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SUMMARY

This thesis consists of three chapters on the statistical adjustment, calibration,

and uncertainty quantification of complex computer models with applications in en-

gineering. The first chapter systematically develops an engineering-driven statistical

adjustment and calibration framework, the second chapter deals with the calibra-

tion of potassium current model in a cardiac cell, and the third chapter develops an

emulator-based approach for propagating input parameter uncertainty in a solid end

milling process.

Engineering model development involves several simplifying assumptions for the

purpose of mathematical tractability which are often not realistic in practice. This

leads to discrepancies in the model predictions. A commonly used statistical approach

to overcome this problem is to build a statistical model for the discrepancies between

the engineering model and observed data. In contrast, an engineering approach would

be to find the causes of discrepancy and fix the engineering model using first princi-

ples. However, the engineering approach is time consuming, whereas the statistical

approach is fast. The drawback of the statistical approach is that it treats the en-

gineering model as a black box and therefore, the statistically adjusted models lack

physical interpretability. In the first chapter, we propose a new framework for model

calibration and statistical adjustment. It tries to open up the black box using simple

main effects analysis and graphical plots and introduces statistical models inside the

engineering model. This approach leads to simpler adjustment models that are phys-

ically more interpretable. The approach is illustrated using a model for predicting

the cutting forces in a laser-assisted mechanical micromachining process and a model

x



for predicting the temperature of outlet air in a fluidized-bed process.

The second chapter studies the calibration of a computer model of potassium

currents in a cardiac cell. The computer model is expensive to evaluate and contains

twenty-four unknown parameters, which makes the calibration challenging for the

traditional methods using kriging. Another difficulty with this problem is the presence

of large cell-to-cell variation, which is modeled through random effects. We propose

physics-driven strategies for the approximation of the computer model and an efficient

method for the identification and estimation of parameters in this high-dimensional

nonlinear mixed-effects statistical model.

Traditional sampling-based approaches to uncertainty quantification can be slow if

the computer model is computationally expensive. In such cases, an easy-to-evaluate

emulator can be used to replace the computer model to improve the computational

efficiency. However, the traditional technique using kriging is found to perform poorly

for the solid end milling process. In chapter three, we develop a new emulator,

in which a base function is used to capture the general trend of the output. We

propose optimal experimental design strategies for fitting the emulator. We call our

proposed emulator local base emulator. Using the solid end milling example, we show

that the local base emulator is an efficient and accurate technique for uncertainty

quantification and has advantages over the other traditional tools.
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CHAPTER I

ENGINEERING-DRIVEN STATISTICAL ADJUSTMENT

AND CALIBRATION

1.1 Introduction

Models derived from physics often do not represent reality due to various sim-

plifying assumptions made during their derivation. A commonly used approach is

to collect real data from the system and estimate the unknown parameters (known

as calibration parameters) in the engineering (or computer or physics-based) model.

This calibration procedure brings the engineering model closer to the real observa-

tions making the model predictions more realistic. See for example Box and Hunter

(1962). However, the model form itself can be wrong and therefore, merely estimating

the unknown parameters from data will not eliminate the discrepancy between the

predictions and the truth.

A statistical approach to overcome this problem is to build an empirical model

to capture the model discrepancy. In a fundamental work, Kennedy and O’Hagan

(2001) proposed to do this using Gaussian process (GP) models. Improvements to

the GP modeling approach were made by Higdon et al. (2004), Bayarri et al. (2007),

Qian and Wu (2008), Wang, Chen, and Tsui (2009), and Chang and Joseph (2014).

Methods using linear regression models (Reese et al. 2004; Joseph and Melkote 2009)

have also appeared in the literature, which again do the same job of representing the

model discrepancy through a statistical model.

On the other hand, an engineering approach to deal with model discrepancy is

quite different. The aim there is to understand why such a discrepancy happened and

fix the wrong assumptions made in the model derivation so as to overcome the dis-

crepancy. For example, Singh and Melkote (2009) describe a physics-based model for
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predicting the cutting forces in a laser-assisted mechanical micro-machining (LAM-

M) process. During its development discrepancies from real data were observed.

Attempts were made to improve the model, for example, by replacing an analytical

model of a moving point heat source by a finite element model that solves a transient

heat equation with appropriate boundary conditions and by incorporating an iterative

algorithm that accounts for the deflection in the machine-tool-workpiece system.

Both approaches have pros and cons. The statistical approach is conceptually

simple to implement. Once we have the real data from the system, we can fit a

statistical model, be it a GP model or a linear regression model. However, such

statistically-adjusted engineering model lacks predictive power in the sense that it

can be used only in the experimental conditions identical or very similar to those

under which the statistical adjustment model was fitted. For example, in the LAM-

M process, if the machine is changed, then new data need to be collected and the

calibration/adjustment needs to be repeated, whereas this does not have to be done

with the engineering approach. The change in the machine mainly causes a change

in the stiffness which can be incorporated into the engineering model that accounts

for the deflection in the machine-tool-workpiece system. Another advantage of the

engineering approach is that we will have an improved understanding of the system,

which will help in new developments. However, the engineering approach has a se-

rious drawback that it is very time consuming. It takes time to hypothesize about

the potential causes of discrepancies, investigate through experiments, and develop

models to account for them. For example, replacing the analytical model with a finite

element model in the LAMM required writing new codes which was extremely time

consuming.

In this chapter we propose a new approach to model calibration and adjustment,

which can be viewed as an integration of the foregoing two approaches. We call

it engineering-driven statistical adjustment. The idea is to first understand about

the model discrepancies using data and then to postulate statistical models that

have physical interpretations. This may not sound totally new to many practitioners

working in this area. What is new here is that we propose a general framework

2



instead of an ad hoc and problem-specific approach. Our approach can be viewed

as an extension of the Kennedy-O’Hagan framework for model calibration. We start

by fitting a GP model and then through main effects analysis and graphical plots

we investigate the model discrepancies. This is an important step in our approach

which gives statistical guidance to engineers on where to look and what to look for in

the data. The next step is to postulate simple adjustment models that can account

for the discrepancies. The aim here is to reduce the time needed in the development

of a pure engineering model while ensuring that the statistical models have physical

interpretations.

To motivate the kind of adjustment models proposed in this chapter, consider the

sulphur dioxide (SO2) mixing process discussed in Pal and Joseph (1998). In this

process, the SO2 gas is mixed with water in a tank. Using mass balancing equations

of the mixing process, the concentration of the SO2 in the output solution at time t

can be obtained as

f(x, t; η) = f0 exp{−(x1 + x2)t/η}+
x1

x1 + x2
(1− exp{−(x1 + x2)t/η}),

where x1 is the flow rate of SO2 gas into the tank, x2 is the flow rate of water into

the tank, x = (x1, x2)
′, and f0 is the initial concentration at time t = 0. Here the

unknown parameter η represents the mass of the solution in the tank. Pal and Joseph

collected data on the SO2 concentration over time at different settings of x1 and x2

and found that there is a severe discrepancy between the predicted concentration by

the above model and the observed data. They realized that if the model is adjusted

to

f(x, t; η) = f0 exp{−(γx1 + x2)t/η}+
γx1

γx1 + x2
(1− exp{−(γx1 + x2)t/η}),

where γ is an unknown parameter, then the model fits the data very well. Interesting-

ly, later it was found that the instrument used for measuring the flow rate of SO2 gas

was out-of-calibration and therefore, γ could be viewed as a coefficient introduced for

correcting the scale-bias of the instrument. Pal and Joseph identified this adjustment

model through trial and error, but such an approach becomes impractical when the

3



engineering model is complex and contains many variables. The aim of this work

is to propose a systematic approach to identifying adjustment models through data

analysis.

The chapter is organized as follows. In Section 1.2, we describe the main part of

our engineering-driven statistical adjustment methodology (see Figure 1). We start

with a simplified version of the Kennedy and O’Hagan model and try to identify the

causes of discrepancy through a functional ANOVA decomposition. We then postulate

statistical adjustment models to account for the discrepancy. Although this model

adjustment step can be quite general, most of the time we end up in an enhanced

engineering model that includes an extra set of unknown parameters. The statistical

inference of such models is discussed in Section 1.3. The methodology is explained

using the LAMM example in Section 1.4.1 and fluidized-bed processing example in

Section 1.4.2. Some follow-up and model refinement strategies are discussed in Section

1.5 and we conclude with some remarks and future research directions in Section 1.6.

Figure 1: Engineering-driven statistical adjustment methodology.

1.2 Methodology

Let Y be the output of the system and x = (x1, · · · , xp)′ the input variables.

Denote the engineering model by f(x;η), where η = (η1, · · · , ηq)′ are the calibration

parameters. Then, Kennedy and O’Hagan (2001)’s model can be stated as

Y = ρf(x;η) + δ(x) + ε, (1)

where ρ is a scale parameter, δ(x) the model bias or discrepancy function, and

ε ∼iid N(0, σ2) the random error which captures the measurement noise and the effect

4



of unaccounted variables in the system. The scale parameter, calibration parameters,

and the bias function can be estimated from the real data (x1, y1), · · · , (xn, yn). Fur-

thermore, Kennedy and O’Hagan (2001) proposed to model δ(x) using a stationary

Gaussian process, which can be viewed as putting a prior on the discrepancy function:

δ(x) ∼ GP (h(x)′µ, τ 2R(·)), (2)

where h(x) = (h0(x), · · · , hl(x))′ is a set of known functions, µ = (µ0, · · · , µl)′

a set of unknown regression parameters, and the covariance function is defined as

cov(δ(xi), δ(xj)) = τ 2R(xi − xj) with τ 2 denoting the variance.

Often the engineering models are complex and their evaluations can be expensive.

In such cases, f(x;η) will be replaced by an easy-to-evaluate approximate model

(known as metamodel, surrogate model, or emulator) fitted based on the data from

a computer experiment (Sacks et al. 1989). Kennedy and O’Hagan (2001) explains

how the uncertainties in the approximation using a GP model can be incorporated

into the calibration. However, we will ignore these uncertainties for the moment and

revisit this problem later in Section 1.3.2.

1.2.1 Understanding the Model Discrepancy

Before proceeding further, we slightly modify the Kennedy and O’Hagan’s model

specification by letting ρ = 1 and µ = 0 in (1) and (2). This is because, in our

framework, ρ and µ belong to what we call adjustment parameters, which if needed,

can be identified at a later stage. Thus our model becomes

Y = f(x;η) + δ(x) + ε,

δ(x) ∼ GP (0, τ 2R(·)), (3)

and ε ∼iid N(0, σ2). Note that with this simplified model, the engineering model can

be viewed as the prior mean of the unknown true function.

Our first step is to estimate the model discrepancy and try to understand the caus-

es of the discrepancy. For the discrepancy term δ(x), we use the Gaussian correlation

function given by

R(xi − xj) = exp{−
p∑

k=1

θk(xik − xjk)2}.
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Thus, the unknown parameters in the model are η, σ2, τ 2, and θ = (θ1, · · · , θp)′.

Let φ = (σ2, τ 2,θ′)′. Higdon et al. (2004) and Bayarri et al. (2007) describe fully

Bayesian approaches for estimating them. But since we use this model only as a

starting point to build our engineering-driven statistical adjustment model, a much

simplified approach can be adopted. Let p(η,φ) = p(η)p(φ) be a prior on the un-

known parameters.

Integrating out (δ(x1), . . . , δ(xn)) from the joint posterior, we obtain

p(η,φ|y) ∝ 1

|τ 2R+ σ2I|1/2
exp{−1

2
(y−f(η))′(τ 2R+σ2I)−1(y−f(η))}p(η,φ), (4)

where R is an n× n correlation matrix with ijth element R(xi − xj), I is the n× n

identity matrix, f(η) = (f(x1;η), · · · , f(xn;η))′, and y = (y1, · · · , yn)′. Thus, we

can obtain the estimates (posterior modes) of η and φ by maximizing p(η,φ|y).

Denote the estimates by η̂ and φ̂. The posterior mean of the discrepancy function is

given by

δ̂(x) = r(x)′
(
R+

σ2

τ 2
I

)−1
(y − f(η)), (5)

where r(x) = (R(x − x1), · · · , R(x − xn))′. It can be computed by plugging-in the

estimates of η and φ.

