
Addressing Network Heterogeneity and Bandwidth Scarcity in Future

Wireless Data Networks

A Dissertation
Presented to

The Academic Faculty

by

Hung-Yun Hsieh

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

NI•AIGR

O
E

G•
E

H
T

•
F

O •
L A E S •

S T I T U T E
• O

F
•

T
E

C
H

N
O

LOGY•

8 581

NA D
PR O G R ESS S ER V I C E

Georgia Institute of Technology

July 2004

Addressing Network Heterogeneity and Bandwidth Scarcity in Future

Wireless Data Networks

Approved by:

Professor Raghupathy Sivakumar, Advisor

Professor Nikil S. Jayant

Professor Hsien-Hsin S. Lee

Professor Douglas M. Blough

Professor Samit Soni
(College of Management)

Date Approved: July 8, 2004

To my family.

ACKNOWLEDGEMENTS

I would like to first thank my advisor, Prof. Raghupathy Sivakumar, for his unflagging support

and guidance during my dissertation study. This work would not have been possible without all

the insightful and scintillating discussions with him. Prof. Sivakumar leads me into the world of

networking research, and acts as an excellent role model of a good researcher. He is a mentor and a

friend.

I would also like to thank Profs. Nikil S. Jayant, Douglas M. Blough, Hsien-Hsin S. Lee,

and Samit Soni for serving on my dissertation committee and giving valuable opinions during the

preparation and presentation of this dissertation. In addition, I would like to thank Prof. Ian F.

Akyildiz for his enlightening suggestions during my proposal examination that help improve the

quality of this dissertation. I also want to thank Profs. Mostafa H. Ammar and Henry L. Owen for

their feedbacks during my proposal and qualifying examinations.

My gratitude extends to the present and past members of the GNAN research group. I cherish

the great opportunity of working with them. Special thanks go to Karthik, Vaidy, Kyu-Han, Aravind,

and Yujie for many interesting and refreshing discussions. I also thank Yannick, Ram, Seung-Jong,

Tae-Young, and Ashraf for their friendship and assistance.

Last but not least, I would like to thank my family for always being there for me. Their love,

encouragement, and belief help me go through the ups and downs of this journey. To them, I

dedicate this dissertation.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . viii

SUMMARY . x

CHAPTER 1 INTRODUCTION . 1

PART I NETWORK HETEROGENEITY

CHAPTER 2 HOST MOBILITY ACROSS HETEROGENEOUS NETWORKS . . . 5

2.1 The Problem . 5

2.2 Related Work . 7

2.3 Solution Outline . 9

CHAPTER 3 TRANSPORT LAYER PROTOCOL 11

3.1 Availability of Multiple Pipes . 11

3.2 Application Layer Striping . 13

3.2.1 Rate Differential . 14

3.2.2 Rate Fluctuations . 16

3.2.3 Blackouts . 16

3.2.4 Application Complexity . 17

3.3 A Queueing-Theoretic Perspective . 17

3.3.1 Application Striping Model . 18

3.3.2 Transport Striping Model . 22

3.3.3 Performance Comparisons . 25

3.4 Summary . 31

CHAPTER 4 PARALLELISM . 33

4.1 Protocol Design . 33

4.1.1 Maintaining Multiple States . 33

4.1.2 Decoupling of Functionalities . 34

4.1.3 Delay Binding . 35

4.1.4 Dynamic Reassignment . 35

4.1.5 Redundant Striping . 36

v

4.2 Protocol Operations . 36

4.2.1 Architectural Overview . 36

4.2.2 TCP-v Interface . 38

4.2.3 Header Formats . 38

4.2.4 Connection Management . 39

4.2.5 Congestion Control and Flow Control 42

4.2.6 Reliability . 43

4.3 Protocol Evaluation . 44

4.3.1 Rate Differential . 45

4.3.2 Number of Pipes . 47

4.3.3 Rate Fluctuations . 48

4.3.4 Blackouts . 49

4.3.5 Different Congestion Control Schemes 51

CHAPTER 5 TRANSPOSITIONALITY . 53

5.1 Motivation . 54

5.1.1 Tackling the Wireless Last-Hop . 55

5.1.2 Supporting Heterogeneous Interfaces . 58

5.2 RCP: Reception Control Protocol . 61

5.2.1 Transposition of Functionalities . 62

5.2.2 Protocol Overview . 63

5.2.3 Protocol Operations . 63

5.2.4 Performance Gains . 66

5.3 R2CP: Radial RCP . 74

5.3.1 Protocol Design . 74

5.3.2 Protocol Overview . 77

5.3.3 Protocol Operations . 78

5.3.4 Functionality Gains . 83

PART II BANDWIDTH SCARCITY

CHAPTER 6 NETWORK SCALABILITY WITH USER POPULATION 91

6.1 The Problem . 91

vi

6.2 Related Work . 93

6.3 Solution Outline . 95

CHAPTER 7 PEER-TO-PEER NETWORK MODEL 96

7.1 Evaluation Model . 96

7.2 Motivation . 99

7.2.1 Network Size . 99

7.2.2 Node Distribution . 101

7.2.3 Traffic Locality . 103

7.3 Internet Access Scenario . 104

7.3.1 Throughput . 105

7.3.2 Fairness . 108

7.3.3 Mobility . 109

7.4 Summary . 111

CHAPTER 8 BASE STATION ASSISTANCE . 113

8.1 Assisted Protocols . 113

8.2 Dual-Mode Operation . 118

8.3 Future Research Issues . 123

8.3.1 Communication Overheads . 123

8.3.2 Host Complexities . 123

8.3.3 Scheduling Algorithm . 124

8.3.4 Mode Multiplexing . 125

CHAPTER 9 MULTI-HOMED PEER RELAY . 126

9.1 Hybrid Stations (Wireless–Wired Relay) . 127

9.2 Multi-mode Mobile Hosts (Wireless–Wireless Relay) 129

9.3 Future Research Issues . 132

9.3.1 Handoffs . 132

9.3.2 Routing Protocol . 133

9.3.3 Transport Protocol . 134

CHAPTER 10 CONCLUSIONS . 136

REFERENCES . 138

vii

LIST OF FIGURES

Figure 1 Host Mobility across Heterogeneous Networks 6

Figure 2 TCP over Multiple Pipes . 12

Figure 3 Striping with Multiple TCP Sockets . 13

Figure 4 Application Striping Model . 18

Figure 5 Transport Striping Model . 22

Figure 6 Homogeneous Servers (µ1 = µ2) . 26

Figure 7 Heterogeneous Servers (µ2 = κµ1) . 29

Figure 8 pTCP Architecture . 37

Figure 9 pTCP Header Format . 38

Figure 10 pTCP State Machine . 40

Figure 11 pTCP Connection Establishment Handshake 41

Figure 12 Network Topology for Evaluating pTCP . 44

Figure 13 Scalability with Rate Differential . 46

Figure 14 Buffer Requirement of the Unaware Application 47

Figure 15 Scalability with Number of Pipes . 48

Figure 16 Impact of Rate Fluctuations . 49

Figure 17 Impact of Blackouts . 50

Figure 18 Multiple Congestion Control Schemes . 51

Figure 19 Scenario for Server Migration . 60

Figure 20 Sender–Receiver Interactions . 62

Figure 21 Network Topology for Evaluating RCP . 67

Figure 22 RCP is Friendly to TCP . 68

Figure 23 RCP Performance Gains . 70

Figure 24 R2CP Design . 75

Figure 25 R2CP Architecture . 77

Figure 26 Motivation for R2CP Scheduling . 79

Figure 27 R2CP State Diagram . 81

Figure 28 Testbed Scenario for Evaluating R2CP . 83

Figure 29 R2CP Functionality Gains . 84

viii

Figure 30 Performance of R2CP Scheduling . 87

Figure 31 Spatial Reuse in Wireless Networks . 92

Figure 32 Wireless Network Models . 97

Figure 33 Impact of Network Size . 100

Figure 34 Skewed Node Distribution . 101

Figure 35 Impact of Node Distribution . 102

Figure 36 Impact of Traffic Locality . 103

Figure 37 Throughput Average . 105

Figure 38 Accounting for Performance Degradation . 107

Figure 39 Throughput Fairness . 108

Figure 40 Impact of Mobility (Average Throughput) . 109

Figure 41 Impact of Mobility (Instantaneous Throughput) 110

Figure 42 Assisted Scheduling Algorithm (Variables) . 114

Figure 43 Assisted Scheduling Algorithm (Pseudo-Code) 115

Figure 44 Assisted Scheduling Performance (Traffic Locality) 116

Figure 45 Assisted Scheduling Performance (Traffic Load) 117

Figure 46 Dual-Mode Operation Algorithm (Variables) 119

Figure 47 Dual-Mode Operation Algorithm (Pseudo-Code) 120

Figure 48 Dual-Mode Operation Performance (Fairness) 121

Figure 49 Dual-Mode Operation Performance (Instantaneous Throughput) 122

Figure 50 Hybrid Stations Performance . 128

Figure 51 Multi-mode Mobile Hosts Performance . 131

ix

SUMMARY

To provide mobile hosts with seamless and broadband wireless Internet access, two funda-

mental problems that need to be tackled in wireless networking are transparently supporting host

mobility and effectively utilizing wireless bandwidth. The increasing heterogeneity of wireless net-

works and the proliferation of wireless devices, however, severely expose the limitations of the

paradigms adopted by existing solutions. In this work, we explore new research directions for ad-

dressing network heterogeneity and bandwidth scarcity in future wireless data networks. In address-

ing network heterogeneity, we motivate a transport layer solution for transparent mobility support

across heterogeneous wireless networks. We establish parallelism and transpositionality as two

fundamental principles to be incorporated in designing such a transport layer solution. In address-

ing bandwidth scarcity, we motivate a cooperative wireless network model for scalable bandwidth

utilization with wireless user population. We establish base station assistance and multi-homed

peer relay as two fundamental principles to be incorporated in designing such a cooperative wire-

less network model. We present instantiations based on the established principles respectively, and

demonstrate their performance and functionality gains through theoretic analysis, packet simulation,

and testbed emulation.

x

CHAPTER 1

INTRODUCTION

The Internet has gradually evolved to become an omninet where all computer systems and informa-

tion devices are interconnected in synergy to form an omnipresent network. While the backbone of

the Internet remains wired predominantly, wireless networking has in particular become the driving

force for such an evolution. Wireless networking extends the reach of the Internet where wired

connections are not possible or desirable. More importantly, it enables ubiquitous network access,

allowing mobile hosts to be connected to the global infrastructure wherever they are. To provide

mobile hosts with seamless and broadband wireless Internet access, however, wireless networking

faces two fundamental challenges in terms of transparently supporting host mobility against the dy-

namics of mobile hosts, and effectively utilizing wireless bandwidth against the characteristics of

wireless links. Although the two problems have been the focus of many research endeavors, recent

trends in the development of the Internet have brought about changes that existing approaches fail

to address.

The first trend is the increasing heterogeneity of wireless networks due to the proliferation in

the number of wireless access technologies available [15, 38, 109, 110, 111]. These heterogeneous

wireless access networks typically have different coverage areas, and exhibit very diverse character-

istics in terms of data rates, latencies and loss rates. Existing approaches proposed for host mobility

rely on network support to provide mobile hosts with seamless handoffs in terms of minimizing the

handoff latency and transmission anomalies such as packet duplicates, losses, or reordering during

handoffs [20, 23, 25, 88]. These approaches, however, need to be tailored to the specificity of the

network in consideration, and hence cannot scale with the increasing heterogeneity of wireless net-

works. More importantly, when mobile hosts move across heterogeneous wireless networks, the

ability to provide seamless handoffs between access points accounts only for a part of the prob-

lems involved. Functionalities such as network handoffs, protocol handoffs, server migration, and

bandwidth aggregation need to be supported to provide mobile hosts with truly untethered network

1

access. We elaborate on the requirements of these functionalities for supporting transparent host

mobility in Chapter 2.

The second trend is the increasing scarcity of wireless bandwidth due to the proliferation in the

number of wireless devices connected. Conventional wireless networks [45, 50, 109, 110] adopt a

cellular network architecture where mobile hosts in the same cell share the resource provided by the

base station (or access point) for network access. In such a network architecture, in any given time

slot (or frequency band/code sequence) only one mobile host can access the channel for utilizing the

wireless bandwidth. While a considerable body of research has focused on improving the utilization

of wireless bandwidth by addressing the impairments of the underlying channel and allowing a more

efficient use of the bandwidth [28, 67, 70, 97], the performance improvement is shadowed by the

performance degradation due to the increasing user population. The only avenue for improving

the data rate is to decrease the coverage area per base station, thus reducing the number of users

served [22, 89]. However, the drawback is the high infrastructure cost involved in deploying a large

number of base stations and the associated distribution networks that cannot scale with the growth

of mobile hosts. We elaborate on the limitations of existing cellular wireless networks in achieving

scalable bandwidth utilization in Chapter 6.

In this work, we consider the fundamental problems of host mobility support and wireless band-

width utilization in the context of the increasing network heterogeneity and bandwidth scarcity in

future wireless networks. We identify the limitations of the paradigms adopted by existing ap-

proaches in addressing the two problems, and then explore new research directions that can provide

scalable solutions with the increasing heterogeneity of wireless networks and the proliferation of

wireless devices. In Part I, we focus on the problem of transparent mobility support across het-

erogeneous wireless networks. Chapter 2 elaborates on the problem and why related work fails to

provide the desired solution. Chapter 3 motivates a solution based on the transport layer protocol

that does not rely on the support from the underlying network infrastructure. We explain, how-

ever, the drawbacks of using existing transport layer protocols “as-is” in addressing the problem.

Chapter 4 and Chapter 5 establish two fundamental principles called parallelism and transposition-

ality that need to incorporated in designing such a transport layer solution. We propose transport

layer protocols based on the established principles and show that they can support transparent host

2

mobility and exhibit resilience to the heterogeneity of wireless networks. In Part II, we focus on

the problem of scalable bandwidth utilization with wireless user population. Chapter 6 elaborates

on the problem and why related work fails to provide the desired solution. Chapter 7 motivates a

solution based on the peer-to-peer network model for improving the capacity of existing wireless

networks. We present, however, the drawbacks of using the existing peer-to-peer network model

“as-is” in addressing the problem. Chapter 8 and Chapter 9 establish two fundamental principles

called base station assistance and multi-homed peer relay that need to be used in tandem with the

peer-to-peer network model. We present instantiations of the established principles and show that

they can provide mobile hosts with significant improved data rates and exhibit better scalability

with the proliferation of wireless devices. Finally, Chapter 10 discusses the relation between the

two solutions and concludes the dissertation.

3

PART I

Network Heterogeneity

CHAPTER 2

HOST MOBILITY ACROSS HETEROGENEOUS NETWORKS

Wireless networks enable untethered communication, allowing hosts to be connected to the network

during the course of mobility. While the problem of supporting mobility transparently as the host

changes its point of attachment has been under active research for years, the increased heterogene-

ity of wireless networks brings forth new challenges not addressed by existing approaches. In this

chapter, we first describe the problem and challenges of supporting host mobility across heteroge-

neous wireless networks. We then discuss why related work cannot effectively provide the desired

solution with resilience to the increased network heterogeneity. Finally, we present an outline of the

solution proposed in this work.

2.1 The Problem

The tremendous growth in the number of mobile Internet users has been accompanied by the equally

staggering increase in the number of wireless access technologies. A mobile user today can choose

from a myriad of options for Internet access including global area [38, 60], wide area [45, 109], local

area [50, 110], and personal area [15] wireless networks. Several new wireless access technologies

currently being developed and standardized are expected to add to the list in the near future [57, 58].

A key reason behind the diversity of the wireless access technologies is the fundamental perfor-

mance tradeoffs they exhibit in terms of network capacity, coverage area, and transmission power.

For example, the WiFi WLANs offer much higher data rates than the 3G WWANs, but suffer from

significantly smaller coverage areas. The Bluetooth technology does not offer as high data rates as

the WiFi technology, but saves on the power consumption required for wireless access. Therefore,

mobile hosts are increasingly being equipped with multiple interfaces providing access to different

wireless networks depending on the availability of the networks and the characteristics of the device

and application used. Such a multi-homed mobile host during the course of mobility may encounter

several wireless networks and need to migrate from one network to another. Several reasons for

5

Internet

Mobile Host

Access Network A

Access Network B

B a c k e n d S e r v erR e p lic a ted S e r v er

P r ox y S e r v e r
P

0
P

1

P
2

P
3

P
4

Figure 1: Host Mobility across Heterogeneous Networks

handoffs between heterogeneous networks during a connection include: moving out of the cover-

age area of the current network, having access to a new network providing better performance (e.g.

higher data rates or better cost effectiveness), and switching between overlay networks because of

variations in offered services such as data rates and jitters.

Existing work proposed for supporting mobility focuses on providing mobile hosts with seam-

less handoffs in terms of minimizing the handoff latency and transmission anomalies such as packet

duplicates, losses, or reordering during handoffs. When mobile hosts move across heterogeneous

wireless networks, however, the ability to provide seamless handoffs between access points ac-

counts only for a part of the problems that need to be considered. We use Figure 1 as an illustration

to show different problems that may arise for providing mobile hosts with transparent mobility

support across heterogeneous wireless networks.

Consider a scenario where a multi-homed mobile host on the move connects to the Internet

through access network A, and initiates a file download from a backend server following path P0.

When the mobile host moves into the coverage of another access point inside network A, it under-

goes a horizontal handoff from P0 to P1. As the mobile host keeps moving, it may move out of the

coverage of network A and migrates to another network B that it has access to. It is also possible that

the mobile host is still within the reach of network A, but issues a handoff to network B for achiev-

ing a higher download speed. In either case, the mobile host undergoes a vertical handoff between

6

heterogeneous wireless networks from P1 to P2. Since heterogeneous wireless access technologies

are involved during the handoff, the mobile host needs to tackle not only the potential packet re-

ordering and loss problems as in the horizontal handoff, but also the change in the characteristics

of the wireless links involved (such as loss rate increase) in order to enjoy the optimal performance

provided by network B. In addition, if network B belongs to a different autonomous domain from

network A, the mobile host may also undergo server migration from P1 to P3. Server migration may

be desirable if the mobile host, through the new wireless interface, has access to a replicated server

that provides better performance such as higher throughput and shorter round-trip time. Server

migration may also become necessary if the original server is provided by network A (e.g. proxy

server) that enforces ingress filtering [33] to block access from any network but A. (For example,

consider the scenario when the mobile host in the reverse direction handoffs from P4 to P1.) Note

that when the mobile host moves into the coverage of network B, it may still have access to network

A. To achieve a higher download speed, the mobile host may choose to use both wireless interfaces

for enjoying bandwidth aggregation. Bandwidth aggregation can be provided between the mobile

host and the backend server involving P1 and P2. It can also be provided between multiple replicated

servers and the mobile host involving P1 and P3 (or P4) for the aforementioned reasons necessitating

server migration.

Therefore, it is clear that the problem of supporting transparent host mobility across heteroge-

neous wireless networks is not limited to minimizing the latency and anomalies occurred during

handoffs. Functionalities such as protocol changes during handoffs, server migration, and band-

width aggregation need to be supported to address the constraints imposed by the wireless channel

and provide mobile hosts with truly untethered network access.

2.2 Related Work

When a mobile host undergoes a handoff, its network address may change as a result of change in the

point of attachment to the Internet, thus causing existing connections to break. Mobile IP [82] has

been proposed to solve this problem by introducing different mobility agents to support connection

redirection. While straightforward, Mobile IP introduces new problems such as route optimization,

reverse tunneling, and firewall traversing [119]. More importantly, Mobile IP increases the latency

7

involved in the handoff. It has been demonstrated that when Mobile IP is used for handoffs across

heterogeneous wireless networks belonging to different administrative domains (such as GPRS and

WLAN), the latency involved in registering with the home agent can be prohibitive [93]. Various

micro-mobility management schemes have been proposed to reduce the handoff latency when hand-

offs occur within an administrative domain [20, 23, 24, 25, 88]. However, these approaches rely on

the provision of handoff crossover points or mobility agents, and coordination between participating

access points. They hence will fail to function or become ineffective when multiple administrative

domains with minimal or no coordination are involved during handoffs.

Recently, several approaches have been proposed to integrate heterogeneous wireless networks

and hide the network heterogeneity from mobile hosts [4, 19, 31, 63, 80, 92, 113]. For example,

in [31] a tightly coupled interworking architecture is proposed to integrate HIPERLAN and UMTS

to achieve fast and seamless handoffs. In this architecture, the HIPERLAN access network is con-

nected to the UMTS core network and under the administration of the UMTS operator. Hence

mobility agents provided by the UMTS network can be used to facilitate handoffs between HIPER-

LAN and UMTS. In [113], the authors propose a MIRAI architecture to connect all various access

networks to a common core network such that AAA (authentication, authorization, and accounting)

and mobility can be managed in a homogeneous fashion. In [63] a communication gateway is pro-

posed to shield the mobile user from the heterogeneity of wireless access technologies and achieve

infrastructure-independent wireless access. While these approaches integrate heterogeneous wire-

less networks to be managed by one administrative domain, the effectiveness of the solutions is

limited by the specificity to the networks they are designed for. They hence do not provide a scal-

able solution that is resilient to the increasing network heterogeneity in future wireless networks.

Moreover, as we identified in Section 2.1, minimizing the handoff latency and anomalies accounts

for only a minor subset of problems that need to be tackled for support transparent host mobility.

Failure to provide for handoffs to protocols that are optimized to the target network characteristics

renders such solutions suboptimal at best.

Therefore, related work for supporting mobility not only fails to provide a scalable solution

against the trend of increasing network heterogeneity, but also fails to provide a comprehensive

solution for enabling transparent host mobility.

8

2.3 Solution Outline

The goal of this work is to propose a solution that, while providing mobile hosts with transparent

mobility support, is immune to the increased heterogeneity in future wireless networks. The pro-

posed solution thus should include the following features: (i) Resilience to network heterogeneity:

The proposed solution should not use any entity that is specific to the network in consideration, or

rely on any support from the underlying network. (ii) Support for seamless handoffs and server

migration: The proposed solution should support seamless end-point handoffs either at the access

point or at the server. A seamless handoff not only supports the change of network addresses, but

also minimizes the handoff latency and transmission anomalies. More importantly, it allows for the

use of network-specific protocols for achieving optimal performance in individual networks. (iii)

Provision for bandwidth aggregation: The proposed solution should provide mobile hosts with the

ability to use multiple network resources simultaneously for achieving accelerated performance. It

should support both point-to-point and multipoint-to-point bandwidth aggregation.

Toward this end, we propose a purely end-to-end solution that involves only the end hosts,

without the need for any mobility agent and support from the underlying network. Specifically,

we propose a transport layer protocol that does not require any change from the application, ex-

cept for specifying options to use the added functionalities supported by the proposed transport

protocol. While several transport layer protocols have also been proposed for supporting host mo-

bility [90, 101], their solutions are limited to handling address changes and access-point handoffs,

and hence cannot be used to provide mobile hosts with all desired functionalities during mobility.

We establish in this work two fundamental principles that need to be incorporated in designing

transport layer protocols for supporting host mobility in heterogeneous wireless networks, namely

parallelism and transpositionality. The principle of parallelism allows a transport protocol to lever-

age resource multiplicity, while the principle of transpositionality allows a transport protocol to

address resource disparity. We present how these two principles can be incorporated in existing

transport layer protocols with minimal changes, and in the process arrive at a new protocol that can

effectively support host mobility in heterogeneous wireless networks.

We start in Chapter 3 with two alternate end-to-end solutions: application layer and transport

9

layer approaches. We first discuss why application layer approaches cannot effectively tackle net-

work heterogeneity. We then use queueing-theoretic analysis to substantiate the argument, and show

that transport layer approaches have performance benefits over application layer approaches. We

hence motivate transport layer solutions to address the problem of network heterogeneity. In Chap-

ter 4, we focus on the principle of parallelism. We first present the key elements in designing a

transport layer protocol with parallelism support, and then show how TCP (Transmission Control

Protocol) [86], the transport layer protocol predominantly used in the Internet [36, 106], can be

extended to incorporate the principle of parallelism, called pTCP (parallel TCP). We present the de-

tailed protocol operations of pTCP and show through network simulations its performance benefits.

In Chapter 5, we focus on the principle of transpositionality. We first discuss why parallelism alone

cannot address the problem of network heterogeneity, and then show how TCP, a sender-centric

transport layer protocol, can be transposed to become a receiver-centric protocol called RCP (Re-

ception Control Protocol). We present the detailed protocol operations of RCP and show through

network simulations its TCP-friendliness and performance benefits. Finally, we combine the princi-

ples of parallelism and transpositionality and propose a transport layer protocol called R2CP (Radial

Reception Control Protocol) for supporting transparent host mobility across heterogeneous wireless

networks. We present the detailed protocol operations of R2CP, and use testbed emulation to show

its performance benefits in providing a truly comprehensive solution for host mobility that is re-

silient to network heterogeneity in future wireless networks.

10

CHAPTER 3

TRANSPORT LAYER PROTOCOL

An ideal solution to address network heterogeneity is an infrastructure independent one that does

not rely on any entity specific to the network in consideration. End-to-end approaches involve

only the end hosts of the connection, and hence can be made resilient to changes in the network

infrastructure. The application layer and the transport layer are the two end-to-end layers in the

TCP/IP reference model [104]. In this chapter, we motivate why the transport layer is a better place

for supporting host mobility across heterogeneous wireless networks.

3.1 Availability of Multiple Pipes

As we discussed in Section 2.1, several key functionalities that need to be supported for provid-

ing multi-homed mobile hosts with transparent mobility across heterogeneous wireless networks

include seamless (access network) handoffs, server migration, and bandwidth aggregation. While

these functionalities apply to different network scenarios, a common theme behind them is the exis-

tence of multiple pipes1 between the server and the mobile host. In Figure 1, for example, P1 and P2

co-exist during network handoffs, P2 and P3 co-exist during server migration, and finally P1 and P3

(or P4) co-exist during bandwidth aggregation. Much as the origin and the nature of these pipes vary

with different scenarios, to provide mobile hosts with transparent mobility support, an invariant is

for the connection to operate seamlessly over multiple pipes for as long as they exist.

TCP is the transport layer protocol predominantly used in the Internet [36, 106]. It provides

reliable and sequential data delivery from the source to the destination, and uses a window-based

mechanism to perform congestion control and flow control [7, 86]. TCP is designed for operating

over a single path between the source and the destination, and hence it assumes the first-in-first-

out (FIFO) style of packet delivery. Out-of-order arrivals are considered as an indication of packet

1A pipe is an end-to-end path terminated by individual network interfaces between the end hosts. However, we use
the terms pipe and path interchangeably in this work.

11

Send App

I P

T C P

R ec v App

I P

T C P

I nt er net

Server M o b i l e H o s t

5 4 3

9 8 7

1

6 2

Figure 2: TCP over Multiple Pipes

losses, causing TCP to cut down its window and perform congestion control. While such a single-

path design allows TCP to fast detect and recover from losses, it prevents TCP to operate effectively

over multiple paths. Consider a mobile host that maintains a TCP connection with the server for

Internet access. When the mobile host moves across networks and is exposed to multiple pipes (due

to, say, network handoffs or bandwidth aggregation), its TCP connection will react adversely and

suffer from performance degradation. As we show in Figure 2, the fact that packets between the

server and the mobile host traverse multiple paths can cause significant out-of-order arrivals at the

mobile host and trigger TCP’s window cutdown.

There are several approaches proposed in different contexts that allow TCP to operate over

multiple paths through packet scheduling and reordering at the network or link layers [2, 84, 99].

However, these approaches are applicable only to homogeneous network environments due to their

assumptions on the characteristics of paths involved. More importantly, as we mentioned before,

lower layer approaches suffer from the susceptibility to the wireless technology and network infras-

tructure involved. A different class of approaches, on the other hand, targets end-to-end solutions by

making TCP aware of the handoffs or robust to reordering. For example, [39] freezes the operation

of TCP during handoffs to avoid the unnecessary window cutdown, [16] removes the fast retransmit

mechanism in TCP such that it relies exclusively on timeouts for loss detection, and [118] adap-

tively changes the threshold used for inferring packet losses. These approaches, however, cannot

provide the optimal solution for the environment considered in this work since they either introduce

connection stalls or sacrifice performance for robustness. While one option is to have a fundamen-

tal rethinking of the transport layer approaches, in the next section, we present application layer

12

TCP
1

TCP
2

TCP
1

TCP
2

S e n d

A p p

R e c v

A p p

5 4 3

9 8 7

1

6 2

Internet

S e r v e r M o b i l e H o s t

Figure 3: Striping with Multiple TCP Sockets

approaches that aim to address the problem without making any changes to TCP.

3.2 Application Layer Striping

Since TCP is designed to operate over a single path, an approach that does not change TCP is

using multiple TCP connections for operating over multiple paths. In this section, we consider

such an application layer approach that opens multiple TCP sockets, one each for every pipe, for

striping from the source to the destination. Recall that the target problem is for a mobile host with

a TCP connection to move transparently across heterogeneous wireless networks. Hence, unlike

conventional parallel sockets approaches that can perform offline resequencing after all portions

of data sent through different sockets have been received [6, 91, 98], the application layer striping

approach considered needs to provide the same in-sequence semantics that TCP provides. In other

words, the application layer striping approach is expected to deliver in-sequence data to the mobile

host as data is striped from the server. The sending application stripes across multiple sockets,

and the receiving application uses a finite buffer for resequencing. Figure 3 illustrates such an

application layer striping approach.

We consider both an unaware application that has no knowledge of the data rate of each pipe,

and a smart application that has some knowledge of the available data rates (which will consequently

enable it to stripe more intelligently). In the former case, the sending application writes to each

socket until blocked in a round-robin fashion. In the latter case, the sending application stripes data

based on a ratio determined by estimation of the available rates on the different pipes. The receiving

application in both cases will read packets from each socket as long as its resequencing buffer has

available space. When the resequencing buffer is full, the application stops reading from sockets

13

that have already delivered packets with sequence numbers larger than the next expected application

level sequence number.2 It then enters a peek mode where it peeks into the next available packet

in each of the other sockets, and reads a packet only when it is the next in-sequence packet. Note

that the recv() socket call and its variants support a peek flag that when set allows the receive

operation to retrieve data from the beginning of the receive buffer without removing that data from

the buffer [112]. In such an application striping approach, it is clear that the size of the resequencing

buffer will have an effect on when the sockets are blocked. If the application buffer size is zero, the

application will always read in-sequence packets from the sockets. On the other hand, increasing the

size of the application buffer has the effect of reducing the chances of the faster pipe being stalled

by the slower one. We elaborate on this phenomenon later in Section 3.2.1 when we discuss the

impact of data rate differential among the multiple pipes.

In the following, we identify the key constraints of such an application layer striping approach

when operated over multiple pipes with heterogeneous characteristics.

3.2.1 Rate Differential

When the data rates of the pipes used by the unaware application are different, the aggregate band-

width achieved by the simple approach remains a tight function of the data rate of the slowest pipe.

This can intuitively be explained as follows: Consider two pipes with data rates of 10Mbps and

2Mbps respectively. Since the application stripes data by keeping the send buffer of each pipe

filled, a send-buffer’s worth of application data will be injected to the first (10Mbps) pipe (let this

block of data be B1). Blocked by the first pipe, the application will then proceed to inject data into

the second (2Mbps) pipe (let this block of data be B2). Because the first pipe will drain data faster,

the application will, after filling the second pipe, inject more data into the first pipe (let this block

of data be B3). Assume that because of the data rate difference, the first pipe delivers B3 before B2

is drained out by the second pipe.

Since the additional data (block B3) will be out-of-order, it will be queued up in the resequencing

buffer of the receiving application pending the arrival of the entire block of data B2 through the

2For simplicity, we assume application level sequence numbers to facilitate the resequencing process. We assume that
data is packetized in the unit of the maximum segment size (MSS), and hence the sequence number refers to the packet
sequence number.

14

second pipe. Because the first pipe will continue to transfer data at a faster rate, this will eventually

result in the application’s resequencing buffer overflowing. The receiving application will thereupon

stop reading data from the first pipe, which in turn will cause the first pipe’s TCP receiver buffer

to fill up. The TCP receiver will then advertise a window size of zero, completely stalling the first

pipe. Once the in-sequence data (block B2), sent originally through the second pipe, reaches the

receiver and hence releases space in the resequencing buffer, the first pipe will become active again.

Note that such head-of-line blocking is indeed an artifact of the unaware striping mechanism used

by the application. One way of reducing the above coupling between the faster and slower pipes is

to increase the resequencing buffer size at the application layer. The larger the buffer size, the more

the time for which the faster pipe can remain active without being inhibited through flow control.

Specifically, if the two pipes have bandwidths of R1 and R2 (R1 < R2) respectively and equal delays,

the application buffer required in steady state to effectively aggregate bandwidths is R2
R1
∗W , where

W is the default socket buffer size. However, even assuming that the above buffer requirements can

be accommodated, such buffering still cannot handle stalls that occur due to losses in the slower

pipe. Also, even if the application does smart striping, such a problem will exist as long as the

striping ratio does not exactly match the data rate ratio of the different pipes. We elaborate on this

issue in Section 3.2.2.

The performance degradation for the simple approach could be even severer in TCP because of

another phenomenon: persist timers. When the sender of the faster pipe receives a window adver-

tisement of zero, it enters persist mode. If the single window update from the receiver happens to be

lost (either due to congestion or random wireless losses), the sender probes the receiver only after

the persist timer expires next (5 seconds). The persist timer value doubles after every unsuccessful

probe and is capped only at 60 seconds [112]. While this effectively brings down the progress of

the faster pipe to a crawl, the impact is more serious as the slower pipe can potentially enter persist

mode because of the persist-timer induced stalling of the faster pipe! Hence, in TCP the effect of

the data rate differential among the different pipes can potentially be catastrophic to the application,

resulting in the aggregate throughput being lower than the data rate of the slowest pipe.

15

3.2.2 Rate Fluctuations

Although the problem due to data rate differential can be overcome by employing an intelligent

striping scheme, performing such intelligent striping is inherently a difficult problem because of

two reasons: (i) The pipes are end-to-end pipes that traverse multiple hops between the sender

and the receiver, and the available bandwidth is likely to fluctuate dynamically; and (ii) Given the

dynamic nature of wireless link characteristics, it is very likely that the pipes will exhibit highly

varying data rates. When the application stripes based on the estimated data rates of the pipes, and

the data rates change, the very purpose of intelligent striping is defeated resulting in degraded per-

formance. Note that the dynamic characteristics of the wireless link, and the consequent difficulty in

performing accurate rate estimation are only part of the reason for the degraded performance. The

coupling of congestion control and loss recovery (for the aggregate connection) that exists because

of the individual TCP pipes functioning independent of each other is also a contributing factor. For

example, packets assigned to a TCP pipe by an application cannot be “withdrawn” from that pipe,

notwithstanding any bandwidth reduction the pipe may experience. Thus, if bandwidth reduction

occurs, packets assigned to the pipe that have not yet been transmitted due to lack of space in the

reduced congestion window will be stalled and potentially cause blocking on other pipes that are

still active.

