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SUMMARY

During the last half century there has been a resurgence of interest in Monge’s

18th century mass transportation problem, with most of the activity limited to continuous

spaces. This thesis, consequently, looks at the role of mass transportation in the context

of the measure concentration phenomenon in a discrete setting. Inequalities capturing such

concentration on n-fold products of graphs, equipped with product measures, have been

well investigated using combinatorial and probabilistic techniques, the most notable being

martingale techniques. The emphasis here, is instead on the analytic viewpoint. Of partic-

ular relevance and focus is the so-called subgaussian constant, which is an optimal constant

in a transportation inequality on a graph, equipped with a probability measure on the ver-

tices of the graph. The relationship between the transportation inequality and the Poincaré

and modified log-Sobolev inequalities is also examined. In such comparisons, different ver-

sions of the transportation inequality are considered, and the role of the particular distance

function employed on the underlying graph is studied. The duality shown by Bobkov and

Götze of the transportation inequality and a generating function inequality is utilized in

finding the asymptotically correct value of the subgaussian constant of a cycle. This result

tensorizes to give a concentration inequality on the discrete torus. Finally, a candidate

notion of a discrete Ricci curvature for finite Markov chains based on coupling of Markov

chains and given in terms of mass transportation is considered. This analog of curvature

is then compared to another put forward by Schmuckenschläger, with the conclusion that

this notion merits further investigation and development. Overall, the thesis demonstrates

the utility of using the mass transportation problem in the study of discrete concentration

inequalities.

ix



CHAPTER I

INTRODUCTION AND BACKGROUND

The mass transportation problem was developed by Gaspard Monge [27] in 1781, but begin-

ning in the mid 20th century, interest in this concept has surged. As Vershik [37] describes,

this era was heralded by the 1942 publication of L.V. Kantorovich’s note [24] in which he

details the problem, its dual, and the optimality condition. The problem slowly gained

recognition through the second half of the century, but only in 1987, after the publication

of a note by Yann Brenier [13] (the event Villani [38] cites as the beginning of the sub-

ject’s “extreme popularity”), did mathematicians from many disparate fields realize their

connection with the problem.

Throughout this thesis we look at one such connection—the role of the mass transporta-

tion problem in the study of discrete concentration inequalities. In continuous settings, like

on a Riemannian manifold, the transportation problem has had notable success as a tool

for proving concentration results. Here, we place particular emphasis on carrying these

techniques over to the discrete setting when possible.

To set the stage for exploring the mass transportation problem in the discrete con-

centration of measure phenomenon, the remainder of this chapter explains the definitions,

notation, and background material used throughout the thesis. The following chapter con-

solidates many of the technical lemmas we use throughout the thesis—lemmas that are

general in nature to the mass transportation problem or the transportation inequalities.

The next three chapters are largely independent, and each attempts to capture a useful as-

pect of the mass transportation problem in the study of discrete concentration inequalities.

Chapter 3 looks at the relationship between four different concentration inequalities, two

of which are written in terms of the mass transportation problem. A new result proven in

this chapter is that the modified log-Sobolev inequality implies the transportation inequality.

We discuss how these relationships can be exploited to find bounds on the concentration
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constants defined by the inequalities. We also see how the underlying distance function

can be modified to tighten some of these bounds. Chapter 4 focuses on the subgaussian

constant. As shown by Bobkov and Götze [7], this constant is equivalently defined by

both a generating function inequality and a transportation inequality. We use this dual

formulation to find the asymptotically correct value of the subgaussian constant of a cycle.

The physical intuition provided by the mass transportation problem is the key to finding

the upper bound on the subgaussian constant when the cycle contains an odd number of

vertices. Chapter 5 begins the development of a notion of discrete Ricci curvature for finite

Markov chains. Bounds on Ricci curvature play a key role in many concentration results

in the Riemannian setting, and the lack of a good analog in discrete spaces is a serious

roadblock for realizing many continuous space techniques in the discrete setting. This work

is still in a developmental stage, but has several promising aspects. First, the definition we

put forward is closely related to the idea of path coupling in Markov chains, used for years

to prove fast convergence to stationarity. Next, the discrete Ricci curvature is relatively

easy to compute on example graphs, aiding both the intuitive process of further developing

the theory, and the eventual practicality of the concept. Finally, simply the fact that the

notion is defined in terms of the mass transportation problem, which has shown itself to

be useful in so many other areas, makes the definition appealing. Concluding thoughts and

several intriguing questions generated by this work are summarized in Chapter 6.

1.1 The Setting

Here we formalize what we mean by a discrete setting. Our work is done on finite graphs

and Markov chains on the graphs.

1.1.1 Graphs and Product Graphs

By a graph G = (V, E), we mean a finite undirected graph without self-loops or multiple

edges with vertex set V and edge set E. Unless otherwise specified, we also assume that the

graph G is connected. Edges in E are written as {x, y} where x, y ∈ V are adjacent vertices

in G. At times we denote the fact that x and y are adjacent by x ∼ y. With each graph

G we associate a probability measure π on V and a finite distance function d between the

2



vertices of G. We commonly choose π to be the uniform probability measure and d to be

the graph distance. Recall here that the graph distance between vertices x and y is defined

as the length of a shortest path between x and y. We also denote the set of probability

measures on V by P (G).

If {Gi = (Vi, Ei)}n
i=1 is a family of graphs with associated measures πi and associated

distances di, then we may define the (Cartesian) product graph G =
∏n

i=1 Gi = (V,E)

as follows. The vertex set V =
∏n

i=1 Vi. We can write x ∈ V in component form as

x = (xi, . . . , xn) where xi ∈ Vi for each i. If x, y ∈ V , then {x, y} ∈ E if and only if for

some j, {xj , yj} ∈ Ej and xi = yi for all i 6= j. We write Gn for
∏n

i=1 G. The measure π

we associate with G is the product measure defined by:

π(x1, . . . , xn) =
n∏

i=1

πi(xi).

The distance d we associate with G is the l1 distance defined by:

d(x, y) =
n∑

i=1

di(xi, yi).

And we note that the graph product is associative:

(G1¤G2)¤G3 = G1¤(G2¤G3),

which is to be contrasted with the product Markov chains described in the next section.

1.1.2 Continuous Time Markov Chains and Product Chains

In the following, we use some definitions from [21], [28], and [10].

We begin with a graph G = (V,E) with associated measure π and associated distance

d as described in the previous section. We define a continuous time Markov chain on G

that respects the graph structure and the associated measure of G. We often refer to this

as simply a Markov chain on G. For the Markov chain to respect the graph structure

and the associated measure we require two things. First, if {x, y} /∈ E, then the Markov

chain transition rates between x and y must be zero. Next, the stationary distribution

of the chain must be the measure associated with the graph. However, the relationship

between the distance d and both the graph structure and the Markov chain on the graph is
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flexible and problem dependent. In the literature, the term “Markov process” is sometimes

used to distinguish a continuous time Markov chain from a discrete time Markov chain. In

this thesis, instead, we assume that a Markov chain is run in continuous time unless we

specifically specify that we are considering a discrete time Markov chain.

Here we describe the generator L of a Markov chain on G that respects the graph

structure of G and the associated measure π. For x, y ∈ V with x 6= y, L(x, y) is the

transition rate from x to y. Because the Markov chain respects the graph structure, we

have L(x, y) = L(y, x) = 0 if {x, y} /∈ E. We define L(x, x) = −∑
y∈V
y 6=x

L(x, y) so that
∑

y∈V L(x, y) = 0 for each x ∈ V . Because the Markov chain respects the associated

measure π, π must be the unique stationary measure of the chain, which in particular

implies that πL = 0. The continuous time Markov chain generated by L has the transition

semigroup {Pt = etL : t ≥ 0}.
Throughout this thesis, we work exclusively with reversible Markov chains. Reversibility

of a chain with generator L is equivalent to the requirement that L(x, y)π(x) = L(y, x)π(y)

for each x, y ∈ V (also known as the detailed balanced condition).

As a normalization so that comparisons may be made between constants, we will some-

times require that
∑

x∈V

∑

y∈V
y 6=x

L(x, y)π(x) ≤ 1. (1)

The potential need for this normalization factor is explained in Section 1.4.2, and it is used

in Sections 3.2 and 3.3.

At times we will be interested in discrete time chains on G. Suppose P is the transition

probability matrix of a reversible discrete time chain that respects the graph structure of

G and the associated probability measure π. As in the continuous time setting, by this we

mean that if x 6= y we have P (x, y) = P (y, x) = 0 for {x, y} /∈ E, and that π is the unique

stationary distribution of the chain. To avoid unnecessary technicalities we also assume

that the chain is aperiodic. Recall that the conditions of irreducibility and aperiodicity are

sometime collectively referred to using the common term ergodicity.

Let L = P − I. Then the continuous time chain generated by L also respects the graph
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structure and the associated measure, and is called the “continuization” of the discrete time

chain (see [1] for standard terminology and facts).

Next assume we start with a continuous time chain on G whose generator L satisfies:

∑

y∈V
y 6=x

L(x, y) ≤ 1 (2)

for each x ∈ V . Define a probability transition matrix P by:

P (x, y) =





L(x, y), x 6= y

1 + L(x, x), x = y

Then the discrete time chain with probability transition matrix P also respects the graph

structure and associated measure of G. Furthermore the continuization of this discrete time

chain is the original continuous time chain.

Now consider a family of graphs {Gi = (Vi, Ei)}n
i=1 with associated measures πi. For

each i let Li be the generator of a continuous time Markov chain on Gi. Let G = (V, E) be

the product graph
∏

i Gi with associated measure π =
∏n

i=1 πi as defined in Section 1.1.1.

Then we define the generator L of a product Markov chain on G by:

L((x1, . . . , xn), (y1, . . . , yn)) =
1
n

n∑

i=1

Li(xi, yi)
n∏

j=1
j 6=i

δxj (yj),

where δxj (yj) is one if xj = yj and zero if xj 6= yj . The verification that the Markov chain

generated by L respects the graph structure of G and the measure π associated with it is

straight forward, and we omit it.

Suppose again that we have a Markov chain with generator L on the graph G = (V,E)

with associated probability measure π. If the chain starts with distribution ν, then the

distribution at time t ≥ 0 is νPt. Let νt = νPt, and note that ν = ν0. If ft is the density

of νt with respect to the stationary distribution π, then we also have ft = Ptf0. For each

x ∈ V we can calculate the derivative of νt(x) and ft(x) with respect to t by:

d

dt
νt(x) = νtL(x) and

d

dt
ft(x) = Lft(x).
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We will be interested in the derivative of functions of νt. Some of these derivatives will

be defined in Section 1.4.2, while the derivative of the Wasserstein distance between two

Markov chains will be described in Section 2.2.2.

1.2 Concentration of Measure

Suppose G = (V, E) is a graph with associated probability measure π and distance function

d. For A ⊂ V , we define the h enlargement of A by:

Ah = {x ∈ V : d(x,A) < h}.

Then the concentration function α of the graph G with measure π and distance d is defined

by:

α(h) = max{π((Ah)c) : π(A) ≥ 1/2},

where Bc is the complement of B for any B ⊂ V . We will use subscripts on α when

necessary to clarify which graph, measure, or distance function is being considered. The

measure on the graph is said to have exponential concentration if there exist constants k

and K for which

α(h) ≤ Ke−kh,

while it is said to have normal concentration if there exist constants k̂ and K̂ for which

α(h) ≤ K̂e−k̂h2

for each h > 0. Under this definition, every measure on every graph has normal concentra-

tion, since we are considering finite graphs with finite distance functions. But we are more

interested in concentration in product graphs, which motivates us to look at sequences of

graphs 〈Gn〉∞i=n. As introduced by Gromov and Milman [22], such a sequence is said to be

a normal Lévy family if there exist constants k̃ and K̃ for which

αGn,πn(h) ≤ K̃e−k̃nh2

so that graph Gn is normally concentrated with constant k̂ = nk̃. Since we are interested in

product graphs, we will consider sequences in which Gn =
∏n

i=1 Hi where 〈Hi〉∞i=1 is some

6



other family of graphs. The simplest case of this form is when Gn = Hn for a given graph

H.

1.3 The Mass Transportation Problem

Let G = (V, E) be a graph with associated measure π and distance function d. The mass

transportation problem requires two probability measures ν1 and ν2 on V . In particular

applications these measures may be related to the measure π associated with the graph,

but in general there is no connection. The problem does, however, depend very specifically

on the distance function d.

The problem consists of finding an optimal way of reconfiguring a mass distributed on the

vertices of G according to the measure ν1 into a mass distributed according to the measure

ν2. We consider measures µ on V × V which specify how the mass is to be transferred. For

each pair of distinct vertices x, y ∈ V , µ(x, y) gives the amount of mass that moves from

vertex x to vertex y, and µ(x, x) indicates the amount of mass that remains fixed at x.

Since
∑

x∈V µ(v, x) must be the amount of mass that starts at vertex v and
∑

x∈V µ(x, v) is

the amount of mass that ends up at vertex v, we get that µ has first and second marginals

ν1 and ν2 respectively. Next we say that the cost of moving mass from vertex x to vertex y

is proportional to d(x, y), where d is the distance function associated with the graph. The

total cost of reconfiguring the mass is then
∑

x,y d(x, y)µ(x, y). The problem of minimizing

this cost becomes the following linear program:

minimize: M(µ) =
∑

x,y∈V d(x, y)µ(x, y)

subject to:
∑

y∈V µ(x, y) = ν1(x) for each x ∈ V

∑
x∈V µ(x, y) = ν2(y) for each y ∈ V

0 ≤ µ(x, y) for each x, y ∈ V.

(3)

In this problem µ(x, y) is a variable for each x, y ∈ V , while d, ν1, and ν2 are fixed data.

The mass transportation problem was originally formulated by Monge [27] in 1781, so any

feasible µ that minimizes M(µ) will be referred to as a solution to Monge’s problem with

respect to ν1 and ν2.
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The linear programming dual to this problem is:

maximize: K(h, g) =
∑

x∈V h(x)ν1(x) +
∑

x∈V g(x)ν2(x)

subject to: h(x) + g(y) ≤ d(x, y) for every x, y ∈ V.
(4)

Here the variables are h(x) and g(x) for each x ∈ V , and the given data are d, ν1, and

ν2. In 1942, Kantorovich [24] formulated the dual to Monge’s problem in a general setting,

where it is not simply a linear programming problem. So any feasible functions g and h

which maximize K(g, h) are called a solution to Kantorovich’s problem with respect to ν1

and ν2.

Except in Section 1.4.3, we will assume that the distance function d is an actual metric

on V satisfying the usual metric properties:

1. d(x, y) = 0 for x, y ∈ V if and only if x = y.

2. d(x, y) = d(y, x) for each x, y ∈ V .

3. d(x, y) + d(y, z) ≥ d(x, z) for each x, y, z ∈ V .

Under these assumptions we may always find solutions to Kantorovich’s problem in which

h(x) = −g(x) for each x ∈ V . So we may simplify Kantorovich’s problem to:

maximize: K(g) =
∑

x∈V g(x)(ν1(x)− ν2(x))

subject to: |g(x)− g(y)| ≤ d(x, y) for every x, y ∈ V.
(5)

In this case, then a single feasible function f that minimizes K(f) is called a solution to

Kantorovich’s problem with respect to ν1 and ν2. For completeness we give a proof of the

equivalence of the two forms of Kantorovich’s problem when d is a metric in Proposition

2.1.1.

While the joint optimal value of the problems of Monge and Kantorovich has several

different names (including KROV distance), in the following it is referred to as the Wasser-

stein distance between ν1 and ν2, and is denoted by W (ν1, ν2). We will use a subscript on

W if necessary to clarify which distance function is being used on the graph.

8



1.4 The Inequalities

We begin with a graph G = (V,E) with associated measure π and distance function d, and a

reversible continuous time Markov chain with generator L that respects the graph structure

and the associated measure of G. We have already defined the Wasserstein distance between

two measures, but we need several more quantities before we can describe the inequalities.

Expectations for any functions on V are taken with respect to the associated measure π

unless indicated otherwise by a subscript. Since we are in a discrete setting, for a probability

measure ν to be absolutely continuous with respect to π, we mean that ν(x) = 0 whenever

π(x) = 0. And for x ∈ V with ν(x) = π(x) = 0, by convention we define ν(x)
π(x) = 1. When

ν is absolutely continuous with respect to π, we sometimes denote the density of ν with

respect to π as dν
dπ .

First, the expected value of a function f on V is denoted by E(f), E[f ], or Ef and

defined by:

E(f) =
∑

x∈V

f(x)π(x).

Next, the variance of f is denoted Var(f) or Var[f ] and is defined by:

Var(f) = E(f2)− (Ef)2.

The entropy of f is denoted by Ent(f) or Ent[f ] and is defined by:

Ent(f) = E(f log f)− E(f) log(Ef).

For a measure ν absolutely continuous with respect to π, the relative entropy of ν with

respect to π is denoted by D(ν||π) and is defined by:

D(ν||π) =
∑

x∈V

ν(x) log
(

ν(x)
π(x)

)
= Eν

[
dν

dπ

]
.

We note that for a probability measure ν absolutely continuous with respect to π, if f is

the density of ν with respect to π, then Ent(f) = D(ν||π). Also, by convention we define

0 log(0) = 0, so that D(ν||π) is a continuous function of ν on P (G).

For two functions f and g on V , the Dirichlet form of f and g is denoted by E(f, g) and

is defined by:

E(f, g) = −E[fLg].
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Because the Markov chain generated by L is reversible, we also get:

E(f, g) =
∑

x,y∈V

(f(y)− f(x))(g(y)− g(x))L(x, y)π(x).

Subscripts will be used on E when necessary to clarify which Markov generator is being

considered. For example, and since we will need this equality later, we note that for a

positive constant c we have:

EcL(f, g) = E[f(cL)g] = cE[fLg] = cEL(f, g).

And now we can describe the inequalities.

1.4.1 Transportation and Variance Transportation Inequalities

In this section we at last see the convergence of the mass transportation problem and the

concentration of measure phenomenon embodied in these two transportation inequalities.

A graph G = (V,E) with associated measure π and distance function d satisfies the

transportation inequality with constant σ2 if:

W 2(ν, π) ≤ 2σ2D(ν||π) (6)

for each probability measure ν that is absolutely continuous with respect to π. The smallest

constant for which this inequality holds for each ν is known as the subgaussian constant

σ2(G). The variance transportation inequality is satisfied with constant c2 if:

W 2(ν, π) ≤ c2 Var
(

dν

dπ

)
(7)

for all ν absolutely continuous to π. The smallest constant c2 for which the inequality

holds for all ν is known as the spread constant c2(G). Subscripts may be used on σ2(G) or

c2(G) to clarify which probability measure and distance function is being associated with

the graph.

Both of these inequalities have what may loosely be called dual formulations. As shown

By Bobkov and Götze [7], the subgaussian constant can be equivalently defined as the

smallest constant σ2 for which

E
[
et(f−E[f ])

]
≤ eσ2t2/2
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for every Lipschitz function f and real number t (see Proposition 2.3.2). Throughout this

thesis, a function f on V is said to be Lipschitz if |f(x)− f(y)| ≤ d(x, y) for each x, y ∈ V

(i.e. we mean Lipschitz with constant one). The dual formulation of the spread constant

(which was actually its original definition) is given by Alon, Boppana, and Spencer [3] as:

c2(G) = max
Lipschitzf

Var(f).

We prove the equivalence of these definitions of the spread constant in Proposition 2.3.1.

Both the transportation and variance transportation inequalities give upper bounds on

the concentration function α defined in Section 1.2. Using the transportation definition of

the subgaussian constant, the following bound can be derived (see [26] for example):

α(h) ≤ e
− h2

8σ2(G) (8)

for h ≥ 2
√

2σ2(G) log 2. While using the generating function definition, Bobkov, Houdré,

and Tetali [8] derive the bound:

α(h) ≤ e
− (h−σ)2

2σ2(G) (9)

for h ≥
√

σ2(G). As
√

σ2(G) can be on the order of the diameter of G, these bounds are

of limited interest on their own. But implicit in [3] is the fact that

σ2

(
n∏

i=1

Gi

)
≤

n∑

i=1

σ2(Gi)

and in particular σ2(Gn) = nσ2(G). So using the transportation definition, for example,

we get:

αGn(h) ≤ e
− h2

8nσ2(G)

for h ≥ 2
√

2nσ2(G) log 2. Note that the diameter of
∏n

i=1 Gi is at least n, when using the

graph distance, and this bound becomes useful when h À √
n. In fact, if d is the distance

on G and we use the normalized distance d̂(x, y) = 1
n

∑n
i=1 d(xi, yi) on Gn, then 〈Gn〉∞n=1

becomes a normal Lévy family since:

αGn,d̂(h) ≤ e
− nh2

8σ2(G) .

11



The spread constant was introduced in [3] specifically because it gives the asymptotically

correct value of the concentration function:

αGn(h) = e
− h2

2c2(G)n
(1+o(1))

for
√

n ¿ h ¿ n. From (9) and the tensoring property, the subgaussian constant gives us:

αGn(h) ≤ e
− h2

2σ2(G)n
(1+o(1))

for all h À √
n. This shows that σ2(G) ≥ c2(G), which we prove directly in Proposi-

tion 3.1.1.

At this point we will mention one upper bound on the subgaussian constant (and hence

on the spread constant). In [3], it is shown that

E
[
et(f−Ef)

]
≤ et2D2/8

where D is the diameter of the graph. This gives the general upper bound σ2(G) ≤ D2

4 .

1.4.2 Poincaré and Modified Log-Sobolev Inequalities

In Chapter 3 we compare the transportation inequalities of the previous section with the

Poincaré and modified log-Sobolev inequalities introduced here. The Poincaré and modified

log-Sobolev inequalities are of interest because of their connection with the concentration of

measure phenomenon on graphs, and their role in bounding mixing times of Markov chains

on graphs. While the relevance of the Poincaré inequality to the mixing time is classical, the

connection between the modified log-Sobolev inequality and mixing (in the relative entropy

sense) of finite Markov chains is more recent (see e.g., [10]).

We start with the Poincaré inequality. The graph G with associated measure π satisfies

the Poincaré inequality with constant λ1 if

λ1 Var(f) ≤ E(f, f) (10)

for all functions f on V . The largest constant for which this inequality holds for all f

is known as the spectral gap λ1(L) of the Markov chain. It is also the smallest positive

eigenvalue of −L.
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The graph G with associated measure π satisfies the modified log-Sobolev inequality

with constant ρ0 if

ρ0 Ent(f) ≤ 1
2
E(f, log f) (11)

for all functions f on V . The largest constant for which this inequality holds for all f is

known as the modified log-Sobolev constant ρ0(L) of the Markov chain. The inequality and

the constant have also been introduced under the names entropy inequality and entropy

constant in [20]. Although we will not be concerned with it, for comparison we also mention

the (usual) log-Sobolev inequality, which is satisfied if

ρ Ent(f2) ≤ 2E(f, f) (12)

for all functions f on V . Here the largest constant for which the inequality holds is the

log-Sobolev constant ρ(L). In a continuous setting where the chain rule for differentiation

holds, the log-Sobolev and modified log-Sobolev inequalities are equivalent, while in the

discrete setting they may be quite different.

We note that the left hand side of the Poincaré and the modified log-Sobolev inequalities

does not depend on the Markov generator, while the Dirichlet form on the right hand side

of both inequalities does. Using the fact observed earlier that EcL(f, g) = cEL(f, g) for

positive constants c, we get that ρ0(cL) = cρ0(L) and λ1(cL) = cλ1(L). This is why a

normalization factor such as (1) is needed when comparing these quantities to constants

that do not depend specifically on a Markov generator on the graph.

Let νt be a Markov chain on G with generator L, and let ft be the density of νt with

respect to π. Some motivation for the definitions of the Poincaré and the modified log-

Sobolev inequalities comes from the derivatives of Var(ft) and D(νt||π). As shown in [10],

for example, we have:

d

dt
Var(ft) =

d

dt

∑

x∈V

ft(x)2π(x)− 1 =
∑

x∈V

2ft(x)Lft(x)π(x) = −2E(ft, ft)
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and

d

dt
D(νt||π) =

d

dt
Ent[ft]

=
d

dt

∑

x∈V

ft(x) log(ft(x))π(x)

=
∑

x∈V

(Lft(x) + Lft(x) log ft(x))π(x)

=
∑

x∈V

log(ft(x))Lft(x)π(x)

= −E(ft, log ft).

These derivatives together with the Poincaré and the modified log-Sobolev inequalities give

us:

Var(ft) ≤ Var(f0)e−2λ1t and D(νt||π) ≤ D(ν0||π)e−2ρ0t

which provide bounds on the convergence of the Markov chain to stationarity.

1.4.3 Quadratic Transportation Inequality

In the continuous setting, the quadratic cost transportation inequality plays a greater role

than the transportation inequality we are studying. Here we examine a couple of the reasons

for using a quadratic cost transportation inequality and some of the hurdles faced when

trying to use such an inequality in a discrete setting. The quadratic cost transportation

inequality is not considered anywhere else in this thesis (with the exception of Proposition

2.3.7).