We now perform a functional ANOVA decomposition of δ̂(x) as described in Sacks

et al. (1989) and Welch et al. (1992). More details about functional ANOVA and

sensitivity analysis can be found in Santner, Williams, and Notz (2003, ch. 7) and

Fang, Li, and Sudjianto (2006, ch. 6). Assume that all the variables are scaled in

[0, 1]p. Then, the mean effect can be computed as

δ̂0 =

∫
[0,1]p

δ̂(x) dx,

and the main effects as

δ̂i(xi) =

∫
[0,1]p−1

δ̂(x) dx−i − δ̂0,

for i = 1, · · · , p. Since we use a Gaussian correlation function, explicit expressions

of these quantities can be obtained as in Oakley and O’Hagan (2004) and Chen, Jin,

6



and Sudjianto (2005). Let c = (R+ σ2/τ 2I)−1(y − f(η)). Then,

δ̂0 =
n∑
j=1

cj

p∏
k=1

∫ 1

0

e−θk(xk−xkj)
2

dxk

=
n∑
j=1

cj

p∏
k=1

√
π

θk
[Φ(
√

2θk(1− xkj))− Φ(−
√

2θkxkj)], (6)

where Φ(·) is the standard normal distribution function. Similarly,

δ̂i(xi) =
n∑
j=1

cje
−θi(xi−xij)2

p∏
k 6=i

∫ 1

0

e−θk(xk−xkj)
2

dxk − δ̂0

=
n∑
j=1

cje
−θi(xi−xij)2

p∏
k 6=i

√
π

θk
[Φ(
√

2θk(1− xkj))− Φ(−
√

2θkxkj)]− δ̂0. (7)

It is also possible to compute the two-factor and higher order interactions, but they

are much harder to interpret. Therefore, we propose to gather useful information

about the model discrepancy using only the main effects. For doing this main effects

analysis, we rely on the effect hierarchy principle that most physical systems are

governed by the lower order effects and the effect heredity principle that in case there

are significant higher order effects, it will be seen in their lower order effects as well

(Hamada and Wu 1992). However, to make sure that we are not missing anything

important, we also compute the global sensitivity indices (Sobol 2001) of the higher

order effects (see Section 1.4). In fact, a computationally simpler alternative is to

compute the total sensitivity indices of each variable (see Fang et al, 2006, pp. 196)

and compare them with the corresponding main effect indices.

We can now plot δ̂i(xi) against each xi and identify the most important variables

affecting the model discrepancy. From this we can try to investigate the causes for

the observed discrepancy. This step requires engineering knowledge on that particu-

lar system. We may identify more than one potential cause, but collectively they will

provide insights for postulating adjustment models as described in the next subsec-

tion.

1.2.2 Postulating Adjustment Models

After identifying the potential causes for discrepancy, there are two ways to pro-

ceed. We could directly work on the engineering model by correcting the model

7



assumptions and by incorporating additional variables that would potentially explain

the causes of discrepancy. As explained in the introduction, this engineering approach

can be time consuming. Instead, we propose to postulate simple statistical models

to address the potential causes of discrepancy. These statistical models are again

identified through some graphical plots as described below.

First perform the main effect analysis on the calibrated engineering model f(x; η̂).

One efficient approach to do this is to use Quasi-Monte Carlo (QMC) sampling (see,

e.g., Saltelli 2002). Let {x(1), · · · ,x(m)} be a QMC sample from [0, 1]p. Then, the

overall mean effect is given by fo =
∑m

j=1 f(x(j); η̂)/m and the main effects

fi(xi) =
1

m

m∑
j=1

f((x
(j)
(i) , xi); η̂)− f0,

for i = 1, · · · , p, where (x
(j)
(i) , xi) denotes the vector x(j) with its ith element replaced

by xi.

The bias-corrected engineering model based on the data is given by

ŷ(x) = f(x;η) + δ̂(x).

Because we have already performed functional ANOVA decomposition on the two

terms separately, we can easily obtain the mean effect of ŷ(x) as ŷ0 = f0 + δ̂0 and the

main effects as

ŷi(xi) = fi(xi) + δ̂i(xi). (8)

Note that fi(xi) shows the effect of xi on the engineering model, whereas ŷi(xi) shows

the effect of xi on the engineering model after correcting for the bias based on the

observed data. Thus, we can plot fi(xi) and ŷi(xi) against xi side-by-side and try

to understand the changes in the main effects due to the discrepancy. To simplify

this procedure, we only need to look at the plots of the variables identified in the

previous section having significant effects on the model discrepancy. These plots will

help engineers and statisticians postulate meaningful statistical models to account for

the observed discrepancy. This step requires engineering knowledge of the particular

system under investigation, but we provide some general guidelines below.

8



Let γ be the new unknown parameters in the statistical adjustment model. We will

call them adjustment parameters. Thus, denote the statistically-adjusted engineering

model by g(x;η,γ). Based on our experience, an adjustment model that is especially

useful is a scale adjustment model given by

g(x;η,γ) = f(γ1x1, · · · , γpxp;η). (9)

They can be identified from the side-by-side plots of fi(xi) and ŷi(xi) against xi. It is

not necessary to introduce p new parameters; we only need to include parameters for

variables exhibiting discrepancy identified from the graphical plots. For example, if

ŷ1(x1) looks tilted compared to f1(x1), then we can include γ1 in the model (see the

top left panel of Figure 5 for an example). But if the amount of tilting changes with

respect to x1, then including γ1 alone cannot take care of the discrepancy. Thus, we

may need to consider a more elaborate scale-power model given by

g(x;η,γ) = f(γ10x
γ11
1 , · · · , γp0xγp1p ;η). (10)

The foregoing scale and scale-power models should be used only with nonnegative

variables. It is important to note that the scale-power transformations are applied on

the original scale of the variables. Thus, if these variables are standardized in [0, 1]p for

the purpose of model fitting, then they should be transformed back to their original

scales before fitting (9) and (10). When unrestricted variables are included in the

engineering model (such as angle and temperature), we can consider a location-scale

model

g(x;η,γ) = f(γ01 + γ11x1, · · · , γp0 + γp1xp;η). (11)

Of course, combinations of location-scale and scale-power models can be considered

depending on the type of variables and their boundary conditions.

Although (9), (10), and (11) are simple statistical adjustments to the engineer-

ing models, surprisingly they are found to be powerful in dealing with a variety of

engineering systems. Moreover, many times, some interpretations to the adjustment

parameters γ can also be given (like the SO2 example in the introduction). Another

advantage of these adjustment models is that they tend to keep the shape of the

9



original engineering model such as monotonicity, which have some physical meaning.

Such properties are often lost when a GP model adjustment is used. This is a point

noted by Joseph and Melkote (2009), where they tried to find minimal adjustment

models by applying variable selection on linear regression models. The adjustment

models introduced here are more suitable for making the minimal adjustment. An-

other advantage of the proposed adjustment models is that they are more capable

in extrapolation. The GP model adjustment goes back to the mean when extrap-

olating, whereas the trends identified in the proposed adjustment are retained into

regions outside the data range as well (see the surface roughness example in Joseph

and Melkote 2009).

We want to emphasize that the foregoing adjustment models should be used only

as guidelines and not as a norm for statistical adjustment. A completely different

form of the adjustment may be suitable for a particular problem. For example, for

overcoming the discrepancy in the force profiles observed over the immersion angle

(x) in a micro-milling process, Kumar et al. (2013) considered an adjustment model

of the form γ0 + γ1 sinx+ γ2 cosx. This is because such an adjustment model can be

viewed as correcting for the spindle run out in the micro-milling machine and thus

has a physical interpretation.

1.3 Statistical Inference

Letα = (η′,γ ′)′ be the complete set of unknown parameters in our new engineering-

statistical model. We can estimate them by fitting:

yi = g(xi;α) + ei + εi, (12)

for i = 1, · · · , n, where εi ∼iid N(0, σ2) is the measurement error as before and

ei ∼iid N(0, σ2
e) is the residual model bias (i.e., the bias not captured by g(·; ·)).

This is just a nonlinear regression model, however problems can arise in fitting the

model, particularly when the number of unknown parameters is large compared to

the available data. There may be insufficient engineering knowledge to choose the

potential causes based on the graphical analysis and one may have to postulate an

10



unnecessarily large adjustment model. Thus, many adjustment parameters may do

the same job of explaining the discrepancy leading to the multicollinearity problem

in regression analysis. This can be avoided using shrinkage estimation as in ridge

regression. In a Bayesian framework, shrinkage can be achieved by putting a prior

on the adjustment parameters. As demonstrated by Kennedy and O’Hagan (2001),

the Bayesian framework has the added advantage that it can easily incorporate vari-

ous sources of uncertainty such as those present in approximating a computationally

expensive engineering model. Therefore, we follow a Bayesian approach and develop

the necessary estimation and uncertainty quantification techniques for the proposed

adjustment models in the following subsections.

1.3.1 Prior Specification

Putting a prior on the adjustment parameters is not trivial because of the non-

linearity of the engineering/adjustment model. In a linear regression model this was

easy to do as the variables can be standardized to obtain γi’s in the same scale. This

is no longer true with a nonlinear regression model. To obtain a meaningful prior for

the adjustment parameters, we extend the functionally induced prior construction for

linear regression models introduced in Joseph (2006). This approach fits in very well

with our problem because we already have a GP prior (3) placed on the underlying

true function. To do this, let γ0 be such that g(x;η,γ0) = f(x;η). For example, in

a scale adjustment model γ0 = (1, · · · , 1)′. Using Taylor series expansion

g(x;α) ≈ f(x;η) + (γ − γ0)
′
[
∂

∂γ
g(x;η,γ)

]
γ=γ0

.

Let g(α) = (g(x1;α), · · · , g(xn;α))′ and G0(η) be a matrix whose ijth element is

∂
∂γj
g(xi;η,γ) evaluated at γ = γ0. Then,

g(α) ≈ f(η) +G0(η)(γ − γ0),

for γ close to γ0. Previously we have placed a GP prior on the discrepancy function:

δ(x) ∼ GP (0, τ 2R(·)). Thus, we have δ = (δ(x1), · · · , δ(xn))′ ∼ N(0, τ 2R). Now we

place a prior on γ such that g(α) − f(η) can approximate the prior on δ. Solving
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for γ using generalized least squares, we obtain

γ = γ0 + {G0(η)′R−1G0(η)}−1G0(η)′R−1(g(α)− f(η)).

By neglecting e1, . . . , en, we have g(α)−f(η) ∼ N(0, τ 2R) approximately. Thus, we

obtain

γ|η ∼ N(γ0, τ
2{G0(η)′R−1G0(η)}−1). (13)

1.3.2 Posterior Analysis

We simplify the posterior analysis by fixing certain parameters, specifically φ =

(σ2, τ 2,θ′)′ is fixed at its posterior mode φ̂ obtained earlier. Thus, our objective is

to find the posterior distribution of α = (η′,γ ′)′ and σ2
e given φ = φ̂. It can be

obtained as

p(α, σ2
e |y) ∝ p(y|α, σ2

e)p(α)p(σ2
e)

∝ 1

(σ̂2 + σ2
e)
n/2

exp

{
−1

2

n∑
i=1

[yi − g(xi;α)]2

(σ̂2 + σ2
e)

}
p(γ|η)p(η)p(σ2

e).(14)

Clearly, we cannot obtain an explicit expression for the posterior distribution. We can

use MCMC methods to sample from the posterior and compute the desired posterior

quantities. Let (αj, σ
2
ej), j = 1, . . . ,m be the posterior sample. Then, the mean

prediction at any x can be obtained as

ḡ(x) =
1

m

m∑
j=1

g(x;αj).

A credible interval for the mean prediction can be obtained by computing appropriate

quantiles of g(x;αj) at each x. Prediction intervals can be similarly computed by

sampling from N(g(x;αj), σ
2 + σ2

ej) for j = 1, . . . ,m.

The estimation and uncertainty quantification become much more complex when a

metamodel is used for approximating a computationally expensive engineering model.

This is because we also need to account for the uncertainties in the metamodel. A

fully Bayesian treatment of this problem is discussed in Higdon et al. (2004), which

can be computationally demanding. Following Chang and Joseph (2014), here we

use a much simpler approach. As in the previous works (Kennedy and O’Hagan

12



2001, Bayarri et al. 2007), assume that the metamodel for the engineering model

is constructed using only the data from a computer experiment. Let f̂(x;η) be the

metamodel and s2(x;η) be a variance estimate for the prediction at (x,η) using the

metamodel. Given the computer experiment data, assume that

f(x;η) = f̂(x;η) + s(x,η)r(x;η),

r(x;η) ∼iid N(0, 1). (15)

Of course it is more accurate to assume a smooth GP for r(x;η), but recent re-

sults show that the correlations in a residual process are small (Haaland and Qian

2011, Ba and Joseph 2012). Ignoring the correlations in r(x;η) leads to tremendous

computational simplifications as we show below.

First note that f(η) ∼ N(f̂(η),S(η)), where f̂(η) = (f̂(x1;η), . . . , f̂(xn;η))′

and S(η) = diag{s2(x1;η), . . . , s2(xn;η)}. Now by integrating out f(η) from (4),

we obtain

p(η,φ|y) ∝ 1

|τ 2R+ S(η) + σ2I|1/2
exp{−1

2
(y−f̂(η))′(τ 2R+S(η)+σ2I)−1(y−f̂(η))}p(η,φ).

(16)

Maximizing p(η,φ|y) with respect to η and φ, we can obtain their estimates η̂

and φ̂. Now proceeding as before, we can identify the adjustment model g(x;α).

For simplicity, consider a scale adjustment model, which can be written as g(x;α) =

f(x�γ;η), where� represents element-wise multiplication. Let ĝ(x;α) = f̂(x�γ;η)

and Ĝ0(η) be the gradient matrix obtained using ĝ(x;α). Fixing G0(η) at Ĝ0(η),

we can integrate out f(η) from the unnormalized posterior in (14) to obtain (with

φ = φ̂)

p(α, σ2
e |y) ∝

n∏
i=1

[σ̂2 + σ2
e + s2(xi � γ;η)]−1/2 exp

{
−1

2

n∑
i=1

[yi − ĝ(xi;α)]2

[σ̂2 + σ2
e + s2(xi � γ;η)]

}
×p(γ|η)p(η)p(σ2

e). (17)

Now we can proceed exactly as in the previous subsection to generate an MCMC

sample and compute the necessary posterior quantities.

