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SUMMARY

In this thesis, we developed Bayesian models and machine learning algorithms

for protein secondary structure and β-sheet prediction problems. In protein secondary

structure prediction, we developed hidden semi-Markov models, N-best algorithms

and training set reduction procedures for proteins in the single-sequence category.

We introduced three residue dependency models (both probabilistic and heuristic)

incorporating the statistically significant amino acid correlation patterns at structural

segment borders. In those models, we allowed dependencies to positions outside

the segments to relax the condition of segment independence. Another novelty of

the models is the dependency to downstream positions, which is important due to

asymmetric correlation patterns observed uniformly in structural segments. Apart

from the more elaborate dependency structure, we introduced a training set reduction

strategy to refine estimates of the model parameters. Among the dataset reduction

methods, the composition based reduction technique with thresholding generated

the most accurate results in the single-sequence setting. To incorporate non-local

interactions characteristic of β-sheets into the secondary structure prediction method,

we developed two N-best algorithms and a Bayesian β-sheet model. We showed that

the information in suboptimal segmentations is useful and can improve the sensitivity

of the Viterbi algorithm. We also investigated the effect of incorporating non-local

interactions into the single-sequence prediction method.

In β-sheet prediction, we developed a Bayesian model to characterize the con-

formational organization of β-sheets and efficient algorithms to compute the opti-

mum architecture, which includes β-strand pairings, interaction types (parallel or

anti-parallel) and residue-residue interactions (contact maps). We analyzed proteins

xvi



according to the number of β-strands they contain. We introduced a Bayesian ap-

proach for proteins with six or less β-strands, in which we modeled the conformational

features in a probabilistic framework by combining the amino acid pairing potentials

with a priori knowledge of β-strand organizations. To select the optimum β-sheet ar-

chitecture, we analyzed the space of possible conformations by efficient heuristics, in

which we significantly reduce the search space by enforcing the amino acid pairs that

have strong interaction potentials. Furthermore, we employed an algorithm that finds

the optimum pairwise alignment between β-strands using dynamic programming. For

proteins with more than six β-strands, we first computed β-strand pairings using the

BetaPro method. Then, we computed gapped alignments of the paired β-strands

in parallel and anti-parallel directions and chose the interaction types and β-residue

pairings with maximum alignment scores.
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CHAPTER I

INTRODUCTION

Proteins are large, complex molecules made up of smaller subunits called amino acids.

Chemical properties that distinguish the twenty amino acids cause the protein chains

to fold up into specific three-dimensional structures that define their particular func-

tions in the cell. There are four levels of protein structure. The primary structure

refers simply to the “linear” sequence of amino acids. The secondary structure is the

“locally” ordered structure that is created by hydrogen bonding within the protein

backbone. The tertiary structure refers to the “global” folding of a single amino acid

chain, and the quaternary structure involves the association of two or more chains

into a multi-subunit structure.

Protein structure prediction is one of the most fundamentally unsolved problems in

computational molecular biology. There are several levels at which protein structure

prediction can be performed. Secondary structure prediction is concerned with the

assignment of each amino acid to a secondary structure state. In tertiary structure

prediction (e.g., protein folding), the goal is to predict the conformation assumed by a

protein molecule in the three-dimensional (3-D) space. Tertiary structure prediction

is important from many aspects. First of all, biological functions of proteins are

dependent on their 3-D structure. Therefore, accurate prediction of the structure will

provide information on the functional role of the protein. Second, protein structure

prediction is an efficient alternative to experimental methods that solve structure,

which are limited and time consuming. Third and most important, protein structure

prediction enables us to design novel proteins and drugs, which is a fundamental task

on the path toward curing diseases.
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The prediction of the 3-D structure greatly benefits from the information related

to secondary structure, solvent accessibility, and non-local contacts that stabilize

a protein’s structure. Therefore, the prediction of such components is vital to our

understanding of the structure and function of a protein. In this thesis, we concentrate

on the protein secondary structure prediction and the β-sheet prediction problems.

1.1 Protein Secondary Structure Prediction

The three major secondary structure states are the α-helix {H}, the β-strand {E},
and the loop {L}. α-helices are strengthened by hydrogen bonds between every fourth

amino acid so that the protein backbone adopts a helical configuration, as shown in

Figure 1(a). Likewise in loops, (e.g., turns or bends), the hydrogen bonding is mostly

local. For example, the turn segment in Figure 1(b) has a hydrogen bond between the

oxygen and hydrogen atoms of the first and the fourth amino acids, respectively. The

hydrogen bonding structure in β-strands is slightly different, where both local and

non-local interactions are observed. In β-strands, the most common local hydrogen

bonding is between every two amino acids, and non-local interactions are due to

hydrogen bonds between amino acid pairs positioned in interacting β-strand segments.

Those segments can adopt either a parallel or an anti-parallel conformation, as shown

in Figure 1(c)-(d).

A protein secondary structure prediction algorithm assigns to each amino acid a

structural state from a three-letter alphabet {H, E, L} representing the α-helix, β-

strand, and loop, respectively. Protein secondary structure prediction is important as

it provides insights into the functional role of a protein [144, 19, 57, 32, 70, 56, 145].

Prediction of function via sequence similarity search for new proteins (function an-

notation transfer) should be facilitated by a more accurate prediction of secondary
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(a) An � -helix segment  (b) A turn segment  (c) Anti-parallel conformation  (d) Parallel conformation 

Figure 1: (a)-(b): Local interactions in α-helix and loop segments. (c)-(d): Non-
local interactions in β-strand segments (Top diagrams illustrate β-strands in cartoon
representation). In all diagrams, hydrogen bonds are shown as dashed lines. Solid
lines represent covalent bonds. The color representations of the atoms in (a): Car-
bon (Cα)-dark gray, Carbon (in C=O group)-light gray, hydrogen-white, oxygen-red,
nitrogen-blue. The color representations of the atoms in (b), (c) and (d): Carbon-
black, hydrogen-white, oxygen-red, nitrogen-blue. Side-chains are represented as pur-
ple spheres. Reprinted from “Biochemistry, 3rd Edition”, Donald Voet, Judith G.
Voet, Copyright c©2004 John Wiley & Sons,Inc. Illustration, Irving Geis. Rights
owned by Howard Hughes Medical Institute. Not to be used without permission.

structure since structure is more conserved than sequence. In addition, protein sec-

ondary structure prediction can be a step toward the prediction of the 3-D struc-

ture [36]. For instance, protein secondary structure information can be included into

fold recognition methods, in which a target amino acid sequence with unknown struc-

ture is compared against a library of structural templates (folds) and the best scoring

fold is assumed to be the one adopted by the sequence [83].
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1.2 Protein Beta-Sheet Prediction

A β-sheet is a set of β-strand segments, which are involved in hydrogen bonding

interactions. The association of β-sheets has been implicated in the formation of

protein aggregates and fibrils observed in many human diseases, including Alzheimer’s

and mad cow diseases [85]. β-sheets can be open, meaning that they have two edge

strands (as in the flavodoxin fold or the immunoglobulin fold) or they can be closed

β-barrels (such as the TIM barrel). Open β-sheets are the most common sheet types

observed in cellular proteins. An example is shown in Figure 2, where four β-strands

interact pairwise to form an open β-sheet.

 

1 
2 3 4 

Figure 2: Secondary structure of the Rnase P protein (PDB id: 1A6F). β-strands
that form the β-sheet are numbered in sequential order.

The conformational arrangement of β-strands that form β-sheets can be described

by the following components: the assignment (or grouping) of β-strands into β-sheets,

the spatial ordering of β-strand segments in each sheet, the interaction types of β-

strand segment pairs, and amino acid residue interactions also known as contact maps.

For instance, in Figure 2, four β-strands interact to form a single β-sheet. Here, the
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β-strand segments are ordered as (1-2-4-3) in the spatial direction, in which the num-

bers represent the sequential indices of the β-strands1. The interaction types of the

segments are such that the first and the second segments make an anti-parallel inter-

action, the second and the fourth segments make the second anti-parallel interaction,

while the third and the fourth segments make a parallel interaction. As the fourth

component of the β-sheet formation, a contact map defines the amino acid pairs that

make non-local interactions (or residue pairs). In Figure 3, two possibilities are shown

for the residue pairing pattern of a β-sheet with three β-strands. Both β-sheets have

the same grouping, ordering and interaction type combination but their contact map

is different.
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(b)

Figure 3: Two possibilities for the residue pairing pattern of a β-sheet with three
β-strands. The letters represent the amino acids in β-strand segments. The vertical
line segments show the amino acid interactions.

The β-sheet conformation of a protein is essential for understanding its struc-

ture [152]. Prediction of β-sheet conformation from amino acid sequence is useful,

not only for predicting the tertiary structure, [150, 131] but also for elucidating folding

pathways [97, 94] and designing new proteins [86, 88].

1For convenience, we start with the segment with smaller sequential index.
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1.3 State-of-the-Art

Our goal in this section is to provide a brief overview of the prior work on protein

secondary structure and β-sheet prediction. In the subsequent chapters, we will survey

the related work about the problems under discussion in detail.

1.3.1 Protein Secondary Structure Prediction

Algorithms of protein secondary structure prediction frequently employ neural net-

works [80, 120, 115, 50, 96, 112, 80], support vector machines [66, 84, 146, 105, 104, 71]

and hidden Markov models [134, 36, 20]. Parameters of the algorithm have to be de-

fined by machine learning, therefore algorithm development and assessment usually

contains four steps. First, a statistical analysis is performed to identify the most

informative correlations and patterns. Then, a model is developed, which represents

dependencies between structure and sequence elements. In the third step, the model

parameters are derived from a training set. Finally, the algorithm prediction accuracy

is assessed on test samples (sets) with known structure.

There are two types of algorithms in protein secondary structure prediction. A

single-sequence algorithm does not utilize evolutionary information about other sim-

ilar proteins. The algorithm should be suitable for a sequence with no similarity

to any other protein sequence. Algorithms of another type are explicitly using se-

quences of related proteins, which often have similar structures. The prediction ac-

curacy of such an algorithm should be higher than one of a single-sequence algorithm

due to incorporation of additional evolutionary information from multiple alignments

or multiple alignment profiles [128, 59]. The accuracy (sensitivity) of the best cur-

rent single-sequence prediction methods is close to 70%. BSPSS [134], SIMPA [91],

SOPM [62], and GOR IV [60] are examples of single-sequence prediction algorithms.

Among the current best methods that use evolutionary information (multiple align-

ments or PSSM profiles), one can mention Porter [114], PSIPRED [80], SSpro [28],
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APSSP2 [120], SVMpsi [84], PHDpsi [117], JPRED2 [50], and PROF [108]. The

accuracy of the state-of-the-art algorithms that employ multiple alignments or align-

ment profiles is close to 80% [28]. For instance, the prediction accuracy of Porter was

shown to be as high as 80.4% [8]. The secondary structure prediction performance

can further be improved by consensus classifiers, in which different prediction meth-

ods are combined to improve over a single method [123, 65]. The joint utilization of

methods that specialize on single-sequence prediction and methods using evolutionary

information will definitely improve the prediction performance. The theoretical limit

of the accuracy of secondary structure assignment from experimentally determined

3-D structure is estimated to be 88% [125]. A real-time analysis and comparison of

various protein secondary structure prediction servers can be found at the EVAsec

website [9]. A comprehensive evaluation of the protein secondary structure prediction

algorithms can be found in Robles et al. [123].

1.3.2 Protein Beta-Sheet Prediction

Several methods have been proposed to understand and predict topological features

of β-sheets. Methods that aim to improve our understanding of β-sheet formation

analyzed the intrinsic and statistical propensities of amino acids [92, 98, 149, 153, 131],

their evolutionary conservation [150, 94] and the contribution of these factors to local

structure and β-sheet stability [148, 98, 138, 75]. Methods that predict β-strand

interactions and/or amino acid residue contacts utilize statistical potentials [73, 74,

21, 153, 127], information theory [140] and machine learning [82, 29, 113, 67, 93, 39,

41, 118, 142, 30, 40]. Note that all these methods are developed for global proteins

though similar ideas were also applied to predict contacts in specific folds [34] as

well as transmembrane proteins that contain β-strand interactions [143, 121]. In this

thesis, we are concentrating on globular proteins only.

Among the machine learning approaches, Cheng and Baldi [39] proposed BetaPro,
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which is a three-stage modular approach that predicts and assembles the β-sheets of

a native protein. BetaPro utilizes recursive neural networks followed by dynamic

programming and graph theory to exploit global covariation and constraints charac-

teristic of β-sheets. To derive the residue interaction propensities, BetaPro utilizes in-

formation from 10 surrounding residues instead of modeling each pair as independent.

BetaPro has 68% sensitivity and 61% positive predictive value (PPV) in the segment

pairing category when true secondary structure and solvent accessibility information

is used, which is a significant improvement over statistical data-driven approaches.

BetaPro was followed by SVMcon, a new contact map predictor that uses support

vector machines to predict medium- and long-range contacts [40]. Recently, Jeong et

al. [79] investigated two new algorithms for predicting β-strand partners. The first

algorithm poses the problem as integer linear programming optimization problem and

solves it using the ILOG CPLEXTM package. The second approach is greedy and it

explicitly encourages two simple folding rules.

1.4 Contributions of the Thesis

In this thesis, we develop Bayesian models and algorithms for protein secondary

structure and β-sheet prediction. In secondary structure prediction, we make the

following contributions:

• We derive a Bayesian framework for proteins in the single-sequence setting.

• We extract the most informative correlations between amino acid pairs in each

secondary structure type (feature sets) by performing a χ2-test.

• We derive probability models for the observation of amino acid residues. Each

model specializes on a different section of the dependency structure and consid-

ers dependencies to forward and/or backward positions as well as dependencies

to positions outside of a segment.
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• We develop a hidden semi-Markov model (HSMM) for each amino acid obser-

vation model. We combine the HSMMs by taking the average of the marginal

posterior probabilities.

• We develop training set reduction methods to refine estimates of the HSMM

parameters.

• We develop N-best algorithms to compute suboptimal segmentations of sec-

ondary structure.

• We develop a non-local interaction model for β-sheets and incorporate it into

the single-sequence prediction method using the N-best approach.

In β-sheet prediction, our contributions can be listed as follows:

• We introduce a Bayesian framework for proteins with six or less β-strands,

in which we model the conformational features in a probabilistic framework by

combining the amino acid pairing potentials with a priori knowledge of β-strand

organizations.

• We develop efficient heuristics to compute the optimum β-sheet architecture.

• We develop a dynamic programming algorithm to find the optimum pairwise

alignment between β-strands. Allowing any number of gaps in an alignment

enables us to model β-bulges.

1.5 Organization of the Thesis

Chapter 2 presents our work on protein secondary structure prediction in the single-

sequence setting. It includes a Bayesian formulation, a statistical analysis, feature

sets, dependency models, the hidden semi-Markov model implementation, and train-

ing set reduction methods. Several simulation results are provided to demonstrate

the effectiveness of the proposed approaches.
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Chapter 3 investigates the feasibility of incorporating non-local interactions into

the single-sequence prediction method we developed in Chapter 2. It presents two

N-best decoding algorithms and a Bayesian β-sheet model. Simulation results are

included for the non-local interaction model and potential extensions are discussed.

Chapter 4 explains our work on beta-sheet prediction. A Bayesian framework

is introduced for proteins with six or less β-strands. For an efficient computation

of the optimum conformation, heuristic and dynamic programming algorithms are

developed. Several simulation results are presented to show the effectiveness of the

proposed method.

Chapter 5 concludes the thesis by discussing future directions.
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CHAPTER II

PROTEIN SECONDARY STRUCTURE PREDICTION

FOR A SINGLE-SEQUENCE WITH HIDDEN

SEMI-MARKOV MODELS

2.1 Introduction

The accuracy of protein secondary structure prediction has been improving steadily

towards the 88% estimated theoretical limit [125]. There are two types of prediction

algorithms: Single-sequence algorithms imply that evolutionary information about

other related proteins is not available, while algorithms of the second type imply that

this information is available, and use it intensively. The single-sequence algorithms

could make an important contribution to studies of proteins with no detected relatives,

however the accuracy of protein secondary structure prediction from a single-sequence

is not as high as when the additional evolutionary information is present.

Single-sequence algorithms for protein secondary structure prediction are impor-

tant because a significant percentage of the proteins identified in genome sequencing

projects have no detectable sequence similarity to any known protein [141, 100]. Par-

ticularly in sequenced prokaryotic genomes, about a third of the protein coding genes

are annotated as encoding hypothetical proteins lacking similarity to any protein with

a known function [78]. Also, out of the 25,000 genes believed to be present in the

human genome, no more than 40-60% can be assigned a functional role based on

similarity to known proteins [77, 48]. For a larger picture, the Pfam database allows

one to get information on distribution of proteins with known functional domains in

three domains of life (see Table 1). From the structure prediction standpoint it is im-

portant that two or more hypothetical proteins may bear similarity with each other,
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Table 1: Number of proteins with known functional domains.
# Proteins # Proteins with Pfam hit (%)

Bacteria 623,037 450,962 72.38
Archaea 50,406 33,259 65.98

Eukaryota 284,392 187,472 65.92
Total 957,835 671,693 70.13

in which case it would still be possible to incorporate evolutionary information in a

structure prediction algorithm. However, many hypothetical proteins would not have

detectable similarity to any protein at all. Such “orphan” proteins may represent

a sizeable portion of a proteome1 as shown in Table 2. For an orphan protein, any

Table 2: Statistics of hypothetical proteins and orphan proteins observed in the
recently sequenced genomes (year 2004).

# Proteins (%) hypothetical (%) orphans in
proteins hypotheticals

Sulfolobus islandicus (Archaea) 197 65.98 57.69
Bacillus claussi (Bacteria) 4121 31.64 18.66
Gallus gallus (Eukaryota) 29,172 11.84 32.4

method of secondary structure prediction performs as a single-sequence method. De-

veloping better methods of secondary structure prediction from single-sequence has

a definite merit as it helps improving the functional annotation of orphan proteins.

In this chapter, we introduce a new method for protein secondary structure pre-

diction, which develops further the model proposed by Schmidler et al. [134]. We

formulate the problem in a Bayesian framework, which enables us to implement hid-

den semi-Markov models. For dimensionality reduction, we performed a statistical

analysis and identified the most informative correlations between sequence and struc-

ture variables. We specifically considered correlations at proximal positions of struc-

tural segments and dependencies to upstream and downstream residues. In addition,

1Proteome is the complete set of proteins that can be expressed by the genetic material of an
organism.
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we developed training set reduction methods to refine estimates of the HSMM pa-

rameters. The three-state-per-residue accuracy and other accuracy measures of the

proposed method, IPSSP, are shown to be comparable or better than the state-of-

the-art methods tested under the single-sequence condition.

2.2 Model Derivation

2.2.1 Bayesian Formulation

The linear sequence that defines a secondary structure of a protein can be described

by the pair (S ,T ), where S is a sequence of the structural segment end (border)

positions and T is a sequence that determines the structural state of each segment (α-

helix, β-strand, or loop). For instance, for the secondary structure shown in Figure 4,

S = (4, 9, 12, 16, 21, 28, 33) and T = (L, E, L, E, L, H, L).
 

 T1=L T2=E T3=L T4=E T5=L T6=H T7=L 
LLLL EEEEE LLL EEEE LLLLL HHHHHHH LLLLL 
     S1=4           S2=9    S3=12     S4=16       S5=21                 S6=28         S7=33 

Figure 4: The secondary structure segmentation and its representation by structural
segments.

Given a statistical model specifying probabilistic dependencies between sequence

and structure elements, the problem of protein secondary structure prediction could

be stated as the problem of maximizing the a posteriori probability of a structure

given the primary sequence. Thus, given the sequence of amino acids, R 2, one has

to find the pair (S ,T ) that maximizes the a posteriori probability P (S ,T | R )

defined by an appropriate statistical model. Using Bayes’ rule, this probability can

be expressed as

P (S ,T |R ) =
P (R | S ,T )P (S ,T )

P (R )
, (1)

where P (R | S ,T ) denotes the likelihood and P (S ,T ) is the a priori probability.

Since P (R ) is constant with respect to (S ,T ), maximizing P (S ,T |R ) is equivalent

2R = (R1, .., Rn), where Ri is the ith amino acid.
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to maximizing P (R | S ,T )P (S ,T ). Hence, the MAP estimator takes the following

form:

(S ,T )MAP = arg max
(S ,T )

P (R | S ,T )P (S ,T ). (2)

To proceed further, we need models for each of these probabilistic terms. We model

the a priori probability P (S ,T ) as follows:

P (S ,T ) =
m∏

j=1

P (Tj | Tj−1)P (Sj | Sj−1, Tj), (3)

where, m denotes the total number of secondary structure segments and P (Tj | Tj−1)

is the probability of transition from a segment of secondary structure type Tj−1 to a

segment of secondary structure type Tj. Table 3 shows the transition probabilities

P (Tj | Tj−1), estimated from the PDB SELECT dataset (see Section 2.5.1.1). The

Table 3: The matrix of transition probabilities, P (Tj | Tj−1), used in the hidden
semi-Markov model. Rows represent Tj−1 values.