3.2.3 Blackouts

Blackouts are extreme cases of rate fluctuations where the available data rate falls to zero and re-

mains at zero for an extended period of time. Causes for such phenomena include temporary loss

in connectivity (e.g. when the user is passing through a tunnel), fading, interference from a moving

source, etc. Observations on the frequent and prolonged occurrence of such phenomena have been

made in related work [97]. In the application layer striping approach, such blackouts on one or a

subset of the pipes will stall the entire aggregate connection because of buffer overflow at the re-

ceiving application. This is obviously an undesirable phenomenon. While the only solution to this

problem is to have some feedback mechanism at the application layer (for the application to realize

that a particular pipe has stalled), this will substantially increase the overhead and complexity in the

application as we discuss in Section 3.2.4.

16

3.2.4 Application Complexity

Although the above application layer approaches are simple in the sense that they do not require

any protocol changes at the transport layer, the complexity and overheads at the application layer

are considerable. Essentially the application has to implement a resequencing mechanism over the

reordering already performed within each pipe by TCP. Sequence numbers that facilitate the rese-

quencing have to be included in application defined headers, and the application has to explicitly

ensure that the application layer “segments” (that have unique application layer sequence num-

bers) do not get fragmented. One conceivable way the application can ensure that application layer

segments are not fragmented is to write exactly one MSS worth of data during every write – if

nagling is enabled [78]. Similarly, in order to stripe intelligently, the application will have to redun-

dantly implement a bandwidth estimation mechanism in spite of the bandwidth estimation already

performed by TCP through its congestion control mechanism. Furthermore, in order to solve the

problems identified as consequences of blackouts, the application will have to implement a feedback

mechanism to recover from pipes that are stalled, and in effect duplicate both the reordering and loss

recovery mechanisms already implemented by TCP for the individual pipes. It is clearly undesirable

to overload applications in such a manner when all applications on the mobile host would require

similar functionality. Note that the above arguments would also hold for session layer approaches

in the absence of appropriate interfaces between the session layer and the transport layer.

3.3 A Queueing-Theoretic Perspective

We have discussed in Section 3.2 that application layer approaches without making any changes to

TCP can suffer not only from performance suboptimality due to multiple pipes exhibiting vastly dif-

ferent characteristics, but also from protocol complexity and repetitive implementations of transport

layer functionalities. In this section, we show from a queueing-theoretic perspective the limitations

of application layer approaches when operated over heterogeneous pipes. In particular, we focus

on the scenario with two pipes where the service rates (data rates) provided by individual pipes are

mismatched. We compare application layer striping against transport layer striping in terms of the

delay incurred for resequencing out-of-order packets. We first use two simple queueing models to

capture the difference between the two approaches, and then derive the closed form solutions of the

17

1

2

1

2

Figure 4: Application Striping Model

resequencing delay for the two striping models. Finally, we compare the performance of the two

models in addressing service rate mismatches.

3.3.1 Application Striping Model

The application layer striping approach interfaces with each TCP socket using standard socket func-

tions. While the sending application can control how data is distributed across multiple sockets

(e.g. the unaware or smart application as we discussed in Section 3.2), once the data is written to

the socket, it is up to the concerned TCP to control when and how the data will be sent. Packets

traversing different pipes may arrive out-of-order at the receiver, but the receiving application will

perform resequencing to restore the sequence of data.

A simple queueing model for the application layer striping approach operated over two pipes

can be plotted as shown in Figure 4. The application data modeled as an arrival process is split to

enter two transport layer queues through the striping algorithm used by the application. The queue is

maintained inside each socket which the application has no control of. The service process and the

service discipline are results of the algorithms (e.g. congestion control) used by TCP and the char-

acteristics (e.g. bandwidth) of the pipe in consideration. A packet that arrives at the receiver from

any pipe will wait at the resequencing buffer until all other packets with smaller sequence numbers

sent through another pipe arrive. The resequencing buffer can be considered as a simplification of

the resequencing process used at the TCP and the receiving application.

While a sophisticated modeling of application layer striping including the retransmission pro-

cess and acknowledgment feedback in TCP is possible, the goal of this section is to compare ap-

plication and transport striping, and gain insights into their performance tradeoffs using tractable

queueing models. Therefore, we start with a queueing model with Poisson arrival process and ex-

ponential service time distribution. We assume that the arrival process is Poisson with mean arrival

rate λ, and the service time distributions are exponential with mean 1
µ1

and 1
µ2

respectively. Arrivals

18

are dispatched to one of the queues following the Bernoulli routing process with probability π1 to

the first queue, and probability π2 = 1−π1 to the second queue. In such a model, the two transport

queues can be considered as two independent M/M/1 queues with mean arrival rates λ1 = λπ1 and

λ2 = λπ2 respectively.

Consider the resequencing delay experienced by a typical packet (customer) called the tagged

packet that just arrives at the system. Assume that the tagged packet upon arrival finds m packets

in Q1 (including those waiting in the queue and the one currently in service), and n packets in Q2.

With probability π1 the tagged packet will be assigned to Q1. Note that since we assume the server

to operate in a first-come-first-served (FCFS) manner, the resequencing delay the tagged packet

(that joins Q1) will experience depends only on the number of packets it bypasses in Q2. In other

words, the resequencing delay is a function of m and n, and does not depend on the dynamics of

the packets that arrive later than the tagged packet. Define R1(m,n) and R2(m,n) as the conditional

resequencing delay that the tagged packet experiences when it joins Q1 and Q2 respectively. Then,

the resequencing delay R(m,n) of the tagged packet equals

R(m,n) = π1R1(m,n)+π2R2(m,n) (1)

By removing the condition on the number of packets in the system, the expected resequencing delay

R of the system can be expressed as

R =
∞

∑
m=0

∞

∑
n=0

p(m,n)R(m,n) (2)

where p(m,n) is the probability that the system is in state (m,n) with m packets in Q1 and n packets

in Q2, and R(m,n) is the resequencing delay when the system is in state (m,n).

Let us proceed to evaluate R1(m,n). When the tagged packet finishes the service in Q1 and

enters the resequencing buffer, the resequencing delay it will experience depends on how many out

of the n packets (present in Q2 when it arrives) that it bypasses. Assume that upon departure from

Q1, the tagged packet finds that i packets in Q2 have completed service. The mean resequencing

delay it will experience thus can be expressed as

R1(m,n) =
n

∑
i=0

q(m+1, i)
n− i
µ2

(3)

19

where q(m+1, i) is the probability that at the time of the (m+1)th service completion in Q1 (which

corresponds to the service completion of the tagged packet), i packets in Q2 have completed service

with the (i+1)th packet currently in service [40]. Since only i packets in Q2 have completed service,

the tagged customer needs to wait for service completions of the remaining (n− i) packets as shown

in (3). It does not experience any resequencing delay if i = n. Note that the expected time to

completion for the packet currently in service when the tagged packet finishes its service is 1
µ2

as

other packets waiting in the queue due to the memoryless property of the exponential distribution.

To calculate q(m + 1, i), assume the service completion time of the ith packet in Q j to be Ti, j.

Since the sum of i independent identical exponential random variables is an Erlang type i random

variable [43], the probability density function for Ti, j is

f (x; i,µ j) =
µi

j

(i−1)!
xi−1e−µ jx (4)

for x > 0. Hence,

qm+1,i(t) ≡ q(m+1, i | Tm+1,1 = t)

= Prob{Ti,2 < t, Ti+1,2 > t}

=
∫ t

0
f (x; i,µ2)

∫ ∞

t−x
µ2e−µ2y dydx

=
∫ t

0

[

µi
2

(i−1)!
xi−1e−µ2x

]

e−µ2(t−x) dx

=
µi

2

i!
t ie−µ2t (5)

We can then find q(m+1, i) as

q(m+1, i) =
∫ ∞

0
qm+1,i(t) f (t;m+1,µ1)dt

=
∫ ∞

0

[

µi
2

i!
t ie−µ2t

]

[

µm+1
1

m!
tme−µ1t

]

dt

=
µm+1

1 µi
2

m!i!

∫ ∞

0
tm+ie−(µ1+µ2)t dt

=

(

µm+1
1 µi

2

m!i!

)

[

(m+ i)!
(µ1 +µ2)m+i+1

]

=

(

m+ i
i

)(

µ1

µ1 +µ2

)m+1(µ2

µ1 +µ2

)i

=

(

m+ i
i

)

δm+1
1 δi

2 (6)

20

with δ1 = µ1/(µ1 +µ2) and δ2 = µ2/(µ1 +µ2). Now (3) can be rewritten as

R1(m,n) =
δm+1

1

µ2

n

∑
i=0

(

m+ i
i

)

(n− i)δi
2 (7)

By the same token, the mean resequencing delay R2(m,n) the tagged packet that joins Q2 will

experience when there are m packets in Q1 and n packets in Q2 is

R2(m,n) =
δn+1

2

µ1

m

∑
i=0

(

n+ i
i

)

(m− i)δi
1 (8)

Finally, the expected resequencing delay of the system R can be evaluated to be

R =
∞

∑
m=0

∞

∑
n=0

p(m,n) [π1R1(m,n)+π2R2(m,n)]

= π1(1−ρ1)(1−ρ2)
∞

∑
m=0

∞

∑
n=0

R1(m,n)ρm
1 ρn

2

+ π2(1−ρ1)(1−ρ2)
∞

∑
m=0

∞

∑
n=0

R2(m,n)ρm
1 ρn

2 (9)

where ρ1 = λπ1/µ1 and ρ2 = λπ2/µ2. Note that

R̃1 ≡
∞

∑
m=0

∞

∑
n=0

R1(m,n)ρm
1 ρn

2

=
δ1

µ2

∞

∑
m=0

(ρ1δ1)
m

∞

∑
n=0

ρn
2

n

∑
i=0

(

m+ i
i

)

(n− i)δi
2

=
δ1

µ2

∞

∑
m=0

(ρ1δ1)
m

[

∞

∑
k=0

kρk
2

][

∞

∑
i=0

(

m+ i
i

)

(ρ2δ2)
i

]

=
δ1

µ2

∞

∑
m=0

(ρ1δ1)
m ρ2

(1−ρ2)2(1−ρ2δ2)m+1

=
δ1ρ2

µ2(1−ρ2)2(1−ρ1δ1−ρ2δ2)
(10)

and

R̃2 ≡
∞

∑
n=0

∞

∑
m=0

R2(m,n)ρm
1 ρn

2

=
δ2

µ1

∞

∑
n=0

(ρ2δ2)
n

∞

∑
m=0

ρm
1

m

∑
i=0

(

n+ i
i

)

(m− i)δi
1

=
δ2ρ1

µ1(1−ρ1)2(1−ρ1δ1−ρ2δ2)
(11)

Hence, by substituting (10) and (11) back into (9), R can be simplified as

R = (1−ρ1)(1−ρ2)(π1R̃1 +π2R̃2)

21

1

2

1

2

Figure 5: Transport Striping Model

=
π1(1−ρ1)

2δ1ρ2µ1 +π2(1−ρ2)
2δ2ρ1µ2

µ1µ2(1−ρ1)(1−ρ2)(1−ρ1δ1−ρ2δ2)

=
λπ1π2

[

µ1(µ1−λπ1)
2 +µ2(µ2−λπ2)

2
]

µ1µ2(µ1−λπ1)(µ2−λπ2)(µ1 +µ2−λ)
(12)

which is the same as the result shown in [59] using the probability generating function approach.

Note that since the expected queueing delay (including the service time) D equals

D =
π1

µ1−λπ1
+

π2

µ2−λπ2
(13)

we can obtain the expected total delay T for the application striping model by summing (12) and

(13). It represents the expected time lapsed since the server writes a new packet to a TCP socket

until the packet is ready for use by the mobile host.

3.3.2 Transport Striping Model

The application layer striping approach maintains multiple TCP sockets in the connection, and

hence it is modeled as parallel server queues in Section 3.3.1. The transport layer striping approach,

however, performs striping at the transport layer, and hence it does not need to maintain multiple

queues. In this section, we use a single transport queue with multiple servers to model transport

layer striping as shown in Figure 5. A resequencing buffer is used at the receiver to model the

resequencing process as is the case for application layer striping.

In the transport striping model, arrivals are enqueued in the transport queue and wait to be

served until reaching the head of the queue. A packet at the head of the queue is served by the

server that becomes idle. In case both servers are idle, the packet chooses the first server S1 with

probability π1 and the second server S2 with probability π2. Note that if both servers are idle, the

tagged packet will not experience any resequencing delay irrespective of the server it chooses –

since all its predecessors have completed service before it starts service. The tagged packet will

need to wait in the resequencing buffer only if it finds one of the server busy right before its service,

22

and finishes its service before the packet in the busy server.

Let us consider a tagged packet at the head of the queue that is about to be served. Assume that

the tagged packet finds S1 idle and S2 busy. It then goes into the service of S1, and enters the rese-

quencing buffer after service completion. The tagged packet will need to wait in the resequencing

buffer if its service time is less than the residual service time of the packet served by S2. The mean

resequencing delay W1 after departing from S1 can be calculated as

W1 =
∫ ∞

0

∫ ∞

t
(s− t)µ2e−µ2sµ1eµ1tdsdt

=
µ1

µ2(µ1 +µ2)
(14)

due to the memoryless property of the exponential distribution. On the other hand, if the tagged

packet finds S1 busy and S2 idle, it will be served by S2. Its mean resequencing delay W2 after

departing from S2 thus equals

W2 =
µ2

µ1(µ1 +µ2)
(15)

Denote P̃i j as the probability that the tagged packet finds right before its service the state of S1

and S2 to be i and j respectively, assuming 0 as the idle state and 1 as the busy state. The expected

resequencing delay R of the system thus can be expressed as

R = P̃00 ·0+ P̃01W1 + P̃10W2 (16)

where P̃00 = 1− P̃01− P̃10. We can obtain P̃01 and P̃10 using the equilibrium state probabilities of

the system. That is,

P̃01 = p(0,1,0)+
µ1

µ1 +µ2

[

∞

∑
k=0

p(1,1,k)

]

(17)

P̃10 = p(1,0,0)+
µ2

µ1 +µ2

[

∞

∑
k=0

p(1,1,k)

]

(18)

where p(i, j,k) is the probability that the first server is in state i, the second server is in state j, and

the number of packets in the queue (excluding the servers) is k. Note that given both servers are

currently in state 1, the probability that the packet served by S1 will depart before that served by S2

is µ1/(µ1 +µ2).

To calculate the state probabilities, we can start with the balance equations of the system as [66]

λp(0,0,0) = µ1 p(1,0,0)+µ2 p(0,1,0)

23

(λ+µ2)p(0,1,0) = µ1 p(1,1,0)+λπ2 p(0,0,0)

(λ+µ1)p(1,0,0) = µ2 p(1,1,0)+λπ1 p(0,0,0)

(λ+µ1 +µ2)p(1,1,0) = (µ1 +µ2)p(1,1,1)+λ [p(0,1,0)+ p(1,0,0)]

(λ+µ1 +µ2)p(1,1,k) = (µ1 +µ2)p(1,1,k +1)+λp(1,1,k−1), k ≥ 1

and arrive at the following solutions:

p(0,1,0) =
λ(π2 +ρ)

µ2(1+2ρ)
p(0,0,0) (19)

p(1,0,0) =
λ(π1 +ρ)

µ1(1+2ρ)
p(0,0,0) (20)

p(1,1,0) =
λ(λ+µ1π2 +µ2π1)ρ

µ1µ2(1+2ρ)
p(0,0,0) (21)

p(1,1,k) = ρk p(1,1,0), k ≥ 1 (22)

where ρ = λ/(µ1 +µ2) is the traffic intensity, and p(0,0,0) equals

p(0,0,0) =

[

1+
λ(λ+µ1π2 +µ2π1)

µ1µ2(1+2ρ)(1−ρ)

]−1

(23)

Therefore, we can obtain the expected resequencing delay of the system as

R = P̃01W1 + P̃10W2

=

[

p(0,1,0)+
µ1

(µ1 +µ2−λ)
p(1,1,0)

]

µ1

µ2(µ1 +µ2)

+

[

p(1,0,0)+
µ2

(µ1 +µ2−λ)
p(1,1,0)

]

µ2

µ1(µ1 +µ2)
(24)

where p(i, j,k) can be readily obtained using (19)–(23). The queueing delay D (including the service

time) can be evaluated using the expected queue length L and Little’s formula:

D =
L
λ

=
1
λ

[

p(0,1,0)+ p(1,0,0)+
∞

∑
k=0

(k +2)p(1,1,k)

]

=

[

1
ρ

+
2−ρ

(1−ρ)2

]

p(1,1,0)

λ

=
λ+µ1π2 +µ2π1

µ1µ2(1+2ρ)(1−ρ)2 p(0,0,0) (25)

where p(0,0,0) is defined in (23). The total delay in the system T can be easily obtained by

summing (24) and (25).

24

3.3.3 Performance Comparisons

In this section, we compare the performance of the application striping model (ASM) and the trans-

port striping model (TSM) using the closed form solutions developed in Section 3.3.1 and Sec-

tion 3.3.2 respectively. The objective is to study the value of the Bernoulli routing probability π1

(and hence π2) on the performance of the two systems. Since the choice of different π1 values can

be considered as the result of using different striping algorithms at the sender (e.g. through esti-

mating the bandwidths of the two pipes to decide how data should be striped), the comparisons can

provide insights regarding where (application or transport layer) a striping algorithm should ideally

be implemented for achieving better performance. We focus on the delay performance of the two

systems in terms of the expected resequencing delay R and total system delay T (resequencing delay

plus the queueing delay D). Note that in these two queueing models, the mean waiting delay in the

buffer is a direct indication of the mean buffer occupancy (i.e. LD = λD and LR = λR), and hence

the expected resequencing delay can be translated to the size of the mean resequencing buffer. We

first consider the scenario when both servers have the same service rate (homogeneous servers), and

then we consider the scenario with mismatched service rates (heterogeneous servers).

3.3.3.1 Homogeneous Servers

In case µ1 = µ2 = µ, we can reduce (24) and (25) for the transport striping model to

RTSM =
λ

2µ2 +µλ
=

1
µ

(

ρ
1+ρ

)

(26)

DTSM =
4µ

4µ2−λ2 =
1
µ

(

1
1−ρ2

)

(27)

with ρ = λ
2µ . Hence, the expected resequencing delay and queueing delay in the transport striping

model are independent of the routing probability used. This can be explained as follows: when the

tagged packet arrives to find both servers idle, it chooses the first server with probability π1 and

the second server with probability 1−π1. Irrespective of which server it chooses, its resequencing

delay will be zero in both cases, and its mean service time will also be the same in both cases since

the two servers have the same service rate. For the application striping model, however, the routing

probability has a great impact on the system performance [59]. Figure 6(a) shows the resequencing

delay (normalized to the service time) of the two systems with respect to the routing probability.

25

0 0.2 0.4 0.6 0.8 1
Routing Probability HΠ1L

0

0.2

0.4

0.6

0.8

1

R
es

eq
ue

nc
in

g
D

el
ay

HΜ-
1

L

Ρ=0.35

Ρ=0.45

Ρ=0.495
Ρ=0.505

Ρ=0.55

ASM
TSM

(a) Resequencing Delay

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Routing Probability HΠ1L1

1.5

2

2.5

3

3.5

4

T
ot

al
D

el
ay

HΜ-
1

L

ASM HΡ=0.45L
TSM HΡ=0.45L ASM HΡ=0.35L
TSM HΡ=0.35L

(b) Total Delay

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Routing Probability HΠ1L-10

-5

0

5

10

D
iff

er
en

tia
lT

ot
al

D
el

ay
H¶ Π 1TL

Ρ=0.45

Ρ=0.5Ρ=0.6Ρ=0.7

Ρ=0.9

ASM

TSM

(c) Sensitivity to the Routing Probability

0 0.2 0.4 0.6 0.8 1
Routing Probability HΠ1L

0

0.2

0.4

0.6

0.8

1

M
ax

im
um

Lo
ad

HΛL
ASM HTotal Delay=10Μ-1L
TSM HTotal Delay=10Μ-1L

(d) Maximum Traffic Load

Figure 6: Homogeneous Servers (µ1 = µ2)

The figure is obtained for different traffic intensities that range from 0.35 to 0.55. For comparison,

we also show the resequencing delay in the transport striping model with the same traffic intensity.

The five dashed lines for the transport striping model are not labeled in the figure for sake of clarity,

but it should be evident from (26) that ρ = 0.35 corresponds to the bottom line while ρ = 0.55

corresponds to the topmost line. We can observe that the resequencing delay of the application

striping model is sensitive to the value of the routing probability. The figure is symmetric around

π1 = 0.5 since the two servers are identical. Consider now the region where 0 < π1 ≤ 0.5. If

ρ < 0.5 (i.e. λ < µ), it is possible to achieve zero resequencing delay by directing all traffic to only

one queue (π1 = 0). For nonzero routing probability, however, the resequencing delay of the system

is the result of the tradeoff between the number of packets that have to wait in the resequencing

buffer, and the amount of time each packet has to wait. When the load is very low, diverting traffic

26

from the second queue to the first queue (increasing π1 from zero) has a slight impact on reducing

the queue length of the second queue, but increases the number of packets in the first queue that

experience resequencing. Hence, the resequencing delay increases with increasing π1 and reaches

the maximum value at π1 = 0.5, as illustrated by the ρ = 0.35 curve. On the other hand, when

the load is close to 0.5, diverting traffic from the second queue can significantly reduces its queue

length (which equals ρ
0.5−ρ). Hence, after an initial increase, the resequencing delay decreases with

increasing values of π1 as illustrated by the ρ = 0.495 curve. In fact, from (12) we can show that

π1 = 0.5 is a global maximum if 0 < ρ ≤
√

2− 1, and a local minimum if
√

2− 1 < ρ < 1. The

mean resequencing delay and queueing delay at π1 = 0.5 are

R̂ASM =
λ

4µ2−2µλ
=

1
µ

[

ρ
2(1−ρ)

]

(28)

D̂ASM =
2

2µ−λ
=

1
µ

(

1
1−ρ

)

(29)

If ρ > 0.5, the system is defined only for the range 1− 1
2ρ < π1 < 1

2ρ to ensure stability. The

resequencing delay has a global minimum at π1 = 0.5 as shown in the figure. Note that as ρ ap-

proaches 1, RTSM converges to 1
2µ while R̂ASM becomes unbounded. Specifically, it can be shown

that RTSM ≤ R̂ASM as long as ρ≥ 1
3 .

As we showed in (26) and (27), the total delay TTSM in the transport striping model is indepen-

dent of the routing probability. For the application striping model, however, we can show using (12)

and (13) that TASM is convex with the global minimum at π1 = 0.5. The minimum value of TASM is

equal to the sum of (28) and (29). Obviously, the optimal operating point for the application striping

model to reduce the total delay is to split the traffic evenly over the two queues when the two servers

are identical. Define ∆ as the minimum difference in the total delay of the two systems. Then

∆ = T̂ASM−TTSM =
2+ρ

2µ(1−ρ)
− 1+ρ−ρ2

µ(1−ρ2)

=
ρ(1+3ρ)

2µ(1−ρ2)
> 0, ∀ρ ∈ (0,1)

In other words, the total delay of the application striping model is always larger than that of the

transport striping model, as illustrated in Figure 6(b). Note that this is slightly different from the

case of the resequencing delay when the load is low (ρ < 1
3). Therefore, when the offered load

is low, while it is possible for the application striping model to reduce the resequencing delay by

27

directing arrivals to only one of the queue predominantly, the resulting increase in the queueing

delay due to the under-utilization of the other server always outweigh such a decrease, making its

performance worse than the transport striping model.

We use Figure 6(c) and Figure 6(d) to depict the sensitivity of the application striping model

to the value of the routing probability. In Figure 6(c) we plot the “rate of change” (derivative)

of the total delay with respect to the routing probability at the optimal operating point π1 = 0.5.

It is clear from the figure that as the load increases, the slope for the application striping model

becomes much steeper. Therefore, when the system is operated at a relatively high load, a slight

suboptimality in the choice of the routing probability used can cause drastic increase in the total

delay. Figure 6(d) provides a different view for the same phenomenon. Consider the scenario where

admission control is used in the two systems to bound the mean latency to be within an allowable

range (e.g. for providing certain quality of service for time-sensitive packets). Figure 6(d) shows

that the maximum load that the application striping model can sustain is lower than that the transport

striping model can sustain – even when the former is operated under the optimal condition. More

importantly, the application striping model suffers from significant performance loss (the maximum

sustainable load decreases) when the routing probability is not optimally chosen. In other words,

the application striping model is likely to operate in an non-ideal condition if the service rates of the

two servers are not accurately known or unknown to the striping algorithm.

To summarize, for non-trivial scenarios with moderate to high offered load (ρ > 0.5 to benefit

from the provision of the two pipes), the transport striping model always achieves a much better

performance than the application striping model in terms of both the resequencing delay and the

total system delay. The delay performance can be translated to the requirement on the size of the

buffer as we mentioned before. Moreover, the application striping model is vulnerable to the value

of the routing probability used, which can be a problem if the precise bandwidths of the pipes are

not known to the sending application.

3.3.3.2 Heterogeneous Servers

We now consider the scenario where the two servers have mismatched service rates. Assume µ1 = µ,

µ2 = κµ, and λ = ρ(1+κ)µ, where κ > 0 is the service rate ratio of the two servers, and 0 < ρ < 1

28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Routing Probability HΠ1L

0

2

4

6

8

10

R
es

eq
ue

nc
in

g
D

el
ay

HΜ-
1

L

Ρ=0.7
Ρ=0.8

Ρ=0.9

Ρ=0.95

(a) Resequencing Delay in ASM (κ = 3)

0 0.2 0.4 0.6 0.8 1
Routing Probability HΠ1L0.4

0.45

0.5

0.55

0.6

R
es

eq
ue

nc
in

g
D

el
ay

HΜ-
1

L

Ρ=0.7

Ρ=0.8

Ρ=0.9

Ρ=0.95

(b) Resequencing Delay in TSM (κ = 3)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Routing Probability HΠ1L

0

2

4

6

8

10

T
ot

al
D

el
ay

HΜ-
1

L

ASM HΡ=0.7L ASM HΡ=0.8L

ASM HΡ=0.9L

TSM HΡ=0.7LTSM HΡ=0.8LTSM HΡ=0.9L

(c) Total Delay (κ = 3)

0.6 0.7 0.8 0.9 1
Traffic Intensity HΡL

0

0.1

0.2

0.3

0.4

O
pt

im
al

R
ou

tin
g

P
ro

ba
bi

lit
y

HΠ 1L Κ=1.5

Κ=2

Κ=3

Κ=4

Κ=8
TSM H" Κ>1L

(d) Optimal Routing Probability vs. Traffic Intensity

Figure 7: Heterogeneous Servers (µ2 = κµ1)

is the traffic intensity. We focus on non-trivial scenarios where the mean arrival rate is larger than

the mean service rate of the faster server (i.e. it is necessary to use both servers).

Figure 7(a) shows the resequencing delay for the application striping model when the routing

probability varies from 0 to 1. The figure is obtained for κ = 3, and ρ ranging from 0.7 to 0.95.

We observe from the figure that the resequencing delay of the application striping model depends

on the routing probability used – as is the case for homogeneous servers. For 0 < ρ < 0.75, the

minimum resequencing delay occurs at π1 = 0, which means only the faster server should be used

for minimizing the resequencing delay (since λ < µ2). For 0.75 < ρ < 1, the curves are convex

with global minima occurring at π1 6= 0. However, unlike in Figure 6(a) for homogeneous servers

where the optimal probability π̂1 is always equal to 0.5 irrespective of the load, π̂1 for heterogeneous

29

servers depends on the traffic intensity. It can be seen from Figure 7(a) that π̂1 increases with ρ. For

example, π̂1 ≈ 0.14 for ρ = 0.8, and π̂1 ≈ 0.23 for ρ = 0.95. In fact, from (12) we can show

lim
ρ→1

π̂1 =
1

1+κ
(30)

and hence π̂1 in Figure 7(a) will converge to 0.25 as ρ approaches 1. Intuitively, the optimal strategy

for reducing the resequencing delay is to split the traffic in accordance with the ratio of the service

rates. Note, however, that the optimal resequencing delay in the application striping model also

increases with ρ. Specifically, the resequencing delay and queueing delay at π̂1 for the application

striping model can be evaluated using (12) and (13):

R̂ASM =

(

1−κ+κ2

κ+κ2

)

ρ
µ(1−ρ)

(31)

D̂ASM =

(

2
1+κ

)

1
µ(1−ρ)

(32)

which reduce to (28) and (29) respectively when κ = 1. We observe from Figure 7(a) that the

“penalty” of the suboptimality in the routing probability chosen rockets as ρ approaches 1 – as indi-

cated by the steep increase of the resequencing delay near the global minimum point. An interesting

observation from (31) and (32) is that, if we keep the capacity of the system fixed (µ1 + µ2 = 1),

but increases the disparity of the two servers (κ→ ∞), then even with the optimal traffic splitting

strategy (π1 = 1
1+κ) the mean resequencing delay becomes unbounded, while the mean queueing

delay stays constant at 2
1−ρ .

Figure 7(b) shows the resequencing delay for the transport striping model using the same sce-

narios as in Figure 7(a). We observe from the figure that, unlike in the homogeneous servers case,

the resequencing delay depends on the choice of the routing probability. Compared to the applica-

tion striping model, however, the dependency is much less significant (note the scale of the y-axis).

Moreover, the optimal routing probability always occurs at π1 = 0 irrespective of the load of the

system. Intuitively, if the tagged packet finds both servers idle right before its service, it is al-

ways favorable to choose the faster server to minimize the resequencing delay that the next packet

might experience (in addition to minimizing the service time of the tagged packet). We note from

Figure 7(b) that the curve flattens out as the load increases. It can be shown that

lim
ρ→1

RTSM =
1−κ+κ2

µ(κ+κ2)
(33)

30

which is independent of the routing probability. Hence, for a loaded transport striping model (ρ→

1), packets can randomly choose one idle server without suffering from perceivable performance

degradation.

Finally, in Figure 7(c) we compare the total delay of the two systems. It can be observed that

the transport striping model achieves better performance than the application striping model for all

routing probabilities. In addition, the performance gains increase as the load of the system increases,

as is the case for homogeneous servers. Figure 7(d) shows the dependency of the optimal routing

probability π̂1 on the traffic intensity for different values of κ. As we showed in Figure 7(b), the

optimal routing probability for the transport striping model is independent of the traffic intensity.

However, for the application striping model, the optimal routing probability is a function of the

traffic intensity offered. Moreover, the optimal routing probability for the application striping model

is a function of the service mismatch ratio (κ). The rightmost point for each of the ASM curves will

reach 1
1+κ when ρ approaches 1, as indicated in (30). We note that as the service mismatch ratio

increases, the optimal routing probability for the application striping model becomes more sensitive

to the traffic intensity. This can intuitively be interpreted as the “penalty” of the suboptimality in

striping incoming packets to the right pipe increases as the server heterogeneity increases.

In summary, for non-trivial scenarios where the load is greater than the capacity of the faster

server, the transport striping model achieves better delay performance than the application striping

model. Moreover, the application striping model exhibits much higher sensitivity to the routing

probability than the transport striping model. Therefore, any suboptimality of the striping algorithm

in estimating the exact bandwidths of all the pipes will result in significant performance degrada-

tion in the application striping model. The sensitivity to the routing probability can pose a very

high demand on the accuracy of the striping algorithm used at the sender for achieving optimal

performance. We corroborate the analysis in this section through packet simulation using working

network protocols and a practical network topology in Section 4.3.

3.4 Summary

In this chapter, we motivated a solution based on the transport layer protocol to address the problem

of host mobility across heterogeneous wireless networks. We started with end-to-end solutions due

31

to their ability to support mobility without relying on the support from any entity that is specific to

the network in consideration. We then identified the key functionality that needs to be supported for

achieving seamless network handoffs, server migration, and bandwidth aggregation as the ability

to operate (stripe) over multiple pipes. We discussed why application layer striping, an end-to-end

approach that does not require changes to the transport layer, can suffer from performance degrada-

tion and implementation complexity when operated over multiple pipes exhibiting rate differential,

rate fluctuations, and blackouts. We also used queueing-theoretic analysis to model application

layer striping and transport layer striping, and derived the closed form solutions of the two mod-

els regarding the delay characteristics and buffer requirement. We showed that not only does the

application striping model achieve lower performance than the transport layer striping model, but

it also exhibit higher sensitivity to the accuracy of the striping algorithm used. We thus concluded

that a transport layer solution can achieve the ideal performance in addressing the problem. Ex-

isting transport layer protocols, however, cannot effectively operate over multiple pipes and handle

network heterogeneity. In the rest of the work, we propose two fundamental principles called paral-

lelism and transpositionality that should be incorporated in designing new transport layer protocols

to address network heterogeneity. The principle of parallelism allows a transport protocol to lever-

age resource multiplicity, while the principle of transpositionality allows a transport protocol to

address resource disparity. We show that a transport layer protocol designed with the two princi-

ples can address the drawbacks in existing transport protocols and support transparent host mobility

across heterogeneous wireless networks.

32

CHAPTER 4

PARALLELISM

We have so far motivated a transport layer solution to address the problem of network heterogeneity

in future wireless networks. As we explained in Section 3.1 that a common theme behind the key

functionalities that need to be provided for supporting transparent host mobility is the existence of

multiple pipes between the server and the mobile host. Existing transport layer protocols, how-

ever, cannot seamlessly operate over multiple pipes. In this chapter, we propose parallelism as the

first fundamental principle that needs to be incorporated in transport layer design for supporting

transparent host mobility. In particular, we show how TCP, the prevailing transport layer protocol

designed for a single path, can be extended to be a parallel protocol called pTCP (parallel TCP)

that can effectively operate over multiple paths. We first discuss the key tenets for designing pTCP

the parallel protocol, and then present the detailed protocol operations including the state diagram

and protocol handshake for such a parallel protocol. Finally, we evaluate the performance of pTCP

and compare it with an application layer striping approach. We conclude that the principle of par-

allelism incorporated in the transport layer design can effectively enable seamless operations over

multiple pipes.

4.1 Protocol Design

We discuss in this section several key design elements for building the parallel TCP protocol. When-

ever appropriate, we explain how the design elements can help address the problems of inefficient

striping at the application layer that we identified in Section 3.2.

4.1.1 Maintaining Multiple States

Since TCP is designed for operating over a single path between the source and the destination, it

captures the characteristics of the path it traverses such as bandwidth and latency in the form of

TCB (Transmission Control Block) state variables [86]. TCB includes variables such as congestion

33

window and round-trip time for TCP to determine the available data rate of the path. Since multiple

pipes in a connection can exhibit a very high degree of heterogeneity in terms of the data rates,

round-trip times, and loss rates, maintaining only one set of TCB variables (single state) can render

the achieved throughput suboptimal. Therefore, the first element in designing a parallel transport

protocol for operating over multiple pipes is to maintain multiple states in accordance with the

number of pipes used in the connection. In the context of parallel TCP, multi-state design allows it

to maintain one TCB state for each pipe that becomes active in the connection. Since each state is

associated with only one pipe, the single-state design of TCP can be reused with minimal changes

– without suffering from performance degradation as we identified in Section 3.1.

