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SUMMARY

In this thesis, we consider semi-algebraic sets over a real closed field R defined by

quadratic polynomials. Semi-algebraic sets of Rk are defined as the smallest family of sets

in Rk that contains the algebraic sets as well as the sets defined by polynomial inequalities,

and which is also closed under the boolean operations (complementation, finite unions and

finite intersections). We prove the following new bounds on the topological complexity of

semi-algebraic sets over a real closed field R defined by quadratic polynomials, in terms

of the parameters of the system of polynomials defining them, which improve the known

results.

1. Let S ⊂ Rk be defined by P1 ≥ 0, . . . , Pm ≥ 0 with Pi ∈ R[X1, . . . ,Xk], m < k, and

deg(Pi) ≤ 2, for 1 ≤ i ≤ m. We prove that bi(S) ≤ 3
2 ·
(

6ek
m

)m
+ k, 0 ≤ i ≤ k − 1.

2. Let P = {P1, . . . , Pm} ⊂ R[Y1, . . . , Yℓ,X1, . . . ,Xk], with degY (Pi) ≤ 2, degX(Pi) ≤ d,

1 ≤ i ≤ m. Let S ⊂ Rℓ+k be a semi-algebaic set, defined by a Boolean formula without

negations, whose atoms are of the form, P ≥ 0, P ≤ 0, P ∈ P. Let π : Rℓ+k → Rk

be the projection on the last k co-ordinates. We prove that the number of stable

homotopy types amongst the fibers π−1(x) ∩ S is bounded by (2mℓkd)O(mk).

We conclude the thesis with presenting two new algorithms along with their implementa-

tions. The first algorithm computes the number of connected components and the first

Betti number of a semi-algebraic set defined by compact objects in Rk which are simply

connected. This algorithm improves the well-know method using a triangulation of the

semi-algebraic set. Moreover, the algorithm has been efficiently implemented which was

not possible before. The second algorithm computes efficiently the real intersection of three

quadratic surfaces in R3 using a semi-numerical approach.

xiii



CHAPTER I

INTRODUCTION

1.1 Real Algebraic Geometry

In classical algebraic geometry, the main objects of interest are complex algebraic sets, i.e.

the zero set of a finite family of polynomials over the field C of complex numbers, meaning

the set of all points that simultaneously satisfy one or more polynomial equations. But in

many applications in computer-aided geometric design, computational geometry, robotics

or computer graphics one is interested in the solutions over the field R of real numbers.

Moreover, they also deal with the real solutions of finite systems of inequalities which are

the main objects of real algebraic geometry. Unfortunately, real algebraic sets have a very

different behavior than their complex counterparts. For example, an irreducible algebraic

subset of Ck having complex dimension n, considered as an algebraic subset of R2k is

connected, not bounded (unless it is a point) and has local real dimension 2n at every point

(see, for instance, [29]). But this is no longer true for real algebraic sets (see Example 2.38).

In 1926, Emil Artin and Otto Schreier [7, 6] introduced the notion of a real closed field.

Artin [5, 6] used this new theory for solving the 17th problem of Hilbert which asks whether

a polynomial which is nonnegative on Rn is a sum of squares of rational functions. A real

closed field R is an ordered field whose positive cone is the set of squares R(2) and such that

every polynomial in R[X] of odd degree has a root in R. Notice that real closed fields need

not be complete nor archimedean (see Chapter 2.1.2).

In this thesis, we consider semi-algebraic sets over a real closed field R defined by

quadratic polynomials in k variables. Semi-algebraic sets of Rk are defined as the smallest

family of sets in Rk that contains the algebraic sets as well as the sets defined by polyno-

mial inequalities, and which is also closed under the boolean operations (complementation,

finite unions and finite intersections). Furthermore, unlike algebraic sets (over R), the pro-

jection of a semi-algebraic set is again semi-algebraic, this was proved by Tarski [91] and

1



Seidenberg [84].

It is worthwhile to mention that in many applications in computer-aided geometric

design or computational geometry one deals with arrangements of many geometric objects

having a similar simple description [55]. For instance, each object is a semi-algebraic set

defined by few polynomials of fixed degree. Thus, understanding the properties of semi-

algebraic sets and designing algorithms are important topics in real algebraic geometry.

The class of semi-algebraic set defined by quadratic polynomials is of particular interest

for several reasons. First, any semi-algebraic set can be defined by (quantified) formulas

involving only quadratic polynomials (at the cost of increasing the number of variables and

the size of the formula). Secondly, they are distinguished from arbitrary semi-algebraic

sets since one can obtain better results from an algorithmic standpoint, as well as from the

point of view of topological complexity (as we will see later). Moreover, they can be much

more complicated topologically than semi-algebraic sets defined by only linear polynomials.

Thirdly, quadratic surfaces are widely used in computer-aided geometric design, computa-

tional geometry [82] and computer graphics as well as in robotics ([79]) and computational

physics ([69, 75]).

One basic ingredient in most algorithms for computing topological properties of semi-

algebraic sets is an algorithm due to Collins [38], called cylindrical decomposition (see Chap-

ter 2.1.4) which decomposes a given semi-algebraic set into topological balls. Cylindrical

decomposition can be used to compute a semi-algebraic triangulation of a semi-algebraic

set (see Chapter 2.1.5), and from this triangulation one can compute the homology groups,

Betti numbers, et cetera. One disadvantage of the cylindrical decomposition is that it uses

iterated projections (reducing the dimension by one in each step) and the number of poly-

nomials (as well as the degrees) is squared in each step of the process. Thus, the complexity

of performing cylindrical decomposition is double exponential in the number of variables

which makes it impractical in most cases for computing topological information. Neverthe-

less, we will see in Chapters 2.1.4.2 and 5 that it can be used quite efficiently for several

important problems in low dimensions.

2



1.2 Betti numbers

Important topological invariants of a semi-algebraic sets are the Betti numbers bi (see

Chapter 2.2.1 for a precise definition) which, roughly speaking, measure the number of i-

dimensional holes of a semi-algebriac set. The zero-th Betti number b0 is the number of

connected components.

The initial result on bounding the Betti numbers of semi-algebraic sets defined by poly-

nomial inequalities was proved independently by Oleinik and Petrovskii [76], Thom [92]

and Milnor [74]. They proved (see Theorem 2.34) that the sum of the Betti numbers of

a semi-algebraic set in Rk defined by m polynomial inequalities of degree at most d has a

bound of the form O(md)k. Notice that this bound is exponential in k and this exponential

dependence is unavoidable (see Example 2.35). Recently, the above bound was extended

to more general classes of semi-algebraic sets. For example, Basu [11] improved the bound

of the individual Betti numbers of P-closed semi-algebraic sets (which are defined by a

Boolean formula with atoms of the form P = 0, P < 0 or P > 0, where P ∈ P), while

Gabrielov and Vorobjov [51] extended the above bound to any P-semi-algebraic set (which

is defined by a Boolean formula with atoms of the form P = 0, P ≤ 0 or P ≥ 0, where

P ∈ P). They proved a bound of O(m2d)k. Moreover, Basu, Pollack and Roy [19] proved

a similar bound for the individual Betti numbers of the realizations of sign conditions.

However, it turns out that for a semi-algebraic set S ⊂ Rk defined by m quadratic

inequalities, it is possible to obtain upper bounds on the sum of Betti numbers of S which are

polynomial in k and exponential only in m. The first such result was proved by Barvinok [9]

who proved a bound of kO(m) (see Theorem 2.36). The exponential dependence on m is

unavoidable as already remarked by Barvinok, but the implied constant (which is at least

two) in the exponent of Barvinok’s bound is not optimal.

Using Barvinok’s result, as well as inequalities derived from the Mayer-Vietoris sequence

(see Chapter 2.2.2), Basu [11] proved a polynomial bound (polynomial both in k and m)

on the top few Betti numbers of a set defined by quadratic inequalities (see Theorem 2.37).

Very recently, Basu, Pasechnik and Roy [18] extended these bounds to arbitrary P-closed

(not just basic closed) semi-algebraic sets defined in terms of quadratic inequalities.
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Apart from their intrinsic mathematical interest, for example in distinguishing the semi-

algebraic sets defined by quadratic inequalities from general semi-algebraic sets, the bounds

proved by Barvinok and Basu respectively have motivated recent work on designing polyno-

mial time algorithms for computing topological invariants of semi-algebraic sets defined by

quadratic inequalities. For instance, Grigoriev and Pasechnik [54] presented a polynomial

time algorithm (in k) for computing sampling points meeting each connected component of

a real algebraic set defined over a quadratic map. Their result improves a result of Barvi-

nok [8] about the the feasibility of systems of real quadratic equations. Basu [14, 13] gave

polynomial time algorithms for computing the Euler characteristic and the higher Betti

numbers of semi-algebraic sets defined by quadratic inequalities. Furthermore, Basu and

Zell [23] gave a polynomial time algorithm for computing the lower Betti numbers of pro-

jections defined by such semi-algebraic sets. For details, we refer the reader to the papers

mentioned above.

Traditionally an important goal in algorithmic semi-algebraic geometry has been to

design algorithms for computing topological invariants of semi-algebraic sets, whose worst-

case complexity matches the best upper bounds known for the quantity being computed.

It is thus of interest to tighten the bounds on the Betti numbers of semi-algebraic sets

defined by quadratic inequalities, as it has been done recently in the case of general semi-

algebraic sets (see for example [51, 11, 19, 18]). Notice that the problem of computing the

Betti numbers of semi-algebraic sets in single exponential time is considered to be a very

important open problem in algorithmic semi-algebraic geometry. Recent progress has been

made in several special cases (see [21, 12, 14]).

In another direction, the bounds of the Betti numbers are used to produce lower bounds

for complexity decision problems. For instance, Steele and Yao [89] recognized that the

bounds for the sum of the Betti numbers can be applied to obtain non-trivial lower bounds

in terms of the number of connected components for the model of algebraic decision trees.

This was extended to algebraic computation trees by Ben-Or [25].
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1.3 Homotopy Types

A fundamental theorem in semi-algebraic geometry is Hardt’s Theorem (see Theorem 2.15)

which is a corollary of the existence of the cylindrical decomposition. For a projection map

π : Rℓ+k → Rk on the last k co-ordinates and semi-algebraic subset S of Rk, it implies that

there is a semi-algebraic partition of Rk, {Ti}i∈I , such that for each i ∈ I and any point

y ∈ Ti, the pre-image π−1(Ti)∩ S is semi-algebraically homeomorphic to (π−1(y) ∩ S)× Ti

by a fiber preserving homeomorphism. In particular, for each i ∈ I, all fibers π−1(y) ∩ S,

y ∈ Ti, are semi-algebraically homeomorphic. Unfortunately, the cylindrical decomposition

algorithm implies a double exponential (in k and ℓ) upper bound on the cardinality of I

and, hence, on the number of homeomorphism types of the fibers of the map π|S . No better

bounds than the double exponential bound are known, even though it seems reasonable to

conjecture a single exponential upper bound on the number of homeomorphism types of the

fibers of the map πS.

Basu and Vorobjov [22] considered the weaker problem of bounding the number of

distinct homotopy types, occurring amongst the set of all fibers of π|S , and a single ex-

ponential upper bound was proved on the number of homotopy types of such fibers (see

Theorem 2.42). They proved in the same paper a similar result for semi-Pfaffian sets as

well, and Basu [14] extended it to arbitrary o-minimal structures. Both these bounds on the

number of homotopy types are exponential in ℓ as well as k. As already pointed out in [22],

in this generality the single exponential dependence on ℓ is unavoidable (see Example 2.43).

Since sets defined by quadratic equalities and inequalities are the simplest class of topo-

logically non-trivial semi-algebraic sets, the problem of classifying such sets topologically

has attracted the attention of many researchers. Motivated by problems related to sta-

bility of maps, Wall [97] considered the special case of real algebraic sets defined by two

simultaneously diagonalizable quadratic forms in ℓ variables. He obtained a full topologi-

cal classification of such varieties making use of Gale diagrams (from the theory of convex

polytopes). To be more precise, letting

Q1 =
ℓ∑

i=1

XiY
2
i ,
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Q2 =

ℓ∑

i=1

Xi+ℓY
2
i ,

and

S = {(y,x) ∈ R3ℓ | ‖ y ‖= 1, Q1(y,x) = Q2(y,x) = 0},

Wall obtains as a consequence of his classification theorem, that the number of different

topological types of fibers π−1(x)∩S is bounded by 2ℓ−1. Similar results were also obtained

by López [70] using different techniques. Much more recently Briand [31] has obtained

explicit characterization of the isotopy classes of real varieties defined by two general conics

in two dimensional real projective space P2
R in terms of the coefficients of the polynomials.

His method also gives a decision algorithm for testing whether two such given varieties are

isotopic.

In another direction Agrachev [1] studied the topology of semi-algebraic sets defined by

quadratic inequalities, and he defined a certain spectral sequence converging to the homol-

ogy groups of such sets. We will give a parametrized version of Agrachev’s construction in

Chapter 4.3 which is due to Basu.

In view of the topological simplicity of semi-algebraic sets defined by few quadratic

inequalities as opposed to general semi-algebraic sets, one might expect a much tighter

bound on the number of topological types compared to the general case. However one

should be cautious, since a tight bound on the Betti numbers of a class of semi-algebraic

sets does not automatically imply a similar bound on the number of topological or even

homotopy types occurring in that class. We refer the reader to [24] for an explicit example

of the large number of possible homotopy types amongst finite cell complexes having very

small Betti numbers.

1.4 Arrangements

Arrangements of geometric objects in fixed dimensional Euclidean space are fundamen-

tal objects in computational geometry and computer-aided geometric design (for instance,

see [55]). As already mentioned before, usually it is assumed that each individual object in

such an arrangement has a simple description – for instance, they are semi-algebraic sets
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defined by few polynomials of fixed degree.

Arrangements of quadratic surfaces, or quadrics, in three dimensional space are of par-

ticular interest since they are widely used in CAD/CAM and computer graphics as well as

in robotics ([79]) and computational physics ([69, 75]). Therefore, it is often necessary to

compute or characterize the intersection of quadratic surfaces and many approaches have

already been proposed (see [66, 67, 99, 98, 100, 46, 44, 43, 93]). In particular, computing

the real intersection of three quadrics is an important subject in computational geometry

and computer-aided geometric design (for instance, see [37, 102, 101, 82]).

Chionh, Goldman and Miller [37] used Macaulay’s multivariate resultant to solve the

problem in the case of finitely many intersection points. But, as pointed out by Xu, Wang,

Chen and Sun [102], one can produce quite general examples where the real intersection

cannot be computed using this approach. In [102], the computation of the real intersection of

three quadrics is reduced to computing the real intersection of two planar curves obtained

by Levin’s method. Though useful for curve tracing, Levin’s method ([66, 67]) and its

improvement by Wang, Goldman and Tu [98] has serious limitations. First of all, it produces

a parameterization of the real intersection curve of two quadrics with a square-root function

but does not yield information about reducibility or singularity of the real intersection.

Secondly, Levin’s method and similar methods ([44, 65]) for computing parameterization

for the intersection set are restricted to quadratic surfaces since higher degree intersection

curves cannot be parameterized easily.

In another direction, Chazelle, Edelsbrunner, Guibas and Sharir [36] showed how to

decompose an arrangement of m objects in Rk into O∗(m2k−3) simple pieces. This was

further improved by Koltun in the case k = 4 [63]. However, these decompositions while

suitable for many applications, are not useful for computing topological properties of the

arrangements, since they fail to produce a cell complex. Furthermore, arrangements of

finitely many balls in R3 have been studied by Edelsbrunner [45] from both combinatorial

and topological viewpoint, motivated by applications in molecular biology. But these tech-

niques use special properties of the objects, such as convexity, and are not applicable to

general semi-algebraic sets.
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1.5 Review of the Results

We review the main results of this thesis.

1.5.1 Bounding the Betti Numbers

In Chapter 3 we consider the problem of bounding the Betti numbers, bi(S), of a semi-

algebraic set S ⊂ Rk defined by polynomial inequalities

P1 ≥ 0, . . . , Pm ≥ 0,

where Pi ∈ R[X1, . . . ,Xk], m < k, and deg(Pi) ≤ 2, for 1 ≤ i ≤ m.

We prove (see Theorem 3.1) that for 0 ≤ i ≤ k − 1,

bi(S) ≤ 1

2
+ (k −m) +

1

2
·
min{m+1,k−i}∑

j=0

2j
(
m+ 1

j

)(
k

j − 1

)

≤ 3

2
·
(

6ek

m

)m
+ k.

We first bound the Betti numbers of non-singular complete intersections of complex projec-

tive varieties defined by generic quadratic forms, and use this bound to obtain bounds in the

real semi-algebraic case. Because of this new approach we are able to remove the constant

in the exponent in the bounds proved in [9, 11] and this constitutes the main contribution

which appears in [17].

1.5.2 Bounding the Stable Homotopy Types of a Parameterized Family

In Chapter 4 we consider the following problem. Let

P = {P1, . . . , Pm} ⊂ R[Y1, . . . , Yℓ,X1, . . . ,Xk],

with degY (Pi) ≤ 2, degX(Pi) ≤ d, 1 ≤ i ≤ m. Let S ⊂ Rℓ+k be a semi-algebaic set, defined

by a Boolean formula without negations, whose atoms are of the form, P ≥ 0, P ≤ 0, P ∈ P.

Let π : Rℓ+k → Rk be the projection on the last k co-ordinates. Then the number of stable

homotopy types (see Definition 2.28) amongst the fibers π−1(x) ∩ S is bounded by

(2mℓkd)O(mk)

(see Theorem 4.1).
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Our result can be seen as a follow-up to the recent work by Basu and Vorobjov [22]

on bounding the number of homotopy types of fibers of general semi-algebraic maps (see

Theorem 2.42). However, our bound (unlike the one proven in [22]) is polynomial in ℓ for

fixed m and k, which constitutes the main contribution and appears in [16]. Unfortunately,

the exponential dependence on m is unavoidable (see Remark 4.2).

Due to technical reasons, we only obtain a bound on the number of stable homotopy

types, rather than homotopy types. But note that the notions of homeomorphism type,

homotopy type and stable homotopy type are each strictly weaker than the previous one,

since two semi-algebraic sets might be stable homotopy equivalent, without being homotopy

equivalent (see [88], p. 462), and also homotopy equivalent without being homeomorphic.

However, two closed and bounded semi-algebraic sets which are stable homotopy equivalent

have isomorphic homology groups.

1.5.3 Algorithms and Their Implementations

In Chapter 5 we consider the problem of computing the first Betti Numbers of arrangements

of compact objects in Rk as well as computing the intersection of three quadratic surfaces

in three dimensional space R3.

1.5.3.1 Computing the Betti Numbers of Arrangements

In Chapter 5.1 we consider arrangements of compact objects in Rk which are simply con-

nected. This implies, in particular, that their first Betti number is zero. We describe an

algorithm (see Algorithm 5.2) for computing the number of connected components and the

first Betti number of such an arrangement, along with its implementation. For the imple-

mentation, we restrict our attention to arrangements in R3 and take for our objects the

simplest possible semi-algebraic sets in R3 which are topologically non-trivial – namely,

each object is an ellipsoid defined by a single quadratic equation. Ellipsoids are simply

connected, but with non-zero second Betti number. We also allow solid ellipsoids defined

by a single quadratic inequality. This algorithm appears in [15].
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1.5.3.2 Computing the Real Intersection of Quadratic Surfaces

In Chapter 5.2 we consider the problem of computing the real intersection of three quadratic

surfaces, or quadrics, defined by the quadratic polynomials P1, P2 and P3 in R3. We describe

an algorithm for computing the isolated points and a linear graph embedded into R3 (if the

real intersection form a curve) representing the real intersection of the three quadrics defined

by the three polynomials Pi, along with its prototypical implementation into the computer

algebra system Maple (Version 9.5). For our implementation, we restrict our attention to

quadrics with defining equation having rational coefficients. This algorithm appears in [60].
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CHAPTER II

MATHEMATICAL PRELIMINARIES

2.1 Real Algebraic Geometry

2.1.1 Some Notations

Let R be a real closed field and let C be an algebraic closed field containing R such that

C = R[i]. For each m ∈ N we will denote by [m] the set {1, . . . ,m}.

For x = (x1, . . . ,xk) ∈ Rk and r ∈ R, r > 0, we denote

||x|| =
√

x2
1 + · · · + x2

k,

Bk(x, r) = {y ∈ Rk | ||y − x||2 ≤ r2} (the closed ball),

Sk−1(x, r) = {y ∈ Rk | ||y − x||2 = r2} (the (k − 1)-sphere).

We omit both x and r from the notation for the unit sphere centered at the origin. For any

polynomial P ∈ R[X1, . . . ,Xk], let

P h(X0, . . . ,Xk) = Xd
0P (

X1

X0
, . . . ,

Xk

X0
),

where d is the total degree of P , the homogenization of P with respect to X0. The poly-

nomial P is Xi-regular if degXi
(P ) = degP , i.e., if the polynomial P has a non-vanishing

constant leading coefficient in the variable Xi. The gcd-free part of a polynomial P

with respect to another polynomial Q is the polynomial P̄ = P/ gcd(P,Q). A polyno-

mial P ∈ R[X] is square-free if there is no non-constant polynomial A ∈ R[X] such that

A2 divides P . Equivalently, the polynomial P is square-free if and only if P is equal (up to

a constant) to the gcd-free part of P and ∂P/∂X.

For any family of polynomials P = {P1, . . . , Pm} ⊂ R[X1, . . . ,Xk], and S ⊂ Rk, we

denote by Zer(P, S) the set of common zeros of P in S, i.e.,

Zer(P, S) :=
{
x ∈ S |

m∧

i=1

Pi(x) = 0
}
.

Let φ be a Boolean formula with atoms of the form P = 0, P > 0, or P < 0, where
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P ∈ P. We call φ a P-formula, and the semi-algebraic set S ⊂ Rk defined by φ, a

P-semi-algebraic set.

If the Boolean formula φ contains no negations, and its atoms are of the form P = 0,

P ≥ 0, or P ≤ 0, with P ∈ P, then we call φ a P-closed formula, and the semi-algebraic

set S ⊂ Rk defined by φ, a P-closed semi-algebraic set.

For an element a ∈ R introduce

sign(a) =





0 if a = 0,

1 if a > 0,

-1 if a < 0.

A sign condition σ on P is an element of {0, 1,−1}P . The realization of the sign

condition σ is the basic semi-algebraic set

R(σ) :=
{
x ∈ Rk |

∧

P∈P

sign(P (x)) = σ(P )
}
.

A sign condition σ is realizable if R(σ) 6= ∅. We denote by Sign(P) the set of realizable

sign conditions on P. For σ ∈ Sign(P) we define the level of σ as the cardinality

#{P ∈ P|σ(P ) = 0}.

For each level p, 0 ≤ p ≤ #P, we denote by Signp(P) the subset of Sign(P) of elements of

level p. Furthermore, for a sign condition σ let

Z(σ) :=
{
x ∈ Rk |

∧

P∈P, σ(P )=0

P (x) = 0
}
.

Finally, for any family of homogeneous polynomials Q = {Q1, . . . , Qm} ⊂ R[X0, . . . ,Xk],

we denote by Zer(Q,PkR) (resp., Zer(Q,PkC)) the set of common zeros of Q in the real (resp.,

complex) projective space PkR (resp., PkC) of dimension k.

2.1.2 Infinitesimals

In Chapter 3 and 4 we will extend the ground field R by infinitesimal elements which are

smaller than any positive element of R. The infinitesimals are used to deform our semi-

algebraic sets such that we get very similar semi-algebraic sets having some additional

properties.
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We denote by R〈ζ〉 the real closed field of algebraic Puiseux series in ζ with coefficients

in R (see [20] for more details). The sign of a Puiseux series in R〈ζ〉 agrees with the sign of

the coefficient of the lowest degree term in ζ. This induces a unique order on R〈ζ〉 which

makes ζ infinitesimal, i.e., ζ is positive and smaller than any positive element of R. Given a

semi-algebraic set S in Rk, the extension of S to R〈ζ〉, denoted Ext(S,R〈ζ〉), is the semi-

algebraic subset of R〈ζ〉k defined by the same quantifier free formula that defines S. The

set Ext(S,R〈ζ〉) is well defined (i.e., it only depends on the set S and not on the quantifier

free formula chosen to describe it). This is an easy consequence of the Tarski-Seidenberg

principle (see for instance [20]).