Note that by virtue of the assumption in (15), the mean prediction at x simplifies

13



to

ḡ(x) = E{g(x;α)|y} = E[E{g(x;α)|α,y}|y]

= E[ĝ(x;α)|y].

It can be estimated from the MCMC sample as ḡ(x) =
∑m

j=1 ĝ(x;αj)/m. The

prediction intervals can be computed by sampling from N(ĝ(x;αj), σ̂
2 +σ2

ej + s2(x�

γj;ηj)) for j = 1, . . . ,m. We can see that the variance is inflated because of the

uncertainties in the metamodel and therefore, the prediction intervals will become

wider.

1.4 Examples

1.4.1 LAMM Example

Consider the laser-assisted mechanical micromachining (LAMM) process discussed

in the introduction. The engineering models for this process were developed in Singh

and Melkote (2009) and calibrated using real data in Singh, Joseph, and Melkote

(2011). The engineering model is a highly complex computer model consisting of

a geometrical model to compute strain and strain rates, a finite element model to

compute the temperature distribution, a material model for computing the stresses,

a force model for computing the forces, and an iterative algorithm to account for the

machine-tool-workpiece deflection.

Four variables: nominal depth of cut (x1), cutting speed (x2), laser power (x3),

and laser location (x4) are selected for process optimization. Because it takes about

14 hours for a single evaluation of the computer model, an easy-to-evaluate approx-

imation of the model is needed. For this purpose, a full factorial 4 × 2 × 3 × 2

computer experiment was performed. Several outputs were obtained from the com-

puter model, but for simplicity, here we analyze only the cutting forces (y). Singh

et al. (2011) proposed the following nonlinear regression model to approximate the

computer model:

f(x) = β0x
β1
1 exp

{
β2x2 − β3x3e−β4x4

}
. (18)

The nonlinear regression fitting gave β̂0 = 1.3586, β̂1 = 0.8887, β̂2 = 0.0014, β̂3 =
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0.0268, and β̂4 = 0.0034 with an R2 = 0.9972 and residual standard error σ̂f = 0.2749.

Because of the excellent fit and the model’s several physical interpretations, the above

nonlinear regression was preferred over the commonly used kriging metamodel.

A physical experiment was also carried out on the LAMM process using the same

48-run experimental design but with three replicates per run. Figure 2 plots the

(exact) computer model predictions and the average cutting force measured in the

physical process averaged over the three replicates. We can see that most of the values

lie above the 45o line indicating that the engineering model under-predicts the cutting

forces. Thus, there is a severe model discrepancy. There can be several reasons for this

discrepancy. It can be due to assuming the specific heat coefficient used in the thermal

model to be temperature independent or due to neglecting the plasticity effects in the

geometrical model or due to using wrong coefficients in the Johnson-Cook material

model, and so on. As discussed in the introduction, a pure engineering approach

of checking all these possibilities, identifying the correct cause, implementing and

validating the model, is a time consuming process. On the other hand, building a

statistical model to account for discrepancy as in Kennedy and O’Hagan (2001) is

easy, but it lacks physical interpretations. Below we explain how the model can be

corrected using the proposed engineering-driven statistical adjustment approach.

First the main effects from the functional ANOVA decomposition of the meta-

model are computed using QMC sampling and are plotted in Figure 3(a). We can see

that the nominal depth of cut (x1) has the largest effect on the cutting force followed

by the laser power (x3). Now we can fit a GP model to the model discrepancy as

described in Section 1.2.1. There were three replicates in each run of the experiment.

These were used to compute the error variance as 1.42, which has degrees of freedom

48×(3−1) = 96. We will analyze the average of the three observations and therefore,

the error variance should be 1.42/3. We use this value to specify an inverse-Gamma

prior for σ2 as σ2 ∼ IG(96/2, (96/2 + 1)× 1.42/3), where the parameters are chosen

such that the mode is at 1.42/3. For rest of the parameters, we use a noninformative

prior p(τ 2,θ) ∝ 1. The prediction variance (see, Bates and Watts 1988) from the
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Figure 2: Plot of the cutting force predictions from the engineering model and the
measured values.

nonlinear regression is given by

s2(x) = σ2
f + σ2

f ḟ(x)′(Ḟ
′
Ḟ )−1ḟ(x),

where ḟ(x) is the gradient vector of f̂(x) with respect to x and Ḟ = (ḟ(x1), · · · , ḟ(xn))′.

Because f̂(x) has a simple form, we can easily obtain

ḟ(x) = f̂(x)

(
β̂1
x1
, β̂2,−β̂3e−β̂4x4 , β̂3β̂4x3e−β̂4x4

)′
.

Now by maximizing p(φ|y) in (16), we obtain the correlation parameters θ̂ = (2.10, 0.15, 2.04, 0.21)′

and the variance parameters σ̂2 = .49 and τ̂ 2 = 7.58. By plugging-in these values, we

can compute the discrepancy function given in (5).

We now perform the functional ANOVA decomposition of δ̂(x). The main effects

can be computed explicitly using (7) and are plotted in Figure 3(b). We can see that

the main contributors to the discrepancy are the nominal depth of cut (x1) and the

laser power (x3). Although we will focus on the main effects analysis, as a cautionary

step, we will also compute the sensitivity indices of the two-factor interactions. The

global sensitivity indices of the main effects and two-factor interactions are plotted

(after a log-transform) in Figure 4. We can see that the large sensitivity indices are
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Figure 3: Main effects from the functional ANOVA decomposition of (a) f(x) and
(b) δ(x).

due to the main effects of x1 and x3. The sensitivity indices of two-factor interactions

are very small and thus, a main effects analysis is reasonable in this problem. If

we were to detect some large two-factor interactions, then some follow-up strategies

would be needed, which will be discussed in the next section.

The next step would be to investigate why these model discrepancies are observed,

especially focusing on the effects of the nominal depth of cut and laser power. In some

cases, the engineers working in the process might be able to quickly point out a reason

and then we can proceed to build an engineering or a statistical model to address the

cause. In some other cases, the process is so complex that the engineers may not have

enough knowledge to attribute the discrepancies to a particular cause. In such cases,

we can perform the following analysis to develop a statistical adjustment model.

We can use (8) to quickly compute the main effects of the engineering model plus

the discrepancy function. These are plotted in Figure 5 along with the main effects

of the engineering model. We can see that when we use the data, the sensitivity of x1

has increased, whereas the sensitivity of x3 has decreased. The other two variables

do not have much effect, which is expected based on the main effect plots in Figure
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Figure 4: Plot of the log-sensitivity indices of engineering model and discrepancy.

3(b). The effect of data is to slightly tilt the main effect of x1 and therefore, a

scale adjustment model on x1 might work. On the other hand, there is a nonlinear

tilting on the main effect of x3 and therefore, a simple scale adjustment would not be

sufficient to completely capture this discrepancy. However, such a nonlinear tilting

does not make any physical sense because the cutting forces are expected to decrease

monotonically as the laser power increases. Thus, the following adjustment model

looks physically meaningful

ĝ(x;γ) = f̂(γ1x1, x2, γ3x3, x4). (19)

We also note that ŷ0 = 16.6 + 3.3 = 19.9 is much larger than f̂0 = 16.6 and

therefore, an adjustment model of the form g(x;γ) = γ0 + f̂(x) can describe a major

part of the observed discrepancy. This is also quite clear from the scatter plot in

Figure 2. However, such an intercept adjustment to the engineering model is not

physically meaningful because the cutting forces are expected to decrease to 0 as

x1 → 0 as well as when x3 → ∞. One might also be tempted to correct the bias

using an overall scale adjustment g(x;γ) = γ0f̂(x). Although such an adjustment

is physically meaningful, it compounds the effects of many variables into one. As is

quite evident from the metamodel (23), the same scale adjustment can be essentially
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Figure 5: Plot of the main effects from the engineering model (f(x)) and the bias-
corrected engineering model (f(x) + δ(x)).

achieved through a scale adjustment of the nominal depth of cut. Such variable-

related adjustments are more informative than an overall adjustment. Thus, we

choose (19) as the adjustment model for this problem.

Because ĝ(x;γ) is a simple nonlinear regression model, we can easily obtain

∂

∂γ1
ĝ(x;γ) =

β̂1
γ1
ĝ(x;γ), and

∂

∂γ3
ĝ(x;γ) = −β̂3x3e−β̂4x4 ĝ(x;γ).

For more complicated models, one can use numerical differentiation to obtain the
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gradients, e.g., using the R package numDeriv (Gilbert 2012). Now theG0 matrix can

be constructed by evaluating the gradients at γ0 = (1, 1)′. Assume a noninformative

prior for σ2
e : p(σ

2
e) ∝ 1/σ2

e . We generated an MCMC sample of size m = 10, 000 using

Metropolis algorithm. The posterior mean of the adjustment parameters is obtained

as γ̄ = (1.17, .44)′. Thus, we can see that the data suggests increasing the sensitivity

of x1 and decreasing the sensitivity of x3. Decreasing the sensitivity of the laser power

x3 was a bit uncomfortable for the engineers because it means that the laser has less

effect on reducing the cutting force. However, further investigation showed that the

actual depth of cut was larger than the nominal depth of cut at higher laser powers

due to the increased softening of the material. Thus by increasing the laser power we

can cut more material, but it further increases the cutting force (because the force

increases with x1). This phenomenon was not captured in the engineering model and

therefore, it makes perfect sense to reduce the sensitivity of laser power through a

statistical adjustment. Thus, a plug-in estimate of the new engineering-statistical

model is given by

ĝ(x; γ̄) = 1.36(1.17× x1).89 exp
{
.0014x2 − .0268(.44× x3)e−.0034x4

}
.

This is exactly the same as the statistically-adjusted engineering model obtained by

Singh et al. (2011) through trial-and-error methods. It was validated using additional

experiments and found to work well in practice.

Figure 6 shows the mean prediction and the approximate 95% prediction intervals

computed using the MCMC sample for x1 (by fixing x2 = 50, x3 = 5, and x4 = 200)

and x3 (by fixing x1 = 20, x2 = 50, and x4 = 200). For comparison, Kennedy and

O’Hagan’s model in (1) is fitted with ρ = 1 (as in Bayarri et al. 2007) and h0(x) = 1.

The fitted model (denoted as KO adjustment model) is plotted in the same figure. We

can see that the KO adjustment model and the proposed engineering-statistical model

are in close agreement. The KO adjustment model is closer to the observed points,

but its shape is quite different from the original engineering model. On the other

hand, the proposed engineering-statistical model makes only minor changes to the

engineering model and therefore, has better physical interpretations. For example, if
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we reduce x1 to 0, the KO adjustment model gives a force value 3.33, whereas the

proposed engineering-statistical model agrees with the reality that there should be

zero force when there is no cut.
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Figure 6: Predictions and 95% prediction intervals with respect to (a) x1 (at x2 =
50, x3 = 5, and x4 = 200) and (b) x3 (at x1 = 20, x2 = 50, and x4 = 200).

The predictions from the engineering-statistical model are plotted in Figure 7,

which can be compared with Figure 2 to see the improvement. We can quantify the

improvement using the following mean squared prediction errors, which we call model

inadequacy (MI) measures. For the engineering model

MI =
1

n

n∑
i=1

{yi − f(xi)}2 = 14.02,

whereas for the engineering-statistical model

MI =
1

n

n∑
i=1

{yi − ḡ(xi)}2 = 1.41.

This shows about 90% improvement in the prediction accuracy, which is quite sub-

stantial.

The MI for the KO adjustment model is 0.21, indicating an even better fit to the

data. However, this excellent fit is obtained through GP-based nonparametric mod-

eling, which has a disadvantage. Suppose some modifications are made to the LAMM
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Figure 7: Plot of the cutting force predictions from the engineering-statistical model
and the measured values.

process, such as changing the machine or material. Then, the whole experiment (with

48 runs) will have to be repeated to estimate the new KO adjustment model. On the

other hand, only a few runs (say, 4 runs) are needed to estimate the two coefficients

γ1 and γ3 in the new engineering-statistical model. This provides great savings for

the investigator.

1.4.2 Fluidized-Bed Processing Example

Dewettinck, et. al. (1999) proposed a thermodynamic model to simulate the

steady-state thermodynamic operation point of the fluidized-bed unit Glatt GPCG-1

in the top-spray configuration. To validate the engineering model, they conducted

28 runs of experiment for the GPCG-1 fluidized-bed process. There are six input

variables: air relative humidity in the room (x1), room temperature (x2), inlet air

temperature (x3), flow rate of the solution (x4), pressure of atomization air (x5), and

fluid velocity of fluidization air (x6). The experiment output is the temperature of

the outlet air.

Three versions of the model, Model I, Model II,and Model III, were developed

and discussed in Dewettinck, et. al. (1999). In this chapter, we will use Model I as
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the engineering model. Figure 8 plots the prediction of Model I and the measured

temperature of outlet air in the fluidized-bed process. We can see that most of the

values lie below the 45o line indicating that the engineering model over-predicts the

outlet air temperature. Thus, there is an obvious model discrepancy.
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Figure 8: Plot of the prediction of outlet air temperature from the engineering model
and the measured values.

Different from LAMM example, the cause of model discrepancy is already known.