4.1.2 Decoupling of Functionalities

Application layer striping approaches as we discussed in Section 3.2.4 suffer from considerable

complexities and overheads due to repetitive implementations of functionalities across multiple

sockets. Therefore, to incur minimum overheads resulting from the multi-state design, pTCP should

decouple the transport layer functionalities associated with per-pipe characteristics from those per-

taining to the aggregate connection. Toward this end, pTCP is designed as a wrapper around a

slightly modified TCP that we refer to as TCP-v (TCP-virtual). The TCP-v opened for each pipe

handles the per-pipe state (TCB), while the pTCP engine (which for simplicity we also refer to as

pTCP) handles the aggregate connection. Specifically, pTCP maintains and controls a single send

buffer across all the TCP-v pipes for the aggregate connection. The individual TCP-v pipes perform

congestion control and loss recovery just like regular TCP. However, any segment transmission by

a TCP-v is preceded by an explicit call to pTCP requesting for application data. Since pTCP has

control over the buffer, a retransmission at the TCP-v level does not need to be a retransmission at

the pTCP level. On the other hand, the amount of data that can be sent out through each TCP-v

pipe is strictly determined by the TCP congestion control algorithm employed by each respective

pipe. Therefore, TCP-v controls the amount of data that can be sent while pTCP controls which data

to send. In this fashion, pTCP decouples congestion control and reliability. We describe as we go

along how the decoupling contributes to improved performance and functionality in pTCP.

34

4.1.3 Delay Binding

When a TCP-v pipe has space in its congestion window for transmissions, it requests pTCP for data.

If there exists no unsent data, pTCP registers the concerned TCP-v pipe as an active pipe and returns

a freeze value. The TCP-v pipe then waits for a subsequent resume call from pTCP before requesting

for data again. When pTCP receives new data from the application, it issues the resume call only to

those TCP-v pipes that are registered as active. Note that such striping is different from striping that

is conditional on buffer availability (as seen in the unaware application layer approach). In pTCP,

data will be given to a TCP-v pipe only when there is space in its congestion window for the data to

be sent. Note that this inherently assumes the congestion window to be a true representative of the

bandwidth-delay product (BDP) of the pipe. While the TCP congestion window is an approximation

of the BDP, it is possible that it is an incorrect estimation (say, for example, due to deep buffers in

the network). The striping of data based on the congestion window of the individual pipes removes

the problem that arises due to differences in the rates of the pipes, provided there is no fluctuation

in the available bandwidth.

4.1.4 Dynamic Reassignment

Recall that it is possible for the congestion window to be an over-estimate especially just before

congestion occurs. This can result in an undesirable hold up of data in pipes where the congestion

window was reduced recently. For example, consider a scenario in which the congestion window of

pipe pi is cwndi. If cwndi worth of data is assigned to pi, and the window is cut down to cwndi
2 due

to bandwidth fluctuations, the cwndi
2 worth of data that falls outside the congestion window of pi will

be blocked from transmission till the cwndi opens up. In the meantime, this is equivalent to a static

scenario in which the application undesirably assigned more data than what a pipe can carry and in

the process slows down other faster pipes. pTCP solves this problem by leveraging the decoupling

that exists between congestion control and reliability. When a pipe experiences congestion, irre-

spective of whether the detection is through duplicate acknowledgments or a timeout, the window

is reduced (by half in the former and to one in the latter). If the congestion window of a pipe is

thus reduced, pTCP immediately unbinds the data that was bound to the sequence numbers of the

concerned pipe that fall outside the current congestion window. Thus, if another pipe has space in

35

its congestion window and requests for data, the unbound data is now available for reassignment to

that pipe. When the original pipe requests for data corresponding to the same sequence number that

was unbound, new application data is bound by pTCP and returned to the pipe. Such a reassignment

strategy can greatly improve the performance of pTCP under dynamic conditions.

4.1.5 Redundant Striping

While the strategy described above reassigns data that falls out of a pipe’s congestion window,

it does not deal with the one MSS (maximum segment size) worth of data (the first MSS in the

congestion window) that will never fall out of the congestion window irrespective of the state of

the pipe. Failure to deliver that one MSS worth of data can potentially stall the entire aggregate

connection if the concerned pipe undergoes multiple timeouts or suffers a blackout. Hence, pTCP

redundantly stripes the first MSS of data in a congestion window that has suffered a timeout, onto

another pipe. In doing so, the binding of the data is changed to the new pipe, although the old pipe

has access to a copy of the same data. The reason for leaving a copy behind instead of a regular

reassignment is that the old pipe will require at least one MSS worth of data to send in order to

recover. At the same time, providing it with a new MSS worth of data is a potential pitfall because

of the chances of blocking, given that the pipe is experiencing severe conditions.

4.2 Protocol Operations

We now present the detailed operations of pTCP, including its software architecture, state diagram,

protocol handshake, and protocol operations.

4.2.1 Architectural Overview

Figure 8 provides an architectural overview of the pTCP protocol. pTCP acts as the central engine

that interacts with the application, IP, and TCP-v respectively. pTCP creates and maintains one TCP-

v for each active pipe used by the application. The figure also illustrates the key data structures

maintained for every aggregate connection. pTCP controls and maintains the send and receive

socket buffers for the connection. Application data writes are served by pTCP, and the data is copied

onto the send buffer. A list of active TCP-v pipes (that have space in the congestion window to

transmit) called active pipes is maintained by pTCP. A TCP-v pipe is placed in active pipes

36

TCP-v

recv buffer

o p en / cl o s e

es t a bl i s h ed / cl o s ed

recei ve

s en d

s h run k

readw ri t e

p t c p - rec vi p - o u t p u t

s en d buffer

vi rt ua l recv buffer
res um e

bi n d i n g

TCP-v
p TCP

active

p ip e s

A p p l i c a t i o n

I P

vi rt ua l s en d buffer

Figure 8: pTCP Architecture

initially when it is created by pTCP. Upon the availability of data that needs to be transmitted,

pTCP sends a resume() command to the active TCP-v pipes. Once a resume is issued to a pipe,

the corresponding pipe is removed from active pipes. A TCP-v pipe that receives the command

builds a regular TCP header based on its state variables, and gives the segment (sans the data) to

pTCP through the send() interface. pTCP binds an unbound data segment in the send buffer to the

header of the “virtual” segment TCP-v has built, maintains the binding in the data structure called

binding, inserts its own header, and sends it to the IP layer. A resumed TCP-v continues to issue

send() calls till there is no more space left in the congestion window, or pTCP responds back with

a freeze return value to “freeze” the concerned pipe. When pTCP receives a send() call, and has no

unbound data left, it returns a freeze value, and adds the corresponding pipe to active pipes.

When pTCP receives an ACK, it strips the pTCP header, and hands over the packet to the ap-

propriate TCP-v pipe through the receive() interface. The correct TCP-v pipe is recognizable from

the TCP 4-tuple. The TCP-v pipe processes the ACK in the regular fashion, and updates its state

variables including the virtual send buffer. The virtual buffer can be thought of as a list of segments

that have only appropriate header information. The virtual send and receive buffers are required

to ensure regular TCP semantics for congestion control and connection management within each

TCP-v pipe. The pTCP header carries cumulative pTCP level ACK information that pTCP uses to

purge its receive buffer if required. When pTCP receives an incoming data segment, it strips both

37

Source Identifier (pSRC) D es tina tion Identifier (pD ST)

0 1 5 1 6 3 1

3 2 b i t s

Seq uence N um b er (pSE Q)

A ck now l edg em ent N um b er (pA CK)

N um b er of T x P ipes (nT x) N um b er of Rx P ipes (nRx)

IP A ddres s 1

IP A ddres s 2

reg ul a r fiel ds

ex tra fiel ds for

connection

es ta b l is h m ent

...

Figure 9: pTCP Header Format

the pTCP header and the data, enqueues the data in the recv buffer, and provides the appropriate

TCP-v with only the skeletal segment that does not contain any data. TCP-v treats the segment as a

regular segment except that no application data is queued in the virtual receive buffer.

4.2.2 TCP-v Interface

As seen in Figure 8, the following eight functions act as the interface between pTCP and TCP-v:

open(), close(), established(), closed(), receive(), send(), resume(), and shrunk(). pTCP uses the

open() and close() calls as inputs to the TCP-v state machine for opening and closing a TCP-v pipe

respectively. TCP-v uses the established() and closed() interfaces to inform pTCP when its state

machine reaches the ESTABLISHED and CLOSED states respectively [112]. The send() call is

used by TCP-v to send “virtual” segments to pTCP which will bind the segments to real data. The

receive() interface on the other hand is used by pTCP to deliver “virtual” segments to TCP-v. pTCP

uses resume() to inform TCP-v that additional unbound data is available. TCP-v, upon receiving the

call, attempts to send as much data as possible till it gets a freeze return value on its send() call and

freezes. Finally, TCP-v uses the shrunk() interface to inform pTCP of any change in its congestion

window so that pTCP can perform reassignment as described in Section 4.1.

4.2.3 Header Formats

Figure 9 presents the header formats for the pTCP protocol. Note that the header is in addition

to the regular TCP header that will be used by TCP-v. The regular pTCP header consists of the

following four fields: (i) source connection identifier (pSRC), (ii) destination connection identifier

(pDST), (iii) pTCP sequence number (pSEQ), and (iv) pTCP acknowledgment number (pACK).

38

The connection identifiers are used to uniquely identify the aggregate pTCP connection at both

ends. The pSEQ is the sequence number at the aggregate connection level and is independent

of the TCP sequence number. The pACK is a cumulative acknowledgment similar to the TCP

acknowledgment (ACK) field. Note that the individual TCP-v pipes will use the TCP ACK fields to

perform congestion control (recall that congestion control and loss recovery are coupled in TCP),

and hence they cannot be reused by pTCP. Because pTCP is responsible for performing flow control

(given that it controls the buffer), it requires a field for window advertisement as in TCP. However,

since TCP-v pipes do not have to perform flow control (they merely maintain virtual buffers), pTCP

reuses and overrides the TCP window advertisement field for performing flow control. The reuse

does not interfere with the progress of the individual TCP-v pipes due to the fact that the pTCP

advertised window will always be greater than the actual window of an individual pipe (we elaborate

on this in Section 4.2.5).

In addition to the regular pTCP header fields, the header format for the connection establish-

ment phase is further augmented with the following fields: (i) number of transmitting pipes to be

desirably used (nT x), (ii) number of receiving pipes that can be used (nRx), (iii) list of IP addresses

corresponding to nT x (ipT x), and (iv) list of IP addresses corresponding to nRx (ipRx). The nT x

field is the number of pipes the source would ideally like to use for its transmissions (which in effect

will require nT x pipes to be maintained at the receiving ends), and the nRx field is the maximum

number of pipes on which the source is willing to serve the reverse path. Note that if nT x or nRx

equals one, the pTCP connection falls back to a regular TCP connection with single state.

4.2.4 Connection Management

We use the state machine of pTCP and the connection establishment handshake presented in Fig-

ure 10 and Figure 11 respectively for the following discussions on connection management. Note

that the state machine for TCP-v is the same as that of default TCP, and the interface between pTCP

and TCP-v is presented in Section 4.2.2. We assume the number of pipes to be nIF at both ends.

• Establishment:

When an active open is issued by the client application, a pTCP socket with a transmission

control block (TCB) similar to TCP’s TCB, but with the additional state variables introduced

39

CLOSED

EST A B LI SH W A I T

EST A B LI SH ED (n)

CLOSE W A I T (m)

CLOSE

[TCP-v
1

close()]

OP EN

[TCP-v
1

op en (), p = n I F]

TCP-v
n + 1

est a b li sh ed ()

[n = n + 1]

TCP-v
1

est a b li sh ed ()

[TCP-v
2 . . . n I F

op en (), n = 1]

m = = 0

TCP-v
m

closed ()

[m = m - 1]

CLOSE

[TCP-v
1. . . n

close(), m = n]

Figure 10: pTCP State Machine

earlier in Section 4.2.1, is created. After the pTCP socket is created, pTCP creates one TCP-v

TCB and issues the open() call to it. When the TCP-v SYN packet is sent out, pTCP sets nIF

in the nT x field and the corresponding IP addresses in ipT x, and appends additional pTCP

connection management header information to the packet. When the pTCP at the server end

receives the passive open, it checks to see if it can support nIF TCP-v pipes.1 Assuming

that the receiver can support the required number of pipes, it creates the first TCP-v TCB,

issues the passive open to it, and in the process takes it to the SYN RCVD state [112]. When

the SYN+ACK is sent out by the first TCP-v at the server end, the destination IP address is

appropriately set based on the information received in the first SYN, and the source address

reflects the local interface the first TCP-v pipe is bound to. The SYN+ACK message carries

nIF in the nRx field that the server has agreed to support, and the corresponding IP addresses

in ipRx.

When the client pTCP receives the SYN+ACK, it creates the remaining nIF−1 TCP-v TCBs

1There might be several reasons including memory or processor limitations, security considerations, etc., because of
which the receiving host might desire to limit the number of pipes in the case of bandwidth aggregation.

40

client s er v er

open socket

send d a ta

f i r st pi pe

esta b l i sh ed

(connecti on

esta b l i sh ed)

a l l pi pes

esta b l i sh ed

Figure 11: pTCP Connection Establishment Handshake

and issues open() calls to each of them. Also, the first TCP-v pipe at this stage enters the

ESTABLISHED state after sending back an ACK to the server. pTCP thus goes into the

ESTABLISHED (1) state and can start accepting data from the application. Hence, even if

some of the pipes are experiencing connection setup problems, pTCP will still ensure data

flow between the client and the server.

The source IP address of each of the outgoing SYNs is set to the local interface the TCP-

v pipe is bound to. The destination address is set to one of the addresses in ipRx in the

SYN+ACK sent from the server. When the first TCP-v pipe at the server receives the ACK,

it enters the ESTABLISHED state and can thus participate in the data exchange with the

client. The pTCP at the server end also enters the ESTABLISHED (1) state. When the

server receives the SYN messages from each of the remaining nIF−1 TCP-v pipes, it creates

the corresponding TCP-v TCBs and assigns the respective SYNs to the TCBs, taking each of

them to the SYN RCVD state. From there on, the exchange of information between each

server TCB and the corresponding client TCB is similar to that of TCP.

As and when each of the individual TCP-v pipes enter the ESTABLISHED state, they issue

the established() call to pTCP making pTCP move down the state machine shown in Fig-

ure 10. Finally, when all the individual pipes enter the ESTABLISHED state, pTCP enters

the ESTABLISHED (nIF) state.

41

• Termination:

The teardown of a pTCP connection is relatively simpler than the connection establishment.

When an application closes the connection, pTCP uses the close() interface to make the

individual TCP-v pipes close. Each pipe closes using TCP’s regular closing handshake. When

a TCP-v pipe enters the CLOSED state in its state machine, it invokes the closed() callback to

pTCP. For every closed() message pTCP receives, it appropriately keeps track of the number

of closed TCP-v pipes. Upon successful completion of all TCP-v pipes, pTCP enters the

CLOSED state of Figure 10 and confirms the close to the application layer.

4.2.5 Congestion Control and Flow Control

pTCP by itself does not perform any congestion control. The individual TCP-v pipes are solely

responsible for controlling the amount of data transferred through each pipe. On the other hand,

flow control in pTCP is performed at the pTCP layer. While the primary reason is the fact that

pTCP has control over the receive buffer, it also helps in better utilization of the buffer across the

multiple pipes. For example, in the case of the unaware application approach, irrespective of the

BDP of the individual TCP pipes, each pipe would have a constant buffer (of 64KB by default).

This will result in wastage of buffer space for pipes with smaller BDPs and wastage of capacity for

pipes with larger BDPs. However, in pTCP the buffer space will be shared by the individual pipes

based on their respective BDPs. Note that this property can also be achieved using some approaches

proposed in related work [94].

We assume the buffer space (both send buffer and receive buffer) available at the pTCP layer is

equal to n ∗B, where n is the number of TCP-v pipes, and B is the default TCP buffer size. Every

segment that belongs to a pTCP connection always carries the available space in the pTCP receive

buffer, irrespective of which pipe it belongs to. The pTCP sender keeps track of the number of

outstanding bytes for the connection, and ensures that the receive buffer never overflows. Although

all individual TCP-v pipes see the same available buffer space and hence can contend simultaneously

for that space (provided there is space in their congestion windows), since pTCP has control over

all data transmissions, it prevents any excess data from being transmitted. For example, consider

a scenario in which the receiver has advertised a window size of 1000 bytes. Assuming that there

42

exist three TCP-v pipes at the sender and each of them has 1000 bytes space left in the congestion

window, each of the pipes will attempt to transmit 1000 bytes worth of data. However, except for

the first pipe that succeeds in transmitting the 1000 bytes, the other pipes would have a freeze value

returned for their send() calls since pTCP would be aware of the global situation.

4.2.6 Reliability

As we discuss in Section 4.2.1, pTCP maintains the bindings between the actual data segments

and the TCP-v virtual segments. Once the application data is bound to a particular TCP-v pipe,

it is the concerned TCP-v pipe’s responsibility to reliably deliver the data to the receiver by using

its own (essentially TCP’s) reliability mechanism. Therefore, reliable transport of the application

data is achieved in pTCP as long as every data segment in pTCP’s send buffer is bound to a virtual

segment in one of its TCP-v pipe’s virtual send buffer. However, note that the binding between

the actual data segment and TCP-v virtual segment can be altered when pTCP performs dynamic

reassignment or redundant striping. We now discuss how pTCP can still ensure reliability under

these two conditions:

• Dynamic Reassignment:

Whenever pTCP performs dynamic reassignment for a particular TCP-v pipe, it unbinds a

data segment from that pipe, and reassigns (binds) it to the next available pipe (which can

be the same pipe). From then on, the new pipe will assume the responsibility of reliably

delivering the reassigned data segment to the peer TCP-v. When the old pipe “retransmits”

the previously bound virtual segment, it will be reassigned a different data segment.

• Redundant Striping:

Redundant striping in pTCP is a special case of the dynamic reassignment where the old pipe

still keeps a copy of the data segment. Since the data segment will be bound to a new pipe,

its reliable delivery will be guaranteed by the new pipe. However, since the old pipe will also

attempt to deliver the same data segment to its peer, there might be duplicates at the receiving

pTCP. Such duplicates can be easily detected via the sequence number field (pSEQ) in the

pTCP packet header.

43

R0 R1 R2 R3 R4
100Mbps

3 0m s

S 1

S 5

D 1

D 5

10Mbps

10m s

10Mbps

10m s

M H

f 0

2 Mbps

7 0m s

5 Mbps

10m s

2 0Mbps

10m s

f 1 ~ f 5

F H

f 6 f 7 f 8 f 9

D 6 S 9S 6 D 9

10Mbps

10m s

10Mbps

10m s

Figure 12: Network Topology for Evaluating pTCP

We have thus far described the key components of the pTCP protocol. In the next section,

we present performance of pTCP and compare it with the performance of both the simple and

sophisticated application layer techniques.

4.3 Protocol Evaluation

We evaluate the performance of pTCP using the ns-2 [105] network simulator and the network

topology shown in Figure 12. The network topology consists of 5 backbone routers (R0 to R4)

and 20 access nodes. For simplicity the backbone routers also double up as wireless access points

(or base stations) that the mobile host (MH) can use to communicate with a fixed host (FH) in the

backbone network. The mobile host primarily uses two different types of wireless links: (i) link

MH–R0 with bandwidth equal to 500Kbps or 2Mbps (depending upon the scenario) and 70ms ac-

cess delay, and (ii) link MH–R3 with bandwidth ranging from 500Kbps to 5Mbps (depending upon

the scenario) and 10ms access delay. Together with the delay experienced in the backbone network,

these values simulate a WWAN connection (through a macro-cell or a pico-cell) with 400ms round-

trip time, and a shared WLAN connection with 100ms round-trip time respectively. We introduce

random bandwidth fluctuations (between 20% and 100% of the maximum link capacity), blackouts

(as long as 25 seconds), and random losses (from 0.01% to 1% packet loss rate) in the wireless links

to capture the link characteristics. Besides the concerned flow (f 0) between MH and FH, we also

include 9 other flows (f 1 to f 9) to simulate the background traffic in the backbone network: 5 long

TCP flows with 280ms round-trip time (S1–D1 to S5–D5), and 4 short UDP flows with 10Mbps

data rate and 100ms round-trip time (S6–D6 to S9–D9) as shown in the figure.

To observe the effect of bandwidth aggregation, we consider a backlogged application at the

44

mobile host that uses active network interfaces to perform data striping, and measure the throughput

delivered to the peer application at the fixed host. We compare the performance of pTCP with two

application layer striping techniques: an unaware application and a smart application. The unaware

approach, as described in Section 3.2, represents the simplest form of the application layer striping

approach where the sending application writes to each socket in turn until blocked, and the receiving

application reads from each socket only in-sequence packets. On the other hand, the smart approach

relies on a sophisticated application to perform bandwidth estimation of the end-to-end path, such

that it can stripe according to the ratio of the available data rates of individual pipes. For reference,

we also present the “ideal” performance of bandwidth aggregation where we add up the individual

throughputs of independent TCP connections, one each for every interface, that do not experience

any head-of-line blocking. We use TCP-SACK for all TCP flows including the TCP-v pipes in the

simulation. Unless otherwise specified, all data points are averaged over 10 samples using random

seeds, and each sample is run for a period of 600 seconds. We present the following results for

different striping approaches in the rest of the section: (i) scalability with respect to rate differential,

(ii) scalability with respect to the number of pipes, (iii) resilience to rate fluctuations, (iv) resilience

to blackouts, and (v) co-existence of different congestion control schemes.

4.3.1 Rate Differential

We show in this section the impact of rate differential between the two pipes of the aggregate

connection. We fix the bandwidth of one of the wireless links to 500Kbps (link MH–R0), and

increase the bandwidth of the other link from 500Kbps to 5Mbps in increments of 500Kbps (link

MH–R3). Note that since the wireless link is the bottleneck of the end-to-end path, the data rate

at which the pipe can send is equal to the bandwidth of the wireless link. Figure 13(a) shows the

ideal aggregate bandwidths and the performance of the three different striping approaches when the

rate differential between the two pipes increases. The x-axis value represents the bandwidth ratio

of the second pipe to that of the first pipe, while the y-axis value shows the aggregate throughput

achieved at the receiving application. It is clear from the figure that both pTCP and the smart

application achieve near ideal performance, but the unaware approach performs significantly worse

and exhibits a non-increasing aggregate throughput beyond a ratio of 2.

45

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Bandwidth Ratio (Pipe2 to Pipe1)

Ideal
pTCP
Smart Application
Unaware Application

(a) Aggregate Throughput

4

6

8

10

12

14

16

18

34 36 38 40 42 44 46

T
C

P
 S

eq
ue

nc
e

N
um

be
r

(x
10

00
)

Time (sec)

pTCP
Unaware Application

(b) Sequence Number Progression

Figure 13: Scalability with Rate Differential

The non-performance of the unaware application, while explained in Section 3.2, can be fur-

ther illustrated by the results presented in Figure 13(b), where we compare the sequence number

progression of the faster pipe (the bandwidth ratio of the two pipes is set to 6) in the unaware

application and pTCP during a small time window. We observe that in the unaware application,

the head-of-line blocking at the receiver due to the slower pipe holding up packets stalls the faster

pipe. The faster pipe thus exhibits distinct idle periods (e.g. 36s, 38s, and 40s in Figure 13(b)),

resulting in the degraded performance of the unaware application. One way to avoid such head-of-

line blocking is to perform bandwidth estimation at the application and stripe data according to the

bandwidth ratio of the two pipes, as demonstrated by the performance of the smart application. In

contrast, pTCP by virtue of its congestion window based striping, frees itself from re-implementing

the bandwidth estimation already performed by TCP’s congestion control, and achieves the same

ideal performance.

As we discuss in Section 3.2, another way to improve the performance of the unaware applica-

tion is to reduce the coupling due to head-of-line blocking between the faster and slower pipes by

increasing the size of the resequencing buffer at the application. Equivalently, we can increase the

size of the socket resequencing buffer in the faster pipe while keeping that of the slower pipe fixed.

We show in Figure 14 the effect of using a larger buffer size in the faster pipe (an x-axis value of 1

indicates the default buffer size) when the bandwidth ratio of the two pipes is 10. It can be observed

46

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8 9 10

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Socket Buffer Ratio (Socket2 to Socket1)

Ideal
Unaware Application

Figure 14: Buffer Requirement of the Unaware Application

that the unaware application will be able to achieve close to the desired aggregate bandwidth only

when the buffer over-allocation ratio is at least the ratio of rate differential. Such a requirement on

the buffer size can significantly limit the scalability of this approach.

4.3.2 Number of Pipes

We now show that the performance observations made in the previous section still hold true when

the number of pipes in the aggregate connection increases beyond 2. We use the same network

topology as shown in Figure 12, but increase the number of network interfaces at the mobile host

from 2 to 5. Since the mobile host opens one pipe for each active network interface, it incrementally

adds the following pipes to the aggregate connection: (i) pipe1 with 2Mbps bandwidth and 400ms

round-trip time (via MH–R0 link), (ii) pipe2 with 5Mbps bandwidth and 100ms round-trip time (via

MH–R3 link), (iii) pipe3 with 500Kbps bandwidth and 300ms round-trip time (via MH–R1 link),

(iv) pipe4 with 1Mbps bandwidth and 200ms round-trip time (via MH–R2 link), and (v) pipe5 with

10Mbps bandwidth and 50ms round-trip time (via MH–R4 link).

Figure 15 presents the aggregate throughput enjoyed by the application at the fixed host as the

number of pipes increases. We compare the performance of ideal bandwidth aggregation and that of

the three striping techniques and conclude that the performance of pTCP scales well with increas-

ing number of pipes. Note that although the smart application is also able to achieve the desired

bandwidth aggregation, the overheads incurred at the application due to bandwidth estimation also

increase with the number of pipes (bandwidth estimation is performed on a per-pipe basis). While it

is clear the unaware application cannot achieve the desired performance, we observe that when the

47

2

4

6

8

10

12

14

16

18

20

2 (2M+5M) 3 (+500k) 4 (+1M) 5 (+10M)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Number of Pipes

Ideal
pTCP
Smart Application
Unaware Application

Figure 15: Scalability with Number of Pipes

third pipe (500Kbps) is added to the striped connection, the aggregate throughput of the unaware

application even “degrades” to a value lower than that of using only two pipes! This observation fur-

ther substantiates our argument in Section 3.2 that the performance of the unaware application will

be throttled by the slowest pipe of the aggregate connection. Hence it is not always advantageous

for the unaware application to use as many pipes as possible. For the scenario shown in Figure 15,

the unaware application can make use the bandwidths of only two pipes.

4.3.3 Rate Fluctuations

Since the characteristics of wireless links exhibit large variances, in this section we investigate the

performance of pTCP in the presence of fluctuations in the available data rate of individual pipes.

We emulate the bandwidth fluctuations of a wireless link by periodically changing its link bandwidth

to a random value. Specifically, for a link k with a maximum capacity of Ck, its bandwidth will

change every Tk seconds to a value randomly chosen from [0.2Ck, Ck] and rounded to the nearest

tenth of Ck. We consider the same topology as the one used in Section 4.3.2 where the mobile host

is equipped with multiple network interfaces ranging from 2 to 5. Each pipe has the same round-trip

time as before, but now with random data rate fluctuations. The fluctuation period of each pipe is

to 3, 10, 6, 20, and 5 seconds respectively. Figure 16(a) shows the ideal performance of bandwidth

aggregation and the three striping techniques as the number of pipes with rate fluctuations increases.

We note that Figure 16(a) mirrors Figure 15 with the ideal aggregate throughput scaling down to

60% due to bandwidth fluctuations (the average bandwidth for a link with capacity Ck is 0.6Ck in our

link fluctuation model). It is clear that even under such a dynamic environment, the performance of

48

1

2

3

4

5

6

7

8

9

10

11

12

2 (2M+5M) 3 (+500k) 4 (+1M) 5 (+10M)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Number of Pipes (with Bandwidth Fluctuations)

Ideal
pTCP
Smart Application
Unaware Application

(a) Throughput vs. Number of Pipes

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

12345678910

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Fluctuation Period (sec)

Ideal
Smart Application

(b) Coarse-Grained Bandwidth Estimation

Figure 16: Impact of Rate Fluctuations

pTCP still closely follows that of the ideal performance. This is however not the case for the smart

and unaware applications. Specifically, compared with Figure 15 we find that the performance of the

smart application drops significantly, demonstrating the inefficiency when its bandwidth estimation

mechanism cannot accurately track the actual fluctuations of available data rates.

We use Figure 16(b) to further substantiate this argument, where we show the performance of the

ideal bandwidth aggregation and smart application in a two-pipe scenario. The first pipe has 2Mbps

bandwidth and 400ms round-trip time, while the second pipe has 5Mbps bandwidth and 100ms

round-trip time. We fix the bandwidth of the first pipe, but introduce bandwidth fluctuations in

the second one. We assume the smart application performs a coarse-grained bandwidth estimation

such that it is able to obtain correct bandwidth estimates of the second pipe every 10 seconds.

Figure 16(b) shows that as the fluctuation period of the second pipe decreases from 10 seconds to

1 second, the performance of the smart application degrades drastically, even when there is only

a slight mismatch between the bandwidth estimation interval and the actual bandwidth fluctuation

period. This simulation result corroborates the theoretic analysis we made in Section 3.3.3 regarding

the sensitivity of the application striping model to the accuracy of the striping algorithm.

4.3.4 Blackouts

In this section, we show the impact of blackouts on the performance of pTCP and application strip-

ing techniques. We use a two-pipe scenario, where the first pipe has 2Mbps bandwidth and 400ms

49

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

T
C

P
 S

eq
ue

nc
e

N
um

be
r

(x
10

00
)

Time (sec)

Pipe2 (without Blackout)
Pipe1 (with Blackout)

(a) Smart Application during Blackouts

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

T
C

P
-v

 S
eq

ue
nc

e
N

um
be

r
(x

10
00

)

Time (sec)

Pipe2 (without Blackout)
Pipe1 (with Blackout)

(b) pTCP during Blackouts

Figure 17: Impact of Blackouts

round-trip time, and the second one has 5Mbps bandwidth and 100ms round-trip time. We intro-

duce a long blackout in the first pipe between 25s and 50s when the available bandwidth decreases

to zero, and all packets transmitted during such period are dropped. The second pipe however does

not experience any blackout. Figure 17(a) shows the TCP sequence number progression (at the

mobile host) of both pipes in the smart application. It is obvious that during the blackout period,

the first pipe stops sending data after repeated failures and starts bandwidth probing through expo-

nential backoffs. However, because of the head-of-line blocking problem described in Section 3.2,

even the second pipe which does not experience blackouts stalls almost for the entire duration of

the blackout period, resulting in the aggregate connection coming to a standstill. On the other hand,

as seen in Figure 17(b), in pTCP, although the first pipe stalls during the blackout period as in the

smart application, the second pipe continues to progress after a minor stall. This is possible be-

cause of the redundant striping policy in pTCP that reassigns the first segment within the congestion

window of the first pipe to the second pipe and prevents the latter from experiencing head-of-line

blocking. pTCP thus shows the advantages of using the aggregate connection to improve reliability

in the face of link failures, which is not observed in the smart application. While the smart applica-

tion can potentially use some mechanisms to handle blackouts, this will impose added complexity

at the application. Not only will the application need to detect the presence of blackouts through

appropriate feedback mechanisms, but it will also have to “pull” back segments that are already in

50

3

3.5

4

4.5

5

5.5

6

6.5

7

10-4 10-3 10-2

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Packet Drop Probability (Pipe1)

Ideal
pTCP
Smart Application

Figure 18: Multiple Congestion Control Schemes

the pipe experiencing a blackout for reassigning to the other pipe.

4.3.5 Different Congestion Control Schemes

So far we have only considered a pTCP connection when its TCP-v pipes use the same congestion

control scheme. In this section, we demonstrate the ability of the pTCP protocol to use two different

congestion control schemes within the same aggregate connection. The need for different conges-

tion control schemes across multiple pipes is because approaches to improve the performance of

TCP over wireless networks have been tailored to the characteristics of the wireless network in

consideration for optimal performance. For example, WTCP [97] has been proposed for wireless

WANs with very low bandwidths and reverse path congestion, while STP [49] has been proposed

for satellite networks with highly asymmetric links and long propagation delays. Therefore, when

a mobile host has multiple interfaces, a conceivable scenario is to use interface-specific congestion

control schemes for achieving optimal performance.

We consider the same two-pipe scenario as the one used in Section 4.3.4. We introduce random

losses to the first pipe by inserting a loss module in the MH–R0 wireless link (refer to Figure 12).

The module inserts losses at packet error rates ranging from 0.01% to 1%. We consider the perfor-

mance of pTCP when the first pipe uses TCP-ELN [10] and the second pipe uses regular TCP (we

do not explicitly introduce losses in the second pipe). TCP-ELN receives explicit loss notification

from the underlying link layer when a packet is dropped due to random wireless losses, and does

not react to such losses. Note that we use TCP-ELN to emulate an intelligent congestion control

51

scheme that can differentiate the wireless random losses from congestion losses. It is not the sophis-

tication of the congestion control scheme used that is of key importance, but the ability of the pTCP

protocol to accommodate two different congestion control schemes within the same framework.

Figure 18 shows the performance of pTCP when the loss rate in the first pipe increases from 0.01%

to 1%. It is clear that pTCP is able to achieve the ideal aggregate bandwidth (sum of the throughputs

of a TCP-ELN connection over the first pipe and an independent TCP connection over the second

pipe) for all cases, illustrating the seamless nature in which pTCP allows the two congestion control

schemes to co-exist. For comparison we also show the performance of the smart application in the

same scenario. We observe that when the packet loss rate is low, the smart application is able to

achieve the ideal performance. However, as the loss rate increases, the fact that TCP-ELN becomes

ineffective in recovering from the random losses in the first pipe (the ideal curve goes down as loss

rate increases) introduces head-of-line blocking at the receiver, and stalls the second pipe in the

smart application. (For example, the aggregate throughput of the smart application when the loss

rate is 1% is lower than the bandwidth of the second pipe.)

While we have shown the ability of pTCP to accommodate multiple congestion control schemes

in one connection, the need to support different congestion control schemes due to the heterogeneity

of wireless links in fact has a more significant impact on the scalability of the protocol design. We

elaborate on the problem and solution in Chapter 5.

52

CHAPTER 5

TRANSPOSITIONALITY

The principle of parallelism allows existing transport layer protocols designed for a single path

to operate seamlessly over multiple pipes for facilitating network handoffs, server migration, and

bandwidth aggregation. A transport layer solution coupled with the principle of parallelism thus

can enable transparent host mobility in heterogeneous wireless without relying on the support from

the underlying network infrastructure. While such a solution is immune to the heterogeneity of the

network infrastructure by appropriately conferring the task of mobility support on the end points

(server and mobile host), it still requires support from the server that is specific to the wireless

access technology used. In particular, various transport layer protocols tailored to the characteristics

of different wireless access technologies have been proposed that show significant performance

benefits in the target environment [10, 49, 97]. However, in order for the mobile host to enjoy the

performance gains of using network-specific protocols, the server needs to be changed to participate

in the protocol operations. In other words, the server needs to be made aware of the wireless

technology used at the mobile host – which can be undesirable since such heterogeneity is local

to the mobile host. Therefore, an ideal solution that can scale with the increasing heterogeneity of

wireless networks is to tackle the heterogeneity locally at the mobile host without exposing it to the

backbone server. In this chapter, we propose transpositionality as the second fundamental principle

that needs to be incorporated in transport layer design to address network heterogeneity. We first

explain transpositionality and and motivate the need for a transpositional transport protocol. We then

apply the principle of transpositionality to TCP and arrive at a new protocol called RCP (Reception

Control Protocol) that effectively addresses the server scalability issue mentioned before. Finally,

we apply the principle of transpositionality in tandem with the principle of parallelism to propose

a new transport protocol called R2CP (Radial RCP). We show how such a transport protocol can

provide a truly transparent mobility support in heterogeneous wireless networks, without relying on

any support from the network infrastructure and the server specific to the wireless technology used.