We will also need the following remark about extensions which is again a consequence

of the Tarski-Seidenberg transfer principle.

Remark 2.1. Let S, T be two closed and bounded semi-algebraic subsets of Rk, and let R′

be a real closed extension of R. Then S and T are semi-algebraically homotopy equivalent

if and only if Ext(S,R′) and Ext(T,R′) are semi-algebraically homotopy equivalent.

2.1.3 Resultants and Subresultants

We recall next the notion of resultant and subresultant which will play an important role

in the cylindrical decomposition and its applications (see Chapter 2.1.4). We will define

them and recall some of their properties which will be very helpful in our settings. But

we will omit the details on how to compute them. We refer to [20] for more details on the

algorithm. Nevertheless, it is worthwhile to mention that subresultants can be computed

very efficiently in practice.

Let K be a field. Let P (X) and Q(X) be two polynomials in K[X] of positive degree p

and q, p > q1,

P = apX
p + · · · + a0, Q = bqX

q + · · · + b0

Next, we introduce the well-known Sylvester-Habicht matrix.

Definition 2.2 (Sylvester-Habicht matrix). For 0 ≤ j ≤ q, the j-th Sylvester-Habicht

matrix of P and Q, denoted by SyHaj(P,Q), is the matrix whose rows are

1in the case p = q, we replace Q by apQ − bqP
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Xq−j−1P, . . . , P,Q, . . . ,Xp−j−1Q considered as vectors in the basis Xp+q−j−1, . . . ,X, 1:




ap · · · · · · · · · · · · a0 0 0

0
. . .

. . . 0

...
. . . ap · · · · · · · · · · · · a0

... 0 bq · · · · · · · · · b0

... . .
.

. .
.

. .
.

0

0 . .
.

. .
.

. .
. ...

bq · · · · · · · · · b0 0 · · · 0




Under these conditions, the resultant of two polynomials P and Q is defined as follows.

Definition 2.3 (Resultant). The (univariate) resultant of P and Q, denoted by

Res(P,Q), is det(SyHa0(P,Q)).

The signed subresultants of P and Q will play a key role in what follows. For any

j ∈ {0, 1, . . . , p}, the signed subresultant of P and Q of index j is the polynomial

sResPj(P,Q) = sResjX
j + · · · + sResj,1X + sResj,0

where sResj and each sResj,k are elements of K defined as determinants of submatrices

coming from SyHaj(P,Q) (see [20] for a precise definition). Note that Res(P,Q) = sRes0.

We write sResPj(P,Q) (resp., Res(P,Q)) for the j-th subresultant (resp., resultant) of

the polynomials P , Q ∈ K[X1, . . . ,Xk] with respect to Xk. The j-th signed subresultant

coefficient of P and Q, denoted by sResj(P,Q) or sResj, is the coefficient of Xj in

sResPj(P,Q).

Next, we notice that one of the main characteristics of subresultants is that they provide

a very easy to use characterization of the greatest common divisor of two polynomials (see

[20] for a proof).

Theorem 2.4. Let P , Q ∈ R[X] be two polynomials of degree p and q. Then the following

are equivalent:

1. P and Q have a gcd of degree j
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2. sRes0(P,Q) = . . . = sResj−1(P,Q) = 0, sResj(P,Q) 6= 0

In this case, sResPj(P,Q) is the greatest common divisor of P and Q.

The following well-known theorem is very helpful.

Theorem 2.5 (The Extension Theorem). Let P,Q ∈ C[X1, . . . ,Xk−1][Xk],

P = ap(X1, . . . ,Xk−1)X
p
k + · · · + a0(X1, . . . ,Xk−1)

Q = bq(X1, . . . ,Xk−1)X
q
k + · · · + b0(X1, . . . ,Xk−1).

Let (x1, . . . ,xk−1) ∈ Ck−1 and assume that Res(P,Q)(x1, . . . ,xk−1) = 0, then either

1. ap or bq vanish at (x1, . . . ,xk−1), or

2. there is a number xk ∈ C such that P and Q vanish at (x1, . . . ,xk) ∈ Ck.

Proof. See [40].

In other words, if we assume that ap and bq are in C, i.e., P and Q are Xk-regular, and

that P and Q do not have a common factor, then any solution (x1, . . . ,xk−1) ∈ Ck−1 of the

equation Res(P,Q) = 0 can be extended to a solution (x1, . . . ,xk) ∈ Ck of the polynomials P

and Q. Note that we always can ensure that the polynomials are Xk-regular by a change of

coordinates. (see [101] for details). Moreover, the common factor can be detected a priori

by computing the greatest common divisor of P and Q.

The following proposition shows why resultants are very useful in our setting (see, for

instance, Chapter 2.1.4 and 5.2).

Proposition 2.6. Let P1, P2 and P3 be three square-free and X3-regular polynomials

in C[X1,X2,X3] such that two of them do not have a common factor. Moreover, as-

sume that the polynomials Res(P1, P2) and Res(P1, P3) do not have a common factor, i.e.

gcd(Res(P1, P2),Res(P1, P3)) = 1. Then the number of distinct roots of the system

P1(X1,X2,X3) = 0, P2(X1,X2,X3) = 0, P3(X1,X2,X3) = 0

is finite.
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Proof. By [40], Chapter 3.6., Proposition 1, we know that Res(P1, Pi) is in the elimination

ideal 〈P1, Pi〉 ∩ C[X1,X2]. Therefore, by Proposition 2.5, only the solutions of the system

Res(P1, P2) = Res(P1, P3) = 0 (2.1)

can be extended to a solution of the equations (2.6). But there are only finitely many such

solutions since gcd(Res(P1, P2),Res(P1, P3)) = 1.

Hence, let (x,y) be a solution of the equations (2.1). Then every Pi(x,y,X3) is not

identically zero, as all of them are X3-regular. In particular, they only have finitely many

solutions. Now, the claim follows.

2.1.4 The Cylindrical Decomposition

2.1.4.1 Definition

One basic ingredient in most algorithms for computing topological properties of semi-

algebraic sets is an algorithm due to Collins [38], called cylindrical decomposition, which

decomposes a given semi-algebraic set into topological balls. In this chapter, we recall some

facts about the cylindrical decomposition which can be turned into an algorithm for solving

several important problems. For instance, computing the topology of planar curves (see

Chapter 2.1.4.2), computing the (real) intersection of quadratic surfaces (see Chapter 5.2),

the general decision problem or the quantifier elimination problem (see [20]). Moreover,

cylindrical decomposition can be used to compute a semi-algebraic triangulation of a semi-

algebraic set (see Chapter 2.1.5). For more details on the algorithm in the general case we

refer to [38, 2, 3, 4, 20].

Definition 2.7. A Cylindrical Decomposition of Rk is a sequence S1, . . . ,Sk, where, for

each 1 ≤ i ≤ k, Si is a finite partition of Ri into semi-algebraic subsets (cells of level i),

which satisfy the following properties:

– Each cell S ∈ S1 is either a point or an open interval.

– For every 1 ≤ i < k and every S ∈ Si there are finitely many continuous semi-algebraic

functions

ξS,1 < · · · < ξS,nS
: S → R
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such that the cylinder S × R ⊂ Ri+1 (also called a stack over the cell S) is a

disjoint union of cells of Si+1 which are:

– either the graph of one of the functions ξS,j, for j = 1, . . . , nS:

{(x′,xj+1) ∈ S × R | xj+1 = ξS,j(x
′)},

– or a band of the cylinder bounded from below and above by the graphs of the

functions ξS,j and ξS,j+1, for j = 0, . . . , nS, where we take ξS,0 = −∞ and

ξS,ℓS+1 = +∞.

Note that a cylindrical decomposition has a recursive structure, i.e., the decomposition

of Ri induces a decomposition of Ri+1 and vice-versa.

Definition 2.8. Given a finite set P of polynomials in R[X1, . . . ,Xk], a subset S of Rk is

P-invariant if every polynomial P in P has constant sign on S. A cylindrical decom-

position of Rk adapted to P is a cylindrical decomposition for which each cell in Sk is

P-invariant.

The following example illustrate the above definitions.

Figure 1: A cylindrical decomposition adapted to the unit sphere in R3
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Example 2.9 (Decomposition adapted to the unit sphere). Let

S = {(x,y, z) ∈ R3 | x2 + y2 + z2 − 1 = 0}

(see Figure 1). The decomposition of R (i.e., the line) consists of five cells of level 1

corresponding to the points −1 and 1 and the three intervals they define. The decomposition

of R2 (i.e., the plane) consists of 13 cells of level 2. For instance, the two bands to the left

and right of the circle, the two cells corresponding to the points (−1, 0) and (1, 0) and the

cell that corresponds to the set S3,2 = {(x,y) ∈ R2 | 1 < x < 1,y = −
√

1 − x2}. The

decomposition of R3 consists of 25 cells of level 3. For instance, the two cells corresponding

to the points (−1, 0, 0) and (1, 0, 0) and the cell that corresponds to the set S3,2,2 = S3,2×{0}.

For a more detailed description of this example see [20], Shapter 5.1.

The Cylindrical Decomposition Algorithm ([38, 20]) consists of two phases: the pro-

jection and the lifting phase. During the projection phase one eliminates the variables

Xk, . . . ,X2 by iterative use of (sub)-resultant computations. In the lifting phase the cells

defined by these (sub)-resultants are used to define inductively, starting with i = 1, the

cylindrical decomposition.

One disadvantage of the Cylindrical Decomposition Algorithm is that it uses iterated

projections (reducing the dimension by one in each step) and the number of polynomials (as

well as the degrees) square in each step of the process. Thus, the complexity of performing

cylindrical decomposition is double-exponential in the number of variables which makes it

impractical in most cases for computing topological information.

Nevertheless, we will see in the next chapters that it can be used quite efficiently for

several important problems in low dimensions.

2.1.4.2 Computing the Topology of Planer Curves

The simplest situation where the cylindrical decomposition method can be performed is the

case of one single non-zero bivariate polynomial P ∈ R[X1,X2] or a set of bivariate polyno-

mials P ⊂ R[X1,X2]. In particular, we are interested in the topology of the curve Zer(P,R2)

(resp., of Zer(P,R2)), i.e., to determine a planar graph homeomorphic to Zer(P,R2) (resp.,

Zer(P,R2)).
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We consider planar algebraic curves being in generic position which we define next.

Zer(Q)

Zer(P)

Figure 2: The polynomial P is in generic position with respect to Q

Definition 2.10. Two square-free bi-variate polynomials P1 and P2 are in generic posi-

tion with respect to the projection on the X1-axis if the following conditions hold.

1. deg(Pi) = degX2
(Pi) (X2-regular),

2. gcd(P1, P2) = 1,

3. for all x ∈ R the number of distinct (complex) roots of

P1(x,X2) = 0, P2(x,X2) = 0

is 0 or 1.

In particular, a single bi-variate polynomial P1 is called in generic position with respect

to P2 (resp., generic position) if P1 and ∂P1/∂X2 · P2 are in generic position and, for

0 6= λ ∈ R, P2 6= λ · ∂P1/∂X2 (resp., P2 = 1).

It is worthwhile to mention that it is always possible to put a set of planar algebraic

curves in generic position by a linear change of coordinates and computing the gcd-free part

of each polynomial. Furthermore, two plane curves in generic position behalf nicely, i.e.,

their intersection points can be described using signed subresultant computations. The

following proposition makes this precise.

Proposition 2.11. Let P , Q ∈ R[X1,X2] be two square-free polynomials in generic po-

sition. If (x,y) is an intersection point of Zer(P,R2) and Zer(Q,R2), then there exists a
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Figure 3: The topology of Zer(P,R2)

unique j such that

sRes0(x) = · · · = sResj−1(x) = 0, sResj(x) 6= 0

y = −1

j
· sResj,j−1(x)

sResj(x)

Proof. Let j be the unique integer such that sRes0(x) = · · · = sResj−1(x) = 0 and

sResj(x) 6= 0. Then sResPj(P,Q)(x,X2) is the greatest common divisor of the polyno-

mials P (x,X2) and Q(x,X2) by Theorem 2.4. Since P and Q are in generic position, there

is only one intersection point of P and Q with X1-coordinate equal to x. In particular, y

is the only root of sResPj(P,Q)(x,X2) and hence y = −(j · sResj(x))−1sResj,j−1(x).

González-Vega and Necula presented an algorithm TOP [52] which computes the topol-

ogy of a plane curve. The TOP-algorithm takes a single bi-variate polynomial P as an

input. While computing, it checks if the polynomial P is in generic position and performs

a change of coordinates until the polynomial is in generic position. The TOP-algorithm

outputs the topology of Zer(P,R2) as described below (see Algorithm 2.12).

For example, consider the curves given in Figure 2. The polynomial P (defining the

two ellipses) is in generic position with respect to the polynomial Q (defining the dotted

ellipse). The output of the TOP-algorithm is as in Figure 3.
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Figure 4: The topology of Zer(P,R2) with respect to Zer(Q,R2)

After some slight modifications one can use this algorithm for the following two problems,

which might occur simultaneously.

1. Computing the topology of a plane curve Zer(P1,R
2) with respect to another plane

curve Zer(P2,R
2), and

2. computing the common roots of two plane curves.

Note that the proof presented in [52] can easily be adapted to those two problems, but

the modified algorithm detects for the first problem whether or not the polynomial P1 is

in generic position with respect to P2 and for the second one if P1 and P2 are in generic

position.

For our example considered above the modified TOP-algorithm output is as in Figure 4.

Note that 8 additional points are computed.

Finally, we simply recall the in- and output of the TOP-algorithm which we later will

use as a black-box in Chapter 5.2, and we refer the reader to [52, 20] for more details.

Algorithm 2.12 (TOP).

Input: a square-free polynomial P ∈ R[X1,X2].

Output: the topology of the curve Zer(P,R2), described by
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• The real roots x1, . . . ,xr of Res(P, ∂P/∂X2)(X1). We set by x0 = −∞, xr+1 = ∞.

• The number mi of roots of P (x,X2) in R when x varies on (xi,xi+1).

• The number ni of roots of P (xi,X2) in R. We denote these roots by yi,1, . . . ,yi,ni
.

• A number ci ≤ ni such that if (xi, zi) is the unique critical point of the projection of

Zer(P,C2) on the X1-axis above xi, zi = yi,ci .

2.1.4.3 Cell Adjacency

An important piece of information that we require from the cylindrical decomposition al-

gorithm is that of cell adjacency. In other words, we need to know given two cells in a set

Si, whether the closure of one intersects the other. In Example 2.9, for instance, we have

that the cell corresponding to the point (−1, 0, 0) is adjacent to the cell C3,2,2.

We need the following notation. We distinguish between the inter-stack cell adja-

cency of level i, which is the adjacency of cells of level i in two different stacks, and the

intra-stack cell adjacency of level i, which is the adjacency of cells of level i within the

same stack.

Moreover, we use the following intuitive labeling of cells.

A cell in R, i.e., a cell in the induced decomposition (line) of the induced decomposition

(plane), is denoted by (i), where the i ranges over the number of cells in the induced

decomposition of R. Note that i1 < i2 if and only if the cell (i1) “occurs to the left”

of the cell (i2).

A cell in R2, i.e., a cell in the induced decomposition of the plane, is denoted by (i, j),

where i ranges over the number of cells in the line and the j ranges over the number

of cells in the stack over the cell (i). Note that j1 < j2 if and only if the cell (i, j1)

“occurs lower in the plane” than the cell (i, j2).

A cell in R3 is denoted by (i, j, k), where (i, j) is a cell in the induced decomposition of the

plane and the k ranges over the number of cells in the stack over the cell (i, j). Note

that k1 < k2 if and only if the cell (i, j, k1) “occurs lower” than the cell (i, j, k2).
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Furthermore, we distinguish among 0-cells, 1-cells, 2-cells and 3-cells of the cylindrical

decomposition, that are points, graphs and cylinders bounded below and above by graphs.

The adjacency between a ℓ-cell and k-cell will be denoted by {ℓ,k}-adjacency.

We illustrate the above notation on Example 2.9 (Decomposition adapted to the unit

sphere).

Example 2.13 (cont.). For instance, the cell (2) and (4) correspond to the points −1 and

1 (in the line), whereas the cells (2, 2) and (3, 2) correspond the point (−1, 0) and the set

S3,2 = {(x,y) ∈ R2 | −1 < x < 1,y = −
√

1 − x2}.

Moreover, the cell (2, 2, 2) corresponds to the point (−1, 0, 0) and the cell (3, 2, 2) corre-

sponds to the set S3,2,2 = S3,2 × {0}.

While there are algorithms known for computing the cell adjacencies of a cylindrical

decomposition of Rk (see ([3, 4]), we will only be interested in the cell adjacencies for a

cylindrical decomposition adapted to family P ⊂ R[X1,X2,X3] such that deg(P ) ≤ 2 and

P is X3-regular for every polynomial P ∈ P.

It is worthwhile to mention that we do not need to compute all cell adjacencies. In our

applications (see Chapter 5) it suffices to compute the {0, 1}-inter-stack adjacencies which

we can do by a simple combinatorial type approach. In other words, we determine the

full adjacency information for the boundary of the semi-algebraic set by using the simpler

structure induced by the quadratic polynomials which we describe next.

Assume that the 0-cell (i, j1) and the 1-cell (i + 1, j2) are adjacent in the induced de-

composition of the plane. To be more precise, the 0-cell (i, j1) and the 1-cell (i + 1, j2)

correspond to a point and a curve segment of Zer(Res(Pm, Pt,X3),R
2) where Pm and Pt

are two input quadratic polynomials that are X3-regular. We have the following two cases:

Case 1: The stack over the 0-cell (i, j1) contains exactly one 0-cell (i, j1, k). Note,

that the stack over 1-cell (i+ 1, j2) must contain two 1-cells (i+ 1, j2, l1) and (i + 1, j2, l2)

(corresponding to graphs), since the polynomial Pm is of degree equal to 2 in the variableX3.

Therefore, the 0-cell (i, j1, k) must be adjacent to both cells (i+ 1, j2, l1) and (i+ 1, j2, l2),

since the semi-algebraic set Si is closed.
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Case 2: The stack over the 0-cell (i, j1) contains two 0-cells (i, j1, k1) and (i, j1, k2).

As above, the stack over the 1-cell (i + 1, j2) must contain two 1-cells (i + 1, j2, ℓ1) and

(i+ 1, j2, ℓ2). Remember that both stacks are ordered from the bottom to the top. Hence,

the cells (i, j1, k1) and (i + 1, j2, ℓ1) as well as the cells (i, j1, k2) and (i + 1, j2, ℓ2) must

be adjacent for the same reason as above. It is worthwhile to mention that is not possible

to have just one 1-cell above (i + 1, j2), i.e., ℓ1 = ℓ2, by the properties of the cylindrical

decomposition.

2.1.5 Triangulation of Semi-algebraic Sets

Another important property of closed and bounded semi-algebraic sets is that they are

homeomorphic to a simplicial complex. The following makes this statement precise.

Let a0, . . . , ap be points of Rk that are affinely independent. The p-simplex with

vertices a0, . . . , ap is

[a0, . . . , ap] = {λ0a0 + · · · + λpap |
p∑

i=0

λi = 1 and λ0, . . . , λp ≥ 0}

Note that the dimension of [a0, . . . , ap] is p.

An q-face of the p-simplex s = [a0, . . . , ap] is any simplex s′ = [b0, . . . , bq] such that

{b0, . . . , bq} ⊂ {a0, . . . , ap}

The open simplex, denoted by so, corresponding to a simplex s consists of all points of s

which do not belong to any proper face of s:

so = (a0, . . . , ap) = {λ0a0 + · · · + λpap |
p∑

i=0

λi = 1 and λ0 > 0, . . . , λp > 0}

A simplicial complex K in Rk is a finite set of simplices in Rk such that s, s′ ∈ K implies

– every face of s is in K,

– s ∩ s′ is a common face of both s and s′.

A triangulation of a semi-algebraic set S is a simplicial complex K together with a semi-

algebraic homeomorphism h : |K| → S, where the set |K| =
⋃
s∈K s is the realization of

K.
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A triangulation of S respecting a finite family of semi-algebraic sets S1, . . . , Sn

contained in S is a triangulation (K, h) such that each Sj is the union of images by h of

open simplices of K.

We have the following theorem.

Theorem 2.14. Let S ⊂ Rk be a closed and bounded semi-algebraic set, and let S1, . . . , Sn

be semi-algebraic subsets of S. There exists a triangulation of S respecting S1, . . . , Sn.

Moreover, the vertices of K can be chosen with rational coefficients.

Proof. See [20]

For example, let S be a closed and bounded subset of Rk such that S =
⋃n
i=1 Si ⊂ Rk.

Then Theorem 2.14 implies that there is a triangulation (K, h) of S such that for every

simplex s ∈ K and 1 ≤ i ≤ n either h(s) ∩ Si = h(s) or h(s) ∩ Si = ∅.

Finally, note that one can compute a triangulation of a closed and bounded semi-

algebraic set using the cylindrical decomposition which decomposes a given semi-algebraic

set into double exponential number (in the dimension) of topological balls.

2.1.6 Triviality of Semi-algebraic Mappings

The finiteness of the topological types of algebraic subsets of Rk defined by polynomials of

fixed degree is an easy consequence of Hardt’s triviality theorem, which we recall next.

Theorem 2.15 (Hardt’s triviality theorem [56, 20]). Let S ⊂ Rn and T ⊂ Rk be semi-

algebraic sets. Given a continuos semi-algebraic function f : S → T , there exists a finite

partition of T into semi-algebraic sets T =
⋃
i∈I Ti, so that for each i and any xi ∈ Ti,

Ti × f−1(xi) is semi-algebraically homeomorphic to f−1(Ti).

Hardt’s theorem is a corollary of the existence of cylindrical decompositions (see Chap-

ter 2.1.4), which implies a double exponential (in n) upper bound on the cardinality of the

set I. Moreover, it follows that one can always retract a closed semi-algebraic set to a

closed and bounded set. The following proposition makes this precise.

Proposition 2.16 (Conic structure at infinity). Let S ⊂ Rk be a closed semi-algebraic

set. There exists r ∈ R, r > 0, such that for every r′, r′ ≥ r, there is a semi-algebraic
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deformation retraction from S to Sr′ = S ∩ Bk(0, r
′) and a semi-algebraic deformation

retraction from Sr′ to Sr.

Proof. See [20], Proposition 5.49.

2.2 Algebraic Topology

2.2.1 Some Notations

In this chapter we recall the basic objects from algebraic topology like homology and co-

homology theory. Unless otherwise noted, we will consider vector spaces over Q in what

follows next.

Given a simplicial complex K, we denote by Cp(K) the vector space generated by the

p-dimensional oriented simplices of K. The elements of Cp(K) are called the p-chains of

K. For p < 0, we define Cp(K) = 0.

Given an oriented p-simplex s = [a0, . . . , ap], p > 0, the boundary of s is the (p−1)-chain

∂p(s) =
∑

0≤i≤p

(−1)i[a0, . . . , ai−1, âi, ai+1, . . . , ap],

where âi means that the ai is omitted. For p ≤ 0, we define ∂p = 0. The map ∂p extends

linearly to a homomorphism

∂p : Cp(K) → Cp−1(K).

Thus, we have the following sequence of vector space homomorphism with ∂p−1 ◦ ∂p = 0,

· · · −→ Cp(K)
∂p−→ Cp−1(K)

∂p−1−→ Cp−2(K)
∂p−2−→ · · · ∂1−→ C0(K)

∂0−→ 0

The sequence of pairs {(Cp(K), ∂p)}p∈N, denoted by C•(K), is called the simplicial chain

complex.

We denote by Hp(K) the p-th simplicial homology group of K, that is

Hp(C•(K)) = Zp(C•(K))/Bp(C•(K)),

where Zp(C•(K)) = Ker(∂p) is the subspace of p-cycles, and Bp(C•(K)) = Im(∂p+1) is the

subspace of p-boundaries.
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Note that Hp(K) is a finite dimensional vector space. The dimension of Hp(K) as a

vector space is called the p-th Betti number of K and denoted by bp(K). We will denote

by b(K) the sum
∑

p≥0 bp(K).

Next, we define the dual notion of cohomology groups.

