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SUMMARY

The study of neurons is of fundamental importance in biology and medicine. Neu-

rons are the most basic unit of information processing in the nervous system of hu-

mans and all other vertebrates, and in complex invertebrates. Besides their impor-

tance for biology and medicine, networks of neurons (the human brain) are the most

sophisticated computational devices known, and the study of neurons individually

and working in concert is seen as a step toward understanding consciousness and

cognition.

In the 1950’s A.L. Hodgkin and A.F. Huxley developed a system of nonlinear

ordinary differential equations to describe the behavior of a neuron found in the squid.

Equations of this form have since been used to model the behavior of a multitude of

neurons and other excitable cells across a broad spectrum of species. Hodgkin-Huxley

type neuron models helped lay the foundation for computational neuroscience, and

they remain widely used in the study of neuron behavior more than half a century

after their development.

Hodgkin-Huxley type models accept a set of parameters as input and generate

data describing the electrical activity of the neuron as a function of time. We de-

velop inversion algorithms designed to predict a set of input parameter values from

the voltage trace data generated by the model. We test our algorithm on data from

the Hodgkin-Huxley equations, and we extend the algorithm to solve the inverse

problem associated with a more complex Hodgkin-Huxley type model for a lobster

stomatogastric neuron. We find strong empirical evidence that the algorithms pro-

duce parameter values that generate a good fit to the target voltage trace, and we
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prove that under certain conditions the inversion algorithm for the Hodgkin-Huxley

equations converges to a perfect match. To our knowledge this is the first parameter

optimization procedure for which convergence has been shown theoretically.

Understanding the relationship between the parameters of a neuron model and its

output has important implications for designing effective neuron models (where pa-

rameters must be selected to give desired behavior), as well as for explaining the mech-

anisms by which neurons regulate their behavior. Inversion algorithms for Hodgkin-

Huxley type neuron models are an important theoretical and practical step toward

understanding the relationship between model parameters and model behavior, and

toward the larger problem of inferring neuronal parameters from behavior patterns

observed experimentally.
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CHAPTER I

INTRODUCTION

The study of neurons is of fundamental importance in biology and medicine, as they

play a major role in the transmission of information in living organisms. Neurons

are the fundamental unit of information processing in the nervous system of humans

and all other vertebrates, and in complex invertebrates like arthropods and worms.

Besides their importance for biology and medicine, networks of neurons (the human

brain) are the most sophisticated computational devices known, and the study of

neurons individually and working in concert is seen as a step toward understanding

consciousness and cognition.

The neuron functions by maintaining a voltage difference across its cell membrane.

(This transmembrane voltage difference is also called the membrane potential.) Rapid

changes in this voltage difference can be initiated in response to external stimuli,

including chemical or electrical signals, for example from other neurons, or from

photoreceptor cells in the retina. Some neurons also exhibit spontaneous activity,

firing regular patterns of electrical impulses even in the absence of external stimulus.

Spikes in the transmembrane voltage difference propagate down the length of the

neuron (the axon) at a rate of approximately 20 meters per second, allowing rapid

transmission of information over macroscopic distances inside an organism.

Despite having been studied by generations of scientists, the detailed processes by

which even a single neuron operates are still the subject of intense research. In recent

decades, advances in mathematical modeling techniques and computational resources

have allowed neuroscientists to begin studying neurons using computer models and

simulation while continuing to study actual neurons using increasingly sophisticated

1



biological, physical, and chemical tools.

1.1 The Hodgkin-Huxley equations and neuronal modeling

Since the 1950’s, when A.L. Hodgkin and A.F. Huxley developed a system of equations

describing the electrical activity of the squid giant axon [16], neuroscientists have been

equipped with a powerful theoretical framework for studying neuronal function and

behavior.

Not only are the equations broadly applicable to many classes of neurons, but

the internal dynamics of the Hodgkin-Huxley model in many ways closely mirror

the physiology of the neuron, making these equations useful tools for studying the

mechanisms behind neuronal behavior. Due to the difficulty of working with living

neurons, computational neuroscience has become an increasingly important tool for

the study of neuronal physiology and behavior in the decades since the development

of the Hodgkin-Huxley model.

The fundamental insight of Hodgkin and Huxley, reached after an ingenious series

of experiments on the giant axon of the squid, was that the neuronal cell membrane

has independent permeability mechanisms for different types of ions, and that the

membrane’s conductance for each type of ion is a function of time and the transmem-

brane voltage. Hodgkin and Huxley reproduced the experimental data obtained from

the squid giant axon with a quantitative model consisting of a system of nonlinear

ordinary differential equations which, given data specifying the internal state of the

neuron and its initial conditions, can be solved numerically to simulate the electrical

activity of the neuron. The model of Hodgkin and Huxley was the first complete de-

scription of the excitability of a single cell [14]. The equations of Hodgkin and Huxley

are the basis for almost all ionic current-based neuronal models, and extensions of

these equations have been successfully used in the study of neurons playing diverse

physiological roles across a broad spectrum of species.
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Figure 1: Sample neuron behavior: four voltage traces generated by the same neuron
model with different parameter values.

The Hodgkin-Huxley model takes as input a set of parameters specifying the prop-

erties of the neuron and outputs a “voltage trace” which gives the voltage difference

across the neuron’s cell membrane (the membrane potential) as a function of time.

A typical Hodgkin-Huxley type neuron model is capable of distinct types of behavior

depending on the parameters chosen. Figure 1 shows voltage traces produced by the

Hodgkin-Huxley type model for a lobster stomatogastric (STG) neuron introduced in

Chapter 3 for four different sets of parameter values.

1.2 Parameter selection

One of the difficulties associated with studying neurons using mathematical models

is fixing the parameters of the model to produce the desired behavior. Parameters

of neuronal models generally represent physical quantities (for example conductance,

3



capacitance, or voltage) that can be measured experimentally, but it is almost never

the case that all of the parameters needed to specify a neuron model can be measured

from the same experimental preparation. In the past, model parameters have been

selected by averaging over measurements taken from many neurons of the same type

from different animals, or by fixing subsets of the parameters to the measured values

obtained from several different animals [23].

Neurons have considerable variability in their internal structure, and neurons of

the same type can have very different parameter values [20]. Golowasch et al. showed

that building a complete set of model parameters by averaging over measurements

taken from many neurons or combining subsets of parameter values measured from

different neurons is unreliable for reproducing target behavior [10].

The predominant method for selecting parameters to produce desired behavior in

a Hodgkin-Huxley type neuron model is hand-tuning the parameters of the model

to obtain a voltage trace resembling the target voltage trace. Besides being difficult,

subjective, and time-intensive, there are no guarantees of optimality attached to the

solutions found, and failure to find a good set of parameters does not necessarily

imply that none exists. Automated alternatives to hand-tuning have been proposed,

including evolutionary algorithms [1], gradient descent algorithms [2, 30], algorithms

based on bifurcation analysis [11, 12, 30], and systematic exploration of parameter

space either by stochastic search [8, 9, 10] or grid search [9, 24]. These studies are

discussed in Section 2.2.2. There is currently no widely used alternative to hand-

tuning for selecting parameters to give desirable model behavior, and research into

automated parameter selection methods is ongoing.

1.3 Inversion of the equations of Hodgkin-Huxley type neu-
ron models

We propose a novel automated technique for selecting parameters to reproduce a

given pattern of behavior obtained from the Hodgkin-Huxley equations. We treat the

4



Hodgkin-Huxley equations as a function that maps a set of parameters to a “voltage

trace” that describes the membrane potential of the neuron as a function of time, so

that solving the Hodgkin-Huxley equations for a given set of parameters (in practice

this means numerically integrating) yields a voltage trace. We develop algorithms for

the inverse problem: given a voltage trace from the Hodgkin-Huxley equations, find

a set of parameters that generates it.

We test our algorithms on data from the Hodgkin-Huxley equations, and we extend

the algorithm to solve the inverse problem associated with a more complex Hodgkin-

Huxley type model for a lobster stomatogastric neuron. We find strong empirical

evidence that the algorithms produce parameter values that generate a good fit to

the target voltage trace, and we prove that under certain conditions the inversion

procedure for the Hodgkin-Huxley equations converges to a perfect match. To our

knowledge this is the first parameter optimization procedure for which convergence

has been shown theoretically.

Algorithms for inverting the equations of Hodgkin-Huxley type neuron models

contribute to an understanding of the relationship between neuron behavior (voltage

traces) and the parameter space of the neuronal models. Besides its importance for

the problem of choosing parameters to obtain a desired model behavior, a detailed

understanding of the relationship between the parameters of the model and its be-

havioral output may be important for answering questions about the mechanisms

by which neurons regulate their behavior. Neurons must maintain stable behavioral

patterns in a changing environment, and it has been suggested that the parameters

governing the maximal membrane conductance to various ions play a central role in

the process by which neurons maintain homeostatic equilibrium [19]. Over the past

15 years, many studies have explored the relationship between these maximal con-

ductance values and model neuron behavior [1, 8, 9, 10, 19, 24] by parameter space

5



exploration. Our inversion algorithms give a direct method for finding a set of max-

imal conductance parameters to match model neuron behavior, moving us toward

an improved understanding of the theoretical relationship between neuronal behavior

and the parameters that specify a neuronal model. Finally, algorithms to invert the

equations of Hodgkin-Huxley type neuron models represent a step toward the larger

problem of inferring the values of neuronal parameters from neuron behavior recorded

experimentally.
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CHAPTER II

ALGORITHMS FOR INVERTING THE

HODGKIN-HUXLEY MODEL

In their 1952 paper [16], Hodgkin and Huxley present a differential equation-based

model describing the electrical behavior of the squid giant axon. The model is the

culmination of a series of experiments performed on the squid giant axon which indi-

cated that the cell membrane’s conductance to ions present in the intracellular and

extracellular fluid of the nerve cell is variable over time and voltage-dependent. The

squid giant axon is capable of initiating and propagating “action potentials”, spikes in

the transmembrane voltage difference that are triggered when the voltage difference

across the cell membrane reaches a critical threshold level. These electrical impulses

enable neurons to transmit information rapidly over large distances and play a major

role in neuronal signaling. The squid giant axon was chosen because its unusually

large size (it has a length of several centimeters and a diameter of approximately

0.5 mm, much larger than that of most axons) made it ideal for experimental work.

The model developed by Hodgkin and Huxley accurately simulates the initiation and

propagation of action potentials in the squid giant axon, and the form of the equations

has proven to accurately represent the biophysical mechanisms underlying neuronal

function. The system of equations developed by Hodgkin and Huxley for the squid

giant axon has been shown to be broadly applicable and has been used as the basis

for almost all ionic current models of neurons and other excitable cells. The Hodgkin-

Huxley equations have been adapted and extended for the study of myelinated axons,

striated muscle fibers, and cardiac fibers. The model has been called “the most im-

portant model of nerve conduction” [6], and in 1963 Hodgkin and Huxley shared the
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Nobel Prize for Physiology and Medicine with John Eccles in recognition of their

work.

The neuron, via active transport mechanisms that expend energy to transport ions

across the cell membrane, maintains a voltage difference (also called the “membrane

potential”) across the cell membrane that separates the cytoplasm inside the cell

from the extracellular fluid. The sodium-potassium pump, an enzyme found in the

cell membrane, is one such active transport mechanism, moving three Na+ ions out

of the cell and two K+ ions into the cell in each pumping cycle. The net outflow

of positive charge under the action of the sodium-potassium pump sets up a steady-

state transmembrane voltage difference (the “resting potential”) with the inside of

the cell electronegative compared to the cell’s surroundings. Active transport of

ions across the cell membrane also leads to ionic concentration imbalances across

the cell membrane. In the intracellular fluid, for example, the concentration of Na+

ions tends to be lower and the concentration of K+ ions tends to be higher than in

the extracellular fluid as a result of the continuous action of the sodium-potassium

pump. The membrane resting potential and the ionic concentration imbalances are

the driving forces behind the action potential, allowing the neuron to respond rapidly

to stimuli that cause the membrane to become permeable to the flow of ions.

The cell membrane contains many different ionic current pathways (“ion chan-

nels”) that, when open, allow transmembrane flow of ions of a specific type. These

ion channels are “voltage-gated”, opening and closing in response to the voltage dif-

ference across the cell membrane. Ions flow through these channels in response to

electrostatic pressure due to the membrane potential, as well as pressure resulting

from intracellular/extracellular concentration imbalances set up by active transport.

For each ion there is a “reversal potential” at which these two pressures are balanced

and there is no net transmembrane flow. A typical neuron will have several distinct

8



Figure 2: Action potential schematic

types of voltage-gated ion channels, and the interaction between these channels al-

lows an individual neuron to exhibit a range of behaviors, either spontaneously or in

response to external stimuli. Ions carry charge, and their flow across the cell mem-

brane influences the membrane potential and hence (via the opening and closing of

voltage-gated ion channels) the conductance of the cell membrane to ions of the same

type and other types. This enables an intricate system of feedback loops that under-

lies the neuron’s electrical activity. Appendix A shows several examples of behavior

generated by a lobster stomatogastric neuron model presented in Chapter 3. This

is a Hodgkin-Huxley type model that (unlike the original Hodgkin-Huxley model)

exhibits spontaneous activity in the absence of external stimuli.

The neuron’s firing of action potentials is central to its role in the rapid trans-

mission of information. An action potential is an all-or-nothing event initiated when

the membrane potential rises to a critical threshold value. Figure 2 gives a schematic

representation of a neuron action potential. As the membrane potential rises, voltage-

gated sodium channels open, allowing Na+ ions to rush inward in response to electro-

static pressure from the transmembrane voltage difference and diffusion pressure from

the transmembrane Na+ concentration imbalance. The inrush of positively charged
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ions drives the membrane potential upward toward zero (the cell becomes further

“depolarized”, in the parlance of neuroscientists) further increasing the membrane’s

conductance to Na+ and creating the conditions for a positive feedback loop. Volt-

age rises rapidly until, near the peak of the action potential, sodium channels are

maximally open, sodium conductance nears its maximal value, and the membrane

potential approaches the sodium reversal potential. Potassium channels, which oper-

ate on a slower time scale, open later than sodium channels and remain open longer.

The outflow of positive charge from K+ ions leaving the cell in response to the com-

bined diffusion pressure and electrostatic pressure eventually counters the voltage

increase due to the incoming Na+ and the neuron “repolarizes”, with the voltage

dropping toward the potassium reversal potential and the neuron’s resting potential.

There is often a brief period of “hyperpolarization” as the neuron overshoots its rest-

ing potential. The action of the sodium-potassium pump returns the neuron to its

resting state, with an intracellular excess of K+ and deficit of Na+. Figure 5 shows

the sodium and potassium membrane currents during a simulated action potential

for the Hodgkin-Huxley model.

This is a general description of the processes underlying an the action potential as

described in the Hodgkin-Huxley model. In biological neurons, there is considerable

variability in the ionic current pathways present. Newly developed ionic current-based

models tend to be more complicated than the original Hodgkin-Huxley model (we will

explore one such model in later chapters), but the form of the underlying equations

and the processes they describe generally follow the model developed by Hodgkin and

Huxley quite closely.

2.1 Hodgkin-Huxley equations

In a series of experiments, Hodgkin and Huxley deduced that the ionic membrane

conductances are variable with time and voltage-dependent, and gave the form of
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Figure 3: Equivalent circuit for Hodgkin-Huxley model of the squid giant axon, from
[16]. RNa = 1/gNa, RK = 1/gK , and RL = 1/gL. All other quantities are constant.

this voltage-dependence. By treating a segment of the axon as a simple electrical

circuit (Figure 3), Hodgkin and Huxley arrived at equations describing the electrical

activity of the axon.

The cell membrane, which separates the extracellular medium from the cytoplasm

of the cell, acts as a capacitor with capacitance C (Hodgkin and Huxley used a

value, based on laboratory measurement, of 10 µF/cm2 for C). The ionic current

channels offer parallel pathways by which charge can pass through the cell membrane.

