·ll ~ 

2i > 

In the preceding equation, \l?j= 
->n .... n) and represents rij•<ei - ej 

the maximum effective change in the distance along the 

internuclear axis between atoms i and j in the nth normal 

mode. The contribution to the change in the scattering 

angle at atom i due to the displacement of atom j in the nth 

normal mode is given by = A similar 

interpretation applies to the remaining terms of these 

types. Note that each of the two terms in Eq. (5.3.6) 

contains a summation in the exponent which may be replaced 

by a product of exponential terms. This product extends 

over all of the normal modes of the system. Since there is 

no correlation between the individual normal modes the 

average of each product is just the product of the averages. 

Using Eq. (5.3.4) we can determine the thermal average 

associated with each normal mode in Eq. (5.3.6), calculate 

the product of these averages and thus determine <t>~> 0• 
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-~ ~ (wZ: + n 
w~J <~ 2> lJ .. + 

<~a> = ie JO ~J 
D 

-~L: ~·f.l n p~.) 2~2> +p .. + 
xe n JO J~ JJ {5.3.7) 

The remaining thermal averages, <~s>o and <~a>T' may be 

determined in a similar fashion. 

Several features of this equation deserve comment. 

Equation {5.3.7) has been written in a manner which 

emphasizes the individual contributions to the thermal 

average due to changes in bond lengths and scattering 

angles. Note that the magnitude of the exponential damping 

term, which involves a change in scattering angle, is not 

dependent on the energy of the photoelectron. The physical 

reason for this is due to the fact that EXAFS involves the 

scattering of spherical waves, so that when the scattering 

angle varies the atoms are constrained to move along an arc 

of a spherical wavefront. Therefore, no dependence is 

expected on the wavelength of the photoelectron. In 

constrast, however, the motion of the atoms described by 

Debye-Waller type factors involve large displacements normal 

to the wavefront. Accordingly, such factors have a severe 

dependence on the wavelength of the photoelectron. 

The hyperbolic sine term represents the fact that there 

is a correlation between a change in bond length and a 

change in scattering angle. Note also that the thermal 
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average is a pure imaginary quantity; this has the effect of 

shifting the phase of the EXAFS oscillations due to the 

modification factors by rr/2. Therefore, the sine wave 

oscillations of the original EXAFS take the form of a cosine 

wave in the modification factors. 

It is now possible to write down a complete expression 

for the averaged modification factors in Eq. (5.3.1) 

-6 cr. • e> cr. . e> 
<Y __ (k,e)> = J 1 

"'M kr.r.r .. 
1 J 1) 

-6Cf .• e> cf. 
J l. 

x e 

kr.r.r .. 
l. J l.J 

-~E(p~ + 
n 10 

e 
_L~2~ ( n n n 2 2 

'lol\. '" 1.1. + IJ .. + IJ. ) <0 > n JO 1J 10 -n 

. n n n n n) 2] x sinh[2ki(IJ. + IJ .. ) (p. + p .. + p .. <o·> 
n JO l.J JO Jl. JJ in 

(

af.(a',k)) 2i.k(r. + r .. ) 
X Re{fi(n,k)fj(a,k) ()a' a e J 

1
] 

. [k~( n n n n n n 2 x sinh '" 1.1. + 1.1 •• + 1.1. ) (p. + p .. + p .. ) < o >] 
n JO l.J l.O 10 l.l. 1) in 

(
af.(S',k)) i.k(r. +r .. +r.) 2 . .,} 

{ 
( k) l. J l.J 1 l.u J 

X Re fj a, ()f3 f3 e e 

(5.3.8) 
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The subscr-ipt M r-efer-s to that fact that Eq. (5.3.8) 

r-epr-esents only the modified por-tion of the total EXAFS 

expr-ession given in Eq. (5.3.1) for- a gener-al thr-ee-atom 

system of c8 symmetr-y. 

5.4 Application to Model Systems 

A ser-ies of model systems will be consider-ed to 

deter-mine the contr-ibution of the modification factor-s in 

Eq. (5.3.8) to the obser-ved EXAFS. To i 11 us t r- a t e the 

symmetr-y pr-oper-ties of these factor-s, let us consider- a 

thr-ee-atom system which is symmetr-ic and bent with a 

br-idging angle 9 = 1T- a A plane of symmetry of the 

molecule passes thr-ough atom j such that the central atom 

(o) and the second nearest-neighbor- (i) are of the same 

type. This system then belongs to the c 2v point group and 

the nor-mal modes of vibr-ation transfor-m as: 

(5.4.1) 

The two totally symmetr-ic A1 modes cor-respond to a symmetric 

stretching and bending mode of vibration. The single s 1 

mode is associated with the asymmetr-ic stretch. A schematic 

representation of the normal modes of the thr-ee-atom system 

is shown in Fig. 3. 

The symmetry of the system allows us to simplify the 

modification factors in Eq. (5.3.8). All modes in a c 2 v 

point group ar-e subject to the following conditions: 
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For all modes in a m0 = mi = m 

1eg1 = le?l 
(5.4.2) 

c2v point group: 

where m0 and mi are the masses of the central atom and 

neighboring atom i, respectively. The symmetry properties 

of the terms ~?j have been discussed fully in Chapter IV. In 

this present work we shall only consider the additional 

symmetry properties due to the terms P?j· The properties of 

these latter terms, however, depend on the symmetry 
-+- 4> ~. 

properties of the vectors a, b and c 1n Eqs. (5.2.14) and 

(5.2.15). Note that for any system 

t=i,j (5.4.3) 

which represents the requirement that the center of mass is 

fixed during a pure vibration. The symmetry properties of 

p?j are also dependent on the normal mode in question and 

the atom at which the scattering angles varies. 

We shall consider first the case in which the angular 

variation occurs at atom j. For a symmetric system of the 

type being discussed, Fig. 4 shows that bisects the 

bridging angle a in all normal modes. Furthermore, 
-> 

bj are equal in magnitude and the angle between them is also 

bisected by cj• Therefore, all A1 type modes satisfy the 

following conditions (see Fig. 3): 

_.Al A _. -+ -+ 1 
aj.e0 = bj.ei 

or 
Al Al 

Pjo = p .. 
Jl 
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A1 modes: (5.4.4) 

Al = p .• 
JJ 

The first part of Eq. (5.4.4) expresses the fact that 

displacement of atom i and the central atom in an A1 mode 

produce the same change in the scattering angle at atom j. 

The sign of the second part of this equation is determined 

by whether the mode is a bend or a stretch. In the single 

B1 mode, however, the contribution to the change in angle a 

due to the displacements of the central atom and atom i, 

cancel exactly. In addition, cj is perpendicular to e~l so 

that the following conditions must be satisfied: 

= -

B1 mode: (5.5.5) 

Thus the B1 mode does not contribute to a change in the 

scattering angle a. 

No symmetry arguments may be applied to the 

modification factor which involves a change in the 

scattering angle B. This is because no symmetry element, 

other than the plane of the system, maps atom i onto itself. 

To determine this modification factor it is necessary to 

explicitly calculate all of the terms shown in Eq. (5.3.8). 

There are essentially two separate calculations 

necessary to determine the modification factors in Eq. 
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(5.3.8). The first involves a calculation of the 

exponential and hyperbolic sine terms and requires a full 

normal mode analysis of the system. The details, and the 

manner in which such an analysis may be performed has been 

discussed in Chapter IV. The second calculation requires a 

determination of the contribution of the scattering 

amplitude to the amplitude and phase of the modification 

factors. This latter calculation requires a knowledge of 

the modulus and phase of the scattering amplitudes as a 

function of scattering angle and wavenumber k. Assuming a 

plane wave approximation the scattering amplitude may be 

written as: 

(5.4.6) 

where Fj(a,k) is the modulus of the scattering amplitude 

and ¢(a ,k) is the phase of the amplitude. This approx-

imation is valid for large bond distances or small 

scattering atoms. The derivatives in Eq. (5.3.8) now take 

the form: 

(
afj (a' ,k) ) = ei<P (a,k) 

aa' a (
F. (a' ,k) ) 

3a' a. 

(5.4.7) 

values of the modulus and phase of the scattering amplitude 

as a function of scattering angle have been reported only 

for carbon and oxygen atoms.ll Since we are concerned with 

bridged systems in which the central atom and atom i are 
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heavy atoms we have insufficient information to calculate 

the modification factors in Eq. (5.3.8). However, Teo5 has 

shown that the scattering amplitude at atom i may be 

approximated by: 

(5.4.8) 

which includes the angular range in which multiple 

scattering is most likely to be important. In this approx-

imation, the rate of change of the scattering amplitude at 

atom i with respect to the scattering angle 6 is zero. 

Therefore, the modification factor involving a change in 

this angle B is also zero. Equation (5.3.8) then reduces to 

two terms corresponding to the double and triple scattering 

modification factors in which angle a changes by rw. In the 

case of heavy elements, structure tends to be developed in 

the angular range of Eq. (5.4.8) making the validity of this 

approximation questionable.5 Despite this, we shall assume 

Eq. (5.4.8) to be valid since no information exists on the 

angular dependence of the scattering amplitudes for such 

elements. 

The model system to be studied is Br 2o, which we shall 

consider to be representative of oxygen bridged systems. We 

shall assume that the symmetric 

250 cm-1 and 245 cm- 1 in the 

asymmetric stretch occurs at 

stretch and bend occur at 

1 inear system while the 

800 cm- 1 • The normal 

frequencies of the 1 inear bridged system are then used to 

generate a set of force constants as described in Chapter 
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IV. These force constants are assumed to be independent of 

the geometry of the molecule and are used to calculate the 

normal frequencies at any bridging angle a. This assumption 

is least valid for a description of the bending mode of 

vibration. The frequencies chosen above are typical of those 

found in linear oxygen bridged systems. 12 

The calculated frequency of each of the normal modes as 

a function of bridging angle is shown in Fig. 5. The 

angular-depersion of the normal frequencies agrees well with 

earlier calculations and observations of oxygen bridged 

12 systems. The calculated Debye-Waller factors and angle-

related amplitude factors are shown in Figs. 6 and 7, 

respectively. The modulus and phase of the scattering 

amplitudes together with their derivatives are shown in 

Figs. 8 and 9. Finally, Figs. 10 and 11 illustrate the 

angle and temperature dependence of the amplitude of the 

EXAFS corresponding to each scattering path including the 

associated modification factors. 

5.5 Discussion 

We have presented a general description of the effect 

of thermal vibrations on Extended X-Ray Absorption Fine 

Structure. The formalism developed is general and may be 

applied to any scattering problem in which there exists a 

correlation between a change in distance and a change in 

scattering angle. An expression was obtained for the EXAFS 

in a general three-atom system of c5 symmetry.Variations in 

the scattering angle were shown to give rise to additional 
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EXAFS terms which we called modification factors. The form 

of these modification factors was shown to be dependent on 

the geometry and symmetry of the system. The formalism, in 

its present form, is readily applicable to multiple 

scattering events involving more than three atoms. Systems 

of other than c 2v symmetry may be considered by determining 

the symmetry properties of the Debye-Waller and modification 

factors subject to the point group in question. 

The Debye-Waller factors which reflect the damping of 

the EXAFS amplitude due to thermally induced changes in the 

internuclear distances of the system are shown in Fig. 6. 

The double scattering factor in Fig. 6 has been divided by 

four such that the Debye-Waller factors associated with each 

scattering path has the standard form exp(-2k2cr2) [see Eq. 

(5.3.8)]. It is important to note that there are two 

quantities which determine the contribution of a given 

normal mode to the Debye-Waller factor for a particular 

scattering path. The frequency of the normal mode 

determines the mean-square amplitude of vibration in 

accordance with Eq. ( 5. 3.5). In addition, the amplitude and 

direction of the displacement vectors of the atoms in a 

given normal mode determine the projection of these vectors 

along the 

that the 

internuclear axes. From Fig. I) (a) it may be 

Debye-Waller factors associated with 

seen 

each 

scattering path increases as the bridging angle decreases. 

This increase can, in part, be attributed to a decrease in 

the frequency of the bending mode at these angles. The 
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three scattering paths involving the second shell atom, 

however, show different degrees of sensitivity to the A1 

bend. The triple scattering path is the least sensitive 

since a change in the bridging angle does not appreciably 

change the length of the scattering path. The second shell 

single scattering path, however, is very sensitive to this 

bending mode since it induces a large change in the bromine­

bromine distance. The double scattering path, on the other 

hand, is sensitive to both A1 type modes. At low bridging 

angles the A1 bend dominates primarily due to the low 

frequency of this mode when compared to the A1 stretch at 

these angles. As the system approaches linearity the 

frequencies of both A1 modes become comparable but the 

displacement vectors in the bending mode tend to become 

orthogonal to the internuclear axes. In such instances, the 

A1 stretch dominates the double scattering Debye-Waller 

factor. 

The temperature dependence of the double and triple 

scattering Debye-Waller factors is shown in Fig. 6(b). The 

second shell single scattering factor [which is not shown in 

Fig. 6(b)] has the most severe temperature dependence due to 

the large contribution of the bending mode to this Debye­

Waller factor. As described in the previous chapter, the 

double and triple scattering factors are equal in magnitude 

at all temperatures when the bridging angle is 180°. At 

high temperatures and low bridging angles the double 

scattering factor is dominant. This occurs because the 
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double scattering factor receives a large contribution from 

the A1 bend which is a low frequency mode at these small 

angles. The triple scattering factor, however, is dominated 

by the higher frequency stretching mode. As the bridging 

angle increases the double scattering Debye-Waller factors, 

like the triple scattering factor, becomes dominated by the 

stretching mode such that both factors exhibit the same 

temperature dependence in the limiting case of a linear 

system. 