First we describe the quadratic cost transportation inequality. Let (X, d) be a metric

space, with an associated probability measure π on X. Let c : X × X → R be the cost

function c(x, y) = d2(x, y). Then (X, d) and π satisfy a quadratic cost transportation

inequality with constant t if:

Wc(ν, π) ≤ tD(ν||π) (13)

for each ν absolutely continuous with respect to π. If we let c̃(x, y) = 1
t c(x, y), then this is

equivalent to the inequality:

Wc̃(ν, π) ≤ D(ν||π)
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holding for each ν absolutely continuous with respect to π. In the literature the constant is

often taken to be one by absorbing it into the cost function, but we will keep the constant

explicit. As with the transportation inequality, the quadratic cost transportation inequality

has a dual representation. It is defined in terms of an infimum convolution. The infimum

convolution of the function f : V → R with respect to the cost function 1
t c is defined to be:

Q 1
t
cf(x) = inf

y∈V
{f(y) +

1
t
c(x, y)}.

Then [26] notes that the transportation inequality of (13) holds with constant t, for each

function f on X, if and only if the infimum convolution inequality:

∑

x∈V

e
Q 1

t c
f(x)

π(x) ≤ e
∑

x∈V f(x)π(x) (14)

holds with constant t for every f . For completeness we include a proof of this in Proposition

2.3.7.

An important reason that quadratic cost transportation inequalities are of interest is

that they give dimension free concentration results. Consider for i = 1, 2, . . . , n metric

spaces (Xi, di) with measures πi and quadratic cost functions ci(x, y) = d2
i (x, y). Assume

that they satisfy quadratic cost transportation inequalities (13) with constants ti. Let

(X, d) be the metric space with X =
∏n

i=1 Xi and d(x, y) =
(∑n

i=1 d2
i (xi, yi)

) 1
2 . Let π be

the product measure on X and c(x, y) = d2(x, y) be the quadratic cost function on X. Then

(X, d) and π satisfy the quadratic cost transportation inequality with constant maxi ti. A

proof of this using the infimum convolution inequality is found in [26], while Talagrand [36]

proves this in Rn using the quadratic cost transportation inequality.

In the Euclidean setting, the quadratic cost transportation inequality is also favored

because the solution to a quadratic cost transportation problem is unique and character-

ized by an optimal map which is the gradient of a convex function [13] (see also Gangbo

and McCann [19] for results on general classes of cost functions and other references). This

optimal map allows an interpolation between points in the space of square integrable prob-

ability measures on Rn, along which the entropy functional is convex. Otto and Villani

[30] use this to prove an inequality that gives a partial converse to the fact that the log-

Sobolev inequality implies the quadratic cost transportation inequality. Sturm and Renesse
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[34] use these ideas to prove equivalent lower bounds on the Ricci curvature of Riemannian

manifolds. Analogs of either of these results would be very welcome in the discrete setting.

Now we move on to the hurdles, first showing that under mild conditions no quadratic

cost transportation inequality can hold on a graph. Let G = (V, E) be a graph with

associated cost function c and probability measure π. Suppose there exists A ⊂ V for

which c(x, y) > 0 for each x ∈ A and y ∈ V \ A. If c is the square of the graph distance,

for example, then any subset A works. We will show that for any fixed t > 0, the infimum

convolution inequality:
∑

x∈V

eQtf(x)π(x) ≤ e
∑

x∈V f(x)π(x)

will not hold for some function f on V . So let t > 0 be fixed, and let

m = min{c(x, y) : x, y ∈ V and c(x, y) > 0}.

Define f : V → R by

f(x) =





1
2tm x ∈ A

0 x ∈ V \A.

For x ∈ V \ A, we have Qtf(x) = 0. For x ∈ A, we have f(x) ≥ Qtf(x) = miny∈V {f(y) +

1
t c(x, y)} ≥ min{f(x), m

t } = f(x). So Qtf(x) = f(x) for each x ∈ V . Since et is a strictly

convex function and f(x) is not a constant function, Jensen’s inequality gives us:

∑

x∈V

eQtf(x)π(x) =
∑

x∈V

ef(x)π(x) > e
∑

x∈V f(x)π(x)

Hence the infimum convolution inequality does not hold for f .

Addressing the other benefits of using the quadratic cost transportation problem in the

continuous setting, we note that the quadratic cost transportation problem does not yield

the same benefits in the discrete setting. Squaring the graph distance in the transportation

problem does not guarantee unique solutions to Monge’s problem. And the solutions to

the transportation problem (whether using a squared distance or not), do not directly

give a useful interpolation between points in the space of probability measures on the

graph. We do not claim that these hurdles are insurmountable, and we believe there is

hope that a better analog of the quadratic cost transportation problem and quadratic cost
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transportation inequality will be developed. But for this thesis, we focus on what we can

do with the mass transportation problem and the transportation inequality.

1.5 Summary of New Results

In Chapter 3 we provide the first systematic study of the constants ρ0(L), σ2(G), λ1(L),

and c2(G) in the discrete setting.

• The main new result in this chapter is the inequality ρ0(L) ≤ 1
2σ2(G)

, showing that

the modified log-Sobolev inequality implies the transportation inequality.

In the continuous setting, the usual log-Sobolev inequality implies the quadratic cost

transportation inequality (see [30, 9]). Our result is very natural in the discrete setting since

the quadratic cost transportation inequality does not hold there, and since the modified

log-Sobolev inequality is based on the derivative of the relative entropy. In the continuous

setting, it does not seem to be settled whether or not the quadratic cost transportation

inequality implies the usual log-Sobolev inequality. In the discrete setting we are able to

say that the transportation inequality does not imply the modified log-Sobolev inequality,

as it can be too weak to imply even the Poincaré inequality.

In light of our result above, it is natural to wonder if the weaker Poincaré inequality

might also imply the (entropy) transportation inequality. We show that the class of bounded

degree expander graphs provides an answer in the negative to this question. With this class

of graphs, we also answer a question of Svante Janson, whether there is an infinite family of

graphs for which c2(G) ¿ σ2(G) when π is the uniform probability measure. More precisely,

we prove the following:

• Let {Gi}∞i=1 be a family of bounded degree expander graphs (i.e. there exist positive

constants k and ε so that the maximum degree of a vertex in Gi is bounded from above by k

for each i, and the spectral gap of the Markov chain on Gi is bounded below by ε for each i).

If Gi has ni vertices, then σ2(Gi) ≥ K log ni for some constant K, so that λ1(Li) À 1
σ2(Gi)

as i →∞.

Since 1
2c2(Gi)

≥ λ1(Li) for each i, we get c2(Gi) ¿ σ2(Gi) as i → ∞. Since a bounded

degree random graph is an expander with probability tending to 1 as n tends to infinity,
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this shows that among bounded degree graphs, it is typically the case that c2(G) ¿ σ2(G).

For an explicit reference (and additional references) to the fact that random graphs provide

existence of expanders, see Section 4 of [2].

In Chapter 4 we calculate the asymptotically correct value of the subgaussian constant

for cycles. In fact we show:

• σ2(C2k) = c2(C2k) and c2(C2k+1) < σ2(C2k+1) = c2(C2k+1), for positive integers k,

where Cn is the cycle on n vertices.

Through tensoring, this provides a concentration result on the discrete torus consisting

of a product of both even and odd length cycles. The exact value of σ2(G) is notoriously

hard. For n ≥ 5, the exact value of σ2(Cn) was previously open and remains open for odd

values of n. Furthermore, extremal sets in the isoperimetric problem on the discrete torus

are not known unless the torus is a product of only even cycles. Our proof uses a new

general fact that σ2(G) = c2(C) unless there exists a probability measure ν 6= π for which

W 2(ν, π) = 2σ2(G)D(ν||π), and it uses new facts concerning the solutions of Monge’s and

Kantorovich’s problems with respect to ν and π under this condition.

Finally we make a couple of new observations that provide significant direction for future

research. The first, at the end of Chapter 3, concerns the existence of fast mixing chains on

a graph. In fact, for graphs with the uniform probability measure and diameter bounded by

a polynomial in the log of the number of vertices, there exists a Markov chain with mixing

time polynomial in the log of the number of vertices. This is interesting since Glauber

dynamics takes time polynomial in size of the state space as opposed to polynomial in the

log of the size of the state space (see for example [11]). This leads to the practical question

of actually finding a fast mixing chain, as is guaranteed to exist. The second observation

consists of Chapter 5, where we see that one characterization of a lower bound on the Ricci

curvature of a Riemannian manifold has a well defined analog in the discrete setting closely

related to the path coupling technique of proving fast mixing of Markov chains. This leads

to the wide open research area of finding analogs in the discrete setting for propositions in

the Riemannian setting involving Ricci curvature.
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CHAPTER II

TECHNICAL LEMMAS AND PROPOSITIONS

In this chapter we put together some facts about solutions to the mass transportation prob-

lem, the Wasserstein distance, and the dual formulations of the transportation inequalities.

Although interesting in their own right, they may be skipped and referred to as needed. As

described in Chapter 1, our setting is a graph G = (V,E) with associated measure π and

distance function d, which throughout the chapter we assume is a metric on the vertices of

the graph. A function g is said to be Lipschitz if |g(x) − g(y)| ≤ d(x, y) for x, y ∈ V . At

times we will specialize to the graph distance on G. Then it suffices that |g(x)− g(y)| ≤ 1

for {x, y} ∈ E. We also recall that P (G) denotes the set of probability measures on V . And

finally, the norm ‖ · ‖ denotes the l1 on Rn.

‖x‖ =
n∑

i=1

|xi| for x ∈ Rn.

We apply the norm to probability measures on V by embedding them in R|V |.

2.1 Solutions to the Mass Transportation Problem

Recall the definitions of Monge’s and Kantorovich’s problems and the Wasserstein distance

from Section 1.3.

We start with the proposition, promised in Section 1.3, that Kantorovich’s problem can

be simplified in the case where the cost function d is a metric. Recall that the metric

conditions are given in Section 1.3. The proof is derived from one by Feldman and McCann

[18] done in the Riemannian setting. After this proposition, Kantorovich’s problem will

always refer to (5) since we do assume that d is a metric.

Proposition 2.1.1. Suppose the distance function d is an actual metric. If g and h are

a solution to Kantorovich’s problem (4) with respect to ν1 and ν2 and g̃ is a solution to

Kantorovich’s problem (5) with respect to ν1 and ν2, then K(g, h) = K(g̃).
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Proof. Let K1 be the value of Kantorovich’s problem (4) and let K2 be the value of Kan-

torovich’s problem (5). First we show the easier direction that K1 ≥ K2. Suppose g̃ is

feasible in Kantorovich’s problem (5) with respect to ν1 and ν2. Let g = g̃ and h = −g̃.

Then for x, y ∈ V we have

g(x) + h(y) = g̃(x)− g̃(y) ≤ d(x, y). (15)

So g and h are feasible in Kantorovich’s problem (4). And

K(g, h) =
∑

x∈V

g(x)ν1(x) +
∑

x∈V

h(x)ν2(x) =
∑

x∈V

g̃(x)(ν1(x)− ν2(x)) = K(g̃).

So K1 ≥ K2.

Next we show that K1 ≤ K2. Let g and h be feasible in Kantorovich’s problem (4). We

will define functions g̃ and h̃ and eventually show that g̃ is Lipschitz and K(g̃) ≥ K(g, h).

Define g̃ : V → R by:

g̃(x) = min
y∈V

(d(x, y)− h(y)) for each x ∈ V .

By the feasibility of g and h we have for every x ∈ V :

g(x) ≤ d(x, y)− h(y) for every y ∈ V.

Hence g̃(x) ≥ g(x). Next we define h̃ : V → R by

h̃(y) = min
x∈V

(d(x, y)− g̃(x)) for each y ∈ V .

By the definition of g̃(x) we have

h(y) ≤ d(x, y)− g̃(x) for every y ∈ V.

Hence h̃(y) ≥ h(y) for each y ∈ V . Using this and the definition of g̃(x) we have:

g̃(x) ≥ min
y∈V

(d(x, y)− h̃(y)).

But

g̃(x) ≤ d(x, y)− h̃(y)
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for every x, y ∈ V by the definition of h̃. So in fact

g̃(x) = min
y∈V

(d(x, y)− h̃(y)) for each x ∈ V.

In particular this shows that g̃ and h̃ are also feasible in Kantorovich’s problem (4). Now

assume to the contrary that there exists z ∈ V such that g̃(z)+ h̃(z) < 0. By the definitions

of g̃ and h̃, there exist x, y ∈ V such that g̃(z) = d(z, y) − h̃(y) and h̃(z) = d(z, x) − g̃(x).

Then

d(y, z) + d(z, x) = d(z, y) + d(z, x)

= g̃(z) + h̃(z) + g̃(x) + h̃(y)

< g̃(x) + h̃(y)

≤ d(x, y)

which contradicts the triangle inequality. So g̃(z) + h̃(z) ≥ 0 for every z ∈ V . Together

with g̃(z) + h̃(z) ≤ d(z, z) = 0 we get that g̃(z) + h̃(z) = 0 for every z ∈ V . Then

K(g̃) =
∑

x∈V

g̃(x)(ν1(x)− ν2(x))

=
∑

x∈V

g̃(x)ν1(x) +
∑

x∈V

h̃(x)ν2(x)

≥
∑

x∈V

g(x)ν1(x) +
∑

x∈V

th(x)ν2(x)

= K(g, h).

The only metric property we have not used is the fact that d(x, y) = 0 only if x = y. So

the proof would also go through if d where a pseudo-metric.

The next lemma is a well known fact.

Lemma 2.1.2. Kantorovich’s problem is translation invariant.

Proof. Suppose g is a solution to Kantorovich’s problem with respect to ν1 and ν2. Let c

be a real number. For x, y ∈ V , |(g(x) + c)− (g(y) + c)| = |g(x)− g(y)| ≤ d(x, y), so g + c

is a Lipschitz function. Also,
∑

x∈V (g(x) + c)(ν1(x)− ν2(x)) =
∑

x∈V g(x)(ν1(x)− ν2(x)) +
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c
∑

x∈V (ν1(x) − ν2(x)) = W (ν1, ν2). Hence g + c is a solution to Kantorovich’s problem

with respect to ν1 and ν2.

The following lemma is a consequence of well known properties of linear programs, but

we give a full proof here for completeness.

Lemma 2.1.3. Suppose the distance d associated with the graph G is the graph distance (so

in particular it is integer valued). Suppose 〈gi〉ki=1 is a sequence of solutions to Kantorovich’s

problem with respect to ν1 and ν2. Then for any sequence of non-negative constants 〈si〉ki=1

with
∑k

i=1 si = 1 we have
∑k

i=1 sigi is a solution to Kantorovich’s problem with respect to

ν1 and ν2. Furthermore, for any solution g to Kantorovich’s problem with respect to ν1 and

ν2, there exists a sequence of integer valued solutions 〈gi〉ki=1 and a sequence of non-negative

constants 〈si〉ki=1 with the properties that
∑k

i=1 si = 1 and g =
∑k

i=1 sigi.

Proof. The first statement is easier and we begin with it. Let 〈gi〉ki=1 be a family of so-

lutions to Kantorovich’s problem with respect to ν1 and ν2. Let 〈si〉ki=1 be non-negative

real numbers with
∑k

i=1 si = 1. Let g =
∑k

i=1 sigi. We now show that g is Lipschitz. For

x, y ∈ V we have

|g(x)− g(y)| = |
k∑

i=1

si(gi(x)− gi(y))|

≤
k∑

i=1

si|gi(x)− gi(y)|

≤
k∑

i=1

sid(x, y)

= d(x, y).
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So g is feasible in Kantorovich’s problem with respect to ν1 and ν2. Then

∑

x∈V

g(x)(ν1(x)− ν2(x)) =
∑

x∈V

(
k∑

i=1

sigi(x)

)
(ν1(x)− ν2(x))

=
k∑

i=1

si

∑

x∈V

gi(x)(ν1(x)− ν2(x))

=
k∑

i=1

siW (ν1, ν2)

= W (ν1, ν2).

Hence g is a solution to Kantorovich’s problem with respect to ν1 and ν2.

Now we prove the second statement. Recall that we make a general assumption that

G is a connected graph. Let g be a solution to Kantorovich’s problem with respect to ν1

and ν2. Define the graph Gg = (Vg, Eg) by Vg = V and for x, y ∈ Vg, {x, y} ∈ Eg if and

only if {x, y} ∈ E and |g(x) − g(y)| = 1. Let {Gi = (Vi, Ei)}n
i=1 be the set of connected

components of Gg. The proof will be by induction on n.

For the base case assume n = 1. Then g is a translation of an integer valued function.

So there exists a real number c ∈ [0, 1) so that the function g + c is integer valued. Recall

that Kantorovich’s problem is translation invariant (see Lemma 2.1.2). Let g1 = g + c and

g2 = g + c − 1. Let s1 = 1 − c and s2 = c. Then g1 and g2 are integer valued solutions to

Kantorovich’s problem with respect to ν1 and ν2 and s1g1+s2g2 = (1−c)(g+c)+c(g+c−1) =

g.

Next assume that any solution g̃ to Kantorovich’s problem for which Gg̃ has no more

than n connected components (n ≥ 1) can be written as g̃ =
∑k

i=1 sigi, for some positive

integer k and assume g is a solution to Kantorovich’s problem for which Gg has n + 1

connected components. Let G1 = (V1, E1) be one of the connected components of Gg. Let

m+ = max{g(x)− g(y) : {x, y} ∈ E, x ∈ V1, and y /∈ V1}

m− = min{g(x)− g(y) : {x, y} ∈ E, x ∈ V1, and y /∈ V1}
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and define h+ : V → R and h− : V → R by

h+(x) =





g(x) + 1−m+, x ∈ V1

g(x), x /∈ V1

h−(x) =





g(x)− 1−m−, x ∈ V1

g(x), x /∈ V1.

Let x ∈ V1 and y /∈ V1 with {x, y} ∈ E. By the definitions of m+ and m− and because g

is Lipschitz, we have −2 < g(x)− g(y)−m+ ≤ 0 and 0 ≤ g(x)− g(y)−m− < 2. Suppose

h+(x) ≥ h+(y). Then

|h+(x)− h+(y)| = g(x)− g(y)−m + 1 ≤ 1.

If h(x) ≤ h(y), then

|h+(x)− h+(y)| = −(g(x)− g(y)−m)− 1 < 2− 1 = 1.

Hence h+ is Lipschitz. Suppose h−(x) ≥ h−(y). Then

|h−(x)− h−(y)| = g(x)− g(y)−m− − 1 < 2− 1 = 1.

If h(x) ≤ h(y), then

|h−(x)− h−(y)| = −(g(x)− g(y)−m−) + 1 ≤ 1.

Hence h+ is Lipschitz.

Let x ∈ V1 and y /∈ V1 with {x, y} ∈ E and g(x) − g(y) = m+. Then h+(x)− h+(y) =

g(x) − g(y) + 1 − m = 1. So Gh+ has at least one less connected component than Gg.

If x ∈ V1 and y /∈ V1 with {x, y} ∈ E and g(x) − g(y) = m−, then h−(x) − h−(y) =

g(x) − g(y) − 1 −m− = −1 and Gh− has at least one less connected component than Gg.

Now both h+ and h− are feasible in Kantorovich’s problem with respect to ν1 and ν2, so

W (ν1, ν2)

≥
∑

x∈V

h+(x)(ν1(x)− ν2(x))

=
∑

x∈V

g(x)(ν1(x) = ν2(x)) +
∑

x∈V1

(1−m)(ν1(x)− ν2(x))

= W (ν1, ν2) + (1−m+)
∑

x∈V1

(ν1(x)− ν2(x))
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and

W (ν1, ν2)

≥
∑

x∈V

h−(x)(ν1(x)− ν2(x))

=
∑

x∈V

g(x)(ν1(x) = ν2(x)) +
∑

x∈V1

(−1−m)(ν1(x)− ν2(x))

= W (ν1, ν2) + (−1−m−)
∑

x∈V1

(ν1(x)− ν2(x))

Now 1−m > 0 and −1−m < 0, so
∑

x∈V1
(ν1(x)− ν2(x)) = 0 which means the inequalities

above are actually equalities and h+ and h− are both solutions to Kantorovich’s problem

with respect to ν1 and ν2.

By the induction hypothesis, h+ can be written as
∑k+

i=1 s+
i g+

i and h− can be written as
∑k+

i=1 s+
i g+

i , where k+ and k− are positive integers, 〈s+
i 〉k

+

i=1 and 〈s−i 〉k
−

i=1 are sequences of non-

negative integers with
∑k+

i=1 s+
i =

∑k−
i=1 s−i = 1. Let k = k+ + k−. Let t = 1+m−

(1+m−)+(1−m+)
.

Note that 0 ≤ t ≤ 1. We define a sequence of non-negative integers 〈si〉ki=1 by si = ts+
i for

i ∈ {1, 2, . . . , k+} and si = (1 − t)si−k+ for i ∈ {k+ + 1, k+ + 2, . . . , k+ + k−}. We define

a sequence of integer valued solutions to Kantorovich’s problem with respect to ν1 and ν2

by gi = h+
i for i ∈ {1, 2 . . . , k+} and gi = h−

i−k+ for i ∈ {k+ + 1, k+ + 2, . . . , k+ + k−}.
Then

∑k
i=1 si = 1 and

∑k
i=1 sigi = th+ + (1 − t)h−. For x /∈ V1, th+(x) + (1 − t)h−(x) =

tg(x) + (1− t)g(x) = g(x). For x ∈ V1, we have

th+(x) + (1− t)h−(x)

=
1 + m−

(1 + m−) + (1−m+)
(g(x) + 1−m+)

+
(

1− 1 + m−

(1 + m−) + (1−m+)

)
(g(x)− 1−m−)

= g(x)

Hence g =
∑k

i=1 si = 1.

Now we state a “complementary slackness” result for solutions to Monge’s and Kan-

torovich’s problems. As with Proposition 2.1.1, the proof we give is derived from a proof by

Feldman and McCann [18] in a Riemannian setting. The result on the odd cycle in Chapter
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4 is based on intuition provided by the definition of “transport rays” defined in [18] based

on this lemma.

Lemma 2.1.4. Let g be a Lipschitz function on V and let µ be a probability measure on

V × V with marginals ν1 and ν2. Then

g(x)− g(y) = d(x, y) for every x, y ∈ V with µ(x, y) > 0 (16)

if and only if g is a solution to Kantorovich’s problem and µ is a solution to Monge’s

problem both with respect to ν1 and ν2.

Proof. Recall the definitions of the functions M and K defined in Section 1.3. Let g be a

Lipschitz function on V and µ a probability measure on V × V with marginals ν1 and ν2.

Then

M(µ) =
∑

x,y∈V

d(x, y)µ(x, y)

≥
∑

x,y∈V

[g(x)− g(y)]µ(x, y) (17)

=
∑

x,y∈V

g(x)µ(x, y)−
∑

x,y∈V

g(y)µ(x, y)

=
∑

x∈V

g(x)
∑

y∈V

µ(x, y)−
∑

y∈V

g(y)
∑

x∈V

µ(x, y)

=
∑

x∈V

g(x)ν1(x)−
∑

y∈V

g(y)ν2(y)

=
∑

x∈V

g(x)[ν1(x)− ν2(x)]

= K(f)

Note that we have equality in 17 exactly when property 16 is satisfied. And by linear

programming duality theory, M(µ) = K(f) if and only if µ is a solution to Kantorovich’s

problem and µ is a solution to Monge’s problem, both with respect to ν1 and ν2.

Solutions to Monge’s problem are in general not unique. In the following lemma we

show that there always exists a solution to Monge’s problem in which mass is never moved

both into a vertex and out of the same vertex.

Lemma 2.1.5. Suppose ν1, ν2 ∈ P (G). Then there exists a solution µ to Monge’s problem

with respect to ν1 and ν2 with the following properties for every y ∈ V :
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1. If ν1(y) ≥ ν2(y) then µ(x, y) > 0 implies that x = y.

2. If ν1(y) ≤ ν2(y) then µ(y, z) > 0 implies that z = y.

Proof. We first show that there exists an optimal solution µ to Monge’s problem with

the property that there are no triples of distinct vertices (x, y, z) with µ(x, y) > 0 and

µ(y, z) > 0. We will call such triples “bad.” We will call a vertex “bad” if it is in the middle

of a bad triple. Given any optimal solution µ to Monge’s problem, if there exist one or

more bad vertices we create a new optimal solution with one less bad vertex. This can be

repeated until we have an optimal solution with no bad vertices and hence no bad triples.

Let µ be an optimal solution to Monge’s problem with one or more bad vertices. Let

f be an optimal solution to Kantorovich’s problem. Let y be a bad vertex. It suffices to

create an optimal solution µ̃ to Monge’s problem with one less bad triple centered on y and

no bad vertices under µ̃ that are not bad under µ. This can then be repeated until y is no

longer a bad vertex and hence we have one less bad vertex.

Let (x, y, z) be a bad triple. Figure 1 shows how to create a new solution µ̃ eliminating

the bad triple. If µ(x, y) ≥ µ(y, z), then define µ̃ by

µ̃(x, y) = µ(x, y)− µ(y, z)

µ̃(x, z) = µ(x, z) + µ(y, z)

µ̃(y, z) = 0

µ̃(y, y) = µ(y, y) + µ(y, z)

µ̃(r, s) = µ(r, s) for all other pairs (r, s) ∈ V × V

If µ(x, y) < µ(y, z), then define µ̃ by

µ̃(x, y) = 0

µ̃(x, z) = µ(x, z) + µ(x, y)

µ̃(y, z) = µ(y, z)− µ(x, y)

µ̃(y, y) = µ(y, y) + µ(x, y)

µ̃(r, s) = µ(r, s) for all other pairs (r, s) ∈ V × V

By direct calculation we have µ̃ ∈ P (ν1, ν2). We will use Lemma 2.1.4 to verify the op-

timality of µ̃. Suppose that for a pair of distinct vertices (r, s) we have µ̃(r, s) > 0 and
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Figure 1: Eliminating a Bad Triple

µ(r, s) = 0. By our definition of µ̃ the only pair for which this could happen is (x, z).