Hodgkin and Huxley use three ionic currents in their description of the squid giant

axon; potassium current IK , sodium current INa, and a leakage current IL. The

potassium and sodium currents have variable resistances that represent the voltage-

gated conductances associated with the membrane ion channels. The total current I

is the sum of the ionic currents and the capacitative current which represents the rate

of accumulation of charge on opposite sides of the cell membrane. The capacitative

current, from electrical circuit theory, is C dv
dt

, where v is the membrane potential.

Hodgkin and Huxley take v = 0 to represent the neuron’s resting potential, and the
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Figure 4: Membrane conductances during a Hodgkin-Huxley action potential. gL
(not shown) is constant.

equations below follow this convention.

I = C
dv

dt
+ INa + IK + IL (1)

The ionic currents are given by Ohm’s law (I = gV ):

INa = gNa · (v − ENa), (2)

IK = gK · (v − EK),

IL = gL · (v − EL),

where Eion is the reversal potential, and gion is the ionic membrane conductance.

These conductances, in the case of the sodium and potassium currents, are variable

and voltage-dependent, representing the voltage-gating of the ion channels. Hodgkin

and Huxley deduced from experiment the following forms for the ionic membrane

conductances:

gNa = x1m
3h, (3)

gK = x2n
4,

gL = x3.
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Table 1: Parameter values used by Hodgkin and Huxley
Ionic current Reversal potential (mV) Maximal conductance (mS/cm2)

Sodium ENa = −115 x1 = 120
Potassium EK = 12 x2 = 36
Leakage EL = −10.613 x3 = 0.3

Here x1, x2, and x3 are the maximal conductance values for the sodium ionic current,

the potassium ionic current, and the leakage current, respectively. These quanti-

ties are constant. The sodium conductance is controlled by an “activation variable”

m(v, t) and an “inactivation variable” h(v, t). The potassium conductance is con-

trolled by an activation variable n(v, t). The variables m, h, and n are each functions

of the membrane potential v and vary with time, taking values in the range [0, 1].

These activation and inactivation variables model the degree to which the relevant

ion channels are open. The time course of the membrane conductance to sodium and

potassium ions during a Hodgkin-Huxley action potential is shown in Figure 4.

A physical interpretation of the activation and inactivation variables is to con-

sider a sodium ion channel as being open if three independent events of probability

m occur simultaneously. The channel is considered blocked if an additional indepen-

dent event of probability 1 − h occurs. Accordingly, a sodium channel is considered

open and unblocked (activated) with probabability m3h. The maximal conductance

value xNa, determined experimentally by Hodgkin and Huxley, gives the conductance

of the membrane to Na+ ions when all sodium ion channels are activated. A simi-

lar interpretation applies to the equation governing the membrane’s conductance to

potassium ions. Four independent events of probability n must each occur for an

ion channel to be open. In the case of potassium channels there is no inactivation

variable and no additional blocking mechanism associated with the channels, and a

potassium channel is activated with probability n4. The conductance for the leakage

current is constant.

Under this physical interpretation, the three events of probability m that lead
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to the opening of a sodium ion channel could involve voltage-driven changes in the

conformation of the channel, and an independent voltage-driven change in the confor-

mation of the channel could lead with probability h to the sodium ion channel being

blocked. Hodgkin and Huxley, in proposing the model, suggest that “potassium ions

can only cross the membrane when four similar particles occupy a certain region of the

membrane” [16], basing their speculation on the form of the equations. This physical

interpretation is meant to provide insight into the mechanics of the model, but not

to give an accurate description of the physiological mechanisms of the voltage-gated

ion channels.

The activation and inactivation variables are time-dependent as the membrane

potential varies with time, and their values are governed by first-order differential

equations:

dm

dt
= αm(v)(1−m)− βm(v)m, (4)

dn

dt
= αn(v)(1− n)− βn(v)n,

dh

dt
= αh(v)(1− h)− βh(v)h.

The functions α(v) and β(v) have dimensions of [1/time] and govern the rate at which

the ion channels transition from the closed state to the open state (α) and vice versa

(β). The rate functions are (in units of milliseconds−1, with v in millivolts):

αm(v) = 0.1(v + 25)

[
exp(

v + 25

10
)− 1

]−1

(5)

βm(v) = 4 exp(
v

18
)

αn(v) = 0.01(v + 10)

[
exp(

v + 10

10
)− 1

]−1

βn(v) = 0.125 exp(
v

80
)

αh(v) = 0.07 exp(
v

20
)

βh(v) =

[
exp(

v + 30

10
) + 1

]−1
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Combining Equations 1, 2, and 3,

I = C
dv

dt
+ x1m

3h(v − ENa) + x2n
4(v − EK) + x3(v − EL). (6)

The membrane potential of the neuron as a function of time is determined by in-

tegrating the Hodgkin-Huxley equations (4) and (6). The behavior of the neuron

under the influence of an applied (time-dependent) stimulus current is studied by

setting I(t) to represent the externally applied current. Alternatively, the behavior

of the neuron can be simulated for different initial values of v. Figure 5 shows an

action potential simulated by numerical integration of the Hodgkin-Huxley equations

for zero external current and an initial membrane potential of -15 mV. Hodgkin and

Huxley showed an excellent fit between experimental data from the squid giant axon

and simulation, including action potentials in response to intial membrane potential

exceeding resting membrane potential by more than a threshold of about 7 mV.

Figure 5: Ionic currents during a Hodgkin-Huxley action potential. Here Iionic =
INa + IK .

For constant membrane potential v, the sodium activation variable m approaches

the steady state value

m∗(v) =
αm(v)

αm(v) + βm(v)
, (7)
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from equation (4). Similarly, the variables n and h which also are governed by equa-

tion (4) approach steady state values of

n∗(v) =
αn(v)

αn(v) + βn(v)
(8)

and

h∗(v) =
αh(v)

αh(v) + βh(v)
(9)

respectively when the membrane potential v remains constant.

(a) Steady state values m∗(v) and h∗(v) for Na+ activa-
tion and inactivation variables

(b) Na+ activation and inactivation timing variables
τm(v) and τh(v)

Figure 6: Variables associated with activation and inactivation of Na+ current
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(a) Steady state value n∗(v) for K+ activation variable

(b) K+ activation timing variable τn(v)

Figure 7: Variables associated with activation of K+ current

Defining timing variables

τm(v) = (αm(v) + βm(v))−1 ,

τn(v) = (αn(v) + βn(v))−1 , (10)

τh(v) = (αh(v) + βh(v))−1 ,
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for membrane potential v, equation (4) can be rewritten as

dm

dt
=

1

τm(v)
(m∗(v)−m) ,

dn

dt
=

1

τn(v)
(n∗(v)− n) , (11)

dh

dt
=

1

τh(v)
(h∗(v)− h) .

From these equations it is clear that activation and inactivation of the ion channels

in the model do not occur instantaneously in response to changes in the membrane

potential. At every instant the activation and inactivation variables are each tending

toward their steady state values for the instantaneous membrane potential, and τm,

τn, and τh govern the rates of change for the respective variables. Since τm, τn, and

τh depend on the membrane potential, the rates of activation and inactivation are

dependent on v. The voltage dependence of the steady state values for the sodium

activation and inactivation variables m and h and their associated timing variables

τm and τh is shown in Figure 6. The voltage dependence of the steady state value for

the potassium activation variable n and its timing variable τn is shown in Figure 7.

The underlying structure of the Hodgkin-Huxley equations has been applied suc-

cessfully to the modeling of many different (and more complicated) classes of neurons

in the decades since their development. Later chapters treat a Hodgkin-Huxley type

model for a lobster stomatogastric (STG) neuron and develop algorithms to invert

the Hodgkin-Huxley equations for the STG neuron.

2.2 Background

Ionic current-based models developed by extending and adapting the original Hodgkin-

Huxley equations continue to see widespread use by neurobiologists in studying the

behavior and physiological processes of neurons and other excitable cells. A difficulty

associated with these differential equation-based models is that numerical values must

be assigned to each of the parameters and coefficients in order to specify the behavior
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of the model. To use the model as a tool for studying the behavior of a particular

biological neuron, one must first identify an appropriate choice of numerical values

for the parameters of the model to match the behavior of the model neuron to that

of the biological neuron.

In general, the problem of identifying a set of parameter values to fully specify

a neuron model is a difficult one. It is not normally possible to measure all of the

parameters from a single experimental preparation, and there can be significant vari-

ability in the properties of the same type of neuron between members of the same

species and even within the same animal [20]. Building a complete set of model

parameters by averaging over measurements taken from many biological neurons or

combining subsets of parameter values measured from different biological neurons has

been shown to be unreliable for reproducing target behavior [10].

2.2.1 The problem

The output of the Hodgkin-Huxley equations is a voltage trace v(t) which describes

the electrical activity of a model neuron on the domain t ∈ [0,∞), giving the voltage

across the neuron cell membrane as a function of time. We treat the Hodgkin-Huxley

equations as a mapping H : Rn → F from n-dimensional parameter space to a space

F of differentiable functions taking R+ to R. For a set of input parameters x ∈ Rn,

the Hodgkin-Huxley equations send x to a voltage trace vx(t) ∈ F : H(x) = vx(t).

The inverse problem is to consider a voltage trace H(x∗) = vx∗(t) that is the output

of the Hodgkin-Huxley equations for an unknown set of parameters x∗ ∈ Rn and to

produce a set of parameter values x ∈ Rn so that H(x) = H(x∗).

In the sections that follow, “solving” the Hodgkin-Huxley equations for a set of

input parameters refers to integrating the equations in order to obtain the resulting

simulated voltage trace. In practice, a closed form solution is not available and the

integration must be performed numerically.
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“Inverting” the Hodgkin-Huxley equations refers to starting with vx∗(t), a voltage

trace generated by solving the Hodgkin-Huxley model for a prespecified set of input

parameters x∗, and finding a set of parameters x that generates vx∗(t) when the

Hodgkin-Huxley equations are solved with x as input.

2.2.2 Previous work by other researchers

Many previous studies have focused on parameter space exploration, selecting points

in parameter space either by hand-tuning, stochastically, or via a systematic enu-

merative procedure, and reporting on the observed relationship between parameters

and the resulting neuron behavior. McCormick and Huguenard [21] study the rela-

tionship between membrane conductance and neuron behavior by manipulating single

conductances in a thalamocortical relay neuron model, varying maximal conductances

individually and reporting the observed effects on model behavior. Goldman et al.

[9] systematically vary the maximal conductance values of the 5 ion channels of a

neuron model, characterizing the behavior generated by each set of maximal conduc-

tances as silent, tonically spiking, or bursting. Prinz et al. [24] use a large scale grid

search to assemble a database of neuronal behavior for 1.7 million sets of maximal

conductance values for a lobster stomatogastric neuron model. Golowasch et al. [10]

randomly generate sets of maximal conductance values for a model with 5 voltage-

dependent conductances. From among the set of randomly generated neurons they

identify those exhibiting desirable behavior (in this case bursters with a single spike

per burst) and show that the space of single-spike bursting neurons is nonconvex.

Guckenheimer et al. [11] map the parameter space of a bursting neuron model us-

ing bifurcation analysis, identifying boundaries of bifurcation regions with changes in

neuron behavior.

Liu et al. [19] take a different approach to the problem of understanding the

relationship between parameters and behavior in an attempt to uncover mechanisms
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by which neurons regulate their behavior, developing a model neuron whose max-

imal conductance values are themselves slowly varying with time according to an

additional set of differential equations simulating regulatory mechanisms based on

calcium currents. The Liu model neuron effectively traces its own path through max-

imal conductance parameter space with its behavior evolving progressively along this

trajectory. The variability of the maximal conductance values represents their role

in homeostatic regulation; Liu et al. suggest that the neuron regulates its behavior

through variable maximal conductance values.

In addition to parameter space exploration, several researchers have developed pa-

rameter search methods to find sets of parameters to match a specific target behavior.

Foster et al. [8] use a stochastic technique to search for parameters that produce a

match to a target behavior. They search over a parameter space of multiple maximal

conductance values, activation voltages, and scaling factors for voltage-dependent

timing parameters. The neuron models used are relatively simple, and they measure

the similarity of model behavior to target behavior using current-frequency response

curves for a range of simulated external stimulus currents. Bhalla and Bower [2] use

a method that combines an enumerative grid search with gradient descent, using root

mean squared errors in the shape of the voltage trace, length of interspike intervals,

and peak to peak amplitude to quantify similarity between model and target (exper-

imental) data. Hayes et al. [15] propose three different objective (error) functions

(voltage time series, cumulative voltage integrals, and phase histograms). They inves-

tigate the topology induced by these objective functions in regions of parameter space

near an optimal solution and conclude that the cumulative voltage integrals and the

phase histograms vary smoothly toward a single local minimum in the neighborhood

of the optimal solution. The voltage time series objective function is observed to

score poorly except in a narrow region surrounding the optimum. Tabak [29] et al.

report using gradient methods and the simplex algorithm to minimize aggregate least
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squares error in time and frequency domains for a number of target traces. Vanier

and Bower [31] compare four automated parameter search methodologies (gradient

descent, stochastic search, genetic algorithms, and simulated annealing) and conclude

that genetic algorithms and simulated annealing are the most effective for the four

models tested. Tien and Guckenheimer [30] use gradient descent methods to fit model

burst duration and period to data. They compute parameter sensitivities using au-

tomatic differentiation techniques. Achard and De Schutter [1] use an evolutionary

algorithm with a fitness function based on phase-plane analysis to obtain a set of 20

distinct models of the cerebellar Purkinje cell, treating maximal conductance values

as variable (they emphasize the importance of the maximal conductances in home-

ostasis) and all other parameters of the model as fixed. Their evolutionary algorithm

is quite successful in finding sets of maximal conductances that closely resemble tar-

get data for a complex model neuron. Roberge et al. [26] propose using statistical

methods to estimate parameters using experimental data giving the values of the peak

ionic current and its time of occurrence for a single ion current channel but do not

report results.

One of the driving forces that continues to motivate parameter exploration meth-

ods is the hope that a deeper understanding of the relationship between the parame-

ters of neuronal models and neuron behavior will lead to insight into neuron function

and, in particular, mechanisms of homeostatic regulation. Our inversion algorithms

examine the relationship between parameters and behavior from a different perspec-

tive by linking the behavior of the model directly to a set of parameters that generates

it using the mathematical details of the equations involved. Parameter space explo-

ration methods are generally very computationally intensive. One advantage of the

inversion algorithms we develop is their ability to rapidly identify a set of parameters

that generates a given behavior (the bulk of the computation time is in the numerical
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integration needed to simulate the behavior of the neuron, which parameter explo-

ration methods generally do for each point explored). Inverting the equations of a

neuronal model is a step toward understanding the mathematical relationship between

parameters and behavior.

Inversion algorithms attempt to solve a related but qualitatively different problem.

While parameter search methods attempt to find parameters that generate a good

match to a target behavior, algorithms that invert the equations of the model attempt

to find a set of parameters that reproduces the target behavior exactly. For some

model behaviors, there may not be a unique set of parameter values that generates

them, and the inversion algorithm produces one such set of parameters. None of the

search techniques given above is an inversion technique. Aside from gradient descent,

the search algorithms above do not take advantage of the form of the equations in

searching for a solution. Inversion of the equations avoids the difficulties of local

minima and nonconvexity that create problems for many of the search algorithms.

Ours is also the only algorithm for which a theoretical proof of convergence has been

given.