P (Tj | Tj−1) H E L
H —— 0.031 0.969
E 0.029 —— 0.971
L 0.314 0.686 ——

third term, P (Sj | Sj−1, Tj), reflects the length distribution of a secondary structure

segment. We can assume that

P (Sj | Sj−1, Tj) = P (Sj − Sj−1 | Tj), (4)

where Sj − Sj−1 is equal to the segment length (see Figure 4). The typical form of

the segment length distribution for different secondary structure types is illustrated

in [44, 134, 1].

The likelihood term P (R | S ,T ) can be written as

P (R | S ,T ) =
m∏

j=1

P (R [Sj−1+1:Sj ] | S ,T ) (5)

=
m∏

j=1

P (R [Sj−1+1:Sj ] | Sj−1, Sj, Tj),
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where R[p:q] denotes the sequence of amino acid residues with position indices from

p to q. The probability of observing a particular amino acid sequence in a segment

adopting a particular type of secondary structure is P (R [Sj−1+1:Sj ] | S ,T ). This

term is assumed to be equal to P (R [Sj−1+1:Sj ] | Sj−1, Sj, Tj). Thus, this probability

depends only on the secondary structure type of a given segment, and not of adjacent

segments. Note that we ignore the non-local interactions observed in β-sheets. This

simplification allows us to implement an efficient hidden semi-Markov model.

To elaborate on the segment likelihood terms in Eq. (5), we have to consider the

correlation patterns within a secondary structure segment. These patterns reflect the

secondary structure specific physico-chemical interactions. For instance, α-helices

are strengthened by hydrogen bonds between amino acid pairs situated at specific

distances. To correctly define the likelihood term, we should also pay attention to

the proximal positions, typically the four initial and the four final positions of a

segment. In particular, α-helices include capping boxes, where the hydrogen bonding

patterns and side-chain interactions are different from the internal positions [22, 54].

The observed distributions of amino acid frequencies in proximal (capping boxes) and

internal positions of α-helix segments are depicted in Schmidler et al. [134], and show

noticeably distinct patterns.

Presence of this inhomogeneity in the statistical model leads to the following

expression for P (R [Sj−1+1:Sj ] | Sj, Sj−1, Tj):

P (R [Sj−1+1:Sj ] | Sj, Sj−1, Tj) = PN1(Rkb+1)

lN+kb∏

i=kb+2

PNi−kb
(Ri | Ri−1, .., Rkb+1) (6)

×
kn−lC∏

i=lN+kb+1

PInt(Ri | Ri−1, .., Rkb+1)

×
0∏

i=−lC+1

PC1−i
(Ri+kn | Ri+kn−1, .., Rkb+1).

Here, the first and the third sub-products represent the probability of observing lN and

lC specific amino acids at the segment’s N-terminal and C-terminal, respectively. The
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second sub-product defines the observation probability of amino acids in the segment’s

internal positions. Note that kb and ke designate Sj−1 + 1 and Sj, respectively.

The probabilistic expression in Eq. (6) is generic for α-helices, β-strands, and loops.

Eq. (6) assumes that the probabilistic model is fully dependent within a segment,

i.e., observation of an amino acid at a particular position of a segment depends on all

previous amino acids within that segment. However, at this time, the Protein Data

Bank (PDB [15]) does not have a sufficient amount of experimental data to reliably

estimate all the parameters of a fully dependent model. Therefore, it is important

to reduce the dependency structure and keep only the most significant correlations.

In order to achieve this goal, we performed the statistical analysis described in the

following section.

2.2.2 Correlation Patterns of Amino Acids

Amino acids have distinct propensities for the adoption of secondary structure con-

formations [51]. These propensities are in the heart of many secondary structure

prediction methods [43, 54, 22, 122, 116, 52, 46, 47, 90, 111]. Our goal is to come

up with a dependency pattern that is comprehensive enough to capture the essential

correlations yet simple enough in terms of the number of model parameters to allow

reliable parameter estimation from the available training data. With this motivation,

we performed a χ2-test to identify the most significant correlations between amino

acid pairs located in adjacent and non-adjacent positions for each type of secondary

structure segments.

2.2.2.1 χ2-Test

A χ2-test is a statistical hypothesis test in which the test statistic has a χ2 distribution

when the null hypothesis is true or the probability distribution of the test statistic

(assuming the null hypothesis is true) can be made to approximate a χ2 distribution

as closely as desired by making the sample size large enough. The χ2-test is used in
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two similar but distinct circumstances: (1) for estimating how closely an observed

distribution matches an expected distribution. This is also referred as the goodness-

of-fit test; (2) for estimating whether two random variables are independent. In

our case, we are interested in the second category, in which we derive the degree of

correlation between the amino acid pairs situated at various positions.

The first step of a χ2-test is to establish hypotheses. Let (Ri, Rj) be an amino acid

pair, where Ri is the amino acid at position i and Rj is the amino acid at position

j. The null hypothesis claims that the two amino acids are independent whereas the

alternative hypothesis states that the amino acids are correlated. The key idea of a

χ2-test is the comparison of observed and expected values. This is summarized in the

following test statistic:

χ2 =
∑
ij

Oij − Eij

Eij

, (7)

where Oij and Eij are the observed and expected values of the amino acid pair (Ri, Rj),

respectively, and χ2 is the test statistic. When the test statistic is greater than the

statistical significance threshold, we reject the null hypothesis and conclude that the

amino acids are correlated. Otherwise, the pair is assumed to be independent. In

statistics, parameters of a χ2-test are typically recorded in contingency tables. Since

an amino acid can take twenty possible values, a contingency table of size 20 × 20

can be used to analyze the correlations between amino acid pairs. In that case, the

threshold would be 404.6 for a statistical significance level of 0.05.

2.2.2.2 Correlations within Segments

We first performed a χ2-test and compared the empirical distribution of an amino acid

pair with the respective product of marginal distributions. Therefore, we computed a

20×20 contingency table, which includes the frequencies of possible amino acid pairs

observed in different structural states. We first analyzed the correlations between

amino acid pairs at various separation distances. As highlighted in Table 4, we found
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that in a α-helix segment, a residue at position i is highly correlated with residues

at positions i − 2, i − 3 and i − 4. Similarly, a β-strand residue has its highest

correlations with residues at positions i − 1, i − 2, and a loop residue has its most

significant correlation with a residue at position i − 1. The test statistics for the

remaining pairs are above the statistical significance threshold but these values are

considerably lower than the ones highlighted in Table 4. The dependencies identified

by the statistical analysis are in agreement with the well known physical nature of

the secondary structure conformations.

Table 4: Correlations at the amino acid level as characterized by the χ2 measure
(PDB SELECT set).

Helix Strand Loop
Separation χ2 # of pairs χ2 # of pairs χ2 # of pairs

1 1854.34 118,324 2579.85 60,423 9600.85 154,404
2 7008.83 103,853 1832.78 44,121 5774.58 124,249
3 2454.03 89,414 1116.65 30,909 4828.13 100,325
4 5095.27 77,302 535.02 20,336 2276.21 80,930
5 2052.68 67,036 461.70 12,584 1298.16 66,109
6 1295.46 57,602 398.44 7361 950.66 54,993
7 2196.94 49,017 392.93 4196 895.42 46,391
8 627.00 41,350 355.81 2292 761.48 39,611

2.2.2.3 Position Specific Correlations

In this section, we derived position specific correlations within each type of secondary

structure segment. We analyzed proximal positions and a representative set of in-

ternal positions. Frequency patterns in proximal positions deviate from the patterns

observed in internal positions [22, 52]. For a better quantification, we first computed

the Kullback-Liebler (KL) distance between the probability distributions of the prox-

imal and the internal positions as shown in Table 5. From this table, we can observe

that the KL distance is significantly higher for positions closer to segment borders.

This shows that amino acids in proximal locations have significantly different distri-

butions from those at internal regions. After making this observation, we performed
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Table 5: KL distance between distributions of amino acids in proximal and internal
positions (PDB SELECT set).

KL-dis N1 N2 N3 N4 C4 C3 C2 C1
α-Helix 0.402 0.194 0.100 0.053 0.018 0.018 0.020 0.036
β-Strand 0.047 0.025 0.019 —— —— 0.021 0.039 0.074

Loop 0.045 0.019 0.008 0.003 0.004 0.008 0.026 0.028

a χ2-test for proximal positions to identify the correlations between amino acid pairs

at various separation distances. Tables 6, 7, and 8 summarize the results for α-helix,

β-strand, and loop segments, respectively. From these tables, we can see that the

general assumption of segment independence does not hold because there is a signifi-

cant correlation between residues situated on both sides of the segment borders. For

instance, in Table 6 the amino acid at position i = N2, significantly correlates with

the amino acid at position i− 2, which is outside the segment. This correlation can

be caused by physical interactions between nearby residues [22]. Also, the strength

of correlation for the i + (downstream) residues at the C-terminal border is different

from the strength observed for i−(upstream) residues at the N-terminal border. This

fact indicates an asymmetry in the correlation behavior for i+ and i− residues.

Table 6: Position specific correlations as characterized by the χ2 measure in the
proximal positions of α-helices (PDB SELECT set).

χ2 N1 N2 N3 N4 C4 C3 C2 C1
i− 5 380.33 410.29 421.77 538.17 604.79 628.98 549.77 563.37
i− 4 491.35 409.30 591.87 482.28 830.18 963.03 1261.04 1213.12
i− 3 416.40 637.47 2000.33 552.22 696.89 632.99 624.90 714.48
i− 2 524.46 1029.24 731.30 649.11 1082.25 1181.51 1270.42 1300.46
i− 1 708.76 770.43 661.04 614.21 481.05 497.00 603.44 810.35
i + 1 770.43 805.38 702.25 470.58 463.31 527.86 717.04 1266.49
i + 2 982.18 993.92 844.97 827.26 933.17 903.81 591.22 631.45
i + 3 875.59 619.44 697.18 465.17 578.54 485.95 507.21 482.92
i + 4 1132.54 872.68 694.83 1055.63 657.20 443.62 397.44 476.19
i + 5 487.41 594.32 652.90 468.99 527.83 370.97 378.79 454.61

A similar asymmetry in the correlation pattern was also observed for internal

positions as shown in Table 9. For instance, in an α-helix segment, typically, the ith

residue at an internal position is highly correlated with the i − 2th, i − 3th, i − 4th,
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Table 7: Position specific correlations as characterized by the χ2 measure in the
proximal positions of β-strands (PDB SELECT set).

χ2 N1 N2 N3 N4 C4 C3 C2 C1
i− 5 465.37 403.31 413.26 395.04 352.55 330.02 378.60 376.07
i− 4 654.98 456.38 483.51 441.46 400.92 390.53 474.38 693.12
i− 3 510.14 519.55 428.88 428.16 422.03 491.73 510.24 653.66
i− 2 897.90 654.51 601.60 565.55 492.39 543.82 622.69 529.75
i− 1 948.59 853.73 574.88 445.42 462.32 510.58 787.74 898.29
i + 1 1040.43 741.91 496.39 499.59 415.23 598.74 688.16 573.46
i + 2 717.47 842.68 572.70 489.51 391.72 438.24 536.08 626.48
i + 3 544.38 504.97 495.69 398.30 400.94 399.77 558.58 594.21
i + 4 576.12 496.33 403.25 403.55 352.35 425.08 436.07 571.56
i + 5 394.77 446.47 364.07 373.41 358.11 378.73 595.02 372.85

Table 8: Position specific correlations as characterized by the χ2 measure in the
proximal positions of loops (PDB SELECT set).

χ2 N1 N2 N3 N4 C4 C3 C2 C1
i− 5 525.52 438.41 440.73 360.78 436.80 373.60 476.23 573.17
i− 4 821.26 706.34 483.41 367.51 375.90 390.95 507.84 594.84
i− 3 897.63 513.38 628.45 374.36 414.06 473.22 486.77 496.24
i− 2 1071.32 651.56 529.75 370.03 499.76 449.44 572.50 797.24
i− 1 1123.73 1069.17 618.63 470.26 399.52 560.42 1180.19 944.17
i + 1 1163.89 977.29 733.89 419.78 469.27 634.31 721.94 1145.00
i + 2 685.76 580.68 551.32 365.14 440.72 578.76 789.16 694.47
i + 3 916.21 631.75 438.45 435.29 395.91 620.07 945.19 635.66
i + 4 655.16 498.59 502.03 401.33 379.38 512.19 633.13 643.62
i + 5 457.12 362.01 407.11 356.63 389.33 433.25 552.84 483.10

i − 5th, i + 2th, and the i + 4th residues. The correlation strength between the ith

residue and the i − 2th residue is different from the one observed for the ith and the

i + 2th residues.

In the next section, we will refine the probabilistic model needed to determine

P (R [Sj−1+1:Sj ] | Sj−1, Sj, Tj) using the most significant correlations identified by the

statistical analysis.

2.2.3 Reduced Dependency Model

Correlation analysis allows us to reduce the alphabet size in Eq. (6) by selecting only

the most significant correlations. The dependence patterns revealed by the statistical

analysis are shown in Table 10 divided into panels for α-helix (H), β-strand (E), and

loop (L) structures. To reduce the dimension of the parameter space, we grouped
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Table 9: Position specific correlations as characterized by the χ2 measure in internal
positions of α-helices, β-strands, and loops (PDB SELECT set).

χ2 α-Helix β-Strand Loop
i− 5 1654.88 479.43 441.17
i− 4 3797.61 426.88 514.73
i− 3 1839.16 527.62 637.94
i− 2 3445.50 601.78 592.88
i− 1 1006.62 540.03 642.02
i + 1 821.42 409.86 526.12
i + 2 1883.89 382.90 488.29
i + 3 891.31 370.13 549.43
i + 4 1210.99 320.33 389.41
i + 5 587.33 299.03 389.12

the amino acids into three or five hydrophobicity classes. We used five classes only

for positions that have significantly high correlation measures. In Table 10, h3
i−1

stands for the dependency of an amino acid at position i to the hydrophobicity class

of an amino acid at position i − 1, and the superscript 3 represents the number of

hydrophobicity classes used. To fully utilize the dependency structure, we found it

useful to derive three separate dependency models. The first model, M1, utilizes

only dependencies to upstream positions, (i−), the second model, M2, includes de-

pendencies to upstream (i−), and downstream (i+) positions simultaneously, and the

third model, M3, incorporates only downstream (i+) dependencies. In our model, we

distinguished positions within a segment as proximal and internal. We identified as

proximal positions those in which the amino acid frequency distributions significantly

deviate from the ones in internal positions in terms of the KL distance (see Table 5).

Based on the available training data, we chose 6 proximal positions (N1-N4, C1-C2)

for α-helices, 4 proximal positions (N1-N2, C1-C2) for β-strands, and 8 proximal

positions (N1-N4, C1-C4) for loops. The remaining positions are defined as internal

positions (Int).

In addition to position specific dependencies, we derived separate patterns for

segments with different lengths. Table 10 shows the dependence patterns for segments

longer than L residues, where L is five for α-helices, four for β-strands and three for
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Table 10: Positional dependencies within structural segments for the models
M1, M2, and M3. Segments longer than L residues are considered. h3

j ∈
{hydrophobic, neutral, hydrohilic} indicates the hydrophobicity class of the amino
acid Rj, where hydrophobic={A, M, C, F, L, V, I}, neutral={P, Y, W, S, T, G},
hydrophilic={R, K, N, D, Q, E, H}. h5

j is a five letter alphabet with groups defined
as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C}, {I, V, W, Y, F}, {A, L, M}.

M1 M2 M3
Int h5

i−2, h3
i−3, h5

i−4, h3
i−7 h3

i−2, h3
i−3, h3

i−4, h3
i+2, h3

i+4 h5
i+2, h5

i+3, h5
i+4

N1 h5
i−1, h5

i−2 h5
i−1, h5

i+2 h5
i+2, h5

i+4

N2 h3
i−1, h3

i−2, h3
i−3 h3

i−2, h3
i+2, h3

i+4 h3
i+1, h3

i+2, h3
i+4

H N3 h3
i−1, h3

i−2, h3
i−3 h3

i−2, h3
i−3, h3

i+2 h3
i+1, h3

i+2, h3
i+4

N4 h3
i−1, h3

i−2, h3
i−3 h3

i−1, h3
i+2, h3

i+4 h3
i+1, h3

i+2, h3
i+4

C1 h3
i−1, h3

i−2, h3
i−4 h3

i−2, h3
i−4, h3

i+1 h3
i+1, h3

i+2, h3
i+3

C2 h3
i−2, h3

i−3, h3
i−4 h3

i−2, h3
i−4, h3

i+1 h3
i+1, h3

i+2, h3
i+3

Int h5
i−1, h5

i−2, h3
i−3 h3

i−1, h3
i−2, h3

i+1, h3
i+2 h5

i+1, h5
i+2, h3

i+3

N1 h5
i−1, h5

i−2 h5
i−1, h5

i+1 h5
i+1, h5

i+2

E N2 h5
i−1, h5

i−2 h5
i−1, h5

i+2 h5
i+1, h5

i+2

C1 h3
i−1, h3

i−3, h3
i−4 h3

i−1, h3
i−3, h3

i+1 h3
i+1, h3

i+2, h3
i+3

C2 h5
i−1, h5

i−2 h5
i−1, h5

i+1 h5
i+1, h5

i+2

Int h5
i−1, h5

i−2, h3
i−3, h3

i−4 h5
i−1, h3

i−2, h5
i+1, h3

i+2 h5
i+1, h5

i+2, h3
i+3, h3

i+4

N1 h5
i−1, h5

i−2, h3
i−3 h5

i−1, h5
i−2, h3

i+1 h5
i+1, h5

i+2, h3
i+3

N2 h5
i−1, h3

i−2, h3
i−4 h5

i−1, h3
i−2, h3

i+1 h5
i+1, h3

i+2, h3
i+4

N3 h5
i−1, h3

i−2, h3
i−3 h5

i−1, h3
i−2, h3

i+1 h5
i+1, h3

i+2, h3
i+3

L N4 h5
i−1, h3

i−2, h3
i−3 h5

i−1, h3
i−2, h3

i+1 h5
i+1, h3

i+2, h3
i+3

C1 h5
i−1, h5

i−2, h3
i−3 h5

i−1, h5
i−2, h3

i+1 h5
i+1, h5

i+2, h3
i+3

C2 h5
i−1, h5

i−2 h5
i−1, h5

i+3 h5
i+1, h5

i+2

C3 h3
i−1, h3

i−2, h3
i−3 h3

i−1, h3
i+1, h3

i+2 h3
i+1, h3

i+2, h3
i+3

C4 h3
i−1, h3

i−2, h3
i−3 h3

i−2, h3
i−3, h3

i+1 h3
i+1, h3

i+2, h3
i+3

loops. For shorter segments, we selected a representative set of patterns from Table 10

according to the available training data (see Tables 11, 12, and 13).

For positions close to the sequence ends, i.e., the first five (N-terminal) and the

last five (C-terminal) amino acids of the protein, we excluded the dependencies that

fall outside the amino acid sequence. For instance, for the first five amino acids, we

excluded the i− dependencies and for the last five amino acids, we excluded the i+

dependencies that fall outside the protein. Tables 14 and 15 show the dependency

sets for the amino acids at sequence ends.
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Table 11: Positional dependencies within α-helix segments for the models M1,
M2, and M3. Segments with L or less residues are considered. l is the segment
length. h3

j ∈ {hydrophobic, neutral, hydrohilic} indicates the hydrophobicity class of
the amino acid Rj, where hydrophobic={A, M, C, F, L, V, I}, neutral={P, Y, W, S,
T, G}, hydrophilic={R, K, N, D, Q, E, H}. h5

j is a five letter alphabet with groups
defined as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C}, {I, V, W, Y, F}, {A, L, M}.