Hence we only need to check that f(x)− f(z) = d(x, z). Since µ(x, y) > 0 and µ(y, z) > 0

we have f(x) − f(y) = d(x, y) and f(y) − f(z) = d(y, z). So d(x, z) ≥ f(x) − f(z) =

f(x) − f(y) + f(y) − f(z) = d(x, y) + d(y, z) ≥ d(x, z). So in fact f(x) − f(z) = d(x, z).

Hence µ̃ is optimal. Now either µ̃(y, z) = 0 or µ̃(x, y) = 0, so x, y, z is not a bad triple

under µ̃. Again, since (x, z) is the only pair of vertices for which we could have µ̃(x, z) > 0

but µ(x, z) = 0, any triples centered on y other than (x, y, z) that are bad under µ̃ are also

bad under µ. So µ̃ has one less bad triple centered on y. If there are any bad triples under

µ̃ that are not bad under µ, then they must have the form (r, x, z) or (x, z, s) for some r or

s. If (r, x, z) is bad under µ̃, then (r, x, y) is bad under µ and so x is already a bad vertex

under µ. If (x, z, s) is bad under µ̃, then (y, z, s) is bad under µ and so z is already a bad

vertex under µ. Hence there are no vertices that are bad under µ̃ that are not bad under µ.

Assume now that µ is an optimal solution to Monge’s problem with no bad triples.

Let y ∈ V . Suppose ν1(y) ≥ ν2(y) and µ(x, y) > 0. Assume to the contrary that x 6= y.

If µ(y, z) > 0, then z = y or else (x, y, z) would be a bad triple. So ν2(y) ≤ ν1(y) =
∑

z∈V µ(y, z) = µ(y, y) <
∑

v∈V µ(v, y) = ν2(y), which is a contradiction. Now suppose

that ν1(y) ≤ ν2(y) and µ(y, z) > 0. Assume to the contrary that z 6= y. If µ(x, y) > 0, then

x = y or else (x, y, z) would be a bad triple. So ν2(y) ≥ ν1(y) =
∑

v∈V µ(y, v) > µ(y, y) =
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∑
x∈V µ(x, y) = ν2(y), which is a contradiction.

Under more specialized circumstances we show that there exists a solution to Monge’s

problem in which mass is only transferred to neighbors. In the proof we use Lemma 2.2.2

which is in the next section (although out of order, it fits better there).

Lemma 2.1.6. Suppose d is the graph distance on G. Let ν1 ∈ P (G). If ν1(x) > 0 for

each x ∈ V then there exists ε > 0 so that for ν2 ∈ P (G) with ‖ν1 − ν2‖ ≤ ε, there exists a

solution µ to Monge’s problem with respect to ν1 and ν2 with the property that for x, y ∈ V

with x 6= y, µ(x, y) = 0 if {x, y} /∈ E.

Proof. Let D be the diameter of G. Let ν1 ∈ P (G). Let ε = 2
D minx∈V ν1(x). Let ν2 ∈ P (G)

with ‖ν1 − ν2‖ ≤ ε. For any solution µ to Monge’s problem with respect to ν1 and ν2 let

Bµ = {(x, y) : x 6= y, {x, y} /∈ E, and µ(x, y) > 0}.

It suffices to show that for any solution µ with |Bµ| > 0 there exists a solution µ̃ with

|Bµ̃| = |Bµ| − 1. So we assume µ is a solution to Monge’s problem with respect to ν1

and ν2 with |Bµ| > 0. Let z, w ∈ V with z 6= w, {z, w} /∈ E and µ(z, w) > 0. Let

z = x0, x1, x2, . . . , xn = w be the vertices in a shortest path from z to w, where n = d(z, w).

Now define µ̃ by

µ̃(x, y) =





0, x = z and y = w

µ(xi, xi+1) + µ(z, w), x = xi and y = xi+1 for i ∈ {0, 1, . . . , n− 1}

µ(xi, xi)− µ(z, w), x = y = xi for i ∈ {1, 2, . . . , n− 1}

µ(x, y), otherwise

as shown in Figure 2. Then by definition the definition of µ̃ we get that |Bµ̃| = |Bµ| − 1,

as long µ̃ is a solution to Monge’s problem with respect to ν1 and ν2.

First we show that µ̃ is feasible in Monge’s problem with respect to ν1 and ν2. The

marginals of µ̃ and µ are the same, since µ̃ is defined to have the same total amount of

mass leave each vertex and the same total amount of mass enter each vertex as under µ

(where mass remaining at a vertex is counted as both leaving and entering). But we also
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Figure 2: Nearest Neighbor Solution to Monge’s Problem

need to ensure the µ̃(x, y) ≥ 0 for each x, y ∈ V . It suffices to check that µ̃(xi, xi) ≥ 0 for

i ∈ {1, 2, . . . , n − 1}. So we use our assumption that ν1(x) ≥ D
2 ‖ν1 − ν2‖ for each x ∈ V

and Lemma 2.2.2 to get:

µ̃(xi, xi) = µ(xi, xi)− µ(z, w)

= ν1(xi)−
∑

y∈V
y 6=xi

µ(xi, y)− µ(z, w)

≥ D

2
‖ν1 − ν2‖ −

∑

y∈V
y 6=xi

µ(xi, y)− µ(z, w)

≥ W (ν1, ν2)−
∑

y∈V
y 6=xi

µ(xi, y)− µ(z, w)

=
∑

x,y∈V

µ(x, y)d(x, y)−
∑

y∈V
y 6=xi

µ(xi, y)− µ(z, w)

≥
∑

x∈V

∑

y∈V
y 6=x

µ(x, y)−
∑

y∈V
y 6=xi

µ(xi, y)− µ(z, w)

≥
∑

x∈V
x/∈{xi,z}

∑

y∈V
y 6=x

µ(x, y)

≥ 0.

So µ̃ is feasible in Monge’s problem with respect to ν1 and ν2.

To finish the proof we show that M(µ̃) = M(µ) and hence µ̃ is a solution to Monge’s

problem with respect to ν1 and ν2. Recall that the function M is defined in Section 1.3. We

have M(µ)−M(µ̃) = µ(z, w)d(z, w)−∑n−1
i=0 µ(z, w)d(xi, xi+1) = 0 since n = d(z, w).
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2.2 Properties of the Wasserstein Distance

The first lemma of this section is a well known fact about the Wasserstein distance.

Lemma 2.2.1. The Wasserstein distance is a metric on P (G).

Proof. Recall the definitions of the functions K and M from Section 1.3. First we show

that W (ν1, ν2) = 0 if and only if ν1 = ν2. If ν1 = ν2, let g be a solution to Kantorovich’s

problem with respect to ν1 and ν2. Then

W (ν1, ν2) = K(g) =
∑

x∈V

g(x)(ν1(x)− ν2(x)) =
∑

x∈V

g(x)(ν1(x)− ν1(x)) = 0.

If ν1 6= ν2, let µ be a solution to Monge’s problem with respect to ν1 and ν2. If we had

µ(x, y) = 0 for each x 6= y, then µ would have the same first and second marginals implying

that ν1 = ν2. Hence there exist x∗, y∗ ∈ V with x∗ 6= y∗ and µ(x∗, y∗) > 0. So

W (ν1, ν2) = M(µ) =
∑

x,y∈V

µ(x, y)d(x, y) ≥ µ(x∗, y∗)d(x∗, y∗) > 0

since d is a metric on V .

Next we show that W (ν1, ν2) = W (ν2, ν1) for ν1, ν2 ∈ P (G). It suffices to show that for

any ν1, ν2 ∈ P (G), W (ν1, ν2) ≤ W (ν2, ν1). So let ν1, ν2 ∈ P (G) and let g be a solution to

Kantorovich’s problem with respect to ν1 and ν2. Then −g is a Lipschitz function, so it is

feasible in Kantorovich’s problem with respect to ν2 and ν1. Hence

W (ν1, ν2) =
∑

x∈V

g(x)(ν1(x)− ν2(x))

=
∑

x∈V

(−g(x))(ν2(x)− ν1(x))

≤ W (ν2, ν1).

Finally we prove the triangle inequality. Let ν1, ν2, ν3 ∈ P (G). Let g be a solution to

Kantorovich’s problem with respect to ν1 and ν3. Then g is Lipschitz, so it is feasible in

Kantorovich’s problem with respect to ν1 and ν2 and in Kantorovich’s problem with respect
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to ν2 and ν3. So

W (ν1, ν3) =
∑

x∈V

g(x)(ν1(x)− ν3(x))

=
∑

x∈V

g(x)(ν1(x)− ν2(x)) +
∑

x∈V

g(x)(ν2(x)− ν3(x))

≤ W (ν1(x), ν2(x)) + W (ν2(x), ν3(x))

Now we compare the Wasserstein distance between ν1 and ν2 to the l1 distance between

ν1 and ν2.

Lemma 2.2.2. Let D be the diameter of G and ν1, ν2 ∈ P (G). Then

1
2
‖ν1 − ν2‖ ≤ W (ν1, ν2) ≤ 1

2
D‖ν1 − ν2‖.

Proof. We can describe this inequality as follows. The quantity 1
2‖ν − π‖ is the total

amount of mass that needs to be transported from one location to another. This mass must

be moved a distance of at least one, but no more than a distance of D. To be precise, we

let µ be a solution to Monge’s problem given to us by Lemma 2.1.5. Then we may write

1
2
‖ν − π‖ =

1
2

∑

x∈V

|ν(x)− π(x)|

=
1
2

∑

x∈V

∣∣∣∣∣∣
∑

y∈V

µ(x, y)−
∑

y∈V

µ(y, x)

∣∣∣∣∣∣
(18)

=
1
2

∑

x∈V

∑

y∈V \{x}
µ(x, y) + µ(y, x)

=
∑

x∈V

∑

y∈V \{x}
µ(x, y).

In (18), either µ(x, y) = 0 for each y 6= x or µ(y, x) = 0 for each y 6= x. So for each x, either
∑

y 6=x µ(x, y) = 0 or
∑

y 6=x µ(y, x) = 0. The next line then follows.

The desired inequality can then be translated to the following transparently true in-

equality:

∑

x∈V

∑

y∈V \{x}
µ(x, y) ≤

∑

x∈V

∑

y∈V

d(x, y)µ(x, y) ≤
∑

x∈V

∑

y∈V \{x}
Dµ(x, y)

which completes the proof.
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Lemma 2.2.3. The Wasserstein distance is continuous as a function of both probability

measures.

Proof. Let 〈(νi, ν̃i)〉∞i=1 be a sequence in P (G)×P (G) with (νi, ν̃i) → (ν, ν̃) as i →∞. Then

|W (νi, ν̃i)−W (ν, ν̃)| = |W (νi, ν̃i)−W (νi, ν̃) + W (νi, ν̃)−W (ν, ν̃)|

≤ |W (νi, ν̃i)−W (νi, ν̃)|+ |W (νi, ν̃)−W (ν, ν̃)|

≤ W (ν̃i, ν̃) + W (νi, ν)

≤ D

2
(‖ν̃i − ν̃‖+ ‖νi − ν‖) → 0

as i → ∞. The second inequality follows from the triangle inequality since W is a metric

(see Lemma 2.2.1). The third inequality is from Lemma 2.2.2.

In the next lemma we show that solutions to Kantorovich’s problem with respect to ν1

and ν2 are in a sense stable under small perturbations of ν1 and ν2. Suppose ν1, ν2 ∈ P (G).

Let ε1 : V → R and ε2 : V → R with the property that ν1 + ε1 and ν2 + ε2 are also

probability measures on V . This simply means that
∑

x∈V ε1(x) =
∑

x∈V ε2(x) = 0 and

ν1(x) + ε1(x) ≥ 0 and ν2(x) + ε2(x) ≥ 0 for each x ∈ V .

Lemma 2.2.4. Suppose the distance function d on G is the graph distance. Then there

exists δ > 0 so that if ‖ε1‖, ‖ε2‖ < δ then any solution to Kantorovich’s problem with respect

to ν1 + ε1 and ν2 + ε2 is also a solution to Kantorovich’s problem with respect to ν1 and ν2.

Proof. We prove the statement for integer valued solutions to Kantorovich’s problem. The

general case follows from the fact that convex combinations of solutions to Kantorovich’s

problem are also solutions and every solution to Kantorovich’s problem can be written as

a convex combination of integer valued solutions (see Lemma 2.1.3). Since Kantorovich’s

problem is translation invariant, without loss of generality we restrict our solutions to those

whose images are contained in [D] = {1, 2, . . . , D}, where D is the diameter of G. Let Z be

the set of solutions to Kantorovich’s problem with respect to ν1 and ν2 whose images are

subsets of [D]. Let Z ′ be the set of integer valued Lipschitz functions on V whose images

are subsets of [D]. By the feasibility condition for solutions to Kantorovich’s problem, we
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have that Z is a subset of Z ′. Suppose Z = Z ′. Then for any ε1 and ε2, any solution to

Kantorovich’s problem with respect to ν1 + ε1 and ν2 + ε2 whose image is a subset of [D] is

a member of Z ′ = Z, and hence would be a solution to Kantorovich’s problem with respect

to ν1 and ν2. So we would be done. Hence we assume that Z is a proper subset of Z ′.

Since Z ′ is a finite set and Z is a proper subset of Z ′, we may define:

m = min

{∣∣∣∣∣
∑

x∈V

(g(x)− g′(x))(ν(x)− µ(x))

∣∣∣∣∣ : g ∈ Z and g′ ∈ Z ′ \ Z

}

Let δ = m
4D . Note that δ > 0. Now assume that ‖ε1‖, ‖ε2‖ < δ. Let Zε be the set of

solutions to Kantorovich’s problem with respect to ν1 + ε1 and ν2 + ε2 whose images are

subsets of [D]. We will show that Zε ⊂ Z.

First we find an upper bound on |W (ν1, ν2)−W (ν1+ε1, ν2+ε2)|. Let g ∈ Z and gε ∈ Zε.

Let h1 be a solution to Kantorovich problem with respect to ν1 and ν1+ε1 and h2 a solution

to Kantorovich’s problem with respect to ν2 and ν2 + ε2, both of whose images are subsets

of [D]. Then

|W (ν1, ν2)−W (ν1 + ε1, ν2 + ε2)|

= |W (ν1, ν2)−W (ν1, ν2 + ε2) + W (ν1, ν2 + ε2)−W (ν1 + ε1, ν2 + ε2)|

≤ |W (ν1, ν2)−W (ν1, ν2 + ε2)|+ |W (ν1, ν2 + ε2)−W (ν1 + ε1, ν2 + ε2)|

≤ W (ν2, ν2 + ε2) + W (ν1, ν1 + ε1)

=
∑

x∈V

h2(x)(ν2(x)− (ν2(x) + ε2(x))) + h1(x)(ν1(x)− (ν1(x) + ε1(x)))

= −
∑

x∈V

h2(x)ε2(x) + h1(x)ε1(x)

≤
∑

x∈V

h2(x)|ε2(x)|+ h2(x)|ε1(x)|

≤ D
∑

x∈V

|ε1(x)|+ |ε2(x)|

= D(‖ε1‖+ ‖ε2‖)

34



Next we find a lower bound on |W (ν1, ν2)−W (ν1 + ε1, ν2 + ε2)|.

|W (ν1, ν2)−W (ν1 + ε1, ν2 + ε2)|

=

∣∣∣∣∣
∑

x∈V

g(x)(ν1(x)− ν2(x))− gε(x)((ν1(x) + ε1(x))− (ν2(x) + ε2(x)))

∣∣∣∣∣

=

∣∣∣∣∣
∑

x∈V

(g(x)− gε(x))(ν1(x)− ν2(x))−
∑

x∈V

gε(x)(ε1(x)− ε2(x))

∣∣∣∣∣

≥
∣∣∣∣∣
∑

x∈V

(g(x)− gε(x))(ν1(x)− ν2(x))

∣∣∣∣∣−
∣∣∣∣∣
∑

x∈V

gε(x)(ε1(x)− ε2(x))

∣∣∣∣∣

≥
∣∣∣∣∣
∑

x∈V

(g(x)− gε(x))(ν1(x)− ν2(x))

∣∣∣∣∣−D
∑

x∈V

|ε1(x)|+ |ε2(x)|

=

∣∣∣∣∣
∑

x∈V

(g(x)− gε(x))(ν1(x)− ν2(x))

∣∣∣∣∣−D(‖ε1(x)‖+ ‖ε2(x)‖)

Together, the upper and lower bounds give us:
∣∣∣∣∣
∑

x∈V

(g(x)− gε(x))(ν1(x)− ν2(x))

∣∣∣∣∣ ≤ 2D(‖ε1‖+ ‖ε2‖).

Suppose to the contrary that Zε is not a subset of Z. Let g̃ε ∈ Zε \ Z. Then

m ≤
∣∣∣∣∣
∑

x∈V

(g(x)− g̃ε(x))(ν(x)− µ(x))

∣∣∣∣∣
≤ 2D(‖ε1‖+ ‖ε2‖)

< 4Dδ

= m.

which is a contradiction. Hence Zε ⊂ Z.

Now we give a condition under which the solution to Kantorovich’s problem is unique

up to translation.

Lemma 2.2.5. The solution to Kantorovich’s problem with respect to ν and π is unique up

to translation if there does not exist C ( V with
∑

x∈C ν(x) =
∑

x∈C π(x).

Proof. Suppose g and g̃ are solutions to Kantorovich’s problem with respect to ν and π.

Assume there does not exist a constant c such that g+c = g̃. Let x0 ∈ V . Let C = {x ∈ V :

g(x)− g̃(x) = g(x0)− g̃(x0)}. Note that x0 ∈ C. By assumption C 6= V . Let z ∈ V \C. Let
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µ be a solution to Monge’s problem with respect to ν and π. Suppose to the contrary that

there exists x ∈ C with µ(x, z) > 0. Then g̃(x) − g̃(z) = g(x) − g(z) = d(x, z) by Lemma

2.1.4. But then we have g̃(z) − g(z) = g̃(x) − g(x) = g̃(x0) − g(x0) which contradicts the

fact that z /∈ C. Similarly there does not exist x ∈ C with µ(z, x) > 0. Then

∑

x∈C

ν(x) =
∑

x∈C

∑

y∈V

µ(x, y)

=
∑

x∈C

∑

y∈C

µ(x, y)

=
∑

y∈C

∑

x∈C

µ(x, y)

=
∑

y∈C

∑

x∈V

µ(x, y)

=
∑

y∈C

π(y)

which proves the lemma.

2.2.1 Tensorization

Let {Gi}n
i=1 be a family of graphs with associated measures πi and distance functions

di. Let G =
∏n

i=1 Gi with associated measure π(x) =
∏n

i=1 πi(xi) and distance function

d(x, y) =
∑n

i=1 di(xi, yi) as defined in Section 1.1.1. For ν ∈ P (G) let νi ∈ P (Gi) be defined

by:

νi(xi) =
∑

(x1,...,xi−1,xi+1,...,xn)

ν(x1, . . . , xi, . . . , xn)

for xi ∈ Vi. See Talagrand [36] and Alon, Boppana, and Spencer [3] for related tensorization

results.

Lemma 2.2.6. For ν, ν̃ ∈ P (G), W (ν, ν̃) ≥ ∑n
i=1 W (νi, ν̃i). Furthermore, if ν(x1, . . . , xn) =

∏n
i=1 νi(xi) and ν̃(x1, . . . , xn) =

∏n
i=1 ν̃i(xi), then W (ν, ν̃) =

∑n
i=1 W (νi, ν̃i).

Proof. Let hi be a solution to Kantorovich’s problem with respect to νi and ν̃i. Let h :

V → R be defined by

h(x1, x2, . . . , xn) =
n∑

i=1

hi(xi).
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Note that

|h(x1, x2, . . . , xn)− h(y1, y2, . . . , yn)| ≤
n∑

i=1

|h(xi)− h(yi)|

≤
n∑

i=1

di(xi, yi)

= d(x, y).

So h is feasible in Kantorovich’s problem with respect to ν and ν̃. Then:

W (ν, ν̃)

≥
∑

(x1,...,xn)

h(x1, . . . , xn)(ν(x1, . . . , xn)− ν̃(x1, . . . , xn))

=
∑

(x1,...,xn)

(
n∑

k=1

hk(xk)

)
(ν(x1, . . . , xn)− ν̃(x1, . . . , xn))

=
n∑

k=1

∑

(x1,...,xn)

hk(xk)(ν(x1, . . . , xn)− ν̃(x1, . . . , xn))

=
n∑

k=1

∑
xk

hk(xk)
∑

(x1,...,xk−1,xk+1,...,xn)

(ν(x1, . . . , xn)− ν̃(x1, . . . , xn))

=
n∑

k=1

∑
xk

hk(xk)(νk(xk)− ν̃k(xk))

=
n∑

k=1

W (νi, ν̃i).

Next we make the assumption that ν(x1, . . . , xn) =
∏n

i=1 νi(xi) and ν̃(x1, . . . , xn) =
∏n

i=1 ν̃i(xi). Now we just need to show:

W (ν, ν̃) ≤
n∑

i=1

W (νi, ν̃i).

Let µi be a solution to Monge’s problem with respect to νi and ν̃i. Let µ : V × V → R be

defined by:

µ((x1, . . . , xn), (y1, . . . , yn)) =
n∏

i=1

µi(xi, yi).

We will show that µ is feasible in Monge’s problem, which means it has first and second

marginals ν and ν̃ respectively. Since the calculation is similar we will only verify the first
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marginal. Let (x1, . . . , xn) ∈ V . Then

∑

(y1,...,yn)∈V

µ((x1, . . . , xn), (y1, . . . , yn)) =
∑

(y1,...,yn)∈V

n∏

i=1

µi(xi, yi)

=
n∏

i=1

∑

yi∈Vi

µi(xi, yi)

=
n∏

i=1

νi(xi)

= ν(x).

So now we have:

W (ν, ν̃)

≤
∑

x,y∈V

µ(x, y)d(x, y)

=
∑

(x1,...,xn)∈V
(y1,...,yn)∈V

n∏

i=1

µi(xi, yi)
n∑

k=1

dk(xk, yk)

=
n∑

k=1

∑

(x1,...,xn)∈V
(y1,...,yn)∈V

n∏

i=1

µi(xi, yi)dk(xk, yk)

=
n∑

k=1

∑

xk,yk∈Vk

µk(xk, yk)dk(xk, yk)
∑

(x1,...,xk−1,xk+1,...,xn)
(y1,...,xk−1,xk+1,...,yn)

n∏

i=1
i6=k

µi(xi, yi)

=
n∑

k=1

∑

xk,yk∈Vk

µk(xk, yk)dk(xk, yk)

=
n∑

k=1

W (νi, ν̃i)

2.2.2 Derivative of the Wasserstein Distance

We begin with a graph G = (V,E) with associated measure π and assume that d is the

graph distance. We denote derivatives from the right and left as d
dt

+
and d

dt

−
respectively.

Proposition 2.2.7. Suppose ν1
t , ν2

t ∈ P (G) for each t in some real interval I around a.

Suppose further that d
dt

+
ν1

t and d
dt

+
ν2

t exist at time t = a. Then d
dt

+
W (ν1

t , ν2
t )

∣∣∣
t=a

exists
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and equals:
∑

x∈V

g(x)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

for some solution g to Kantorovich’s problem with respect to ν1
a and ν2

a. Furthermore, an

identical statements holds for derivatives from the left.

Proof. We will prove the statement for the derivatives from the right, as the proof for the

derivatives from the left is the same. Let G be the set of integer valued Lipschitz functions

on V that have zero as their minimum value. Note that G is a finite set. For each real

t ∈ I, let gt ∈ G be a solution to Kantorovich’s problem with respect to ν1
t and ν2

t . Such

a solution always exists by Lemmas 2.1.2 and 2.1.3. Let G′ ⊂ G be defined by g ∈ G′ if

and only if for every ε > 0 there exists a < t < a + ε with gt = g. By Lemma 2.2.4 each

g ∈ G′ is also a solution to Kantorovich’s problem with respect to ν1
a and ν2

a . Let g ∈ G′.

Let 〈hi〉∞i=1 be a sequence of positive real numbers with limi→∞ hi = 0 and ga+hi = g for

each integer i ≥ 1. If d
dt

+
W (ν1

t , ν2
t )

∣∣∣
t=a

exists, then it is equal to:

lim
i→∞

W (ν1
a+hi

, ν2
a+hi

)−W (ν1
a , ν2

a)
hi

=
∑

x∈V

g(x) lim
i→∞

(
ν1

a+hi
(x)− ν1

a(x)
hi

− ν2
a+hi

(x)− ν2
a(x)

hi

)

=
∑

x∈V

g(x)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)
(19)

To show that lims→0+
W (ν1

a+s,ν2
a+s)−W (ν1

a,ν2
a)

s is equal to (19), it suffices to show that for

every sequence of positive real numbers 〈εi〉∞i=1 with limi→∞ εi = 0, there exists a subse-

quence 〈εij 〉∞j=1 such that limi→∞
W (ν1

a+εij
,ν2

a+εij
)−W (ν1

a,ν2
a)

εij
is equal to (19). So we let 〈εi〉∞i=1

be a sequence of positive real numbers with limi→∞ εi = 0. Let 〈εij 〉∞j=1 be a subsequence

of 〈εi〉∞i=1 with the property that for some g̃ ∈ G′, ga+εij
= g̃ for every j. It suffices to show

that

∑

x∈V

g̃(x)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)
=

∑

x∈V

g(x)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

(20)
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If g̃ = g we are done. Otherwise let c = minx∈V g(x) − g̃(x). For non-negative integers k,

let

Ck = {x ∈ V : g(x)− g̃(x) ≥ c + k}.

