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SUMMARY

The U.S. government has introduced federal incentive programs to accelerate

the adoption of meaningful use of electronic health records (EHR). These electronic

records are expected to improve healthcare quality, reduce costs, and facilitate data

sharing across different healthcare enterprises. However, electronic health data has

already been subjected to various threats. Stolen identities will then be used to

defraud health insurance programs by submitting fraudulent claims for reimbursement

which are difficult to identify due to the large volume of claims received by them.

Healthcare fraud already costs the country about $272 billion and this will increase in

magnitude if we do not actively secure the health information sharing infrastructure.

We enhance the health information sharing architecture by augmenting certain

components within each node. We first introduce mechanisms that augment account-

ability and cannot be circumvented as long as multiple independent parties that

interact with one another are not compromised simultaneously. These enhancements

help us ensure that we log all inter-nodal and inter-component interactions which

cannot be subverted or corrupted without detection unless both interacting parties

are compromised or become malicious. Our audit records are also redundantly dis-

tributed throughout the node and the sharing architecture helps in detecting deletion

of records. In addition to this, we also help alleviate patient privacy concerns by

providing greater awareness to patients about how their personal medical informa-

tion is being shared. These enhancements enable early detection of unauthorized and

malicious sharing of health data, which can help limit the resulting damage.

In case a breach or compromise occurs, sharing provenance introduced by us helps

identify the medical practitioner or healthcare organization that may be a source of a

xi



leak of information or the unauthorized node that fraudulently releases or acquires a

particular patient’s data. We can use these records to determine all the other actions

that were performed by those identities within the eHealth Exchange and which may

have also been malicious. Reversing these actions would give us a starting point to

rectify any patient’s medical history that may have been corrupted by fraud.

We also develop a fraud, waste and abuse detection system that helps detect sus-

picious medical insurance claims and provides them a rank and risk score to prioritize

their investigation and maximize savings. Unlike existing methods, it does not require

any input in the fraud identification stage which frees up precious fraud analyst time

to investigate a greater number of claims. This also enables our technique to detect

newly emerging as well as previously unidentified fraud schemes. It can also adapt to

natural changes in the treatment patterns or changes in the coding system and will

not require any additional work by the user to include these changes.

Finally, we address security of the devices that connect to the health information

sharing architecture. We achieved this by introducing the concept of a constrained

application for mobile devices which can be used to safeguard sensitive data and

prevent its flow to unauthorized entities. A constrained application’s sensitive data

can be protected even in the presence of attacks that can successfully compromise

the application. Our mechanisms accommodate for varying levels of sensitivity of

data within the constrained application which can be governed by different security

policies. Non-sensitive data within a constrained application is unaffected by our

mechanisms. Also, applications that do not deal with sensitive data are unaffected.

We also developed a user consent detection mechanism which can help distinguish

actual user input from scripted events that can be generated by malware. Such

secure consent can enable user awareness and control over how health information is

shared.
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CHAPTER I

INTRODUCTION

1.1 Healthcare Data Sharing

Federal incentives by the United States Government for the Meaningful Use of certi-

fied Electronic Health Record (EHR) systems have accelerated the adoption of EHR

systems across America. These systems will facilitate the sharing of Electronic Med-

ical Records (EMR) across the nation and will lead to reduced costs and improved

healthcare quality. The US Government has launched a certification process to assure

adopters that the electronic health IT products and systems they use offer the nec-

essary security and maintain data confidentially. However, this certification does not

guarantee that sensitive healthcare information will be secure against all threats and

it has already been shown to leave common code-level and design-level vulnerabilities

undetected [95] which has exposed health data to various threats.

Due to this, there has been an increase in hacking and IT-related incidents to

breach health data in recent years. The Washington Post declared 2015 as the year of

the health-care hack [109] where we saw major breaches at healthcare institutions that

affected the identities of over 112 million individuals [26]. Hacking or IT incidents have

accounted for 98% of leaked health records due to breaches in 2015. In comparison,

hackers compromised only 1.8 million individual identities due to health data breaches

in 2014 [45]. Healthcare organizations are currently being compromised at 35 breaches

per month that affect 500 individuals or more [101], and each breach costs healthcare

organizations over $2.1 million on average [85]. Investigation of a breach is usually

done by parsing auditing logs for malicious actions. However, research has already
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shown that current logging standards are lagging behind other industries [55], and

are inadequate [56].

Breached healthcare data and stolen identities will eventually be used to obtain

monetary benefit by filing fraudulent claims at government healthcare programs like

Medicare and Medicaid or private insurance programs. Healthcare fraud costs the

United States an estimated $272 billion a year and, according to several studies,

billions of dollars in additional fraud, remain undetected. Due to the sheer volume of

healthcare claims submitted on behalf of the millions of Americans insured under these

programs, the government and private entities cannot effectively combat healthcare

fraud.

1.2 Challenges in Securing Healthcare Data

Healthcare data is unique in comparison to other sensitive data as it is usually gov-

erned by the ’Break the Glass’ access control policy. This allows medical personnel to

view sensitive healthcare data under emergency circumstances even when such per-

sonnel do not have the necessary system access privileges. This allows health data

to be easily abused and breached by employees working within a healthcare organi-

zation. As we cannot enforce a strict access control policy, we must mainly rely on a

strong auditing system to detect such abuses.

Stealing sensitive health information is also very lucrative compared to financial

data. It includes other sensitive information such as social security numbers, medical

record numbers, date of birth, etc. and is worth more on the black market than credit-

card numbers. Such stolen health data can also be used to obtain prescriptions for

controlled drugs. Each stolen or lost healthcare record costs healthcare organizations

$363 on average.

Criminals can also monetize stolen health data by filing claims to insurance com-

panies and government reimbursement programs. However, fraud is difficult to detect
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in claims due to the complex nature of the healthcare system in the US. Fraud, waste

and abuse in healthcare programs can be as high as 30%. This costs an average

family of four over $200 a year above what they would pay for the honest delivery of

healthcare goods and services [8]. Patients also sometimes have lifetime caps or other

financial limits imposed by their health insurance policies which can be exhausted by

fraud. This would prevent them from using their benefits when they legitimately need

them [74]. Some criminals are switching from cocaine trafficking to prescription-drug

fraud because the risk-adjusted rewards are higher: the money is still good, the work

safer and the penalties lighter [100].

Usually, it takes victims of healthcare fraud longer to notice that their details have

been stolen. Unlike other industries, the procedures, services and drugs provided to

patients are paid for by health insurance companies. Hence, the patients are some-

times unaware of their medical identity being stolen or are not motivated to carefully

examine the complicated Explanation of Benefits (EOB) that they receive. Even

when patients are aware that their identity has been misused, there is little recourse

available to them. Unlike the financial industry, they cannot halt all transactions or

freeze their medical identity. A new credit card can easily be issued if stolen, but

a compromised medical identity may require changing the patient’s social security

number which is a long and cumbersome process.

In addition to all this, a medical identity theft victim may receive the wrong diag-

nosis for his current symptoms or unexpectedly fail a physical exam for employment

because a disease or condition for which he’s never been diagnosed or received treat-

ment has been unknowingly documented in his health record. Sanitizing a victim’s

corrupted medical history can be a grueling and stressful endeavor. The effects of

this crime can plague a victim’s medical and financial status for years to come [74].
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1.3 Thesis Statement

We keep these unique characteristics of healthcare data in mind and make the disser-

tation hypothesis that middleware in systems which exchange health information can

be augmented to support better accountability and security of health data and reduce

losses due to fraud.

1.4 Contributions & Thesis Overview

As an example, we apply these techniques to the specifications, developed under the

auspices of the U.S. Office of the National Coordinator for Health Information Tech-

nology (ONC), that establish secure connections across different healthcare systems

called the eHealth Exchange [106]. This eHealth Exchange forms a widely distributed

system that allows these connected healthcare systems to share electronic health data

across the United States.

In addition to this, we also develop a healthcare billing fraud, waste and abuse

detection system which can identify fraudulent claims and newly emerging fraud

schemes in a timely manner. This helps prevent the monetization of stolen data

by filing fraudulent claims to health plans. We also apply our end device security

mechanisms to mobile devices as they are increasingly being used to access health

data. We make the following contributions in this dissertation:

• We introduce mechanisms that augment accountability and cannot be circum-

vented as long as multiple independent parties that interact with one another

are not compromised simultaneously.

• We introduce sharing provenance which helps us identify the medical practi-

tioner or healthcare organization that may be a source of leak of information

or the unauthorized node that fraudulently releases or acquires a particular

patient’s data.
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• We enhance the eHealth Exchange architecture to support awareness over how

a particular patient’s data is consumed within the distributed network. Our

enhancements enable early detection of unauthorized and malicious sharing of

health data, which can help limit the resulting damage.

• We develop the FraudScope system which helps detect billing fraud, waste and

abuse by analyzing claims data without affecting the current workflow. This

helps prevent potential abuse of breached medical information.

• We improve end device security by developing a framework that enforces se-

curity policies that govern access to sensitive health data on mobile devices.

We also develop a user consent detection mechanism which can help distinguish

actual user input from scripted events that can be generated by malware.

A report by the JASON advisory group [50], the prestigious scientific advisory

panel to the US government, mentioned these same contributions as requirements

to help create a robust health data infrastructure. This serves as an independent

validation that the challenges tackled by this dissertation are of great importance to

securing the emerging health data infrastructure within the United States.

The rest of this dissertation is organized as follows. Chapter II contains related

work within the broader area of health information security. Chapter III describes

the healthcare ecosystem which includes details about the existing health information

sharing architecture, the US health insurance system and weaknesses within this

architecture that need to be addressed. Chapter IV describes our augmented eHealth

Exchange with enhanced auditing and awareness that improves the accountability

guarantees within the architecture. Chapter V describes our fraud, waste and abuse

detection system that helps detect fraudulent claims and prioritizes their investigation

to maximize savings. Chapter VI describes our enhancements to secure health data

at end devices even if they are compromised. Finally we conclude with Chapter VII.
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CHAPTER II

RELATED WORK

We discuss some of the research done in the broad area of health IT security. Past

research has studied the vulnerabilities and threats of medical information leakage

[51,115] as well as certain technical countermeasures to them such as anonymization,

encryption and access control mechanisms [81]. Work has also been done to create an

EHR security reference model for managing security issues in healthcare clouds [122]

and to consider security and privacy issues for healthcare applications in wireless

sensor networks [2]. A survey of research done in the area of health IT security can

also be found here [4].

2.1 Healthcare Identity and Access Management

Prior work has been done to allow a user to access patients’ medical data based

on attribute-based policies defined by the patient and the healthcare system [68]

which allows for selective disclosure and fine-grained attribute-based access control

using both static and dynamic attributes. Work has also been done to use attribute

based encryption to protect patients’ health data and reduces key distribution com-

plexity by dividing the system into multiple security domains [62]. Other work has

focused on developing a role based policy specification system for access control of

electronic health records in large-scale distributed systems [5]. Additional work to

enable patients to selectively share their data with healthcare providers can be found

here [6, 40, 46,90]. The focus of this dissertation is mainly on providing awareness in

the presence of security threats.
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2.2 Healthcare Auditing

Health information is usually protected by access control mechanisms that are per-

missive in nature so that needed information is available to medical personnel in case

of an emergency. However, this makes it easier for records to be inappropriately ac-

cessed. The Health Insurance Portability and Accountability Act (HIPAA) Security

Rule requires audit controls that record and examine access in systems that contain or

use health information [113]. While this could help address the issue of unauthorized

access, research has shown that current auditing standards are lag behind other in-

dustries [55], and are inadequate [7,54,56]. This is especially true when nodes can be

compromised, and such auditing can be tampered with or disabled. As mentioned,

our augmented eHealth Exchange helps address these issues by introducing secure

sharing log records that can identify potentially malicious movement of data even

when some nodes become compromised.

Research has also been done to offer secure logging without relying on trusted third

parties or secure hardware [63] and other work introduces hardware based trust into

the log producing application [9]. Different types of log systems have been created to

provide strong reliability guarantees for large-scale log collection [88], protect against

integrity attacks [96], construct searchable encrypted audit logs [117], save log files

efficiently and, at low cost [110], distribute event correlation [39] and effective resource

management in a cloud environment [60]. Log Management Systems are also used

for a variety of purposes such as recovering from failures in mobile transactions [80]

and detecting insider threats [72]. In contrast, our work focuses on augmenting the

auditing system within a healthcare enterprise without relying on hardware based

trust. We only require one of the interacting entities to not be compromised which

allows us to record accurate and non-repudiable information in the logs.
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2.3 Healthcare Data Provenance

Medical data usually resides at several different healthcare enterprises and is ag-

gregated to build a comprehensive medical history for the patient or for research

purposes. The data consumer requires information about the provenance of the data

to assess its quality. Prior research has explored assuring provenance of health infor-

mation as linked data [71] and digital watermarks [99], and on mobile devices [17,87].

Security [42,97] and privacy [53] issues, as well as tools to navigate and analyze prove-

nance [21] information, have been studied. Mashima and Ahamad [65] use account-

ability tags to store provenance but rely on the fact that every legitimate consumer

will verify the integrity and authenticity of data before using it. Our enhancements

do not rely on this assumption. Hasan et al. intercept all applications that try

to write to a document and append this application information to the provenance

chain of a document; this provenance chain uses signature-based checksums to pre-

serve the integrity of the chain [43]. However, we use append-only mutually signed

logs of sharing records to track the movement of a document across nodes within the

eHealth Exchange. Other provenance research work can be found in a number of

survey papers [28,93].

2.4 Healthcare Fraud Detection

Prior research has been done to study the principles for combating healthcare fraud

[70] and the security assessment of health organizations [48]. We use the recom-

mendations provided by the National Executive Committee which was convened by

the American Health Information Management Association (AHIMA) to tackle fraud

within the eHealth Exchange to guide our research. Most of the work on detect-

ing fraud has been done on supervised and semi-supervised techniques that require

a labeled dataset [61, 84, 120]. These include techniques that are based on neural
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networks [79], decision trees [118], association rules, Bayesian networks, genetic algo-

rithms, support vector machines [57] and structure pattern mining [119]. In compari-

son, there has not been much research done within the area of unsupervised healthcare

fraud detection techniques [82].

Past research has also explored the prevention of healthcare fraud [70]. Medical

identity theft and fraud has been tackled in other work by issuing smart cards [52].

However, such a system is infeasible for use within the US Healthcare system and

would cost $814 million to launch. Other work has been done to perform a visual

analysis of medical fraud [83] and to tackle privacy issues [49, 76] and prescription

fraud [77,98]. Some research has also been done to assist auditors in detecting fraud

[27,33].

2.5 Securing Health Data on Mobile Devices

Mobile operating systems have traditionally been lacking in providing comprehensive

data security. However, the Android operating system includes significant improve-

ments in security over other mobile operating systems. One of these improvements

is the notification of all permissions required by applications at install-time to the

user. These permission labels grant the application access to phone assets. Even

though such a process provides greater transparency, its success largely depends on

user understanding of its implications. Issues such as these have led to the emergence

of systems such as Kirin [24] - an install-time permission validation service, Saint [78]

- a framework for developers to provide install-time and runtime interface policies

and Apex [75] - a framework that allows users to selectively grant permissions to

applications. However, none of these have focused on our goal of protecting sensitive

data against the threats we consider in this dissertation. Other work has addressed

how to implement SELinux enforcement policies on Android [92]. This only affects
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the underlying Linux kernel and such a mechanism cannot mediate inter-component

communication at the application layer.

Previous work has addressed how to prevent privacy breaches of medical infor-

mation from adversaries within the medical domain and outside [30]. Research done

by Gardner et al. [31] shares a common goal of protecting medical records on smart

phones. However, they focus on creating a cryptographic secret sharing scheme which

controls access to medical information. We develop a security policy enforcement

framework which helps protect medical data against a variety of threats in a mobile

environment.

TaintDroid [23] is an information flow tracking system for the Android operating

system. We used its tainting mechanism to specifically taint only sensitive informa-

tion within an application. We then used its taint tracking mechanism to mediate

sensitive data flow if it tries to leave the application by enforcing our security poli-

cies. HiStar [121] is another information flow system which provides strict information

flow control and prevents private data from being leaked. However, HiStar creates a

more restrictive environment for applications by denying any component which reads

tainted files access to the network. In our framework, we allow any constrained ap-

plication’s component that reads sensitive information to send this information on

the network but only to a subset of known trusted external entities allowed by the

security policy.

2.6 Conclusions

In this chapter we discussed research done in the broader area of Health IT security.

Work has been done in healthcare security research to address identity and access

management, auditing, data provenance, fraud detection and securing data on mobile

devices. This dissertation will add to the existing research by securing the emerging

health information sharing architecture which is designed to share data across the
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nation. We will detail this architecture in the next chapter and discuss some of the

threats that exist within it. We will then mitigate these threats by augmenting the

architecture.
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CHAPTER III

HEALTHCARE ECOSYSTEM

In this chapter, we will discuss the healthcare ecosystem in detail. This includes the

health information sharing architecture, the United States health insurance process,

the threats that exist and enhancements to the architecture to mitigate these threats.

3.1 Health Information Sharing Architecture

Electronic health information will eventually be shared via health information ex-

changes. Our dissertation helps secure such sharing of health data and can be applied

to any architecture that may exist to facilitate this sharing. However, we will discuss

one such emerging architecture called the eHealth Exchange and use it as an example

in applying our techniques. Our techniques are in no way applicable to only this

specific sharing architecture and will work with any other existing health information

sharing architecture as well.

The eHealth Exchange, formerly known as the Nationwide Health Information

Network (NHIN), is a set of specifications that enable secure exchange of health in-

formation over the Internet. It is a highly decentralized network that consists of

participating healthcare systems that act as nodes. There is no single central data

repository as patient information is retained locally by each node. Nodes share a

common transport layer while interacting with other nodes. It is assumed that a

public-key infrastructure (PKI) exists with trusted certificate authorities to issue cer-

tificates. Nodes will be authenticated using certificates and all messages are encrypted

for confidentiality and digitally signed to provide authentication and non-repudiation.

Different types of nodes can exist within the eHealth Exchange. We broadly clas-

sify them into two categories: provider nodes and insurance nodes. Other specialized
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Figure 1: An eHealth Exchange Node.

nodes, such as a clearinghouse, may also exist within this architecture. Provider nodes

can contain an EHR system that may be present at healthcare enterprises such as hos-

pitals, clinics or pharmacies. Insurance nodes are run by entities that handle medical

claims and billing such as Medicare or health insurance companies. Clearinghouses

help route medical insurance claims from a provider node to the correct insurance

node which will reimburse the provider for their services. Each node, regardless of

type, has the freedom to choose any internal architecture. However, we can represent

these possibly unique architectures using a general representation as shown in Figure

1. Under this general model, a Master Patient Index (MPI) contains information on

all patients whose data is present at that node. A registry maintains metadata and

location of all the medical documents or claims that are contained within the node’s

repositories. An Identity and Access Management (IAM) system usually exists which

authenticates the identity of a user and keeps track of data and actions they are

authorized to access and perform. Authenticated users access medical information
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using various types of end devices. An auditing system is also usually present that

records certain actions that are performed within the node. In addition to these, each

node has a Claims Processor which either generates or reimburses medical insurance

claims. An additional component is also present which follows the standards needed

to share medical information with other nodes on the eHealth Exchange. We call this

component CONNECT which is the name given to its open-source implementation

developed by the Federal Health Architecture (FHA) initiative and its federal part-

ners. Depending on the specific function of the node, other specialized components

may exist.

Interactions between different nodes are termed as transactions and the health-

care organization that initiates the transaction is called the initiating node and the

responding healthcare organization is termed as the target node. Documents can

refer to a patient’s medical record, a medical claim filed for reimbursement or any

other electronic file used in the medical care process. The initiating node can re-

trieve documents by sending a Retrieve Document request to a target node, which

then evaluates the request and, if authorized, returns the documents to the initiating

node. In addition, a Document Submission request can also be sent which will be

evaluated and accepted or rejected by the target node based on a local decision. For

example, a medical claim might be submitted from a provider node to the insurance

node which processes the claim and makes the payment.

Every node must sign the Data Use and Reciprocal Support Agreement (DURSA)

which is a multiparty trust agreement that describes the mutual responsibilities of all

participating nodes. It requires them to abide by the Health Insurance Portability

and Accountability Act (HIPAA) Privacy and Security Rules at a minimum. These

regulatory requirements will apply to end devices used to access sensitive health data.

Our framework for end devices can be used to satisfy these regulatory requirements. In

addition to this, DURSA requires nodes to notify other impacted nodes of suspected
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breaches within one hour and confirmed breaches within 24 hours. The affected node

must determine the roles of the people involved, other participants likely impacted

and the number of records impacted in the breach. However, breaches are not easy

to detect, and can potentially go undetected. Next we will discuss the United States

health insurance process which is very vital to this architecture.

3.2 U.S. Health Insurance System

Healthcare in America is very expensive so most patients cannot pay for treatment at

full cost. Due to this, individuals living in America try to obtain some form of health

insurance to cover a portion of their medical expenses. Health insurance in America

can be purchased directly through private health insurance companies, through em-

ployers who sponsor health insurance programs or public programs sponsored by the

government, such as Medicare. Medicare is the federal health insurance program for

people who are 65 or older, certain younger people with disabilities, and people with

End-Stage Renal Disease [66]. Even though the claims submission process can vary

based on the specific insurance type and policy, we will discuss the Medicare claims

submission process in detail as it has a very large number of enrollees and we use

data from Medicare for our research.