We denote by Cp(K) = Hom(Cp(K),Q) the vector space dual to Cp(K), and by δp the

co-boundary map δp : Cp(K) → Cp+1(K) which is the homomorphism dual to ∂p+1 in the

simplicial chain complex C•(K). More precisely, given ω ∈ Cp(K), and a p + 1-simplex

[a0, . . . , ap+1] of K, then

δω([a0, . . . , ap+1]) =
∑

0≤i≤p+1

(−1)iω([a0, . . . , ai−1, âi, ai+1, . . . , ap+1])

Thus, we have the following sequence of (dual) vector space homomorphism,

0 → C0(K)
δ0−→ C1(K)

δ1−→ C2(K)
δ2−→ · · · δ

p−1

−→ Cp(K)
δp

−→ Cp+1(K)
δp+1

−→ · · · ,

with δp+1 ◦ δp = 0. The sequence of pairs {(Cp(K), δp)}p∈N, denoted by C•(K), is called the

simplicial cochain complex.

We denote by Hp(K) the p-th simplicial cohomology group of K, that is

Hp(C•(K)) = Zp(C•(K))/Bp(C•(K)),

where Zp(C•(K)) = Ker(∂p−1) is the subspace of p-cocycles, and Bp(C•(K)) = Im(∂p) is

the subspace of p-coboundaries.

Note that Hp(K) is a finite dimensional vector space and its dimension as a vector space

is equal to bp(K). To be more precise, we have by the Universal Coefficient Theorem for

cohomology (see [58], Theorem 3.2, page 195) that Hp(C•(K)) and Hp(C•(K)) are isomorphic

for every p ≥ 0. Moreover, the cohomology group H0(K) can be identified with the vector

space of locally constant functions on |K| (see [20], Proposition 6.5).

Next, we define simplicial (co)-homology groups for a closed semi-algebraic set. Let

S ⊂ Rk be a closed semi-algebraic set. By Proposition 2.16 (Conic structure at infinity),

there exists r ∈ R, r > 0, such that for every r′, r′ ≥ r, there is a semi-algebraic deformation

from S to Sr′ = S ∩ Bk(0, r
′) and a semi-algebraic deformation from Sr′ to Sr. Note that
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the set Sr is closed and bounded. By Theorem 2.14, the set Sr can be triangulated by

a simplicial complex K with rational coordinates. Choose a semi-algebraic triangulation

f : |K| → Sr, then for p ≥ 0 the homology groups Hp(S) are Hp(K) (resp., cohomology

groups Hp(S) are Hp(K)). Note that the (co)-homology groups do not depend on the

particular triangulation. The dimension of Hp(S) as a vector space is called the p-th Betti

number of S and denoted by bp(S). We will denote by b(S) the sum
∑

p≥0 bp(S).

For completeness we now consider a basic locally closed semi-algebraic set S which is,

by definition, the intersection of a closed semi-algebraic set with a basic open one. Let Ṡ

be the (one point) Alexandroff compactification of S. Then the dimension of Hp(Ṡ) as a

vector space is called the p-th Betti number of S and denoted by bp(S). This definition

is well-defined since the Alexandroff compactification Ṡ of S is closed, bounded, unique

(up to semi-algebraic homeomorphism) and semi-algebraically homeomorphic to S. We will

denote by b(S) the sum
∑

p≥0 bp(S). Note that the homology groups of a semi-algebraic set

S ⊂ Rk are finitely generated. Hence, the Betti numbers bi(S) are finite.

We illustrate Betti numbers with the following example.

Figure 5: The hollow torus

Example 2.17. Let S be the hollow torus in R3 (see Figure 5), then

b0(S) = 1, b1(S) = 2, b2(S) = 1 and bp(S) = 0, p > 2.

Intuitively, bp(S) measures the number of p-dimensional holes in the set S. The zero-th

Betti number, b0(S), is the number of connected components.

Similarly, one can define bp(S,Z2), the p-th Betti number with coefficients in Z2, as the

Z2-vector space dimension of Hp(S,Z2). We denote by b(S,Z2) the sum
∑

p≥0 bp(S,Z2).
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It follows from the Universal Coefficients Theorem, that

bi(S,Z2) ≥ bi(S)

(see [58], Corollary 3.A6 (b)).

Hence, any bounds proved for Betti numbers with Z2-coefficients also apply to the

ordinary Betti numbers (with coefficients in Q).

2.2.2 The Mayer-Vietoris Theorem

We have seen in Chapter 2.1.4 that we can use the cylindrical decomposition in order

to decompose a semi-algebraic set into smaller pieces. The Mayer-Vietoris inequalities

(see Proposition 2.19) bound the Betti numbers of the union (resp., intersection) of semi-

algebraic sets in terms of intersections (resp., unions) of fewer semi-algebraic sets. This will

be very useful in Chapter 3 and Chapter 4. We first recall a semi-algebraic version of the

Mayer-Vietoris theorem.

Theorem 2.18 (Semi-algebraic Mayer-Vietoris). Let S1 and S2 be two closed and bounded

semi-algebraic subsets of Rk. Then there is a long exact sequence.

· · · → Hp(S1 ∩ S2) → Hp(S1) ⊕ Hp(S2) → Hp(S1 ∪ S2) → Hp−1(S1 ∩ S2) → · · ·

Proof. By Theorem 2.14 there is a triangulation of S1∪S2 that is simultaneously a triangu-

lation of S1, S2, and S1 ∩ S2. Let Ki be the simplicial complex corresponding to Si. Then

there is a a short exact sequence of simplicial chain complexes,

0 → C•(K1 ∩K2) → C•(K1) ⊕ C•(K2) → C•(K1 ∪K2) → 0

The claim follows by a standard argument about short and long exact sequences (see [20],

Lemma 6.10).

From the exactness of the Mayer-Vieotoris sequence, we have the following proposition.

Proposition 2.19 (Mayer-Vietoris inequalities). Let be S1, . . . , Sn subsets of Rk be all open

or all closed. Then for each i ≥ 0 we have,

bi


 ⋃

1≤j≤n

Sj


 ≤

∑

J⊂[n]

bi−(#J)+1


⋂

j∈J

Sj


 (2.2)
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and

bi


 ⋂

1≤j≤n

Sj


 ≤

∑

J⊂[n]

bi+(#J)−1


⋃

j∈J

Sj


 . (2.3)

Proof. Follows from [20], Proposition 7.33.

The following proposition characterizes b0 and b1 in a special case of unions of simplicial

complexes. It is a slightly strengthened version of a similar proposition appearing in [21, 20].

We do not require that the complexes Ai be acyclic, but only that their first co-homology

group vanishes. We need the following notations.

Let A1, . . . , An be sub-complexes of a finite simplicial complex A such that

– each Ai is connected, i.e., H0(Ai) = Q,

– A =
⋃n
i=1Ai, and

– H1(Ai) = 0, 1 ≤ i ≤ n.

Note that the intersections of any number of the sub-complexes, Ai, is again a sub-complex

of A. We will denote by Ai,j the sub-complex Ai ∩ Aj , and by Ai,j,ℓ the sub-complex

Ai ∩Aj ∩Aℓ.

Recall that H0(K) can be identified as the vector space of locally constant functions

on the simplicial complex K. Hence, we can define the following sequence of generalized

restriction homomorphisms.

Let φ ∈⊕1≤i≤n H0(Ai), define

(δ0φ)i,j = φi|Ai,j
− φj |Ai,j

and let ψ ∈⊕1≤i<j≤nH0(Ai,j), define

(δ1ψ)i,j,ℓ = ψi,j|Ai,j,ℓ
− ψi,ℓ|Ai,j,ℓ

+ ψj,ℓ|Ai,j,ℓ
.

We now are able to state our proposition.

Proposition 2.20. Let A1, . . . , An be sub-complexes of a finite simplicial complex A such

that A =
⋃n
i=1Ai and for each i, 1 ≤ i ≤ n,
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1. H0(Ai) = Q, and

2. H1(Ai) = 0.

Let the homomorphisms δ0 and δ1 in the following sequence be defined as above.

∏

i

H0(Ai)
δ0−→
∏

i<j

H0(Ai,j)
δ1−→

∏

i<j<ℓ

H0(Ai,j,ℓ)

Then,

1. b0(A) = dim(Ker(δ0)),

2. b1(A) = dim(Ker(δ1)) − dim(Im(δ0)).

Proof. Follows from [20], Theorem 6.9.

Remark 2.21. One could use the so-called generalized Mayer-Vietoris sequence and some

spectral sequence argument in order to prove Proposition 2.20. We refer to [10, 15] for more

details.

2.2.3 Smith Theory

In Chapter 3 we will reduce the problem of bounding the Betti numbers of a semi-algebraic

set to the problem of bounding the Betti numbers of some real projective algebraic sets.

Using the Smith inequality (see Theorem 2.22 below) allows us to relate the Betti numbers

of these real projective algebraic sets to the corresponding complex projective algebraic

sets. As we will see in Chapter 2.3.2, we have precise information about the corresponding

complex projective algebraic set. Before we recall a version of the Smith inequality, we need

the following.

Let X be a compact topological space and c : X → X an involution. We regard X

as a G-space, where G = {id, c} ∼= Z2. We denote by X ′ = X/c the orbit space, and by

F = Fix c, the fixed point set of the involution c. Moreover, we identify F with its image

in X ′.

Then there are two exact sequences, called (homology and cohomology) Smith

sequences of (X, c):

· · · → Hp+1(X
′, F ; Z2) → Hp(X

′, F ; Z2) ⊕ Hp(F ; Z2) → Hp(X; Z2) → Hp(X
′, F ; Z2) → · · · ,
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· · · → Hp(X
′, F ; Z2) → Hp(X; Z2) → Hp(X ′, F ; Z2) ⊕ Hp(F ; Z2) → Hp+1(X ′, F ; Z2) → · · · .

We refer the reader to [95], p. 131, for more details.

Next, we state a version of the Smith inequality which follows from the exactness of the

Smith sequence. We consider the special case where X is a complex projective algebraic set

defined by real forms, with the involution taken to be complex conjugation. Then we have

the following theorem.

Theorem 2.22 (Smith inequality). Let Q ⊂ R[X0, . . . ,Xk] be a family of homogeneous

polynomials. Then,

b(Zer(Q,PkR),Z2) ≤ b(Zer(Q,PkC),Z2).

2.2.4 Alexander Duality

In Chapter 3, we also use the well-known Alexander duality theorem which relates the Betti

numbers of a compact subset of a sphere to those of its complement.

Theorem 2.23 (Alexander Duality). Let r > 0. For any closed subset A ⊂ Sk(0, r),

Hi(S
k(0, r) \A) ≈ H̃k−i−1(A),

where H̃i(A), 0 ≤ i ≤ k − 1, denotes the reduced cohomology group of A.

Proof. See [73], Theorem 6.6.

2.2.5 The Betti Numbers of a Double Cover

Let X be a topological space. A covering space of X is a space X̃ together with a

continuous surjective map f : X̃ → X, such that for every x ∈ X there exists an open

neighborhood U of x such that f−1(U) is a disjoint union of open sets in X̃ each of which is

mapped homeomorphically onto U by f . In particular, if for every x ∈ X the fiber f−1(x)

has two elements, we speak of a double cover.

The following proposition relates the Betti numbers (with Z2 coefficients) of a finite

simplicial complex to its double cover. Note that the proposition is no longer true for Betti

numbers (with Q-coefficients). A simple counterexample is provided by the 2-torus which
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is a double cover of the Klein bottle, for which the stated inequality is not true for i = 2

for Betti numbers (with Q-coefficients).

Proposition 2.24. Let X be a finite simplicial complex and f : X̃ → X a double cover of

X. Then for each i ≥ 0,

bi(X̃,Z2) ≤ 2bi(X,Z2).

Proof. Let

φ• : C•(X,Z2) −→ C•(X̃,Z2)

denote the chain map sending each simplex of X to the sum of its two preimages in X̃ . Let

ψ• : C•(X̃,Z2) −→ C•(X,Z2)

be the chain map induced by the covering map f .

It is an easy exercise to check that the following sequence is exact,

0 −→ C•(X,Z2)
φ•−→ C•(X̃,Z2)

ψ•−→ C•(X,Z2) −→ 0.

The corresponding long exact sequence in homology,

· · · −→ Hi(X,Z2) −→ Hi(X̃,Z2) −→ Hi(X,Z2) −→ · · ·

gives the required inequality.

Remark 2.25. The above proof is due to Michel Coste.

2.2.6 The Betti Numbers of a Projection

The following proposition gives a bound on the Betti numbers of the projection π(S) of a

closed and bounded semi-algebraic set S in terms of the number and degrees of polynomials

defining S.

Proposition 2.26 ([50]). Let R be a real closed field and let π : Rm+k → Rk be the projec-

tion map on to last k co-ordinates. Let S ⊂ Rm+k be a closed and bounded semi-algebraic

set defined by a Boolean formula with s distinct polynomials of degrees not exceeding d.

Then the n-th Betti number of the projection

bn(π(S)) ≤ (mnd)O(k+nm).
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Proof. See [50].

2.2.7 The Smale-Vietoris Theorem

In Chapter 4 we also need the following version of the well-known Smale-Vietoris Theo-

rem [86].

Theorem 2.27 ([86]). Let S and T be closed and bounded semi-algebraic sets, and f : S → T

a continuous semi-algebraic map such that f−1(y) is contractible for every y ∈ T . Then

the map f is a homotopy equivalence.

2.2.8 Stable homotopy equivalence and Spanier-Whitehead duality

For any finite CW-complex X we will denote by S(X) the suspension of X, which is the

quotient of X × [0, 1] by collapsing X × {0} to one point and X × {1} to another point.

Recall from [87] that for two finite CW-complexes X and Y , an element of

{X;Y } = lim−→
i

[Si(X),Si(Y )] (2.4)

is called an S-map (or map in the suspension category). (When the context is clear we will

sometime denote an S-map f ∈ {X;Y } by f : X → Y ).

Definition 2.28. An S-map f ∈ {X;Y } is an S-equivalence (also called a stable ho-

motopy equivalence) if it admits an inverse f−1 ∈ {Y ;X}. In this case we say that X

and Y are stable homotopy equivalent.

If f ∈ {X;Y } is an S-map, then f induces a homomorphism,

f∗ : H∗(X) → H∗(Y ).

The following theorem characterizes stable homotopy equivalence in terms of homology.

Theorem 2.29. [88] Let X and Y be two finite CW-complexes. Then X and Y are sta-

ble homotopy equivalent if and only if there exists an S-map f ∈ {X;Y } which induces

isomorphisms f∗ : Hi(X) → Hi(Y ) (see [42], pp. 604) for all i ≥ 0.
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In order to compare the complements of closed and bounded semi-algebraic sets which

are homotopy equivalent, we will use the duality theory due to Spanier and Whitehead [87].

We will need the following facts about Spanier-Whitehead duality (see [42], pp. 603 for more

details). Let X ⊂ Sn be a finite CW-complex. Then there exists a dual complex, denoted

DnX ⊂ Sn \X. The dual complex DnX is defined only upto S-equivalence. In particular,

any deformation retract of Sn \ X represents DnX. Moreover, the functor Dn has the

following property. If Y ⊂ Sn is another finite CW-complex, and the S-map represented

by φ : X → Y is a stable homotopy equivalence, then there exists a stable homotopy

equivalence Dnφ. Moreover, if the map φ : X → Y is an inclusion, then the dual S-map

Dnφ is also represented by a corresponding inclusion.

Remark 2.30. Note that, since Spanier-Whitehead duality theory deals only with finite

polyhedra over R, it extends without difficulty to general real closed fields using the Tarski-

Seidenberg transfer principle.

2.2.9 Homotopy colimits

Let A = {A1, . . . , An}, where each Ai is a sub-complex of a finite CW-complex.

Let ∆[n] denote the standard simplex of dimension n−1 with vertices in [n]. For I ⊂ [n],

we denote by ∆I the (#I − 1)-dimensional face of ∆[n] corresponding to I, and by AI the

CW-complex
⋂

i∈I

Ai.

The homotopy colimit, hocolim(A), is a CW-complex defined as follows.

Definition 2.31.

hocolim(A) = ·

⋃

I⊂[n]

∆I ×AI/ ∼

where the equivalence relation ∼ is defined as follows.

For I ⊂ J ⊂ [n], let sI,J : ∆I →֒ ∆J denote the inclusion map of the face ∆I in ∆J , and

let iI,J : AJ →֒ AI denote the inclusion map of AJ in AI .

Given (s,x) ∈ ∆I ×AI and (t,y) ∈ ∆J ×AJ with I ⊂ J , then (s,x) ∼ (t,y) if and only

if t = sI,J(s) and x = iI,J(y).
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We have a obvious map

f : hocolim(A) −→ colim(A) =
⋃

i∈[n]

Ai

sending (s,x) 7→ x. It is a consequence of the Smale-Vietoris theorem (see Theorem ??)

that

Lemma 2.32. The map

f : hocolim(A) −→ colim(A) =
⋃

i∈[n]

Ai

is a homotopy equivalence.

Now let A = {A1, . . . , An} (resp. B = {B1, . . . , Bn}) be a set of sub-complexes of a

finite CW-complex. For each I ⊂ [n] let fI ∈ {AI ;BI} be a stable homotopy equivalence,

having the property that for each I ⊂ J ⊂ [n], fJ = fI |AJ
. Then we have an induced

S-map, f ∈ {hocolim(A); hocolim(B)}, and we have that

Lemma 2.33. The induced S-map f ∈ {hocolim(A); hocolim(B)} is a stable homotopy

equivalence.

Proof. Using the Mayer-Vietoris exact sequence it is easy to see that if the fI ’s induce

isomorphisms in homology, so does the map f . Now apply Theorem 2.29.

2.3 The Topology of Algebraic and Semi-Algbraic Sets

2.3.1 Bounds on the Topology of Semi-Algebraic Sets

The initial result on bounding the Betti numbers of semi-algebraic sets defined by polyno-

mial inequalities was proved independently by Oleinik and Petrovskii [76], Thom [92] and

Milnor [74]. They proved:

Theorem 2.34. [76, 92, 74] Let

P = {P1, . . . , Pm} ⊂ R[X1, . . . ,Xk]

with deg(Pi) ≤ d, 1 ≤ i ≤ m and let S ⊂ Rk be the set defined by

P1 ≥ 0, . . . , Pm ≥ 0.
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Then

b(S) = O(md)k.

Notice that the theorem includes the case where the set S is a real algebraic set. More-

over, the above bound is exponential in k and this exponential dependence is unavoidable

(see Example 2.35 below). Recently, the above bound was extended to more general classes

of semi-algebraic sets. For example, Basu [11] improved the bound of the individual Betti

numbers of P-closed semi-algebraic sets while Gabrielov and Vorobjov [51] extended the

above bound to any P-semi-algebraic set. They proved a bound of O(m2d)k. Moreover,

Basu, Pollack and Roy [19] proved a similar bound for the individual Betti numbers of the

realizations of sign conditions.

Example 2.35. The set S ⊂ Rk defined by

X1(X1 − 1) ≥ 0, . . . ,Xk(Xk − 1) ≥ 0,

has b0(S) = 2k.

However, it turns out that for a semi-algebraic set S ⊂ Rk defined by m quadratic

inequalities, it is possible to obtain upper bounds on the Betti numbers of S which are

polynomial in k and exponential only in m. The first such result was proved by Barvinok

who proved the following theorem.

Theorem 2.36. [9] Let S ⊂ Rk be defined by

P1 ≥ 0, . . . , Pm ≥ 0,

with deg(Pi) ≤ 2, 1 ≤ i ≤ m. Then, b(S) ≤ kO(m).

Theorem 2.36 is proved using a duality argument that interchanges the roles of k and m,

and reduces the original problem to that of bounding the Betti numbers of a semi-algebraic

set in Rs defined by kO(1) polynomials of degree at most k. One can then use Theorem 2.34

to obtain a bound of kO(m). The constant hidden in the exponent of the above bound is at

least two. Also, the bound in Theorem 2.36 is polynomial in k but exponential in m. The
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exponential dependence on m is unavoidable as remarked in [9], but the implied constant

(which is at least two) in the exponent of Barvinok’s bound is not optimal.

Using Barvinok’s result, as well as inequalities derived from the Mayer-Vietoris sequence,

Basu proved a polynomial bound (polynomial both in k andm) on the top few Betti numbers

of a set defined by quadratic inequalities. More precisely, he proved the following theorem.

Theorem 2.37. [11] Let ℓ > 0 and let S ⊂ Rk be defined by

P1 ≥ 0, . . . , Pm ≥ 0,

with deg(Pi) ≤ 2. Then

bk−ℓ(S) ≤
(
m

ℓ

)
kO(ℓ).

Notice that for fixed ℓ, the bound in Theorem 2.37 is polynomial in both m and k.

2.3.2 Bounds on the Topology of Complex Algebraic Sets

By separating the real and imaginary parts one can consider a complex algebraic set X ⊂ Ck

as a real algebraic subset of R2k. Unfortunately, real and complex algebraic sets do not

have the same properties. To be more precise, an irreducible algebraic subset of Ck having

complex dimension n, considered as an algebraic subset of R2k is connected, not bounded

(unless it is a point) and has local real dimension 2n at every point (see, for instance, [29]).

But this is no longer true for real algebraic sets as we will see in the following examples.

Example 2.38 ([29]). 1. The circle {(x,y) ∈ R2 | x2 + y2 = 1} is bounded.

2. The cubic curve {(x,y) ∈ R2 | x2 + y2 − x3 = 0} has an isolated point at the origin.

However, in Chapter 3 we will show how to reduce the problem of bounding the Betti

numbers of a real algebraic set to the problem of bounding the Betti numbers of a complex

projective algebraic set involving the same polynomials. Moreover, this complex projective

algebraic set will have the property that is a non-singular complete intersection, which we

define next.

Definition 2.39. A projective algebraic set X ⊂ PkC of codimension n is a non-singular

complete intersection if it is the intersection of n non-singular hypersurfaces in PkC that

meet transversally at each point of the intersection.
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Next, we recall some results about the Betti numbers of a complex projective algebraic

set which is a non-singular complete intersection. We need the following notation.

Fix a j-tuple of natural numbers d̄ = (d1, . . . , dj). Let XC = Zer({Q1, . . . , Qj},PkC),

such that the degree of Qi is di, denote a complex projective algebraic set of codimension j

which is a non-singular complete intersection.

Let b(j, k, d̄) denote the sum of the Betti numbers with Z2 coefficients of XC. This is

well defined since the Betti numbers only depend only on the degree sequence and not on

the specific XC (see, for instance, [47]).

The function b(j, k, d̄) satisfies the following (see [26]):

b(j, k, d̄) =





c(j, k, d̄) if k − j is even,

2(k − j + 1) − c(j, k, d̄) if k − j is odd,

where

c(j, k, d̄) =





k + 1 if j = 0,

d1 . . . dj if j = k,

dkc(j − 1, k − 1, (d1, . . . , dk−1)) − (dk − 1)c(j, k − 1, d̄) if 0 < j < k.

In the special case when each di = 2, we denote by b(j, k) = b(j, k, (2, . . . , 2)). We then

have the following recurrence for b(j, k).

b(j, k) =





q(j, k) if k − j is even,

2(k − j + 1) − q(j, k) if k − j is odd,

where

q(j, k) =





k + 1 if j = 0,

2j if j = k,

2q(j − 1, k − 1) − q(j, k − 1) if 0 < j < k.

Next, we show some properties of q(j, k).

Lemma 2.40. 1. q(1, k) = k + 1/2(1 − (−1)k) and q(2, k) = (−1)kk + k.
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2. For 2 ≤ j ≤ k, |q(j, k)| ≤ 2j−1
( k
j−1

)
.

3. For 2 ≤ j ≤ k and k − j odd, 2(k − j + 1) − q(j, k) ≤ 2j−1
( k
j−1

)
.

Proof. The first part is shown by two easy computations and noting that

2(k − 2 + 1) − q(2, k) = 2k − 2 if k − 2 is odd.