Let k ≥ 1 be an integer. Let x1 ∈ V \ Ck and x2 ∈ Ck. Now g(x1) − g̃(x1) < c + k and

g(x2)− g̃(x2) ≥ c + k. So

g(x1)− g(x2) < g̃(x1) + c + k − g(x2)

≤ g̃(x1) + c + k − g̃(x2)− c− k

≤ d(x1, x2).

Also,

g̃(x2)− g̃(x1) < g̃(x2)− g(x1) + c + k

≤ g(x2)− c− k − g(x1) + c + k

≤ d(x1, x2).

For each i, let µa+hi be a solution to Monge’s problem with respect to ν1
a+hi

and ν2
a+hi

.

For each j, let µa+εij
be a solution to Monge’s problem with respect to ν1

a+εij
and ν2

a+εij
.

Then by Lemma 2.1.4 we get that µa+hi(x, y) = 0 when x ∈ V \ Ck and y ∈ Ck. Also

µa+εij
(x, y) = 0 when x ∈ Ck and y ∈ V \ Ck. So

∑

x∈V \Ck

ν1
a+hi

(x) =
∑

x∈V \Ck

∑

y∈V

µa+hi(x, y)

=
∑

x∈V \Ck

∑

y∈V \Ck

µa+hi(x, y)

=
∑

y∈V \Ck

∑

x∈V \Ck

µa+hi(x, y)

≤
∑

y∈V \Ck

∑

x∈V

µa+hi(x, y)

=
∑

y∈V \Ck

ν2
a+hi

(y).

This also means that
∑

x∈Ck

ν1
a+hi

(x) ≥
∑

x∈Ck

ν2
a+hi

(x).
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Similarly we have

∑

x∈Ck

ν1
a+εij

(x) =
∑

x∈Ck

∑

y∈V

µa+εij
(x, y)

=
∑

x∈Ck

∑

y∈Ck

µa+εij
(x, y)

=
∑

y∈Ck

∑

x∈Ck

µa+εij
(x, y)

≤
∑

y∈Ck

∑

x∈V

µa+εi+j (x, y)

=
∑

y∈Ck

ν2
a+εij

(y).

This also means that
∑

x∈V \Ck

ν1
a+εij

(x) ≥
∑

x∈V \Ck

ν2
a+εij

(x).

By similar methods, since g and g̃ are both solution of Kantorovich’s problem with respect

to ν1
a and ν2

a , we get that
∑

x∈Ck

ν1
a(x) =

∑

x∈Ck

ν2
a(x)

Now d
dt

+
ν1

t (x)
∣∣∣
t=a

and d
dt

+
ν2

t (x)
∣∣∣
t=a

exist for each x ∈ V . Hence

lim
s→0+

∑

x∈Ck

ν1
a+s(x)− ν1

a(x)
s

and lim
s→0+

∑

x∈Ck

ν2
a+s(x)− ν2

a(x)
s

exist. Let

L =
∑

x∈Ck

(
d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)
.

Then

lim
s→0+

∑

x∈Ck

ν1
a+s(x)− ν2

a+s(x)
s

= lim
s→0+

∑

x∈Ck

ν1
a+s(x)− ν2

a+s(x)
s

+
ν1

a(x)− ν2
a(x)

s

=
∑

x∈Ck

lim
s→0+

ν1
a+s(x)− ν1

a(x)
s

+
ν2

a+s(x)− ν2
a(x)

s

= L

And so we show that L = 0.

0 ≤ lim
i→∞

∑

x∈Ck

ν1
a+hi

(x)− ν2
a(x)

hi
= L = lim

j→∞

∑

x∈Ck

ν1
a+εij

(x)− ν2
a(x)

εij

≤ 0
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Now we can show (20):

∑

x∈V

g̃(x)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

=
∞∑

l=0

∑

x∈Cl\Cl+1

g̃(x)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

=
∞∑

l=0

∑

x∈Cl\Cl+1

(g(x)− c− l)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

=
∑

x∈V

(g(x)− c)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

−
∞∑

l=0

∑

x∈Cl\Cl+1

l

(
d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

=
∑

x∈V

(g(x)− c)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

−
∞∑

l=1

∑

x∈Cl

(
d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

=
∑

x∈V

g(x)
(

d

dt

+

ν1
t (x)

∣∣∣∣
t=a

− d

dt

+

ν2
t (x)

∣∣∣∣
t=a

)

The following corollary follows immediately from the previous proposition, so we state

it without further proof. We mention it because with Lemma 2.2.5 we have sufficient

conditions for the existence of the derivative of the Wasserstein distance.

Corollary 2.2.8. Suppose ν1
t , ν2

t ∈ P (G) for each t in some real interval I around a,

and that d
dtν

1
t and d

dtν
2
t exist at time t = a. Suppose further that up to translation there

exists a unique solution ga to Kantorovich’s problem with respect to ν1
a and ν2

a. Then

d
dtW (ν1

t , ν2
t )

∣∣
t=a

exists and equals:

∑

x∈V

ga(x)
(

d

dt
ν1

t (x)
∣∣∣∣
t=a

− d

dt
ν2

t (x)
∣∣∣∣
t=a

)
.

2.3 Dual Formulations of the Transportation Inequalities

This section begins by proving the equivalence of the dual formulations of both the trans-

portation inequality and the variance transportation inequalities as stated in Section 1.4.1.

We start with the variance transportation inequality because it is simpler.
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Proposition 2.3.1. Let ĉ2 be the smallest constant for which the variance transportation

inequality holds for all ν absolutely continuous with respect to π. Let c2 be the maximum

value of the variance of a Lipschitz function on V . Then ĉ2 = c2.

Proof. We have

ĉ2 = sup
ν

W 2(ν, π)
Var

[
dν
dπ

]

where the supremum is over ν absolutely continuous with respect to π. Let ε > 0. Let

ν̃ ∈ P (G) with ν̃ absolutely continuous with respect to π and

ĉ2 ≤ W 2(ν̃, π)
Var

[
dν̃
dπ

] + ε

Let g be an optimal solution to Kantorovich’s problem with respect to ν̃ and π. Since

Kantorovich’s problem is translation invariant (see Lemma 2.1.2), we may also assume that
∑

x∈V g(x)π(x) = 0. Let f be the density of ν̃ with respect to π. Then

ĉ2 ≤ W 2(ν̃, π)
Var(f)

+ ε

=

(∑
x∈V g(x)(ν̃(x)− π(x))

)2

∑
x∈V

(
f(x)−∑

y∈V f(y)π(y)
)2

π(x)
+ ε

=

(∑
x∈V g(x)(f(x)− 1)π(x)

)2

∑
x∈V (f(x)− 1)2π(x)

+ ε

≤
∑

x∈V

g(x)2π(x) + ε

= Var(g) + ε

≤ max{Var(g̃) : g̃ is Lipschitz}+ ε

where the second inequality is by the Cauchy-Schwartz inequality. Since ε is arbitrary, we

have ĉ2 ≤ c2.

To show the reverse inequality, let g be a Lipschitz function which attains the maximum

variance and for which
∑

x∈V g(x)π(x) = 0. Let dνδ = (1 + δg)dπ for some δ small enough

so that νδ(x) > 0 for each x ∈ V . Let hδ be a solution to Kantorovich’s problem with

respect to νδ and π. Then since g is feasible in Kantorovich’s problem with respect to νδ
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and π we have:

ĉ2 ≥ W 2(νδ, π)
Var(1 + δg)

=

(∑
x∈V hδ(x)(νδ(x)− π(x))

)2

Varπ(1 + δg)

≥
(∑

x∈V g(x)(νδ(x)− π(x))
)2

Varπ(1 + δg)

=

(∑
x∈V g(x)((1 + δg(x))π(x)− π(x))

)2

∑
x∈V

(
(1 + δg(x))−∑

x∈V (1 + δg(x))π(x)
)2

π(x)

=
δ2

(∑
x∈V g(x)2π(x)

)2

δ2
∑

x∈V g(x)2π(x)

= Var(g)

= c2.

And so we have ĉ2 = c2.

Now we re-derive the equivalence by Bobkov and Götze [7] of the transportation in-

equality and its dual, paying close attention to the state of optimality in both formulations.

Proposition 2.3.2 below states the result of [7] and the following Proposition 2.3.3 is our

refinement of it.

Proposition 2.3.2 (Bobkov-Götze). Let σ be a positive real number. Then the following

two statements are equivalent.

1. E
[
et(f−E[f ])

] ≤ eσ2t2/2 for every Lipschitz function f and real number t.

2. W 2
1 (ν, π) ≤ 2σ2D(ν||π) for every measure ν absolutely continuous with respect to π.

Proposition 2.3.3. Suppose that σ is a positive real number for which the two statements

in Proposition 2.3.2 are true. Then we have:

(a) Suppose that there exists a Lipschitz function f and real number t > 0 with the property

that E
[
et(f−E[f ])

]
= eσ2t2/2. Define ν by dν = et(f−E[f ])−σ2t2/2dπ. Then we have

ν ∈ P (G) with ν 6= π and W 2
1 (ν, π) = 2σ2D(ν||π). Furthermore, f is a solution to

Kantorovich’s problem with respect to ν and π and t2 = 2
σ2 D(ν||π).
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(b) Suppose σ is a positive real number for which the above two statements are true. Now

suppose there exists ν ∈ P (G) with ν 6= π and W 2
1 (ν, π) = 2σ2D(ν||π). Let f be an

solution to Kantorovich’s problem with respect to ν and π. Then f and ν are related

by dν = et(f−E[f ])−σ2t2/2dπ. And we have E
[
et(f−E[f ])

]
= eσ2t2/2 for t =

√
2
σ2 D(ν||π).

Before proving Proposition 2.3.3, we prove a useful little corollary.

Corollary 2.3.4. Suppose ν ∈ P (G) with ν 6= π and W 2
1 (ν, π) = 2σ2D(ν||π). Then up to

translation there exists a unique solution f to Kantorovich’s problem with respect to ν and

π. And for each x, y ∈ V , f(x) > f(y) if and only if ν(x)
π(x) > ν(y)

π(y) .

Proof of Corollary 2.3.4. Suppose f and g are solutions to Kantorovich’s problem with

respect to ν and π. Then by Proposition 2.3.2 they are related by et(f−E[f ])−σ2t2/2 =

et(g−E[g])−σ2t2/2. Hence f − g = E[g − f ] which is a constant, proving the first part. The

second part follows directly from the fact that ν(x)
π(x) = et(f(x)−E[f ])−σ2t2/2 for each x ∈ V .

We need the following two lemmas in our proof of Proposition 2.3.3. The first is a

version of a well known inequality whose proof we include for completeness.

Lemma 2.3.5 (Young’s Inequality).

uv ≤ u log u− u + ev, u ≥ 0, v ∈ R (21)

And equality occurs if and only if u = ev.

Proof. If u = 0, the statement is true because we define 0 log 0 = 0 by continuity (or

convention). Note that equality cannot occur if u = 0. To obtain the inequality when

u > 0, fix v ∈ R. Define r(u) = uv − u log u + u − ev for u > 0. Then r′(u) = v − log u.

And r′′(u) = − 1
u < 0 for u > 0. So r(u) is strictly concave down and has a maximum at

u = ev. Hence for all u > 0, r(u) ≤ r(ev) = 0, which gives us the inequality. Finally, since

r(u) is strictly concave, r(u) < 0 for u 6= ev.

The next is a technical lemma based on Young’s inequality.
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Lemma 2.3.6.

E[eh] ≤ 1 ⇐⇒ E[gh] ≤ Ent[g] for every density g. (22)

And if either side is true, then E[gh] = Ent[g] for some density g if and only if E[eh] = 1

and g = eh.

Proof. Suppose g is a probability density on V with respect to π and that h : V → R. For

x ∈ V , apply Young’s inequality with u = g(x) and v = h(x) to get:

g(x)h(x) ≤ g(x) log g(x)− g(x) + eh(x). (23)

Note that equality holds if and only if g(x) = eh(x). Then we can take expectations of both

sides to get:

E[gh] ≤ Ent[g]− 1 + E[eh] (24)

where there is equality if and only if g = eh (i.e. g(x) = eh(x) for all x ∈ V ).

If E[eh] ≤ 1, then

E[gh] ≤ Ent[g] (25)

with equality if and only if E[eh] = 1 and g = eh. So E[eh] ≤ 1 implies that E[gh] ≤ Ent[g]

for every density g, with equality if and only if E[eh] = 1 and g = eh.

Now suppose that for some h we have E[gh] ≤ Ent[g] for every density g. Choose c > 0

so that E[ceh] = 1. Let g = ceh. Then g is a density and E[gh] ≤ Ent[g] tells us that

cE[heh] ≤ cE[eh(log c + h)] (26)

This implies that (log c)E[eh] ≥ 0, so c ≥ 1, and hence E[eh] ≤ 1. Then by the previous

paragraph, we have E[gh] = Ent[g] if and only if E[eh] = 1 and g = eh. Hence the

lemma.

At last we get to the proof of Proposition 2.3.3

Proof of Proposition 2.3.3.

Part (a). First suppose there exists a positive real number σ such that for all real t and

Lipschitz f we have

E
[
et(f−E[f ])

]
≤ eσ2t2/2 (27)
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or equivalently

E
[
et(f−E[f ])−σ2t2/2

]
≤ 1. (28)

Now suppose there exists a Lipschitz function f̃ and a real number t̃ > 0 with the property

that

E
[
et̃(f̃−E[f̃ ])−σ2 t̃2/2

]
= 1. (29)

Note that f̃ cannot be a constant function since t̃ 6= 0. Now for any real t and Lipschitz f

we can set h = t(f − E[f ])− σ2t2/2 and use the preliminary result above to get:

E
[(

t(f − E[f ])− σ2t2/2
)
g
] ≤ Ent[g] (30)

for every density g. Let g̃ = et̃(f̃−E[f̃ ])−σ2 t̃2/2. Then there is equality when f = f̃ , t = t̃, and

g = g̃. Simplifying and rearranging, we get that for all Lipschitz f and t > 0:

E [fg − f ] ≤ σ2t

2
+

1
t

Ent[g] (31)

for every density g, with equality when f = f̃ , t = t̃, and g = g̃. Now for a fixed non-constant

density g consider the function

φg(t) =
σ2t

2
+

1
t

Ent[g] (32)

defined on positive t. We have

φ′g(t) =
σ2

2
− 1

t2
Ent[g] (33)

which is zero if and only if

t = t∗(g) =

√
2Ent[g]

σ
. (34)

Furthermore we have

φ′′g(t) =
2
t3

Ent[g] > 0 (35)

for every positive t. Hence t∗(g) is the unique minimum of φg(t). Now

φg(t∗(g)) =
√

2σ2 Ent[g]. (36)

So for every Lipschitz f and t > 0 we have

E [fg − f ] ≤
√

2σ2 Ent[g] ≤ σ2t

2
+

1
t

Ent[g]. (37)
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for every density g, with equality both places when f = f̃ , t = t̃, and g = g̃. Since f̃ is

not a constant function and t̃ 6= 0 we get that g̃ is not a constant density. So t∗(g̃) is the

unique minimum of φg̃(t) giving us t̃ = t∗(g̃) =
√

2Ent[g̃]

σ , since t̃ also minimizes φg̃(t). Let

dν̃ = g̃dπ. Then in terms of probability measures ν instead of densities g, we have that for

all Lipschitz f :
∑

x∈V

f(x)(ν(x)− π(x)) ≤
√

2σ2D(ν||π). (38)

for every probability measure ν absolutely continuous with respect to π. There is equality

when f = f̃ and ν = ν̃. Finally this tells us that

W2
1(ν, π) ≤ 2σ2D(ν||π) (39)

for every ν absolutely continuous with respect to π. There is equality when ν = ν̃ and in

this case f̃ is an optimal solution to Kantorovich’s problem with respect to ν̃ and π. And

t̃2 = 2
σ2 D(ν̃||π).

Part (b). We start by assuming that there exists a positive real number σ with the

property that for all probability measures ν absolutely continuous with respect to π we

have

W2(ν, π) ≤ 2σ2D(ν||π). (40)

Next suppose there exists a probability measure ν̃ 6= π with

W2(ν̃, π) = 2σ2D(ν̃||π). (41)

Let f̃ be an optimal solution to Kantorovich’s problem with respect to ν̃ and π. Then we

get
∑

x∈V

f(x)(ν(x)− π(x)) ≤
√

2σ2D(ν||π) (42)

for every Lipschitz f and ν absolutely continuous with respect to π, with equality if f = f̃

and ν = ν̃. Let g̃ be the density of ν̃ with respect to π. Note that g̃ is not a constant

function since ν̃ 6= π. Then we can rewrite this in terms of densities g with respect to π

instead of measures ν getting:

E [fg − f ] ≤
√

2σ2 Ent[g] (43)
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for every Lipschitz f and density g, with equality if f = f̃ and g = g̃. Equivalently we can

write:

E [(f − E[f ])g] ≤
√

2σ2 Ent[g] (44)

for every Lipschitz f and density g, with equality if f = f̃ and g = g̃. Furthermore,

E [(f − E[f ])g] ≤
√

2σ2 Ent[g] ≤ σ2t

2
+

1
t

Ent[g] (45)

for every Lipschitz f , density g, and t > 0. Let t̃ =
√

2Ent[g̃]

σ , and note that t̃ > 0. Then we

have equality everywhere if f = f̃ , g = g̃, and t = t̃. So we get

E
[(

t(f − E[f ])− σ2t2

2

)
g

]
≤ Ent[g]. (46)

for every Lipschitz f , density g, and t > 0, with equality when f = f̃ , g = g̃, and t = t̃. Let

h = t(f − E[f ])− σ2t2

2 . Then by our preliminary result we have:

E
[
et(f−E[f ])−σ2t2

2

]
≤ 1 (47)

for every Lipschitz f and t > 0, with equality when f = f̃ and t = t̃. And we have

g̃ = et̃(f̃−E[f̃ ])−σ2 t̃2

2 . Finally we have

E
[
et(f−E[f ])

]
≤ e

σ2t2

2 (48)

for every Lipschitz f and real number t, with equality when f = f̃ and t = t̃.

Finally we prove the equivalence of the infimum convolution inequality and the quadratic

cost transportation inequality as stated in Section 1.4.3. The proof is mentioned in [26] as

an easy repeat of the proof of Proposition 2.3.2, but we spell it out for completeness.

Proposition 2.3.7. The quadratic cost transportation inequality:

W 1
t
c(ν, π) ≤ D(ν||π)

holds with constant t for every ν absolutely continuous with respect to π if and only if the

infimum convolution inequality:

∑

x∈V

e
Q 1

t c
f(x)

π(x) ≤ e
∑

x∈V f(x)π(x) (49)

holds with constant t for every function f on V .
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Proof. We start with 49 which is equivalent to

E
[
e
Q 1

t c
f(x)−E[f ]

]
≤ 1

for every f . By Lemma 2.3.6 this is equivalent to

E
[
(Q 1

t
cf − E[f ])g

]
≤ Ent[g]

for every f and every density g. And this is equivalent to:

E[(Q 1
t
cf)g]− E[f ] ≤ Ent[g]

for every f and density g. Writing this in terms of a probability measure ν, instead of the

density g, this is equivalent to:

∑

x∈V

Q 1
t
cf(x)ν(x)−

∑

x∈V

f(x)π(x) ≤ D(ν||π)

for every f and probability measure ν absolutely continuous with respect to π. Taking the

supremum over f of the left hand side, we see this is equivalent to:

W 1
t
c(ν, π) ≤ D(ν||π)

for every ν absolutely continuous with respect to π.
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CHAPTER III

RELATIONSHIPS BETWEEN THE INEQUALITIES

Figure 3 provides an overview of the relationship between the inequalities in which we are

interested, each of which is explained in Section 1.4. Section 3.1 gives proofs along with

precise descriptions of the implications, including any assumptions hidden in the figure.

Next, Section 3.2 explores the implications under different distances on the underlying

graph structure. Finally, in Section 3.3 we take a look at what the implications say about

the fastest mixing Markov chain problem. The main contribution here is the implication

that ρ0(G) ≤ 1
2σ2(G)

, and the bounds on maximal variance mentioned in the fastest mixing

Markov chain section.

3.1 Descriptions and Proofs

Let L be the generator of a Markov chain on the graph G = (V,E) with associated measure

π and distance function d as described in Section 1.1. Throughout this chapter we assume

that d is an actual metric.

3.1.1 Modified Log-Sobolev Implies Poincaré

The fact that the modified log-Sobolev inequality (11) implies the Poincaré inequality (10)

with λ1 = ρ0(L) is shown in [10]. The implication can be seen by taking functions 1
nf

Figure 3: Implications Between Inequalities
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in (11) and letting n approach infinity. This implication is equivalent to the inequality

ρ0(L) ≤ λ1(L). Note that ρ0(L) and λ1(L) both depend on the specific Markov generator

L and not just on the underlying graph structure of G.

3.1.2 Transportation Implies Variance Transportation

Next we prove that the transportation inequality (6) implies the variance transportation

inequality (7) with c2 = σ2(G). This is equivalent to showing the inequality c2(G) ≤ σ2(G).

First recall the general inequality E[f ] Ent[f ] ≤ Var[f ]. When dν = fdπ, this gives us

D(ν||π) ≤ Var[f ]. Hence for the optimal constant σ2(G) we have:

W 2(ν, π) ≤ 2σ2(G)D(ν||π) ≤ 2σ2(G)Var
[
dν

dπ

]

for each ν absolutely continuous with respect to π. This shows that c2(G) ≤ 2σ2(G). But

we can do better by using the “dual” forms of the transportation inequality and variance

transportation inequality as described in Section 1.4.1 (see Propositions 2.3.1 and 2.3.2 for

proofs of the equivalence of the dual formulations). In the following proposition we formalize

this inequality which was noted in Section 1.4.1. The proof we give here was noted in [8].

Proposition 3.1.1. The subgaussian constant σ2(G) is at least as large as the spread

constant c2(G).

Proof. The dual formulation of the subgaussian constant gives us

E
[
et(f−Ef)

]
≤ eσ2(G)t2/2

for every Lipschitz f and real number t. Hence we have:

E

[
et(f−Ef) − 1

t2/2

]
≤ eσ2t2/2 − 1

t2/2

for every Lipschitz f and non-zero real number t. If we take the limit as t → ∞, the left

hand side of this inequality becomes Var(f) and the right hand side becomes σ2. Since the

inequality holds for every Lipschitz f , we get c2(G) ≤ σ2(G) using the dual formulation of

the spread constant.
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The question of when the subgaussian constant and the spread constant are equal is

an interesting one. In Chapter 4 we show that the subgaussian constant and the spread

constant are equal on cycles with an even number of vertices and different on cycles with an

odd number of vertices, assuming that the associated measures are the uniform probability

measures. Lemma 4.1.1 of that chapter gives one general technique for proving that the

subgaussian and spread constants are different. Consider the following example found in

[8]. It shows that the subgaussian constant need not even be of the same order as the spread

constant.

Example 3.1.2 (Two Vertex Path). Let P2 be the path on two vertices with vertex

set {1, 2}. Suppose the associated measure π is given by π(1) = p and π(2) = q, where

q = 1− p. Then c2(P2) = pq and σ2(P2) = p−q
2(log(p)−log(q)) , when d is the graph distance. So

c2(P2) ¿ σ2(P2) as p → 0 (or as p → 1).

Finally, note that both the transportation and the variance transportation inequalities

depend only on the graph structure of G and are independent of any Markov chain on G.

3.1.3 Modified Log-Sobolev Implies Transportation

Next we show that the modified log-Sobolev inequality (11) implies the transportation

inequality (6) with σ2 = 1
2ρ0(L) , which is equivalent to the inequality σ2(G) ≤ 1

2ρ0(L) . The

modified log-Sobolev inequality depends on the specific generator L of the Markov chain on

G, while the transportation inequality only depends on the underlying graph structure of

G. For our proof to work, we must assume:

∑

y∈V

d2(x, y)L(x, y) ≤ 1, (50)

for every x ∈ V . This condition gives a tighter link between the graph structure and the

Markov chain on G. In Section 3.2 we look more closely at this constraint through some

examples. We formalize the implication in the following proposition, whose proof follows

closely a proof by Otto and Villani [30] that the quadratic transportation inequality is

implied by the (usual) log-Sobolev inequality in Rn.
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Proposition 3.1.3. Assume that the constraint (50) holds between the distance function d

and the Markov generator L. Suppose the modified log-Sobolev inequality:

ρ0 Ent(f) ≤ 1
2
E(f, log f)

holds for every density f with respect to π. Then the transportation inequality:

W 2(ν, π) ≤ 2
(

1
2ρ0

)
D(ν||π)

holds for every probability measure ν absolutely continuous with respect to π.