2.3 Solving the Hodgkin-Huxley equations

In practice, the Hodgkin-Huxley equations must be solved numerically and the voltage

trace v(t) is replaced by a discrete approximation Vi to the values v(ti), for a finite set

of times ti = 1, . . . , tN . Once a numerical integration technique, duration, step size,

and initial conditions are specified, numerically solving the Hodgkin-Huxley equations

gives a well-defined mapping from a set of maximal conductance parameters x ∈ R3

to a discrete voltage trace V ∈ RN .

The Hodgkin-Huxley equations are solved by numerically integrating equations

(4) and (6). With the Euler method for numerical integration with constant step size
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∆t, the value mi+1 of the sodium activation variable at time ti+1 is computed using

mi+1 = mi +
dm

dt

∣∣∣∣
i

·∆t (12)

where, from equation (4),

dm

dt

∣∣∣∣
i

= αm(Vi)(1−mi)− βm(Vi)mi. (13)

The values of ni and hi are found similarly.

The voltage at time step i+ 1 is computed (again by the Euler method) using

Vi+1 = Vi +
dV

dt

∣∣∣∣
i

·∆t (14)

and from equation (6)

dV

dt

∣∣∣∣
i

=
1

C

[
I(ti)− xNam3

ihi(Vi − ENa)− xKn4
i (Vi − EK)− xL(Vi − EL)

]
. (15)

Unless otherwise specified, the activation and inactivation variables m, n, and h

are set initially to their respective steady state values m∗(0), n∗(0), and h∗(0) for the

membrane resting potential (v = 0) as defined in equations (7-9). (This corresponds

to an assumption that the neuron is at rest prior to the beginning of the simulation

period.) The initial value V1 for the membrane potential is assumed known and the

external current I(t) is assumed known for all t. By selecting values for the initial

membrane potential V1 and the external current I(t) it is possible to simulate the

neuron’s response to external stimuli.

2.4 An inversion algorithm for the Hodgkin-Huxley equa-
tions

We consider the case where the maximal conductance values are unknown, and all

other parameters of the model are as given in Section 2.1. We are given a voltage trace

vx∗(t) on some interval 0 ≤ t ≤ T , that is the solution to the Hodgkin-Huxley equa-

tions in Section 2.1 with maximal conductance values x∗=(x∗1, x
∗
2, x
∗
3). The applied
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current I(t) is known for all t ≤ T , and the initial values for the variables excepting

the unknown maximal conductances are known at time t = 0. The goal is to produce

a set of maximal conductance values x = (x1, x2, x3) so that vx(t) = vx∗(t). In this

section v(t) will be used in place of vx∗(t) to denote the given voltage trace resulting

from the Hodgkin-Huxley equations with maximal conductance values x∗.

We are searching for a set of maximal conductance values that reproduces the

voltage trace given by the maximal conductances x∗. Since equation (6) is linear

in the unknowns x1, x2, and x3, if the values for the activation and inactivation

variables m, n, and h are known for a set of times ti, then computing values for x

amounts to solving a system of linear equations. The exact values of the activation

and inactivation variables are not directly accessible from the given voltage trace data,

but they can be approximated for any t by numerically integrating the equations (4),

using the exact membrane potential values v(t) from the given voltage trace. Our

inversion procedure is to

1. numerically integrate the Hodgkin-Huxley equations while treating the maximal

conductance values as unknown in order to approximate m, n, and h for a finite

set of times ti, and

2. select three times at random and find a set of maximal conductance values that

solves a system of three linear equations in three unknowns.

In Step 1, the maximal conductance values are treated as unknown, and the exact

membrane potential values v(t), available from the given voltage trace, are used in

solving for the activation and inactivation variables by numerical integration of the
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equations

dm

dt
= αm(v)(1−m)− βm(v)m,

dn

dt
= αn(v)(1− n)− βn(v)n, (4)

dh

dt
= αh(v)(1− h)− βh(v)h,

with the functions α(v) and β(v) for each of the activation or inactivation variables

given by the equations

αm(v) = 0.1(v + 25)

[
exp(

v + 25

10
)− 1

]−1

βm(v) = 4 exp(
v

18
)

αn(v) = 0.01(v + 10)

[
exp(

v + 10

10
)− 1

]−1

(5)

βn(v) = 0.125 exp(
v

80
)

αh(v) = 0.07 exp(
v

20
)

βh(v) =

[
exp(

v + 30

10
) + 1

]−1

.

Since m, n, and h depend only on v, the time course of these variables can be

approximated with arbitrary precision for a given voltage trace v(t) by numerical in-

tegration with a sufficiently small time step, even in the presence of unknown values

for the maximal conductance variables. Let m̃(ti), ñ(ti), and h̃(ti) denote the ap-

proximate values for the activation and inactivation variables computed by numerical

integration for a set of times t1, ...tN , with N > 3.

The Hodgkin-Huxley equation governing the time evolution of the voltage trace

v(t) is

I = C
dv

dt
+ x∗1m

3h(v − ENa) + x∗2n
4(v − EK) + x∗3(v − EL). (6)
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Integrating to get v(t) explicitly,

v(t) =

v(0) +
1

C

[∫ t

0

I(t′) dt′ − x∗1
∫ t

0

m3(t′)h(t′) · (v(t′)− ENa) dt′ (16)

−x∗2
∫ t

0

n4(t′) · (v(t′)− EK) dt′ − x∗3
∫ t

0

(v(t′)− EL) dt′.

]
With functions fj(t), j = 1, 2, 3, defined as

f1(t) = − 1

C

∫ t

0

m3(t′)h(t′) · (v(t′)− ENa) dt′,

f2(t) = − 1

C

∫ t

0

n4(t′) · (v(t′)− EK) dt′, (17)

f3(t) = − 1

C

∫ t

0

(v(t′)− EL) dt′,

and b(t) defined by

b(t) = v(t)− v(0)−
∫ t

0

I(t′) dt′, (18)

we have

b(t) = x∗1f1(t) + x∗2f2(t) + x∗3f3(t). (19)

Assuming the externally applied current I(t) is chosen so that the integral∫ t

0

I(t′) dt′ (20)

can be evaluated in closed form, the function b(t) is known exactly for all t from the

given voltage trace v(t) and external current I(t).

Given a voltage trace v(t) and external current I(t) each known for all t, and

estimates m̃(ti), ñ(ti), and h̃(ti) for the activation and inactivation variables m, n,

and h at time ti, i = 1, . . . , N , the functions fj(ti), j = 1, 2, 3, are approximated by

numerical integration for i = 1, . . . , N using the estimates m̃, ñ, and h̃ in place of

the activation and inactivation variables m, n, and h. Let f̃j(ti) be the numerical

approximation to fj(ti). From equation (19), then, the inversion problem is to find
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maximal conductance values x that solve the linear system

b(ti) =
3∑
j=1

f̃j(ti)xj, i = 1, ..., N. (21)

This is an overdetermined system, and it is unlikely that an exact solution exists

because the values f̃j are approximations to the functions fj in equation (19). The

algorithm solves this problem by selecting three times ti1 , ti2 , ti3 at random and

solving the resulting linear system

b(tik) =
3∑
j=1

f̃j(tik)xj, k = 1, 2, 3 (22)

of 3 equations in 3 unknown variables. The algorithm returns a solution to equation
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(22) as a solution to the Hodgkin-Huxley inverse problem.

Algorithm 1 for inverting the Hodgkin-Huxley equations

Given the functions αm, αn, αh, βm, βn, βh, the parameters ENa, EK, EL,

and C, the external current I(t), and a voltage trace v(t) defined on 0 ≤

t ≤ T that is the output of the Hodgkin-Huxley equations for these parameters

with finite maximal conductance values x = (x1, x2, x3)

1. Choose an algorithm time step δ and define N = bT/δc and ti = iδ for

i = 1, . . . , N

2. Randomly choose three times ti1 < ti2 < ti3 from t1, . . . , tN

3. Compute the values of f̃j(ti), for j = 1, 2, 3, and for all 0 ≤ ti ≤ ti3

by numerical integration of the equations (17)

4. Construct a 3× 3 matrix Aδ whose entries are aδk,j = f̃j(tik)

5. Construct the vector b ∈ R3 by setting bk = b(tik) in equation (18),

for k = 1, 2, 3

6. Solve the 3 × 3 linear system Aδxδ = b and output the solution xδ,

if one exists

In the inversion algorithm given above, the approximate values m̃(ti), ñ(ti), and

h̃(ti) obtained by numerical integration for the activation and inactivation variables

at each time step depend on the step size δ chosen for the numerical integration proce-

dure. As the step size goes to zero, the approximate values obtained for the activation

and inactivation variables approach the true values m(ti), n(ti), and h(ti), for any

convergent numerical integration method. (And similarly f̃j → fj as integration step

size approaches zero, for j = 1, . . . , 3.)
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In the section that follows, we show that if there is a unique set of maximal

conductance values that generates the target voltage trace, then the solution found

by Algorithm 1 approaches this set of maximal conductance values if small enough

numerical integration time steps are used.

2.4.1 Convergence of Algorithm 1

Let v(t) be a voltage trace generated by the Hodgkin-Huxley equations for a known

set of parameters, external current specified by a known analytic function I(t), and

maximal conductance values x ∈ R3. The procedure given in Algorithm 1 with inte-

gration step size δ accepts v(t) as an input and produces a set of maximal conductance

values xδ ∈ R3. We prove in this section that if x is the unique set of maximal conduc-

tances for which the Hodgkin-Huxley equations generate v(t) under external current

I(t), then xδ → x as δ → 0.

In proving convergence, we make use of a lemma from matrix perturbation theory.

In the following, a consistent matrix norm refers to a norm || · || that satisfies ||AB|| ≤

||A|| ||B|| for all A ∈ Rm×k and B ∈ Rk×n.

The lemma deals with perturbations of a linear system Ax = b for a square,

nonsingular matrix A, placing bounds on the solution of the system of equations for

small changes in A.

Lemma 1 (Stewart and Sun [28]). Let A ∈ Rn×n be nonsingular, and let Ã = A+E

be a perturbation to A. For b ∈ Rn let

Ax = b.

Let || · || be a consistent matrix norm that is also consistent with the vector norm || · ||.

If there is a vector x̃ such that

Ãx̃ = b, (23)

then

||x̃− x||
||x̃||

≤ ||A−1E||. (24)
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If in addition

||A−1E|| < 1, (25)

then (23) always has a unique solution, which satisfies

||x̃− x||
||x||

≤ ||A−1E||
1− ||A−1E||

. (26)

If κ(A) = ||A|| ||A−1|| is the condition number of A and

κ(A)
||E||
||A||

< 1, (27)

then

||x̃− x||
||x||

≤
κ(A) ||E||||A||

1− κ(A) ||E||||A||

. (28)

Using Lemma 1, we show that as the numerical integration step size δ used in

Algorithm 1 approaches zero, the maximal conductances produced by the inversion

algorithm approach the maximal conductance values used to generate the voltage

trace v(t). This result requires that the matrix A defined below be nonsingular, a

requirement that will be addressed in Theorem 3.

Theorem 2. Let xδ be the solution produced for randomly chosen times ti1, ti2, and

ti3 by Algorithm 1. Define A ∈ R3×3 to be the matrix whose entries are ak,j = fj(tik),

for fj(tik) as in equation (17). If A is nonsingular then, as δ → 0, xδ exists and

xδ → x.

Proof. Let Aδ and b be defined as in Algorithm 1. Integration of the Hodgkin-Huxley

equations (6) gives an expression for v(ti) for each i.

v(ti) =

v(0) +
1

C

∫ ti

0

I(t) dt− x1
1

C

∫ ti

0

m(t)3h(t) (v(t)− ENa) dt (29)

− x2
1

C

∫ ti

0

n(t)4 (v(t)− EK) dt− x3
1

C

∫ ti

0

(v(t)− EL) dt.

31



The three times tik randomly chosen by Algorithm 1 give three linear equations in

the unknowns xj:

3∑
j=1

ak,j xj = v(tik)− v(0)− 1

C

∫ tik

0

I(t) dt = bk, k = 1, 2, 3. (30)

Expressed in matrix form,

Ax = b. (31)

The matrix entries ak,j are not known since the integrals (17) cannot be evaluated

analytically, but by numerically integrating (17) and the differential equations (4) for

m, n, and h using the exact values for v(t) in the numerical integration process we

obtain an estimate aδk,j for ak,j. Using any convergent numerical integration procedure,

aδk,j → ak,j as the numerical integration time step δ → 0. Since A is nonsingular

detA 6= 0. The determinant of a matrix is a continuous function of its entries, so

detAδ 6= 0 for small enough δ > 0; for such a δ there is a vector xδ such that Aδxδ = b.

Defining Eδ ∈ R3×3 by

Aδ = A+ Eδ (32)

to be the error in A introduced by the numerical integration,

lim
δ→0

aδk,j = ak,j (33)

implies Eδ converges to the zero matrix as δ → 0:

lim
δ→0
|Eδ| = 0. (34)

Then for any sufficiently small δ > 0

||A−1Eδ|| < 1, (35)

and so by Lemma 1 Aδxδ = b has a unique solution, which satisfies

||xδ − x||
||x||

≤ ||A−1Eδ||
1− ||A−1Eδ||

. (36)
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In the limit δ → 0, then, the relative error in xδ goes to zero:

lim
δ→0

||xδ − x||
||x||

= 0. (37)

For finite x, this implies xδ → x as δ → 0.

The theorem above requires that the matrix A be nonsingular. Theorem 3 shows

that this is true with probability 1 if the times tik in Algorithm 1 are randomly chosen

independently from a continuous distribution, and if the set of maximal conductance

values x that generates v(t) is unique.

Theorem 3. Let ti1, ti2, and ti3 be random values chosen independently from an

interval [0, T ] according to a continuous probability distribution and let A ∈ R3×3 be

defined as in Theorem 2. If x is the unique set of maximal conductance values that

generates v(t), then with probability 1 the matrix A is nonsingular.

Proof. By integration of the Hodgkin-Huxley equations (6),

v(t)− v(0)− 1

C

∫ t

0

I(t′) dt′ =

− x1
1

C

∫ t

0

m(t′)3h(t′) (v(t′)− ENa) dt′ (38)

− x2
1

C

∫ t

0

n(t′)4 (v(t′)− EK) dt′ − x3
1

C

∫ t

0

(v(t′)− EL) dt′.

Since x = (x1, x2, x3) is the unique set of maximal conductance values that gen-

erates the trace v(t) with external current I(t) and initial voltage v(0), the functions

f1(t) = − 1

C

∫ t

0

m3(t′)h(t′) · (v(t′)− ENa) dt′

f2(t) = − 1

C

∫ t

0

n4(t′) · (v(t′)− EK) dt′ (39)

f3(t) = − 1

C

∫ t

0

(v(t′)− EL) dt′

are linearly independent.

Since the functions fj(t), j = 1, . . . , 3, are analytic functions of t, if the set of

zeros of fj(t) has an accumulation point on [0, T ] then fj(t) = 0 for all t. Therefore,
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since none of these functions is identically zero, they must each have a finite number

of zeros on [0, T ] and for each j = 1, . . . , 3 with probability 1 it is not the case that

fj(ti1) = 0. Then, defining b ∈ R3 as in Theorem 2 and

X1 = {x ∈ R3 : x1f1(ti1) + x2f2(ti1) + x3f3(ti1) = b1}, (40)

the dimension of X1 is 2.

Let x′ be a vector from X1 other than x (x′ exists by the dimensionality of X1).

The function

(x′1 − x1)f1(t) + (x′2 − x2)f2(t) + (x′3 − x3)f3(t) (41)

is analytic, and so it either has a finite number of zeros on [0, T ] or it is zero every-

where. If it is zero everywhere then x′ = x by the linear independence of fj(t). Since

this is not the case, the function above has a finite number of zeros on [0, T ] and with

probability 1

(x′1 − x1)f1(ti2) + (x′2 − x2)f2(ti2) + (x′3 − x3)f3(ti2) 6= 0 (42)

and

x′1f1(ti2) + x′2f2(ti2) + x′3f3(ti2) 6= x1f1(ti2) + x2f2(ti2) + x3f3(ti2) = b2. (43)

Defining

X2 = X1 ∩ {x ∈ R3 : x1f1(ti2) + x2f2(ti2) + x3f3(ti2) = b2}, (44)

x′ /∈ X2 means the dimension of X2 is 1.