α-helix M1 M2 M3
N1 h3

i−1, h3
i−2 h3

i−1, h3
i+2 h3

i+2, h3
i+4

l=3 N2 h3
i−1, h3

i−2 h3
i−2, h3

i+2 h3
i+2, h3

i+4

C1 h3
i−2, h3

i−4 h3
i−2, h3

i+1 h3
i+1, h3

i+2

N1 h3
i−1, h3

i−2 h3
i−1, h3

i+2 h3
i+2, h3

i+4

l=4 N2 h3
i−1, h3

i−2 h3
i−2, h3

i+2 h3
i+2, h3

i+4

C1 h3
i−2, h3

i−4 h3
i−2, h3

i+1 h3
i+1, h3

i+2

C2 h3
i−2, h3

i−4 h3
i−2, h3

i+1 h3
i+1, h3

i+2

N1 h3
i−1 h3

i−1 h3
i+2

N2 h3
i−2 h3

i−2 h3
i+2

l=5 N3 h3
i−3 h3

i−3 h3
i+2

C1 h3
i−2 h3

i−2 h3
i+1

C2 h3
i−2 h3

i−2 h3
i+1

For each dependency model (M1-M3), the probability of observing an amino acid

at a given position is defined using the dependence patterns selected from Table 10.

For instance, according to the model M2, the conditional probability of observing an

amino acid at position i=N3 of an α-helix segment becomes PN3(Ri | h3
i−2, h

3
i−3, h

3
i+2).

As formulated in Eq. (6), we multiply conditional probabilities and obtain the propen-

sity of observing an amino acid segment given a secondary structure type and a

model. In the case of M1, and M3, this product gives the segment likelihood ex-

pression, which is a properly normalized probability value P (R [Sj−1+1:Sj ] | S ,T ).

Hence, M1, and M3 are probabilistic models. For M2, we rather obtain a score

Q(R [Sj−1+1:Sj ] |S ,T ) that represents the potential of an amino acid segment to adopt

a particular secondary structure conformation. This scoring system can be used to

characterize amino acid segments in terms of their propensities to form structures of

different types and when uniformly applied to compute segment potentials, allows us
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Table 12: Positional dependencies within β-strand segments for the models M1,
M2, and M3. Segments with L or less residues are considered. l is the segment
length. h3

j ∈ {hydrophobic, neutral, hydrohilic} indicates the hydrophobicity class of
the amino acid Rj, where hydrophobic={A, M, C, F, L, V, I}, neutral={P, Y, W, S,
T, G}, hydrophilic={R, K, N, D, Q, E, H}. h5

j is a five letter alphabet with groups
defined as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C}, {I, V, W, Y, F}, {A, L, M}.

β-strand M1 M2 M3
l=1 N1 h5

i−1, h5
i−2 h5

i−1, h5
i+1 h5

i+1, h5
i+2

l=2 N1 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

C1 h3
i−1, h3

i−3 h3
i−1, h3

i+1 h3
i+1, h3

i+3

N1 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

l=3 N2 h3
i−1, h3

i−2 h3
i−1, h3

i+2 h3
i+1, h3

i+2

C1 h3
i−1, h3

i−3 h3
i−1, h3

i+1 h3
i+1, h3

i+2

N1 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

l=4 N2 h3
i−1, h3

i−2 h3
i−1, h3

i+2 h3
i+1, h3

i+2

C1 h3
i−1, h3

i−3 h3
i−1, h3

i+1 h3
i+1, h3

i+2

C2 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

to implement algorithms following the theory of hidden semi-Markov models. There-

fore, implementing three different models enables us to generate three predictions,

each specializing on a different section of the dependency structure. Those predic-

tions can then be combined to get a final prediction sequence, as explained in the

next section.

2.2.4 The Hidden Semi-Markov Model and Computational Methods

Amino acid and DNA sequences have been successfully analyzed by hidden Markov

models (HMM) as the character strings generated in the “left-to-right” direction. For

a comprehensive introduction to HMMs, see [119].

In this work, we consider a hidden semi-Markov model (HSMM) also known as

HMM with duration. Such type of model was earlier used in gene finding methods,

such as Genie [89], GenScan [35] and GeneMark.hmm [33]. The HSMM technique was

introduced for protein structure prediction by Schmidler et al. [134]. In a HSMM, a

transition from a hidden state into itself cannot occur, while a hidden state can emit a
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Table 13: Positional dependencies within loop segments for the models M1, M2,
and M3. Segments with L or less residues are considered. l is the segment length.
h3

j ∈ {hydrophobic, neutral, hydrohilic} indicates the hydrophobicity class of the
amino acid Rj, where hydrophobic={A, M, C, F, L, V, I}, neutral={P, Y, W, S, T,
G}, hydrophilic={R, K, N, D, Q, E, H}. h5

j is a five letter alphabet with groups
defined as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C}, {I, V, W, Y, F}, {A, L, M}.

loop M1 M2 M3
l=1 N1 h5

i−1, h5
i−2 h5

i−1, h5
i+1 h5

i+1, h5
i+2

l=2 N1 h5
i−1, h5

i−2 h5
i−1, h5

i+1 h5
i+1, h5

i+2

C1 h5
i−1, h5

i−2 h5
i−1, h5

i+1 h5
i+1, h5

i+2

N1 h5
i−1, h3

i−2 h5
i−1, h3

i+1 h5
i+1, h3

i+2

l=3 N2 h5
i−1, h3

i−2 h5
i−1, h3

i+1 h5
i+1, h3

i+2

C1 h5
i−1, h3

i−2 h5
i−1, h3

i+1 h5
i+1, h3

i+2

whole string of symbols rather than a single symbol. The hidden states of the model

used in protein secondary structure prediction are the structural states {H, E, L}
designating α-helix, β-strand, and loop segments, respectively. Here, state transitions

occur with probabilities P (Tj | Tj−1), thus forming a first-order Markov chain. At each

hidden state, an amino acid segment with uniform structure is generated according to

the length distribution P (Sj | Sj−1, Tj), and the likelihood P (R [Sj−1+1:Sj ]|Sj−1, Sj, Tj),

as shown in Figure 5.

2.2.4.1 MAP vs MPM Estimation

Having defined this HSMM, we can consider the protein secondary structure predic-

tion problem as the problem of finding the sequence of hidden states with the highest

a posteriori probability given the amino acid sequence (MAP estimation). One ef-

ficient algorithm to solve this optimization problem is well known. Given an amino

acid sequence R , the vector (S ,T )∗ = arg max P (S ,T |R ) can be found using the

Viterbi algorithm. Here lies a subtle difference between the result that can be de-

livered by the Viterbi algorithm and the result needed in the traditional statement

of the protein secondary structure prediction problem. The Viterbi path does not
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Table 14: Positional dependencies within structural segments for the first five amino
acids of the protein (N-terminal). Models M1 and M2 contain i− dependencies.
∅ denotes the empty set. h3

j ∈ {hydrophobic, neutral, hydrohilic} indicates the
hydrophobicity class of the amino acid Rj, where hydrophobic={A, M, C, F, L, V,
I}, neutral={P, Y, W, S, T, G}, hydrophilic={R, K, N, D, Q, E, H}. h5

j is a five
letter alphabet with groups defined as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C},
{I, V, W, Y, F}, {A, L, M}.

M1 M2
Int h3

i−2, h3
i−3, h3

i−4 h3
i+2, h3

i+4

N1 ∅ h3
i+2

N2 h3
i−1 h3

i+2

N3 h3
i−2 h3

i+2

H N4 h3
i−2 h3

i+2

C1 h3
i−1 h3

i+1

C2 h3
i−2 h3

i+1

C3 h3
i−2 h3

i+2

C4 h3
i−2 h3

i+2

Int h3
i−1, h3

i−2 h3
i−1, h3

i−2

N1 ∅ h3
i+1

E N2 h3
i−1 h3

i+2

C1 h3
i−1 h3

i+2

C2 h3
i−1 h3

i+2

Int h3
i−1, h3

i−2, h3
i−3 h3

i+1, h3
i+2

N1 ∅ h3
i+1

N2 h3
i−1 h3

i+1

N3 h3
i−1 h3

i+1

L N4 h3
i−1 h3

i+1

C1 h3
i−1 h3

i+1

C2 h3
i−1 h3

i+3

C3 h3
i−1 h3

i+1

C4 h3
i−1 h3

i+1
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Table 15: Positional dependencies within structural segments for the last five amino
acids of the protein (C-terminal). Models M1 and M2 contain i− dependencies.
∅ denotes the empty set. h3

j ∈ {hydrophobic, neutral, hydrohilic} indicates the
hydrophobicity class of the amino acid Rj, where hydrophobic={A, M, C, F, L, V,
I}, neutral={P, Y, W, S, T, G}, hydrophilic={R, K, N, D, Q, E, H}. h5

j is a five
letter alphabet with groups defined as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C},
{I, V, W, Y, F}, {A, L, M}.

M2 M3
Int h3

i−2, h3
i−4 h3

i+2, h3
i+4

N1 h3
i−2 ∅

N2 h3
i−2 h3

i+1

N3 h3
i−3 h3

i+2

H N4 h3
i−2 h3

i+2

C1 h3
i−2 ∅

C2 h3
i−2 h3

i+1

C3 h3
i−2 h3

i+2

C4 h3
i−2 h3

i+2

Int h3
i−1, h3

i−2 h3
i+1, h3

i+2

N1 h3
i+1 ∅

E N2 h3
i+2 h3

i+1

C1 h3
i+2 ∅

C2 h3
i+2 h3

i+1

Int h3
i+1, h3

i+2 h3
i+1, h3

i+2, h3
i+3

N1 h3
i+1 ∅

N2 h3
i+1 h3

i+1

N3 h3
i+1 h3

i+1

L N4 h3
i+1 h3

i+1

C1 h3
i+1 ∅

C2 h3
i+1 h3

i+1

C3 h3
i+1 h3

i+1

C4 h3
i+1 h3

i+1
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Figure 5: HSMM architecture. Transitions between secondary structure states are
modeled as first order Markovian (top figure). Each state contains separate models for
terminal and internal positions (middle figure). Position specific models have charac-
teristic dependency structures with conditional independence of the amino acids (e.g.
bottom figure shows dependency diagram for the N1 residue of a structural segment
under the model M1).

directly optimize the three-state-per residue accuracy, (Q3), which is defined as

Q3 =
# correctly predicted structural states

# observed symbols (amino acids)
. (8)

Also, the Viterbi algorithm might generate many different segmentations, which might

have significant probability mass but are not optimal [134]. As an alternative to the

Viterbi algorithm, we can determine the sequence of structural states that are most

likely to occur in each position. This approach is also known as the marginal posterior

mode (MPM) estimation, which utilizes forward and backward algorithms to compute

the optimum prediction. Although this prediction might not be a perfectly valid state

sequence (i.e., it might not be realized given the parameters of HSMM), the prediction

measure defined as the marginal posterior probability distribution correlates very

strongly with the three-state-per-residue accuracy [134]. The performance of the

Viterbi and forward-backward algorithms are compared in Schmidler et al. [134].
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2.2.4.2 MPM Estimation and Forward Backward Algorithm

In this work, we used the marginal posterior mode (MPM) estimation approach to

compute the optimum secondary structure segmentation. We define define forward

and backward variables as

αθ(1, t) = Pθ(R[1] | T = t, S = 1)Pθ(S = 1 | T = t)Pθ(T = t) (9)

αθ(j, t) = Pθ(R[1:j], S = j, T = t)

=

j−1∑
v=1

∑

l∈SS

αθ(v, l)Pθ(R[v+1:j] | Sprev = v, S = j, T = t)

× Pθ(S = j | T = t, Sprev = v)Pθ(T = t | Tprev = l)

j = 2, ..., n

βθ(n, t) = 1 (10)

βθ(j, t) = Pθ(R[j+1:n] | S = j, T = t)

=
n∑

v=j+1

∑

l∈SS

βθ(v, l)Pθ(R[j+1:v] | Sprev = v, S = j, Tnext = l)

× Pθ(Snext = v | S = j, Tnext = l)Pθ(Tnext = l | T = t)

j = n− 1, ..., 1

In the above formulations, the forward variable αθ(j, t) is the joint probability of

observing the amino acid sequence up to position j and a secondary structure segment

that ends at position j with type t. Here, θ represents the statistical dependency

model. Similarly, the backward variable βθ(j, t) defines the conditional probability of

observing the amino acid sequence in positions j + 1 to n and a secondary structure

segment that ends at position j with type t.

Having defined the forward and backward parameters, the a posteriori probability

for a hidden state in position i to be either an α-helix, β-strand or loop is computed

via all possible segmentations that include position i as formulated in Eq. (11). The
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hidden state at position i is inferred as the state with maximum a posteriori proba-

bility. Finally, the whole predicted sequence of hidden states is defined by Eq. (12).

Pθ(TRi
| R) =

i−1∑
j=1

n∑

k=i

∑

l∈SS

αθ(j, l)βθ(k, t)Pθ(T = t | Tprev = l) (11)

× Pθ(S = k | Sprev = j, T = t)

× Pθ(R[j+1:k] | Sprev = j, S = k, T = t)/Pθ(R)

(S, T )∗ = arg max
(S,T )

{Pθ(TRi
| R)}n

i=1 (12)

The computational complexity of this algorithm is O(n3). If the maximum allowed

size of a segment is chosen as D, the first summation in Eq. (9) starts at (j−D), and

the first summation in Eq. (10) ends at (j + D) reducing the computational cost to

O(nD2).

Scaling Forward and backward variables are computed by multiplying probabilities,

which are less than one, and as the sequence gets longer, these variables approximate

to zero after a certain position. Hence, it is necessary to introduce a scaling procedure

to prevent numerical underflow. The scaling for a “classic” HMM is described in [119].

This procedure can easily be generalized for an HSMM, where the scaling coefficients

are introduced at every D positions. In that case the forward equations take the
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following form:

α̂θ(1, t) = Pθ(R[1] | T = t, S = 1)Pθ(S = 1 | T = t)Pθ(T = t) (13)

ᾱθ(j, t) = cα(L1 + 1, t)

L1≥v∑
v=j−D

∑

l∈SS

α̂θ(v, l)Pθ(R[v+1:j] | Sprev = v, S = j, T = t)

× Pθ(S = j | T = t, Sprev = v)Pθ(T = t | Tprev = l)

+

j−1∑
v=L1+1

∑

l∈SS

α̂θ(v, l)Pθ(R[v+1:j] | Sprev = v, S = j, T = t)

× Pθ(S = j | T = t, Sprev = v)Pθ(T = t | Tprev = l)

L1 = D × b(j − 2)

D

α̂θ(j, t) = cα(j, t)ᾱθ(j, t)

cα(j, t) =





1
ᾱθ(j,H)+ᾱθ(j,E)+ᾱθ(j,L)

if j = aD + 1

1 o/w

j = 2, ..., n

In the above formulations, α̂θ(j, t) is the scaled forward variable, cα(j, t) is the scaling

coefficient, b is the operator that rounds to the smaller integer, and a is a nonnegative

integer. One can prove that:

α̂θ(j, t) =

(
L2∏

k=0

cα(kD + 1, t)

)
αθ(j, t), (14)
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where L2 = b (j−1)
D

and αθ(j, t) is the original unscaled forward variable. Similar to

the forward variable, the backward variable can be reexpressed as

β̂θ(n, t) = 1 (15)

β̃θ(j, t) =

n−L3−1≥v∑
v=j+1

∑

l∈SS

β̂θ(v, l)Pθ(R[j+1:v] | Sprev = v, S = j, Tnext = l)

× Pθ(Snext = v | S = j, Tnext = l)Pθ(Tnext = l | T = t)

+ cβ(n− L3 − 1, t)

j+D≥v∑
v=n−L3

∑

l∈SS

β̂θ(v, l)Pθ(R[j+1:v] | Sprev = v, S = j, Tnext = l)

× Pθ(Snext = v | S = j, Tnext = l)Pθ(Tnext = l | T = t)

L3 = D × b(n− j − 2)

D

β̂θ(j, t) = cβ(j, t)β̃θ(j, t)

cβ(j, t) =





1
β̃θ(j,H)+β̃θ(j,E)+β̃θ(j,L)

if n− j = aD + 1 and (n− j) > D

1 o/w

j = n− 1, ..., 1

Here, β̂θ(j, t) is the scaled backward variable, and cβ(j, t) is the scaling coefficient. As

in the forward variable, we can prove that:

β̂θ(j, t) =

(
L4∏

k=0

cβ(n− kD − 1, t)

)
βθ(j, t), (16)

where L4 = b (n−j−1)
D

and βθ(j, t) is the original unscaled backward variable.

Once the scaled versions of the forward and backward variables are obtained, the

marginal posterior probability can be computed as

Q(TRi
, R) =

i−1∑
j=1

n∑

k=i

∑

l∈SS

α̂θ(j, l)β̂θ(k, t)Pθ(T = t | Tprev = l) (17)

× Pθ(S = k | Sprev = j, T = t)

× Pθ(R[j+1:k] | Sprev = j, S = k, T = t)

Pθ(TRi
| R) = Q(TRi

, R)/
∑
TRi

Q(TRi
, R)

,
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where the forward and backward variables are replaced with their scaled versions and

Q(TRi
, R) is the scaled version of P (TRi

, R), i.e., the numerator in Eq. 11. When the

posterior distribution is available the secondary structure prediction can be computed

easily as in Eq. 12.

2.2.4.3 Combined Model

This completes the derivation of the algorithm for a single model. Since we are

utilizing three dependency models, i.e., θ = M1,M2,M3, it becomes necessary to

combine the outputs of those models to get a single prediction. In our simulations, we

implemented averaging and maximum operators to perform this task and observed

that the averaging function gives the best performance. The final prediction sequence

is then computed as

PC(TRi
| R) = (PM1(TRi

| R) + PM2(TRi
| R) + PM3(TRi

| R))/3

(S, T )∗ = arg max
(S,T )

{
PC(TRi

| R)
}n

i=1

(18)

2.3 Model Training

Having derived the HSMM, we need to estimate the model parameters so that we

can compute predictions using the algorithms described in Section 2.2.4. The model

parameters are mainly the transition, amino acid observation (emission) and the

length distributions explained in Sections 2.2.4 and 2.2. The parameters of the HSMM

can be estimated by various techniques. First of all, we assume that we have a set

of example sequences known as training sequences, which are of the type that we

want our model to fit well. When the paths (or state sequences) are known for

all the examples (or training sequences), then we can perform maximum likelihood

parameter estimation, which is a supervised learning approach.

Let our model be M and let the set of training sequences be D = {x1, ..., xn}. We
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assume that the elements of D are independent and thus define the joint probability

of all the sequences given a particular assignment of parameters as the product of the

probabilities of the individual sequences. This is formulated as

P (x1, ..., xn | θ,M) =
n∏

i=1

P (xi | θ,M), (19)

where θ represents the entire set of values of the parameters in the model. Then, the

maximum likelihood estimator is formulated as

θML = arg max
θ

P (D | θ,M). (20)

When all the state sequences of the training data is available, then the ML estimator

can be easily computed using the frequency of occurrence counts. Let P (Tnext | Tpre)

be the probability of making a transition from state Tpre to Tnext, with Tpre and Tnext ∈
{H, E, L}. Then the maximum likelihood estimator for P (Tnext | Tpre) becomes:

PML(Tnext | Tpre) =
# transactions from state Tpre to Tnext

# visits to Tpre followed by another state
. (21)

Since there are three possible secondary structure states and self transitions are not

allowed in an HSMM then we have a total of 3 ∗ 3 − 3 = 6 possible transition para-

meters. Similar to the transition probability distribution, we can compute the amino

acid observation and length distributions. For instance, PH
N3

(Ri | h3
i−2, h

3
i−3, h

3
i+2) is

computed as the total number of Ri occurrence in position N3 of an α-helix segment,

with the hydrophobicity of the amino acids at positions i − 2, i − 3 and i + 2 are

equal to h3
i−2, h

3
i−3, h

3
i+2, respectively, divided by the total number of h3

i−2, h
3
i−3, h

3
i+2

occurrence. Here, h3
i−2 is the hydrophobicity class of the amino acid at position i− 2

(see the hydrophobicity definitions in Table 10).

Since the true secondary structures are available in the PDB database, we used

the maximum-likelihood estimation procedure to derive the HSMM parameters where

we count the observed frequencies for the desired quantities, and apply a proper

normalization factor to compute the probability values.
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2.3.1 Training Set Reduction

To improve the estimation of the HSMM parameters, we implemented a training set

reduction approach. Once we obtain a prediction for the input sequence, we compute

the similarity scores between the input sequence and training sequences. Then, from

the training set, we remove sequences that are not similar to the input sequence. The

dataset reduction step is followed by the re-estimation of the HSMM parameters and

the prediction of the secondary structure as shown in Figure 6. This approach allows

us to build less contaminated models and obtain more accurate predictions.