Proof. Let ν be a probability measure absolutely continuous with respect to π. Let νt be

the Markov chain with generator L and initial distribution ν. Let ft be the density of νt

with respect to π. As noted in Section 1.1.2, νt(x) is differentiable as a function of t ∈ [0,∞)

for each x ∈ V . Let gt be a solution to Kantorovich’s problem with respect to νt and π for

each t ∈ [0,∞). We need the inequality

d

dt

+

W (νt, π) ≥
∑

x∈V

gt(x)Lft(x)π(x) = −E(gt, f),

where gt is a solution to Kantorovich’s problem with respect to νt and π. We will show the

inequality now, although it is actually satisfied with an equality by an extension of Lemma

2.2.7 to distances other than the graph distance. Let a ∈ [0,∞). Then

d

dt

+

W (νt, π)
∣∣∣∣
t=a

= lim
t→a

W (νt, π)−W (νa, π)
t− a

= lim
t→a

∑
x∈V gt(x)(νt(x)− π(x))−∑

x∈V ga(x)(νa(x)− π(x))
t− a

≥ lim
t→a

∑
x∈V ga(x)(νt(x)− π(x))−∑

x∈V ga(x)(νa(x)− π(x))
t− a

(51)

= lim
t→a

∑
x∈V ga(x)(νt(x)− νa(x))

t− a

=
∑

x∈V

ga(x)
d

dt

+

νt(x)
∣∣∣∣
t=a

=
∑

x∈V

ga(x)Lfa(x)π(x).

The proof will now consist of showing that the derivative of W (νt, π) is greater than the

derivative of
√

1
ρ0

D(νt||π). As t approaches infinity, the Wasserstein distance between νt
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and π and the relative entropy of νt with respect to π both approach zero. Together these

facts show that for every t, and in particular at t = 0, we get W (νt, π) ≤
√

1
ρ0

D(νt||π).

We start by proving an inequality that we use below. Here we use reversibility and the

constraint (50) on the distance function.

∑

x∈M

∑

y∈M

2(ft(y) + ft(x))d2(x, y)L(x, y)π(x)

= 2
∑

x∈M

∑

y∈M

ft(y)d2(x, y)L(x, y)π(x)

+ 2
∑

x∈M

∑

y∈M

ft(x)d2(x, y)L(x, y)π(x)

= 2
∑

y∈M

ft(y)π(y)
∑

x∈M

d2(y, x)L(y, x)

+ 2
∑

x∈M

ft(x)π(x)
∑

y∈M

d2(x, y)L(x, y)

≤ 4

Now we can bound the derivative of W (νt, π) from below (using reversibility in the first
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equality):

d

dt

+

W (νt, π)

≥ −E(gt, ft)

= −1
2

∑

x∈M

∑

y∈M

(gt(y)− gt(x))(ft(y)− ft(x))L(x, y)π(x)

≥ −1
2

∑

x∈M

∑

y∈M

d(x, y)|ft(y)− ft(x)|L(x, y)π(x) (52)

= −1
2

∑

x∈M

∑

y∈M

d(x, y)
∣∣∣
√

ft(y)−
√

ft(x)
∣∣∣
(√

ft(y) +
√

ft(x)
)

L(x, y)π(x)

≥ −1
2


∑

x∈M

∑

y∈M

(√
ft(y)−

√
ft(x)

)2
L(x, y)π(x)




1/2

(53)


∑

x∈M

∑

y∈M

(√
ft(y) +

√
ft(x)

)2
d2(x, y)L(x, y)π(x)




1/2

≥ −1
2


1

4

∑

x∈M

∑

y∈M

(ft(y)− ft(x))(log ft(y)− log ft(x))L(x, y)π(x)




1/2

(54)


∑

x∈M

∑

y∈M

2(ft(y) + ft(x))d2(x, y)L(x, y)π(x)




1/2

≥ −1
2


∑

x∈M

∑

y∈M

(ft(y)− ft(x))(log ft(y)− log ft(x))L(x, y)π(x)




1/2

(55)

= − 1√
2

√
E(ft, log ft)

The inequality in (52) comes from the Lipschitz property of gt. We use Hölder’s inequality

in (53). In (54) we use the inequality E(ef/2, ef/2) ≤ 1
4E(ef , f) observed in [17]. And finally

in (55) we use the inequality show in (51).

Next we bound the derivative of
√

1
ρ0

D(νt||π) from above, using the modified log-Sobolev

inequality and the derivative of D(νt, π) as noted in Section 1.4.2:

d

dt

√
D(νt||π)

ρ0
= −

1
2E(ft, log ft)√

ρ0D(νt||π)

≤ − 1√
2

√
E(ft, log ft)

≤ d

dt

+

W (νt, π)
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Let

φ(t) =

√
D(νt||π)

ρ0
−W (νt, π)

Then d
dt

+
φ(t) ≤ 0. Therefore

0 = lim
t→∞φ(t) ≤ φ(0) = −W (ν0, π) +

√
D(ν0||π)

ρ0
.

And from this we get the result:

W 2(ν0, π) ≤ 1
ρ0

D(ν0||π).

as desired.

3.1.4 Poincaré Implies Variance Transportation

Now we show that the Poincaré inequality (10) implies the variance transportation inequal-

ity (7) with c2 = 1
2λ1(L) , which is equivalent to showing the inequality c2(G) ≤ 1

2λ1(L) . Here

again we have the Poincaré inequality depending on the specific Markov generator, while

the variance transportation inequality depends only on the underlying graph structure. So

we make an assumption on the distance function that relates the two. We again stipulate

that the distance function is an actual metric and further that:

∑

x,y∈V

d2(x, y)L(x, y)π(x) ≤ 1. (56)

Note that this assumption is weaker than the assumption (50) needed for Proposition 3.1.3.

We formalize the implication in the following proposition and then give two proofs. The first

proof is short, well known, and uses the dual form of the variance transportation inequality.

The second proof follows the same lines as the proof of the previous proposition, but is

easier. See Chapter 6 for a discussion of extending this proof to a family of implications.

Proposition 3.1.4. Suppose the Poincaré inequality:

λ1 Var(f) ≤ E(f, f)

holds for every density f with respect to π. Then the variance transportation inequality:

W 2(ν, π) ≤
(

1
2λ1

)
Var

(
dν

dπ

)

holds for every probability measure ν absolutely continuous with respect to π.
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First Proof. Suppose f is a Lipschitz function. Then

E(f, f) =
1
2

∑

x,y∈V

(f(x)− f(y))2L(x, y)π(x)

≤ 1
2

∑

x,y∈V

d2(x, y)L(x, y)π(x)

≤ 1
2

by the condition (56). So

λ1(L) = inf
f :Varπ f 6=0

E(f, f)
Var f

≤ inf
f :Var f 6=0
f :∈Lip(G)

E(f, f)
Var f

≤ inf
f :Var f 6=0
f :∈Lip(G)

1
2Var f

=
1

2c2(G)
.

Second Proof. Here we cut to the core of the proof, where it is different from the proof of

the previous proposition.

d

dt

+

W (νt, π)

≥ −E(gt, ft)

= −1
2

∑

x∈M

∑

y∈M

(gt(y)− gt(x))(ft(y)− ft(x))L(x, y)π(x)

≥ −1
2

∑

x∈M

∑

y∈M

d(x, y)|ft(y)− ft(x)|L(x, y)π(x)

≥ −1
2


∑

x∈M

∑

y∈M

|ft(y)− ft(x)|2L(x, y)π(x)




1/2


∑

x∈M

∑

y∈M

d2(x, y)L(x, y)π(x)




1/2

= − 1√
2

√
E(ft, ft)

Then recalling from Section 1.4.2 that d
dt Var(ft) = −2E(ft, ft) we have:

d

dt

√
Var(ft)

2λ1
= − 1√

2λ1

E(ft, ft)√
Var(ft)

≤ − 1√
2

√
E(ft, ft)

≤ d

dt

+

W (νt, π)

Since limt→∞W (νt, π) = limt→∞Var(ft) = 0, without repeating the mechanics of the proof
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of the previous proposition we get:

W (ν0, π) ≤
√

Var(f0)
2λ1

which is what we wanted.

3.1.5 Transportation Does Not Imply Poincaré

In Rn, the quadratic cost transportation inequality implies the Poincaré inequality [30, 9],

which leads us to consider the possibility that the transportation inequality could imply the

Poincaré inequality in our discrete setting. We answer this question with a qualified no.

If d is taken to be the graph distance, then the transportation inequality does not imply

the Poincaré inequality. By this we mean that for every positive constant ε we can find a

graph G with associated measure π and graph distance d and the generator L of a Markov

chain on G so that λ1(L) < ε 1
σ2(G)

. We consider a Markov chain on a two vertex path as

described later in Example 3.2.1. For that chain we have λ1(L) = s+t while 1
2σ2(P2)

= 1
4 . So

λ1(L) ¿ 1
2σ2(P2)

as s, t → 0. The dumbbell graph of Example 3.2.4 provides a less artificial

example, as the transition rates are not arbitrarily sent to zero.

3.1.6 Poincaré Does not Imply Transportation

We know that the modified log-Sobolev inequality implies the transportation inequality,

so it is reasonable to ask if the weaker Poincaré inequality also implies the transportation

inequality. As in the previous section, we answer in the negative when d is the graph

distance. To do this we find a natural family of Markov generators {Li}∞i=1 on a family of

graphs {Gi}∞i=1 for which λ1(Li) À 1
2σ2(Gi)

as i →∞. Since 1
2c2(Gi)

≥ λ1(Li) for each i, this

also gives us a family of graphs for which c2(Gi) ¿ σ2(Gi) as i →∞.

We will need the following lower bound on σ2(G), similar to the lower bound on 1
λ1(L)

by Alon and Milman [4].

Lemma 3.1.5. Suppose G = (V, E) is a graph with associated measure π and distance

function d. Suppose π∗ = minx∈V π(x) is strictly positive. Then σ2(G) ≥ D2

32 log 1
π∗

.

Proof. Let x, y ∈ V with d(x, y) = D. Let

Ax = {v ∈ V : d(x, v) ≤ d(v, y)} and Ay = {v ∈ V : d(x, v) ≥ d(v, y)}

59



Then π(Ax) ≥ 1
2 or π(Ay) ≥ 1

2 . Without loss of generality suppose π(Ax) ≥ 1
2 . Let v∗ ∈ Ax

with the property that d(y, Ax) = d(y, v∗). Then

D = d(x, y) ≤ d(x, v∗) + d(v∗, y) ≤ 2d(v∗, y) = 2d(y, Ax)

giving d(y,Ax) ≥ D/2. So {v ∈ V : d(v, Ax) ≥ D/2} is not empty. Then by (8) we get:

π∗ ≤ π({v ∈ V : d(v, Ax) ≥ D/2}) ≤ α(D/2) ≤ e−
(D

2 )2

8σ2 .

Solving for σ2 gives the result.

When π is the uniform measure, this lemma gives the bound σ2(G) ≥ D2

32 log |V | . Suppose

{Gi}∞i=1 is a family of graphs where Gi has ni vertices. Let di be the graph distance on

Gi and associate the uniform probability measure πi with Gi. Let Li be the generator of a

Markov chain on Gi and let Di denote the diameter of graph Gi. If there exists ε > 0 so

that λ1(Li) ≥ ε for each i and if Di À
√

log ni as i → ∞, then we have λ1(Li) À 1
2σ2(Gi)

.

A natural example is when {Gi}∞i=1 is a family of bounded degree expander graphs with

Markov generators Li. By this we mean there exist positive constants ε and k such that the

maximum degree of a vertex in Gi is bounded from above by k for each i and λ1(Li) ≥ ε

for each i. Then Di ≥ K log ni for some constant K, since the family has bounded degree.

3.2 Different Distance Functions

Suppose we are interested in a specific Markov chain on a graph, and we would like to have

bounds on the modified log-Sobolev constant or the spectral gap of the chain. As we saw in

the previous section, we may use the spread constant to bound the spectral gap from above

and the subgaussian constant to bound the modified log-Sobolev constant from above. In

this section we look at how good these bounds are, and how they can be improved by using

distances other than the graph distance.

We start out by showing that when d is the graph distance, then the implications in

Propositions 3.1.3 and 3.1.4 hold under very general conditions. First suppose that the

Markov chain generated by L is the continuization of a discrete time chain as defined in
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Section 1.1.2. Then L satisfies (2), which we repeat here:

∑

y∈V
y 6=x

L(x, y) ≤ 1,

for every x ∈ V . Suppose further that d is the graph distance, so that d(x, y) = 1 whenever

L(x, y) > 0 and x 6= y. Then under these assumptions the condition (50) sufficient for

Proposition 3.1.3 to hold and the weaker condition (56) sufficient for Proposition 3.1.4 to

hold are both satisfied. Hence for any discrete time Markov chain on G with transition

matrix P , if we let L = P − I, then ρ0(L) ≤ 1
2σ2(G)

and λ1(L) ≤ 1
2c2(G)

, where σ2(G) and

c2(G) are calculated using the graph distance.

If we are only concerned with the spectral gap, we can require less. Instead of necessi-

tating that the chain be the continuization of a discrete time chain, we may simply assume

that L satisfies the normalization condition given in (1), and repeated here:

∑

x∈V

∑

y∈V
y 6=x

L(x, y)π(x) ≤ 1.

Then condition (56) sufficient for Proposition 3.1.4 is satisfied when d is the graph distance.

So for any continuous time Markov chain on G whose generator satisfies the normalization

condition we have λ1(L) ≤ 1
2c2(G)

, where c2(G) is calculated using the graph distance.

We begin our examples with the two vertex path, on which we can put the simplest

possible non-trivial Markov chain. We show that under the graph distance, the inequalities

ρ0(L) ≤ 1
2σ2(G)

and λ1(L) ≤ 1
2c2(G)

are tight only for very specific Markov chains, while if

we allow any distance function satisfying conditions (50) or (56), then the inequalities can

be made tight for more general chains.

Example 3.2.1 (Markov Chain on Two Vertex Path). Let P2 be the two point path

of Example 3.1.2 with associated measure π defined in that example. Define the Markov

generator L by:

L =



−s s

t −t




The stationary measure π̃ of the Markov chain generated by L is given by π̃(1) = t
s+t and

π̃(2) = s
s+t . In order for L to be a Markov chain on P2 (as defined in Section 1.1.2), it
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must respect the measure π associated with the graph. This means that π̃ = π (i.e. p = t
s+t

and q = s
s+t).

Bounds on the spectral gap and the modified log-Sobolev constant for this chain are

given in [10] as:
s + t

2
+
√

st ≤ ρ0(L) ≤ λ1(L) = s + t

Note that there is equality when s = t. The spread constant, being the maximum variance

of a Lipschitz function on P2, is:

c2(P2) = pqd(1, 2)2 =
st

(s + t)2
d(1, 2)2

The subgaussian constant is calculated in [8] as:

σ2(P2) =
p− q

2(log p− log q)
d(1, 2)2 =

1
(s + t)

s− t

2(log s− log t)
d(1, 2)2

To understand this scenario, we first simplify it by assuming that d is the graph distance

and that s = t. Then we have ρ0(L) = λ1(L) = 2s, while σ2(P2) = c2(P2) = 1
4 (the

value of σ2(P2) is the limit as s approaches t in the above formula). When s = 1, the

inequalities ρ0(L) ≤ 1
2σ2(P2))

and λ1(L) ≤ 1
2c2(P2)

are tight. As s approaches zero, the

bounds given by σ2(P2) and c2(P2) become meaningless, and for s > 1, the inequalities are

false. If we continue to assume that s = t, but do not arbitrarily choose the graph distance,

(50) and (56) are both satisfied exactly when d(1, 2) ≤ 1√
s
. Setting d(1, 2) = 1√

s
, we get

σ2(P2) = c2(P2) = 1
4s . Then ρ0(L) = λ1(L) = 1

2σ2(P2)
= 1

2c2(P2)
, so the implication is tight

for all values of s.

Now we go back to the general setting. We start by looking at the Poincaré to variance

transportation implication. Condition (56) is satisfied when d(1, 2) ≤
√

s+t
2st . Setting d =

√
s+t
2st , we get c2(P2) = 1

2λ1(L) = s + t, so the implication is tight for all values of s and

t. The situation for the modified log-Sobolev to transportation implication is not so nice.

Condition (50) is satisfied when d(1, 2) ≤ min( 1√
s
, 1√

t
). To be concrete we will assume

that t < s. Then when we set d(1, 2) = 1√
s
, we get ρ0(L) ≤ 1

2σ2(P2)
= (s + t) (log s−log t)

s−t s.

This does give a better bound on ρ0(L) when s < 1 than we get from σ2(P2) calculated

with the graph distance, and it is guaranteed to be an upper bound on ρ0(L) no matter
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what s and t are. On the other hand, from the spread constant we get the bound ρ0(L) ≤
λ1(L) ≤ 1

2c2(P2)
= s + t, which is a better bound on ρ0(L) since (log s−log t)

s−t s ≥ 1. One may

conjecture that only the weaker condition (56) is necessary for the modified log-Sobolev

inequality to imply the transportation inequality. But if we calculate σ2(P2) with the

distance d =
√

s+t
2st which satisfies (56), we get σ2(P2) = (s+t)2

2st
log s−log t

s−t . For s = 1 and

t > 1 we have 1
2σ2(P2)

¿ s+t
2 +

√
st ≤ ρ0(L) as t → ∞, so the implication does not always

hold. But we make a modified conjecture.

Conjecture 3.2.2. If L satisfies (2), so that the chain generated by L is the continuization

of a discrete time chain, and if further d and L satisfy (56), then the modified log-Sobolev

inequality implies the transportation inequality with σ2 = 1
2ρ0(L) .

Next we look at Markov chains on the complete graph. The situation here is somewhat

similar to the two vertex graph, but more difficult.

Example 3.2.3 (Markov Chain on the Complete Graph). Let Kn be the complete

graph on n vertices with associated probability measure π. Let L be the generator of a Markov

chain on Kn with L(x, y) = π(y) for each x, y ∈ V with x 6= y. Then L(x, x) = 1 − π(x).

Note that the chain satisfies (2), and hence is the continuization of a discrete time chain.

Again, the bounds on ρ0 and λ1 are given in [10] while the values of σ2 and c2 are given

in [8]. Let π∗ = minx∈V π(x). Then

1
2

+
√

π∗(1− π∗) ≤ ρ0(L) ≤ λ1(L) = 1.

Let p∗ = min{π(A) : π(A) ≥ 1/2} and q∗ = 1 − p. Then calculating the subgaussian and

spread constants using the graph distance we have:

c2(Kn) = p∗q∗ and σ2(Kn) =
p∗ − q∗

2(log p∗ − log q∗)
.

where σ2(Kn) = 1/4 when p∗ = q∗.

It p∗ = q∗, as when n is even and π is the uniform measure, then ρ0(L) ≤ λ1(L) = 1 <

2 = 1
2c2(Kn)

= 1
2σ2(Kn)

. When p∗ 6= q∗ we actually get the inequality ρ0(L) ≤ λ1(L) = 1 <

2 < 1
2σ2(Kn)

< 1
2c2(Kn)

. So σ2(Kn) gives a better bound on ρ0(L) than c2(Kn) (as it always
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does when they are calculated using the graph distance). But neither seems to accurately

capture what is going on.

We may try to improve the bound on λ1(L) using c2(Kn) calculated using another

distance function. The condition (56) allows us to bound the variance of a Lipschitz function

by:

Var(f) =
1
2

∑

x,y∈V

(f(y)− f(x))2π(x)π(y)

≤ 1
2

∑

x,y∈V

d(x, y)2π(x)π(y) (57)

=
1
2

∑

x,y∈V

d(x, y)2L(x, y)π(x)

≤ 1
2
. (58)

If we could find a distance function d to make (58) tight and a Lipschitz function f to make

(57) tight, then we would have c2(Kn) = 1/2 and hence λ1(L) = 1
2c2(Kn)

. Although finding

a distance function which makes (58) tight is easy to do, given a particular d, making (57)

tight is not always possible. Consider again the case where n is even and π is the uniform

measure. Then conditions (56) and even the stricter (50) are satisfied when d(x, y) =
√

n
n−1

for each x 6= y. With this distance σ2(Kn) = c2(Kn) = n
n−1

1
4 , which is an improvement over

the graph distance, but not by much. It is not clear if we can do better than this. When π

is not uniform, the problem is even more difficult.

Example 3.2.4 (Markov Chain on the Dumbbell Graph). Consider the dumbbell

graph B = (V, E) with an even number of vertices n. B consists of two complete graphs on

n/2 vertices connected by one edge {v, v′}. We are interested in the Markov generator L on

B in which the transition rate r is the same between every two adjacent vertices. Then the

chain’s stationary distribution is the uniform distribution.

Here we use the bounds:

ρ0(L) ≤ λ1(L) ≤ E(f, f)
Var(f)

and
2

D2
≤ 1

2σ2(B)
≤ 1

2c2(B)
≤ 2

d(v, v′)2

where D is the diameter of G and f is any function on V . If we let f be the indicator
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function of one side of the dumbbell, and if d is the graph distance we have:

ρ0(L) ≤ λ1(L) ≤ r

n
and

2
9
≤ 1

2σ2(B)
≤ 1

2c2(B)
≤ 2,

where we recall that r is the transition rate between adjacent vertices. Both of the conditions

(2) and (1) imply that r = O( 1
n). So we have ρ0(L) ≤ λ1(L) = O( 1

n2 ) while 1
2σ2(B)

and

1
2c2(B)

are bounded below by a constant. So ρ0(L) ¿ 1
2σ2(B)

and λ1(L) ¿ 1
2c2(B)

, as n →∞.

If we use condition (56) which guarantees that λ1(L) ≤ 1
2c2(B)

we are able to take

d(v, v′) =
√

n
2r (and d(x, y) = 0 for all other adjacent vertices x and y) which gives us

1
2c2(B)

= 4r
n which is at least the same order as our upper bound on λ1(L).

Using condition (56) which guarantees that ρ0(L) ≤ 1
2σ2(B)

we cannot get d(v, v′) larger

than
√

1
r , so finding a good upper bound on ρ0(L) using σ2(B) is more difficult that simply

using c2(B).

These examples seem to suggest that unless we can prove Conjecture 3.2.2, if we want an

upper bound on ρ0(L), we are better off using λ1(L) as an upper bound and using 1
2c2(G)

to

find the upper bound on λ1. But as we showed in Section 3.1.6, families of expander graphs

provide an example where 1
2σ2(Gn)

¿ λ1(Ln) as n → ∞, even when σ2(Gn) is calculated

using the graph distance. Since 1
2c2(Gn)

is bounded below by λ1(Ln), in this example 1
2σ2(Gn)

provides a much better bound on ρ0(Ln) than we could get using c2(Gn).

3.3 Fastest Mixing Markov Process Problem

In this section we look at the opposite of the problem in the previous section. Now we

begin with a graph G = (V, E) with associated measure π and distance function d for which

we would like to know bounds on the subgaussian or spread constants. As we saw earlier,

whenever L is the generator of a Markov chain on G, if (2) is satisfied, then ρ0 ≤ 1
2σ2 and

λ1 ≤ 1
2c2

, where σ2 and c2 are calculated using the graph distance. If only (1) is satisfied,

then λ1 ≤ 1
2c2

, where c2 is calculated using the graph distance. The values of ρ0 and λ1

control the speed at which a Markov chain decays to its stationary measure. This leads us

to the problem of finding the fastest mixing Markov chain on G in the sense of finding the

one that maximize ρ0 or λ1.
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Recently, Sun, Boyd, Xiao, and Diaconis [35] examined the problem of finding the fastest

continuous time Markov chain on a graph in the sense of maximizing λ1, following work

by the last three authors [12] on finding fastest mixing discrete time Markov chains. For

the continuous time chain, they show that finding the generator of a fastest mixing Markov

chain on a graph is equivalent to a semi-definite program, whose dual is equivalent to the

maximum variance unfolding problem. The maximum variance unfolding problem is given

as:

maximize:
∑

x∈V ‖F (x)‖2π(x)

subject to: F (x) ∈ R|V | x ∈ V

‖F (x)− F (y)‖ ≤ d(x, y), {x, y} ∈ E

∑
x∈V F (x)π(x) = 0,

(59)

where ‖v‖ =
√

v · v for v ∈ R|V |. Note that this is simply the |V |-dimensional relaxation of

the spread constant.

Considering Markov generators that satisfy the normalization condition 1, we denote

the spectral gap of the fastest Markov chain on G (in the sense of having the largest spectral

gap) as λ∗1(G). This means that λ∗1(G) is also the value of the maximum variance unfolding

problem. Now we already have 2c2(G) ≤ 1
λ∗1

, and Assaf Naor showed us that using the

Johnson-Lindenstrauss Lemma [23] on the maximum variance unfolding problem we get

that the inequality is tight up to a factor of log |V |.

Proposition 3.3.1. 1
λ∗1(G) = O(c2(G) log |V |).

Proof. The Johnson-Lindenstrauss Lemma [23] guarantees the existence of a map h : R|V | →
Rd with d = O(log |V |), with

1
2
‖F (x)− F (y)‖ ≤ ‖h(F (x))− h(F (y))‖ ≤ ‖F (x)− F (y)‖ for all x, y ∈ V.