A similar argument shows that for ti3 chosen randomly from [0, T ] according to a

continuous distribution, with probability 1 the dimension of

X3 = X2 ∩ {x ∈ R3 : x1f1(ti3) + x2f2(ti3) + x3f3(ti3) = b3} (45)

is 0, and so Ax = b has a unique solution and A is nonsingular.
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Theorems 2 and Theorem 3 together imply that if x is the unique set of maxi-

mal conductance values that generates the given voltage trace, then the output xδ

from Algorithm 1 approaches x if the integration time step used in the algorithm is

sufficiently small.

Corollary 4. Let the times ti1, ti2, and ti3 be selected in Algorithm 1 by choosing

three real numbers r1, r2, and r3 independently from a continuous random distribution

on [0, T ], and rounding to the three nearest values ti = iδ. If x is the unique set of

maximal conductance values that generates v(t) with external current I(t) and initial

voltage v(0), then with probability 1, xδ → x as δ → 0.

Proof. Define Ar ∈ R3×3 to be the matrix whose entries are ark,j = fj(rk), for fj(rk)

as in equation (17) and rk as in the statement of the corollary. The matrix Ar is

nonsingular with probability 1, by Theorem 3. By the continuity of the determinant

function, a matrix whose entries are all within a small enough neighborhood of the

entries of Ar is also nonsingular. As δ → 0 the times tik → rk for k = 1, 2, 3, and the

matrix A in Theorem 2 converges to Ar. Then for small enough δ the matrix A is

nonsingular with probability 1, and Theorem 2 implies xδ → x as δ → 0.

2.4.2 Computational results for Algorithm 1

The exact, continuous solution to the Hodgkin-Huxley equations for a known set of

input parameters was approximated by numerically integrating the Hodgkin-Huxley

equations with a very small time step of 10−6 ms, with initial voltage v(0) = −15 mV

and zero external current I(t). The parameters used in the model are those given in

Section 2.1. The voltage trace obtained by this simulation was used as the input to

Algorithm 1 for solving the inverse problem.

Algorithm 1 was tested for convergence using time steps δ ranging in size from

0.5 ms to 3× 10−6 ms. For each value of δ three times were selected at random as in
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Figure 8: Performance of Algorithm 1

the description of Algorithm 1. Figure 8 plots the relative error

||xδ − x∗||
||x∗||

(46)

where x∗ = (120, 36, 0.3) mS/cm2 is the vector of maximal conductance values used

to generate v(t), xδ is the vector of maximal conductances produced by Algorithm 1,

and || · || is the Euclidean norm.

Testing shows that xδ does approach x∗ as δ goes to zero, but the convergence

is neither monotonic nor particularly rapid. In the next section we introduce an

improved algorithm which is also proved to converge, and which performs significantly

better in practice.
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2.5 An improved inversion algorithm for the Hodgkin-Huxley
equations

The second inversion algorithm for the Hodgkin-Huxley equations uses the same

overdetermined system of linear equations (21) as the first algorithm, but rather

than select three times at random it finds an approximate solution to the system by

treating it as a linear least squares problem. By using the full set of data gener-

ated during the numerical integration phase of the algorithm, rather than data from

only 3 time steps, the algorithm obtains a more accurate estimate for the maximal

conductance values.

The procedure is to

1. numerically integrate the Hodgkin-Huxley equations while treating the maximal

conductance values as unknown in order to approximate m, n, and h for a finite

set of times ti, and

2. find a set of maximal conductances that gives a best fit to the given voltage

trace values v(ti) in the least squares sense.

When the algorithm arrives at the system of equations (21), rather than using

data from only 3 times selected at random it produces a best fit solution in the least

squares sense by finding an optimal solution to

min
x

N∑
i=1

(
b(ti)−

3∑
j=1

f̃j(ti)xj

)2

. (47)

Defining Aδ ∈ RN×3 to be the matrix whose entries are aδi,j = f̃j(ti), i = 1, . . . , N ,

and b ∈ RN by setting bi = b(ti) in equation (18), for i = 1, . . . , N this can be

rewritten in matrix form as

min
x
||Aδx− b||2. (48)

Since the equations Aδx = b are linear in x, a solution is easily obtained by (for
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example) linear regression.

Algorithm 2 for inverting the Hodgkin-Huxley equations

Given the functions αm, αn, αh, βm, βn, βh, the parameters ENa, EK, EL,

and C, the external current I(t), and a voltage trace v(t) defined on 0 ≤

t ≤ T that is the output of the Hodgkin-Huxley equations for these parameters

with finite maximal conductance values x = (x1, x2, x3)

1. Choose an algorithm time step δ and define N = bT/δc and ti = iδ for

i = 1, . . . , N

2. Compute the values of f̃j(ti), for j = 1, 2, 3, and for all 0 ≤ ti ≤ T

by numerical integration of the equations (17)

3. Construct a N × 3 matrix Aδ whose entries are aδi,j = f̃j(ti)

4. Construct the vector b ∈ RN by setting bi = b(ti) in equation (18),

for i = 1, . . . , N

5. Obtain an approximate solution to the overdetermined N × 3 linear

system Aδxδ = b by solving equation(47) and output the solution xδ

The vast majority of the computational time in these inversion algorithms is con-

sumed by the numerical integration, and the increase in expected computational time

for Algorithm 2 relative to Algorithm 1 is a small constant factor associated with car-

rying out the numerical integration over the full N time steps rather than stopping

at ti3 , the largest of the three randomly chosen times.

2.5.1 Convergence of Algorithm 2

As in Section 2.4.1, let v(t) be a voltage trace generated by the Hodgkin-Huxley equa-

tions for a known set of parameters, external current specified by a known analytic
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function I(t), and maximal conductance values x ∈ R3. The procedure of Algorithm

2 with integration step size δ again accepts v(t) as an input and produces a set of

maximal conductance values xδ ∈ R3. We prove in this section that if x is the unique

set of maximal conductances for which the Hodgkin-Huxley equations generate v(t)

under external current I(t), then xδ → x as δ → 0.

To prove convergence of Algorithm 2 we use a lemma due to Bauer and Skeel

which can be found in [28]. This lemma places bounds on the solution to a linear

system of equations Ax = b, with A square and nonsingular, when both A and b are

perturbed by a small amount. In the following |A| denotes the matrix whose elements

are the absolute values of the elements of A, an absolute vector norm is one whose

value for an arbitrary vector x does not change when each element of x is replaced

by its absolute value, and || · ||2 denotes the Euclidean norm.

Lemma 5 (Bauer and Skeel [28]). Let A be nonsingular. Let Ax = b, and (A+E)x̃ =

b+e. Let || · || be an absolute vector norm, and let || · || also denote a consistent vector

norm. If for some nonnegative S, s, and ε

|E| ≤ εS and |e| ≤ εs (49)

and in addition

ε|| |A−1|S || < 1, (50)

then

||x̃− x|| ≤ ε|| |A−1| (S |x|+ s) ||
1− ε|| |A−1| S ||

. (51)

The next theorem sets up a convergence proof (with Theorem 3) for Inversion

Algorithm 2, which minimizes the least squares error to find an approximate solution

for an overdetermined linear system.

Theorem 6. Let xδ be the solution produced by Algorithm 2, and define A ∈ RN×3

to be the matrix whose entries are ai,j = fj(ti), as in equation (17). Then xδ exists

for all δ > 0, and if A has rank 3 then xδ → x as δ → 0.
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Proof. The solution xδ produced by Algorithm 2 is an optimal solution to

min
y
||Aδy − b||2. (52)

When the expression ||Aδy − b||2 reaches a minimum, the gradient of

(Aδy − b)T (Aδy − b) (53)

is equal to zero. Since

∇
[
(Aδy − b)T (Aδy − b)

]
= 2(Aδ)TAδy − 2(Aδ)T b, (54)

xδ is given by

(Aδ)TAδxδ = (Aδ)T b. (55)

Defining Eδ ∈ Rk×3 as in the proof of Theorem 2 by

Aδ = A+ Eδ (56)

to be the error in A introduced by the numerical integration, from (55) we have

(
ATA+ (Eδ)TA+ ATEδ + (Eδ)TEδ

)
xδ = AT b+ (Eδ)T b. (57)

As in the proof of Theorem 2, we know that

Ax = b, (58)

and so

ATAx = AT b. (59)

Since A has full rank, ATA is nonsingular. Equation (57) represents a perturba-

tion to the linear system (59), and if the perturbation is small enough we can

use Lemma 5 to bound ||xδ − x||. Let ε1(δ) be the largest element of the matrix∣∣(Eδ)TA+ ATEδ + (Eδ)TE
∣∣ and let ε2(δ) be the largest element of the vector |(Eδ)T b|,

and set ε(δ) = max(ε1(δ), ε2(δ)).
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Then ∣∣(Eδ)TA+ ATEδ + (Eδ)TEδ
∣∣ ≤ ε(δ)S, (60)

where S is the 3 by 3 matrix whose entries are each 1, and

|(Eδ)T b| ≤ ε(δ)s, (61)

where s ∈ R3 is the vector of ones. Since, as in Theorem 2,

lim
δ→0
|Eδ| = 0, (62)

we see that

lim
δ→0

ε(δ) = 0. (63)

For small enough δ, then,

ε(δ)|| |A−1| S || < 1 (64)

and from Lemma 5

||xδ − x|| ≤ ε(δ)|| |A−1| (S|x|+ s) ||
1− ε(δ)|| |A−1| S ||

. (65)

In the limit as δ → 0, ε(δ)→ 0 implies the right hand side goes to 0, and so

lim
δ→0
||xδ − x|| = 0 (66)

and xδ → x as δ → 0.

Theorem 6 states that if the matrix A used by Algorithm 2 has rank 3 then the

maximal conductance values xδ produced by Algorithm 2 converge to the maximal

conductance values x that generate the voltage trace v(t) in the limit δ → 0. Theorem

3 tells us that if the vector x is the unique set of maximal conductance values that

generates v(t) with external current I(t) and initial voltage v(0), then the matrix A

in Theorem 6 has rank 3 with probability 1 as δ → 0.
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Corollary 7. If x is the unique set of maximal conductance values that generates

v(t) with external current I(t) and initial voltage v(0) and xδ is the set of maximal

conductances produced by Algorithm 2 with time step δ, then with probability 1, xδ → x

as δ → 0.

Proof. As δ → 0 the N × 3 matrix defined in Theorem 6 has rank 3, using the

reasoning in the proof of Corollary 4. The result follows from Theorem 6.

Finally, continuity of the Hodgkin-Huxley equations implies the traces generated

by the maximal conductances found by the inversion algorithms converge to the target

trace in the limit δ → 0.

Corollary 8. If x = (x1, x2, x3) is the unique set of maximal conductance values that

generates the trace v(t) with external current I(t) and initial voltage v(0), vxδ(t) →

vx(t) as δ → 0.

2.5.2 Computational results for Algorithm 2

The exact, continuous solution to the Hodgkin-Huxley equations for a known set of

input parameters was approximated by numerically integrating the Hodgkin-Huxley

equations with a very small time step of 10−6 ms. The voltage trace obtained by this

simulation was used as the input to the algorithm for solving the inverse problem.

The Algorithm 2 was tested for convergence by sampling from the target voltage

trace described above at intervals ranging in size from δ = 0.5 ms to δ = 3×10−6 ms.

In each case the inversion algorithm was run with time step δ using the voltage trace

data obtained by sampling at regular time intervals of length δ from the approximately

continuous trace. 6 milliseconds of simulated data (roughly the duration of a single

action potential) was used in the testing so that the approximately continuous voltage

trace consists of 6 million data points, and the inversion algorithm used N = 12 data

points in the coarsest approximation (δ = 0.5 ms) and N = 2 million data points in

the finest approximation (δ = 3× 10−6 ms). In the results that follow, the maximal
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Table 2: Three stimuli used in testing the Hodgkin-Huxley inversion algorithm
Stimulus 1 v(0) = −15 mV I(t) = 0 for all t
Stimulus 2 v(0) = 0 I(t) = 5 µA/cm2 for all t

Stimulus 3 v(0) = 0 I(t) =

{
20µA/cm2 t ∈ [0.5ms, 1.0ms]

0 otherwise

conductance values generated by the inversion algorithm with time step δ are denoted

(as before) by xδ.

The parameters used in generating the target voltage trace were those used by

Hodgkin and Huxley (Section 2.1). In particular, the maximal conductance values

used to generate the target voltage trace were x∗ = (120, 36, 0.3) millisiemens per

square centimeter. Several choices for the initial voltage v(0), corresponding to a

depolarizing or hyperpolarizing stimulus, were tested. Testing was performed for

constant (both zero and nonzero) external current I(t), and for step function external

current impulses. Results are shown below for voltage traces generated by the three

combinations of v(0) and I(t) in Table 2. In all cases, the activation and inactivation

variables were initialized to their steady state values at the membrane resting potential

(v = 0) at time t = 0. Figures 10(a)-12(a) show the relative error

||xδ − x∗||
||x∗||

(67)

for the three stimuli described in Table 2 for a range of time steps δ. Here ||·|| denotes

the Euclidean norm. In all cases x∗ is set to the value used by Hodgkin and Huxley,

x∗ = (120.0, 36.0, 0.3) mS/cm2. For all stimuli tested the maximal conductance values

xδ produced by Algorithm 2 with time step δ were found empirically to approach x∗

as δ approaches zero.

Figures 10(b)-12(b) show the voltage traces generated by xδ for each of the three

stimuli given in Table 2. For small δ the traces generated by xδ are found to converge

to the target trace produced by x∗ for each stimulus tested.

Algorithm 2 was also tested with similar success on voltage trace data generated
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Table 3: Performance of Algorithm 2 for the three test stimuli given in Table 2 (δ
in ms and conductances in mS/cm2).

Stimulus 1 Stimulus 2 Stimulus 3
delta x1 x2 x3 x1 x2 x3 x1 x2 x3

1.50E-01 93.92 26.98 0.22 102.12 29.27 0.46 110.57 31.34 0.57
1.00E-01 107.92 31.27 0.33 112.53 32.57 0.49 117.03 33.71 0.54
5.00E-02 116.76 34.35 0.35 118.50 34.85 0.43 121.16 35.53 0.47
1.00E-02 119.80 35.79 0.32 120.03 35.86 0.33 120.57 36.00 0.34
5.00E-03 119.93 35.90 0.31 120.03 35.93 0.32 120.30 36.00 0.32
1.00E-03 119.99 35.98 0.30 120.01 35.99 0.30 120.06 36.00 0.30
5.00E-04 120.00 35.99 0.30 120.00 35.99 0.30 120.03 36.00 0.30
1.00E-04 120.00 36.00 0.30 120.00 36.00 0.30 120.01 36.00 0.30
5.00E-05 120.00 36.00 0.30 120.00 36.00 0.30 120.00 36.00 0.30
1.00E-05 120.00 36.00 0.30 120.00 36.00 0.30 120.00 36.00 0.30

by maximal conductance values other than those used by Hodgkin and Huxley. Table

4 shows the results of testing using traces generated by values of x∗ that differ from

those of Hodgkin and Huxley by ±15% in each component. The target trace was

generated from x∗ using the technique above with Stimulus 1. The results given

in Table 4 are for step size δ = 0.1 µs. The convergence of xδ to x∗ holds for the

values of x∗ presented in Table 4 and for the other physiologically reasonable (i.e.

non-negative) values tested. The traces generated by xδ are nearly identical to the

trace generated by x∗ for the values of xδ and x∗ given in Table 4.