The deficiency of the engineering model is mostly because the heat losses are not

taken into account. Since the cause of discrepancy is clear, it can be used to test

if our proposed methodology can be used to obtain the right guidance of model

adjustment. The heat losses consist of convective and radiative heat losses. According

to the equations (46), (47), and (51) in Dewettinck, et. al. (1999), convective heat

loss is influenced by inlet air temperature (x3), room temperature (x2), and pressure

of atomization air (x5), and radiative heat loss is mostly governed by x2. Therefore,

the identification of x3, x2, and x5 is the key for this problem.

We first fit an ordinary kriging model to approximate the complex engineering

model based on the 28-run simulations. Let x = (x1, · · · , x6)′ and denote the output

of the engineering model by yc. The predictor of the ordinary kriging metamodel
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Figure 9: Main effects from the functional ANOVA decomposition of (a) ft(x) and
(b) δt(x).

(Santner et. al, 2003) is

f̂(x) = µ0 + d(x)D−1(yc − µ01), (20)

where µ0 is the mean, D is a 28 × 28 correlation matrix with ijth element D(xi −

xj) = exp{−
∑6

k=1 dk(xik − xjk)2}, and d(x) = (D(x − x1), · · · , D(x − x28))
′. The

maximum likelihood estimators (Santner et. al, 2003) of µ0 and d are µ0 = 42.84 and

d = (0.063, 0.040, 0.367, 0.185, 0.040, 0.277)′, respectively.

We then fit a GP model for the model discrepancy as described in Section 1.4.1.

Following the procedure we have done for LAMM example, we obtain the correlation

parameters θ̂ = (0.615, 0.362, 1.950, 0.467, 0.307, 0.100)′ and the variance parameters

σ̂2 = 0.19 and τ̂ 2 = 4.66. The main effects of f̂(x) and discrepancy function ˆδ(x)

can be computed explicitly. The two main effects are plotted in Figure 9. For the

main effects of ft(x), we can see that the inlet air temperature (x3) has the largest

effect on the temperature of outlet air. In Figure 9 (b), we can find that the inlet

air temperature (x3) is also the main contributor of the model discrepancy. The

contributions of the other factors to model and discrepancy are more clear in Figure

10, which plots the sensitivity indices of main effects and two-factor interactions .

24



We can see that the largest sensitivity index is due to the main effect of x3. The

next largest three main effect sensitivity indices are of x4, x2 and x5, respectively.

The sensitivity indices of x1, x6 and two-factor interactions are small and therefore,

a main effects analysis is reasonable for this problem.
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Figure 10: Plot of the log-sensitivity indices of engineering model and discrepancy
in fluidized-bed processing example.

From the plots of main effects and sensitivity indices, we can conclude that the

discrepancy is mostly related to inlet air temperature (x3). It could also be relevant

to flow rate of the solution (x4), room temperature (x2) and pressure of atomization

air (x5). Now, we successfully identify x3, x2 and x5, which are influential to the

heat losses. Moreover, from our analysis, the convective heat loss (related to x3, x2

and x5) could be the major part of the heat loss in the fluidized-bed process, while

the radiative heat loss (governed by x2) could be a minor part. The identification

of x3, x2 and x5 will provide a very useful guidance for engineers to consider adding

heat losses as potential improvement for the engineering model. Regarding x4, it may

account for some other deficiency in the engineering model.

The next step is to postulate an adjustment model. From a pure engineering

point of view, this has been done in Dewettinck, et. al. (1999). The engineering
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model was developed by adding corresponding physical equations which quantify the

heat losses in the process. Here, we also want to try improving the engineering

model using a statistical adjustment and see how it works compared with the pure

engineering-driven adjustment. From the sensitivity analysis, we already found x3

is most significant among the six input variables. Therefore, the adjustment related

to x3 is required. The adjustment of x4, x2, and x5 may also be necessary. The

sensitivity index of x4 is larger than the sensitivity indices of x2 and x5, while x2 and

x5 are very close.

To decide which type of adjustment we should apply, we plot the main effects of

the engineering model plus the discrepancy function along with the main effects of the

engineering model in Figure 11. From Figure 11, we can see that the data is to slightly

tilt the main effects of x2, x3, x4 and x5, and the tiltings are approximately linear.

Then a scale adjustment model might work. In addition, from Figure 10, we can find

that x3 and x4 have significant effects on both model and discrepancy, while x2 and

x5 are only significant on discrepancy. Then the adjustment of x2 or x5 inside model

can hardly help. Instead, we choose to account for the adjustment of x2 and x5 by

adding the terms including them to the model. We propose four engineering-statistical

adjustment models, Model#1, Model#2, Model #3, and Model#4 as below.

Model #1:

ĝt(x;γ) = f̂t(x1, x2, γ3x3, x4, x5, x6)

Model #2:

ĝt(x;γ) = f̂t(x1, x2, γ3x3, γ4x4, x5, x6)

Model #3:

ĝt(x;γ) = f̂t(x1, x2, γ3x3, γ4x4, x5, x6) + γ2x2

Model #4:

ĝt(x;γ) = f̂t(x1, x2, γ3x3, γ4x4, x5, x6) + γ2x2 + γ5x5.

In Model #1, we only consider the adjustment of x3. In Model #2, we consider

the adjustment of x3 and x4. The adjustment of x3, x4, x2 and x5 are all considered
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Figure 11: Plot of the main effects from the engineering model (ft(x)) and the
bias-corrected engineering model (ft(x) + δ(x)).

in Model #3. The γ0 for the three models are 1, (1, 1)′, (0, 1, 1), and (0, 1, 1, 0)′,

respectively. Using MCMC method, we get the posterior mean of the adjustment

parameters. γ̄ for the three models are 0.937, (0.970, 1.11)′, (−0.001, 0.970, 1.112)′,

and (−0.073, 0.961, 1.098, 0.737)′, respectively. We can see that the estimates suggest

that decreasing the sensitivity of x2 and x3 and increasing the sensitivity of x4 and

x5. We can quantify the model improvement using the MI again. For the engineering
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model

MI =
1

n

n∑
i=1

{yti − ft(xi)}2 = 10.59,

For the engineering-statistical models, we compute their MI’s using

MI =
1

n

n∑
i=1

{yti − ḡt(xi)}2.

In Table 1, we compare theMI’s of the engineering model and the three engineering-

statistical models. We can see that even only adjusting x3, we can achieve about 92%

improvement in prediction accuracy, which is quite substantial. If we consider the

Model #3 with adjustment on x2, x3, x4and x5, we can have an improvement in pre-

diction about 95%. The predictions from Model #1, are plotted in Figure 12, which

can be compared with Figure 8 to see the improvement.

Model MI

Engineering Model 10.59
Model #1 (x3) 0.875

Model #2 (x3, x4) 0.698
Model #3 (x2, x3, x4) 0.698

Model #4 (x2, x3, x4, x5) 0.521

Table 1: MI’s of engineering model and engineering-statistical models

An interesting phenomena is that the improvement achieved by statistical-engineering

model is almost the same as the one gained by the optimized model (MI = 0.69)

in Dewettinck, et. al. (1999). It is amazing that a simple statistical-engineering ad-

justment can play an equally effective role that a pure engineering adjustment does,

whereas the former takes much less effort and computation than the latter does. The

proposed statistical adjustment is also much simpler than the one discussed in Reese

et al. (2004).

1.5 Model Refinement

The adjustment models described in Section 1.2.2 are simple, but are not as flex-

ible as the GP modeling approach for the discrepancy term. We have sacrificed this

flexibility to gain on the physical interpretability. However, the ultimate objective is
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Figure 12: Plot of the prediction of outlet air temperature from the engineering-
statistical model (Model #1) and the measured values.

to construct a predictive model and therefore, follow-up strategies should be used if

the engineering-statistical model turned out to be inadequate in terms of prediction

performance. In the laser-assisted mechanical micromachining example, we were able

to obtain significant improvement in prediction using a simple scale adjustment mod-

el. But we need not be that fortunate always. This can happen, for example, if we

encounter a situation where some variables have significant effects on the discrepancy

but almost no effect on the engineering model or there is a significant higher order

interaction effect on the discrepancy which cannot be captured by the adjustment

models mentioned in Section 1.2.2. In such cases, other adjustment models should be

considered. Our hope is that the engineers and statisticians working in that system

will be able to postulate a better adjustment model that is physically interpretable.

However, this can be a difficult task especially in high dimensional problems. There-

fore, our objective here is to present a follow-up strategy that can be used when we

encounter such a situation.

The basic idea is to treat the adjusted model g(x;α) as the “new” engineering

model (see Figure 1). This provides enough flexibility for the investigator to refine
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the model using an appropriate modeling strategy. For example, the investigator

may choose to use a pure engineering approach to fix the inadequacy in g(x;α) or

a pure statistical approach to capture the discrepancy using a statistical model as in

Kennedy and O’Hagan (2001) or even use an engineering-driven statistical approach

as described in this chapter. This may require new data collection and/or bringing

in new variables that were missed in the initial study.

Consider, for example, a pure statistical approach. We will now fit the following

model to the data:

Y = g(x;α) + e(x) + ε,

where e(x) ∼ GP (0, σ2
eRe(·)) is the new discrepancy function which is modeled using

a smooth GP (instead of the white noise error in (12)). Note that different from the

model presented in Section 1.2.1, g(x;α) becomes the prior mean of the unknown

true function instead of the original engineering model f(x;η). An interesting special

case is when g(x;α) = γ0 + γ1f(x;η), which reduces to the Kennedy and O’Hagan’s

model in (1) and (2) with µ0 = γ0, ρ = γ1, h0(x) = 1, and the rest of the µ’s equal

to 0. This is the reason why we started with a simplified model in Section 1.2.1.

If we need to follow-up with a pure statistical approach, one may wonder why not

use the statistical approach at the first place and always. The basic philosophy here

is to fix the engineering model as much as possible using the engineering-driven sta-

tistical approach and then to use a pure statistical approach to capture the remaining

discrepancy, if needed.

1.6 Conclusions

Some engineering systems are so complex that it is almost impossible to capture

all the details for accurately modeling the system. Many assumptions will have to

be made for tractable mathematical modeling. A multitude of such assumptions in-

troduce errors in the model predictions. The engineering approach to find where the

assumptions went wrong and fix them is time consuming and often infeasible in in-

dustrial practice. The statistical approach offers a quick solution, that is to correct
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the observed discrepancy using a statistical model estimated from the real data. Al-

though this is found to be very effective in practice, it does not possess the physical

interpretations that the engineering model has. The statistical approach treats the

engineering model as a black box and focuses only on the observed discrepancy. On

the other hand, this chapter proposes an approach to open up the black box and make

statistical adjustments inside the engineering model. This approach has a tremen-

dous value in that it offers better physical interpretations. Moreover, such models

are found to do better in extrapolation and can adapt easily to small modifications

in the system.

The main ideas in our approach are very simple. It uses some main effects analysis

and graphical plots to identify the potential causes of discrepancy. We hope that such

a simple approach will appeal to the practitioners and engineers working in indus-

tries. More sophisticated analysis that makes use of higher order effects analysis can

be developed in the future. The adjustment models that we proposed such as the

scale adjustment model are also very simple. We found that it works well in many

real examples. However, they should not to be used as a general recipe for statis-

tical adjustment. Instead, they should be treated as some guidelines for developing

adjustment models that are suitable for the problem in hand.

Although not discussed in detail, it should be clear that the experimental design-

s for the computer experiment and the physical experiment play a crucial role in

the success of the engineering-driven statistical adjustment methodology. A common

strategy that one could adopt is to use a space-filling design for the computer experi-

ments (see Santner et al. 2003 and Fang et al. 2006) and a fractional factorial design

for the physical experiments (see Wu and Hamada 2009). Moreover, for a model-

free estimation of the discrepancy, it is desirable to have the design for the physical

experiment nested within the design for the computer experiment (Qian, Tang, and

Wu 2009). In addition, since we are interested in the efficient estimation of the main

effects, orthogonality of the space-filling designs is also desirable (see, e.g., Lin et al.

2010). Thus, there are many aspects that should be tied together for the efficient

generation of the experimental designs. Much remains to be done in this area.
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In this chapter, we have focused our attention to a single output case, while

most engineering systems have multiple outputs. For example, in the laser-assisted

mechanical micro-machining example, the engineering model produces two force out-

puts: cutting force and thrust force, in which we have analyzed only the cutting force

in Section 1.4. Of course, the same analysis can be repeated on the thrust force as

well, but more insights can be obtained through a simultaneous analysis of the two

forces. We leave this interesting topic of statistical adjustment with multiple outputs

for future research.
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CHAPTER II

CALIBRATION WITH RANDOM EFFECTS: AN

APPLICATION IN CARDIAC CELL MODELING

2.1 Introduction

Many of the computer models contain unknown parameters, known as calibration

parameters, which need to be estimated from real data before making a prediction.

While this can be formulated as a nonlinear regression problem, complications arise at

many different levels making it difficult to solve using standard regression techniques.

First, the underlying mathematical model which is implemented as a computer code

is often a simplified version of the real system. Many of the simplifying assumptions

used in deriving the mathematical model may not hold true in practice leading to

biased predictions. Second, the computer model is computationally expensive to

evaluate and therefore, a direct estimation using a nonlinear least squares method is

almost impossible. The latter can be addressed by approximating the computer model

using an easy-to-evaluate metamodel (Sacks et al. 1989), whereas the former can be

addressed by introducing a bias function in the statistical model to capture the bias

in the computer model (Kennedy and O’Hagan 2001). However, this is not a trivial

problem because the approximation of the computer model, the estimation of the

bias function, and the estimation of calibration parameters are all inter-connected.