There can be various techniques to remove sequences that are dissimilar to the

input sequence. In this section, we compared three dataset reduction methods to

refine the parameters of an HSMM: (1) composition based reduction; (2) alignment

based reduction; and (3) reduction using Chou-Fasman parameters. In each method,

the dataset reduction is based on a similarity (or a distance) measure. We considered

two decision functions to classify proteins as similar or dissimilar. The first function

selects the top 80% of the proteins in the original training set that are similar to the

input protein and the second function selects proteins according to a threshold.
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Figure 6: Training set reduction procedure. Initial set of model parameters is
precomputed from the general training set.
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2.3.1.1 Composition Based Reduction

In this method, the distance between the predicted secondary structure and the sec-

ondary structure segmentation of a training data is computed as follows:

D = max(|Hp −Ht|, |Ep − Et|, |Lp − Lt|), (22)

where Hp, Ep, and Lp denote the composition of the α-helices, β-strands, and loops

in the predicted secondary structure, respectively. Similarly Ht, Et, and Lt represent

the composition of the α-helices, β-strands, and loops in the training data. Here, the

composition is defined as the ratio of the number of secondary structure symbols in a

given category to the length of the protein. For instance, Hp is equal to the number of

α-helix predictions divided by the total number of amino acids in the input protein.

After sorting the proteins in the training set, we considered two decision functions

to construct the reduced set: (1) selection of the first 80% of the proteins with the

lowest D values; (2) selection of the proteins that satisfy D < 0.35 3.

2.3.1.2 Alignment Based Reduction

In this reduction scheme, first, pairwise alignments of the input protein to training set

proteins are computed. Then, proteins with low alignment scores are excluded from

the training set. As in the composition based method, two approaches are considered

to obtain the reduced dataset: (1) selection of the first 80% of the proteins with the

highest alignment scores; (2) selection of the proteins with alignment scores above

a threshold. Here, the threshold is computed by finding the alignment score that

corresponds to the threshold used in the composition based reduction method. In the

following sections, we will give more details on the pairwise alignment implementation.

Alignment Scenarios We considered the following cases:

3The threshold is found empirically [23].
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• Alignment of secondary structures (SS)

• Alignment of amino acid sequences (AA)

• Joint alignment of amino acid sequences and secondary structures (AA+SS)

In the first case, the aligned symbols are the secondary structure states, which take

one of the three values: H, E, or L. In the second case, the symbols are the amino

acids and finally, in the third case, the aligned symbols are amino acid and secondary

structure pairs.

Score Function The score of an alignment is computed by summing the scores of

the aligned symbols (matches and mismatches) as well as the gapped regions. This

is formulated as follows:

S =
r∑

k=1

(αMaa(ak, bk) + βMss(ck, dk)) + G, (23)

where S is the alignment score, r is the total number of match/mismatch pairs, G

is the total score of the gapped regions, ak, bk represent the kth amino acid pair

of the aligned proteins (the input and the training set protein, respectively), ck, dk

denote the kth secondary structure pair of the aligned proteins, Maa(.) is the amino

acid similarity matrix, Mss(.) is the secondary structure similarity matrix, and finally,

the parameters α, and β determine the weighted importance of the amino acid and

secondary structure similarity scores, respectively. To compute possible alignment

variations described in the previous section, α and β take the following values: (1)

α = 0, β = 1 to align secondary structures; (2) α = 1, β = 0 to align amino acid

sequences; (3) α = 1, β = 1 to align amino acid and secondary structures in jointly.

Similarity Matrices We used the BLOSUM30 table [68] as the amino acid simi-

larity matrix and the Secondary Structure Similarity Matrix (SSSM) [144] shown in

Table 16.
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Table 16: Secondary structure similarity matrix, which is used to score the similarity
of two secondary structure symbols.

Mss H E L
H 2 -15 -4
E -15 4 -4
L -4 -4 2

Gap Scoring When a symbol in one sequence does not have any counterpart (or

match) in the other sequence, then that symbol is aligned to a gap symbol ’-’. Allowing

gap regions in an alignment enables us to represent the similarity between the aligned

sequences in a biologically meaningful manner. In the state-of-the-art gap scoring,

opening a gap is penalized more than extending it. For example, in the “affine gap

scoring”, which is one of the most widely used gap scoring techniques, starting a gap

is scored by the parameter go, and extending a gap region is scored by ge. In that

case, the total gap score in (23) is computed as

G = Nogo + Nege, (24)

where No is the total number of gap openings, and Ne is the total number of gap

extensions. In this work, we set the parameters go, and ge to -12, and -2, respectively.

Optimum Alignment Given a scoring function, the computation of the optimum

(best scoring) alignment can be found using a dynamic programming approach. In

this section, we used the Smith-Waterman algorithm to compute the local alignment

between a pair of proteins. Further details on the alignment algorithms and dynamic

programming can be found in Durbin et al. [53].

Score Normalization After computing the raw score of an alignment, it is useful

to normalize it to a statistically meaningful range. In this section, we normalized

the alignment score by the average length of the aligned proteins. In that case,

the normalized score is computed as 2 rawscore
l1+l2

, where l1, and l2 are the lengths of the
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aligned proteins. This type of normalization is shown to be effective in fold recognition

by Aydin et al. [25].

2.3.1.3 Reduction using Chou-Fasman Parameters

In this approach, the training set reduction is based on the Chou-Fasman distance

measure, which is defined as

Dcf =
∑

k∈H,E,L

{
1

lp

lp∑
j=1

fk(q(j))− 1

lt

lt∑
j=1

fk(h(j))

}
, (25)

where lp is the length of the input protein, lt is the length of the training set protein,

q(j) is the jth amino acid of the input protein, h(j) is the jth amino acid of the training

set protein, and fk(z) is the Chou-Fasman coefficient that reflects the propensity of

the amino acid of type z to be in the secondary structure state k. These coefficients

can be computed as in [42]. In this formulation, the secondary structure information

of the proteins is not used and each amino acid is allowed to take three possible

secondary structure states. In a slightly modified version of this method, we define

the Chou-Fasman distance using the secondary structure information as follows:

Dcf,2 =

{
1

lp

lp∑
j=1

fk(q(j))(q(j))− 1

lt

lt∑
j=1

fk(h(j))(h(j))

}
, (26)

where k(q(j)) is the predicted secondary structure state for the jth amino acid of

the input protein, and k(h(j)) is the secondary structure state for the jth amino

acid of the training set protein. In Chou-Fasman based reduction, we computed

the reduced dataset by selecting the first 80% of the proteins with the lowest Chou-

Fasman distances and did not perform threshold based reduction.

2.4 Iterative Protein Secondary Structure Parse (IPSSP)
Algorithm

We developed the IPSSP algorithm, which implements the methods described in the

previous sections. IPSSP utilizes three HSMMs and the composition based reduction
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scheme because in our simulations, the composition based reduction gave the most

accurate results (see Section 2.5). The steps of the algorithm can be summarized as

follows:

Algorithm 1: IPSSP Algorithm
Input: Amino acid sequence R , Training set D
Output: Secondary Structure Prediction SS
for each HSMM do1

Compute the posterior probability distribution using the posterior decoding2

algorithm (i.e., the forward-backward algorithm);
Compute a secondary structure prediction by selecting the most likely state3

for each amino acid;
Reduce the original training set D using the composition based reduction;4

Train the HSMM with the reduced dataset;5

Compute the posterior probability distribution;6

Take the average of the three posterior probability distributions;7

Compute the final prediction SS ;8

2.5 Simulation Results

2.5.1 Experimental Settings

2.5.1.1 Datasets

EVA SET The EVA set is derived from the PDB database [15]. The proteins in the

EVA set are selected to satisfy the condition that percentage of identity between any

pair of sequences should not exceed the length dependent threshold S (for instance,

for sequences longer than 450 amino acids, S = 19.5) [124]. The EVA set contains

3324 “sequence-unique” proteins dated as 2004 05 09 and can be downloaded from

the EVA server ftp site [10]. In our simulations, we removed sequences shorter than

30 amino acids and arrived to a set of 2720 proteins.

PDB SELECT Dataset The PDB SELECT dataset contains a representative set

of 2482 amino acid sequences dated as 2005 [13]. The procedure used to generate the

PDB SELECT list is described earlier [69]. In this set, the percentage of identity

between any pair of sequences is less than 25%.
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CASP6 Targets CASP6 targets were downloaded from [3], and the PDB defini-

tions were used for the amino acid sequences and secondary structure assignments.

Dataset used by the PSIPRED method PSIPRED training data was down-

loaded from [17].

CB513 Set The set (CB513) of 513 sequences with essentially no similarity to each

other (non-homologous) is introduced in [49] and can be downloaded from [4].

2.5.1.2 Accuracy Measures

Sensitivity We use the three-state-per-residue accuracy (Q3), defined in Eq. (27)

as the overall sensitivity measure:

Q3(%) =
Nc

N
× 100, (27)

where Nc is the total number of residues with correctly predicted secondary structure

and N is the total number of amino acids observed in the test data. The same measure

can also be used for each type of secondary structure, Qα, Qβ, and QL as expressed

in Eq. (28):

Qi(%) =
N i

c

N i
× 100, (28)

where N i
c is the total number of residues with correctly predicted secondary structure

of type i and N i is the total number of amino acids observed in the conformation of

type i. The sensitivity measure can also be formulated as TP/(TP+FN), where TP

is the true positives and FN is the false negatives.

Positive Predictive Value The positive predictive value (ppv) measure PPVi is

defined for individual types of secondary structure as follows:

PPVi(%) =
N i

c

N i
p

, (29)
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where where N i
c is the total number of residues with correctly predicted secondary

structure of type i and N i
p is the total number of amino acids predicted to be in

conformation of type i. Note that we do not consider the overall ppv measure PPV3,

since its numeric value is the same as Q3. The positive predictive value measure can

also be defined as TP/(TP+FP), where TP is the true positives and FP is the false

positives.

Matthew’s Correlation Coefficient The Matthew’s correlation coefficient [95]

is a single parameter characterizing the extent of a match between the observed and

the predicted secondary structure. Matthew’s correlation is defined for each type of

secondary structure as follows:

MCC =
TP ∗ TN − FP ∗ FN

[(TN + FN)(TN + FP )(TP + FN)(TP + FP )]1/2
(30)

For instance, for an α-helix, TP (true positives) is the number of α-helix residues

that are correctly predicted. TN (true negatives) is the number of residues observed

in β-strands and loops that are not predicted as α-helix. FP (false positives) is the

number of residues incorrectly predicted in α-helix conformation, and finally FN

(false negatives) is the number of residues observed in α-helices but predicted to be

either in β-strands or loops.

Segment OVerlap Score (SOV) The Segment OVerlap score (SOV) is based on

the average overlap between the observed and the predicted segments instead of the

average per-residue accuracy [129], [151]. The SOV measures provide more elaborate

scoring in which the predictions that have high per-residue accuracy but deviate from

experimental segment length distributions are assigned lower scores. For instance,

the definition of the SOV measure for α-helices is as follows:

SOVα =
1

Nα

∑
Sα

minOV (s1, s2) + δ(s1, s2)

maxOV (s1, s2)
, (31)
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where s1 and s2 are the observed and predicted secondary structure segments in the

α-helix state; Sα is the number of all pairs of segments s1 and s2 such that s1 and s2

have at least one residue in α-helix state in common, minOV (s1, s2) is the length of

the actual overlap of s1 and s2, maxOV (s1, s2) is the length of the total extent for

which either of the segments s1 or s2 has a residue in the α-helix state, and Nα is the

total number of amino acid residues observed in α-helix conformation. The definition

of δ(s1, s2) is as follows [151]:

δ(s1, s2) = min





maxOV (s1, s2)−minOV (s1, s2)

minOV (s1, s2)

int(0.5× len(s1))

int(0.5× len(s2)),





(32)

where len(s1) is the number of amino acid residues in s1. The segment overlap

measure for all three states, SOV3(%), is similar to the Q3(%) sensitivity measure:

SOV3(%) =
1

N


 ∑

i∈H,E,L

∑

S(i)

[
minOV (s1, s2) + δ(s1, s2)

maxOV (s1, s2)
× len(s1)

]
× 100, (33)

where s1 and s2 are the observed and predicted secondary structure segments in state

i and N is the total number of amino acids in all proteins that are evaluated.

2.5.1.3 Performance Evaluation and Cross Validation

In machine learning, first, the model parameters are derived from a training set. Then,

the prediction accuracy is assessed on test samples with known state definitions.

In a cross validation experiment, a set is typically partitioned into k subsets. Of

the k subsets, a single subset is retained as the validation data for testing the model,

and the remaining k − 1 subsets are used as training data. The cross-validation

process is then repeated k times, with each of the k subsets used exactly once as

the validation data. The k results from the folds can then be averaged (or otherwise

combined) to produce a single estimation. When k equals to the number of examples

in the dataset, this is called leave-one-out cross validation (or jacknife procedure).
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In our simulations, we used two types of performance evaluation practices: (1)

Selecting separate training and test sets and evaluating the accuracy (e.g. CASP6 as

the test set and PDB SELECT as the training set); (2) Leave-one-out cross validation

on a single dataset. In latter case, we first select a protein as the test example and

remove it from the dataset. The remaining proteins form the training set and are used

to estimate the parameters of the hidden semi-Markov model (i.e., transition, length

and emission distributions). Since the true secondary structures are available, we can

use the maximum-likelihood estimation procedure, in which the observed frequencies

for the desired quantities are divided by a proper normalization factor to compute

the probability values (see Section 2.3). After estimating the model parameters, we

predict the secondary structure sequence of the test protein. Then, we include the test

protein into the dataset, select another test protein and repeat the prediction until

all the proteins in the dataset are evaluated. Finally, we compute the performance

measures by taking the true secondary structures of the proteins as reference.

2.5.1.4 State Reduction and Length Adjustments

The secondary structure is assigned from the experimentally determined 3-D struc-

ture. The assignment of secondary structure is based on the detection of hydrogen

bonds between the amino acids given a set of 3-D atomic coordinates. Among the best

assignment algorithms, we can mention DSSP [81], STRIDE (Frishman and Argos,

1995) and DEFINE (Richards and Kundrot, 1988). In this thesis, we use DSSP since

it has been the most widely used secondary structure definition. It has eight sec-

ondary structure states defined as: H(α-helix), G(310-helix), I(πhelix), E(β-strand),

B(isolated β-bridge), T(turn), S(bend) and ’ ’ (rest). These eight states are often

collapsed or reduced into three standard states (helices (H), strands (E), and loops

(L) (or coils (C))) because the states have structural similarities and prediction in

eight classes is technically more difficult.
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The reduction from the eight-state alphabet to three-state representation is usually

performed by a conversion rule. In this thesis, we considered the following three

methods: (i) H, G, and I to H; E, B to E; all other states to L, (ii) H, G to H;

E, B to E; all other states to L, (iii) H to H; E to E; all other states to L. The

first rule is also known as the ‘EHL’ mapping [101, 126], the second rule is the one

used in PSIPRED [80] and earlier outlined by Rost and Sander [128], while the

third rule is the common ‘CK’ mapping, which is the one used in BSPSS and other

methods [38, 59, 49].

After applying either of the three conversion rules, we considered making further

adjustments. We used the adjustments proposed by Frishman and Argos [58] that

lead to a secondary structure sequence with the minimum β-strand length of three

and the minimum α-helix length of five.

2.5.1.5 Single-sequence vs. sequence-unique condition

We would like to emphasize that, we use the term single-sequence prediction in its

strict meaning, i.e., the prediction method does not exploit information about any

protein sequence similar to the sequence in question as for a true single-sequence such

information does not exist. The “single-sequence” concept should be distinguished

from the concept of the “sequence-unique” category. The “sequence-unique” condi-

tion requires absence of significant similarity between the proteins in the test and in

the training set. However, this condition leaves an opportunity to use the sequence

profile information that typically improves the prediction accuracy by several percent-

age points in comparison with the single-sequence condition, in which such profiles

are not available. Indeed, methods such as APSSP2 [120] and SVMpsi [84] achieved

values around 78% in the “sequence-unique” category of CASP [6] and CAFASP [5]

experiments. Similarly, the SSPAL method [132] was cited [134] to have 71% accuracy
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in terms of Q3(%) again in the “sequence-unique” category. Single-sequence condi-

tion, as defined, is more stringent. This condition is common for “orphan” proteins,

which have no detectable homologs. Improvement of structural prediction under the

single-sequence condition should contribute to the improvement of function prediction

for orphan proteins, which are not easy targets for functional characterization.

2.5.2 Comparison with the State-of-the-Art

2.5.2.1 BSPSS vs. IPSSP

We first compared the performances of BSPSS [134] and IPSSP in terms of the follow-

ing accuracy measures: the Sensitivity, positive predictive value, Matthew’s correla-

tion coefficient, and segment overlap score (see Section 2.5.1.2. In our computations,

we used the EVA set of “sequence-unique” proteins derived from the PDB database.

For the IPSSP method, we applied composition based reduction and used a threshold

of 0.35 in the dataset reduction step (see Section 2.3.1.1). For the maximum allowed

segment length, we chose a threshold of D = 50, which is sufficiently large to cover al-

most all observed uniform secondary structure segments (see Section 2.2.1). Also, for

longer segments, the maximum likelihood estimation for length distribution becomes

less reliable because of the small sample size. The performances of IPSSP and BSPSS

were evaluated by a leave-one-out cross validation experiment (jacknife procedure) on

the reduced version of the EVA set (see Section 2.5.1). From the results shown in

Table 17, there is a 1.9% increase in the overall three-state prediction accuracy in

comparison with BSPSS, when the third conversion rule was used with the length

adjustments. The prediction accuracy of the structural conformation of the residues

Table 17: Prediction sensitivity measures, Q.(%), evaluated on the EVA set under
the single-sequence condition.

Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)
BSPSS 68.400 63.203 36.737 82.167
IPSSP 70.342 66.204 44.995 81.358
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situated close to structural segment borders (residues located in proximal positions)

is measured by sensitivity values computed as overall Q3 sb as well as structure-type

specific Qα sb, Qβ sb, QL sb. We observed that the accuracy of IPSSP is better than

BSPSS in proximal positions by 1.6% as shown in Table 18.

Table 18: Segment border sensitivity values, Q. sb(%), evaluated on the EVA set
under the single-sequence condition.

Sensitivity Q3 sb(%) Qα sb(%) Qβ sb(%) QL sb(%)
BSPSS 62.207 52.634 24.215 81.903
IPSSP 63.959 55.941 32.439 80.358

Next, we compared the positive predictive values of BSPSS and IPSSP. The results

in Table 19 show that values of PPVα and PPVL are higher for IPSSP, while PPVβ

value is higher for BSPSS.

Table 19: Positive predictive value measures, PPV.(%), evaluated on the EVA set
under the single-sequence condition.

Specificity PPVα(%) PPVβ(%) PPVL(%)
BSPSS 68.636 59.728 69.832
IPSSP 71.974 59.686 71.987

The third accuracy measure is the Matthew’s correlation coefficient (MCC). All

the MCC values shown in Table 20 are higher for IPSSP.

Table 20: Matthew’s correlation coefficient values, C., evaluated on the EVA set
under the single-sequence condition.

MCC Cα Cβ CL

BSPSS 0.5195 0.3849 0.4468
IPSSP 0.5642 0.4316 0.4766

The SOV scores of BSPSS and IPSSP are evaluated and compared on the EVA

set. In terms of the Segment Overlap scores, IPSSP performs uniformly better than

BSPSS as shown in Table 21.
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Table 21: Segment overlap measures, SOV.(%), for BSPSS and IPSSP evaluated on
the EVA set under the single-sequence condition. To reduce eight states to three, the
third conversion rule (CK mapping: H to H, E to E and all other states to L) is used.

SOV SOV3(%) SOVα(%) SOVβ(%) SOVL(%)
BSPSS 58.985 66.508 46.816 58.733
IPSSP 63.616 69.965 54.176 63.141

2.5.2.2 BSPSS, IPSSP and PSIPRED

We evaluated and compared the performances of BSPSS, IPSSP and PSIPRED v2.0

on the set of 81 CASP6 targets (see Section 2.5.1.1) that are available in the PDB. This

evaluation is at the “single-sequence condition” implying no additional evolutionary

information is available. We used the software “PSIPRED single”, version 2.0, which

uses a set of fixed weight matrices in the neural network and does not employ PSI-

BLAST profiles. This program was downloaded from the PSIPRED server [16] with

the available training data. We used the same training set to estimate the parameters

of BSPSS and IPSSP (see Section 2.5.1). For the IPSSP method, we applied compo-

sition based reduction and used a threshold of 0.35 in the dataset reduction step (see

Section 2.3.1.1). For the maximum allowed segment length, we chose a threshold of

D = 50. From the results shown in Table 22, and Table 23, IPSSP is comparable to

PSIPRED and is more accurate than BSPSS.