Table 4: Performance of Algorithm 2 for various values of x∗. Conductances in
mS/cm2.

x∗ xδ

x∗1 x∗2 x∗3 xδ1 xδ2 xδ3
138.000 40.400 0.345 137.999 40.398 0.345
138.000 40.400 0.255 137.999 40.398 0.255
138.000 30.600 0.345 138.005 30.599 0.345
138.000 30.600 0.255 138.005 30.599 0.255
102.000 40.400 0.345 101.997 40.398 0.345
102.000 40.400 0.255 101.997 40.398 0.255
102.000 30.600 0.345 101.999 30.599 0.345
102.000 30.600 0.255 101.999 30.599 0.255

In principle it is sufficient as in Algorithm 1 to use data from only three times
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Figure 9: Performance of Algorithm 1 and Algorithm 2

ti provided the resulting submatrix is nonsingular (which is almost certainly true if

the inverse problem has a unique solution by Theorem 3). In practice the algorithm

performs better when more data are used and xδ is an approximate solution to an

overdetermined system of linear equations as in Algorithm 2. Figure 9 shows conver-

gence of the algorithm where xδ is obtained for the same target trace using Algorithm

1 and Algorithm 2. The convergence for Algorithm 2 appears monotonic, and the rel-

ative error in the maximal conductance values is almost always smaller for Algorithm

2 for the time steps δ tested.

2.6 Summary

The key feature of the Hodgkin-Huxley equations that enables the inversion algo-

rithms developed in this section is the fact that aside from the linear dependence of

the voltage trace on the unknown maximal conductance values, all variables of the

model can be computed to arbitrary precision by numerical integration if the voltage

trace v(t) is known. The inversion procedures of this section would work similarly for

other Hodgkin-Huxley type models involving additional membrane currents provided

this condition holds.
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(a) Relative error in maximal conductance values for
Stimulus 1 in Table 2

(b) Voltage trace generated by xδ, Stimulus 1

Figure 10: Performance of Algorithm 2 for Stimulus 1 in Table 2

For more complex Hodgkin-Huxley type models where the time course of one

or more of the variables cannot be computed directly from the voltage trace, the

algorithm needs to be modified. In the next section we explore one such model and

develop an iterative algorithm to solve the associated inverse problem of finding a

set of maximal conductance parameters to match a voltage trace generated by the

model.
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(a) Relative error in maximal conductance values for
Stimulus 2 in Table 2

(b) Voltage trace generated by xδ, Stimulus 2

Figure 11: Performance of Algorithm 2 for Stimulus 2 in Table 2
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(a) Relative error in maximal conductance values for
Stimulus 3 in Table 2

(b) Voltage trace generated by xδ, Stimulus 3

Figure 12: Performance of Algorithm 2 for Stimulus 3 in Table 2
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CHAPTER III

AN ALGORITHM FOR INVERTING A

HODGKIN-HUXLEY TYPE MODEL FOR A LOBSTER

STOMATOGASTRIC NEURON

The lobster stomatogastric (STG) neuron is described by a system of differential

equations similar in character to those developed by Hodgkin and Huxley to model

the behavior of the squid giant axon. The STG neuron model presented in this

section and the code used to numerically integrate the equations of the model were

provided by the Prinz Lab at Emory University. The STG neuron model used is

closely related to the models presented by Liu et al. [19] and Prinz et al. [24]. The

STG model presented in this chapter poses a more challenging inversion problem than

the original Hodgkin-Huxley model and allows us to test our procedure on a type of

neuronal model currently in use by computational neuroscientists.

The model includes 8 ionic currents, rather than the 3 present in the orginal

Hodgkin-Huxley equations. In addition to having a larger number of membrane cur-

rents (which would not require a different inversion technique from the one developed

for the original Hodgkin-Huxley equations), the inverse problem for the STG neuron

model is complicated by the dependence of some of the currents on the (time-varying)

intracellular concentration of calcium ions [Ca]. The STG model includes a calcium-

dependent potassium current whose activity is influenced by [Ca]. In addition, the

model includes two distinct calcium currents whose reversal potential depends on

[Ca]. The algorithm developed in Chapter 2 made use of the fact that aside from the

linear dependence on the unknown maximal conductance values, all of the variables

involved in the ionic currents could be computed directly from the voltage trace by
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numerical integration. In the STG neuron model, the intracellular calcium ion con-

centration depends nonlinearly on the unknown maximal conductance values, and the

linear least squares approach used in Chapter 2 needs to be modified to accomodate

this.

The algorithm developed for inverting the original Hodgkin-Huxley equations is

replaced by an iterative procedure that

1. approximates the membrane currents by numerical integration using the given

voltage trace and an estimate for the maximal conductance values

2. uses the newly estimated values for the membrane currents to update the esti-

mate for the maximal conductance values before returning to 1.

The inversion procedure is tested on voltage trace data generated by numerical

integration of the equations of the STG neuron model, including data representing

a wide range of spontaneous periodic bursting and spiking behavior as well as non-

periodic behavior. The inversion procedure is also tested against voltage trace data

generated by numerical integration of the STG neuron equations with one or more

parameters of the model perturbed by an unknown amount, representing uncertainty

in the exact form of the equations describing the voltage trace.

The algorithm is found empirically to be very successful in producing a set of max-

imal conductance values that closely matches the behavior of a given target trace. In

almost all cases the maximal conductance values produced by the inversion algorithm

agree extremely closely with the maximal conductance values that were used to gener-

ate the trace, suggesting that under certain conditions a set of maximal conductance

values is uniquely identifiable from the voltage trace that it generates. Studies have

suggested ([9, 10, 24], and [25] showed something similar for a network of 3 neurons)

that similar voltage trace behavior can be produced by widely different sets of maxi-

mal conductance values, and our findings do not call this into question. While similar
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Table 5: The currents of the STG neuron model
I1 Na fast sodium
I2 CaT fast transient calcium
I3 CaS slow calcium
I4 Kd delayed rectifier potassium
I5 KCa calcium-dependent potassium
I6 A fast transient potassium
I7 H hyperpolarization-activated inward cation
I8 L passive leakage

neuronal behavior may arise as a result of maximal conductance values chosen from

different regions of parameter space, it may be the case that an exact match to the

function v(t) that is generated by the parameters x∗ is only achieved by x∗.

3.1 The STG neuron model

The membrane currents used in the model for the STG neuron are fast sodium,

fast transient calcium, slow calcium, delayed rectifier potassium, calcium-dependent

potassium, fast transient potassium, hyperpolarization-activated inward cation, and

passive leakage (see Table 5). The details of the individual membrane currents are

found in Table 6. The model has considerable range in the types of spontaneous ac-

tivity exhibited. Various spontaneous STG neuron behaviors are plotted in Appendix

A.

The equations for the STG neuron (as in the original Hodgkin-Huxley equations)

treat the neuron as an electrical circuit, with the membrane potential v determined

by the ionic currents Ij flowing through the voltage-gated ion channels:

C
dv

dt
= −

8∑
j=1

Ij. (68)

Equation (68) is the analog of equation (1) of the original Hodgkin-Huxley model. The

STG neuron model exhibits spontaneous activity in the absence of external stimuli,
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and the external current is taken to be zero in this chapter unless otherwise noted.

C = 0.628 nF is the membrane capacitance, as in [24] and [19].

As in the Hodgkin-Huxley model for the squid giant axon, the richness of the

model comes from the fact that the conductances associated with the ionic currents

are variable and dependent on voltage. The form of this dependence is:

Ij = xjm
pj
j h

qj
j (v − Ej), j = 1, . . . , 8, (69)

where the variables xj are the maximal conductance values and mj and hj are ac-

tivation and inactivation functions, respectively. The exponents pj and qj and the

reversal potentials Ej are constants as defined in Table 6, with the exception of E2

and E3 which depend on intracellular calcium concentration [Ca] and are given by

the Nernst equation:

E2 = E3 = cN ln

(
3.0 mM

[Ca]

)
. (70)

where cN is the Nernst constant and 3.0 mM represents the extracellular calcium

concentration. For Ca2+, cN ≈ 12.2 mV at 283K, the simulation temperature used in

our work. The dependence of E2 and E3 on the intracellular calcium ion concentration

means the reversal potential for these currents varies with time. All other reversal

potentials Ej, j 6= 2, 3, are fixed parameters as given in Table 6.

For each ionic current, the behavior of the activation and inactivation variables

mj and hj is determined by

τmj
dmj

dt
= m∗j(v)−mj (71)

τhj
dhj
dt

= h∗j(v)− hj.

Here m∗j(v) and h∗j(v), with the exception of m∗5(v, [Ca]) which depends also on intra-

cellular calcium ion concentration [Ca], are functions only of the membrane potential

and are given in Table 6. They play the roles of the functions m∞(v), n∞(v), and

h∞(v) in the original Hodgkin-Huxley model and, as can be seen in equation (71),

give the steady state values of the variables mj and hj at constant voltage v. These
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Intracellular calcium ion concentration [Ca] is determined by integrating the equa-

tion

τCa
d[Ca]

dt
= −κ(I2 + I3)− [Ca]+0.05 µM, (72)

with

κ =
(0.94 µM·nF/nA)

C
= 14.96 µM/nA (73)

and

τCa = 200 ms. (74)

This equation (see [19]) reflects the fact that the calcium membrane current I2 + I3

determines the rate at which calcium ions enter the neurons and assumes that calcium

ions are buffered at a rate that depends linearly on [Ca]. The constant 0.05 µM is

the steady state intracellular calcium ion concentration if no calcium ions traverse

the cell membrane, τCa is a time constant, and κ determines the amount by which a

unit of calcium ionic current changes the intracellular calcium ion concentration.

The additional difficulty in inverting the equations of the STG model relative to

the original Hodgkin-Huxley model arises due to

1. the dependence of the reversal potential for the fast transient and slow calcium

membrane currents on the intracellular concentration of calcium ions (E2 and

E3 depend on [Ca] as in equation (70)), and

2. the [Ca]-dependence in the calcium-dependent potassium membrane current I5

(m∗5(v) depends on [Ca] as in Table 6).

Since [Ca] is found for time t by integrating equation (72), which requires the

currents I2 and I3 and hence from equation (69) the maximal conductance values x2

and x3, the membrane currents I2, I3, and I5 have a nonlinear dependence on x that

was not present in the original Hodgkin-Huxley model of Chapter 2, rendering the

single-stage algorithm of Chapter 2 inapplicable for inverting the equations of the
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STG model. An iterative procedure for inverting the equations of the STG model is

developed in Section 3.4.

3.2 The problem

The problem is to consider a voltage trace generated by the equations of the STG

neuron model with an unknown set of maximal conductance values, and to produce

a set of maximal conductance values that generates a voltage trace that is a good

behavioral match to the given voltage trace.

As was the case with the original Hodgkin-Huxley equations, the output of the

equations of the STG model in Section 3.1 is a voltage trace v(t) describing the elec-

trical activity of a model neuron on the domain t ∈ [0,∞), giving the voltage across

the neuron cell membrane as a function of time. The equations of the STG model

are a mapping from an 8 dimensional parameter space to a space F of real analytic

functions (voltage traces) taking R+ to R. For a set of maximal conductance values

x ∈ R8, the equations of the STG model send x to a voltage trace vx(t) ∈ F . The

inverse problem is, as in Chapter 2, to consider a given voltage trace vx∗(t) that is

generated by the equations of the STG neuron model for an unknown set of maxi-

mal conductance parameters x∗ ∈ R8 and to produce a set of maximal conductance

parameter values x ∈ R8 so that vx(t) = vx∗(t).

Unlike the procedure developed in Chapter 2 for inverting the Hodgkin-Huxley

equations for the squid giant axon, we do not assume that the initial values of the

activation and inactivation variables mj and hj are known for time t = 0. In the inver-

sion procedure for the original Hodgkin-Huxley equations of Chapter 2, the activation

and inactivation variables m, n, and h are set to their steady state values m∞(v = 0),

n∞(v = 0), and h∞(v = 0) for the membrane resting potential at t = 0. This is

reasonable for a model of a neuron at rest before the application of the stimulus that

triggers the action potential. (The stimulus can be either nonzero external current
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I(t), or an initial value v(0) 6= 0 that differs from the membrane resting potential.)

Since the STG neuron exhibits periodic spontaneous behavior, it is not assumed that

the values of these variables are known at the time selected to be t = 0. In the case

of the STG model, the fact that the model neuron fires repetitively in the absence of

external stimulus means the activation and inactivation variables do not all approach

their steady state values at any instant in time, and the values of all of the activation

and inactivation variables are not known at any instant by inspection of the voltage

trace.

In the original Hodgkin-Huxley model the inversion algorithm makes use of the

fact that the differential equations governing the activation and inactivation variables

m, n, and h can each be solved independently by numerical integration using only

the given voltage trace data. In the case of the STG neuron model, the differential

equations for the activation and inactivation variables cannot be solved independently

due to the unknown initial conditions and the dependence on [Ca], and hence on the

unknown maximal conductance values.

3.3 Solving the equations of the STG neuron model

The voltage trace generated by the STG neuron is obtained by integrating the equa-

tions (68), (71), and (72). As was the case with the original Hodgkin-Huxley equa-

tions, it is not possible to obtain a closed form solution, and the integration must be

done numerically. This numerical integration is carried out using simulation software

used by the Prinz Lab at Emory University. The output for a given set of maximal

conductances x ∈ R8 is a discrete approximation Vi to the values taken by the true

voltage trace vx(ti) for a finite set of times ti, i = 1, . . . , N , with fixed time step

∆t = ti+1 − ti. In what follows the subscripts i will denote the numerical integration

time step ti, and the subscripts j will denote the membrane current so that (for ex-

ample) hi,j refers to the value computed by the numerical integration procedure for
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the inactivation variable of membrane current j at time ti.

The simulation procedure uses the Euler method to compute the time course of

the activation and inactivation variables mj and hj, j = 1, . . . , 8, from equation (71)

and the exponential Euler method described below to compute the time course of

the membrane potential v and the intracellular calcium ion concentration [Ca] from

equations (68) and (72).