Different approaches to this challenging statistical problem have been proposed in

the literature: Higdon et al. (2004), Reese et al. (2004), Bayarri et al. (2007),

Qian and Wu (2008), Joseph and Melkote (2009), and Pratola et al. (2013). But as

described below, the problem that we encountered brought new challenges that were

not addressed in these earlier works.

This chapter studies the calibration of a computer model that describes the potas-

sium (K+) currents in a cardiac cell. Real measurements of the electrical signals over
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time for different settings of the voltages were obtained through an experiment on

mouse cells, which can be used for calibrating the computer model. A major challenge

in this problem is the high dimensionality of the model. There are a total of 24 cali-

bration parameters that need to be estimated. In the traditional approach (see, e.g.,

Santner et al. 2003), first a computer experiment needs to be performed by varying

the voltage and the calibration parameters. This is not a small problem because we

would need 224 (approximately 16.8 million) points even to fill up the corner points

of a 24-dimensional hypercube. Much smaller sample sizes are recommended in the

computer experiments literature such as 10d, where d is the number of dimensions.

However, our initial attempts to approximate the K+ currents using kriging (Sacks et

al. 1989) did not produce satisfactory results even with the use of about 100d points.

We were forced to look for other alternatives for approximating the computer model.

The mathematical model for the K+ current is a system of ordinary differential

equations (see Appendix). There is no explicit solution for these equations and they

are solved using some iterative numerical methods. Since our initial attempts to apply

traditional methods failed, we started to look more closely into the mathematical

model. We found out that parts of the differential equations can be solved and

through a statistical model they can be connected together, producing an excellent

approximation to the final output of the computer model. Although our approach

may not be generalizable to other problems, the success of our study reinforces the

often neglected idea that whenever possible, system knowledge should be used to

supplement data-driven methods, especially in solving complex engineering problems.

Although finally we were able to successfully approximate the computer model,

even more challenges were waiting for us at the calibration stage. The bias of the

computer model was a minor issue in our problem because of the flexibility provided

by the large number of calibration parameters. In fact, we did not even use a bias

function in our statistical model as in Kennedy and O’Hagan (2001) and others. The

main problem was that the measured currents vary quite a lot between each cell. As

with all biological systems, this cell-to-cell variation is expected as each cell is different

in terms of its size, shape, capacitance, conductance, and other characteristics. Thus,
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estimated calibration parameters were found to vary drastically with each cell. One

way to address this problem is to model the calibration parameters as random effects.

We had measurements from five mouse cells. This implies we have a total of 24 ×

5 = 120 random effects. Marginalizing the likelihood over these random effects and

estimating the mean parameters and variance components from this nonlinear mixed-

effects model is not an easy problem. In this chapter we propose a novel method to

identify the significant random effects and thus, drastically reducing the dimension

of the problem.

The article is organized as follows. In Section 2.2, we present the computer mod-

eling of the cardiac cell currents and the voltage clamp experiments on the mouse cell.

In Section 2.3, we describe our metamodeling approach used for approximating the

computer model. In Section 2.4, we discuss the calibration of the computer model

using the data from the voltage clamp experiment. Some concluding remarks and

future research directions are given in Section 2.5.

2.2 Computer Model and Data

The action potential of a heart cell, the fast event where electrical impulses pass

through a cell’s membrane, is critical to the correct function of the entire organ. Be-

cause of this activity’s importance, mathematical models of the electrophysiological

process have been developed to explain the cardiac action potential. The first quan-

titative model of action potential was formulated by Hodgkin and Huxley (1952),

which models the major current activity with a group of nonlinear ordinary differ-

ential equations. Models of cardiac action potential were developed in the following

decades by incorporating the dynamic changes of the intracellular concentration of

sodium and potassium: Rasmusson et al. (1990); Courtemanche et al. (1998); Noble

et al. (1998); Hund and Rudy, (2004); Bondarenko et al. (2004). Rudy and Silva

(2006) conduct a thorough review of these types of models. This work focuses on

the potassium channel model proposed by Bondarenko et al. because their model

was designed for cells similar to our case study. The model is based on the principle

that ion channels open and close depending on the applied potential across the cell’s

35



membrane. The dynamics of this model are similar to a collection of ion channels

behaving according to a Markov model, therefore we refer to this as a Markov ordi-

nary differential equation model. The process of ion channels opening and closing is

referred to as gating. The amount of current through an open channel is controlled

by conductance parameters. Conductance parameters influence the amplitudes of re-

sponse current and gating parameters generally influence the shape of the response

current.

Our experiment targets the current through channels that transfer potassium ions.

There are seven types of channels in the Markov ordinary differential equation model

proposed by Bondarenko et al. that transfer potential via potassium ions. Since

rapid delayed rectifier, slow delayed rectifier and time-independent potassium current

are very small, they are ignored in this work. The transient outward potassium

current is also not considered because these channels conductances’ equal zero in

an apical cell (Xu. et al. 1999 and Bondarenko et al. 2004). Thus, we focus

on the three major potassium currents: transient outward potassium current (IKto,f ),

ultrarapidly activating delayed rectifier potassium current (IKur), and noninactivating

steady-state potassium current (IKss). The Markov ordinary differential equations

governing these three currents are stated in the Appendix. The membrane potential

is denoted as v and the time is denoted as t. We have carefully parameterized the

ordinary differential equations given in Bondarenko et al. to avoid identifiability

issues. The model contains twenty-four parameters, η = (η1, . . . , η24)
′, that can

be partitioned into three conductance parameters (η1, η2, η3) and twenty-one gating

parameters (η4, . . . , η24). The solution to these ordinary differential equations given

by the solver ode45 in Matlab represents our computer model (Du et al. 2013). It

takes about 100 seconds to obtain one output from this computer model running on

a 3.5 GHz desktop computer.

Our data consists of the potassium currents of five distinct apical cells from

ST3Gal4-\- mice. In ST3Gal4-\- mice, a uniformly expressed cardiac glycogene re-

sponsible for glycoprotein sialylation, the sialyltransferase beta-galactoside alpha-2,3-

sialyltransferase 4 (ST3Gal4), was deleted. See Ednie et al.(2013) for details on cell

36



preparation and electrophysiology. In the voltage clamp experimental protocol, depo-

larizing pulses of length 4.5 seconds were applied to the five ST3Gal4-\- apical cells

with membrane potentials ranging from -50 to 50 mV in 10 mV increments from the

holding potential of -70 mV. The intracellular and extracellular solutions were de-

signed such that the only available ion to pass through the channels was potassium.

The flow of ions across the cell is then recorded by an ammeter for the duration of

the pulse.
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Figure 13: Potassium current recorded from a ST3Gal4-\- apical cell using a whole-
cell voltage clamp protocol with depolarizing membrane potential between -50 mV to
+ 50 mV in 10 mV increments from a holding membrane potential of -70 mV.

The potassium currents for one of the five cells are shown in Figure 13. The current

increases quickly, reaches peak value, and then decreases slowly. The amplitude and

the rates of rise and decay are dependent on the membrane potential. Figure 14 shows

potassium currents from five distinct apical cells at a membrane potential equal to

+50 mV. We can see that the decay phases of potassium currents are cell dependent.

The respective amplitudes of the current densities also appears to vary among the

five cells.
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Figure 14: Potassium currents recorded from five distinct ST3Gal4-\- apical cells
using a whole-cell voltage clamp protocol with depolarizing membrane potential of
+50 mV from a holding membrane potential of -70 mV.

2.3 Physics-driven Metamodeling

At the beginning of this study, we tried to approximate the computer model using

methods from design and analysis of computer experiments (Santner et al. 2003).

We first started with a 240-run maximin Latin hypercube design (MmLHD) for the

24 calibration parameters. Then we ran the computer model for these 240 settings

at each of the eleven voltages used in the voltage clamp experiment. This produced

240 × 11 = 2640 functional outputs of current over time. One hundred equally

spaced time points were chosen producing 264,000 data points. A kriging model with

Gaussian correlation function was fitted to this functional data using a Kronecker

product simplification of the correlation matrix (Williams et al. 2006). Unfortunately,

the prediction errors at some randomly observed settings of the calibration parameters

were found to be too large. We increased the size of the MmLHD to 2000 runs (it took

about seven days to generate the MmLHD in JMP in our 3.5 GHz desktop computer)

and repeated the above procedure. Although the fitting was improved, still large

discrepancies were noted, especially when predicting at locations far from the design

points. Increasing the run size further is an option to improve the accuracy, but
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the optimal design generation and fitting of the kriging model will be even more time

consuming. Moreover, the cost of prediction also increases with the number of points,

which is a serious issue because we need to use the fitted kriging model repeatedly

within an optimization algorithm used for calibration.

Because of the difficulty with the traditional framework for computer experiments,

we have decided to try a different approach. There are seven ODEs in the 20 equations

of the currents given in the Appendix. They can be grouped into two levels. The

high level ODE (A-1) describes the relationship between intracellular concentration

[K+]i and current components as a function of time. There are six lower level ODEs:

(A-4)-(A-5), (A-11)-(A-12), and (A-17)-(A-18). These ODEs define the six gating

variables ato,f , ito,f , aur, iur, aKss and iKss, which are functions of the transfer rate

coefficients (αa, βa, ass, iss, τta,s, τti,s, τaur, τiur, and τKss). Transfer rate coefficients

are dependent on the membrane potential and the 21 gating parameters η4, · · · , η24.

The two levels of ODEs are linked by the equations (A-2), (A-3), (A-10), and (A-17).

Our aim is to obtain the total current IK,sum(t) = IKto,f (t) + IKss(t) + IKur(t).

There is no explicit solution for this from the above system of ODEs, but we noticed

that each of the six ODEs in the lower levels can be solved explicitly as a function

of time. Thus, if we can get an expression for Ek(t), then we can explicitly compute

IK,sum(t). However, this is not possible because Ek(t) depends on all the current

components through the two equations (A-1) and (A-3). Here we can do an approx-

imation. Examination of the plots in (13) shows that IK,sum(t) can be approximated

by (neglecting the rapid rise of current in the beginning)

IK,sum(t) ≈ b0 + b1 exp(−b2t). (21)

Under this approximation, [K+]i(t) can be solved explicitly from (A-1) as

[K+]i(t) = [K+]i,0 −
AcapCm
VmyoF

∫ t

0

IK,sum(t) dt

≈ [K+]i,0 −
AcapCm
VmyoF

[
b0t−

b1
b2

exp(−b2t) +
b1
b2

]
, (22)

where [K+]i,0 is the initial intracellular concentration. Substituting this in (A-3) gives

us the desired expression for Ek(t). Now the only remaining part is to obtain b0, b1,
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and b2. For quick computation, we let b̂0 = IK,sum(T ), where T is the largest observed

time point. Now we fit log IK,sum(t) − b̂0 = log b1 − b2t using least squares to obtain

b̂1 and b̂2. These can be done only if IK,sum(t) is known, which is actually unknown.

Hence we solve it iteratively by initializing EK(t) ≈ EK,0 = RT/F ln([K+]o/[K
+]i,0)

and obtaining an initial approximation for IK,sum(t). In fact, we found that the

solution after one iteration itself is very accurate. We call this approximate model as

physics-driven metamodel. It is given by

IK,sum(t) = (η1a
3
to,f ito,f + η2auriur + η3aKssiKss)

[
v − RT

F
ln

(
[K+]o

[K+]i(t)

)]
, (23)

where [K+]i(t) is computed from (22) and

ato,f =
αa

βa + αa
+ (ato,f0 −

αa
βa + αa

) exp [−(βa + αa)t] ,

ito,f =
αi

βi + αi
+ (ito,f0 −

αi
βi + αi

) exp [−(βi + αi)t] ,

aur = ass + (aur0 − ass) exp

(
− t

τaur

)
,

iur = iss + (iur0 − iss) exp

(
− t

τiur

)
,

aKss = ass + (aKss0 − ass) exp

(
− t

τKss

)
,

iKss = iKss0.

The initial values ato,f0, ito,f0, aur0, iur0, aKss0 and iKss0 are given in the Appendix.

The predictions of IKsum(t) from the kriging model, physics-driven metamodel

and the Markov model are compared in Figure 15 for a random set of the calibration

parameters. We can see that obvious discrepancies are between the the kriging model

and the Markov model in the upper two voltage levels, whereas the the physics-

driven metamodel almost overlaps the Markov model for all voltages throughout

time span. Figure 16 compares EK0, the one-step updated EK(t) in the physics-

driven metamodel, and the true EK(t) in the Markov model. We can see that the

difference between true EK(t) and EK0 increases with time, whereas the one-step

updated EK(t) is very close to the true EK(t). This explains why the prediction of

IKsum(t) from the physics-driven metamodel agrees very well with the Markov model

after one iteration.
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Figure 15: Predictions of IKsum(t) from the kriging model, physics-driven model and
computer model.
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Figure 16: EK0 (black dotted dash line), updated EK(t) (red dashed line) and true
EK(t)(blue dash line)
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2.4 Calibration

2.4.1 Initial Calibration Model

Let yijk be the measured potassium current at time ti and voltage vj of the kth

cell with i = 1, . . . , n, j = 1, . . . ,m, and k = 1, . . . , K, where n = 100, m = 11, and

K = 5. We have

yijk = f(ti, vj;η) + εijk, (24)

where f(ti, vj;η) is the true model, η = (η1, · · · , η24)′ are the 24 calibration parame-

ters, and εijk ∼iid N(0, σ2
0) is the measurement error. To begin with we assume that

the computer model is an accurate representation of reality and use the computer

model in place of f(ti, vj;η). Furthermore, since the metamodel developed in the

previous section is quite accurate, we use the metamodel to replace the expensive

computer model.

