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SUMMARY

This thesis extends the use of neural-network-based model reference adaptive

control to systems that occur as cascades. In general, these systems are not feed-

back linearizable. The approach taken is that of approximate feedback linearization

of upper subsystems whilst treating the lower-subsystem states as virtual actuators.

Similarly, lower-subsystems are also feedback linearized. Typically, approximate in-

verses are used for linearization purposes. Model error arising from the use of an

approximate inverse is minimized using a neural-network as an adaptive element.

Incorrect adaptation due to (virtual) actuator saturation and dynamics is avoided

using the Pseudocontrol Hedging method. Using linear approximate inverses and lin-

ear reference models generally result in large desired pseudocontrol for large external

commands. Even if the provided external command is feasible (null-controllable),

there is no guarantee that the reference model trajectory is feasible. In order to miti-

gate this, nonlinear reference models based on nested-saturation methods are used to

constrain the evolution of the reference model and thus the plant states. These ref-

erence models along with assumptions on the initial errors guarantee that the plant,

reference model and neural-network states remain bounded. The method presented

in this thesis lends itself to the inner-outer loop control of air vehicles, where the

inner-loop controls attitude dynamics and the outer-loop controls the translational

dynamics of the vehicle. The outer-loop treats the closed loop attitude dynamics as

an actuator. Adaptation to uncertainty in the attitude, as well as the translational

dynamics, is introduced, thus minimizing the effects of model error in all six degrees of

freedom and leading to more accurate position tracking. A pole-placement approach

is used to choose compensator gains for the tracking error dynamics. This alleviates

xvi



timescale separation requirements, allowing the outer loop bandwidth to be closer to

that of the inner loop, thus increasing position tracking performance. A poor model

of the attitude dynamics and a basic kinematics model is shown to be sufficient for

accurate position tracking. In particular, the inner-outer loop method was used to

control an unmanned helicopter and has subsequently been applied to a ducted-fan,

a fixed-wing aircraft that transitions in and out of hover, and a full-scale rotorcraft.

Experimental flight test results are also provided for a subset of these vehicles.

xvii



CHAPTER I

INTRODUCTION

1.1 Nonlinear Adaptive Control

Feedback linearization-based methods have been used extensively in the control of

nonlinear systems over the past few decades. Depending on the existence of a global

diffeomorphism [23], the nonlinear dynamics may be mapped onto a manifold where

the system’s dynamics are governed by linear equations. Differential geometry-based

methods [1] have played an important role in the development of nonlinear control

methods. Recent extensions include robust stabilization, nonlinear damping and oth-

ers that have been developed to deal with situations where an exact diffeomorphism

is not available. Parametric uncertainty in the model has been dealt with using both

robust and adaptive methods. We focus on model reference direct adaptive control

where the system is assumed to be feedback linearizable, and we use a single hidden

layer artificial neural network to cancel model error arising from the approximate lin-

earization [34, 9]. A single hidden layer network is nonlinearly parameterized and has

the advantage of being able to approximate arbitrary unstructured parametric uncer-

tainty to arbitrary accuracy [17]. In contrast, linearly parameterized networks require

appropriate basis functions that must be correctly chosen to effectively approximate

the uncertainty. Adaptive control with a single hidden layer adaptive element has

been successfully used on a number of aircraft [8, 9, 29, 32].
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1.2 Saturation

All systems in practice encounter saturation of plant inputs, normally in the form of

magnitude saturation of actuators. The approximate model used for dynamic inver-

sion, however, cannot contain such nonlinearities, in order to guarantee the existence

of the inverse. This form of the inverse, used to approximately feedback linearize the

dynamics can result in large control usage for large errors and disturbances. At high

bandwidth [19] the actuators may also consistently encounter rate saturation.

With nonlinear systems, there is always a question of controllability [20, 66],

especially for systems with bounded actuation. For linear systems, the Kalman con-

trollability condition may be used to decide on the controllability of a system[13, 14].

There is no generalization of the Kalman controllability condition available for nonlin-

ear systems. A similar concept is that of null-controllability which asks: for a system

of the form ẋ = f(x, u) and given an initial condition x(0), is it possible to drive the

system to the origin? In [64, 65] it is shown that deciding on the controllability for

even bi-linear systems is at least NP-hard. This leads to the problem of not being able

to characterize a null controllable region Cx (See Definitions 1 (page 34), 2 (page 35)),

where there always exists a control that can drive the system to the origin. Normally,

in control design for nonlinear systems, an assumption of controllability is made on

the domain of interest Dx and the control design is such that it guarantees a domain

of attraction Ωx ⊂ Dx which keeps all trajectories in Dx. The assumption of con-

trollability may however not be valid in general, especially in systems with bounded

control, i.e., there is no guarantee that Dx ⊂ Cx. This assumption of controllability

cannot be checked easily, even for systems of the form

ẋ = Ax+Bσ(u). (1)

Here, σ represents a vector valued magnitude saturation function (see Definition 5

on page 103). One method of guaranteeing a domain of attraction is to make sure

2



the control design is such that the nonlinearity σ(u) is never active. This forms an

important class of control design methods for systems with bounded actuation and

include Sontag’s universal formula approach using control Lyapunov functions[44] and

others[4, 52]. Avoiding saturation, however, usually results in either conservative or

highly complex control laws leading to possibly very conservative domains of attrac-

tion and slow convergence. See [5] and the references therein for a survey of early

work on constrained control.

Another approach is to allow saturation to occur. The largest body of work with

regard to bounded control has been for constrained linear systems of the form (1).

It has been shown that global asymptotic stabilization for systems whose null con-

trollable region is Rn (A is semi-stable) is not possible for constrained systems [71]

using bounded linear feedback. It is however possible using nonlinear feedback laws

(nested saturations) [73] and was fully generalized in [70, 74]. This however does not

preclude semi-global stabilization using saturated linear control laws [75] for semi-

stable systems including systems with rate saturation [59]. In all cases mentioned

so far, static control designs are used. A whole other class of problems occurs when

dynamic compensators are designed, ignoring the saturation nonlinearity. When sat-

uration is encountered, any dynamic element is prone to windup. This same argu-

ment applies to adaptive designs (direct and indirect) which are prone to incorrect

adaptation. Some of the earliest work in this direction include the ”conditioning

technique” [53, 15] where the mismatch between desired control and actual control is

used for anti-windup. Various newer techniques to prevent incorrect adaptation have

been explored including recent techniques [76, 36] and reference therein, on Anti-

Windup-Bumpless-Transfer (AWBT) which involves using a dynamic anti-windup

compensator to modify the feedback signal to the compensator. An important class

of problems is adaptation in the presence of input constraints. In [33], an uncer-

tain linear time-invariant plant is locally stabilized with adaptation by using a filter

3



driven by the mismatch in control. Related work [41] where a scaling factor called a

µ-modification instead of a filter is used to ensure adaptation in the presence of input

constraints, by avoiding these constraints.

Other work that deals with constrained control is that of Model Predictive Control,

where optimal control inputs are calculated over a finite horizon at each sampling time

by solving a trajectory optimization problem usually (usually linear or quadratic),

using a plant model to predict plant outputs. MPC is able to handle input and

output nonlinearities explicitly. Since this is an optimization-based approach, this

process can be slow. Stability of MPC-based systems have been studied [25, 26, 56],

however, results in the presence of uncertainty are lacking.

1.3 PCH

In context of the model reference adaptive control architecture presented in this thesis

the Pseudocontrol Hedging [27](PCH) is used to protect any dynamic elements in the

controller including an adaptive neural network. The PCH method entails remov-

ing selected input characteristics from the error dynamics by modifying the reference

model, hence protecting the adaptive element from adapting incorrectly to selected

input nonlinearities. In contrast to [41] or other methods that avoid saturation, the

PCH method does not prevent saturation. If a desired pseudocontrol is not achieved

due to actuator nonlinearity, the deficit in the pseudocontrol is used to modify the

reference model dynamics by that amount. When using a linear reference model, any

large commands result in saturation and large PCH signals until the reference model

states are close to the plant. Although this removes the problem of incorrect adap-

tation from the reference model tracking error dynamics and protects the adaptive

element, the reference model dynamics are now modified by a signal whose magni-

tude now depends on the state of the reference model and eventually depends on the

external command. Closed loop stability of the plant, reference model and adaptive

4



element was studied by first showing ultimate boundedness of the reference model

tracking error dynamics and neural network weights, then, assuming adaptation was

complete, stability of the isolated non-adaptive subsystem was studied. In [27], it

is shown that with a linear reference model, as long as the external command and

the reference model states are close, the Lyapunov function could be shown to be

negative semi-definite for certain amounts of saturation. Here there is an assumption

that the plant states remain in the plant’s null controllable region.

1.4 Nonlinear Reference Models

In an effort to improve upon this result, the use of a nonlinear reference model can be

shown to result in better boundedness results. The reference model in model reference

adaptive control is used to provide a smooth command that the tracking controller

can follow. It has already been shown that the tracking error (difference between

reference model and plant states) is bounded in the presence of saturation when PCH

is used. One of the primary problems is dealing with large external commands, which

will attempt to produce a linear response in the plant when a linear reference model

is used. Since the tracking error is bounded the plant states could leave the null

controllable region quickly, depending on the trajectory of the reference model. It

is known that linear systems with bounded control may be stabilized on their null-

controllable region using a nonlinear nested saturation-based control law [73, 74].

In much of the work on constrained control positive invariant sets have been used to

place bounds on the state at any given time. Using this as a motivation, and assuming

that the external command is null-controllable, boundedness of the plant states may

be argued if it is assumed that there exists a region around the external command

which the reference model states + tracking error are guaranteed to remain within.

In this respect, artificial saturation functions are introduced in the reference model

that constrain its evolution and thus the evolution of the plant states.
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1.5 Systems in Cascade

Many real systems in practice appear as feedforward systems. An example is the

position control of a helicopter which is an underactuated system with 6 degrees of

freedom and 4 controls. Although independent controls are available for control of

rotational dynamics (lateral cyclic, longitudinal cyclic, pedal), only one independent

control is available for the translational dynamics (collective). Accelerations in the

body x and y directions can only be generated by tilting the aircraft’s thrust vec-

tor. This is an example of the feedforward nature of helicopter dynamics. In real

systems, this strict feedforward structure is only approximately true. Most actuators

also have secondary effects (control coupling), for example, the tail rotor thrust on

a helicopter also produces translational accelerations in the body y-axis. Control of

systems such as the helicopter have normally involved splitting the control task into

an inner-loop that controls the attitude and an outer-loop that controls the trans-

lational dynamics along with assumptions of time scale separation between the two

loops [57, 46]. Introducing adaptation in the control of the translational dynamics

has advantages wherein a very simple kinematic model of the aircraft may be used

for inversion purposes, leaving the adaptive element to cancel out modeling errors

which include the secondary coupling effects of actuators. Although this problem

could be formulated as a multi-input-multi-output adaptive control problem [18], the

control allocation when designing inverse transformations for underactuated systems

is not trivial. More importantly, treating it as a generic MIMO problem will result in

linearizing transformations involving the independent controls only. It is not possible

to incorporate information regarding the feedforward structure of the plant dynamics

in the general pure MIMO setting. For example, in order to perform a coordinated

turn, the bank angle required to perform the turn may be generated using a dynamic

inverse of the aircraft dynamics. In a pure MIMO setting, dynamic inversion would
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only allow the desired actuator deflections to be generated. Additionally, it is some-

times desirable to impose artificial limits on some of the commanded states of the

system, such as the maximum attitude or velocity the aircraft may take in a given

axis.

The approach of stabilizing systems in cascade adaptively and the use of PCH to

protect adaptation for the upper subsystems from the nonlinearities and dynamics of

the lower subsystems is unique; enabling adaption for all subsystems. Unlike other

methods [45, 24] which require the plant dynamics in a feedforward form, in order to

recursively stabilize plant dynamics with bounded control, we use dynamic inversion

and adaptation to feedback linearize the plant into a chain of integrators and use

PCH to protect the adaptive element.

1.6 Control of an Autonomous Helicopter

Unmanned helicopters are versatile machines that can perform aggressive maneuvers.

This is evident from the wide range of acrobatic maneuvers executed by expert radio-

control pilots. Helicopters have a distinct advantage over fixed-wing aircraft especially

in an urban environment, where hover capability is helpful. There is increased inter-

est in the deployment of autonomous helicopters for military applications, especially

in urban environments[51]. These applications include reconnaissance, tracking of

individuals or other objects of interest in a city, and search and rescue missions in

urban areas. Autonomous helicopters must have the capability of planning routes and

executing them. To be truly useful, these routes would include high-speed dashes,

tight turns around buildings, avoiding dynamic obstacles and other required aggres-

sive maneuvers. In planning [10] these routes, however, the tracking capability of the

flight control system is a limiting factor because most current control systems still do

not leverage the full flight envelope of small helicopters, at least, unless significant

system identification and validation has been conducted.
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Although stabilization and autonomous flight [60] has been achieved, the per-

formance has generally been modest when compared to a human pilot. This may

be attributed to many factors, such as parametric uncertainty (changing mass, and

aerodynamic characteristics), unmodeled dynamics, actuator magnitude and rate sat-

uration and assumptions made during control design itself. Parametric uncertainty

limits the operational envelope of the vehicle to flight regimes where control designs

are valid, and unmodeled dynamics and saturation can severely limit the achievable

bandwidth of the system. The effects of uncertainty and unmodeled dynamics have

been successfully handled using a combination of system identification [11, 37, 47]

and robust control techniques [39]. Excellent flight and simulation results have been

reported including acrobatic maneuvers [12] and precision maneuvers [39, 38].

A key aspect in the effective use of unmanned aerial vehicles(UAVs) for military

and civil applications is their ability to accommodate changing dynamics and payload

configurations automatically without having to rely on substantial system identifi-

cation efforts. Variants of the Neural-Network (NN) based direct adaptive control

methods have been used as enabling technologies for practical flight control systems

that allow online adaptation to uncertainty. This technology has been successfully ap-

plied to the recent U.S. Air Force Reconfigurable Control for Tailless Fighter Aircraft

(RESTORE) culminating in a successful flight demonstration [8, 6] of the adaptive

controller on the X-36. A combined inner-outer loop architecture was also applied

for guidance and control of the X-33 [28] and evaluated successfully in simulation for

various failure cases.

For autonomous helicopters, a primary objective is the accurate tracking of po-

sition commands. Much adaptive control work on helicopters has concentrated on

improving the tracking performance of attitude commands [35, 42, 58]. Usually a

simple outer loop employing basic relationships between attitude and linear acceler-

ation is used to control the translational dynamics. For many applications, this may
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be sufficient. However, when operating in an urban environment or flying in forma-

tion with other UAVs, the high-precision position tracking ability of the controller

dictates the minimum proximity between the UAV and objects in its environment. In

contrast to previous attitude control-only work [19], a coupled inner-outer loop adap-

tive design is introduced that can handle uncertainty in all six degrees of freedom.

In synthesizing a controller (Fig. 7), the conventional conceptual separation between

the inner loop and outer loop is made. The inner loop controls the moments acting

on the aircraft by changing the lateral stick, δlat, longitudinal stick, δlon and pedal,

δped, inputs. The outer loop controls the forces acting on the aircraft by varying the

magnitude of the rotor thrust using the collective δcoll input. The thrust vector is

effectively oriented in the desired direction by commanding changes to the attitude

of the helicopter using the inner loop. The idea of adaptation for systems in cascade

is used to cancel model errors in all six degrees of freedom. Unwanted adaptation

to plant input characteristics such as actuator saturation and dynamics are tackled

using PCH. For example, the inner-loop attitude control sees actuator limits, rate

saturation and associated dynamics. PCH [28, 27], is used to modify the inner-loop

reference model dynamics in a way that allows continued adaptation in the presence

of these system characteristics. This same technique, is used to prevent adaptation

to inner-loop dynamics and interaction between the inner and outer loops. Without

hedging of the outer loop, adaptation to uncertainty in the translational dynamics

would not be possible. Additionally, nonlinear reference models are used to prescribe

the aggressiveness with which external commands are achieved.

This control design was first applied to the Yamaha RMAX (GTMax) helicopter

(Fig. 1) and subsequently to a 11-inch ducted fan, the GTSpy (Fig. 2), the Boeing

R-22 unmanned helicopter (Fig. 3), and to a high thrust-to-weight ratio aircraft, the

GTEdge (Fig. 4). The GTMax has been used to perform a mid-air launch of the

GTSpy, which is perhaps the first known launch of an autonomous rotorcraft from
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Figure 1: The GTMax Helicopter

Figure 2: The GTSpy Ducted Fan
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Figure 3: The Boeing Unmanned Robinson-22 Helicopter

Figure 4: The GTEdge Aircraft with a high (greater than 1) thrust-to-weight ratio
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another autonomous rotorcraft. Additionally, the GTEdge is capable of hovering

vertically and transitioning to full aircraft mode forward flight and back to hover, all

using the same adaptive control system presented in this thesis. The hover⇒forward-

flight⇒hover maneuver is to the author’s knowledge the first time such a maneuver

has been performed by an unmanned aircraft. The only differences in control design

between the various vehicles are the inverse models reflecting vehicle dynamics.

1.7 Outline of Thesis

Chapter 2 presents previous work on model reference adaptive control with input

saturation and the PCH method.

Chapter 3 presents the development of the control structure for two subsystems

and the more general k-subsystems in cascade with adaptation. It is also shown that

the tracking error dynamics reduce to that of pre-existing work.

Chapter 4 presents the use of nonlinear reference models and boundedness the-

orems prescribing conditions for the boundedness of reference model, plant and neural

network errors for linear and nested saturation-based reference models for k-subsystems

in cascade.

In Chapter 5 an inner-outer-loop adaptive architecture is developed for trajectory

control of an unmanned helicopter. Additionally, an analysis of the choice of gains

that alleviates timescale separation requirements between the inner-loop and outer-

loop is presented.

Chapter 6 summarizes flight test results using this control method implemented

on the Yamaha Rmax helicopter and other aircraft.

Appendix A contains proofs of theorems presented in this thesis and Appendix B

is a stand-alone chapter that develops results for guaranteeing real poles for the nested

saturation control law.
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CHAPTER II

BACKGROUND

Consider the following nonlinear system in first order form

ẋi = xi+1 i = 1, 2, · · · , n− 1

ẋn = f(x, δ)

δ = g(x, δdes),

(2)

where x ∈ Dx ⊂ Rn, is the state of the system, δ ∈ R is the control. The function f

represents the plant dynamics and g represents a state-dependent actuation nonlin-

earity. Here, δdes ∈ R is the desired actuator (control) deflection while δ is the actual

deflection. Typically, g represents actuator magnitude saturation.

The control objective is to synthesize a control law to track a bounded external

command xc ∈ Rn when f, g are only approximately known. It is assumed that the

full state vector x is available for feedback. First, the conventional model reference

adaptive control framework is presented for a single input nonlinear system. The

pseudocontrol hedging method is described and used to protect the adaptive element

from incorrect adaptation to input nonlinearities.