Table 22: Prediction sensitivity measures evaluated on the CASP6 targets.
Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)

BSPSS 66.541 75.177 41.743 72.696
IPSSP 67.899 74.984 46.087 73.755

PSIPRED 67.680 76.066 52.032 69.028

Table 23: Matthew’s correlation coefficients evaluated on the CASP6 targets.
MCC Cα(%) Cβ(%) CL(%)

BSPSS 0.5403 0.4354 0.4457
IPSSP 0.5657 0.4486 0.4696

PSIPRED 0.5465 0.4801 0.4646
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2.5.2.3 IPSSP, GORIV, SOPM and SIMPA

In this set of simulations, we compared the performances of IPSSP and three state-

of-the-art methods for single-sequence prediction: GORIV [60], SOPM [62], and

SIMPA [91]. The evaluation of GORIV, SOPM, and SIMPA is available in Cuff

and Barton [49], where the three-state-per-residue accuracies of the methods are re-

ported as SIMPA: 67.6%, GORIV: 64.6%, and SOPM: 64.7% evaluated on the CB396

set, which is a subset of the CB513 set (see Section 2.5.1.1). The Cuff and Barton

also evaluated the performance of the SOPM method on the CB513 set and obtained

65.7% as the Q3(%) measure (a 1.0% improvement). However, a similar improvement

was not observed for the SIMPA method (only 0.3%) when the results of the RS126

and CB396 sets are compared.

To evaluate the IPSSP method, we performed a leave-one-out cross validation

on a smaller version of the CB513 set, which contains 494 proteins. This set is

obtained by removing proteins with segment lengths longer than D = 40. To reduce

eight secondary structure states to three, we used the CK mapping without length

adjustments, which is the same mapping as in the Cuff and Barton evaluation [49].

Since the CB513 dataset contains fewer number of sequences than the EVA set and

since the IPSSP method is based on the estimation of frequencies, we used a reduced

version of the dependency model originally employed by the IPSSP method (see Aydin

et al. [24] for details). We call this simplified version as IPSSP-simp. We applied the

composition based reduction and used a threshold of 0.35 in the dataset reduction

step (see Section 2.3.1.1). We also used the Laplace’s rule as the pseudo-count method

to initialize the frequency tables, in which each entry is originally set to one. With

these parameters, the sensitivity measures of the IPSSP-simp method are obtained as

follows: Q3(%) = 67.95%, Qobs
α (%) = 68.42%, Qobs

β (%) = 48.72%, Qobs
L (%) = 76.57%.

From these results, we can conclude that IPSSP is a powerful single-sequence method

and is capable of producing state-of-the-art results.
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2.5.3 Contribution of the Model Components

2.5.3.1 Contribution of Dependency Models

In this section, we assess the individual performances of the dependency models used

by the IPSSP algorithm. We compare the performances of M1, M2, M3, and MC ,

whereMC is the combined model (see Section 2.2.4). We also include the performance

of the IPSSP algorithm when no dataset reduction scheme is applied (denoted by

PSSP-MC). The results in Table 24 show that the combined model improve the

overall accuracy of the IPSSP method by more than 1%. In this experiment, the

second conversion rule (H, G to H, E, B to E and all other states to L) is used

without length adjustments and all three models use a five letter alphabet for positions

with significantly high correlation measures. The performance obtained when all the

hydrophobicity groupings are defined using the three letter alphabet is 0.4% lower

(data not shown). Therefore, as compared to the BSPSS method, the dependency

models improve the overall sensitivity measure by 1.6%. The inclusion of the training

set reduction further improves the accuracy by 0.5%.

Table 24: Performances of the BSPSS, IPSSP with dependency models, M1, M2,
M3, and IPSSP with the combined model, MC (obtained using an averaging filter),
evaluated on the EVA set under the single-sequence condition.

Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)
BSPSS 65.175 65.640 38.814 76.658

IPSSP-M1 65.968 66.199 45.387 75.043
IPSSP-M2 66.003 66.606 46.952 74.108
IPSSP-M3 66.315 67.012 45.005 75.364
IPSSP-MC 67.421 68.089 46.395 76.363
PSSP-MC 66.840 66.945 44.566 76.761

2.5.3.2 Contribution of the Dataset Reduction

In this section, we compare the training set reduction techniques described in Sec-

tion 2.3.1. In our simulations, we used the EVA set of “sequence-unique” proteins.

To reduce eight secondary structure states to three, we used the following conversion
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rule: H, G to H; E, B to E; I, S, T, ‘ ’ to L. We used the PDB SELECT dataset

to compute the Chou-Fasman coefficients (i.e., the function f(.) in Eq. (25) and

Eq. (26)) described in [42] (see Section 2.5.1 for details of the datasets). Here, the

coefficients reflect the propensity of an amino acid to be either in H, E, or L state,

which are defined in Section 2.3.1.3.

We evaluated the performances of the methods by a leave-one-out cross validation

experiment (jacknife procedure). To expedite the evaluations, we restricted only our

test data to the first 600 proteins in the dataset, which gave a good approximation

to the true result. We chose the three-state-per-residue accuracy, Q3, as the overall

sensitivity measure (see Section 2.5.1.2).

Tables 25 and 26 show the performance of the IPSSP method with respect to

various training set reduction schemes. Table 25 summarizes the results when the

first 80% of the most similar proteins is selected and Table 26 provides the accuracy

measures for the threshold-based reduction. Among the reduction schemes being

compared in Table 25, the composition based reduction is the most accurate. This is

mainly because of the fact that composition based reduction does not impose strong

constraints, which compensates for the errors made in the initial secondary structure

prediction. In addition, threshold based reduction is slightly better than the reduc-

tion that selects the first 80% of the most similar proteins. Hence, the composition

based reduction method with thresholding gave the best performance, where the sec-

ondary structure prediction accuracy is improved by 0.6% compared to the condition

with no re-training. Another advantage of the composition based method is its low

computational complexity.

Comparing the alignment based reduction methods, the best result is obtained

by the method that aligns secondary structures. Joint alignments of amino acid se-

quences and secondary structures did not perform better than secondary structure

alignments. This is not surprising because in single-sequence condition the input
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protein is not statistically similar to dataset proteins at the amino acid level. There-

fore, the discriminative power of the amino acid similarity matrix is weaker than the

secondary structure similarity matrix.

Table 25: Sensitivity measures of the training set reduction methods employed in
the IPSSP algorithm. The top 80% of the proteins are classified as similar to the
input protein.

Method Q3(%)
Composition Based 67.01

Alignment Based (SS) 67.00
Alignment Based (AA+SS) 66.92

Alignment Based (AA) 66.69
Chou-Fasman Based (Dcf ) 66.65

No Re-training 66.59
Chou-Fasman Based (Dcf,2) 66.50

Table 26: Sensitivity measures of the training set reduction methods employed in
the IPSSP method. The dataset proteins are classified as similar to the input protein
by applying a threshold.

Method Q3(%)
Composition Based 67.17

Alignment Based (SS) 67.12
Alignment Based (AA+SS) 67.06

No Re-training 66.59

2.5.4 Conversion Rules, Length Adjustments and Prediction Confidence

2.5.4.1 Conversion Rules and Length Adjustments

To investigate the effect of length adjustments, we considered converting short α-

helices and β-strands to loops so that the α-helix and β-strand segments had at

least five and three residues, respectively (see Section 2.5.1.4). Then, we compared

IPSSP and BSPSS using different conversion rules and length adjustments. As seen

in Table 27, IPSSP performs better than BSPSS for each set of rules.
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Table 27: Prediction sensitivity measures, Q.(%), analyzed with respect to three
conversion rules and length adjustments, evaluated on the EVA set under the single-
sequence condition.

Sensitivity Q3(%) Qα(%) Qβ(%) QL(%)
BSPSS Rule 1 65.177 65.655 38.844 76.644
BSPSS Rule 2 65.175 65.640 38.814 76.658
BSPSS Rule 3 67.218 64.048 38.071 80.491

BSPSS Rule 1 + Length adj 68.060 63.775 37.022 81.378
BSPSS Rule 2 + Length adj 68.078 63.793 37.017 81.399
BSPSS Rule 3 + Length adj 68.400 63.203 36.737 82.167

IPSSP Rule 1 67.415 68.115 46.386 76.340
IPSSP Rule 2 67.421 68.089 46.395 76.363
IPSSP Rule 3 69.096 66.559 45.319 79.893

IPSSP Rule 1 + Length adj 70.027 66.557 45.588 80.577
IPSSP Rule 2 + Length adj 70.036 66.554 45.559 80.602
IPSSP Rule 3 + Length adj 70.300 65.934 45.445 81.280

2.5.4.2 Prediction Confidence

To estimate the confidence in predictions we computed the overall sensitivity, Q3,

as a function of the probability assigned to the predicted state at each position (see

Figure 7). For instance, at a threshold prediction probability of 0.6, with 54% of

sequence positions in this category, we achieved a Q3 of 78.5%. On the other hand,

at a threshold prediction probability of 0.8, with 16% of positions in this category, we

obtained a Q3 of 89.5% as shown in Table 28. In terms of the prediction confidence

and the total number of the positions covered, IPSSP is comparable to PSIPRED

and better than BSPSS at all prediction thresholds.
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Figure 7: Prediction confidence values vs prediction threshold.

Table 28: Percentage of true positives for predictions made in a set of positions
having the a posteriori probability of the predicted state above the threshold. To
reduce eight states to three, the second conversion rule (H, G to H, E, B to E and all
other states to L) is used.

Prediction Confidence (% Positions)
Prediction Threshold 0.4 0.6 0.8

BSPSS 0.661 (95.45) 0.781 (48.14) 0.889 (12.52)
IPSSP 0.676 (96.71) 0.785 (54.38) 0.895 (16.82)

2.6 Summary

In this chapter, we showed that new dependency models and training methods bring

further improvements to protein secondary structure prediction in single-sequence

setting. The results are obtained under cross-validation conditions using a dataset

with no pair of sequences having significant sequence similarity.

The improvements over the BSPSS method [134], which also employs hidden

semi-Markov models can be summarized as follows. We introduced three residue

dependency models (both probabilistic and heuristic) incorporating the statistically
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significant amino acid correlation patterns at structural segment borders. In those

models, we allowed dependencies to positions outside the segments to relax the con-

dition of segment independence. Another novelty of the models is the dependency to

downstream positions, which we believe is necessary due to asymmetric correlation

patterns observed uniformly in structural segments. Apart from the more elabo-

rate dependency structure, we introduced a training set reduction strategy to refine

estimates of the model parameters. Among the dataset reduction methods, the com-

position based reduction technique with thresholding generated the most accurate

results. This is mainly because of the fact that composition based reduction does

not impose strong constraints, which serves to compensate for the errors made in the

initial secondary structure prediction.

Typically protein secondary structure prediction methods suffer from low accu-

racy in predicting β-strands, in which non-local correlations have a significant role. In

this chapter, we did not specifically address this problem, but showed that improve-

ments are possible when higher order dependency models are used and significant

correlations outside the segments are considered.
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CHAPTER III

BAYESIAN PROTEIN SECONDARY STRUCTURE

PREDICTION WITH NEAR-OPTIMAL

SEGMENTATIONS

3.1 Introduction

Secondary structure prediction is an invaluable tool in determining the three-dimensional

structure and the function of proteins. Typically, protein secondary structure pre-

diction methods suffer from low accuracy in β-strand predictions, where non-local

interactions play a significant role [134, 45, 44, 58, 23]. The β-strand sensitivity of

a single-sequence prediction method is approximately 25-50% and that of a method

using evolutionary information is between 50-65%. The low accuracy of β-strand

predictions is mainly because of the difficulty in modeling non-local interactions that

are characteristic of β-strands. For instance, the Bayesian inference approach and

the hidden semi-Markov model introduced in Chapter 2 has some limitations due to

the assumptions made in the model derivation. We assumed that the segment likeli-

hood terms are independent from each other as formulated in Eq. 5. This assumption

enabled us to implement efficient hidden Markov models. However, with this assump-

tion and others inherent in the theory of hidden Markov models, it is not possible to

model the long-range interactions that have a significant role in the stabilization of

the 3-D structure.

In single-sequence predictions, Frishman and Argos [58] proposed a method that

incorporates a non-local interaction model into a nearest-neighbor algorithm. Their

method achieved an overall accuracy of 68%, which is not significantly higher than the

accuracy of the current state-of-the-art methods utilizing local correlations only [23].
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Besides, for longer protein sequences with many potential stretches of β-strand residues,

the mutual signal from complementary β-strands fades and even the distinction be-

tween anti-parallel and parallel sheets becomes weak. Chu et al. [45, 44] and Cheng

and Baldi [39] combined multiple alignment profiles with non-local interaction models.

Chu et al. [45, 44], extended the work by Schmidler et al. [134, 135] and incorporated

the multiple alignment sequence profiles into the semi-Markov model. They achieved

an overall sensitivity of 72-74% and a β-strand sensitivity of 56-59% from a local de-

pendency model with multiple alignment profiles. However, they did not report any

improvement in secondary structure prediction accuracy through the incorporation

of non-local interactions. Moreover, their model is based on β-strand segment pair

propensities and does not impose global constraints for β-sheet formation. Cheng

and Baldi [39] proposed a three-stage modular approach to predict and assemble the

β-sheets of a native protein. Their method exploits global covariation and constraints

characteristic of β-sheet architectures and achieves significant improvements over the

existing methods in predicting the β-strand pairs, the interaction types (parallel,

anti-parallel), and interactions at the amino acid level (i.e., contact maps). How-

ever, they assume that the true secondary structure segmentation is available (either

as an experimental sequence or as a prediction) and then find the optimum β-sheet

conformation for that segmentation. They did not analyze how the derived energy

functions can discriminate false secondary structure segmentations from the correct

one, and did not apply their method to the problem of secondary structure predic-

tion. Therefore, there is still a considerable need to model long-range interactions

that contribute to the stabilization of a protein molecule in an attempt to improve

the accuracy of the secondary structure prediction.

In this chapter, we introduce an alternative decoding technique for the hidden

semi-Markov model originally introduced in Chapter 2 (see also Aydin et al. [23],

Schmidler et al. [134], and Chu et al. [44]). The proposed method is based on the
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N-best paradigm where a set of suboptimal segmentations (N-best list) is computed

as an alternative to the most likely segmentation. N-best methods have found di-

verse applications in speech recognition [136, 137, 110, 139], sequence-sequence align-

ments [147, 133, 72], sequence-structure alignments [99, 31], gene prediction [87, 37],

and topology prediction for outer-membrane proteins [55, 26]. To compute subopti-

mal segmentations, we developed two N-best algorithms: modified stack decoder and

N-best Viterbi. The first one is an A∗ stack decoder algorithm that extends paths (or

hypotheses) by one symbol at each iteration. The second algorithm locally keeps the

end positions of the highest scoring K previous segments and performs backtrack-

ing. Both algorithms employ the hidden semi-Markov model described in Chapter 2

and use Viterbi scoring to compute the N-best list. The availability of near-optimal

segmentations and the utilization of the Viterbi scoring enable the sequences to be

re-scored by more complex dependency models that characterize non-local interac-

tions in β-sheets. After the score update, one can either keep the segmentations to be

employed in 3-D structure prediction or compute a secondary structure prediction by

applying a weighted voting procedure to a set of top scoring M ≥ 1 segmentations.

3.2 Generating an N-best List

There are a few methods in the literature that compute an N-best list. These al-

gorithms can be based on N-best search (e.g., time-synchronous Viterbi style beam

search) [136, 137], an A∗ search [110], tree-trellis approach [139], or on divide and

conquer methods [106]. Different from the Viterbi algorithm, which finds the most

likely state sequence (or path), an N-best method finds the most likely labeling of a

given sequence as well as suboptimal labelings (or segmentations). Note that in many

applications [87, 26, 137], there can be more than one state sequence that contribute

to the same labeling of a given sequence. Therefore in general, an N-best algorithm

always produces a labeling with a probability at least as high as the result of the
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Viterbi algorithm. In secondary structure prediction, however, there is a one-to-one

correspondence between a state sequence and a labeling. In other words, there can be

only one state sequence per labeling. Hence, an exact N-best algorithm will produce

the Viterbi segmentation as the most likely secondary structure labeling, and the

1-Best procedure described in [87] reduces to the Viterbi algorithm.

In this chapter, we develop two approximate N-best algorithms for protein sec-

ondary structure prediction that employ hidden semi-Markov models. The first algo-

rithm is a modified stack decoder and the second one is an extension of the Viterbi

search. In the next section, we will describe the modified stack decoder algorithm.

3.2.1 Modified Stack Decoder

Stack decoder, a search methodology well-known in the speech recognition literature,

was introduced by researchers at IBM [76], and is a variant of the A∗ search [110, 107].

One can think of a stack decoder as a sub-optimal tree search with many appealing

properties. The basic stack decoder algorithm can be found in [110]. The ideas under-

pinning stack decoding are those of sequential decoding in communications theory [76]

and of heuristic search in artificial intelligence [107]. These search algorithms are time

asynchronous, in which the best scoring path or hypothesis, irrespective of time, is

chosen for extension and this process is continued until a complete hypothesis is de-

termined. In the classical implementation of the stack decoder, the stack consists of

an ordered heap, which holds a number of partial hypotheses, (e.g. partial secondary

structure labelings). At each iteration, hypotheses of different lengths are extended

by one segment and are compared to each other, where only the high scoring ones are

kept in the stack as surviving paths.

The crucial function for a stack decoder algorithm is the estimated score (log

likelihood) of the hypothesis h at time t, and is given by:

fh(t) = ah(t) + b∗h(t), (34)

59



where ah(t) is the score of the partial hypothesis using information up to time t and

b∗h(t) is the estimate of the best possible score (maximum log likelihood) in extending

the partial hypothesis to a valid complete hypothesis. It has been shown that as long

as b∗h(t) is an upper bound on the actual log likelihood, then the search algorithm

is admissible [107] (i.e., no errors will be introduced that would not occur if an

exhaustive search was performed). This approach allows the hypotheses of different

lengths to be compared. However, the disadvantage of approximating b∗h(t) is the

requirement to look ahead at the data. An alternative approach [27, 63, 110], does

not rely on looking ahead. Instead, b∗h(t) is constructed such that hypotheses with

earlier reference times always have higher scores than those with later reference times.

In this section, we propose a modified stack decoder algorithm to generate subop-

timal segmentations of secondary structure for a given amino acid sequence. Our ap-

proach is similar to the Tailbiting decoder introduced in [18]. In the proposed method,

each hypothesis of the stack consists of a secondary structure sequence extended up

to position j, where 1 ≤ j ≤ n, and n is the total length of the amino acid sequence.

The score of the ith hypothesis with length j is defined as P (R [1:j],S
(i)
j ,T

(i)
j ), which

is the joint probability of observing the amino acid sequence up to position j (R [1:j]),

and the secondary structure labeling of the hypothesis (S
(i)
j ,T

(i)
j ). Here, 1 ≤ i ≤ N ,

where N is the stack size.

The steps of the algorithm is as follows. We first initialize the stack by including

all possible segmentations up to a certain position (j∗) so that the stack contains

exactly N segmentations. Then, for each hypothesis, we consider possible candidate

extensions and keep the ones with the highest scores. Here, an extension is obtained

by concatenating a single secondary structure symbol (either H, E, or L) instead of

a secondary structure segment. At each iteration, we extend the hypotheses by one

symbol until the nth position is reached, so that each hypothesis consists of a secondary

structure sequence of length n. Finally, we sort the hypotheses in decreasing order
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of scores. Stack initialization and hypothesis extension steps of the algorithm are

illustrated in Figure 8. Since an extension is performed by concatenating a single
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Figure 8: The modified stack decoder algorithm.

secondary structure symbol instead of a segment, at a given iteration, each hypothesis

has the same length. This approach ensures fair comparisons between the scores of

the individual hypotheses, and eliminates the need to approximate or construct b∗h(t)

in Eq. (34). Another advantage of this method is related to the selection of the best

extension for a given hypothesis. In the case of segment extensions, we are most likely

to choose the segments with minimum lengths because for local extensions, shorter

segments have higher probability scores. One way to solve this problem would be to

design a score normalization method to compensate for the decrease in the score of a

hypothesis due to its length. Unfortunately, such methods usually hinge on some kind

of a heuristic, which may not perform well for different protein families. Therefore, we

are proposing a method that extends the hypotheses by one symbol at each iteration.

The selection of the best scoring extensions from position j to j + 1 is as follows.