53

5.1 Motivation

A transpositional transport protocol is one that can dynamically redistribute the intelligence of the

protocol functionalities to the sender or the receiver for achieving the most effective operation. In

the context of heterogeneous wireless networks, for example, a transpositional transport protocol

should ideally transpose its protocol functionalities tailored to the characteristics of the wireless

environments (e.g. wireless-aware congestion control and loss recovery) to the end point that is

adjacent to the wireless link, namely the mobile host. TCP (and its numerous variants) is a sender-

centric transport protocol where the (data) sender performs all important tasks including congestion

control and reliability. The receiver participates in the operation of the protocol, but contributes

only by sending feedback in the form of acknowledgments. When the mobile host acts as the source

uploading data to the server, it is in charge of congestion control and reliability and hence can use

the lower layer feedback about the wireless link (e.g. link bandwidth or link loss) for intelligent,

wireless-aware operations. However, in the more prevalent scenario when the server acts as the

source sending data to the mobile host, the sender-centric nature of TCP may make it suffer from

suboptimal protocol operations due to the server having no direct access to the feedback information.

In other words, an ideal protocol should allow the mobile host to drive the operations of the protocol

through transposition of protocol functionalities, irrespective of the mobile host being the sender or

the receiver.

In this section, we motivate why TCP should be made transpositional to exhibit the receiver-

centric behaviors when mobile hosts act as receivers for data sent from servers in the backbone

network. While we explain in Section 5.2 various protocol functionalities that can be moved from

the sender to the receiver, for purposes of discussions in this section, we assume that a receiver-

centric transport protocol controls how much data can be sent, and which data should be sent, by

the sender. The sender merely acts based on the requests from the receiver. We first discuss the per-

formance gains for the mobile host by dealing with the characteristics of the wireless last-hop, and

then discuss the functionality gains when the mobile host is equipped with multiple heterogeneous

wireless interfaces. For simplicity, we use the terms “receiver” and “mobile host” interchangeably

in the following discussions.

54

5.1.1 Tackling the Wireless Last-Hop

Numerous TCP variants and alternatives have been proposed for mobile hosts operating in a wireless

environment [9, 10, 11, 49, 97]. A common theme between these transport protocols is the notion

of addressing the problems induced by the wireless last-hop. Despite the wireless-aware behavior

of these transport protocols, the congestion control and reliability mechanisms of the connection

are still predominantly controlled by the sender. In the following, we discuss why placing the

transport protocol’s intelligence at the mobile host can enable fundamentally smarter mechanisms

for congestion control, loss recovery, and power management when compared to sender-centric

approaches.

5.1.1.1 Loss Recovery

TCP assumes that all losses are due to congestion, and hence it invokes its congestion control mech-

anisms when recovering from losses. In the presence of non-congestion-related losses introduced

by wireless links such as channel errors, delay variations, blackouts, and handoffs, TCP suffers from

performance degradation due to unnecessary window cutdowns. Hence, many approaches proposed

to improve the performance of TCP in wireless environments have focused on providing TCP with

information about the characteristics of the wireless link for it to distinguish the causes of losses

and take appropriate actions. The information can be in the form of loss classification (whether a

loss is due to congestion or corruption), RTT sample filtering (excluding RTT samples adversely in-

flated due to link retransmissions), channel states or potential link outages (handoffs or blackouts),

etc [9, 11, 13, 39].

Since the mobile host is adjacent to the wireless last-hop, it is obviously better equipped to

obtain first-hand knowledge of the above pieces of information. In TCP, since the loss recovery

(including loss detection) is performed at the sender, the mobile host needs to convey the requisite

information to the server for it to take “wireless-aware” actions. While this model of operation has

predominantly been adopted in related work, it has some key limitations: (i) Providing feedback to

the sender incurs a finite overhead in terms of the throughput consumed on the reverse path. This

can translate into degraded performance for connections, especially when the forward and reverse

traffic shares the same bottleneck channel (as is the case for the wireless last-hop), or when the

55

feedback is lost. (ii) Providing all available information as feedback within a limited transport pro-

tocol framework can be unwieldy to achieve. For example, some mobile hosts might use a reliable

link layer that affects the round-trip time of the connection, and hence might choose to feedback

information to filter specific RTT samples. Other mobile hosts might have an unreliable link layer,

but can provide feedback information about the reasons for losses (random or congestion-related).

If transport protocol headers need to be changed to accommodate such information, how can the

changes be made generic enough to accommodate any possible feedback information? (iii) Along

the same vein, how can a sender be designed generically to operate with potentially a wide variety

of such types of feedback coming from mobile hosts that use any arbitrary link layer protocol?

A receiver-centric transport protocol that performs loss recovery at the receiver, however, can

avoid the feedback overheads and latency, and be responsive to the dynamics of the wireless link

using the information obtained locally. Moreover, while any intelligence added to sender-centric

approaches requires changing both the backbone server (for reaction) and the mobile host (for feed-

back), a receiver-centric approach involves changing only the mobile host. The backbone server that

is not in charge of loss recovery does not need to be aware of the characteristics of the wireless link.

5.1.1.2 Congestion Control

The congestion control mechanism that TCP uses is designed for wired environments, without

taking into consideration the characteristics of wireless environments. Related work that aims to

achieve optimal performance in various wireless environments has proposed different congestion

control mechanisms tailored to the characteristics of the specific target environment [49, 74, 97,

108]. For example, WTCP [97] has been proposed for wireless WANs with very low bandwidths

and reverse path congestion, while STP [49] has been proposed for satellite networks with highly

asymmetric links and long propagation delays.

To achieve optimal performance, a mobile host should ideally use the congestion control mech-

anism (or transport protocol) designed for the specific wireless network it has access to. However, in

sender-centric approaches, these network specific congestion control mechanisms need to be imple-

mented at the backbone server. While it is conceivable that a mobile host has access to only a very

limited number of wireless networks, a backbone server may need to support a significantly large

56

amount of connections from mobile hosts belonging to any arbitrary wireless network. Given the

increased heterogeneity of the wireless networks, the disadvantages of sender-centric approaches is

pronounced in terms of its lack of deployability. Not only is it infeasible for the server to implement

all possible congestion control mechanisms designed for various wireless environments, but it is

unscalable to require the server to change its protocol stack whenever a new congestion control

mechanism optimized to a new wireless access technology is introduced.

A receiver-centric protocol where the receiver is responsible for congestion control thus has

unique advantages over a sender-centric one. Since the sender is not tasked with implementing the

congestion control mechanism of the connection, its functionality can be significantly simplified

and made transparent to the specific congestion control mechanisms used at the receiver.

5.1.1.3 Power Management

While a majority of work on the performance of TCP has focused on the throughput achievable,

recently the energy efficiency of TCP has also gained attention [96, 107, 120]. It is shown in [107,

120] that since channel errors tend to be bursty (correlated), it is energy-conserving to cut down the

window size (and hence reduce the number of packets in flight) when wireless losses are detected.

This is because packets retransmitted immediately after wireless losses are likely to be lost again,

thus wasting the energy. While TCP-SACK achieves better throughput performance compared to

other TCP variants, in fact it is the least energy-conserving protocol of all when the channel error

rate is high [96].

Therefore, an energy-efficient transport protocol should avoid persistently accessing the chan-

nel when the channel condition is hostile, as energy consumed during this period for attempting to

transmit or receive packets is likely to be wasted. Instead, it should adjust the retransmission pol-

icy according to the channel dynamics. While it is possible to implement such power management

in a sender-centric transport protocol like TCP, there are several limitations to this approach: (i)

While the receiver is more aware of the channel condition than the sender, any power-saving deci-

sion cannot be made locally at the receiver. This is because the sender is responsible for congestion

control and loss recovery, and hence any “unexpected” prolonged delay incurred at the receiver

(that decides to refrain from accessing the channel until the channel condition is more favorable)

57

in receiving data packets or transmitting ACKs can easily cause the sender to timeout or wrongly

inflate its RTT estimation. (ii) Even if the receiver decides to inform the sender of the power-saving

decision, the feedback information will suffer from the same problems that we discussed in Sec-

tion 5.1.1.1. More importantly, packets transmitted for conveying such feedback information incur

extra energy consumption – especially if the channel condition is bad such that multiple retrans-

missions are required. The overheads incurred in sending the feedback information hence limit the

granularity and effectiveness of any sender-centric power management scheme.

On the other hand, in a receiver-centric protocol the receiver decides which and how much

data it needs to receive, and the sender merely responds based on the receiver’s direction. Efficient

power-conserving decisions can be made at the receiver without triggering any adverse reaction

at the sender. Hence, the receiver has a higher degree of flexibility to control the transmission or

retransmission decisions, without involving the sender.

5.1.2 Supporting Heterogeneous Interfaces

The primary reason for a mobile host to be equipped with heterogeneous wireless interfaces, as

we discussed in Section 2.1, is the performance tradeoffs that different access technologies exhibit,

in terms of mobility support, coverage area, network capacity, and transmission power. The avail-

ability of heterogeneous interfaces, however, has given rise to new challenges to existing transport

protocols in terms of the functionalities they provide. In the following, we discuss the functional-

ity gains that a receiver-centric transport protocol can achieve to leverage the existence of multiple

interfaces at the mobile host.

5.1.2.1 Seamless Handoffs

When the coverage areas of different access technologies overlap, it is possible to achieve seamless

handoffs at the link layer. However, such link layer handoffs do not necessarily translate into seam-

less handoffs at the transport layer. Specifically, when a mobile host handoffs from one interface

to another with an IP address change handled by Mobile IP, the prolonged delay for registration

with the home agent [93] can potentially introduce packet losses after the link layer handoff has

completed. To prevent TCP from having adverse reactions due to packet losses during handoffs, the

mobile host needs to inform the sender of the handoff decision. As we discussed in Section 5.1.1.1,

58

whenever feedback information is required, a receiver-centric protocol has advantages over a sender-

centric one due to the locality of information needed.

However, while it is possible to freeze TCP during handoffs [39], such a stall causes connection

disruption and prevents users from enjoying seamless handoffs. One solution to avoid the handoff

latency without relying on infrastructure support [31], is to use a mobility-enabled transport protocol

for achieving end-to-end host mobility [90]. When the mobile host decides to perform a vertical

handoff [102], it can create a new “data stream” for data transfer through the new address, as soon

as the new interface becomes active. With an approach like [55], the mobile host can use multiple

TCP pipes (streams) simultaneously without experiencing any connection stall as long as the link

layer supports seamless handoffs.

A receiver-centric transport protocol thus has advantages over a sender-centric one in such a

scenario, since the receiver can accurately control which and how much data to send through each

pipe based on the status (say, signal strength) of each interface. Moreover, as we discussed in

Section 5.1.1.2, when the receiver decides to switch to another interface specific congestion control

mechanism after handoffs, such decision does not need to involve the sender, which otherwise would

be tasked with, in addition to supporting a plethora of congestion control mechanisms, the seamless

transition from one congestion control mechanism to another for a live connection.

5.1.2.2 Server Migration

Server migration is necessary for achieving service continuity when a mobile host handoffs from

one network to another, but fails to connect to the original server using the new network address.

For example, consider a mobile host with both WWAN (Access Network A) and WLAN (Access

Network B) interfaces as shown in Figure 19. When it initially uses the WWAN interface to connect

to the E! Online server, the mobile host is provided access to the proxy server inside the WWAN

that mirrors the same content (e.g. consider a WWAN service provider such as EarthLink that teams

with Akamai for improving the network service it provides [5]). When the mobile host moves to

the WLAN and undergoes a vertical handoff, it cannot connect to the original proxy server in the

WWAN (due to, say, firewalls). However, it may have a connection to a different server through the

WLAN interface, and hence can initiate server migration to enjoy service continuity.

59

Mobile HostP r ox y S er v er

Access Network B

Access Network A

I n tern et

B a c k en d S er v er

F i rewa l l

Figure 19: Scenario for Server Migration

Server migration may require support from the application [103] or the transport protocol [100]

to synchronize the states between servers. A well-designed transport layer protocol can facilitate

such a synchronization process. If a sender-centric transport protocol is used for server migration,

states maintained at the server for performing congestion control and loss recovery need to be trans-

ferred from one server to another. Moreover, for TCP, after the new server assumes control of the

connection, the mobile host has to flush any out-of-order data from its resequencing buffer, to avoid

confounding the server by acknowledging data that the sender has not yet sent [100]. As much as a

window’s worth of data buffered at the receiver needs to be flushed after server migration.

On the other hand, in a receiver-centric transport protocol, since the states maintained for proto-

col operations are biased toward the receiver, overheads incurred in transferring protocol states from

one sender to another are minimized. Moreover, since the receiver has access to the receive buffer

and has control over which data to receive from the sender, there is no need to flush the buffer after

migration. The receiver can simply request every “hole” in the receive buffer from the new sender.

5.1.2.3 Bandwidth Aggregation

When the coverage areas of different wireless networks a mobile host has access to, overlap, the

mobile host can use multiple interfaces simultaneously, with the goal of enjoying the aggregate

bandwidth available.

While approaches for achieving bandwidth aggregation on multi-homed mobile hosts using

sender-centric transport protocols have been proposed [55, 73], they are limited to using only one

60

server. Such point-to-point bandwidth aggregation, however, might not be possible or desirable in

some cases. For example, as we discussed in Section 5.1.2.2, some proxy servers are accessible

only through the designated wireless interface, and hence it is not possible to achieve bandwidth

aggregation using additional wireless interfaces that have no access to the existing server. In such a

scenario, a sender-centric approach would not be desirable since it would otherwise require explicit

coordination between these geographically-spaced servers. Moreover, it is possible that mobile

hosts want to leverage the existence of multiple active interfaces in an opportunistic fashion, based

on the tradeoffs between different interfaces in terms of achieved throughput, power consumption,

and the cost incurred. The decision to use or shut down an active interface thus can be dynamic,

based on the channel conditions (e.g. loss rates and delays) and the policy of bandwidth aggregation

that the mobile host desires.

It is advantageous to use a receiver-centric transport protocol for achieving different instantia-

tions of bandwidth aggregation. For multipoint-to-point bandwidth aggregation, since the receiver

is the center of control, it can easily coordinate the transmission of multiple senders internally, with-

out any explicit coordination between senders themselves. For policy-based bandwidth aggregation,

any policy can be easily implemented and updated at the receiver based on the characteristics of the

last-hop and the preference of the user.

5.2 RCP: Reception Control Protocol

We now present details of how TCP, a sender-centric protocol, can be transposed to RCP, a receiver-

centric protocol. Briefly, RCP moves the responsibility for performing reliability and congestion

control from the sender to the receiver. We first give a short review of the sender-receiver interaction

in TCP, and how it is transposed in RCP. We then give an overview of the protocol operation in RCP,

and present different protocol functionalities including connection management, congestion control,

flow control, and reliability. Finally, we use simulation results to show that while RCP is indeed

TCP-friendly, it achieves better performance in wireless environments in terms of intelligent loss

recovery, scalable congestion control, and efficient power management.

61

SEG.ACK

SEG.W N D

SEG.SEQ

SN D .N X T

SN D .U N A

CW N D

R W N D

Reliability

F lo w

C o n tr o l

C o n g es tio n C o n tr o l

s en d bu f f er

SEG.SEQ

SEG.ACK +

SEG.W N D

Res eq u en c in g
R CV .N X T

R CV .W N D

r ec v bu f f er

TCP sender

TCP rec ei v er

NextSend

L o s s /

P r o g r es s

SendM u c h

SendM u c h

(a) TCP (Sender-Centric)

SEG.SEQ

SEG.R EQ

R C V .N X T

R EQ.N X T

C W N D

Reliability

C o n g es tio n C o n tr o l

r ec v / r eq bu f f er

SEG.R EQ +

SEG.D EQ

SEG.SEQ

S en dSN D .N X T

s en d bu f f er

RCP receiver

RCP s en d er

R W N D
F lo w

C o n tr o l

SEG.D EQ

NextReqReqM u c h

ReqM u c h

L o s s /

P r o g r es s

(b) RCP (Receiver-Centric)

Figure 20: Sender–Receiver Interactions

5.2.1 Transposition of Functionalities

TCP is a connection-oriented transport layer protocol that provides reliable in-sequence data deliv-

ery to the application. Its protocol operation mainly consists of the following four functionalities:

connection management, flow control, congestion control, and reliability. Figure 20(a) shows a

schematic view of the sender–receiver interaction in TCP, along with several state variables using

the notation introduced in [86]. The connection management is required by any connection-oriented

protocol to synchronize connection states between the communicating peers. After the connection

is established, the sender in TCP controls the progress of data transfer. The sender drains data from

its buffer based on the amount of data that the receiver can accept (flow control), and the amount

of data that the network can sustain (congestion control). The receiver performs resequencing and

acknowledges data received. Reliable data transfer is achieved through loss detection and loss re-

covery performed at the sender.

It is clear that the connection management cannot be implemented only at one side of the con-

nection, but needs participation of both the sender and the receiver. For the other functionalities,

while TCP uses a sender-centric approach, RCP delegates the responsibility to the receiver as shown

62

in Figure 20(b). Briefly, while the receiver in TCP merely sends back ACKs with no control over

which and in what sequence data is transmitted by the sender, in RCP the receiver explicitly con-

trols these factors and the reliable delivery of data. Moreover, the RCP receiver also assumes total

control over the bandwidth the connection can consume, using the same window based algorithm

employed by the TCP sender. Finally, although flow control in TCP involves the sender, it is per-

formed solely by the receiver in RCP. Therefore, the receiver in RCP determines how much data the

sender can send (via congestion control and flow control), and which data the sender should send

(via reliability).

5.2.2 Protocol Overview

In RCP, since the control of data transfer is shifted from the sender to the receiver, the DATA–ACK

style of handshaking in TCP is no longer applicable. Instead, to mimic the self-clocking characteris-

tics of TCP, RCP uses the REQ–DATA handshake for data transfer, where any data transferred from

the sender is preceded with an explicit request (REQ) from the receiver. Equivalently, RCP uses the

incoming data to clock the request for new data. The sender simply maintains the send buffer with

one pointer (SND.NXT) indicating the maximum sequence number sent thus far.

After the connection is established, the receiver requests data from the sender based on the size

of the initial congestion window. The progression of its congestion window follows the slow start,

congestion avoidance, fast retransmit, and fast recovery phases just like in TCP. The key difference

in the operation is that any trigger for performing congestion control is inferred based on the arrival

(or non-arrival) of data segments. For example, a loss is inferred upon the arrivals of three out-

of-order data segments – instead of ACKs. Upon detection of a segment loss, RCP cuts down its

congestion window, and retransmits the corresponding REQ asking for the lost segment. Finally,

the receiver performs data resequencing, and gives in-sequence data to the application.

5.2.3 Protocol Operations

In the following, we present details of the RCP protocol in terms of the REQ–DATA handshake, and

different functionalities including connection management, congestion control, flow control, and

reliability.

63

5.2.3.1 REQ–DATA Handshake

In the DATA–ACK handshake, TCP uses the cumulative acknowledgment for achieving robustness

to losses. To emulate this behavior and tolerate loss in the reverse path, RCP allows the receiver to

send request either in a cumulative mode or in a pull mode, by appropriately setting the pull flag

(PUL) in the packet header. The receiver by default uses the cumulative mode to requests for new

data, and uses the pull mode only for retransmission of requests. When the sender receives a request

with the pull flag set, it sends only the data segment indicated in the packet header. Otherwise, the

sender cumulatively transmits data from SND.NXT that has not been sent yet. Hence, the loss of REQ

in cumulative mode has similar impact to that of ACK loss in TCP. To protect REQ in the pull mode

from losses, RCP also uses a similar mechanism used by TCP for protecting SACK from losses.

The receiver puts the most recent blocks of sequence numbers (we use three blocks as proposed

in the SACK option [76]) it requested in the REQ header. The sender, in addition to maintaining

the send buffer, also maintains a cyclic buffer consisting of the most recent blocks of sequence

numbers (three blocks) it sent out. Upon receiving the request from the receiver, the sender checks

the consistency between the blocks in REQ and its cyclic buffer. Any mismatch is an indication

of REQ losses, and will be recovered by the sender. Note that a request in the pull mode for a

specific data segment will be carried in at least four REQs. We revisit the robustness of REQ in

Section 5.2.4.1.

5.2.3.2 Connection Management

Just like in TCP, either the RCP sender or the receiver can initiate the connection setup. The setup

process consists of the same SYN – SYN+ACK – ACK handshake as in TCP. However, once the

connection is established, instead of the sender sending the first data segment, the RCP receiver

transmits the first REQ with the initial sequence number. The sender then transmits the first data

segment upon receiving the REQ. The connection teardown in RCP also follows that in TCP.

5.2.3.3 Congestion Control

In RCP, the receiver performs congestion control and maintains the congestion control parameters

including the congestion window CWND and round-trip time information. Since RCP is a TCP clone,

64

it adopts the window based congestion control used in TCP. The slow start, congestion avoidance,

fast retransmit, and fast recovery phases are triggered and exited in the same fashion as in TCP. Note

that while the same window adaptation algorithm (additive increase, multiplicative decrease) can be

implemented either at the sender or at the receiver for performing congestion control, the semantics

of the congestion window and the trigger for window increase or cutdown are different. In TCP, the

size of the congestion window limits the amount of unacknowledged DATA in the network, and the

sender uses the return of ACKs to trigger the progression of the congestion window. In RCP, the size

of the congestion window limits the amount of outstanding REQs in the network, and the receiver

uses the return of DATA to trigger the progression of the congestion window.

5.2.3.4 Flow Control

Flow control allows the receiver to limit the amount of in-transit data to the available receive buffer

space – when waiting for the application to read (and purge) in-sequence data, or waiting for the

arrivals of out-of-order data. In RCP, a request is sent out only if the corresponding data, when

received, will not cause an overflow of the buffer at the receiver. This can be achieved by creating a

“dummy” sk buff [17] (that does not contain any data) in the receive buffer for each data segment

requested. New requests are issued as long as new space is created in the buffer. Note that the

sender in TCP relies on the window advertisement from the receiver to perform such flow control.

However, in RCP since the receiver maintains the receive buffer, and has total control over how

much data the sender can send, flow control is internal to the receiver. Interestingly, in RCP the

sender may need to perform reverse flow control against the receiver to control the amount of data

requested by the receiver. This could happen due to data-limited applications (e.g. telnet), or the

sender is limited by its processing power to serve future requests.1 In these cases, the sender can

use a window field to advertise the maximum sequence number that the receiver can request. When

the RCP receiver hits the limit imposed by the sender, it will enter the persist mode as in TCP [112].

Afterward, it can periodically probe the sender for request permissions, or wait for the explicit

window update from the sender.

1However, note that an RCP sender is simpler than a TCP sender. A server running as the RCP sender thus can service
more users than a server running as the TCP sender, if the bottleneck is the processing power.

65

5.2.3.5 Reliability

As Figure 20(b) shows, in RCP the resequencing and reliability functionalities are collocated at

the receiver. Upon receiving a data segment from the sender, the receiver enqueues the data in

the corresponding sk buff (created when its request was transmitted), and updates RCV.NXT after

the resequencing process. In TCP, since reliability is performed at the sender while resequencing

is performed at the receiver, RCV.NXT is conveyed as the cumulative ACK to the sender for it to

perform loss detection. However, RCV.NXT conveys limited information about the state of the receive

buffer, and hence early implementations of TCP that rely on the cumulative ACK for performing

loss detection, suffer from recovering at most one loss per round-trip time, in addition to incurring

frequent timeouts [34]. The SACK option is proposed to address this limitation, using which the

TCP sender aims to construct the bitmap of the receive buffer in the “scoreboard” data structure [76].

However, in RCP the receiver has direct access to the receive buffer, and hence it can timely and

accurately perform loss detection and loss recovery without relying on the use of SACK. Note that

RCV.NXT in TCP allows the sender to purge its socket buffer. RCP uses a window field SEG.DEQ in

the packet header to inform the sender of the highest in-sequence data received so far (which can be

calculated at the sender using SEG.REQ - SEG.DEQ), thus allowing the sender to purge such data

from its send buffer. The window scale option [61] used in TCP can also be applied to RCP in the

same fashion.

While RCP can use any loss recovery algorithm optimized to the wireless environment, in the

current implementation of RCP we adopt the algorithms proposed in [14, 75]. Briefly, (i) the same

threshold in terms of the number of out-of-order arrivals is used for detecting all holes (not just the

first one) in the receive buffer; (ii) RCP does not incur a timeout when a retransmitted segment is

lost; and (iii) there is no need to clear the receive buffer upon a timeout (whereas a TCP sender

using SACK should clear its scoreboard due to the possibility of receiver reneging [76]).

5.2.4 Performance Gains

In this section, we show through simulations the performance gains of a receiver-centric transport

protocol over a sender-centric one. We first show that RCP is indeed a TCP clone and is friendly to

TCP in the wired environment. We then show that in the wireless environment, RCP achieves better

66

R
1

R
2

1 0 M b p s , 4 0 m s

S
0

S
19

D
0

D
19

20Mbps

4 m s

20Mbps

6 m s

f 0 ~ f 19

M H

2Mbps

1 5 m s

Figure 21: Network Topology for Evaluating RCP

performance than TCP in terms of loss recovery, congestion control, and power management.

We use the ns-2 network simulator [105] and a dumb-bell network topology shown in Figure 21

for performance evaluation. For fair comparisons between sender-centric and receiver-centric pro-

tocols, we modify the implementation of TCP-SACK in ns-2 to include better loss recovery mech-

anism such as better estimation of the pipe size [75], and prevention of timeouts due to lost retrans-

missions (refer to Section 5.2.3.5). Unless otherwise specified, each data point in the figures is an

average of 10 samples using random seeds, and each sample is run for 300s.

5.2.4.1 TCP Friendliness

We introduce 20 flows between S0...19 and D0...19 with different proportions of TCP and RCP flows,

to study the impact of RCP on existing TCP flows. We vary the number of RCP flows from 0 to 20

(the others are TCP flows), and observe for each scenario the short-term and long-term behaviors

of all flows in the network. As shown in Figure 22(a) and Figure 22(b), we plot the mean and

coefficient of variation of the per-flow throughput at different time instants after the simulation

starts. The coefficient of variation (CoV) is obtained by dividing the standard deviation of the

throughput by the mean throughput [47]. Note that for clarity of presentation, the direction of the

time-axis in Figure 22(b) is reversed. We can find from both figures that the impact of introducing

RCP flows on existing TCP flows in terms of the throughput re-distribution is minimal, as evident

from the “flat” curve across different proportions of RCP flows. Specifically, since CoV is an

index of unfairness in the network, it is clear from Figure 22(b) that TCP flows do not suffer from

unfairness in the presence of RCP flows. (Otherwise, CoV would have increased with increasing

number of RCP flows.)

In Figure 22(c) we show the microscopic behaviors of TCP and RCP flows in response to net-

work dynamics. We initially use 5 TCP and 5 RCP flows when the simulation starts. At t = 50s

we introduce another 5 TCP flows (terminated at t = 150s), and at t = 100s we introduce another

67

T
hr

ou
gh

pu
t (

K
bp

s)

0
5

10
15

20Number of RCP Flows
1

10

100

Time (sec)

30

40

50

60

70

(a) Mean Throughput

C
oV

0
5

10
15

20Number of RCP Flows

1

10

100 Time (sec)

0

0.5

1

1.5

(b) CoV

0

5

10

15

20

25

30

0 50 100 150 200 250

S
eq

ue
nc

e
N

um
be

r
(x

10
00

)

Time (sec)

TCP
RCP

(c) Sequence Number Progression

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

Number of On/Off Traffic

TCP
RCP

(d) Reverse Path Loss

Figure 22: RCP is Friendly to TCP

5 RCP flows (terminated at t = 200s). We plot the sequence number progression for each of the

20 flows in Figure 22(c), and make the following observations: (i) Throughout the simulation, the

sequence number progression plots of the first 5 TCP and 5 RCP flows are always intertwined. (ii)

Comparing the 5 TCP flows introduced at t = 50s and the 5 RCP flows introduced t = 100s, we find

that their sequence number progression plots are similar in terms of the height of their final points,

and the width of dispersion (note that while these flows start at different times, they all last for 100

seconds and experience similar network conditions). The microscopic behavior of RCP in response

to network dynamics thus is TCP-friendly.

To profile the robustness of the request mechanism used in RCP, we consider a scenario where

there is significant loss in the reverse path. As indicated in Figure 21, we introduce 0 to 100 on/off

68

UDP flows in the reverse direction of the bottleneck link to emulate the flash crowds (e.g. WWW-

like traffic) in the Internet [47]. These on/off flows generate traffic based on the Pareto distribution,

where the shape parameter is set to 1s, the mean idle time is set to 2s, the mean burst time is set

to 1s, and the data rate during the burst period is set to 500Kbps. Such flash crowds introduce

significant packet drops (to ACK or REQ) in the reverse path. For example, with 100 on/off traffic

sources, each of the TCP (or RCP) flows experiences a packet drop rate of approximately 40% in

the bottleneck link. We introduce 20 RCP flows in the forward path, and compare the per-flow

throughput achieved against that of using 20 TCP flows. As Figure 22(d) shows, despite the heavy

losses in the reverse path, the performance of RCP closely tracks that of TCP. This substantiates

our argument made in Section 5.2.3.1 that the design of the cumulative request and the use of cyclic

buffer help RCP tolerate losses in the reverse path.

Thus far we have compared the performance of TCP and RCP only in a wired environment. In

the following, we consider a mobile host with wireless access to the backbone network. As shown

in Figure 21, the wireless link between the mobile host MH and the access point D0 has a bandwidth

of 2Mbps, and access delay of 15ms. It allows the mobile host to connect (using either TCP or RCP)

to the backlogged traffic source S0 for, say, file download. We introduce random packet losses from

0.01% to 10% in the wireless link (in both directions), and use the achieved throughput and power

consumption at the mobile host to compare the performance of the two protocols.

5.2.4.2 Intelligent Loss Recovery

Information from lower layers about the characteristics of the wireless link allows the transport

layer protocol to identify the cause of losses, and hence to intelligently perform loss recovery. As

we discussed in Section 5.1.1.1, a key motivation for using receiver-centric protocols at the mobile

host is to avoid the feedback overheads and latency seen in sender-centric protocols, and to allow

more flexible layer coordination without being limited by the format of the packet header. While it

is not the focus of this work to provide assorted instantiations of wireless-aware transport protocols

leveraging such benefits, we use the following example to show the performance gain achievable

when the information used for loss recovery is locally available.

Explicit loss notification (ELN) [11] has been proposed as a TCP option that allows TCP to

69

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.01 0.1 1 10

T
hr

ou
gh

pu
t (

M
bp

s)

Packet Error Rate (%)

RCP (ELN)
TCP (ELN)
RCP
TCP

(a) Loss Recovery (Throughput)

450

475

500

525

550

575

600

625

650

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

S
eq

ue
nc

e
N

um
be

r

Time (sec)

RCP TCP

TCP

TCP
RCP

(b) Loss Recovery (Sequence Number)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 250 300 350 400 450 500 550

T
hr

ou
gh

pu
t (

M
bp

s)

RTT (ms)

RCP-STP
STP
RCP (RCP-NewReno)
TCP

(c) Congestion Control

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

P
ow

er
 (

W
)

TCP
RCP

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Mean Bad-State Duration (sec)

TCP
RCP

(d) Power Management

Figure 23: RCP Performance Gains

distinguish wireless random losses from congestion losses. Mobile hosts, with or without the as-

sistance from the base station [11, 13], keep track of packet drops due to wireless errors. When

cumulative acknowledgments indicating the packet lost due to wireless errors are generated, the

ELN flag in the packet header is set by the mobile host. Upon detecting a hole with the ELN flag set,

the TCP sender retransmits the lost segment without cutting down its congestion window. As we

can see in Figure 23(a), the performance of TCP improves substantially for loss rates between 0.2%

and 2% when ELN is used. However, when the loss rate increases beyond 2%, the performance

gain decreases rapidly. This is because the ELN bit allows the sender to identify only one wireless

error, and hence when multiple wireless losses occur in one round-trip time, ELN fails to provide

the sender with the necessary loss classification information, making the performance of TCP-ELN

70

degrade to that of vanilla TCP. As we show in Figure 23(b), when packets with sequence numbers

500, 504, 508, 512, 525, 528, and 531 are dropped in the wireless link, it takes TCP-ELN 1.43

seconds to recover from these losses, at most one loss per round-trip time.

RCP with ELN, on the other hand, achieves a much better performance in loss recovery. As

shown in Figure 23(b), it takes RCP only 0.12 seconds to recover the same amount of losses. The

primary reason is that the wireless loss information maintained at the mobile host is directly ac-

cessible to RCP. Hence RCP has accurate information about the cause of losses for all holes in

the receive buffer, which allows it to recover from each loss intelligently. While it is possible to

couple SACK with ELN, and redesign the TCP packet header such that each un-SACKed segment

has its own ELN flag, this approach in fact exposes the limitations of sender-centric protocols that

we mentioned earlier in this section. We note from Figure 23(a) that even in the absence of ELN,

RCP constantly achieves better performance than TCP, with the performance gain increasing as the

packet error rate increases. The reason, as we discussed in Section 5.2.3.5, is because loss recov-

ery and resequencing in RCP are collocated at the receiver. The effectiveness of the SACK blocks

in helping the TCP sender construct the bitmap of the receive buffer, is impaired when both the

data segments and ACKs suffer from high loss rates (recall that we introduce random losses in both

directions of the wireless link).

5.2.4.3 Scalable Congestion Control

As we mentioned in Section 5.1.1.2, various congestion control mechanisms have been proposed

for use with different wireless environments. Until a unified congestion control framework is avail-

able, to achieve optimal performance, a mobile host needs to use the congestion control mechanism

designed for the specific wireless network it has access to. In sender-centric protocols, since con-

gestion control is implemented at the sender, the backbone server is overloaded with supporting a

plethora of congestion control mechanisms for all possible wireless networks mobile hosts might

connect from. In this section, we present how a receiver-centric transport protocol like RCP can

address this problem in a scalable way.