Whenever a Medicare beneficiary seeks medical treatment, the provider can sub-

mit the bill directly to Medicare. For providers that participate in the Medicare

program, Medicare will reimburse a fixed amount for the service provided and the

beneficiary does not need to pay any additional amount or take any further action for

the provider to be reimbursed by Medicare. However, providers that do not partici-

pate in the Medicare program can charge their own price to the beneficiary beyond

the amount that Medicare reimburses them. A non-participating provider usually

bills the beneficiary who will pay the charges and then submit a claim for reimburse-

ment to Medicare. In either case, an Explanation of Benefits (EOB) is automatically

15



Figure 2: Claims Lifecycle

generated and sent to the beneficiary that details the services that were provided to

the beneficiary by the provider and subsequently billed to Medicare.

However, this EOB is sometimes not received by the patient until a few months

after the service has been provided. Most of the beneficiaries do not understand the

details present within an EOB and there is no financial incentive for them to pay

attention to them. Hence, these EOB are not a sufficient means to inform the patient

of any malicious activity that takes place using their identity.

In the event that a claim is rejected for reimbursement by Medicare, a letter is

sent to the provider giving the details of why the claim was rejected. This allows

malicious parties to modify their future claims to ensure that they are not rejected

for the same reason. There is no investigation performed by Medicare to discover

why such a claim was submitted in the first place.

3.2.1 Claims Lifecycle

We will now discuss the medical claims lifecycle which is used for billing and re-

imbursement. This information was collected by performing several interviews and
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meetings with high-level representatives of healthcare provider systems, private and

government sponsored health insurance companies as well as those companies that

provide billing products to them. An overview of this lifecycle can be seen in Figure

2.

3.2.1.1 Claim Types

There are two main types of medical claims which we describe below:

• Professional Claims : An individual claim is submitted by providers when they

care for a beneficiary.

• Facility Claims : The facility will submit a single claim for each date of service

for all the resources used at a facility for a patient. A single claim could include

services provided in multiple areas such as a lab, clinic, etc.

Fraud, waste and abuse can occur within both of these types.

3.2.1.2 Provider

When an interaction between a provider and beneficiary takes place, the provider

usually makes official notes of the encounter which get forwarded to the medical

coder. The medical coder then translates the provider’s notes into official diagnosis

and procedure codes following the appropriate rules and guidelines. These are then

forwarded to the billing department that submits the claims data to the appropriate

healthcare plan or payer.

The diagnosis code set is called the International Classification of Diseases (ICD)

the international standard diagnostic tool for epidemiology, health management and

clinical purposes. This code set is maintained by the World Health Organization

(WHO) which is updated every 10 years and is currently in its tenth revision. The

Current Procedure Terminology or CPT is another code set which is used to report
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medical, surgical, and diagnostic procedures and services to entities such as physi-

cians, health insurance companies and accreditation organizations. This code set is

maintained by the American Medical Association (AMA) which updates it annually.

Another code set used for procedures is called the Healthcare Common Procedure

Coding System (HCPCS) which is also maintained by the AMA. HCPCS is used by

Medicare and Medicaid. Both CPT and HCPCS must be correspond to a diagnostic

code or ICD code on the claim.

There are two main claim formats that use these codes. The first is the UB-04,

also known as the CMS-1450 claim form, which is used by institutional healthcare

facilities such as hospitals, etc. The other is the CMS-1500 claim form used by non-

institutional healthcare facilities, such as private practices. Most claims are filed

electronically but a small percentage are still filed manually through paper based

forms. This mainly happens when a provider needs to file the claim with a smaller

payer that has still not upgraded to an electronic system. Insurance claims processing

software follows a set of standards called the HIPAA Transactions and Code Set Rule

(TCS).

Before the claims are finally submitted to the healthcare plan or payer for re-

imbursement, they go through a scrubbing process. This process ensures that the

claims follow the coding rules and contains correct information. Errors that could

deny the claim or result in undercharges are also detected and removed during this

stage. Usually, the healthcare provider system uses third-party software to perform

the scrubbing on its claims prior to submission which helps them reduce denials and

improve cash flow. Scrubbing rules can be of three types. First are those defined

by the healthcare provider system. Second are those that are defined by the medi-

cal coding requirements and the final type are those that are defined by the payers

themselves.
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3.2.1.3 Clearinghouses

Several different claims software programs exist for both the providers and payers

which, coupled with the varying insurance regulation in each state, make submis-

sion of claims from providers to payers fairly complex. To alleviate this complexity,

providers submit their electronic claims to clearinghouses that function as interme-

diaries between providers and payers. Several clearinghouses exist within the United

States which need to be individually subscribed to before a provider can send claims

and a payer can receive them. Clearinghouses charge based on the number of claims

submitted and larger clearinghouses with more subscriptions usually charge more

than smaller clearinghouses. Enrollment into a clearinghouse can take up to 4 weeks

before live claims can be submitted.

Sometimes a clearinghouse may forward a claim to another clearinghouse for mul-

tiple reasons. This includes situations where the provider and payer are not enrolled

in the same clearinghouse, software compatibility issues, etc. This usually hinders the

claim from reaching the payer and can delay payment. Clearinghouses also scrub the

claims for potential errors before forwarding them to their destination. This helps

reduce the the average error rate significantly as compared to paper claims. There is

a possibility that claims can be lost or stalled within the clearinghouse which might

cause the payer to never receive them. Clearinghouses accept electronic claims in a

standard format called the ANSI-X12 837 or EDI 837. The response from the health-

care plan or payer to a claim that includes details on payment, co-pays, denials, etc.

are sent back to the provider as an ANSI-X12 835 or EDI 835.

Large payers such as Medicare, Medicaid or BlueCross allow providers to submit

claims to them directly to remove the middleman and cut down on fees. However,

this can increase the complexity for the provider to deal with multiple payers directly

and keeping track of claims within their systems separately. In addition, they lose

19



the benefit of extra scrubbing provided by the clearinghouse to detect errors, a major

cause for insurance claims rejection.

3.2.1.4 Healthcare Plans and Payers

Once the claim finally reaches the healthcare payer, it is checked to ensure that it

does not contain any errors or violates any of the plan rules. This simple prospective

detection is rule-based and checks for items such as:

• Is the beneficiary covered under a plan?

• Is the coverage valid?

• Is the provider alive?

• Is the treatment valid?

Apart from this, certain rule based prospective detection can be applied to check

for known scams and red flags within the claim. However, payers are unable to detect

fraud, waste and abuse schemes that span over several claims as it is difficult to

analyze historical data and compare past claims from the same provider, beneficiary,

facility, etc. to identify any trends without delaying the claim payment. Many states

have laws that require claims payment within a specified time period after submission

and payers can be financially penalized for noncompliance. This is why payers are

cautious to move towards a more sophisticated prospective claims review process as

it may potentially slow down the payment process. After this rule-based prospective

detection is completed, the claims are paid if there are no errors or obvious signs of

known fraud.

Periodically, historical claims are analyzed using supervised and semi-supervised

techniques to determine if there were any fraud schemes in the claims that were ad-

judicated. Usually such fraud is detected 60 days after the claims have been paid.
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Then the payers have to decide if the losses due to these fraudulent claims are signif-

icant enough to divert their limited recovery resources to try and recover the stolen

amount. Individual claims that steal $40 or $50 may not warrant the use of these

limited resources but their accumulated loss has a significant impact on payers.

3.3 Threats

There are several means by which a malicious actor can abuse the healthcare ecosys-

tem. Even though most cybersecurity threats also apply to this ecosystem, we will

primarily focus on those that are most specific to this ecosystem [25].

3.3.1 Medical Identity Theft

Medical identity theft has become one of the fastest growing crimes in America [44].

It occurs when a person steals the medical identity of another individual who is cov-

ered by some private or government sponsored health insurance program and obtains

medical treatment under the stolen identity. The provided medical treatment gener-

ates an EOB which is sent to the genuine owner of the identity. However, beneficiaries

do not always understand the details within an EOB and do not have any incentive

to verify if the services were actually provided to them. This has made it difficult to

discover medical identity theft in a timely manner [1] and patients are usually un-

aware that their identity has been stolen until their medical history has already been

corrupted or they have incurred financial loss. Medical identity theft is estimated to

cost the United States about $41.3 billion per annum [86].

3.3.2 Unauthorized Access

Healthcare enterprises have a relaxed access control mechanism that enables health

workers to access anyone’s medical information in case of an emergency. Such emer-

gencies are called ’Break the Glass’ where a particular individual with lesser privileges

accesses a record she is unauthorized for in case of emergencies. However, sometimes
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users of a healthcare system may abuse this relaxed access control to view records of

family members or celebrities to leak information to tabloids, cause embarrassment

or simply out of curiosity [18]. Such unauthorized accesses usually remain undetected

unless the perpetrators are caught using random system audits provided the auditing

mechanism itself has not been tampered with.

3.3.3 Phantom Clinics

Phantom clinics are fake clinics that are set up by criminals to defraud health insur-

ance programs [89]. They use stolen identities of doctors and patients to bill insurance

companies for treatments that no doctor ever performed and no patient ever received.

Such fraud is difficult to detect in a timely fashion and, in many cases, millions of

dollars have already been paid by government sponsored health insurance programs

such as Medicare and sometimes transferred overseas before it is detected [103]. Gov-

ernment sponsored health insurance programs such as Medicare and Medicaid as well

as private health insurance programs (e.g., Blue Cross Blue Shield, Aetna, Cigna) are

mainly affected by this threat.

3.3.4 Malicious Insiders

Healthcare professionals usually belong to a larger healthcare provider system such

as a hospital, clinic or pharmacy, etc. These entities provide services to patients and

file claims to health insurance programs. If a particular healthcare professional that

practices within a particular system is caught engaging in fraudulent practices, all of

the claims originating within the healthcare provider system could be scrutinized and

this could also tarnish the reputation of the facility. Hence, large healthcare provider

systems will be interested in ensuring that claims submitted by professionals affiliated

with them do not appear fraudulent. In addition to this, claims that contain unusual

patterns of coding also need to be identified before submission to reduce the cost
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and delays of reworking the claims and to ensure quick and accurate reimbursements.

There are several types of fraud that can be committed by a malicious insider:

3.3.4.1 Excessive and Unnecessary Services

Excessive services are those that are superfluous to the actual needs of the patient.

In this type of fraud, a legitimate provider would provide services that are either

excessive or unnecessary so that they may be reimbursed for an amount that is greater

than the genuine care that was provided.

3.3.4.2 Upcoding

In this type of fraud, a healthcare provider will enter a higher procedure code than

that which was actually performed on the patient in the insurance claim to obtain

higher reimbursement.

3.3.4.3 Unbundling

Certain services are usually provided together to beneficiaries and will be reimbursed

at a cheaper bundled rate. However, in this type of fraud the provider bills procedure

codes separately rather than as a bundle to obtain higher payment.

3.3.4.4 Duplicate Claims

Sometimes a provider may submit the same procedure on the same beneficiary twice

for reimbursement to obtain double payment for the service that was performed.

3.3.5 Devices

Medical data is increasingly being accessed and stored by a wide variety of newer

devices such as laptops, mobile phones, tablets, etc. that will connect to nodes on the

widely distributed eHealth Exchange. As with any device these would also potentially

introduce vulnerabilities within the healthcare enterprise infrastructure and increase

the number of attack vectors for criminals. Criminals would only need to target the
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most vulnerable device to gain access to sensitive data within the distributed network

and could potentially infect other computing devices on the network and steal the data

contained within them as well. Once devices within the network are compromised,

criminals could steal the existing data to make fraudulent claims, install malware

such as a botnet to monitor activities on the device and on a larger scale within

the network, corrupt the data to cause interruptions within the hospital workflow or

prevent the genuine users of those devices from accessing the data unless they pay a

ransom.

3.3.6 Kickbacks

Kickbacks in the healthcare ecosystem refer to the intentional acceptance of payments,

products and services for the purposes of soliciting any healthcare program business.

This is considered as fraud and the Anti-Kickback Statute specifically prohibits this

type of activity. However, these types of activities take place outside of the health

information sharing architecture so we do not directly address this threat in our

research.

3.4 Augmented Health Information Sharing Architecture

We will now discuss enhancements to the eHealth Exchange architecture and compo-

nents to counter some of the threats mentioned in the previous section. In some cases

we will augment the architecture with additional components while in other cases we

will improve the security within the component itself.

3.4.1 Enhanced Auditing & Awareness

Unauthorized access to sensitive healthcare data and medical identity theft can be de-

tected if we have non-repudiable auditing and awareness of patient data consumption

within the eHealth Exchange. If we do not enhance the security of the auditing sys-

tem then a malicious user may delete the audit logs that record unauthorized access
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of sensitive healthcare information. In addition to this, if the patient is informed on

how their identity and data is used within the eHealth Exchange in a timely manner

then they could potentially alert the authorities if some fraudulent activity is taking

place. As mentioned earlier, the EOB is sent to the patient several months after

the service was performed which does not allow the patient to detect misuse of their

identity until extensive damage has been done to their medical record and insurance

benefits.

3.4.2 Fraud, Waste and Abuse Detection

To tackle the threat of phantom clinics and malicious insiders that submit fraudu-

lent claims to health insurance programs, we need to enhance the claims processing

component to accurately detect suspicious claims in a timely manner. Such fraud is

difficult to detect mainly due to the large volume of claims submitted by health care

providers and received by healthcare plans. We must also prioritize these claims so

a fraud analyst at any of these nodes can investigate those claims which will help

maximize savings.

3.4.3 Securing Health Data at End Devices

To reduce the risk of sensitive healthcare data breach from end devices that connect

to each eHealth exchange node, we must enhance the existing security framework

to guarantee that third-party healthcare applications will not leak sensitive medical

information even when they become infected by malware. We must also capture

genuine user consent from such devices and differentiate it from malicious scripted

actions so that sensitive health data only leaves the device based on the device security

policy or explicit user consent.
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3.5 Conclusions

In this chapter we discussed the healthcare ecosystem in detail. This included the

health information sharing architecture and a general representation of the nodes

that are present within it. We then discussed the US health insurance system along

with the lifecycle of the claims that are used for billing. This helps us understand

how the sharing architecture would be used to submit claims as well as share med-

ical records. We also discussed various threats that affect this architecture and our

approach to mitigating these threats by augmenting components within it. We pri-

marily focus on securing the auditing system, claims processor and end devices that

connect to nodes within this architecture. Now that we have determined what to

augment within the health information sharing architecture, we will discuss each one

of these enhancements in detail in each subsequent chapter of this dissertation.
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CHAPTER IV

ENHANCED AUDITING & AWARENESS

Health information is usually protected by access control mechanisms that are per-

missive in nature so that needed information is available to medical personnel in case

of an emergency. However, this makes it easier for records to be inappropriately

accessed. The HIPAA Security Rule requires audit controls that record and exam-

ine access in systems that contain or use health information [113]. This could help

address the issue of unauthorized access. Unfortunately, research has shown that

current auditing standards in health systems lag behind other industries [55], and

are inadequate [7, 54, 56]. This is especially true when nodes can be compromised,

and such auditing can be tampered with or disabled. We address these issues in this

dissertation by enhancing the auditing system present within the eHealth Exchange.

Audit specifications within the eHealth Exchange exist to establish accountability

but nodes are currently not required to follow those specifications to participate within

the eHealth Exchange. This specification uses syslog to transport messages between

different parties which include communicating nodes or components within a node

[47]. Various versions of this protocol try to improve the security by adding TLS and

signatures. However, the syslog protocol assumes both of the interacting parties to be

trusted and the auditing mechanism could be subverted or corrupted with inaccurate

information if any single interacting party was compromised.

We improve the existing accountability guarantees within the eHealth Exchange

because the guarantees can be met when at least one of the interacting parties is not

compromised. All types of nodes within our enhanced eHealth Exchange generate
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mutually signed audit records that cannot be subverted or corrupted without detec-

tion and are stored with redundancy. This makes it ideal to investigate any abuses

because, even if one of the interacting nodes or components was compromised, we

would still have the ability to accurately determine the identities that were involved

in the fraud. We can also use these records to determine all the other actions that

were performed by those identities within the eHealth Exchange which may have also

been malicious. Reversing these actions would give us a starting point to rectify any

patient’s medical history that may have been corrupted by fraud.

We also introduce patient awareness within the eHealth Exchange beyond the

limited information that is conveyed by an Explanation of Benefits (EOB) that is

delivered to the patient often months after treatment. Our enhancements help inform

the patient of how their data is used in a timely manner. Patients are informed of

any movement of their data across nodes as well as claims that are filed using their

identity. Patients can also be notified of certain actions performed on their data

at provider nodes based on their personal preferences. This helps alleviate patient

privacy concerns [94] and also helps in early detection of fraudulent actions that may

take place within the eHealth Exchange. Once we have our enhancements in place,

we can do the following things within the eHealth Exchange:

• Our enhanced auditing mechanism ensures that we log all inter-nodal and inter-

component interactions which cannot be subverted or corrupted without detec-

tion unless both interacting parties are compromised or malicious.

• Our audit records are redundantly distributed throughout the node and eHealth

Exchange which helps in detecting deletion of records.
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• We introduce sharing provenance which helps us identify the medical practi-

tioner or healthcare organization that may be the source of a leak of informa-

tion or the unauthorized node that fraudulently releases or acquires a particular

patient’s data.

• We can use these records to determine all the other actions that were performed

by those identities within the eHealth Exchange which may have also been

malicious. Reversing these actions would give us a starting point to rectify any

patient’s medical history that may have been corrupted by fraud.

• We help alleviate patient privacy concerns by providing greater awareness to

patients about how their personal medical information is being shared which

can enable early detection of unauthorized and malicious sharing of health data.

4.1 Enhanced Auditing System

We enhance the eHealth Exchange with new architectural components and mecha-

nisms that help prevent certain attacks that can lead to fraud. Our mechanisms help

in withholding payments for fraudulent claims which would potentially help reduce

financial losses due to fraud. In the event that such a claim does get reimbursed,

our mechanisms help in the investigation of the fraud to accurately determine the

identities that were involved in perpetrating the crime.

We also augment the eHealth Exchange to provide non-repudiable auditing of in-

teractions that take place across different nodes as well as within each node. Our

enhancements ensure that we log all such interactions and detect tampering even

if one of the interacting parties is compromised. This auditing mechanism cannot

be subverted unless multiple interacting nodes or components within a node are si-

multaneously compromised, which makes it a valuable tool to investigate malicious

actions and the identities that were involved in perpetrating those actions. Once a

compromise has been detected, our auditing mechanism can be used to roll-back any
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Figure 3: Existing eHealth Exchange Node (Left) and Node with our Enhancements
(Right).

corruption in the medical history that may have taken place and also determine all

the nodes that may have received the patient’s corrupted medical history.

To achieve our goals, we introduce two new types of records called the Shar-

ing Record Log (SRL) and Audit Record (AR). These are created, propagated, signed

and stored by two additional architectural components, namely the CONNECT Mon-

itoring Agent (CMA) and the Component Logging Agent (CLA). Figure 3 gives an

overview of our enhancements to the eHealth Exchange Node.

4.1.1 Sharing Record Log

We enhance the eHealth Exchange by introducing what we call sharing provenance

which securely records the action that results in the sharing of medical data between

different nodes or submission of medical claims by a provider node to an insurance

node. Every document and claim within the eHealth Exchange has an accompanying
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SRL which contains this sharing provenance information. A SRL helps in establishing

the medical practitioners and nodes that were involved in the sharing or submission

of the associated medical document or claim respectively. In particular, it helps us

identify the medical practitioner or healthcare organization that may be a source of

leak of information or the unauthorized node that fraudulently releases or acquires a

particular patient’s data or submits a claim. A SRL for a particular medical document

or claim is always present at the CMA of the node that possesses the document or

claim.

The beginning of each SRL consists of Metadata (MD) and the remainder of the

SRL consists of a sequence of sharing log entries. The MD includes the patient identity

information, information about the medical practitioner and node that created the

data and how and where the information in the document was collected. The following

entries describe the chain of nodes along which it was shared. Each of these entries

contains an AR and associated signatures that capture the identities and action that

resulted in the sharing of the document. A claim is usually only submitted once to

the insurance node and will generally contain only one sharing log entry. An SRL

does not exist when a node first creates a document or receives it from an entity

external to the eHealth Exchange. In these cases, the first eHealth Exchange node is

responsible for creating the SRL, which will only include the MD.

A node can share a document with multiple other nodes. We need to handle

such cases carefully because a target node does not need to know information about

other nodes with which the document has been shared in the past. Thus, whenever a

sharing transaction is executed, only a prefix of the SRL should be forwarded to the

target node. This log prefix contains all entries up to the entry that corresponds to

the transfer of the document to the node holding this document. Entries within the

SRL that describe further sharing that may have occurred will not be forwarded to

protect the privacy of those transfers.
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Each of these shared document copies that reside in different nodes can be further

shared with other nodes which will lead to unique versions of each corresponding

SRL. These document copies may be merged by a common target node at some point

in the future which would require us to merge the SRL as well. This would change

the linear structure of the SRL into a directed graph structure where each vertice

represents a different version of the SRL. This graph retains information on how the

unique versions of the document were shared until they were eventually merged later.

Sometimes the SRL may need to be truncated as well if they cross a certain threshold

size. In such cases, a prefix of the SRL excluding the metadata will be truncated

leaving sufficient redundancy within the eHealth Exchange to recover the truncated

portion if desired.