We first obtain the list of all possible candidate extensions derived from the entire
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set of hypotheses1. In computing the extensions, we satisfy the minimum length re-

quirements for the three types of secondary structure. In the current implementation,

we restricted the lengths of the α-helices, β-strands, and loops to be greater than or

equal to 5, 3, and 1 respectively. Before extending a hypothesis, we first check if

the last secondary structure segment in the hypothesis satisfies the minimum length

requirement. If the length of the last segment is already greater than or equal to

the corresponding lower bound, then all three extensions (H, E and L) are performed

and the extended hypothesis is stored in the candidate extension list. If the last

segment is shorter than the lower bound, then that segment is extended only by its

existing secondary structure type and that hypothesis is kept in the stack without

being included in the candidate extensions list. If the number of such hypotheses

with incomplete extensions is Ns, then the number of hypotheses that are extended

and included into the candidate extensions list becomes Nct = N −Ns, and the total

number of hypotheses in the candidate extension list becomes Nce = 3Nct. Hence, the

set of candidate extensions is derived from those hypotheses, in which all secondary

structure segments satisfy the minimum length requirements. Having compiled the

list of candidate extensions, we compute the score of each hypothesis using the pa-

rameters of the hidden semi-Markov model. Finally, we sort the hypotheses in the

candidate extension list in decreasing order of scores and insert the first Nct hypothe-

ses back into the stack. Note that for a hypothesis in the candidate extension list,

if the extension initiates a new α-helix or β-strand segment, then this extended hy-

pothesis will not satisfy the minimum length requirement. To prevent the score of

the new hypothesis to be computed as zero2, we modified the length distribution of

the α-helices and β-strands for small segments to take non-zero values. We chose a

1Maximum length of the list is 3 × N , where N is the total number of hypotheses or the stack
size.

2Parameter estimation for hidden semi-Markov model was initially performed using maximum-
likelihood estimation procedure on a training set, in which each protein satisfies the minimum length
requirements.
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value that is large enough to initiate α-helix and β-strand segments and small enough

to avoid paths with dominantly short segments. In the current implementation, the

probability of short α-helices (lH < 5) and short β-strands (lE < 3) is set to 10−5.

The steps of the algorithm is summarized in Algorithm 2.

Algorithm 2: Modified Stack Decoder Algorithm
Input: Amino acid sequence R , Stack of size N , Candidate Extension List of

size 3N
Output: Secondary Structure Prediction SS
Initialize the stack of size N with all possible extensions up to position j = j∗;1

j ← j + 1;2

repeat3

Select a hypothesis from the list;4

if last segment is shorter than the length threshold then5

Extend the hypothesis only with the type of the last segment;6

Keep the extended hypothesis in the stack;7

else8

Perform all possible extensions (H, E, L);9

Put the extended hypotheses into the candidate extensions list;10

Delete the original hypothesis from the stack;11

until all N hypotheses are extended ;12

Number of hypotheses in stack = Ns;13

Number of hypotheses in the candidate extensions list = 3(N −Ns);14

Select the top N −Ns hypotheses from the candidate extension list;15

Insert into stack;16

if j = n then17

End of sequence is reached. Terminate;18

else19

Go to step 2;20

To evaluate the computational complexity of the algorithm, it is useful to divide

the operations into two parts: (i) sorting, (ii) score computation. To obtain the top

scoring N − Ns hypotheses in the candidate extensions list, we use the heap sort

algorithm, which has O(K log K) complexity, where K is the size of the list that is

going to be sorted. In C implementation, it takes approximately 30 seconds to sort

a list of 106 hypotheses using the heap sort algorithm. Since sorting operations are

performed for each position j = j∗ + 1, ..., n, the total number of such operations is
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nNce log Nce, where Nce is the average size of the candidate extensions list. In the

worst case scenario, Nce takes the value 3N . Therefore, the computational require-

ments of the sorting operations is on the order of O(nN log N). The computational

complexity arising from the score computation is on the order of O(nN). For a pro-

tein of length 200 amino acids, and a stack of size N = 30, 000, it takes approximately

five minutes to perform all the extensions up to the last position and obtain a sorted

list. Here, the algorithm is tested on an Intel Pentium III Processor with a 1.2GHz

CPU and a 512MB RAM.

3.2.2 N-best Viterbi Algorithm

As an alternative approach, we developed the N-best Viterbi algorithm, which is a

generalization of the classical Viterbi algorithm. The idea is analogous to the Word-

Dependent N-best algorithm introduced by Schwartz and Austin [136]. In the classical

Viterbi algorithm, for each secondary structure segment that is of type t ∈ {H,E, L}
and ends at position j, we consider possible previous segments that are of type l 6= t

and end at position v. We then store the maximum value of the score function f(.),

and the arguments (v, l) where that maximum is achieved. The definition of the score

function f(.) is as follows:

f(v, l, j, t) = δ(v, l)P (T = t | Tprev = l) (35)

× P (S = j | T = t, Sprev = v)

× P (R[v+1:j] | Sprev = v, S = j, T = t)

δ(j, t) = max
v,l

f(v, l, j, t)

In the above formulation, δ(v, l) is the joint probability of observing the amino acid

sequence and the secondary structure labeling from position 1 to v. Here, the sec-

ondary structure sequence labeling is the maximum scoring path from position 1 to v,

in which the last segment is of type l. The algorithm iterates for positions j = 1, ..., n,
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where n is the total number of amino acids in the protein and v can take the values

from 1 to j − 1.

In the N-best Viterbi algorithm, for each (j, t), instead of storing the maximum

value and the arguments of f(.), we rank the possible values of this function with

respect to (v, l) and store the highest scoring K local values as well as the arguments

where these values are achieved. Here, K typically takes values from 3 to 6. The

difference of this approach from the well known N-best algorithm [137, 26, 87] is that

at each state t ending at position j, position indices and types of the K local previous

segments are stored instead of the all segment histories (or paths) ending at that

position. The recursion for the forward pass can be formulated as follows:

δk(j, t) = rankk((v, l), f(v, l, j, t)) (36)

= rankk((v, l), δ1(v, l)P (T = t | Tprev = l))

× P (S = j | T = t, Sprev = v)P (R[v+1:j] | Sprev = v, S = j, T = t)

ψP
k (j, t) = arg rankk(v, f(v, l, j, t))

ψT
k (j, t) = arg rankk(l, f(v, l, j, t))

k = 1, ..., K.

Here, rankk(x, g) outputs the kth value of the function g(.) with respect to the argu-

ment set x, where k = 1, .., K. Similarly, arg rankk(x, g) returns the the argument

set x, where the kth value of g(.) is achieved. δk(j, t) is the joint probability of ob-

serving the amino acid sequence and the secondary structure labeling (S j,T j)k from

position 1 to j. Note that (S j,T j)k does not necessarily correspond to the kth best

path3 from position 1 to j. Instead, it defines a path that satisfies the following con-

straints: (1) The last secondary structure segment is of type t and ends at position

j; (2) The segment before the last segment is of type lk and ends at position vk; (3)

The segment before the last segment is on the maximum scoring path that ends at vk

3The kth path is guaranteed for k = 1.
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Figure 9: The forward pass of the N-best Viterbi algorithm.

with a secondary structure type lk different from t. The arguments vk and lk, where

the f(v, l, j, t) takes its kth value are stored into ψP
k (j, t) and ψT

k (j, t), respectively.

An iteration of the forward pass is described in Figure 4.

Once the forward pass is completed, we perform backtracking and generate al-

ternative prediction sequences. We start with the nth position and consider all 3K

segments (K segments for each secondary structure type) that end at this position

and are of length n − vk, where vk is the end position of the previous segment that

was stored in the forward pass. We insert these hypotheses into an array of size N

and represent them by character strings, in which the first vk values are set to ‘X’

and the last n − vk values are assigned to the secondary structure type of the last

segment. Then, for each hypothesis in the array, we perform all possible extensions

by one segment in the right-to-left direction, and replace the existing hypotheses with

the extended versions. Note that since two adjacent segments cannot be the same in

a hidden semi-Markov model, the total number of extensions for each hypothesis is

2K. If the array becomes full before all the hypotheses are extended up to the first

position, then we keep those sequences that are already extended completely and

extend only the non-complete sequences. This time, the extensions are performed

according to the maximum scoring paths. We terminate when all N sequences are
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extended up to the first position. The algorithm is summarized in Algorithm 3.

Algorithm 3: N-best Viterbi Algorithm
Input: Amino acid sequence R , Hidden semi-Markov Model, Array of size N × n

Output: N-best list of secondary structure segmentations

for each position and secondary structure type do1

Locally keep the end positions of the highest scoring K previous segments;2

Insert the 3K segments that end at position n into the array of size N ;3

array-full flag = FALSE;4

repeat5

for ith hypothesis in the array do6

if array-full flag = FALSE AND extension-finished flagi = FALSE then7

Perform 2K back-extensions (add segments in the right-to-left direction), in8

which the previous segment types are different from the type of the current

segment;

for each back-extension do9

if # hypotheses = N then10

array-full flag = TRUE;11

else12

Insert the extended hypothesis into the array;13

if back-extended hypothesis reaches the N-Terminal of the protein then14

extension-finished flagi = TRUE;15

else16

if array-full flag = TRUE AND extension-finished flagi = FALSE then17

Perform the maximum scoring extensions only;18

if back-extended hypothesis reaches the N-Terminal of the protein then19

extension-finished flagi = TRUE;20

else21

continue with the next hypothesis;22

until array-full flag = TRUE AND extension-finished flagi = TRUE, 1 ≤ i ≤ N ;23

Sort the hypotheses;24

Terminate;25

The computational complexity of the algorithm can be evaluated as follows. In
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the forward pass, for each position j and secondary structure type t that represents a

secondary structure segment ending at position j, the highest scoring K local paths

are computed. To do this, we need to consider the segmentations such that the end

position of the previous segment, v, takes values from 1 to j− 1. There are a total of

(n−1)n/2 such segmentations for j = 1, .., n. This requires 3K(n−1)n/2 operations.

Hence, the computational complexity of the forward pass from score computations is

O(Kn2). At each position j and secondary structure type t, we keep two arrays of size

K to store the segment end position of the previous segments and the corresponding

path scores. To keep K previous segment end positions, a total of 2 × 3K × n

comparisons are required. Hence, the computational requirement to keep K local

paths is O(Kn). Backtracking can be performed by a fast recursive procedure or an

iterative approach, which takes O(Kn) back extensions. Finally, the sequences are

sorted by a heap sort algorithm, with O(N log N) complexity. For a protein of length

200 amino acids, and a stack of size N = 30, 000, it takes approximately one minute

to obtain the sorted list of N suboptimal sequences. Though the N-best Viterbi

algorithm is faster than the modified stack decoder algorithm for a given N value,

the list obtained by the N-best Viterbi algorithm contains more segmentations that

are similar to each other than the list delivered by the stack decoder. In other words,

the stack decoder algorithm generates a deeper list for a given list size and one needs

to increase N in the N-best Viterbi algorithm to be able to reach the same depth

level.

3.2.3 HSMM Implementation Details

We developed two N-best algorithms that generate suboptimal segmentations from

hidden semi-Markov models. In HSMM implementation, we used alternative versions

of the dependency patterns introduced in Section 2.2.3. Since the CB513 set contains

less number of proteins than the EVA set, we further reduced the dependencies in
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Table 10 to reliably estimate model parameters in a cross validation experiment.

Tables 29 and 30 show the dependency patterns (feature sets) derived for the EVA

and CB513 sets, respectively. Those tables are employed by the Viterbi and N-best

algorithms. Similarly, Tables 31 and 32 show the dependency models used for the

IPSSP algorithm. Those tables are employed by the IPSSP method, which is used to

derive the marginal a posteriori distribution for the score update (see Section 3.4.1).

The tables showing the dependency patterns are divided into panels for α-helix, β-

strand, and loop segments. We identify as terminal positions (N1-N4, C1-C4) those

in which the amino acid frequency distributions significantly deviate from ones in

internal positions (Int) in terms of the Kullback-Liebler (KL) distance [134]. Here,

N1 represents the first and C1 represents the last position of a secondary structure

segment. Based on the available training data, we chose six proximal positions (N1-

N4, C1-C2) for α-helices, four proximal positions (N1-N2, C1-C2) for β-strands, and

eight proximal positions (N1-N4, C1-C4) for loops. The remaining positions are

defined as internal positions (Int).

To reduce the dimension of the parameter space, we grouped the amino acids

into three hydrophobicity classes. For instance, h3
i−2 stands for the dependency of

the amino acid at position i to the hydrophobicity class of the amino acid at posi-

tion i − 2. The superscript 3 represents the total number of hydrophobicity classes.

The probability of observing an amino acid at a given position is then defined us-

ing the dependence patterns for that position only. From Table 29, the conditional

probability of observing an amino acid at position i = N3 of an α-helix segment

is PN3(Ri | h3
i−2, h

3
i−3, h

3
i+2). Finally, for each dependency model, the segment like-

lihood term P (R [Sj−1+1:Sj ] | Sj−1, Sj, Tj) is computed by multiplying the conditional

probabilities selected from the corresponding table. In addition to position specific

dependencies, we derived separate patterns for segments with different lengths. All

tables show the dependence patterns for segments longer than L residues, where L is

69



five for α-helices, and three for β-strands and loops. For shorter segments, we selected

a representative set of patterns based on the available training data (not shown). A

more detailed description of the dependency models can be found in Chapter 2.

Table 29: Positional dependencies within structural segments for the Viterbi

and N-best list algorithms evaluated on the EVA set. h3
j ∈ {hydrophobic,

neutral, hydrohilic} indicates the hydrophobicity class of the amino acid Rj, where

hydrophobic={A, M, C, F, L, V, I}, neutral={P, Y, W, S, T, G}, hydrophilic={R,

K, N, D, Q, E, H}.

α-helix β-strand

Int N1 N2 N3 N4 C1 C2 Int N1 N2 C1 C2

h3
i−2 h3

i−1 h3
i−2 h3

i−2 h3
i−2 h3

i−2 h3
i−2 h3

i−1 h3
i−1 h3

i−1 h3
i−1 h3

i−1

h3
i−3 h3

i+2 h3
i+2 h3

i−3 h3
i+2 h3

i−4 h3
i−4 h3

i−2 h3
i−2 h3

i−2 h3
i−2 h3

i−2

h3
i−4 h3

i+4 h3
i+4 h3

i+2 h3
i+4 h3

i+1 h3
i+1 h3

i+1 h3
i+1 h3

i+2 h3
i+2 h3

i+1

h3
i+2 h3

i+2

h3
i+4

Loop

Int N1 N2,N3,N4 C1 C2,C3 C4

h3
i−1 h3

i−1 h3
i−1 h3

i−1 h3
i−1 h3

i−2

h3
i−2 h3

i−2 h3
i−2 h3

i−2 h3
i+1 h3

i−3

h3
i−3 h3

i+1 h3
i−3 h3

i+1 h3
i+2 h3

i+1

h3
i+1 h3

i+3 h3
i+1 h3

i+2 h3
i+3 h3

i+2

h3
i+2
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Table 30: Positional dependencies within structural segments for the Viterbi

and N-best list algorithms evaluated on the CB513 set. h3
j ∈ {hydrophobic,

neutral, hydrohilic} indicates the hydrophobicity class of the amino acid Rj, where

hydrophobic={A, M, C, F, L, V, I}, neutral={P, Y, W, S, T, G}, hydrophilic={R,

K, N, D, Q, E, H}.

α-helix β-strand Loop

Int N1 N2,N4,C1-2 N3 Int N1-2, C1-2 Int N1-4, C1-4

h3
i−2 h3

i−1 h3
i−2 h3

i−3 h3
i−1 h3

i−1 h3
i−1 h3

i−1

h3
i−3 h3

i−2 h3
i−2 h3

i+1

h3
i−4 h3

i−3
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Table 31: Positional dependencies within structural segments for the models M1,

M2, and M3 of the IPSSP method evaluated on the EVA set. h3
j ∈ {hydrophobic,

neutral, hydrohilic} indicates the hydrophobicity class of the amino acid Rj, where

hydrophobic={A, M, C, F, L, V, I}, neutral={P, Y, W, S, T, G}, hydrophilic={R,

K, N, D, Q, E, H}. h5
j is a 5 letter alphabet with groups defined as {P, G}, {E, K,

R, Q}, {D, S, N, T, H, C}, {I, V, W, Y, F}, {A, L, M}.

M1 M2 M3

Int h5
i−2, h3

i−3, h5
i−4, h3

i−7 h3
i−2, h3

i−3, h3
i−4, h3

i+2, h3
i+4 h5

i+2, h5
i+3, h5

i+4

N1 h5
i−1, h5

i−2 h5
i−1, h5

i+2 h5
i+2, h5

i+4

N2 h3
i−1, h3

i−2, h3
i−3 h3

i−2, h3
i+2, h3

i+4 h3
i+1, h3

i+2, h3
i+4

H N3 h3
i−1, h3

i−2, h3
i−3 h3

i−2, h3
i−3, h3

i+2 h3
i+1, h3

i+2, h3
i+4

N4 h3
i−1, h3

i−2, h3
i−3 h3

i−1, h3
i+2, h3

i+4 h3
i+1, h3

i+2, h3
i+4

C1 h3
i−1, h3

i−2, h3
i−4 h3

i−2, h3
i−4, h3

i+1 h3
i+1, h3

i+2, h3
i+3

C2 h3
i−2, h3

i−3, h3
i−4 h3

i−2, h3
i−4, h3

i+1 h3
i+1, h3

i+2, h3
i+3

Int h5
i−1, h5

i−2, h3
i−3 h3

i−1, h3
i−2, h3

i+1, h3
i+2 h5

i+1, h5
i+2, h3

i+3

N1 h5
i−1, h5

i−2 h5
i−1, h5

i+1 h5
i+1, h5

i+2

E N2 h5
i−1, h5

i−2 h5
i−1, h5

i+2 h5
i+1, h5

i+2

C1 h3
i−1, h3

i−3, h3
i−4 h3

i−1, h3
i−3, h3

i+1 h3
i+1, h3

i+2, h3
i+3

C2 h5
i−1, h5

i−2 h5
i−1, h5

i+1 h5
i+1, h5

i+2

Int h5
i−1, h5

i−2, h3
i−3, h3

i−4 h5
i−1, h3

i−2, h5
i+1, h3

i+2 h5
i+1, h5

i+2, h3
i+3, h3

i+4

N1 h5
i−1, h5

i−2, h3
i−3 h5

i−1, h5
i−2, h3

i+1 h5
i+1, h5

i+2, h3
i+3

N2 h5
i−1, h3

i−2, h3
i−4 h5

i−1, h3
i−2, h3

i+1 h5
i+1, h3

i+2, h3
i+4

N3 h5
i−1, h3

i−2, h3
i−3 h5

i−1, h3
i−2, h3

i+1 h5
i+1, h3

i+2, h3
i+3

L N4 h5
i−1, h3

i−2, h3
i−3 h5

i−1, h3
i−2, h3

i+1 h5
i+1, h3

i+2, h3
i+3

C1 h5
i−1, h5

i−2, h3
i−3 h5

i−1, h5
i−2, h3

i+1 h5
i+1, h5

i+2, h3
i+3

C2 h5
i−1, h5

i−2 h5
i−1, h5

i+3 h5
i+1, h5

i+2

C3 h3
i−1, h3

i−2, h3
i−3 h3

i−1, h3
i+1, h3

i+2 h3
i+1, h3

i+2, h3
i+3

C4 h3
i−1, h3

i−2, h3
i−3 h3

i−2, h3
i−3, h3

i+1 h3
i+1, h3

i+2, h3
i+3
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Table 32: Positional dependencies within structural segments for the models M1,

M2, and M3 of the IPSSP-simp method evaluated on the CB513 set. h3
j ∈

{hydrophobic, neutral, hydrohilic} indicates the hydrophobicity class of the amino

acid Rj, where hydrophobic={A, M, C, F, L, V, I}, neutral={P, Y, W, S, T, G},
hydrophilic={R, K, N, D, Q, E, H}. h5

j is a 5 letter alphabet with groups defined

as {P, G}, {E, K, R, Q}, {D, S, N, T, H, C}, {I, V, W, Y, F}, {A, L, M}.