To start with, we consider a satellite environment with long propagation delay and highly asym-

metric links, compared to the terrestrial wireless networks. The authors in [49] show that TCP

71

(SACK) fares badly in such an environment. They propose a new transport protocol called STP

(Satellite Transport Protocol) with improved performance. However, STP is a sender-centric pro-

tocol like TCP, and hence a mobile host using the satellite network to access the backbone server,

cannot use STP unless it is implemented in the protocol stack of the concerned server. Now, by

using the algorithm presented in [49], and the technique of functionality transposition discussed

in Section 5.2.3, we transform STP into a receiver-centric protocol called RCP-STP. By virtue of

the simple sender design in receiver-centric protocols, while STP uses a fundamentally different

congestion control algorithm from TCP, the RCP-STP sender uses the same algorithm as the RCP

sender. Hence, the backbone server as an RCP sender can communicate with any mobile host acting

either as an RCP receiver, or as an RCP-STP receiver – depending on the access network the mobile

host uses.

We use the same network topology and scenario used in [49] for evaluating the performance

of STP, RCP-STP, TCP and RCP (RCP-NewReno). Briefly, the network topology resembles the

dumb-bell topology in Figure 21 with the source (S0) and destination (D0) separated by a satellite

link (link R1− R2). The satellite link is the bottleneck link with a bandwidth of 1.5Mbps, and

propagation delay ranging from 50ms to 250ms. Link asymmetry is emulated using backlogged

TCP flows in the reverse direction. Four HTTP traffic sources are introduced in each direction to

emulate the background traffic. As evident from Figure 23(c), the NewReno style of congestion

control used in TCP (and RCP) does not perform well in the satellite environment, while STP and

RCP-STP achieve a much better performance. We can make the following observations from the

results: (i) the performance difference between TCP and STP substantiates the need to use network

specific congestion control for achieving optimal performance; and (ii) the performance difference

between STP and RCP-STP reinforces the benefits of receiver-centric protocols over sender-centric

ones.

5.2.4.4 Efficient Power Management

We now show the performance of RCP in terms of facilitating power management at the mobile

host. As we described in Section 5.1.1.3, when the channel condition is severe, it is not energy-

efficient for a mobile host to persevere with persistent retransmissions. Since the mobile host is

72

an end-point of the wireless last-hop, it is aware of the channel condition (via, say, measuring the

signal strength in the received packets or beacons from the access point). Upon detecting a hostile

channel state, the mobile host can save the battery power by reducing the amount of data in transit or

refraining from transmissions. However, note that while significant energy savings can be achieved

by operating the wireless interface card in the sleep mode, doing so without the sender being aware

of such energy-conserving tactics may cause adverse reactions at the sender and cause performance

degradation [65]. A receiver-centric protocol such as RCP does not have this problem since the

mobile host has full control over how much data the sender should send.

To evaluate the performance benefits in power consumption, we use the IEEE 802.11b wireless

card as a case study. The IEEE 802.11b card consumes 1.65W, 1.4W, and 0.045W when operated

in the transmit, receive, and sleep modes respectively [65, 95]. We consider a two-state Markov

error model for varying the channel condition of the wireless link [9]. The packet error rate in the

good state is set to 0.01% and that in the bad state is set to 10% (for deep fades). The mean duration

of the good state is set to 10s, while that of the bad state varies from 1s to 10s depending on the

scenario. We assume an energy-frugal mobile host that enters the sleep mode whenever it detects

the channel is in the bad state. Once in the sleep mode, all data transmissions and receptions are

suspended (hence all packets in transit that arrive during this period are lost). The mobile host wakes

up periodically every 100ms to listen to the beacons from the access point [56], during which it also

measures the channel state using the received signal strength. The duration of the beacon is 2ms,

and the power consumed for receiving the beacon is based on the value assumed for the receive

mode. Once the mobile host decides that the channel is in the good state, it de-freezes and resumes

data transmission as usual.

Figure 23(d) compares the performance of RCP and TCP in terms of power consumption and

achieved throughput when the mean duration of the bad state varies from 1s to 10s. We assume that

the sender is unaware of the channel state, and hence when TCP is used, the mobile host receives

data and transmits ACKs irrespective of the channel state. On the other hand, when RCP is used,

the mobile host enters and leaves the sleep mode as mentioned before. The mobile host freezes the

RCP timer when it enters the sleep mode. When it wakes up, RCP resumes data request based on

the state (holes) of the receive buffer. As expected, the longer the mobile host stays in the sleep

73

mode, the more energy savings it can achieve using RCP. While the energy savings are obvious,

Figure 23(d) also shows an interesting result that compares the achieved throughput between TCP

and RCP. Since the mobile host suspends all packet transmissions and receptions in the sleep mode,

it obviously suffers from throughput loss in terms of giving up the data in transit and giving up

the time to use the channel. However, for various conditions of the channel state, the throughput

achieved using RCP is in fact no less than that when using TCP. The reason that TCP suffers from a

more pronounced performance degradation is due to the adverse reaction of the congestion control

mechanism in the presence of severe packet losses.

5.3 R2CP: Radial RCP

We have shown in Section 5.2 that the principle of transpositionality allows TCP to be transposed

to RCP for achieving performance gains in terms of intelligent loss recovery, scalable congestion

control, and efficient power management. In this section, we combine the principles of transposi-

tionality and parallelism (discussed in Chapter 4) to show how these two fundamental principles can

allow transport layer protocols to effectively support transparent mobility in heterogeneous wireless

networks. Specifically, we focus on the following functionalities that need to be supported when a

mobile host handoffs from one network to another during a live connection: (i) seamless handoffs

without relying on infrastructure support, (ii) server migration for achieving service continuity, and

(iii) bandwidth aggregation using multiple active interfaces.

In the following, we present how a multi-state extension of RCP at the receiver called R2CP

can achieve the desired functionalities, without the requirement of changing the senders as shown

in Figure 24. We first discuss the design elements of the R2CP protocol, and then present the archi-

tectural overview and protocol details. Finally, we demonstrate the functionality gains achievable

in R2CP using network simulation and testbed emulation.

5.3.1 Protocol Design

We discuss in this section the design motivation of R2CP that combines the principles of parallelism

and transpositionality in one transport layer framework.

74

Mobile HostS er v er I

Access Network B

Access Network A

I n tern et

S er v er I I

A p p lic a tion

I P

R C P

A p p lic a tion

I P

R C P

A p p lic a tion

I P

R 2 C P

R C P
2

R C P
1

Figure 24: R2CP Design

5.3.1.1 Receiver-Centric Operation

To achieve optimal performance, a mobile host may need to use network (or interface) specific

congestion control. When the mobile host is equipped with heterogeneous wireless interfaces, a

receiver-centric protocol allows it to freely use the desired congestion control mechanism depending

on the interface it chooses, or the access network it migrates to, without involving the remote server.

In addition, during periods of mobility, the mobile host may need to handoff from one server to

another (for service continuity), or change the number of servers it connects to (for bandwidth

aggregation). It is thus advantageous for the mobile host to use a receiver-centric protocol with a

simple sender design, allowing the mobile host to have control over the reliable delivery of data

from the sender(s). RCP, being a receiver-centric protocol that allows the mobile host to drive the

protocol operation such as congestion control and reliability, hence turns out to be an ideal protocol

for the target environment.

5.3.1.2 Maintaining Multiple States

Existing transport protocols suffer from performance degradation during handoffs across heteroge-

neous networks due to the prolonged handoff latency Mobile IP introduces. While end-to-end host

mobility without relying on the support from the infrastructure has been proposed [101], it does not

fully address this problem due to the single-state design in TCP that maintains only one TCB [86]

per connection. When link layer handoffs invalidate the state maintained at the transport layer (e.g.

due to the change in IP addresses), the transport layer protocol needs to modify its state accordingly

for achieving transport layer mobility. Although [101] intelligently performs connection migration,

75

it introduces packet losses by “overwriting” the old state right after the new one is created. An

ideal solution for achieving state migration, however, should allow the two states to co-exist in the

connection for as long as it takes to handoff the states (considering packets in transit). Therefore, to

support transparent host mobility without infrastructure support, a transport layer protocol should

be able to handle multiple states. We hence build R2CP as a multi-state extension of RCP. R2CP

dynamically creates and deletes RCP states according to the number of active interfaces in use. It

effectively maintains multiple states at the mobile host without requiring explicit support from the

remote server. No change is necessary at the RCP sender to support the multi-state operation at

the receiver. R2CP thus is different from related approaches [55, 90] that require changing both

ends to support the multi-state operation. Since R2CP is a receiver-only extension of RCP, it allows

the mobile host to establish a multipoint-to-point connection to communicate with multiple servers,

while in related work multiple states are confined to within a unicast connection.

5.3.1.3 Decoupling of Functionalities

An R2CP connection with k active interfaces consists of k states at the receiver. Effectively, R2CP

maintains one RCP pipe per end-to-end path that exists between the receiver and the sender(s).

R2CP minimizes the overheads due to maintaining multiple states in a connection, by decoupling

the transport layer functionalities associated with the per-pipe characteristics from those that pertain

to the aggregate connection. For example, congestion control, being a per-pipe functionality, is

handled by individual RCP pipes. On the other hand, reliability and socket buffer management

pertain to the aggregate connection, and hence are handled by R2CP itself. Therefore, the R2CP

engine controls what data to request from each sender, and individual RCP pipes control how much

data it can request along its path. The overheads due to repetitive implementations of transport layer

functionalities are minimized.

5.3.1.4 Effective Packet Scheduling

A key challenge in maintaining multiple states in a connection is the effective multiplexing of pipes

with mismatched characteristics in terms of bandwidths, delays, and loss rates. Specifically, since

R2CP uses multiple RCP pipes across heterogeneous interfaces to request data from one or multiple

senders, data segments with smaller sequence numbers traversing the slower pipes may arrive later

76

Application

I P

open / close

est a b li sh ed / closed

r ecv

send

loss / u pd a t e

readw ri t e

r2c p - rec vi p - o u t p u t

r esu m e

R C P (r e ce iv e r)

R 2 C P (e ng ine)

b i n di n g

ran k

p en di n g

ac t i v e

rec v _ b u f f er

Application

I P

readw ri t e

rc p - rec vi p - o u t p u t

R C P (s e nd e r)

s en d_ b u f f er

Figure 25: R2CP Architecture

than those with larger sequence numbers traversing the faster pipes. Out-of-order arrivals at the

receive buffer thus may cause head-of-line blocking and make the aggregate connection stall. R2CP

achieves effective multiplexing and bandwidth aggregation by scheduling transmissions (requests)

based on the congestion window and the round-trip time of each RCP pipe. Briefly, R2CP assigns

the sequence of requests to each RCP pipe based on the (estimated) time the requested segment will

arrive through the concerned pipe. Moreover, a request is assigned to an RCP pipe only when there

is space in its congestion window. Any loss detected by individual RCP pipes is reported to R2CP

such that the corresponding request is reassigned to another pipe that has space in its window, to

prevent the aggregate connection from stalling. Hence, head-of-line blocking due to segment losses,

and bandwidth or delay mismatches of individual pipes is minimized.

5.3.2 Protocol Overview

Figure 25 presents an architectural overview of R2CP and its key data structures. An R2CP connec-

tion consists of one receiver, and one or multiple senders. Different senders of an R2CP connection

can be located at one or multiple hosts. While a unicast R2CP connection is in fact equivalent to

an RCP connection, a multipoint-to-point R2CP connection can be considered as an aggregation of

multiple RCP connections whose receiving ends are coordinated by an R2CP engine at the receiver

using the interface functions shown in the figure. We refer to the virtual connections that exist

between the R2CP receiver and individual senders as RCP pipes, and focus on the receiver for the

following discussions.

When the application at the mobile host opens an R2CP connection, initially one RCP pipe is

created between the active interface and the remote server. When the mobile host handoffs from one

77

interface to another, a new RCP pipe between the newly active interface and the server is created,

after which the old RCP pipe is deleted. However, if bandwidth aggregation is possible (the old

interface remains active after handoffs) and desirable (instructed by the application through a socket

option), the old pipe is not deleted. If server migration is required when the mobile host handoffs

to the new interface, the new RCP pipe is created between the newly active interface and the new

server. The application can use a socket option to convey the address of the new server to R2CP.

Whenever multiple RCP pipes co-exist in an R2CP connection, the R2CP engine performs trans-

mission scheduling using the data structures shown in Figure 25, to minimize out-of-order arrivals

due to data requested through different RCP pipes. Since multiple RCP pipes collaboratively re-

quest data for the same connection, it is possible that data requested through individual pipes is

non-contiguous, depending on the transmission schedule used by the R2CP engine. Hence, in R2CP

the request is always transmitted in the pull mode (refer to Section 5.2.3.1), such that the sender

can transmit only the data requested. However, to facilitate loss detection and loss recovery, at the

receiver each RCP pipe internally maintains a local sequence number space. Since the R2CP engine

controls the packet I/O (to and from the IP layer), it converts the local sequence number used by

each RCP pipe to the global sequence number used by the aggregate connection before sending out

the packet, and vice versa. We discuss in Section 5.3.3.1 how the conversion is achieved.

5.3.3 Protocol Operations

In this section, we describe the key protocol functionalities in R2CP including scheduling, connec-

tion management, congestion control, flow control, and reliability.

5.3.3.1 Scheduling

A key functionality in R2CP is to perform packet scheduling across multiple RCP pipes. In R2CP,

the self-clocking in individual RCP pipes drives the transmissions of requests (for pulling data from

the senders). Upon receiving a transmission request from any RCP pipe, R2CP determines which

data to retrieve and assigns (binds) the corresponding sequence number to the request. As we

show in Figure 26, a FCFS (first-come-first-served) style of packet scheduling that assigns the next

unbound data to a new request will result in undesirable out-of-order data arrivals. To avoid this

problem, the assignment should be made based on the time the corresponding data will arrive, not

78

RTT
1

RTT
2

RTT
1

t i m e

RTT
2

REQ

D A T A

t
5

t
3

t
4

T T + RTT
2

Figure 26: Motivation for R2CP Scheduling

the time the request is sent. For example, in Figure 26 the request issued at t = T should be assigned

the third unbound data (which is 8), instead of the next unbound data (which is 6). We refer to the

rank of the request as third.

R2CP maintains the following four key data structures for performing effective packet schedul-

ing:

• binding: For each request sent out by one of the RCP pipes, R2CP maintains the mapping

between the local sequence number of the concerned RCP pipe, and the global sequence

number of the aggregate connection in the binding data structure. The pipe through which

the data segment is requested is also recorded in the binding data structure.

• pending: The ranges of sequence numbers for data yet to be requested are maintained in the

pending data structure. It consists of the sequence numbers of data segments that need to

be retransmitted (requested again), and sequence numbers greater than the highest sequence

number requested so far.

• rank: For every outstanding request for segment i (one with starting sequence number i) sent

by pipe j, an element is inserted into the rank data structure with a timestamp of T i +2∗RT Tj,

where T i is the time at which the request was transmitted, and RT T j is the round-trip time of

pipe j. The timestamp is reflective of the time the data segment requested in response to the

arrival of segment i, is expected to arrive (refer to Figure 26).

• active: When an RCP pipe issues a request to R2CP for transmission, R2CP can return with

FREEZE to the corresponding RCP pipe due to unavailable space in the receive buffer. In such

79

an event, R2CP adds the concerned RCP pipe to the active data structure. When any space

is created in the receive buffer, R2CP issues a resume() call to each of the pipes in the active

data structure.

We now explain how R2CP uses these data structures to perform transmission scheduling and

interacts with individual RCP pipes. When pipe j uses the send() call with RCP sequence number

s for transmission request at time T , R2CP locates the rank k of the request by comparing T +RT T j

with existing entries in the rank data structure. Then it finds segment i as the kth segment to

request in the pending data structure, updates the entry for segment i in the binding data structure

with (j, s), and inserts an entry (i, T + 2 ∗RT Tj) in the rank data structure. Finally, it uses the

sequence number i in the request header, and sends out the request. When a data segment m arrives,

R2CP deletes the corresponding entry in the rank data structure, enqueues the data in the receive

buffer, finds the corresponding RCP pipe and its local sequence number q based on the binding

data structure, and passes q to the corresponding RCP pipe using the recv() call. The concerned

RCP pipe then updates its states (e.g. congestion control parameters and the next sequence number

to send), and determines whether it can send more requests or not. In case it can generate more

requests, it uses the send() interface with the next RCP sequence number for transmission request

as before.

Upon receiving the transmission request from any RCP pipe, if there is no available space for

more data in the receive buffer, R2CP returns with FREEZE to freeze the concerned RCP pipe, and

puts it in the active data structure. If later any buffer space opens up due to, say, the arrival of

the head-of-line segment, R2CP uses the resume() call to de-freeze all pipes in the active data

structure. Whenever an RCP pipe detects a loss, it uses the loss() call to inform R2CP. R2CP then

unbinds the lost segment in the binding data structure, inserts the sequence number in the pending

data structure, and deletes the corresponding entry from the rank data structure. Whenever an RCP

pipe updates its RTT estimate, it uses the update() call to inform R2CP, which then updates the

rank data structure for pending requests pertaining to the concerned pipe.

80

CLOSED

EST A B LI SH W A I T

EST A B LI SH ED (n)

CLOSE W A I T (m)

CLOSE / IF-DOWN

[RCP
1

close()]

OP EN

[RCP
1

op en (), p = 1]

RCP
1

est a b li sh ed ()

[n = 1]

m = = 0

CLOSE

[RCP
1. . . n

close(), m = n]

IF-U P

[RCP
p + 1

op en (), p = p + 1]
RCP

i
est a b li sh ed ()

[n = n + 1]

RCP
i
closed ()

[n = n - 1]

RCP
m

closed ()

[m = m - 1]

n
n > 1

[RCP
q

close()]

n = = 1

[RCP
q

close(), m = 1]

IF-DOWN (q)

Figure 27: R2CP State Diagram

5.3.3.2 Connection Management

Figure 27 illustrates the state diagram for the connection establishment and teardown phases of

R2CP. When the application opens an R2CP socket, one RCP pipe is created. R2CP creates an

RCP pipe by using the open() call to make the RCP pipe start the connection setup procedure.

The connection setup procedure for each RCP pipe is discussed in Section 5.2.3.2. When the RCP

pipe is established, it uses the established() call to notify R2CP, and then the R2CP connection

is established. During the lifetime of the connection, R2CP may create more RCP pipes based on

the callbacks from the lower layers, such that one RCP pipe is maintained for each path between

an active interface and a remote sender. R2CP enters the ESTABLISHED (n) state when the total

number of RCP pipes opened is n. On the other hand, when an interface becomes inactive, or

a sender is disconnected from the connection, R2CP deletes the corresponding RCP pipe. R2CP

deletes an RCP pipe by using the close() call to make the RCP pipe enter the closing handshake

which we discussed in Section 5.2.3.2. R2CP appropriately moves down the state diagram when an

RCP pipe returns with the closed() call. Finally, when the application closes the R2CP socket, R2CP

81

sends a close() message to each of the component RCP pipes. When all RCP pipes return with the

closed() call, the R2CP connection is closed.

5.3.3.3 Congestion Control

Congestion control in an R2CP connection is performed on a per-pipe basis, where each RCP pipe is

responsible for controlling the amount of data transferred through the respective path. R2CP decides

the congestion control mechanism to use for each wireless interface by opening an appropriate RCP

pipe (e.g. RCP-NewReno, or RCP-STP as we discussed in Section 5.2.4.3). We assume the choice

as to which congestion control scheme to use for each interface is an external decision, and is

provided to R2CP through a system configuration or a socket option.

5.3.3.4 Flow Control

Since R2CP has control over the receive buffer, it is responsible for the flow control of the aggregate

connection. R2CP freezes a requesting RCP pipe if it finds that the number of outstanding data is

equal to the available buffer space. It de-freezes concerned pipes through the resume() call when

any space is created in the buffer. The flow control mechanism for individual RCP pipes that we

discuss in Section 5.2.3.4 will not kick in since they do not deal with the actual data segments. Note

that flow control not only allows R2CP to avoid buffer overflow, but also allows it to achieve flexible

bandwidth aggregation. Based on the “policy” supplied by the user or the application, R2CP can

freeze an RCP pipe even when there is space in the receive buffer, to explicitly control the amount

of data transmitted through each pipe, thus achieving the policy-based bandwidth aggregation as we

mentioned in Section 5.1.2.3.

5.3.3.5 Reliability

R2CP is primarily responsible for the reliable data transfer of the aggregate connection. It achieves

this goal by maintaining the binding information for all data segments. Once a segment is bound to

a particular RCP pipe, the concerned pipe will take over the responsibility (since RCP is a reliable

protocol). However, note that when an RCP pipe detects a segment loss and reports to R2CP using

the loss() call, R2CP will unbind the corresponding data segment, and delegate the reliable transfer

of the lost segment to the next available pipe (according to the rank). While the original RCP pipe

82

Access Point A

Access Point B

ESSID = A

ESSID = B

M ob il e H ost

S er v er - I

S er v er - I I

RCP-1

RCP-2

RCP-3

Internet BackboneN etw ork A

N etw ork B

Figure 28: Testbed Scenario for Evaluating R2CP

will still strive to deliver the same segment (in terms of the RCP sequence number) via retransmis-

sions, it will be assigned a different data segment by R2CP. Note that R2CP is also responsible for

appropriately informing the senders about what data to purge using the SEG.DEQ field in the RCP

header that we discussed in Section 5.2.3.5.

5.3.4 Functionality Gains

In this section, we show the functionality gains when using R2CP at a mobile host with heteroge-

neous wireless interfaces. We use both network simulation and testbed emulation to present the

results. While ns-2 has been popularly used for network simulation, it can also be used as an emu-

lator to interact with a live network. The protocol object developed in ns-2 can tap into the device

driver of the interface card (of the host where ns-2 is running) to inject real packets to the net-

work. Packets received by the interface card can also be dispatched to the target protocol object

in ns-2. The advantage of using emulation is that packets generated by the emulator experience

the same bandwidth fluctuations, round-trip time variations, and losses as any other live traffic in

a real network. This is especially useful for evaluating the performance of the protocol in an un-

controlled wireless environment. We use the testbed shown in Figure 28 for performing emulation.

The mobile host is an IBM Thinkpad T-20 laptop, and the servers are Dell Optiplex GX110 desk-

tops. The mobile host is equipped with two IEEE 802.11b interfaces that allow it to connect to two

WLANs belonging to different administrative domains (the two cards are associated with different

ESSIDs, and assigned different IP addresses). Server-I and Server-II are replicated file servers. We

also use simulation with controlled parameters (e.g. bandwidth and round-trip time) to show the

83

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140

S
eq

ue
nc

e
N

um
be

r

Time (sec)

RCP-1 Stop

RCP-2 Start

RCP-1
RCP-2

5300

5400

5500

58 59 60 61

RCP-1 Stop

RCP-2 Start

(a) Seamless Handoffs

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

S
eq

ue
nc

e
N

um
be

r

Time (sec)

RCP-1

RCP-2

RCP-3

RCP-1
RCP-2
RCP-3

4800

5200

5600

6000

6400

57 58 59 60 61

RCP-1

RCP-2

RCP-3

(b) Server Migration

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120

S
eq

ue
nc

e
N

um
be

r

Time (sec)

R2CP

RCP-1

RCP-2

(c) Bandwidth Aggregation (Best-Effort)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

RCP-1 (Data Rate Fluctuation)

RCP-2 (R2CP Flow Control)

R2CP (Aggregate)

(d) Bandwidth Aggregation (Policy-Based)

Figure 29: R2CP Functionality Gains

performance of R2CP in various environments.

5.3.4.1 Seamless Handoffs

When mobile hosts handoff between heterogeneous wireless networks, a key challenge in support-

ing seamless handoffs is the problem associated with address change and prolonged registration

delay. Conventional approaches for performing vertical handoffs suffer from connection disrup-

tions due to this problem. As we explained in Section 5.3.1, the multi-state design in R2CP allows

it to open multiple connections (pipes) associated with the wireless interfaces that become active

during handoffs. By retaining the old connection (for as long as the link layer supports) during the

initial setup delay of the new connection, the application can continue transmitting and receiving

84

data from either or both interfaces without being disrupted during handoffs.

We show in Figure 29(a) the testbed results when the mobile host handoffs from one access

network to another. The mobile host is initially connected to Server-I through network A, and hence

one RCP pipe (RCP-1) is created in the R2CP connection. At t = 58s, the mobile host decides to

handoff to network B, so a second RCP pipe (RCP-2) is created (using the new network address).

However, as the figure shows, RCP-1 is not closed until t = 60s (a preset value), and hence during

t = 58s and t = 60s two pipes co-exist in the connection to collaboratively deliver data for the

application. Even if there is some setup or ramp-up (e.g. due to slow start) delay for the RCP-

2 pipe, the existence of the RCP-1 pipe allows the aggregate connection to continue progressing

without being disrupted. This is very different from related work that uses a single-state transport

protocol for handoffs. Since R2CP is a multi-state transport protocol, it is capable of maintaining

multiple (interface specific) pipes effectively in a connection without suffering from problems due

to packet reordering or duplicates. Note that the redundant striping technique proposed in [55] can

also be used during handoffs for achieving better performance.

5.3.4.2 Server Migration

A key difference between R2CP and other multi-state transport protocols is the ability to support

end-point handoffs in R2CP. By virtue of its receiver-centric design, the sender does not maintain

any “hard” state (e.g. retransmission timers) of the connection. Since the mobile host controls

which data to receive from the sender, handoffs from one server to another can be as simple as stop

requesting data from the old server, and start from the new one. As we described in Section 5.1.2.2,

server migration involves interaction between the transport layer and higher layer protocols. We

focus in this section on the ability of R2CP to facilitate server migration given sufficient support

from the higher layers, and hence motivate its use as a valuable and effective building block for

end-to-end mobility support frameworks.

As Figure 28 shows, when the mobile host moves to network B, it has access to a replicated

server (Server-II). The end-to-end path from the mobile host (using interface B) to Server-II has a

shorter round-trip time and a larger bandwidth, and hence the mobile host decides to perform server

migration from Server-I to Server-II. Initially, the R2CP connection creates an RCP pipe (RCP-1)

85

using network address A and the address of Server-I. When the mobile host moves to network B,

R2CP creates a new RCP pipe (RCP-3) using network address B and the address of Server-II. Note

that in Figure 29(b) we also show a contrasting scenario where the mobile host does not perform

server migration, and hence the second RCP pipe created (RCP-2) is between network address B and

the address of Server-I. After the new RCP pipe is established, the mobile host requests data that has

not been delivered by Server-I, instead of requesting from the first byte of the data.2 The difference

between the slopes of RCP-2 and RCP-3 indicates that RCP-3 provides a larger bandwidth than

RCP-2. Approaches used for achieving seamless handoffs discussed in Section 5.3.4.1 can also be

used for achieving seamless server migration.

Based on the content of its receive buffer, R2CP may request non-contiguous data from Server-

II. Hence server migration using R2CP does not not cause redundant transmissions compared to that

using only TCP (the TCP sender delivers only in-sequence data stream). While support for selective

pulling of data is provided by some applications (e.g. HTTP 1.1 Range Requests), it can be achieved

in R2CP with no support from the server side application.

5.3.4.3 Bandwidth Aggregation

When a mobile host handoffs between heterogeneous wireless networks, it is possible that the old

connection remains active after the handoff is complete. In such a case, it would be advantageous

for the mobile host to achieve aggregate bandwidths by simultaneously using both interfaces. Since

R2CP allows multiple RCP pipes to co-exist in one connection, and performs effective transmis-

sion scheduling for striping across multiple pipes, a mobile host using R2CP can easily achieve

bandwidth aggregation if desired.

We first consider the testbed scenario shown in Figure 28. While bandwidth aggregation can be

achieved between the mobile host and one server (point-to-point), we consider a scenario where the

two pipes connect to different servers (multipoint-to-point). The mobile host opens the RCP-1/RCP-

2 pipe between network address A/B and the address of Server-I/Server-II respectively. However,

instead of closing the RCP-1 pipe after RCP-2 is established, the mobile host keeps both pipes open

2Note that the RCP sender on Server-II may need to purge from its send buffer the data that is not required by the
receiver, with or without the application’s interaction.

86

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Pipe-2 Bandwidth (Mbps)

Ideal
R2CP
R2CP-s
APPS

(a) Bandwidth Mismatch

1

1.5

2

2.5

3

3.5

30 60 90 120 150 180 210

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Pipe-2 RTT (ms)

Ideal
R2CP
R2CP-s
APPS

(b) RTT Mismatch

0

2

4

6

8

10

12

30 60 90 120 150 180 210

O
ut

-o
f-

O
rd

er
 In

de
x

(%
)

Pipe-2 RTT (ms)

R2CP
R2CP-s
APPS

(c) Out-of-Order Index

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 2 5 10 20 50

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

Fluctuation Index

Ideal
R2CP
R2CP-s
APPS

(d) Bandwidth Fluctuations

Figure 30: Performance of R2CP Scheduling

during the period it is within the coverage of both WLANs. As shown in Figure 29(c), R2CP can

achieve the aggregate bandwidth of the two pipes.

While Figure 29(c) shows the bandwidth aggregation result when the goal is merely to achieve

the sum of individual throughputs, Figure 29(d) shows a result for policy-based bandwidth aggre-

gation. We introduce background traffic that contends with the RCP-1 pipe in the first cell (with

ESSID A). As we observe from Figure 29(d), the achieved throughput in RCP-1 suffers from large

fluctuations (the instantaneous throughput is obtained using a 1-second bin). We consider a sce-

nario where the goal of bandwidth aggregation is to achieve a steady throughput of 720Kbps (for,

say, video streaming) by opportunistically using the RCP-2 pipe to compensate for the data rate

fluctuations in RCP-1. R2CP uses a simple token-bucket algorithm for performing the flow control

87

that we discussed in Section 5.3.3.4. The token is generated depending on the target data rate, and

is consumed when data is bound to an RCP pipe. The policy used in this example is that the sec-

ondary pipe (RCP-2) is allowed to consume only tokens not used by the first pipe (RCP-1). R2CP

freezes an RCP pipe whenever there is no more token available. The figure shows that the aggregate

throughput achieved by R2CP using such a policy-based bandwidth aggregation is relatively con-

stant, despite the fluctuations observed in RCP-1. The amount of data transferred using the RCP-2

pipe mirrors that of the RCP-1 pipe.

We now use simulation to evaluate the performance of R2CP in achieving effective bandwidth

aggregation under various network conditions. We use a network topology similar to the testbed

topology shown in Figure 28. The mobile host opens two pipes to aggregate bandwidths from

different servers. We vary the characteristics of the two paths, in terms of the bandwidth of the

bottleneck link, and the round-trip time of the entire path, to introduce bandwidth mismatches and

delay mismatches. We also introduce bandwidth fluctuations by using on/off traffic sources as we

described in Section 5.2.4. We compare the performance of R2CP against the following approaches:

(i) Ideal: the ideal performance of bandwidth aggregation, where the aggregate bandwidth equals the

sum of bandwidths along the two pipes; (ii) APPS: an application layer striping approach (similar

to the one used in [55]), where the application stripes across multiple RCP connections without

using R2CP; and (iii) R2CP-s: a simplified version of R2CP, where the data request is assigned to

individual pipes on a first-come-first-served basis without considering the round-trip times.

In Figure 30(a), we vary the bandwidth of the two pipes such that the bandwidth of the first pipe

is fixed at 4Mbps, while that of the second pipe varies from 1Mbps to 6Mbps. We observe that both

R2CP and R2CP-s achieve the ideal performance irrespective of the bandwidth mismatches. The

application striping approach fails to achieve the desired performance for the same reason explained

in [55]. In Figure 30(b), we vary the round-trip time of the two pipes such that the RTT of the first

pipe is fixed at 30ms, while that of the second pipe varies from 30ms to 210ms. We find that while

the performance of R2CP still closely tracks the ideal performance, R2CP-s fails to scale when the

RTT mismatch increases beyond 3. The performance degradation of R2CP-s is due to the scheduling

used that does not take into consideration the round-trip times of different pipes. While an FCFS

style of striping policy works well when the round-trip times of different paths are comparable, as

88

the RTT mismatches increase, it suffers from frequent out-of-order arrivals. Due to the limited space

in the R2CP receive buffer, head-of-line blocking eventually triggers the flow control of R2CP and

causes the progression of the aggregate connection to stall. We show in Figure 30(c) the percentage

of packets that find the buffer 75% full upon arrivals, for three different striping approaches. The

reason for the non-performance of the application striping approach is clear from the figure. While

R2CP-s manages to maintain a small queue size when the RTT mismatches are small, the queue

builds up noticeably as the RTT mismatches increase. R2CP, on the other hand, achieves better

performance even with large RTT mismatches. Finally, Figure 30(d) shows the performance of

R2CP when there are significant data rate fluctuations in individual pipes. We introduce 10 Pareto

on/off flows in each pipe as the background traffic. The burst time of the Pareto traffic is set to

0.1 ∗ t seconds, and the idle time is set to 0.2 ∗ t seconds. The rest of the parameters used are the

same as those used in Section 5.2.4.1. We vary t from 1 to 50 and refer to it as the fluctuation index.

Note that packets sent through each pipe will experience large delay variations (jitters) due to the

on/off traffic. It is clear that despite such fluctuations R2CP is still able to closely track the ideal

performance.

89

PART II

Bandwidth Scarcity

CHAPTER 6

NETWORK SCALABILITY WITH USER POPULATION

Wireless links provide bandwidths that are significantly lower than those provided by their wired

counterparts. The scarcity of wireless bandwidth has inspired a considerable amount of research

toward improving the performance of wireless networks in different layers of the network protocol

stack. However, the tremendous growth in the number of mobile users has significantly exposed

the limitations of these approaches. In this chapter, we first describe the problem of network scala-

bility with user population in existing wireless networks. We then discuss why this problem is not

effectively addressed by related work. Finally, we present an outline of the solution proposed in this

work.

6.1 The Problem

Existing wireless networks such as 3G WWANs and WiFi WLANs use a cellular network model

where a base station (or an access point) covering a cellular service area coordinates the transmis-

sions of all mobile hosts in the cell. Mobile hosts communicate directly with the base station and do

not interact in any manner with other mobile hosts in the cell. The base station in turn is connected

to the backbone Internet through a distribution network. If the source and the destination lie within

the same base station’s cell, the base station serves as a relay between the mobile hosts. Otherwise,

the base station serves as a gateway between the wireless network and the wired backbone network.

In such a cellular network model, all mobile hosts in the cell share the bandwidth provided by

the base station for network access. For a given number of users n, the bandwidth per user is limited

to the order of O(1
n). While a considerable body of researches has proposed solutions in different

layers of the network protocol stack for improving the performance of wireless networks, the per-

formance attainable has been constrained by the fundamental limits posed by the underlying cellular

network model. Therefore, the only avenue for improving data rate in cellular networks is to de-

crease the coverage area per base station, thus reducing the number of users served. Although such

91

50
100

150
200

250
300

350
400

Min

2Min

4Min

16Min

256Min

Max

0

10

20

30

40

50

60

70

80

Transmission PowerNumber of Nodes

S
pa

tia
l R

eu
se

Figure 31: Spatial Reuse in Wireless Networks

an approach has been adopted in hierarchical cell structure (HCS) systems [22, 89], the drawback is

the high infrastructure cost involved in deploying a large number of base stations and the associated

distribution networks that eventually makes it unable to scale with the tremendous growth of mobile

hosts.