4.1.2 Audit Record

The AR helps the augmented eHealth Exchange meet the accountability guarantees

even when one of the interacting nodes or components is compromised. The general

AR structure for all interactions within the eHealth Exchange is described as:

< I, U, T,Q, t|H(D),MDorH(SRLi,t) >

where I , U and T are the certificates of the initiating party, user that initiated the

request and target party respectively. Q is the query that prompted the interaction

to occur and t is the timestamp. The remaining values are optional and are only

included in certain interactions. Among these optional values are H(D) which is a

hashed value of document D involved in the interaction and MD which is the metadata

of that document. H(D) and MD are included in all intra-nodal interactions that deal

with a particular document. An additional optional value is the hashed value of the

current SRL at node i at time t. H(D) and H(SRLi,t) are included in all inter-nodal

transactions that involve sharing of medical documents. These allow us to verify the

document and log copies that existed at the time of sharing. AR that are created

32



Figure 4: Enhacned eHealth Exchange Node with Component Logging Agents.

for interactions that deal with documents are always generated by the party that

possesses the document.

4.1.3 Component Logging Agent

The CLA enhances the auditing mechanism within a particular node and does not

affect the auditing mechanism for interactions across different nodes. Each compo-

nent within the node, except for the CONNECT component and existing auditing

system, has a CLA that mediates all of its interactions with other types of com-

ponents as shown in Figure 4. Depending on the size of the node, if a component

type is distributed, then several CLAs may exist for that component type. For every

inter-component interaction, the mediating CLAs securely generate mutually signed

AR that describe the interaction. These AR are stored securely separately from

the auditing mechanism that already exists within the node to prevent a corruption

in case the existing auditing system is compromised. The CLA does not prevent a
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Figure 5: Enhanced eHealth Exchange Node with CLA and CMA.

transaction from proceeding if a valid AR or signed AR is not accompanied with the

interaction as its primary purpose is to log such activities. However, such a trans-

action will generate a notification to further investigate the matter. It is desirable

that such a CLA run on a separate virtual machine (VM) having its own certificate,

which would make it less likely to be compromised in case the remainder of the node

gets compromised. It is also much smaller in size which allows for easier analysis to

detect and remove vulnerabilities.

4.1.4 CONNECT Monitoring Agent

As shown in Figure 5, the CMA is present at the CONNECT component of each node

within the eHealth Exchange and is involved in enhancing both our inter-nodal as

well as intra-nodal auditing mechanism. At the inter-nodal level, the CMA mediates

all interactions to securely generate mutually signed AR which describe them and
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are used to create new sharing log entries for interactions that contain medical doc-

uments. The resulting AR and SRL are then stored at both the interacting CMAs.

The CMA can prevent a transaction from proceeding if a valid SRL or signed SRL is

not accompanied with interactions that contain medical documents. For other inter-

actions that do not contain a valid AR or signed AR, a notification will be generated

to further investigate the matter. At the intra-nodal level, the CMA performs the

same actions as the CLA. Similar to the CLA, it is desirable that the CMA run on a

separate VM having its own certificate and its smaller size allows for easier analysis.

4.2 Patient Data Awareness

Medical identity theft has become one of the fastest growing crimes in America [44],

and it is not easy to detect in a timely manner [1]. Patients are usually unaware that

their identity has been stolen until their medical history has already been corrupted

or they have incurred financial loss. As data is shared within the eHealth Exchange,

it could reside in multiple nodes and research has shown that patients want greater

control [124] and awareness as to know who has accessed their data [22] at all these

locations. Such increased awareness could also help alleviate privacy concerns that

exist among patients [94].

We further augment the eHealth Exchange to provide greater awareness to patients

about how their personal medical information is being accessed and shared. Our

enhancements enable early detection of unauthorized or potentially malicious sharing

and accesses of data or submission of claims within the eHealth Exchange as long

as at least one of the interacting nodes is not compromised or malicious. This early

detection can potentially help contain the resulting damage that may be caused.

If unwanted sharing does occur because of a compromised node or due to stolen

credentials, we can identify the source of a document leak and the path along which

it is shared through the document’s SRL. This can help in accurately determining
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Figure 6: Enhacned eHealth Exchange Node with CLA, CMA and PA.

all the legitimate nodes that have been affected and could serve as a starting point

in fixing a patient’s corrupted medical history. A corrupted record could include

incorrect information about the patient’s health that can lead to a life threatening

situation. To achieve this goal we introduce a new entity called the Patient Agent

(PA) within the eHealth Exchange architecture.

4.2.1 Patient Agent

The PA is not a part of any single node but several of them exist within the larger

eHealth Exchange architecture. Figure 6 shows the updated node architecture. Each

patient chooses one particular PA to observe the movement of their data within it.

This chosen PA maintains a list of nodes and medical personnel that have been au-

thorized by the patient to access their data and a profile, which includes information

about the events the patient would like to be notified. Notifications can be sent
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through text messages or email based on the user’s preference. When seeking treat-

ment at a new healthcare organization, the patient updates their list of authorized

nodes and medical personnel and notifies the healthcare organization of the chosen

PA, similar to how the patient’s insurance information is currently shared. For emer-

gency situations and cases where information about the patient’s chosen online agent

is not on file, it could be located using demographic information specific to the pa-

tient. This is similar to the patient discovery specification of the eHealth Exchange

where the patient’s demographic information is used to determine the nodes where a

given patient’s healthcare records exist.

The PA notifies the patient of when and who is accessing or sharing their data

or submitting claims using their identity. This information is forwarded to the PA

by the respective CMA that possesses the SRL or AR that was generated after a

relevant transaction. If the CMA cannot communicate with the PA, the SRL and

AR will be forwarded at a later time as soon as communication is restored. This

allows the document or claim to be submitted even when communication with the

PA is disrupted. The resulting patient awareness helps alleviate some privacy con-

cerns with the eHealth Exchange and provides a mechanism for the patient to detect

potential malicious access or sharing of their data before significant damage is done to

their medical history. It allows patients to play a role in earlier detection of medical

fraud. The Centers for Medicare and Medicaid Services already encourages patients

to help detect medical identity theft by reviewing their medical bills and Explanation

of Benefits to identify services that were not received by them. However, these are

sometimes not received by the patient until considerable time has passed after the

medical identity theft has taken place. We provide a faster mechanism for patients

to determine which healthcare providers and users are viewing their medical informa-

tion or submitting claims using their identity so they can potentially detect medical
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identity theft sooner. Such an early detection by a vigilant patient will also eventu-

ally lead to financial savings. A PA can also be run on behalf of an enterprise where

professionals responsible for detecting and handling data abuse will benefit from the

notifications that will be generated.

4.3 Implementation

This section describes the details of our enhancements to the auditing system and

awareness within the distributed eHealth Exchange. Our decisions have been informed

by participating in discussions with key stakeholders that are involved in CONNECT.

We have given presentations and attended audio conferences with representatives of

various healthcare enterprises, federal and state agencies that are currently using

CONNECT to participate in the eHealth Exchange.

4.3.1 Enhanced Auditing System

We implemented our auditing enhancements on the Open Medical Record System

(OpenMRS) version 1.9.6. This is as a open source EMR system platform which is

in use in at least 23 countries and has become a national standard in several of them.

We also implemented our enhancements within CONNECT 3.3, which is an open

source software implementation of eHealth Exchange standards. CONNECT was

initially developed by federal agencies but is now available to all organizations. Since

OpenMRS does not yet implement the eHealth Exchange standards, we configured

the Vangent HIEOS (Health Information Exchange Open Source) Document Registry

and Repository version 1.2 to work with CONNECT. HIEOS is the chosen document

registry and repository component for enterprise-type installations of CONNECT. It

provides a repository and registry to facilitate sharing of information across nodes

but is not a full-fledged EMR system.

We launched OpenMRS along with four such instances of CONNECT nodes with

HIEOS on VM running Debian 6.0.4. These VM were configured to communicate
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with one another by assigning unique identifiers to each instance. Each of these in-

stances acts as a node within the eHealth Exchange, and two of them implement our

enhancements. The VM hosting the initiating node and target node were hosted in

different segments of a university campus network. We created a CA using OpenSSL

with private keys of length 2048 bits. We then used the Bouncy Castle Java cryp-

tography API to generate certificates along with their public and private key pairs of

length 2048 bits for each node within the eHealth Exchange, our introduced compo-

nents and identities of users within them.

The CLA was written in Java and is multi-threaded so that it can simultane-

ously handle multiple transactions from other CLAs. The OpenMRS source code was

modified so that all interactions with a component are mediated by the CLA. The

CMA is also written in Java and multi-threaded. The CONNECT source code was

modified so that all Retrieve Document and Document Submission transactions are

mediated by the CMA. The PA was created using Java and is also multi-threaded to

handle simultaneous connections with CMAs and uses its own certificate and keys.

All communication between our introduced components are performed securely with

SSL. We assume the PA and one of the interacting CMA or CLA to be trusted. We

also assume that the keys and certificates have not been compromised and the signing

process is authenticated and secure.

4.3.1.1 Audit Record

The AR helps the augmented eHealth Exchange meet the accountability guarantees

even when one of the interacting nodes or components is compromised. AR copies

are maintained by the CMA and CLA that sign the records, and the PA chosen by

the patient for inter-nodal transactions as well as those intra-nodal transactions that

the patient would like to be notified. The general AR structure for all interactions

within the eHealth Exchange is:
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< I, U, T,Q, t|H(D),MDorH(SRLi,t) >

where I , U and T are the certificates of the initiating node, user that initiated the

request and target node respectively. Q is the query that prompted the interaction to

occur and t is the timestamp. The remaining values are optional and are only included

in certain interactions. Among these optional values are H(D) which is a hashed

value of document D involved in the interaction and MD which is the metadata of

that document. MD includes the patient identity information, information about the

medical practitioner that created the data and how and where the information in the

document was collected. H(D) and MD are included in all intra-nodal interactions

that deal with a particular document. An additional optional value is the hashed

value of the current SRL at the node i at time t. H(D) and H(SRLi,t) are included in

all inter-nodal transactions that involve sharing of medical documents. These allow

us to verify the document and log copies that existed at the time of sharing. AR

that are created for interactions that deal with documents are always generated by

the party that possesses the document.

4.3.1.2 Sharing Record Log

The SRL only applies to transactions that share medical documents across different

nodes. It consists of a time-ordered linear sequence of log entries. Each log entry

consists of an AR and signatures of AR that are generated by nodes that participate

in a document sharing transaction. SRL copies are maintained at the CMA that signs

the AR stored in them and the PA chosen by the patient who owns the document

being shared.

When a ’Document Submission’ transaction is executed across two different nodes,

the record AR representing the transaction is always generated by the CMA of the

initiating node, as it possesses the SRLI,t of the document which is needed to generate

a new AR. A signature for AR is generated by both the monitoring agents at the
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interacting nodes to make it verifiable. The actions executed by the CMA at the two

nodes are as follows:

CMAI → CMAT : SRLI,t, AR, [AR]kI

CMAT → CMAI : [[AR]kI ]kT

where CMAI and CMAT are the CMA at the initiating node and target node

respectively, and kI and kT are the private keys of CMAI and CMAT , respectively.

At the completion of the transaction, the two nodes update the SRL maintained

by each. A new sharing log entry consisting of AR and the signature generated by

both nodes will be appended to the SRL of the initiating node. The target node

will append the same record and signature to the SRL copy it received from CMAI ,

which becomes its SRL for the newly received document. In a ’Retrieve Document’

transaction from one node to another, where CMAT possesses the document and its

SRL, the CMA at the initiating node I, CMAI , cannot complete the sharing record

AR. Thus, it must make a request to the target node, and the steps executed after

such a request are:

CMAT → CMAI : SRLT,t, AR, [AR]kT

CMAI → CMAT : [[AR]kT ]kI

The SRL at the two nodes are updated appropriately with the new log entry that

contains the record AR and its signature. For any document at an eHealth Exchange

node, its SRL contains the sharing provenance information for the document. The

first sharing log entry in an SRL for a particular document provides information about

where the document was created, and following entries describe the chain of nodes

along which it was shared (each log entry, which contains a verifiable sharing record,

has this information).
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4.3.1.3 Accountable Data Access

We will now show an example of accountable data access within our augmented

eHealth Exchange. We will use the example of a retrieve document request sent from

Node A to Node B. We assume that these requests are for medical records that belong

to patient P. We use the notation [AR]ki to represent the signature generated for AR

with a private key ki of the CMA at node i (CMAi) or the CLA at component i

(CLAi).

1. When a physician named John launches a request from his hospital’s local EHR

system at node A to retrieve a document at node B, the Viewer component at node

A must communicate this to the CONNECT component at same node. The CLA at

the Viewer, CLAV , intercepts this interaction and creates AR1 which includes the

certificate of CLAV , the certificate of the user that initiated the request, the actual

query, the certificate of CMAA and the timestamp t1. The CLAV signs AR1 and

forwards this to CMAA.

AR1 = [CLAV , Physician John, ”RetrieveDocument...”,

CMAA, ”2013− 04− 26 05 : 25”]

CLAV → CMAA : AR1, [AR1]kV

2. CMAA verifies that the identities and other information included in AR1 it

receives correspond to the actual request that was received from the Viewer. CMAA

then signs over the signature it receives and returns it to CLAV . This mutually signed

audit record is then stored at both CLAV and CMAA for future auditing purposes.

CMAA → CLAV : [[AR1]kV ]kA

3. The CONNECT component then forwards this request to the CONNECT

component at node B. This retrieve document request is then intercepted by CMAB

which creates creates AR2 and digitally signs it. It sends the signed AR2 along with

AR2 and the SRLB,t2 to CMAA.

AR2 = [Node A, Physician John,′RetrieveDocument′,
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Node B, 2013− 04− 26 05 : 30, H(Document),

H(SRLB,t2)]

CMAB → CMAA : SRLB,t2 , AR2, [AR2]kB

4. CMAA verifies that the identities and other information included in the AR it

receives correspond to the actual request that was sent by it. CMAA then signs over

the signature it receives and returns it to CMAB. A new sharing log entry consisting

of AR2 and the signature generated by both CMA will be appended to the SRL for

the document at both CMA.

CMAA → CMAB : [[AR2]kB]kA

5. This mutually generated SRL entry, SRL1, is then forwarded to patient P’s

PA by the CMA of both nodes A and B and a copy is also stored locally.

The PA receives the same SRL entry from both the initiating and target nodes

for each of the two transactions described above. Upon receiving the SRL entry, it

will check the list of patient authorized sources of information to ensure that this

medical document originated from and was sent to an authorized node. If either of

the interacting nodes is not authorized, then a notification is sent to the patient and

an investigation could be launched to determine if any malicious activity has taken

place.

4.3.2 Patient Agent

Whenever a document needs to be viewed by an internal user within the same node,

the viewer component must interact with the repository to request such information.

This is captured by the CLA at both the repository and viewer and will generate

a mutually signed AR that represents the interaction. This mutually signed AR is

then forwarded to the CMA. External users that belong to a different node but would

like to download a particular patient’s data must initiate a document transfer across

both nodes to obtain that document. Such document transfers will result in the CMA
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at their respective nodes generating an SRL entry that contains a mutual signature.

These mutually signed AR and SRL entries will be periodically forwarded to the

respective patient’s PA. This PA will inform the patient of all the users that have

accessed their medical document and also allow the patient to determine that their

data transfer has taken place between two patient-authorized nodes.

The PA does not need to receive the same AR or SRL entry from both the inter-

acting parties and even if one of the parties was compromised or malicious, it would

still be able to generate a user notification based on a single mutually signed AR or

SRL entry it receives from an uncompromised party. In cases where new data has

been generated or has been sent to a non-authorized node, the patient is notified of

this transaction and can investigate it in more detail.

We assume that more cautious patients will choose to be notified of every move-

ment of their data within the eHealth Exchange and in this case a notification is

generated every time the PA receives a SRL entry for the patient. Other patients

may want to receive a notification only when data is shared with a previously un-

known node. This is defined by a patient when they sets their profile at the PA. As

we mentioned earlier, we do not want to impede the movement of health data even if

communication between a CMA and PA is not possible. If both the interacting nodes

in a transaction are unable to communicate with the PA, we would want subsequent

transactions to inform us of any such previously unreported transactions. Hence, the

update containing the SRL entry can also include information about SRL records

for all earlier inter-nodal transactions of the current document that are known to

the CMA. In such situations, the PA can also verify that all previous unreported

interactions took place between authorized nodes. We can use a variety of existing

techniques to ensure that entries in a SRL known to both an CMA and PA are not

sent again by the CMA in the future. A PA can also be run on behalf of an enterprise
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where professionals responsible for detecting and handling data abuse will benefit

from the notifications that will be generated.

4.4 Evaluation

In this section we will evaluate the performance of our enhancements to the eHealth

Exchange and also perform a security analysis of them.

4.4.1 Performance Evaluation

We used our implementation of the augmented OpenMRS and eHealth Exchange to

quantify additional processing and communication overheads that may arise mainly

because of the addition of the components that we discussed and the communication

between them. Our study focuses on several micro-benchmarks, as we do not have

access to workloads that would allow the evaluation of a fully deployed system at a

healthcare organization.

4.4.1.1 Component Logging Agent

When an inter-component transaction occurs, the CLA of the initiating component

is responsible for contacting the CLA at the target component and executing the

accountable data access procedure. We evaluated the overhead generated by the CLA

by measuring the additional time it takes to perform an inter-component transaction.

This overhead includes the time to generate the new AR at the initiating CLA and

signing it, communication overhead to send this AR to the target CLA, verifying

that the contents and signatures of the AR and mutually signing the AR and sending

it back to the initiating CLA. The AR used within our experiment contained only

the required values and was 3.18 KB in size. With the inclusion of the optional

AR elements the size of the AR will increase. The signatures that were generated

were 256 bytes. The average overhead time that was recorded during inter-component
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transactions was 367.66 ms. This additional time does not significantly alter end-user

experience.

4.4.1.2 CONNECT Monitoring Agent

When an inter-nodal transaction occurs, the CMA of the initiating node is responsible

for contacting the CMA at the target node and executing the accountable data access

procedure. To evaluate the overhead generated by the CMA within our augmented

eHealth Exchange, we measured the time taken to submit and retrieve a Continuity

of Care Document (CCD), which is a standard electronic document for exchanging

patient summary information. Our experiment was conducted using a 265 KB CCD

with and without the presence of our enhancements to the eHealth Exchange. We

ensured that the environment was consistent for all measurements. In Table 1, we

summarize our findings for the average times taken to complete a Retrieve Document

and Document Submission transaction between two nodes. We ensured that the

existing SRL for both types of transactions only contained the document metadata

and did not contain any additional SRL entries. Our experimental results show that

our enhancements add a 0.35 second overhead for Retrieve Document transactions

and a 0.37 second overhead for Document Submission transactions in the environment

that was described earlier. In a healthcare work flow, we believe this overhead is

acceptable. This overhead includes the time to generate the new SRL entry at the

CMA that possesses the document, communication overhead to send this SRL entry

along with the existing SRL to the target CMA, verifying that the contents and

signatures of the SRL entry match with the actual transaction that initiated the

accountable data access procedure, and mutually signing the digital signature and

sending it back to the initiating CMA.
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Table 1: Performance Evaluation Results

eHealth Exchange Augmented eHealth Exchange
Retrieve Document 901.07 ms 1251.80 ms
Document Submission 676.50 ms 1049.96 ms

4.4.2 Security Analysis

We explore the security provided by our augmented eHealth Exchange by analyzing

its response to different threat scenarios. Each scenario describes a situation where a

potentially malicious action may have taken place. We examine the effect these po-

tentially malicious actions have on our system components and generated logs across

different nodes of the eHealth Exchange. We do this by following these scenarios and

observing their results on our system.

4.4.2.1 Phantom Medical Clinics

Our first scenario deals with a fake medical clinic, similar to one that was set up by

criminals to defraud Medicare of considerable amount of money [19]. These phantom

clinics use stolen identities of doctors and patients to bill Medicare for treatments

that no doctor ever performed and no patient ever received. Such fraud is difficult

to detect in a timely fashion and in many cases, millions of dollars have already been

paid by Medicare and sometimes transferred overseas before it is detected. Once the

eHealth Exchange infrastructure comes into existence, phantom clinics would need

to set up their own eHealth Exchange node and CMA, which contains the stolen

identities of physicians and patients. These identities are used to file Medicare claims

for bogus procedures that never take place by following the ’Document Submission’

specification. Since these nodes and their monitoring agents are maliciously set up,

they can try to ignore the secure accountability protocol and avoid communicating

with the CMA of the target node. However, the target node will not allow any

transaction to proceed unless the CMA of the initiating node sends the SRL entry that

contains the digital signature. To allow this transaction to proceed, the phantom clinic
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will be required to follow the secure accountability protocol and include the digital

signature within the SRL entry that is verified by the target CMA to correspond to

the requested transaction. The malicious CMA of this clinic can then avoid sending

the SRL entry to the PA, as it happens after document transfer. However, if the

target node is a genuine node, it will forward a copy of the SRL entry that contains

the identities of both interacting nodes and the patient. The PA will then check if

the nodes that participated in the transaction have been authorized by the patient

in question, which will reveal the fact that the phantom clinic is unauthorized. This

will generate a notification to the patient, which includes the name of the phantom

medical clinic. The patient (or person acting on the patient’s behalf) can subsequently

launch an investigation and notify the target node that the information it received

was bogus.