The hyperbolic sine terms reflect the degree of 

correlation that exists between a change in scattering path­

length and a change in scattering angle. Fig. 7(a) shows 

both the double and triple scattering hyperbolic sine terms 

together with the angular damping factor which is the 

exponent of the exponential term which represents the 

damping of the EXAFS due solely to a change in scattering 

angle. As described in the previous section, we shall only 

consider changes in the scattering angle ~. Note that both 

the hyperbolic sine terms and the exponential damping term 

are dependent on the bond distance rj. The magnitude of the 

hyperbolic sine terms is inversely proportional to the bond 

distance [see Eq. (5.3.14)]. The angular damping factor 

varies inversely as the bond distance squared. Throughout 

the present discussion a bond distance of 2.0 ~ is assumed. 

Since the magnitude of each hyperbolic sine term may be 

approximated by its arguments at these angles, the effect of 

a change in bond distance may be readily calculated. Note 
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also that the argument of the hyperbolic sine terms increase 

linearly with k while the angular damping factor is 

independent of k. 

An understanding of the functional form of the 

hyperbolic sine terms requires a knowledge of the degree of 

correlation that exists, within each normal mode, between a 

change in distance and a change in scattering angle. On the 

basis of qualitative considerations we may conclude that a 

positive correlation exist in the A1 stretching mode; that 

is, an increase in the scattering path length is accompanied 

by an increase in the scattering angle a (see Fig. 3). In 

the A1 bend mode a negative correlation exists whereby an 

increase in the path length results in a decrease in the 

scattering angle a. Both of these conclusions are confirmed 

by a rigorous normal mode anlaysis. Since the A1 bend 

contributes significantly to the double scattering Debye­

Waller factor, the total correlation due to both A1 modes 

represented by the double scattering hyperbolic sine term, 

is negative. The triple scattering hyperbolic sine term is 

positive, however, due to the dominant contribution of A1 

stretch which has a positive correlation. Note that for 

comparison purposes both the double and triple scattering 

hyperbolic sine terms are shown to be positive in Fig. 7. 

From Fig. 7(a) it may be seen that the magnitudes of both 

the double and triple scattering hyperbolic sine terms 

decrease rapidly as the system approaches linearity. This 

behavior may be readily explained in terms of the normal 
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modes of a linear symmetric system. In this configuration 

the displacement vectors in the stretching mode produce no 

change in the scattering angle a. The displacement vectors 

of the atoms in the bending mode, however, produce a large 

change in a, but there is no change in distance as these 

vectors are orthogonal to the molecular axis. Therefore, 

both the double and triple hyperbolic sine terms tend to 

zero as the bridging angle of the system approaches 180°. 

The angular damping factor increases as the three-atom 

system becomes less bent [see Fig. 7(a)]. As the bridging 

angle increases the contribution to this factor from the 

bending mode also increases. This occurs because the 

displacement vectors of the atoms in this mode tend to move 

increasingly perpendicular to the internuclear axes thereby 

inducing large changes in the scattering angle. The change 

in this angular damping factor as a function of angle is 

slow since the frequency of the bending mode increases as 

the bridging angle increases. 

The temperature dependence of the double and triple 

scattering hyperbolic sine terms together with the angular 

damping factor is shown in Fig. 7(b)-(d). Note that the 

magnitude of the triple scattering hyperbolic sine term 

decreases with increasing temperature. The negative 

correlation due to the A1 bend increases as the temperature 

rises thereby increasing the contribution of this mode to 

the hyperbolic sine terms. The contribution of the 

stretching mode also increases, but less sharply since the 
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frequency of the stretch is greater than that of the bend. 

Since the total correlation of the triple scattering path is 

positive an increase in temperature only serves to reduce 

the magnitude of the corresponding hyperbolic sine term. 

The opposite, of course, is true in the case of the double 

scattering term where the existing negative correlation is 

further enforced by an increase in temperature. 

The modulus and phase of the scattering amplitude for 

oxygen as a function of scattering angle and k are shown in 

Fig. 8 and Fig. 9. All calculations in these figures are 

based on the reported values of the amplitude and phase.lO 

A detailed description of these functions has been given by 

Teo. 5 

Figure 8(a) shows the modulus of the scattering 

amplitude for oxygen as a function of scattering angle for a 

series of k values. In this angular range, the modulus is 

well described by the Born amplitude for the scattering of 

fast electrons off atoms. The modulus in the forward 

direction is independent of k and becomes increasingly 

peaked in this direction at higher k values. Outside this 

angular range, however, the modulus tends to develop complex 

structure which is related to the sampling of the oxygen 

core by the photoelectron. Figures 8 (c) and (d) show the 

derivative of the modulus with respect to scattering angle 

as a function of k and scattering angle. Since the the 

modulus has a local maximum at a = 0° [see Fig. 8 (a) l the 

derivative is zero at this angle for all energies. Note 
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that the sign of the derivative is negative while the 

derivative itself peaks at increasingly smaller scattering 

angles as the photoelectron wavenumber increases. 

The phase of the scattering amplitude for oxygen as a 

function of k and a series of scattering angles is shown in 

Fig. 9(a). The derivative of the phase with respect to 

scattering angle as a function of scattering angle and k are 

are shown in Fig. 9(b) and (c), respectively. The sign of 

the derivative is positive at all scattering angles. The 

magnitude of the derivative is small in the near forward 

scattering direction but becomes appreciable at larger 

scattering angles and shows complex structures as a function 

of k and scattering angle. The peaks which occur in the 

derivative of the phase occur at smaller scattering angles 

as the photoelectron wavenumber increases. Il'l addition, 

subsidiary maxima occur at larger scattering angles, the 

number of such maxima increases at higher k values. 

Before discussing the contribution to the observed 

EXAFS due to the various amplitude terms described above, we 

must consider the effect these terms have on the phase of 

the EXAFS oscillations. As described in the previous 

section [see Eq. (5.3.7)] the phase of the oscillations in 

the modification factors is shifted by rr/2 when compared 

to the oscillations of the original EXAFS. From Eq. (5.4.7) 

the derivative of the scattering amplitude in each 

modification factor may be written as: 
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(
a f j (a' , k) ) 

aa' a = e 
i~(a,k) 

(
a F j (a ' , k) ) 

aa 1 a 
(5.5.1) 

The first term on the right-hand side of Eq. (5.5.1) yields 

EXAFS oscillations that are shifted rr/2 from the original. 

we shall refer to such terms as type I modification factors. 

The remaining term on the right-hand side gives rise to 

EXAFS oscillations that are rr out of phase with the original 

and are called type II modification factors. Note that 

these latter factors serve to directly reduce the amplitude 

of the associated original EXAFS oscillations. 

The amplitudes of the EXAFS oscillations for each 

scattering path, including the associated modification 

factors, are shown in Figs. 10 and 11. The amplitudes are 

calculated at three bridging angles and two temperatures. 

The parameterizations of Teo et al.l3 and Lee et ~.14 were 

used to describe modulus and phase of the backscattering 

amplitude for bromine. No damping terms reflecting the 

finite mean-free path of the photoelectron have been 

included in these calculations. Since the double scattering 

hyperbolic sine term is negative, and the derivative of the 

amplitude is also negative, the double scattering type I 

modification factor remains rr/2 out of phase with respect to 

original double scattering EXAFS oscillations [see Eq. 

(5.3.8) and (5.5.1) ]. However, since the derivative of the 

phase is positive the double scattering type II modification 
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factor is exactly in phase with the original double 

scattering EXAFS oscillations. The triple scattering 

modification factors have exactly the opposite behavior 

since the associated hyperbolic sine term is always 

positive. Thus the triple scattering type I modification 

factor is 3rr/2 out of phase while the type II factor is 

exactly out of phase with the original triple scattering 

EXAFS oscillations. 

Figure 10 shows that the amplitude of the second shell 

single scattering EXAFS component increases gradually as the 

bridging angle increases. This increase is more pronounced 

at high k values and reflects the angular dependence of the 

Debye-Waller factor for this scattering path [see Fig. 

6(a)]. The amplitudes of the double and triple scattering 

EXAFS components show a more dramatic increase with bridging 

angle and reflect a decrease in the Debye-Waller factor for 

these scattering paths together with an increased amplitude 

for scattering through small angles [see Fig. 8(a)]. At 

sufficiently large bridging angles the amplitudes of the 

double and triple scattering paths surpass that of the 

single scattering path. 

The amplitudes of the modification factors are also 

shown in Fig. 10. The detailed structure observed in these 

factors may be attributed to the complex structures present 

in the amplitude and phase and their derivatives. The 

triple scattering modification factors increase in magnitude 

as the bridging angle increases due to the presence of the 
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oxygen scattering amplitude which is absent in the 

corresponding double scattering factors [see Eq. (5.3.8) ]. 

Furthermore, the triple scattering hyperbolic sine term 

falls off more gradually than the double scattering term as 

the bridging angles increase [see Fig. 7(a)]. In general, 

the magnitude of each modification factor is substantially 

smaller than that of the original damped EXAFS. When the 

bridging angle is 180° the amplitude of each modification 

factor is zero since both the correlation terms and the 

derivative of the scattering amplitude are zero at this 

angle. 

A comparison of Figs. 10 and 11 reveals the temperature 

dependence of the EXAFS amplitude factors. Note that the 

magnitude of the second shell single scattering component is 

greatly diminished at higher temperatures. This is due 

primarily to the large dependence of this scattering path on 

the low frequency bending mode of vibration. The magnitude 

of the double and triple scattering components exhibit a 

less severe temperature dependence. The double and triple 

scattering modification factors show different temperature 

dependences. Both double scattering modification factors 

increase with temperature while the triple scattering 

factors decrease. As described earlier, the double 

scattering modification factors serve to increase the total 

amplitude of the double scattering EXAFS. The triple 

scattering modification factors, however, 

triple scattering amplitude. Therefore 

reduce the total 

in general, the 
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contribution to the total EXAFS due to the modification 

factors of both the double and triple scattering paths 

increases as the temperature increases. 

Recently, Alberding and Crozier 7 introduced an 

integrated multiple scattering (IMS) approach to data 

analysis in which they explicitly considered variations in 

thescattering angle a. The authors, however, failed to 

recognize that such angular variations are a second order 

effect and that to lowest order only distance variations are 

important [see Eqs. (5.2.9) and (5.2.10) ]. Furthermore, 

these second order terms are negligible due to the lack of 

correlation (particularly in the forward direction) between 

changes in the scattering path length and the scattering 

angle a. Accordingly, the physical basis for this approach 

is unclear. The authors 7 also introduced a mean multiple 

scattering (MMS) approach to the analysis of EXAFS data. 

The failure of this approach to yield satisfactory results 

was discussed earlier in Chapter IV. 

In conclusion, a change in the scattering angle a, 

induced by thermal vibrations, produces a large change in 

the scattering amplitude, particularly in the near forward 

direction. However, the correlation that exists between 

such an angle change and the associated change in distance 

for a given scattering path is small, especially at large 

bridging angles. It is the degree of correlation which 

determines the contribution of the modification factors to 

the observed EXAFS. Since the degree of correlation is 
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small, the modification factors may be neglected in an 

analysis of mu1 tiple scattering EXAFS data. Accordingly, 

for systems of this type it is sufficient to use the 

multiple scattering analysi~ proposed by Teo 5 provided an 

adequate treatment is given to the Debye-Waller factors 

which involve a change in scattering pathlength. 8 
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0 

Figure 1. 
The general three-atom system. The equilibrium 

positions of the central atom (o), first nearest-neighbor 
atom (j) and second nearest neighbor atom {i) are shown as 
filled circles. The displacement of these atoms from their 
respective equilibrium positions are shown as open circles. 
a represents the equilibrium bridging angle. The 
equilibrium position of the central atom was chosen to 
represent the origin of the system. 
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Figure 2. 
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(b) (c) 

0 

(e) 

The five significant scattering paths in a system of 
three atoms. (a) and (b) represent the single scattering 
paths from atoms i and j. The two double scattering paths 
(c) and (d) are identical by virtue of time-reversal 
symmetry. The triple scattering path is shown in (e). 
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(a) A 1 STRETCH (b) A 1 BEND 

(c) 8
1 

STRETCH 

Figure 3. 
Schematic of the normal modes in a three-atom system of 

c 2v symmetry. There are three normal modes, two of A1 type 
symmetry and a single B1 mode. 
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a· +b·=-c· J J J 

Figure 4. 
Schematic representation of the vectors which determine 

the change in scattering angle a at atom j due to the 
displacement of all the atoms in a given normal mode [see 
Eq. (5.3.8)]. 
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The argument of the hyperbolic sine terms for the 
double and triple scattering paths, The angular damping 
factor is the exponent of the exponential terms which 
represent the damping of the EXAFS due to a change in the 
scattering angle 1).. The hyperbolic sine terms were 
calculated at k = 10 R- 1 and a bond distance of 2.0 R was 
used throughout. Note that the sign of the double 
scattering hyperbolic term is negative. (a) These terms as 
a function of bridging angle at l0°K. (b) as a function of 
temperature at a bridging angle of 120°K. (c) 150°K 
(d) 179°. 