Since all conductances and gating parameters are positive, we transform them to

λl = log(ηl) for l = 1, · · · , 24. Using Inverse-Gamma prior for σ2
0 and normal prior

for λ = (λ1, · · · , λ24)′, we have the following Bayesian model:

yijk|λ, σ2
0 ∼ind N(fij(λ), σ2

0),

λl ∼ind N(µl, τ
2
l ), l = 1, · · · , 24

σ2
0 ∼ IG(a0, b0),

where fij(λ) = f(ti, vj;λ). We set µ1, · · · , µ24 equal to the values in Bondarenko

et al. (2004) and τ 2l = (1
2

log 3)2 for l = 1, · · · , 24 (the choice for τl is based on

our assumption that λl will be within µl ± 3 with 95% confidence). In the prior

distribution of random error, we use a0 = 5 and b0 = 12.

The posterior distribution of the unknown parameters can be obtained from

p(λ, σ2
0|y) ∝ p(y|λ, σ2

0)p(λ)p(σ2
0). We have

− log p(λ, σ2
0|y) =

mnK

2
log(σ2

0) +
n∑
i=1

m∑
j=1

K∑
k=1

(yijk − fij(λ))2

2σ2
0

+
24∑
l=1

[
1

2
log(τ 2l ) +

(λl − µl)2

2τ 2l

]
+ (a0 + 1) log(σ2

0) +
b0
σ2
0

, (25)
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Figure 17: Mean of experiment from five apical cells vs. calibration model at v =
-10, 20 and 50 mV.

where the normalizing constant is omitted. The posterior mode (λ̂
′
, σ̂2

0)′ can obtained

by minimizing − log p(λ, σ2
0|y). This gives us a plug-in version of the calibration

model f(ti, vj; λ̂).

Figure 17 shows the mean of experimental measurements from the five cells and

prediction from the calibration model. We can see that the calibration model agrees

well with the mean of measurements. Therefore, the bias in the computer model

is small and can be neglected. In Figure 18, we compare the calibration model

and the Bondarenko model with the experimental measurements for each cell at 50

mV, 20 mV, and -10 mV. Clearly, calibration model gives improvement in prediction

compared with the Bondarenko model. However, we can still observe discrepancy

between calibration model and experimental data if we look at each cell separately.

For example, the predictions are lower than the experimental measurements of cell 1

and cell 2, whereas higher than those of cells 3-5. This is because we used only one

set of parameters in the calibration model for the five distinct cells. Even though the

calibration model performs well on the average, the current amplitudes and decaying

behavior of individual cells vary quite a lot. We can capture this variability by treating

the calibration parameters as random effects as described in the next section.
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Figure 18: Experiment, calibration model and Bondarenko model for five apical cells
at v = -10, 20 and 50 mV.
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2.4.2 Calibration with Random Effects

There are a total of 24 calibration parameters in the model (24). Some of them

could be affected by the cell dependent properties, such as cell size and resistance.

To incorporate the cell-to-cell variability in the model, we can treat them as random

effects. In a full random effects model with all the 24 calibration parameters treated

as random effects, there are a total of 169 (= 24× 5 + 24 + 24 + 1) parameters.

A fully Bayesian approach of this high-dimensional nonlinear mixed effects model

can be challenging (see, e.g., Lachos, Castro, and Dey 2013). However, in our prob-

lem, this full random effects model may be an unnecessarily large model in which

several random effects may play the same role of explaining the cell-to-cell difference.

Therefore, we propose a simple method to identify significant random effects and re-

duce the dimension of the problem. The idea of this method is similar to the forward

variable selection algorithm in regression analysis. That is, first we find a parameter

which if varied over the cells will give the maximum reduction in the mean squared

error:

MSEl = min
λl

1

mnK

n∑
i=1

m∑
j=1

K∑
k=1

[
yijk − f(ti, vj;λlk, λ̂(−l))

]2
,

where λl = (λl1, · · · , λlK)′ are the lth parameter values for the K cells and λ̂(−l) the

remaining set of parameters fixed at the estimated value. Computation of MSEl

requires K one-dimensional optimizations. MSEl are plotted in Figure 19 for l =

1, . . . , 24. We can see that λ2 is the most important parameter for reducing the mean

squared error. This procedure can be continued to identify the important parameters

one-by-one.

Interestingly, λ2 is the conductance of the second potassium channel, which is

known to be influenced by the cell volume. Thus, it makes physical sense to use

the same random effect for the other two conductances λ1 and λ3. Therefore, in the

first step of the procedure, we chose to introduce a common random effect for all the

three conductances (λ1, λ2, λ3). This gave a reduction of MSE from 12.58 to 1.33.

Continuing the procedure, we identified λ20, λ11, λ14, λ23, etc. The corresponding

MSE values are shown in Figure 19. We can see that the reduction in MSE after
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step 2 is negligibly small. Therefore, we decided to include only the first two random

effects in our model.

Thus, the proposed random effects model for cell k is

yijk = f(ti, vj; β1k + λ1, β1k + λ2, β1k + λ3, λ4, · · · , λ19, β2k + λ20, λ21, · · · , λ24) + εijk,

(26)

where β1k is the common random effect for the three conductances (λ1, λ2, and λ3)

and β2k is the random effect for λ20. Assume βk ∼iid N (0,Σβ), for k = 1, · · · , K,

where 0 = (0, 0)′ and Σβ = diag(σ2
1, σ

2
2). Using noninformative prior for σ2

1 and σ2
2,

we have the following Bayesian model:

yijk|λ,βk, σ2
0 ∼ind N(f(ti, vj;λ,βk), σ

2
0),

λl ∼iid N(µl, τ
2
l ), l = 1, · · · , 24

βk ∼iid N (0,Σβ) , (27)

σ2
1, σ

2
2 ∼iid IG(0.001, 0.001),

σ2
0 ∼ IG(a0, b0).

This model contains d = 37(= 2× 5 + 24 + 2 + 1) unknown parameters. This is still

a high dimensional model, but much smaller than the initial 169-dimensional model.
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We can use MCMC methods to sample from the posterior and compute the desired

posterior quantities. Let β = (β′1, · · · ,β′K)′ denote all the random effects in the

model. The posterior samples (λ(l),β(l), σ
2(l)
1 , σ

2(l)
2 , σ

2(l)
0 ), l = 1, · · · , N are obtained

using Metropolis-within-Gibbs algorithm (Gelman, et al. 2004). The sample size is

chosen to be N = 20000 × d. The details of the MCMC algorithm are given in the

Appendix.

The mean prediction (for the population of cells) at ti and vj can be obtained as

1

NK

N∑
l=1

K∑
k=1

f(ti, vj;λ
(l),β

(l)
k ).

The credible interval of the mean prediction can be obtained by computing appro-

priate quantiles of f(ti, vj;λ
(l),β

(l)
k ) at each ti and vj. Figure 21 shows the mean

prediction of the random effects model and 95% credible intervals using the MCMC

sample at v = 50 mV . Compared with Bondarenko model, our random effects model

more accurately predicts the overall trend of the current.

Similarly, the mean prediction at ti and vj for cell k is given by

1

N

N∑
l=1

f(ti, vj;λ
(l),β

(l)
k ).

The credible intervals can be obtained as before. The mean prediction for each cell
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Figure 21: Predictions of random effects model and 95% credible interval at v = 50
mV

is compared with Bondarenko model and experimental measurements at v = −10, 20

and 50 mV in Figure 22. We can see that the random effects model greatly reduces the

discrepancy between predictions and experimental measurements for each individual

cell.

2.5 Conclusions

This chapter discussed the calibration of a complex computer model for predicting

the potassium currents in a cardiac cell. Some nonstandard techniques were employed

to tackle this challenging problem. In the existing literature, a complex computer

model is treated as a black box and a statistical model such as kriging is fitted

based on the data from a carefully designed computer experiment. We couldn’t

succeed using this standard approach. But we were able to approximate the computer

model by making some simple approximations inside the model. This required careful

study and understanding of the underlying mathematical model, but it was worth

it. It exemplifies the benefits of integrating mathematical/statistical modeling with

physical/engineering knowledge.
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Figure 22: Experiment, random effects model and Bondarenko model for five apical
cells at v = -10, 20 and 50 mV
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We also developed a simple and intuitive approach for identifying important ran-

dom effect parameters in a nonlinear mixed effects model by borrowing ideas from

regression analysis. It greatly reduced the dimensionality of the problem enabling us

to solve the problem quite efficiently. More than calibrating a particular cardiac cell

model to a given set of data, we were able to develop a methodology that can be used

in solving similar problems in cardiac modeling and possibly in other areas.
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2.7 Appendix

2.7.1 K+ Dynamics in Markov model (Bondarenko et al. 2004)

d[K+]i
dt

= −(IKto,f + IKss + IKur)
AcapCm
VmyoF

(A-1)

Transient outward K+ current IKto,f

IKto,f = η1a
3
to,f ito,f (v − EK) (A-2)

EK =
RT

F
ln(

[K+]o
[K+]i

) (A-3)

dato,f
dt

= αa(1− ato,f )− βaato,f (A-4)

dito,f
dt

= αi(1− ito,f )− βiito,f (A-5)

αa = η4e
η5v (A-6)

βa = η6e
−η7v (A-7)

αi =
η8e
−v/η9

η10e−v/η9 + 1
(A-8)

βi =
η11e

v/η9

η12ev/η9 + 1
(A-9)
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Ultrarapidly activating delayed rectifier K+ current

IKur = η2auriur(v − EK) (A-10)

daur
dt

=
ass − aur
τaur

(A-11)

diur
dt

=
iss − iur
τiur

(A-12)

ass = 1/[1 + e−(v+η13)/η14 ] (A-13)

τaur = η15e
−η16v + η17 (A-14)

iss = 1/[1 + e−(v+η18))/η19 ] (A-15)

τiur = η20 −
η21

1 + e(v+η18)/η19
(A-16)

Noninactivating steady-state K+ current

IKss = η3aKssiKss(v − EK) (A-17)

daKss
dt

=
ass − aKss
τKss

(A-18)

diKss
dt

= 0 (A-19)

τKss = η22e
−η23v + η24 (A-20)

2.7.2 Initial values of gating variables

Table 2: Initial values of gating variables

Parameter Value

ato,f 0.265563× 10−2

ito,f 0.999977
aur 0.417069× 10−2

iur 0.998543
aKss 0.417069× 10−3

iKss 1.0

2.7.3 MCMC Method for Posterior Inference

Let y be the vector of all the nmK observations in the experiment and yk be the

vector of nm observations for the kth cell. The full conditional distributions for the

51



unknown parameters (λ′, σ2
1, σ

2
2, σ

2
0,β) are given by

p(λ|y, σ2
1, σ

2
2, σ

2
0,β) ∝ p(y|λ, σ2

1, σ
2
2, σ

2
0,β) · p(λ),

∝ exp

{
− 1

2σ2
0

n∑
i=1

m∑
j=1

K∑
k=1

[yijk − f(ti, vj;λ,βk)]
2

}
·

exp

[
−

24∑
l=1

(λl − µl)2

2τ 2l

]
,

p(σ2
0|y,λ, σ2

1, σ
2
2,β) ∼ IG(a0 +

mnK

2
, b0 +

1

2

n∑
i=1

m∑
j=1

K∑
k=1

[yijk − f(ti, vj;λ,βk)]
2),

p(σ2
1|y,λ, σ2

0, σ
2
2,β) ∼ IG(a1 +

K

2
, b1 +

1

2

K∑
k=1

β2
1k),

p(σ2
2|y,λ, σ2

0, σ
2
1,β) ∼ IG(a2 +

K

2
, b2 +

1

2

K∑
k=1

β2
2k),

p(βk|y,λ, σ2
0, σ

2
1, σ

2
2) ∝ p(yk|λ, σ2

1, σ
2
2, σ

2
0,β) · p(βk|σ2

1, σ
2
2)

∝ exp

{
− 1

2σ2
0

n∑
i=1

m∑
j=1

[yijk − f(ti, vj;λ,βk)]
2

}
·

exp

[
−(

β2
1k

2σ2
1

+
β2
2k

2σ2
2

)

]
, k = 1, · · · , K.