4.4.2.2 Compromised Nodes

As with every other complex software system, the implementation of the eHealth

Exchange specifications may contain vulnerabilities that could be exploited to com-

promise a node. The CMA would be more difficult to compromise than the rest of

the node software, as it can run in a separate virtual machine and is much smaller

in size, which allows for easier analysis to detect and remove vulnerabilities. Apart

from this, sometimes a malicious insider can use the eHealth Exchange inappropri-

ately. Such compromised nodes and malicious users may attempt to issue send and

receive requests for medical information for patients that were not authorized. Any

such request needs to be processed by the CMA of the initiating node, and the se-

cure accountability protocol is followed with the CMA of the target node. In cases

where the CMA of the compromised node has also been compromised, it will still be

required to include a signature within the SRL entry that represents the transaction

corresponding to the request that was issued by its node. If the SRL entry contents do
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not match the actual transaction or the secure accountability protocol is not followed

by the initiating CMA, the transaction will be declined by the target node. This

will prevent any loss of privacy and corruption of the respective patient’s medical

history within the eHealth Exchange. Subsequently, the compromised CMA of the

initiating node will avoid sending the mutually signed SRL entry to the PA. However,

the CMA of the target node will send the SRL entry to the PA anyway, so long as it

is not malicious or compromised itself; the SRL entry contains the identities of both

interacting nodes. If either of the interacting nodes has not been authorized by the

patient to handle their data, a notification for the patient will be generated by the PA.

Such notifications will be similar to what banks send their customers when malicious

transactions are suspected. Thus, we believe that both healthcare organizations and

their customers will benefit from such notifications. A patient who receives a notifi-

cation can launch an investigation, which will lead to an early breach detection at the

initiating node and help in fulfilling the breach notification requirements of DURSA.

Similar investigations may be launched by other patients whose data may have been

affected. This can help determine the role of the person involved in the breach, other

participants likely affected, and the number of medical records that may have been

breached, which are all requirements of DURSA. We must also note that transactions

between authorized nodes will not generate notifications to the patient unless the pa-

tient specifically requests notification for every transaction. If the compromised node,

malicious insider, or external identity thief initiate transactions between authorized

nodes, these transactions may not generate an immediate notification to the patient.

However, by requiring that the PA periodically notify its owner of all activity known

to it from SRL, we can ensure that such malicious activity does not go unnoticed for

very long.
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4.4.2.3 Medical Identity Theft

Medical identity theft usually involves a criminal acquiring medical services in an-

other individual’s name. This introduces inaccuracies in the victim’s medical history,

which could lead to incorrect treatment that can be life threatening. The problem

is further compounded by the fact that it is not easy to determine all the parties

that received incorrect health information, which makes restoring the victim’s correct

medical history even more difficult. Whenever a corruption of a particular patient’s

medical history is detected, the patient can review all the transactions involving their

data that have previously taken place within our augmented eHealth Exchange. This

information is stored at the patient’s PA, which is aware of all inter-nodal data ex-

change transactions that involve the patient’s medical data, the users who initiated

the transactions and the actual documents that were involved in those transactions.

This helps the patients determine the documents that were affected, which is the first

step to rectifying their medical history. However, medical documents that contain

inaccuracies, which were not shared with other nodes on the eHealth exchange, will

not appear on the PA’s list. The patient will have to rely on the local audit logs at

the nodes to make that determination.

4.4.2.4 Unauthorized Access

Healthcare enterprises have a relaxed access control mechanism that enables health

workers to access anyone’s medical information in case of an emergency. Such emer-

gencies are called ’Break the Glass’ where a particular individual with lesser privileges

accesses a record she is unauthorized for in case of emergencies. However, sometimes

users of a healthcare system may abuse this relaxed access control to view records of

family members or celebrities to leak information to tabloids, cause embarrassment

or simply out of curiosity. Such unauthorized accesses usually remain undetected
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unless the perpetrators are caught using random system audits provided the auditing

mechanism itself has not been tampered with.

When a user accesses data within the node’s repository, the CLA at the device that

the user logs into initiates the accountable data access procedure to create an AR with

the CLA at the repository that contains the data. This AR contains the certificates

of the user that requested the data. This redundantly stored AR helps determine

the identity of the user and action that was performed even if the entries within the

auditing system were removed or one of the CLA was compromised. If a ’Break the

Glass’ situation has occurred with an action that was performed by the user, we flag

that particular action for a manual audit to determine if any unauthorized access to

data has taken place. Thus, catching any abuse of the relaxed auditing system and

not depending on random audits to catch the abuse.

4.5 Conclusions

In this chapter, we augmented the eHealth Exchange to enhance accountability and

patient awareness at each node. We introduced two new types of records called the

Sharing Record Log (SRL) and Audit Record (AR). These are created, propagated,

signed and stored by two additional architectural components, namely the CONNECT

Monitoring Agent (CMA) and the Component Logging Agent (CLA). In addition to

this another architectural component called the Patient Agent (PA) helps inform the

patients of how their data is being shared within the eHealth Exchange.

These enhancements help us ensure that we log all inter-nodal and inter-component

interactions which cannot be subverted or corrupted without detection unless both

interacting parties are compromised or malicious. Our audit records are also re-

dundantly distributed throughout the node and eHealth Exchange which helps in

detecting deletion of records. In addition to this, we also help alleviate patient pri-

vacy concerns by providing greater awareness to patients about how their personal
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medical information is being shared. These enhancements enable early detection of

unauthorized and malicious sharing of health data, which can help limit the resulting

damage.

In case a breach or compromise occurs, our introduced concept of sharing prove-

nance helps us identify the medical practitioner or healthcare organization that may

be a source of leak of information or the unauthorized node that fraudulently releases

or acquires a particular patient’s data. We can use these records to determine all the

other actions that were performed by those identities within the eHealth Exchange

which may have also been malicious. Reversing these actions would give us a starting

point to rectify any patient’s medical history that may have been corrupted by fraud.

Now that we have this enhanced auditing system and patient awareness added

to the eHealth Exchange that allows us to detect suspicious activity after it takes

place, we would like to limit the damage caused by malicious actions by proactively

detecting suspicious activity that may affect the nodes. A major concern of such

activity is the submission of claims that contain fraud, waste and abuse within them.

Nodes are usually unable to detect such activity in a timely manner due to the large

volume of claims that they process and laws that require their quick reimbursement.

Hence, in the following chapter we will take proactive steps to detect such activity in

a timely and accurate manner. This will help reduce losses due to suspicious claims

that may contain fraud, waste and abuse.
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CHAPTER V

FRAUD, WASTE AND ABUSE DETECTION

The US government has defined healthcare fraud as knowingly and willfully executing

a scheme or artifice to defraud any healthcare benefit program or to obtain any of

the money or property owned by any health care benefit program. Sometimes fraud

is further divided into subcategories called fraud, waste and abuse. However, we use

the term fraud to represent the general abuse of health data for monetary benefit.

Perpetrators of fraud could be physicians, hospitals, clinical laboratories, employees

of any providers, billing services, beneficiaries, health plan employees, or any person

in a position to file a claim for benefits.

Fraud can be committed by individuals acting alone or could be perpetrated by

groups of individuals or institutions that use sophisticated schemes to lure customers.

Most fraud schemes defraud several private and public sector victims simultaneously

rather than target one insurer or a particular sector exclusively [3]. We have already

discussed several threats in Chapter 3. However, these threats can be materialized

in two different ways. First, short term fraud attempts to steal large amounts of

money quickly and stops before anyone can detect the fraud. The second is a longer

term fraud that attempts to steal small amounts over a large period of time to avoid

detection. Usually legitimate providers that submit claims that can be viewed as

fraud follow the second approach while malicious actors that have stolen identities

follow the first approach.

In this chapter, we will discuss the FraudScope system and the technique used by

it to identify fraud, waste and abuse in the healthcare system. We make the following

contributions in this chapter:
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• Our fraud, waste and abuse detection system, FraudScope, helps detect suspi-

cious claims and provides a rank and risk score to the most suspicious claims,

providers, beneficiaries, etc. to prioritize the investigation of those that are

most suspicious.

• FraudScope can be run prospectively to detect fraud before claims are adjudi-

cated. It can also be run retrospectively to detect the most suspicious claims

after adjudication.

• Existing methods usually require input in the fraud identification stage, how-

ever, our technique does not require any input in the fraud identification stage.

This allows our technique to detect newly emerging as well as previously uniden-

tified fraud schemes.

• It can also adapt to natural changes in the treatment patterns or in the coding

system and will not require any additional work by the user to include these

changes.

5.1 Combating Healthcare Fraud

The Office of the National Coordinator for Health Information Technology (ONC)

contracted with the Foundation of Research and Education (FORE) of the American

Health Information Management Association (AHIMA) to study how the use of health

IT could enhance and expand fraud management. To this effect, FORE convened a

cross-industry The National Executive Committee, consisting of a multi-stakeholder

group of experts with significant experience and insight about the U.S. healthcare

system and fraud, made the following recommendations to tackle fraud within the

eHealth Exchange:
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• The eHealth Exchange policies, procedures, and standards must proactively

prevent, detect, and support prosecution of healthcare fraud rather than be

neutral to it.

• Fully integrate and implement fraud management programs and advanced ana-

lytics software in interoperable EHRs and the eHealth Exchange to achieve all

of the estimated potential economic benefits.

• Data required from the eHealth Exchange for monitoring fraud and abuse must

be derived from its operations and not require additional data transactions.

• Fraud management features should not disrupt the provider workflow or inter-

fere with patient care.

In this chapter, we use these recommendations as key goals to secure the eHealth

Exchange. The ONC Health Care Anti-Fraud Project defines three approaches to

manage fraud. They term the first approach as Preventive where ongoing pattern

monitoring and analysis is used to prevent fraud. In this approach, an attack on health

data is prevented from materializing. The second approach is termed as Prospective

where fraudulent claims are detected prior to payment at the insurance node. In this

case, a successful attack has already taken place on health data and we are able to

identify and deny payment for any fraudulent claims that are generated using the

compromised data. The final approach is termed as Retrospective which identifies

fraudulent claims after they have been adjudicated. Here a successful attack has

taken place and monetary benefit has also been derived by using it in a fraudulent

claim. Such an approach uses historical claims information to determine if any fraud

has taken place to prosecute the perpetrators and try to recover the claim payment.

About 80% of the current fraud and abuse detection happens after payments have

been made. However, such a detection is still valuable because they identify and store

provider patterns and discrepancies. A demonstrable return on investment from the
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Table 2: CMS Dataset Details

Details Dataset 1 Dataset 2 Dataset 3
Data Type Services and Procedure Data Services and Procedure Data Drug Data

Years 2012 2013 2013
Size 1.7 GB 1.7 GB 2.7 GB

Provider Types 89 90 202
Number of Providers 880,644 909,605 808,020

Number of Procedures/Drugs 5949 5983 2737
Data Aggregation 1 year 1 year 1 year

Number of Records 9,153,272 9,287,876 year 23,650,520

use of retrospective fraud and abuse detection is reported by payers [3]. Even though

a prospective approach would help stop payment of fraudulent claims, payers are

cautious to move towards a prospective claims review process as it may potentially

slow down the payment process. Many states have laws that require claims payment

within a specified time period after submission and payers are financially penalized

for noncompliance.

However, with the Patient Protection and Affordable Care Act which was signed

into law in 2010, the Health and Human Services (HHS) Secretary can suspend pay-

ments to a particular provider pending an investigation of a credible allegation of

fraud. Auditors and investigators will have more opportunities to detect attempts at

fraud and prevent financial loss if claims are not rushed through the payment pro-

cess. This is because the retrospective approach does not provide any large incentives

to expend large amounts of money trying to recover an individual claim of $40 or

$50 [73]. Hence, we must use real-time data analysis techniques to detect fraudu-

lent claims before payment so that fraudulent providers can be quickly identified and

expelled from networks [73].

5.2 Datasets

We use a data driven approach to detect suspicious claims within the data which will

help us validate our medical insurance fraud claims research. We were able to acquire

three datasets for our insurance fraud claims research to validate our approach. All

of these health insurance claims datasets were obtained from Centers for Medicare &
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Table 3: CMS Dataset Fields

Field Description
npi National Provider Identifier (NPI)

nppes provider last org name Last Name/Organization Name
nppes provider first name First Name

nppes provider mi Middle Initial
nppes credentials Credentials

nppes provider gender Gender
nppes entity code Entity Code: ’I’ for individuals and ’O’ for organizations

nppes provider street1 Street Address 1
nppes provider street2 Street Address 2

nppes provider city City
nppes provider zip Zip Code

nppes provider state State Code
nppes provider country Country Code

provider type Provider Type
medicare participation indicator Medicare Participation Indicator

place of service Place of Service
hcpcs code HCPCS Code

hcpcs description HCPCS Description
line srvc cnt Number of Services

bene unique cnt Number of Medicare Beneficiaries
bene day srvc cnt Number of Medicare Beneficiary/Day Services

average Medicare allowed amt Average Medicare Allowed Amount
stdev Medicare allowed amt Standard Deviation Medicare Allowed Amount
average submitted chrg amt Average Submitted Charge
stdev submitted chrg amt Standard Deviation Submitted Charge Amount

average Medicare payment amt Average Medicare Payment Amount
stdev Medicare payment amt Standard Deviation Medicare Payment Amount

Medicaid Services (CMS) to evaluate FraudScope. Table 2 gives an overview of the

data contained within these datasets.

5.2.1 Medicare Services and Procedures Datasets

The first two datasets are called the ’Medicare Provider Utilization and Payment

Data: Physician and Other Supplier’ Dataset [16]. They contain aggregated infor-

mation on services and procedures provided to Medicare beneficiaries by physicians,

non-physician practitioners, laboratories, imaging, ambulances, etc. in the year 2012

and 2013 respectively. This amounts to about 9 million records each with around 90

different provider types. Table 3 describes the fields contained within both datasets.

The datasets do not contain individual claim information but are aggregated to the

NPI of the performing provider, the Healthcare Common Procedure Coding System

(HCPCS) code, and the place of service (either facility or non-facility). For each

unique healthcare provider identifier called the National Provider Identifier (NPI),
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Table 4: CMS Drug Dataset Fields

Field Description
npi National Provider Identifier (NPI)

nppes provider last org name Last Name/Organization Name
nppes provider first name First Name

nppes provider city City
nppes provider state State
specialty description Provider Specialty Type

description flag Source of Provider Specialty
drug name Brand Name

generic name USAN Generic Name - Short Version
bene count Number of Medicare Beneficiaries

total claim count Number of Medicare Part D claims, including refills.
total day supply Number of days supply for all claims.
total drug cost Aggregate cost paid for all claims.

bene count ge65 Number of medicare beneficiaries, aged 65 or older
bene count ge65 redact flag Flag detailing reason for redaction of bene count ge65 field

total claim count ge65 Number of claims, including refills, where the beneficiary was 65 or older.
ge65 redact flag Flag detailing reason for redaction of ge65 fields.

total day supply ge65 Number of days supply for all claims, where the beneficiary is 65 or older.
total drug cost ge65 Aggregate cost paid for all claims, where the beneficiary is 65 or older.

there are several records within the database based on the number of distinct HCPCS

codes that were billed and the place of service. Any aggregated records derived from

10 or fewer beneficiaries are excluded from the dataset to protect their privacy [14].

5.2.2 Medicare Prescription Drug Dataset

The third dataset is called the ’Medicare Provider Utilization and Payment Data:

Part D Prescriber’ Dataset [15]. It contains aggregated information on prescription

drug events (PDEs) incurred by Medicare beneficiaries with a Part D prescription

drug plan in the year 2013. It contains about 23 million records and 202 provider

types. Table 4 describes the fields contained within the drug dataset.

The dataset does not contain individual claim information but is aggregated to

the NPI of the performing provider and drug name and generic name. For each NPI,

there are several records within the database based on the number of distinct drugs

that were filled. Any aggregated records derived from 10 or fewer beneficiaries are

excluded from the dataset to protect their privacy [13].
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5.3 Our Approach

Several machine learning techniques can be considered to achieve our goal of detecting

suspicious claims. However, as mentioned earlier we use a data driven approach to

determine the most appropriate technique in this section.

Machine learning techniques are usually divided into two categories, supervised

and unsupervised. Supervised learning methods require a training set that consists

of both fraudulent as well as genuine data which is labeled accurately by a domain

expert. This labeling is called the ground truth. Several supervised methods have

been used in healthcare fraud detection such as neural networks, decision trees and

Bayesian networks. However, obtaining labeled data is extremely difficult and we do

not have access to such data. The datasets currently available to us contain unlabeled

data that includes a mix of genuine medical insurance claims as well as potentially

suspicious claims. Hence, we are unable to use supervised techniques to detect fraud

within the previously described datasets.

On the other hand, unsupervised learning methods do not require training data

and can be used to analyze data and find outliers within them. We use the assumption

that claims filed for each provider type will be similar and providers that abuse

medical insurance claims will show deviations from them. We use this data model

and explore proximity based machine learning techniques, which is best suited for

this data model, to detect abuse within our claims datasets.

The most common ways of defining proximity for outlier detection are cluster-

based, distance-based and density-based. We used several variations of these tech-

niques on a single procedure code for each provider type with interesting results. How-

ever, when we consider all procedure codes for each provider type, these techniques

do not necessarily work well with the resultant high dimensionality data to produce

the desired results [123]. Even though there has been a lot of work done recently to

perform outlier detection in high dimensionality data, this is still an emerging field
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where implementations and libraries are not always readily available. We chose to

reduce the dimensions of our dataset to detect abuse within it that we describe in the

next section. We specifically aim to achieve the following goals with our appraoch:

• Our technique should be able to run prospectively to detect fraud before claims

are adjudicated. It should have the capability to run retrospectively to detect

the most suspicious claims after adjudication.

• Existing methods usually require input in the fraud identification stage, how-

ever, our technique should not require any input in the fraud identification

stage. This allows the technique to detect newly emerging as well as previously

unidentified fraud schemes.

• Our technique should also provide a rank and risk score to the most suspicious

claims, providers, beneficiaries, etc. to prioritize the investigation of those that

are most suspicious.

5.4 FraudScope

We developed a technique to detect fraud in medical insurance claims data. However,

our technique is in no way restricted to the healthcare domain and can be used

generally to detect anomalies in any data. Our technique can be used in conjunction

with other prospective and retrospective claims processing systems and techniques.

The technique itself can be used to detect suspicious claims, providers, beneficiaries at

any granularity. The user of the system could be any individual tasked with reviewing

the claims. We will call the user a fraud analyst for the remainder of this document.

However, the system can be completely automated and may require minimal user

involvement.

Features that can help detect fraud are extracted from claims to create a candidate

profile which is compared with a reference profile. The level of conformity between the
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Figure 7: Example Prospective Detection

candidate profile and reference profile will result in risk score that will be presented

to the user of the system. This risk score can also be used prospectively to accept

or deny the claim automatically without the need for a user to make a decision. An

example configuration of our technique in prospective detection is shown in Figure 7.

We will describe a retrospective application of our technique as the datasets avail-

able to us are adjudicated claims without any timestamps. Hence, we cannot sim-

ulate a live stream from the aggregated datasets available to us. The datasets are

aggregated at the provider level so we will apply our technique to detect suspicious

providers even though this can be used to detect suspicious individual claims, treat-

ments, beneficiaries, etc. We create a separate reference profile for each provider type

based on the medical insurance claims filed by all providers of that type. We then

provide a risk score to each of these providers based on the extent of deviation of

their generated candidate profiles from their respective provider type reference pro-

file. These risk scores allow a fraud analyst to focus on the most suspicious providers

and improve the chances of detecting malicious providers.

Profiles that are created by our fraud detection system are not static. They

change as the pattern of claims being filed by a particular provider type changes over
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time. Our reference profiles are created using an unlabeled dataset so we make an

assumption that majority of the providers are legitimate and those that deviate from

the majority are likely suspicious in nature. In the presence of a labeled dataset, we

can use feedback from the output to fine tune our detection technique.

5.4.1 Features

Features are measurable properties of claims that will enable us to determine the

underlying patterns which providers of a particular type naturally follow while per-

forming their duties. Our system will work with both aggregated medical insurance

claims data as well as detailed information on every claim that was filed. We use the

notation fi to represent feature i used in calculation of patterns and profiles. The

features chosen by our system will depend on the data available to it. For the specific

datasets available to us we use the following features:

5.4.1.1 Procedure Codes

The first feature we use are the procedure codes that were filed by each provider

within the dataset. A large Medicare and Medicaid fraud case carried out by an

organized crime group operating in the US was able to commit fraud to the tune of

$163 million. Over 50 people involved in this scam were able to use stolen identities of

doctors and submit fake claims to these government programs for services that were

never provided. Some of these claims showed eye doctors doing bladder tests; ear,

nose and throat specialists performing pregnancy ultrasounds; obstetricians testing

for skin allergies; and dermatologists billing for heart exams [12]. Due to the large

volume of claims received by the government, such blatant provider type and pro-

cedure mismatch was undetected. We include the procedure code of the claim as a

categorical feature in our fraud detection system to automate the detection of such

mismatch in the future.
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5.4.1.2 Drug Names

The next feature used by our fraud detection system is the drug names prescribed

by providers. This is also used as a categorical value within FraudScope. Similar

to our previous feature, we would like to ensure that the provider speciality type

that prescribes a certain medication is not unusual. This would help a fraud analyst

become aware of any suspicious prescriptions.

5.4.1.3 Beneficiaries

Another feature used by our fraud detection system is the number of beneficiaries

treated by a particular provider. This feature will be compared to other features such

as claim counts, etc. for other providers and the detection system will determine if

the provider looks suspicious. For example, a fake clinic that has stolen identities of

beneficiaries may bill several claims for a few stolen identities or may have a very large

beneficiary base in comparison to other providers. This would mark the particular

provider as suspicious within our system.