This map maintains the constraint that ‖h(F (x)) − h(F (y))‖ ≤ 1, for {x, y} ∈ E, and

returns vectors in Rd, with no worse than a factor of 4 loss in the optimal variance. For

1
4

∑

x,y∈V

‖F (x)− F (y)‖2π(x)π(y) ≤
∑

x,y∈V

‖h(F (x))− h(F (y))‖2π(x)π(y).
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The constraint about the mean of the configuration being zero should not matter, since a

constant can be subtracted from any solution without affecting ‖F (x)− F (y)‖. Finally to

complete the proposition, observe that

1
4d

1
λ∗1

=
1
8d

∑

x,y∈V

‖F (x)− F (y)‖2πiπj

≤ 1
2d

∑

x,y∈V

d∑

k=1

|h(F (x))(k)− h(F (y))(k)|2π(x)π(y)

≤ max
k

1
2

∑

x,y∈V

|h(F (x))(k)− h(F (y))(k)|2π(x)π(y)

≤ c2(G).

This bound on 1
λ∗1

provides an interesting existence guarantee for fast mixing Markov

chains on a graph. Consider a graph G on n vertices with the uniform probability measure

and diameter bounded above by a polynomial in the log of n. The total variation mixing

time of a Markov chain with generator L on G is bounded above by k 1
λ1(L) log n, for some

constant k. This bound on the total variation mixing time, together with the previous result

and the fact the c2(G) is bounded above by a fraction of the diameter squared, shows that

the mixing time of a fastest chain on G is polynomial in log n.

Further extensions by A. Naor of this work appear in [29], including the following re-

sults. For planar graphs, the spread constant can be estimated efficiently up to a constant

factor. It can be estimated efficiently for graphs with a doubling constant λ up to a fac-

tor of log λ log log λ. As the previous lemma shows, in general the spread constant can be

estimated efficiently up to a factor of log |V |, since semidefinite programs have efficient al-

gorithms. Further, there exist graphs showing that this log |V | bound is tight up to a factor

of log log |V |. Finally, in general there is no efficient algorithm for calculating the spread

constant of a graph up to a small constant factor.
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CHAPTER IV

CONCENTRATION ON THE DISCRETE TORUS

In this chapter, we show that σ2(G) = c2(G) if there is no probability measure ν other than

π for which W 2(ν, π) = 2σ2D(ν||π). We then use this fact to find the subgaussian constant

of the even cycle exactly by showing that σ2(C2k) = c2(C2k), for every k ≥ 1. For the odd

cycle we use the transportation inequality definition of the subgaussian constant to show

that c2(C2k+1) < σ2(C2k+1) = c2(C2k+1)(1 + o(1)), where o(1) disappears as the number of

vertices goes to infinity.

The above has superficial similarity to a recent result of Chen and Sheu [15], who found

the exact value of the log-Sobolev constant ρ of the even cycle. They prove that for the

even cycle, ρ equals the spectral gap λ1, using the fact that the inequality ρ ≤ λ1 is actually

an equality if there is no function f for which the log-Sobolev inequality is satisfied with

equality.

Prior to this work, the exact values of the subgaussian constant were computed for

a few graphs in [8], including the 2-point space with arbitrary probability measure, the

completely connected graph and the path of arbitrary length with uniform probability

measure. They reduce the problem of finding σ2(C3) to finding the subgaussian constant

on a (nonuniformly) weighted path of length two. And the value of σ2(C4) is known, as C4

is the product of two copies of a 2-vertex path. But computing the subgaussian constant

of cycles of with more than four vertices remained open. One goal of this chapter is to find

the asymptotically correct value of σ2(Cn), irrespective of the parity of n.

We are further motivated by the work of Riordan [31], who in 1998 solved the isoperi-

metric problem on the discrete torus consisting of a product of even cycles, by finding an

ordering on the torus for which the initial segments are sets of smallest surface area. He

notes that his proof cannot extend to products of cycles which include ones of odd length

because the extremal sets are not necessarily nested (as in the cube of the 3-cycle, for
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example). Finding tight bounds on the subgaussian constant of a cycle, and using tensor-

ing, gives a concentration result for the discrete torus without needing to go through the

isoperimetric problem.

The results for the cycle are proved in Section 4.3, while much of the work for the last

proposition of Section 4.3 is contained in a collection of lemmas in Section 4.2. We begin

with section 4.1 which contains general lemmas concerning the transportation inequality,

with special emphasis on the state in which the inequality obtains equality.

4.1 Technical Lemmas about the Transportation Inequality

Let G = (V,E) be a graph with associated measure π and distance function d. The following

lemma is useful for proving that the subgaussian constant and the spread constant are

different. Recall that P (G) denotes the set of probability measures on V and ‖ · ‖, denotes

the l1 norm.

Lemma 4.1.1. Let f be a Lipschitz function with E[f ] = 0 and Var[f ] = c2(G). If E[f3] 6= 0

then σ2(G) > c2(G).

Proof. Define

F (ν) =
D(ν||π)(∑

x∈V f(x)(ν(x)− π(x))
)2

on the subset D of P (G) for which the denominator is not zero. Then

inf
ν∈D

F (ν) ≥ inf
ν∈P (G)\{π}

D(ν||π)
W 2(ν, π)

=
1

2σ2(G)
.

For positive ε small enough that |εf(x)| < 1 for every x ∈ V , define the measure νε by
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dνε = (1 + εf)dπ. Consider the following limit:

lim
ε→0

F (νε) = lim
ε→0

∑
x∈V (1 + εf(x)) log(1 + εf(x))π(x)(∑
x∈V f(x)[(1 + εf(x))π(x)− π(x)]

)2

= lim
ε→0

∑
x∈V (1 + εf(x)) log(1 + εf(x))π(x)

ε2
(∑

x∈V f(x)2π(x)
)2

= lim
ε→0

∑
x∈V (1 + εf(x))

∑∞
k=1

(−1)k+1

k εkf(x)kπ(x)
ε2E[f2]2

=
1
2E[f2] + limε→0

∑
x∈V

∑∞
k=2

(
(−1)k+2

k+1 + (−1)k+1

k

)
εk−1f(x)k+1π(x)

E[f2]2

=
1

2E[f2]

=
1

2c2(G)
.

Let I be an open interval around 0 small enough so that |εf(x)| < 1 for every x ∈ V and

ε ∈ I. Define H : I → R by

H(ε) =





F (νε), ε 6= 0

1
2c2(G)

, ε = 0

H is continuous at 0 by the previous limit. Let us calculate the derivative of H at 0.

d

dε
H(ε)|ε=0 = lim

t→0

H(t)−H(0)
t

= lim
t→0

F (νt)− 1
2E[f2]

t

= lim
t→0

1
2
E[f2]+

∑
x∈V

∑∞
k=2

(
(−1)k+2

k+1
+

(−1)k+1

k

)
tk−1f(x)k+1π(x)

E[f2]2
− 1

2E[f2]

t

=
−1

6E[f3] + limt→0
∑

x∈V

∑∞
k=3

(
(−1)k+2

k+1 + (−1)k+1

k

)
tk−2f(x)k+1π(x)

E[f2]2

=
−1

6E[f3]
E[f2]2

.

Now suppose E[f3] 6= 0. Then d
dεH(ε)|ε=0 6= 0, which implies there exists ε 6= 0 with

H(ε) < H(0). This means there exists ν ∈ P (G) with ν 6= π and F (ν) < 1
2c2(G)

. Hence

σ2(G) > c2(G).

The next key lemma gives a sufficient condition for obtaining equality in the transporta-

tion inequality.
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Lemma 4.1.2. If σ2(G) 6= c2(G) then there exists ν ∈ P (G) with ν 6= π and W 2(ν, π) =

2σ2(G)D(ν||π).

Proof. Define F : P (G) \ {π} → R by

F (ν) =
D(ν||π)
W 2(ν, π)

,

so that
1

2σ2(G)
= inf

ν∈P (G)\{π}
F (ν).

To prove the lemma we must show that the infimum is attained if σ2(G) > c2(G).

As mentioned in Section 1.4, D(ν||π) is a continuous function of ν ∈ P (G). Lemma

2.2.3 shows that W (ν, π) is a continuous function of ν. Since W (ν, π) = 0 if and only if

ν = π, F is continuous on P (G) \ {π}.
At this point, if P (G) \ {π} were compact, we would be done. We will show that if ν

is near π then F (ν) is too large to be relevant to the infimum. Since σ2(G) 6= c2(G), there

exists ε > 0 such that σ2(G) > (1 + ε)c2(G). Let m = min{π(x) : x ∈ V and π(x) 6= 0}.
Then let K and δ1 be positive real numbers with

1
2
− 3δ1 ≥ K =

1
2(1 + ε)

.

Next let δ2 > 0 small enough so that m− δ2 > 0 and

δ2

m− δ2
≤ δ1.

Let ν ∈ P (G) \ {π} with ‖ν − π‖ ≤ δ2. Let a(x) = 1 − ν(x)/π(x) for x ∈ V . Then

‖a‖ ≤ 1
m‖ν − π‖ ≤ δ2

m . Let f be a solution to Kantorovich’s problem respect to ν and π
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with E[f ] = 0. Then

F (ν) =
D(ν||π)
W 2(ν, π)

=

∑
x∈V

ν(x)
π(x) log

(
ν(x)
π(x)

)
π(x)

(∑
x∈V f(x)(ν(x)− π(x))

)2

=

∑
x∈V [1− (1− ν(x)

π(x))] log
(
[1− (1− ν(x)

π(x))]
)

π(x)
(∑

x∈V f(x)π(x)( ν(x)
π(x) − 1)

)2

=
∑

x∈V (1− a(x)) log (1− a(x))π(x)(∑
x∈V f(x)a(x)π(x)

)2

For each x ∈ V we have |a(x)| ≤ ‖a‖ ≤ δ2
m < 1, so we may use the Taylor expansion

of log(1 − a(x)) to get log(1 − a(x)) = −a(x) − 1
2a(x)2 + R3(−a(x)), where R3(−a(x))

is the remainder term. We use standard bounds on the remainder term in the Taylor

expansion of log(1+x), (see Salas, Hille, and Etgen [32] for example) to obtain |R3(−a(x))| ≤
a(x)2 |a(x)|

1−|a(x)| ≤ a(x)2
1
m

δ2

1− 1
m

δ2
= a(x)2 δ2

m−δ2
≤ a(x)2δ1. Since 1− a(x) is positive we have:

(1− a(x)) log(1− a(x)) = (1− a(x))[−a(x)− (1/2)a(x)2 + R3(−a(x))]

≥ (1− a(x))[−a(x)− (1/2)a(x)2 − |R3(−a(x))|]

≥ (1− a(x))[−a(x)− (1/2)a(x)2 − δ1a(x)2]

= −a(x) + (1/2− δ1)a(x)2 + (1/2 + δ1)a(x)3

≥ −a(x) + (1/2− δ1)a(x)2 − (1/2 + δ1)|a(x)|a(x)2

≥ −a(x) + (1/2− δ1)a(x)2 − (1/2 + δ1)
δ2

m
a(x)2

≥ −a(x) + (1/2− δ1)a(x)2 − (1/2 + δ1)δ1a(x)2

≥ −a(x) + (1/2− 3δ1)a(x)2

≥ −a(x) + Ka(x)2
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So we have:

F (ν) =
∑

x∈V (1− a(x)) log (1− a(x))π(x)(∑
x∈V f(x)a(x)π(x)

)2

≥
∑

x∈V (−a(x) + Ka(x)2)π(x)(∑
x∈V f(x)a(x)π(x)

)2

=
K

∑
x∈V a(x)2π(x)(∑

x∈V f(x)a(x)π(x)
)2

≥ K∑
x∈V f(x)2π(x)

(60)

=
K

Var[f ]

≥ K

c2(G)

=
1

2(1 + ε)c2(G)

where the inequality in (60) is the Cauchy-Schwarz inequality. Let B(π, δ2) = {µ ∈ P (G) :

‖µ−π‖ < δ2}. P (G)\B(π, δ2) is closed and hence compact (since it is a subset of a compact

set). Let νi ∈ P (G) \ {π} so that F (νi) → 1/(2σ2(G)) as i →∞. Now

1
2σ2(G)

<
1

2(1 + ε)c2(G)

so there exists an integer N so that for all integers i ≥ N we have

F (νi) <
1

2(1 + ε)c2(G)
.

So νi ∈ P (G) \B(π, δ2) for all integers i ≥ N . Hence

inf
ν∈P (G)\B(π,δ2)

F (ν) =
1

2σ2
,

Since P (G) \ B(π, δ2) is compact and F is continuous on P (G) \ B(π, δ2), the infimum is

attained. Hence there exists ν 6= π with W 2(ν, π) = 2σ2(G)D(ν||π).

Lemma 4.1.3. Suppose there exists ν ∈ P (G) with ν 6= π and W 2(ν, π) = 2σ2D(ν||π).

Then for every C ( V we have:

• If
∑

x∈C ν(x) ≥ ∑
x∈C π(x) then there exists a vertex x ∈ C and a vertex y /∈ C with

f(x)− f(y) = d(x, y).
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• If
∑

x∈C ν(x) ≤ ∑
x∈C π(x) then there exists a vertex x ∈ C and a vertex y /∈ C with

f(x)− f(y) = −d(x, y).

We note that if the distance d under consideration is the graph distance, then the vertices

x and y may be taken to be neighbors.

Proof. Let f be a solution to Kantorovich’s problem with respect to ν and π. For C ( V ,

define

fε(x) =





f(x), x /∈ C

f(x) + ε, x ∈ C

Then

K(fε) =
∑

x∈V

f(x)(ν(x)− π(x)) + ε
∑

x∈C

(ν(x)− π(x)),

where the function K is defined in Section 1.3. First suppose that
∑

x∈C ν(x) >
∑

x∈C π(x).

Since the coefficient of ε is positive and f is optimal, we must have that fε /∈ Lip(G) for any

positive ε. Then there exists x ∈ C and y /∈ C with f(x) − f(y) = d(x, y). Now suppose

that
∑

x∈C ν(x) <
∑

x∈C π(x). The coefficient of ε is now negative and f is optimal, so we

must have that fε /∈ Lip(G) for any negative ε. Then there exists x ∈ C and y /∈ C with

f(x)−f(y) = −d(x, y). Finally suppose that
∑

x∈C ν(x) =
∑

x∈C π(x). Then K(fε) = K(f)

for every ε. Hence fε is a solution to Kantorovich’s problem with respect to ν and π whenever

fε is a Lipschitz function. Since C is a strict subset of V , fε is not a translation of f for

any ε 6= 0. By Corollary 2.3.4, f is the unique solution to Kantorovich’s problem up to

translation, so fε is not Lipschitz for any ε 6= 0. The conclusion then follows.

The following lemma is inspired by Alon, Boppana, and Spencer’s Theorem 2.1 con-

cerning optimality of the spread constant [3]. For this lemma we assume we are using the

graph distance.

Lemma 4.1.4. Suppose that there exists ν ∈ P (G) with ν 6= π and W 2(ν, π) = 2σ2D(ν||π).

Then for any solution f to Kantorovich’s problem with respect to ν and π, after a possible

translation f will be integer valued and have the property that for some U ⊂ V , f(x) =

±d(x,U) for all x ∈ V .
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Proof. Let f be a solution to Kantorovich’s problem with respect to ν and π. We start by

showing that a translation of f will be integer valued. Consider the graph Gf with vertex

set V and edge set Ef ⊂ E where {x, y} ∈ Ef if and only if {x, y} ∈ E and |f(x)−f(y)| = 1.

Then Lemma 4.1.3 shows that Gf is connected. Hence a translation of f will be integer

valued. For the next part we assume f is integer valued and consider the following set:

U =
{

x ∈ V : ν(x) ≥ π(x) and
ν(x)
π(x)

≤ ν(y)
π(y)

for all y ∈ V with ν(y) ≥ π(y)
}

If x, y ∈ U , then ν(x)
π(x) = ν(y)

π(y) and hence f(x) = f(y) by Corollary 2.3.4. By translating f

we may assume that f(x) = 0 for all x ∈ U . Let O = {|f(x)| : x ∈ V }. Then O contains

every integer between 0 and some maximum value. The proof of the lemma will now be by

induction on |f(x)|. For the base case let x ∈ V with |f(x)| = 0. Then f(x) = f(u) for some

u ∈ U . Hence ν(x)
π(x) = ν(u)

π(u) again by Corollary 2.3.4. So x ∈ U and d(x,U) = 0, showing

that f(x) = d(x,U). Now let m ∈ O and assume that f(x) = ±d(x,U) for any x ∈ V with

|f(x)| ≤ m. Suppose m + 1 ∈ O. Let z ∈ V with |f(z)| = m + 1. Suppose f(z) > 0. Since

f(z) > f(u) for some u ∈ U , we have ν(z)
π(z) > ν(u)

π(u) ≥ 1 by Corollary 2.3.4. By Lemma 4.1.3,

since ν(z) > π(z) there exists a neighbor x of z with f(z) − f(x) = 1. Then f(x) = m

and by the induction hypothesis, f(x) = d(x,U). So f(z) = d(z, x) + d(x,U) ≥ d(z, U),

by the triangle inequality. Let u ∈ U with d(z, u) = d(z, U). Then since f ∈ Lip(G) we

have d(z, U) = d(z, u) ≥ |f(z) − f(u)| = f(z) ≥ d(z, U). Hence f(z) = d(z, U). Now

assume that f(z) < 0. Since f(z) < f(u) for some u ∈ U , we have by Corollary 2.3.4 that

ν(z)
π(z) < ν(u)

π(u) . So ν(z) < π(z) by the definition of U . Hence there exists a neighbor x of z

with f(z) − f(x) = −1. So f(x) = −m and f(x) = −d(x,U) by the induction hypothesis.

This means that f(z) = −(d(z, x) + d(x, U)) ≤ −d(z, U). Let u ∈ U with d(z, u) = d(z, U).

Then since f is Lipschitz we have d(z, U) = d(z, u) ≥ |f(z) − f(u)| = −f(z) ≥ d(z, U).

This give us f(z) = −d(z, U), which ends the induction step. Therefore, f(x) = ±d(x, U)

for all x ∈ V .

4.2 Specific Purpose Lemmas

We start with a quick inequality that we need in the next lemma.

75



Lemma 4.2.1. (x + y − 1) log(x + y − 1) ≥ x log(x) + y log(y) for (x, y) ∈ A where A =

{(x, y) ∈ R2 : (x + y ≥ 1) ∧ (x, y ≥ 1 ∨ x, y ≤ 1)}.

Proof. Let f(x, y) = x log(x) + y log(y) − (x + y − 1) log(x + y − 1). We must show that

f(x, y) ≤ 0 on A. Note that f(1, y) = f(x, 1) = 0 for all (x, y) ∈ A. It suffices to show that

∂f
∂x (x, y) ≥ 0 for (x, y) ∈ A with x, y ≤ 1 and ∂f

∂x (x, y) ≤ 0 for (x, y) ∈ A with x, y ≥ 1.

∂f

∂x
= log

(
x

x + y − 1

)
,

so the lemma follows by noting that x
x+y−1 ≥ 1 for (x, y) ∈ A with x, y ≤ 1 and x

x+y−1 ≤ 1

for (x, y) ∈ A with x, y ≥ 1.

For the following two lemmas, let G = (V, E) with z ∈ V and z1, z2 /∈ V . Let π be a

probability measure on V and let π̃ be a probability measure on Ṽ = (V \ {z}) ∪ {z1, z2}.
Assume that π̃(x) = kπ(x) for x ∈ V \ {z} and that π̃(z1) = π̃(z2) = kπ(z), where k is the

constant necessary to make π̃ a probability measure. Let us note that k = 1
1+π(z) , giving

us k = n
n+1 when π is the uniform measure on V .

Lemma 4.2.2. Let f be a probability density on V with respect π. Let g be a probability

density on Ṽ with respect to π̃. Assume that g(x) = f(x) for x ∈ V \ {z} and f(z) =

g(z1) + g(z2)− 1. If g(z1), g(z2) ≤ 1 or g(z1), g(z2) ≥ 1, then Entπ[f ] ≥ 1
k Entπ̃[g].

Proof.

Entπ[f ] =
n∑

x∈V

f(x) log(f(x))π(x)

= f(z) log(f(z))π(z) +
n∑

x∈V \{z}
f(x) log(f(x))π(x)

= (g(z1) + g(z2)− 1) log(g(z1) + g(z2)− 1)π(z) +
n∑

x∈V \{z}
g(x) log(g(x))π(x)

≥ g(z1) log(g(z1))π(z) + g(z2) log(g(z2))π(z) +
n∑

x∈V \{z}
g(x) log(g(x))π(x)

=
1
k


g(z1) log(g(z1))π̃(z1) + g(z2) log(g(z2))π̃(z2) +

n∑

x∈V \{z}
g(x) log(g(x))π̃(x)




=
1
k

Entπ̃[g].
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The lone inequality comes from Lemma 4.2.1

Let ν ∈ P (G) and let µ be a solution to Monge’s problem with respect to ν and π.

Assume z has the following properties:

• If ν(z) ≥ π(z) then x ∈ V with µ(x, z) > 0 implies that x = z.

• If ν(z) ≤ π(z) then x ∈ V with µ(z, x) > 0 implies that x = z.

Note that Lemma 2.1.5 guarantees that we can always find a µ so that these properties are

satisfied for any z. Suppose G̃ = (Ṽ , Ẽ) is a graph with distance function d̃ satisfying the

following conditions:

1. d̃(x, y) ≥ d(x, y) for every x, y ∈ V \ {z}.

2. d̃(x, y) = d(x, y) for every x, y ∈ V \ {z} with µ(x, y) > 0.

3. d̃(x, z1) ≥ d(x, z) and d̃(x, z2) ≥ d(x, z) for every x ∈ V \ {z}.

4. d̃(x, z1) = d(x, z) or d̃(x, z2) = d(x, z) for every x ∈ V \ {z}.

Then we get the following result.

Lemma 4.2.3. There exists ν̃ ∈ P (G̃) satisfying the following properties:

1. W (ν̃, π̃) = kW (ν, π).

2. ν̃(x)
π̃(x) = ν(x)

π(x) for every x ∈ V \ {z}.

3. ν̃(z1)
π̃(z1) + ν̃(z2)

π̃(z2) − 1 = ν(z)
π(z)

4. If ν(z) ≥ π(z) then ν̃(z1) ≥ π̃(z1) and ν̃(z2) ≥ π̃(z2). If ν(z) ≤ π(z) then ν̃(z1) ≤
π̃(z1) and ν̃(z2) ≤ π̃(z2).
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Proof. Let V1 = {x ∈ V \ {z} : d(x, z) = d̃(x, z1)}. Let V2 = (V \ {z}) \ V1. Then

d(x, z) = d̃(x, z2) for all x ∈ V2 by Condition 4. Define µ̃ : Ṽ × Ṽ → R by

µ̃(x, y) = kµ(x, y) x, y ∈ V \ {z}
µ̃(z1, x) = kµ(z, x) x ∈ V1

µ̃(x, z1) = kµ(x, z) x ∈ V1

µ̃(z1, x) = 0 x ∈ V2

µ̃(x, z1) = 0 x ∈ V2

µ̃(z2, x) = kµ(z, x) x ∈ V2

µ̃(x, z2) = kµ(x, z) x ∈ V2

µ̃(z2, x) = 0 x ∈ V1

µ̃(x, z2) = 0 x ∈ V1

µ̃(z1, z1) = kµ(z, z) + k
∑

x∈V2
µ(x, z)

µ̃(z2, z2) = kµ(z, z) + k
∑

x∈V1
µ(x, z)

µ̃(z2, z1) = 0

µ̃(z1, z2) = 0

First let us verify that µ̃ has π̃ as a second marginal. We start with y ∈ Ṽ \ {z1, z2}. Then

∑

x∈Ṽ

µ̃(x, y) =
∑

x∈V \{z}
µ̃(x, y) + µ̃(z1, y) + µ̃(z2, y)

= k


 ∑

x∈V \{z}
µ(x, y) + µ(z, y)




= k
∑

x∈V

µ(x, y)

= kπ(y)

= π̃(y).
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Next we will check z1 and z2:

∑

x∈Ṽ

µ̃(x, z1) =
∑

x∈V1

µ̃(x, z1) +
∑

x∈V2

µ̃(x, z1) + µ̃(z1, z1) + µ̃(z2, z1)

= k


 ∑

x∈V1

µ(x, z) + 0 + µ(z, z) +
∑

x∈V2

µ(x, z) + 0




= k
∑

x∈V

µ(x, z)

= kπ(z)

= π̃(z1).

Similarly we have:

∑

x∈Ṽ

µ̃(x, z2) =
∑

x∈V1

µ̃(x, z2) +
∑

x∈V2

µ̃(x, z2) + µ̃(z1, z2) + µ̃(z2, z2)

= k


0 +

∑

x∈V2

µ(x, z) + 0 + µ(z, z) +
∑

x∈V1

µ(x, z)




= k
∑

x∈V

µ(x, z)

= kπ(z)

= π̃(z2).

Now define ν̃ : Ṽ → R by ν̃(x) =
∑

y∈Ṽ µ̃(x, y). Let us verify Property 2 of the lemma. Let

x ∈ V \ {z}.