M1 M2 M3

Int h3
i−2, h3

i−3, h3
i−4 h3

i−2, h3
i−4, h3

i+2, h3
i+4 h3

i+2, h3
i+3, h3

i+4

N1 h3
i−1, h3

i−2 h3
i−1, h3

i+2 h3
i+2, h3

i+4

N2 h3
i−1, h3

i−2 h3
i−2, h3

i+2 h3
i+2, h3

i+4

H N3 h3
i−2, h3

i−3 h3
i−2, h3

i+2 h3
i+1, h3

i+2

N4 h3
i−1, h3

i−2 h3
i−1, h3

i+2 h3
i+2, h3

i+4

C1 h3
i−2, h3

i−4 h3
i−2, h3

i+1 h3
i+1, h3

i+2

C2 h3
i−2, h3

i−4 h3
i−2, h3

i+1 h3
i+1, h3

i+2

Int h3
i−1, h3

i−2 h3
i−1, h3

i+1, h3
i+2 h3

i+1, h3
i+2

N1 h3
i−1 h3

i−1, h3
i+1 h3

i+1

E N2 h3
i−1 h3

i−1, h3
i+1 h3

i+1

C1 h3
i−1 h3

i−1, h3
i+1 h3

i+1

C2 h3
i−1 h3

i−1, h3
i+1 h3

i+1

Int h3
i−1, h3

i−2, h3
i−3 h3

i−1, h3
i−2, h3

i+1, h3
i+2 h3

i+1, h3
i+2, h3

i+3

N1 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

N2 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

N3 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

L N4 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

C1 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

C2 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

C3 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2

C4 h3
i−1, h3

i−2 h3
i−1, h3

i+1 h3
i+1, h3

i+2
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3.3 An N-best Approach for Secondary Structure Predic-
tion

The availability of an N-best list enables us to choose from the following options:

(1) Combine the set of best scoring M segmentations by a weighted majority voting

procedure and arrive at a consensus prediction; (2) Update the score of each segmen-

tation with more sophisticated functions and compute the final prediction as in (1);

(3) Keep the suboptimal segmentations so that they can be used by 3-D structure

prediction methods or in expert evaluation. The third option can be considered with

or without a score update procedure. In this section, we propose the utilization of

an N-best list to predict the secondary structure for a given amino acid sequence. To

compute the suboptimal segmentations, one can use the modified stack decoder or

the N-best Viterbi algorithm, in which the score of a segmentation is defined as the

joint probability of the amino acid sequence and the secondary structure labeling,

i.e., P (R ,S ,T ). Note that while N-best Viterbi generates the Viterbi result (MAP

estimation) as the highest scoring segmentation the modified stack decoder might

not. Therefore, when the modified stack decoder algorithm is used as the N-best

list generator, the most likely state sequence is separately computed by the Viterbi

algorithm and is included into the N-best list if it scores higher than the top segmen-

tation in the list. On the other hand, when the N-best Viterbi algorithm is used, the

MAP segmentation should be contained in the N-best list and there is no need to

compute it separately. Once the N-best list is computed, the segmentations can be

re-scored using more elaborate score functions. Then, the final prediction sequence

can be computed by applying a weighted voting procedure to a set of best scoring

M segmentations. Here, each sequence is weighted by its segmentation score and the

same score is applied to all positions within the sequence. The predicted state at

position i (i = 1, .., n) is computed as the secondary structure type with the highest

sum of scores. Setting M = 1 reduces to selecting the most likely segmentation as
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the prediction sequence. The steps of the method are illustrated in Figure 10.
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1×n  N-Best List 

Viterbi Segmentation 

Include the Viterbi 
segmentation to the     

N-Best list if its score is 
greater than the score of 
the first segmentation  

Weighted Majority 
Voting 

Select the best scoring 
M segmentations 

Output Prediction Sequence 

Score Update 

Figure 10: Secondary structure prediction with near-optimal segmentations. N-
best Viterbi algorithm does not require the extra computation of the Viterbi (MAP)
segmentation and proceeds with the score update after the N-best list generation
step.

3.4 Score Update

In this thesis, we utilize the following score distributions to update the score of a

segmentation:

3.4.1 Marginal A Posteriori Distribution

Let a suboptimal segmentation be denoted as (S (j),T (j)) = (T
(j)
R1

, T
(j)
R2

, ..., T
(j)
Rn

), where

T
(j)
Ri

is the secondary structure type of the ith amino acid in the jth segmentation.

Then, the score of this segmentation is updated as U (j) =
∑

i P (T
(j)
Ri

| R), where

P (T
(j)
Ri
| R) is the a posteriori probability of the secondary structure state at position

i computed using the forward-backward algorithm (see Section 2.2.4).

75



3.4.2 Joint Distribution

The joint distribution of the amino acid sequence and a secondary structure segmen-

tation, P (R ,S (j),T (j)), is used as the segmentation score and is updated as follows.

If (S (j),T (j)) contains only α-helices and loops, then P (R ,S (j),T (j)) can be com-

puted as in Section 2.2.1. If (S (j),T (j)) contains a single β-strand segment, then

P (R ,S (j),T (j)) is set to zero. If on the other hand, (S (j),T (j)) contains two or

more β-strands, then the segmentation score is computed using the non-local inter-

action model explained in the next section.

3.5 A Non-Local Interaction Model for Protein Secondary
Structure Prediction

In this section, we develop a Bayesian framework to model the non-local interactions

between β-strands. A non-local interaction model has to capture the intrinsic proper-

ties of β-sheets, which are explained in Sections 1.1 and 1.2. For a given suboptimal

segmentation that contains at least two β-strands, β-sheet groups and interaction

types are not defined. Therefore, there can be numerous ways to group β-strands

into β-sheets, specify the spatial ordering of β-strands in a β-sheet, and identify the

type of interaction between each segment pair. Moreover, due to possible length dif-

ferences between β-strand segments, there can be many alternatives to align amino

acid pairs that make hydrogen bonding contacts. In Fig. 3, two possibilities are shown

for the amino acid pairing pattern of a β-sheet that has three β-strand segments.

To include these constraints into the model, we modify the computation of the

segmentation score, P (R ,S ,T ), as follows4. Let (S ,T ) contain r β-strand segments

(B1, ...,Br), where r ≥ 2. We represent the 3-D conformation of these segments by the

following components: the grouping of β-strands into β-sheets (G ), spatial ordering

of β-strands within each β-sheet (O ), interaction types of β-strand pairs (I ), and

4For simplicity, we drop the index j from (S (j),T (j)).
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the amino acid pairing pattern (C ). Detailed definitions of these parameters can

be found in Chapter 4. Since the amino acid pairing pattern (or the contact map)

contains all the information in the parameter set (G ,O , I ), then the contact map

can be used to represent the 3-D conformation assumed by B1, ...,Br. In that case,

the score of (S ,T ) can be updated as

P (R ,S ,T ) =
∑
C

P (R ,S ,T ,C ) =
∑
C

P (R | S ,T ,C )P (S ,T ,C ). (37)

Using Bayes’ rule:

P (S ,T ,C ) = P (C | S ,T )P (S ,T ). (38)

In the above equations, P (S ,T ) is the a priori distribution of (S ,T ); P (C | S ,T )

is the conditional distribution of the contact map (equivalently the 3-D conformation);

and P (R | S ,T ,C ) is the sequence likelihood term for a given contact map. P (S ,T )

can be computed as in Eq. (3) and P (C | S ,T ) is modeled in Chapter 4. In this

section, we elaborate on the sequence likelihood term. We start with the following

expression:

P (R | S ,T ,C ) =
∏

Tj∈{H,L}
P (R [Sj−1+1:Sj ] | S ,T ) (39)

×
w∏

k=1

P (R seg1(k), ..,R segnk
(k) | S ,T ,C ),

where w is the total number of β-sheets in C , such that each sheet contains nk

β-strand segments satisfying
∑

k nk = r and R segi(k) is the ith β-strand of the kth

β-sheet in the spatial order. Here, the spatial ordering of the β-strands is defined

by the parameter O , which indexes the β-strand segments in each β-sheet. In this

representation, seg1(k) is the sequential index of the apriori β-strand, which is defined

as the edge segment with the lowest sequential index5 in the kth β-sheet. Note that

the a priori β-strand segment does not have to be the first segment in the sequential

5An edge segment makes only one segmental interaction.

77



ordering. For instance, for a single β-sheet with O = (2, 3, 1, 4), R seg1(k) is the second

β-strand segment in the sequential order.

In Eq.(39), the segment likelihoods of α-helices and loops are computed the same

as before (see Eq. (5)) and those of β-strands are obtained from the non-local model.

The computation of the joint probability term for a β-sheet can be simplified as

P (R seg1(k), ...,R segnk
(k) | S ,T ,C ) = P (R seg1(k) | S ,T ,C ) (40)

×
nk∏

m=2

P (R segm(k) | R segm−1(k),S ,T ,C ).

In this formulation, we assume that a β-strand only depends on its spatial neighbors.

We also assume that a β-strand makes at most two segmental interactions. Although

this is not always true, we first model the simplest case, in which the β-strands in a

β-sheet form a ladder-like topology as shown in Figure 3. The Markovian dependency

structure in Eq. (40) can easily be extended for conformations that contain β-strands

with more than two segmental partners.

To elaborate further, we should model the terms P (R seg1(k) | S ,T ,C ), and

P (R segm(k) | R segm−1(k),S ,T ,C ) by including the residue interaction propensities

in β-strands and other constraints that stabilize the overall structure of β-sheets.

The first term, P (R seg1(k) | S ,T ,C ), can be modeled using local dependencies as

described in Section 2.2.1. The second term, P (R segm(k) | R segm−1(k),S ,T ,C ), is the

conditional probability of observing amino acids at the remaining segments. Here, the

dependency of R segm(k) to R segm−1(k) allows us to model dependencies from non-local

interactions. We model P (R segm(k) | R segm−1(k)S ,T ,C ) as follows:

P (R segm(k) | R segm−1(k),S ,T ,C ) =
∏
u,v

P IT (R
(u)
segm(k) | R

(v)
segm−1(k)S ,T ,C )

×
∏
u

P IT (R
(u)
segm(k) | S ,T ,C ), (41)

where R
(u)
segm(k) and R

(v)
segm−1(k) are the uth and vth amino acids of the segments segm(k)

and segm−1(k), respectively. The first product term models the amino acid pairs that
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interact through non-local contacts as defined by C . The second product is used to

model the amino acids of the segment segm(k), which do not have a non-local partner

in the segment segm−1(k) because of the length differences. An example to this

condition can be found in Figure 3(a), where the amino acid G in the middle segment

does not have a partner amino acid with the previous segment (the segment at the

top). In Eq. (41), the superscript IT of the probability distributions represents the

interaction type of the segments segm(k) and segm−1(k) (parallel or anti-parallel) as

defined by the parameter I . For instance, for the β-sheets in Figure 3, I = (AP, AP ),

where AP denotes an anti-parallel interaction. The probability distributions on the

right hand side of Eq. (41) can easily be estimated using the frequency of occurrence

counts in the available training data. This completes the derivation of the non-local

interaction model for protein secondary structure prediction.

3.6 Results

In our simulations, we evaluated the performance on the EVA and CB513 sets (see

Section 2.5.1.1). We removed sequences that contained secondary structure segments

longer than D = 40 amino acids similar to Chapter 2. In our simulations with the N-

best algorithms, we removed proteins shorter than 30 to further refine the datasets.

We also removed proteins longer than 400 amino acids to prevent our evaluations

slow down due to long proteins. After applying these constraints, there remained

2251 proteins in the EVA set, and 447 proteins in the CB513 set. The eight state

secondary structure assignments for the proteins in the datasets were taken from the

PDB database6. To reduce the eight secondary structure state assignment used in

the DSSP notation to three, we used the following conversion rule: H to H; E to E;

all other states to L, which is also known as the ’CK’ mapping [59, 49]. We also

considered using the length adjustments proposed by Frishman and Argos [58] that

6PDB uses the DSSP algorithm for the assignment of the secondary structure from the atomic
coordinates.
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convert the α-helices shorter than five amino acids and β-strands shorter than three

amino acids to loops.

In all simulations, we performed a leave-one-out cross-validation experiment. For

parameter estimation, we used the maximum-likelihood estimation procedure where

we count the observed frequencies for the desired quantities and apply a proper nor-

malization factor to compute the probabilities. To evaluate the performance, we

chose the three-state-per-residue accuracy, Q3, and the Segment OVerlap score, SOV,

as the overall accuracy measures. Detailed descriptions of the leave-one-out cross val-

idation, the maximum-likelihood estimation and the accuracy measures can be found

in Chapter 2.

3.6.1 N-best Predictors without Score Update

In this section, we compare the performances of the Viterbi algorithm, the N-best

algorithms, and the IPSSP method. In the first set of simulations, we did not apply

any score update to the N-best list. Then, we evaluated the effect of updating the

segmentation scores with the marginal a posteriori distribution P (TRi
| R) obtained

by the IPSSP method and with the non-local interaction model. The dependency pat-

terns (feature sets) employed by the methods evaluated is described in Section 3.2.3.

To initialize the frequency tables, Laplace’s rule is used as the pseudo-count method,

in which the entries are initially set to one.

3.6.1.1 Modified Stack Decoder vs N-best Viterbi

We first compared the performances of the Viterbi, the modified stack decoder, and

the N-best Viterbi algorithms. We chose the size of the N-best list as N = 30, 000.

In this set of simulations, we did not apply any score update. To obtain the final

prediction sequence, we combined the best scoring M = 5000 segmentations by the

weighted voting procedure as explained in Section 3.3. We chose K as three for the N-

best Viterbi algorithm. From Table 33, the modified stack decoder algorithm performs
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better than the Viterbi algorithm by 1.1% in terms of the Q3 measure. For the N-

best Viterbi algorithm, the improvement is only 0.25% because the N-best Viterbi

generates a significantly higher number of sequences with scores close to the most

likely sequence. In addition, the score differences are smaller for the N-best Viterbi

algorithm. The overall accuracy of the N-best Viterbi can be improved by increasing

the size of the N-best list. A comparison of the structure-type-specific measures shows

that the N-best Viterbi algorithm has the highest Qobs
α and Qobs

β values, followed by

the Viterbi algorithm. The highest loop sensitivity Qobs
L is achieved by the modified

stack decoder algorithm. These results show that the information in suboptimal

segmentations is useful and is capable of improving the MAP estimation even when

there is no score update.

Table 33: Sensitivity results of the Viterbi, modified stack decoder and N-best

Viterbi algorithms. In simulations with the N-best algorithms weighted majority

voting is applied to a set of top scoring M segmentations.

Sensitivity Q3(%) Qobs
α (%) Qobs

β (%) Qobs
L (%)

Viterbi 64.17 64.99 28.70 76.56

Modified Stack Decoder 65.28 60.42 26.78 79.95

N-best Viterbi 64.42 65.41 28.74 76.77

3.6.1.2 N-best List Size

In this section, we investigate the effect of changing the N-best list size N , and the

number of voting sequences M . Table 34 shows the sensitivity results of the proposed

method for different values of N and M . Here, the suboptimal segmentations are

obtained using the N-best Viterbi algorithm with K = 3. From Table 34, increasing

the size of the N-best list improved the Q3, Qobs
α and Qobs

L measures. For a given list

size, increasing the number of voting sequences improved only the Qobs
L measure. The

results demonstrate that suboptimal segmentations contain valuable information and
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can improve the accuracy when the list size is increased (a deeper list) and the seg-

mentations are sampled more densely (with scores close to each other). The decrease

in the β-strand sensitivity for increasing values of N can be explained by the fact

that the current statistical model can only capture local interactions, which are dom-

inantly observed in α-helices and loops. Therefore, without incorporating additional

knowledge sources, N-best methods are not expected to improve the accuracy of the

β-strand predictions.

Table 34: Sensitivity results of the N-best Viterbi algorithm for changing values of

N and M .

N M Q3(%) Qobs
α (%) Qobs

β (%) Qobs
L (%)

30,000 500 64.422 65.413 28.750 76.775

30,000 5,000 64.421 65.411 28.748 76.775

50,000 5,000 64.446 65.514 28.559 76.833

100,000 10,000 64.519 65.526 28.544 76.974

3.6.2 N-best Predictors with Score Update

3.6.2.1 Score Update with Marginal A Posteriori Distribution

In this section, we investigate the effect of updating the segmentation scores using

the a posteriori probability distribution P (TRi
| R) as described in Section 3.3. We

compare the performances of the Viterbi algorithm, the IPSSP algorithm, and the N-

best algorithms. To compute suboptimal segmentations, we used the N-best Viterbi

algorithm with N = 1, 000, 000 and K = 4. For the number of voting sequences

used in the weighted majority voting step, we chose two different values: M = 1

and M = 10, 000. The results of the cross-validation experiments are shown in

Tables 35 and 36 for the EVA set and in Tables 37 and 38 for the CB513 set. In EVA

set simulations, we used the IPSSP algorithm, which takes the ensemble average of

three dependency models, each calibrated by a training set reduction procedure (see
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Chapter 2 and [23]). In simulations with the refined CB513 set, we used the IPSSP-

simp method, which employs reduced versions of the IPSSP’s dependency models

(see Section 3.2.3). In both versions of IPSSP, the threshold used in the training set

reduction step is set to 0.35. For all methods, the Laplacian pseudo-count method

is applied to initialize the frequency tables before estimating the model parameters.

The P (TRi
| R) values that are used to obtain the IPSSP predictions and to update

segmentation scores are computed as described in Chapter 2 and in Aydin et al. [23],

in which the posterior probability distributions from three dependency models are

averaged (see Section 3.2.3).

Table 35: Sensitivity results of the Viterbi, IPSSP, and N-best Viterbi with score

update, evaluated on the reduced EVA set under leave-one-out cross-validation.

Sensitivity Q3(%) Qobs
α (%) Qobs

β (%) Qobs
L (%)

Viterbi 63.95 65.66 24.37 77.30

IPSSP 70.06 66.77 45.25 80.93

N-best Viterbi

Score Update 66.52 65.43 30.83 80.08

(M = 1)

N-best Viterbi

Score Update 65.80 65.67 29.06 79.18

(M = 10,000)
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Table 36: SOV measures of the Viterbi, IPSSP, and N-best Viterbi with score

update, evaluated on the reduced EVA set under leave-one-out cross-validation.

SOV Score SOV3(%) SOVα(%) SOVβ(%) SOVL(%)

Viterbi 51.45 64.47 27.63 52.57

IPSSP 64.09 70.99 54.63 63.55

N-best Viterbi

Score Update 54.74 66.32 35.48 55.06

(M = 1)

N-best Viterbi

Score Update 53.55 65.93 33.54 53.67

(M = 10,000)

84



Table 37: Sensitivity results of the Viterbi, IPSSP-simp, and N-best Viterbi

with score update, evaluated on the reduced CB513 set under leave-one-out cross-

validation.

Sensitivity Q3(%) Qobs
α (%) Qobs

β (%) Qobs
L (%)

Viterbi 61.93 69.44 28.04 73.05

IPSSP-simp 67.91 68.38 48.80 76.65

N-best Viterbi

Score Update 64.69 69.17 36.67 75.01

(M = 1)

N-best Viterbi

Score Update 63.71 70.10 33.88 73.64

(M = 10,000)
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Table 38: SOV measures of the Viterbi, IPSSP-simp, and N-best Viterbi with score

update, evaluated on the reduced CB513 set under leave-one-out cross-validation.

SOV Score SOV3(%) SOVα(%) SOVβ(%) SOVL(%)

Viterbi 52.34 67.50 31.52 52.27

IPSSP-simp 64.39 70.78 56.44 63.98

N-best Viterbi

Score Update 56.00 67.91 41.44 55.09

(M = 1)

N-best Viterbi

Score Update 54.47 67.72 38.20 53.51

(M = 10,000)

From these results, the score update procedure yields an average improvement

of 2.6% over the Viterbi algorithm in terms of the three-state-per-residue accuracy

Q3(%) (Tables 35 and 36) and an average improvement of 3.5% in terms of the SOV

measure as (Tables 37 and 38). In both simulations, choosing the most likely seg-

mentation as the prediction performed better than the consensus approach (weighted

voting) on a set of most likely segmentations. This result can be explained by the fact

that, after applying a score update, the first M segmentations get more diverse for

increasing values of M , and hence less accurate ones are likely to be selected. Hence,

when a score update is performed, it is better to choose the most likely segmentation

as the final prediction sequence.
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3.6.2.2 Score Update with Non-Local Interaction Model

In this set of simulations, we performed a leave-one-out cross validation experiment

on the PDB SELECT dataset (see Section 2.5.1.1). We removed proteins shorter

than 30 amino acids and obtained a representative set of 2482 sequences. To generate

suboptimal segmentations (i.e., N-best list), we used the N-best Viterbi algorithm

introduced in Section 3.2.2 and in Aydin et al. [24]. Here, we considered two scenarios:

(1) true secondary structure segmentation is manually included into the N-best list;

(2) true secondary structure segmentation is not included into the N-best list. We

also tested whether incorporating the number of β-strands as an a priori information

will improve the results. This is achieved by setting the scores of the secondary

structure segmentations that do not have exactly the same number of β-strands as

the true segmentation to zero. We evaluated the performance of our method on all-β

proteins7 of the PDB SELECT dataset with ≤ 3 β-strands. There were 49 proteins

in PDB SELECT that satisfy these conditions.