5.4.1.4 Claim Counts

This feature takes into consideration the number of claims a particular provider files

for each procedure and drug code determines if there is anything suspicious based on

the number of beneficiaries that received these services.

5.4.1.5 Unique Services

This metric helps identify whether a unique service was performed by the provider

on a single beneficiary on a single day. In other words, this helps us determine if

a beneficiary receives multiple services of the same type in one day (e.g. single vs

multiple cardiac stents on a single day).
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5.4.1.6 Drug Supply

Finally, we take into account the total supply for which a particular drug was dis-

pensed. This will help the fraud detector determine if a particular provider is generous

in his supply of drugs to patients in comparison to other providers.

In addition to the above mentioned features, several other fields were available

to us within the dataset but were not chosen. These include cost based features

that do not necessarily indicate whether a provider has engaged in fraud. Medicare

allowed amounts and payments for procedures performed on beneficiaries vary based

on location as most services amounts are adjusted based on the location’s cost of

living. An increase or decrease in the intensity of the service performed, deviation

from the procedure definition, other services performed during the same visit and a

few other factors can also affect the Medicare allowed amounts and payments. Apart

from this, if a claim amount seems to be out of the expected ranges the claim is

rejected and a letter is sent to the provider detailing the exact reason why it was

rejected. This allows malicious providers to conveniently adjust their claims to the

Medicare expected amounts and get future claims reimbursed.

Additional fields that contained physician identifying information such as name,

address, etc. and other fields that were populated only for a small subset of the data

were ignored.

5.4.2 Profile Calculation Window

The calculation window for our profiles define the time period over which claims

for a particular provider type are analyzed to create a reference profile and detect

deviations from it. Reference profiles may need to be recalculated over certain time

periods to account for a natural change in the claims filed by any provider type.

The calculation window for all features within a profile are usually the same. The

reference profiles could exhibit variations based on the chosen calculation window.
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A calculation window that spans a larger time period can help create reference

profiles that are not severely affected by any temporary changes in filing pattern dur-

ing the calculation window. However, certain types of threats can be better detected

within a shorter calculation window such as that of a phantom clinic. Phantom clin-

ics usually only operate for a few months and will be outliers if their deviations are

measured for the period that they were active. However, that same phantom clinic

will blend in with the remainder providers if the calculation window spans a much

larger period than when they were actually active.

Hence, we leave the calculation window parameter as an adjustable option to

the fraud analyst to detect specific kinds of fraud they may be interested in. The

datasets discussed earlier are snapshots of claims filed over an entire year without any

associated timestamps. Hence, the profiles created in the experiments discussed will

be calculated over claims filed over a period of one year. We use w to describe the

calculation window used to determine the reference profile for each provider type t.

For example, [f1, f2]tw means data from features f1 and f2 for provider type t over a

calculation window of w was used.

5.4.3 Generating Reference Profiles

Now that we have our feature data and profile calculation window chosen, we can

generate reference profiles for each provider type within the chosen dataset. We

use a statistical technique called Principal Component Analysis (PCA) to generate

reference profiles for each provider type. PCA helps reduce high dimensional data by

projecting it to new axes on a low dimensional subspace. These axes are called the

Principal Components (PC). The number of PCs is generally less than the original

number of variables. The first PC captures the largest variance possible on a single

axis and the subsequent PCs capture the largest possible variance along the remaining
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orthogonal directions. This gives us an ordered sequence of PCs with decreasing

amount of variance along each orthogonal axis.

To generate our provider type reference profiles we use data from the selected

features of the provider type aggregated over the calculation window and run the

PCA procedure to determine the resultant n PCs. We use the notation PCt
i (w) to

represent principal component i for provider type t calculated over a window w.

PCA([f1, f2, ..., fi]
t
w)→ PCt

1(w), PCt
2(w), ..., PCt

n(w)

Once we obtain the resultant PCs from PCA performed on the data of a particular

provider type, we determine the amount of variance captured by each PC. Usually,

a small subset of initial PCs capture a majority of the variation of the data which

allows the data to have a low effective dimension. These initial k PCs that have a

significantly larger variance than the remainder PCs form the reference profile for

provider type t in calculation window w which is represented as pt(w).

pt(w) = PCt
1(w), PCt

2(w), ..., PCt
k(w)

These initial k PCs form the normal subspace which explains the predominant

normal behavior for t in w and the remainder PCs form the residual subspace pt(w).

pt(w) = PCt
(k+1)(w), PCt

(k+2)(w), ..., PCt
n(w)

5.4.4 Calculating Risk Scores and Ranks

Now that we have generated the reference profile pt(w), we will determine deviations

from normal behavior by providers in the dataset. The majority of the providers’

behavior can be defined by the normal subspace i.e. pt(w). However, if we detect a

large component that cannot be described in terms of most providers’ behavior, then it

is potentially suspicious. In other words if a particular provider has a large component

in pt(w) then that would indicate that their candidate profile has a deviation from

the reference profile that was generated [59,116]. We determine the deviations of each

provider candidate profile within pt(w) which helps generate their risk score. Risk
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Table 5: Example Claims Filed by Various Dermatologists

Rank Claims Field 1 (Categorical) Field 2 (Numerical) Field 4 (Categorical)
1 Claim A A1 A2 A3
2 Claim B B1 B2 B3
3 Claim C C1 C2 C3
4 Claim D D1 D2 D3

scores range between 0 and 1000 based on each provider’s extent of deviation from

the reference profile. These risk scores are then used to rank providers which helps

prioritize their investigation. This significantly reduces the time required by a fraud

analyst to detect suspicious activity within the data.

5.4.5 Investigation

Once we have obtained risk scores, a fraud analyst would like to have some information

on why a high risk score was provided to the claim, provider, beneficiary, etc. We

will use an example of ranked claims shown in Table 5 that were filed by various

dermatologists to describe this technique. However, this technique can be applied

to the extracted features, individual claim field values or aggregated tables that are

generated using the raw data. We provide this information to the fraud analyst by

checking for any uncommon values that were entered within the claims filed by a

particular provider that may have caused them to have a high risk score and rank.

Unusual numerical values within the claims can be detected by using many sta-

tistical techniques. However, it is sometimes more challenging to detect uncommon

categorical values that exist within the claims. In an effort to provide detailed in-

formation on the presence of uncommon categorical values within a specific claim,

we examine the presence of every categorical field value individually as well as the

combinations of pairs of categorical values within the claim and inform the fraud

analyst which categorical values and combinations of them are unusual within the

claim. This technique can also be extended to check unusual combinations of cate-

gorical values across sequential claims as well. We determine if a particular categorical
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variable commonly appears within the claim of that provider type by evaluating the

commonality function with the following input:

c(< provider type >,< categorical field value >)

We determine if the presence of two categorical values within the same claim is

common by evaluating the following:

c(< first categorical field value >,< second categorical field value >)

This can be used to determine if the specific procedure is usually provided for a

specific diagnosis, etc. and several other combinations of categorical values within

the claim. An example application of the commonality function for Claim A in Table

5 is shown below:

c(dermatologist, A1)

c(dermatologist, A3)

c(A1, A3)

To calculate the commonality function we first calculate the joint probability

of both the input values. However, since several categorical fields within a claim

usually have a high arity where many values could be rare. These rare values can

make any combination with other fields to look anomalous. To correct this, we

normalize the joint probability of these attributes with the marginal probability of

both attributes [20] as shown below:

c(at, bt) = P (at,bt)
P (at)P (bt)

where at is either the provider type or any other categorical value in the claim

and bt is another categorical value in the claim. In cases where at is the provider

type, then we are checking if it is unusual for that provider type to file a claim that

includes bt. If at is also a categorical value, then we are determining if it is unusual

for at and bt to occur together. A smaller resultant value of c signifies that at and bt

do not usually co-occur naturally and their combination in a particular claim can be

used to explain a potential anomaly.
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5.5 Implementation

We developed the FraudScope system using the R programming language and created

an interactive web application using the Shiny package which helps a fraud analyst to

use the system. There were no libraries to execute the FraudScope technique directly

so we had to write all the functions to perform the analysis and display the results

of our technique. The FraudScope system can be installed at an insurance node such

as a private health insurance company or a government sponsored health insurance

program such as Medicare. We can also use these techniques at a large healthcare

provider to detect suspicious claims before they are submitted for reimbursement.

As mentioned earlier, we use a data driven approach and since the data contains a

snapshot of adjudicated claims at a payer, we simulated a health insurance node and

evaluated FraudScope in retrospective mode. However, we can also run the system

prospectively to maximize savings by detecting fraudulent claims before payment. To

simulate this node, we installed our system on a Debian Jessie server and preloaded

these databases into the node for use by the fraud analyst. A fraud analyst can

connect to our system at any time to generate profiles for every provider type and

view suspicious providers.

We will use an example interaction of the fraud analyst with the system to ex-

plain our implementation. The fraud analyst decides to check the existing data for

suspicious Clinical Laboratories within Dataset 1. The system sets t to ’Clinical Lab-

oratory’ and automatically selects the appropriate features for that dataset. Table 6

lists the appropriate features that are used for each dataset for calculating the pro-

files. We used the PCA algorithm implemented in the R stats library to reduce this

matrix into several PCs. Apart from this our system does not use any other library

for our approach.

We then used the scree plot [11] to determine the effective dimension which is

represented by the ’knee’ in the PCA curve plotted in Figure 8. The greatest variance
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Table 6: CMS Dataset Features Selected

Details Dataset 1 Dataset 2 Dataset 3
Procedure Codes Yes Yes No

Drug Names No No Yes
Beneficiaries Yes Yes Yes

Claim Counts Yes Yes Yes
Unique Services Yes Yes No

Drug Supply No No Yes

Figure 8: Scree Plot for Clinical Lab

is captured by the PC on the steep slope of the line while the remainder variance is

captured by the PC where the slope is flat. The figure shows us that the first 3 PCs

capture the greatest variance and hence are used to divide the subspace into ptw and

ptw. The deviations for each provider were then calculated in R using ptw that helps

us rank the providers based on how much they deviate from the reference profiles.

Ultimately, the fraud analyst is shown a sorted list of providers based on their extent

of deviation from their established profile.

To evaluate the risk scores and ranks provided by the FraudScope system, we

need to compare the results with all known cases of healthcare fraud that have been

perpetrated by providers. Unfortunately, such a list does not readily exist for us to

directly compare our results. Hence, we had to compile such a list before we could
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evaluate our output. There are two main approaches we could take to compile this

list as discussed below.

5.5.1 Web Scraping

Web scraping is the process of collecting information from the web using software that

automates the process. We initially decided to create a web scraper that can compile

the list of all providers that are known to have engaged in fraud. We investigated

several frameworks that could be used for this purpose. Our findings show that even

though web scrapers are great to collect formatted data such as phone numbers, email

addresses, etc., data such as names are harder to scrape as they do not follow any

particular format. Usually scrapers target consistency of the placement or unique

styling of unformatted data for extraction. However, the websites we would like to

scrape provider names from do not have any consistent placement or unique styling

for their names. This makes it difficult for us to use a web scraper to create a list of

all providers known to have engaged in healthcare fraud.

5.5.2 Reverse Scrape

Since scraping the web to create a list of all known fraudulent providers was not fea-

sible, we decided to use the reverse approach - to determine if the specific providers

contained within our dataset have engaged in healthcare fraud. We do this by ex-

tracting the names of providers contained within our dataset for a given provider type

and searching for their involvement in any healthcare fraud settlements or ongoing

fraud investigations.

There are two main sources which can help us determine if a particular provider is

involved in any ongoing health fraud investigation or settlements. The first is through

the United States Department of Justice news [112] and the second is through articles

in newspapers. We found the best way to extract information from these sources to
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be through a search engine as these provide more accurate results compared to most

search functions at these sources.

The provider names contained within the datasets include the company suffixes

that describe the type of business entity. These suffixes include ’INC’, ’LLC’, ’LTD’,

etc. Such suffixes are sometimes not used in the sources mentioned when discussing

the same provider. To capture all fraud committed by providers in the dataset, we

remove such suffixes from the names of providers before performing a search at these

sources.

Google used to provide a Web Search API which would allow us to search Google

using a program and retrieve results [36]. Unfortunately, this API was officially

deprecated in 2010 and replaced with Google Custom Search [35]. This Custom

Search API only allows 100 search queries per day for free and it could take several

weeks just to perform queries to search one source for healthcare fraud involvement

for each of the clinical labs in the dataset. We discuss our experiments to overcome

this limitation in the following subsections:

5.5.2.1 Web Search Results Parser

Our first approach was to search these sources by directly querying Google web search

from a program and retrieving the results as a web page. We performed the following

query on Google web search:

[site:www.justice.gov ”health” ”fraud” ”First or Organization Name” ”Last Name

(if any)”]

In the above example query, site: is a search operator that helps narrow the results

to a specific web source which is the Department of Justice website in this example.

The words inside quotes require those terms to be present in the results returned by

the search query. In the example shown above, the results must contain the term
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’health’, ’fraud’ as well as the first and last names of the provider or organization

name.

We created a program that takes provider names from the chosen dataset and

performs the above query on Google. The result is received as an HTML document

from which the program extracts the search results and determines if there was any

involvement of the particular provider in any healthcare fraud. We were able to

obtain results for a few providers until Google blocked our program from making any

additional requests. In an attempt to prevent malware from making automated search

requests, Google blocks any program from making multiple queries to their website.

Unfortunately, this meant we could not use this technique to detect providers who

have engaged in healthcare fraud.

5.5.2.2 Bing Search API

Our next approach was to investigate other search engines to overcome the search

limitations we experienced. Our best option was Microsoft Bing Search whose results

we found to be very similar to that of Google. Bing also provided a search API [67]

which allowed for 5,000 free queries per month with no restrictions on the number

of queries per day. This seemed like a very feasible solution that removed any prior

limitations.

We created an account with Bing and applied for an account key that allowed us

to access the search results through the Bing API. We developed a second program

which uses a similar query to the one shown previously to perform a Bing search to

determine if providers in the chosen dataset have committed any healthcare fraud.

The results were returned in an XML format which was parsed by our program and

stored for each provider.

While we were collecting results using this program, we realized that the results

returned by the Bing Search API were different from the ones returned by Bing web
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search which was more accurate. The API response contained several results that were

unrelated to the search query in comparison to the results returned by the web search

directly. In addition to this, not all pages within the Department of Justice website

were indexed by Bing and some true positive results were not available through both

the API or web search.

5.5.2.3 Google Custom Search API

Our final approach was to use the paid Google Custom Search API [35] to overcome

the discussed limitations and determine if a particular provider is involved in any

ongoing health fraud investigation or settlements. We created an account and de-

veloped a program that performs the query shown earlier to the API which returns

the results in JSON format. The program parses the result and stores them for each

provider. Since we have to pay a fee based on the number of queries performed, we

decided to use only one source. The Department of Justice website is a central source

with all health fraud case information contained within it and is the logical source of

choice. We use this technique to determine if specific providers are involved in any

fraudulent activity.

5.6 Evaluation

We will evaluate our enhancements to the claims processor at the augmented health

information sharing node in this section. We will use the datasets discussed previously

to validate our fraud, waste and abuse detection system.

5.6.1 Sampling

To evaluate the results of our system we will evaluate its output for a few provider

types. As mentioned earlier, there is a cost associated with determining if each

provider has engaged in fraudulent activity in the dataset year. In addition to this,
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Table 7: Known Fraudulent Clinical Labs

Rank Risk Score Amount Lab Name Year Whistleblower
1 999.999 $256 million Millennium Laboratories Of California 2015 Whistleblower
2 831.971 $71 million Natural Molecular Testing Corporation 2013
4 680.802 $47 million Health Diagnostic Laboratory 2015 Whistleblower
13 146.807 $1.8 million Quest Diagnostics Incorporated 2015 Whistleblower
31 94.221 $17.5 million Kan-di-ki, LLC 2013 Whistleblower
41 81.346 Not Reported Berkeley Heartlab Inc 2015
60 61.933 $1.5 million Singulex, Inc 2015 Whistleblower
74 50.840 $4.7 million Calloway Laboratories Inc 2014

the results returned by the reverse scraper require detailed manual analysis to validate

the output. This involves verifying the following:

• Ensure that the fraudulent provider has engaged in fraud during the dataset

year. This involves verifying that the fraud had not ended before the dataset

year or started after it.

• Sometimes multiple providers may have the same name. We need to verify

fraudulent providers are in the same location as the provider being evaluated

within the datasets.

• Verifying that the fraud in question is actually healthcare fraud. The Depart-

ment of Justice mentions several other types of fraud as well such as tax fraud.

• Reading scanned pdf files of several pages to verify the previous conditions are

met.

Due to this intensive manual process and associated cost factor, we were not able

to verify all the providers for a specific type but took a sample from the providers

that have been assigned the highest risk scores and rank, those with medium risk

scores and those with low risk scores. More specifically, we manually examined top

100 ranks, mid 100 ranks and last 100 ranks for various provider types.

5.6.1.1 Clinical Laboratories

We first used the 2012 procedures and services dataset to determine which clinical

labs have behaved in fraudulent activity. There are 2,743 independent clinical labs in
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this dataset. Table 7 shows the clinical labs that are known to be fraudulent within

the top 100 ranks along with additional details such as the amount they defrauded

Medicare, the year in which they were caught and whether they were caught due to

a whistleblower. We will discuss the top three labs mentioned in the Table in detail.

The clinical lab with the highest risk score of 999.999 within this dataset is ’Mil-

lenium Laboratories of California, Inc’. Recent news articles from 2015 show that

this lab has reached a $250 million settlement for allegations it performed unneces-

sary tests on Medicare patients for a wide range of drugs that resulted in inflated

bills [108]. Even though Medicare performs several levels of checking through various

contractors, this lab was never caught by any of their fraud, waste and abuse de-

tection systems. This fraudulent activity was able to continue until a whistleblower

contacted authorities in 2015. If the FraudScope system was used by CMS to detect

suspicious claims we could have detected this activity in a timely manner and reduced

the millions of dollars in losses due to fraudulent claims submitted by this lab.

The second lab on this list is ’Natural Molecular Testing Corporation’ which per-

formed genetic testing used to determine response to medications called pharmacoge-

nomic testing. After being paid tens of millions of dollars by Medicare it detected

potential fraud such as billing patients for tests to determine a genetic sensitivity to

warfarin, a blood thinner, when the patients were not on the drug. Natural Molecular

filed for bankruptcy in October 2013 after the justice department began a criminal

investigation [102].

The third lab ’Health Diagnostic Laboratory’ recently agreed to pay $47 million

dollars for violating the False Claims Act by billing Medicare for medically unnec-

essary testing. This fraud was uncovered thanks to whistleblowers who notified the

appropriate authorities. However, our technique can detect their suspicious behavior

purely based on analytics without the need for whistleblowers [107].
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Table 8: Known Fraudulent Chiropractors

Rank Risk Score Lab Name
1 999.999 Sophia Lin
39 341.559 Mace Richter

There were no known fraudulent labs present within the mid 100 ranks and bottom

100 ranks provided by our fraud, waste and abuse detection system. This particular

scenario which starts from the preparation of data, performing the dimensionality

reduction, generating profile and detecting deviations takes 5 minutes and 47 seconds

on a multi core server. It would take about 9 minutes and 11 seconds if performed in

a linear manner. These timings are acceptable for the magnitude of the data used to

calculate the rankings.

5.6.1.2 Chiropractor

For our second example, we used the 2012 procedures and services dataset to de-

termine which chiropractors have engaged in fraudulent activity. There are 36,399

chiropractors within this dataset. Table 8 shows the chiropractors that are known to

be fraudulent within the top 100 ranks. Sophia Lin who had the highest risk score

according to FraudScope was caught along with three others for having committed

$4 million Medicare fraud in 2015. Mace Richter who was also assigned a high rank

was caught that same year and faces multiple insurance fraud charges for allegedly

billing insurance companies for procedures and visits that never happened. Our sys-

tem is able to detect their fraudulent activity using the 2012 dataset. There were

no known fraudulent chiropractors present within the mid 100 ranks and bottom 100

ranks provided by our fraud, waste and abuse detection system.

5.6.1.3 Neurology

For our third example, we used the 2013 drug dataset to determine which neurologists

have engaged in fraudulent activity. We intend to show that our technique works

with both procedure as well as drug datasets. There are 12,194 neurologists within
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this dataset. There is only one neurologist known to be fraudulent within the top 100

ranks of this dataset. This is Gavin Awerbuch who has been provided the highest risk

score of 999.999 and ranked number 1. According to the U.S. Attorney’s Office, Dr.

Awerbuch has been accused of defrauding Medicare of $7 million and prescribing an

excess of the cancer painkiller Subsys. There were no known fraudulent neurologists

present within the mid 100 ranks and bottom 100 ranks provided by our fraud, waste

and abuse detection system. Similar results can be discussed for any other provider

type within the three datasets available to us.

5.6.2 Detailed Analysis & Comparison with Government Technique

Since there is a cost factor associated with the number of providers we check for

healthcare fraud, we will only be able to determine the detailed analysis of FraudScope

results for one dataset. We choose the 2012 dataset as most fraud detection happens

retrospectively [38] and this dataset from an earlier year would allow the Office of

Inspector General (OIG), which is responsible for identifying and investigating fraud

in government healthcare programs, greater time to identify and investigate fraud

cases since that year. This will make it easier for us to identify true positives in the

dataset.

The dataset we have chosen contains 89 different provider types where each

provider type has a varying number of providers. For example, Internal Medicine

has 91,525 providers while Family Practice has 77,792 providers. As mentioned ear-

lier, there is a cost associated with the number of providers we check for healthcare

fraud. In addition to this, we also want to manually inspect the results for any false

negatives.