2.1 Model Reference Adaptive Control

Taking the approach of model reference adaptive control [34, 9], an approximate

model for the plant dynamics f(x, δ) may be introduced as

ν = f̂(x, δdes), (3)

where ν is the desired pseudocontrol. For example, in the case of second order po-

sition control of mechanical systems, ν represents desired acceleration. The function
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f̂(x, δdes) can be any available approximation of f(x, δ) with the restriction that it

should invertible with respect to δdes, allowing one to formulate the dynamic inverse

as

δdes = f̂−1(x, ν). (4)

The actuator deflection δdes is what is expected will achieve the desired pseudocontrol

ν. In introducing these approximate models and formulation of the controller, it is

assumed that the full state, x, is available for feedback. Output feedback formulations

of this architecture are also available [7]. A sufficient condition for Eqn (3) to be

invertible is that ∂f̂(x, δ)/∂δ is continuous and non-zero for (x, δ) ∈ Dx × R. It is

this requirement that precludes including input saturation nonlinearities as a part of

the inverse.

Substituting the inverse dynamics Eqn (4) into Eqn (2) results in the following

approximately linearized n-integrator system

ẋi = xi+1 i = 1, 2, · · · , n− 1

ẋn = ν + ∆̄(x, δ, δ̂)− νh,

(5)

where δ̂ is the an estimate of the actuator position. An estimate needs to be used

when actuator position is not readily available. If actuator position is measurable

then δ̂ = δ. The model error is a static nonlinear function and is given by

∆̄(x, δ, δ̂) = f(x, δ)− f̂(x, δ̂).

The signal νh represents the pseudocontrol that cannot be achieved due to actuator

input characteristics such as saturation and is given by

νh = f̂(x, δdes)− f̂(x, δ̂)

= ν − f̂(x, δ̂).

νh is also called the pseudocontrol-hedging signal or PCH signal. This leaves ν, the

desired pseudocontrol that may now be designed to stabilize the linearized system
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Figure 5: Model Reference Adaptive Control Architecture with PCH

and deal with canceling the model error ∆̄. The PCH signal, νh, is a disturbance and

will be dealt with subsequently. Design, ν to be of the form

ν = νcr + νlc − ν̄ad, (6)

where νcr is the output of a reference model, νlc is the output of a compensator that

stabilizes the linearized dynamics and ν̄ad, the output of an adaptive element such

as a neural network that is designed to cancel the effects of model error ∆̄. This

architecture is illustrated in Fig. 5.

2.2 Reference Model and Tracking Error

For a system in first order form, the reference model dynamics may be designed as

ẋri
= xri+1

i = 1, 2, · · · , n− 1

ẋrn = νcr(xr, xc),

(7)

where xr ∈ Rn are the states of the reference model and xc ∈ Rn is a bounded

external command signal. The reference model tracking error may be defined as

e , xr − x. (8)
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When the tracking error dynamics are developed, the form of Eqn (7) will result in

the νh signal appearing as a part of the error dynamics. Various methods such as

anti-windup synthesis [76] and robustifying terms [16] may be used to deal with the

potentially unbounded disturbance signal νh. However, a more critical problem is

that any adaptive element (including a simple integrator) introduced to cancel the

uncertainty ∆(·) will be trained using the tracking error signal e, and will attempt

to adapt to actuator nonlinearities due to the presence of νh in the tracking error

dynamics. Methods such as anti-windup synthesis and robustifying terms will leave

some element of the input nonlinearity in the dynamics, thus leading to some amount

of incorrect adaptation.

Ultimately, the tracking error dynamics should contain no element of the satura-

tion nonlinearity, i.e., the signal νh must be completely removed from ė. The PCH

method [27] is used to protect the adaptive element from such input characteristics.

This may be achieved by augmenting Eqn (7) with the hedging signal resulting in

the removal of the actuator characteristic from the tracking error dynamics. The

reference model dynamics are now given by

ẋri
= xri+1

i = 1, 2, · · · , n− 1

ẋrn = νcr(xr, xc)− νh.

(9)

If the actuators are saturated then the reference model will continue to demand track-

ing as though full authority were still available resulting in incorrect adaptation. How-

ever, the reference reference model is now ”moved” in the opposite direction (hedge)

by an estimate of the amount the plant did not move due to system characteristics

the control designer does not want the adaptive element to see [27].

Note that the PCH signal affects the reference model output, νcr, only through

changes in reference model dynamics and that the instantaneous pseudocontrol output

of the reference model in not changed. The tracking error dynamics may be found by
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directly differentiating Eqn (8)

ė =


xr2 − x2

...

ẋrn − ẋn

 .
Considering ėn,

ėn = ẋrn − ẋn

= νcr − νh − f(x, δ)

= νcr − ν + f̂(x, δ̂)− f(x, δ)

= −νlc + ν̄ad + f̂(x, δ̂)− f(x, δ)

= −νlc − (∆̄(x, δ, δ̂)− ν̄ad).

Note that the PCH term, νh, in Eqn (9) cancels the PCH term in Eqn (5) thus remov-

ing it from the tracking error dynamics. If νlc is chosen to be a linear compensator

of the form

νlc =

[
K1 K2 · · · Kn

]
e,

the overall tracking error dynamics may now be expressed as

ė = Ae+B
[
ν̄ad − ∆̄(x, δ, δ̂)

]
, (10)

where,

A =



0 1 0 · · · 0

0 0 1 0

...
...

. . .

0 0 1

−K1 −K2 −K3 · · · −Kn


, B =



0

0

...

0

1


,

where the compensator gains Ki, i = 1, · · · , n are chosen such that A is Hurwitz. It

now remains for ν̄ad to be designed to cancel the model error ∆̄(x, δ, δ̂) and minimize

the forcing term in Eqn (10). Hence the functional form ν̄ad = ν̄ad(x, δ, δ̂) is necessary
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to effectively cancel ∆̄. However δ, the actuator position may not be measurable

leading to the following assumption

Assumption 1. The actual actuator position can be expressed as

δ = δ(x, δ̂).

For weaker assumptions with regard to the form of the actuator dynamics see Sec-

tion 3.3.

The tracking error dynamics may be represented as

ė = Ae+B
[
ν̄ad(x, δ̂)− ∆̄(x, δ̂)

]
, (11)

where ν̄ad is now only required to be dependent on available information.

2.3 Adaptive Element

Single hidden layer (SHL) perceptron NNs are universal approximators[17, 67, 43].

Hence, given a sufficient number of hidden layer neurons and appropriate inputs, it is

possible to train the network online to cancel model error. Fig. 6 shows the structure

of a generic single hidden layer network whose input-output map may be expressed

as

νadk
= bwθwk

+

n2∑
j=1

wjkσj(zj), (12)

where, k = 1, ..., n3, bw is the outer layer bias, θwk
is the kth threshold. wjk represents

the outer layer weights and the scalar σj is a sigmoidal activation function

σj(zj) =
1

1 + e−azj
, (13)

where, a is the so called activation potential and may have a distinct value for each

neuron. zj is the input to the jth hidden layer neuron, and is given by

zj = bvθvj
+

n1∑
i=1

vijxini
, (14)
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Figure 6: Neural Network with one hidden layer.

where, bv is the inner layer bias and θvj
is the jth threshold. Here, n1, n2 and n3 are the

number of inputs, hidden layer neurons and outputs respectively. xini
, i = 1, ..., n1,

denotes the inputs to the NN. For convenience, define the following weight matrices:

V ,



θv,1 · · · θv,n2

v1,1 · · · v1,n2

...
. . .

...

vn1,1 · · · vn1,n2


, (15)

W ,



θw,1 · · · θw,n3

w1,1 · · · w1,n3

...
. . .

...

wn2,1 · · · wn2,n3


, (16)

Z ,

V 0

0 W

 . (17)

Additionally, define the σ(z) vector as

σT (z) ,

[
bw σ(z1) · · · σ(zn2),

]
(18)
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where bw > 0 allows for the thresholds, θw, to be included in the weight matrix W .

Also, z = V T x̄, where,

x̄T =

[
bv xT

in

]
, (19)

where, bv > 0, is an input bias that allows for thresholds θv to be included in the

weight matrix V . The input-output map of the SHL network may now be written in

concise form as

νad = W Tσ(V T x̄). (20)

The NN may be used to approximate a nonlinear function, such as ∆(.). The universal

approximation property[17] of NN’s ensures that given an ε̄ > 0, then ∀ x̄ ∈ D, where

D is a compact set, ∃ an n̄2 and an ideal set of weights (V ∗,W ∗), that brings the

output of the NN to within an ε-neighborhood of the function approximation error.

This ε is bounded by ε̄ which is defined by

ε̄ = sup
x̄∈D

∥∥W Tσ(V T x̄)−∆(x̄)
∥∥ . (21)

The weights, (V ∗,W ∗) may be viewed as optimal values of (V,W ) in the sense that

they minimize ε̄ on D. These values are not necessarily unique. The universal ap-

proximation property thus implies that if the NN inputs xin are chosen to reflect the

functional dependency of ∆(·), then ε̄ may be made arbitrarily small given a sufficient

number of hidden layer neurons, n2. The adaptive signal ν̄ad actually contains two

terms

ν̄ad = νad + νr

where νad is the output of the SHL NN and νr is a robustifying signal that arises in

the proof of boundedness. The NN weight matrices may be grouped as

Z ,

V 0

0 W

 ,
and the weight error is defined as

W̃ , W ∗ −W, Ṽ , V ∗ − V,
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and correspondingly

Z̃ , Z∗ − Z.

Theorem 1 ([27]). Consider the system given by (2) together with the inverse law (4)

and assumptions ( 2, 3, 4, 5, 6), with r, ν̄ad, νad, νr given by equations 37, 38, 39, 40

respectively. If Kr > 0 ∈ R with lower-limit state in the proof, and where the adaptive

laws Ẇ , V̇ , satisfy 41, 42 with ΓW ,ΓV > 0 and scalar κ > 0 with lower-limit state

in the proof, then, the reference model tracking error, e, and NN weights (W̃ , Ṽ ) are

uniformly ultimately bounded. Further, the plant states, x, are uniformly bounded.

Proof. This theorem is a special case of Theorem 2 with one subsystem. Hence, the

proof given in Section A.1 applies and shows boundedness of e, W̃ , Ṽ . The external

command and command tracking error er are bounded by assumption; this implies

that all other states are uniformly bounded. Additionally, see [27].
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CHAPTER III

ADAPTATION FOR SYSTEMS IN CASCADE

3.1 Adaptive Control of Two Systems in Cascade

Consider the following interconnection of two systems,

ż1 = z2

ż2 = φ(z, ξ, δz, δξ)

ξ̇1 = ξ̇2

ξ̇2 = γ(z, ξ, δz, δξ),

(22)

where δz ∈ R primarily affects the z-subsystem and δξ ∈ R primarily affects the

ξ-subsystem. Eqn (22) represents a general interconnection; in formulating the ap-

proximate inverses however, any feedforward structure present in the plant dynamics

may be leveraged. The system (22) may be approximately feedback linearized by

introducing the transformationφdes

γdes

 =

φ̂(z, ξ̆ |ξdes, δzdes
, δ̂ξ)

γ̂(z, ξ, δ̂z, δξdes
)

 . (23)

Here, ξ is partitioned into ξ̆ |ξdes, such that ξdes ∈ R≤2, is a subset of the ξ-subsystem

states that are treated as virtual controls for the z-subsystem and ξ̆ are the remaining

ξ-subsystem states that are not treated as virtual control. The variables, ξdes, δzdes

and δξdes
are the controls that are expected to achieve the desired pseudocontrol φdes

and γdes. Choosing φ̂ and γ̂ such that they are invertible, the desired control and
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virtual control may be written asδzdes

ξdes

 =

φ̂−1
δz

(z, ξ̆ , φdesδz
, δ̂ξ)

φ̂−1
ξ (z, ξ̆ , φdesξ

, δ̂ξ)

 ,
δξdes

= γ̂−1(z, ξ, δ̂z, γdes),

with φdesδz
+ φdesξ

= φdes and φ̂δz , φ̂ξ formulated such that they are consistent with

Eqn (23), and their inverses exist. In computing δzdes
and δξdes

, any dynamics in

the actuators are ignored. Additionally, the dynamics of the ξ-subsystem is ignored

in computing the virtual control ξdes. Defining the consolidated state vector x =[
zT ξT

]T

and consolidated control vector δ =

[
δz δξ

]T

, the model error may be

defined as ∆̄z(x, δ, δ̂)

∆̄ξ(x, δ, δ̂)

 =

φ(x, δ)− φ̂(x, δ̂)

γ(x, δ)− γ̂(x, δ̂)

 ,
and the system dynamics of Eqn (22) may be written as

ż1 = z2

ż2 = φdes + ∆̄z − φh

ξ̇1 = ξ̇2

ξ̇2 = γdes + ∆̄ξ − γh.

(24)

The pseudocontrol signals φdes and γdes may now be designed to satisfy closed-loop

performance and stability characteristics. Choosing,

φdes = φcr + φlc − φ̄ad

γdes = γcr + γlc − γ̄ad,

where φcr and γcr are outputs of reference models for the z and ξ subsystems respec-

tively, φlc, γlc are outputs of linear compensators, φh, γh are estimates of the deficit in

pseudocontrol due to actuator nonlinearities in δz and δξ and φ̄ad and γ̄ad are outputs

of an adaptive element designed to cancel the effects of model error.
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3.1.1 Reference Model and PCH

The reference models may be designed as follows

żr1 = zr2

żr2 = φcr(zr, zc)− φh

ξ̇r1 = ξ̇r2

ξ̇r2 = γcr(ξr, ξc ⊕ ξdes)− γh,

where, xr =

[
zT

r ξT
r

]T

∈ R4 are the reference model states xc =

[
zT

c ξT
c

]T

∈ R4

represent the external command. The operator ⊕ represents generalized addition

that augments the external command with corrections that the z-subsystem needs

in order to achieve its desired pseudo-control φdes. PCH may be used to protect the

adaptation process from actuator nonlinearities in δξ and δz. A significant difference

from previous work is the inclusion of ξdes in the generation of the PCH signal. Since

the ξ-subsystem acts like an actuator for the z-subsystem any mismatch between ξdes

and ξ may be hedged out thus insulating the adaptation process from the dynamics

of the ξ-subsystem. The PCH signals may now be computed as follows

φh = φ̂(z, ξ̆ |ξdes, δzdes
, δ̂ξ)− φ̂(z, ξ, δ̂z, δ̂ξ)

= φdes − φ̂(z, ξ, δ̂z, δ̂ξ)

γh = γ̂(z, ξ, δ̂z, δξdes
)− γ̂(z, ξ, δ̂z, δ̂ξ)

= γdes − γ̂(z, ξ, δ̂z, δ̂ξ).

If an assumption such as Assumption 1 (pg. 18) can be made and noting that ξ is

available for feedback, then

∆̄(x, δ, δ̂) =

∆̄z(x, δ, δ̂)

∆̄ξ(x, δ, δ̂)

 =

∆z(x, δ̂)

∆ξ(x, δ̂)

 = ∆(z, ξ, δ̂z, δ̂ξ).
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3.1.2 Tracking Error Dynamics

The reference model tracking error, e as follows

e ,



zr1 − z1

zr2 − z2

ξr1 − ξ1

ξr2 − ξ2


ė =



zr2 − z2

żr2 − ż2

ξr1 − ξ1

ξ̇r2 − ξ̇2


.

The linear compensators may now be designed asφlc

γlc

 =

Rp Rd 0 0

0 0 Kp Kd

 e.
The reference model tracking error dynamics may be evaluated as

ė2 = żr2 − ż2 ė4 = ξ̇r2 − ξ̇2

= φcr − φh − φ = γcr − γh − γ

= φcr − φdes + φ̂− φ = γcr − γdes + γ̂ − γ

= φcr − φlc − φcr + φ̄ad + φ̂− φ = γcr − γlc − γcr + γ̄ad + γ̂ − γ

= −φlc − (φ− φ̂− φ̄ad) = −γlc − (γ − γ̂ − γ̄ad)

= −φlc − (∆z − φ̄ad) = −γlc − (∆ξ − γ̄ad),

The overall tracking error dynamics may be written as

ė = Ae+B[ν̄ad −∆(z, ξ, δ̂z, δ̂ξ)], (25)

where,

A =



0 1 0 0

−Rp −Rd 0 0

0 0 0 1

0 0 −Kp −Kd


, B =



0 0

1 0

0 0

0 1


, ν̄ad =

φ̄ad

γ̄ad

 , (26)

where, Rp, Rd, Kp, Kd ∈ R1
>0 stabilize the z and ξ dynamics together. The general

case of k-subsystems in cascade follows a similar development and is presented before

boundedness theorems are stated.
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3.2 Adaptive Control of k-subsystems in Cascade

Consider the following set of k-subsystems in first order form

ẋ(1)
n1

= f1(x, δ)

...

ẋ(i)
ni

= fi(x, δ)

...

ẋ(k)
nk

= fk(x, δ),

(27)

where the superscript (i), denotes the ith-subsystem which has the form

ẋ
(i)
1 = x

(i)
2

ẋ
(i)
2 = x

(i)
3

...

ẋ(i)
ni

= fi(x, δ),

where the state vector

x =
[
x(1)T , x(2)T , . . . , x(i)T

]T ∈ Dx ⊂ Rn1+···+nk ,

and the control vector is

δ = [δ1, δ2, . . . , δk]
T ∈ Rk,

where x(i) ∈ Rni and δi ∈ R for i = 1, . . . , k. Noting that for each subsystem i,

the primary control is δi and assuming a cascade structure, introduce the invertible

approximations

νi = f̂i(x̆
(i+1)|x(i+1)

des , δ̂1, . . . , δ̂i−1, δides
, δ̂i+1, . . . , δ̂k) for i = 1, . . . , k − 1

νk = f̂k(x, δ̂1, . . . , δ̂k−1, δkdes
),

(28)
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resulting in the following inverseδ1des

x
(2)
des

 =

 f̂−1
1δ1

(x̆(2), ν1δ1
, δ̂2, . . . , δ̂k)

f̂−1
1

x(2)
(x̆(2), ν1

x(2)
, δ̂2, . . . , δ̂k)

 ,
 δides

x
(i+1)
des

 =

 f̂−1
iδi

(x̆(i+1), νiδi
, δ̂1, . . . , δ̂i−1, δ̂i+1, δ̂k)

f̂−1
i
x(i+1)

(x̆(i+1), νi
x(i+1)

, δ̂1, . . . , δ̂i−1, δ̂i+1, δ̂k)

 for i = 2, . . . , k − 1,

δkdes
= f̂−1

k (x, νk, δ̂1, . . . , δ̂k−1),

(29)

where, x
(i)
des ∈ R≤ni , i = 2 · · · k, are virtual controls, x̆(i), i = 2 · · · k denotes elements

of the full state vector x without the virtual controls x
(i)
des, νiδi

+ νi
x(i+1)

= νi and

f̂iδi
, f̂i

x(i+1)
formulated such that they are consistent with Eqn (28) for i = 1 . . . k − 1

and their inverses exist. Substituting the inverse law of Eqn (29) into (27), the plant

dynamics may be written as

ẋ(i)
ni

= νi + ∆̄i(x, δ, δ̂)− νhi
for i = 1, . . . , k.