Hence, we can assume that the statements are true for k− 1 and that 3 ≤ j < k. Note that

for the special case j = k − 1, we have that 2k−1 ≤ 2k−2
(k−1
k−2

)
since k > 2. Then

|q(j, k)| = |2q(j − 1, k − 1) − q(j, k − 1)|

≤ 2|q(j − 1, k − 1)| + |q(j, k − 1)|

≤ 2 · 2j−2

(
k − 1

j − 2

)
+ 2j−1

(
k − 1

j − 1

)

= 2j−1

(
k

j − 1

)
.

and, for k − j odd,

2(k − j + 1) − q(j, k) = 2(k − j + 1) − 2q(j − 1, k − 1) + q(j, k − 1)

≤ |2((k − 1) − (j − 1) + 1) − q(j − 1, k − 1)|

+|q(j − 1, k − 1)| + |q(j, k − 1)|

≤ 2j−2

(
k − 1

j − 2

)
+ 2j−2

(
k − 1

j − 2

)
+ 2j−1

(
k − 1

j − 1

)

≤ 2j−1

((
k − 1

j − 2

)
+

(
k − 1

j − 1

))
= 2j−1

(
k

j − 1

)
.

Hence, we get the following bound for b(j, k).

Theorem 2.41.

1. b(1, k) =





q(0, k − 1) if k is even,

q(0, k) if k is odd,

2. b(j, k) ≤ 2j−1
( k
j−1

)
, for 2 ≤ j ≤ k.

Proof. Follows from Lemma 2.40.
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2.3.3 Bounds on the Topology of Parametrized Semi-algebraic Sets

Let π : Rℓ+k → Rk be the projection map on the last k co-ordinates, and for any S ⊂ Rℓ+k

we will denote by πS the restriction of π to S. Moreover, when the map π is clear from

context, for any x ∈ Rk we will denote by Sx the fiber π−1(x) ∩ S. One way to interpret

this setting is that the set S depends on k parameters and π is the projection onto the

parameter space.

Hardt’s triviality theorem (see Theorem 2.15) implies that there exists a semi-algebraic

partition {Ti}i∈I of Rk having the following property. For each i ∈ I and any point x ∈ Ti,

the pre-image π−1(Ti)∩S is semi-algebraically homeomorphic to Sx×Ti by a fiber preserving

homeomorphism. In particular, for each i ∈ I, all fibers Sx, x ∈ Ti are semi-algebraically

homeomorphic.

As mentioned in Chapter 2.1.6 the existence of cylindrical decompositions implies a

double exponential (in k and ℓ) upper bound on the cardinality of I and, hence, on the

number of homeomorphism types of the fibers of the map πS. No better bounds than

the double exponential bound are known, even though it seems reasonable to conjecture a

single exponential upper bound on the number of homeomorphism types of the fibers of the

map πS .

In [22], Basu and Vorobjov considered the weaker problem of bounding the number of

distinct homotopy types occurring amongst the set of all fibers of Sx, and they proved a

single exponential upper bound (in k and ℓ) on the number of homotopy types of such

fibers.

They proved the following theorem.

Theorem 2.42. [22] Let P ⊂ R[Y1, . . . , Yℓ,X1, . . . ,Xk], with deg(P ) ≤ d for each P ∈ P

and cardinality #P = m. Then there exists a finite set A ⊂ Rk with

#A ≤ (2ℓmkd)O(kℓ)

such that for every x ∈ Rk, there exists z ∈ A such that for every P-semi-algebraic set

S ⊂ Rℓ+k, the set Sx is semi-algebraically homotopy equivalent to Sz. In particular, for

any fixed P-semi-algebraic set S, the number of different homotopy types of fibers Sx for
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various x ∈ π(S) is also bounded by

(2ℓmkd)O(kℓ).

Notice that the bound in Theorem 2.42 is single exponential in kℓ. The following

example, which also appears in [22], shows that the single exponential dependence on ℓ is

unavoidable.

Example 2.43. Let P ∈ R[Y1, . . . , Yℓ] →֒ R[Y1, . . . , Yℓ,X] be the polynomial defined by

P =

ℓ∑

i=1

d−1∏

j=0

(Yi − j)2.

The algebraic set defined by P = 0 in Rℓ+1 with coordinates Y1, . . . , Yℓ,X, consists of dℓ

lines all parallel to the X axis. Consider now the semi-algebraic set S ⊂ Rℓ+1 defined by

(P = 0) ∧ (0 ≤ X ≤ Y1 + dY2 + d2Y3 + · · · + dℓ−1Yℓ).

It is easy to verify that, if π : Rℓ+1 → R is the projection map on the X co-ordinate, then

the fibers Sx, for x ∈ {0, 1, 2, . . . , dℓ− 1} ⊂ R are 0-dimensional and of different cardinality,

and hence have different homotopy types.

2.3.4 Some Useful Constructions

In this chapter, we recall some very useful constructions for semi-algebraic subsets of Rk

which are well-known in real algebraic geometry.

Let P = {P1, . . . , Pm} ⊂ R[X1, . . . ,Xk] with deg(Pi) ≤ 2, 1 ≤ i ≤ m. Let S ⊂ Rk be

the basic semi-algebraic set defined by

S = {x ∈ Rk | P1(x) ≥ 0, . . . , Pm(x) ≥ 0}.

Let 1 ≫ ε > 0 be an infinitesimal, and let

Pm+1 = 1 − ε2
k∑

i=1

X2
i .

Let Sb ⊂ R〈ε〉k be the basic semi-algebraic set defined by

Sb = {x ∈ R〈ε〉k | P1(x) ≥ 0, . . . , Pm(x) ≥ 0, Pm+1(x) ≥ 0}.
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Proposition 2.44. The bounded set Sb and the set Ext(S,R〈ε〉) are homotopy equivalent.

Moreover, the homology groups of the Sb and S are isomorphic.

Proof. It follows from Proposition 2.16 (Conic structure at infinity) that the semi-algebraic

set Sb has the same homotopy type as Ext(S,R〈ε〉). The claim now follows since one can

extend any triangulation over R to a triangulation over R〈ε〉.

Let Sh ⊂ Sk be the basic semi-algebraic set defined by

Sh = {x ∈ R〈ε〉k+1 | ||x|| = 1, P h1 (x) ≥ 0, . . . , P hm(x) ≥ 0, P hm+1(x) ≥ 0}.

Lemma 2.45. For 0 ≤ i ≤ k, we have

bi(Sb) =
1

2
bi(S

h).

Proof. Note that Sb is bounded by Proposition 2.44 and Sh is the projection from the

origin of the set {1} × Sb ⊂ {1} × R〈ε〉k onto the unit sphere Sk in R〈ε〉k+1. Since Sb is

bounded, the projection does not intersect the equator and consists of two disjoint copies

(each homeomorphic to the set Sb) in the upper and lower hemispheres.
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CHAPTER III

BOUNDING THE BETTI NUMBERS

3.1 Results

We prove the following theorem.

Theorem 3.1. [17] Let P = {P1, . . . , Pm} ⊂ R[X1, . . . ,Xk], m < k. Let S ⊂ Rk be defined

by

P1 ≥ 0, . . . , Pm ≥ 0

with deg(Pi) ≤ 2. Then, for 0 ≤ i ≤ k − 1,

bi(S) ≤ 1

2
+ (k −m) +

1

2
·
min{m+1,k−i}∑

j=0

2j
(
m+ 1

j

)(
k

j − 1

)
≤ 3

2
·
(

6ek

m

)m
+ k.

As a consequence of Theorem 3.1 we get a new bound on the sum of the Betti numbers,

which we state for the sake of completeness.

Corollary 3.2. Let P = {P1, . . . , Pm} ⊂ R[X1, . . . ,Xk], m < k. Let S ⊂ Rk be defined by

P1 ≥ 0, . . . , Pm ≥ 0

with deg(Pi) ≤ 2. Then

b(S) ≤ k


1

2
+ (k −m) +

1

2
·
min{m+1,k−i}∑

j=0

2j
(
m+ 1

j

)(
k

j − 1

)
 .

Remark 3.3. The technique used in this chapter was proposed as a possible alternative

method by Barvinok in [9], who did not pursue this further in that paper. Also, Benedetti,

Loeser, and Risler [26] used a similar technique for proving upper bounds on the number

of connected components of real algebraic sets in Rk defined by polynomials of degrees

bounded by d. However, these bounds (unlike the bounds we obtain) are exponential in

k. Finally, there exists another possible method for bounding the Betti numbers of semi-

algebraic sets defined by quadratic inequalities, using a spectral sequence argument due to
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Agrachev [1]. However, this method also produces a non-optimal bound of the form kO(m)

(similar to Barvinok’s bound) where the constant in the exponent is at least two. We omit

the details of this argument referring the reader to [13] for an indication of the proof (where

the case of computing, and as a result, bounding the Euler-Poincaré characteristics of such

sets is worked out in full details).

3.2 Proof Strategy

Our strategy for proving Theorem 3.1 is as follows. Using certain infinitesimal deforma-

tions we first reduce the problem to bounding the Betti numbers of another closed and

bounded semi-algebraic set defined by a new family of quadratic polynomials. We then use

inequalities obtained from the Mayer-Vietoris exact sequence to further reduce the problem

of bounding the Betti numbers of this new semi-algebraic set to the problem of bounding

the Betti numbers of the real projective algebraic sets defined by each ℓ-tuple, ℓ ≤ m,

of the new polynomials. The new family of polynomials also has the property that the

complex projective algebraic set defined by each ℓ-tuple, ℓ ≤ k, of these polynomials is a

non-singular complete intersection. According to Theorem 2.41 we have precise information

about the Betti numbers of these complex complete intersections. An application of the

Smith inequality (see Theorem 2.22) then allows us to obtain bounds on the Betti numbers

of the real parts of these algebraic sets and, as a result, on the Betti numbers of the original

semi-algebraic set.

3.3 Constructing Non-singular Complete Intersections

In Chapter 2.3.2 we introduced the notion of a projective complex algebraic set which is

a non-singular complete intersection (see Definition 2.39). Next, we show the existence of

such a set and how to obtain a non-singular complete intersection from a given algebraic

set in complex projective space.

Proposition 3.4. There exists a family H = {H1, . . . ,Hm} ⊂ R[X0, . . . ,Xk] of positive

definite quadratic forms such that Zer(HJ ,PkC) is a non-singular complete intersection for

every J ⊂ {1, . . . ,m}.
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Proof. Recall that the set of positive definite quadratic forms is open in the set of quadratic

forms over R. Moreover, any real closed field contains the real closure of Q. Thus, we can

choose a family H = {H1, . . . ,Hm} ⊂ R[X0, . . . ,Xk] of positive definite quadratic forms

such that their coefficients are algebraically independent over Q. It follows by Bertini’s

Theorem (see [57], Theorem 17.16) that Zer(HJ ,P
k+1
C ), J ⊂ {1, . . . ,m}, is a non-singular

complete intersection.

The following proposition allows us to replace a family of real quadratic forms by another

family obtained by infinitesimal perturbations of the original family and whose zero sets

are non-singular complete intersections in complex projective space.

Proposition 3.5. Let

Q = {Q1, . . . , Qm} ⊂ R[X0, . . . ,Xk]

be a set of quadratic forms and let

H = {H1, . . . ,Hm} ⊂ R[X0, . . . ,Xk]

be a family of positive definite quadratic forms such that Zer(H,PkC) is a non-singular com-

plete intersection for every J ⊂ {1, . . . ,m}.

Let 1 ≫ δ > 0 be infinitesimals, and let

Q̃ = {Q̃1, . . . , Q̃m} with

Q̃i = (1 − δ)Qi + δHi.

Then for any J ⊂ {1, . . . ,m},

Zer(Q̃J ,P
k
C〈δ〉)

is a non-singular complete intersection.

Proof. Consider

Q̃t = {Q̃t,1, . . . , Q̃t,m} with

Q̃t,i = (1 − t)Qi + tHi.
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Let J ⊂ {1, . . . ,m}, and let TJ ⊂ C be defined by,

TJ = {t ∈ C | Zer(Q̃t,J ,P
k
C) is a non-singular complete intersection }.

Clearly, TJ contains 1. Moreover, since being a non-singular complete intersection is a stable

condition, TJ must contain an open neighborhood of 1 in C and so must T = ∩J⊂{1,...,m}TJ .

Finally, the set T is constructible, since it can be defined by a first order formula. Since a

constructible subset of C is either finite or the complement of a finite set (see for instance,

[19], Corollary 1.25), T must contain an interval (0, t0), t0 > 0. Hence, its extension to C〈δ〉

contains δ.

3.4 Proof of Theorem 3.1

Before we prove Theorem 3.1, we need what follows next:

Let P = {P1, . . . , Pm} ⊂ R[X1, . . . ,Xk], m < k, with deg(Pi) ≤ 2, 1 ≤ i ≤ m. Let S ⊂ Rk

be the basic semi-algebraic set defined by

S = {x ∈ Rk | P1(x) ≥ 0, . . . , Pm(x) ≥ 0}.

Let 1 ≫ ε≫ δ > 0 be infinitesimals, and let

Pm+1 = 1 − ε2
k∑

i=1

X2
i .

Let Sb ⊂ R〈ε〉k be the basic semi-algebraic set defined by

Sb = {x ∈ R〈ε〉k | P1(x) ≥ 0, . . . , Pm(x) ≥ 0, Pm+1(x) ≥ 0}.

The homology groups of S and Sb are isomorphic by Proposition 2.44. Moreover, the set

Sb is bounded.

Let Sh ⊂ Sk be the basic semi-algebraic set defined by

Sh = {x ∈ R〈ε〉k+1 | |x| = 1, P h1 (x) ≥ 0, . . . , P hm(x) ≥ 0, P hm+1(x) ≥ 0}.

Then, for 0 ≤ i ≤ k, we have

bi(Sb,Z2) =
1

2
bi(S

h,Z2).
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by Lemma 2.45.

We now fix a family of polynomials that will be useful in what follows. By Proposi-

tion 3.4 we can choose a family H = {H1, . . . ,Hm+1} ⊂ R[X0, . . . ,Xk] of positive definite

quadratic forms such that Zer(HJ ,PkC〈ε〉) is a non-singular complete intersection for every

J ⊂ {1, . . . ,m+ 1}.

Let P̃i = (1 − δ)P hi + δHi, 1 ≤ i ≤ m+ 1. Let T (resp., T̄ ) be the basic semi-algebraic

set defined by

T = {x ∈ R〈ε, δ〉k+1 | ||x|| = 1, P̃1(x) > 0, . . . , P̃m(x) > 0, , P̃m+1(x) > 0}

and

T̄ = {x ∈ R〈ε, δ〉k+1 | ||x|| = 1, P̃1(x) ≥ 0, . . . , P̃m(x) ≥ 0, P̃m+1(x) ≥ 0},

respectively.

Also, let

P̃ = {P̃1, . . . , P̃m, P̃m+1}.

Lemma 3.6. We have,

1. the homology groups of Sh and T̄ are isomorphic,

2. the homology groups of T and T̄ are isomorphic,

3. for all J ⊂ {1, . . . ,m+ 1},

Zer(P̃J ,PkC〈ε,δ〉) is a non-singular complete intersection, and

4. for all J ⊂ {1, . . . ,m+ 1},

bi

(
Zer(P̃J ,Ext(Sk,R〈ε, δ〉),Z2

)
≤ 2bi

(
Zer(P̃J ,PkR〈ε,δ〉),Z2

)
.

Proof. For the first part note that the sets Ext(Sh,R〈ε, δ〉) and T̄ have the same homotopy

type using Lemma 16.17 in [20].

The second part is clear since we have a retraction from T to T̄ .

The third part follows from Proposition 3.5.

For the last part, let π : Ext(Sk,R〈ε, δ〉) → PkR〈ε,δ〉 be the double cover obtained by

identifying antipodal points. Then the restriction of π to Zer(P̃J ,Ext(Sk,R〈ε, δ〉)) gives a
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double cover,

π : Zer(P̃J ,Ext(Sk,R〈ε, δ〉)) → Zer(P̃J ,P
k
R〈ε,δ〉).

Now apply Proposition 2.24.

Proposition 3.7. For 0 ≤ i ≤ k − 1, we have

bi(T,Z2) ≤ 1 + 2(k −m) +

min{m+1,k−i}∑

j=0

2j
(
m+ 1

j

)(
k

j − 1

)
.

Proof. First note that by Lemma 3.6 (3) Zer(P̃J ,PkC〈ε,δ〉) is a complete intersection for all

J ⊂ {1, . . . ,m+ 1}. For 0 ≤ i ≤ k − 1, we have

bi(T,Z2) ≤ bi

(
Ext(Sk,R〈ε, δ〉) \

m+1⋃

i=1

Zer(P̃i,Ext(Sk,R〈ε, δ〉)),Z2

)

≤ 1 + bk−1−i

(
m+1⋃

i=1

Zer(P̃i,Ext(Sk,R〈ε, δ〉)),Z2

)
,

where the first inequality is a consequence of the fact that, T is an open subset of

Ext(Sk,R〈ε, δ〉) \
m+1⋃

i=1

Zer(P̃i,Ext(Sk,R〈ε, δ〉))

and disconnected from its complement in Ext(Sk,R〈ε, δ〉) \⋃m+1
i=1 Zer(P̃i,Ext(Sk,R〈ε, δ〉)),

and the last inequality follows from Theorem 2.23 (Alexander Duality).

It follows from Proposition 2.19 (2.2), Lemma 3.6 (4) and Theorem 2.22 (Smith inequal-

ity) that

bi(T,Z2) ≤ 1 +

k−i∑

j=1

∑

|J |=j

bk−i−j

(
Zer(P̃J ,Ext(Sk,R〈ε, δ〉)),Z2

)

≤ 1 + 2 ·
k−i∑

j=1

∑

|J |=j

bk−i−j

(
Zer(P̃J ,PkR〈ε,δ〉),Z2

)

≤ 1 + 2 ·
min{m+1,k−i}∑

j=1

∑

|J |=j

b
(
Zer(P̃J ,PkC〈ε,δ〉),Z2

)
.

Note that for j ≤ m + 1 the number of possible j-ary intersections is equal to
(m+1

j

)
and
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using Theorem 2.41, we conclude

bi(T,Z2) ≤ 1 + 2 ·
min{m+1,k−i}∑

j=1

(
m+ 1

j

)
b(j, k)

≤ 1 + 2(k + 1) + 2 ·
min{m+1,k−i}∑

j=2

(
m+ 1

j

)
2j−1

(
k

j − 1

)

= 1 + 2(k + 1) +

min{m+1,k−i}∑

j=2

2j
(
m+ 1

j

)(
k

j − 1

)

= 1 + 2(k + 1) − 2(m+ 1) +

min{m+1,k−i}∑

j=0

2j
(
m+ 1

j

)(
k

j − 1

)

= 1 + 2(k −m) +

min{m+1,k−i}∑

j=0

2j
(
m+ 1

j

)(
k

j − 1

)
.

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. It follows from the Universal Coefficients Theorem (see [58], Corol-

lary 3.A6 (b)), that bi(S) ≤ bi(S,Z2). We have by Lemma 3.6 that the homology groups

(with Z2 coefficients) of Sh and T are isomorphic. Moreover bi(S,Z2) = 1
2bi(S

h,Z2), for

0 ≤ i ≤ k−1, by Proposition 2.44 and Lemma 2.45. Hence, the first inequality follows from

Proposition 3.7.

The second inequality follows from an easy computation.
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CHAPTER IV

BOUNDING THE NUMBER OF HOMOTOPY TYPES

4.1 Result

We prove the following theorem.

Theorem 4.1. [16] Let R be a real closed field and let

P = {P1, . . . , Pm} ⊂ R[Y1, . . . , Yℓ,X1, . . . ,Xk],

with degY (Pi) ≤ 2,degX(Pi) ≤ d, 1 ≤ i ≤ m. Let π : Rℓ+k → Rk be the projection on the

last k co-ordinates. Then for any P-closed semi-algebraic set S ⊂ Rℓ+k, the number of stable

homotopy types (see Definition 2.28) amongst the fibers, Sx, is bounded by (2mℓkd)O(mk).

Remark 4.2. 1. The bound in Theorem 4.1 (unlike the one in Theorem 2.42) is polyno-

mial in ℓ for fixed m and k. The exponential dependence on m is unavoidable, as can

be seen from a slight modification of Example 2.43. Consider the semi-algebaic set

S ⊂ Rℓ+1 defined by

Yi(Yi − 1) = 0, 1 ≤ i ≤ m ≤ ℓ,

0 ≤ X ≤ Y1 + 2 · Y2 + . . .+ 2m−1 · Ym.

Let π : Rℓ+1 → R be the projection on the X-coordinate. Then, the sets Sx,

x ∈ {0, 1 . . . , 2m−1}, have different number of connected components, and hence have

distinct (stable) homotopy types.

2. The technique used to prove Theorem 2.42 in [22] does not directly produce better

bounds in the quadratic case, and hence we need a new approach to prove a substan-

tially better bound in this case. For technical reasons, we only obtain a bound on the

number of stable homotopy types, rather than homotopy types. But note that the

notions of homeomorphism type, homotopy type and stable homotopy type are each
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strictly weaker than the previous one, since two semi-algebraic sets might be stable

homotopy equivalent, without being homotopy equivalent (see [88], p. 462), and also

homotopy equivalent without being homeomorphic. However, two closed and bounded

semi-algebraic sets which are stable homotopy equivalent have isomorphic homology

groups.

4.2 Proof Strategy

The strategy underlying our proof of Theorem 4.1 is as follows. We first consider the

special case of a semi-algebraic subset, A ⊂ Sℓ, defined by a disjunction of m homogeneous

quadratic inequalities restricted to the unit sphere in Rℓ+1. We then show that there exists

a closed and bounded semi-algebraic set C ′ (see (4.14) below for the precise definition of the

semi-algebraic set C ′), consisting of certain sphere bundles, glued along certain sub-sphere

bundles, which is homotopy equivalent to A. The number of these sphere bundles, as well

descriptions of their bases, are bounded polynomially in ℓ (for fixed m).

In the presence of parameters X1, . . . ,Xk, the set A, as well as C ′, will depend on the

values of the parameters. However, using some basic homotopy properties of bundles, we

show that the homotopy type of the set C ′ stays invariant under continuous deformation

of the bases of the different sphere bundles which constitute C ′. These bases also depend

on the parameters, X1, . . . ,Xk, but the degrees in X1, . . . ,Xk of the polynomials defining

them are bounded by O(ℓd). Now, using techniques similar to those used in [22], we are

able to control the number of isotopy types of the bases which occur as the parameters vary

over Rk. The bound on the number of isotopy types, also gives a bound on the number of

possible homotopy types of the set C ′, and hence of A, for different values of the parameter.

In order to prove the results for semi-algebraic sets defined by more general formulas

than disjunctions of weak inequalities, we first use Spanier-Whitehead duality to obtain

a bound in the case of conjunctions, and then use the construction of homotopy colimits

to prove the theorem for general P-closed sets. Because of the use of Spanier-Whitehead

duality we get bounds on the number of stable homotopy types, rather than homotopy

types.
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4.3 Topology of Sets Defined by Quadratic Constraints

One of the main ideas behind our proof of Theorem 4.1 is to parametrize a construction in-

troduced by Agrachev in [1] while studying the topology of sets defined by (purely) quadratic

inequalities (that is without the parameters X1, . . . ,Xk in our notation). However, we avoid

construction of Leray spectral sequences as was done in [1]. For the rest of this section, we

fix a set of polynomials

Q = {Q1, . . . , Qm} ⊂ R[Y0, . . . , Yℓ,X1, . . . ,Xk]

which are homogeneous of degree 2 in Y0, . . . , Yℓ, and of degree at most d in X1, . . . ,Xk.

We will denote by

Q = (Q1, . . . , Qm) : Rℓ+1 × Rk → Rm,

the map defined by the polynomials Q1, . . . , Qm, and generally, for I ⊂ {1, . . . ,m}, we

denote by QI : Rℓ+1 ×Rk → RI , the map whose co-ordinates are given by Qi, i ∈ I. When

I = [m], we will often drop the subscript I from our notation.

For any subset I ⊂ [m], let AI ⊂ Sℓ × Rk be the semi-algebraic set defined by

AI =
⋃

i∈I

{(y,x) | |y| = 1 ∧ Qi(y,x) ≤ 0}, (4.1)

and let

ΩI = {ω ∈ Rm | |ω| = 1, ωi = 0, i 6∈ I, ωi ≤ 0, i ∈ I}. (4.2)

For ω ∈ ΩI we denote by ωQ ∈ R[Y0, . . . , Yℓ,X1, . . . ,Xk] the polynomial defined by

ωQ =
m∑

i=0

ωiQi. (4.3)

For (ω,x) ∈ FI = ΩI × Rk, we will denote by ωQ(·,x) the quadratic form in Y0, . . . , Yℓ

obtained from ωQ by specializing Xi = xi, 1 ≤ i ≤ k.