155 

(b) OXYGEN 
--4.2159 
----- 6.1416 
............ 8.5038 
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(d) OXYGEN 
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----- 6.1416 
......... -. 8.5038 
-·-·-12.2832 
--15.1178 

20 40 60 

SCATTERING ANGLE a (degrees) 

Figure 8. 
Modulus of the scattering amplitude for oxygen. (a) As 

a function of scattering angle for various k values. (b) As 
a function of k for various scattering angles a. (c) Rate of 
change of the modulus as a function of scattering angle for 
various k values. (d) Rate of change as a function of k for 
various scattering angles a. 
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Figur-e 9. 
Phase of the scatter-ing amplitude for- oxygen (a) as a 

function of k for- var-ious scatter-ing angles a. (b) Rate of 
change of the phase as a function of scatter-ing angle for­
var-ious k values. (c) Rate of change as a function of k for­
var-ious scatter-ing angles a. 
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a =10° 

Figure 9, continued. 
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Figure 10. 
Amplitude of the individual terms which contribute to 

the EXAFS of the Br 2 o system. All calculations were carried 
out at l0°K and a bond distance of 2.0 ~. The sign of the 
modified triple scattering type I and II terms is positive 
while all other terms are negative. Note that the modified 
type I terms are to be multiplied by a cosine of the 
appropriate argument while the type II terms are multiplied 
by a sine. Amplitudes as a function of k are given for 
bridging angles of (a) 120°. (b) 150°. (c) 180°. 
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Figure 11. 
Same as for Fig. 10 except that all calculations are for 

a temperature of 300°K. 
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Figure 11, continued. 
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CHAPTER VI 

THE CALTECH LABORATORY EXAFS SPECTROMETER 

6.1 Introduction 

In recent years extended x-ray absorption fine 

structure (EXAFS) spectroscopy has been used extensively as 

a structural tool. 1 Although the existence of this extended 

structure has been known for many years,2 the low flux 

available from conventional sealed tube x-ray sources 

severely hampered the growth of the technique. 

early EXAFS data suffered from poor signal to 

Most of the 

noise such 

that early investigators were mainly concerned with the 

qualitative variations in the data from one material to 

another. 

Much of the present interest in EXAFS is due to the 

pioneering work of Sayers, Stern and Lytle3 who introduced a 

simple parametrization of the fine structure in terms of 

physically significant quantities. An equally important 

factor in the development of EXAFS, however, was the 

emergence of the synchrotron radiation laboratory at 

Stanford University, which provided large fluxes of highly 

collimated and polarized x-rays.4 Together, these advances, 

combined with the appealing short range nature of the probe, 

provided a major impetus towards the development of EXAFS as 

a structural tool. 

The subsequent interest in EXAFS, however, placed a 

considerable burden on the synchrotron facilities, and as a 
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result, it became difficult to obtain beam time to perform 

experiments. Even when beam time became available there were 

considerable time constraints within which each experiment 

was to be completed. Investigators did not have the luxury 

of being able to repeat experiments and it was difficult for 

students to learn under such conditions. Furthermore, the 

analysis routines developed at these synchrotrons became 

widely used throughout the EXAFS community and little 

consideration was given to new methods of analysis. 

The laboratory EXAFS spectrometer has developed into an 

important alternative to the use of synchrotron radiation. 

Clearly, such a spectrometer cannot compete with a 

synchrotron facility in terms of flux. What is important, 

however, is the fact that the investigator has now 

sufficient time to try out new experimental ideas, ideas 

which might not have received beam time at a synchrotron 

facility. In any case, a laboratory EXAFS spectrometer has 

sufficient flux and resolution to be useful in the study of 

a large number of materials. This has allowed synchrotron 

facilities to concentrate on the study of more complex 

materials which require the large flux and high resolution 

available at such centers. 

In this chapter we shall describe the Caltech 

laboratory EXAFS spectrometer. The considerations governing 

the design of the instrument are discussed in detail 

together with an analysis of the components which make up 

the spectrometer. 
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6.2 General Description of the Spectrometer 

A schematic of the laboratory spectrometer is shown in 

Fig 1. The spectrometer is based on the Rowland circle 

geometry in which the source, monochromator and the exit 

slits all lie on the circumference of a circle.s The radius 

of the Rowland circle was chosen to be 75 em which reduces 

the effects of both vertical divergence and the effective 

source size as seen by each point on the crystal. 

Furthermore, this choice of radius increases the resolving 

capabi 1 i ties of the spectrometer. Unfortunately, however, 

the large path lengths in a Rowland circle of this size 

results in a significant amount of x-ray scattering by air. 

For 8 KeV x-rays, a 30 em path length in air reduces the 

initial intensity of the beam by 50%. To overcome this 

problem helium beam lines have been employed along the path 

of the x-rays. 

To obtain an EXAFS spectrum both the incident {!
0

) and 

the transmitted (I) intensities must be monitored as a 

function of the x-ray wavelength \ according to the equation 

(6.2.1) 

where ~(A) is the linear absorption coefficient, which 

contains the EXAFS oscillations. Both I
0

(A) and I(A) are 

measured using gas ionization chambers. To scan the x-ray 

wavelength, \ the source, the monochromator and the slits 

must be moved along the circumference of the Rowland circle, 
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satisfying Bragg's law for diffraction at each point. The 

distances from the source to the center of the crystal and 

slits must be equal to insure focusing of the diffracted x­

rays onto the exit slits. In this configuration the 

condition for diffraction of x-rays of wavelength A is 

given by: 5 

D = n :~ R/ d = 2R sin aB (6.2.2) 

where D and R are the distances from the source to the 

crystal and the radius of the Rowland circle, respectively. 

Since the source is fixed both the monochromator and 

the exit slits must be moved to satisfy Eq. (6.2.2). This 

motion is accomplished by mounting both the monochromator 

and the slits on lead screws, which are in turn, driven by 

stepping motors. Figure 2 is a scaled drawing of the 

spectrometer and shows the stepping motors and the positions 

of the spectrometer components at three different energies. 

A single stepping motor (known as the a motor) serves to 

maintain the correct Bragg angle for diffraction. Two other 

stepping motors, which lie along the chords of the circle 

defined by the source, the monochromator and the slits, 

serve to adjust these chord lengths in accordance with Eq. 

(6.2.2). A fourth motor (called the 2 A motor) allows one to 

adjust the position of the detector stage, which contains 

the exit slits, until the correct scattering angle (2AB) is 

defined. 

The positions of three of these stepping motors are 
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software controlled. The 29 motor, however, proved too 

remote from both the source and crystal and we were unable 

to accurately predict 

x-ray energy. As a 

its correct position as a function of 

result a calibration procedure is 

necessary in which the three other motors are moved to their 

appropriate positions for a given energy and then the 29 

motor is scanned until the maximum intensity is registered 

through the exit slits. This 2a position is then recorded 

and the procedure is repeated over the remaining energies of 

interest. The calibration file which is created remains 

valid for as long as the experimental parameters are 

unchanged. 

To perform an EXAFS scan, all four motors are initially 

moved to the position which corresponds to the first energy 

at which the absorption measurement is required. The 

intensity of the x-rays passing into the ionization chambers 

is then registered. After sufficient counts have been 

accumulated, the stepping motors move the spectrometer 

components to the next energy setting where the procedure is 

repeated. The energy difference between subsequent 

positions of each stepping motor is typically 2 ev. The 

data are stored on a floppy disk in the form: energy, counts 

in chamber ! 0 , counts in chamber I. 

may be determined from Eq. (6.2.1). 

From these data, w ( \) 
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6.3 X-Ray Source 

The x-ray source consists of a commercially available 

12 KW Rigaku RU-200 rotating anode x-ray generator.6 This x-

ray source has many advantages over the conventional sealed 

tube sources. The emission currents in these latter sources 

are limited by the amount of heat that can be dissipated by 

the target. In the case of rotating anodes, this heat is 

spread over a rotating target. Furthermore, rotating anodes 

may be interchanged, and hence, the output characteristics 

of the source may be readily varied. These anodes may also 

be polished so that contaminants, such asthose due to 

sputtering from the filament, may be removed. 

The output of both rotating anode and sealed tube 

sources consists of a broad continuum of x-ray frequencies 

superimposed upon which lies a number of sharp character-

. . 1. 7 1st1c 1nes. The continuum radiation or Bremsstrahlung 

originates from the deceleration of the electrons, which are 

emitted by the filament, as they penetrate the target 

material. The characteristic lines result from discrete 

transitions in the target atoms, due to electron impact 

ionization of various electronic energy levels of these 

atoms. A sharp high frequency cutoff exists and corresponds 

to the complete energy gained by the electrons as they are 

accelerated between the filament and the anode. 

In EXAFS studies only the smooth continuum radiation is 

used. The sharp, intense characteristic lines represent a 

problem since the detector system responds non-linearly to 
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the sudden increase in intensity. Accordingly, it is 

important to have some means of removing the unwanted 

effects of these lines. One possible solution is the 

introduction of an attenuation device which reduces the 

intensity of the beam passing through the exit slits at 

energies corresponding to these lines. The device itself 

consists of a lucite wedge which is driven in and out of the 

beam by a stepping motor. The incident Bremsstrahlung 

intensity is measured and recorded as a function of energy. 

The observed intensity is then extrapolated through all of 

the characteristic lines in the spectrum. In the region of 

such a line, the wedge position is given by thatwhich 

reproduces the extrapolated intensity. In this manner a 

look-up table of wedge positions is generated which 

ultimately yields a smooth intensity distribution. 

As an alternative to this wedge method, it is possible 

to choose a target material which has no characteristic 

lines in the energy range of interest. Such a material must 

also be a good thermal conductor since, most of the energy 

of the incident electrons is dissipated as heat. 8 Silver 

proved to be just such a material. Apart from having the 

highest thermal conductivity of any substance it also has no 

characteristic lines in the energy region from 2 KeV to 22 

Kev. 9 This energy region is sufficiently large to allow 

EXAFS studies on almost all elements. 

There is, however, another source of characteristic 

1 i nes. The electrons which bombard the target are produced 
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by thermionic emission from the filament. This emission is 

described by the Richardson-Dushman equation: 10 

(6.3.1) 

where J is the emission current, A is a constant and Ew is 

the workfunction of the filament material. The filament is 

heated by passing a current through it and, as a result, 

electrons are boiled off. Due to the high temperature of 

the filament, however, atoms from the filament are sputtered 

onto the anode. Consequently, over a period of time, 

characteristic lines of the filament material appear in the 

output of the x-ray source. In the case of tungsten, the 

most common filament material, a large number of 

characteristic lines appear between 8 KeV and 12 KeV which 

is an important energy region for the study of first row 

transition metal compounds. 

To counteract this problem thoriated-tungsten filaments 

have been constructed. The thorium atoms are believed to 

reside near the surface and markedly reduce the 

workfunction of the filament. For a given emission current, 

the required filament current was observed to be half that 

required for a pure tungsten filament. The operating 

temperatures of these new filaments is, therefore, reduced 

by a factor of four. We have observed experimentally, that 

only after months of continuous operation does the degree of 

contamination of the anode become so severe that polishing 

is necessary. 
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6.4 Monochromator System 

The x-ray monochromator employed in the spectrometer is 

of the Johansson type shown in Fig. 3. The front surface is 

ground and polished to the diameter of the Rowland circle. 

The crystal is then bent to the diameter of the circle such 

that the polished surface lies on the circumference. In 

this configuration, all x-rays incident on the crystal from 

the source, which is a distance D away, are focussed down to 

a point, the same distance from the crystal, but on the 

other side of the circle (see Fig. 3). Accordingly, each 

point on the crystal diffracts x-rays of the same 

wavelength, which is defined by Eq. (6.2.2). The Johansson 

arrangement, therefore, results in an intense, fully 

diffracting monochromator, the intensity of which is some 

three to four hundred times greater than that of a similar 

but flat crystal. 

The mechanism for bending the crystal is shown in Fig. 

4. Note that bending moments are applied at both ends of 

the crystal with cylindrical couples. Each bending element 

may be adjusted by a micrometer independently of the other 

elements. This allows translation of one or both ends of 

the crystal in addition to bending. This bending mechanism 

is convenient since several bending geometries are possible 

(e.g., cylindrical, logarithmic spiral etc.) with the same 

bender and crystal. There is a trade off involved in the 

use of bending couples, however. The closer the bending 

elements of the couple are to each other the better the 
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approximation to a cylinder, but the greater the strain 

placed on the crystal. Furthermore, note that the crystal 

being bent is not uniformly thick, 

cylindrical bend is not possible. 

and hence, a perfect 

Accordingly, bending 

mechanisms of this type are most appropriate for 

spectrometers which require a large Rowland circle radius. 

As an alternative to the bending mechanism discussed 

above, it is possible to obtain ground and polished crystals 

which have been fixed to a backing block of the correct 

curvature. In this manner large (3 em x 15 em) Johansson 

crystals may be obtained. There are often problems with 

monochromators of this kind, however, since dust particles 

or dirt in the epoxy introduce local strain on the crystal, 

and hence, distort the Bragg planes. Such distortions 

result in diffuse x-ray scattering and ultimately contribute 

to an aberration in the focus. 

In the case of our laboratory spectrometer, the bending 

mechanism discussed above is used to bend a thin (0.2 x 2.5 

x 5.0 em) Si(lll) crystal, and allows EXAFS data to be 

obtained in the 6 KeV to 12 KeV energy range. The fixed 

curvature monochromator consists of a four by one inch 

Ge(220) crystal which is affixed to an aluminum backing 

block. This latter crystal is oper-ative in the 13 KeV to 20 

KeV energy range. 

In choosing a suitable monochromator the question of 

harmonic generation must be considered. The pr-esence of 

harmonics in the diffracted beam tends to smear- out the 
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EXAFS oscillations and distorts the amplitude information 

they contain. The problem of harmonics may be eliminated by 

operating the x-ray generator at a voltage below the energy 

of the harmonic. This, however, limits the maximum emission 

current, due to space charge effects and also reduces the 

lifetime of the filament. The Si(lll) crystal has no second 

order reflection, and hence, may be used at relatively high 

voltages. The Ge(220) crystal, on the other hand, reflects 

in second order, but since it is operative at high energies, 

this is not a serious restriction. 