In the exponential Euler method [3, 27], proposed by Moore and Ramon as a

hybrid analytic-numerical integration procedure [22], an equation of the form

dy

dt
= α− βy (75)

is integrated numerically according to the rule

yi+1 = yie
−β∆t +

α

β

(
1− e−β∆t

)
, (76)

derived by treating α and β as constant over the course of each numerical integration

time step (the assumption being that these quantities are varying slowly in comparison

to y). Rearranging terms and using the expression for dy
dt

given in equation (75), the

exponential Euler integration rule is

yi+1 = yi +
dy

dt

∣∣∣∣
i

1

β

(
1− e−β∆t

)
. (77)

In using the exponential Euler method to compute Vi by numerically integrating

equation (68), the activation and inactivation variables mj and hj are treated as

constant over the course of each integration time step, and the numerical solution at

Vi+1 at time ti+1 is

Vi+1 = Vi +
dV

dt

∣∣∣∣
i

· τi(x)

(
1− exp

(
−∆t

τi(x)

))
, (78)

where

τi(x) =
1

1
C

∑8
j=1 xjm

pj
ij h

qj
ij

. (79)
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and dV
dt

∣∣
i

is

dV

dt

∣∣∣∣
i

= − 1

C

8∑
j=1

xjm
pj
i,jh

qj
i,j(Vi − Ei,j), (80)

from equations (68) and (69), so that the change in the membrane potential between

steps i and i+ 1 is

Vi+1 − Vi = − 1

C

(
8∑
j=1

xjm
pj
i,jh

qj
i,j(Vi − Ei,j)

)
τi(x)

(
1− exp

(
−∆t

τi(x)

))
. (81)

The exponential Euler method is also used to numerically integrate equation (72)

to find [Ca]i+1, the intracellular calcium ion concentration at time ti+1, giving

[Ca]i+1 = [Ca]i − (κ (Ii,2 + Ii,3)− [Ca]i + 0.05 µM)

(
1− exp

(
−∆t

τCa

))
. (82)

The exponential Euler method is sometimes used (as described in [3]) to solve

for the activation and inactivation variables mj and hj by numerically integrating

equation (71) so that

mi+1,j = m∗(Vi) + (mi,j −m∗(Vi)) exp

(
− ∆t

τmj(Vi)

)
(83)

or, rearranging terms as above,

mi+1,j = mi,j +
dmj

dt

∣∣∣∣
i

τmj(Vi) ·
(

1− exp

(
− ∆t

τmj(Vi)

))
, (84)

and equivalently for hj. In our implementation, however, we do not use the exponen-

tial Euler method to compute the time course for the variables mj and hj. Using the

procedure of the Prinz Lab, we perform the numerical integration for the activation

and inactivation variables according to the Euler method. The time evolution of the

activation and inactivation variables is computed according to

mi+1,j = mi,j +
dmj

dt

∣∣∣∣
i

·∆t,

hi+1,j = hi,j +
dhj
dt

∣∣∣∣
i

·∆t, (85)
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where the derivatives of the activation and inactivation variables are, from equation

(71),

dmj

dt

∣∣∣∣
i

=
m∗j(Vi)−mi,j

τmj(Vi)
, ∀j 6= 5,

dhj
dt

∣∣∣∣
i

=
h∗j(Vi)− hi,j
τhj(Vi)

, ∀j = 1, ..., 8. (86)

For j = 5 (the calcium-dependent potassium current), the function m∗j depends on

the intracellular calcium ion concentration in addition to membrane potential as in

Table 6:

dm5

dt

∣∣∣∣
i

=
m∗5(Vi, [Ca]i)−mi,5

τm5(Vi)
, j = 5. (87)

At each time step ti the reversal potentials Ei,j are given for j 6= 2, 3 by the

constants in Table 6. Only the calcium reversal potential has time-dependence. The

calcium reversal potential Ei,2 = Ei,3 at time ti is computed by solving the Nernst

equation (70) using the intracellular calcium ion concentration at time ti

Ei,2 = Ei,3 = 12.2 mV ln

(
3.0 mM

[Ca]i

)
. (88)

The initial conditions used in the numerical integration procedure are (unless

otherwise noted in the text) V1 = −70 mV, [Ca]1=0.05 µM, m1,j = m∗j(V1), and

h1,j = h∗(V1), for j = 1, . . . , 8 (i.e. the activation and inactivation variables are set

to their steady state values for the initial membrane potential of 70 mV).

3.4 Inversion procedure for the STG neuron model

Let V ∈ RN denote a given voltage trace that has been generated by numerical

integration of the STG equations of Section 3.1 with maximal conductance values x∗,

so that Vi denotes the calculated membrane potential at time ti, for i = 1, . . . , N .

The time steps ti are equally spaced, with interval ∆t = ti+1 − ti.

The iterative procedure will repeatedly estimate values for the unknown maxi-

mal conductance values; let xk ∈ R8 be the estimated maximal conductance values
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produced in the kth iteration. The time course of the activation and inactivation

variables mj and hj will be estimated at every step of the iterative procedure by nu-

merical integration using the most recent estimates xk. Let mk
i,j denote the estimated

value for the variable mj at time ti produced in the kth iteration, and similarly for

hki,j, I
k
i,j, and Ek

i,j, for j = 1, . . . , 8 and i = 1, . . . , N . Note that the reversal potentials

for all of the membrane currents except for the two calcium currents I2 and I3 are

constants specified in Table 6 and do not vary with time or depend on the choice

of maximal conductance values. The time course of the intracellular ionic calcium

concentration [Ca] will also be estimated by the algorithm in each iteration. Let

[Ca]ki be the estimated intracellular ionic calcium concentration at time ti produced

in iteration k.

An outline of the iterative inversion algorithm for the STG neuron model follows:

1. Set k = 0 and arbitrarily assign maximal conductance values x0.

2. Numerically integrate the equations of the STG model using the given voltage

trace data V and the current maximal conductance estimates xk to produce

mk
i,j, h

k
i,j, and Ei,j for each i = 1, . . . , N and j = 1, . . . , 8.

3. Find a set of maximal conductance values xk+1 that gives a best fit to the given

voltage trace values V in the least squares sense for the computed values mk
i,j,

hki,j, and Ei,j.

4. Replace xk+1
j by 0 for any negative maximal conductance values xk+1

j .

5. Increment k and repeat from 2.

Prior to the first iteration, we assign arbitrary values to the variables x0 ∈ R8.

The algorithm is not sensitive to the choice of values for x0, provided these values are

in a physiologically reasonable range (Section 3.5). The initial choice of the maximal

conductance values x0
2 and x0

3 associated with the calcium currents play a role by
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determining the time evolution of the intracellular calcium ion concentration [Ca]

in the first iteration of the algorithm. The initial choices for the remaining maximal

conductance values x0
j , for j 6= 2, 3, have no influence on the progress of the algorithm.

At the beginning of each iteration k of the algorithm, the values for the variables

[Ca]k, mk
j , and hkj , j = 1, . . . , 8 whose time course will be computed by numerical

integration must be fixed for time t1. These values are also chosen somewhat arbi-

trarily. [Ca]k1 is set to 0.05 µM, mk
1j is set to the steady state value corresponding to

the membrane potential at time t1 (mk
1j = m∗j(V1)), and similarly hk1j is initialized to

h∗j(V1).

Unlike the original Hodgkin-Huxley model, which was assumed to be quiescent

at its resting potential prior to the application of an external stimulus, the STG

neuron exhibits ongoing spontaneous activity and there is no reason to suppose that

the activation and inactivation variables are at their respective steady state values

m∗j(V1) and h∗j(V1) at time t1 since in general variations in voltage in the times leading

up to t1 will have prevented the activation and inactivation variables from settling at

their steady state values. The initial values mk
1j, h

k
1j, [Ca]k1 chosen for these variables

will generally be incorrect (in the sense that they do not correspond to the values

of these variables at time t1 during the process of solving the equations of the STG

neuron to generate the given voltage trace V ), but testing shows (Section 3.5) the

performance of the inversion algorithm to be similar for any physiologically reasonable

values assigned to these variables.

With the exception of m∗5, the function giving the steady state value for the

activation variable for calcium-dependent potassium current, the functions m∗j , h
∗
j ,

τmj , and τhj (Table 6) are all explicit functions of voltage whose values are known for

each time ti from the given membrane potential Vi for time ti.

Step 2 of the inversion algorithm for the STG neuron involves numerically inte-

grating the equations (71) and (72) to obtain estimates for the time course of the
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intracellular calcium ion concentration [Ca] and the activation and inactivation vari-

ables mk
i,j and hki,j for each of the 8 membrane currents for each time step t1, . . . , tN .

From the intracellular calcium ion concentration [Ca] the time course of the reversal

potentials Ek
i,j are computed using equation (70) (for j = 2, 3) or the constants in

Table 6 (for j 6= 2, 3).

The numerical integration procedure used during the kth iteration of the inversion

algorithm is the procedure described in Section 3.3, with the most recent set of

maximal conductance values xk.

Having used xk to compute the time course of the variables by numerical integra-

tion, the algorithm uses these results in Step 3 to obtain xk+1, the updated estimate

for the maximal conductance values. Defining b ∈ RN−1 by

bi = Vi+1 − Vi, i = 1, . . . , N − 1 (89)

we have from equation (81)

bi = −τi
[
1− exp

(
−∆t

τi

)]
1

C

8∑
j=1

xjm
pj
i,jh

qj
i,j (Vi − Ei,j) , i = 1, . . . , N, (90)

with

τi =
1

1
C

∑8
j=1 xjm

pj
i,jh

qj
i,j

. (91)

Using the values of the variables computed for each time step by numerical integration

in iteration k, we approximate (90) by

bi = −τ ki
[
1− exp

(
−∆t

τ ki

)]
1

C

8∑
j=1

xj(m
k
i,j)

pj(hki,j)
qj
(
Vi − Ek

i,j

)
, i = 1, . . . , N,

(92)

with

τ ki =
1

1
C

∑8
j=1 xj(m

k
i,j)

pj(hki,j)
qj

(93)

to obtain an overdetermined linear system in the unknowns x ∈ R8. Excepting the

unknown maximal conductance values x, all of the quantities in the equation above

are known from the numerical integration in Step 2.
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Defining Ak ∈ R(N−1)×8 to be the matrix whose entries are

akij = −τ ki
[
1− exp

(
−∆t

τ ki

)]
1

C
(mk

i,j)
pj(hki,j)

qj
(
Vi − Ek

i,j

)
, (94)

for i = 1, . . . , N − 1 and j = 1, . . . , 8, we rewrite equation (90) as

Akx = b. (95)

The algorithm completes Step 3 by finding a best solution to this overdetermined

system of linear equations in the least squares sense. This solution is the updated

estimate xk+1 for the unknown maximal conductance values. That is, xk+1 is an

optimal solution to the optimization problem

min
x
||Akx− b||2, (96)

where || · ||2 denotes the Euclidean norm.

3.5 Computational results

The inversion procedure for the STG neuron model was tested on voltage traces

representing a range of spontaneous behavior exhibited by the model.

3.5.1 Performance for twenty representative voltage traces

The inversion algorithm was tested on 20 voltage traces selected to represent a range

of behaviors exhibited by the STG neuron model. These voltage traces were generated

from the STG neuron model by numerically integrating the differential equations of

the model according to the procedure given in Section 3.3. The maximal conductance

values used to generate each of the 20 voltage traces are given in Table 8.

For each of the sets of maximal conductance values in Table 8 the resulting voltage

trace was used as an input into the inversion algorithm for the STG neuron model.

The numerical integration to generate the voltage traces was performed with time

step 0.05 ms and the simulation period used was 133.5 seconds. Voltage trace data
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Table 7: Performance of the inversion algorithm for the 20 target traces described

in Table 8. Values given are ||x
k−x∗||
||x∗|| for each iteration k.

Inversion algorithm iteration
Trace 1 2 3 4 5 10 15

1 5.230204 0.255646 0.013582 0.005522 0.001201 1.47E-05 8.34E-08
2 0.116378 0.035027 0.002869 5.85E-05 2.88E-05 1.65E-05 1.65E-05
3 0.077714 0.024526 0.009684 0.004371 0.002062 5.26E-05 3.97E-07
4 0.054206 0.007001 0.00096 0.000127 1.59E-05 1.02E-06 1.02E-06
5 0.255502 0.022682 0.009131 0.000958 0.000327 2.13E-06 2.19E-06
6 0.152972 0.045493 0.013422 0.003951 0.001162 2.34E-06 3.30E-07
7 0.20854 0.071781 0.025134 0.008817 0.003096 2.01E-05 1.26E-05
8 0.041626 0.007841 0.000964 0.000112 1.45E-05 2.00E-06 2.00E-06
9 0.199794 0.068042 0.023487 0.00815 0.002833 1.44E-05 5.62E-08

10 0.098439 0.023735 0.006109 0.001601 0.000419 6.68E-07 6.57E-07
11 0.050055 0.015964 0.002293 0.000681 0.000529 0.000513 0.000513
12 0.22984 0.0822 0.029861 0.010905 0.003991 2.64E-05 1.83E-07
13 0.109223 0.025673 0.006226 0.001521 0.000374 2.55E-05 2.55E-05
14 0.042457 0.003708 0.00041 4.56E-05 6.35E-06 3.08E-06 3.08E-06
15 9.24115 0.739671 0.00199 0.000396 0.000347 2.85E-06 2.70E-06
16 0.38775 0.212347 0.120018 0.068662 0.039533 0.002579 0.00017
17 0.298682 0.134794 0.062493 0.029266 0.013764 0.000321 7.24E-06
18 0.191674 0.064273 0.021943 0.007518 0.002579 1.23E-05 1.03E-07
19 1.045964 664271.9 1.028662 1.0218 664271.2 1.0218 1.028664
20 1 1 1 1 1 1 1
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Table 8: Maximal conductance parameters for the target voltage traces used in
testing the STG model. All conductances in mS/cm2.

Maximal conductance values
Trace behavior Na CaT CaS A KCa Kd H L

1 spiker 100 0 10 40 0 75 0.02 0.03
2 slow spiker 100 0 4 10 10 75 0.01 0.03
3 spiker with broad spike 200 0 2 0 15 0 0.03 0.04
4 spike triplets 100 0 10 50 10 50 0.03 0.05
5 one-spike-burster 0 12.5 10 20 5 75 0.04 0.03
6 burster with plateau 400 2.5 10 20 5 25 0.04 0.03
7 burster (small duty cycle) 400 2.5 4 50 25 75 0 0.04
8 burster (med. duty cycle) 100 0 4 0 15 50 0.02 0.03
9 burster (large duty cycle) 300 7.5 8 0 10 125 0.01 0.03
10 burster 100 0 8 0 25 100 0.05 0.01
11 burster 100 0 2 10 5 25 0 0
12 burster 500 10 0 40 0 100 0.01 0.04
13 burster 200 5 4 40 5 125 0.01 0
14 parabolic burster 100 0 6 10 10 50 0.03 0.05
15 elliptic burster 100 12.5 0 30 0 50 0.04 0.02
16 alternating burster 500 2.5 8 0 15 75 0.05 0
17 irregular burster 400 0 8 50 20 50 0.04 0
18 non-periodic 300 0 10 20 20 125 0.05 0.01
19 low-amplitude oscillations 0 0 6 20 25 0 0.02 0.05
20 silent 500 0 0 40 0 75 0.01 0
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Table 9: Maximal conductance values produced by the inversion algorithm after 15
iterations. All conductances in mS/cm2. Compare to Table 8.

Maximal conductance values
Trace Na CaT CaS A KCa Kd H L

1 100.000 0.000 10.000 40.000 0.000 75.000 0.020 0.030
2 100.000 0.000 4.000 10.000 9.998 75.000 0.010 0.030
3 200.000 0.000 2.000 0.000 15.000 0.000 0.030 0.040
4 100.000 0.000 10.000 50.000 10.000 50.000 0.030 0.050
5 0.000 12.500 10.000 20.000 5.000 75.000 0.040 0.030
6 400.000 2.500 10.000 20.000 5.000 25.000 0.040 0.030
7 400.000 2.500 4.000 50.000 24.995 75.000 0.000 0.040
8 100.000 0.000 4.000 0.000 15.000 50.000 0.020 0.030
9 300.000 7.500 8.000 0.000 10.000 125.000 0.010 0.030
10 100.000 0.000 8.000 0.000 25.000 100.000 0.050 0.010
11 100.000 0.000 1.998 10.001 4.947 25.000 0.000 0.000
12 500.000 10.000 0.000 40.000 0.000 100.000 0.010 0.040
13 200.000 5.000 3.999 39.994 5.002 125.001 0.010 0.000
14 100.000 0.000 6.000 10.000 10.000 50.000 0.030 0.050
15 100.000 12.500 0.000 30.000 0.000 50.000 0.040 0.020
16 499.915 2.499 7.998 0.001 14.998 74.987 0.050 0.000
17 399.997 0.000 8.000 49.999 20.000 50.000 0.040 0.000
18 300.000 0.000 10.000 20.000 20.000 125.000 0.050 0.010
19 2.200 0.009 0.000 0.000 0.000 7.540 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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(a) Trace generated by the maximal conductances produced by the inversion algorithm (see Table 9).

(b) Target Trace 1, specified in Table 8.

Figure 13: Target Trace 1 and the trace generated by the maximal conductances
produced by the inversion algorithm.

were recorded for each numerical integration time step during the final 3.5 seconds

of the simulation. The 70,000 voltage trace data points obtained in this way were

used as the input to the inversion algorithm. The initial 130 seconds of simulation

for which data were not recorded was to allow the system to reach equilibrium (130

seconds is significantly more time than is necessary).