Let BI ⊂ ΩI × Sℓ × Rk be the semi-algebraic set defined by

BI = {(ω,y,x) | ω ∈ ΩI ,y ∈ Sℓ,x ∈ Rk, ωQ(y,x) ≥ 0}. (4.4)
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We denote by φ1 : BI → FI and φ2 : BI → Sℓ × Rk the two projection maps (see

diagram below).

BI

FI = ΩI × Rk Rk Sℓ × Rk

zztttttttttttt

φI,1

�� $$JJJJJJJJJJJJJ

φI,2

// oo (4.5)

The following key proposition was proved by Agrachev [1] in the unparametrized situation,

but as we see below it works in the parametrized case as well.

Proposition 4.3. The map φ2 gives a homotopy equivalence between BI and φ2(BI) = AI .

Proof. In order to simplify notation we prove it in the case I = [m], and the case for any

other I would follow immediately. We first prove that φ2(B) = A. If (y,x) ∈ A, then

there exists some i, 1 ≤ i ≤ m, such that Qi(y,x) ≤ 0. Then for ω = (−δ1,i, . . . ,−δm,i)

(where δi,j = 1 if i = j, and 0 otherwise), we see that (ω,y,x) ∈ B. Conversely, if

(y,x) ∈ φ2(B), then there exists ω = (ω1, . . . , ωm) ∈ Ω such that,
∑m

i=1 ωiQi(y,x) ≥ 0.

Since ωi ≤ 0, 1 ≤ i ≤ m, and not all ωi = 0, this implies that Qi(y,x) ≤ 0 for some

i, 1 ≤ i ≤ m. This shows that (y,x) ∈ A.

For (y,x) ∈ φ2(B), the fiber

φ−1
2 (y,x) = {(ω,y,x) | ω ∈ Ω such that ωQ(y,x) ≥ 0}

is a non-empty subset of Ω defined by a single linear inequality. Thus each non-empty fiber

is an intersection of a convex cone with Sm−1, and hence contractible.

The proposition now follows from the well-known Vietoris-Smale theorem (see Theo-

rem 2.27).

We will use the following notation.

Notation 4.4. For any quadratic form Q ∈ R[Y0, . . . , Yℓ], we will denote by index(Q) the

number of negative eigenvalues of the symmetric matrix of the corresponding bilinear form,

that is of the matrix MQ such that, Q(y) = 〈MQy,y〉 for all y ∈ Rℓ+1 (here 〈·, ·〉 denotes
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the usual inner product). We will also denote by λi(Q), 0 ≤ i ≤ ℓ, the eigenvalues of Q in

non-decreasing order, i.e.,

λ0(Q) ≤ λ1(Q) ≤ · · · ≤ λℓ(Q).

For I ⊂ [m], let

FI,j = {(ω,x) ∈ ΩI × Rk | index(ωQ(·,x)) ≤ j}. (4.6)

It is clear that each FI,j is a closed semi-algebraic subset of FI and that they induce a

filtration of the space FI given by

FI,0 ⊂ FI,1 ⊂ · · · ⊂ FI,ℓ+1 = FI .

Lemma 4.5. The fiber of the map φI,1 over a point (ω,x) ∈ FI,j \FI,j−1 has the homotopy

type of a sphere of dimension ℓ− j.

Proof. As before, we prove the lemma only for I = [m]. The proof for a general I is

identical. First notice that for (ω,x) ∈ Fj \ Fj−1, the first j eigenvalues of ωQ(·,x)

λ0(ωQ(·,x)), . . . , λj−1(ωQ(·,x)) < 0.

Moreover, letting W0(ωQ(·,x)), . . . ,Wℓ(ωQ(·,x)) be the co-ordinates with respect to an

orthonormal basis e0(ωQ(·,x)), . . . , eℓ(ωQ(·,x)), consisting of eigenvectors of ωQ(·,x), we

have that φ−1
1 (ω,x) is the subset of Sℓ = {ω} × Sℓ × {x} defined by

ℓ∑

i=0

λi(ωQ(·,x))Wi(ωQ(·,x))2 ≥ 0,

ℓ∑

i=0

Wi(ωQ(·,x))2 = 1.

Since, λi(ωQ(·,x)) < 0, 0 ≤ i < j, it follows that for (ω,x) ∈ Fj \ Fj−1, the fiber φ−1
1 (ω,x)

is homotopy equivalent to the (ℓ− j)-dimensional sphere defined by setting

W0(ωQ(·,x)) = · · · = Wj−1(ωQ(·,x)) = 0

on the sphere defined by
∑ℓ

i=0Wi(ωQ(·,x))2 = 1.
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For each (ω,x) ∈ FI,j \ FI,j−1, let L+
j (ω,x) ⊂ Rℓ+1 denote the sum of the non-negative

eigenspaces of ωQ(·,x) (i.e., L+
j (ω,x) is the largest linear subspace of Rℓ+1 on which ωQ(·,x)

is positive semi-definite). Since index(ωQ(·,x)) = j stays invariant as (ω,x) varies over

FI,j \ FI,j−1, L
+
j (ω,x) varies continuously with (ω,x).

We will denote by CI the semi-algebraic set defined by

CI =

ℓ+1⋃

j=0

{(ω,y,x) | (ω,x) ∈ FI,j \ FI,j−1,y ∈ L+
j (ω,x), |y| = 1}. (4.7)

The following proposition relates the homotopy type of BI to that of CI .

Proposition 4.6. The semi-algebraic set CI defined above is homotopy equivalent to BI

(see (4.4) for the definition of BI).

Proof. We give a deformation retraction of BI to CI constructed as follows. For each

(ω, x) ∈ FI,ℓ \ FI,ℓ−1, we can retract the fiber φ−1
1 (ω, x) to the zero-dimensional sphere,

L+
ℓ (ω, x) ∩ Sℓ by the following retraction. Let

W0(ωQI(·, x)), . . . ,Wℓ(ωQI(·, x))

be the co-ordinates with respect to an orthonormal basis e0(ωQ(·,x)), . . . , eℓ(ωQ(·,x)), con-

sisting of eigenvectors of ωQI(·, x) corresponding to non-decreasing order of the eigenvalues

of ωQ(·,x). Then, φ−1
1 (ω, x) is the subset of Sℓ defined by

ℓ∑

i=0

λi(ωQI(·, x))Wi(ωQI(·, x))2 ≥ 0,

ℓ∑

i=0

Wi(ωQI(·, x))2 = 1.

and L+
ℓ (ω, x) is defined by W0(ωQI(·, x)) = · · · = Wℓ−1(ωQI(·, x)) = 0. We retract

φ−1
1 (ω, x) to the zero-dimensional sphere, L+

ℓ (ω, x) ∩ Sℓ by the retraction sending,

(w0, . . . , wℓ) ∈ φ−1
1 (ω, x),

at time t to

((1 − t)w0, . . . , (1 − t)wℓ−1, t
′wℓ),
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where 0 ≤ t ≤ 1, and

t′ =

(
1 − (1 − t)2

∑ℓ−1
i=0 w

2
i

w2
ℓ

)1/2

.

Notice that even though the local co-ordinates (W0, . . . ,Wℓ) in Rℓ+1 with respect to the

orthonormal basis (e0, . . . , eℓ) may not be uniquely defined at the point (ω, x) (for in-

stance, if the quadratic form ωQI(·, x) has multiple eigenvalues), the retraction is still

well-defined since it only depends on the decomposition of Rℓ+1 into orthogonal comple-

ments span(e0, . . . , eℓ−1) and span(eℓ). We can thus retract simultaneously all fibers over

FIℓ \ FI,ℓ−1 continuously, to obtain a semi-algebraic set BI,ℓ ⊂ BI , which is moreover ho-

motopy equivalent to BI .

This retraction is schematically shown in Figure 6, where FI,ℓ is the closed segment, and

FI,ℓ−1 are its end points.

φI,1

BI BI,ℓ

FI,ℓ

φI,1

Figure 6: Schematic picture of the retraction of BI to BI,ℓ.

Now starting from BI,ℓ, retract all fibers over FI,ℓ−1 \ FI,ℓ−2 to the corresponding one

dimensional spheres, by the retraction sending

(w0, . . . , wℓ) ∈ φ−1
1 (ω, x),

at time t to

((1 − t)w0, . . . , (1 − t)wℓ−2, t
′wℓ−1, t

′wℓ),
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where 0 ≤ t ≤ 1, and

t′ =

(
1 − (1 − t)2

∑ℓ−2
i=0 w

2
i∑ℓ

i=ℓ−1w
2
i

)1/2

to obtain BI,ℓ−1, which is homotopy equivalent to BI,ℓ. Continuing this process we finally

obtain BI,0 = CI , which is clearly homotopy equivalent to BI by construction.

Notice that the semi-algebraic set φ−1
1 (FI,j\FI,j−1)∩CI is a Sℓ−j-bundle over FI,j\FI,j−1

under the map φ1, and CI is a union of these sphere bundles. We have good control over

the bases, FI,j \ FI,j−1, of these bundles, that is we have good bounds on the number as

well as the degrees of polynomials used to define them. However, these bundles could be

possibly glued to each other in complicated ways, and it is not immediate how to control

this glueing data, since different types of glueing could give rise to different homotopy types

of the underlying space. In order to get around this difficulty, we consider certain closed

subsets, F ′
I,j of FI , where each F ′

I,j is an infinitesimal deformation of FI,j \FI,j−1, and form

the base of a Sℓ−j-bundle. Moreover, these new sphere bundles are glued to each other

along sphere bundles over F ′
I,j ∩F ′

I,j−1, and their union, C ′
I , is homotopy equivalent to CI .

Finally, the polynomials defining the sets F ′
I,j are in general position in a very strong sense,

and this property is used later to bound the number of isotopy classes of the sets F ′
I,j in

the parametrized situation.

We now make precise the argument outlined above. Let ΛI be the polynomial in

R[Z1, . . . , Zm,X1, . . . ,Xk, T ] defined by

ΛI = det(MZI ·Q + T Idℓ+1),

= T ℓ+1 +HI,ℓT
ℓ + · · · +HI,0,

where ZI ·Q =
∑

i∈I ZiQi, and each HI,j ∈ R[Z1, . . . , Zm,X1, . . . ,Xk].

Notice, that HI,j is obtained from Hj = H[m],j by setting the variable Zi to 0 in the

polynomial Hj for each i 6∈ I.

Note also that for (z,x) ∈ Rm×Rk, the polynomial ΛI(z,x, T ) being the characteristic

polynomial of a real symmetric matrix has all its roots real. It then follows from Descartes’

rule of signs (see for instance [20]), that for each (z,x) ∈ Rm × Rk, where zi = 0 for all
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i 6∈ I, index(zQ(·,x)) is determined by the sign vector

(sign(HI,ℓ(z,x)), . . . , sign(HI,0(z,x))).

Hence, denoting by

HI = {HI,0, . . . ,HI,ℓ} ⊂ R[Z1, . . . , Zm,X1, . . . ,Xk], (4.8)

we have

Lemma 4.7. For each j, 0 ≤ j ≤ ℓ + 1, FI,j is the intersection of FI with a HI-closed

semi-algebraic set DI,j ⊂ Rm+k.

Notation 4.8. Let DI,j be defined by the formula

DI,j =
⋃

σ∈ΣI,j

R(σ), (4.9)

for some ΣI,j ⊂ Sign(HI). Note that, Sign(HI) ⊂ Sign(H) and ΣI,j ⊂ Σj for all I ⊂ [m].

Now, let δ̄ = (δℓ, . . . , δ0) and ε̄ = (εℓ+1, . . . , ε0) be infinitesimals such that

0 < δ0 ≪ · · · ≪ δℓ ≪ ε0 ≪ · · · ≪ εℓ+1 ≪ 1,

and let

R′ = R〈ε̄, δ̄〉 (4.10)

Given σ ∈ Sign(HI), and 0 ≤ j ≤ ℓ + 1, we denote by R(σcj) ⊂ R′m+k the set defined

by the formula σcj obtained by taking the conjunction of

−εj − δi ≤ HI,i ≤ εj + δi for each HI,i ∈ HI such that σ(HI,i) = 0,

HI,i ≥ −εj − δi, for each HI,i ∈ HI such that σ(HI,i) = 1,

HI,i ≤ εj + δi, for each HI,i ∈ HI such that σ(HI,i) = −1.

Similarly, we denote by R(σoj ) ⊂ R′m+k the set defined by the formula σo obtained by

taking the conjunction of

−εj − δi < HI,i < εj + δi for each Hi,I ∈ HI such that σ(HI,i) = 0,

HI,i > −εj − δi, for each HI,i ∈ HI such that σ(HI,i) = 1,

HI,i < εj + δi, for each HI,i ∈ HI such that σ(HI,i) = −1.
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For each j, 0 ≤ j ≤ ℓ+ 1, let

Do
I,j =

⋃

σ∈ΣI,j

R(σoj ),

Dc
I,j =

⋃

σ∈ΣI,j

R(σcj),

D′
I,j = Dc

I,j \Do
I,j−1,

F ′
I,j = Ext(FI ,R

′) ∩D′
I,j. (4.11)

where we denote by Do
I,−1 = ∅ . We also denote by F ′

I = Ext(FI ,R
′).

We now note some extra properties of the sets D′
I,j’s.

Lemma 4.9. For each j, 0 ≤ j ≤ ℓ+ 1, D′
I,j is a H′

I-closed semi-algebraic set, where

H′
I =

ℓ⋃

i=0

ℓ+1⋃

j=0

{HI,i + εj + δi,HI,i − εj − δi}. (4.12)

Proof. Follows from the definition of the sets D′
I,j.

Lemma 4.10. For 0 ≤ j + 1 < i ≤ ℓ+ 1,

D′
I,i ∩D′

I,j = ∅.

Proof. In order to keep notation simple we prove the proposition only for I = [m]. The

proof for a general I is identical. The inclusions,

Dj−1 ⊂ Dj ⊂ Di−1 ⊂ Di,

Do
j−1 ⊂ Dc

j ⊂ Do
i−1 ⊂ Dc

i .

follow directly from the definitions of the sets

Di,Dj ,Dj−1,D
c
i ,D

c
j ,D

o
i−1,D

o
j−1,

and the fact that,

εj−1 ≪ εj ≪ εi−1 ≪ εi.

It follows immediately that,

D′
i = Dc

i \Do
i−1

is disjoint from Dc
j , and hence from D′

j .
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We now associate to each F ′
I,j a (ℓ − j)-dimensional sphere bundle as follows. For

each (ω,x) ∈ F ′′
I,j = FI,j \ F ′

I,j−1, let L+
j (ω,x) ⊂ Rℓ+1 denote the sum of the non-negative

eigenspaces of ωQ(·,x) (i.e., L+
j (ω,x) is the largest linear subspace of Rℓ+1 on which ωQ(·,x)

is positive semi-definite). Since index(ωQ(·,x)) = j stays invariant as (ω,x) varies over F ′′
I,j ,

L+
j (ω,x) varies continuously with (ω,x).

Let,

λ0(ω,x) ≤ · · · ≤ λj−1(ω,x) < 0 ≤ λj(ω,x) ≤ · · · ≤ λℓ(ω,x),

be the eigenvalues of ωQ(·,x) for (ω,x) ∈ F ′′
I,j . There is a continuous extension of the map

sending (ω,x) 7→ L+
j (ω,x) to (ω,x) ∈ F ′

I,j.

To see this observe that for (ω,x) ∈ F ′′
I,j the block of the first j (negative) eigenvalues,

λ0(ω,x) ≤ · · · ≤ λj−1(ω,x), and hence the sum of the eigenspaces corresponding to them

can be extended continuously to any infinitesimal neighborhood of F ′′
I,j, and in particu-

lar to F ′
I,j. Now L+

j (ω,x) is the orthogonal complement of the sum of the eigenspaces

corresponding to the block of negative eigenvalues, λ0(ω,x) ≤ · · · ≤ λj−1(ω,x).

We will denote by C ′
I,j ⊂ F ′

I,j × R′ℓ+1 the semi-algebraic set defined by

C ′
I,j = {(ω,y,x) | (ω,x) ∈ F ′

I,j,y ∈ L+
j (ω,x), |y| = 1}. (4.13)

Note that the projection πI,j : C ′
I,j → F ′

I,j , makes C ′
I,j the total space of a (ℓ − j)-

dimensional sphere bundle over F ′
I,j.

Now observe that

C ′
I,j−1 ∩C ′

I,j = π−1
I,j (F

′
I,j ∩ F ′

I,j−1),

and

πI,j|C′

I,j−1∩C
′

I,j
: C ′

I,j−1 ∩ C ′
I,j → F ′

I,j ∩ F ′
I,j−1

is also a (ℓ− j) dimensional sphere bundle over F ′
I,j ∩ F ′

I,j−1.

Let

C ′
I =

ℓ+1⋃

j=0

C ′
I,j. (4.14)

We have that
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Proposition 4.11. C ′
I is homotopy equivalent to Ext(CI ,R

′), where CI and R′ are defined

in (4.7) and (4.10) respectively.

Proof. Let ε̄ = (εℓ+1, . . . , ε0) and let

Ri =





R〈ε̄, δℓ, . . . , δi〉, 0 ≤ i ≤ ℓ,

R〈εℓ+1, . . . , εi−ℓ−1〉, ℓ+ 1 ≤ i ≤ 2ℓ+ 2,

R, i = 2ℓ+ 3.

First observe that CI = limεℓ+1
C ′
I where CI is the semi-algebraic set defined in (4.7) above.

Now let,

CI,−1 = C ′
I ,

CI,0 = lim
δ0
C ′
I ,

CI,i = lim
δi
CI,i−1, 1 ≤ i ≤ ℓ,

CI,ℓ+1 = lim
ε0
CI,ℓ,

CI,i = lim
εi−ℓ−2

CI,i−1, ℓ+ 2 ≤ i ≤ 2ℓ+ 3.

Notice that each CI,i is a closed and bounded semi-algebraic set. Also, for i ≥ 0,

let CI,i−1,t ⊂ Rm+ℓ+k
i be the semi-algebraic set obtained by replacing δi (resp., εi) in

the definition of CI,i−1 by the variable t. Then, there exists t0 > 0, such that for all

0 < t1 < t2 ≤ t0, CI,i−1,t1 ⊂ CI,i−1,t2.

It follows (see Lemma 16.17 in [20]) that for each i, 0 ≤ i ≤ 2ℓ + 3, Ext(CI,i,Ri) is

homotopy equivalent to CI,i−1.

4.4 Partitioning the Parameter Space

The goal of this section is to prove the following proposition (Proposition 4.12). The

techniques used in the proof are similar to those used in [22] for proving a similar result.

We go through the proof in detail in order to extract the right bound in terms of the

parameters d, k, ℓ and m.

Proposition 4.12. There exists a finite set of points T ⊂ Rk with

#T ≤ (2mℓkd)O(mk)
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such that for any x ∈ Rk, there exists z ∈ T , with the following property.

There is a semi-algebraic path, γ : [0, 1] → R′k and a continuous semi-algebraic map,

φ : Ω × [0, 1] → Ω (see (4.2) and (4.10) for the definition of Ω and R′),

with γ(0) = x, γ(1) = z, and for each I ⊂ [m],

φ(·, t)|F ′

I,j,x
: F ′

I,j,x → F ′
I,j,γ(t),

is a homeomorphism for each 0 ≤ t ≤ 1.

Before proving Proposition 4.12 we need a few preliminary results. Let

H′′ = H′ ∪ {Z1, . . . , Zm, Z
2
1 + · · · + Z2

m − 1}, (4.15)

where H′ = H′
[m] is defined in (4.12) above.

Note that for each j, 0 ≤ j ≤ ℓ+ 1, F ′
I,j is a H′′-closed semi-algebraic set. Moreover, let

ψ : R′m+k → R′k be the projection onto the last k co-ordinates.

Notation 4.13. We fix a finite set of points T ⊂ Rk such that for every x ∈ Rk there exists

z ∈ T such that for every H′′-semi-algebraic set V , the set ψ−1(x) ∩ V is homeomorphic to

ψ−1(z) ∩ V .

The existence of a finite set T with this property follows from Hardt’s triviality theorem

(Theorem 2.15) and the Tarski-Seidenberg transfer principle, as well as the fact that the

number of H′′-semi-algebraic sets is finite.

Now, we note some extra properties of the family H′′. The notations Signp and R(σ)

were introduced in Chapter 2.1.1.

Lemma 4.14. If σ ∈ Signp(H′′), then p ≤ k + m and R(σ) ⊂ R′m+k
is a non-singular

(m+ k− p)-dimensional manifold such that at every point (z,x) ∈ R(σ), the (p× (m+ k))-

Jacobi matrix, (
∂P

∂Zi
,
∂P

∂Yj

)

P∈H′′, σ(P )=0, 1≤i≤m, 1≤j≤k

has maximal rank p.
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Proof. Let Ext(Sm−1,R′) be the unit sphere in R′m. Suppose without loss of generality

that

{P ∈ H′′| σ(P ) = 0} = {Hi1 − εj1 − δi1 , . . . ,Hip−1 − εjp−1 − δip−1 ,

m∑

i=1

Z2
i − 1}

since the equation Zi = 0 eliminates the variable Zi from the polynomials. It follows that

it suffices to show that the algebraic set

V =

p−1⋂

r=1

{(z,x) ∈ Ext(Sm−1,R′) × R′k | Hir(z,x) = εjr + δir} (4.16)

is a smooth ((m− 1) + k− (p− 1))-dimensional manifold such that at every point on it the

(p× (m+ k))-Jacobi matrix,

(
∂P

∂Zi
,
∂P

∂Yj

)

P∈H′′, σ(P )=0, 1≤i≤m, 1≤j≤k

has maximal rank p.

Let p ≤ m+ k. Consider the semi-algebraic map Pi1,...,ip−1 : Sm−1 ×Rk → Rp−1 defined

by

(z,x) 7→ (Hi1(z,x), . . . ,Hip−1(z,x)).

By the semi-algebraic version of Sard’s theorem (see [29]), the set of critical values of

Pi1,...,ip−1 is a semi-algebraic subset C of Rp−1 of dimension strictly less than p− 1. Since δ̄

and ε̄ are infinitesimals, it follows that

(εj1 + δi1 , . . . , εjp−1 + δip−1) /∈ Ext(C,R′).

Hence, the algebraic set V defined in (4.16) has the desired properties, and the same is true

for the basic semi-algebraic set R(σ).

We now prove that p ≤ m+ k. Suppose that p > m+ k. As we have just proved,

{Hi1(z,x) = εj1 + δi1 , . . . ,Him+k−1
(z,x) = εjm+k−1

+ δim+k−1
}

is a finite set of points. But the polynomial Hip−1 − εjp−1 − δip−1 cannot vanish on each of

these points as δ̄ and ε̄ are infinitesimals.
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Lemma 4.15. For every x ∈ Rk, and σ ∈ Signp(H′′
x
), where

H′′
x

= {P (Z1, . . . , Zm,x)| P ∈ H′′},

the following holds.

1. 0 ≤ p ≤ m, and

2. R(σ)∩ψ−1(x) is a non-singular (m−p)-dimensional manifold such that at every point

(z,x) ∈ R(σ) ∩ ψ−1(x), the (p×m)-Jacobi matrix,

(
∂P

∂Zi

)

P∈H′′

x
,σ(P )=0,1≤i≤m

has maximal rank p.

Proof. Note that Px = P (Z1, . . . , Zm,x) ∈ R′[Z1, . . . , Zm] for each P ∈ H′′ and x ∈ Rk.

The proof is now identical to the proof of Lemma 4.14.

Lemma 4.16. For any bounded H′′-semi-algebraic set V defined by

V =
⋃

σ∈ΣV ⊂Sign(H′′)

R(σ),

the partitions

R′m+k =
⋃

σ∈Sign(H′′)

R(σ),

V =
⋃

σ∈ΣV

R(σ),

are compatible Whitney stratifications of R′m+k and V respectively.

Proof. Follows directly from the definition of Whitney stratification (see [53, 39]), and

Lemma 4.14.