6.5 X-Ray Detectors 

At present, ionization chambers are used to detect both 

the incident and transmitted x-ray intensities. A schematic 

of an ionization chamber is shown in Fig. 5. X- rays 

entering such a chamber, ionize the gas inside, and produce 

a certain number of electron-ion pairs. The average energy 

required for the formation of each electron-ion pair is 

approximately 30 ev and is roughly independent of the nature 

of the gas. 11 When a bias voltage is applied across the 

chamber the electron-ion pairs drift apart under the 

influence of the applied field. The total charge at the 

collection electrode is dependent on the applied voltage. 

Ionization chambers operate at a voltage which allows every 

electron-ion pair produced to be collected at the elec­

trodes. At voltages lower than the ionization chamber 

voltage, recombination is important while at higher voltages 
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secondary ionization occurs. The currents obtained from such 

ionization events are typically in the picoampere range. 

It is possible to calculate the degree of absorption in 

each chamber which provides the best signal to noise ratio. 1 

The ionization chamber which detects the intensity should 

absorb 20% of the beam while the sample absorbs 80% of the 

remaining intensity. The rear ionization chamber, which 

detects the intensity of the transmitted beam through the 

sample, should absorb as much as possible of this intensity. 

The first ionization chamber has a path length of 7 em and 

contains a 20:80 mixture of argon and nitrogen. The rear 

chamber has a pathlength of 13 em and contains pure argon. 

These chambers satisfy the criteria for maximum signal to 

noise at 8 KeV. At higher energies, however, chambers with 

longer path lengths or heavier gases are required. 

6.6 Spectrometer Performance 

The present performance of the EXAFS spectrometer is 

characterized by a photon flux of 107 photons per second and 

an energy resolution of 5 ev (see Fig. 6). These values are 

for 8 KeV x-rays using the Si (111) monochromator described 

earlier. At higher energies the photon flux is greater but 

the resolution is decreased. There are many factors which 

influence the spectrometers performance, but in our case, by 

far the most i m port ant of these , is the monochromat o r 

system. 

The x-rays produced from a rotating anode by electron 

bombardment are 4" emitted. In what follows, we shall 
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assume that the energy distribution of photons is the same 

within each solid of the beam. Such an assumption is well 

justified in view of the large potential energy of the 

incident electrons, which tends to make polarization and 

other effects insignificant. 

We shall limit our discussion to the performance of the 

spectrometer at 8 KeV. At this energy the chord length, D, 

from the source to the monochromator is 35 em. The focus on 

the anode is 1.0 x .05 em, which when viewed at a 6° take 

off angle, yields an effective focus width of 50 microns. 

At a distance of 35 em, each point on the crystal see 

intensity within an angular range of 30 seconds of arc. The 

monochromator crystal may or may not be capable of 

diffracting intensity within this angular range. The 

angular range over which a crystal can diffract is called 

the acceptance angle ws of the crystal. 

theory we obtain an expression for 

Vsin2eB 

w 12 
s 

From dynamical 

(6.6.1) 

where F is the structure factor and e B is the Bragg angle 

for diffraction. Note that ws is directly proportional to 

IFI, and hence, the larger the angular range over which the 

crystal can diffract, the brighter the crystal. Using Eq. 

(6.6.1) we can calculate the acceptance angle for Si(lll). 

For this crystal, at a Bragg angle 

corresponding to copper K 
1). 

radiation, we obtain an 
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acceptance angle of 6.9 seconds of arc. Since our beam has 

an angular range of 30 seconds of arc, we are in principle, 

only using one quarter of the beam intensity. 

we must also consider the factors which determine the 

resolution of the spectrometer. From Bragg's law we can 

readily derive the dispersion relation: 

t. e = t. :..; ;.. tan 9 8 (6.6.2) 

In the limiting case, where the angular spread t.e corres-

ponds to the acceptance angle, maximum resolution t. \I\ is 

obtained and full use is made of incident intensity. In the 

case of Si (111) using copper K radiation we calculate a 
a 

resolution of 1.06 eV from Eq. (6.6.2). 

From the above discussion, however, it is clear that 

such a resolving power may not be achieved with our 

spectrometer. Using a beam with an angular spread of 30 

seconds of arc we predict an experimental resolution of 4.6 

ev. This resolution will be achieved only if the whole 

system is working perfectly, any misalignments or vibrations 

will tend to increase this value. Accordingly, the observed 

resolution of 5 eV (see Fig. 6) indicates that the 

spectrometer is functioning as well as can be expected. 

Note, however, we are still using only one quarter of the 

beam so that if we use a 3° take off angle the resolution 

will increase by a factor of two while the flux remains 

unchanged. This is not entirely feasible, however, since in 

the case of a rotating anode, even a slight wobble in the 
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axis of rotation would be critical at such low angles. 

6.7 Conclusions 

The laboratory EXAFS spectrometer described above, 

provides both sufficient flux and resolution to perform 

studies on a wide variety of samples. All the data 

presented in this thesis have been obtained using this 

spectrometer. The systems which were studied are 

relatively simple and probably could not have been studied 

at a synchrotron facility. However, a careful study of 

these systems has revealed a hidden wealth of information in 

EXAFS, information which had not been uncovered in ten years 

of work using synchrotron sources. The detailed 

experimental work which was performed using this 

spectrometer is described in Chapters VII through IX of this 

thesis. 
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A schematic of the laboratory EXAFS spectrometer. The 
distances shown are for diffraction of 8 KeV x-rays. 
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CALTECH EXAFS SPECTROMETER 
(Arthur Amos Noyes Laboratory of Chemical Physics) 

Figure 2. 
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A scaled drawing of the laboratory spectrometer. The 
configurations of the spectrometer components required for 
the diffraction of 5 KeV,8 KeV and 15 KeV x-ray photons are 
shown. Note the positions of the four stepping motors which 
are used to move the components of the spectrometer. 
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The Johansson configuration of the monochromator. In 
this arrangement, x-rays which are incident upon the 
crystal from one side of the Rowland circle, are focussed 
onto the other side of the circle. 
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Figure 4. 

CRYSTAL 

ACTIVE 
REGION 
FOR 
DIFFRACTION 

Crystal bending appartus with two bending moments. The 
upper drawing shows the bend as seen from the top. The 
arrows indicate the direction of the force which induces the 
bend. The lower drawing is a side view, showing the front 
surface, a portion of which must be left unobstructed for 
diffraction. 
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Figure 5. 
Schematic of a parallel plate gas ionization chamber. 

The applied voltage is VA. If the capacitance of the 
chamber is Ci' then the total capacitance is C=Ci+C'. The 
output voltage is then Q/C, where Q is the total charge 
collected during the gas ionization process. 
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The copper Ka doublet. The step size is 2 eV so that 
the observed energy resolution is approximately 5 eV. 



185 

CHAPTER VII 

DATA ANALYSIS IN EXTENDED X-RAY ABSORPTION FINE STRUCTURE: 

DETERMINATIONOF THE BACKGROUND ABSORPTION 

AND THE THRESHOLD ENERGY* 

7.1 Introduction 

Extended X-Ray Absorption Fine Structure (EXAFS) refers 

to the modulations observed on the high energy side of an 

x-ray absorption edge. EXAFS has been shown to be sensitive 

to the local environment of the absorbing atom.l An 

expression for the single scattering EXAFS may be written 

as: 2 

where N· J 
is the 

(7.1.1) 

number of equivalent scatterers of type j 

is the backscattering function, 

exp(-2k2cr2) is a Debye-Waller factor for thermal fluctuation 

and static disorder, e-2Rj/d is a term which accounts for 

inelastic scattering, where d is the photoelectron mean-free 

path and sin [ 2kRj + o j (k)] is the interference term, with 

6j(k),the composite phase shift function. k is the photo­

electron wave number defined by k = [2m(~w -E0 )]1/ 2;~,where 

Eo is the threshold energy and m is the electron mass. 

In a transmission experiment, one measures u(k)x = 

ln(I
0
/I), where u (k) is the total absorption cross section, 
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x is the sample thickness, I 0 is the incident x-ray beam 

intensity and I is the intensity after the beam passes 

through the sample. p(k) in Eq. (7.1.1) is actually 

obtained as: 

IJ.c( k)- }.Lo(k) 
X(k)= (k , 

IJ.o ) (7.1.2) 

where u c(k)= u(k)-uv(k). llv(k) is a correction for 

absorption of x-rays by electrons other than those of the 

edge under study. This contribution may be calculated by 

fitting the pre-edge data to the so called Victoreen 

formula, 11 =aA3-bA4 , where a and b are constants and A is v 

the x-ray wavelength. A data set of length equal to that of 

the experiment is generated, using the calculated parameters 

a and b above, and is subsequently subtracted from the 

experimental spectrum to give u c' the corrected absorption 

coefficient. u 0 (k) is the slowly varying background 

absorption of the absorbing atom in the absence of 

interfering neighboring atoms for the same sample thickness. 

It is evident, that in order to compare the theoretical 

expression for the EXAFS with the experimental data, an 

accurate estimate of u 0 is essential. 

There is no standardized technique for background 

determination in EXAFS. Since there is no analytical 

expression for u 0 (k) that is adequate for all systems, the 

investigator must judge the points that represent the 

background absorption. These points, in most cases, are 
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subsequently subjected to a cubic spline fit to produce a 

data set of equal length to that of the experimental 

spectrum. 3 Recently, Cook and Sayers 4 introduced an 

empirical set of criteria for background removal using the 

cubic spline method. The above methods, however, are highly 

flexible and ultimately depend on the discretion of the 

investigator. 

The EXAFS expression, Eq. {7.1.1), is written as a 

function of the photoelectron wavenumber k. The k range is 

dependent on the value chosen for the threshold energy E
0

• 

Since E0 is a non-linear function of k, the value of E0 

determines the frequency of the data in k space. Various 

approaches have been applied to the E
0 

problem. In 

instances where model compounds are used, the same value of 

E0 is chosen for both the unknown and the model compounds. 

Provided the compounds do not differ greatly, this method 

works reasonably well.s An alternative approach has been to 

vary E0 until the peaks in the real and imaginary parts of 

the Fourier transform coincide.6 This latter method, 

however, requires a knowledge of too many parameters to be 

useful in a study of unknown compounds. A third approach 

invokes the concept of phase transferability by assuming 

that the phase difference between the unknown and model 

compound is a linear function of k and passes through the 

origin. The value of E
0 

is varied until the best fit to 

such a line is obtained. Another approach has been to 

numerically differentiate the edge region and locate the 
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inflection points.7 In all of these methods, the data are 

weighted by k 3 to minimize any error in the choice of E0 • 

In the present chapter we present two approaches to the 

problem of background removal in EXAFS. Both methods 

involve the convolution of the EXAFS spectrum with a 

Gaussian function, the width of which determines the extent 

of the damping in the observed spectrum. The first approach 

originated from the experimental observation that a low 

resolution EXAFS spectrum results from increasing the 

spectrometer slit width. In the second method, the EXAFS 

damping is achieved via the discrete convolution of the 

spectrum with a calculated Gauss ian function. This latter 

method also gives a unique intersection at the absorption 

edge which is shown to be a measure of the threshold energy, 

Eo. 

7.2 Experimental Approach 

In this approach, two data sets are employed for a given 

sample, one collected with a narrow slit width (150 urn) 

while the second set is collected with a larger slit width 

(lmm) yielding a spectrum of lower resolution. In accordance 

with Eq. (7.1.1), the EXAFS modulations are damped around 

u
0

, and the intersection points of the two spectra are then 

nodal points that lie on the background absorption. This 

can be illustrated by considering the distribution of 

energies diffracted by the monochromating crystal [Silicon 

(111)] around some nominal posit ion. In Fig. 1, this 

distribution (rocking curve) is shown at 9500 ev. It is 
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obviousthat opening the slit will include more photons of 

different energies, accounting for the observed damping of 

the EXAFS. 

To illustrate this method of background removal, the 

analysis of the EXAFS data from a 12.5 um thick copper foil 

is presented. All measurements were made at room 

temperature and in the transmission mode utilizing the 

Caltech Laboratory EXAFS Spectrometer (which is described in 

Chapter VI). The energy scale of the spectrometer was 

calibrated by assigning the energy of the copper K emission 
(l 

line the value of 8066 ev. Figure 2 shows a plot of the 

absorption as a function of energy for copper collected with 

a slit width of 125 um. Preliminary data analysis involves 

removing the absorption due to electrons other than the K­

shell of copper. This is accomplished by using the 

Victoreen formula as discussed earlier, and allows the EXAFS 

to be normalized as given in Eq. (7.1.1). 

Figure 3(a) displays the absorption spectra of copper 

for slit widths of 125 um and 1 mm. The first peak above 

the edge in the high resolution spectrum is washed out when 

the slit is opened. Beyond this point, however, the two 

spectra are matched peak for peak, with the amplitude of the 

low resolution spectrum being noticeably damped. 

It is important to note that not all intersection 

points in a given pair of spectra are true nodal points. 

This is because there are different frequency components of 

different amplitudes contributing to the EXAFS at each point 
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in k space. The true isosbestic points become apparent if 

an additional spectrum is recorded with a third slit width, 

as shown in Fig. 3(b), and will become more evident in 

Section 7.3 below. In practice, however, we have found 

that the extra intersection points lie symmetrically 

about the true background and contribute negligible errors 

if they are included in the smoothingspline fit. The loss 

of the first peak after the edge is not a serious problem 

since a typical range for data analysis is from k = 4 to 16 

R- 1• To obtain the background absorption a computer program 

is used to calculate the difference in the absorption of the 

two spectra in Fig. 3(a). Only those points satisfying 

the average difference of the two spectra in the smooth 

high k region are chosen for the calculation. These points 

are then used to generate the background by means of a cubic 

spline with a high smoothing factor [a small smoothing 

factor would make the background follows the data more 

closely, (see Cook and Sayers 4 )]. The Victoreen-generated 

contribution to the absorption is also subtracted from this 

background to give u 0 in Eq. (7.1.2). 