2.7.4 Calibration Results
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Table 3: Calibrated parameters for ST3Gal4-\- mouse apical cell (* the difference
between the calibration estimates from random effects model and the values in Bon-
darenko et al. 2004; ** the mean of the five cells is presented)

Variable Parameter Bondarenko Initial calibration Random effects Difference∗ (%)

et al. 2004 estimates model

η1 0.4067 0.2145 0.1844∗∗ -55%
Conductance η2 0.1156 0.1079 0.1307∗∗ -18%

η3 0.050 0.0491 0.0365∗∗ -27%

η4 0.5283 0.2589 0.2581 -51%
η5 0.03577 0.0221 0.0208 -42%

ato,f η6 0.0609 0.0325 0.0247 -59%
η7 0.06237 0.0728 0.0780 +25%

η8 2.21× 10−5 2.20× 10−5 1.54× 10−4 +598%
η9 7.00 8.19 20.29 +190%

ito,f η10 5.60× 10−4 5.60× 10−4 4.85× 10−4 -13%
η11 0.1138 0.1032 0.0246 -78%
η12 6.15 4.38 1.02 -83%

η13 22.50 14.10 5.349 -76%
η14 7.7 33.89 34.03 +342%

aur η15 0.493 0.534 1.005 +103%
η16 0.0629 0.060 0.048 -23%
η17 2.058 3.023 2.689 31%

η18 45.20 38.25 40.59 -10%
η19 5.7 5.4 9.97 +75%

iur η20 1200 858 1316∗∗ +10%
η21 170 174 763 +349%

η22 39.3 38.5 98.4 +150%
aKss η23 0.0862 0.1055 0.0646 -25%

η24 13.17 17.68 2.70 -80%
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CHAPTER III

UNCERTAINTY QUANTIFICATION IN SOLID END

MILLING PROCESS

3.1 Introduction

Computer models are developed to simulate and predict the behavior of the sys-

tems which are too complex for analytical solutions. The computer model itself is

deterministic, but if the inputs have uncertainties, variability could be observed on

the outputs. The study of uncertainty propagation in computer model aims at find-

ing out how the uncertainties of inputs will be transmitted to the model outputs.

Understanding uncertainty propagation is critical in identifying the confidence of an

outcome and therefore the key for addressing decision-making problems.

There are basically two categories of methodologies for studying uncertainty prop-

agation: intrusive methods and non-intrusive methods. Common intrusive meth-

ods include perturbation method (Tang and Pinder, 1977, Detfinger and Wilson,

1981), Neumann series expansion (Zeitoun and Braester, 1991), stochastic Galerkin

(Ghanem and Spanos, 1991), etc. The basic idea of intrusive methods is to incorporate

stochastic expansion for the uncertainty variable and transform the stochastic prob-

lem into a deterministic problem. Since the intrusive methods have a close connection

to original computer model, it has a strong physical interpretation and customization.

However, in practice intrusive methods are challenging and expensive to implement

for many complex models, because extensive modifications are required in the orig-

inal computer codes and usually a much larger group of coupled and deterministic

equations with respect to the original computer model need to be solved.

Non-intrusive methods treat the computer model as a black box and only require

a collection of outputs from the model. Monte Carlo (MC) method may be the most

intuitive and widely used non-intrusive method for uncertainty analysis. The basic
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idea of MC method is to create a mapping between inputs and outputs based on a

random sampling of inputs and obtain the probability distribution of the system out-

put empirically. MC method is simple, but it requires extensive sampling of inputs

for convergence, especially in high dimensional cases. It would be very computation-

ally expensive if the evaluation of computer model is time consuming. To improve

the computational efficiency, other sampling techniques are developed, such as Quasi-

Monte Carlo (QMC) (Fang et al. 2006). In QMC, low discrepancy sequences are used

for sampling. Since low discrepancy sequences have better uniformity than pseudo-

random sequence, the convergence of QMC is faster than that of MC as the number

of runs increases. A thorough review of sampling approaches is given by Helton and

Davis (2003).

If the computer model is expensive to evaluate, the aforementioned methods could

be time consuming. One idea is to build an easy-to-evaluate metamodel to approxi-

mate and surrogate the complex computer model in uncertainty analysis. Differential

analysis method (Tomovic and Vukobratovic 1972, Lewins and Becker 1982, Rabitz

et al. 1983, Ronen 1988, Turányi 1990) and response surface methodology (Aceil

and Edwards 1991, Lee et al. 1987, and Kim et al. 1986) are two early developed

approximation methods. The idea of differential analysis method is to use the Tay-

lor series expansion near a base-case set of input. Response surface methodology is

based on using an experimental design to construct an appropriate response surface

approximation. But both approaches could not be sufficiently accurate if the system

has strong nonlinearity or the input uncertainty is large. With the development in

design and analysis of computer experiments (Santner et al. 2003), metamodels using

kriging (Sacks, et al., 1989) are able to provide a better approximation for the com-

plex computer models. They can be used to surrogate the computer model in MC

or QMC analysis (Chen et al. 1997 and Delaurentis and Mavris, 2000). Obviously,

the accuracy of uncertainty quantification strongly depends on the prediction perfor-

mance of metamodel. However, building a good metamodel for a complex system is

still a challenging problem.

This chapter studies the uncertainty propagation in the computer model used for
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simulating the solid end milling process in the software Production Module. Pro-

duction Module is developed by the company Third Wave Systems and widely used

for the simulation and optimization in various types of machining processes. In this

work, we focus on solid end milling process. The uncertainties come from the materi-

al properties of workpiece and tool geometries, and propagate to the output, cutting

force. MC and QMC approaches are initially attempted to study this uncertainty

propagation problem. But we found MC method to be too slow and QMC to be time

consuming. Then we developed an ordinary kriging model for solid end milling pro-

cess. Unfortunately, large discrepancies were observed between the predictions from

the kriging model and the true outputs. Therefore, we have to look for an alternative

approach to solve the problem.

A local base emulator was proposed to model the cutting force and study the

uncertainty propagation. The basic idea is to use a base function, which is the

simulation output with the uncertainty parameters set at their nominal values, and fit

an appropriate model to capture the discrepancy between the base and true outputs.

Linear function and Gaussian process (GP) are used for modeling the discrepancy

and both are found to work well.

This chapter is organized as follows. In Section 3.2, we briefly introduce the

computer model for solid end milling process and specify the uncertainty sources.

In Section 3.3, we review three traditional methodologies of uncertainty analysis.

In Section 3.4, we describe the methodologies of linear base emulator and Gaussian

process base emulator. Some concluding remarks and discussions are given in Section

3.5.

3.2 Computer Model of Solid End Milling Process

The solid end mill is a widely used machining tool type in machining process.

Production Module is a software based on physics-based material models, which pro-

vides a computer model to simulate the solid end milling process. In the computer

model, input variables involve feed rate, axial depth of cut, and radial depth of cut.

They will change as functions of time in a simulation. The workpiece properties and
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Figure 23: Tool path of solid end milling example

tool geometries can be specified by user defined parameters, including the hardness

of the workpiece material, the rake angle, helix angle, relief angle, and corner radius

of the tool. In practice, the properties of the workpiece and tool geometry may have

certain uncertainties. Understanding the uncertainty propagation is critical for opti-

mizing the tool path and other machining settings. In Production Module, multiple

outputs can be generated from a simulation. In this chapter, we will only consider the

peak tangential force, which is a key force in the machining process. The uncertainty

quantification of the other outputs can be dealt in a similar way.

Throughout this chapter, the demo of solid end milling process in Figure 23 will be

used as an example to illustrate and compare different methodologies. Figure 24 shows

the simulated peak tangential force from Production Module with all the parameters

at their nominal values. There are a total of 2885 time points in this simulation. At

each time point, the simulation can be seen as a short straight cutting.

3.3 Review of Methodologies for Uncertainty Analysis

In this section, we will go over the three popular methods for uncertainty propaga-

tion: MC method, QMC method, and metamodel approach. To begin with, we first

define the notations which will be used throughout the work. Consider a computer

model

y = f(x,u),
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Figure 24: Peak tangential force predicted by Production Module for the solid end
milling process in Figure 23

where y denotes the output of the computer model, x = (x1, · · · , xp)′ is the vector

of input variables with no uncertainties, and u = (u1, · · · , uq)′ represents the model

parameters with uncertainties. In the solid end milling demo as introduced in Section

2, we have three input variables with no uncertainties (p = 3) and five parameters

with uncertainties (q = 5). The three input variables are feed rate (x1), axial depth of

cut (x2), and radial depth of cut (x3), and the five parameters are the hardness of the

workpiece material (u1), rake angle (u2), helix angle (u3), relief angle (u4), and corner

radius (u5). The nominal values of the five parameters are 111 Bhn, 10 deg, 20 deg,

10 deg, and 0 inch, respectively. The uncertainties of u1, · · · , uq can be characterized

by a distribution, p(u) which is known. Since u has uncertainties, u could deviate

from its nominal value u0. Our objective is to study how the uncertainty will be

transmitted from u to the output y.

In the solid end milling example, let the vector u0 = (111, 10, 20, 10, 0)′ denote

the nominal value of u. The parameters u1, · · · , u5 are assumed to be independently

distributed, which is a reasonable assumption in practice. We also assume u1, · · · , u4
follow normal distributions with means equal to their nominal values and standard

deviations equal to 15% of their nominal values. Corner radius, u5 is assumed to
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follow an exponential distribution with mean equals to 0.01.

3.3.1 Monte Carlo method

In MC analysis, we first need to generate a sample of u by using the sequences of

pseudo-random numbers. Suppose we have generated a sample, u1, · · · ,uN . Then,

the expected value and variance are approximately

E(y) ≈ f̄(x) =
1

N

N∑
j=1

f(x,uj), (28)

V ar(y) ≈ 1

N − 1

N∑
j=1

[f(x,uj)− f̄(x)]2.

The confidence interval of y can be obtained by computing appropriate quantiles of

f(x,uj), j = 1, · · · , N .

For the solid end milling example, we need a large sample (run size > 1000) to

obtain convergence. Each evaluation of the solid end milling demo costs 10 ∼ 15

seconds, which means the computation will take several hours. Since MC method is

too time consuming, we will not implement it.

3.3.2 Quasi–Monte Carlo method

The difference between MC and QMC is the sampling technique. As mentioned

ealier, QMC method is based on low-discrepancy sequences instead of pseudo-random

numbers. For the solid end milling example, we first generated a uniform design with

sample size 50(= 10 × q) in [0, 1]5. The design of u, Du = {u1, · · · ,u50} can be

obtained by using the inverse probability transformation.

Then we run the solid end milling simulation with u1, · · · ,u50, respectively. The

50 peak tangential force profiles are shown in Figure 25. Computing appropriate

quantiles using the profiles in Figure 25, we can obtain the confidence interval of the

simulation. The 95 % confidence interval of peak tangential force in the simulation is

shown in Figure 26. Simulating 50 times takes about 15 minutes, which is much faster

than the MC method. For a simulation with a more complex tool path, say curve

cutting, the run-time could be larger. Then QMC method can become very time
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Figure 25: 50 simulated peak tangential force profiles for the QMC.

consuming. Therefore, it’s necessary to find another way to improve the efficiency of

uncertainty analysis.

3.3.3 Metamodel Method

The efficiency of MC or QMC method is limited by the the computational expense

of computer model. Using an easy-to-evaluate metamodel to surrogate the computer

model can reduce the total computation time. Ordinary kriging (Fang et al. 2006)

is a widely used metamodeling approach for the approximation of complex computer

model.

Suppose we have an N -run experimental designDx,u = ((x′1,u
′
1), · · · , (x′N ,u′N))′

and the N × 1 vector y = (y1, · · · , yN)′ is the collection of the outputs by conducting

the experiment. The ordinary kriging model is given by

y(x,u) = µ+ Z(x,u),

Z(x,u) ∼ GP (0, σ2R(·, ·)), (29)

where σ2 denotes the variance, and the correlation function is defined as

corr(Z(xi,ui), Z(xj,uj)) = R(xi − xj,ui − uj) = Rx(xi − xj)Ru(ui − uj).
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Figure 26: The simulation at nominal value of parameters and the 95% confidence
interval obtained from QMC

The Gaussian correlation functions are used for Rx(·) and Ru(·):

Rx(xi − xj) = exp{−
p∑

k=1

θk(xik − xjk)2},

Ru(ui − uj) = exp{−
q∑

k=1

φk(uik − ujk)2}.

The predictor is given by

ŷ(x,u) = µ̂+ r(x,u)′R−1(y − µ̂1), (30)

where r(x,u) =(R(x−x1,u−u1), · · · , R(x−xN ,u−uN))′, R is an N ×N matrix

with ijth element R (xi − xj,ui − uj), and µ̂ = 1′R−1y/1′R1. Let θ = (θ1, · · · , θp)′

and φ = (φ1, · · · , φq)′. The correlation parameters (θ′,φ′)′ can be estimated by

minimizing the negative log-likelihood function

N log σ̂2 + log |R|, (31)

where σ̂2 = 1
N

(y − µ̂1)′R−1(y − µ̂1). After we obtain the fitted ordinary kriging

model, we can use it to replace the computer model in MC or QMC method for

uncertainty analysis.
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Figure 27: Simulation of a simple straight cutting

To fit an ordinary kriging model for the solid end milling process, we first need

to generate a design of experiment by varying x and u. Notice that, here we do not

need to run the whole simulation for the experimental design, which will make the

generation of design time consuming. We only need to run a simple straight cutting

simulation to obtain the output for each run in the design. For example, the top

straight line between between 4 seconds and 10 seconds in Figure 27 is the simulation

of a straight cutting at a fixed set of (x,u). Then the corresponding tangential cutting

force can be obtained from any point on the straight line (e.g. the red circle in Figure

27). Since the simulation of a short straight cutting is very fast, the computational

expense of performing experimental design is small.