Due to these restrictions, we choose the Clinical Laboratory provider type which

contains 2743 members which is a modest number to evaluate the results provided by

FraudScope. FraudScope analyzes the aggregated medical insurance claims data for
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all these labs and generates a reference profile that represents the normal claims filing

pattern by loading the appropriate features and performing the necessary calculations.

It then generates a risk score for each lab based on their extent of deviation from the

generated profile for clinical labs. This risk score is then used to rank all the clinical

labs contained in the dataset. We then used the reverse scraper to determine which

of these labs are known to have engaged in healthcare fraud.

We need to keep in mind that not all healthcare fraud has been uncovered or

detected [37] so it would not be unusual to have providers who have no currently

known fraudulent activity to be provided a higher rank. However, all providers with

known fraudulent activity should be provided higher ranks. In other words, no known

cases of fraud should be provided a low rank by our system.

Our testing program performed 2743 queries using Google Custom Search API to

determine if any of the clinical labs within the dataset were involved in healthcare

fraud. The results obtained from the Department of Justice website were then stored

for each provider. These results were also manually inspected for any false negatives.

During our testing, we noticed that some large clinical laboratories operated under

several NPIs. Initially we considered combining all such clinical labs into one organi-

zation for testing purposes. However, a large clinic may use a different NPI for each

branch or location and not every location may be engaged in fraudulent activities.

By keeping them separated, we can actually determine which specific locations may

be engaged in fraudulent activity.

The news articles from our sources do not provide the specific NPI or address

involved in healthcare fraud and hence our testing program cannot determine which

specific location was engaged in fraud. Therefore, even if one location was engaged

in fraud, the reverse scraper will mark all NPIs of the same organization as having

committed fraud.
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Table 9: Classification

Output Known Fraudulent Providers Other Providers
High Rank True Positive False Positive
Low Rank False Negative True Negative

To account for this in our testing, we consolidate all such records within the results

into a single record with the highest rank that was provided for the clinical laboratory.

For example if an organization had used three NPIs which were provided ranks 30,

60 and 120, our result will list that organization as having rank 30. In an actual

installation of FraudScope, a fraud investigator can investigate every location of the

organization independently as the claims will detail which NPI had filed them even

if their names were identical. Since our technique outputs a ranked risk score rather

than classifying fraud or legitimate transactions, we clarify our terminology in Table

9. We will now analyze these results to evaluate the output of FraudScope.

5.6.2.1 False Positives and True Negatives

Not all fraud committed by healthcare providers is currently detected or reported [37].

Due to this, we do not posses the ground truth (i.e. an actual indicator of whether

a particular provider has engaged in fraud). We are only aware of a small number of

fraudulent providers that have been exposed, mainly by whistleblowers. Hence, the

other providers that are not currently known to have committed fraud could still be

potentially engaged in fraudulent activity. Due to these reasons we cannot make any

definitive statements about any false positives or true negatives in the results. We

naturally expect to see several false positives which could be exposed in the future

for having committed fraud.

5.6.2.2 False Negatives

The presence of false negatives in the FraudScope results will show that the results are

not accurate. In other words if we find that known fraudulent providers are provided

low ranks, this will show that the FraudScope provides inaccurate results. Table 10
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Table 10: Detailed Analysis of Results

Rank Provider Name Risk Score Note
1 Millennium Laboratories Of California, Inc. 999.999 FRAUD
2 Natural Molecular Testing Corporation 831.971 FRAUD
4 Health Diagnostic Laboratory, Incorporated 680.802 FRAUD
12 Laboratory Corporation Of America Holdings 146.807 Old Case - Fraud in 1997
13 Quest Diagnostics Incorporated 142.594 FRAUD
31 Kan-di-ki, LLC 94.221 FRAUD
41 Berkeley Heartlab Inc 81.346 FRAUD
60 Singulex, Inc 61.933 FRAUD
74 Calloway Laboratories Inc 50.840 FRAUD
85 Spectra Laboratories Inc 46.632 Old Case - Fraud in 1996
91 Dianon Systems Inc 42.986 Old Case - Fraud in 2007
96 Bostwick Laboratories, Inc. 41.590 Unrelated - Illegal Payments
140 Biodiagnostic Laboratory Services, LLC. 28.859 Unrelated - Bribes
187 University Of Miami 19.998 Unrelated - Medicaid fraud in 2005
196 Metwest Inc 19.494 Old Case - Fraud in 1997
386 Yale University 8.591 Old Case - Fraud in 1998
468 Coastal Medical Inc 6.576 Name Mismatch
490 Quality Home Health Care 6.078 Name Mismatch
494 State Of Connecticut 6.010 Unrelated - Wire fraud
538 Johns Hopkins University 5.323 Unrelated - Use of tainted syringes
715 The Trustees Of Columbia University 3.413 Unrelated - Federal grant fraud
789 Omni Healthcare PA 3.001 Old Case - Fraud in 2006
821 Clinical Laboratory, Inc. 2.845 Name Mismatch
866 Empire Clinical Laboratory, Inc. 2.610 FRAUD
980 Highland Medical Center 2.244 Unrelated - Tax Fraud
1017 Acculab Inc. 2.144 Old Case - Fraud in 2008
1065 Polaris Allergy Labs, Inc. 2.014 Unrelated - Fabricating test results
1110 Southern California Permanente Medical 1.925 Old Case - Fraud in 2002
1163 Connecticut Oncology & Hematology LLP 1.860 Name Mismatch
1446 University Of Alabama At Birmingham 1.666 Old Case - Fraud in 2005
1471 University Medical Center Inc 1.661 Old Case - Fraud ended in 2010
1591 The Medical College Of Wisconsin, Inc. 1.652 Unrelated
2258 Community Health & Emergency Services, Inc 1.638 Name Mismatch
2304 Royal Inc 1.635 Name Mismatch
2408 Guardian Angel Home Health Care, Inc 1.622 Unrelated - Kickback
2430 State Of New Mexico 1.617 Unrelated - Medicaid Fraud
2452 Trinity Health 1.613 Name Mismatch
2502 Emory University 1.601 Old Case - Fraud ended in 2010
2536 Nova Southeastern University Inc. 1.587 Old Case - Fraud in 1999
2586 University of Louisville 1.567 Old Case - Fraud ended in 2010

shows the providers that are involved in healthcare fraud based on the output of our

reverse scraper. We also included the rank and risk scores provided by FraudScope

and ordered it from high risk score to low risk score.

We manually inspected these results and noticed that several of these providers

had engaged in fraud that had ended prior to the dataset year which is 2012. Such

providers who had stopped their fraudulent activities prior to 2012 will not be detected

by FraudScope. In addition to this, several results from our testing program were for

labs that were named similar to the provider in question. We also identified such labs

and mentioned it within the notes. There were also some unrelated cases that cannot
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be detected from the data presented to FraudScope. For example, fraud committed

by filing fraudulent claims to Medicaid, tax fraud, use of tainted syringes to spread

disease, etc.

The lowest ranked fraudulent case found within the results is ’Empire Clinical

Laboratory, Inc.’ which is ranked at 866 out of 2743 clinical labs by FraudScope.

Unlike other fraud reports, there are very little details available about this particular

case as it was recently reported. However, from the little details that have been

made available, there could be a few reasons why this particular lab did not deviate

much from the generated profile and was not provided a high risk score and rank by

FraudScope:

• This fraud scheme involved five locations which filed fraudulent claims to both

Medicare and Medicaid programs. It’s possible that this particular clinic loca-

tion participated mainly in Medicaid fraud which is why FraudScope did not

find anything suspicious in the Medicare data that was provided to it.

• The fraud scheme began in 2006 but the online reports do not mention which

year their fraudulent practices ended. It is possible that this scheme ended prior

to the year in which the claims data was aggregated for the dataset similar to

a few other fraud cases.

• As per the Department of Justice report, this scheme involved kickbacks and

medically unnecessary tests. Such fraud cannot be directly detected from the

data provided to FraudScope as the aggregated dataset does not contain any

diagnostic codes to determine if the tests were necessary or not. If FraudScope

were provided detailed claims data, then such unnecessary tests would be de-

tected.

All the other known fraud cases are ranked 74 or higher which forms the top 2.7%

of the most suspicious labs in the dataset according to FraudScope.
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5.6.2.3 True Positives

There are 880,644 providers in the chosen dataset while the selected provider type

contains only 2743 providers. Out of these, nine providers are known to have engaged

in healthcare fraud during the same time period over which the data was aggregated.

All of these providers with the exception of one are at the top 2.7% of the high risk

scores provided by FraudScope which would prioritize their investigation by a fraud

analyst.

5.6.2.4 Government Technique - Office of Inspector General

Now that we have obtained detailed results from our technique we can compare this

output with that of the government technique. Public health insurance programs

such as Medicare and Medicaid are protected by the Office of Inspector General

(OIG) which has the responsibility to identify and investigate fraud, waste and abuse

within its entrusted programs. The OIG has published a few reports publicly that

allow us to determine some of the techniques used by them to detect fraud [105].

They perform fraud detection within medical insurance claims separately for each

provider type. Several measures are developed for each of these provider types that

help identify several different types of possible abuse. These measures are designed

to identify providers with questionable billing who are outliers when compared to

their peers. The measures are developed after consultation with officials from CMS,

interviews with experts in the field being examined and the OIG’s own analysis.

The chosen measures for each provider type could include general information

such as average number of services provided per day or per beneficiary per visit,

etc. They could also be very specific, such as scrutinizing claims for procedure codes

that result in a higher payment which are usually targeted for upcoding and possibly

other abuses, providing treatment more frequently than the recommended dosing

guidelines, unusually high billing for complex procedures and using specific modifiers
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on the claim that will result in a higher payout, etc. Construction of these measures

requires knowledge on how billing is performed by the provider type and how such

billing can be abused. Also, such measures can only capture abuse which is already

anticipated by the OIG and newer avenues of abuse will not readily be detected unless

a chosen measure was designed to capture it.

Once the measures have been chosen, the OIG uses the Tukey method to determine

the outliers for each measure separately [111]. Tukey’s method helps identify outliers

in data by dividing the data into quartiles. A quartile is a division of the observed

values in the dataset into four intervals each of which contains 25% of values in the

data. The values demarcating these quartiles are referred to as Q1, Q2 and Q3 where

Q2 is the median of the data. The Interquartile Range (IQR) is then calculated to

be (Q3 - Q1). The outliers in the data are then calculated to be (Q3 + (IQR ∗ 1.5))

and the extreme outliers are calculated to be (Q3 + (IQR ∗ 3)). The OIG uses either

the outlier or extreme outlier defined by Tukey on the values for a particular measure

to determine if the provider in question has engaged in questionable billing.

The outlier determination using these techniques does not provide conclusive ev-

idence that the providers have engaged in questionable or improper billing. Some

providers may be highly specialized or offer complex care that may be a legitimate

reason for exceeding the Tukey thresholds on the measures that were defined. This

technique only identifies providers who warrant further scrutiny.

Figure 9 shows the measures used by OIG to detect suspicious clinical laboratories

[104]. We can see from this that some measures can have as high as 531 labs to be

investigated in an unranked manner. In comparison, FraudScope is able to identify all

known fraudulent labs in the top 74 highest risk scores and ranks which successfully

prioritizes the most suspicious labs while reducing the search space. We can provide

a similar description for each provider type but due to the cost and time associated

with the evaluation process we have only detailed one provider type.
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Figure 9: OIG Measures to Detect Fraud
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Table 11: Comparison with Normal Subspace using k-means clustering

Residual Rank Normal Subspace k-Means Lab Name
1 1782 Millennium Laboratories Of California, Inc.
2 2065 Natural Molecular Testing Corporation
4 1687 Health Diagnostic Laboratory, Incorporated
13 1526 Quest Diagnostics Incorporated
31 1235 Kan-di-ki, LLC
41 106 Berkeley Heartlab Inc
60 1727 Singulex, Inc
74 1795 Calloway Laboratories Inc
866 51 Empire Clinical Laboratory, Inc.

Table 12: Comparison with Normal Subspace using LOF

Residual Rank Normal Subspace LOF Lab Name
1 74 Millennium Laboratories Of California, Inc.
2 56 Natural Molecular Testing Corporation
4 82 Health Diagnostic Laboratory, Incorporated
13 1366 Quest Diagnostics Incorporated
31 543 Kan-di-ki, LLC
41 318 Berkeley Heartlab Inc
60 57 Singulex, Inc
74 172 Calloway Laboratories Inc
866 664 Empire Clinical Laboratory, Inc.

5.6.3 Comparison with Normal Subspace

We performed several experiments to compare the results achieved by our residual

subspace detection technique with techniques that use the normal subspace. We

provide the results for a few of them in this subsection. In Table 11 we compare

the residual subspace results with those generated by using k-means clustering on

the normal subspace. In this experiment, we try to create a cluster that represents

the reference profile for the independent clinical lab provider type using the k-means

algorithm. We then determine the distance of each of the labs from the centroid which

is used to determine their deviation from the reference profile and risk score. From

the table, we see that the fraudulent providers are scattered throughout the ranks

and do not comprise of the highest risk scores which shows that this technique does

not work well in the normal subspace to detect fraud, waste and abuse in medical

insurance claims.

Similarly, we compared FraudScope’s results with those generated by using the

Local Outlier Factor (LOF) algorithm on the normal subspace. The results for the
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Table 13: Comparison with Normal Subspace

Residual Rank Normal Rank Lab Name
1 238 Millennium Laboratories Of California, Inc.
2 259 Natural Molecular Testing Corporation
4 129 Health Diagnostic Laboratory, Incorporated
13 14 Quest Diagnostics Incorporated
31 1 Kan-di-ki, LLC
41 2588 Berkeley Heartlab Inc
60 2507 Singulex, Inc
74 2302 Calloway Laboratories Inc
866 2465 Empire Clinical Laboratory, Inc.

Table 14: Commonality values for Steven Schall

Commonality Value Provider Type Code Description
0.00021 Diagnostic Radiology 92014 Eye exam & treatment
0.00026 Diagnostic Radiology 92004 Eye exam new patient
0.00033 Diagnostic Radiology 92012 Eye exam established pat
0.00039 Diagnostic Radiology 92133 Cmptr ophth img optic nerve
0.00048 Diagnostic Radiology 92134 Cptr ophth dx img post segmt
0.01631 Diagnostic Radiology 99203 Office/outpatient visit new

LOF algorithm in a given locality that comprised of 10 nearest neighbors are shown in

Table 12. This table also shows that the fraudulent providers are scattered through-

out the ranks and do not comprise of the highest risk scores which shows that this

technique does not work well in the normal subspace to detect fraud, waste and abuse

in medical insurance claims. We obtained similar results for a different locality sizes

provided to the LOF algorithm.

Finally, Table 13 shows the ranks that are obtained by determining a large com-

ponent for each provider in both the normal and residual subspace. As expected, this

technique doesn’t provide any meaningful results for the normal subspace.

5.6.4 Investigating Uncommon Categorical Values

We finally evaluate our technique to detect unusual combinations of categorical values

within the claims that are filed by a particular provider. To demonstrate this, we will

use a few examples to discuss some of the lowest commonality values within the 2012

procedures and services dataset. To calculate this value we use the following example

application:

c(provider type, procedure code)
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Table 15: Commonality values for Shakuntala Jain

Commonality Value Provider Type Code Description
0.00062 Cardiology 90801 Psy dx interview

Table 16: Commonality values for Gary Tanouye

Commonality Value Provider Type Code Description
0.00017 Diagnostic Radiology 90732 Pneumococcal vaccine
0.00019 Diagnostic Radiology G0009 Admin pneumococcal vaccine
0.00050 Diagnostic Radiology 81000 Urinalysis nonauto w/scope
0.00065 Diagnostic Radiology 69210 Remove impacted ear wax
0.00347 Diagnostic Radiology 99232 Subsequent hospital care

The commonality values within the dataset for the above application range from

0.00017 to 26454.54. As a reminder the lower this value, the more unusual it is

for the combination to occur within the dataset. Table 14 shows the commonality

values for one specific provider, Steven Schall. As can be seen, all claims submitted

from this provider have unusually low c values which shows that their combinations

do not naturally co-occur. A quick search on Google reveals that this provider’s

speciality type has been wrongly entered within the dataset. Steven Schall is actually

an Opthalmologist which explains the codes he filed and the low c values.

In another example shown in Table 15, Shakuntala Jain only filed for one type of

code which has a very low c value. Just like the previous case, it turns out that her

speciality has been wrongly entered into this dataset. She is actually a Psychiatrist

which explains the code she filed claims for with Medicare.

Our final example for Gary Tanouye, shows all filed codes to have a low c values.

A subset of claims filed have been shown in Table 16. Again a quick search for

this provider shows that their specialty is actually Internal Medicine and this has

also been wrongly entered into this dataset. This helps us validate our technique to

detect unusual combinations of claims data field values.

5.6.5 Robustness

Once the FraudScope system is deployed at health insurance companies to prevent

losses due to fraud, waste and abuse, malicious actors will try to circumvent the
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detection system. Since every health insurance company has limited resources for

investigation of suspicious claims and providers, the malicious actor will only need

to lower their risk score and rank to an extent that will not be investigated by the

fraud analyst. In the process of obtaining a low risk score, the malicious actor will

need to blend their candidate profile with the reference profile of the provider type

which will reduce the amount for which they are able to defraud the health insurance

program. This means that egregious fraud that is currently undetected by existing

analytics tools will still be easily detected and only fraudsters that try to defraud for

comparatively smaller amounts will be successful in evading our detecting technique.

Hence, this will ultimately reduce losses for the health insurance company and pri-

oritize the detection of the most egregious fraud which helps us achieve our goal in

creating FraudScope.

5.7 Conclusions

In this chapter, we described FraudScope, our fraud, waste and abuse detection sys-

tem that helps detect suspicious claims. FraudScope also provides a rank and risk

score to the most suspicious claims, providers, beneficiaries, etc. to prioritize their

investigation to maximize savings. It can be run prospectively to detect fraud before

claims are adjudicated to prevent losses due to fraud. It can also be run retrospec-

tively to detect the most suspicious claims after adjudication.

Unlike existing methods, it does not require any input in the fraud identification

stage which frees up precious fraud analyst time to investigate a greater number of

claims. This also enables our technique to detect newly emerging as well as previously

unidentified fraud schemes. It can also adapt to natural changes in the treatment

patterns or change in the coding system and will not require any additional work by

the user to include these changes.
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Now that we have secured the health information sharing infrastructure by en-

hancing the auditing system as well as improved its fraud detection capabilities, we

will now focus on securing the devices that actually connect to this infrastructure.

Such devices as well as the applications that execute on them could possibly be com-

promised which could lead to the breach of sensitive health data. Hence, we discuss

how to secure these devices in the next chapter.
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CHAPTER VI

SECURING HEALTH DATA AT END DEVICES

Every eHealth Exchange node can use a variety of devices to interact with healthcare

data. Mobile devices are increasingly being used at healthcare systems so we will use

these specific type of end devices, such as smart phones and tablets, for our research.

They provide convenient access to health information to health professionals and

patients. Also, patients use these devices to transmit health information captured

by sensing devices in settings like the home to remote repositories. Such timely and

convenient access could improve healthcare quality and reduce costs but it introduces

the problem of protection of health data on mobile devices. Since health data is highly

sensitive, it must be secured to build user trust and meet regulatory requirements.

Unfortunately, mobile devices are known to be vulnerable to a wide variety of

security threats [29] and they are becoming increasing targets of malware authors [10].

Studies have shown that medical data disclosure is already the second highest breach

category [41]. Thus, if such sensitive data is accessed on mobile devices, we need to

protect it against attacks that would exploit mobile device vulnerabilities.

There are several challenges that must be addressed for secure health information

access on mobile devices. Because such devices are popular platforms for running a

variety of applications, we must ensure that sensitive data does not flow to untrusted

applications. Also, such data must not be allowed to flow outside of the device to

untrusted hosts. Explicit user consent can be useful when it is not clear if certain

data sharing should be permitted.

In this chapter, we explore security mechanisms that provide a framework for

enforcing security policies that are inspired by health information security and privacy
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principles, including use limitation, security safeguards, and patient awareness [64].

Our security framework can help protect sensitive medical data against unsafe and

unintended uses on mobile devices. Our security enhanced framework helps prevent

third-party healthcare applications from leaking sensitive medical information even

when they become infected by malware. These third-party healthcare applications

do not require any modifications to work with our framework.

Explicit user consent plays an important role in how medical information is

shared. This is motivated by healthcare regulation that gives patients and health-

care providers the ability to decide if sharing of medical information needs to occur.

However, the user consent notification and user response cannot be captured within

a simple dialog prompt as sophisticated malware can script events to fool healthcare

applications into believing that user consent has been obtained.

To counter such attacks, we also explore a secure consent detection mechanism for

mobile platforms which helps distinguish between user initiated actions and scripted

malware actions. The policy enforcement mechanisms use user consent detection

whenever input from the user is required regarding a particular action. Once acti-

vated, the framework displays a prompt to the user detailing the action which caused

it, and requests the user to accept or deny the communication. This mechanism could

be highly effective in preventing unintended disclosure of medical information. Since

it is only activated when necessary, it does not consume significant amount of re-

sources. Our policy enforcement and user consent detection mechanisms can support

security policies that will be deployed to meet the requirements for a high-quality

mobile health (mHealth) system [58]. mHealth is a term used for the practice of

medicine and public health supported by mobile devices.