ν̃(x) =
∑

y∈Ṽ

µ̃(x, y)

=
∑

y∈V \{z}
µ̃(x, y) + µ̃(x, z1) + µ̃(x, z2)

= k


 ∑

y∈V \{z}
µ(x, y) + µ(x, z)




= k
∑

y∈V

µ(x, y)

= kν(x)

=
π̃(x)
π(x)

ν(x).
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And to check Property 3 we calculate:

ν̃(z1) + ν̃(z2) =
∑

y∈Ṽ

µ̃(z1, y) +
∑

y∈Ṽ

µ̃(z2, y)

=
∑

y∈V1

µ̃(z1, y) +
∑

y∈V2

µ̃(z1, y) + µ̃(z1, z1) + µ̃(z1, z2)

+
∑

y∈V1

µ̃(z2, y) +
∑

y∈V2

µ̃(z2, y) + µ̃(z2, z1) + µ̃(z2, z2)

= k


∑

y∈V1

µ(z, y) + 0 + µ(z, z) +
∑

x∈V2

µ(x, z) + 0




+k


0 +

∑

y∈V2

µ(z, y) + 0 + µ(z, z) +
∑

x∈V1

µ(x, z)




= k
∑

x∈V

µ(z, x) + k
∑

x∈V

µ(x, z)

= k[ν(z) + π(z)].

This is what we want after dividing both sides by kπ(z) and recalling that π̃(z1) = π̃(z2) =

kπ(z). Now we will verify Property 4.

ν̃(z1) =
∑

y∈Ṽ

µ̃(z1, y)

=
∑

y∈V1

µ̃(z1, y) +
∑

y∈V2

µ̃(z1, y) + µ̃(z1, z1) + µ̃(z1, z2)

= k


∑

y∈V1

µ(z, y) + 0 + µ(z, z) +
∑

x∈V2

µ(x, z) + 0




= k


∑

y∈V1

µ(z, y)−
∑

x∈V1

µ(x, z) +
∑

x∈V

µ(x, z)




= k


∑

y∈V1

µ(z, y)−
∑

x∈V1

µ(x, z) + π(z)




If ν(z) ≥ π(z), then µ(x, z) > 0 implies that x = z and so

ν̃(z1) = k


∑

y∈V1

µ(z, y) + π(z)


 ≥ kπ(z) = π̃(z1).

If ν(z) ≤ π(z), then µ(z, y) > 0 implies that y = z and so

ν̃(z1) = k


−

∑

x∈V1

µ(x, z) + π(z)


 ≤ kπ(z) = π̃(z1).
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Similarly for z2 we get:

ν̃(z2) =
∑

y∈Ṽ

µ̃(z2, y)

=
∑

y∈V1

µ̃(z2, y) +
∑

y∈V2

µ̃(z2, y) + µ̃(z2, z1) + µ̃(z2, z2)

= k


0 +

∑

y∈V2

µ(z, y) + 0 + µ(z, z) +
∑

x∈V1

µ(x, z)




= k


∑

y∈V2

µ(z, y)−
∑

x∈V2

µ(x, z) +
∑

x∈V

µ(x, z)




= k


∑

y∈V2

µ(z, y)−
∑

x∈V2

µ(x, z) + π(z)




If ν(z) ≥ π(z), then µ(x, z) > 0 implies that x = z and so

ν̃(z2) = k


∑

y∈V2

µ(z, y) + π(z)


 ≥ kπ(z) = π̃(z2).

If ν(z) ≤ π(z), then µ(z, y) > 0 implies that y = z and so

ν̃(z2) = k


−

∑

x∈V2

µ(x, z) + π(z)


 ≤ kπ(z) = π̃(z2).

Before verifying Property 1, we will use properties 2 and 3 to show that indeed ν̃ is a

probability measure on Ṽ . From the definition of ν̃ we get that ν̃(x) ≥ 0 for all x ∈ Ṽ . And

∑

x∈Ṽ

ν̃(x) = ν̃(z1) + ν̃(z2) +
∑

x∈V \{z}
ν̃(x)

= k[ν(z) + π(z)] + k
∑

x∈V \{z}
ν(x)

= k

(
π(z) +

∑

x∈V

ν(x)

)

= k (π(z) + 1)

= k


π(z) + π(z) +

∑

x∈V \{z}
π(x)




= π̃(z1) + π̃(z2) +
∑

x∈Ṽ \{z1,z2}
π̃(x)

= 1.
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Now we only need to verify Property 1. Let f be an optimal solution to Kantorovich’s

problem on G with respect to ν and π. Define f̃ : Ṽ → R by f̃(x) = f(x) for x ∈ Ṽ \{z1, z2}
and f̃(z1) = f̃(z2) = f(z). First let us verify that f̃ is Lipschitz with respect to d̃. Suppose

x, y ∈ Ṽ \ {z1, z2}. Then by Condition 1 we have:

|f̃(x)− f̃(y)| = |f(x)− f(y)| ≤ d(x, y) ≤ d̃(x, y).

By Condition 3, for i ∈ {1, 2} and for all x ∈ Ṽ \ {z1, z2} we have:

|f̃(x)− f̃(zi)| = |f(x)− f(z)| ≤ d(x, z) ≤ d̃(x, zi).

Finally |f̃(z1)− f̃(z2)| = 0 ≤ d̃(z1, z2). So f̃ is Lipschitz with respect to d̃. Now we will use

Lemma 2.1.4 to show that f̃ is a solution to Kantorovich’s problem and µ̃ is a solution to

Monge’s problem both with respect to ν̃ and π̃. Suppose x, y ∈ Ṽ \{z1, z2} with µ̃(x, y) > 0.

Then by the definition of µ̃ we must also have µ(x, y) > 0. So by the definition of f̃ , Lemma

2.1.4, and Condition 2 we get:

f̃(x)− f̃(y) = f(x)− f(y) = d(x, y) = d̃(x, y)

If µ̃(x, zi) > 0 for some x ∈ Ṽ \ {z1, z2} and i ∈ {1, 2}, then µ(x, z) > 0 and x ∈ Vi so that

f̃(x)− f̃(zi) = f(x)− f(z) = d(x, z) = d̃(x, zi).

Similarly, if µ̃(zi, y) > 0 for some y ∈ Ṽ \{z1, z2} and i ∈ {1, 2}, then µ(z, y) > 0 and y ∈ Vi

so that

f̃(zi)− f̃(y) = f(z)− f(y) = d(z, y) = d̃(zi, y).

Finally we note that µ̃(z1, z2) = µ̃(z2, z1) = 0, and f̃(zi)− f̃(zi) = 0 = d̃(zi, zi) for i ∈ {1, 2}.
Hence for x, y ∈ Ṽ , µ̃(x, y) > 0 implies that f̃(x)− f̃(y) = d̃(x, y). So by Lemma 2.1.4 µ̃ is a

solution to Monge’s problem and f̃ is a solution to Kantorovich’s problem, both on G̃ with

respect to ν̃ and π̃. And now we can finish the verification of property 1 (using properties

82



2 and 3):

W (ν̃, π̃) =
∑

x∈Ṽ

f̃(x)(ν̃(x)− π̃(x))

=
∑

x∈V \{z}
f̃(x)(ν̃(x)− π̃(x)) + f̃(z1)(ν̃(z1)− π̃(z1)) + f̃(z2)(ν̃(z2)− π̃(z2))

=
∑

x∈V \{z}
f(x)(kν(x)− kπ(x)) + f(z)(kν(z) + kπ(z)− kπ(z)− kπ(z))

= k
∑

x∈V

f(x)(ν(x)− π(x))

= kW (ν, π).

For a solution µ to Monge’s problem with respect to ν and π, define the equivalence

relation ∼µ on V to be the smallest equivalence relation for which x ∼µ y if µ(x, y) > 0

or µ(y, x) > 0. Let {Vi}m
i=1 be the equivalence classes generated by ∼µ. Let Gi = (Vi, Ei)

for i ∈ [m] be the subgraphs of G induced by Vi. Let πi be a probability measure on Vi

defined by πi(x) = kiπ(x) for x ∈ Vi, where ki is the appropriate constant that makes πi

a probability measure. We will note that if π is the uniform measure on V , then πi is the

uniform measure on Vi and ki = n
|Vi| . Let di denote the distance function on Gi defined by

di(x, y) = d(x, y) for x, y ∈ Vi. Define νi ∈ P (Gi) by νi(x) = kiν(x), for x ∈ Vi. Before

continuing let us verify that indeed νi is a probability measure on Gi.

∑

x∈Vi

νi(x) =
∑

x∈Vi

kiν(x)

=
∑

x∈Vi

ki

∑

y∈V

µ(x, y)

=
∑

x∈Vi

ki

∑

y∈Vi

µ(x, y)

=
∑

y∈Vi

ki

∑

x∈Vi

µ(x, y)

=
∑

y∈Vi

ki

∑

x∈V

µ(x, y)

=
∑

y∈Vi

kiπ(y)

=
∑

y∈Vi

πi(y)

= 1.
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Then we get the following lemma.

Lemma 4.2.4.

W (ν, π) =
m∑

i=1

1
ki

W (νi, πi)

Proof. Let µ be a solution to Monge’s problem with respect to ν and π and let f be a

solution to Kantorovich’s problem with respect to ν and π. Define µi : Vi × Vi → R by

µi(x, y) = kiµ(x, y), for x, y ∈ Vi

and f : Vi → R by

fi(x) = f(x), for x ∈ Vi.

Let us compute the marginals of µi. Suppose z ∈ Vi. Then

∑

x∈Vi

µi(x, z) =
∑

x∈Vi

kiµ(x, z)

=
∑

x∈V

kiµ(x, z)

= kiπ(z)

= πi(z).

∑

x∈Vi

µi(z, x) =
∑

x∈Vi

kiµ(z, x)

=
∑

x∈V

kiµ(z, x)

= kiν(z)

= νi(z)

By Lemma 2.1.4, µi is a solution to Monge’s problem and fi is a solution to Kantorovich’s

problem both on Gi with respect to νi and πi. We may now verify the statement of the
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lemma:

∑

i∈[m]

1
ki

W (νi, πi) =
∑

i∈[m]

1
ki

∑

x,y∈Vi

di(x, y)µi(x, y)

=
∑

i∈[m]

1
ki

∑

x,y∈Vi

d(x, y)kiµ(x, y)

=
∑

i∈[m]

∑

x,y∈Vi

d(x, y)µ(x, y)

=
∑

x,y∈V

d(x, y)µ(x, y)

= W (ν, π).

4.3 The Subgaussian Constant of a Cycle

For this entire section we assume that the measure π associated with the graph of interest

in the uniform probability measure and d is the graph distance.

Lemma 4.3.1. Suppose f is an integer valued Lipschitz function on the vertices of a cycle

C = (V, E). Then there exist a, b ∈ V and a permutation p of V that satisfy the following

properties:

• f(p(x)) is Lipschitz.

• f(p(x)) is non-decreasing along the two internally disjoint paths from a to b.

Proof. Let m = minx∈V f(x) and M = maxx∈V f(x). Let w1, w2 ∈ V with f(w1) = m and

f(w2) = M . Let [m,M ] denote the integers between and including m and M . Since f is

integer valued and Lipschitz, and because C is a connected graph, f(V ) = [m,M ]. Suppose

c is an integer with m < c < M and let x1 ∈ V with f(x1) = c. Since C − x1 is still a

connected graph and f is Lipschitz on C − x1, we also have f(V \ {x1}) = [m,M ] and so

there exists x2 ∈ V \ {x1} with f(x2) = c. Hence we can find V1, V2 ⊂ V with V1 ∪ V2 = V ,

V1 ∩ V2 = {w1, w2}, and f(V1) = f(V2) = [m,M ]. From this we can form paths P1 and P2

(not necessarily subgraphs of C) with vertex sets V1 and V2 respectively with the property

that f is non-decreasing on each path from w1 to w2. It also follows that f is Lipschitz on

each path. We can then form the cycle J = (V, E(P1) ∪ E(P2)), which has the property
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that f is Lipschitz and non-decreasing on the two internally disjoint paths from w1 to w2.

Let p be an isomorphism between C and J , and let a = p−1(w1) and b = p−1(w2). Then

a, b and p are the desired vertices and permutation.

Lemma 4.3.2. Let C = (V, E) be a cycle and suppose there exists ν ∈ P (C) with ν 6= π

and W 2(ν, π) = 2σ2D(ν||π). Then there exists z ∈ V with the property that one of the

functions f(x) = d(x, z) or f(x) = −d(x, z) is a solution to Kantorovich’s problem with

respect to ν and π.

Proof. By Lemma 4.1.4, let f be an integer valued solution to Kantorovich’s problem with

respect to ν and π. Then there exist vertices a and b and a permutation p of V satisfying

the properties of Lemma 4.3.1. Let f̃(x) = f(p(x)). Let ν̃(x) = ν(p(x)). Since the image

of V under ν̃ is equal as a multiset to the image of V under ν, we have D(ν̃||π) = D(ν||π).

Also,

W (ν, π) =
∑

x∈C

f(x)(ν(x)− π(x))

=
∑

x∈C

f(p(x))(ν(p(x))− π(p(x)))

=
∑

x∈C

f̃(x)(ν̃(x)− π(x))

≤ W (ν̃, π).

This leads us to:
1

2σ2
=

D(ν||π)
W 2(ν, π)

≥ D(ν̃||π)
W 2(ν̃, π)

≥ 1
2σ2

,

and so the inequalities must actually be equalities. This means that ν̃ gives equality in the

transportation inequality and f̃ is a solution to Kantorovich’s problem with respect to ν̃

and π.

Let P1 and P2 be the two internally disjoint paths from a to b. Since f̃ is non-decreasing

along P1 and P2 from a to b, we have f̃(a) ≤ f̃(x) ≤ f̃(b) for every x ∈ V . Since f̃ is

Lipschitz, for any integer c with f̃(a) < c < f̃(b) there must exist x1 ∈ P1 and x2 ∈ P2

with f̃(x1) = f̃(x2) = c. Let i ∈ {1, 2} and suppose to the contrary that there exist

vertices x′ and x′′ both in Pi with f̃(x′) = f̃(x′′) = c. Since f̃ is non-decreasing along
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Figure 4: Distance From a Point

Pi there exist adjacent x′ and x′′ with this property. Without loss of generality we can

assume that aPix
′x′′Pib. By Corollary 2.3.4, ν̃(x′) = ν̃(x′′) since f̃(x′) = f̃(x′′). Let v′

be the neighbor of x′ other than x′′ and let v′′ be the neighbor of x′′ other than x′, so

that we have aPiv
′x′x′′v′′Pib (see Figure 4). Then f̃(v′) ≤ f̃(x′) = f̃(x′′) ≤ f̃(v′′) since

f̃ is non-decreasing along Pi. If ν̃(x′) = ν̃(x′′) ≥ π(x′′) then by Lemma 4.1.3 there must

exist a neighbor y′′ of x′′ with f(y′′) < f(x′′). But x′′ has only two neighbors, so this is a

contradiction. Similarly, if π(x′) ≤ ν̃(x′) = ν̃(x′′) then there exists a neighbor y′ of x′ with

f(y′) > f(x′) which is again a contradiction. Hence for every integer c with f̃(a) < c < f̃(b),

for each i ∈ {1, 2}, there exists exactly one vertex x ∈ Pi with f̃(x) = c. Next assume that

there exist three adjacent vertices r ∼ s ∼ t ∈ V with f̃(r) = f̃(s) = f̃(t) (which is only

possible if this joint value is f̃(a) or f̃(b)). By Lemma 4.1.3, s must have a neighbor x with

f̃(x) > f̃(s) or f̃(x) < f̃(s), which is a contradiction. Now there are an even number of

vertices for which f̃ attains values strictly between f̃(a) and f̃(b), and there are at most two

vertices which attain the maximum value, f̃(b), and at most two which attain the minimum

value, f̃(a). So if |V | is odd, there exists only one vertex on which the maximum value of f̃

is attained or one vertex on which the minimum value of f̃ is attained. By translating f̃ so

that respectively either the maximum or minimum value is zero, we get that f̃(x) = −d(x, b)

or f̃(x) = d(x, a). If |V | is even then we must show there cannot be two vertices on which

f̃ attains the maximum value and two vertices on which f̃ attains the minimum value. Let

P be a path in C along which f̃ is strictly increasing, starting from one of the vertices on
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which f̃ attains the minimum value and ending on one of the vertices on which f̃ attains the

maximum value. Then by Lemma 4.1.3 either the vertex of P which attains the maximum

value of f̃ must have a neighbor outside P with a different value of f̃ or the vertex of P

which attains the minimum value of f̃ must have a neighbor outside P with a different

value of f̃ . Hence there can only be one vertex on which f̃ attains the maximum value or

one vertex on which f̃ attains the minimum value. But since |V | is even, f̃ attains both

the maximum and minimum values at only one vertex. By translating f̃ we can choose to

get either f̃(x) = −d(x, b) or f̃(x) = d(x, a). Now f(V ) is equal to f̃(V ) as a multiset.

But up to rotations of the cycle and translations of the function, there is only one integer

valued Lipschitz function on C with this image as a multiset. So f is just a translation and

a rotation of f̃ . Hence after a possible translation, f(x) = d(x, z) for some vertex z ∈ V or

f(x) = −d(x, z) for some vertex z ∈ V .

We now prove the main result in three propositions. For the first proof, we employ the

technique used by Bobkov, Houdré, and Tetali [8] to show that σ2(C4) = c2(C4).

Proposition 4.3.3. If C is a cycle with an even number of vertices, then σ2(C) = c2(C).

Proof. Let C = (V, E) be a cycle on 2n vertices. Let π be the uniform measure on V so that

π(x) = 1
2n for every x ∈ V . Assume to the contrary that σ2 6= c2. Let x0 be an arbitrary

vertex in V . Let f(x) = d(x, x0). From Lemmas 4.1.2 and 4.3.2 and Proposition 2.3.2 we

know that there exists a t 6= 0 such that E
[
et(f−Ef)

]
= eσ2t2/2. So σ2(C) is actually the

smallest constant s so that for this particular f , E
[
et(f−Ef)

] ≤ est2/2 for every real number

t. Let Lf (t) = log E
[
et(f−Ef)

]
. Now E[f ] = n/2. So

Lf (t) = log

[
1
2n

(
et(0−n/2) + 2

n−1∑

i=1

et(i−n/2) + et(n−n/2)

)]

=





log
[

1
2n

(
e

nt
2 + e−

nt
2 − 2e−

nt
2 (et−ent)
et−1

)]
t 6= 0

0 t = 0

Consider the function

φ(t) = Lf (t)− st2

2
.
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Then σ2(C) is the smallest constant s for which φ(t) ≤ 0 for every real number t. We will

consider the following derivatives of φ:

φ′(t) = L′f (t)− s2t, φ′′(t) = L′′f (t)− s2, and φ′′′(t) = L′′′f (t)

Since Lf (t) is an even function, φ(t) is also an even function, so φ′(t) is an odd function

and φ′(0) = 0. We also have that φ(0) = 0. Then in order to have φ(t) ≤ 0 for all real

t, we must have φ′′(0) ≤ 0, implying s ≥ L′′f (0). But, in fact, we will show that if we set

s = L′′f (0) then φ(t) ≤ 0 for all real t. So the smallest constant s for which φ(t) ≤ 0 for all

real t is L′′f (0), meaning that σ2(C) = L′′f (0).

To show that φ(t) ≤ 0 for all real t when s = L′′f (0) we first restrict ourselves to t ≥ 0

since φ(t) is an even function. Then we show that L′′f (t) < L′′f (0) for every t > 0. Hence

φ′′(0) = 0 and φ′′(t) < 0 for all t > 0, giving us φ′(0) = 0 and φ′(t) < 0 for all t > 0, finally

giving us φ(0) = 0 and φ(t) < 0 for all t > 0.

Now to show that φ′′(t) < φ′′(0) for all t > 0, we note that φ′′′(0) = 0 again because

φ(t) is an even function. Then we show that φ′′′(t) < 0 for all t > 0. Now for t 6= 0 we have:

φ′′′(t) = L′′′f (t) =
1

(et − 1)3(et + 1)3(ent − 1)3
·

(
2et + 12e3t + 2e5t + 36e(3+2n)t + 6e(5+2n)t + 6e(1+2n)t

+3n3e(2+2n)t + 3n3e(4+2n)t + n3e(6+2n)t + n3e(6+n)t

−12e(3+3n)t − 36e(3+n)t − 6e(5+n)t − 2e(5+3n)t − 6e(1+n)t

−2e(1+3n)t − n3ent − n3e2nt − 3n3e(4+2n)t − 3n3e(4+n)t
)

.

Although we are only interested in positive integers n ≥ 2, for a fixed t, if we allow n to

take on any positive real value then φ(t) is a differentiable function of n. Now for n = 2 we

have:

φ′′′(t) = −2et(et − 1)
(et + 1)3

and so φ′′′(t) < 0 for any t > 0 in this case. Finally we show that for every t > 0

∂

∂n
φ′′′(t) < 0,

for all n ≥ 2. Hence φ(t) < 0 for all integers n ≥ 2 and real t > 0.
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So for t > 0 we calculate:

∂

∂n
φ′′′(t) =

−n2

8 sinh
(
(nt/2)4

)(nt(2 + cosh(nt))− 3 sinh(nt))

To show that ∂
∂nφ′′′(t) < 0 for every real n ≥ 2 and t > 0 it suffices to show that

ψ(t) = nt(2 + cosh(nt))− 3 sinh(nt) > 0

for every real n ≥ 2 and t > 0. We’ll start by taking some derivatives:

d
dtψ(t) = n(2− 2 cosh(nt) + nt sinh(nt))

d2

dt2
ψ(t) = n2(nt cosh(nt)− sinh(nt))

d3

dt3
ψ(t) = n4t sinh(nt))

Now ψ(t), d
dtψ(t), and d2

dt2
ψ(t) are zero when t = 0, and d3

dt3
ψ(t) is strictly positive for t > 0.

Hence d2

dt2
ψ(t), d

dtψ(t) and ψ(t) are all strictly positive for t > 0.

Now that we have shown that σ2(C) = L′′f (0) we may take our pick of contradictions.

First, we have shown that φ(t) < 0 for t 6= 0 when s = σ2(C) = L′′f (0). This contradicts

the fact that there exists a t 6= 0 for which E
[
et(f−Ef)

]
= eσ2t2/2. Or we could note that

L′′g(0) = Var[g] for any g. Bobkov, Houdré, and Tetali [8] showed that Var[f ] = c2(C) for

our particular function f . Hence we have shown that σ2(C) = c2(C), another contradiction.

Therefore, in fact, σ2(C) = c2(C).

Proposition 4.3.4. If C is a cycle with an odd number of vertices, then σ2(C) > c2(C).

Proof. Let C be a cycle with 2n + 1 vertices. Bobkov, Houdré, and Tetali show in [8] that

for any vertex x0, the function f(x) = d(x, x0) is optimal for the spread constant of this

graph, meaning that Var[f ] = c2(C). Now E[f ] = n(1+n)
1+2n . If we set g(x) = f(x) − E[f ],

then Var[g] = c2 and E[g] = 0, but E[g3] = −n2(1+n)2

2(1+2n)2
6= 0. So by Lemma 4.1.1 we have

σ2(C) > c2(C).

Proposition 4.3.5. Suppose that C is a cycle with an odd number of vertices. Then

σ2(C) = c2(C)(1 + o(1)), where o(1) goes to 0 as the number of vertices goes to infinity.
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Figure 5: Bounding the Subgaussian on the Odd Cycle

Proof. Let C = (V, E) be a cycle on n vertices, where n ≥ 3 is an odd integer. From

Proposition 4.3.4 we know that σ2(C) 6= c2(C). Hence, by Lemma 4.1.2, there exists

ν ∈ P (G) with ν 6= π and W 2(ν, π) = 2σ2D(ν||π). Let µ be a solution to Monge’s problem

with respect to ν and π given to us by Lemma 2.1.5. By Lemma 4.3.2, there exists z ∈ V

so that either the function f(x) = d(x, z) or the function f(x) = −d(x, z) is an optimal

solution to Kantorovich’s problem with respect to ν and π. Let v1 and v2 be the two

neighbors of z. For z1, z2 /∈ V , let C̃ = (Ṽ , Ẽ) be the graph obtained from C by

• Ṽ = (V \ {z}) ∪ {z1, z2}.

• For x, y ∈ V \ {z}, {x, y} ∈ Ẽ if and only if {x, y} ∈ E and |f(x)− f(y)| = 1.

• {z1, v1}, {z2, v2} ∈ Ẽ.

We will verify that C̃ satisfies the conditions before Lemma 4.2.3. For Condition 1,

suppose x, y ∈ V \ {z}. If the distance between x and y in C̃ is infinite, then we are done.

Otherwise suppose P is a shortest path between x and y in C̃. Since z1 and z2 each have

only one neighbor and they are not the endpoints of P , they cannot appear in P . Hence

P only contains edges and vertices that appear in C, meaning P is a path in C between x

and y. So d̃(x, y) ≥ d(x, y). For Condition 2 suppose that x, y ∈ V \ {z} with µ(x, y) > 0.

Let P be a shortest path in C between x and y. We will show that P is also a path in

C̃. Since µ(x, y) > 0 we have f(x) − f(y) = d(x, y). Suppose to the contrary that z is a

vertex in P . We need to do two cases. First suppose f(·) = d(·, z). Then we would have
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f(x) − f(y) < f(x) − f(z) ≤ d(x, z). But then we have d(x, y) < d(x, z) contradicting the

fact that z is a vertex in the shortest path from x to y. Next assume f(·) = −d(·, z), then

we would have f(x) − f(y) < f(z) − f(y) ≤ d(z, y). But then we have d(x, y) < d(z, y)

again contradicting the fact that z ∈ P . So in fact z /∈ P , and P only contains vertices

that are also vertices of C̃. Because f is Lipschitz and d(x, y) = f(x) − f(y) we get that

for every edge {s, t} in P , |f(s) − f(t)| = 1. This means that {s, t} is also an edge of C̃.