The inability of the cellular network model to scale with user population stems from its poor

performance in achieving the desired spatial efficiency (defined as bits per second per square me-

ter) [35, 85] of the wireless bandwidth. While packing more base stations in the same area is an

expensive way to increase the spatial efficiency, a more scalable approach is allowing mobile hosts

to communicate only with their neighbors using minimal transmission powers (which decrease with

the number of mobile hosts). If we define spatial reuse [64] as the number of simultaneous trans-

missions possible in the network, it can be seen in Figure 31 that spatial reuse increases not only

with decreasing transmission ranges, but also with increasing number of nodes (mobile hosts) in

the network.1 If mobile hosts can be made to access the network (i.e. base station) through com-

munication with their neighbors, the spatial reuse gain can be leveraged for increasing the network

capacity.

In this context, the peer-to-peer network model used by a special class of networks called ad-

hoc networks has gained attention. In the peer-to-peer network model, mobile hosts cooperatively

1In consideration of the various multiple access techniques available, the term simultaneous transmissions can be
qualified with respect to a time slot, frequency band, or code sequence. Note that the Min transmission power labeled in
the figure is the minimum power used to keep the network from partitioning, while the Max transmission power is the
minimum power used to keep the network fully connected. For details on the how Figure 31 is obtained, please refer
to [52].

92

act as routers to relay traffic for peer hosts in the network. Using transmission ranges that are just

large enough to ensure network connectivity allows the peer-to-peer network model to potentially

maximize the spatial reuse in the network. It has been shown in [46] that in a network with n uni-

formly distributed nodes and random source-destination pairs, the transport capacity of the network

is of the order O(
√

n) using the peer-to-peer network model (while that of the cellular model is

O(1) irrespective of the number of nodes in the network, as shown in Figure 31 with the maximum

transmission power). Another study in [44] shows that if nodes are mobile and can use as many

nodes as possible in the network to relay traffic, the network capacity of the peer-to-peer network

can increase as O(n). In other words, the peer-to-peer network model can potentially allow the

network to scale with any number of users in the network.

Despite its potential advantages, the peer-to-peer network model has hitherto been used only in

stand-alone environments that lack the services of an established backbone infrastructure, with the

goal of communicating with other mobile hosts in the network. In the context of Internet access,

however, a dominant portion (if not all) of the traffic consists of accesses to servers (and hence the

base station) in the backbone Internet, instead of communication between mobile hosts [21]. More-

over, while protocols designed for ad-hoc networks typically focus more on overall network per-

formance rather than on providing service guarantee to individual mobile hosts, this is not the case

for wireless access networks. For applications where connectivity and fairness are requirements,

the peer-to-peer network model has not been considered as a viable option due to the performance

degradation associated with host mobility and unfair resource allocation [18, 52]. In this work,

we start with the peer-to-peer network model for leveraging its spatial reuse benefits that can scale

with user population. We evaluate its performance benefits and drawbacks when considered as an

alternate network model in conventional cellular wireless environments.

6.2 Related Work

As we mentioned earlier, existing work that focuses on solutions in different layers of the network

protocol stack suffers from the performance limitations of the underlying network model [12, 62,

70, 97]. In terms of alternate network models, recently several approaches have been proposed

to use the relaying capability of mobile hosts in a cellular network for load balancing [114, 116],

93

coverage extension [1, 3], throughput increase [48, 72], and transmission power reduction [52, 69].

In [3], the authors propose an approach called ad-hoc GSM (A-GSM) to improve the coverage of

GSM networks over dead spots where direct communication with the base station is not possible.

Mobile hosts in dead spots switch dual-mode terminals to the ad-hoc mode for relaying traffic

to other hosts that have direct communication with the base station. Opportunity driven multiple

access (ODMA) [1], a scheme proposed for use with the 3G systems, uses peer relays to address the

problem of data rate degradation toward the edge (boundary) of the cell. Mobile hosts that suffer

from low-bit-rate transmissions due to the large transmission distance involved, relay traffic to other

hosts within the high-bit-rate coverage area for using link transmissions with higher data rates.

In [114], the authors propose an integrated cellular and ad-hoc relay (iCAR) system to balance

traffic loads between cells. Special mobile relays are placed strategically between cells to relay

traffic from an overloaded cell to a relatively underloaded cell. The authors in [72] also propose

a unified cellular and ad-hoc network architecture (UCAN) to provide fair service to mobile hosts

without reducing the aggregate throughput in the cell. Mobile hosts that suffer from poor channel

quality use peer-to-peer links to access proxy clients with better channel quality. Multi-hop cellular

networks (MCN) proposed in [69] allows multi-hop communication between the mobile hosts and

the base station to reduce the transmission power used. MCN is shown to improve throughput

performance when sources and destinations co-exist in the same cell without mobility. Finally,

a hybrid network model is proposed in [52], where mobile hosts by default use the peer-to-peer

network model for communication. The base station dynamically coordinates the network topology

by directing the power used at the mobile hosts, to maximize spatial reuse and reduce network

partitions. The model is again evaluated only for the scenario where all sources and destinations are

co-located within the same cell.

While these approaches are clear instances that show the potential performance benefits of incor-

porating peer-to-peer communication in cellular networks, they did not provide solutions to address

the problem we consider since the cellular network model is still the dominant mode of operations.

Moreover, in these approaches, the peer-to-peer network model is used “as-is” with the drawbacks

such as mobility degradation still present. Mobile hosts hence can potentially suffer from perfor-

mance degradation due to the use of the peer-to-peer network model in the network.

94

6.3 Solution Outline

Existing work that studies the performance of the peer-to-peer network model has so far focused

on scenarios where mobile hosts randomly choose any other hosts in the network as destinations.

In conventional cellular wireless networks, however, a dominant portion of the traffic consists of

accesses to servers in the backbone network, and hence most mobile hosts use the base station

as the destination. Therefore, we start in Chapter 7 by investigating the performance of the peer-

to-peer network model when used in the cellular wireless environment for Internet access. We

find that while the peer-to-peer network model has performance gains over the cellular network

model in terms of lower power consumption, it suffers from lower throughput performance when

all mobile hosts use the base station as the destination. We identify the reasons why the spatial

reuse gain cannot be effectively translated into higher end-to-end throughput as: the bottleneck

around the base station, inefficiencies of the peer-to-peer network protocols, and impact of host

mobility. Using the peer-to-peer network model “as-is” in cellular wireless networks thus can result

in degraded throughput despite the power savings.

Based on the insights gained through the performance analysis, we proceed to propose two fun-

damental principles that in tandem allow the peer-to-peer network model to leverage its spatial reuse

gain, and achieve performance improvement over the cellular network model. In Chapter 8 we focus

on the first principle called base station assistance that leverages assistance from the base station for

reducing the protocol inefficiencies and avoiding the performance degradation due to the artifacts in

the peer-to-peer network model such as vulnerability to mobility. We propose two instantiations of

the principle called assisted scheduling and dual-mode operation, and show through network simu-

lation their performance benefits. In Chapter 9 we focus on the second principle called multi-homed

peer relay that leverages the relaying capability of multi-homed peer hosts for breaking the bottle-

neck at the base station. We propose two instantiations of the principle for relaying traffic between

the wireless and wired domains, and between heterogeneous wireless domains respectively. We use

network simulation to substantiate their effectiveness in alleviating the base station bottleneck. In

the end, we conclude that using the peer-to-peer network model in cellular wireless networks is a

promising approach when the network model is complemented with appropriate mechanisms.

95

CHAPTER 7

PEER-TO-PEER NETWORK MODEL

The peer-to-peer network model offers spatial reuse gains that can scale with the number of nodes

in the network. Related work has shown through theoretic analysis the scalability of its transport

capacity (end-to-end throughput) with the network size when nodes randomly choose destinations

in the network [44, 46]. In this chapter, we study the performance of the peer-to-peer network

model in an Internet access scenario where a dominant portion of the nodes chooses the base station

as the destination. We first describe the simulation model used for the performance evaluation, and

then present results motivating the benefits of the peer-to-peer network model over the conventional

cellular network model. Finally, we investigate the performance of the peer-to-peer network model

when used in the Internet access scenario.

7.1 Evaluation Model

We consider a packet-switched cellular wireless data network that provides services to mobile hosts

through the base station in the cell. Existing cellular wireless networks use the cellular network

model shown in Figure 32(a) as the mode of communication. However, we consider the use of

the peer-to-peer network model in the cellular wireless environments1 as shown in Figure 32(b).

Section 7.2 considers a scenario where the source-destination pairs are randomly chosen in the cell,

while Section 7.3 focuses on a scenario where all mobile hosts use the base station for Internet

access. We use the ns-2 network simulator with multi-hop wireless extensions [105] for evaluating

the performance of the cellular and peer-to-peer network models. In the following, we describe the

evaluation model used and assumptions made in this work:

• Topology and Mobility Model: We primarily use a network of 100 mobile hosts (nodes) for

performance evaluation. However, to show the impact of network size, we also consider

1We restrict the use of the peer-to-peer network model to mobile hosts in the same cell, and hence we focus on a single
cell in this work.

96

(a) Cellular Network Model (b) Peer-to-Peer Network Model

Figure 32: Wireless Network Models

different network sizes including 50, 200, and 400 nodes. For most scenarios nodes are ran-

domly distributed in a 1500m × 1500m grid with the base station at the center, although we

also consider non-uniform (skewed) distributions with introduced hot spots in Section 7.2.2.

We use the waypoint mobility model with parameters speed and pause [18] when node mobil-

ity is considered in the scenario. Initially, a mobile host randomly picks a destination within

the grid, and moves toward the destination with a speed randomly chosen from the range

(0, speed]. Once the mobile host reaches the destination, it remains static at that position for

pause amount of time, after which the whole cycle repeats again. We vary speed from 1m/s

(pedestrian speed) to 20m/s (vehicular speed), and set pause to 0 seconds for creating the

most dynamic scenario.

• Network Model: We characterize the cellular network model as one-hop communication co-

ordinated by the base station. Mobile hosts use transmission powers required to communicate

directly with the base station, which then uses a round-robin packet scheduling algorithm to

arbitrate channel access among mobile hosts [52]. The IEEE 802.11 protocol in the PCF

(Point Coordination Function) mode [56] is used for channel access in the cellular network

model. On the other hand, in the peer-to-peer network model, mobile hosts reach the base sta-

tion through multi-hop routes consisting of other peer hosts in the network. The transmission

range of each mobile host is set to 250m by default, and the IEEE 802.11 protocol in the DCF

(Distributed Coordination Function) mode (with RTS-CTS handshake) is used as the MAC

protocol. We primarily use DSR (Dynamic Source Routing) [62] as the routing protocol, but

97

we also use DSDV (Destination-Sequenced Distance Vector) [83] to investigate the impact of

different routing protocols. We choose DSDV since it is a proactive, table-driven hop-by-hop

routing protocol, whereas DSR is an on-demand source routing protocol.

• Traffic Model: We use TCP as the transport layer protocol because of the target environment

that we consider in this work. Specifically, more than 90% of the traffic in the Internet consists

of TCP flows [36, 106], and it is reasonable to assume that traffic due to mobile Internet users

will not deviate from this behavior. While the focus of this work is to consider a scenario

where all mobile hosts use the base station for Internet access, we also consider scenarios

with different traffic localities in Section 7.2.3. The base station is the end point for all non-

local flows with destinations outside the cell or in the backbone network. We do not explicitly

model the path between the base station and the backbone server, since we assume that the

bottleneck of the end-to-end connection between the mobile host and the backbone server is

in the wireless domain.2 To study the impact of traffic load on the performance of the two

network models, we use a CBR application (atop TCP) that limits the maximum data rate

generated by each mobile host. We vary the per-flow data rate from 8Kbps (lightly loaded) to

32Kbps (heavily loaded) to emulate the use of different applications with different data rate

requirements. In addition to the rate-controlled sources, we also show results for backlogged

sources by using the FTP application, where the sending rate is purely determined by the

congestion control mechanism in TCP. Finally, we use the Pareto on/off traffic source to

emulate the bursty and heavy-tailed traffic observed in the web-browsing application [27].

The shape parameter of the Pareto traffic source is set to 1.5, the mean burst time is set to 1s,

the mean idle time is set to 2s, and the data rate during the burst time is varied from 12Kbps

to 48Kbps.

• Channel Model: We use a single channel with a data rate of 2Mbps. The channel model

used is a combination of the free space propagation model and the two-ray ground reflection

model, where the signal degrades as 1/r2 within the cross-over distance (about 90m) and as

2For simplicity we assume that the mobile host acts as the traffic source. Since we do not consider asymmetric
channels in this work, the direction of the traffic does not impact the simulation results shown.

98

1/r4 beyond. We do not explicitly model random channel fading and shadowing, but assume

the use of intelligent modulation and coding schemes for addressing wireless errors. The

signal thresholds for successful packet reception and packet capture are modeled using the

default ns-2 parameters.

• Power Model: We assume all nodes in the network use the same transmission power for

communication in both models. The transmission power used in the cellular network model is

set to the value such that all mobile hosts can communicate directly with the base station. For

the peer-to-peer network model, by default the transmission range is set to 250m. However,

when considering the capacity of the network, mobile hosts use the minimal transmission

power calculated based on the network topology to keep the network connected [52]. The

total power consumption incurred at each mobile host includes both the transmission power

and the reception power. Packet reception accounts for a constant power consumption in

both models and is independent of the transmission power. The parameter is set using the

default ns-2 value. For fair comparison, all packets including the routing packets used in the

peer-to-peer network model are counted.

7.2 Motivation

In this section we present simulation results comparing the performance of the cellular and peer-

to-peer network models in terms of network throughput and per-node power consumption. We

compare the performance of the two models along a variety of parameters including network size,

node distribution, and traffic locality. The objective is to motivate the performance benefits of the

peer-to-peer network model, and set the baseline for results presented in Section 7.3.

7.2.1 Network Size

To investigate the performance of the two network models with respect to the network size, we vary

the number of nodes in the network from 50 to 400 and randomly distribute the nodes over the grid.

We consider a scenario where the source and destination are randomly chosen, and the number of

flows is equal to the number of nodes. We measure the end-to-end throughput achieved at each

destination (TCP sink), and calculate the network throughput as the sum of all per-flow throughput.

99

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

50 100 150 200 250 300 350 400

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

bp
s)

Network Size (Node)

Peer-to-Peer Model
Cellular Model

(a) Network Throughput

10-3

10-2

10-1

100

101

50 100 150 200 250 300 350 400

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Network Size (Node)

Peer-to-Peer Model
Cellular Model

(b) Power Consumption

Figure 33: Impact of Network Size

Network throughput can be considered as a measure of network capacity from the perspective of

end-to-end flows. We calculate the (per-node) power consumption using the model described in

Section 7.1. We do not consider the power consumption at the base station in both models.

Figure 33(a) shows the network throughput of the two models with respect to the size of the

network. As expected, the capacity of the cellular network model does not increase with the network

size. It stays at around 1Mbps since an end-to-end flow requires two link transmissions to and from

the base station (note the channel data rate is 2Mbps). It is clear that the peer-to-peer network

model is able to achieve higher network throughput than the cellular network model. Moreover, the

capacity increases with the network size. An interesting result to note is that the increase in network

throughput is slower than the increase in spatial reuse (as we showed in Figure 31) due to the multi-

hop routes incurred [46, 52]. Nevertheless, the peer-to-peer network model can indeed leverage the

spatial reuse gain and achieves higher network throughput as the number of nodes increases in the

network.

Figure 33(b) compares the per-node power consumption for the two models. In the cellular

model, there is no significant change in the per-node power consumption as the network size in-

creases since we assume all nodes to use the same transmission power for communication as men-

tioned in Section 7.1. In the peer-to-peer model, however, the average power consumption decreases

significantly as the network size increases. The reason is that the minimal transmission power for

100

0

375

750

1125

1500

0 375 750 1125 1500

Y
 D

im
en

si
on

X Dimension

(a) h = 1

0

375

750

1125

1500

0 375 750 1125 1500

Y
 D

im
en

si
on

X Dimension

(b) h = 16

Figure 34: Skewed Node Distribution

network connectivity decreases as the network density increases. This is notwithstanding the fact

that the average hop count for an end-to-end flow increases with decreasing transmission range,

resulting in an increased number of link transmissions per packet. Recall that in the channel and

power models we employ in the simulations, a packet transmission of distance r accounts for an

additional usage of O(r4) of the battery power (for the 100-node topology the minimum transmis-

sion power used to keep the network connected is approximately 200mW). Compared to a cellular

network of n nodes, although flows in the peer-to-peer network model traverse more number of hops

of the order O(
√

n), the transmission range decreases as O(1√
n). Hence, the amount of transmission

power consumed in the peer-to-peer model is less than that consumed in the cellular model by an

order of O(n3/2). The reduction of more than an order in the power consumption is in fact another

key reason that drives the investigation of the peer-to-peer network model as an alternate model in

future wireless networks [37].

7.2.2 Node Distribution

We show in Section 7.2.1 that for different network sizes with random topologies, the peer-to-peer

model achieves better performance than the cellular model both in terms of network throughput and

power consumption. In this section we focus on a network of 100 nodes, and study the effect of

introducing “hot spots” on the performance of the two network models. To create skewed node

distribution, we divide the 1500m × 1500m grid into a 4 × 4 array of same-sized smaller grids

101

0

0.5

1

1.5

2

2.5

16 14 12 10 8 6 4 2 1

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

bp
s)

Number of Hot Spots

Peer-to-Peer Model
Cellular Model

(a) Network Throughput

10-2

10-1

100

101

16 14 12 10 8 6 4 2 1

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Number of Hot Spots

Peer-to-Peer Model
Cellular Model

(b) Power Consumption

Figure 35: Impact of Node Distribution

(each with a side of 375m). We randomly distribute 50 of the 100 nodes in the 1500m × 1500m

grid as before. However, for the other 50 nodes we randomly pick h of the 16 smaller grids and

distribute the 50 nodes only among the h smaller grids. We vary the value of h from 1 (where all 50

nodes are within the same small grid) to 16 (where the entire distribution is the same as the default

case). Figure 34 shows two sample node distributions for h = 1 (one hot spot) and h = 16 (no hot

spots).

Figure 35(a) shows the impact of such non-uniform distribution on the throughput performance

of the two network models. The performance of the cellular model is not affected by the node dis-

tribution because nodes act in a “peer-agnostic” fashion. For the peer-to-peer model, we observe

that although the non-uniform distribution does impact the throughput (specifically for h = 1), the

peer-to-peer model still has a higher throughput than the cellular model. This can be explained

as follows: (i) Although the contention among nodes in hot spots increases, the contention among

nodes outside the hot spots in fact decreases (recall that the total number of nodes is constant for dif-

ferent scenarios). For flows that do not traverse the hot spots, their throughput will in fact increase.

(ii) The average hop count decreases with the increased non-uniformity of the distribution since

nodes in the hot spot are “closer” to each other. Specifically, for flows with source and destination

nodes within the hot spots, the multi-hop route may in fact degenerate to a single hop. Although the

contention within hot spots increases, since the source and destination are just one-hop away, the

102

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

bp
s)

% of Flows with Destination Outside Cell

Peer-to-Peer Model
Cellular Model

(a) Network Throughput

10-2

10-1

100

101

0 20 40 60 80 100

P
ow

er
 C

on
su

m
pt

io
n

(W
)

% of Flows with Destination Outside Cell

Peer-to-Peer Model
Cellular Model

(b) Power Consumption

Figure 36: Impact of Traffic Locality

performance will not be worse than the cellular network model.

Note that since nodes outside the hot spots are more sparsely distributed, the minimal trans-

mission power for network connectivity increases when hot spots are introduced. We observe in

Figure 35(b) that the per-node power consumption in the peer-to-peer network model increases

with the increasing non-uniformity of the topology. However, its performance is still better than the

cellular network model even in the worst scenario.

7.2.3 Traffic Locality

We have so far considered the scenarios with random source-destination pairs. However, as we

mentioned earlier, in conventional cellular wireless environments, accesses to backbone servers

(e.g. Web, Email and FTP) form a majority, and hence the base station is the destination for most

flows – which we refer to as non-local flows. In this section, we study the impact of such non-local

flows on the performance of the two network models. We consider a random topology with 100

nodes where the transmission range of each node using the peer-to-peer network model is set to

250m. The total number of flows is set to 100, but we vary the percentage of non-local flows from

0% (destinations are randomly chosen from mobile hosts) to 100% (all mobile hosts use the base

station as the destination).

Figure 36(a) shows the throughput performance of the two network models for different per-

centages of non-local flows in the network. We observe that the performance of the cellular network

103

model increases with decreasing traffic locality. This is because non-local flows involve only one

wireless transmission (source to the base station) while local flows require two wireless transmis-

sions (from the source to the base station and from the base station to the destination). Hence in

the cellular network model, the network throughput for a purely non-local scenario is about twice

the value for a purely local scenario. On the other hand, for the peer-to-peer network model we

observe that its performance starts decreasing as the percentage of non-local flows increases, and

falls down to below the performance of the cellular network when 100% of the flows are non-local.

The throughput decrease with increasing non-local traffic can intuitively be explained as a result of

the increased contention in the neighborhood of the base station. However, it does not explain why

the peer-to-peer network model should perform worse than the cellular network model – consider-

ing both have the same bottleneck (the base station). We perform a detailed performance analysis

to investigate the true reasons behind the performance degradation in Section 7.3. As shown in

Figure 36(b), the peer-to-peer network model under all traffic localities still achieves better perfor-

mance than the cellular network model in terms of power consumption. Hence we focus on the

throughput performance in the following.

7.3 Internet Access Scenario

We have observed in Section 7.2 that the peer-to-peer network model does have performance bene-

fits over the cellular network model in translating the spatial reuse gain into higher network through-

put. While such performance gains remain valid for various network sizes, transmission ranges, and

skewed node distributions, the peer-to-peer network model suffers from significant performance

degradation when the traffic locality is low. In this section, we take a closer look at the phenomenon

to identify the reasons that cause the performance degradation. We consider the worst-case scenario

where all mobile hosts choose the base station as the destination. In addition to the impact of traffic

locality, we also identify other performance tradeoffs in the peer-to-peer network model including

unfairness and impact of host mobility. To keep the focus of this section, we consider the through-

put performance of the two models including: (i) average throughput achieved by all mobile hosts

in the network, (ii) throughput distribution of all mobile hosts, and (iii) instantaneous throughputs

observed by individual mobile hosts.

104

0

2

4

6

8

10

12

14

16

18

20

8 16 24 32

T
hr

ou
gh

pu
t (

K
bp

s)

Offered Load (Kbps)

Peer-to-Peer Model
Cellular Model

(a) CBR Application

0

2

4

6

8

10

12

14

16

18

20

Web (12K) Web (24K) Web (48K) FTP

T
hr

ou
gh

pu
t (

K
bp

s)

Application Type

Peer-to-Peer Model
Cellular Model

(b) Web and FTP Applications

Figure 37: Throughput Average

7.3.1 Throughput

In Figure 37, we compare the performance of the two network models by showing the end-to-

end throughput averaged over all 100 flows in the network. The per-flow throughput is measured

at the TCP sink for a duration of 100 seconds. Figure 37(a) is obtained by using a rate-limited

traffic source (CBR application) with data rates varied from 8Kbps to 32Kbps, while Figure 37(b)

is obtained by using a backlogged traffic source (FTP application), and Pareto traffic source (Web

application) with the burst data rate varied from 12Kbps to 48Kbps as described in Section 7.1. The

results are averaged over 10 random network topologies, and DSR is used as the routing protocol

for the peer-to-peer network model.

Contrary to results shown in related work [46, 52, 68] that spatial reuse can increase the end-to-

end throughput, we observe from Figure 37 that not only is the spatial reuse benefit not translated

into better per-flow throughput, but the performance in the peer-to-peer network model is in fact

lower than that in the cellular network model – for various applications and data rates used. The

discrepancy arguably results from the change in the traffic distribution: in related work the sources

randomly choose any other nodes in the network as destinations, but in Figure 37 the base station

is the destination for all sources. Since the channel around the base station has to be shared by

all flows in the network, any increase in the spatial reuse elsewhere in the network cannot be fully

realized due to the base station bottleneck. While the bottleneck is the same for both network

105

models, flows traverse multiple hops in the peer-to-peer network model as opposed to one hop in

the cellular network model. Therefore, it seems intuitive that the end-to-end throughput achieved in

the peer-to-peer network model will be lower than that in the cellular network model. However, we

contend that the mere existence of multi-hop flows is the not main reason for the lower throughput

performance in the peer-to-peer network model.

To understand the performance of the peer-to-peer network model in the presence of base station

bottleneck and multi-hop routing, we consider a packet scheduler that schedules the end-to-end

transmissions of flows in the network. A flow is inserted into the schedule (of finite time slots) if and

only if all of its link transmissions can be scheduled without interfering with the link transmissions

of other flows already in the schedule. Now denote the utilization σ(ψ) of a schedule ψ as the total

number of link transmissions summed over all slots. Let Ψτ be a schedule with the minimum number

of slots τ such that each flow in the network is scheduled at least once, and let Ψτ
max be the schedule

with the maximum utilization. We can then calculate the spatial reuse κ in the network as κ =

σ(Ψτ
max)/τ. In other words, unlike related work that considers independent one-hop transmissions

and hence fails to address the bottleneck in the downstream of multi-hop flows [52, 71], here we

consider only link transmissions that can contribute to successful end-to-end transmissions of flows

in the network. It is clear that the value of such pragmatic spatial reuse achieved not only depends

on the distribution of nodes, but also depends on the distribution of flows in the network.

Figure 38(a) shows the change in spatial reuse when the distribution of flows varies. Each data

point is an average of results obtained using 10 random network topologies. For each topology, the

total number of flows is kept the same, but the percentage of non-local flows changes. Evidently,

as the percentage of non-local flows increases, the base station gradually becomes the bottleneck,

and hence the number of simultaneous link transmissions that can contribute to end-to-end trans-

missions decreases (from 11.01 at 0% non-locality to 3.52 at 100% non-locality), accounting for the

throughput degradation in the peer-to-peer network model. While the spatial reuse does decrease,

we note that the average hop count for all flows in the network also decreases from 4.90 to 3.57.

This is an interesting result since it shows that in the peer-to-peer network model, even with 100%

non-local flows (the target environment of this work), on average there should be one (≈ 3.52
3.57) com-

plete end-to-end transmission per slot – same as the one-hop flow in the cellular network model!

106

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100

S
pa

tia
l R

eu
se

Percentage of Non-Local Flows (%)

(a) Base-Station Bottleneck

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 5 10 15 20 25 30 35 40 45

A
gg

re
ga

te
 L

in
k

T
hr

ou
gh

pu
t (

M
bp

s)

Offered Load (Kbps)

(b) Protocol Inefficiencies

Figure 38: Accounting for Performance Degradation

Therefore, even with base station bottleneck and multi-hop routing, ideally the peer-to-peer network

model should be able to achieve the same throughput performance as the cellular network model.

The reason why the peer-to-peer network model achieves a much lower throughput than the

cellular network model as shown in Figure 37, is in fact due to the overheads and inefficiencies

of the protocols used. The protocols used in the cellular network model are centralized, and oper-

ate over a single hop with the base station performing most of the coordination. However, in the

peer-to-peer network model, the protocols used are distributed (e.g. IEEE 802.11 DCF mode and

DSR), and operate over multiple hops. The inefficiencies that arise because of the distributed op-

eration at the medium access and routing layers [18, 53, 117], and the multi-hop operation at the

transport layer [51] (the multi-hop path results in more variations in latency and losses that signif-

icantly impact the throughput performance of TCP) translate into a further degraded performance.

Figure 38(b) provides a visualization of the inefficiencies introduced in the peer-to-peer protocol

stack that we use for simulation. We measure the successful one-hop (link) transmission at the

MAC layer of each node, and plot the sum of link throughputs achieved in the entire network when

the offered load varies from 4Kbps to 48Kbps. It is clear that as the offered load increases from

4Kbps to 8Kbps, link utilization increases leading to increased link throughput. However, as the

offered load increases beyond 8Kbps, the achieved throughput decreases significantly. Note that the

aggregate link throughput is in fact a measure of the pragmatic spatial reuse described earlier when

107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 24 32

C
oV

Offered Load (Kbps)

Peer-to-Peer Model
Cellular Model

(a) Coefficient of Variation

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

K
bp

s)

Flow ID

Load=8Kbps (CoV=0.34)
Load=16Kbps (CoV=0.76)

(b) Throughput Distribution

Figure 39: Throughput Fairness

TCP is used as the transport layer protocol. If we divide the peak aggregate throughput (3.44Mbps)

by the data rate of the channel (2Mbps), we find that the maximum spatial reuse achieved is 1.72.

Compared with the value of 3.52 at the 100% non-locality point in Figure 38(a), the spatial reuse

achieved for the peer-to-peer protocols used climbs to only about half of the ideal value. It falls

afterward due to the increased inefficiencies of the protocols used at higher traffic load. (Recall that

Figure 38(b) only accounts for successful one-hop data transmissions.) We note that the decrease in

the maximum spatial reuse achieved (about half) also accounts for a corresponding decrease in the

maximum throughput achieved shown in Figure 37.

7.3.2 Fairness

The average throughput presented in Section 7.3.1 is a measure of the aggregate performance

achieved by all flows in the network. However, it does not portray the distribution of individ-

ual throughputs. In this section we present results demonstrating the fairness properties (or lack

thereof) of the two network models. Intuitively, since the base station in the cellular network model

performs a centralized round-robin scheduling, it is possible to achieve the ideal fairness. However,

in the peer-to-peer network model, because the protocols used are distributed, and the source node

can be located randomly in the network, the throughputs enjoyed by individual flows can be very

different.

To capture the degree of unfairness, we use the coefficient of variation (CoV) by normalizing

108

0

2

4

6

8

10

12

14

16

18

20

0 1 10 20

T
hr

ou
gh

pu
t (

K
bp

s)

Maximum Speed (m/s)

Peer-to-Peer Model
Cellular Model

(a) DSR

0

2

4

6

8

10

12

14

16

18

20

0 1 10 20

T
hr

ou
gh

pu
t (

K
bp

s)

Maximum Speed (m/s)

Peer-to-Peer Model
Cellular Model

(b) DSDV

Figure 40: Impact of Mobility (Average Throughput)

the standard deviation to the mean [47]. Figure 39(a) compares the CoVs of the peer-to-peer and

cellular network models for the same scenario used in Figure 37(a). It is clear that the peer-to-peer

network model does exhibit a much higher degree of variation than the cellular network model.

Figure 39(b) gives a closer look at the unfairness property of the peer-to-peer network model, where

the throughput distributions of flows in the network with 8Kbps and 16Kbps offered loads are com-

pared. It can be observed that due to the protocol inefficiencies, the peer-to-peer network model is

inherently unfair even when the network is not heavily loaded. Moreover, unfairness increases when

the offered load increases. Note that the only difference between the two scenarios is the data rate

generated at the source. Ideally, the effect of increasing offered load should be the increase in the

utilization of the channel that was otherwise not fully utilized when the offered load is low. How-

ever, by comparing the throughput distributions for the two offered loads, we find that while some

flows do achieve higher throughput for increasing load (e.g. f 99), some fail to retain the already

achieved throughput, and instead suffer from throughput degradation (e.g. the throughput of f 11

drops from 7.8Kbps to 3.6Kbps). This is another exposition of the inefficiencies of the distributed

protocols used in the peer-to-peer network model.

7.3.3 Mobility

We have thus far considered only static scenarios where the hosts are not mobile during the en-

tire simulation period. In this section, we present results for mobile scenarios using the waypoint

109

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Static

Mobile (speed = 20m/s)

(a) Degradation and Fluctuations

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Static

Mobile (speed = 20m/s)

(b) Burstiness

Figure 41: Impact of Mobility (Instantaneous Throughput)

mobility model described in Section 7.1. Figure 40(a) and Figure 40(b) compare the throughput

performance of the two network models with increasing mobility, by using DSR and DSDV routing

protocols respectively. We observe that the throughput in the cellular model is unaffected by mobil-

ity since we consider only a single cell in this work. However, the performance of the peer-to-peer

model degrades with increasing mobility due to the overheads caused by route failures and route

re-computations, associated losses, and the transport protocol’s reaction to such phenomena [8, 51].

To understand the microscopic behavior of the peer-to-peer network model in the presence of

mobility, we show in Figure 41(a) and Figure 41(b) a sample trace of TCP’s sequence number

progression when DSR and DSDV are used respectively. For each figure, we plot the sequence

number of the same flow in static and mobile scenarios. It is clear from Figure 41(a) that in the

mobile scenario, the sequence number progression is intermittent with pauses as long as 5 seconds.

Compared with the static scenario, we observe that not only does mobility cause degradation of the

average throughput (refer to the sequence number at t = 50s), but it also introduces fluctuations in

the instantaneous throughput (observe the frequent changes in the slope). In addition, mobility may

induce undesired behaviors of the protocols used in the peer-to-peer network model, such as the

“burstiness” shown in Figure 41(b). Note that after the route failure is recovered at t = 38s, TCP

bursts out all packets queued in its socket send buffer that it failed to transmit when the route was

broken. Therefore, although the sending rate of the application used is only 16Kbps, a total of 30

110

packets are burst out during t = 38s and t = 40s, leading to an effective sending rate of 120Kbps!

Even the sequence number in the mobile scenario manages to keep up with that in the static scenario

at t = 50s, such burstiness is clearly undesirable, as it may result in packet losses, or aggravating

the problem of protocol inefficiencies at high induced load (e.g. the unfairness problem discussed

in Section 7.3.2).

7.4 Summary

Although the peer-to-peer network model enjoys better spatial reuse due to the use of short-range

transmissions, we have shown in this chapter that it does not achieve better throughput performance

compared to the cellular network model in the Internet access scenario. We also showed that the

peer-to-peer network model exhibits poor fairness characteristics and suffers from further through-

put degradation with increasing host mobility. We summarize the key reasons for the drawbacks of

the peer-to-peer model as follows:

• Base Station Bottleneck: Although the peer-to-peer network model uses short-range transmis-

sions and hence increases the degree of spatial reuse in the network, such spatial reuse gain

cannot be fully utilized in a cellular environment. Specifically, since every flow in the cell is

destined for servers in the backbone network, the base station is used as the destination of all

traffic in the wireless domain. This results in the channel around the base station becoming

a bottleneck, thus limiting the throughput performance of the peer-to-peer network model to

that of the cellular network model.

• Protocol Inefficiencies: The peer-to-peer network model has traditionally been used only

in stand-alone network environments, and hence the network protocols used are typically

distributed in nature with more focus on robustness and overall performance rather than on

providing good per-flow service. As a result of the distributed operations, the protocols are

inherently inefficient and in turn result in the peer-to-peer network model exhibiting poor

throughput and unfairness in a cellular environment.

• Host Mobility: The peer-to-peer network model uses short-range transmissions and multi-hop

routes. Mobility at any of the nodes along the multi-hop routes thus can potentially introduce

111

route failures and even network partitions. On the other hand, in the cellular network model,

mobile hosts use large transmission powers to directly reach the base station, and the only mo-

bile node along the route is the source itself. The impact of mobility is therefore greater in the

case of the peer-to-peer model than in the case of the cellular model. Mobility not only makes

mobile hosts suffer from throughput degradation, but also causes throughput fluctuations, and

further exposes the inefficiencies of the protocols used.