Figure 4 displays the post-edge absorption of the 

copper foil sample as a function of k, together with the 

splined background , calculated as described above. 

subtracting this background from the total absorption in 

Fig. 4 yields the desired EXAFS after dividing the 

difference by 1-1 0 (Fig. 5). Division by u 0 rather than a 

constant is necessary if a rigorous comparison to the 
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theoretical EXAFS expression is to be attempted. This 

normalization makes the EXAFS amplitude independent of the 

central atom and effectively weights the data more at higher 

k values. 

The modulus of the Fourier transform of the data shown 

in Fig. 5 is presented in Fig. 6. The data points were 

weighted by k 3 , which is frequently used to balance out the 

0 k- 2 d d f approx 1mate epen ence o the scattering amplitude at 

high k and the k-1 factor in Eqn. (7.1.1). This weighting 

scheme also makes the choice of E0 less critical. 

7.3 Computational Approach 

The experimentally observed slit function of the EXAFS 

spectrometer is approximately Gaussian in shape, with full 

width at half maximum of about 8eV for a 100 ~m slit width 

(Fig. 1). The observed damping of the EXAFS shown in Fig. 3 

is the result of increasing the width of this Gaussian 

distribution as the slit width of the spectrometer is 

increased. The observed EXAFS is effectively a convolution 

of the true spectrum with the experimental slit function. 

In this section we introduce a background determination 

scheme, which is similar to that described above, except 

that the convolution is performed by means of a convolution 

algorithm. 

The convolution of a function f(x) with a function 

g(x) is defined by the convolution integral 

h(x) = ~~(t)g(x-t)dt 
-00 

(7.3.1) 
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For finite functions, the integration limits are determined 

as follows: If L1 and L2 are the lower non-zero values of 

the two functions and u 1 and u 2 are their upper non-zero 

values, then the lower integration limit is chosen as 

max(L 1 ,L 2 ) and the upper integration limit as min(U 1 ,u 2 ). 

For large data arrays, the convolution integral is readily 

calculated by means of the fast Fourier transform (FFT) 

and the convolution theorem. If F(y) and G(y) are the 

Fourier transforms of f(x) and g(x), respectively, then the 

convolution theorem states that, the convolution integral 

[Eq. (7.3.1)] is the Fourier transform of the product of 

F(y) and G(y). For details on the convolution process, see 

Brigham. 8 

For the purpose of background determination, the 

experimentally obtained EXAFS spectrum of a 12.5 llm thick 

copper foil (Fig. 2) was convolved with a series of Gaussian 

functions of different widths. A Gaussian distribution 

function was chosen in view of the shape of the observed 

slit function, Fig. 1. Furthermore, the smooth tails of the 

Gaussian distribution help minimize edge effects in the 

convolution process. To normalize the results of the 

convolution to the original data, the area of the slit 

function is set equal to one. 

Figure 7(a) illustrates the effect of convolving the 

experimental EXAFS (shown as dots) with a series of 

Gaussian functions of different slit widths. Note that ':he 

EXAFS is progressively damped as the width of the Gaussian 
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function is increased. The intersection points of these 

spectra are not all unique and do not represent true 

isobestic points. These results are in complete agreement 

with the experimental observation made in Section 7.2 

above. The effect of this convolution process on the 

copper absorption edge is shown separately in Fig. 7(b). 

The sharp rise in the edge is smeared out as the width of 

the Gaussian function is increased. Note that there is a 

unique intersection point approximately mid-way through the 

edge. This intersection point was taken to be the threshold 

energy E0 [See Section (7.4) ]. The rest of the analysis is 

identical to that discussed in the previous section. Figure 

7(c) shows the EXAFS plotted along with the background. 

Note the difference in the background absorption calculated 

by the two methods [Fig. 4 and Fig. 7(c)]. The k range is 

smaller in the computational method compared to that in the 

experimental method. This is due to the slight edge effect 

resulting from the convolution of the EXAFS with a wide 

Gaussian function. The distorted points in the computed 

convolution at high k were discarded. In addition, the 

background determined by the computational approach does not 

bisect the peaks in the low k region (below 4 ~- 1 ). The 

origin of this difference, is the need to choose a single 

point that lies on the background in the low k region, where 

no intersection points occur due to the dominant effect of 

the absorption edge. This is acceptable, however, as the 

simple EXAFS expression, Eq. (7.1.1), is not valid beyond 
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this range. In Fig. 7(d), the modulus of the Fourier 

transform is shown, and agrees well with results obtained by 

other investigators. 4,9 

7.4 Discussion 

The background determination scheme employed above, 

takes advantage of the fact that all EXAFS components have 

much higher frequencies than the background. By 

successively convolving the observed spectrum with a series 

of increasingly wider Gaussians, the higher frequency 

components are gradually removed. Eventually all of the 

EXAFS will be removed and what remains is simply the low 

frequency background. This method of background deter­

mination is not very useful, since serious edge effects 

occur, due to the large widths of the Gaussians required to 

smooth out all of the EXAFS. Fortunately, however, there is 

a limit to the lowest frequency EXAFS component that can 

exist and is determined by the smallest di~tance in the 

system. When only this lowest frequency component remains, 

increasing the width of the Gaussian, only serves to further 

dampen this component. 

dampened spectra are 

The intersection points of these 

unique due to the presence of the 

single remaining EXAFS component. These points are then 

used to generate the background. It is important to note 

that the intersection points are not unique until the 

Gaussian function is sufficiently wide to el.iminate all 

EXAFS components other than the lowest frequency EXAFS 
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component. 

Improper background removal in EXAFS can cause 

erroneous interpretation of the Fourier transform results, 

even for data with a high signal-to-noise ratio. In both 

the experimental and the computational methods described 

above, the Fourier transform contains structural information 

up to the fifth shell of copper. There is a low amplitude 

peak in the 0-1 R region of the transform indicating the 

presence of a spurious low frequency component in the 

isolated EXAFS. This peak is smaller for the computational 

method than in the experimental technique. The size and 

position of this peak, however, does not distort the peaks 

at higher R values which contain the structural information. 

While the magnitude of such a peak is a measure of 

successful background removal, it is not the only criterion 

which must be satisfied. It is important that the 

calculated background does not add or subtract frequency 

components which may distort the true EXAFS. The transforms 

shown in Figs. 6 and 7(d) satisfy the empirical criteria for 

background subtraction set by Cook and Sayers. 4 

Other experimental methods of damping the observed 

EXAFS are also possible. If a variable temperature study is 

performed over a wide range, the nodal points of these data 

sets may be used to generate the background absorption 

curve. The damping, however, is more pronounced at high k 

making the variable slit method more reliable. In 

laboratory EXAFS systems it is also possible to vary the 
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bias voltage on the x-ray tube and change the focus size on 

the anode. This method is equivalent to the variable slit 

method due to the symmetry of the Johansson geometry. 

Frequently, however, the dynamic range of the bias voltage 

is too small to cause sufficient defocusing. 

The computational approach is prefered over the 

experimental method for various reasons. With the variable 

slit method, the scattered radiation may present a problem 

so that the ratio of I/I 0 is not the same for all slit 

widths in a smooth region of the spectrum. Also, the 

experimental approach to the background removal effectively 

doubles the time necessary for data acquisition. Although 

this does not present a serious problem in the case of 

laboratory EXAFS systems, it may restrict the use of this 

method when data are collected at synchrotron facilities. 

Furthermore, the peak positions in the low resolution 

experimental spectrum may not match those in a high 

resolution spectrum if the spectrometer slit does not open 

symmetrically with respect to the beam. 

The presence of a unique intersection point in Fig. 

7(b) may be understood in terms of the theoretically 

predicted functional form of the x-ray absorption edge. The 

absorption edge may be constructed from a series of discrete 

Lorentzians due to bound state transitions. The 

contribution to th~ absorption edge, due to transitions into 

the continuum, may be described in terms of the· integral of 

a Lorentzian, weighted by the appropriate density of states 
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function. This integral takes the form of an arctangent 

function. 10 The absorption edge, therefore, consists of a 

series of discrete Lorentzian functions superimposed on an 

arctangent function.6 The convolution process described 

above is normalized so that the area under each absorption 

curve is the same, regardless of the width of the Gaussian 

slit function used. Since the width of the slit functions 

are much greater than the width of the Lorentzian peaks 

describing the bound state transitions, the convolution 

process is insenitive to these features. The normalization, 

however, constrains the convoluted spectra to pass through 

the inflection point of the arctangent curve and thus 

maintains the same integrated absorption for all slit 

functions. The existence of a unique intersection point can 

be demonstrated by considering the convolution of a 

Gaussian function g(x) of width parameter w and an 

arctangent function c(x), with a sharpness parameter s. The 

convolution integral is given by: 

g(x)*c(x) = J~xp[-(x-t) 2/w ]tan-l(t/s)dt 
-.., 

(7.4.1) 

where the asterisk (*) represents the convolution of the two 

functions. Note that the arctangent function c(x) has an 

inflection at x=O. From symmetry considerations , the 

value of the convolution integral Eq. (7.4.1), is zero at 

this inflection point (x=O) and is independent of the width 

parameter of the Gaussian slit function. This prediction is 

in complete agreement with the computationally derived 
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spectra in Fig. 7 (b). 

Theoretical studies10 have shown that the inflection 

point of the arctangent function is a good measure of the 

threshold energy E
0

• Numerical differentiation techniques 

have been used to locate this inflection . 7 po 1n t. In 

practice, these methods are hampered by the presence of 

bound state transitions. The convolution process, however, 

is insensitive to these details and provides a good estimate 

of E
0

• Problems occur, however, when the amplitude and the 

density of states corresponding to the bound state 

transitions do not differ appreciably from those of the 

continuum states. In such instances, the bound states may 

be included in the summation (integration) over the 

continuum, and hence, become buried in the arctangent 

function. The unique intersection point will then occur at 

smaller energies than the threshold energy. In a series of 

related compounds, the observed intersection point, may be 

used as a measure of the relative threshold energy. 

Advantage may also be taken of the convolution approach 

presented above to enhance spectral resolution. If the 

instrumental line shape or slit function is accurately 

known, a deconvolution algorithm may be used, for instance, 

to obtain edge structures from data collected with 

spectrometers that have insufficient resolving power. This 

is easily achieved by the use of the convolution theorem. 

If f(k) and g(k) represent the true EXAFS and the 

experimental slit function, respectively, then the observed 
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EXAFS is given by: 

(SEXAFSlobs. = f(k)*g(k) (7.4.2) 

If (SEXAFS) FT' F(r) and G(r) are the Fourier transforms of 

(SEXAFs>obs.' f(k) and g(k), respectively, then 

(SEXAFS)FT = F(r).G(r) (7.4.3) 

Provided that g(k) is known, the true EXAFS, f(k), can be 

obtained by the Fourier transformation of (SEXAFSlFT/G(r). 

The use of the deconvolution approach described above 

to improve resolution is currently being tested. This 

treatment would be a great advantage in laboratory EXAFS 

systems since a laboratory spectrometer in which, for 

example, a channel-cut arrangement 1 is used to improve the 

resolution, suffers a loss of flux which leads to a lower 

signal-to-noise ratio. The deconvolution method would offer 

an alternative that facilitates data acquisition in a 

reasonable length of time. 

In summary, the convolution approach offers a simple 

and straightforward method for calculating the background 

absorption in EXAFS. Furthermore, a unique estimate of the 

threshold energy E0 is obtained. The deconvolution approach 

offers the possibility of extracting information with 

improved resolution from experimental spectra. 
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ROCKING ANGLE (MOTOR STEPS) 

Spectral distribution of energies diffracted by the 
monochromator at 9500 ev. This curve was obtained by 
rocking the Si (111) Johansson crystal about the Bragg angle 
for diffraction of 9500 ev photons. A narrow slit was used 
such that the intensity collected from every point on the 
crystal has a very small angular spread. Note the 
distribution is slightly asymmetric indicating the increased 
flux from the source at higher energies (lower Bragg 
angles) • 
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Figur-e 2. 
Plot of the absor-ption as a function of x-r-ay ener-gy 

for- a 12.5 micr-on thick copper- foil. The slit width is 125 
micr-ons. 
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Figure 3. 
Plot of the post-edge absorption as a function of the 

photoelectron wave number. (a) Solid and dashed curves 
refer to slit widths of 125 microns and 1 mm, respectively. 
(b) Dashed, dotted and solid curves refer to slit widths of 
125 microns, 1 mm and 1.5 mm, respectively. Note that in 
(b) only one unique intersection point occurs (indicated by 
the arrow) and represents the only true isosbestic point. 
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Figure 4. 
Plot of the original EXAFS, obtained using a 125 micron 

slit width, together with the calculated background 
absorption. The smooth background was obtained by a cubic­
spline interpolation of the intersection points of the two 
curves shown in Fig. 3(a). 
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Figure 5. 
Plot of the EXAFS as a function of photoelectron 

wavenumber. The isolated EXAFS was obtained by substracting 
the two curves shown in Fig.4 and dividing the result by 
the calculated background. 
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Figure 7. 
The background and threshold energy determinations 

using the computational approach. (a) The experimental EXAFS 
is shown as dots. Curves 1-3 represent the convolution of 
the observed EXAFS with Gaussian functions of FWHM of 16, 
32, and 48 eV, respectively. (b) The effect of convolution 
on the absorption edge. Curves 1-4 represent the 
convolution of the edge with Gaussians functions of FWHM of 
16, 32, 48, and 64 eV, respectively. (c) The observed EXAFS 
together with the calculated background. (d) Modulus of the 
Fourier transform as determined by the computational method. 
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CHAPTER VIII 

IDENTIFICATION OF NEIGHBORING ATOMS IN EXTENDED 

X-RAY ABSORPTION FINE STRUCTURE* 

8.1 Introduction 

Extended X-Ray Absorption Fine Structure (EXAFS) 

spectroscopy, the modulation in the x-ray absorption 

coefficient at energies above the absorption edge, has been 

applied to a wide range of structural problems in recent 

years. The use of the method is not limited by the physical 

state of the sample, and hence, it is a valuable tool for 

determining local structure, in instances where conventional 

x-ray diffraction methods are not applicable. Such cases 

include, certain metallo-proteins, 1 - 3 solutions 4 • 6 and 

7 gases. 