We use a cross array for the design of straight cutting experiment. Let Dx =

(x′1, · · · ,x′m)′ and Du = (u′1, · · · ,u′n)′ denote the designs for x and u, respectively.

The whole design Dx,u is obtained as Dx,u = Dx ⊗ Du, where ⊗ denotes the

Kronecker product. For Du, we can first generate an n-dimensional Maximum Pro-

jection Latin hypercube design (Joseph, et. al. 2014) in [0, 1] and then transform the

design to the original scale by using the probability distribution of u.

For generating Dx, we need to be more careful. Let X 0 = {x : f(x,u0)} be the

set of x in the simulation. Notice that only the outputs with x ∈ X 0 are related to
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uncertainty analysis. Therefore, instead of generating Dx from the global space of

x, we generate it within the local space X 0. Our idea is to modify an appropriate ex-

isting space-filling design criterion to construct Dx. Maximum Projection (MaxPro)

design (Joseph, et. al. 2014) maximizes space-filling properties on the projections

to all the subsets of factors and was found to have certain advantages for using in

computer experiment over the other space-filling designs. Below, we specify the steps

of generating Dx by extending the criterion used in MaxPro design:

• Let x1 = arg max
x∈X 0

f(x,u0) and use x1 as the first design point in Dx

• Suppose {x1, · · · ,xi−1} ⊂ Dx, 2 ≤ i < m has been generated. Then, the ith

point xi can be found by using the criterion

xi = arg min
x∈X 0

i−1∑
l=1

1∏p
k=1(xk − xlk)2

• Repeat step 2 from i = 2 to i = m. The generated array (x′1, · · · ,x′m)′ is the

m-run MaxPro design in X0.

The next step is to fit the ordinary kriging model. Notice that, we have R−1 =

R−1x ⊗R−1u , where Rx is an m-by-m correlation matrix corresponding to x with ijth

element Rx(xi − xj) and Ru is an n-by-n matrix with ijth element Ru(ui − uj).

Consequently, the computational complexity involving the inverse of R is reduced

from O(m3n3) to O(n3 +m3) (Hung, Joseph, and Melkote 2014).

The coefficient parameters are obtained by minimizing the negative likelihood

function (31). We obtain θ̂ = (0.001, 0.880, 22.794)′ and φ̂ = (0.816, 0.106, 3.328, 0.831, 1.203)′.

In Figure 28, the prediction of the fitted kriging model is compared with the simu-

lation from the computer model at the nominal setting. Unfortunately, we find the

fitted metamodel gives a poor prediction. We can even observe that the ordinary

kriging gives a nonzero prediction when the axial depth of cut or radial depth of cut

equals to zero, which violates the basic physics in the machining process. Due to the

poor accuracy of the kriging model, it will give an unreliable result in uncertainty

analysis.
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Figure 28: The predictions of ordinary kriging model at u0

3.4 Local Base Emulator

To improve the accuracy of the metamodel, one option is to use an experiment

with much larger run size. But performing a larger design and evaluating kriging

model could be time consuming. Therefore, we need to find an alternative way to

improve the performance of metamodel.

We propose to make use of another information to improve the metamodeling.

That is the outputs of simulation with the parameters equal to the nominal values

u0. These outputs are known, because users will first run the computer model with

the nominal parameter values and then consider uncertainty analysis. Notice that,

this is specific for uncertainty analysis and not valid for a general metamodeling

problem.

Consider a total of M time points in the simulation, t1, · · · , tM . At time point

ti, the output f(xi,u0) is known. In practice, u usually has a high probability

around its nominal value. Then it is reasonable to assume that u does not deviate

far from u0, especially when the uncertainty is not large. Therefore, the outputs

f(x1,u0), · · · , f(xM ,u0) should have a similar trend as the outputs with a general
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u, f(x1,u), · · · , f(xM ,u). Based on this idea, we propose

ψ(f(x,u)) = ψ(f(x,u0)) + δ(x,u), (32)

where ψ(·) is an appropriate transformation on the response, f(x,u0) is the evaluation

of the computer model with the uncertainty parameters at their nominal values u0

and δ(x,u) is the function used to capture the discrepancy between ψ(f(x,u)) and

ψ(f(x,u0)). Obviously, δ(x,u) should satisfy

δ(x,u0) = 0, for all x. (33)

The reason why we include a transformation in the additive formulation (32) is that

we hope the discrepancy term could be considerably small after an appropriate trans-

formation on the response.

Since a base function is utilized in our model and the design within the local space

X 0 is used for fitting the model, we name the model (32) “local base emulator”.

Local base emulator could have different forms by using different formulations for the

discrepancy term. In the following two subsections, we will implement the local base

emulator with linear function and GP for the discrepancy term, respectively.

3.4.1 Linear Base Emulator

If a linear function is used for the discrepancy, we call the emulator linear base

emulator (LBE). Consider a linear function of u for δ(x,u). To make the discrepancy

function satisfy the constraint condition in (33), we propose

δ(x,u) =

q∑
k=1

βk(x)(uk − u0k), (34)

where βk is a function x. Notice that if βk is independent of x, (32) becomes

ψ(f(x,u)) = ψ(f(x,u0)) +

q∑
k=1

βk(uk − u0k).

To include the interactions between x and u, we can further assume βk to be a
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Figure 29: Log-likelihood plots for the Box-Cox transformation of tangential cutting
force

linear function of x. Then we have

δ(x,u) =

q∑
j=1

(βj +

p∑
i=1

βijxi)(uj − u0j)

= −
q∑
j=1

(βj +

p∑
i=1

βijxi)u0j +

q∑
j=1

βjuj +

p∑
i=1

q∑
j=1

βijxiuj. (35)

Substituting (35) into (32), we can obtain the LBE as

ψ(f(x,u)) = ψ(f(x,u0))−
q∑
j=1

(βj +

p∑
i=1

βijxi)u0j +

q∑
j=1

βjuj +

p∑
i=1

q∑
j=1

βijxiuj. (36)

Let β = (β1, · · · , βq)′ and B be a p× q matrix with ijth element βij. Since (36)

is a linear model, we can easily estimate β and B using least squares. Denote the

estimates of β and B by β̂ and B̂. Then, the LBE is given by

f̂(x,u) = ψ−1

(
ψ(f(x,u0)) +

q∑
j=1

(β̂j +

p∑
i=1

β̂ijxi)(uj − u0j)

)
. (37)

Since (36) is a linear model, we can use a factorial design or orthogonal array to

fit the model. For the solid end milling example, we use a 96-run cross array design

which is a product of a 12-run orthogonal array for x and an 8-run full factorial design

for u.
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Figure 30: The predictions of LBE at a random selected u

The transformation ψ(·) need to be determined before estimating the parameters.

For a machining process, log-transformation is commonly used for the output, because

the cutting force can usually be approximated by a multiplicative functional form of

input variables. We also use the Box-Cox method to test the transformation on the

response. The plot of log-likelihood function is shown in Figure 29. In Figure 29,

we can see that λ = 0 is within 95% confidence interval, which indicates that log-

transformation is appropriate for the tangential force in the solid end milling example.

The estimates of coefficient parameters β̂ and B̂ are then obtained using least

squares estimation. For the fitted linear model, we have an R2 of 99.97%. By plugging

in these values, we can predict the tangential force with the LBE (37).

The predictions are compared with the outputs of computer model in Figure 30

at a random set of u. There is a huge improvement from kriging model, but small

discrepancies still exist between the predictions and the outputs of computer model.

Now we carry out the uncertainty analysis by using LBE in place of the computer

model in QMC method. The 95% confidence intervals obtained from LBE and QMC

are compared in Figure 31. We can see that their lower bounds agree well but some

deviations are between the upper bounds. To improve the accuracy, we consider a

more complex function for the discrepancy, which will be discussed in the next section.
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Figure 31: The simulation at nominal value of parameters and the 95% confidence
interval obtained using LBE

3.4.2 Gaussian Process Base Emulator

In the previous section, we use a linear function for the discrepancy. In practice,

if the performance of LBE provides a good accuracy, then we can use it for uncer-

tainty analysis. Otherwise, we need to choose a more sophisticated functional form

to capture the complex characteristics of the discrepancy.

Using two GPs, we can formulate the discrepancy as

δ(x,u) = Z(x,u)− Z(x,u0). (38)

The emulators using (38) for the discrepancy term is termed as Gaussian process base

emulator (GPBE). Apparently, the discrepancy function defined in (38) satisfies the

constraint (33). Since both Z(x,u) and Z(x,u0) are GPs, δ(x,u) is also a GP. Its

mean is 0 and correlation function is given by

Rδ(xi − xj,ui − uj) = corr (δ(xi,ui), δ(xj,uj))

= corr (Z(xi,ui)− Z(xi,u0), Z(xj,uj)− Z(xj,u0)) ,

= Rx(xi − xj)[Ru(ui − uj)−Ru(ui − u0)−

Ru(uj − u0) + 1], (39)
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Figure 32: Comparison between the predictions of GPBE, ordinary kriging and
computer model

where the correlation functions Rx and Ru have the same definition as for the ordi-

nary kriging model. We define the vector y0 = (y01, · · · , y0N)′ with the ith element

y0i = f(xi,u0), where xi is from the ith run of the design Dx,u. Denote w be an

N × 1 vector with ith element wi = ψ(yi), and w0 be the vector with ith element

wi = ψ(y0i). The correlation parameters (θ′,φ′)′ can be obtained by minimizing the

negative log-likelihood function

N log σ̂2 + log |Rδ|, (40)

where Rδ is an N × N matrix with ijth element Rδ (xi − xj,ui − uj) and σ̂2 =

(w −w0)
′R−1δ (w −w0)/N . The predictor for discrepancy function is given by

δ̂(x,u) = rδ(x,u)′R−1δ (w −w0), (41)

where rδ(x,u) =(Rδ(x − x1,u − u1), · · · , Rδ(x − xN ,u − uN))′. Substituting (41)

into (32), we can obtain the predictor of GPBE as

f̂(x,u) = ψ−1
[
ψ(f(x,u0)) + rδ(x,u)′R−1δ (w −w0)

]
. (42)

As we have validated, the log-transformation is appropriate for peak tangential

force in the solid end milling example. To compare the performance of GPBE with
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Figure 33: The simulation at nominal value of parameters and the 95% confidence
interval using GPBE.

the metamodeling approach, we use the same cross array design which was used for

fitting the ordinary kriging model. Similar to the inverse of correlation matrix in

ordinary kriging model, we have R−1δ = R−1x ⊗R−1u0, where Ru0 is an n-by-n matrix

with ijth element Ru(ui − uj) − Ru(ui − u0) − Ru(uj − u0) + 1. This means

fitting GPBE has the same order of computational complexity as fitting an ordinary

kriging model. By minimizing the negative log-likelihood function in (40), we obtain

θ̂ = (0.083, 2.052, 4.83)′ and φ̂ = (27.18, 0.957, 10.960, 1.005, 30.07)′. Plugging-in

these values, we have the GPBE for the solid end milling process

f̂(x,u) = f(x,u0) exp
[
rδ(x,u)′R−1δ (w −w0)

]
,

for x ∈ X 0. In Figure 32, the predictions of peak tangential force from GPBE are

compared with the outputs of computer model at the same set of u as in Figure 30.

We can see that the GPBE agrees very well with the computer model in the whole

time span. Even LBE also shows a good prediction (see Figure 30), we still find

GPBE achieves an additional 80% improvement with respect to the mean squared

error.

Again, using GPBE in place of the computer model, we obtain the 95% confi-

dence interval. The 95% confidence intervals from GPBE and QMC are compared in
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Table 4: Comparsion of different methods for the uncertainty analysis in solid end
milling process

MC QMC Ordinary kriging method LBE GPBE

Computation time NA 15 minutes 3 minutes < 1s 3 minutes
Accuracy NA very good poor good excellent

Figure 33. It shows a good agreement between the confidence intervals from the two

approaches.

3.5 Conclusions

This chapter studied the uncertainty propagation in the computer model of solid

end milling process. We could not solve this problem efficiently by using MC and

QMC methods. Metamodel method is then considered. To obtain a good prediction

for x ∈ X 0, we generated a modified MaxPro design within the local space X 0 and

fitted a kriging model from this design. But the fitted kriging model performs poorly

in prediction. We then proposed a “local base emulator” to improve the prediction.

In the local base emulator, a base function is used for capturing the general trend of

the output and a discrepancy function for the remaining characteristics. We found

even using a linear function for the discrepancy, we can achieve much better and faster

predictions than kriging model. Using GP for the discrepancy function can further

improve the prediction performance.

In Table 4, we compare the computation time and accuracy of the five methods

mentioned in this chapter. QMC can provide accurate results but is slow in compu-

tation. The ordinary kriging model method is faster but poor in prediction. LBE

achieves a high efficiency and a good accuracy. If we need a better accuracy, GPBE

will be a desirable option. It provides an excellent prediction performance with an

acceptable computational expense.

In summary, we developed a methodology which can be used for solving general

uncertainty propagation problems. The advantage of the local base emulator over

the other traditional approaches is that it reduces the computational expense while

maintaining a good accuracy. LBE and GPBE are two options for the users. LBE
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can be fast implemented and is a good option if the discrepancy can be well explained

by a linear function. GPBE could be used for a more complex system.
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