Choosing the pseudocontrol as

νi = νcri
+ νlci

− ν̄adi
for i = 1, . . . , k,

with reference models

ẋ(1)
rn1

= νcr1(x
(1)
r , x(1)

c )− νh1

ẋ(i)
rni

= νcri
(x(i)

r , x
(i)
c ⊕ x

(i)
des)− νhi

for i = 2, . . . , k,

(30)

where x
(i)
r ∈ Rni for i = 1, . . . , k. The PCH signal may be computed as follows

νhi
= νi − f̂i(x, δ̂) for i = 1, . . . , k. (31)

Defining the reference model tracking error as

e(i) , x(i)
r − x(i) for i = 1, . . . , k, (32)
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the reference model tracking error dynamics may be written as

ė = Ae+B[ν̄ad − ∆̄(x, δ, δ̂)], (33)

or 

ė(1)

ė(2)

...

ė(k)


︸ ︷︷ ︸

ė

=



A(1) 0 0 0

0 A(2) 0 0

0 · · · . . .
...

0 0 0 A(k)


︸ ︷︷ ︸

A



e(1)

e(2)

...

e(k)


︸ ︷︷ ︸

e

+



B(1)

B(2)

...

B(k)


︸ ︷︷ ︸

B



ν̄ad1 − ∆̄1(x, δ)

ν̄ad2 − ∆̄2(x, δ)

...

ν̄adk
− ∆̄k(x, δ)


︸ ︷︷ ︸

ν̄ad−∆̄(x,δ)

,

where A(i) ∈ Rni×ni and has the form

A(i) =



0 1 0 · · · 0

...
...

0 · · · · · · · · · 1

−K(i)
1 · · · · · · · · · −K(i)

ni


ni×ni

,

and B(i) ∈ Rni×k has the form

B
(i)
(α,β) = 0 ∀ α ∈ {1, . . . , ni},∀ β ∈ {1, . . . , k}, (α, β) 6= (ni, i)

B
(i)
(ni,i)

= 1.

Associated with the reference model tracking error dynamics of Eqn (33) is the Lya-

punov equation.

ATP + PA+Q = 0.

Choosing Q = I, and assuming K
(i)
j for i = 1, · · · , k and j = 1, · · · , ni, are chosen to

stabilize A, it can be shown that there exists a P > 0 which satisfies the Lyapunov

equation. For an example of choosing these gains, see Section 5.3.3.

3.3 Effect of Actuator Model on Error Dynamics

An important aspect of the PCH signal calculation given by Eqn (31) is estimation

of the actual actuator position at the current instant. The assumptions and model
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used to estimate the actuator positions in calculating the PCH signals play a role in

what appears in the tracking error dynamics.

3.3.1 Actuator Positions are Measured

The simplest case arises when δ is measured and available for feedback. In this case,

models for the actuators are not needed. In fact, when all actuator signals are known

then ∆̄(x, δ, δ̂) = ∆̄(x, δ) = ∆(x, δ) and the tracking error dynamics of Eqn (33) is

given by

ė = Ae+B [ν̄ad(x, δ)−∆(x, δ)] . (34)

3.3.2 Actuator Position is a Static Function of the Model and Plant States

If it can be assumed that actuator deflections have the form δ = δ(x, δ̂), for example,

saturation occurs earlier than in the model of the actuator, the discrepancy appears

as model error which the NN can correct for. Thus, ∆̄(x, δ(x, δ̂), δ̂) = ∆(x, δ̂) and the

error dynamics take the form

ė = Ae+B
[
ν̄ad(x, δ̂)−∆(x, δ̂)

]
. (35)

3.3.3 Actuator model has error the NN cannot compensate

If actuator positions are not measured and an assumption such as δ = δ(x, δ̂) cannot

be made, the uncertainty ∆̄ may be expressed as

∆̄(x, δ, δ̂) = ∆(x, δ̂) + εg(x, δ, δ̂),

where ∆(x, δ̂) is model error the NN can approximate and εg is the model error the NN

cannot cancel when δ is not available as an input to the network and has components

independent of x and δ̂. Errors in the actuator model that the NN can cancel include

bias error in the actuator position estimate and erroneous values for when magnitude

saturation occurs. Model errors that appear in εg which the neural network cannot

cancel include parameters that affect the dynamics of the actuator such as actuator
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time constants and rate limits. The tracking error dynamics may now be expressed

as

ė = Ae+B
[
ν̄ad(x, δ̂)−∆(x, δ̂)− εg(x, δ, δ̂)

]
, (36)

where ν̄ad(x, δ̂) is designed to cancel ∆(x, δ̂) and εg appears as unmodeled input

dynamics to the control system.

3.3.4 Actuator model is conservative

One way to predict actuator position accurately is to impose conservative artificial

limits on the desired actuator deflections, perhaps in software and make the as-

sumption that the real actuator tracks the conservative commands accurately. This

amounts to always knowing δ, and the error dynamics take the form given by Eqn (34).

3.4 Tracking Error Boundedness

For the most general form of the tracking error dynamics given by Eqn (36), bound-

edness of the tracking error, e, and neural network weights, Ṽ , W̃ , may be presented

after the following assumptions.

Assumption 2. The external command xc is bounded,

‖xc‖ ≤ x̄c.

Assumption 3. The NN approximation ∆(x, δ̂) = νad(x, δ̂) + ε holds in a compact

domain D, which is large enough such that Dxc ×Der ×De ×DZ̃ maps into D.

Assumption 4. The norm of the ideal weights (V ∗,W ∗) is bounded by a known

positive value,

0 < ‖Z∗‖F ≤ Z̄,

where ‖ · ‖F denotes the Frobenius norm.
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Assumption 5. Note that, ∆ depends on νad through the pseudocontrol ν, whereas ν̄ad

has to be designed to cancel ∆. Hence the existence and uniqueness of a fixed-point-

solution for νad = ∆(x, νad) is assumed. Sufficient conditions[7] for this assumption

are also available.

Theorem 2. Consider the cascade of systems (27), with the inverse law (29), a

reference model consistent with (30), and assumptions (2, 3, 4, 5), where the NN

training signal, r, NN output, νad, and robustifying term, νr, are given by

r = (eTPB)T (37)

ν̄ad = νad + νr (38)

νad = W Tσ(V T x̄) (39)

νr = −Kr(‖Z‖F + Z̄)r
‖e‖
‖r‖

. (40)

If Kr > 0 ∈ Rk×k is chosen sufficiently large with lower-limit stated in the proof, and

NN weights W,V satisfy the adaptation laws

Ẇ = −
[
(σ − σ′V T x̄)rT + κ‖e‖W

]
ΓW (41)

V̇ = −ΓV

[
x̄(rTW Tσ′) + κ‖e‖V

]
, (42)

with ΓW ,ΓV > 0 and κ > 0 with lower-limit stated in the proof, then, the reference

model tracking error, (e), and NN weight errors, (W̃ , Ṽ ), are uniformly ultimately

bounded.

Proof. See Section A.1

Assumption 6. The states of the reference model, remain bounded for permissable

plant and actuator dynamics. Hence,

‖er‖ ≤ ēr.

Corollary 1. All system states x(i) for i = 1, . . . , k are uniformly ultimately bounded.
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Proof. If the ultimate boundedness of e, W̃ , Ṽ from Theorem 2 is taken together with

Assumption 6, the uniform ultimate boundedness of the plant states is immediate

following the definition of the reference model tracking error in Eqn (32).

Remark 1. Note that Theorem 2 only requires a reference model of the form (30),

implying that no particular form of νcri
is required for boundedness of the tracking

error e.
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CHAPTER IV

NONLINEAR REFERENCE MODELS

This chapter presents the use of nonlinear reference models for the model reference

adaptive control architecture. In chapters 2 and 3, the boundedness of the plant

states depends on the boundedness of the reference model. Although the tracking

error dynamics of Eqn (11) or Eqn (33) do not contain the PCH signal, it appears

as a disturbance term in the reference model dynamics of Eqn (9) and Eqn (30).

Theorem 1 and Theorem 2 imply that the plant states track the reference model

closely even when a large magnitude of νh is present. Indeed, e and the neural

network weight errors, Ṽ , W̃ remain bounded even when the controller is not in

control of the plant. The boundedness of the reference model dynamics however,

relies on an assumption. If the control law is such that no saturation takes place, i.e.,

νh ≡ 0,∀t ≥ 0, then choosing νcr stable, will result in boundedness of the reference

model and pertains to results presented in previous work where unbounded actuation

is assumed [8, 57]. The designs in this thesis, do not in general, prevent saturation,

thus it is important to choose νcr such that the reference model remains bounded

and the external command is achieved without leaving the null controllable region of

the plant. One may examine the effect of choosing νcr on the response of the plant

by considering the isolated nonadaptive subsystem where the tracking error e = 0.

Assuming ν̄∗ad is the post-adaptive output of the adaptive element (W = W ∗, V = V ∗).

The closed loop system maybe written as

ẋn = f(x, δ)

= f(x, g(x, δdes))

= f(x, g(x, f̂−1(x, νcr +��*νlc − ν̄∗ad))),
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which can be thought of as the zero dynamics of the system, where νlc = 0 because

tracking error e is assumed to be 0. If the adaptation is capable of exactly canceling

the model error, the dynamics may be expressed as

ẋn = f(x, g(x, f−1(x, νcr))).

νcr could be designed so that δ and δdes always match, perhaps as the output of

an optimal trajectory generator that takes into account the system dynamics f and

actuator input characteristics g or a conservative bounded control law. Hence, when

δ ≈ δdes, the dynamics become

ẋn ≈ νcr. (43)

Before delving into specific nonlinear reference models, the following discussion on

the null controllability is useful.

4.1 Null Controllable Region

In cases of constrained control, it is not possible to stabilize the system globally

unless the system itself possess this property. For example, consider an otherwise

linear system of the form

ẋ = Ax+Bσ(δ), (44)

with A ∈ Rn×n, B ∈ Rn×m, δ ∈ Rm. It is not possible to stabilize the system (44)

globally [70] unless A has no eigenvalues in the right half plane. Additionally, even

if A has no eigenvalues in the right half plane it is not possible to globally stabilize

it using a linear control law [71]. It may be however be achieved using a nonlinear

control law [70, 72] employing nested saturations. Semi-global results are possible

for linear systems with unstable eigenvalues [20]. In the study of constrained control,

the concepts of null controllability and the null controllable region are useful and are

taken from [20].
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Definition 1. A state x0 is said to be null controllable in time T > 0 if there exists

an admissible control δ(t) such that the state trajectory x(t) of the system satisfies

x(0) = x0 and x(T ) = 0. The set of all states that are null controllable in time T ,

denoted by C(T ), is called the null controllable region in time T .

Definition 2. A state x0 is said to be null controllable if x0 ∈ C(T ) for some

T ∈ [0,∞). The set of all null controllable states, denoted by C, is called the null

controllable region of the system.

Determining the null controllable region of a system is not trivial. For linear sys-

tems, simple estimates may be found using the Circle and Popov criteria as described

in [16, 54]. Less conservative estimates may be found as the result of an LMI opti-

mization as described in [20]. For nonlinear systems of the form (2) and (27), there is

no known method to explicitly characterize a null controllable region Cx where there

always exists an admissible control which can bring an initial state x(0) back to the

origin in finite time. Although our development has been one of feedback lineariza-

tion, a direct correlation between the null controllable region of a linear system[20]

under bounded excitation and a nonlinear system cannot be made. However, note

that the plant states are given by

x(t) = xr(t)− e(t). (45)

If the trajectory of xr(t), is governed by fast linear dynamics (νcr = Ker), and is

driven by large external commands, then some states of xr may peak to large values

and the plant states may leave the null controllable region. This problem is related

to the peaking phenomenon[69] where a fast linear system (linear reference model)

drives a nonlinear system. In practice, if the evolution of the reference model states

xr is constrained, using either a low gain approach or artificial saturation functions,

or nonlinear damping, the likely hood of the plant states leaving the plant’s null

controllable region is reduced. This is evident from examining Eqn (45). Since ‖e‖
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is bounded and it is assumed that xc is null controllable, if xr(t) − e(t) is such that

it does not leave the null controllable region of the plant, then the plant states are

bounded.

Assumption 7. Noting that Cx is not necessarily a connected or closed set, assume

that D ⊆ Cx, and that D in addition to being compact is also convex.

In this chapter, three reference models are examined, the linear reference model

that is commonly used in previous work, a nested saturation-based reference model

and a special case of the nested saturation-based reference model which we call the

constrained linear reference model.

4.2 Linear Reference Model

Consider a linear reference model for a single-subsystem of the form (2)

ẋri
= xri+1

i = 1, 2, · · · , n− 1

ẋrn =

[
K1 K2 · · · Kn

]
er − νh,

(46)

where the command tracking error er ∈ Rn is defined to be er , xc− xr, resulting in

the command tracking error dynamics being given by

ėr = Arer + Erνh,

where

Ar =



0 1 0 · · · 0

0 0 1 0

...
...

. . .

0 0 1

−K1 −K2 −K3 · · · −Kn


, Er =



0

0

...

0

1


,

where the gains Ki are the ones used to stabilize the tracking error dynamics in

Eqn (10). Similarly, the command tracking error dynamics of a linear reference model
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for k-subsystems of Eqn (27) consistent with Eqn (30) may be expressed as

ė
(1)
r

ė
(2)
r

...

ė
(k)
r


=



A
(1)
r 0 0 0

0 A
(2)
r 0 0

0 · · · . . .
...

0 0 0 A
(k)
r





e
(1)
r

e
(2)
r

...

e
(k)
r


+



E
(1)
r

E
(2)
r

...

E
(k)
r





νh1

νh2

...

νhk


,

where A(i) ∈ Rni×ni and has the form

A(i)
r =



0 1 0 · · · 0

...
...

0 · · · · · · · · · 1

−K(i)
1 · · · · · · · · · −K(i)

ni


ni×ni

,

and E
(i)
r ∈ Rni×k has the form

E(i)
r(α,β)

= 0 ∀ α ∈ {1, . . . , ni},∀ β ∈ {1, . . . , k}, (α, β) 6= (ni, i)

E(i)
r(ni,i)

= 1.

The command tracking error of the reference model may now be written as

ėr = Arer + Erνh. (47)

In the absence of the PCH signal i.e., νh ≡ 0, the K
(i)
j for i = 1, · · · , k and j =

1, · · · , ni, used to stabilize (33) may be used to stabilize Ar in Eqn (47) and hence

there exists a Pr > 0 which satisfies AT
r Pr + PrAr +Qr = 0, for Qr > 0.

Noting that νh = νcr +νlc− ν̄ad− f̂(x, δ̂), consider now a positive definite function

Lr(er) = 1
2
eT

r Prer. Then,

L̇r = −1

2
eT

r Qrer + eT
r PrErνh

≤ −1

2
λmin(Qr)‖er‖2 + ‖er‖‖PrEr‖‖νh‖

≤ −
(

1

2
λmin(Qr)− ‖PrEr‖‖K‖

)
‖er‖2 + ‖νlc + ν̄ad − f̂(x, δ̂)‖.

(48)

This bound on L̇r is used in the proof of the following theorem.
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Theorem 3. Consider the cascade of systems given by (27), with the inverse law

(29), a linear reference model (47) consistent with (30), where the gains are the same

as those selected such that the system matrix in (33) is Hurwitz and assumptions (2,

3, 4, 5, 7), where the NN training signal, r, NN output, νad, and robustifying term,

νr, are given by

r = (eTPB)T

ν̄ad = νad + νr

νad = W Tσ(V T x̄)

νr = −Kr(‖Z‖F + Z̄)r
‖e‖
‖r‖

.

If Kr > 0 ∈ Rk×k is chosen sufficiently large with lower-limit stated in the proof, and

NN weights W,V satisfy the adaptation laws

Ẇ = −
[
(σ − σ′V T x̄)rT + κ‖e‖W

]
ΓW

V̇ = −ΓV

[
x̄(rTW Tσ′) + κ‖e‖V

]
,

with, ΓW ,ΓV > 0 and κ > 0 with lower-limit stated in the proof, then, the command

tracking error, er, reference model tracking error, e, and NN weight errors (W̃ , Ṽ ) are

uniformly ultimately bounded. Further, the plant states, x, are ultimately bounded.

Proof. See Section A.2

4.3 Nested Saturation-Based Reference Model

An alternative to the linear reference model is one containing nested-saturations and

is based on the work by Teel[73, 72, 74]. This form allows one to restrict the evolution

of states in a prescribable manner.
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4.3.1 Single Subsystem

Consider a nested saturation-based reference model for a single subsystem of the form

(9),

ẋri
= xri+1

i = 1, 2, · · · , n− 1

ẋrn = Mnσn

[
Kn

Mn

er +Mn−1σn−1

(
Kn−1

MnMn−1

er . . .+M1σ1

(
K1

Mn · · ·M1

er

))]
− νh.

For the single-input case, the gains are row vectors, Ki ∈ R1×n for i = 1, · · · , n and

the functions σi : R → R and are unity saturation functions, where

σ(s) = sgn(s)min(1, |s|).

Non-unity limits may be incorporated using the multipliers Mi ∈ R > 0 for i =

1, · · · , n. The command tracking error dynamics may now be expressed as

ėr = Arer +BrMnσn

(
Kn

Mn

er + · · ·+M1σ1

(
K1

Mn · · ·M1

er

))
+ Erνh, (49)

where,

Ar =



0 1 0 · · · 0

0 0 1 0

...
...

. . .

0 0 1

0 0 0 · · · 0


, Br =



0

0

...

0

−1


, Er =



0

0

...

0

1


,

4.3.2 k-subsystems

The command tracking error dynamics of a nested saturation-based reference model

for k-subsystems of Eqn (27) consistent with Eqn (30) may be expressed as

ė
(1)
r

ė
(2)
r

...

ė
(k)
r


=



A(1) 0 0 0

0 A(2) 0 0

0 · · · . . .
...

0 0 0 A(k)





e
(1)
r

e
(2)
r

...

e
(k)
r


+



B
(1)
r

B
(2)
r

...

B
(k)
r


Mnσ(· · · ) +



E
(1)
r

E
(2)
r

...

E
(k)
r





νh1

νh2

...

νhk


, (50)
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with σ(· · · ) given by

σ(· · · ) = σn

[
M−1

n Kner +Mn−1σn−1

(
M−1

n−1M
−1
n Kn−1er . . .+M1σ1

(
M−1

1 · · ·M−1
n K1er

))]
,

(51)

where A
(i)
r ∈ Rni×ni and has the form

A(i)
r =



0 1 0 · · · 0

0 0 1 0

...
...

. . .

0 0 1

0 0 0 · · · 0


ni×ni

,

and E
(i)
r ∈ Rni×k has the form

E(i)
r(α,β)

= 0 ∀ α ∈ {1, . . . , ni},∀ β ∈ {1, . . . , k}, (α, β) 6= (ni, i)

E(i)
r(ni,i)

= 1,

and B
(i)
r ∈ Rni×k has the form

B(i)
r(α,β)

= 0 ∀ α ∈ {1, . . . , ni},∀ β ∈ {1, . . . , k}, (α, β) 6= (ni, i)

B(i)
r(ni,i)

= −1.