In the numerical integration process involved in generating voltage trace data

the membrane potential was initialized to -70 mV, the activation and inactivation

variables were set to their steady state values for v = −70 mV, and the intracellular

calcium ion concentration [Ca] was set to 0.05 µM.

The inversion algorithm begins its first iteration with an arbitrary estimate of xj =

5 mS/cm2 for each of the 8 maximal conductance values. In the numerical integration

procedure of the inversion algorithm the activation and inactivation variables are
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(a) Trace generated by the maximal conductances produced by the inversion algorithm (see Table 9).

(b) Target Trace 4, specified in Table 8.

Figure 14: Target Trace 4 and the trace generated by the maximal conductances
produced by the inversion algorithm.

initialized to their steady state values for the membrane potential of the target trace

at t = 130 s, and the intracellular calcium ion concentration is initialized to 0.05

µM. These initial values chosen for the first time step of the numerical integration

process for the inversion procedure do not generally coincide with the values found

for the corresponding variables at the same time in the numerical integration process

used to generate the target voltage trace. Despite this initial inaccuracy in the values

used by the inversion algorithm for these variables, the procedure is found after 15

iterations to produce maximal conductance values that generate a voltage trace that

closely approximates the behavior of the target trace for all but one (Trace 19) of the

20 target traces in Table 8.

In Table 7 we report the results of 15 iterations of the inversion procedure for the

STG neuron model, using the 20 target behaviors given in Table 8 as input. The
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(a) Trace generated by the maximal conductances produced by the inversion algorithm (see Table 9).

(b) Target Trace 10, specified in Table 8.

Figure 15: Target Trace 10 and the trace generated by the maximal conductances
produced by the inversion algorithm.

values given in Table 7 are the normalized difference between the target vector and

the vector produced in the 15th iteration of the inversion algorithm:

||xk − x∗||
||x∗||

=

√√√√∑8
j=1

(
xkj − x∗j

)2∑8
j=1(x∗j)

2
, (97)

where x∗ ∈ R8 is the vector of maximal conductance values that generated the target

trace, and xk ∈ R8 is the vector of maximal conductance values produced by the

inversion algorithm in iteration k.

For all but two of the 20 target voltage traces, this normalized difference is less

than 0.001, indicating that the inversion algorithm produced a set of maximal con-

ductance values very nearly identical to the maximal conductance values used to

generate the target voltage trace. The fact that the inversion algorithm converges

in 18 of the 20 test cases to the maximal conductance values used to generate the
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(a) Trace generated by the maximal conductances produced by the inversion algorithm (see Table 9).

(b) Target Trace 18, specified in Table 8.

Figure 16: Target Trace 18 and the trace generated by the maximal conductances
produced by the inversion algorithm.

target trace suggests that in many cases a voltage trace produced by the STG neuron

model is generated by a unique set of maximal conductance parameters. This may

appear surprising in light of the considerable evidence (see, for example, [20]) that

similar neuron behavior can arise in very different regions of parameter space, but

these results are not contradictory since the algorithm we have developed searches for

parameters that give exact pointwise matches to the target behavior on some interval,

rather than behavior that is qualitatively or quantitatively similar but not necessarily

identical.

Figures 13-18 show the target trace (green) and the trace generated by the maxi-

mal conductances given by the inversion algorithm after 15 iterations (blue). In each

case the voltage trace is generated from the maximal conductance values produced

by the inversion algorithm using a numerical integration procedure identical to that
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(a) Trace generated by the maximal conductances produced by the inversion algorithm (see Table 9).

(b) Target Trace 19, specified in Table 8.

Figure 17: Target Trace 19 and the trace generated by the maximal conductances
produced by the inversion algorithm.

given above to generate the target voltage trace from the maximal conductance values

x∗ given in Table 8.

Figures 13-16 show 4 of the 18 cases for which the algorithm produced maximal

conductance values nearly identical to the maximal conductance values that generated

the target trace. In each of these 18 cases, the trace generated by the maximal

conductance values given by the algorithm is a very good match to the target trace.

Note that in some cases (for example the nonperiodic Trace 18 for which results are

shown in Figure 16) the voltage trace generated by the maximal conductances given

by the inversion algorithm is a good behavioral match to the target trace despite

not matching the target trace pointwise on the interval 130 s≤ t ≤133.5 s. The

local sensitivity of the equations of the STG neuron model to changes in the maximal

conductance parameters (small deviations from x∗ lead to significant changes in vx∗(t))
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(a) Trace generated by the maximal conductances produced by the inversion algorithm (see Table 9).

(b) Target Trace 20, specified in Table 8.

Figure 18: Target Trace 20 and the trace generated by the maximal conductances
produced by the inversion algorithm.

mean the function vx(t) may not match vx∗(t) pointwise for all t, even for x in the

neighborhood of x∗. From a biological perspective, the qualitative similarity between

the target trace in Figure 16(b) and the trace generated by the maximal conductance

values given by the algorithm in Figure 16(a) make this a successful reproduction of

the target behavior.

Figures 17 and 18 show the two cases for which the algorithm did not converge

to maximal conductance values similar to those used to generate the target trace.

Figures detailing the performance of the algorithm more fully for each of the 20

target traces are given in Appendix A.

In one of the two cases for which the inversion algorithm does not produce maximal

conductance values similar to those used to generate the target trace (Trace 20, silent),

the maximal conductance values produced by the inversion algorithm (xj = 0 mS/cm2
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for all j = 1, . . . , 8) nevertheless are a good fit in the sense that they generate a trace

with similar behavior (dv
dt

= 0 for all t, i.e. a silent trace). Figure 18 shows the target

trace and the trace generated by the maximal conductance values produced by the

inversion algorithm for Trace 20.

Figure 17 shows the single case for which the behavior generated by the maximal

conductances given by the algorithm is a poor match to the target behavior (Trace

19, low amplitude oscillations). For the maximal conductance parameters x∗ used to

generate Trace 19 the inversion algorithm is sensitive to the initial choice of maximal

conductance parameters x0. If x0 is chosen to be equal to x∗ the inversion algorithm

returns maximal conductance values in the neighborhood of x∗ for several iterations

before drifting from this solution, suggesting that the algorithm either does not con-

verge for this choice of x∗ or the radius of convergence is much smaller for Trace 19

than for the other cases.

3.5.2 Sensitivity to initial values

The inversion algorithm developed in Section 3.4 requires an initial choice x0 ∈ R8

of maximal conductance values prior to the first iteration. In computing the results

presented above, the 8 maximal conductance values were each arbitrarily set to 5

mS/cm2. In this section we present results showing that in most cases (for the ma-

jority of target behaviors) the performance of the algorithm is not sensitive to the

choice of x0.

In addition to setting the initial maximal conductances prior to the first iteration,

the numerical integration step of the inversion algorithm requires that initial (time

t = 130 s) values for the internal calcium ion concentration [Ca] and for each of

the activation and inactivation variables be fixed at each iteration. These values are

not available by inspection of the given voltage trace data and must also be fixed

arbitrarily. In computing the results reported above, the activation and inactivation
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variables at time t = 130 s were each set to their steady state value for the membrane

potential at t = 130 s for the target trace, and [Ca] at t = 130 s was initialized to

0.05 µM.

To test the sensitivity of the inversion algorithm to the initial values, the algo-

rithm was run for 15 iterations on the 20 target traces generated by the maximal

conductance parameters in Table 8 with the initial values fixed randomly. For each

of these tests, the maximal conductance for the Na current was chosen randomly be-

tween 0 and 500 mS/cm2, the maximal conductances for the currents CaT and CaS

were each chosen randomly between 0 and 10 mS/cm2, the maximal conductances for

the currents A, KCa, and Kd were each chosen randomly between 0 and 100 mS/cm2,

and the maximal conductances for the currents H and L were each chosen randomly

between 0 and 0.1 mS/cm2. In addition, the initial values for the activation and inac-

tivation variables at t = 130 s were each chosen randomly between 0 and 1, and the

initial value for the intracellular calcium ion concentration at t = 130 s was chosen

at random between 0 and 0.1 µM during the numerical integration portion of each

iteration.

Table 10 reports the value of

||x15 − x∗||
||x∗||

(98)

for each of 8 trials with initial values chosen randomly as described above, where x15

denotes the maximal conductance values produced by the inversion algorithm after 15

iterations and the norm is the Euclidean norm. In each of the trials, the results were

almost indistinguishable from those reported in the previous section; for 18 of the 20

target traces the maximal conductance values produced by the inversion algorithm

were nearly identical to those used to generate the target trace, Trace 19 yielded a

consistently poor fit, and in each case the algorithm produced the solution xj = 0 for

all j for Trace 20.

The fact that the performance of the algorithm is not dependent on the initial
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values for the activation and inactivation variables is due to the fact that, as seen

in equation 71, the values of the activation and inactivation variables always tend

toward the steady state value m∗(v) or h∗(v) for the corresponding variable. As

v(t) is known, the activation and inactivation variables eventually equilibrate to the

correct values over the course of the numerical integration process that occurs at each

iteration of the inversion algorithm.

Table 10: Performance of the inversion algorithm with randomly chosen initial

values. Quantities given are ||x
15−x∗||
||x∗|| .

Random initial value, trial number
Trace 1 2 3 4 5 6 7 8

1 0.00000 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00000
2 0.00011 0.00001 0.00003 0.00002 0.00015 0.00004 0.00005 0.00004
3 0.00002 0.00001 0.00001 0.00002 0.00000 0.00000 0.00001 0.00002
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
5 0.00001 0.00001 0.00000 0.00000 0.00002 0.00003 0.00003 0.00001
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 0.00002 0.00002 0.00011 0.00009 0.00002 0.00002 0.00006 0.00011
8 0.00002 0.00000 0.00001 0.00002 0.00005 0.00002 0.00001 0.00006
9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
11 0.00057 0.00036 0.00006 0.00004 0.00065 0.00048 0.00068 0.00046
12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
13 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00001 0.00002
14 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.00003 0.00001
15 0.00000 0.00000 0.00002 0.00000 0.00001 0.00003 0.00003 0.00000
16 0.00012 0.00014 0.00012 0.00012 0.00003 0.00011 0.00012 0.00014
17 0.00000 0.00001 0.00001 0.00001 0.00000 0.00001 0.00001 0.00001
18 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
19 1.03158 1.03164 1.02865 1.03047 1.02865 1.03120 1.03032 1.03169
20 0.99762 0.99762 0.99762 0.99762 0.99762 0.99762 0.99762 0.99762

3.6 Summary

The iterative algorithm developed in this chapter was tested against 20 target voltage

traces provided by the Prinz Lab at Emory University that are representative of the

range of behaviors displayed by the STG neuron model. The algorithm was successful
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in producing a set of maximal conductance values that generates a voltage trace

similar to the target trace in 19 of the 20 cases. In 18 of the 20 cases, the maximal

conductance values produced by the inversion algorithm were nearly identical to those

used to generate the target trace, and the voltage trace generated by the maximal

conductance valued found by the algorithm was an excellent behavioral fit to the

target voltage trace in each of these cases (Figures 23-40 in Appendix A).

In practice, in solving the problem of selecting parameters that will generate

a good match for a given voltage trace, it is more important to produce a good

behavioral match than to find a set of parameters that produces a voltage trace

that is identical at all time steps to the target trace. For a neuron like the STG

that exhibits spontaneous, periodic behavior, a set of parameters that produces a

phase-shifted voltage trace that is otherwise a good fit to the target constitutes a

good solution to the parameter-fitting problem. In our testing we found that the

sets of parameters produced by the iterative algorithm to solve the inverse problem

sometimes generated excellent qualitative fits to the target behavior (Figures 33, 35,

and 40 in Appendix A) while failing to reproduce the function v(t) exactly.

The increased difficulty of the inverse problem for the STG neuron model relative

to the inverse problem for the original Hodgkin-Huxley equations comes from the fact

that, unlike the equations of the Hodgkin-Huxley model, the differential equations of

the STG neuron model cannot be solved accurately without prior knowledge of the

maximal conductance values. This difficulty is compounded by the fact that the initial

values of the variables of the STG neuron model cannot be deduced from the voltage

trace. However, testing indicates that the performance of the inversion algorithm for

the STG neuron model is not sensitive to these initial values.
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CHAPTER IV

EXTENSIONS TO THE ALGORITHM FOR INVERTING

THE STG NEURON MODEL

In this chapter we test extensions to the STG inversion algorithm on a set of target

traces provided by the Prinz Lab at Emory University as modifications to the STG

neuron model. These voltage traces are generated using the equations of the STG

neuron model with some of the parameters of the model modified by a random amount

from the values given in Table 6, or by applying a constant random voltage shift to

the membrane potential data of the target voltage trace. These modifications to the

STG neuron model are meant to test the limits of the inversion procedure in cases

where the exact form of the equations used to generate the target voltage trace data

is not known in its entirety to the inversion algorithm. This is the case, for example,

when voltage trace data is biological in origin, rather than computationally generated

from a model.

In each test case, 3.5 seconds of simulated voltage trace data recorded every 0.05

ms after the model neuron had reached steady state behavior were used as input to

the inversion algorithm, so that the inversion algorithm accepted 70,000 membrane

potential data points as its only input. The figures in the sections below show the

performance of the modified inversion algorithm for representative traces of each type.

For the maximal conductance values produced by the algorithm and a complete set

of figures showing the performance of the modified algorithm for the extension traces

of types 1, 2, and 3 provided by the Prinz Lab, see Appendix B.

The challenge traces provided by the Prinz Lab fall into four categories (see Table

11).
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1. Voltage traces chosen at random from the database of 1.7 million model STG

neurons constructed by Prinz et al. [24]. These database neurons were generated

using a model very similar to that in Chapter 3.

2. Voltage traces generated using sets of maximal conductance values selected

at random from the STG database, but the activation and inactivation time

constants of all currents were scaled by a random factor.

3. Voltage traces selected at random from the STG database, but each voltage

trace was shifted up or down by a random amount.

4. Voltage traces chosen at random from the STG database, but with the activation

and inactivation thresholds for each of the membrane currents shifted up or

down by a random amount.

Table 11: Traces tested for extensions of the STG neuron model
Trace type Description Trace numbers

1 Directly from STG database 101, 106, 107, 111, 114, 121,
123, 125, 134, 138, 142

2 Random time constant scaling 115, 110, 126, 128, 132, 133,
139, 146, 147

3 Random voltage shift 12, 13, 15, 16, 29, 35, 43, 44
4 Random (in)activation threshold shift 2, 3, 4, 8, 19, 20, 22, 27, 31,

37, 40, 41

The STG database developed by Prinz et al. [24] consists of 1.7 million model

STG neurons, i.e. sets of maximal conductance parameters. Each set of voltage trace

data provided by the Prinz Lab was obtained by selecting one of these model neurons

(sets of maximal conductance values) and numerically integrating the equations of

the STG neuron model with the modifications to the model specified above.

The modifications to the STG model used to produce the challenge traces pro-

vided by the Prinz Lab are meant to approximate experimental uncertainty and

variability among neurons. Voltage shifts (traces of type 3) can arise experimentally

78



from electrochemical potentials at the electrode itself or voltage drift in the recording

equipment. Traces of type 2 and 4 represent the variability of activation thresholds

and time constants between neurons, and distortions of voltage data due to the fact

that real neurons are not single electrical compartments but have spatial extent.

The extended inversion algorithm used in this section first attempts to find max-

imal conductance values using the procedure of the original algorithm developed in

the previous chapter, then (if a satisfactory set of maximal conductance values has

not yet been found) searches for maximal conductance values with the activation

and inactivation constants scaled by random factors, and finally (if satisfactory max-

imal conductance values still have not been found) searches for maximal conductance

values that match the target trace with some constant voltage shift applied.