Although the mechanisms proposed by us can help protect sensitive data for a

variety of applications, we make certain assumptions that make them particularly

useful for health applications. Our approach requires tagging of sensitive data which
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is easier when it is accessed for a small number of trusted repositories. We also

rely on user consent which is well accepted in the healthcare domain. Finally, user

consent based override is well suited for health applications where ’Break the Glass’

scenarios allow exceptions to security policies in case of emergencies. We make the

following contributions using our added mechanisms to end devices within the eHealth

Exchange:

• We introduce the concept of a constrained application for mobile devices which

can be used to safeguard sensitive data and prevent its flow to unauthorized

entities. A constrained application’s sensitive data can be protected even in the

presence of attacks that can successfully compromise the application.

• Our mechanisms accomodate for varying levels of sensitivity of data within the

constrained application which can be governed by different security policies.

Non-sensitive data within a constrained application is unaffected by our mech-

anisms. Also, applications that do not deal with sensitive data are unaffected.

• We develop a user consent detection mechanism which can help distinguish ac-

tual user input from scripted events that can be generated by malware. Such

secure consent can enable user awareness and control over how health informa-

tion is shared.

6.1 Mobile Device Data Security: Motivation and Require-
ments

The motivation for securing health data accessed on mobile devices comes from two

observations. First, mobile devices offer a convenient way for users to access in-

formation. Second, since such devices can run a variety of applications which can

communicate with each other and external entities, patients and healthcare providers

are naturally concerned about unauthorized disclosure of health data. Such disclo-

sure could have serious consequences on patients, ranging from medical identity theft

93



to blackmail or discrimination. If a health application captures and stores new data

into medical records maintained in a remote repository, unauthorized updates could

corrupt the medical history of a patient which could have serious consequences for

future diagnosis or treatment. Because of these reasons, healthcare regulations such

as the Health Insurance Portability and Accountability Act (HIPAA) and Health

Information Technology for Economic and Clinical Health (HITECH) Act address

privacy and security of health information when it is accessed by entities engaged in

healthcare related activities. These outline rules that apply to doctors, pharmacists,

medical insurance and billing agents and others who fall in the category of covered

entities. We briefly discuss two relevant rules which help us understand the need for

protecting health data when it is accessed on mobile devices.

The HIPAA privacy rule protects all individually identifiable health information

held or transmitted by a covered entity. Disclosures can only be made for specific

purposes or situations such as the treatment, payment or other healthcare related

operation. The privacy rule requires covered entities to maintain reasonable technical

data safeguards to prevent intentional or unintentional use or disclosure of protected

health information [114]. The HIPAA security rule requires a covered entity to ensure

the confidentiality, integrity, and availability of health information that it creates,

receives, maintains, or transmits. The covered entities must also protect against

reasonably anticipated threats, hazards and disclosures that are not permitted by the

privacy rule [113]. As healthcare professionals access sensitive patient medical data

on mobile devices, regulatory requirements will apply to these devices as well. To

secure data as mandated for covered entities or desired by patients, it becomes vital

for us to understand the threats faced by electronic health information on a mobile

device.

Unintended disclosures of protected health information could happen on mobile

devices due to malware infections. Malicious software is known to install itself on
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computing devices through some vulnerability in an application or by using social

engineering techniques to trick the user. Such malware, once installed on the device,

can obtain sensitive information stored on the device or from other applications and

can send it to untrusted applications or remote malicious entities.

Another threat comes from application developers who do not take appropriate

measures to ensure data security. This could leave the data vulnerable to violations

of confidentiality and integrity. Already, there is evidence that many applications

share data with external entities without explicit consent of the owners of devices

where such applications run [23]. Although the operating system could be the target

of attacks, we focus on more common attacks that target applications.

Finally, devices could be stolen or used when left unattended which would even-

tually lead to disclosure of sensitive medical information. Other work has explored

techniques like data encryption and remote monitoring of access to data to counter

this threat and we will not address it in this work [32].

6.1.1 Mobile Device Data Security Policies

Based on the security and privacy requirements of electronic health information and

the relevant threats in a mobile environment, we can now outline key features of

security policies that can be used to ensure proper use of health data on mobile

devices. Mobile devices are commonly used by a single user and operate under user

control. Therefore, their security policies are different from other platforms. The

security policy on these devices typically does not rely on identity credentials but

deals with information sharing or exchange decisions based on the context of an

action. More specifically, the policy must prevent disclosure of sensitive information

by mediating its movement outside the authorized application’s boundary. Security

policies for mobile devices can be divided into two categories. For mobile devices

that are used by healthcare professionals such as doctors and nurses, the policy may
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be specified by the healthcare enterprise. If the enterprise is a covered entity, such

a policy may capture regulatory and compliance requirements. Although the device

is in the control of a user, the policy may be ’locked down’ and the enterprise may

enforce that no changes are made to it by the user. A user may also access her or

his health data on a mobile device and may choose to share it with other entities.

In this case, the policy is defined by the user of the device. Our goal is to develop

mechanisms that can support a variety of such policies. Physicians and patients using

our mechanisms can install third-party healthcare applications with the guarantee

that sensitive medical information will not be sent without their knowledge even

when these applications are compromised. To motivate these mechanisms, we first

start by outlining key requirements of such policies.

6.1.2 Requirements

Mobile device security policies primarily focus on sharing of health data between

applications on the device or exchange of data with remote entities. We will now

describe framework mechanisms that are necessary to enforce a variety of such poli-

cies to meet the needs of healthcare applications. We will use a sample third-party

mobile healthcare application called Sana Mobile [91] to illustrate key features of

our security framework. Sana is an open-source remote telemedicine platform which

collects patient data from procedures performed by health workers and uploads this

information for a doctor to review. Doctors can then send their diagnosis to health

workers through the mobile application.

Our mobile device data security framework must monitor and prevent disclosure

of sensitive health information to unauthorized parties that include untrusted appli-

cations running on the device and remote services. It should also stop transfer of

sensitive health data to insecure storage devices. We also want a user to be able to

allow or deny certain health data sharing requests. We discuss each of these in detail.
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6.1.2.1 Controlling Remote Communication

Healthcare applications like Sana must be able to communicate with external entities

over several channels such as the Internet and Bluetooth. These channels allow trans-

fer of data and hence need to be secured. Sana could connect to a Blood Pressure

Monitor via Bluetooth and read the user’s blood pressure and pulse reading. This

could then be uploaded to a repository in a doctor’s office via the Internet. However,

all information accessed by an application like Sana may not be sensitive. In particu-

lar, information downloaded from a public health advice portal need not be protected.

Thus, we need to ensure fine-grain control over the sharing of application state by

tracking access to sensitive health data by Sana. The security policy enforcement

engine must also mediate requests for sending data over network channels by Sana.

It must detect data flow on both incoming and outgoing channels and the source of

incoming data itself could be useful in deciding if the data is sensitive (e.g., data is

received from an electronic medical record repository).

For the Internet channel, the framework should be aware of all connections made

by the application and monitor those specifically rather than all open connections on

the device. The framework should allow communication with trusted external entities

and prevent it when it involves unauthorized entities. One can take an approach

that keeps a list of trusted entities which could include the user’s PHR and EHR

repositories or offices of healthcare providers. The policy enforcement engine allows

flow of health data between Sana and these trusted entities and data received from

them is marked as sensitive. It is possible to seek user input before communication

is disallowed and it can be allowed when explicitly permitted by the user. Obviously,

one challenge is to determine what remote entities are trusted. We believe that since

health data only needs to be shared with a limited number of external entities which

do not change frequently, such lists can be built with user input without imposing

excessive burden on users.
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6.1.2.2 Preventing Data Sharing with other Applications

As with every other mobile application, Sana could share information with other ap-

plications. However, sharing between a healthcare application and other untrusted

applications could lead to disclosure of sensitive health information. Thus, we need

to monitor inter-process communication channels and place safeguards to prevent

such disclosures. The policy enforcement framework must detect flow of sensitive

data between Sana and other applications and can respond in one of two ways. It

could disallow the data sharing and notify the user. This is meaningful because a

healthcare application must avoid interacting with other potentially unsafe applica-

tions and should typically include all required functionality within itself. Another

response would be to notify the user and allow the user to decide if such sharing

should be allowed. In this case, interactions between the healthcare application and

other applications must be explicitly consented for by the user of the device. The

policy enforcement does not monitor communication of untrusted applications and

any data that is allowed to be shared with them must be viewed as non-sensitive.

6.1.2.3 Controlling Insecure Data Storage

Apart from sharing health information with other applications or sending it to remote

entities, Sana can also store data permanently on the mobile device’s main memory

or an external memory card. Usually, mobile operating systems provide data pro-

tection and separation between applications on the device’s main memory. However,

sometimes an application could be allowed to share data on the file system with other

applications which could lead to a disclosure of sensitive information.

Similar to data sharing, the policy enforcement framework must detect operations

performed on files containing sensitive information and respond in multiple ways. The

framework could prevent untrusted applications from reading files that are owned

by healthcare applications. This is because untrusted applications should not need
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access to sensitive information. The framework could also prevent storage of sensitive

information on the file system and require the application to connect to a remote

repository for storing sensitive information. This provides a higher degree of security

but is more restrictive for the application. Another response would be to notify the

user and allow the user to decide if the particular file operation should be allowed. In

this case, explicit consent of the user of the device must be required for all operations

performed on files containing sensitive information. The policy enforcement does not

monitor files of untrusted applications and any files that are allowed to be accessed

with such applications must be viewed as non-sensitive.

Another concern is that external memory such as an SD card can be inserted into

other devices which can read all stored data and this could also lead to disclosure

of health information. Hence, our policy enforcement framework must mediate all

external storage requests of sensitive data made by Sana. It can either disallow

requests that want to store information on the external memory or it can notify the

user when such an attempt is made. Such a notification would allow the user to

decide if the action in question is safe and would not lead to disclosure of health data.

Again, once the user allows storage of some information that comes from Sana, it

should be viewed as non-sensitive.

Finally, some mobile devices can be connected to other computing devices via

USB and data from certain memory locations of the mobile device can be accessed by

the computing device. This could also lead to a loss of sensitive information. Hence,

the policy enforcement framework must prevent applications from storing sensitive

information to such memory locations or explicit user consent should be obtained to

sanitize this information before it can be stored at such a location.
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6.1.2.4 User Consent Detection

We take an approach where user consent is sought in case the policy enforcement

engine suspects that potentially sensitive data may flow to untrusted applications,

remote entities or even to a storage device. This is motivated by healthcare regu-

lation that give patients and healthcare providers the ability to decide if sharing of

medical information needs to occur. In the previous sections, we discussed mecha-

nisms which notify the user of a potential disclosure of healthcare information and

require him to decide if the particular action should be allowed or blocked. However,

this notification and user response cannot be captured within a simple dialog prompt

due to the sophistication of current malware. Such malware is capable of executing

scripted actions on the device as though the user generated a response. Hence, we

require a secure mechanism which will help differentiate automated malicious activity

from genuine user activity. This is termed as user consent detection. The policy en-

forcement framework must use user consent detection whenever input from the user is

required regarding a particular action. Once activated, the framework should display

a prompt to the user detailing the action which caused it, and request the user to

accept or deny the communication.

6.2 Approach

We will now discuss the design of a framework which will enforce the security goals

outlined in the previous section. We rely on a set of assumptions to build a trusted

mobile device platform for secure handling of medical data. We assume the operating

system on the mobile device is trusted. This includes the kernel and layers below

applications. We also assume a third party mobile healthcare application runs on

the device and accesses electronic health information. This application downloads

and facilitates meaningful sharing of sensitive health data when valid credentials are

provided by the user. We do not assume that the health application is trusted. It may
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be compromised by a malware infection and it may coexist and share non-sensitive

information with other untrusted applications.

Since security of sensitive data relies on proper enforcement of a security policy,

the enforcement engine must be part of the trusted computing base. Also, we as-

sume that the operating system is trusted and add mechanisms to it to implement

the enforcement engine functionality. We also advocate that applications that handle

sensitive health information must be treated differently by our framework compared

to other untrusted applications that do not deal with sensitive information. We

term the applications which deal with sensitive information as constrained applica-

tions because their behavior is constrained in order to achieve security goals. Policy

enforcement must only apply to constrained applications and only to data that is

deemed sensitive. No restrictions are placed on other applications unless they try to

interact with constrained applications. Applications can be declared as constrained

by the application developer in the manifest file or by the user at the application

installation screen, which could appear as a checkbox along with other permissions

that the application requires. We also assume that certain system applications that

implement limited functionality can also be trusted. We use one such application,

the background service, that is used to support user awareness and control of how

data is accessed on the device.

6.2.1 Tagging Sensitive Data

We do not assume that all data in a constrained application is sensitive. A healthcare

application may contain publicly available information such as symptoms of a disease

and these may not require our additional data safeguards. If such non-sensitive data

is not allowed to be shared, it may interfere with the normal functioning of an appli-

cation. Thus, to support secure access only for data that is sensitive in a constrained

application, we must be able to distinguish it from other non-sensitive information
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within the application. This can be done in multiple ways, one is to maintain a list

of all specific sensitive data locations within the application. This list would need

to be updated every time sensitive information enters the application and the list

would need to be traversed every time data tries to leave the application. Such a

design choice may not be scalable and would expand the list size greatly if we track

information flows.

Our other option is to tag memory locations which contain sensitive information.

This does not require us to maintain a master list of all sensitive information locations

within the application and anytime data tries to leave the application, we will only

need to check its memory location tag. Hence, this design choice is more scalable.

Another point to consider is that information within a constrained application may

be of different levels of sensitivity which may need to be accommodated by the policy

being enforced.

We must tag all incoming data with a label describing its level of sensitivity or

mark it as non-sensitive information. We also need to maintain tags properly as

sensitive information flows across memory locations. Data tagging can be done in

multiple ways. All incoming data could be classified by the source itself and include

the nature and sensitivity level of the information as metadata. Another method

would be to classify data on the device based on the sensitivity level of the source

repository from which the information comes. The device could be pre-populated

with a list of trusted private repositories which contain sensitive information and a

list of public repositories which contain publicly accessible non-sensitive information.

A private repository could be classified by the highest level of sensitivity of the data

it contains. All incoming data from a repository connected via a communication

channel such as the Internet will be tagged with its specific sensitivity level. In

case the application connects to a previously unknown repository, the user can be

prompted to define its sensitivity level.
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Apart from external sources, data can also enter the constrained application

through other channels such as the file system and the external memory card. Data

read from files containing sensitive information should be tagged with its level of

sensitivity. Whenever new data on a memory card is accessed by a constrained ap-

plication, the user could be prompted to choose whether the entire memory card or

only certain folders and files contain sensitive information. The level of granularity

can be left at the convenience of the user. All sensitive information that is loaded

from the memory card is tagged by our framework.

Finally, data input by the user into an application could also be sensitive. Our

framework must provide two modes of data entry into the constrained application. A

sensitive data entry mode, which can be selected from our service application, tags

all user input as sensitive. The regular data entry mode is used to input non-sensitive

information. One could argue that sensitive data can also come from other applica-

tions, but such applications should also be marked as constrained in the first place.

We will discuss how tracking of tagged data can be used in this case. Collaborating

constrained applications could be allowed to share sensitive information but explicit

consent must be obtained from the user first when tagged data crosses application

boundaries.

6.2.2 Monitoring Tagged Data Flow

Once information has been tagged, we must allow it to move freely within the con-

strained application. As tagged information flows, we need to track it. We achieve

this by using TaintDroid [23]. TaintDroid is an information flow tracking system

that taints data within the Android operating system. For example, if a tagged data

item is copied into another part of memory, TaintDroid tags the memory locations

where the data is copied. We chose TaintDroid because it can provide an efficient

solution for tracking the flow of sensitive health information in an application. If any
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data from tagged memory tries to leave the constrained application, we must ensure

that such transfer does not violate the security policy of the application. If tagged

information is being sent to an external repository via a communication channel, the

policy enforcement engine must check if the external repository is at the same or

higher sensitivity level as the information itself. Only when this is the case, the infor-

mation is allowed to leave the device. If the external repository contains only public

information and does not contain any sensitive information, then a default data se-

curity policy can be enforced. The user will be prompted to provide the sensitivity

level of any newly connected external repositories. If the user chooses not to provide

the level or when it is lower than the data, communication is disallowed.

Tagged information can also be stored on the file system. Files stored on the

mobile device’s main memory must be tagged with the highest level of sensitivity of

the information contained along with the constrained application that created the

file. Applications can also store tagged information on a memory card. The first time

an application attempts to store tagged information on a memory card, the user is

alerted about the risk of sensitive data disclosure if the memory card is removed from

the mobile device and used elsewhere. The user can then choose to allow storage

request or deny requests made by the application. Similarly, tagged information

that is detected at the inter-process communication between two applications will be

subjected to the constrained application’s security policy. In the next Section, we

explore a concrete implementation of mechanisms that can support these policies.

6.3 Implementation

We chose the Android mobile operating system to explore the implementation of

constrained applications and security policies that can be used to govern access to

sensitive health data. We chose this system because it is open source and an emerg-

ing healthcare platform for which several healthcare applications have already been
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developed. Similar implementations can be done on other mobile operating systems.

Before we discuss our implementation, we briefly describe some relevant details of

the Android operating system. At the base of the Android operating system lies

the Linux kernel which provides core system functionality. Above this layer are the

libraries, application framework, dalvik virtual machine and application layers.

All Android applications require an ApplicationManifest.xml file. This file

contains information about the application which is required by the Android oper-

ating system before it can run the application’s code. This includes the permissions

required by the application to access protected parts of the API, interactions with

other applications and permissions required by other applications to interact with

its components. These permissions are declared statically at install time. Hence,

even though these permissions could provide some degree of protection against data

breaches, they cannot be tailored at run-time. In addition, the permission model

which exists in Android is coarse-grain and cannot fully enforce the fine-grain tagged

data policies we explore. Permissions such as those required to access the Internet

grant the application unchecked access and do not allow us to restrict the application

to communicate with a subset of known safe or user consented repositories.

Finally, while certain features, such as internal data storage within the device’s

memory, may seem private to the application, exceptional cases exist which can allow

sharing of this data with another application or the data can be made public. Hence,

the security features provided by Android are insufficient to enforce the security

policies required to protect sensitive healthcare information. However, once we add

our mechanisms to the Android operating system, such policies can be enforced.

We implemented our framework on a Google Nexus One phone running Android

2.1. We used the TaintDroid [23] framework for tagged data tracking and built our

mechanisms over it. For our particular implementation, we assume that data tagging

occurs based on the nature of the source repository or based on explicit user input.
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We will also assume a single level of sensitivity while describing this section. In other

words, we will consider data to be either sensitive or non-sensitive. However, our

framework can accommodate 32 levels of sensitivity for data.

The most significant challenge we faced in implementing this framework was un-

derstanding the internal interactions of the relevant parts of Android. The Android

kernel is a modified Linux kernel for which sufficient documentation exists. However,

our mechanisms reside in layers above the kernel for which we did not have sufficient

documentation. These layers document the exposed APIs which can be used by the

applications that run above them but their internal interactions are not described.

This required considerable time on our part to understand these internal interactions

before we could enhance the system to include our data protection mechanisms. The

middle layers of the Android operating system also include code in several different

programming languages. The interactions between code written in these languages

and movement of data across them required native code to be implemented within the

operating system. Our external data flow mediation was implemented in the dalvik

virtual machine in about 400 lines of Java code. Our inter-process communication

mediation was implemented in the binder library in about 200 lines of C++ code.

Our user consent detection mechanism was implemented in the framework layer in

about 250 lines of code.

6.3.1 Background Service

Much of our framework functionality for enforcing a security policy resides within the

Android operating system but we also use a background service to support user inter-

actions required for security policy enforcement. This service launches automatically

when the device is powered on and listens for any communication from the operating

system. Whenever user input is required, a dialog prompt is displayed to the user

above any currently active application as shown in Figure 10. The background service
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Figure 10: A prompt generated by our framework.

is only used to display prompts and the response is detected by our user consent de-

tection mechanism which is able to distinguish between scripted responses by malware

and actual user input. We describe this mechanism in detail in a later section.

6.3.2 Security Policy Enforcement Engine

Our policy enforcement engine implements mechanisms that can support several poli-

cies. We currently use a simple syntax for policy specification and illustrate it via

an example but it is possible to utilize more advanced policy specification languages.

Our framework implementation allows the structure and source of policy files to be

easily changed without affecting the rest of the framework. Our current implemen-

tation uses policy files stored on the device. However, the policy files could also be

downloaded from an external trusted source. As shown in Figure 11, we maintain

a separate policy engine within the virtual machine and at the binder library. This

is because the external or network communication channel policy enforcement needs
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Figure 11: Policy enforcement framework.

to happen within the dalvik virtual machine while the inter-process communication

channel enforcement needs to be done within the binder library. Although a sin-

gle policy engine could enforce both, we decided to avoid the Java-native transition

overhead [34] by including two instances of the policy engine. This also allows us

to change the policy structure and complexity of either the network or inter-process

communication channels without affecting the other.

Policies for different constrained applications are stored separately which allows

our enforcement engine to quickly locate the policies that belong to a particular

application. Our policies follow the syntax: DESTINATION:CONTEXT:ACTION. The

CONTEXT for a policy rule is optional and only defined if necessary. Examples of

CONTEXT include LOCATION, SENSITIVITY LEVEL and TIME. The following are example

policy rules for a constrained application on our framework:

www.healthvault.com::allow

www.myphr.com:confidential,0800-1700:allow

com.healthapp.sample:1700-0800:deny

The first rule allows information to flow between this application and the

www.healthvault.com repository regardless of any other context for the action. The
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next rule allows information to flow between this application and the www.myphr.com

repository only if the sensitivity level of the data is confidential or lower and between

08:00 and 17:00 hours. The last rule denies this application from communicating via

IPC to the application belonging to the package name com.healthapp.sample between

17:00 and 08:00 hours. Similarly, a variety of policies can exist for an application

within our framework. A policy may include a large number of such rules.