Here, Ki ∈ Rk×n1+n2+...+nk , are such that Ar +Br [Kn +Kn−1 + · · ·+K1] is Hurwitz.

The vector valued saturation function is given by σ : Rk → Rk with

σ(u) =

[
σ(u1) σ(u2) · · · σ(uk)

]T

,

with σ(ui) = sgn(ui)min(1, |ui|). The saturation limits are incorporated into the

diagonal matrices Mi ∈ Rk×k, with each entry being strictly positive. An important

aspect of the nested saturation-based reference model is that if the limits and gains

are chosen appropriately [70, 73, 71, 74], the true domain of attraction of the isolated

reference model (νh ≡ 0), is Rn1+···+nk . An estimate of this system’s domain of

attraction (with νh ≡ 0) may be found by using the procedure in [3] and related results
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in [20, 22]. For a given initial condition er(0) ∈ Rn1+···+nk , if the state trajectory of

the system (50) is denoted by ψ(t, er(0)), then the domain of attraction of the origin

is defined as the set of all initial conditions which can be brought back to the origin

asymptotically.

Der ,
{
er(0) ∈ Rn1+···+nk : lim

t→∞
ψ(t, er(0)) = 0

}
.

Let Pr ∈ Rn1+···+nk×n1+···+nk be a positive definite matrix used to define an ellipsoid

Ω(Pr, ρ) =
{
er ∈ Rn1+···+nk : eT

r Prer ≤ ρ
}
.

Consider the positive definite function Lr(er) = eT
r Prer and this time including the

PCH signal in our analysis,

L̇r(er) = 2eT
r Pr (Arer +BrMnσ(· · · )) + eT

r PrErνh

≤ −γ(er) + ‖er‖‖PrEr‖α1λmax(Mn) + ‖er‖‖PrEr‖‖νlc + ν̄ad − f̂(x, δ̂)‖

where σ(· · · ) is given by Eqn (51), and it is now guaranteed that,

−γ(er) < 0 ∀er ∈ Ω(Pr, ρ)\{0}.

This is in contrast to Eqn (48) because ‖PrEr‖‖K‖‖er‖2, now does not appear in

L̇r. This is because, ‖νcr‖ using a nested saturation reference model is bounded by

a known value ‖νcr‖ ≤ α1λmax(Mn) as opposed to ‖νcr‖ ≤ ‖K‖‖er‖ for the linear

reference model.

4.3.3 Checking Invariance

Given a set Ω(Pr, ρ) one may explicitly verify that −γ(er) < 0 ∀er ∈ Ω(Pr, ρ). For

the general case of k-subsystems, a sufficient condition to ascertain this is; given an
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ellipsoid Ω(Pr, ρ), if there exists gains H1, H2, · · · , HNk
∈ Rk×Nk such that ∀θ ∈ Θ

Pr(Ar +BrMnβ(θ,H1,F1 +D2H2,

F1 +D2F2 +D2D3H3,

...

F1 +D2F2 +D2D3F3 + · · ·+D2 · · ·DNk−1HNk−1,

F1 +D2F2 +D2D3F3 + · · ·+ · · ·+D2 · · ·DNk
HNk

,

F1 +D2F2 +D2D3F3 + · · ·+ · · ·+D2 · · ·DNk
FNk

))

+(Ar +BrMnβ(θ,H1,F1 +D2H2,

F1 +D2F2 +D2D3H3,

...

F1 +D2F2 +D2D3F3 + · · ·+D2 · · ·DNk−1HNk−1,

F1 +D2F2 +D2D3F3 + · · ·+ · · ·+D2 · · ·DNk
HNk

,

F1 +D2F2 +D2D3F3 + · · ·+ · · ·+D2 · · ·DNk
FNk

))TP < 0,

(52)

and Ω(Pr, ρ) ∈
⋂Nk

i=1 L(Hi), then Ω(Pr, ρ) is a contractively invariant set of the system

(50) with νh ≡ 0. The set L(Hi) is defined as

L(Hi) ,
{
er ∈ RNk : |Hier| ≤ 1

}
. (53)

Here, for conciseness and clarity, Nk , n1 + . . . + nk, Fi , M−1
Nk−i+1KNk−i+1, Di ,

MNk−i+1 for i = 1, · · · , Nk. The set Θ = {θ ∈ Rk : θi ∈ [1, Nk + 1]}. The vector

θ is essentially used to choose from among the rows of matrices that are arguments

to the function β. The set Θ represents all such combinations. The structure of the

matrix β(θ, · · · , · · · ) and a description on generating Θ is given in [3]. The domain

of attraction may be estimated by maximizing the size of an assumed reference set

over H1, · · · , HNk
, Pr > 0, subject to the above invariance conditions. For details see

[20, 22, 3].
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Remark 2. Note that Eqn (52) essentially verifies that for every possible combination

of saturation that occurs, there exists a control law (of possibly very low gain) that

can de-saturate all the saturation functions and stabilize the system at the same time.

Theorem 4. Consider the cascade of systems given by (27), with the inverse law (29),

reference model (50) which is consistent with (30), where the gains are the same as

those selected such that the system matrix in (33) is Hurwitz and assumptions (2, 3,

4, 5, 7), where the NN training signal, r, NN output, νad, and robustifying term, νr,

are given by

r = (eTPB)T

ν̄ad = νad + νr

νad = W Tσ(V T x̄)

νr = −Kr(‖Z‖F + Z̄)r
‖e‖
‖r‖

.

If Kr > 0 ∈ Rk×k is chosen sufficiently large with lower-limit stated in the proof, and

NN weights W,V satisfy the adaptation laws

Ẇ = −
[
(σ − σ′V T x̄)rT + κ‖e‖W

]
ΓW

V̇ = −ΓV

[
x̄(rTW Tσ′) + κ‖e‖V

]
,

with, ΓW ,ΓV > 0, κ > 0 with lower-limit stated in the proof, and the external com-

mand xc(t) is such that er(t) ∈ Ω(Pr, ρ), for some ρ > 0, then, the command tracking

error, er, the reference model tracking error, e, and NN weights (W̃ , Ṽ ) are uniformly

ultimately bounded. Further, the plant states, x, are ultimately bounded.

Proof. See Section A.3

4.4 Constrained Linear Model

A special case of the nested saturation reference model is given by Eqn (55) which

allows one to impose prescribable limits on the evolution of the error states. For ex-

ample, consider the following reference model for the second order position dynamics
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of a system, where a given large position command is at a maximum speed of vmax

and a maximum acceleration of amax.

ẋr1 = xr2

ẋr2 = νcr = M2σ2

(
K2

M2

(
er2 +M1σ1

(
K1

M1K2

er1

)))
,

(54)

where M2 = amax and M1 = vmax. For large position errors and a zero commanded

velocity, σ1 is saturated and the dynamics are governed by ẋr2 = K2(er2 ±M1). An

equilibrium point for this system is when xr2 = M1 = vmax. A similar analysis can

be made for when σ2 is saturated. Consider the single subsystem case with n states

and PCH signal.

ẋri
= xri+1

i = 1, 2, · · · , n− 1

ẋrn = Mnσn

[
Kn

Mn

(
ern +Mn−1σn−1

(
Kn−1

Mn−1Kn

(
ern−1 . . .+M1σ1

(
K1

M1K2

er1

))))]
− νh,

(55)

When none of the limit functions σi are active, Eqn (55) is the same as Eqn (46). The

functions σi are unity saturation functions. These limits (multipliers) may be chosen

such that PCH signal activity is reduced. It is possible that these parameters may

be derived from practical limits such as speed, attitude, angular rate and angular

acceleration limits that may be prescribed for an air vehicle[30]. Theorem 4 is also

applicable to ascertain boundedness of this reference model.

Nested saturation-based reference models including the constrained linear model

however have certain properties that must be recognized. For example, consider the

second order reference model (ignoring PCH) of Eqn (54) with desired real poles

at −a1,−a2 ∈ R < 0. Based on this desired behavior in the linear region, the

constrained linear model has the following dynamics.
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with K1 = a1a2, K2 = (a1 + a2). When neither σ1 or σ2 is saturated, the charac-

teristic equation becomes

s2 +K2s+K1 = s2 + (a1 + a2)s+ a1a2,

which has roots at −a1,−a2. Now assume that σ1 becomes saturated, then the system

becomes

ẋrn = K2er2 ±M1,

where M1 is the saturation limit for σ1(·). This system has the characteristic equation

s(s+K2) = s(s+ a1 + a2),

where one of the poles has moved to the origin and the second pole has become faster

(assuming both a1, a2 > 0 which is required for stability). This shifting of poles as

different elements of the nonlinear reference model saturate is undesirable because

these faster poles can lead to excitation of higher-order dynamics. Such problems

may be avoided by choosing gains as described in Appendix B.
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CHAPTER V

APPLICATION TO THE RMAX HELICOPTER

This chapter is concerned with the development of an adaptive controller for an au-

tonomous helicopter using a neural network as the adaptive element. The attitude

and translational dynamics are input-state feedback linearized separately using dy-

namic inversion and linear controllers are designed for the linearized dynamics. The

effect of nonlinear parametric uncertainty arising due to approximate inversion is

minimized using an adaptive element. A nonlinearly parameterized NN will be used

to provide on-line adaptation. The design is such that actuator saturation limits are

not avoided or prevented. A common assumption when designing control systems for

air vehicles is the timescale separation [57] between the inner-loop attitude control

and outer-loop trajectory control systems. The assumption allows the inner loop and

outer loop to be designed separately but requires the outer-loop bandwidth to be

much lower than that of the inner loop. Selecting linear compensator gains through

a combined analysis of the two loops places the closed loop position response poles

at desired locations. This allows the outer-loop bandwidth to be closer to that of

the inner loop, thus increasing position tracking performance. PCH is used to pro-

tect outer-loop adaptation from inner-loop dynamics and inner-loop adaptation from

actuator dynamics. Additionally, the flight results presented in this chapter are the

first where adaptation is used to compensate for modeling errors in all six degrees

of freedom. We first develop the adaptive controller architecture for a generic six-

degree-of-freedom air vehicle, followed by a description of the NN and selection of

linear compensator gains. The controller is then applied to the trajectory and atti-

tude control of an unmanned helicopter. The framework of chapters 3 and 4 are used
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Figure 7: Overall Inner and Outerloop with Adaptation and Hedging.

to show boundedness. Practical discussions on the choice of parameters and reference

model dynamics are provided. Finally, flight test results are presented.

5.1 Controller Development

Consider an air vehicle modeled as a nonlinear system of the form

ṗ = v (56)

v̇ = a(p, v, q, ω, δf , δm) (57)

q̇ = q̇(q, ω) (58)

ω̇ = α(p, v, q, ω, δf , δm), (59)

where, p ∈ R3 is the position vector, v ∈ R3 is the velocity of the vehicle, q ∈ R4

is the attitude quaternion and ω ∈ R3 is the angular velocity. Eqn (57) represents

translational dynamics and Eqn (59) represents the attitude dynamics. Eqn (58)

represents the quaternion propagation equations [68]. The use of quaternions, though

not a minimal representation of attitude, avoids numerical and singularity problems

that Euler-angles-based representations have. This enables the control system to be

all attitude capable as required for aggressive maneuvering. The state vector x may

now be defined as x ,

[
pT vT qT ωT

]T

.
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The control vectors are denoted by δf and δm and represent actual physical ac-

tuators on the aircraft, where δf denotes the primary force generating actuators and

δm denotes the primary moment generating actuators. For a helicopter, the main

force effector is the rotor thrust which is controlled by changing main rotor collective

δcoll. Hence δf ∈ R = δcoll. There are three primary moment control surfaces, the

lateral cyclic δlat, longitudinal cyclic δlon, and tail rotor pitch, also called the pedal

input δped. Hence, δm ∈ R3 =

[
δlat δlon δped

]T

. This classification of the controls

as moment and force generating, is an artefact of the inner-loop–outer-loop control

design strategy. In general, both control inputs, δf and δm, may each produce forces

and moments. The helicopter is an under-actuated system, and hence, the aircraft

attitude, q, is treated like a virtual actuator used to tilt the main rotor thrust in order

to produce desired accelerations. Defining the consolidated control vector δ as

δ ,

[
δT
f δT

m

]T

,

the actuators themselves may have dynamics represented by

δ̇ =

δ̇m
δ̇f

 =

gm(x, δm, δmdes
)

gf (x, δf , δfdes
)

 = g(x, δ, δdes), (60)

where g(·) is assumed to be asymptotically stable but perhaps unknown.

When any actuator dynamics and nonlinearities are ignored, approximate feedback

linearization of the system represented by (56, 57, 58, 59) is achieved by introducing

the following transformation:ades

αdes

 =

â(p, v, qdes, ω, δfdes
, δ̂m)

α̂(p, v, q, ω, δ̂f , δmdes
)

 ,
where, ades, αdes are commonly referred to as the pseudocontrol and represent desired

accelerations. Here, â, α̂ represent an available approximation of a(·) and α(·). Ad-

ditionally, δfdes
, δmdes

, qdes are the control inputs and attitude that are predicted to
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achieve the desired pseudo-control. This form assumes that translational dynamics

are coupled strongly with attitude dynamics, as is the case for a helicopter. From the

outer-loop’s point of view, q (attitude), is like an actuator that generates translational

accelerations and qdes is the desired attitude that the outer-loop inversion expects will

contribute towards achieving the desired translational acceleration, ades. The dynam-

ics of q appears like actuator dynamics to the outer loop. The attitude quaternion

qdes will be used to augment the externally commanded attitude qc to achieve the de-

sired translational accelerations. Because actuator positions are often not measured

on small helicopters, estimates of the actuator positions δ̂m, δ̂f are used. For cases

where the actuator positions are directly measured, they may be regarded as known

δ̂m = δm and δ̂f = δf . In fact, in the outer loop’s case, the attitude q is measured

using inertial sensors. When â and α̂ are chosen such that they are invertible, the

desired control and attitude may be written asδfdes

qdes

 =

â−1
δf

(p, v, adesδf
, ω, δ̂m)

â−1
q (p, v, adesq , ω, δ̂m)


δmdes

= α̂−1(p, v, q, ω, δ̂f , αdes),

(61)

with adesδf
+adesq = ades, âδf

, âq formulated to be consistent with Eqn (61) and where

actuator estimates are given by actuator models

˙̂
δ =

 ˙̂
δf

˙̂
δm

 =

 ĝf (x, δ̂f , δfdes
)

ĝm(x, δ̂m, δmdes
)

 = ĝ(x, δ̂, δdes). (62)

In later sections, it will be shown that α̂, can just be an approximate linear model of

vehicle attitude dynamics and â a set of simple equations relating translational accel-

erations to the attitude of the vehicle. Introducing the inverse control law Eqn (61)

into Eqn (57) and Eqn (59) results in the following closed-loop translational and
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attitude dynamics

v̇ = ades + ∆̄a(x, δ, δ̂)− ah

ω̇ = αdes + ∆̄α(x, δ, δ̂)− αh, (63)

where

∆̄(x, δ, δ̂) =

∆̄a(x, δ, δ̂)

∆̄α(x, δ, δ̂)

 =

a(x, δ)− â(x, δ̂)

α(x, δ)− α̂(x, δ̂)

 , (64)

are static nonlinear functions (model error) that arise due to imperfect model in-

version and errors in the actuator model ĝ. The signals, ah and αh, represent the

pseudocontrol that cannot be achieved due to actuator input characteristics such as

saturation. If the model inversion were perfect and no saturation were to occur, ∆̄, ah

and αh would vanish leaving only the pseudocontrols ades and αdes. One may address

model error and stabilize the linearized system by designing the pseudocontrols as

ades = acr + apd − āad

αdes = αcr + αpd − ᾱad,

(65)

where acr and αcr are outputs of reference models for the translational and attitude

dynamics respectively. apd and αpd are outputs of proportional-derivative (PD) com-

pensators; and finally, āad and ᾱad are the outputs of an adaptive element (an NN)

designed to cancel model error ∆̄. The effects of input dynamics, represented by

ah, αh will first be addressed in the following section by designing the reference model

dynamics such that they do not appear in the tracking error dynamics. The reference

model, tracking error dynamics and adaptive element are discussed in the following

sections.

5.1.1 Reference Model and PCH

Any dynamics and nonlinearities associated with the actuators δm, δf have not yet

been considered in the design. If they become saturated (position or rate), the ref-

erence models will continue to demand tracking as though full authority were still
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available. Furthermore, the inner loop appears like an actuator with dynamics to

the outer loop. Practical operational limits on the maximum attitude of the aircraft

may have also been imposed in the inner-loop reference model. This implies that

the outer-loop desired attitude augmentation qdes may not actually be achievable, or

at the very least is subject to the inner-loop dynamics. When an adaptive element

such as a neural network is introduced, these input dynamics and nonlinearities will

appear in the tracking error dynamics resulting in the adaptive element attempting

to correct for them and is undesirable. PCH may be used to prevent the adaptive

element from attempting to adapt to these input characteristics. The reference model

dynamics may be redesigned to include PCH as follows

v̇r = acr(pr, vr, pc, vc)− ah (66)

ω̇r = αcr(qr, ωr, qc ⊕ qdes, ωc)− αh, (67)

where pr and vr are the outer-loop reference model states whereas qr, ωr, are the

inner-loop reference model states, ah and αh are the difference between commanded

pseudocontrol and achieved pseudocontrol. The external command signal is xc =[
pT

c vT
c qT

c ωT
c

]T

. Note that the attitude desired by the outer loop is now added

to the commands for the inner loop controller. Here, qc ⊕ qdes denotes quaternion

addition[68]. The PCH signals are given by

ah = â(p, v, qdes, ω, δfdes
, δ̂m)− â(p, v, q, ω, δ̂f , δ̂m)

= ades − â(p, v, q, ω, δ̂f , δ̂m) (68)

αh = α̂(p, v, q, ω, δ̂f , δmdes
)− α̂(p, v, q, ω, δ̂f , δ̂m)

= αdes − α̂(p, v, q, ω, δ̂f , δ̂m). (69)

Note that the hedge signals ah, αh, do not directly affect the reference model output

acr, αcr, but do so only through subsequent changes in the reference model states.
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5.1.2 Tracking error dynamics

One may define the tracking error vector, e, as

e ,



pr − p

vr − v

Q̃(qr, q)

ωr − ω


, (70)

where, Q̃ : R4×R4 7→ R3, is a function[27] that, given two quaternions results in an

error angle vector with three components. An expression for Q̃ is given by

Q̃(p, q) = 2sgn(q1p1 + q2p2 + q3p3 + q4p4)×
−q1p2 + q2p1 + q3p4 − q4p3

−q1p3 − q2p4 + q3p1 + q4p2

−q1p4 + q2p3 − q3p2 + q4p1

 . (71)

The output of the PD compensators may be written asapd

αpd

 =

Rp Rd 0 0

0 0 Kp Kd

 e, (72)

where, Rp, Rd ∈ R3×3, Kp, Kd ∈ R3×3 are linear gain positive definite matrices whose

choice is discussed below. The tracking error dynamics may be found by directly

differentiating Eqn (70)

ė =



vr − v

v̇r − v̇

ωr − ω

ω̇r − ω̇


.
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Considering ė2,

ė2 = v̇r − v̇

= acr − ah − a(x, δ)

= acr − ades + â(x, δ̂)− a(x, δ)

= acr − apd − acr + āad + â(x, δ̂)− a(x, δ)

= −apd − (a(x, δ)− â(x, δ̂)− āad)

= −apd − (∆̄a(x, δ, δ̂)− āad),

ė4 may be found similarly. Then, the overall tracking error dynamics may now be

expressed as

ė = Ae+B
[
ν̄ad − ∆̄(x, δ, δ̂)

]
, (73)

where, ∆̄ is given by Eqn (64),

ν̄ad =

āad

ᾱad

 , A =



0 I 0 0

−Rp −Rd 0 0

0 0 0 I

0 0 −Kp −Kd


, B =



0 0

I 0

0 0

0 I


. (74)

and so the linear gain matrices must be chosen such that A is Hurwitz. Now, ν̄ad

remains to be designed in order to cancel the effect of ∆̄.