The single scattering EXAFS expression may be written 

X(k) = -l/kl;:Ajsin[2krj + o'j (k)] 
J 

(8.1.1) 

where Aj is the amplitude function. Aj contains the number 

of atoms of type j, the Debye-Waller factor and the 

inelastic loss term. k is the photoelectron wavenumber 

defined by: 

k = [2m(hw - E
0

) ]l/2;fl (8.1.2) 

where w is the frequency of the x-rays and E0 is the 

threshold energy. o'j(k) is the composite phase shift 
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function given by: 

(8.1.3) 

&a (k) is the phase change in the photoelectron wave due to 

the absorbing atom potential and o j (k) is the phase of the 

scattering amplitude associated with atom j. 

Model compounds are used extensively in EXAFS to deter-

mine atom types as well as bond distances. Chemical 

intuition and information available from other techniques 

usually reduce the number of model compounds that are 

required. There is usually, however, no independent method 

to determine the nature of the scattering atom • The 

backscatter ing amplitude may exhibit a Ramsauer-Townsend 

type resonance, and in this manner, the scattering atoms 

may be identified.9 These resonances, however, are 

experimentally observable for heavy scattering atoms only. 

The identification of light atoms is more difficult since 

their backscattering amplitudes are small and do not exhibit 

such structure. A method for distinguishing light atoms (as 

scatterers) would thus be a valuable addition to EXAFS. For 

example, differentiating between carbon, nitrogen, or oxygen 

atoms in metalloproteins or in surface chemistry. 

In this chapter, we present a method for identifying 

scattering atoms by comparing their phases with those of 

known compounds. We exploit the information contained in 

the non-linear phases through least squares curve-fitting to 

show the distinguishability of carbon, nitrogen, and oxygen 
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in a series of cobalt complexes. Theoretical calculations of 

the scatterer phases by Teo and LeelO clearly demonstrate 

this point. We now show that such an identification is 

possible from phases which are properly extracted from EXAFS 

data. We also introduce a new approach for isolating peaks 

in R space which minimizes distortion of the phase during 

the back-transformation process. 

8.2 Physical Basis for The Atom Identification Scheme 

The total phase of an absorber-scatterer pair in an 

unknown compound is given by: 

cp~j(k) = 2krj + oa(k) + 6j(k) (8.2.1) 

where the superscript u denotes an unknown, and the 

subscripts a and j denote an absorbing and scattering atom, 

respectively. The absorbing atom can easily be identified 

by its absorption edge, and is assumed to be known. For a 

known (model) compound with the same absorber, 

(8.2.2) 

We will assume that oa(k) and 6j(k) can be expressed as 

polynomials in k. 

oa(k) = a 0 + a 1 k + a 2 k 2 + 

oj(k) = b 0 + b 1k + b 2k 2 + 

Subo;;tituting 6a(k) and oj (k) into Eq. (8.2.2) yields 

<Paj ( k) 

(8.2.3) 

(8.2.4) 
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or 
(8.2.4) 

Similarily for an unknown compound 

+ •••• (8.2.5) 

Note that the c 1 coefficient contains the distance 

information. 

If the scatterers are the same in both the unknown and 

model compounds, the corresponding coefficient in Eqs. 

(8.2.4) and (8.2.5) will be the same provided that the phase 

isolation is done adequately. In general, the phase 

difference between neighboring atoms in the Periodic Table 

is a smooth function of atomic number, the larger the atomic 

number the more positive the phase. This monotonic behavior 

is especially true at high k values.10 Therefore, the 

scattering phase of, for example, oxygen, is larger at all 

practical k values than that of carbon. 

The method employed in this work, exploits the 

difference in scattering phase between atoms as a means for 

their identification. To illustrate this last point, w~ 

show in Fig. 1, the calculated scatterer phase functions of 

Teo and Leel 0 for carbon and oxygen. Note that the curves 

converge slightly at lower k values. It is apparent that 

the region of maximum phase separation, and hence the best 

range for our calculation, is from k = 6 ft-1 to k = 13 R- 1 • 

It is also apparent that a least squares fitting method, 

should give c
0 

terms that are well separated for carbon and 
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oxygen, since their scatterer phases are slowly varying. 

This is the basis for the present work. The value of the c
0 

coefficient of an unknown compound may be compared to that 

of a series of model compounds. In this manner the nature 

of the scattering atom may be established. Note that since 

c
0 

is the phase intercept at k = 0 R- 1 , this atom identi­

fication scheme is insensitive to the absorber-scatterer 

distance. 

8.3 Data Acquisition and Analysis 

All EXAFS measurements were made at room temperature 

and in the transmission made using the Caltech laboratory 

EXAFS spectrometer (see Chapter VI). The cobalt in the 

cobalt complexes used in the present study is in the +3 

formal oxidation state. All compounds were analytical grade 

reagents. EXAFS samples were prepared by dissolving a known 

weight of material in a solvent to make a saturated 

solution. Another solvent (in which the compound is 

sparingly soluble) is then added, to precipitate the 

compound in fine powder form. The powder was filtered, 

dried, and stored on a polycarbonate membrane. The 

thickness of the samples was calculated to absorb 70% of 

the x-ray beam 100 eV above the absorption edge. This 

method of preparing the sample was found superior, for 

example, to grinding the sample mater-ial to obtain a 

unifor-m particle size. 

In tr-ansmission exper-iments, the total absorption co­

efficient u(k) is measured as: 
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J.l(k) X=ln(I 0 /I) (8.3.1) 

where X is the sample thickness, I 0 is the incident x-ray 

beam intensity and I is the intensity after the beam passes 

through the sample. J.l (k) in Eq. (8.1.1) then calculated as: 

(8.3.2) 

where J.lc(k) is the absorption coefficient corrected for 

absorption by electrons other than those of the edge under 

study. This correction is done by using the Victoreen 

formula: 

(8.3.3) 

where J.lv = aA3 - bA4 and a and b are constants and A is the 

wavelength of the x-ray photon. J.l 0 (k) is the background 

absorption of the absorbing atom in the absence of ligands 

for the same sample thickness. 

There are several problems that have to be overcome 

before a successful interpretation of the EXAFS data is 

pass i bl e. It is apparent from Eqs. (8.1.1) and (8.3.2) that 

a knowledge of J.l 0 is essential before a comparison may be 

made between the theoretical expression and the experimental 

data. It is also evident from the definition of k [Eq. 

(8.1.2)], that an accurate estimate of E0 is necessary for a 

correct k scaling. An accurate k scaling is important since 

the data are typically Fourier transformed to give peaks in 

R space; the position of these peaks will depend on the 
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choice of E
0

• An incorrect k scale will also hamper 

attempts to least-squares fit the theoretical expression 

[Eq. (8.1.1)] to the data. The presence of non-linear phase 

shifts also complicates the data analysis, and results in a 

distribution of frequencies in k space. The transformed 

peaks in R space are thus broad and asymmetric. This non-

linearity will also affect the peak positions in R space if 

different k ranges are taken for transformation. For this 

reason, data analyses of model compounds and unknowns are 

typically Fourier transformed with the same k range. 

In an earlier communication, 11 we presented a method 

for the determination of both llo and E0 (see Chapter VII). 

In that method, the raw EXAFS is convoluted with a series of 

Gaussian functions, resulting in a damped EXAFS spectrum. 

The intersection points of this series of transformed 

spectra are used to generate the background absorption. We 

have also demonstrated that, a unique intersection point 

exists at the absorption edge, and that this intersection 

point provides a relative measure of the threshold energy. 

An example of such an intersection point is shown in Fig. 2 

for Co(acac) 3• The distortions that occur at the edges of 

the data arise from the nature of the convolution 

algorithm.ll The convolution method represents a 

straightforward approach for the determination of both 11 0 

and E0 , and is the method used throughout this present work. 

This atom identification scheme requires the 

measurement of the phase intercept to an accuracy of at 
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least 0.1 radians (see Fig. 1). The method used to isolate 

the data range to be transformed should minimize spurious 

sidelobes in the Fourier transform and keep the phase 

unchanged. In the forward transform (FT of EXAFS data from 

k space to R space) this may be accomplished by ensuring 

that the data begin and end at a node. For the back 

transform, however, the problem is more difficult because of 

the presence of side lobes about the base of the peak which 

is to be isolated. In this case, only the undistorted part 

of the peak [shaded area in Fig. 4(a)-(e)] is transformed. 

To avoid distortions which result from applying a window 

for the isolation, the desired region of the peak is 

translated down to the distance axis. The rest of the data 

in R space are set equal to zero. The peak now starts and 

ends at zero modulus values (nodes in both real and 

imaginary parts). In practice, this is accomplished by 

substracting the lowest modulus value in the region to be 

backtransformed, from the modulus at every point in that 

region. This can be performed without changing the phase. 

If we denote the lowest modulus value by A0 , then we require 

that for each point: 

A· = A· - A J 1 0 
(8.3.4) 

where the subscript j denotes a new value and i the old one. 

Requiring that the phase remains unchanged implies that 

(8.3.5) 
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is invariant. But since we may write Ai and Aj in the form: 

(8.3.6) 

we can construct an expression for the new real and 

imaginary parts of the data, in terms of the original 

amplitude and phase: 

(Imj) = tan~(k) [(Aj)2- (Imj)2]1/2 

(Imj) = + { [ (Ajl 2 tan 2~ )/[tan 2 ~ + 1] }1/2 

(8.3.7) 

(8.3.8) 

The signs in Eqs. (8.3.7) and (8.3.8) are chosen such that 

the original signs of the real and imaginary components 

remain unchanged. It is evident that the amplitudes will be 

smaller using this window method. This is not a serious 

problem in our present goal of identifying atoms from their 

phases since the phases remain unchanged. In the next 

section, we shall show that other windowing techniques also 

change the amplitude. 

8.4 Results and Discussion 

The isolated EXAFS patterns for the cobalt series of 

compounds: Co(acac) 3 , [Co(en) 3]cl 3 and K3 [Co(CN) 6 J are shown 

in Fig. 3. The modulus of the k3 weighted FT of each of 

these compounds is presented in Fig. 4. The shaded portion 

of the first-shell peak in each transform represents the 

region of R space which was backtransformed into k space 

using the procedure described in the previous section. The 
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total phase was extracted from the first-shell EXAFS using 

the method described by Lee et Q.,l 2 and was subsequently 

fitted to a polynomial in k [Eq. (8.2.5) ]. The fit was 

tried for several polynomials with different degrees in k. 

We have found that a second order polynomial gives an 

adequate fit. Figure. 5 shows the isola ted phase together 

with the polynomial fit for each of the three compounds. 

Table I contains the coefficients of the polynomial fit for 

several fitted ranges of k space. 

Table I shows that the constant coefficient in the 

polynomial fit for each of the three compounds is 

approximately independent of the fitted k range, provided 

the minimum k value in the fit is greater than 6.5 ~- 1 • This 

observation is in agreement with the calculated phases shown 

in Fig. 1. Since only high k data are analyzed, the 

coefficients obtained from the fit are relatively 

insensitive to the choice of the threshold energy E0 • 

Furthermore, the small spread in the values of the 

coefficients in Table I may be attributed to a small higher-

order component in the phase. Note that the difference in 

the phase intercepts between the oxygen and carbon compounds 

is approximately 0.7 radians. This difference is smaller 

than that predicted by Fig. 1 but is quite acceptable since 

the phases of oxygen and carbon converge somewhat at lower k 

values (Fig. 1). Lee et al.l3 have shown that the composite 

phase shift may be fitted to the function, 
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(8.4.1) 

and that the coefficients obtained are linear functions of 

atomic number over small regions of the Periodic Table. The 

quadratic form of Eq. (8.2.5), was used instead of 

Eq. (8.4.1), since the latter function is not defined at the 

origin. Despite this, we have found that the phase 

intercept of the nitrogen compound lies approximately in 

between that of the oxygen and carbon compounds, so that the 

constant coefficient is still an approximately linear 

function of atomic number (see Table I). This quadratic 

function, however, does not accurately describe the 

scattering phase for heavy atoms especially in the low k 

region. 13 Since EXAFS data from such heavy scatterers 

extend out to high k values, it is still possible to use 

the quadratic form of Eq. (8.2.5) provided only the high k 

data are fitted. This forms the basis for identification of 

scattering atoms which are heavier than those discussed 

here. 

It should be noted, 11 however, that the phase can only 

be calculated to within an arbitrary factor of rr. If 3 rr 

is added to the phase intercepts for the oxygen and carbon 

compounds, intercepts of 1.756 and 1.049 radians are 

obtai ned, respectively. These intercepts are in good 

agreement with the values calculated by Lee et ~., 1 3 

espec1ally when the range of the fitted data is considered. 