So P is also a path in C̃. And now for Conditions 3 and 4. Let x ∈ V \ {z}. C̃ has two

connected components, one containing z1 and the other containing z2. By construction, if

x is in the component containing z1 then d̃(x, z1) = d(x, z) and d̃(x, z2) = ∞. Likewise, if

x is in the component containing z2 then d̃(x, z1) = ∞ and d̃(x, z2) = d(x, z).

So Lemma 4.2.3 gives us a probability measure ν̃ satisfying the four properties of the

lemma. If we look at the equivalence relation ∼µ̃ define before Lemma 4.2.4, we obtain the

two graphs C̃1 = (Ṽ1, Ẽ1) and C̃2 = (Ṽ2, Ẽ2), which are both paths on (n + 1)/2 vertices.

Now we may apply Lemmas 4.2.2, 4.2.3, and 4.2.4 to finish the proposition. Note that in

making use of Lemmas 4.2.2 and 4.2.3, we have k = n
n+1 , while in making use of Lemma
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4.2.4, we have k1 = k2 = 2.

W 2(ν, π) =
[
n + 1

n
W (ν̃, π̃)

]2

=
(

n + 1
n

)2 (
1
2
W (ν̃1, π̃1) +

1
2
W (ν̃2, π̃2)

)2

≤
(

n + 1
n

)2 (
1
2
W 2(ν̃1, π̃1) +

1
2
W 2(ν̃2, π̃2)

)

≤
(

n + 1
n

)2 (
σ2(C̃1)D(ν̃1||π̃1) + σ2(C̃2)D(ν̃2||π̃2)

)

=
(

n + 1
n

)2

σ2
(
Pn+1

2

)
(D(ν̃1||π̃1) + D(ν̃2||π̃2))

=
(

n + 1
n

)2

σ2
(
Pn+1

2

)


 ∑

x∈Ṽ1

ν̃1(x)
π̃1(x)

log
(

ν̃1(x)
π̃1(x)

)
π̃1(x) +

∑

x∈Ṽ2

ν̃2(x)
π̃2(x)

log
(

ν̃2(x)
π̃2(x)

)
π̃2(x)




=
(

n + 1
n

)2

σ2
(
Pn+1

2

)


 ∑

x∈Ṽ1

ν̃(x)
π̃(x)

log
(

ν̃(x)
π̃(x)

)
2π̃(x) +

∑

x∈Ṽ2

ν̃(x)
π̃(x)

log
(

ν̃(x)
π̃(x)

)
2π̃(x)




= 2
(

n + 1
n

)2

σ2
(
Pn+1

2

)
D(ν̃||π̃)

≤ 2
(

n + 1
n

)
σ2(Pn+1

2
)D(ν||π).

Hence

σ2(Cn) ≤
(

n + 1
n

)
σ2(Pn+1

2
) =

n2 + 3n− 1− 3
n

48
= c2(Cn)

(
1 +

3n3 − 3n2 − 3n + 3
n4 + 2n2 − 3

)
.
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CHAPTER V

COUPLING AS AN ANALOG OF RICCI CURVATURE

In continuous spaces, lower bounds on Ricci curvature have yielded various interesting

results, such as diameter bounds on manifolds, characterization of compactness of manifolds,

estimates on spectral gap and log-Sobolev constant etc. Thus it is natural to attempt

to capture a notion of Ricci curvature which works well (at least from an applications

viewpoint) in discrete settings. As far as we are aware, there seems to be little published

work in this direction. In part the difficulty here might be the possibility that there is no

single correct definition of a discrete curvature, and instead that such a notion depends on

the applications at hand.

We propose here a notion, motivated by a result of Sturm and Renesse [34], which seems

interesting in its own right. Whether our definition corresponds to any discrete curvature or

not, it seems natural enough as far as measuring the convergence of finite Markov chains to

stationarity, in the Wasserstein distance sense, is concerned. This then raises the question

of comparing the new quantity with other functional constants such as ρ0 (which bounds the

rate of decay of relative entropy of the chain) and λ1 (which governs the decay of variance).

Proposition 5.2.1 below obtains one such relation. Finally we note that the quantity R

in the above definition below is what one tries to estimate, while employing the coupling

technique to bound the rate of convergence of an ergodic Markov chain. Once we realized

this, we also found that our Proposition 5.2.1 is implicit in the work of Mu-Fa Chen [16]

(see also [6] an account of Chen’s proof).

In [33], Schmuckenschläger discussed an analog of Ricci curvature for Markov chains on a

discrete state space. In [28], Murali considered a slight modification to his definition, proving

several results, and finding the curvature (which we refer to as the Schmuckenschläger Ricci

curvature) for several examples. While the definitions of Schmuckenschläger and Murali are

functional analytic in nature and based on the Γ2 functional of Bakry and Emery [5] (see
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also Ledoux’s paper [25]), our definition is based on the coupling of Markov chains using

the mass transportation problem. The definition we take is one of the several equivalent

forms of a lower bound on the Ricci curvature of a smooth manifold proven by Sturm and

Renesse [34].

We start with a graph G = (V,E) with associated measure π and distance function d.

Throughout this chapter we assume that d is the graph distance. Next we let L be the

generator of a Markov chain on G as defined in Section 1.1.2. Recall that P (G) is the set of

probability measures on V . Throughout this chapter, for any ν ∈ P (G), νt is the Markov

chain on G with generator L and initial distribution ν.

Definition 5.0.6. The Wasserstein Ricci curvature of a Markov generator L on graph G

has lower bound R if for all ν, ν̃ ∈ P (G) we have:

W (νt, ν̃t) ≤ e−RtW (ν0, ν̃0)

for every t ≥ 0.

The next lemma makes it easier to calculate lower bounds on the Wasserstein Ricci

curvature. Let δv denote the measure on V defined by:

δv(x) =





1 x = v

0 x 6= v

Instead of checking the decay of W (νt, ν̃t) for every ν, ν̃ ∈ P (G), we only need to solve the

finite problem of calculating the derivative W (δx
t , δy

t ) at t = 0 for each x, y ∈ V . We apply

this lemma several times in examples in Section 5.3.

Lemma 5.0.7. The Wasserstein Ricci curvature of the Markov generator L on the graph

G has lower bound R if and only if

d

dt

+

W (δx
t , δy

t )
∣∣∣∣
t=0

≤ −RW (δx, δy)

for every x, y ∈ V .

Proof. First assume the Wasserstein Ricci curvature has lower bound R. Then by definition,

for every x, y ∈ V , we have:

W (δx
t , δy

t ) ≤ e−RtW (δx, δy).
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So

d

dt

+

W (δx
t , δy

t )
∣∣∣∣
t=0

= lim
t→0+

W (δx
t , δy

t )−W (δx, δy)
t

≤ lim
t→0+

e−RtW (δx, δy)−W (δx, δy)
t

= −RW (δx, δy)

and we are done with the first direction.

Next we assume that

d

dt

+

W (δx
t , δy

t )
∣∣∣∣
t=0

≤ −RW (δx, δy)

for every x, y ∈ V . To show that the Wasserstein Ricci curvature is bounded below by R it

suffices to show that for a ≥ 0 we have:

d

dt

+

W (νt, ν̃t)
∣∣∣∣
t=a

≤ −kW (νa, ν̃a).

Let µt be a solution to Monge’s problem with respect to νt and ν̃t. We first show that

d

dt

+ ∑

x,y∈V

µt(x, y)W (δx, δy)

∣∣∣∣∣∣
t=a

≤ d

dt

+ ∑

x,y∈V

µa(x, y)W (δx
t , δy

t )

∣∣∣∣∣∣
t=0

which will be the key to the proof. Now

d

dt

+ ∑

x,y∈V

µt(x, y)W (δx, δy)

∣∣∣∣∣∣
t=a

= lim
h→0+

1
h

∑

x,y∈V

µa+h(x, y)W (δx, δy)−1
h

∑

x,y∈V

µa(x, y)W (δx, δy)

and

d

dt

+ ∑

x,y∈V

µa(x, y)W (δx
t , δy

t )

∣∣∣∣∣∣
t=0

= lim
h→0+

1
h

∑

x,y∈V

µa(x, y)W (δx
h, δy

h)−1
h

∑

x,y∈V

µa(x, y)W (δx, δy)

So we just need to show:

∑

x,y∈V

µa+h(x, y)W (δx, δy) ≤
∑

x,y∈V

µa(x, y)W (δx
h, δy

h)

for h > 0. Let µxy
h be a solution to Monge’s problem with respect to δx

h and δy
h. First we

show that

µ̃(v, w) =
∑
x,y

µa(x, y)µxy
h (v, w)
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has first and second marginals νa+h and ν̃a+h respectively.

∑

w∈V


 ∑

x,y∈V

µa(x, y)µxy
h (v, w)


 =

∑

x,y∈V

µa(x, y)
∑

w∈V

µxy
h (v, w)

=
∑

x,y∈V

µa(x, y)δx
h(v)

=
∑

x∈V

δx
h(v)νa(x)

=
∑

x∈V

δxPh(v)νa(x)

=
∑

x∈V

∑

y∈V

δx(y)Ph(y, v)νa(x)

=
∑

x∈V

Ph(x, v)νa(x)

= νaPh(v)

= νa+h(v)

The second marginal is similar. So µ̃ has the same marginals as µa+h. Hence recalling

that
∑

x,y∈V µa+h(x, y)W (δx, δy) is just W (νa+h, ν̃a+h) and µa+h is a solution to Monge’s

problem with respect to νa+h and ν̃a+h, while µ̃ is just feasible in the problem, we get:

∑

x,y∈V

µa+h(x, y)W (δx, δy) ≤
∑

x,y∈V

µ̃(x, y)W (δx, δy)

=
∑

x,y∈V

∑
v,w

µa(v, w)µvw
h (x, y)W (δx, δy)

=
∑

v,w∈V

µa(v, w)
∑
x,y

µvw
h (x, y)W (δx, δy)

=
∑

v,w∈V

µa(v, w)
∑
x,y

d(x, y)µvw
h (x, y)

=
∑

v,w∈V

µa(v, w)W (δv
h, δw

h )
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which is the inequality we wanted to prove. Now we can use this inequality to calculate:

d

dt

+

W (νt, ν̃t)
∣∣∣∣
t=a

=
d

dt

+ ∑

x,y∈V

d(x, y)µt(x, y)

∣∣∣∣∣∣
t=a

=
d

dt

+ ∑

x,y∈V

µt(x, y)W (δx, δy)

∣∣∣∣∣∣
t=a

≤ d

dt

+ ∑

x,y∈V

µa(x, y)W (δx
t , δy

t )

∣∣∣∣∣∣
t=0

≤ −R
∑

x,y∈V

µa(x, y)W (δx, δy)

= −R
∑

x,y∈V

d(x, y)µa(x, y)

= −RW (νa, ν̃a)

5.1 Tensorization

Let {Gi}n
i=1 be a family of graphs with associated measures πi and graph distance functions

di. For each i ∈ {1, 2, . . . n} let Li be the generator of a Markov chain on graph Gi. Let

G =
∏n

i=1 Gi be the product graph and L be the generator of the product chain on G as

defined in Section 1.1.2.

Proposition 5.1.1. If Ri is a lower bound for the Wasserstein Ricci curvature of the

Markov generator Li on graph Gi, then

1
n

min
i

Ri

is a lower bound on the Wasserstein Ricci curvature for the Markov generator L on the

graph G.

Proof. Let (v1, . . . , vn), (w1, . . . , wn) ∈ V . By Lemma 5.0.7 we only need to show that

d

dt

+

W (δv1...vn
t , δw1...wn

t )
∣∣∣∣
t=0

≤ 1
n

(min
i

Ri)W (δv1...vn , δw1,...,wn)
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Now

W (δv1...vn , δw1,...,wn) = d((v1, . . . , vn), (w1, . . . , wn))

=
n∑

i=1

di(vi, wi)

=
n∑

i=1

W (δvi , δwi).

And we know from Lemma 5.0.7 that for each i we have:

d

dt

+

W (δvi
t , δwi

t )
∣∣∣∣
t=0

≤ −RiW (δvi , δwi).

We will further show that:

W (δv1...vn
t , δw1...wn

t ) =
n∑

i=1

W

(
δvi

1
n

t
, δwi

1
n

t

)
+ o(t). (61)

Putting these together we get the result we want:

d

dt

+

W (δv1...vn
t , δw1...wn

t )
∣∣∣∣
t=0

= lim
t→0+

W (δv1...vn
t , δw1...wn

t )−W (δv1...vn , δw1...wn)
t

= lim
t→0+

∑n
i=1 W

(
δvi

1
n

t
, δwi

1
n

t

)
+ o(t)−W (δv1...vn , δw1...wn)

t

= lim
t→0+

n∑

i=1

W

(
δvi

1
n

t
, δwi

1
n

t

)
−W (δvi , δwi)

t
+

o(t)
t

=
1
n

n∑

i=1

d

dt

+

W (δvi
t , δwi

t )
∣∣∣∣
t=0

≤ − 1
n

n∑

i=1

RiW (δvi , δwi)

≤ − 1
n

(min
i

Ri)W (δv1...vn , δw1...wn).
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So all we need to show is Equation 61. Now

d

dt

+

δv1...vn
t (x1, . . . , xn)

∣∣∣∣
t=0

= δv1...vnL(x1, . . . , xn)

=
∑

(y1,...,yn)

δv1...vn(y1, . . . , yn)L((y1, . . . , yn), (x1, . . . , xn))

= L((v1, . . . , vn), (x1, . . . , xn))

=
1
n

n∑

i=1

Li(vi, xi)
n∏

j=1
j 6=i

δvj (xj)

and

d

dt

+

δvi
t (xi)

∣∣∣∣
t=0

= δviL(xi)

=
∑

yi∈Vi

δvi(yi)Li(yi, xi)

= Li(vi, xi).

Also, for any νt we have:

νt(x) = ν0(x) + t
d

dt

+

νt(x)
∣∣∣∣
t=0

+ o(t)

So

δv1...vn
t (x1, . . . , xn)

= δv1...vn(x1, . . . , xn) + t
1
n

n∑

i=1

Li(vi, xi)
n∏

j=1
j 6=i

δvj (xj) + o(t)

and

δvi
t (xi) = δvi(xi) + tLi(vi, xi) + o(t).

Then
n∏

i=1

δvi
t (xi) =

n∏

i=1

(δvi(xi) + tLi(vi, xi) + o(t))

=
n∏

i=1

δvi(xi) +
n∑

i=1

tLi(vi, xi)
n∏

j=1
j 6=i

δvj (xj) + o(t)

= δv1...vn
nt (x1, . . . , xn) + o(t).
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Hence by Lemmas 2.2.2 and 2.2.6 we get:

W (δv1...vn
t , δw1...wn

t ) = W

(
n∏

i=1

δvi
1
n

t
,

n∏

i=1

δwi
1
n

t

)
+ o(t)

=
n∑

i=1

W

(
δvi

1
n

t
, δwi

1
n

t

)
+ o(t)

which is what we wanted to show.

5.2 Lower Bound on Spectral Gap

Proposition 5.2.1. Suppose R is a lower bound on the Wasserstein Ricci curvature of a

Markov chain with generator L on graph G. If λ1(L) is the spectral gap of the chain, then

R ≤ λ1(L).

Proof. Let f be an eigenfunction of L with eigenvalue −λ1(L), so that ft(x) = e−λ1(L)tf(x).

Note that ft is also an eigenfunction of −L with eigenvalue −λ1(L) for each t ≥ 0. Now

∑

x∈V

ft(x)π(x) =
1

λ1(L)

∑

x∈V

Lft(x)π(x) = 0,

so (1 + ft)dπ is a probability measure for all t ≥ a for some time a ≥ 0. If g is a solution

to Kantorovich’s problem with respect to (1 + fa)dπ and π at some time a, then g is also a

solution to Kantorovich’s problem with respect to (1 + ft)dπ and π for t ≥ a. Hence

e−λ1(L)hW ((1 + fa)dπ, π) = W ((1 + fa+h)dπ, π) ≤ e−RhW ((1 + fa)dπ, π)

for each h ≥ 0. This gives us R ≤ λ1(L).

5.3 Examples and Comparison with Schmuckenschläger

Now we calculate a lower bound on the Wasserstein Ricci curvature of several example

graphs. At the end of this section we give a table comparing the Wasserstein Ricci curvature,

the Schmuckenschläger Ricci curvature (as given in [28]), and the spectral gap for each of

the examples.

We start with the general two point graph with generator:

L =



−s s

t −t


 .

101



We will label the vertices 1 and 2 to correspond with the rows (or columns) of the matrix

L. Then the stationary distribution of the chain is π(1) = t
s+t and π(2) = s

s+t . Now the

function g(1) = 1 and g(0) = 0 is a solution to Kantorovich’s problem with respect to δ1
t

and δ2
t for any t close to zero and the function g(1) = 0 and g(0) = 1 is a solution to

Kantorovich’s problem with respect to δ2
t and δ1

t for any t close to zero. Hence

d

dt

+

W (δ1
t , δ

2
t )

∣∣∣∣
t=0

= g(1)(δ1L(1)− δ2L(1)) + g(2)(δ1L(2)− δ2L(2))

= L(1, 1)− L(2, 1)

= −(s + t)

= −(s + t)W (δ1, δ2)

We similarly get that d
dt

+
W (δ2

t , δ
1
t )

∣∣∣
t=0

= −(s + t)W (δ2, δ1). Hence the Wasserstein Ricci

curvature of the two point space is bounded below by s + t.

Next we look at the complete graph on the vertex set [n] = {1, 2, . . . , n} with arbitrary

stationary distribution π and generator L(i, j) = π(j) for each i, j ∈ [n] with i 6= j. By

Lemma 2.2.4, there exists a solution g to Kantorovich’s problem with respect to δi and δj

for which
d

dt

+

W (δi
t, δ

j
t )

∣∣∣∣
t=0

=
∑

k∈[n]

g(k)(δiL(k)− δjL(k))

Now if g is any solution to Kantorovich’s problem with respect to δi and δj we have:

∑

k∈[n]

g(k)(δiL(k)− δjL(k))

=
∑

k∈[n]

g(k)(L(i, k)− L(j, k))

= g(i)(L(i, i)− L(j, i)) + g(j)(L(i, j)− L(j, j))

+
∑

k∈[n]
k/∈{i,j}

g(k)(π(k)− π(k)))

= g(i)(−
∑

k∈[n]
k 6=i

π(k)− π(i)) + g(j)(π(j) +
∑

k∈[n]
k 6=j

π(k))

= g(j)− g(i)

= −W (δi, δj).
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So the Wasserstein Ricci curvature of this chain is bounded below by 1.

Now consider the path on n vertices, where we again take the vertex set to be [n]. We

consider the chain which moves down (if not already at 1) with rate p and moves up (if not

already at n) with rate (1− p). So the chain has generator:

L =




p− 1 1− p 0 0 · · · 0 0

p −1 1− p 0 · · · 0 0

0 p −1 1− p
. . .

...
...

0 0 p −1
. . . 0 0

...
...

. . . . . . . . . 1− p 0

0 0 · · · 0 p −1 1− p

0 0 · · · 0 0 p −p




For any i, j ∈ [n] with i > j we have g(i) = i is a solution to Kantorovich’s problem with

respect to δi
t and δj

t for small enough t. Assuming i 6= n and j 6= 1 we have:

d

dt

+

W (δi
t, δ

j
t )

∣∣∣∣
t=0

=
∑

k∈[n]

g(k)(δiL(k)− δjL(k))

=
∑

k∈[n]

k(L(i, k)− L(j, k))

= (i− 1)L(i, i− 1) + iL(i, i) + (i + 1)L(i, i + 1)

− (j − 1)L(j, j − 1)− jL(j, j)− (j + 1)L(j, j + 1)

= (i− 1)p + i(−1) + (i + 1)(1− p)

− (j − 1)p− j(−1)− (j + 1)(1− p)

= 0.

For j 6= 1 we have:
d

dt

+

W (δn
t , δj

t )
∣∣∣∣
t=0

= −(1− p).

For i 6= n we have:
d

dt

+

W (δi
t, δ

1
t )

∣∣∣∣
t=0

= −p.

If i = n and j = 1 we have:
d

dt

+

W (δn
t , δ1

t )
∣∣∣∣
t=0

= −1.
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Table 1: Comparison of Curvature and Spectral Gap
Markov Chain Wasserstein Ricci Schmuckenschläger Ricci Spectral gap
Two Point s + t min((3s + t)/2, (3t + s)/2)) s+t
Complete 1 1/2 + miny∈V π(y) 1
Path (n = 3) min(p/2, (1− p)/2) > 0 > 0
Path (n = 4) 0 > 0 > 0
Path (n ≥ 5) 0 0 > 0

So if n ≥ 4, we have Wasserstein Ricci curvature bounded below by 0. If n = 3, then we

have Wasserstein Ricci curvature bounded below by min{p/2, (1− p)/2}. If n = 2, then we

have Wasserstein Ricci curvature bounded below by 1.
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

We have looked at three different aspects of the mass transportation problem in the study

of discrete concentration inequalities.

First we examined the transportation and variance transportation inequalities and their

relationship with the Poincaré and modified log-Sobolev inequalities. Here we saw that

using the graph distance, the subgaussian constant and the spread constant provide upper

bounds on the modified log-Sobolev constant and the spectral gap respectively for large

classes of Markov chains on a graph, while tight bounds could sometimes be obtained by

tailoring the distance function to the specific Markov chain of interest. And in the other

direction, we examined the bounds on the spread constant provided by the spectral gap of

a fastest mixing Markov chain on the graph.

Next we looked at the specific problem of bounding the subgaussian constant of a cycle,

in order to obtain a concentration result on the discrete torus. We used the interplay

between the dual formulations of the subgaussian constant to obtain the exact value for

even cycles. For odd cycles we used geometric insight provided by the mass transportation

formulation of the subgaussian constant to find the asymptotically correct value.

Finally we explored a notion of discrete Ricci curvature given in terms of the mass

transportation problem. As it is closely related to the coupling method of bounding mixing

time for Markov chains, it provides a lower bound on the spectral gap of a Markov chain.

The constant we defined tensorizes properly and is relatively easy to compute on example

graphs.

This work has led us to several intriguing questions and directions for future study. We

begin with Chapter 3, where we saw that essentially the same proof worked to show both

that the modified log-Sobolev inequality implies the transportation inequality and that the

Poincaré inequality implies the variance transportation inequality. In [10], Bobkov and

105



Tetali define the inequality:

α(p)
[‖f‖p

p − ‖f‖p
1

] ≤ p

2
E(f, fp−1) (62)

for p ∈ (0, 1], which interpolates between the Poincaré inequality and the modified log-

Sobolev inequality. This leads naturally to the definition of an inequality that interpolates

between the variance transportation inequality and the transportation inequality:

W 2(ν, π) ≤ β(p)
p

2(p− 1)
E(f, fp−1). (63)

One question is whether we can modify the proof technique that works to show that the

endpoints of (62) respectively imply the endpoints of (63), to get that (62) implies (63)

for each p ∈ (1, 2]. The other obvious question is whether the interpolated transportation

inequality is useful for anything.

Another direction we would like to take for further study based on Chapter 3 is to look

at the fastest mixing Markov chain problem in terms of the modified log-Sobolev constant.

We would like to show a tightness result for the inequality ρ∗0(G) ≤ 1
2σ2(G)

where ρ∗0(G) is

the maximum of ρ0(L) over all Markov generators L on G that satisfy some normalization

condition, and σ2(G) is calculated using the graph distance.

In Chapter 4, we tried to understand and classify the solutions to Kantorovich’s problem

with respect to ν and π when ν satisfies the transportation inequality with equality. An

interesting question is whether this ν that attains equality has any physical interpretation

or contains any useful information. Does it hold any information about the optimal sets in

the isoperimetric problem for example?

A more concrete direction of study from Chapter 4 is to better classify those graphs for

which the subgaussian constant and the spread constant are equal. In some sense, they will

be different for most graphs, as a typical random graph is an expander, for which c2 ¿ σ2

as we saw in Section 3.1.6. From Lemma 4.1.1, it appears that some type of symmetry in

the graph may be necessary in order for the subgaussian constant to be equal to the spread

constant.

The notion of curvature in Chapter 5 opens the door to a seemingly infinite number

of questions. A key test for this notion of Ricci curvature is whether or not it implies
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normal concentration with constant R (where R is a lower bound on the Wasserstein Ricci

curvature). Another good question is whether or not it can be used to prove an analog of

Buser’s inequality [14], or perhaps inverse diameter squared lower bounds on the spectral

gap under a non-negative Wasserstein Ricci curvature assumption. And we would like to

know if an assumption on the Wasserstein Ricci curvature of a Markov generator on a graph

will allow proofs of the convexity of the relative entropy of the distribution of a Markov

chain on the graph. It would be very exciting if we could prove an analog of the HWI

inequality of [30] using this notion of curvature.

We have had some success with the transportation inequality and the l1 Wasserstein

distance, and as we have seen there are many possibly fruitful future directions of study in-

volving these ideas. But we also remain hopeful that there is an analog of the L2 Wasserstein

distance from the Euclidean setting that will provide even more powerful functionality.
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