Remark 3. (a) Note that commands, δmdes
, δfdes

, qdes, do not appear in the tracking

error dynamics. PCH allows adaptation to continue when the actual control signal

has been replaced by any arbitrary signal and thus allows switching between manual

and automatic flight during flight tests. (b) If the actuator is considered ideal and the

actual position and the commanded position are equal, addition of the PCH signal ah,

αh has no effect on any system signal.

The adaptive signal ν̄ad contains two terms

ν̄ad = νad + νr =

aad + ar

αad + αr

 ,
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where νad is the output of the SHL NN described in Section 2.3. For an air vehicle

with adaptation in all degrees of freedom, νad ∈ R6, where the first three outputs, aad,

approximates ∆a and the last three outputs, αad, approximate ∆α and is consistent

with the definition of the error in Eqn (70). The term, νr = [aT
r , α

T
r ]T ∈ R6 is a

robustifying signal that arises in the proof of boundedness.

5.2 Boundedness

Associated with the tracking error dynamics given in Eqn (73), is the Lyapunov

function

ATP + PA+Q = 0. (75)

Choosing positive definite [27]

Q =

Q1 0

0 Q2

 1
1
4
n2 + b2w

Q1 =

RdR
2
p 0

0 RdRp

 > 0

Q2 =

KdK
2
p 0

0 KdKp

 > 0.

(76)

Making use of the property that Rp, Rd, Kp, Kd > 0 and diagonal, results in a positive

definite solution for P . Hence,

P =

P1 0

0 P2

 1
1
4
n2 + b2w

P1 =

R2
p + 1

2
RpR

2
d

1
2
RpRd

1
2
RpRd Rp

 > 0

P2 =

K2
p + 1

2
KpK

2
d

1
2
KpKd

1
2
KpKd Kp

 > 0.

(77)
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The inputs to the NN have to be chosen to satisfy the functional dependence of

∆(x, δ̂) and may be specified as

x̄T =

[
bv xT

in

]
xT

in =

[
xT

c eT
r eT νT

ad ‖Z‖F

]
.

(78)

Note that with regard to the outer loop, the inner loop acts like an actuator with

dynamics, at least with respect to achieving the desired attitude qdes. The actual

attitude quaternion, q, is available and appears as a part of the state measurement.

Hence, it is always available as an input to the adaptive element as well as in the

calculation of the hedge signal.

Theorem 5. Consider the system given by (56, 57, 58, 59), with the inverse law

(61), constrained-linear reference models consistent with (66, 67), and assumptions

(2, 3, 4, 5, 7), with r, ν̄ad, νad, νr given by equations 37, 38, 39, 40 respectively. If

Kr > 0 ∈ R6×6 is chosen sufficiently large, the adaptive laws Ẇ , V̇ , satisfy 41, 42

with ΓW ,ΓV > 0 and κ > 0 is sufficiently large, and the external command xc(t) is

such that er(t) ∈ Ω(Pr, ρ), for some ρ > 0, then, the command tracking error, er, the

reference model tracking error e, and NN weights (W̃ , Ṽ ) are uniformly ultimately

bounded. Further, the plant states are ultimately bounded.

Proof. Theorem 4 applies.

5.3 Helicopter Specific Design

Consider the application of the combined inner-outer-loop adaptive architecture to

the trajectory control of a helicopter. The dynamics [48, 47, 11] of the helicopter may

be modeled in the same form as Eqns. (56-59). Most small helicopters include a Bell-

Hiller stabilizer bar, which provides provide lagged rate feedback, and is a source of

unmodeled dynamics. The nonlinear model used for simulation in this work included
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the stabilizer bar dynamics. Additionally, blade flapping and other aspects such as

gear and engine dynamics were also modeled.

5.3.1 Approximate Model

An approximate model for the attitude dynamics of the helicopter was generated by

linearizing the nonlinear model around hover and neglecting coupling between the

attitude and translational dynamics as well as the stabilizer bar

αdes = Â1


p

q

r

 + Â2


u

v

w

 + B̂




δlat

δlon

δped


︸ ︷︷ ︸

des

−


δlat

δlon

δped


︸ ︷︷ ︸

trim


, (79)

or,

αdes = Â1ωB + Â2vB + B̂(δmdes
− δmtrim

).

where, Â1 and Â2 represent the attitude and translational dynamics respectively, ωB

represents the angular velocity of the body with respect to the earth expressed in the

body frame. The body velocity velocity vector with respect to the earth expressed in

the body frame is given by vB and δmtrim
is the trim control vector that is consistent

with the linear model. Choosing the control matrix B̂ such that it is invertible, the

moment controls may be evaluated as

δmdes
= B̂−1(αdes − Â1ωB − Â2vB) + δmtrim

.

The translational dynamics may be modeled as a point mass with a thrust vector

that may be oriented in a given direction as illustrated in Fig. 8. More involved

inverses [55] may be used, but the simple relationships between thrust, attitude and

accelerations suffice when used with adaptation

ades =


0

0

Zδcoll

 (δcolldes
− δcolltrim

) + Lbvg, (80)
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Figure 8: Point mass model for outerloop inversion.

where, Zδcoll
is the control derivative for acceleration in the vertical axis. Lbv is the

direction cosine matrix that transforms a vector from the vehicle (or local) frame to

the body frame and g is an assumed gravity vector. The desired specific force along

the body z axis may be evaluated as

fsf = (ades − Lbvg)3.

The required collective input may be evaluated as

δcolldes
=

fsf

Zδcoll

+ δcolltrim
.

The attitude augmentation required in order to orient the thrust vector to attain the

desired translational accelerations are given by the following small angle corrections

from the current reference body attitude and attitude command

∆Φ1 =
ades2

fsf

, ∆Φ2 = −ades1

fsf

, ∆Φ3 = 0, (81)

For this simplified helicopter model, heading change has no effect on accelerations in

the x, y plane and hence ∆Φ3 = 0. These three correction angles may now be used
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to generate the attitude quaternion correction desired by the outer loop. Thus,

qdes = q(∆Φ1,∆Φ2,∆Φ3), (82)

where, q(.) is a function[68] that expresses an euler-angles-based rotation as a quater-

nion. The overall detailed controller architecture is shown in Fig. 9.

Remark 4. If the desired specific force fsf is close to zero, which occurs when the

desired acceleration in the body z axis is the same as the component of gravity vector

along that axis, then, Equation (81) is undefined. To overcome this problem, one can

impose a restriction where (81) is only computed if |fsf | > f̄sf , where f̄sf > 0 and

is a lower limit. Essentially it means, do not bother using attitude unless the desired

specific force is greater than f̄sf .

5.3.2 Reference Model

A reasonable choice for the reference model dynamics is given by

v̇r = Rp(pc − pr) +Rd(vc − vr)− ah

ω̇r = Kp(Q̃(qc ⊕ qdes, qr)) +Kd(ωc − ωr)− αh,

where, Rp, Rd, Kp, Kd are the same gains used for the PD compensator in Eqn (72).

If limits on the angular rate or translational velocities are to be imposed, then they

may be easily included in the reference model dynamics as follows

acr = Rd[vc − vr + σ(R−1
d Rp(pc − pr), vlim)]− ah (83)

αcr = Kd[ωc − ωr + σ(K−1
d KpQ̃(qc ⊕ qdes, qr), ωlim)]− αh. (84)

The function σ(·) is the saturation function and vlim, ωlim are the translational and

angular rate limits respectively.

Remark 5. Note that there are no limits placed on the externally commanded po-

sition, velocity, angular rate or attitude. For example, in the translational refer-

ence model, if a large position step is commanded, pc = [1000, 0, 0]Tft and vc =
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[0, 0, 0]Tft/s, the speed at which this large step will be achieved is vlim. On the other

hand if pc =
∫
vcdt and vc = [60, 0, 0]Tft/s, the speed of the vehicle will be 60ft/s.

Similarly, ωlim dictates how fast large attitude errors will be corrected. Additionally,

aggressiveness with which translational accelerations will be pursued by tilting the body

may be governed by limiting the magnitude of qdes to the scalar limit qlim.

5.3.3 Choice of Gains Linear Dynamics

When the combined adaptive inner-outer-loop controller for position and attitude

control is implemented, the poles for the combined error dynamics must be selected

appropriately. The following analysis applies to the situation where inversion model

error is compensated for accurately by the NN and we assume that the system is ex-

actly feedback linearized. The inner loop and outer loop each represent a second order

system and the resulting position dynamics p(s)/pc(s) are fourth order in directions

perpendicular to the rotor spin axis.

When the closed-loop longitudinal dynamics, near hover, are considered, and with

an acknowledgment of an abuse of notation, it may be written as

ẍ = ades = ẍc +Rd(ẋc − ẋ) +Rp(xc − x) (85)

θ̈ = αdes= θ̈g +Kd(θ̇g − θ̇) +Kp(θg − θ), (86)

where, Rp, Rd, Kp and Kd are the PD compensator gains for the inner loop (pitch

angle) and outer loop (fore-aft position). Now x is now the position, θ the attitude

and θg the attitude command. Normally, θg = θc + θdes where θc is the external

command and θdes the outer-loop-generated attitude command. Here, we assume

that the external attitude command and its derivatives are zero; hence, θg = θdes. In

the following development, the transfer function x(s)/xc(s) is found and used to place

the poles of the combined inner-outer loop system in terms of the PD compensator

gains.
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When contributions of θ̇g(s) and θ̈g(s), are ignored, the pitch dynamics Eqn (86)

may be rewritten in the form of a transfer function as

θ(s) =
θ(s)

θg(s)
θg(s) =

Kp

s2 +Kds+Kp

θg(s). (87)

If the outer-loop linearizing transformation used to arrive at Eqn (85) has the form

ẍ = fθ, where f = −g and g is gravity, it may be written as

s2x(s) = fθ(s). (88)

The outer-loop attitude command may be generated as

θdes =
ẍdes

f
=
ades

f
. (89)

Note that θg = θdes; if θc = 0,

θg = θdes =
1

f
[ẍc +Rd(ẋc − ẋ) +Rp(xc − x)] . (90)

When Eqn (87) and Eqn (90) are used in Eqn (88)

s2x(s) =
Kp [s2xc +Rds(xc − x) +Rp(xc − x)]

s2 +Kds+Kp

, (91)

Rearranging the above equation results in the following transfer function

x(s)

xc(s)
=

Kps
2 +KpRds+KpRp

s4 +Kds3 +Kps2 +KpRds+KpRp

. (92)

One way to choose the gains is by examining a fourth-order characteristic poly-

nomial written as the product of two second order systems

Υ(s) = (s2 + 2ζoωo + ω2
o)(s

2 + 2ζiωi + ω2
i )

= s4 + (2ζiωi + 2ζoωo)s
3

+ (ω2
i + 4ζoωoζiωi + ω2

o)s
2

+ (2ζoωoω
2
i + 2ω2

oζiωi)s+ ω2
oω

2
i , (93)
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where, the subscripts i, o, represent the inner and outerloop values respectively.

Comparing the coefficients of the poles of Eqn (92) and Eqn (93) allows the gains

to be expressed as a function of the desired pole locations for each axis in turn

Rp =
ω2

oω
2
i

ω2
i + 4ζoωoζiωi + ω2

o

Rd = 2
ωoωi(ζoωi + ωoζi)

ω2
i + 4ζoωoζiωi + ω2

o

Kp = ω2
i + 4ζoωoζiωi + ω2

o

Kd = 2ζiωi + 2ζoωo. (94)

Additionally, the zeros of the transfer function given by Eqn (92) affect the transient

response. Thus, ωi, ζi, ωo, ζo must be selected such that performance is acceptable.

5.3.4 Imposing Response Characteristics

The methods presented in this thesis do not contain assumptions that limit its appli-

cation to unmanned helicopters. Manned rotorcraft normally have to meet standards,

such as those specified in the Aeronautical Design Standard-33 [2] handling qualities

specifications. Control system performance[39, 58] may be evaluated by imposing

response requirements and computing metrics prescribed in the ADS-33. When there

is no saturation, the hedging signals ah, αh are zero. When it is assumed that the

adaptation has reached its ideal values of (V ∗,W ∗), then

v̇ = acr + apd + εa

ω̇ = αcr + αpd + εα,

where εa and εα are bounded by ε̄. Additionally, the Lyapunov analysis provides

guaranteed model following, which implies apd and αpd are small. Thus, v̇ ≈ acr and

ω̇ ≈ αcr. Hence, as long as the preceding assumptions are valid over the bandwidth of

interest, the desired response characteristics may be encoded into the reference model

acr and αcr.
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CHAPTER VI

EXPERIMENTAL RESULTS

The proposed guidance and control architecture was applied to the Georgia Institute

of Technology Yamaha R-Max helicopter (GTMax) shown in Fig. 1. The GTMax

helicopter weighs about 157lb and has a main rotor radius of 5.05ft. Nominal ro-

tor speed is 850 revolutions per minute. Its practical payload capability is about

66lbs with a flight endurance of greater than 60 minutes. It is also equipped with a

Bell-Hillier stabilizer bar. Its avionics package includes a Pentium 266 flight control

computer, an inertial measurement unit (IMU), a global positioning system, a 3-axis

magnetometer and a sonar altimeter. The control laws presented in this chapter were

first implemented in simulation[30] using a nonlinear helicopter model that included

flapping and stabilizer bar dynamics. Wind and gust models were also included. Ad-

ditionally, models of sensors with associated noise characteristics were implemented.

Many aspects of hardware such as the output of sensor model data as serial packets

was simulated. This introduced digitization errors as would exist in real-life and also

allowed testing of many flight specific components such as sensor drivers[31]. The

navigation system consists of a 17-state Kalman filter to estimate variables such as

attitude, and terrain altitude. The navigation filter was executed at 100Hz and cor-

responds to the highest rate at which the IMU is able to provide data. Controller

calculations occurred at 50Hz. The control laws were first implemented as C-code

and tested in simulation. Because almost all aspects specific to flight-testing were

included in the simulation environment, a subset of the code from the simulation

environment was implemented on the main flight computer. During flight, ethernet
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and serial-based data links provided a link to the ground station computer that al-

lowed monitoring and uploading of way-points. A simple kinematics-based trajectory

generator (with limits on accelerations) was used to generate smooth consistent tra-

jectories (pc, vc, qc, ωc) for the controller. Various moderately aggressive maneuvers

were performed during flight to test the performance of the trajectory-tracking con-

troller. Controller testing began with simple hover followed by step responses and

way-point navigation. Following initial flight tests, aggressiveness of the trajectory

was increased by relaxing acceleration limits in the trajectory generator and relaxing

ωlim and vlim in the reference models. Tracking error performance was increased by

increasing the desired bandwidth of the controllers. Selected results from these flight

tests are provided in the following sections.

6.1 Parameter Selections

The controller parameters for the inner loop involved choosing Kp, Kd based on a

natural frequency of 2.5, 2, 3 rad/s for the roll, pitch and yaw channels respectively

and damping ratio of 1.0. For the outer loop, Rp, Rd were chosen based on a natural

frequency of 2, 2.5, 3 rad/s for the x, y and z body axis all with a damping ratio of

unity. The NN was chosen to have 5 hidden layer neurons. The inputs to the network

included body axis velocities and rates as well as the estimated pseudocontrols i.e,

xin = [vT
B, ω

T
B, â

T , α̂T ]. The output layer learning rates[27] ΓW were set to unity

for all channels and a learning rate of ΓV = 10 was set for all inputs. Limits on

maximum translation rate and angular rate in the reference model dynamics were set

to vlim = 10 ft/s and ωlim = 2 rad/s. Additionally, attitude corrections from the

outer loop, qdes were limited to 30 degrees.

With regard to actuator magnitude limits, the helicopter has a radio-control trans-

mitter that the pilot may use to fly the vehicle manually. The full deflections available

on the transmitter sticks in each of the channels were mapped as δlat, δlon, δped ∈ [−1, 1]
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corresponding to the full range of lateral tilt and longitudinal tilt of the swash plate

and full range of tail rotor blade pitch. The collective was mapped as δcoll ∈ [−2.5, 1],

corresponding to the full range of main rotor blade pitch available to the human

pilot. The dynamic characteristics of the actuators were not investigated in detail.

Instead, conservative rate limits were artificially imposed in software. Noting that

δ = [δcoll, δlat, δlon, δped]
T , the actuator model used for PCH purposes as well as artifi-

cially limiting the controller output has form

˙̂
δ = lim

λ→+∞
σ

(
λ(σ(δdes, δmin, δmax)− δ̂), δ̇min, δ̇max

)
, (95)

where δ̂ is limited to lie in the interval [δmin, δmax]. The discrete implementation has

the form

δ̂[k + 1] = σ
(
δ̂[k] + σ

(
σ(δdes, δmin, δmax)− δ̂[k],∆T δ̇min,∆T δ̇max

)
, δmin, δmax

)
,

(96)

where ∆T is the sampling time. The magnitude limits were set to

δmin = [−2.5,−1,−1,−1]T

δmax = [1, 1, 1, 1]T (97)

units, and the rate limits were set to

δ̇min = [−4,−2,−2,−2]T

δ̇max = [4, 2, 2, 2]T (98)

units per second.

6.2 Flight Test

Finally, the controller was flight tested on the GTMax helicopter shown in Fig. 1. A

lateral position step1 response is shown in Fig. 10. The vehicle heading was regulated

1During flight tests, variables were sampled at varying rates in order to conserve memory and
datalink bandwidth. The trajectory commands pc, vc, qc, ωc were sampled at 1Hz, actuator deflec-
tions δcoll, δlon, δlat and δped were sampled at 50Hz, vehicle position and speed was sampled at 50Hz.
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66



0 5 10 15 20 25 30 35
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

he
ad

in
g 

/ d
eg

re
es

time / s

command
response

0 5 10 15 20 25 30 35
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

pe
da

l −
 δ

pe
d / 

un
its

time / s

Figure 11: Response to a 90 degree heading command.
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due-north during this maneuver. Lateral control deflections during the maneuver

were recorded and are also shown. A step heading command response and pedal

control history is shown in Fig. 11.