A factor of nrr should, however, be easily identifiable, 
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since the separation between the phases of carbon and oxygen 

in Table I (see also Fig. 1) is 0.7 radians, which is small 

in comparison to "· In practice, we have found that if the 

same data range is transformed for all compounds, there is 

no need to add or substract multiples of "· 

The ability to distinguish between and identify 

different scattering atoms is dependent on the manner in 

which the EXAFS data are treated. The isolated phase 

extracted from experimental data is sensitive to windowing 

effects. In the forward transform no window function was 

used; the data analyzed began and ended at a node. This 

procedure yields good results provided an accurate 

background absorption has been determined and subtracted, 

such that the end points chosen for the analysis are true 

nodal points. 

The isolation of a peak in R space is more difficult, 

however, since the peak amplitude rarely drops rapidly to 

zero because of the non-linearity in the phase. Further­

more, the peak usually contains side lobes due to 

termination errors in the transform. Any isolation 

procedure results in the data in the inverse space being the 

convolution of the FT of the isolated data with the FT of 

the window function. If a high percentage Gaussian window 

is used, the FT of the isolated peak is convoluted with a 

narrow Gaussian in k space. In addition, the data in k 

space also contain much of the information which was present 

in the side lobes around the base of the peak. To eliminate 
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this problem, a low percentage Gaussian window may be used. 

However, the FT of the isolated peak is then convoluted with 

a wide Gaussian in k space. In principle, it is possible to 

remove the effects of the window function by a deconvolution 

process. In practice, however, this procedure introduces 

noise and suffers from the same problems as those found in 

the original transform. 

As an alternative to the above methods, we have 

introduced a new isolation procedure. As described in the 

previous section, the phase information is constrained to be 

the same as that in the original peak in R space while the 

amplitude is reduced such that the real and imaginary parts 

of the transform beg in and end at a node. A comparison of 

this method with other isolation methods is shown in Fig. 6. 

The data shown in this figure are from the isolated first­

shell peak in [Co(en) 3 ]cl 3• Note the distortions present in 

the amplitude and phase of the isolated peak when a 20% 

(dotted curve) and a 5% Gaussian window (dashed curve) are 

used. As noted by previous investigators the distortion 

appears to be greatest in the first and last oscillations in 

k space.12 This, however, does not guarantee that the data 

in between are undistorted, since the sides of the peak 

which are multiplied by a Gaussian window function in R 

space, receive a contribution to their intensity from all 

points in k space. The distortion is greatest in the first 

and last oscillation in k space because the amplitude of the 

original data is smallest in these regions. The present 
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method (solid curve) does not introduce such distortions 

since no window function has been employed. This method, 

however, does suffer from the usual termination effects due 

to the finite data range in the discrete transform. 

We have found this new peak isolation technique to be 

superior when an accurate phase measurement is required. 

Since the atom identification scheme requires an accurate 

knowledge of the phase intercept, slight distortions in the 

phase due to the usual windowing procedures are sufficient 

to make such a measurement impractical. The coefficients 

obtained from the quadratic fit are moderately sensitive to 

the width of the peak transformed in R space. This can be 

explained by considering the nature of the peak shape. Each 

peak in R space contains, due to phase non-linearity, a 

distribution of frequencies from k space. The quadratic 

form used here may contain the most significant terms in 

such a distribution, but not all of them. It is clear then 

that FT of peaks in R space with different widths may 

contain variable contributions of higher-order terms in k. 

Accordingly, the most reliable phase intercepts are obtained 

when the peaks in R space are transformed with the same 

width {base of dashed area in Fig. 4). 

To illustrate the quantitative nature of this atom 

identification scheme, a fourth compound, [Co(NH3)6]Cl3, was 

studied. The isolated EXAFS and the k3 weighted FT of this 

compound are shown in Fig. 7. Using the procedure described 

above, the phase of the first-shell peak was extracted and 
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fitted to a quadratic function. The coefficients of the fit 

are shown in Table II for a series of fitted k ranges. Note 

that the phase intercept for this compound is virtually 

identical to that obtained for [Co(en) 3 ]cl 3 (see Table I). 

Therefore, if [Co(NH 3 ) 6 ]Cl 3 were an unknown compound, a 

comparison of its phase intercept with the three model 

compounds studied earlier would reveal that [Co(en) 3 ]cl 3 is 

the appropriate model compound, and that the scattering atom 

is a nitrogen. 

In many instances, however, the first coordination 

sphere is comprised of different types of atoms. If the 

separation in distance is greater than 0.4 R, the FT will 

distinguish between the different distances, and the above 

analysis may be applied to each separate peak. Often this 

is not the case and only one first shell peak is observed in 

the FT. When this happens, the isolated phase is dependent 

upon the amplitude of the individual components which make 

up the peak. Consider a two component first shell 

consisting of NA atoms of type A and N8 atoms of type B. 

Clearly, 

(8.4.2) 

where N is the coordination number of the first shell. Let 

A(k) and B(k) be the EXAFS amplitude of components A and B, 

respectively. The EXAFS corresponding to the first shell­

peak is given by: 

Z(k) = A(k) sin<PA(k) + B(k) sin.p8 (k) (8.4.3) 
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where $ A(k) and $ 8 (k) are the total phases of components A 

and B. If Eq. (8.4.3) is Fourier transformed and only the 

positive distances are retained, then the back transformed 

EXAFS may be described by:l2 

Z(k) = l/2i[A(k)ei$A(k) + B(k)ei<Ps(k) ] 

= IZ(k) leia(k) 
(8.4.4) 

where a (k) is the observed total phase which may be 

expressed as: 

a(k) = tan-1 {A(k)sin$a(k) + B(k)sin$8 {1<)} _ rr; 2 ( 8 • 4 • 5 ) 
A(I<)COS<j>A(K) + B(l<)cos<f>a(l<) 

A factor of rr /2 is typically added to Eq. (8.4.5) to yield 

the physically significant phase a'(k). 12 If each of the 

phase functions can be parameterized as follows: 

$A(k) = a 0 + a 1 k + a 2 k2 

<t> 8 (k) = b 0 + b 1 k + b 2 k2 
(8.4.6) 

Then the extrapolated value of the phase intercept is given 

by: 

a' (0) = tan-1 {A(O)sina0 + B(O)sinb0 } 
B{O)cosa0 + B(O)cosb0 

(8.4.7) 

If the total coordination number is known, and we assume 

that 

(8.4.8) 
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then the nature of the coordination sphere may be determined 

since we have two equations, Eqs. (8.4.2) and (8.4.7), and 

two unknowns, NA and N8 • Using the phase intercepts shown in 

Table I, Eq. (8.4.7) has been plotted in Fig. 8 as a 

function of NA and N8 , assuming the approximation in Eq. 

(8.4.8) to be valid. For any observed phase intercept a' (0) 

in Fig. 8, there are two possible compositions of the first 

shell. In general, however, only one of these compositions 

will correspond to an integer number of atoms. 

Unfortunately, the approximation in Eq. (8.4.8) is not 

generally valid. In the worst case of a coordination sphere 

made up of oxygen and carbon atoms, the scattering amplitude 

of the oxygen can be approximately 30% greater than that of 

the carbon. 10 The metal-carbon bond distance, however, is 

typically shorter than the corresponding oxygen distance, 

which partially offsets the difference in the scattering 

amplitudes. In general, Eq. (8.4.8) should be rewritten as: 

(8.4.9) 

where X is a factor, assumed to be constant, which 

represents the difference between the EXAFS amplitudes of 

components A and B. Equation (8.4.9) must be substituted 

into Eq. (8.4. 7) to obtain the true dependence of the phase 

intercept on the number of atoms in each component. If 

component A is oxygen and component B carbon, then Table 

III shows the observed phase intercepts for several X values. 

Note that increasing the value of X shifts the phase 
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intercept to a more positive value, and hence, weights more 

strongly the contribution of the oxygen atoms to the 

observed phase. This shift, however, is small so that even 

if the EXAFS amplitude due to oxygen is 50% greater than 

that due to carbon the composition of the shell will still 

be distinguishable from other possible compositions (see 

Table III). 

It should be noted, however, for this method to yield 

reliable atom identification, several criteria must be met. 

The raw data must be of high quality for both the model and 

unknown systems. The subsequent analyses of the data should 

be performed in the same manner for all compounds. An 

incorrect estimation of E0 presents a major problem. The 

method of determining E0 discussed in Chapter VII should be 

adequate, provided the compounds do not differ greatly in 

their edge structure. If a known compound exhibits edge 

structure which differ from that of the unknown, this 

compound must be viewed as an unsuitable model compound for 

the latter. 

The identification scheme introduced here represents a 

contribution to current methods for EXAFS data analyses. 

The examples shown demonstrate the distinguishability of 

carbon, nitrogen and oxygen in a series of cobalt complexes. 

These three atoms represent important scatterers, the 

identification of which may help to resolve significant 

structural problems. For example, in metalloproteins, the 

first-shell metal ligands consist primarily of nitrogen, 
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oxygen and sulfur from the protein amino acids. Since this 

approach can be readily extended to other scattering atoms 

there should be numerous chemical applications of this 

identification scheme. 



228 

References 

*This chapter is based on: F.G. Halaka, J.J. Boland and 

J.D. Ba1deschwieler, J. Amer. Chern. Soc. in press 

(1984). 

1. P. Eisenberger, M. Y. Okamura and G. Feher, Biophys. J. 

37, 523 (1982). 

2. B. Chance, R. Fischett and L. Powers, Biochemistry 22, 

3820 (1983). 

3. L. Powers, Biochem. Biophys. Acts 683, 1 (1982). 

4. T.M. Hayes, J.W. Alen, J. Tauc, B.C. Giessen and J.J. 

Hauser, Phys. Rev. Lett. 36, 134 (1975). 

5. P. Eisenberger and B.M. Kincaid, ·Chern. Phys. Lett. 36, 

134 (1975). 

6. D.R. Sandstrom, J. Chern. Phys. 71, 2381 (1979). 

7. B.M. Kincaid and P. Eisenberger, Phys. Rev. Lett. 34, 

1361 (1975). 

8. D.E. Sayers, F.W. Lytle and E.A. Stern, Advance in X­

Ray Analysis 13, 248 (1970). 

9. P.A. Lee and G. Beni, Phys. Rev. Rev. 815, 2862 (1977). 

10. B.K. Teo and P.A. Lee, J. Amer. Chern. Soc. 101, 2815 

(1979). 



229 

11. J.J. Boland, F.G. Halaka and J.D. Baldechwieler, Phys. 

Rev. 8 28, 2921 (1983). 

12. P.A. Lee, P.H. Citrin, P. Eisenberger and B.M. Kincaid 

Rev. Mod. Phys. 53, 769 (1981). 

13. P.A. Lee, B.K. Teo and A.L. Simons, J. Amer. Chern. Soc. 

99, 3856 (1977). 

14. J.R. Taylor, Scattering Theory (Wiley, New York 1972) 

p. 181. 

15. E.A. Stern, B. Bunker and S.M. Heald, EXAFS Spectro­

scopy: Techniques and Applications; edited by B.K. Teo 

and D.C. Joy (Plenum Press, New York 1981). 



230 

0.61-. 
''-x 

+'• -o 55 rod.'x 
0 t '-x 
'-6 '-x 

-02_ '-. '-x 

I 

0 ' 
" x-...._ 

0 ·~ 

I I ' I 

-

-

'-o, x 

O'o .............__xt~YGEN 
'o x 
~ -083rod ................ X 

-I 0 f- -

-181--
CARBON o--........._ • ............... • ..........._ 

0 ·--- -

I ' 
I ' 

47 71 

Figure 1. 
The scattering phases oJ 

calculated by Teo and Lee. 1 
fits to the calculated data. 

............... 0 ·--· ~o I -

I 

9.5 

k(s-1, 

"'-.....
0 

-083 rod. ---0 . -
--~ ~--I 1 

11.9 !43 

carbon (o) and oxygen (X) as 
The solid curves are spline 



231 

7665 

7741 ev~ 

I 

! 

ENERGY \eVl 

Figure 2. 
Determination of the 

Co(acac) 3• The solid line is 
and daslied curves correspond 
Gaussian functions of FWHM of 
The unique intersection point 
E0 used in this work. 

threshold energy (E
0

) for 
the original data. The dotted 
to convoluting the data with 
16 ev and 32 ev, respectively. 
at the edge corresponds to the 



232 

14 

Figure 3. 
Isolated EXAFS spectra: (a) Co(acac)
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]cl

3
• 

(c) K 3 Co(CN) 6 J. 
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Figure 3, continued. 

233 



234 

Jl STANCE cAl 

OIST ANCE il\) 

Figure 4. 
Modulus of the FT of the k3 weighted EXAFS. (a) 

Co(acac) 3 • (b) [Co(en)Cl 3 ]. (c) K3 [Co(CN) 6 ]. The shaded 
area in each transform represents the region of R space 
which was backtransformed into k space using the windowing 
procedure described in the text. 
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Table I. The coefficients from the least-square fit of the 
total phase to a quadratic equation. 

k r~nge Coefficient Co(acac) 3 [Co(en) 3]cl 3 K3 [Co (CN) 6 ] 
(~- ) 

co -7.746* -8.030 -8.517 

4.0-10.5 cl 2. 777 2.962 2.767 

c2 0.0057 0.0041 0.0044 

co -7.722 -8.022 -8.475 

5.0-10.5 cl 2.771 2.960 2.756 

c2 0.0061 0.043 0.0050 

co -7.682 -8.006 -8.412 

6.0-10.5 cl 2.762 2.956 2.741 

c2 0.0066 0.0045 0.0059 

co -7.634 -7.976 -8.320 

7.0-10.5 cl 2.751 2.949 2.720 

c2 0.0073 0.0049 0. 0071 

co -7.692 -8.010 -8.393 

8.0-10.5 cl 2.760 2.956 2.736 

c2 0.0066 0.0045 0.0062 

* Typical errors determined by the 15ast-squares fit: 
c 0 ~ 0.004, c 1 ~ 0.001, c 2 ~ 5xl0- · 
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Table II. Coefficients from the least-square fit 
of the total phase extracted from the amine 
[Co(NH 3) 6]cl 3 complex to a quadratic function. 

k range (A o-1} co cl c2 

4.0-10.5 -8.087* 2.957 0.0058 

5.0-10.5 -8.065 2.952 0.0054 

6.0-10.5 -8.034 2.944 0.0058 

7.0-10.5 -7.983 2.932 0.0065 

8.0-10.5 -8.041 2.945 0.0058 

Typical errors determined by the l~ast-squares fit 
c 0 ~ 0.004, c 1 ~ 0.001, c 2 ~ 5x10-
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Table III. Calculated phase intercepts for a two com­
ponent system. Component A is carbon and component 
B is oxygen. 