6.3.3 Controlling External Data Flow

To secure network communication channels, we implement complete mediation for

external communication requests over the Internet. It also became apparent that a

similar mechanism could be put into place for other communication channels, such

as Bluetooth. Our communication channel data mediation monitors all incoming and

outgoing data between the constrained application and external entities.

On the Android operating system, every application runs within its own dalvik

virtual machine. This virtual machine runs above the kernel layer. Even though

data movement between applications and external communication channels is first

processed in the kernel, we implemented our mediation within the virtual machine

as we are able to use TaintDroid tag values at this layer. It was not possible for us

to determine the taint tags within the kernel based on the existing TaintDroid taint

framework and the notion of an application does not exist at the kernel.

Whenever a connection is made between an external entity and an application,

our framework first checks if this application is constrained based on the process that

engages in the network transaction. If the application is constrained, the policy engine

will then determine if the location has been previously been classified as trusted or

untrusted. For pre-classified locations, then the policy engine will determine if this

location is a private repository containing sensitive information. If so, all the incoming

information from this repository will be tagged as sensitive. If the location is a public

109



repository, then all incoming information will not be tagged as sensitive. Tags for

data coming from locations for which the policy does not contain any classification

yet will be defined by the user. The user will be prompted by our background service

of the current connection and will be asked to classify this new external location. The

user’s response will be captured by our user consent detection mechanism.

We also discussed that we can classify data from the same external location as non-

sensitive and a number of sensitivity levels based on the metadata from the location

itself. This can support finer granularity of data protection and would prevent any

non-sensitive information from a private repository to be falsely tagged as sensitive.

However, in our current implementation, we assumed that the external repository

does not provide such a classification of the data it sends to the device. This is the

current case with all existing third-party applications. The sensitivity classification is

performed on the device based on the source of the information. We can also use other

techniques such as text-mining to determine if the received data contains sensitive

information and create a tag based on it. This is currently not implemented in our

framework.

When information tries to leave the device to an external location, our framework

first determines if the application is constrained. For constrained applications, the

taint tag of the information that is leaving the device will determine if it is sensitive or

not. Non-sensitive information is allowed to leave the device to any external location.

However, if the information is sensitive, our policy enforcement engine will check if

a policy exists for the type of data and the external location. If no policy exists,

the user will be asked to define one using the background notification service and

our user consent detection mechanism. Information flowing out of non-constrained

applications will not be mediated.
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6.3.4 Controlling Communication with Untrusted Applications

Before we discuss our policy enforcement mechanism for inter-process communication,

we will discuss some pertinent details of the Android operating system. All inter-

process communication between applications in separate dalvik virtual machines takes

place through the Binder library. Binder is a custom Android protocol which uses the

core concepts of OpenBinder. The binder kernel module is a very low-level protocol

where it is difficult to extract taint tags. Hence, we implement our policy enforcement

engine for inter-process communication at a higher layer built on top of the kernel

module in the binder library. Binder uses Parcel as a marshaling protocol that writes

primitive types into transaction buffers. These binder transactions can either be

one-way or two-way involving a request parcel and a response parcel.

Our framework intercepts the parcels between two communicating applications

within the Binder system. At this point, we are able to determine which two applica-

tions are communicating. We then check if either of the communicating processes is a

constrained application. If none of them is constrained, we allow the communication

to proceed. Otherwise we check the parcel objects to detect if either the request

or the subsequent response within a transaction contains any information tagged as

sensitive. Our framework enforces a policy only if any one of the communicating

processes is constrained and the information it is sharing within the parcel message

is tagged as sensitive. However, a devious receiver in an IPC transaction could un-

pack the variables within the parcel message in a different way to acquire its value

without the taint tag. To prevent this, TaintDroid taints the entire parcel message as

sensitive even if only a few variables within the parcel message are actually sensitive.

This could potentially introduce false positives within the application.

We discovered while implementing our framework that at launch time, an appli-

cation communicates with the system server process which provides core system

services. This communication is vital for the launched application and hence the
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system server is allowed to bypass our enforcement engine’s mediation at the IPC

even if a false positive is detected during a binder transaction with a constrained

application. However, for all other transactions involving constrained applications,

the parcels are checked to determine if they contain any sensitive information. If a

policy does not already exist between a constrained application and the application

it is communicating with, the user is allowed to provide a policy rule for the current

transaction. This is done by generating a user prompt using our background service

and activating the user consent detection mechanism.

6.3.5 User Consent Detection

As mentioned in previous sections, our enforcement engine generates prompts for the

user to define policy rules when one does not exist to determine if certain data flows

should be allowed. However, if such prompts can be intercepted by malware, it can

define policy rules which could lead to a breach of sensitive information. To prevent

such a situation, our framework must be able to distinguish between actual user input

and potentially malicious scripted events.

We first studied how user input events are generated within the Android operating

system. Hardware input such as touchscreen presses are first received at the kernel

which translates them into actions at the application layer. Each individual touch

to the phone screen is received as a sequence of raw codes from the touchscreen

driver. These key presses are stored in a KeyInputQueue, shown in Figure 12, which

eventually reach the application as events. We extract the x and y co-ordinates of

the touchscreen press on the device from this queue. Retrieving the information at

this level allows us to be oblivious to the touchscreen hardware drivers present below

as all drivers input their key presses to this queue. This also provides the flexibility

of working above different hardware drivers without requiring any changes to our

consent detection mechanism. At the same time, our experiments verified that we are
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Figure 12: User consent detection mechanism.

below the level at which scripted actions generate events for the operating system.

Thus, this enables us to easily distinguish malware scripted actions and actual user

input. However, data isolation between different applications complicates this process.

The data from hardware drivers can only be accessed by the system server process

within the framework layer and is isolated from other applications running within

the dalvik virtual machine. To allow the policy engine within the virtual machine to

receive the x and y co-ordinates of each touchscreen press, we created a system service

which exports only these co-ordinates to the dalvik virtual machine. This is done by

using the Android Interface Definition Language(AIDL) to define an interface which

different processes agree upon to communicate with each other via IPC.

When user consent detection needs to occur, the background service of our frame-

work launches a notification which details the triggering action. The user is asked to

select a button on the screen to allow or deny the action. The x and y co-ordinates
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generated from the drivers are compared to those corresponding to the allow or deny

buttons on the screen. The positions of the allow or deny buttons generated by our

background service remain constant for each device and hence the x and y ranges

for each button are known beforehand. Based on the response given by the user, the

action is permitted or blocked.

Apart from the co-ordinates, we can also retrieve the pressure of each touchscreen

press, the area of the finger used to touch the screen and the duration of each press

from the hardware driver. All of this information can be used to create user specific

profiles similar to a hardened password [69] which provides a stronger guarantee that

the owner of the device has responded to the prompt rather than any other user.

However, this is not implemented within our framework.

6.4 Evaluation

Our framework includes additional checks when communication takes place between

applications or when an application exchanges data with an external entity. This

could have some performance impact on the applications. To understand this, we

present an evaluation of our framework in the following subsections. We outline the

factors which could affect performance and discuss the expected trends. We also pro-

vide performance measurements of delays introduced by our framework for a sample

application. Following that, we also modify an existing third-party healthcare appli-

cation to include malicious functionality and evaluate the response of our framework

to its actions.

6.4.1 Performance Analysis

To understand performance overheads of our policy enforcement, we examine the

sources of overhead which could potentially be added by our framework. Since we

use TaintDroid for taint tracking of sensitive data, one source of overhead could

be the taint tracking mechanism. However, it has been reported that TaintDroid
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Table 17: Performance Evaluation Results

Communication TaintDroid Policy Enforcement framework
Upload 161.66 ms 181.83 ms
Download 18.20 ms 49.38 ms
Local Sharing 16.69 ms 18.53 ms

introduces only 14% performance overhead and 4.4% memory overhead on a CPU-

bound microbenchmark. This overhead is not significant for third-party healthcare

applications such as Sana which are used to access health information.

The next source of overhead comes from the security policy and its enforcement.

Since we do not store the policy in memory, our framework will not consume significant

amounts of additional memory even if a large number of policy files exist on the device.

Also, security policy decisions need to occur infrequently, storing these policies in

memory is not as important. However, the drawback of reading a policy file is that

policy enforcement decisions may take longer if the size and complexity of the file

increases. This is obvious as the files need to be parsed to extract the relevant policy

before its rules can be enforced.

Additional overhead could arise due to data movement between the binder library

and the dalvik virtual machine. This is due to the cost associated with the Java-native

transition to provide the parameters required by the policy engine and to return the

policy decision [34]. As mentioned earlier, native code transition is required as the

dalvik virtual machine is mainly in Java while the binder library layer is mainly in

C++. We avoided such a situation by providing separate policy engines for IPC and

network communication.

6.4.1.1 Performance Metrics

To evaluate the performance of our framework, we developed a healthcare applica-

tion which has the ability to upload, download and locally share a patient’s health

information. We then measured the time taken to perform these actions on the appli-

cation in the presence and absence of our framework on the mobile device. First, we
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measured the time elapsed between the user pressing a button on the application to

upload data to a repository to the data actually being written to a socket. Next, we

measured the time elapsed between the user pressing a button on the application to

download data from a repository to the time the data is placed into a receive buffer

from the socket. Finally, we measured the time elapsed between the user pressing a

button on the application to share this information with another application and the

time it takes to perform the IPC transaction. We summarize our findings for average

times taken for the above actions in Table 17.

Our experimental results show that our policy enforcement mechanism added a

20.17 ms overhead while sending data on the network and a 31.18 ms overhead while

receiving data. The overhead added by our policy enforcement for IPC transactions

was found to be 1.84 ms. This proves that our policy enforcement framework adds

acceptable overhead for mobile applications for a policy similar to the one described

in Section 4.2.

6.4.2 Threat Analysis

To demonstrate the functionality of our framework and to explore the security pro-

vided by it, we downloaded and used an open-source third party healthcare appli-

cation called Sana Mobile. We created different variants of this application each of

which includes a different hidden malicious functionality. Each variant of this appli-

cation represents a situation where a breach of sensitive healthcare information may

occur. We allowed these applications to execute over the modified Android operating

system and observed our framework’s response which we discuss below.

6.4.2.1 Malware Infected Applications

The Android market is an online software store which allows users to browse and

install third-party applications. These applications provide useful features and can

often be downloaded for free from the market. However, recent studies have shown
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that these applications can steal sensitive user information without the user’s knowl-

edge [23]. At install time, users are shown a list of permissions, such as Internet

access, requested by the application. However, they cannot control what information

is sent on the Internet and what subset of remote servers are allowed to receive this

information. This requires that the user trust application developers to not send

sensitive information on the device to any malicious or unauthorized remote servers.

Apart from this, genuine applications which do not contain any malicious func-

tionality are known to be vulnerable due to variety of reasons such as design flaws and

coding errors. To patch these vulnerabilities, developers release updates. User devices

which are not regularly updated with these patches could be exploited to harm the

user and the device. Hence, even if malicious functionality is not originally included

within the application, vulnerabilities can be exploited to steal sensitive information

on the device.

Our first variant of Sana imitates both malicious applications and also vulnerable

applications which are exploited by malware. We install this variant on a device run-

ning our framework and assess our framework’s response to its malicious behavior.

When the user installs this variant on the device, he or she would check a box on

the permissions screen to indicate that the application will deal with sensitive infor-

mation. Our framework will now tag information flowing into this application from

external locations that are defined to be sensitive and check and enforce policy rules

on the flow of such information at the application’s exit points. This variant contains

hidden functionality which periodically uploads sensitive information gathered by the

application into a remote malicious server using the Internet as the communication

channel. We run this remote malicious server on a desktop and monitor the incoming

connections.

When this application first connects to its private repository to download sensitive

healthcare information, the user is prompted that a connection has been made to an
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external location which is not known to be trusted. The user then indicates through

the user prompt generated by our framework that the external location contains sen-

sitive information and data from it is tagged as sensitive. When this application tries

to discretely connect to the remote malicious server for the first time, our framework

looks for a previously defined policy for this application. When no existing policy is

found, the user is prompted to allow or deny the Sana application request to send

information tagged as sensitive to the malicious server. The user is then aware that

the application is sending sensitive information to a remote unknown server which

the user did not initiate. They would then deny this action, preventing the loss of

sensitive information. Our framework then enters a policy for this particular applica-

tion which would deny sending any sensitive information to that particular malicious

server. All future requests by this application to send sensitive information to that

malicious server are subsequently blocked. This successfully prevents a data breach

from occurring.

6.4.2.2 Insecure Programming Practices

Application developers do not always make the most secure choices while developing

software. Such insecure design choices could later be exploited for malicious purposes.

Our next variant of Sana imitates an insecure design choice which could potentially

be exploited by malware. We added a background service to Sana which launches

at phone boot time and continues to run in the background even if the application

is not active. This background service periodically connects to a private repository

containing sensitive information such as communication from a doctor, lab test results,

etc. Whenever new health information pertaining to the user of the device is available

on the repository, the background service downloads this information and sends this

data to Sana.
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Since Sana is an open source application, all the services launched by it can

be found in the ApplicationManifest.xml file including the background service

we added. We then created a separate weather application with hidden malicious

functionality. As the name suggests, the weather application displays weather infor-

mation to the user. But this application also requests permissions to bind to the

background service of Sana. This can be easily done by adding a service tag within

the ApplicationManifest.xml file of the weather application. Within this service

tag, the weather application specifically requests permissions to bind to the Sana’s

background service. Once this permission has been requested in the manifest file,

Android will allow the weather application to bind to the service. Although Android

will display the required permissions to the user at install time, the service permis-

sions are not shown to the user. The user is completely unaware that the weather

application is maliciously binding to Sana’s background service.

The weather application can now conveniently bind to the background service

periodically and collect sensitive health information from our variant’s background

service. When this weather application binds to our variant and tries to download

this information, an IPC transaction is initiated. Our framework checks to see if

any one of the communicating applications is constrained. Once it determines that

the Sana variant is constrained, it checks every parcel request and response between

these applications to assess if they contain any sensitive information. This is done by

checking the tags of the parcels in every transaction. When the background service

responds to the malicious weather application by sending sensitive information, our

framework detects a parcel containing sensitive information being sent from a con-

strained application and immediately checks if a previous policy rule exists. If one

does not exist, which is the case here, the user is notified of this transaction through
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a prompt generated by the background service. The user consent detection frame-

work is activated to capture the response of the user. Thus, our framework is able to

successfully prevent loss of sensitive information via IPC.

6.4.2.3 Malicious Scripted Actions

Our third variant emulates a malicious application which is aware that the user will

be prompted to confirm any potential disclosure of sensitive information such as that

provided by our framework. As an attempt to subvert this process, this variant

inserts scripted events into the operating system to hijack any such prompts and

prevent the user from being notified of potential disclosures. This scripted input can

automatically select the button on the prompt which will allow the breach of sensitive

information to occur.

When this variant tries to steal sensitive information from the device, our policy

enforcement engine detects sensitive information leaving a constrained application

and triggers a prompt detailing the action from the background service and the user

consent detection mechanism is activated. This prompt will wait for input from the

user to either allow or deny the particular action in question. At this point, the

variant quickly responds to the prompt by inserting simulated key events. How-

ever, our user consent detection mechanism ignores any such event and looks at the

KeyInputQueue where actual hardware key events are present. Scripted events are

not inserted in this queue and can be used to easily distinguish between actual user

generated hardware events and potentially malicious scripted events. Our framework

extracts the x and y co-ordinates of the touchscreen press by the user and is able to

determine which specific button was selected at the prompt generated by our back-

ground service. When the user responds to block this unknown movement of sensitive

data outside the constrained application, our consent detection mechanism notifies
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the policy enforcement framework which inserts the appropriate policy into the ap-

plication’s policy file. Thus, this mechanism helps defeat any attempts at subverting

our policy enforcement by using scripted actions.

6.5 Conclusions

In this chapter, we secured the devices that connect to the health information sharing

architecture. We achieved this by introducing the concept of a constrained application

for mobile devices which can be used to safeguard sensitive data and prevent its flow

to unauthorized entities. A constrained application’s sensitive data can be protected

even in the presence of attacks that can successfully compromise the application.

Our mechanisms accommodate for varying levels of sensitivity of data within the

constrained application which can be governed by different security policies. Non-

sensitive data within a constrained application is unaffected by our mechanisms. Also,

applications that do not deal with sensitive data are unaffected. We also developed a

user consent detection mechanism which can help distinguish actual user input from

scripted events that can be generated by malware. Such secure consent can enable

user awareness and control over how health information is shared.
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CHAPTER VII

CONCLUSIONS & FUTURE WORK

As electronic medical information is shared across the United States, backed by the

incentives provided by the government, it will be exposed to a wide variety of online

threats. In this dissertation, we explored the hypothesis that middleware in systems

which exchange health information can be augmented to support better account-

ability and security of health data and reduce losses due to fraud. To this effect,

we introduced several techniques that help improve the security of the exchange of

health information.

• Enhanced Auditing & Awareness: We augmented the eHealth Exchange

as an example to enhance accountability and patient awareness at each node.

We introduced two new types of records called the Sharing Record Log (SRL)

and Audit Record (AR). These are created, propagated, signed and stored by

two additional architectural components, namely the CONNECT Monitoring

Agent (CMA) and the Component Logging Agent (CLA). In addition to this

another architectural component called the Patient Agent (PA) helps inform

the patient of how their data is being shared within the eHealth Exchange.

These enhancements help us ensure that we log all inter-nodal and inter-

component interactions which cannot be subverted or corrupted without de-

tection unless both interacting parties are compromised or malicious. Our au-

dit records are also redundantly distributed throughout the node and eHealth

Exchange which helps in detecting deletion of records. In addition to this, we

also help alleviate patient privacy concerns by providing greater awareness to

patients about how their personal medical information is being shared. These
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enhancements enable early detection of unauthorized and malicious sharing of

health data, which can help limit the resulting damage.

In case a breach or compromise occurs, our introduced concept of sharing prove-

nance helps us identify the medical practitioner or healthcare organization that

may be a source of leak of information or the unauthorized node that fraudu-

lently releases or acquires a particular patient’s data. We can use these records

to determine all the other actions that were performed by those identities within

the eHealth Exchange which may have also been malicious. Reversing these ac-

tions would give us a starting point to rectify any patient’s medical history that

may have been corrupted by fraud.

• Fraud, Waste and Abuse Detection: We also described FraudScope, our

fraud, waste and abuse detection system that helps detect suspicious claims.

FraudScope also provides a rank and risk score to the most suspicious claims,

providers, beneficiaries, etc. to prioritize their investigation to maximize sav-

ings. It generates output very quickly which allows it to run prospectively to

detect fraud before claims are adjudicated. It can also be run retrospectively

to detect the most suspicious claims after adjudication.

Unlike existing methods, it does not require any input in the fraud identification

stage which frees up precious fraud analyst time to investigate a greater number

of claims. This also enables our technique to detect newly emerging as well as

previously unidentified fraud schemes. It can also adapt to natural changes in

the treatment patterns or change in the coding system and will not require any

additional work by the user to include these changes.

• Securing Health Data at End Devices: We also secured the devices that

connect to the health information sharing architecture. We achieved this by in-

troducing the concept of a constrained application for mobile devices which can

123



be used to safeguard sensitive data and prevent its flow to unauthorized entities.

A constrained application’s sensitive data can be protected even in the presence

of attacks that can successfully compromise the application. Our mechanisms

accommodate for varying levels of sensitivity of data within the constrained

application which can be governed by different security policies. Non-sensitive

data within a constrained application is unaffected by our mechanisms. Also,

applications that do not deal with sensitive data are unaffected. We also de-

veloped a user consent detection mechanism which can help distinguish actual

user input from scripted events that can be generated by malware. Such secure

consent can enable user awareness and control over how health information is

shared.

7.1 Future Work

In this dissertation, we have enhanced the existing eHealth Exchange architecture to

improve its security guarantees, however, there are several more enhancements that

can be made in the future:

• Auditing System: In our future work we would like to discuss how a SRL of an

existing document can be merged with a modified version of the same document

from another node that contains a different SRL. This would help maintain the

sharing provenance when two documents are modified by separate nodes and

then merged at some point in the future. In addition to this, we would also like

to explore how the sharing record logs may be affected if different sections of a

medical document are redacted for different users on the same node.

• Fraud, Waste and Abuse Detection: The current datasets available to us

contained aggregated data from the Centers for Medicare & Medicaid Services

(CMS). These datasets did not contain any timestamps to simulate prospective

detection of suspicious claims using FraudScope. For our future work, we would
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like to obtain detailed claims data that is timestamped so that we can apply

our technique prospectively and show the effectiveness of FraudScope in such a

setting as well.

• Secure Devices: In our future work to secure end devices we would like to

explore other techniques such as text-mining to determine the sensitivity level

of information received by the constrained application. This will allow us to

automatically identify specific sensitivity levels of information received from a

repository. We also want to enable social networking to share permissions for

external repositories or applications by other users of our secured end device

system. In addition to this, we also want to develop methods to capture the

context of sensitive information which will help the users make better policy

decisions. We will also explore how other data governance policies can be sup-

ported by our mechanisms.
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