During takeoff and landing phases a range sensor (sonar) is used to maintain and

update the estimated local terrain altitude in the navigation system. The sonar is

valid up to 8ft above the terrain, sufficient for landing and takeoff purposes. Fig. 12

illustrates the altitude and collective profile during a landing. The vehicle starts at

an initial hover at 300ft, followed by a descent at 7ft/s until the vehicle is 15ft

above the estimated terrain. The vehicle then descends at 0.5ft/s until weight-on-

skids is automatically detected at which point the collective is slowly ramped down.

Automatic takeoff (Fig. 13) is similar where the collective is slowly ramped up until

weight-on-skids is no longer detected. It should be noted that NN adaptation is

active at all times except when weight-on-skids is active. Additionally, when weight

is on skids, the collective ramp-up during takeoff and ramp-down during landing is

open-loop.

The approximate model used to compute the dynamic inverse (Eqn (80) and

Eqn (79)) is based on a linear model of the dynamics in hover. To evaluate controller

performance at different points of the envelope, the vehicle was commanded to track a

trajectory that accelerated up to a speed of 100ft/s. To account for wind, an upwind

and downwind leg were flown. In the upwind leg the vehicle accelerated up to 80ft/s

and during the downwind leg the vehicle accelerated up to a speed of 97ft/s as shown

in Fig. 14. Collective and longitudinal control deflections are also shown. In the

upwind leg, the collective is saturated and the vehicle is unable to accelerate further.

The longitudinal control deflections behave nominally as the vehicle accelerates and

decelerates through a wide range of the envelope. The NN is able to adapt to rapidly

Since the command vector is sampled at a low rate (1Hz), a step command appears as a fast ramp
in figures.
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Figure 12: Automatic landing maneuver.
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changing flight conditions, from the baseline inverting design at hover through to

the maximum speed of the aircraft. A conventional proportional-integral-derivative

design would have required scheduling of gains throughout the speed range. More

significantly, classical design would require accurate models at each point, unlike this

design which does not. In addition to flight at high speeds, tracking performance was

evaluated at moderate speeds, where a square pattern was flown at 30ft/s for which

position tracking is shown in Fig. 15. External command position tracking errors are

shown in Fig. 16 with a peak total position error 3.3ft and standard deviation of

0.8ft.

Many maneuvers such as high-speed flight are quasi steady, in the sense that

once in the maneuver, control deflection changes are only necessary for disturbance

rejection. To evaluate performance where the controls have to vary significantly in

order to track the commanded trajectory, the helicopter was commanded to perform

a circular maneuver in the north-east plane with constant altitude and a constantly

changing heading. The trajectory equations for this maneuver are given by

pc =


V
ω

cos(ωt)

V
ω

sin(ωt)

−h

 , vc=


−V sin(ωt)

V cos(ωt)

0

 ,
ψc = ωtf,

where, t is current time and h is a constant altitude command. V is speed of the

maneuver, ω is angular speed of the helicopter around the maneuver origin, and f

is number of 360° changes in heading to be performed per circuit. If ω = π/2rad/s,

the helicopter will complete the circular circuit once every 4 seconds. If f = 1, the

helicopter will rotate anticlockwise 360° once per circuit. Fig. 17 shows the response

to such a trajectory with parameters ω = 0.5rad/s, f = 1, V = 10ft/s. After the

initial transition into the circular maneuver, the tracking is seen to be within 5 ft.

To visualize the maneuver easily, superimposed still images of the vehicle during the
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circular maneuver are shown. Both anticlockwise and clockwise heading changes dur-

ing the maneuver were tested by changing the parameter from f = 1 (anticlockwise)

to f = −1 (clockwise) at t = 55s. Fig. 18 shows that heading tracking is good in

both cases. The time history of the pedal input δped and all other controls during

the maneuver is also shown and illustrates how the vehicle has to exercise all of its

controls during this maneuver.

Next, the ability of the controller to track a previous manually-flown maneuver

was tested. First, a human pilot flew a figure eight, 3-dimensional pattern with the

vehicle. Vehicle state was recorded and was then played back as commands to the

adaptive controller. A 3D plot of the pilot and controller flown trajectories are shown

in Fig. 19 along with projected ground track. Overall, the tracking in position was

measured to be within 11.3ft of the desired pilot flown trajectory with a standard

deviation of 4.7ft.

Finally, a tactically useful maneuver was flown to test controller performance at

high speeds and pitch attitudes. The objective of the maneuver is to make a 180-

degree velocity change from a forward flight condition of 70ft/s north to a 70ft/s

forward flight going south. The trajectory command and response in the north-

altitude plane is shown in Fig. 20 along with the pitch angle. A time history of the

altitude and the collective control deflection is shown in Fig. 21. During the maneuver

the helicopter is commanded to increase altitude by up to 50ft in order to minimize

saturation of the down collective. In the deceleration phase the vehicle is able to track

the command trajectory well; however in accelerating to 70ft/s going south, tracking

performance suffers. In both the acceleration and deceleration phases, poor tracking

corresponds with saturation of the collective control. The oscillations in altitude

in Fig. 21 are expected and are due to control saturation which limits the vehicle’s

descent rate. The large pitch attitudes experienced are what the outer-loop inversion

evaluates as being required to perform such rapid decelerations and accelerations.

76



100
200

300
400

500

−100

0

100

200

300
120

130

140

150

160

170

180

190

east / ftnorth / ft

al
tit

ud
e 

/ f
t

pilot flown
autopilot

100 150 200 250 300 350 400 450
−100

−50

0

50

100

150

200

250

no
rt

h 
/ f

t

east / ft

pilot flown
autopilot

Figure 19: A 3D view and ground track view, of a trajectory initially flown manually
by a pilot and then tracked by the controller.

77



−1200 −1000 −800 −600 −400 −200 0 200
190

200

210

220

230

240

250

260

north / ft

al
tit

ud
e 

/ f
t

command
response

0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

20

30

40

50

60

pi
tc

h 
an

gl
e,

 θ
 / 

de
gr

ee
s

time / s

Figure 20: North-Altitude and pitch angle profile during a 180° velocity change
maneuver. Note: North axis and Altitude axis scales are not equal.

78



0 10 20 30 40 50 60
190

200

210

220

230

240

250

260

al
tit

ud
e 

/ f
t

time / s

command
response

0 10 20 30 40 50 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

co
lle

ct
iv

e 
−

 δ
co

ll / 
un

its

time / s

Figure 21: Altitude and collective control history during a 180° velocity change
maneuver.
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Figure 22: The GTSpy performing a box maneuver

This experiment is an example of maneuvering where the commanded trajectory is

more aggressive than the capability of the vehicle and is reflected by the extended

periods of saturation. It is possible to operate at the limits of the vehicle primarily

due to PCH which protects the adaptation process.

6.3 Application to a Ducted Fan

Following tests on the GTMax helicopter, the control method presented in this the-

sis was applied to other smaller aircraft. The algorithms were ported to a custom

DSP/FPGA hardware device (the FCS20) along with a small sensor board that con-

tained gyroscopes and accelerometers for inertial sensing and a GPS. The avionics

package weighed less than 1lb and fell within the payload capacity of the 11-inch

ducted fan (GTSpy). The GTSpy has a maximum take-off weight of 5.5lbs and is

driven by a two-bladed fixed-pitch propeller. The propeller is enclosed in an annular

wing duct with an outer diameter of 11inches. Vanes located directly beneath the
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Figure 23: Deployment of the GTSpy ducted fan from the GTMax helicopter

propeller move in order to provide yaw control about the propeller axis. Two sets of

control surfaces located further below the propeller move in order to provide pitch

and roll moments. Maneuvering is accomplished by tilting the thrust vector with

the control surfaces relying primarily on inflow for dynamic pressure during hover.

Following satisfactory tethered tests, the vehicle was untethered and allowed to fly

simple missions. Fig. 22 shows a plan view of a small 50ft box maneuver and the

GTSpy’s tracking. The large deviation on the eastern side of the box is most likely

due to a wind gust. Another maneuver performed was the mid-air deployment of the

GTSpy. The GTSpy was mounted on the GTMax helicopter with its engine on and

then deployed from a safe altitude. The GTSpy was able to recover from the initial

deployment transient and maintain attitude and position within 5 seconds of launch.

Fig. 23 shows the GTSpy and GTMax during the deployment transient. Both the

GTMax and GTSpy were under computer control during this maneuver and is the

first known deployment of a rotorcraft from another rotorcraft.

81



6.4 Application to a Fixed Wing Aircraft

The control method presented in this thesis was further applied to a high-thrust-to-

weight ratio fixed wing aircraft with conventional aircraft controls and a fixed pitch

two-bladed propeller. The dynamic inverse used for control purposes approximated

the aircraft in hover mode where the body axis was defined as

xheli = L2(−π/2)xairplane

where L2 is a rotation matrix around the airplane’s body y-axis. Hence the ailerons

control helicopter-yaw, the rudder controls helicopter-roll and the elevators continue

to control pitch. The external commands provided to the control algorithm contains

a commanded pitch angle as a function of speed. Inner-loop gains were based on

2.5, 1.5, 2.5rad/s for the (helicopter) roll, pitch and yaw axis respectively. Outer-

loop gains were based on 1.5, 1.0, 0.7rad/s for the x, y and z helicopter-body-axis

respectively. The output-layer learning rates ΓW was set to unity on all channels and

a learning rate of ΓV was set for all inputs. Reference model parameters were set

to vlim = 10ft/s and ωlim = 1.0rad/s. The control effectiveness B was scaled based

on speed in order to reflect the reduced control authority of the control surfaces in

hover. Flight tests were initiated with the airplane performing circular orbits and

gradually lowering airspeed until hover. The reverse, transition to forward flight was

accomplished by a more aggressive command into forward flight.

The following figures illustrate the response of the aircraft during transitions be-

tween hover and forward flight. Fig. 24 shows the vehicle in forward flight at 80ft/s

performing a circular orbit. At t = 26s a transition to hover is initiated by supplying

external trajectory commands that lower the vehicle’s speed. Transition is completed

at t = 35s with a low residual speed of approximately 5ft/s. At t = 55s a transition

back to forward flight at 80ft/s is initiated and completed at t = 65s. During hover,

t ∈ [35, 55], the control deflections are seen to be significantly higher due to the lower
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Figure 24: GTEdge speed profile and control deflections during transitions between
hover and forward flight
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effectiveness at lower speeds. The ailerons are saturated for significant intervals in a

particular direction in order to counteract engine torque.

Fig. 25 illustrates the (helicopter) pitch angle during transitions as well as the

throttle control deflections. In forward flight, the pitch angle is approximately −75deg

and varies in hover due to reduced control effectiveness and the presence of a steady

wind. Additionally, Fig. 26 shows the position trajectory during transitions whereas

Fig. 27 is a snapshot of the aircraft during the maneuver.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This contributions of this thesis include a framework for the adaptive control of

systems in cascade with saturation using the concept of virtual controls. It is shown

that in addition to using PCH to protect adaptation from input nonlinearities, PCH

may also be used to protect adaptation from the inherent dynamics present in the

virtual controls. Additionally, the tracking error dynamics is shown to reduce to

a form used in prior work and is thus a generalization of previous work. When the

dynamic inverses used to generate desired virtual controls are not present, the problem

reduces to that of a multi-input case where only independent actuators are used to

control the plant.

Although the null controllable region for general nonlinear plants may not be

easily determined, the thesis presents the use of a nested saturation-based reference

model that restricts the evolution of the plant states making it less likely to leave

the null controllable region and limits may be chosen based on the plant structure.

This improves on previous work where linear reference models and large external

commands produced a linear responses which could cause the plant to leave its null

controllable region. In introducing saturation functions in the reference model, the

global asymptotic stability property for stable linear plants is no longer valid. Even

though the null controllable region for semi-stable linear reference models is the whole

state-space; for a given set of gains, and a nested saturation-based law, it might not

be possible to stabilize the reference model on Rn. To overcome this problem, for a

given nested saturation-based law, gains, the reference model’s domain of attraction
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may be characterized as an invariant ellipsoid using linear matrix inequalities leading

to restrictions on the applied external command. Additionally a method of choosing

gains which guarantees the location of poles when different saturation elements of the

nested saturation law saturate mitigates interactions with unmodeled higher order

dynamics.

Results using a combination of systems in cascade and nested saturation-based

laws applied to the control of an autonomous helicopter provides adaptation in all six

degrees of freedom resulting in a full flight envelope controller requiring no schedul-

ing of gains. A method of choosing gains that stabilize the linearized dynamics for

maximum position tracking performance provides good tracking results in flight. The

versatility of the adaptive control method presented in this thesis is also demon-

strated by the application of the same controller with modified dynamic inverses to

the flight of a small 11-inch ducted fan (GTSpy), which in many ways is much more

challenging. Flight on the GTEdge aircraft illustrates the ability to deal with an air-

craft that hovers like a helicopter and then transitions through a high-angle-of-attack

regime into full forward flight in aircraft mode. The controller’s implementation on

the Boeing R-22 illustrates this control method’s ability to fly on full-scale aircraft.

The full-envelope flight of the GTMax with various payload configurations and mid-

air deployment of the GTSpy illustrates this control method’s ability to deal with

uncertainty effectively.

7.2 Recommended Future Work

Short-term extensions could include the following

� An immediate extension could be the use of composite Lyapunov functions [21]

for describing the null controllable region of reference models under nested sat-

uration. The level set of these composite Lyapunov functions can be shown to
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be the convex hull of a set of invariant ellipsoids, resulting in a better charac-

terization of bounds and better bounds in the proof of Theorem 4.

� Characterize the trajectory of xr(t) and the requirements of the set Dx ⊂ Cx

based on the parameters of the nested saturation reference model in Assump-

tion 7.

� In the proof of Theorem 4 in Section A.3, in computing a bound on νh, conditions

that retain the negative sign on f̂(x, δ̂) need to be developed for the single input

and the multi-input case. This will correctly indicate the benefits of larger

actuator limits.

� The LMI-based estimate of the domain of attraction of the nested saturation

reference models are ellipsoids, it would be beneficial if the domain of attraction

can be increased arbitrarily (semi-globally) in a certain direction of the state

space.

� Investigate whether Lemma 1 can be generalized to guarantee the movement of

complex poles.

� Investigate whether the development of adaptive control for systems in cascade

may be generalized to arbitrarily interconnected systems.

Long-term extensions include the possibility of adaptive gains in linear reference

models or adaptive gains and limits in the nested saturation-based reference model.

Consider an alternative to using saturation functions to restrict the evolution of the

reference model where the gains are scaled depending on various factors. Consider a

system

ẋn = f(x, σ(δ)).
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The control law δ may be designed of the form

δ = − k1

λn
x1 −

k2

λn−1
x2 − · · · −

kn

λ
xn.

Assuming, ki is stabilizing, this form of the scaling preserves damping while all the

poles are moved closer to the origin when λ is increased, effectively reducing the

bandwidth of the system. This type control law is parameterized using one parameter,

λ. Assume that on the on the null controllable region there always exists a λ ∈ (0,∞],

that will stabilize the system or provide conditions for such an assertion. One can

get arbitrarily close to the null controllable boundary (if it location is known) by

choosing one parameter, λ. Instead of the LMI-based optimization scheme used in

this thesis where the null controllable region is estimated through an optimization

process, the control law simplifies to a one parameter family of control laws. See [49]

for a motivating example. The question remains on how to choose λ. A simple choice

of λ is

λ = 1 + ‖x‖p,

for some p > 0. This scaling results in large domains of attraction, but has poor

performance for large initial conditions (or commands). Another method is to increase

λ when saturation is encountered, using an adaptive law such as

λ̇ = − α

N
(λ− 1) for ‖νh‖ = 0

= α for ‖νh‖ 6= 0,

where α,N > 0 and control the rate at which λ is increased when νh 6= 0 and the

recovery when νh = 0. An immediate problem with this approach is that even though

the gains are scaled down in the presence of saturation, the adaptation is carried out

with νh as the activating signal for reducing gains. The magnitude of νh is irrelevant

once saturated, because, the response is open loop. To illustrate this consider the
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reference model dynamics from Chapter 2 when saturation occurs.

ẋn = νcr − νh

= νcr − νcr − νlc + ν̄ad + f̂(x, δ̂)

= −Ke+ f(x, δ).

The PCH signal contains no information on how close the plant states are to the

null controllable boundary, just that the gains are too high. The above adaptive law

reduces gains until the actuators are unsaturated. This will result in a smaller PCH

signal (post saturation) but will not effectively change when the system comes out

of saturation. This problem is easily visible in the mu-modification approach of [41].

A degree of hysteresis in the choice of λ would be more useful and will also avoid

chattering on the saturation boundary. Another way to look at the null controllable

region boundary is to assume that the system leaves the null controllable region once

saturation has occurred for a certain period of time. This assumption is a good

measure of the null controllable region boundary for linear systems, as shown in [40],

which also presents a gain scheduled control law with hysteresis. This assumption

however, is probably not applicable to nonlinear systems in general.

Another promising approach is one that allows saturation to occur but uses adap-

tation to compensate so that saturation is avoided in future. The PCH signal is

essentially treated as a nonlinear function and a neural network is used to approxi-

mate and compensate for saturation [62, 61].
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APPENDIX A

PROOFS OF BOUNDEDNESS

In the following set of proofs a ’*’ represents ideal values, where the following variables,

W̃ , W ∗−W, Ṽ , V ∗−V, z = V T x̄, z̃ = z∗−z hold. The arguments to the sigmoidal

activation function σ(·) are dropped for clarity and conciseness. Noting that the

sigmoidal functions are bounded, the NN output may be bounded as

νad = W Tσ(z)

= (W ∗T − W̃ T )σ(V T x̄)

‖νad‖ ≤ α0(Z̄ + ‖Z̃‖F )

for some constant α0.

An expansion of σ(z) around the estimated weights is given by

σ(z∗) = σ(z) +
∂σ(s)

∂s

∣∣∣∣
s=z

(z∗ − z) +O2(z̃).

By the substitution of ν̄ad = νad + νr, and ∆̄ = ∆ + εg = ν∗ad + ε + εg, the tracking

error dynamics may be expressed as

ė = Ae+B[νad − (ν∗ad + ε+ εg) + νr].

Now,

ν∗ad + ε+ εg − νad = W ∗Tσ∗ −W Tσ + ε+ εg

= W ∗T [
σ(z) + σ′z̃ +O2(z̃)

]
−W Tσ + ε+ εg.

Adding and subtracting W Tσ′z and W Tσ′z∗

ν∗ad + ε+ εg − νad = W̃ T (σ − σ′z) +W Tσ′z̃ + w,
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where,

w = W̃ Tσ′z∗ +W ∗TO2(z̃) + ε+ εg.

The tracking error dynamics may finally be written as

ė = Ae+B
{
−

[
W̃ T (σ − σ′z) +W Tσ′z̃ + w

]
+ νr

}
.