Fix some sign condition σ ∈ Sign(H′′). Recall that (z,x) ∈ R(σ) is a critical point of

the map ψR(σ) if the Jacobi matrix,

(
∂P

∂Zi

)

P∈H′′,σ(P )=0, 1≤i≤m
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at (z,x) is not of the maximal possible rank. The projection ψ(z,x) of a critical point is a

critical value of ψR(σ).

Let C1 ⊂ R′m+k be the set of critical points of ψR(σ) over all sign conditions

σ ∈
⋃

p≤m

Signp(H′′),

(i.e., over all σ ∈ Signp(H′′) with dim(R(σ)) ≥ k). For a bounded H′′-semi-algebraic set V ,

let C1(V ) ⊂ V be the set of critical points of ψR(σ) over all sign conditions

σ ∈
⋃

p≤m

Signp(H′′) ∩ ΣV

(i.e., over all σ ∈ ΣV with dim(R(σ)) ≥ k).

Let C2 ⊂ R′m+k be the union of R(σ) over all

σ ∈
⋃

p>m

Signp(H′′)

(i.e., over all σ ∈ Signp(H′′) with dim(R(σ)) < k). For a bounded H′′-semi-algebraic set V ,

let C2(V ) ⊂ V be the union of R(σ) over all

σ ∈
⋃

p>m

Signp(H′′) ∩ ΣV

(i.e., over all σ ∈ ΣV with dim(R(σ)) < k).

Denote C = C1 ∪ C2, and C(V ) = C1(V ) ∪ C2(V ).

Lemma 4.17. For each bounded H′′-semi-algebraic V , the set C(V ) is closed and bounded.

Proof. The set C(V ) is bounded since V is bounded. The union C2(V ) of strata of dimen-

sions less than k is closed since V is closed.

Let σ1 ∈ Signp1(H′′) ∩ ΣV , σ2 ∈ Signp2(H′′) ∩ ΣV , where p1 ≤ m, p1 < p2, and if

σ1(P ) = 0, then σ2(P ) = 0 for any P ∈ H′′. It follows that stratum R(σ2) lies in the

closure of the stratum R(σ1). Let J be the finite family of (p1 × p1)-minors such that

Zer(J ,R′) ∩ R(σ1) is the set of all critical points of πR(σ1). Then Zer(J ,R′) ∩ R(σ2) is

either contained in C2(V ) (when dim(R(σ2)) < k), or is contained in the set of all critical

points of πR(σ2) (when dim(R(σ2)) ≥ k). It follows that the closure of Zer(J ,R′) ∩ R(σ1)

lies in the union of the following sets:
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1. Zer(J ,R′) ∩R(σ1),

2. sets of critical points of some strata of dimensions less than m+ k − p1,

3. some strata of dimension less than k.

Using induction on descending dimensions in case (2), we conclude that the closure of

Zer(J ,R′) ∩R(σ1) is contained in C(V ). Hence, C(V ) is closed.

Definition 4.18. We denote by Gi = ψ(Ci), i = 1, 2, and G = G1 ∪ G2. Similarly, for

each bounded H′′-semi-algebraic set V , we denote by Gi(V ) = ψ(Ci(V )), i = 1, 2, and

G(V ) = G1(V ) ∪G2(V ).

Lemma 4.19. We have T ∩ G = ∅. In particular, T ∩ G(V ) = ∅ for every bounded

H′′-semi-algebraic set V .

Proof. By Lemma 4.15, for all x ∈ T , and σ ∈ Signp(H′′
x
),

1. 0 ≤ p ≤ m, and

2. R(σ)∩ψ−1(x) is a non-singular (m−p)-dimensional manifold such that at every point

(z,x) ∈ R(σ) ∩ ψ−1(x), the (p×m)-Jacobi matrix,

(
∂P

∂Zi

)

P∈H′′

x
,σ(P )=0,1≤i≤m

has the maximal rank p.

If a point x ∈ T ∩G1 = T ∩ ψ(C1), then there exists z ∈ R′m such that (z,x) is a critical

point of ψR(σ) for some σ ∈ ⋃p≤m Signp(H′′), and this is impossible by (2).

Similarly, x ∈ T ∩G2 = T ∩ ψ(C2), implies that there exists z ∈ R′m such that (z,x) ∈

R(σ) for some σ ∈ ⋃p>m Signp(H′′), and this is impossible by (1).

Let D be a connected component of R′k \G, and for a bounded H′′-semi-algebraic set V ,

let D(V ) be a connected component of ψ(V ) \G(V ).

Lemma 4.20. For every bounded H′′-semi-algebraic set V , all fibers ψ−1(x) ∩ V , x ∈ D

are homeomorphic.
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Proof. Lemma 4.15 and Lemma 4.16 imply that V̂ = ψ−1(ψ(V ) \G(V )) ∩ V is a Whitney

stratified set having strata of dimensions at least k. Moreover, ψ|bV is a proper stratified

submersion. By Thom’s first isotopy lemma (in the semi-algebraic version, over real closed

fields [39]) the map ψ|bV is a locally trivial fibration. In particular, all fibers ψ−1(x) ∩ V ,

x ∈ D(V ) are homeomorphic for every connected component D(V ). The lemma follows,

since the inclusion G(V ) ⊂ G implies that either D ⊂ D(V ) for some connected component

D(V ), or D ∩ ψ(V ) = ∅.

Lemma 4.21. For each x ∈ T , there exists a connected component D of R′k \G, such that

ψ−1(x) ∩ V is homeomorphic to ψ−1(x1) ∩ V for every bounded H′′-semi-algebraic set V

and for every x1 ∈ D.

Proof. Let V be a bounded H′′-semi-algebraic set and x ∈ T . By Lemma 4.19, x belongs

to some connected component D of R′k \ G. Lemma 4.20 implies that ψ−1(x) ∩ V is

homeomorphic to ψ−1(x1) ∩ V for every x1 ∈ D.

We now are able to prove Proposition 4.12.

Proof of Proposition 4.12. Recall that G = G1 ∪ G2, where G1 is the union of sets of

critical values of ψR(σ) over all strata R(σ) of dimensions at least k, and G2 is the union of

projections of all strata of dimensions less than k.

By Lemma 4.21 it suffices to bound the number of connected components of the set R′k \

G. Denote by E1 the family of closed sets of critical points of ψZ(σ), over all sign conditions

σ such that strata R(σ) have dimensions at least k (the notation Z(σ) was introduced in

Chapter 2.1.1). Let E2 be the family of closed sets Z(σ), over all sign conditions σ such

that strata R(σ) have dimensions equal to k − 1. Let E = E1 ∪ E2. Denote by E the image

under the projection ψ of the union of all sets in the family E .

Because of the transversality condition, every stratum of the stratification of V , having

the dimension less than m + k, lies in the closure of a stratum having the next higher

dimension. In particular, this is true for strata of dimensions less than k−1. It follows that

G ⊂ E, and thus every connected component of the complement R′k \ E is contained in a
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connected component of R′k \G. Since dim(E) < k, every connected component of R′k \G

contains a connected component of R′k \E. Therefore, it is sufficient to estimate from above

the Betti number b0(R
′k \ E) which is equal to bk−1(E) by the Alexander’s duality.

The total number of sets Z(σ), such that σ ∈ Sign(H′′) and dim(Z(σ)) ≥ k − 1, is

O(ℓ2(m+1)) because each Z(σ) is defined by a conjunction of at most m + 1 of possible

O(ℓ2 +m) polynomial equations.

Thus, the cardinality #E , as well as the number of images under the projection π of

sets in E is O(ℓ2(m+1)). According to (2.2) in Proposition 2.19, bk−1(E) does not exceed

the sum of certain Betti numbers of sets of the type

Φ =
⋂

1≤i≤p

π(Ui),

where every Ui ∈ E and 1 ≤ p ≤ k. More precisely, we have

bk−1(E) ≤
∑

1≤p≤k

∑

{U1,...,Up}⊂ E

bk−p


 ⋂

1≤i≤p

π(Ui)


 .

Obviously, there are O(ℓ2(m+1)k) sets of the kind Φ.

Using inequality (2.3) in Proposition 2.19, we have that for each Φ as above, the Betti

number bk−p(Φ) does not exceed the sum of certain Betti numbers of unions of the kind,

Ψ =
⋃

1≤j≤q

π(Uij ) = π


 ⋃

1≤j≤q

Uij


 ,

with 1 ≤ q ≤ p. More precisely,

bk−p(Φ) ≤
∑

1≤q≤p

∑

1≤i1<···<iq≤p

bk−p+q−1


π


 ⋃

1≤j≤q

Uij




 .

It is clear that there are at most 2p ≤ 2k sets of the kind Ψ.

If a set U ∈ E1, then it is defined by m polynomials of degrees at most O(ℓd). If a

set U ∈ E2, then it is defined by O(2m) polynomials of degrees O(mℓd), since the critical

points on strata of dimensions at least k are defined by O(2m) determinantal equations, the

corresponding matrices have orders O(m), and the entries of these matrices are polynomials

of degrees at most O(ℓd).
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It follows that the closed and bounded set

⋃

1≤j≤q

Uij

is defined by O(k2m)) polynomials of degrees O(ℓd).

By Proposition 2.26, bk−p+q−1(Ψ) ≤ (2mkℓd)O(mk) for all 1 ≤ p ≤ k, 1 ≤ q ≤ p. Then

bk−p(Φ) ≤ (2mkℓd)O(mk) for every 1 ≤ p ≤ k. Since there are O(ℓ2(m+1)k) sets of the kind

Φ, we get the claimed bound

bk−1(E) ≤ (2mkℓd)O(mk).

The rest of the proof follows from Proposition 4.21.

4.5 Proof of the Result

4.5.1 The Homogeneous Case

We first consider the case where all the polynomials in Q are homogeneous in variables

Y0, . . . , Yℓ and we bound the number of homotopy types among the fibers Sx, defined by

the Q-closed semi-algebraic subsets S of Sℓ×Rk. We first the prove the following theorems

for the special cases of unions and intersections.

Theorem 4.22. Let R be a real closed field and let

Q = {Q1, . . . , Qm} ⊂ R[Y0, . . . , Yℓ,X1, . . . ,Xk],

where each Qi is homogeneous of degree 2 in the variables Y0, . . . , Yℓ, and of degree at most

d in X1, . . . ,Xk.

For i ∈ [m], let Ai ⊂ Sℓ × Rk be semi-algebraic sets defined by

Ai = {(y,x) | |y| = 1 ∧ Qi(y,x) ≤ 0)},

Let π : Sℓ × Rk → Rk be the projection on the last k co-ordinates.

Then, the number of homotopy types amongst the fibers

m⋃

i=1

Ai,x is bounded by

(2mℓkd)O(mk).

With the same assumptions as in Theorem 4.22 we have
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Theorem 4.23. The number of stable homotopy types amongst the fibers
m⋂

i=1

Ai,x is bounded

by

(2mℓkd)O(mk).

Before proving Theorems 4.22 and 4.23 we first prove two preliminary lemmas.

Lemma 4.24. There exists a finite set T ⊂ Rk, with

#T ≤ (2mℓkd)O(mk),

such that for every x ∈ Rk there exists z ∈ T , a semi-algebraic set Dx,z ⊂ R′m+ℓ, and semi-

algebraic maps fx, fz, as shown in the diagram below, such that fx, fz are both homotopy

equivalences.

Dx,z

Ext(
⋃

i∈[m]

Ai,x,R
′) Ext(

⋃

i∈[m]

Ai,z,R
′)

zztt
tt

tt
tt

tfx

∼
$$JJ

JJ
JJ

JJ
J

fz

∼ (4.17)

Moreover, for each I ⊂ [m], there exists a subset DI,x,z ⊂ Dx,z, such that the restric-

tions, fI,x, fI,z, of fx, fz to DI,x,z give rise to the following diagram in which all maps are

again homotopy equivalences.

DI,x,z

Ext(
⋃

i∈I

Ai,x,R
′) Ext(

⋃

i∈I

Ai,z,R
′)

zztt
tt

tt
tt

tfI,x

∼
$$JJJ

JJ
JJ

JJ
fI,z

∼ (4.18)

For each I ⊂ J ⊂ [m], DI,x,z ⊂ DJ,x,z and the maps fI,x, fI,z are restrictions of fJ,x, fJ,z.

Proof of Lemma 4.24. By Proposition 4.12, there exists T ⊂ Rk with

#T ≤ (2mℓkd)O(mk),

such that for every x ∈ Rk, there exists z ∈ T , with the following property.

There is a semi-algebraic path, γ : [0, 1] → R′k and a continuous semi-algebraic map,

φ : Ω × [0, 1] → Ω, with γ(0) = x, γ(1) = z, and for each I ⊂ [m],

φ(·, t)|F ′

I,j,x
: F ′

I,j,x → F ′
I,j,γ(t),
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is a homeomorphism for each 0 ≤ t ≤ 1 (see (4.2), (4.10) and (4.11) for the definition of Ω,

R′ and F ′
I,j).

Now, observe that C ′
I,j,x (resp. C ′

I,j,z) is a sphere bundle over F ′
I,j,x (resp. F ′

I,j,z).

Moreover

C ′
I,j,x = {(ω,y) | ω ∈ F ′

I,j,x,y ∈ L+
j (ω,x), |y| = 1},

and, for ω ∈ F ′
I,j,x ∩ F ′

I,j−1,x, we have L+
j (ω,x) ⊂ L+

j−1(ω,x).

We now prove that the map φ induces a homeomorphism φ̃ : C ′
x
→ C ′

z
, which for each

I ⊂ [m] and 0 ≤ j ≤ ℓ restricts to a homeomorphism φ̃I,j : C ′
I,j,x → C ′

I,j,z.

First recall that by a standard result in the theory of bundles (see for instance, [48],

p. 313, Lemma 5), the isomorphism class of the sphere bundle C ′
I,j,x → F ′

I,j,x, is determined

by the homotopy class of the map,

F ′
I,j,x → Gr(ℓ+ 1 − j, ℓ+ 1)

ω 7→ L+
j (ω,x),

where Gr(m,n) denotes the Grassmannian variety of m dimensional subspaces of R′n.

The map φ induces for each j, 0 ≤ j ≤ ℓ, a homotopy between the maps

f0 : F ′
I,j,x → Gr(ℓ+ 1 − j, ℓ+ 1)

ω 7→ L+
j (ω,x)

and

f1 : F ′
I,j,z → Gr(ℓ+ 1 − j, ℓ + 1)

ω 7→ L+
j (ω, z)

(after indentifying the sets F ′
I,j,x and F ′

I,j,z since they are homeomorphic) which respects

the inclusions L+
j (ω,x) ⊂ L+

j−1(ω,x), and L+
j (ω, z) ⊂ L+

j−1(ω, z).

The above observation in conjunction with Lemma 5 in [48] is sufficient to prove the

equivalence of the sphere bundles C ′
I,j,x and C ′

I,j,z. But we need to prove a more general

equivalence, involving all the sphere bundles C ′
I,j,x simultaneously, for 0 ≤ j ≤ ℓ.
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However, note that the proof of Lemma 5 in [48] proceeds by induction on the skeleton

of the CW-complex of the base of the bundle. After choosing a sufficiently fine triangulation

of the set F ′
I,x

∼= F ′
I,z compatible with the closed subsets F ′

I,j,x
∼= F ′

I,j,z, the same proof

extends without difficulty to this slightly more general situation to give a fiber preserv-

ing homeomorphism, φ̃ : C ′
x
→ C ′

z
, which restricts to an isomorphism of sphere bundles,

φ̃I,j : C ′
I,j,x → C ′

I,j,z, for each I ⊂ [m] and 0 ≤ j ≤ ℓ.

We have the following maps.

Ext(Ax,R
′) Ext(Bx,R

′) Ext(Cx,R
′) C ′

x

Ext(Az,R
′) Ext(Bz,R

′) Ext(Cz,R
′) C ′

z

oo
φ2 oo i oo r

��

φ̃

oo
φ2 oo i oo r

(4.19)

The map i is the inclusion map, and r is a retraction shown to exist by Proposition 4.11.

Since all the maps φ2, i, r have been shown to be homotopy equivalences, by Propositions

4.6, 4.3, and 4.11, their composition is also a homotopy equivalence.

Moreover, for each I ⊂ [m], the maps in the above diagram restrict properly to give a

corresponding diagram:

Ext(AI,x,R
′) Ext(BI,x,R

′) Ext(CI,x,R
′) C ′

I,x

Ext(AI,z,R
′) Ext(BI,z,R

′) Ext(CI,z,R
′) C ′

I,z

oo
φ2 oo i oo r

��
�
�
�
�
�
�

φ̃

oo
φ2 oo i oo r

(4.20)

Now let Dx,z = C ′
x
, and fx = φ2 ◦ i ◦ r and fz = φ2 ◦ i ◦ r ◦ φ̃. Finally, for each I ⊂ [m],

let DI,x,z = C ′
I,x and the maps fI,x, fI,z the restrictions of fx and fz respectively to DI,x,z.

The collection of sets DI,x,z and the maps fI,x, fI,z clearly satisfy the conditions of the

lemma. This completes the proof of the lemma.

Remark 4.25. Note that if R1 is a real closed sub-field of R, then Lemma 4.24 continues

to hold after we substitute “T ⊂ Rk
1” and “for all x ∈ Rk

1” in place of “T ⊂ Rk” and “for

all x ∈ Rk” in the statement of the lemma. This is a consequence of the Tarski-Seidenberg

transfer principle.
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With the same hypothesis as in Lemma 4.24 we also have,

Lemma 4.26. There exists a finite set T ⊂ Rk with

#T ≤ (2mℓkd)O(mk)

such that for every x ∈ Rk, there exists z ∈ T , for each I ⊂ [m], a semi-algebraic set

EI,x,z defined over R′′, where R′′ = R〈ε, ε̄, δ̄〉 (see (4.10 for the definition of ε̄ and δ̄), and

S-maps gI,x, gI,z as shown in the diagram below such that gI,x, gI,z are both stable homotopy

equivalences.

EI,x,z

Ext(
⋂

i∈I

Ai,x,R
′′) Ext(

⋂

i∈I

Ai,z,R
′′)

::ttttttttt

gx

∼

ddJJJJJJJJJ

gz

∼ (4.21)

For each I ⊂ J ⊂ [m], EJ,x,z ⊂ EI,x,z and the maps gJ,x, gJ,z are restrictions of of

gI,x, gI,z.

Proof. Let 1 ≫ ε > 0 be an infinitesimal. For 1 ≤ i ≤ m, we define

Q̃i = Qi + ε(Y 2
0 + · · · + Y 2

ℓ ),

Ãi = {(y,x) | |y| = 1 ∧ Q̃i(y,x) ≤ 0)}.

Note that the set
⋂

i∈I

Ãi,x is homotopy equivalent to Ext(
⋂

i∈I

Ai,x,R〈ε〉) for each I ⊂ [m]

and x ∈ Rk. Applying Lemma 4.24 (see Remark 4.25) to the family Q̃ = {−Q̃1, . . . ,−Q̃m},

we have that there exists a finite set T ⊂ Rk with

#T ≤ (2mℓkd)O(mk)

such that for every x ∈ Rk, there exists z ∈ T such that for each I ⊂ [m], the following

diagram

D̃I,x,z

Ext(
⋃

i∈I

Ãi,x,R
′′) Ext(

⋃

i∈I

Ãi,z,R
′′)

zztt
tt

tt
tt

tf̃I,x

∼
$$JJ

JJ
JJ

JJ
J

f̃I,z

∼ (4.22)
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where for each x ∈ Rk we denote

Ãi,x = {(y,x) | |y| = 1 ∧ −Q̃i(y,x) ≤ 0)},

f̃I,x, f̃I,z are homotopy equivalences.

Note that for each x ∈ Rk, the set Ext(
⋂

i∈I

Ai,x,R
′′) is a deformation retract of the

complement of Ext(
⋃

i∈I

Ãi,x,R
′′) and hence is Spanier-Whitehead dual to Ext(

⋃

i∈I

Ãi,x,R
′′).

The lemma now follows by taking the Spanier-Whitehead dual of diagram (4.22) above for

each I ⊂ [m].

Proof of Theorem 4.22. Follows directly from Lemma 4.24.

Proof of Theorem 4.23. Follows directly from Lemma 4.26.

We now prove a homogenous version of Theorem 4.1

Theorem 4.27. Let R be a real closed field and let

Q = {Q1, . . . , Qm} ⊂ R[Y0, . . . , Yℓ,X1, . . . ,Xk],

where each Qi is homogeneous of degree 2 in the variables Y0, . . . , Yℓ, and of degree at most

d in X1, . . . ,Xk.

Let π : Sℓ×Rk → Rk be the projection on the last k co-ordinates. Then, for any Q-closed

semi-algebraic set S ⊂ Sℓ ×Rk, the number of stable homotopy types amongst the fibers Sx

is bounded by

(2mℓkd)O(mk).

Proof. We first replace the family Q by the family,

Q′ = {Q1, . . . , Q2m} = {Q,−Q | Q ∈ Q}.

Note that the cardinality of Q′ is 2m. Let

Ai = {(y,x) | |y| = 1 ∧ Qi(y,x) ≤ 0)}.

It follows from Lemma 4.26 that there exists a set T ⊂ Rk with

#T ≤ (2mℓkd)O(mk)
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such that for every I ⊂ [2m] and x ∈ Rk, there exists z ∈ T and a semi-algebraic set EI,x,z

defined over R′′ = R〈ε, ε̄, δ̄〉 and S-maps gI,x, gI,z as shown in the diagram below such that

gI,x, gI,z are both stable homotopy equivalences.

EI,x,z

Ext(
⋂

i∈I

Ai,x,R
′′) Ext(

⋂

i∈I

Ai,z,R
′′)

::ttttttttt

gI,x

∼

ddJJJJJJJJJ

gI,z

∼ (4.23)

Now notice that each Q-closed set S is a union of sets of the form
⋂

i∈I

Ai with I ⊂ [2m].

Let

S =
⋃

I∈Σ⊂2[2m]

⋂

i∈I

Ai.

Moreover, the intersection of any sub-collection of sets of the kind,
⋂
i∈I Ai with I ⊂ [2m],

is also a set of the same kind. More precisely, for any Σ′ ⊂ Σ there exists IΣ′ ∈ 2[2m] such

that
⋂

I∈Σ′

⋂

i∈I

Ai =
⋂

i∈IΣ′

Ai.

We are not able to show directly a stable homotopy equivalence between Sx and Sz.

Instead, we note that the S-maps gI,x and gI,z induce S-maps (cf. Definition 2.31)

g̃x : hocolim({Ext(
⋂

i∈I

Ai,x,R
′′) | I ∈ Σ}) −→ hocolim({EI,x,z | I ∈ Σ})

g̃z : hocolim({Ext(
⋂

i∈I

Ai,z,R
′′) | I ∈ Σ}) −→ hocolim({EI,x,z | I ∈ Σ})

which are stable homotopy equivalences by Lemma 2.33 since each gI,x and gI,z is a

stable homotopy equivalence.

Since hocolim({
⋂

i∈I

Ai,x | I ∈ Σ}) (resp. hocolim({
⋂

i∈I

Ai,z | I ∈ Σ})) is homotopy equiv-

alent by Lemma 2.32 to
⋃

I∈Σ

⋂

i∈I

Ai,x (resp.
⋃

I∈Σ

⋂

i∈I

Ai,z), it follows (see Remark 2.1) that

Sx =
⋃

I∈Σ

⋂

i∈I

Ai,x is stable homotopy equivalent to Sz =
⋃

I∈Σ

⋂

i∈I

Ai,z. This proves the theo-

rem.

4.5.2 Inhomogeneous case

We are now in a position to prove Theorem 4.1.
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Proof of Theorem 4.1. Let φ be a P-closed formula defining the P-closed semi-algebraic set

S ⊂ Rℓ+k. Let 1 ≫ ε > 0 be an infinitesimal, and let

P0 = ε2

(
ℓ∑

i=1

Y 2
i +

k∑

i=1

X2
i

)
− 1.

Let P̃ = P ∪ {P0}, and let φ̃ be the P̃-closed formula defined by

φ̃ = φ ∧ {P0 ≤ 0},

defining the P̃-closed semi-algebraic set Sb ⊂ R〈ε〉ℓ+k. Note that the set Sb is bounded.

It follows from the local conical structure of semi-algebraic sets at infinity [29] that the

semi-algebraic set Sb has the same homotopy type as Ext(S,R〈ε〉).