This extended version of the inversion algorithm succeeds for each of the traces

of types 1, 2, and 3 that were provided by the Prinz Lab for testing (Table 11). This

algorithm is not designed to handle the fourth type of challenge trace (where the

activation and inactivation thresholds were each shifted by a random amount), and is

inapplicable for traces of this kind. Further work is necessary to develop a technique

to solve the inversion problem for traces of type 4.

4.1 Extension traces, type 1

The first type of extension traces were each chosen at random from the STG neuron

database of Prinz et al. [24]. The model used in generating the neurons in the

database is identical to the STG neuron presented in the previous chapter, with the

exception of the parametrization for the H current (Table 6). The original algorithm

developed in Chapter 3 performs well for traces of type 1. In each of these cases, the

maximal conductances given by the algorithm generate a trace that is a very good fit

to the target trace.
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 19: Performance of modified inversion algorithm. Trace 107, type 1.

The results for one type 1 trace, Trace 107, are shown in Figure 19. The perfor-

mance of the algorithm on all traces of this type is given in Appendix B.1. These

traces are generated by numerically integrating the equations of the STG model as

described in Chapter 3 using the maximal conductance values produced by the algo-

rithm.

4.2 Extension traces, type 2

The second type of extension traces was obtained from model neurons selected at

random from the STG database of Prinz et al. by multiplying the activation and

inactivation time constants by a random factor. In a biological neuron, these time

constants scale with the temperature at which measurements are taken and this ran-

dom factor is meant to reproduce one type of inaccuracy that could occur in the STG

model.
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 20: Performance of modified inversion algorithm. Trace 110, type 2.

The algorithm was extended to handle traces of this kind by performing a two-

dimensional grid search over possible scaling factors for the activation and inactivation

time constants. The results reported are the result of performing a grid search over

scaling factors between 0.7 and 1.3 with grid increment 0.05. At each grid point the

algorithm of Chapter 3 is run for 5 iterations with the appropriate time constants.

After the grid search is complete, the algorithm is run for a full 15 iterations with the

time constants fixed to the values from the grid point that gave the best least squares

objective value at the end of the 5th iteration. The resulting maximal conductance

values generated voltage traces that closely approximate the target voltage trace for

extension traces of type 2.

The results for one type 2 trace, Trace 110, are shown in Figure 20. The per-

formance of the algorithm for all extension traces of type 2 is shown in Appendix

B.2. These traces are generated by numerically integrating the equations of the STG
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model as described in Chapter 3 using the maximal conductance values produced by

the algorithm, with the time constants scaled by the factor from the best scoring grid

point.

4.3 Extension traces, type 3

(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 21: Performance of modified inversion algorithm. Trace 115, type 3.

The extension traces of type 3 were the result of randomly choosing model neurons

from the STG database and shifting the voltage trace for this neuron up or down by

a random constant. The algorithm of the previous chapter was extended to solve the

inversion problem for these traces by performing a line search over possible voltage

offsets.

The results reported are the result of a line search algorithm that applies voltage

offsets of 0, ±5, and ±10 mV to the target trace and calls the STG neuron inversion

algorithm from the previous chapter using 6 iterations for each applied offset. The
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search is centered at the offset that produced the best least squares objective value,

and the process is repeated using voltage offsets of half the size previously used (i.e.

in the second round of the search voltage offsets of ±2.5 and ±5 mV are applied to

the best previous offset). The process is repeated until the offset size drops below

0.01 mV, at which point the inversion algorithm from the previous chapter is run for

a full 15 iterations using the voltage offset that was found by the line search to give

the best objective value. The maximal conductance values obtained in this way were

found to generate voltage traces that closely match the extension traces of type 3.

The results for one type 3 trace, Trace 115, are shown in Figure 21. The perfor-

mance of the algorithm on all type 3 traces is given in Appendix B.3. These traces are

generated by numerically integrating the equations of the STG model as described in

Chapter 3 using the maximal conductance values produced by the algorithm, with all

reversal potentials and voltage thresholds shifted by the voltage offset found by the

inversion procedure above.

4.4 Extension traces, type 4

These traces were generated by the Prinz Lab from model neurons selected at random

from the STG database by randomly varying each of the 11 activation and inactivation

thresholds of the model neuron. The methods employed to handle the extensions of

type 2 and 3 were not adaptable to type 4 traces because the parameter space to be

searched is eleven-dimensional, much too large for the search techniques employed for

traces of types 1 and 2 to be effective. Three of the target traces of type 4 are given

for reference in Figure 22. We were not able to obtain maximal conductance values

to match any traces of this type.
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4.5 Summary

Because the exact form of the equations describing the behavior of biological (as

opposed to model) neurons is rarely, if ever, known, it is desirable to have an inver-

sion algorithm with the flexibility to produce sets of parameters that approximately

match given voltage trace data even when the equations of the model do not perfectly

describe the voltage trace data. Working with voltage trace data from perturbed ver-

sions of the STG neuron model is a way of testing the ability of the inversion algorithm

to accomodate certain types of discrepancies between the model used by the inversion

procedure and the model used to generate the target voltage trace.

When the discrepancy between the model used by the inversion procedure and

the model used to generate the target trace is comparatively small (type 1), or when

the discrepancy involves a small number of parameters (types 2 and 3), the inversion

algorithm can be used alone or in conjunction with simple search techniques to find

a set of parameters that generates a trace that is a very good match to the target

trace. For a discrepancy involving many parameters (type 4), further work is needed

to develop an inversion algorithm capable of matching the target trace.
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(a) Target trace 102, type 4

(b) Target trace 119, type 4

(c) Target trace 131, type 4

Figure 22: Some target traces of type 4.
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

The Hodgkin-Huxley equations helped spawn the field of computational neurobiol-

ogy, and neuron models based on these equations continue to see widespread use by

neuroscientists more than half a century later. Hodgkin-Huxley type models accept

a set of parameters as input and generate voltage trace data describing the behavior

of the neuron. We develop inversion algorithms designed to predict a set of input

parameter values from the voltage trace data generated by the model.

Given a target voltage trace generated using the equations of a neuron model with

some unknown set of maximal conductance values x∗, the goal of the inversion algo-

rithm is to produce a set of maximal conductance values x that generates the target

trace. For a range of maximal conductance values x∗, the inversion algorithms pre-

sented for both the original Hodgkin-Huxley equations and the equations of the STG

neuron model show evidence of finding maximal conductance values that reproduce

the behavior seen in a target voltage trace generated by x∗.

The inversion algorithms for the Hodgkin-Huxley model are proven to converge

to x∗ with probability 1, provided x∗ is the unique set of maximal conductance val-

ues that generates the target trace. To our knowledge, this is the first convergence

guarantee on a parameter optimization algorithm for Hodgkin-Huxley type neuron

models.

Our testing on the original Hodgkin-Huxley equations and on the equations of

the STG neuron model suggests that the requirement that x∗ be the unique set of

maximal conductance values that generates the target trace is not very restrictive;

in all of the test cases for the original Hodgkin-Huxley equations and in 18 of the 20
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test cases for the more complex STG neuron model the inversion algorithm returned

a solution approaching x∗, the maximal conductances used to generate the target

trace. In one of the remaining two cases (the silent trace, Trace 20), the algorithm

finds an alternative set of maximal conductance values to match the target behavior,

in the other (low-amplitude oscillations, Trace 19) the algorithm fails to converge to

a solution.

The inversion algorithm for the STG neuron model was extended to handle modi-

fications to the STG neuron model where the parameters of the model were perturbed

or the voltage trace generated by the model was shifted by a constant amount. The

modified algorithm performed well for small perturbations to the model and when the

voltage trace was shifted by a constant amount, but we were not able to modify the

algorithm to accomodate perturbations to many model parameters simultaneously.

One direction for future research is extending the inversion algorithm to handle

voltage trace data that does not come directly from the model. In solving the inverse

problem associated with the equations of a neuron model, we have developed tech-

niques for finding sets of parameters that generate a given voltage trace. Because

the voltage trace comes from the equations of the model, the existence of at least

one solution to the inverse problem is guaranteed. Adapting the algorithm to find

parameter values that give good matches to voltage trace data for which a perfect

match does not exist (e.g. noisy data, data from related neuron models, biological

neuron data) would enhance its utility and potentially make it a very powerful tool.

The work in Chapter 4 is a step in this direction.

As in previous studies ([8, 9, 10, 19, 24]) we focus primarily on the maximal con-

ductances parameters and their relationship to the voltage trace behavior of a model

neuron. Another avenue for future research is adapting the algorithms developed to

treat more model parameters as unknown variables in the inversion problem. This

would give the model increased flexibility to match behavior, at the cost of a higher
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dimensional search space. Because the inversion algorithms make use of the equations

of the model being inverted, adapting the algorithms to efficiently search over model

parameters other than the maximal conductance values is not trivial and requires

additional research.

Finally, further research is required to establish theoretical convergence results

for the inversion algorithm presented for the STG neuron model. The convergence

is complicated relative to that of the inversion algorithm for the original Hodgkin-

Huxley model by the iterative nature of the STG inversion algorithm, but the results

of our testing suggest that the iterative algorithm does converge to an optimal solution

for most target traces.
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APPENDIX A

VOLTAGE TRACES TESTED FOR THE STG NEURON

MODEL
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Figure 23: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 1,
the spiker specified in Table 8.
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Figure 24: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 2,
the slow spiker specified in Table 8.
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Figure 25: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 3,
the spiker with broad spike specified in Table 8.
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Figure 26: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 4,
the spike triplets specified in Table 8.
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Figure 27: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 5,
the one-spike-burster specified in Table 8.

94



Figure 28: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 6,
the burster with plateau specified in Table 8.
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Figure 29: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 7,
the burster (small duty cycle) specified in Table 8.
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Figure 30: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 8,
the burster (medium duty cycle) specified in Table 8.
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Figure 31: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 9,
the burster (large duty cycle) specified in Table 8.
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Figure 32: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 10,
the burster specified in Table 8.
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Figure 33: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 11,
the burster specified in Table 8.
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Figure 34: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 12,
the burster specified in Table 8.
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Figure 35: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 13,
the burster specified in Table 8.
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Figure 36: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 14,
the parabolic burster specified in Table 8.
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Figure 37: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 15,
the elliptic burster specified in Table 8.
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Figure 38: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 16,
the alternating burster specified in Table 8.
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Figure 39: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 17,
the irregular burster specified in Table 8.
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Figure 40: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 18,
the nonperiodic behavior specified in Table 8.
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Figure 41: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 19,
the low-amplitude oscillations specified in Table 8.
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Figure 42: Voltage traces generated by the maximal conductance values produced
by the iterative inversion algorithm for the STG neuron model. Target is Trace 20,
the silent neuron specified in Table 8.
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APPENDIX B

VOLTAGE TRACES TESTED AS EXTENSIONS TO THE

STG NEURON MODEL

B.1 Challenge traces of type 1: directly from the STG model
database

Table 12: Maximal conductance parameters found by algorithm. Extension traces
of type 1, directly from STG database [24]. Conductances in mS/cm2.

Trace Na CaT CaS A KCa Kd H Leak
101 498.77 2.49 9.97 9.97 24.99 124.69 0.01 0.05
106 399.59 4.99 7.99 10.00 14.99 74.92 0.01 0.02
107 399.99 12.50 6.00 50.00 10.00 75.00 0.05 0.01
111 499.84 5.00 2.00 29.99 15.01 74.98 0.01 0.02
114 499.97 10.00 5.99 50.01 0.00 99.99 0.45 0.05
121 0.00 2.50 10.00 10.00 10.00 75.00 0.05 0.01
123 300.00 12.50 0.00 50.00 5.00 0.00 0.02 0.04
125 200.00 0.00 10.00 50.00 10.01 125.00 0.03 0.01
134 499.95 5.00 4.00 20.00 10.00 0.00 0.01 0.05
138 300.00 5.00 8.00 40.00 5.00 50.00 0.01 0.03
142 0.00 0.00 10.00 29.99 5.00 50.00 0.01 0.03
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 43: Performance of modified inversion algorithm, trace 101
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 44: Performance of modified inversion algorithm, trace 106
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 45: Performance of modified inversion algorithm, trace 107

113



(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 46: Performance of modified inversion algorithm, trace 111
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 47: Performance of modified inversion algorithm, trace 114
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 48: Performance of modified inversion algorithm, trace 123
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 49: Performance of modified inversion algorithm, trace 125
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 50: Performance of modified inversion algorithm, trace 134
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 51: Performance of modified inversion algorithm, trace 138
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 52: Performance of modified inversion algorithm, trace 142
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B.2 Challenge traces of type 2: activation/inactivation time
constant scaling

Table 13: Maximal conductance parameters found by algorithm. Extension traces
of type 2, activation/inactivation time constant scaling. Conductances in mS/cm2.
Trace Na CaS CaT A KCa Kd H L Tau m Tau h
105 400.00 12.50 8.00 40.00 25.00 50.00 0.01 0.00 0.75 0.75
110 499.64 7.49 6.00 9.99 14.99 124.91 0.05 0.02 0.75 0.75
126 500.26 5.00 7.99 9.99 4.91 100.06 0.00 0.05 0.75 0.75
128 499.91 7.50 4.00 39.99 25.00 124.98 0.02 0.02 0.75 0.75
132 499.92 10.00 4.00 30.00 20.00 99.98 0.00 0.01 0.75 0.75
133 400.00 0.00 2.00 20.00 24.48 50.00 0.01 0.00 0.75 0.75
139 499.97 12.50 0.00 40.00 25.00 50.00 0.02 0.05 0.75 0.75
146 300.00 12.50 2.00 50.00 25.00 75.00 0.00 0.05 0.75 0.75
147 499.97 5.00 6.00 10.00 5.00 25.00 0.02 0.05 0.75 0.75
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 53: Performance of modified inversion algorithm, trace 105

122



(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 54: Performance of modified inversion algorithm, trace 110
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 55: Performance of modified inversion algorithm, trace 126
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 56: Performance of modified inversion algorithm, trace 128
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 57: Performance of modified inversion algorithm, trace 132
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 58: Performance of modified inversion algorithm, trace 133
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 59: Performance of modified inversion algorithm, trace 139
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 60: Performance of modified inversion algorithm, trace 146
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 61: Performance of modified inversion algorithm, trace 147
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B.3 Extension traces of type 3: constant voltage shift

Table 14: Maximal conductance parameters found by algorithm. Extension traces
of type 3, constant voltage shift. Conductances in mS/cm2.

Trace Na CaS CaT A KCa Kd H L offset (mV)
112 501.14 7.44 6.14 19.69 0.00 125.59 0.00 0.11 10.20
113 499.99 10.00 10.00 39.99 24.99 49.99 0.04 0.03 10.21
115 300.02 10.00 4.00 30.00 15.00 0.00 0.03 0.00 10.21
116 499.96 10.00 6.00 9.98 19.99 99.97 0.01 0.03 10.21
129 499.96 7.50 8.00 29.98 15.00 99.98 0.03 0.04 10.21
135 500.00 10.00 2.00 29.99 20.00 24.99 0.02 0.02 10.21
143 500.01 0.00 4.00 20.02 7.90 99.98 0.04 0.01 10.21
144 300.00 12.50 0.00 49.99 15.00 74.98 0.02 0.05 10.21
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 62: Performance of modified inversion algorithm, trace 112
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 63: Performance of modified inversion algorithm, trace 113
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 64: Performance of modified inversion algorithm, trace 115
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 65: Performance of modified inversion algorithm, trace 116
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 66: Performance of modified inversion algorithm, trace 129

136



(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 67: Performance of modified inversion algorithm, trace 135

137



(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 68: Performance of modified inversion algorithm, trace 143
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(a) Trace generated by parameters found by inversion algorithm

(b) Target trace

Figure 69: Performance of modified inversion algorithm, trace 144
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