Assuming ‖er‖ < ēr, the inputs to the network may be bounded as

x̄ =

[
bv xT

c eT
r eT νT

ad ‖Z‖F

]
‖x̄‖ ≤ bv + x̄c + ēr + ‖e‖+ α0(Z̄ + ‖Z̃‖F ) + Z̄ + ‖Z̃‖F

= k0 + k1‖Z̃‖F + ‖e‖,

where k1 = (1 + α0), k0 , bv + x̄c + ēr + k1Z̄. Additionally, the higher order terms of

O2(z̃) may be bounded as

‖O2(z̃)‖ ≤ 2α0 + α1‖Ṽ T‖F‖x̄‖

≤ 2α0 + α1k1‖Z̃‖2
F + α1k0‖Z̃‖F + α1‖Z̃‖F‖e‖.

Otherwise, the inputs to the network are bounded as

x̄ =

[
bv xT

c eT
r eT νT

ad ‖Z‖F

]
‖x̄‖ ≤ bv + x̄c + ēr + ‖e‖+ α0(Z̄ + ‖Z̃‖F ) + Z̄ + ‖Z̃‖F

= k0 + k1‖Z̃‖F + ‖e‖+ ‖er‖,

where k1 = (1 +α0), k0 , bv + x̄c + k1Z̄, and the higher order terms of O2(z̃) may be

bounded as follows

‖O2(z̃)‖ ≤ 2α0 + α1‖Ṽ T‖F‖x̄‖

≤ 2α0 + α1k1‖Z̃‖2
F + α1k0‖Z̃‖F + α1‖Z̃‖F (‖e‖+ ‖er‖) .

Depending on whether a bound on er is assumed, the disturbance term w may be

bounded as

‖w‖ = c0 + c1‖Z̃‖F + c2‖e‖‖Z̃‖F + c3‖Z̃‖2
F , (99)
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or

‖w‖ = c0 + c1‖Z̃‖F + c2(‖e‖+ ‖er‖)‖Z̃‖F + c3‖Z̃‖2
F , (100)

where, c0, c1, c2, c3 are computable constants given by

c0 = 2α0Z̄ + ε̄+ ε̄g

c1 = 2α1k0Z̄

c2 = 2α1Z̄

c3 = 2α1k1Z̄

A.1 Proof of Theorem 2

Proof. A Lyapunov candidate function is

L(e, W̃ , Ṽ ) =
1

2

[
eTPe+ tr

(
W̃Γ−1

W W̃ T
)

+ tr
(
Ṽ T Γ−1

V Ṽ
)]
. (101)

When the weight update equations of Eqn (41) and Eqn (42) are used, the time

derivative of L along trajectories can be expressed as

L̇ = −1

2
eTQe+ rT (−w + νr) + κ‖e‖tr

(
Z̃TZ

)
.

When Z = Z∗− Z̃ and ‖Z‖F ≥ ‖Z̃‖F − Z̄ and the robustifying term of Eqn (40) are

used

L̇ = −1

2
eTQe− rTw − rTKrr

(
‖Z‖F + Z̄

) ‖e‖
‖r‖

+ κZ̄‖e‖‖Z̃‖F − κ‖e‖‖Z̃‖2
F .
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Using Eqn (99),

L̇ ≤ −1

2
λmin(Q)‖e‖2 + ‖e‖‖PB‖

(
c0 + c1‖Z̃‖F + c2‖e‖‖Z̃‖F + c3‖Z̃‖2

F

)
− λminKr‖e‖‖PB‖‖Z̃‖F‖e‖+ κZ̄‖Z̃‖F − κ‖e‖‖Z̃‖2

F

= −1

2
λmin(Q)‖e‖2

+ c0‖PB‖‖e‖

+
(
c1‖PB‖+ κZ̄

)
‖e‖‖Z̃‖F

− (κ− c3‖PB‖) ‖e‖‖Z̃‖2
F

− (λmin(Kr)‖PB‖ − c2‖PB‖) ‖e‖2‖Z̃‖F

= −a22‖e‖2 + a2‖e‖+ a23‖e‖‖Z̃‖F − a233‖e‖‖Z̃‖2
F − a223‖e‖2‖Z̃‖F ,

(102)

where the subscripts {2, 3} of the coefficients aijk correspond to the variables ‖e‖, ‖Z̃‖F

respectively. After ignoring the trivial solution ‖e‖ = 0, and selecting λmin(Kr) > c2,

κ > c3‖PB‖, it can be shown that L̇ ≤ 0 when one of the following conditions holds

‖e‖ ≥ a2 + a23‖Z̃‖F

a22

,

or,

‖Z̃‖F ≥
a23 +

√
a2

23 + 4a233a2

2a233

.

By selecting λmin(Q), κ and learning rates (ΓW and ΓV ), L̇ ≤ 0 everywhere outside a

compact set Ωβ ⊂ Ωα where Ωα is the largest level set of L that is completely within

D. Ultimate boundedness may be concluded from a Lyapunov extension in [50].

A.2 Proof of Theorem 3

A Lyapunov candidate function is

L(er, e, W̃ , Ṽ ) =
1

2

[
eT

r Per + eTPe+ tr
(
W̃Γ−1

W W̃ T
)

+ tr
(
Ṽ T Γ−1

V Ṽ
)]
.

When the weight update equations of Eqn (41) and Eqn (42) are used, the time

derivative of L along trajectories can be expressed as

L̇ = −1

2
eT

r Qrer + eT
r PrErνh −

1

2
eTQe+ rT (−w + νr) + κ‖e‖tr

(
Z̃TZ

)
.
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Noting that

νh = νcr + νlc + ν̄ad − f̂(x, δ̂),

with the bounds

‖νcr‖ ≤ ‖K‖‖er‖

‖νlc‖ ≤ ‖K‖‖e‖

‖ν̄ad‖ ≤ α0

(
Z̄ + ‖Z̃‖F

)
+ λmax(Kr)‖Z̃‖F‖e‖.

Hence,

L̇ ≤ −1

2
λmin(Qr)‖er‖2

+ ‖er‖‖PrEr‖
(
‖K‖(‖er‖+ ‖e‖) + α0Z̄ + α0‖Z̃‖F + λmax(Kr)‖Z̃‖F‖e‖+ ‖f̂(x, δ̂)‖

)
− 1

2
λmin(Q)‖e‖2 + ‖e‖‖PB‖

(
c0 + c1‖Z̃‖F + c2(‖er‖+ ‖e‖)‖Z̃‖F + c3‖Z̃‖2

F

)
− λminKr‖e‖‖PB‖‖Z̃‖F‖e‖+ κZ̄‖Z̃‖F − κ‖e‖‖Z̃‖2

F

= −
(

1

2
λmin(Qr)− ‖K‖‖PrEr‖

)
‖er‖2

− 1

2
λmin(Q)‖e‖2

− (κ− c3‖PB‖) ‖e‖‖Z̃‖2
F

− (λmin(Kr)− c2) ‖PB‖‖e‖2‖Z̃‖F

+ c0‖PB‖‖e‖

+
(
c1‖PB‖+ κZ̄

)
‖e‖‖Z̃‖F

+ ‖K‖‖PrEr‖‖er‖‖e‖

+
(
α0Z̄ + ‖f̂(x, δ̂)‖

)
‖PrEr‖‖er‖

+ α0‖PrEr‖‖er‖‖Z̃‖F

+ (c2‖PB‖+ λmax(Kr)‖PrEr‖) ‖er‖‖e‖‖Z̃‖F

= −a11‖er‖2 − a22‖e‖2 − a233‖e‖‖Z̃‖2
F − a223‖e‖2‖Z̃‖F + a2‖e‖

+ a23‖e‖‖Z̃‖F + a12‖er‖‖e‖+ a1‖er‖+ a13‖er‖‖Z̃‖F + a123‖er‖‖e‖‖Z̃‖F ,
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where the subscripts {1, 2, 3} of the coefficients aijk correspond to the variables

‖er‖, ‖e‖, ‖Z̃‖F respectively. Assuming, κ > c3‖PB‖ and λmin(Kr) > c2, it can

be shown that L̇ ≤ 0 when one of the following conditions is true,

− a11‖er‖2 + b11‖er‖+ b10 ≤ 0

or− a22‖e‖2 + b21‖e‖+ b20 ≤ 0

or− a233‖e‖‖Z̃‖2
F + b31‖Z̃‖F + b30 ≤ 0,

and

b10 = a2‖e‖+ a23‖e‖‖Z̃‖F

b11 = a1 + a12‖e‖+ a13‖Z̃‖F + a123‖e‖‖Z̃‖F

b20 = a1‖er‖+ a13‖er‖‖Z̃‖F

b21 = a2 + a23‖Z̃‖F + a12‖er‖+ a123‖er‖‖Z̃‖F

b30 = a2‖e‖+ a12‖er‖‖e‖+ a1‖er‖

b31 = a23‖e‖+ a13‖er‖+ a123‖er‖‖e‖,

which corresponds to the following restrictions on the error variables

‖er‖ ≥
b11 +

√
b211 + 4a11b10
2a11

‖e‖ ≥ b21 +
√
b221 + 4a22b20
2a22

‖Z̃‖F ≥
b31 +

√
b231 + 4a233‖e‖b30
2a233‖e‖

.

By selecting λmin(Q), κ and learning rates (ΓW and ΓV ), L̇ ≤ 0 everywhere outside a

compact set Ωβ ⊂ Ωα where Ωα is the largest level set of L that is completely within

D. Ultimate boundedness may be concluded from a Lyapunov extension in [50].

A.3 Proof of Theorem 4

A Lyapunov candidate function is

L(er, e, W̃ , Ṽ ) =
1

2

[
eT

r Per + eTPe+ tr
(
W̃Γ−1

W W̃ T
)

+ tr
(
Ṽ T Γ−1

V Ṽ
)]
.
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When the weight update equations of Eqn (41) and Eqn (42) are used, the time

derivative of L along trajectories can be expressed as

L̇ = eT
r Pr (Arer +BrMnσn(· · · ))+eT

r PrErνh−
1

2
eTQe+rT (−w+νr)+κ‖e‖tr

(
Z̃TZ

)
.

Noting that νh = νcr + νlc + ν̄ad − f̂(x, δ̂) with the bounds

‖νcr‖ ≤ α1λmax(Mn)

‖νlc‖ ≤ ‖K‖‖e‖

‖ν̄ad‖ ≤ α0

(
Z̄ + ‖Z̃‖F

)
+ λmax(Kr)‖Z̃‖F‖e‖,

for some constant α1, hence,

L̇ ≤ −γ(er)

+ ‖er‖‖PrEr‖
(
α1λmax(Mn) + ‖K‖‖e‖+ α0Z̄ + α0‖Z̃‖F + λmax(Kr)‖Z̃‖F‖e‖+ ‖f̂(x, δ̂)‖

)
− 1

2
λmin(Q)‖e‖2 + ‖e‖‖PB‖

(
c0 + c1‖Z̃‖F + c2(‖er‖+ ‖e‖)‖Z̃‖F + c3‖Z̃‖2

F

)
− λminKr‖e‖‖PB‖‖Z̃‖F‖e‖+ κZ̄‖Z̃‖F − κ‖e‖‖Z̃‖2

F

= −γ(er)

− 1

2
λmin(Q)‖e‖2

− (κ− c3‖PB‖) ‖e‖‖Z̃‖2
F

− (λmin(Kr)− c2) ‖PB‖‖e‖2‖Z̃‖F

+ c0‖PB‖‖e‖

+
(
c1‖PB‖+ κZ̄

)
‖e‖‖Z̃‖F

+ ‖K‖‖PrEr‖‖er‖‖e‖

+
(
α1λmax(Mn) + α0Z̄ + ‖f̂(x, δ̂)‖

)
‖PrEr‖‖er‖

+ α0‖PrEr‖‖er‖‖Z̃‖F

+ (c2‖PB‖+ λmax(Kr)‖PrEr‖) ‖er‖‖e‖‖Z̃‖F

= −γ(er)− a22‖e‖2 − a233‖e‖‖Z̃‖2
F − a223‖e‖2‖Z̃‖F + a2‖e‖+ a23‖e‖‖Z̃‖F

+ a12‖er‖‖e‖+ a1‖er‖+ a13‖er‖‖Z̃‖F + a123‖er‖‖e‖‖Z̃‖F .
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Assuming, κ > c3‖PB‖, λmin(Kr) > c2 and er ∈ Ω(Pr, ρ), it can be shown that L̇ ≤ 0

when one of the following conditions is true

− γ(er) + b11‖er‖+ a2‖e‖+ a23‖e‖‖Z̃‖F ≤ 0

or− a22‖e‖2 + b21‖e‖+ b20 ≤ 0

or− a233‖e‖‖Z̃‖2
F + b31‖Z̃‖F + b30 ≤ 0,

where the subscripts {1, 2, 3} of the coefficients aijk correspond to the variables

‖er‖, ‖e‖, ‖Z̃‖F respectively and

b11 = (a1 + a12‖e‖+ a13‖Z̃‖F + a123‖e‖‖Z̃‖F )

b20 = a1‖er‖+ a13‖er‖‖Z̃‖F

b21 = a2 + a23‖Z̃‖F + a12‖er‖+ a123‖er‖‖Z̃‖F

b30 = a2‖e‖+ a12‖er‖‖e‖+ a1‖er‖

b31 = a23‖e‖+ a13‖er‖+ a123‖er‖‖e‖,

which corresponds to the following restrictions on the error variables.

‖er‖ ≤
γ(er)−

(
a2‖e‖+ a23‖e‖‖Z̃‖F

)
b11

‖e‖ ≥ b21 +
√
b221 + 4a22b20
2a22

‖Z̃‖F ≥
b31 +

√
b231 + 4a233‖e‖b30
2a233‖e‖

.

Here the function γ(er) > 0 and imposes an upper limit on the size of external com-

mand xc. By selecting λmin(Q), κ and learning rates (ΓW and ΓV ), L̇ ≤ 0 everywhere

outside a compact set Ωβ ⊂ Ωα where Ωα is the largest level set of L that is completely

within D. Ultimate boundedness may be concluded from a Lyapunov extension in

[50].
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Remark 6. Defining the vector of error variables as

η ,



er

e

vecW̃

vecṼ


,

Assumption 7 implicitly guarantees that the external command xc(t) is feasible. The

ultimate boundedness of Theorem 3 and Theorem 4 ensure that as long as the initial

condition of the errors η(0) ∈ Ωα, then there exists a time T (η(0)) such that η(t) will

enter the set Ωβ and remain inside it for all t > T (η(0)).

Remark 7. In the case of Theorem 2, with η = [eTvecW̃ TvecṼ T ] and η(0) ∈ Ωα,

then there exists a time T (η(0)) such that η(t) will enter the set Ωβ and remain inside

it for all t > T (η(0)). However, er(t) is assumed to be bounded.
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APPENDIX B

NESTED SATURATION WITH GUARANTEED

REAL POLES

B.1 Motivation

The problem addressed involves the global stabilization of a chain of integrators

ẋ1 = x2, · · · , ẋn = u. (103)

The system given by (103) is a subset of a class of systems that are said to be

asymptotically null-controllable with bounded controls [70, 20]. This property was

shown in [63] to be equivalent to the system being stabilizable and having all open-

loop poles in the closed left-half plane.

It was shown in [71] that it is not possible to globally stabilize integrator chains

of order n > 2 using a bounded linear feedback law. However, it was shown by

Teel in [73] that a nonlinear law consisting of nested saturators can guarantee global

asymptotic stability for integrator chains of any order n. This control law may be

expressed as

u = −σn(hn(x) + σn−1(hn−1(x) + · · ·+ σ1(h1(x)))),

where hi are linear combinations of the state (feedback) and the saturation functions

σi satisfy certain properties. The existence of such a globally stabilizing control law

was established in [73] by choosing one set of hi’s such that global asymptotic stability

could be proven. The choice of hi is a design degree of freedom and may be exercised

to prescribe pole locations and the linear dynamics when different elements of the

control law are saturated.
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We observed that the hi chosen by Teel with conventional saturation functions

(see Definition 4) results in all the poles of the closed loop system residing at −1

when none of the saturation elements in the control law are saturated. If the kth

saturator is the outermost element to be saturated, then the resulting closed loop

system has poles at −1 with multiplicity n− k and poles at 0 with multiplicity k, at

least until the element comes out of saturation. A discussion on the prescription of

performance by pole placement (both real and complex) is provided in [72], however

no explicit transformation is provided. Another aspect is the behavior of these poles

as different elements of the control law saturate. Ideally, these poles should not change

when saturation occurs. Both these properties (pole placement and movement when

saturated) are useful if the nested saturation control law is to be employed in practice.

The simple and elegant nested saturation law can benefit greatly from these prop-

erties. Hence, the effort here is to develop a transformation, i.e., a way to select

hi such that closed loop poles for the unsaturated system may be prescribed as

{−a1,−a2, · · · − an}, where ai ∈ R\0 and ai > 0 for stability. Additionally, it will be

shown that when the outermost saturated element is σk, the poles of resulting linear

system reside at {−a1,−a2, · · · − an−k, 01, 02, · · · 0k}.

B.2 Guaranteed Real Poles

Definition 3 (linear saturation). Define constants (L,M) ∈ R+ such that 0 < L ≤

M . Now, define a function σ : R → R. σ is said to be a linear saturation if it is

continuous, nondecreasing and satisfies

a. sσ(s) > 0 ∀s 6= 0

b. σ(s) = s when |s| ≤ L

c. |σ(s)| ≤M ∀s ∈ R
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Definition 4 (conventional saturation). σ : R → R is said to be a conventional sat-

uration if it has a limit M ∈ R+ such that

a. sσ(s) > 0 ∀s 6= 0

b. σ(s) = s when |s| ≤M

c. |σ(s)| = M when |s| > M

Remark 8. σ is said to be saturated when its argument is not in its linear region. For

linear saturation this occurs when |s| > L. For conventional saturation this occurs

when |s| > M .

Remark 9. conventional saturation is a special case of linear saturation with L = M

and a constant saturation value M .

Definition 5 (vector valued saturaion). A function σ : Rm → Rm is an Rm-valued

saturation function if

σ : (x1, . . . , xm) → (σ1(x1), . . . , σm(xm)),

and, for all i = 1, . . . ,m, σi(·) is a saturation function.

Lemma 1. Consider a chain of n-integrators, given by (103), which may be repre-

sented as ẋ = Axx+Bxu, with x ∈ Rn, u ∈ R and

Ax =



0 1 0 · · · 0

...
...

0 · · · · · · · · · 1

0 · · · · · · · · · 0


, Bx =



0

...

...

1


, (104)

then there exists a linear transformation y = Tyxx which transforms (103) into ẏ =
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Ayy +Byu where,

Ay =



0 an · · · · · · an

0 0 an−1 · · · an−1

...
. . . . . . . . .

...

0 · · · · · · · · · a2

0 · · · · · · · · · 0


, By =



an

an−1

...

...

a1


, (105)

and the elements ai ∈ R \ 0 with i = 1 . . . n.