Considering each Pi as a polynomial in the variables Y1, . . . , Yℓ with coefficients in

R[X1, . . . ,Xk], and let P hi denote the homogenization of Pi. Thus the polynomials P hi ∈

R[Y0, . . . , Yℓ,X1, . . . ,Xk] and are homogeneous of degree 2 in the variables Y0, . . . , Yℓ.

Let Shb ⊂ Sℓ × R〈ε〉k be the semi-algebraic set defined by the P̃h-closed formula φ̃h

(replacing Pi by P hi in φ̃). It is clear that Shb is a union of two disjoint, closed and

bounded semi-algebraic sets each homeomorphic to Sb, which has the same homotopy type

as Ext(S,R〈ε〉).

The theorem is now proven by applying Theorem 4.27 to the family P̃h and the semi-

algebraic set Shb . Note that two fibers Sx and Sy are stable homotopy equivalent if and only

if Ext(Sx,R〈ε〉) and Ext(Sy,R〈ε〉) are stable homotopy equivalent (see Remark 2.1).

4.6 Metric upper bounds

In [22] certain metric upper bounds related to homotopy types were proven as applications

of the main result. Similar results hold in the quadratic case, except now the bounds have

a better dependence on ℓ. We state these results without proof.

We first recall the following results from [22]. Let V ⊂ Rℓ be a P-semi-algebraic set,

where P ⊂ Z[Y1, . . . , Yℓ]. Suppose for each P ∈ P, deg(P ) < d, and the maximum of the

absolute values of coefficients in P is less than some constant M , 0 < M ∈ Z.

Theorem 4.28. There exists a constant c > 0, such that for any r1 > r2 > Mdcℓ

we have
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1. V ∩Bℓ(0, r1) and V ∩Bℓ(0, r2) are homotopy equivalent, and

2. V \Bℓ(0, r1) and V \Bℓ(0, r2) are homotopy equivalent.

In the special case of quadratic polynomials we get the following improvement of The-

orem 4.28.

Theorem 4.29. Let R be a real closed field. Let V ⊂ Rℓ be a P-semi-algebraic set, where

P = {P1, . . . , Pm} ⊂ R[Y1, . . . , Yℓ],

with deg(Pi) ≤ 2, 1 ≤ i ≤ m and the maximum of the absolute values of coefficients in P is

less than some constant M , 0 < M ∈ Z.

There exists a constant c > 0, such that for any r1 > r2 > M ℓcm

we have,

1. V ∩Bℓ(0, r1) and V ∩Bℓ(0, r2) are stable homotopy equivalent, and

2. V \Bℓ(0, r1) and V \Bℓ(0, r2) are stable homotopy equivalent.
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CHAPTER V

ALGORITHMS AND THEIR IMPLEMENTATION

5.1 Computing the Betti Numbers of Arrangements

In this chapter, we consider arrangements of compact objects in Rk which are simply con-

nected. This implies, in particular, that their first Betti number is zero. We describe an

algorithm for computing the zero-th and the first Betti number of such an arrangement,

along with its implementation [15]. For the implementation, we restrict our attention to

arrangements in R3 and take for our objects the simplest possible semi-algebraic sets in

R3 which are topologically non-trivial – namely, each object is an ellipsoid defined by a

single quadratic equation. Ellipsoids are simply connected, but with non-vanishing second

co-homology groups. We also allow solid ellipsoids defined by a single quadratic inequality.

Computing the Betti numbers of an arrangement of ellipsoids in R3 is already a challenging

computational problem in practice and to our knowledge no existing software can effectively

deal with this case. Note that arrangements of ellipsoids are topologically quite different

from arrangements of balls. For instance, the union of two ellipsoids can have non-zero first

Betti number, unlike in the case of balls.

5.1.1 Outline of the Method

The following corollary follows immediately from Proposition 2.20.

Corollary 5.1. Let be S =
⋃m
i=1 Si ⊂ Rk such that S1, . . . , Sm are compact semi-algebraic

sets with

1. H0(Si) = Q, and

2. H1(Si) = 0, 1 ≤ i ≤ m.

Let the homomorphisms δ0 and δ1 in the following sequence be defined as in Chapter 2.2.2

(identifying H0(K) with the Q-vector space of locally constant functions on a simplicial
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complex K).

⊕
iH

0(Si)
δ0 //

⊕
i<j H0(Si ∩ Sj) δ1 //

⊕
i<j<ℓH

0(Si ∩ Sj ∩ Sℓ).

Then,

b0(S) = dim(Ker(δ0)),

b1(S) = dim(Ker(δ1)) − dim(Im(δ0)).

The importance of Corollary 5.1 lies in the following observation. Given an arrangement,

{S1, . . . , Sm}, of m simply connected objects in Rk, suppose we are able to identify the

connected components of all pairwise and triple-wise intersections of these objects and

their incidences (that is, which connected component of Si ∩ Sj ∩ Sℓ is contained in which

connected component of Si ∩ Sj). Then this information is sufficient to compute the zero-

th and the first Betti number of the arrangement. We only have to look at the objects

of the arrangement at most three at a time. Thus, the cost of computing the connected

components and incidences is O(m3). This is to be compared with having to compute

a global triangulation of the whole arrangement using cylindrical algebraic decomposition

which would have entailed a cost of O(m2k
).

Recall that a cylindrical decomposition (see Chapter 2.1.4) adapted to a finite set P of

polynomials in R[X1, . . . ,Xk] produces a graph where the vertices correspond to cells in Sk
and edges correspond to adjacencies. Moreover, each cell in Sk is P-invariant and we know

the sign for each P in P on each such cell. Hence, given an arrangement, {S1, . . . , Sm},

of m semi-algebraic sets in Rk, we are able to identify the connected components of all

pairwise and triple-wise intersections of these objects and their incidences by computing a

cylindrical decomposition adapted to the families Pi,j,ℓ, 1 ≤ i < j < ℓ ≤ m, where Pi,j,ℓ is

the set of polynomials used in the definition of Si, Sj, and Sℓ and by performing a graph

transversal algorithm on the graph described above.

To sum up, we now formally describe our algorithm for computing the zero-th and the

first Betti numbers of an arrangement of m simply connected compact objects in Rk.

Algorithm 5.2 (Computing the zero-th and the first Betti number).

Input: compact sets Si ⊂ Rk, 1 ≤ i ≤ m, with b0(Si) = 1 and b1(Si) = 0.
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Output: b0(S) and b1(S).

Procedure:

• For each triple (i, j, ℓ), 1 ≤ i < j < ℓ ≤ m, do the following:

Compute a cylindrical decomposition adapted to the set {Si, Sj, Sℓ}.

Identify the connected components of all pairwise and triple-wise intersections and

their incidences.

• Compute the matrices A and B corresponding to the sequence of homomorphisms:

⊕
i H

0(Si)
δ0 //

⊕
i<j H0(Si ∩ Sj) δ1 //

⊕
i<j<ℓH

0(Si ∩ Sj ∩ Sℓ).

• Compute

b0(S) = d0 − rk(A), and

b1(S) = d1 − rk(B) − rk(A),

where d0 is the dimension of
⊕

1≤i≤mH0(Si), d1 is the dimension of

⊕
1≤i<j≤mH0(Si ∩ Sj), and the rank of a matrix is denoted by rk(·).

5.1.2 The Implementation

The algorithm has been prototypically implemented using QEPCAD B (Version 1.27) [77]

and Magma [71] for compact sets Si ⊂ R3. We use the package QEPCAD B for computing

the cylindrical decompositions, in Step 1 of Algorithm 5.2. There are several other packages

available for computing cylindrical decompositions, for instance REDLOG [78]. The main

reason for using QEPCAD B is that it provides some important information regarding cell

adjacency, that is not provided by the other systems.

In Figure 7, which shows the QEPCAD B output for a cylindrical decomposition adapted

to the unit sphere, the first (resp., second and third) column corresponds to the cylindrical

decomposition of the line (resp. plane and R3). Note that the signs accompanying the cells

give the signs of projection factors computed by QEPCAD B and the letter ”T” and ”F”

corresponds to true and false value of the cells, i.e., depending upon whether our input

formula is true or false on this cell.
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()---(1)p1(-,-)---(1,1)p1(+)---(1,1,1)p1(+) F

---(2)p1(0,-)---(2,1)p1(+)---(2,1,1)p1(+) F

---(2,2)p1(0)---(2,2,1)p1(+) F

---(2,2,2)p1(0) T

---(2,2,3)p1(+) F

---(2,3)p1(+)---(2,3,1)p1(+) F

---(3)p1(+,-)---(3,1)p1(+)---(3,1,1)p1(+) F

---(3,2)p1(0)---(3,2,1)p1(+) F

---(3,2,2)p1(0) T

---(3,2,3)p1(+) F

---(3,3)p1(-)---(3,3,1)p1(+) F

---(3,3,2)p2(0) T

---(3,3,3)p1(-) F

---(3,3,4)p2(0) T

---(3,3,5)p1(+) F

---(3,4)p1(0)---(3,4,1)p1(+) F

---(3,4,2)p1(0) T

---(3,4,3)p1(+) F

---(3,5)p1(+)---(3,5,1)p1(+) F

---(4)p1(+,0)---(4,1)p1(+)---(4,1,1)p1(+) F

---(4,2)p1(0)---(4,2,1)p1(+) F

---(4,2,2)p1(0) T

---(4,2,3)p1(+) F

---(4,3)p1(+)---(4,3,1)p1(+) F

---(5)p1(+,+)---(5,1)p1(+)---(5,1,1)p1(+) F

Figure 7: Output of a cylindrical decomposition using QEPCAD B

Even though QEPCAD B does not provide full information regarding cell adjacencies

in dimension three, we are still able to deduce all the needed cell adjacencies as described

in Chapter 2.1.4.3, making use of the fact that input polynomials are quadratic.

We use Magma for post-processing of the information output by QEPCAD B, in Steps 2

and 3 of the algorithm. Note that all computations performed are exact with no possibility

of numerical errors.

To illustrate our implementation, we consider four examples where the ellipsoids

Si = {(x,y, z) ∈ R3 | Pi(x,y, z) = 0},

1 ≤ i ≤ 27, are defined by the following list of polynomials (see Table 1) We denote by A

and B the matrices of the homomorphisms δ1 and δ2 with respect to the obvious basis. The

columns (resp., the rows) of the matrix A are labeled by ei (resp., epi,j), while the columns

(resp., the rows) of the matrix B are labeled by epi,j (resp., epi,j,k), where ei corresponds to

Si, e
p
i,j corresponds to the p-th connected component of Si∩Sj and epi,j,ℓ corresponds to the

p-th connected component of Si ∩ Sj ∩ Sℓ.

Remark 5.3. In the examples described below, we have modified the matrix A as follows.
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Table 1: Input polynomials defining the different arrangements

P1 = 8/9X2
1 + 1/64X2

2 + 1/6X2
3 − 1

P2 = 1/64X2
1 + 8/9X2

2 + 8/9X2
3 − 1

P3 = 8/9X2
1 + 8/9X2

2 + 1/64X2
3 − 1

P4 = 8/9(X1 − 4)2 + 1/64(X2 − 4)2 + 1/6X2
3 − 1

P5 = 1/64(X1 − 4)2 + 8/9(X2 − 4)2 + 8/9X2
3 − 1

P6 = 8/9(X1 − 4)2 + 8/9(X2 − 4)2 + 1/64X2
3 − 1

P7 = (X1 − 1)2 + (X2 − 2)2 +X2
3 − 3

P8 = 5X2
1 + 1/9X2

2 + 2X2
3 − 1

P9 = 1/9X2
1 + 5X2

2 + 5X2
3 − 1

P10 = 5X2
1 + 5X2

2 + 1/9X2
3 − 1

P11 = 5(X1 − 1)2 + 1/9(X2 − 1)2 + 2X2
3 − 1

P12 = 1/9(X1 − 1)2 + 5(X2 − 1)2 + 5X2
3 − 1

P13 = 5(X1 − 1)2 + 5(X2 − 1)2 + 1/9X2
3 − 1

P14 = 5(X1 + 1)2 + 1/9(X2 − 1)2 + 2X2
3 − 1

P15 = 1/9(X1 + 1)2 + 5(X2 − 1)2 + 5X2
3 − 1

P16 = 5(X1 + 1)2 + 5(X2 − 1)2 + 1/9X2
3 − 1

P17 = 5(X1 − 1)2 + 1/9(X2 + 1)2 + 2X2
3 − 1

P18 = 1/9(X1 − 1)2 + 5(X2 + 1)2 + 5X2
3 − 1

P19 = 5(X1 − 1)2 + 5(X2 + 1)2 + 1/9X2
3 − 1

P20 = 5(X1 + 1)2 + 1/9(X2 + 1)2 + 2X2
3 − 1

P21 = 1/9(X1 + 1)2 + 5(X2 + 1)2 + 5X2
3 − 1

P22 = 5(X1 + 1)2 + 5(X2 + 1)2 + 1/9X2
3 − 1

P23 = 6(X1 − 1/2)2 + 6X2
2 + 1/6X2

3 − 1
P24 = 4X2

1 + 4(X2 − 1/2)2 + 1/6X2
3 − 1

P25 = 5(X1 + 2)2 + 5X2
2 + 1/6X2

3 − 1
P26 = 1/6(X1 + 2)2 + 5(X2 − 2)2 + 5X2

3 − 1
P27 = 5(X1 + 2)2 + 1/6(X2 − 2)2 + 5X2

3 − 1

Since we know that each input set Si has exactly one connected component, we can sim-

plify the computation. We only need to check whether or not the intersection Si ∩ Sj is

empty. Therefore, we have exactly one row for each intersection instead of one row for each

connected component of each intersection Si ∩Sj, and this reduces the size of the matrix A

without changing its rank. For the matrix B we delete all rows containing only zeros which

correspond to empty triple intersections Si ∩ Sj ∩ Sℓ.

Example 5.4 (Three ellipsoids). Let S be the union of the first three ellipsoids, i.e.,
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Figure 8: Three ellipsoids

S =
⋃3
i=1 Si (see Figure 8). Then

A =




e1 e2 e3

−1 1 0

−1 0 1

0 −1 1




e1,2

e1,3

e2,3

B =




e11,2 e21,2 e1,3 e2,3

1 0 −1 1

1 0 −1 1

1 0 −1 1

1 0 −1 1

0 1 −1 1

0 1 −1 1

0 1 −1 1

0 1 −1 1




e11,2,3

e21,2,3

e31,2,3

e41,2,3

e51,2,3

e61,2,3

e71,2,3

e81,2,3

In this case,

b0(S) = d0 − rk(A) = 3 − 2 = 1

b1(S) = d1 − rk(B) − rk(A) = (4 − 2) − 2 = 0

Example 5.5 (Six ellipsoids). Let the set S be the union of the first six ellipsoids Si,

1 ≤ i ≤ 6, i.e., S =
⋃6
i=1 Si (see Figure 9). Then

84



Figure 9: Six ellipsoids

A =




e1 e2 e3 e4 e5 e6
−1 1 0 0 0 0
−1 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 1 0
0 0 0 0 0 0
0 −1 1 0 0 0
0 −1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 1 0
0 0 0 −1 0 1
0 0 0 0 −1 1




e1,2

e1,3

e1,4

e1,5

e1,6

e2,3

e2,4

e2,5

e2,6

e3,4

e3,5

e3,6

e4,5

e4,6

e5,6

and

B =




e1
1,2

e2
1,2

e1
1,3

e1
1,5

e2
1,5

e1
2,3

e1
2,4

e2
2,4

e1
4,5

e2
4,5

e1
4,6

e1
5,6

1 0 −1 0 0 1 0 0 0 0 0 0
1 0 −1 0 0 1 0 0 0 0 0 0
1 0 −1 0 0 1 0 0 0 0 0 0
1 0 −1 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 1
0 0 0 0 0 0 0 0 1 0 −1 1
0 0 0 0 0 0 0 0 1 0 −1 1
0 0 0 0 0 0 0 0 1 0 −1 1
0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 1 −1 1




e1
1,2,3

e2
1,2,3

e31,2,3

e4
1,2,3

e5
1,2,3

e61,2,3

e7
1,2,3

e8
1,2,3

e14,5,6

e2
4,5,6

e34,5,6

e4
4,5,6

e5
4,5,6

e64,5,6

e7
4,5,6

e8
4,5,6

In this case,

b0(S) = d0 − rk(A) = 6 − 5 = 1

b1(S) = d1 − rk(B) − rk(A) = (12 − 4) − 5 = 3
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Figure 10: Seven ellipsoids

Example 5.6 (Seven ellipsoids). Let the set S be the union of the first seven ellipsoids Si,

1 ≤ i ≤ 7, i.e., S =
⋃7
i=1 Si (see Figure 10). Then

A =




e1 e2 e3 e4 e5 e6 e7
−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 1 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 1
0 −1 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 1
0 0 0 −1 1 0 0
0 0 0 −1 0 1 0
0 0 0 0 0 0 0
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1
0 0 0 0 0 0 0




e1,2

e1,3

e1,4

e1,5

e1,6

e1,7

e2,3

e2,4

e2,5

e2,6

e2,7

e3,4

e3,5

e3,6

e3,7

e4,5

e4,6

e4,7

e5,6

e5,7

e6,7

and
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B =




e1
1,2

e2
1,2

e1
1,3

e1
1,5

e2
1,5

e1
1,7

e1
2,3

e1
2,4

e2
2,4

e1
2,7

e1
3,7

e1
4,5

e2
4,5

e1
4,6

e1
5,6

e1
5,7

1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0




e1
1,2,3

e2
1,2,3

e31,2,3

e4
1,2,3

e5
1,2,3

e61,2,3

e7
1,2,3

e8
1,2,3

e11,2,7

e2
1,2,7

e11,5,7

e2
1,5,7

e1
2,3,7

e22,3,7

e3
2,3,7

e4
2,3,7

e14,5,6

e2
4,5,6

e3
4,5,6

e44,5,6

e5
4,5,6

e6
4,5,6

e74,5,6

e8
4,5,6

In this case,

b0(S) = d0 − rk(A) = 7 − 6 = 1

b1(S) = d1 − rk(B) − rk(A) = (16 − 7) − 6 = 3

Figure 11: Twenty ellipsoids

Example 5.7 (20 ellipsoids). Let the set S be the union of the last 20 ellipsoids Si,

8 ≤ i ≤ 27, i.e., S =
⋃27
i=8 Si (see Figure 11). Thus, we get a 190 × 20-matrix A of rank

equal to 19, a 190×107-matrix B of rank equal to 55, and the dimension of
⊕

i<jH
0(Si∩Sj)
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is equal to 107. In this case,

b0(S) = d0 − rk(A) = 20 − 19 = 1

b1(S) = d1 − rk(B) − rk(A) = 107 − 55 − 19 = 33

5.2 Computing the Real Intersection of Quadratic Surfaces

In this chapter, we consider the problem of computing the real intersection of three quadratic

surfaces, or quadrics, defined by the quadratic polynomials P1, P2 and P3 in R3. We describe

an algorithm for computing the isolated points and a linear graph embedded into R3 (if the

real intersection form a curve) representing the real intersection of the three quadrics defined

by the three polynomials Pi, along with its implementation [60]. For the implementation,

we restrict our attention to quadrics with defining equation having rational coefficients.

Before outlining our method, we define the silhouette curve and cut curve, which can be

interpreted in our setting as the projection of one quadric and the projection of intersection

curve of two quadrics into the X1 −X2-plane, respectively.

Definition 5.8. Let P , Q ∈ R[X1,X2,X3]. The algebraic curves with defining polynomials

Sil(P ) := Res(P, ∂P/∂X3), cut(P,Q) := Res(P,Q)

are called silhouette curve and cut curve respectively.

Another geometric interpretation of the silhouette curve in our setting is the following.

The silhouette curve defined by Sil(P1) contains all points (x,y) such that the polynomial

P1(x,y,X3) has exactly one root z of multiplicity 2.

5.2.1 Outline of the Method

The basic idea of computing the intersection of three quadrics is based on the cylindrical

decomposition (see Chapter 2.1.4). As the algorithm of Schömer and Wolpert [82, 101], our

approach can be summarized by several phases:

preparation, projection, planar arrangement analysis and lifting phase.

But our analysis of the planar arrangement and lifting phase differs from the methods

presented in [82, 101].
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First, we project one input quadric and the resulting space intersection curves of the

pairwise intersections by computing (univariate) resultants onto the plane assuming that we

have a “good” coordinate system by using the Brown-McCallum projection operation (see

[34, 33]). The Brown-McCallum projection operation produces, based on the current litera-

ture, the smallest projection set in our setting. Then we analyze the planar arrangement of

curves before we lift our solution into space (if possible). In other words, we compute the

defining polynomial Sil(P1) of the silhouette curve of the input quadric P1, and the defin-

ing polynomial cut(P1, Pi) of the corresponding cut curves (see Definition 5.8). Then we

identify the common factor G of cut(P1, P2) and cut(P1, P3) and the corresponding gcd-free

parts Hi = cut(P1, Pi)/G.

While Schömer and Wolpert [82] use resultants for computing the candidates of the X1

and X2-coordinates and analyze the resulting grid (see [82] for more details) afterwards, our

planar analysis is based on the TOP algorithm (see Algorithm 2.12). To be more precise,

we use the TOP-algorithm in order to obtain the topology of the curve defined by the

common factor G (including some relevant points on the curve). In addition, we generalize

the idea of [52] of using subresultants to two planar curves. We perform a linear change

of coordinates (if it is needed) in order to have two planar curves of the arrangement in

generic position (see Definition 2.10). Then we compute the X1-coordinates of the (planar)

intersection points of two curves using resultants as well as the X2-coordinates of those

points that can be described rationally in terms of X1 via subresultant computations.

Furthermore, when the intersection points form a curve, the set of solutions is described

topologically via a linear graph embedded in R3. The computed graph provides all the

information for tracing this curve numerically since we know exactly how to proceed when

we are close to a complicated point. Nevertheless, all computed points lie in the real

intersection set of the three quadric surfaces defined by the three polynomials Pi.

Next we describe all necessary steps, but we omit the details on the change of coordinates

to which we refer to several times. For more details on the change of coordinates see [52].
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5.2.2 Details on the Preparation Phase

Before starting the real computation, we test the input quadrics for degeneracy and if they

behave well under resultant computations. We want to make sure that all quadrics are of

degree equal to two, X3-regular, square-free and pairwise do not have a common factor of

degree equal to one. The absence of the latter two conditions can easily be detected and

solved as it simplifies the considered problem. For example, one quadric describes a single

plane if it is not square-free, whereas two quadrics define three planes, with one of them

in common, if they have a common factor of degree equal to one. Therefore, we omit the

details on these cases, though we can detect and solve them easily. In the case that one of

the other conditions is violated, we make a change of coordinates and start the computation

again.

Finally, from now on we use the following assumption for the input polynomials Pi.

Assumption 5.9. The trivariate polynomials P1, P2 and P3 with coefficients in R are all

of degree equal to two, square-free, X3-regular and pairwise do not have a common factor

of degree equal to one.

5.2.3 Details on the Projection Phase

After a suitable preparation of our input quadrics, we assume throughout this and the

following sections that the quadratic input polynomials have the properties of Assump-

tion 5.9. It is worthwhile to mention that Assumption 5.9 is necessary in order to interpret

correctly the projection onto the X1-X2 plane via resultant computation. Our projection

method is based on the so-called restricted equational version of the Brown-McCallum pro-

jection operation (see [34],[33]) where we use the polynomial P1 as the pivot constraint.

The Brown-McCallum projection operation produces, based on the current literature, the

smallest projection set P̃ and consists of the following polynomials in our setting,

P̃ = {Sil(P1), cut(P1, P2), cut(P1, P3)}.

As in the beginning of our computation, we need to test the polynomials contained in the

set P̃ for degeneracy in order to interpret correctly the following resultant computations.
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Thus, we simplify the set P̃ further and we obtain the set P containing the following

polynomials,

P = {Sil(P1),H2,H3, G},

such that Hi = cut(P1, Pi)/G, where G is the greatest common divisor of cut(P1, P2) and

cut(P1, P3). Moreover, we decompose the polynomial G further. We write G = G̃ · S̃il(P1)

where G̃ (resp., S̃il(P1)) is the gcd-free part (resp., greatest common divisor) of G and

Sil(P1). Note, that the decomposition of the polynomial G into S̃il(P1) and G̃ will be very

useful for the lifting phase (see Chapter 5.2.5). Finally, we can summarize the projection

phase as follows.