Notwithstanding the drawbacks of lower throughput performance, the peer-to-peer network

model does achieve better performance than the cellular network model in terms of lower power

consumption as we showed in Section 7.2. In fact, one of the key reasons to pursue approaches to

improve the throughput performance of the peer-to-peer network model is to leverage its power con-

sumption (short-range transmission) benefits. In the rest of the work, we propose two fundamental

principles called base station assistance and multi-homed peer relay that can be incorporated in the

peer-to-peer network model for addressing the drawbacks of the peer-to-peer network model in cel-

lular wireless data networks. The first principle leverages assistance from the base station, while the

second principle leverages the relaying capability of multi-homed peer hosts. We show that when

the two principles are used in tandem with the peer-to-peer network model, better performance in

terms of higher throughput, fair service, and resilience to mobility can be achieved.

112

CHAPTER 8

BASE STATION ASSISTANCE

In a pure peer-to-peer network model, the base station simply serves as the destination of the multi-

hop routes in the wireless domain, without performing any special operations different from other

mobile hosts. In this chapter, we propose base station assistance as the first principle where the

base station plays an active role in assisting the operations of the peer-to-peer network model. We

present two instantiations of the principle: (i) assisted protocols that use the base station to assist in

developing more efficient and effective protocols for the peer-to-peer network model, and (ii) dual-

mode operation that allows flows in the network to dynamically switch between the cellular and

peer-to-peer modes of operation for achieving better performance, in accordance with the network

conditions and the protocols used. We use network simulation to show the effectiveness of the

base station assistance in addressing protocol inefficiencies and network artifacts in the peer-to-peer

network model.

8.1 Assisted Protocols

One option to solve the problem of protocol inefficiencies is to develop better distributed algorithms.

However, another feasible option in the network environment we consider is to leverage the exis-

tence of the base station and the availability of control channels that exist between the base station

and mobile hosts in the cell. Because the base station is more resourceful (in terms of electric and

computing powers) and omniscient (for auditing and accounting purposes) than mobile hosts, it can

be used not only to reduce overheads due to distributed operations, but also to realize a protocol that

is otherwise infeasible using only distributed algorithms, such as load-balanced routing and topol-

ogy control [52, 53, 81]. Although base-station-assisted protocols can be developed for any layer

of the protocol stack, in this section we focus on an approach called assisted scheduling where the

base station assists the channel access of mobile hosts in the network.

113

The IEEE 802.11 MAC protocol [56], while popularly used as the de facto medium access con-

trol standard in the peer-to-peer network model, is primarily designed for a wireless LAN environ-

ment and has been shown to fare badly in terms of throughput and fairness achieved in a multi-hop

wireless network [53, 117]. Specifically, it is shown in [53] that the performance limitation of the

IEEE 802.11 MAC protocol in multi-hop networks results from (i) the use of RTS-CTS handshakes

that shut down any host around the transmitter or the receiver, and (ii) the design of a node-based

fairness model that penalizes hosts supporting a larger number flows. An ideal MAC protocol for

multi-hop wireless networks should maximize spatial reuse by allowing any host not interfering

with existing transmissions to transmit or receive. Moreover, it should support a flow-based fair-

ness model by considering end-to-end transmissions for resolving contention in channel access [53].

While it is non-trivial to implement such an ideal protocol using purely distributed algorithms, we

now discuss how the base station can be used to assist in realizing the ideal MAC protocol.

Essentially, in assisted scheduling, the base station periodically draws up a schedule for multi-

hop transmissions within the network based on the information provided by mobile hosts. The

transmission schedule maximizes throughput subject to fair per-flow service. The base station then

broadcasts the schedule to the mobile hosts through the control channel. Note that the role of the

base station in the proposed approach is very similar to that in a conventional cellular network [41].

The difference however lies in the fact that the scheduling is now done for multi-hop flows instead

of individual mobile hosts. Figure 42 lists the variables used in the assisted scheduling algorithm,

and Figure 43 presents the algorithm.

L(n) → location information provided by mobile host n
R(f) → route used by flow f
B(f) → service backlog of flow f
S(f) → service enjoyed by flow f
CM → connection matrix of the network
SR → transmission schedule to be released
SO → schedule carried over to the next scheduling period
LF → list of flows with service backlog
sp → length of the transmission schedule

Figure 42: Assisted Scheduling Algorithm (Variables)

Periodically, the mobile host n uses the control channel to update the base station with the

114

Mobile Host and Base Station Communication
From each mobile host n:

1 Send neighbor list L(n) (or GPS information)
2 Send flow backlog B(f) for flow f with source node n

From base station:
3 Broadcast transmission schedule SR

At Base Station
State Maintenance:

4 Whenever L(n) is updated:
5 Update the connection matrix CM of the network based on L(n)
6 Obtain new route R(f) for every flow f using CM

Scheduling:
7 Initialize SO to /0
8 At time t, draw a new transmission schedule with sp time slots:
9 Initialize SR to SO
10 Put every new backlogged flow f in LF
11 While LF is not empty:
12 Find flow f with minimum service S(f)
13 status← Schedule-flow(f , t)
14 if status is SUCCESS
15 decrement backlog counter B(f)
16 increment service counter S(f)
17 if B(f) is zero
18 remove f from LF
19 else
20 remove f from LF

Schedule-flow(f , t)
21 sno← t
22 Traverse each hop h of R(f) starting from the first hop
23 Find the first slot s >= sno such that transmission on hop h

will not interfere with transmissions already scheduled in slot s
24 if (s < t + sp)
25 schedule hop h in slot s and update SR
26 elseif h is not the first hop
27 schedule hop h in slot s and update SO
28 else
29 return FAILURE
30 sno← s+1
31 return SUCCESS

Figure 43: Assisted Scheduling Algorithm (Pseudo-Code)

location information L(n), which can be in the form of a neighbor list or the GPS location (line

1). It also informs the base station of the service backlog B(f) of the flow f for which it acts

as the source node (line 2). Upon receiving the updated information, the base station computes a

connection matrix CM of the network and the optimal route R(f) for each flow f (lines 4-6). For

each scheduling period (every sp time slots), the base station iterates through the list of flows with

backlogged services (line 10), and schedules for each flow the hops along the path that the flow

traverses (lines 21-31). Once all the flows are accommodated within the schedule, the base station

iterates once again through the schedule and attempts to fill in more end-to-end transmissions for the

115

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
bp

s)

% of Flows with Destination Outside Cell

Peer-to-Peer Model (Assisted Scheduling)
Peer-to-Peer Model (IEEE 802.11)
Cellular Model

(a) Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100

C
oV

% of Flows with Destination Outside Cell

Peer-to-Peer Model (Assisted Scheduling)
Peer-to-Peer Model (IEEE 802.11)
Cellular Model

(b) Fairness

Figure 44: Assisted Scheduling Performance (Traffic Locality)

flows within the schedule (lines 11-20). The process is repeated until the schedule cannot be filled

in with any flow. A transmission schedule SR of length sp is broadcast to mobile hosts every sp time

slots (line 3). Unlike in related approaches [71], the base station at all stages tries to provide fair

service before trying to enhance throughput. In other words, when the “refilling” process is done,

flows with less service are provided priority over flows with more service. Flows that have schedules

beyond the current scheduling period, have slots reserved during the next scheduling period (SO)

irrespective of the newly contending flows during the next scheduling operation (i.e. flows once

scheduled are not preempted).

At each mobile host, a single output queue is maintained for all packets to be forwarded. When

the MAC layer requests for a packet from a specific flow (according to the schedule drawn by the

base station), a selective dequeue mechanism is used to dequeue the first packet (relative to the

head of the queue) that belongs to that flow. For results presented in this section, the base station

computes a shortest-path route for each flow. Note that more optimal routes (e.g. load-balanced

routes [53]) can be chosen by the base station, although at the expense of more complexity.

In Figure 44 we show the performance of the peer-to-peer network model using assisted schedul-

ing when the percentage of non-local flows varies from 0% to 100%. For reference, we also show

the performance of the cellular network model and the peer-to-peer network model using purely

distributed protocols. We observe that assisted scheduling greatly improves the performance of the

116

0

2

4

6

8

10

12

14

16

18

20

8 16 24 32

T
hr

ou
gh

pu
t (

K
bp

s)

Offered Load (Kbps)

Peer-to-Peer Model (Assisted Scheduling)
Peer-to-Peer Model (IEEE 802.11)
Cellular Model

(a) Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 24 32

C
oV

Offered Load (Kbps)

Peer-to-Peer Model (Assisted Scheduling)
Peer-to-Peer Model (IEEE 802.11)
Cellular Model

(b) Fairness

Figure 45: Assisted Scheduling Performance (Traffic Load)

peer-to-peer network model. Although its performance degrades as the number of flows traversing

through the base station increases (due to the increased bottleneck at the base station), it achieves the

same performance as the cellular network model when the percentage of non-local flows is 100% –

as opposed to worse when using the IEEE 802.11 MAC protocol that we showed in Figure 36(a).

The fairness is also improved due to more flows enjoying substantial higher throughputs. As traffic

non-locality increases, more and more flows traverse through the same bottleneck, and hence the

CoV decreases in the case of assisted scheduling. (The IEEE 802.11 MAC protocol supports a node-

based fairness model, and hence its unfairness increases with traffic non-locality.) Figure 45 shows

the performance of assisted scheduling with respect to offered load when 100% of the flows are

non-local. The performance benefits of assisted scheduling in reducing the protocol inefficiencies

for achieving higher throughput and lower unfairness still hold true for varying traffic load.

The performance gains achieved by using assisted scheduling can be attributed to the following

reasons: (i) The base station has global information and hence can draw up the optimal schedule for

maximizing throughput and fairness. (ii) Since the schedule is constructed in a centralized fashion

without requiring the RTS-CTS handshakes between mobile hosts, the spatial reuse is increased.

Moreover, the per-flow fairness model is achieved via the centralized flow scheduling algorithm.

(iii) The protocol inefficiencies due to contentions and collisions in the distributed operations of the

IEEE 802.11 MAC protocol are reduced.

117

8.2 Dual-Mode Operation

Assisted scheduling presented in Section 8.1 avoids the overheads and inefficiencies in the IEEE

802.11 MAC protocol, and allows the peer-to-peer network model to achieve comparable perfor-

mance to the cellular network model in terms of throughput and fairness. However, note that the

assisted scheduling algorithm presented in Figure 43 could fail if the network is partitioned such that

some of the hosts cannot find multi-hop routes to reach the base station. While one possible solution

along the line is to develop an assisted topology control protocol [52] (for adapting the transmission

powers) for use in tandem with the assisted scheduling protocol, in this section we present a differ-

ent approach called the dual-mode operation that does not rely on changing the protocols used in

the peer-to-peer network model.

In the proposed approach, the base station supports dual modes of operation: the cellular mode

and the peer-to-peer mode. The two modes are provided time-division access to the channel, and

the division between the cellular and peer-to-peer modes is based on the number of flows selected

to be served in the cellular mode. Flows served in the cellular mode do not receive any service

in the peer-to-peer mode and vice versa. However, irrespective of which flows are selected to

be served in the cellular mode, all mobile hosts in the network participate in packet forwarding

during the peer-to-peer mode. A flow in the peer-to-peer mode will switch to the cellular mode

for any non-performance observed in the peer-to-peer mode due to, say, inefficient protocol stacks,

topology constraints, or mobility induced degradation. On the other hand, once switched to the

cellular mode, the flow will switch back to the peer-to-peer mode whenever the network state is

such that it can achieve the desired throughput. The goal of using the dual-mode operation is to

allow individual flows in the network to dynamically choose the mode of operation that can provide

better services. Figure 46 lists the variables used in the algorithm for the dual-mode operation, and

Figure 47 presents the algorithm.

In the dual-mode operation, the channel is time-divisioned into periods of length rp, which is

further divided between the cellular and peer-to-peer modes (lines 1-2). In the initial state of the

network, all flows are served in the peer-to-peer mode. Each mobile host periodically monitors

the throughput in an interval of length mp (set to multiples of rp), and requests the base station to

118

n → number of flows in the network
SF → set of flows currently operated in cellular mode
cT → time division allocation for cellular mode
rp → cellular mode repetition period
mp → throughput monitoring period
up → division update period
T p(i) → route partition timer (timeout=pp) for flow i
T s(i) → cellular mode sojourn timer (timeout=sp) for flow i
M(i) → mode of operation {CELLULAR, PEER} for flow i
P(i) → peer-to-peer mode connectivity {PARTITION, CONNECT} for flow i
g(i) → throughput over mp for flow i
G(i) → aggregate throughput for flow i
R(i) → reference throughput for flow i

Figure 46: Dual-Mode Operation Algorithm (Variables)

serve its flow in the cellular or peer-to-peer mode (lines 3-6) based on the observed performance.

Specifically, a mobile host i keeps track of the short-term throughput g(i) (over the last mp period),

and long-term throughput G(i) (since its inception) achieved. A mobile host switches its flow to the

cellular mode only if both the short-term and long-term throughputs are lower than the reference

throughput R(i) it would have observed in a pure cellular network. The reference throughput is a

lower bound on the throughput a mobile host desires to enjoy, and is decided when the mobile host

initially joins the network. For simplicity we assume that the reference throughput is C
n for flows

with the destination outside the cell.

Another reason for a flow in the peer-to-peer mode to switch to the cellular mode is due to

mobility induced network partitions. Mobile hosts discover a network partition via the callback

from the peer-to-peer routing protocol (lines 24-30). A mobile host operating in the peer-to-peer

mode considers itself partitioned from the destination and switches its flow to the cellular mode if

route errors last for more than a duration of length pp (lines 31-35). Note that even if route errors

do not trigger a switch to the cellular mode, the mobile host may still switch to the cellular mode

due to throughput degradation (lines 3-4). When a mobile host i switches its flow to the cellular

mode, a timer T s(i) is associated with the flow (line 20). The timeout sp is the amount of time the

flow will stay in the cellular mode before it will be reverted back to the peer-to-peer mode (lines

36-37). Flows that are not partitioned anymore, but were switched to the cellular mode because of

a partition, are also reverted back to the peer-to-peer mode (lines 29-30).

Every up time units, the base station consolidates requests from mobile hosts to join or leave

119

At Mobile Host i
Every rp time:

1 participate in cellular mode for cT period
2 participate in peer-to-peer mode for the remaining period

Every mp time:
3 if M(i) is PEER and g(i) < R(i) and G(i) < R(i)
4 send request[i, JOIN] to the base station
5 elseif M(i) is CELLULAR and G(i) > R(i) and P(i) is CONNECT
6 send request[i, LEAVE] to the base station

Selective Dequeue:
7 in cellular mode
8 if M(i) is CELLULAR
9 dequeue only packets belonging to flow i
10 else
11 do not dequeue any packets
12 in peer-to-peer mode
13 if M(i) is PEER
14 dequeue head-of-line packets
15 else
16 dequeue only packets not belonging to flow i

Receive division[time t, set S]:
17 cT ← t
18 if i ∈ S
19 M(i)← CELLULAR
20 start T s(i) if not set
21 else
22 M(i)← PEER
23 stop T s(i) if set

Callback from routing protocol with reason r:
24 if r is ROUTE-ERROR
25 start T p(i) if not set
26 elseif r is ROUTE-OKAY
27 P(i)← CONNECT
28 stop T p(i) if set
29 if M(i) is CELLULAR and T s(i) expired
30 send request[i, LEAVE] to base station

When partition timer T p(i) expires:
31 P(i)← PARTITION
32 if M(i) is PEER
33 send request[i, JOIN] to base station
34 else
35 start route probes until P(i) is CONNECT

When sojourn timer T s(i) expires:
36 if P(i) is CONNECT
37 send request[i, LEAVE] to base station

At Base Station
Every rp time:

38 participate in cellular mode for cT period
Every up time:

39 cT ← rp∗ |SF|
n

40 broadcast division[cT , SF] to mobile hosts
Receive request[mobile host i, action a]:

41 if a is JOIN
42 SF ← SF +{i}
43 else
44 SF ← SF−{i}

Figure 47: Dual-Mode Operation Algorithm (Pseudo-Code)

120

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

K
bp

s)

Flow ID

(a) Peer-to-Peer Model

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

K
bp

s)

Flow ID

(b) Dual-Mode Operation

Figure 48: Dual-Mode Operation Performance (Fairness)

the cellular mode. It then sends to the mobile hosts the updated set of selected flows SF to operate

in the cellular mode, and the corresponding time-division cT to be used for the next up period

(lines 39-40). Each mobile host, upon receiving the updated information from the base station,

sets its cT timer, updates its mode of operation M(i), and appropriately configures its link layer for

selective dequeue. A mobile host in the cellular mode can dequeue packets in its link buffer only

if it is selected to operate in the cellular mode (lines 7-11). However, in the peer-to-peer mode all

mobile hosts dequeue and forward packets normally, except for those flows that can be dequeued in

the cellular mode (lines 12-16). When operating in the cellular mode, the base station and mobile

hosts communicate directly as in a conventional cellular network. For example, the base station can

perform direct polling (as in WLANs) or broadcast a transmission schedule (as in WWANs) to the

subset of mobile hosts in SF . Flows coming into the cell from the distribution network are served

under the same fairness scheme used for serving outgoing flows.

We now show the performance of the peer-to-peer network model using the dual-mode oper-

ation. In Figure 48 we compare the throughput distribution of flows using the pure peer-to-peer

network model with that of flows using the dual-mode operation. As we have seen in Section 7.3.2,

the peer-to-peer network model exhibits a very high degree of unfairness due to protocol inefficien-

cies. However, we observe in Figure 48(b) that the throughput distribution using the dual-mode

operation is significantly improved. Flows that starve in the peer-to-peer mode are switched to the

121

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Dual-Mode Operation

Peer-to-Peer Model

(a) Mobility

0

50

100

150

200

250

300

350

400

0 50 100 150 200

S
eq

ue
nc

e
N

um
be

r

Time (sec)

Dual-Mode Operation

Peer-to-Peer Model

(b) Congestion

Figure 49: Dual-Mode Operation Performance (Instantaneous Throughput)

cellular mode to enjoy a better throughput performance.

Figure 49 shows the sequence number progression of one flow in the pure peer-to-peer network

model and the dual-mode operation respectively. Figure 49(a) is obtained in a mobile scenario,

while Figure 49(b) is obtained in a static scenario. We observe in Figure 49(a) that due to network

partitions and the exponential backoffs in TCP, the flow in the peer-to-peer network model is not

able to deliver any packet to the destination until around t = 185s, after which the sequence number

increases rapidly. When operated using the dual-mode operation, the same flow is switched to the

cellular mode during network partitions, as evident from the steady increase in the sequence number

progression for the same duration. The “gaps” in the sequence number progression indicate that the

flow is periodically switched back to the peer-to-peer mode for possible reversion. Once the network

re-configures such that the flow can deliver packets to the base station in the peer-to-peer mode, it

is reverted back to the peer-to-peer mode and starts enjoying the improved throughput due to the

increase in spatial reuse. Note that even when the network is not partitioned, a flow can still be

unfairly treated due to topology constraints and protocol inefficiencies. However, as Figure 49(b)

shows, irrespective of the reasons causing throughput degradation, such a flow will be served in the

cellular mode.

122

8.3 Future Research Issues

We have described in this chapter two approaches that leverage the existence of the base station to

assist the operation of the peer-to-peer network model in cellular wireless networks. While the pur-

pose of the strawman realizations presented in this chapter is to study the performance improvement

and to motivate further investigation of such base-station-assisted approaches in the peer-to-peer

network model, in the following we discuss several practical considerations and research issues for

these approaches.

8.3.1 Communication Overheads

A key component in the base-station-assisted approach is the use of the control channel between

the base station and mobile hosts. For example, in assisted scheduling, the control channel is used

for each mobile host to convey its location (or neighborhood) information to the base station, and

for the base station to broadcast the transmission schedule to all mobile hosts. In the dual-mode

operation, the control channel is used for each mobile host to convey the request to join or leave

the cellular mode, and for the base station to broadcast the set of flows selected to be operated

in the cellular mode as well as the corresponding channel division information. While the use of

the control channel may appear to be an overhead, existing cellular networks already have several

control channels available for exchanging information between the base station and mobile hosts,

such as transmission schedule and power control information [30, 41]. We also note that some

WLAN systems already provide the neighborhood information that assisted scheduling uses, in the

form of link quality map where the link quality and connectivity between each pair of mobile hosts

in the network are maintained [32].

8.3.2 Host Complexities

Mobile hosts in the pure peer-to-peer network model are required to implement all protocol func-

tionalities required by the distributed operations such as medium access and routing. However, with

the assistance from the base station, such complexities can be greatly reduced. For example, in as-

sisted scheduling, the base station is responsible for computing the transmission schedule based on

123

the desired fairness model, while mobile hosts merely follow the schedule for channel access with-

out performing any sophisticated operations. However, note that the complexity tradeoff between

the base station and mobile hosts can be a design parameter in developing assisted protocols. The

base station can, for example, assist the operations of the IEEE 802.11 MAC protocol in terms of

collision resolution and hidden terminal detection, without totally taking over the channel access in

the peer-to-peer network model. Similarly, for the dual-mode operation, we presented in Figure 47

a mobile-host-centric algorithm, where mobile hosts are responsible for monitoring throughputs,

detecting network partitions, and deciding the appropriate mode of operation. However, as we

have shown in [54], it is possible to shift the complexities to the base station by implementing a

base-station-centric algorithm, where the base station tracks the network topology and makes the

switching decision for each flow, if so desired.

8.3.3 Scheduling Algorithm

We use assisted scheduling as an example to show the performance benefits of base-station-assisted

protocols. The concept of centralized scheduling is however not new in cellular networks and multi-

hop packet networks. For example, in multi-hop packet radio networks, (base-station) coordinated

channel access schemes such as “spatial TDMA” (STDMA) [79, 87] have been used to increase

the capacity of the network. HIPERLAN/2 networks also use TDMA-based centralized scheduling

for maximizing channel utilization and supporting QoS requirements. Nonetheless, as we showed

in [53], in multi-hop wireless networks, the flow scheduling algorithm presented in Section 8.1

achieves better performance than the node or link scheduling algorithm used in STDMA-like ap-

proaches. We note that the algorithm presented in Figure 43 is simplistic than sophisticated, and it

does not handle issues such as mobility, variable packet size, and reverse traffic. However, related

work exists that addresses similar issues, and hence can be incorporated for refining the assisted

scheduling algorithm – e.g. topology-transparent schedules that are immune to topology change

due to node mobility [26], traffic-controlled schedules that adapt to the dynamics of the traffic [42],

and cross-layer schedules that consider the joint optimization of routing, scheduling and power

control [77].

124

8.3.4 Mode Multiplexing

In the algorithm presented for the dual-mode operation, the cellular and peer-to-peer modes are

provided time-division access to the channel. However, the framework does not stipulate a specific

channel division scheme, and other schemes like frequency-division or code-division can also be

employed. Moreover, the framework is not confined to a single-channel environment (such as IEEE

802.11 WLANs), but can be extended to a multi-channel environment (such as 3G WWANs) where

individual mobile hosts are provided different channels to communicate with the base station. In

particular, if mobile hosts use multi-channel MAC protocols for peer-to-peer communication (see,

for example, related work presented in [115]), the dual-mode operation can be considered as one

that optimally divides the number of channels (from the pool of channels) to be used in the cellular

and peer-to-peer modes.

Note that in Figure 47, we restrict flows to be served exclusively either in the cellular or peer-

to-peer mode at any time instant, in order to prevent out-of-order arrivals from impacting TCP’s

performance. However, TCP may still react adversely in such a dual-mode operation for the fol-

lowing two reasons: (i) When a flow switches between the cellular and peer-to-peer modes, it is

possible that packets transmitted in the peer-to-peer mode just before entering the cellular mode

will be delivered later than those transmitted during the cellular mode, and vice versa. When chan-

nel capacities are high, there can be enough out-of-order packets to trigger a fast retransmit at the

TCP source, thus leading to an unnecessary cutdown of the window size. (ii) Packet losses in the

peer-to-peer mode may cause TCP to experience timeouts and reset its window size. If later the

flow is switched to the cellular mode and offered transmission slots, TCP will not be able to trans-

mit because the window size is reset. Evidently, the fundamental problem is that TCP is designed

for a single path, and it cannot simultaneously use multiple paths (or multiple modes in this context)

exhibiting very different characteristics. One solution to relieve these constraints is to use a multi-

state transport protocol as we proposed in Part I such that TCP can maintain one state for each mode

independently. The progression of the two modes therefore will be decoupled without interfering

with each other, and thus flows can be allowed to operate in both modes simultaneously to achieve

the aggregate throughput.

125

CHAPTER 9

MULTI-HOMED PEER RELAY

We have shown in Chapter 8 that, by seeking the assistance from the base station, the peer-to-peer

network model can achieve significant performance improvement in terms of throughput, fairness,

and resilience to mobility. However, its performance is still limited to that of the cellular network

model due to the base station bottleneck. While a viable option to alleviate the channel bottleneck

around the base station is to perform better dimensioning of the cell (e.g. reducing the cell size)

and thus limit the number of mobile hosts that the base station has to serve, in this chapter we ex-

plore along another dimension that leverages the fundamental operation of the peer-to-peer network

model, namely peer relays. Briefly, we extend the peer-to-peer network model from relaying traffic

purely within one network domain to relaying traffic between two different network domains – with

the help of hosts that have multiple network interfaces. Such multi-homed hosts that have Internet

access through any of the available network interfaces can be used to relay traffic (destined to the

backbone network) from one interface to another, therefore serving as the destinations for flows in

the network with bottleneck. Since the base station of the bottleneck network is no longer the only

destination for Internet access, the channel bottleneck around the base station can be relieved. Note

that the cellular network model will not be able to benefit from the availability of these multi-homed

hosts due to its peer-agnostic nature, where the base station is the single point of communication

for all mobile hosts in the network. In this chapter, we propose multi-homed peer relay as the sec-

ond principle to be incorporated in the peer-to-peer network model. We present two instantiations

of the principle that allow the peer-to-peer network model to remove the base station bottleneck

observed in cellular wireless networks: (i) relay between the wireless and wired networks using

hybrid stations, and (ii) relay between heterogeneous wireless networks using multi-mode mobile

hosts. We use network simulation to show the effectiveness of the multi-homed peer relay in lever-

aging the base station bottleneck in cellular wireless environments, and achieving the spatial reuse

gains provided by the peer-to-peer network model.

126

9.1 Hybrid Stations (Wireless–Wired Relay)

With the large number of wired static hosts in the Internet geographically spread, we consider

an approach where static hosts (equipped with both wired and wireless interfaces) can optionally

“subscribe” to wireless services. Such hybrid stations use the same peer-to-peer network protocols,

and act like any other mobile hosts in the wireless domain. However, their primary role will be to

serve as relays between the wireless domain and the wired Internet using the backbone connectivity

that they possess, thus alleviating the base station bottleneck. Note that the hybrid stations will not

perform the role of a base station such as channel allocation and packet scheduling. Instead, like

other mobile hosts in the cell, they use the wireless service provided by the base station. The re-

configuration from the regular Internet hosts to the hybrid stations thus can be as simple as plugging

in a wireless interface card, which can be motivated by free wired access (via cable or ADSL

modems) or a share of the revenue from the wireless service provider. Hybrid stations are hence

distinguished from the “wireless routers” or “forwarding terminals” proposed in related work that

require the use of dedicated channels, or changes to channel access standards [29].

While the hybrid stations participate in peer-to-peer communication like any other mobile hosts,

the key difference in their functionality from regular mobile hosts is that they can relay packets

received from the wireless interface to the wired network. Specifically, the hybrid station, upon

receipt of a packet from its wireless interface, sends out the packet through its wired interface.

The packet is then routed to the base station in the wired network without traversing the multi-hop

routes in the wireless domain. On the reverse path, a packet from the remote corresponding host

destined for the mobile host will reach the base station as usual. The base station then re-routes

the packet to the hybrid station that serves the mobile host the packet is destined for. Upon receipt

of the packet from its wired interface, the hybrid station sends out the packet through its wireless

interface, and routes the packet to the target mobile host using the peer-to-peer routing protocol (e.g.

DSR). Note that hybrid stations are chosen to serve the mobile host by the wireless routing protocol

in the route discovery phase (recall that the hybrid station functions like other mobile hosts in the

wireless domain), and handoffs from one hybrid station to another are performed as the result of

wireless routing protocol switching routes.

127

0

10

20

30

40

50

60

70

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

K
bp

s)

Number of Hybrid Stations

Peer-to-Peer Model (Assisted Scheduling)
Peer-to-Peer Model (IEEE 802.11)
Cellular Model

(a) Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25

C
oV

Number of Hybrid Stations

Peer-to-Peer Model (Assisted Scheduling)
Peer-to-Peer Model (IEEE 802.11)
Cellular Model

(b) Fairness

Figure 50: Hybrid Stations Performance

The principal advantage gained from using hybrid stations is the removal of the channel bottle-

neck surrounding the base station. In Figure 50, we present simulation results for the performance

of the peer-to-peer network model in the presence of hybrid stations. We randomly place the hybrid

stations in the network, and increase the number of hybrid stations from 1 to 25. The per-flow data

rate for each of the 100 mobile hosts is set to 64Kbps. We compare the throughput and fairness

performance of the cellular and peer-to-peer network models using either assisted scheduling or the

vanilla IEEE 802.11 MAC protocol. Several observations can be made from the results: (i) The av-

erage throughput of the peer-to-peer network model with hybrid stations is significantly better than

that of the cellular network model (both for using the vanilla protocol and the assisted protocol).

While the throughput achieved in the cellular network model is limited by the bottleneck at the base

station, the peer-to-peer network model can leverage the existence of hybrid stations and remove

the base station bottleneck. (ii) The number of hybrid stations required is not of the order of the

number of mobile hosts in the network. Specifically, as shown in Figure 50(a), in the presence of

10 hybrid stations, the achieved throughput can reach the target flow rate of 64Kbps when assisted

scheduling is used. Note that the locations of the hybrid stations are randomly distributed, instead

of carefully planned. (iii) Network fairness is improved using the hybrid stations. While we already

observed in Figure 45(b) that the fairness provided by the peer-to-peer network model using assisted

scheduling is comparable to that provided by the cellular network model, Figure 50(b) shows that

128

even with the vanilla IEEE 802.11 MAC protocol, the peer-to-peer network model can significantly

improve on fairness in the presence of hybrid stations. This is because more and more flows are able

to achieve higher throughputs than they would have enjoyed using the cellular network model. Note

the increased unfairness using assisted scheduling is due to the increased throughput for mobile

hosts near the hybrid stations. As the number of hybrid stations increases, more flows can enjoy the

increased throughput and thus the CoV reduces.

9.2 Multi-mode Mobile Hosts (Wireless–Wireless Relay)

The hybrid stations relieve the channel bottleneck around the base station by relaying traffic between

the wired and wireless networks. In this section, we show a different instantiation of multi-homed

peer relay – relay between two heterogeneous wireless networks. With the increasing heterogeneity

of wireless access technologies, many mobile hosts today are equipped with multiple wireless inter-

faces that allow them to have “anywhere, anytime” access to the Internet. When such a multi-mode

mobile host moves to an area covered by multiple wireless access technologies (where more than

one interface is active), it can be used to relieve the base station bottleneck in the more “crowded”

network via multi-homed peer relay. For example, consider a scenario where there are scattered

WLAN (WiFi) hot spots within a WWAN (3G) macro-cell, and assume that only the WWAN suf-

fers from the base station bottleneck. Since a multi-mode mobile host with both wireless interfaces

can access the Internet using either interface, any traffic (destined to the backbone network) gener-

ated by other mobile hosts with only the WWAN interface can be relayed to the multi-mode host.

Hence, mobile hosts in the WWAN do not need to rely on the base station for Internet access, and

the channel bottleneck around the base station can be relieved.

Note that although several approaches have been proposed in a similar context to interwork

WWAN and WLAN systems [19, 31, 92], they are different from the multi-homed peer relay pro-

posed in this work. In the WWAN-WLAN interworking architectures proposed in related work,

only mobile hosts with the additional WLAN interface that are within the coverage area of the

WLAN can connect to the WLAN access point, and benefit from the high data rate provided by the

WLAN. As soon as the mobile host moves out of the coverage area of the WLAN access points,

it needs to fallback to the WWAN connection, and competes for the bottleneck-channel around the

129

WWAN base station. On the other hand, in the proposed multi-homed peer relay, any mobile host

with a WWAN interface can benefit from the service provided by the WLAN as long as there is at

least one multi-mode mobile host within the coverage area of the WLAN, even if the former is not

equipped with the WLAN interface and is not within the coverage of the WLAN access point. This

is possible due to the cooperative and multi-hop natures of the peer-to-peer network model used in

the multi-homed peer relay: a mobile host can reach the destination in multiple hops via the help

of peer hosts, with even multiple network interfaces involved in the traffic relay. Since the WLAN

coverage area is typically much smaller than that of the WWAN, the multi-homed peer relay can

greatly improve the opportunity for a mobile host to be served through the WLAN, thus achieving

higher performance improvement than the interworking approaches.

It is evident that the presence of multi-mode mobile hosts will have a similar effect to the pres-

ence of hybrid stations on improving the performance of the peer-to-peer network model that we

showed in Figure 50. As the number of multi-homed hosts increases, the throughput and fairness

enjoyed by all mobile hosts will improve substantially. In this section, however, we use a slightly

different scenario to compare the effectiveness of multi-homed peer relay against the interworking

approach in relieving the bottleneck at the base station. We consider the aforementioned WWAN

and WLAN environments, and assume that the simulation models described in Section 7.1 are for

the WWAN environment. We introduce WLAN access points to the same network grid, but set the

channel data rate to 11Mbps and the transmission range to 250m. All mobile hosts are equipped

with both WWAN and WLAN interfaces, but they preferentially use the WLAN connection for

Internet access. In multi-homed peer relay, if a mobile host fails to find a multi-hop route to any

WLAN access point, or it fails to achieve the desired throughput through the WLAN (say, due to

increased traffic in the WLAN), it communicates directly with the WWAN base station instead. On

the other hand, in the interworking approach, the mobile host uses the WLAN connection only when

it is within (one-hop) the coverage area of the WLAN access point. As before, it switches to the

WWAN when it fails to achieve the target throughput.

Figure 51(a) shows the channel bottleneck around the WWAN base station when the number

of WLAN access points in the network increases from 1 to 6. We divide the WWAN coverage

area into a 3 × 3 array of same-sized grids, and randomly choose a subset of grids to place the

130

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

C
ha

nn
el

 U
sa

ge
 (

%
)

Number of WLAN Access Points

WWAN + Multi-hop WLAN Relay
WWAN + One-hop WLAN Relay
WWAN Only

(a) Base Station Bottleneck

0

10

20

30

40

50

60

16 32 48 64

T
hr

ou
gh

pu
t (

K
bp

s)

Offered Load (Kbps)

WWAN + Multi-hop WLAN Relay
WWAN + One-hop WLAN Relay
WWAN Only

(b) Throughput

Figure 51: Multi-mode Mobile Hosts Performance

WLAN access points. Each WLAN access point is located at the center of the chosen grid. We

measure the channel usage around the WWAN base station when the target data rate for each of

the 100 flows is set to 16Kbps. It is clear that when neither the interworking approach nor the

multi-homed peer relay is used (labeled as “WWAN only” in the figure), all flows traverse through

the WWAN base station, and hence the channel usage around the base station is kept at 80% or

so. When the interworking approach is used (labeled as “WWAN + one-hop WLAN relay” in the

figure), the bottleneck reduces as the number of WLAN access points used increases. However, note

that the channel usage around the base station is still about 65% with 6 WLAN access points, due

to the random movement of the mobile host, and the limited coverage of the WLAN access points.