NA Ns a' (X=l.O) a'(X=l.25) e' (X=l. 5) 

0 6 -7.6690* -7.6690 -7.6690 

1 5 -7.7812 -7.7613 -7.7474 

2 4 -7.8998 -7.8654 -7.8398 

3 3 -8.0220 -7.9811 -7.9484 

4 2 -8.1442 -8.1068 -8.0746 

5 1 -8.2629 -8.2396 -8.2178 

6 0 -8.3750 -8.3750 -8.3750 

* Phases for the pure components are the average of 
those shown in Table I. 
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CHAPTER IX 

POSSIBILITY OF BOND-LENGTH DETERMINATION IN EXAFS 

WITHOUT THE USE OF MODEL COMPOUNDS OR CALCULATED PHASES* 

9.1 Introduction 

Extended X-Ray Absorption Fine Structure (EXAFS) refers 

to the modulation observed on the high frequency side of an 

x-ray absorption edge. The origin of this structure is due 

to an interference phenomenon in which the final state 

photoelectron is scattered by neighboring atoms. Thus the 

phase difference between the scattered and unperturbed 

photoelectron waves is given by the product of the 

photoelectron wavenumber and the path difference together 

with any phase changes which occur during the scattering 

process. The normalized oscillatory component of the 

absorption coefficient is given byl 

N.lf. (TT,k) le-2ai2k2 
x<kl = -z ~ ~ sin(2kri + ei(k)) 

i k r~ 
~ 

(9.1.1) 

where Ni is the number of equivalent scatters of type i at a 

distance ri from the absorbing atom. fi (11,k) is the back­

scattering function and cri is a Debye-Waller factor which 

accounts for thermal vibrations and static disorder. The 

argument of the sine term represents the total phase 

difference between the scattered and unscattered 

photoelectron waves where 8 i (k) is the composite phase 

shift function. 

The Fourier transform (FT) of Eq. (9.1.1) is a form of 
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radial distribution function {RDF) in which the absorbing 

atom is located at the origin. The position of each peak in 

the RDF does not coincide with the true interatomic distance 

due to the presence of the phase function ei{k) in the sine 

argument. The correct distance is usually obtained by using 

a known {model) compound with the same absorber-scatterer 

pair. The phase function is assumed to be transferable from 

the model compound to the unknown.2 Calculated phase shift 

functions are also used for this purpose. In this case, it 

is assumed that these phases can be accurately calculated 

and that the plane wave approximation inherent in these 

calculations is justified. 3 Chemical binding effects are 

assumed to be unimportant in each case. Furthermore, each 

of the proposed methods for determining the distance assume 

an a priori knowledge of the scattering atom (the absorbing 

atom may be always identified by the observed energy of 

the absorption edge). 

In this chapter we present a method of determining bond 

distances in EXAFS which does not rely on model compounds 

or theoretical phase shifts. In addition, there is no 

assumption concerning the nature of the scattering atom; in 

fact, during the distance determination process, the 

observed phase intercept is a measure of the type of 

scattering atom involved {see Chapter VIII). 

9.2 Physical Basis for The Method 

The physical basis for this scheme is the absence of a 

linear term in the phase function ei(k). This fact is 
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expressed by Levinson's Theorem 4 which states: 

(9.2.1) 

where nL is the number of bound states of angular momentum L 

and li L(k) is the Lth partial wave phase shift. Levinson's 

Theorem is an expression of the fact that each partial wave 

phase shift is bounded, and thus, every atom has a finite 

scattering power. Since the scatterer phase may be expressed 

as a sum of partial waves, the total phase function e i (k) 

must also be bounded. The presence of a 1 inear term would 

cause the phase to diverge as k approaches infinity; and 

hence violate Levinson's Theorem. There is no reason why 

the phase, in a finite k range, cannot be parameterized by 

an equation containing a linear term as discussed by the Lee 

et al. 5 However, it must be realized that the parameter-

ization does not represent the true functional form of the 

phase. If the phase does not contain a linear term, why 

then do the peaks in the FT occur at shorter distances than 

the true interatomic distances? The observed peak position 

is a reflection of the fact that the FT is a linear integral 

transform. The FT attempts to linearize the data but since 

the phase ei(k) is a non-linear, decreasing function of k, 

the result is a peak which is shifted to smaller distances. 

The intrinsic non-1 inear nature of the phase, however, is 

evident from the peak shapes, which are broad and 

asymmetric. 

To exploit the absence of 1 inear terms in the phase 
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9i(k) let us write the total phase function <l>i(k) as: 

where ri is the true interatomic distance. 

define a function g i {k) such that: 

C:lcjli (k) 
g i (k) - ---;C:lo.-k-

¢. {k) 
l. 

k 

We may now 

(9.2.3) 

where the subscript i is a shell index. Since 9i (k) is non­

linear there is no loss of phase information in constructing 

The linear term in Eq. (9.2.2), however, is 

completely absent from gi (k). Thus gi {k) is essentially a 

differential equation in the phase ei(k) 

ae. (kl 
gi(k) = ~k 

e. (kl 
l. 

k 
(9.2.4) 

The general solution of a differential equation of this kind 

is given by: 

9i (k) = k[K + fgi (k)/k dk] (9.2.5) 

where K is the constant of integration. Since the phase 

9i(k) is bounded by Levinson's Theorem, the constant of 

integration must be zero since otherwise the phase will 

diverge at large k. We may thus solve Eq. (9.2.4) for 

9.(k), substitute into Eq. (9.2.2) and obtain the true 
J. 

distance r i. 

To solve Eq. (9.2.4) we must find a functional form for 

ei(k) which satisfies the criteria outlined above. It is 

important to note that for K-edge EXAFS, e i (k) is comprised 
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of the L = 1 partial wave phase shift, 2a 1 , due to the 

central atom potential, together with the phase of the 

scattering amplitude, ~i(k), associated with the ith shell 

of atoms. At sufficiently high energies each partial wave 

phase shift may be approximated by: 

(9.2.6) 

where jL(kr) is a spherical Bessel function and V(r) is the 

scattering potential. Equation (9.2.6) is the Born 

approximation for the phase shift, in which the radial 

solution of the full Schrodinger equation is replaced by the 

free radial solution jL(kr). It may be shown that, for any 

potential V(r), the partial wave phase shift varies as the 

inverse of the photoelectron wavenumber at high energies. 

We shall demonstrate this fact for the simple case of a 

square well potential. 

V ( r) __ {V00 
0 < r < a 

r > a 
(9.2.7) 

At sufficiently high energies the spherical Bessel function 

may be written as: 

(9.2.8) 

Substituting Eqs. (9.2.7) and (9.2.8) into Eq. (9.2.6) it 

may be shown, by elementary integration, that to lowest 

order, the phase shift for any L is given by: 

{9.2.9) 
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Therefore, the central atom phase shift approaches zero as 

1/k, when k tends to infinity. 

We must still calculate the asymptotic behaviour of the 

phase of the scattering amplitude. Assuming the phase 

shifts are real, ~i(k) may be written as: 

~ i ( k) (9.2.10) 

Since oL is small for large k and independent of L, the sine 

terms in Eq. (9.2.10), may be replaced by their arguments. 

Furthermore, the partial wave phase shifts may be removed 

from both summations. Using Eq. (9.2.9) the scatterer phase 

may then be expressed as: 

For large k, the argument of the tangent is small and maybe 

used to approximate the tangent itself. The scatterer phase 

varies as 1/k and, therefore, the composite phase shift 

function, ei (k), also approaches zero like 1/k as k tends to 

infinity. 

A functional form which satisfies the above criteria 

is: 

ei(k) =A+ B exp(-Ck) (9.2.12) 

This function may be expanded in a Taylor series to 

demonstrate its approximate 1/k behaviour at large k. If 

the composite phase is of the form shown in Eq. (9.2.12) 
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then the function gi(k) takes the fo~m: 

gi(k) = -A/k- (BC + B/k) exp(-Ck) (9.2.13) 

whe~e A, B and C a~e now adjustable pa~amete~s in the fit of 

Eq. (9.2.13) to the expe~imentally dete~mined function 

When these pa~amete~s a~e dete~mined, the phase 

function may be calculated f~om Eq. 

distance f~om Eq. (9.2.2). 

9.3 Application to Model Systems 

(9.2.12) and the 

To illust~ate the ability of this scheme to dete~mine 

accu~ate bond distances, a se~ies of cobalt complexes we~e 

studied. In this chapte~, howeve~, we will discuss just one 

of these complexes, Co(acac) 3• A mo~e detailed desc~iption 

of this technique, togethe~ with the manne~ in which 

accu~ate phase info~mation may be ext~acted f~om EXAFS data, 

will be p~esented in a late~ publication. The Co(acac) 3 

sample used in this study was p~epa~ed f~om analytical g~ade 

~eagent. The EXAFS measu~ement was made at ~oom 

tempe~atu~e, in the t~ansmission mode, using the Caltech 

Labo~ato~y EXAFS Spect~omete~ (desc~ibed in Chapte~ VI). 

The backg~ound abso~ption and the th~eshold ene~gy we~e 

dete~mined using the convolution method int~oduced ea~lie~. 6 

The fi~st-shell peak in the t~ansfo~m, co~~esponding to the 

cobalt-oxygen distance was isolated using the peak isolation 

scheme discussed p~eviously.7 The total phase was 

dete~mined using a scheme due to Lee et a1. 1 and the 
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function g 1 (k) was constructed. Figure 1 shows a plot of 

the tota~ phase together with the function g 1 (k). Table I 

shows the parameters of the fit of g 1 (k) to the functional 

form shown in Eq. (9.2.12) for several fitted data ranges. 

Using these parameters, the phase function e 1 (k) was 

generated and the cobalt-oxygen bond distance was determined 

from Eq. (9.2.2) 

The observed bond distance is dependent on the data 

range used in the fit. The largest deviations from the true 

distance occur: when exclusively high k data is analyzed. It 

is possible, however:, to determine which data should be used 

in the distance analysis. The derivative of the total 

phase 

phase 

~i (k), is simply the derivative of the scattering 

function together with a constant (2r:i)• If the 

exponential form in Eq. (9.2.12) is to describe the 

scattering phase function, then any deviations from this 

functional form may readily be seen from the derivative of 

the total phase. At high k values this derivative is often 

seen to differ: markedly from that of a simple exponential 

function. Therefore, it not surprising that the distances 

obtained from an exclusive analysis of such data are wrong, 

since Eq. (9.2.12) is not a valid description of the 

scattering phases in this region. The origin of these 

deviations, however, is more 

data rather than additional 

phase at high k values. 

likely to be due poor quality 

structure in the scattering 

An accurate estimation of the threshold energy, E0 , is 
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also required for this method. It is important to note that 

an error in E0 cannot contribute to an error in the k scale 

which varies linearly with k. This may readily be seen from 

a binomial expansion of the free electron dispersion 

relation which relates the x-ray energy to the photoelectron 

wavenumber by this quantity E
0

• Changing E
0 

by 6E
0 

will 

change a given k value into a new value k' defined by: 

k' = [k 2 - 26E0 /7.62) 1 / 2 

~ k[l- 6E
0
/(7.62 k 2 )) 

(9.3.1) 

Clearly, an error in E0 cannot produce a linear change in k, 

and therefore, such an error will persist in the 

differential equation Eq. (9.2.4). The present approach is 

to accept this uncertainity in E0 and to correct for it in 

the latter part of the analysis. The manner in which such 

an analysis may be performed will be discussed in detail in 

a forthcoming publication. 

The phase intercept has been shown to be a quantitative 

means of determining the nature of the scattering atom. 7 In 

this case, the intercept is given by the sum of the A and B 

coefficient. Therefore, it is possible to simultaneously 

derermine the bond distance and the type of neighboring atom 

involved. The observed phase intercept for oxygen with 

cobalt as the absorbing atom agrees with the value 

previously reported. 7 
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9.4 Discussion 

In conclusion, this method may be used to determine 

bond distances from EXAFS data to within 1% (for single 

shell systems), without resorting to model compounds or 

calculations. No assumption is made concerning the nature 

of the scattering atom; indeed, it is possible to identify 

such atoms from the observed phase intercept. 
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5 7 

-- --
9 II 

Plot of the total phase (solid curve) and the function 
g 1 (k)as a function of k. These data are for the Co(acac)

3 complex. Note that the total phase appears linear due to 
the dominant 2kr 1 term. 
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Table I. The parameters obtained in the fit of Eq. 
(9.2.3) to the function g 1 (k) which is calculated 
from the total phase of Ehe first shell peak in 
the Co(acac) 3 complex. 

Fitted k Range 

3.1 - 10.4 

3.1 - 5.5 

5.0 - 10.4 

7.0 - 10.4 

A 

-82.896 

-8 3.870 

-82.262 

-83.908 

B 

75.158 

76.130 

74.551 

76.233 

c 

0.0131 1.879 

0.0133 1.891 

0.0136 1.889 

0.0153 1.917 

*R(Co-0) = 1.888 ~ determined by x-ray diffraction.a 