Algorithm 5.10 (Projection).

Input: three polynomials P1, P2 and P3 in R[X1,X2,X3] with the properties of Assump-

tion 5.9.

Output: P = {Sil(P1),H2,H3, G}

such that Hi is the square-free part of cut(P1, Pi) with respect to G,

where G = gcd(cut(P1, P2), cut(P1, P3). Moreover, we decompose the polynomial G into

G = G̃ · S̃il(P1) where G̃ (resp., S̃il(P1)) is the gcd-free part (resp., greatest common factor)

of G and Sil(P1).

5.2.4 Details on the Analysis of the Planar Arrangement

In this section, we describe how we analyze the planar arrangement. We assume from now

on that the set P computed before is of the following form:

P = {Sil(P1),H2,H3, G},

such that Hi = cut(P1, Pi)/G, where G is the square-free part of the common factor of

cut(P1, P2) and cut(P1, P3)). Moreover, we decompose the polynomial G further. We write

G = G̃ · S̃il(P1) where G̃ (resp., S̃il(P1)) is the gcd-free part (resp., greatest common factor)

of G and Sil(P1).
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The problem, which might occur, is that the planar curves might not be in generic

position which would ensure that we can use subresultants in order to compute the crit-

ical points (including intersection points with another curve) of the planar curves in our

arrangement. In this case, we start the computation again after a change of coordinates if

the planar curves are not in generic position. Hence, we assume throughout this and the

following sections that the set P has the following properties.

Assumption 5.11. Let P = {Sil(P1),H2,H3, G} as computed in Algorithm 5.10 such that

all polynomials are X2-regular. The polynomials H2 and H3 as well as G are in generic

position. Moreover, G̃ is in generic position with respect to Sil(P1).

By using the Brown-McCallum projection operation for eliminating the variable X3, it

follows that the (possible) intersection points of all three quadrics lie on the cut curves de-

fined by cut(P1, P2) and cut(P1, P3), i.e., on the intersection of Zer(H2,R2) and Zer(H3,R2),

or on Zer(G,R2). In addition, we need to identify the common points of those curves with

the silhouette curve Zer(Sil(P1),R2) since the number and type of points above a point on

Zer(Sil(P1),R2) might be different than for points which do not lie on Zer(Sil(P1),R2). But

observe that the curve Zer(Sil(P1),R2) contains all points (x,y) such that P1(x,y,X3) has

exactly one root z of multiplicity 2. To sum up, we need to compute the following:

1. the intersection points of Zer(H2,R2) and Zer(H3,R2) and whether or not they lie on

the curve Zer(Sil(P1),R2), and

2. the topology of Zer(G,R2) including the common points with Zer(Sil(P1),R2) which

could be finitely or infinitely many.

By decomposing the polynomial G = G̃ · S̃il(P1) we simplify the second problem further

since we just need to compute the following:

1. the topology of Zer(G̃,R2) including the common points with Sil(P1),

2. the topology of Zer(S̃il(P1)) including the common points with Zer(G̃,R2).

It is worthwhile to mention that we can not decide without further computation whether

or not a planar point can be lifted to a solution of all three quadrics. This comes from
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the fact that two different (space) points in R3 might get projected to the same (planar)

point. Nevertheless, this problem can be solved easily as we will see in Chapter 5.2.5. We

summarize the above discussion in the following algorithm.

Algorithm 5.12 (Planar Arrangement Analysis).

Input: the set of polynomials

P = {Sil(P1),H2,H3, G},

with the properties of Assumption 5.11

Output:

• the common points of Zer(H2,R2) and Zer(H3,R2),

• the topology of the curve Zer(G,R2), described by

– the real roots x1, . . . ,xr of Res(G̃, ∂G̃/∂X2), Res(S̃il(P1), ∂S̃il(P1)/∂X2) and

Res(G̃,Sil(P1)). We denote by x0 = −∞, xr+1 = ∞.

– The number mi of roots of G(x,X2) in R when x varies on (xi,xi+1). We denote

this root by xi,1, . . . ,xi,mi
.

– The number ni of roots ofG(xi,X2) in R. We denote these roots by yi,1, . . . ,yi,ni
.

– A number ci ≤ ni such that if (xi, zi) is the unique critical point of the pro-

jection of Zer(G,C2) on the X1-axis or an intersection point of Zer(G̃,R2) and

Zer(Sil(P1),R2) above xi, zi = yi,ci .

Procedure:

– Compute the common points of Zer(H2,R2) and Zer(H3,R2) using Algorithm 2.12 (TOP)

as a black-box.

– Compute the topology of Zer(G,R2) including the common points with Zer(Sil(P1),R2)

by using Algorithm 2.12 (TOP) as a black-box.
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5.2.5 Details on the Lifting Phase

5.2.5.1 Lifting of Single Points

We recall some well-known facts about the real roots of a quadratic polynomial in one

variable. Note that we know a priori what case we do have to consider in our setting. For

example, a candidate (x,y) ∈ Zer(G,R2) which also lie on Zer(Sil(P1),R2) corresponds to

the case D = 0 (see Proposition 5.13), i.e., the polynomial P1(x,y,X3) has exactly one real

root.

Proposition 5.13. Let P = aX2 + bX + c with a, b, c ∈ R and let D = b2 − 4ac. Then we

get the following cases.

1. If D = 0, then the polynomial P has exactly one solution x = − b
2a .

2. If D > 0, then the polynomial P has two real solution x1 and x2. In this case,

x1 = 1
2a

(
−b−

√
D
)

and x2 = 1
2a

(
−b+

√
D
)
.

3. If D < 0, then the polynomial P has only two complex conjugated roots.

By using the information computed by Algorithm 5.12 we can now easily determine

the solutions z1, . . . , zi, i ≤ 2, of the polynomial P1(x,y,X3) where (x,y) is a possible

candidate in the plane.

5.2.5.2 Lifting of a Curve

Our approach for lifting a curve is similar to lifting a single point as described in the chapter

before. By computing some extra points on Zer(P1,R3) as described in the previous section,

we can determine easily the adjacency of the (possible) space curve which is induced by the

plane curve Zer(G,R2).

Assume that we computed the topology of Zer(G,R2) as described in Algorithm 5.12.

First, we lift all points (if possible) onto Zer(P1,R3). Note that we can easily determine

the missing adjacencies as described in Chapter 2.1.4.3, since there are only one or two

points above. Then we just need to test whether or not our candidates lie on Zer(P2,R3)

and Zer(P3,R3) as well. It is worthwhile to mention that not all components of Zer(G,R2)

might get lifted even though they can be lifted to a solution on Zer(P1,R3).

94



5.2.6 The Implementation

The algorithm has been prototypically implemented in the Computer Algebra System Maple

(version 9.5) [72] and it follows the approach outlined closely. It starts always with three

quadratic polynomials P1, P2 and P3 in Q[X1,X2,X3] and, due to efficiency reasons, it

performs most of the computations by using floating point arithmetic. The latter one

comes from the fact that we extended Laureano Gonzalez-Vega and Ioana Necula’s TOP

algorithm code ([52]). Hence, the only computations that are performed symbolically are:

1. the computation of the projection set P = {Sil(P1),H2,H3, G}.

2. the computations of the different signed subresultant sequences and their coefficients

for the projection set P.

3. the computation of the square-free part of the resultant of two polynomials P1 and P2

in Q[X1,X2] and its decomposition with respect to the signed subresultant coefficients.

The remaining computations consist in solving numerically different polynomial equations

(without multiple roots) or evaluating at these roots some of the polynomials symbolically

computed. Initially the chosen precision is 15 digits, but one can choose any other starting

precision t1. As in the implementation of the TOP-algorithm, we choose a threshold ε that

depends on the chosen precision in order to decide whether or not a polynomial is zero at

a given point.

Once the planar arrangement P is computed, we analyze the size t2 of the input

polynomials Pi and the set P. Afterwards, we update the precision to t digits, where

t = max{t1, t2 + 10, 15}. Furthermore, the Maple function fsolve is used to solve the

square-free univariate polynomial equations before mentioned. If fsolve does not return

the correct number of roots (which are known in advance) or some numerical evaluation

returns some non guaranteed value, the precision is increased by 10 digits and those com-

putations are performed again. Moreover, we output the coordinates of the isolated points

and a three dimensional linear graph if the intersection points form a curve.

We end this section by giving some examples, which illustrate our approach. The ex-

perimentations were performed on a PowerPC G4 1GHz. The following example is taken
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from [82].

Example 5.14 (two isolated points, [82]). Let be

P1 = 7216X2
1 − 11022X1X2 − 12220X1X3 + 15624X2

2 + 15168X2X3 + 11186X2
3 − 1000

P2 = 4854X2
1 − 3560X1X2 + 4468X1X3 + 658X1 + 5040X2

2 + 32X2X3 + 1914X2 +

10244X2
3 + 3242X3 − 536

P3 = 8877X2
1 − 10488X1X2 + 9754X1X3 + 1280X1 + 16219X2

2 − 16282X2X3 − 808X2 +

10152X2
3 − 1118X3 − 796

Then the projection set P contains of

Sil(P1) = 10846519X2
1 − 7653903X1X2 − 2796500 + 29313252X2

2

H2 = −56556109351696X1 + 61135807177688X2 − 6220192626724 +

203315497528241X1X2 − 56404750618857X2
1 − 55861103592035X2

2

−910824371936818X2X
2
1 + 972629091137652X1X

2
2 − 659086885094112X3

2 +

533601199106972X3
1 − 2885241224346328X3

1X2 + 4223689039107028X2
1X

2
2

−3571456229045952X1X
3
2 + 1026392565603269X4

1 + 1407622740362496X4
2

H3 = 2872582087600X1 − 4005061111776X2 + 69677228486124X1X2

−23228971077672X2
1 − 49611754602456X2

2 − 5464061993528X2X
2
1

−17976875889356X1X
2
2 + 40411859296976X3

2 + 1462282618132X3
1

−926282674085672X3
1X2 + 1733300718748310X2

1X
2
2 − 1854003852157600X1X

3
2 +

225439274765947X4
1 + 897407958763127X4

2 − 66086625728

G = 1

Our computations end with a precision of 26 digits. The real intersection is computed in

0.572 seconds and consists of two isolated points, namely,

p1 =




−0.47111071472741316264056772

−0.19897789206886601999604553

0.18592931583225857372754588



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and

p2 =




−0.16627634657169906116678201

0.10827914469994312737865267

−0.011248383019525287650192532




Table 2: Experimental results for Example 5.14
Size of Input Size of P Changes Precision Time

5 16 1 26 0.572
8 32 0 42 0.466
12 46 0 56 1.120
15 54 0 64 4.453
20 75 0 85 4.662
23 90 0 100 7.361
28 106 0 116 6.479
32 122 0 132 6.665
36 137 0 147 8.077
40 147 0 157 7.609

Moreover, Table 2 and Table 3 present a comparison between the computing times (in

seconds) obtained by our approach and the prototypically and improved implementation

of [82]1 using different numbers of decimal digits for the three input quadrics. Moreover,

Table 2 contains the following additional information:

size of Input (resp., P) – number of decimal digits of the Input (resp., the projection set P.

Changes – number of linear changes of variables

Precision – used precision for obtaining the result

Table 3: Experimental results of Schömer and Wolpert [82]

Number of digits 5 10 15 20 25 30

Running time 1 18 33 56 92 126 186
Running time 2 1.1 2.7 5.0 7.8 12.1 16.1

It is worthwhile to mention that we obtain similar running times for all our experiments.

Additionally, the improvement of the running times do not only depend on the newer

computer.

1running times are measured on a Intel Pentium 700 and Pentium III Mobile 800

97



-0.4
0

0.4
0.8

1.2

0.80.40-0.4-0.8

-0.8

-0.4

0

0.4

0.8

Figure 12: The intersection of three linearly independent quadrics

Example 5.15 (closed curve). Let be

P1 = (X1 −X2)
2 +X2

2 +X2
3 − 1

P2 = (X1 −X2 − 1)2 +X2
2 +X2

3 − 1

P3 = 4X2
2 + 4X2

3 − 3

Note, that the three quadrics are linearly independent and the projection set P contains of

Sil(P1) = X2
1 − 2X1X2 + 2X2

2 − 1

H2 = 1

H3 = −1 − 2X1 + 2X2

S̃il(P1) = 1

G̃ = 1 − 2X1 + 2X2

Then the real intersection of the three quadrics defined by P1, P2 and P3 consists of

infinitely many points. Figure 12 shows the linear three dimensional graph computed by

our implementation. The computations start and end with a precision of 15 digits and is

computed in 0.101 seconds. For representing the linear graph we computed the following

four points. The points

p1 = (−0.366025403784439,−0.866025403784439, 0)

p2 = (1.36602540378444, 0.866025403784440, 0)
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which correspond to the lift of the intersection points of the two plane curves Zer(Sil(P1),R2)

and Zer(G̃,R2), and

(0.500000000000000, 0,−0.866025403784440),

0.500000000000000, 0, 0.866025403784440)

which are two sample points for the two curve segments between the critical points p1 and

p2.

Table 4: Experimental results for Example 5.15
Size of Input Size of P Changes Precision Time

0.101 1 1 0 15
0.185 4 8 0 18
0.257 8 15 0 25
0.196 12 20 0 30
0.307 16 30 0 40
0.323 20 38 0 48
0.498 25 47 2 57
0.520 28 53 2 64
0.591 33 62 2 82
0.368 36 66 0 76

Example 5.16 (2 isolated points, G̃ 6= 1). Let be

P1 = 27X2
1 + 62X2

2 + 249X2
3 − 10

P2 = 88X2
1 + 45X2

2 + 67X2
3 − 66X1X2 − 25X1X3 + 12X2X3 − 24X1 + 2X2 + 29X3 − 5

P3 = 88X2
1 + 45X2

2 + 67X2
3 − 66X1X2 + 25X1X3 − 12X2X3 − 24X1 + 2X2 − 29X3 − 5.

Note, that P3(X1,X2,X3) = P2(X1,X2,−X3). Then the projection set P contains of

Sil(P1) = 27X2
1 + 62X2

2 − 10

H2 = H3 = S̃il(P1) = 1

G̃ = −1763465 + 408332484X4
1 + 51939673X4

2 + 10482900X1 − 2305740X2

−123026916X1X
2
2 + 221120964X2

1X2 + 4764152X2
2 + 17767644X3

2 +

14441004X1X2 − 250019406X3
1 + 16691919X2

1 − 664779204X3
1X2 +

564185724X2
1X

2
2 − 241015068X1X

3
2
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Our computations end with a precision of 19 digits. The real intersection consists of

two isolated points

(0.06676451891748808143, 0.3991856119605212449, 0),

(0.4954772252006942431, 0.2331952878577051550, 0)

and is computed in 0.490 seconds.

Table 5: Experimental results for Example 5.16
Size of Input Size of P Changes Precision Time

2 9 0 19 0.490
6 22 0 32 0.355
10 37 0 47 2.374
14 46 0 56 4.939
18 67 0 77 5.018
21 82 0 92 6.362
26 98 0 108 6.515
30 113 0 123 7.109
34 129 0 139 7.694
38 138 0 148 9.671
41 158 0 168 9.056

Example 5.17 (empty intersection). Let be

P1 = X2 +X2
1 + 2X1X2 + 2X1X3 +X2

2 + 2X2X3 +X2
3

P2 = X2
3 + 1 −X2

P3 = 2X2
3 + 2 − 2X2

Then the projection set P contains of

Sil(P1) = X2

H2 = H3 = S̃il(P1) = 1

G̃ = 1 +X4
1 +X4

2 + 4X3
1X2 + 6X2

1X
2
2 + 4X1X

3
2 − 4X2 + 6X2

2 + 4X1X2 + 2X2
1

Our computations start and end with precision of 15 digits. The real intersection is empty

and computed in 0.182 s.
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Table 6: Experimental results for Example 5.17
Size of Input Size of P Changes Precision Time

1 1 0 15 0.182
4 15 0 25 0.191
8 30 0 40 0.187
12 39 0 49 0.274
16 59 0 69 1.025
20 74 0 84 0.978
24 92 2 121 2.345
28 105 1 126 1.863
32 122 1 142 1.821
36 133 1 153 2.090
40 152 2 182 2.740

Example 5.18 (a curve and an isolated point). Let be

P1 = X2 +X2
1 + 2X1X2 + 2X1X3 +X2

2 + 2X2X3 +X2
3

P2 = X2
3 −X2 +X1X2 +X2

2 +X2X3

P3 = 2X2
3 − 2X2 + 2X1X2 + 2X2

2 + 2X2X3

Note, that P3 = 2P2. Then the projection set P contains of

Sil(P1) = X2

H2 = H3 = S̃il(P1) = 1

G̃ = 4X2
2 +X4

1 + 6X2
1X

2
2 − 3X3

2 + 4X1X
3
2 − 4X1X

2
2 + 4X3

1X2 +X4
2

Note, that Zer(G̃,R2) consists of two isolated points and and open curve. Our computations

start and end with precision of 15 digits. The real intersection is computed in 0.305 seconds

and consists of the isolated point (0, 0, 0) and an open curve (see Figure 13). For the curve

we computed the following three points.

p = (1.91241422362700,−1.06499480841233, 0.184566441477331)

which corresponds to the lift of the (non-isolated) critical point of Zer(G̃,R2), and

(2.91241422362700,−2.54899069044757, 1.23313235073054),

(2.91241422362700,−1.32006472767900,−0.443408797879122)

which are sample points for the two branches ending and starting of p.
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Figure 14: Two intersecting lines with S̃il(P1) 6= 1
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Table 7: Experimental results for Example 5.18
Size of Input Size of P Changes Precision Time

1 1 0 15 0.305
4 16 0 26 0.272
8 30 0 40 0.421
12 38 0 48 0.437
17 60 7 80 6.119
20 72 0 82 1.215
25 92 7 112 4.600
28 104 1 115 1.900
32 118 0 128 1.716
38 134 7 154 6.131
41 151 6 161 5.303
45 165 14 194 10.003

Example 5.19 (a curve, S̃il(P1) 6= 1). Let be

P1 = X2
3 +X2

1 −X2
2

P2 = X2
3 +X1X3 +X2X3 −X3 +X2

1 −X2
2

P3 = X2
3 +X1X3 +X2X3 +X3 +X2

1 −X2
2

Then the projection set P contains of

Sil(P1) = X2
1 −X2

2

H2 = −1 +X1 +X2

H3 = 1 −X1 +X2

S̃il(P1) = X2
1 −X2

2

G̃ = 1

Our computations start and end with precision of 15 digits. The real intersection is com-

puted in 0.152 seconds and consists of two intersecting lines. We computed the following

five points. The point

p = (0, 0, 0)

which corresponds to the lift of the critical point of S̃il(P1), and

(−1,−1, 0), (−1, 1, 0) and

(1,−1, 0), (1,−1, 0)
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Figure 15: One connected component

which are sample points for the two branches attached to the left and to the right of p.

Table 8: Experimental results for Example 5.19
Size of Input Size of P Changes Precision Time

1 1 0 15 0.152
4 8 0 18 0.139
8 15 0 25 0.117
11 19 0 29 0.183
15 29 0 39 0.137
19 37 0 47 0.244
23 45 0 55 0.187
27 53 0 63 0.273
31 61 0 71 0.212
35 66 0 76 0.274
39 75 0 85 0.283
43 82 0 92 0.233

Example 5.20 (one connected component). Let be

P1 = X2 −X3 +X1X3 + 5X2X3 + 2X2
3

P2 = 6X2
2 − 5X2X3 −X2

3 +X1X2 −X1X3 +X3

P3 = 6X2
2 − 5X2X3 −X2

3 +X1X2 −X1X3 +X3
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Note, that P2 = P3. Then the projection set P contains of

Sil(P1) = 18X2 − 1 + 2X1 −X2
1 − 10X2X1 − 25X2

2

H2 = H3 = S̃il(P1) = 1

G̃ = −3X2
2 − 8X2

2X1 − 11X3
2 + 20X2

2X
2
1 + 133X3

2X1

+294X4
2 −X2X

2
1 +X3

1X2 +X2 −X2X1

Our computations start and end with precision of 15 digits. The real intersection is com-

puted in 0.529 seconds and consists of one connected component (see Figure 15).

5.2.7 Remark on Cubic Surfaces

We would like to remark that the algorithm presented in Chapter 5.2 has been extended

to three cubic surfaces defined by the polynomials C1, C2 and C3 in R[X1,X2,X3]. Note

that in this case the silhouette curve Zer(Sil(C1),R2) contains all points (x,y) such that

the polynomial C1(x,y,X3) has a root z of multiplicity 2 or 3. Theorem 2.4 implies that

in the first case the polynomial sRes1(C1, ∂C1/∂X3)(x,y) 6= 0 whereas in the latter one

sRes1(C1, ∂C1/∂X3)(x,y) = 0. Moreover, one can also use a solution formula for cubic

polynomials in one variable in order to lift a single point.

Like in the case for quadrics, we can easily determine the missing adjacency information

while lifting the curve Zer(G,R2) using a simple combinatorial type approach.

Finally, this new algorithm has similarly implemented in the Computer Algebra System

Maple (version 9.5) as well. The experimental results archived show a very good perfor-

mance. We refer to [61] for more details.
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Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265,
Princeton, N.J.: Princeton Univ. Press, 1965.

[93] Tu, C., Wang, W., Mourrain, B., and Wang, J., “Signature sequence of in-
tersection curve of two quadrics for exact morphological classification,” Tech. Rep.
TR-2005-09, University of Hong Kong, http://www.csis.hku.hk/research/techreps/,
2005.

111



[94] Uhlig, F., “A canonical form for a pair of real symmetric matrices that generate a
nonsingular pencil,” Linear Algebra and Appl., vol. 14, no. 3, pp. 189–209, 1976.

[95] Viro, O. Y. and Fuchs, D. B., “Homology and cohomology,” in Topology. II
(Novikov, S. P. and Rokhlin, V. A., eds.), vol. 24 of Encyclopaedia of Math-
ematical Sciences, pp. 95–196, Berlin: Springer-Verlag, 2004. Translated from the
Russian by C. J. Shaddock.

[96] Walker, R. J., Algebraic curves. New York: Springer-Verlag, 1978. Reprint of the
1950 edition.

[97] Wall, C. T. C., “Stability, pencils and polytopes,” Bull. London Math. Soc., vol. 12,
no. 6, pp. 401–421, 1980.

[98] Wang, W., Goldman, R., and Tu, C., “Enhancing Levin’s method for computing
quadric-surface intersections,” Comput. Aided Geom. Design, vol. 20, no. 7, pp. 401–
422, 2003.

[99] Wang, W., Joe, B., and Goldman, R., “Computing quadric surface intersections
based on an analysis of plane cubic curves,” Graph. Models, vol. 64, no. 6, pp. 335–367,
2003.

[100] Wilf, I. and Manor, Y., “Quadric-surface intersection curves: shape and struc-
ture.,” Computer-Aided Design, vol. 25, no. 10, pp. 633–643, 1993.

[101] Wolpert, N., An Exact and Efficient Approach for Computing a Cell in an Arrange-
ment of Quadrics. PhD thesis, Universität des Saarlandes zu Saarbrücken, 2002.

[102] Xu, Z.-q., Wang, X., Chen, X.-d., and Sun, J.-g., “A robust algorithm for finding
the real intersections of three quadric surfaces,” Comput. Aided Geom. Design, vol. 22,
pp. 515–530, September 2005.

112



VITA

Michael Kettner was born in Munich, Germany on February

24, 1977. He received his Abitur from the Gymnasium Olch-

ing 1996, where he had his final exams in Mathematics, Physics,

English and History. After serving his mandatory year of commu-

nity service with the Maltheser Hilfsdienst in Dachau, Germany,

he started studying Mathematics at the Ludwig-Maximilians-

Universität München in Munich, Germany in 1997, from which

he received his Vordiplom in 1999.

In 2001, he joined the School of Mathematics at the Georgia

Institute of Technology in Atlanta, Georgia, from which he earned

a Master of Science in Applied Mathematics in 2004.

From June 2004 until February 2006 he visited the Universidad de Cantabria in San-

tander, Spain, as a visiting scholar. In December 2007, he graduated from the Georgia

Institute of Technology with a Doctor of Philosophy in Mathematics.

113