Proof. Given a set of coefficients

A = {a1, a2, · · · , an}, (106)

let Al ⊆ A represent a subset containing the first l elements of A. Define a function

Fm
k (Al) which acts over the set Al. F

m
k is used to generate the product of combinations

of elements taken m at a time from Al. The number of such combinations is given

by the binomial coefficient

 l

m

. Hence, Fm
k (Al) may be treated as a generating

function that outputs the kth combination of the product of m elements taken from

the set Al without repetition and disregarding order. Note that F 0
k = 1.

In order to generate the transformation Tyx, define the function C(l,m), with

l ∈ [0, · · · , n], m ∈ [0, · · · , l] and m ≤ l, over the set of coefficients A given by (106).

C(l,m) =

C̄l
m∑

k=1

Fm
k (Al) (107)

C(l, 0) = 1, (108)

where C̄ l
m is the binomial coefficient

 l

m

. The new coordinate system is character-

ized by

yn−i = ai+1

i∑
j=0

C(i, j)xn−j, i ∈ [0, · · · , n− 1], (109)
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and the transformation Tyx is explicitly given by

Tyx(n−i)(n−j)
= ai+1C(i, j) i ≥ j

Tyx(n−i)(n−j)
= 0 i < j, (110)

for i, j ∈ [0, · · · , n− 1]. Additionally, Tyx is an upper diagonal matrix with non-zero

diagonal entries. Hence, Txy = T−1
yx exists. Finally, observing that

ẏ = TyxAxT
−1
yx y + TyxBxu

= Ayy +Byu,

it is enough to verify that AyTyx = TyxAx and that TyxBx = By. This may be carried

out using Equations 104, 105 and 110.

Theorem 6. For the system given by (103). Given any set of positive constants

{(Li,Mi)}, where Li ≤Mi for i = 1, · · · , n and Mi <
1
2
Li+1 for i = 1, · · · , n− 1, and

for any set of functions {σi} that are linear saturations for {(Li,Mi)}, there exists a

linear coordinate transformation y = Tyxx such that the bounded control

u = −σn(yn + σn−1(yn−1 + · · ·+ σ1(y1))), (111)

results in a globally asymptotically stable system.

Proof. In short, use the transformation given by Lemma 1 in the proof of Theorem

2.1 in [73]. It is however restated here for completeness.

Use the coordinate transformation y = Tyxx given by Lemma 1 and choose the

set of coefficients ai > 0. Substituting the nested saturation law given by Eqn (111)
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into Eqn (103) and expanding yields the closed loop system

ẏ1 = an [y2 + · · ·+yn −σn(yn + σn−1(· · ·σ1(y1)))]

ẏ2 = an−1[y3 + · · ·+yn −σn(yn + σn−1(· · ·σ1(y1)))]

... (112)

ẏn−1 = a2 [ yn −σn(yn + σn−1(· · ·σ1(y1)))]

ẏn = − a1σn(yn + σn−1(· · ·σ1(y1))).

The trajectory of yn is examined first. Choosing a Lyapunov function Vn = y2
n, with

yn ∈ R1. Its derivative V̇n may be written as

V̇n = −2a1yn [σn(yn + σn−1(yn−1 + · · ·+ σ1(y1)))] .

Noting that ai > 0. Definition 3, conditions (a), (b), imply that yn and σn(·) are the

same sign only if yn + σn−1(·) is the same sign as yn. Condition (c) of Definition 3

applied to σn−1 and having chosen Mn−1 < 1
2
Ln, it can be seen that V̇n < 0 for

all yn /∈ Qn = {yn : |yn| ≤ 1
2
Ln}. If starting outside Qn, the trajectory of yn

eventually enters Qn in finite time. Since the RHS of Eqn (112) is globally Lipschitz,

the derivatives are bounded resulting in the remaining states y1 · · · yn−1 remaining

bounded for any given finite time.

Once yn has entered Qn, condition (b) of Definition 3 implies σn operates in its

linear region because the argument to σn is bounded as

|yn + σn−1(·)| ≤
1

2
Ln +Mn−1 ≤ Ln.

The equation for the evolution of yn−1 is now given by

ẏn−1 =
�������:0
a2yn − a2yn − a2σn−1(yn−1 + · · ·+ σ1(y1))

= −a2σn−1(yn−1 + · · ·+ σ1(y1)),

which is similar to the expression for ẏn. Using similar arguments as that used for

the evolution of yn, it can be shown that yn−1 enters a set Qn−1 in finite time and
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remains in Qn−1 thereafter with all remaining states being bounded. Continuing in

the same fashion, it can be shown that every state yi for i ∈ [1, · · · , n], enters a set

Qi = {yi : |yi| ≤ 1
2
Li} in finite time and all saturation functions σi are operating

in their linear regions. Hence after a certain finite amount of time the governing

equations, Eqn (112), becomes

ẏ1 = −any1

ẏ2 = −an−1(y1 + y2)

...

ẏn = −a1(y1 + y2 + · · ·+ yn),

which is exponentially stable.

Corollary 2 (Pole location). If the saturators used are conventional saturation, and

none of the σi are saturated, the poles of the linearized closed loop system reside

at {−a1,−a2, · · · ,−an}. During periods when the outermost saturated element is

the kth saturator, σk, the poles of the resulting closed loop linear system reside at

{−a1,−a2, · · · ,−an−k, 01, 02, · · · , 0k}.

Proof. Using the nested saturation law, the closed-loop n-integrator system may be

expressed as

ẋn + σn(yn + σn−1(yn−1 + · · ·+ σ1(y1))) = 0.

When the kth saturator is saturated, and σk+1 · · ·σn are not saturated, the closed

loop system is given by

ẋn + yn + yn−1 + · · · yk+1 ±Mk = 0.

This represents a forced linear system where the forcing function is the constant Mk.

Examining the homogeneous part

0 = ẋn + yn + yn−1 + · · ·+ yk+1.
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Using Eqn (109) to expand yi

0 = ẋn + a1

0∑
j=0

C(0, j)xn−j

+ a2

1∑
j=0

C(1, j)xn−j + · · ·

+ an−k

n−(k+1)∑
j=0

C (n− (k + 1), j)xn−j.

Noting that x = x1, ẋ = x2, · · · , x(n−1) = xn, x
(n) = ẋn, and substituting p = n − k

for clarity the characteristic equation may be written as

Υ(λ) = λn

+ a1C(0, 0)λn−1

+ a2C(1, 0)λn−1 + a2C(1, 1)λn−2

...

+ apC(p− 1, 0)λn−1 + · · ·+ apC(p− 1, p− 1)λk.

Factoring out λk

Υ(λ) =λk[λp

+ a1C(0, 0)λp−1

+ a2C(1, 0)λp−1 + a2C(1, 1)λp−2

+ apC(p− 1, 0)λp−1 + · · ·+ apC(p− 1, p− 1)],

and may be written in its final form as

Υ(λ) = λk(λ+ a1)(λ+ a2)....(λ+ ap),

which has k zeros and p = n− k non-zero stable poles at known locations.

Corollary 3. During periods when σk is the outermost saturated element in the con-

trol law of Theorem 6 and the coordinate transformation used is given by Lemma 1,

108



then, in steady-state, the magnitude of the kth derivative, ẋk, is given by

|ẋk| =
∣∣∣∣ Mk

an−kC(n− (k + 1), n− (k + 1))

∣∣∣∣ , (113)

for k ∈ [1, · · · , n− 1], and

|ẋk| = |Mk| , (114)

for k = n.

Proof. If σk is saturated, the closed loop system may be written as

ẋn + yn + yn−1 + · · · yk+1 ±Mk = 0.

Using Eqn (109)

0 = ẋn + a1

0∑
j=0

C(0, j)xn−j

+ a2

1∑
j=0

C(1, j)xn−j + · · · (115)

+ an−k

n−(k+1)∑
j=0

C (n− (k + 1), j)xn−j ±Mk.

When the outermost saturated element is σk, the dynamics eventually reach a saturated-

equilibrium region where higher-order derivatives reach zero. So, x(n) · · ·x(k+1), i.e.,

ẋn, xn · · ·xk+2 go to zero. The only term left from Eqn (115) is

an−kC(n− (k + 1), n− (k + 1))xk+1 ±Mk = 0. (116)

Noting that ẋk = xk+1, rearranging Eqn (116) and taking the absolute value of both

sides results in Eqn (113). Finally, when k = n, the outermost saturator σn is

saturated and Eqn (115) reduces to

ẋn ±Mn = 0. (117)

Rearranging Eqn (117) and taking magnitudes of both sides results in Eqn (114)
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Corollary 4 (Restricted Tracking). Consider a nonlinear system with magnitude

saturation at the input u given by

ẋ1 = x2, · · · , ẋn = σn+1(u), (118)

and a compatible reference signal given by[
xd(t), ẋd(t), · · · x

(n)
d (t)

]
. (119)

If |x(n)
d (t)| ≤ Ln+1 − ε for all t ≥ t0 and for some ε > 0 and given linear saturation

functions σi with parameters (Li,Mi) satisfying,

Li ≤Mi i = 1, · · · , n+ 1

Mi <
1

2
Li+1 i = 1, · · · , n− 1

Mn ≤ ε,

then, the feedback

u = x
(n)
d − σn(yn + σn−1(yn−1 + · · ·+ σ1(y1))),

with y = Tyxe given by Lemma 1, where, ei = xi − x
(i−1)
d for i = 1 · · ·n, results

in a globally asymptotically stable system. Additionally if conventional saturation

elements are used, the error dynamics are governed by Corollary 2 and quasi-steady

rates governed by Corollary 3.

Proof. The dynamics of Eqn (118) may be expressed in terms of the error e

ė1 = e2, · · · , ėn = −x(n)
d + σn+1(u).

With the given control law, if the magnitude of the nth derivative of the command xd

is always such that |x(n)
d (t)| ≤ Ln+1− ε for all t ≥ t0 and Mn ≤ ε, then the magnitude

of the argument of σn+1 is

|x(n)
d − σn(·)| ≤ Ln+1,
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Figure 28: Initial condition response of a 3rd order system

and σn+1 is always in its linear region, resulting in the closed loop error dynamics

becoming

ė1 = e2, · · · , ėn = −σn(yn + σn−1(yn−1 + · · ·+ σ1(y1))). (120)

The conditions of this corollary and form of Eqn (120) satisfy the requirements of

Theorem 6. This implies that the dynamics of e are asymptotically stable and hence

x tracks xd asymptotically. The form of Eqn (120) also allows Corollary 2 and Corol-

lary 3 to be applied directly.
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B.3 Examples

B.3.1 Global Stabilization

Consider the problem of stabilizing the 3rd order system

ẋ1 = x2, ẋ2 = x3, ẋ3 = u,

using bounded control u ∈ [−1, 1] (conventional saturation) with poles at {−1,−3,−2}.

Then, {a1, a2, a3} = {1, 3, 2}. The transformation required to achieve these poles may

be expressed as 
y1

y2

y3

 =


a3(a1a2) a3(a1 + a2) a3

a2(a1) a2

a1



x1

x2

x3

 .
Using the nested saturation law given by Theorem 6 and choosing the saturation

element parameters as follows

M3 = 1, L3 = M3

M2 =
1

2
L3 − ε̄, L2 = M2

M1 =
1

2
L2 − ε̄, L1 = M1,

where ε̄ is a small positive number, that is used to satisfy the inequality Mi <
1
2
Li+1.

Additionally the saturation element parameters are chosen Li = Mi (conventional

saturation). Then, the closed loop system is given by

ẋ3 + σ3(y3 + σ2(y2 + σ1(y1))) = 0.

An initial condition response with x0 = [0.1, 0.5, 1.0] is shown in Fig. 28. The figure

also shows the outputs of the saturation elements.

� 0 - 0.5s, σ3 is saturated

� 0.5 - 3.1s, σ2 is saturated
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� 3.1 - 41.6s, σ1 is saturated

� 41.6 - 50s, control law is unsaturated

The only region where the system practically reaches a saturated-equilibrium is when

σ1 is saturated, between 10 and 41 seconds. The equilibrium value for ẋ1 is given by

Corollary 3

|ẋ1| = |x2| =
∣∣∣∣ M1

a2a1

∣∣∣∣ = 0.0833

and matches the slope of x1 in Fig. 28.

B.3.2 Restricted Tracking

Consider a chain of 4 integrators where, σ5(u) represents a magnitude saturated

actuator.

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4, ẋ4 = σ5(u),

where σ5 is a conventional saturation function with parameters (L5,M5). A com-

patible command may be represented as [xd, ẋd, ẍd,
...
x d,

....
x d]. Defining the error as,

e = x− xd, the error derivatives may be written as

ė = x2 − ẋd

ë = x3 − ẍd

...
e = x4 −

...
x d

....
e = σ5(u)−

....
x d,

The control is given by Corollary 4,

u =
....
x d − σ4(y4 + σ3(y3 + σ2(y2 + σ1(y1)))),

with |....x d| ≤ L5 − ε and M4 ≤ ε, for some ε > 0, the saturation function parameters

(Li,Mi) chosen to satisfy the conditions given by Corollary 4 and yi given by Lemma 1.
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The coordinate transformation used is y = Tyxe where Tyx is given by

a1a2a3a4 (a1a3 + a2a3 + a1a2)a4 (a1 + a2 + a3)a4 a4

0 a1a2a3 (a1 + a2)a3 a3

0 0 a1a2 a2

0 0 0 a1


.

Here, the poles were taken to be at

{−a1,−a2,−a3,−a4} = {−0.5,−1,−2,−3}.

The saturation function parameters were chosen as

L5 = 10 M5 = L5 − ε̄

ε =
1

2
L5

L4 = ε M4 = ε− ε̄

L3 =
1

2
L4 M3 = L3 − ε̄

L2 =
1

2
L3 M2 = L2 − ε̄

L1 =
1

2
L2 M1 = L1 − ε̄,

where ε̄ is a small positive number chosen to satisfy Mi < Li. If Corollary 3 is

evaluated for various saturation elements being saturated.

|ė4| = |M4| when, σ4 is saturated

|ė3| =
∣∣∣∣M3

a1

∣∣∣∣ when, σ3 is saturated

|ė2| =
∣∣∣∣ M2

a1a2

∣∣∣∣ when, σ2 is saturated

|ė1| =
∣∣∣∣ M1

a1a2a3

∣∣∣∣ when, σ1 is saturated. (121)

The response of this system to a sinusoidal command compatible with xd = 5 sin(0.5t)

and zero initial conditions is illustrated in Fig. 29.
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From Eqn (121) notice that as the bandwidth i.e., ai is increased, the error rates in
saturated-equilibrium decrease. Hence for higher bandwidth, the overall settling time
can be higher, which is perhaps counter-intuitive. This aspect is further illustrated in
Fig. 30 where it is observed that the control law with faster poles (all at -1.5) takes
longer to be regulated back to 0 than the system with slower poles (all at -0.5). The
initial condition used was x0 = [0, 0.1, 1, 2]T with zero command.
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ble Adaptive Control and Estimation for Nonlinear Systems, Neural and Fuzzy
Approximator Techniques. Wiley, 2002.

[68] Stevens, B. L. and Lewis, F. L., Aircraft Control and Simulaion. John Wiley
& Sons, New York, 2003.

[69] Sussman, H. J. and Kokotovic, P. V., “The peaking phenomenon and
the global stabilization of nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 36, pp. 424–440, April 1991.

[70] Sussmann, H. J., Sontag, E. D., and Yang, Y., “A general result on the
stabilization of linear systems using bounded controls,” IEEE Transactions on
Automatic Control, vol. 39, dec 1994.

[71] Sussmann, H. J. and Yang, Y., “On the stabilizability of multiple integra-
tors by means of bounded feedback controls,” in Proceedings of the 30th IEEE
Conference on Decision and Control, (Brighton, UK), 1991.

[72] Teel, A. R., “Feedback stabilization : Nonlinear solutions to inherently nonlin-
ear problems,” Tech. Rep. UCB/ERL M92/65, Electronics Research Laboratory,
University of California, Berkeley, CA 94720, June 1992.

[73] Teel, A. R., “Global stabilization and restricted tracking for multiple integra-
tors with bounded controls,” Systems & Control Letters, vol. 18, pp. 165–171,
1992.

[74] Teel, A. R., “A nonlinear small gain theorem for the analysis of control sys-
tems with saturation,” IEEE Transactions on Automatic Control, vol. 41, no. 9,
pp. 1256–1270, 1996.

[75] Teel, A. R., “Semi-global stabilization of linear systems with position and
rate-limited actuators,” Systems & Control Letters, vol. 30, pp. 1–11, 1997.

[76] Zaccarian, L. and Teel, A. R., “A common framework for anti-windup,
bumpless transfer and reliable designs,” Automatica, vol. 38, no. 10, pp. 1735–
1744, 2002.

122



VITA

Suresh Kumar Kannan was born on August 8, 1974, in Dharmapuri, Tamil Nadu,

India. In 1992 he entered the University of Manchester, UK, obtaining an MEng

in Aerospace Engineering in 1996. During 1995 and 1996 he worked as a visiting

researcher at Rolls-Royce Civil Aero Engines Limited in Derby, UK. In Fall 1996,

he entered the School of Aerospace Engineering at Georgia Institute of Technology

for graduate studies. He was awarded a Master of Science in Aerospace Engineering

in 2002. His interests include nonlinear systems, adaptive control and unmanned

systems.

123


	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures 
	List of Symbols and Abbreviations
	Summary
	Chapter 1 — Introduction
	Nonlinear Adaptive Control
	Saturation
	PCH
	Nonlinear Reference Models
	Systems in Cascade
	Control of an Autonomous Helicopter
	Outline of Thesis

	Chapter 2 — Background
	Model Reference Adaptive Control
	Reference Model and Tracking Error
	Adaptive Element

	Chapter 3 — Adaptation for Systems in Cascade
	Adaptive Control of Two Systems in Cascade
	Reference Model and PCH
	Tracking Error Dynamics

	Adaptive Control of k-subsystems in Cascade
	Effect of Actuator Model on Error Dynamics
	Actuator Positions are Measured
	Actuator Position is a Static Function of the Model and Plant States
	Actuator model has error the NN cannot compensate
	Actuator model is conservative

	Tracking Error Boundedness

	Chapter 4 — Nonlinear Reference Models
	Null Controllable Region
	Linear Reference Model
	Nested Saturation-Based Reference Model
	Single Subsystem
	k-subsystems
	Checking Invariance

	Constrained Linear Model

	Chapter 5 — Application to the RMax Helicopter
	Controller Development
	Reference Model and PCH
	Tracking error dynamics

	Boundedness
	Helicopter Specific Design
	Approximate Model
	Reference Model
	Choice of Gains Linear Dynamics
	Imposing Response Characteristics


	Chapter 6 — Experimental Results
	Parameter Selections
	Flight Test
	Application to a Ducted Fan
	Application to a Fixed Wing Aircraft

	Chapter 7 — Conclusions and Future Work
	Conclusions
	Recommended Future Work

	Appendix A — Proofs of Boundedness
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Appendix B — Nested Saturation with Guaranteed Real Poles
	Motivation
	Guaranteed Real Poles
	Examples
	Global Stabilization
	Restricted Tracking


	References
	Vita