On the other hand, when the multi-homed relay is used (labeled as “WWAN + multi-hop WLAN

relay” in the figure), the base station bottleneck can be substantially reduced to less than 5% for the

same number and distribution of WLAN access points. The “freed” channel around the base station

can then be used to serve more users or increase the data rate of current users. In Figure 51(b)

we fix the number of WLAN access points at 3, and show the per-flow throughput achieved when

the target data rate of each flow increases from 16Kbps to 64Kbps. It is clear that if no WLAN

access point is used, the per-flow throughput is limited to less than 20Kbps due to the base station

bottleneck. Otherwise, the presence of WLAN access points helps improve the throughput achieved.

However, the achieved throughput in the one-hop interworking approach is significantly lower than

131

that achieved in the multi-hop, multi-homed peer relay approach. We conclude that using the peer-

to-peer network model to interwork WWANs and WLANs can achieve a much better performance

than using only the cellular network model.

9.3 Future Research Issues

We have shown in this chapter that using multi-homed peer relay in the peer-to-peer network model

can effectively overcome the performance limitation imposed by the base station bottleneck. While

it is not the focus of this work to propose a complete system based on this principle, in the rest of the

section we discuss several research issues in developing the protocols for multi-homed peer relay.

9.3.1 Handoffs

The use of multi-homed hosts such as hybrid stations introduces two different types of handoffs

not present in conventional cellular networks. In the following, we use the hybrid stations as an

example, and explain how these handoff issues can be addressed: (i) Handoffs between Hybrid

Stations: Even if the movement of the mobile hosts is confined to within the cell served by the

base station, due to the smaller transmission range of the hybrid stations, a mobile host may need to

“handoff” from one hybrid station to another during the lifetime of the connection. However, such

handoffs are very different from the conventional handoffs between base stations. Since hybrid

stations communicate with the mobile host using the peer-to-peer routing protocol, handoffs occur

implicitly via the underlying wireless routing protocol switching routes. The route error detection

and route recovery procedures employed in such a routing protocol can handle handoffs between

hybrid stations, without explicit signaling as in conventional handoffs. (ii) Handoffs between the

Hybrid and Base Stations: Although hybrid stations are used to relieve the bottleneck at the base

station, they themselves can cause bottleneck if they are capacity-limited, or if they serve more

mobile hosts than the base station does (say, with only one or two hybrid stations in the cell).

Therefore, it may become necessary to handoff from the base station to the hybrid station and vice

versa, depending on the service perceived by the mobile host. Such handoffs are triggered due to the

degraded quality of service, rather than the degraded quality of signal. However, note that frequent

occurrences of such handoffs (e.g. “ping-pong” switching between the base station and the hybrid

132

station) may cause undesired performance degradation. A simple solution to avoid unnecessary

handoffs from the base station to the hybrid station is for the hybrid station to limit the number

of connections it serves, based on the number of serving mobile hosts or the quality of service

(throughput) each connection receives. A hybrid station will not reply to the route request (from the

wireless routing protocol) any mobile host issues when its relaying capacity is reached.

9.3.2 Routing Protocol

In multi-homed peer relay, routing needs to be performed across multiple networks. Assuming

that the source mobile host is served by network A, and the multi-homed relay host is served by

networks A and B, then multi-homed peer relay involves the routing protocol used in network A

(between the source and the relay host), and the routing protocol used in network B (between the

relay host and the corresponding host). For example, in the case of hybrid stations, network A uses

the wireless peer-to-peer routing protocol such as DSR, while network B uses the wired backbone

routing protocol such as IP routing.1 Several design issues need to be considered: (i) Mobile Host

Anycast: The terminating node of the peer-to-peer routing protocol used in network A can be any

multi-homed relay host that can serve the source. This can be achieved by using the anycast in

the peer-to-peer routing protocol. Alternatively, the relay host, upon receipt of the route discovery

for the corresponding host, can reply valid routes back to the source. The source can then process

the route reply as usual, and choose one with, say, the shortest route to the corresponding host.

(ii) Relay Host Tunneling: While ideally the relay host can simply pass packets received from

network A to network B without changing the source address, it might not always be the case. If

network B employs ingress filtering [33], then the relay host needs to perform some form of address

translation such as tunneling or IP encapsulation to ensure successful packet delivery. (iii) Base

Station Rendezvous: Although the motivation of using multi-homed relay host is to bypass the

channel bottleneck at the base station, to facilitate billing and avoid multi-path routing, it might be

desirable to route packets through the base station in the wired domain. However, the disadvantages

1We note that communication between the relay and corresponding hosts may involve more than one routing protocols,
as is the case for multi-mode mobile hosts described in Section 9.2. However, since we assume that the relay host can
communicate with the corresponding host using service provided by network B, we collectively refer to these different
routing protocols as one.

133

are the potential bottleneck in the core network the base station resides, and the suboptimal routes

between the hybrid stations (or the access points in the case of multi-mode mobile hosts) and the

corresponding host. (iv) Reverse Route Pinning: Since the source uses the address assigned by

network A, downstream traffic will be routed to the base station (and network A), unless a reverse

tunnel is established between the corresponding host and the serving relay host. The base station

thus needs to find the relay host that serves the target mobile host if asymmetric routes were to be

avoided. A simple solution is for the relay host to periodically update the base station on the list of

mobile hosts it is currently serving. Approaches proposed in [23] in a different context may also be

used.

9.3.3 Transport Protocol

The multi-homed peer relay alleviates the bottleneck at the base station by providing a different

route between the mobile host and the corresponding host that does not traverse through the base

station. While effective, the use of an alternative route can potentially impact the performance of

reliable transport protocols like TCP, as we discuss in the following: (i) Multi-Path Routing: When

packets belonging to the same connection are sent through different routes that exhibit mismatched

round-trip times, out-of-order arrivals at the receiver can occur and trigger TCP’s fast retransmit

mechanism to cut down the congestion window unnecessarily. Such multi-path routing is possible

in multi-homed peer relay, if handoffs between relay hosts and the base station occur during the

lifetime of a connection (as described in Section 9.3.1). When the connection handoffs from, say,

the base station to the hybrid station, packets sent through the hybrid station (after the handoff)

can arrive earlier than those sent through the base station (before the handoff), due to the delay

mismatches in the wireless domain and/or the wired domain – especially if the “base station ren-

dezvous” strategy that we discussed in Section 9.3.2 is not used. In addition to out-of-order arrivals,

frequent route switching between multiple paths can render TCP suboptimal. Since TCP performs

congestion control based on the characteristics of the underlying path such as the round-trip time

and pipe size (which it learns through repeated probing losses), route switching can potentially trig-

ger the adverse reaction of TCP. For example, switching from a route with short RTTs to one with

134

long RTTs can prematurely cause the retransmission timer to timeout, and shut down the conges-

tion window. On the other hand, switching from a route with long RTTs to one with short RTTs can

cause packet losses (due to buffer overflow or congestion) if two routes are of comparable band-

widths. (ii) Asymmetric Routing: Asymmetric routing occurs when the forward and reverse traffic

of the same connection traverses different routes. In multi-homed peer relay, such asymmetric rout-

ing can happen if the data packet traverses through the relay host, and the acknowledgment (ACK)

comes back through the base station or a different relay host. Since TCP uses the return of ACKs to

clock the transmission of data packets, it will function properly only if the incoming rate of ACKs

is equal to the available data rate on the forward path. However, if ACKs traverse a different path

with very different characteristics (say, round-trip time) from the forward path, TCP can potentially

under-utilize or overload the forward path. We note that the multi-state transport protocols proposed

in Part I can be used to address the problem due to multi-path routing in multi-homed peer relay.

135

CHAPTER 10

CONCLUSIONS

In this dissertation, we investigate the problem of providing mobile hosts with seamless and broad-

band wireless Internet access in the context of the increasing network heterogeneity and bandwidth

scarcity in future wireless data networks. We identify the inability of existing approaches to provide

solutions for supporting host mobility and utilizing wireless bandwidth that can scale with the het-

erogeneity of wireless networks and the proliferation of wireless devices respectively. In addressing

network heterogeneity, we motivate a solution based on the transport layer protocol for supporting

transparent host mobility across heterogeneous wireless networks. We establish parallelism and

transpositionality as two fundamental principles to be incorporated in designing the transport layer

solution. In addressing bandwidth scarcity, we motivate a solution based on the peer-to-peer net-

work model for scaling network capacity with wireless user population. We establish base station

assistance and multi-homed peer relay as two fundamental principles to be used in tandem with

the peer-to-peer network model. We present instantiations based on the established principles, and

demonstrate through theoretic analysis, packet simulation and testbed emulation their performance

benefits.

While we approach the problem from two different perspectives, the solutions proposed are in

fact consistent with each other. For example, the drive to develop new network models for improving

the performance of wireless networks is a testimony to the increasing heterogeneity of wireless

networks. The ability to support host mobility without relying on the specifics of the underlying

networks allows mobile hosts to still enjoy seamless connectivity while the new network model is

being deployed to support better services. Moreover, since the transport layer solution proposed

to address network heterogeneity does not stipulate any specific transport layer functionalities such

as congestion control that should to be used, it can accommodate different protocols proposed to

optimize the performance of the new network model. We note that while the proposed solutions

address the problems where existing approaches fail, the two complement each other in providing

136

a more holistic solution. For example, infrastructure-based approaches for mobility support can be

used for intra-technology handoffs, while end-to-end approaches can be used for inter-technology

handoffs. Solutions proposed in different layers of the network protocol stack can work hand-

in-hand with solutions target new network models to provide mobile hosts with optimal wireless

bandwidth.

In concluding the dissertation, we believe that the contribution of this work lies not only in

proposing new solutions with demonstrated performance improvement, but also in identifying new

research directions and establishing fundamental principles that future researches can build upon.

We believe that future researches can benefit from this work for a more balanced view of the solu-

tions involved in addressing the problems in wireless networking.

137

REFERENCES

[1] 3GPP, “3GPP TSG-RAN; Opportunity driven multiple access,” TR 25.924, V1.0.0, Dec.
1999.

[2] H. Adiseshu, G. Parulkar, and G. Varghese, “A reliable and scalable striping protocol,” in
Proceedings of ACM SIGCOMM, Palo Alto, CA, USA, pp. 131–141, Aug. 1996.

[3] G. Aggélou and R. Tafazolli, “On the relaying capacity of next-generation GSM cellular
networks,” IEEE Personal Communications Magazine, vol. 8, no. 1, pp. 40–47, Feb. 2001.

[4] K. Ahmavaara, H. Haverinen, and R. Pichna, “Interworking architecture between 3GPP and
WLAN systems,” IEEE Communications Magazine, vol. 41, no. 11, pp. 74–81, Nov. 2003.

[5] Akamai, “Akamai Accelerated Network Program,” http://www.akamai.com.

[6] M. Allman, H. Kruse, and S. Ostermann, “An application-level solution to TCP’s satellite
inefficiencies,” in Proceedings of Workshop on Satellite-Based Information Services (WOS-
BIS), Rye, NY, USA, Nov. 1996.

[7] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” IETF RFC 2581, Apr.
1999.

[8] V. Anantharaman and R. Sivakumar, “A microscopic analysis of TCP performance over mo-
bile ad-hoc networks,” in Proceedings of ACM SIGMETRICS, Marina Del Rey, CA, USA,
pp. 270–271, June 2002.

[9] B. Bakshi, P. Krishna, N. Vaidya, and D. Pradhan, “Improving performance of TCP over
wireless networks,” in Proceedings of IEEE ICDCS, Baltimore, MD, USA, pp. 365–373,
May 1997.

[10] H. Balakrishnan and R. Katz, “Explicit loss notification and wireless web performance,” in
Proceedings of IEEE GLOBECOM, Sydney, Australia, Nov. 1998.

[11] H. Balakrishnan, V. Padmanabhan, S. Seshana, and R. Katz, “A comparison of mechanisms
for improving TCP performance over wireless links,” IEEE/ACM Transactions on Network-
ing, vol. 5, no. 6, pp. 756–769, Dec. 1997.

[12] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: A media access protocol
for wireless LAN’s,” in Proceedings of ACM SIGCOMM, London, United Kingdom, pp. 212–
225, Sept. 1994.

[13] S. Biaz and N. Vaidya, “Discriminating congestion losses from wireless losses using inter-
arrival times at the receiver,” in Proceedings of IEEE ASSET, Richardson, TX, USA, pp. 10–
17, Mar. 1999.

[14] E. Blanton, M. Allman, K. Fall, and L. Wang, “A conservative SACK-based loss recovery
algorithm for TCP,” IETF Internet Draft; draft-allman-tcp-sack-13.txt, Oct. 2002.

138

http://www.akamai.com

[15] Bluetooth. http://www.bluetooth.com.

[16] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka, “TCP-PR: TCP for persistent
packet reordering,” in Proceedings of IEEE ICDCS, Providence, RI, USA, pp. 222–231, May
2003.

[17] D. Bovet and M. Cesati, Understanding the Linux Kernel. Sebastopol, CA, USA: O’Reilly
& Associates, Dec. 2002.

[18] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, “A performance comparison of
multi-hop wireless ad hoc network routing protocols,” in Proceedings of ACM MOBICOM,
Dallas, TX, USA, pp. 85–97, Oct. 1998.

[19] M. Buddhikot, G. Chandranmenon, S.-J. Han, Y.-W. Lee, S. Miller, and L. Salgarelli, “In-
tegration of 802.11 and third-generation wireless data networks,” in Proceedings of IEEE
INFOCOM, San Francisco, CA, USA, pp. 503–512, Mar. 2003.

[20] R. Cáceres and V. Padmanabhan, “Fast and scalable handoffs for wireless internetworks,” in
Proceedings of ACM MOBICOM, Rye, NY, USA, pp. 56–66, Nov. 1996.

[21] CAIDA, “Workload characterization,” http://www.caida.org/analysis/workload.

[22] M. Callendar, “International Mobile Telecommunications-2000 standards efforts of the ITU
(Special Issue),” IEEE Personal Communications Magazine, vol. 4, no. 4, pp. 6–7, Aug.
1997.

[23] A. Campbell, J. Gomez, S. Kim, A. Valkó, C.-Y. Wan, and Z. Turányi, “Design, implementa-
tion, and evaluation of Cellular IP,” IEEE Personal Communications Magazine, vol. 7, no. 4,
pp. 42–49, Aug. 2000.

[24] A. Campbell, J. Gomez, S. Kim, C.-Y. Wan, Z. Turányi, and A. Valkó, “Comparison of IP
micro-mobility protocols,” IEEE Wireless Communications Magazine, vol. 9, no. 1, pp. 2–12,
Feb. 2002.

[25] F. Chiussi, D. Khotimsky, and S. Krishnan, “Mobility management in third-generation all-IP
networks,” IEEE Communications Magazine, vol. 40, no. 9, pp. 124–135, Sept. 2002.

[26] I. Chlamtac and A. Farago, “Making transmission schedules immune to topology changes
in multi-hop packet radio networks,” IEEE/ACM Transactions on Networking, vol. 2, no. 1,
pp. 23–29, Feb. 1994.

[27] M. Crovella and A. Bestavros, “Self-similarity in the world wide web traffic: Evidence and
possible causes,” IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 835–846, Dec.
1997.

[28] M. Elaoud and P. Ramanathan, “Adaptive allocation of CDMA resources for network-level
QoS assurances,” in Proceedings of ACM MOBICOM, Boston, MA, USA, pp. 191–199, Aug.
2000.

[29] N. Esseling, H. Vandra, and B. Walke, “A forwarding concept for HiperLAN/2,” Computer
Networks, vol. 37, no. 1, pp. 25–32, Sept. 2001.

[30] ETSI, “BRAN; HIPERLAN Type 2; System overview,” TR 101 683, V1.1.1, Feb. 2000.

139

http://www.bluetooth.com
http://www.caida.org/analysis/workload

[31] ETSI, “BRAN; HIPERLAN Type 2; Requirements and architecture for internetworking be-
tween HIPERLAN/2 and 3rd generation cellular systems,” TR 101 957, V1.1.1, Aug. 2001.

[32] ETSI, “BRAN; HIPERLAN Type 2; Data link control (DLC) layer; Part 4: Extension for
home environment,” TS 101 761-4, V1.3.2, Jan. 2002.

[33] P. Ferguson and D. Senie, “Network ingress filtering: Defeating denial of service attacks
which employ IP source address spoofing,” IETF RFC 2827, May 2000.

[34] S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast recovery algorithm,”
IETF RFC 2582, Apr. 1999.

[35] J. Foerster, E. Green, S. Somayazulu, and D. Leeper, “Ultra-wideband technology for short-
or medium-range wireless communications,” Intel Technology Journal, May 2001.

[36] C. Fraleigh et al., “Packet-level traffic measurements from the Sprint IP backbone,” IEEE
Network Magazine, vol. 17, no. 6, pp. 6–16, Nov/Dec. 2003.

[37] M. Frodigh, S. Parkvall, C. Roobol, P. Johansson, and P. Larsson, “Future-generation wireless
networks,” IEEE Personal Communications Magazine, vol. 8, no. 5, pp. 10–17, Oct. 2001.

[38] Globalstar. http://www.globalstar.com.

[39] T. Goff, J. Moronski, D. Phatak, and V. Gupta, “Freeze-TCP: A true end-to-end TCP enhance-
ment mechanism for mobile environments,” in Proceedings of IEEE INFOCOM, Tel-Aviv,
Israel, pp. 1537–1545, Mar. 2000.

[40] N. Gogate and S. Panwar, “On a resequencing model for high speed networks,” in Proceed-
ings of IEEE INFOCOM, Toronto, Canada, pp. 40–47, June 1994.

[41] D. J. Goodman, Wireless Personal Communications Systems. Reading, MA, USA: Addison-
Wesley, 1997.

[42] J. Grönkvist, “Traffic controlled spatial reuse TDMA in multi-hop radio networks,” in Pro-
ceedings of IEEE PIMRC, Boston, MA, USA, pp. 1203–1207, Sept. 1998.

[43] D. Gross and C. M. Harris, Fundamentals of Queueing Theory. New York, NY, USA: John
Wiley & Sons, 1985.

[44] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad hoc wireless networks,”
IEEE/ACM Transactions on Networking, vol. 10, no. 4, pp. 477–486, Aug. 2002.

[45] GSM Association, “The wireless evolution,” http://www.gsmworld.com/technology/.

[46] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Transactions on Informa-
tion Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[47] M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “Equation-based congestion control for
unicast applications,” in Proceedings of ACM SIGCOMM, Stockholm, Sweden, pp. 43–56,
Aug. 2000.

[48] T. Harrold and A. Nix, “Capacity enhancement using intelligent relaying for future personal
communication systems,” in Proceedings of IEEE VTC Fall, Boston, MA, USA, pp. 2115–
2120, Sept. 2000.

140

http://www.globalstar.com
http://www.gsmworld.com/technology/

[49] T. Henderson and R. Katz, “Satellite transport protocol (STP): An SSCOP-based transport
protocol for datagram satellite networks,” in Proceedings of Workshop on Satellite-Based
Information Services (WOSBIS), Budapest, Hungary, Oct. 1997.

[50] HiperLAN2 Global Forum. http://www.hiperlan2.com.

[51] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc networks,” in
Proceedings of ACM MOBICOM, Seattle, WA, USA, pp. 219–230, Aug. 1999.

[52] H.-Y. Hsieh and R. Sivakumar, “Performance comparison of cellular and multi-hop wireless
networks: A quantitative study,” in Proceedings of ACM SIGMETRICS, Boston, MA, USA,
pp. 113–122, June 2001.

[53] H.-Y. Hsieh and R. Sivakumar, “IEEE 802.11 over multi-hop wireless networks: Problems
and new perspectives,” in Proceedings of IEEE VTC Fall, Vancouver, Canada, pp. 748–752,
Sept. 2002.

[54] H.-Y. Hsieh and R. Sivakumar, “On using the ad-hoc network model in cellular packet data
networks,” in Proceedings of ACM MOBIHOC, Lausanne, Switzerland, pp. 36–47, June
2002.

[55] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach for achieving aggregate band-
widths on multi-homed mobile hosts,” in Proceedings of ACM MOBICOM, Atlanta, GA,
USA, pp. 83–94, Sept. 2002.

[56] IEEE 802.11 Working Group, “Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications,” ANSI/IEEE Standard 802.11, Aug. 1999.

[57] IEEE 802.16 Working Group, “Broadband access for wireless metropolitan area networks
(WMAN),” http://www.ieee802.org/16/.

[58] IEEE 802.20 Working Group, “Mobile broadband wireless access (MBWA),”
http://www.ieee802.org/20/.

[59] I. Iliadis and Y.-C. Lien, “Resequencing in distributed systems with multiple classes,” in
Proceedings of IEEE INFOCOM, New Orleans, LA, USA, pp. 881–888, Mar. 1988.

[60] Iridium. http://www.iridium.com.

[61] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high performance,” IETF RFC
1323, May 1992.

[62] D. Johnson, D. Maltz, and Y.-C. Hu, “The dynamic source routing protocol for mobile ad
hoc networks (DSR),” IETF Internet Draft; draft-ietf-manet-dsr-09.txt, Apr. 2003.

[63] W. Kellerer, H.-J. Vogel, and K.-E. Steinberg, “A communication gateway for infrastructure-
independent 4G wireless access,” IEEE Communications Magazine, vol. 40, no. 3, pp. 126–
131, Mar. 2002.

[64] L. Kleinrock and J. Silvester, “Spatial reuse in multihop packet radio networks,” Proceedings
of IEEE, vol. 75, no. 1, pp. 156–166, Jan. 1987.

141

http://www.hiperlan2.com
http://www.ieee802.org/16/
http://www.ieee802.org/20/
http://www.iridium.com

[65] R. Krashinsky and H. Balakrishnan, “Minimizing energy for wireless web access with
bounded slowdown,” in Proceedings of ACM MOBICOM, Atlanta, GA, USA, pp. 119–130,
Sept. 2002.

[66] B. Krishnamoorthi, “On Poisson queue with two heterogeneous servers,” Operations Re-
search, vol. 11, pp. 321–330, 1963.

[67] Y.-K. Kwok and V. Lau, “Design and analysis of a new approach to multiple burst admission
control for cdma2000,” in Proceedings of ACM MOBICOM, Rome, Italy, pp. 310–321, July
2001.

[68] J. Li, C. Blake, D. De Couto, H. Lee, and R. Morris, “Capacity of ad hoc wireless networks,”
in Proceedings of ACM MOBICOM, Rome, Italy, pp. 61–69, July 2001.

[69] Y.-D. Lin and Y.-C. Hsu, “Multihop cellular: A new architecture for wireless communica-
tions,” in Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, pp. 1273–1282, Mar. 2000.

[70] S. Lu, T. Nandagopal, and V. Bharghavan, “A wireless fair service algorithm for packet cellu-
lar networks,” in Proceedings of ACM MOBICOM, Dallas, TX, USA, pp. 10–20, Oct. 1998.

[71] H. Luo, S. Lu, and V. Bharghavan, “A new model for packet scheduling in multihop wireless
networks,” in Proceedings of ACM MOBICOM, Boston, MA, USA, pp. 76–86, Aug. 2000.

[72] H. Luo, R. Ramjee, P. Sinha, L. Li, and S. Lu, “UCAN: A unified cellular and ad-hoc network
architecture,” in Proceedings of ACM MOBICOM, San Diego, CA, USA, pp. 353–367, Sept.
2003.

[73] L. Magalhaes and R. Kravets, “Transport level mechanisms for bandwidth aggregation on
mobile hosts,” in Proceedings of IEEE ICNP, Riverside, CA, USA, pp. 165–171, Nov. 2001.

[74] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang, “TCP-Westwood: Bandwidth
estimation for enhanced transport over wireless links,” in Proceedings of ACM MOBICOM,
Rome, Italy, pp. 287–297, July 2001.

[75] M. Mathis and J. Mahdavi, “Forward acknowledgement: Refining TCP congestion control,”
in Proceedings of ACM SIGCOMM, Palo Alto, CA, USA, pp. 281–291, Aug. 1996.

[76] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective acknowledgement op-
tions,” IETF RFC 2018, Oct. 1996.

[77] S. Mengesha and H. Karl, “Relay routing and scheduling for capacity improvement in cellular
WLANs,” in Proceedings of Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks (WiOpt), Sophia-Antipolis, France, Mar. 2003.

[78] J. Nagle, “Congestion control in IP/TCP Internetworks,” IETF RFC 896, Jan. 1984.

[79] R. Nelson and L. Kleinrock, “Spatial TDMA: A collision-free multihop channel access pro-
tocol,” IEEE Transactions on Communications, vol. 33, no. 9, pp. 934–944, Sept. 1985.

[80] T. Otsu, I. Okajima, N. Umeda, and Y. Yamao, “Network architecture for mobile communi-
cations systems beyond IMT-2000,” IEEE Personal Communications Magazine, vol. 8, no. 5,
pp. 31–37, Oct. 2001.

142

[81] S.-J. Park and R. Sivakumar, “Load-sensitive transmission power control in wireless ad-hoc
networks,” in Proceedings of IEEE GLOBECOM, Taipei, Taiwan, pp. 42–46, Nov. 2002.

[82] C. Perkins, “Mobile IP,” IEEE Communications Magazine, vol. 40, no. 5, pp. 66–82, May
2002.

[83] C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers,” in Proceedings of ACM SIGCOMM, London, United King-
dom, pp. 234–244, Sept. 1994.

[84] D. Phatak and T. Goff, “A novel mechanism for data streaming across multiple IP links
for improving throughput and reliability in mobile environments,” in Proceedings of IEEE
INFOCOM, New York, NY, USA, pp. 773–781, June 2002.

[85] D. Porcino and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,”
IEEE Communications Magazine, vol. 41, no. 7, pp. 66–74, July 2003.

[86] J. Postel, “Transmission control protocol,” IETF RFC 793, Sept. 1981.

[87] S. Ramanathan and E. Lloyd, “Scheduling algorithms for multi-hop radio networks,” in Pro-
ceedings of ACM SIGCOMM, Baltimore, MD, USA, pp. 211–222, Aug. 1992.

[88] R. Ramjee, K. Varadhan, L. Salgarelli, S. Thuel, S.-Y. Wang, and T. La Porta, “HAWAII: A
domain-based approach for supporting mobility in wide-area wireless networks,” IEEE/ACM
Transactions on Networking, vol. 10, no. 3, pp. 396–410, June 2002.

[89] S. Rappaport and L.-R. Hu, “Microcellular communication system with hierarchical macro-
cell overlays: Traffic performance model and analysis,” Proceedings of the IEEE, vol. 82,
no. 9, pp. 1383–1397, Sept. 1994.

[90] M. Riegel and M. Tuexen, “Mobile SCTP,” IETF Internet Draft; draft-riegel-tuexen-mobile-
sctp-02.txt, Feb. 2003.

[91] P. Rodriguez and E. Biersack, “Dynamic parallel-access to replicated content in the Internet,”
IEEE/ACM Transactions on Networking, vol. 10, no. 4, pp. 455–464, Aug. 2002.

[92] A. Salkintzis, C. Fors, and R. Pazhyannur, “WLAN-GPRS integration for next-generation
mobile data networks,” IEEE Wireless Communications Magazine, vol. 9, no. 5, pp. 112–
124, Oct. 2002.

[93] A. Sanmateu, L. Morand, E. Bustos, S. Tessier, F. Paint, and A. Sollund, “Using Mobile IP
for provision of seamless handoff between heterogeneous access networks, or how a network
can support the always-on concept,” in Proceedings of EURESCOM Summit, Heidelberg,
Germany, Nov. 2001.

[94] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,” in Proceedings of
ACM SIGCOMM, Vancouver, Canada, pp. 315–323, Sept. 1998.

[95] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Dynamic power management for
portable systems,” in Proceedings of ACM MOBICOM, Boston, MA, USA, pp. 11–19, Aug.
2000.

143

[96] H. Singh and S. Singh, “Energy consumption of TCP Reno, Newreno, and SACK in multi-
hop wireless networks,” in Proceedings of ACM SIGMETRICS, Marina Del Rey, CA, USA,
pp. 206–216, June 2002.

[97] P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bharghavan, “WTCP: A reliable transport
protocol for wireless wide-area networks,” in Proceedings of ACM MOBICOM, Seattle, WA,
USA, pp. 231–241, Aug. 1999.

[98] H. Sivakumar, S. Bailey, and R. Grossman, “PSockets: The case for application-level network
striping for data intensive applications using high speed wide area networks,” in Proceedings
of IEEE/ACM Supercomputing (SC), Dallas, TX, USA, Nov. 2000.

[99] A. Snoeren, “Adaptive inverse multiplexing for wide-area wireless networks,” in Proceedings
of IEEE GLOBECOM, Rio de Janeireo, Brazil, pp. 1665–1672, Dec. 1999.

[100] A. Snoeren, D. Andersen, and H. Balakrishnan, “Fine-grained failover using connection mi-
gration,” in Proceedings of USENIX USITS, San Francisco, CA, USA, Mar. 2001.

[101] A. Snoeren and H. Balakrishnan, “An end-to-end approach to host mobility,” in Proceedings
of ACM MOBICOM, Boston, MA, USA, pp. 155–166, Aug. 2000.

[102] M. Stemm and R. Katz, “Vertical handoffs in wireless overlay networks,” Mobile Networks
and Applications (MONET), vol. 3, no. 4, pp. 335–350, 1998.

[103] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP: Connection migration for
service continuity in the Internet,” in Proceedings of IEEE ICDCS, Vienna, Austria, pp. 469–
470, July 2002.

[104] A. S. Tanenbaum, Computer Networks. Upper Saddle River, NJ, USA: Prentice Hall, 1996.

[105] The Network Simulator, “ns-2,” http://www.isi.edu/nsnam/ns/.

[106] K. Thompson, G. Miller, and R. Wilder, “Wide-area Internet traffic patterns and characteris-
tics,” IEEE Network Magazine, vol. 11, no. 6, pp. 10–23, Nov/Dec. 1997.

[107] V. Tsaoussidis, H. Badr, X. Ge, and K. Pentikousis, “Energy/Throughput tradeoffs of TCP
error control strategies,” in Proceedings of IEEE ISCC, Antibes, France, pp. 106–112, July
2000.

[108] V. Tsaoussidis and C. Zhang, “TCP-Real: Receiver-oriented congestion control,” Computer
Networks, vol. 40, no. 4, pp. 477–497, Nov. 2002.

[109] UMTS Forum. http://www.umts-forum.org.

[110] WiFi Alliance. http://www.weca.net.

[111] WiMAX Forum. http://www.wimaxforum.org.

[112] G. R. Wright and W. R. Stevens, TCP/IP Illustrated, Volume 2. Reading, MA, USA: Addison-
Wesley, Oct. 1997.

[113] G. Wu, M. Mizuno, and P. Havinga, “MIRAI architecture for heterogeneous network,” IEEE
Communications Magazine, vol. 40, no. 2, pp. 126–134, Feb. 2002.

144

http://www.isi.edu/nsnam/ns/
http://www.umts-forum.org
http://www.weca.net
http://www.wimaxforum.org

[114] H. Wu, C. Qiao, S. De, and O. Tonguz, “Integrated cellular and ad hoc relaying sys-
tems: iCAR,” IEEE Journal on Selected Areas in Communications (JSAC), vol. 19, no. 10,
pp. 2105–2115, Oct. 2001.

[115] S.-L. Wu, Y.-C. Tseng, C.-Y. Lin, and J.-P. Sheu, “A multi-channel MAC protocol with
power control for multi-hop mobile ad hoc networks,” The Computer Journal, vol. 45, no. 1,
pp. 101–110, Jan. 2002.

[116] X. Wu, S.-H. Chan, and B. Mukherjee, “MADF: A novel approach to add an ad-hoc overlay
on a fixed cellular infrastructure,” in Proceedings of the IEEE WCNC, Chicago, IL, USA,
pp. 549–554, Sept. 2000.

[117] S. Xu and T. Saadawi, “Does the IEEE 802.11 MAC protocol work well in multihop wireless
ad hoc networks,” IEEE Communications Magazine, vol. 39, no. 6, pp. 130–137, June 2001.

[118] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A reordering-robust TCP with
DSACK,” in Proceedings of IEEE ICNP, Atlanta, GA, USA, pp. 95–106, Nov. 2003.

[119] X. Zhao, C. Castelluccia, and M. Baker, “Flexible network support for mobility,” in Proceed-
ings of ACM MOBICOM, Dallas, TX, USA, pp. 145–156, Oct. 1998.

[120] M. Zorzi and R. Rao, “Is TCP energy efficient,” in Proceedings of IEEE MoMuC, San Diego,
CA, USA, pp. 198–201, Nov. 1999.

145

	Title Page
	Approval Page
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	Summary
	Chapter 1 — Introduction
	Part I — Network Heterogeneity
	Chapter 2 — Host Mobility across Heterogeneous Networks
	The Problem
	Related Work
	Solution Outline

	Chapter 3 — Transport Layer Protocol
	Availability of Multiple Pipes
	Application Layer Striping
	Rate Differential
	Rate Fluctuations
	Blackouts
	Application Complexity

	A Queueing-Theoretic Perspective
	Application Striping Model
	Transport Striping Model
	Performance Comparisons

	Summary

	Chapter 4 — Parallelism
	Protocol Design
	Maintaining Multiple States
	Decoupling of Functionalities
	Delay Binding
	Dynamic Reassignment
	Redundant Striping

	Protocol Operations
	Architectural Overview
	TCP-v Interface
	Header Formats
	Connection Management
	Congestion Control and Flow Control
	Reliability

	Protocol Evaluation
	Rate Differential
	Number of Pipes
	Rate Fluctuations
	Blackouts
	Different Congestion Control Schemes

	Chapter 5 — Transpositionality
	Motivation
	Tackling the Wireless Last-Hop
	Supporting Heterogeneous Interfaces

	RCP: Reception Control Protocol
	Transposition of Functionalities
	Protocol Overview
	Protocol Operations
	Performance Gains

	R2CP: Radial RCP
	Protocol Design
	Protocol Overview
	Protocol Operations
	Functionality Gains

	Part II — Bandwidth Scarcity
	Chapter 6 — Network Scalability with User Population
	The Problem
	Related Work
	Solution Outline

	Chapter 7 — Peer-to-Peer Network Model
	Evaluation Model
	Motivation
	Network Size
	Node Distribution
	Traffic Locality

	Internet Access Scenario
	Throughput
	Fairness
	Mobility

	Summary

	Chapter 8 — Base Station Assistance
	Assisted Protocols
	Dual-Mode Operation
	Future Research Issues
	Communication Overheads
	Host Complexities
	Scheduling Algorithm
	Mode Multiplexing

	Chapter 9 — Multi-homed Peer Relay
	Hybrid Stations (Wireless--Wired Relay)
	Multi-mode Mobile Hosts (Wireless--Wireless Relay)
	Future Research Issues
	Handoffs
	Routing Protocol
	Transport Protocol

	Chapter 10 — Conclusions
	References