The results of the cross validation experiment are shown in Table 39. In the Viterbi

algorithm implementation, we used the all-β information in computing the secondary

structure prediction. For the N-best method, we utilized both the all-β information

and the information on the number of β-strands. From Table 39, although the β-

strand accuracy of the N-best method improved, the loop accuracy and hence the

overall accuracy decreased. Considering that the marginal posterior mode algorithm

(posterior decoding) performs 3-4% better than the Viterbi algorithm in terms of

the overall sensitivity, and approximately 15-20% better in terms of the β-strand

sensitivity, the performance of the N-best method is not satisfactory to be regarded

as a significant improvement.

7Proteins with β-strands and loops only.
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Table 39: Sensitivity results of the Viterbi and the N-best method with the non-local

model, evaluated on the reduced PDB SELECT set under the leave-one-out cross-

validation. The Viterbi algorithm uses all-β information in computing the secondary

structure prediction. The N-best Method uses both all-β and the number of β-strands

information. In the third row, true secondary structure segmentation is included into

the N-best list. The N-best list parameters are chosen as N = 1,000,000, M = 1.

Sensitivity Q3(%) Qobs
α (%) Qobs

β (%) Qobs
L (%)

Viterbi 76.455 —– 26.774 88.097

N-best Viterbi

with NL Model 73.241 —– 34.783 82.252

(true ss not inc.)

N-best Viterbi

with NL Model 74.717 —– 37.986 83.324

(true ss inc.)

In addition to the sensitivity evaluation, we analyzed the rank of the true segmen-

tation after updating the segmentation scores using the non-local interaction model.

We have found that when the test protein had only two β-strands, the rank of the

true segmentation was less than 20. However, for proteins with 3 β-strands, the ranks

increased up to 500.

These results show that a non-local interaction model based on the amino acid

residue-residue interaction propensities is not sufficient to discriminate the true seg-

mentation from the incorrect ones, even if the all-β information and the information

on the number of β-strand segments are incorporated. This is mainly due to the un-

informative behavior of the amino acid residue-residue interaction propensities and
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is consistent with the earlier findings. Cline et al. [102] and Crooks et al. [61] exam-

ined the mutual information content of the interacting amino acid residues distantly

separated by sequence but proximate in 3-D structure and concluded that for the

purposes of tertiary structure prediction, these interactions are essentially uninfor-

mative. Therefore, in the single-sequence setting, improving the prediction accuracy

by incorporating non-local interactions is impractical.

3.7 Summary

In this chapter, we developed two N-best algorithms and a non-local interaction model

for protein secondary structure prediction in the single-sequence setting. We showed

that the information in suboptimal segmentations is useful and can improve the sen-

sitivity of the Viterbi algorithm up to 1% without applying any score update. When

the segmentations are re-scored using the marginal posterior probability distribution,

the improvement becomes 2.6%. Unfortunately, the two N-best algorithms and the

score update procedure were not able to perform better than the posterior decoding

algorithm in the single-sequence predictions. Also, the incorporation of non-local in-

teractions did not leverage the accuracy due to uninformative behavior of amino acid

interaction potentials in the single-sequence condition.
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CHAPTER IV

PROTEIN BETA-SHEET PREDICTION WITH

BAYESIAN MODELS AND ALGORITHMS

4.1 Introduction

Several methods have been proposed for the prediction of β-strand organizations and

contact maps (see Section 1.3.2). Although the BetaPro method proposed by Cheng

and Baldi [39] is one of the best methods developed to date, it has limitations. First

of all, BetaPro does not explicitly employ folding rules and does not discriminate be-

tween possible topological organizations. In other words, it treats possible groupings

of β-strands into β-sheets, spatial ordering of β-strands within a sheet and interac-

tion types of β-strand pairs equally. In a related study, Ruczinski et al. [131] showed

that the organization of β-strands into β-sheets is not random and shows a distinct

pattern. Some of the conformations are physically unstable and are never observed.

For the remaining ones, there is a preference for particular orientations, which are

favored more than the others. Moreover, although Cheng and Baldi [39] defined and

introduced a gapped alignment algorithm for β-strand interactions, they did not im-

plement gapped alignments in BetaPro. They simply ignored gaps by sliding one

segment along with the other. Another aspect of BetaPro is that it employs a simple

greedy algorithm to compute β strand pairings and interaction types. This leaves

room for more sophisticated algorithms to be developed.

To improve BetaPro, Jeong et al. [79] investigated two new algorithms for pre-

dicting β-strand partners. To make direct comparisons, they used the same scoring

function as of BetaPro. The objective of the first algorithm is that instead of having
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a two-stage greedy selection heuristic, it poses the problem as integer linear program-

ming optimization problem and solves it using the ILOG CPLEXTM package. The

second approach is greedy and it explicitly encourages two simple folding rules. This

is achieved by dynamically increasing the scores of strand pairs that are potential

partners depending on the pairs predicted so far. The second algorithm performed

better than the first one but the improvement over BetaPro was not drastic (a 0.7%

improvement in sensitivity and 2.7% improvement in positive predictive value eval-

uated in the β-strand pairing category). Also they did not report the accuracy in

interaction type and contact map predictions. Furthermore, their accuracy was not

better than BetaPro for all separation distances between contacts. For some dis-

tances the accuracy decreased slightly. In both algorithms, Jeong et al. [79] extended

the dynamic programming approach that computes pairwise alignments of β-strands.

However, they allowed only a single gap in an alignment. More importantly, although

Jeong et al. [79] aimed to enforce physical constraints by incorporating folding rules

into BetaPro, they considered only two simple folding rules. Therefore, for an elabo-

rate treatment of the problem, one has to include a more comprehensive set of rules

and physical preferences that guide the formation of β-sheets.

Recently, BetaPro was followed by SVMcon, a new contact map predictor that uses

support vector machines to predict medium- and long-range contacts [40]. Although

SVMcon utilized a larger feature set, its performance was not better than BetaPro

when evaluated on CASP datasets [40].

In this chapter, we address the problem of β-sheet prediction defined as the predic-

tion of β-strand pairings, interaction types (parallel or anti-parallel), and β-residue

interactions (or contact maps). We analyze proteins according to the number of

β-strands they contain. We consider two categories: (1) proteins with six or less

β-strands; (2) proteins with more than six β-strands. In Figure 11, histogram plots

are shown for the number of β-strands in BetaSheet916 and CulledPDB datasets (see
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Section 4.2.3). The percentage of proteins with six or less β-strands is calculated as

20.41% in BetaSheet916 and 25.51% in CulledPDB. Due to limitations in the avail-
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Figure 11: Histograms for the number of β-strands in an amino acid chain

able training data, we mainly target proteins in the first category. We introduce a

Bayesian approach for proteins with six or less β-strands, in which we model the

conformational features in a probabilistic framework by combining the amino acid

pairing potentials with a priori knowledge of β-strand organizations. Starting from

the amino acid sequence, secondary structure, and the amino acid pairing probabil-

ity matrix computed by BetaPro, we assign probability scores to possible β-sheet

architectures by considering four structure levels: (1) groupings of β-strands into β-

sheets; (2) spatial arrangement of β-strands in each β-sheet; (3) interaction types of

β-strands (parallel or anti-parallel); (4) residue pairing patterns (or contact maps).

For the first three levels, we utilize the results of Ruczinski et al. [131], who performed

a statistical analysis of the frequency of β-strand groupings and β-sheet motifs. For

the fourth level, we use the raw amino acid pairing probabilities that are derived

from the DSSP database [11, 81]1. This approach allows us to enforce a large set of

physical rules that characterize the intrinsic preferences of β-sheet formation.

1The BetaPro’s pairing probability matrix is not used in scoring the conformations
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To select the optimum β-sheet architecture, we search the space of possible con-

formations by efficient heuristics. In our computations, we significantly reduce the

search space by enforcing the amino acid pairs with strong interaction propensities

derived from the residue pairing propensity matrix. On this reduced search space,

we sample the first three levels using a brute-force sampling approach. To derive the

optimum amino acid pairing combination (i.e., the contact map), we apply dynamic

programming and compute pairwise alignments of β-strand pairs. For this purpose,

we employ an algorithm that finds the optimum pairwise alignment of β-strands. In

this algorithm, we define match as well as gap scores and perform global alignments

(Needleman-Wunsch algorithm). This is a more elaborate approach as compared to

the earlier work by Cheng and Baldi [39] and Jeong et al. [79]. We further improved

the dynamic programming approach by allowing any number of gaps. The gapped

nature of the alignments enables us to model β-bulges more effectively.

For proteins with more than six β-strands, the discriminative power of the Ruczin-

ski model reduces significantly due to an exponential increase in the number of pos-

sible β-strand organizations. Therefore, for such proteins, we first use BetaPro to

compute β-strand pairings. Then, we compute gapped alignments of the paired β-

strands in parallel and anti-parallel directions and choose the interaction types and

the β-residue pairing patterns with maximum alignment scores.

4.2 Methods

4.2.1 Beta-Sheet Prediction for Proteins with ≤ 6 Beta-Strands: A Bayesian
Approach

We will formulate the β-sheet prediction in a probabilistic framework. Before provid-

ing the mathematical details, we first define our model parameters.
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4.2.1.1 Model Parameters

The input parameters are the amino acid sequence, the secondary structure, and an

amino acid pairing propensity matrix. The amino acid sequence is denoted by R ,

where R i is the ith amino acid. Similarly, the secondary structure is represented by

SS , where SS i is the secondary structure state of the ith amino acid (whether it is

α-helix, β-strand or loop). Note that as a necessary condition for β-sheet formation,

SS should contain at least two β-strand segments. The third parameter is denoted

by PP , where PP ij is the probability of the ith and jth β-residues to make a pair

(or contact). In this matrix, only the amino acids in β-strands or β-bridges are

considered (i.e., E or B states in the DSSP assignment [81]). The pairing probability

matrix is computed using the BetaPro method [39] and is utilized to reduce the space

of possible β-sheet conformations.

The output parameters are the grouping sequence G , the ordering sequence O ,

the interaction type sequence I , and the contact map (or the residue pairing sequence)

C . We explain each parameter in more detail.

• G defines the number of β-sheets as well as the grouping of β-strands into

β-sheets. In other words, G contains the information about which β-strands

appear together in each β-sheet. Here, the ordering of β-strands is not impor-

tant, therefore they are ordered in the sequential order to remove ambiguity.

G is a 2D sequence, where G (p, l) is the sequence index of the lth β-strand in

the pth β-sheet. For the β-sheet in Figure 2(a), G = (1, 2, 3, 4) meaning that

all β-strands form a single β-sheet.

• O specifies the spatial ordering of β-strands within each β-sheet. O is a 2D

sequence, where O (p, l) is the spatial order of the lth β-strand in the pth β-sheet.

If the pth β-sheet contains np β-strands, then O (p, :) (also denoted by O p) is

simply a permutation of the sequence 1:np. Therefore, in this notation, O can
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be represented as the concatenation of O p’s. This is formulated as O = ΥpO p,

where Υ is the sequence concatenation operator. Note that in our model, a

permutation and its inverse represent the same spatial ordering because we

only keep permutations, in which the sequential index of the first segment is

lower than the index of the last segment. The spatial ordering information also

specifies the β-strand segments that interact with each other. For the β-sheet in

Figure 2(a), O = (1, 2, 4, 3) meaning that the first β-strand interacts with the

second, the second with the fourth, and the fourth with the third. The pairwise

interactions are bidirectional. Here, for simplicity, we assume that a segment

can interact with up to two neighboring segments. The percentage of proteins

that have six or less β-strands and that contain interactions with more than two

segments is only 1.7% in the BetaSheet916 set (see Section 4.2.3.2). Extension

of the model to characterize interactions with more than two neighbors is not a

difficult task and is left as a future work (see Section 4.4). Note that for proteins

with more than six β-strands, we are not putting any restriction on the number

of interactions a β-strand makes (see Section 4.2.2).

• I determines the interaction types (parallel or anti-parallel) of β-strand pairs

in each sheet. I is a 2D sequence, where I (p, l) is the interaction type between

the lth and (l+1)th β-strands in the pth β-sheet represented in the spatial order.

We set I (p, l) = P if the lth β-strand is parallel to the (l + 1)th β-strand. If two

neighboring β-strands are anti-parallel, we set I (p, l) = AP . For the β-sheet

in Figure 2(a), I = (AP, AP, P ). Similar to the ordering sequence, I can be

decomposed into its subcomponents denoted by I p = I (p, :). This is formulated

as I = ΥpI p, where Υ is the sequence concatenation operator.

• C describes the non-local residue pairing pattern or the contact map arising

from the amino acid interactions in each β-sheet. In our model, we assume that

95



an amino acid can make a residue pairing interaction with up to 2 other amino

acids. There can be various formats to represent the contact map. The first

one is the classical representation, where a 2D sequence C̄ of size nR × nR is

used. Here, nR is the total number of amino acids labeled as β-strand and the

amino acid residues in β-strand segments (β-residues) are indexed following the

sequential order (i.e., from the N-terminus to the C-terminus of the protein).

C̄ (i, j) is set to 1 if the ith β-residue interacts with the jth β-residue. If there

is no interaction between the residue pair, then C̄ (i, j) is set to 0. As an

alternative representation, we can only keep the indices of the residue pairs

that make residue pairing interaction and store them in a 2D sequence denoted

by C . In other words, we only keep the residue indices for which C̄ is 1. In this

representation, each row of C corresponds to a β-sheet and contains the indices

of the amino acid residue pairs that make chemical interactions. For instance,

if the 5th amino acid interacts with the 3rd and 21th amino acids, and if they all

belong to the pth β-sheet then C (p, :) = C p contains (3,5,5,21). This notation is

equivalent to the classical contact map representation in the sense that given the

secondary structure segmentation SS , it is possible to convert one to the other.

Similar to O and I , C can be decomposed into subcomponents denoted by C p.

In addition, we can decompose each C p into its subcomponents designated by

C m
p . Here, C m

p contains the set of residue pairs that connect a pair of β-strands

and m runs from 1 to np
S − 1, where np

S is the number of β-strand segments in

the pth β-sheet. In that case, C m
p can be concatenated to form C p and likewise

C p can be concatenated to form C . This is expressed as C p = ΥmC m
p and

C = ΥpC p, where Υ is the sequence concatenation operator.
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4.2.1.2 Problem Definition

In β-sheet prediction, the goal is to predict the overall β-sheet conformation of the

protein given the input variables. Since the contact map C contains all the infor-

mation in the parameter set (G ,O , I ), the problem reduces to finding the optimum

contact map or the residue pairing structure. This is formulated as

C max = arg max
C

P (C | D ), (42)

where C max is the MAP estimator, which corresponds to the contact map (or equiv-

alently the conformation) maximizing the a posteriori probability P (C | D ), and D

is a short-hand notation for (R ,SS ,PP ), i.e., the set of input variables defined in

Section 4.2.1.1. The posterior probability can be modeled as

P (C | D ) = P (C ,G ,O , I | D ) (43)

= P (G ,O , I | D )P (C | G ,O , I ,D ) (44)

= P (G | D )P (O , I | G ,D )P (C | G ,O , I ,D ) (45)

Given the grouping vector, which specifies the assignment of β-strands into β-sheets,

we model the terms P (O , I | G ,D ) and P (C | G ,O , I ,D ) as

P (O , I | G ,D ) =
∏

k

P (O k, I k | G ,D ), (46)

P (C | G ,O , I ,D ) =
∏

k

P (C k | G ,O k, I k,D ), (47)

where the vectors O k, I k, and C k denote the ordering, interaction type and the

contact map of the kth β-sheet, respectively. With this formulation, we assume that

β-sheets2 are independent from each other. We further assume that

P (O k, I k | G ,D ) = P (O k, I k | D ), (48)

P (C k | G ,O k, I k,D ) = P (C k | O k, I k,D ), (49)

2Note that β-strands are not assumed to be independent.
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where the arrangements within a β-sheet is modeled as independent from the grouping

vector G .

4.2.1.3 Bayesian Models

In this section, we concentrate on the modeling of P (G | D ), P (O k, I k | D ), and

P (C k | O k, I k,D ).

Modeling of P (G | D )

We model the grouping term as in Ruczinski [130]:

P (G | D ) = P (SD | nSH , nS)P (nSH | nS), (50)

where nS is the number of β-strand segments in SS , nSH is the number of β-sheets

in G , SD is the sheet decomposition term, which defines the assignment of β-strands

into β-sheets. Analyzing the available data, Ruczinski [130] derived probability mod-

els for computing P (SD | nSH , nS) and P (nSH | nS) (see the thesis chapter in [130]

or Appendix A.1 for further details). In this thesis, we used the same model as in

Ruczinski [130] for the grouping term.

Modeling of P (O k, I k | D )

The vector (O k, I k) defines a structural unit known as a β-sheet motif. Ruczinski

et al. [131] surveyed the distribution of β-sheet motifs with two edge strands (open

sheets) in a large set of non-homologous proteins (see Section 4.2.3.1). They inves-

tigated to what extent the distribution can be accounted for by the rules previously

published in the literature. For instance, analyzing the motifs in four-stranded-β-

sheets, they have found that 48 out of 96 possible motifs were never observed (a

subset of of those motifs were shown in Figure 12). The non-existence of some motifs

can be explained by the “absolute” rules for physically impossible β-sheet configu-

rations. In addition to the “absolute” rules, there are also “probabilistic” rules that

favor some motifs more than the others. These can be categorized into two major

groups: preference for purely parallel and purely anti-parallel β-sheets, and preference
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Figure 12: A subset of four-stranded motifs that did not occur in the CulledPDB
dataset as evaluated by Ruczinski et al. [131].

for maintaining the sequential ordering of β-strands in the spatial ordering. Ruczinski

et al. [131] also reported that the position of the first β-strand segment in a motif is

not random. Based on these findings they developed probabilistic models to compute

the motif-likelihood distribution P (O k, I k | D ). We can start with the following

simplifying assumption:

P (O k, I k | D ) = P (O k, I k | H, L), (51)

where H is the helical status of the protein (helical or non-helical), and L is the

connector lengths between the strands given as indicators (short or long). Here, a

protein is considered to be helical if at least 20% of its amino acids are part of an

α-helix, and a connector is defined as a set of segmental residues, which connect two

β-strands. Note that connectors can include α-helices and loops.

Based on the available data, estimation of P (O k, I k | H, L) for proteins with four

or less β-strands can be performed using the raw counts from the CulledPDB dataset

as shown in Ruczinski et al. [131]. For proteins with five or more β-strands, this is not

feasible and one has to simplify the probability model. For this purpose, Ruczinski

et al. [130] identified a representative set of features that characterize (Ok, Ik). This

approach allows us to model P (Ok, Ik | SSc) as

P (Ok, Ik | SSc) =
P (Fk | SSc)

k(Fk, SSc)
, (52)

where Λk is the feature set that represents the motif (Ok, Ik) and k(Fk, SSc) is the

number of motifs that satisfy the constraints in SSc, which can be estimated from the

PDB database (see the thesis chapter of Ruczinski [130] or Appendix A.2 for further
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details). In this thesis, we used the same model as in Ruczinski [130] for the motif

distribution term.

Modeling of P (C k | O k, I k,D )

Let the kth β-sheet contain r β-strand segments, which are represented by B1,

B2,...,Br in the spatial order. We estimate P (C k | O k, I k,D ) as

P (C k | O k, I k,D ) =
r−1∏
m=1

P (C m
k | O k, I k,D ), (53)

where C m
k is the residue pairing pattern of the mth segment pair (Bm,Bm+1) of the kth

β-sheet. In other words, it is a subset of C k and defines the interactions (or contacts)

between Bm and Bm+1. Concatenation of C m
k with respect to m gives C k (see the

definition of C in Section 4.2.1.1). The term P (C m
k | O k, I k,D ) is computed as the

product of the individual amino acid residue pairing probabilities, which is formulated

as

P (C m
k | O k, I k,D ) =

∏
p

P (RP = 1 | Rp
m, Rp

m+1,O k, I k)×
∏

q

P (RP = 0 | Rq
m,O k, I k)

×
∏

r

P (RP = 0 | Rr
m+1,O k, I k), (54)

where P (RP = 1 | Rp
m, Rp

m+1,O k, I k) is the probability of the amino acid Rp
m in

segment Bm to interact (or make a contact) with the amino acid Rp
m+1 in segment

Bm+1, P (RP = 0 | Rq
m) is the probability of the amino acid Rq

m not to make a residue

pairing interaction with any amino acid in segment Bm+1, and P (RP = 0 | Rr
m+1) is

the probability of the amino acid Rr
m+1 not to make a residue pairing interaction with

any amino acid in segment Bm. In this formulation, RP is an indicator function that

is set to 1 when a pair of amino acid residues make a residue pairing interaction, and 0

when an amino acid residue does not make any interaction with the opposing segment.

The indices p, q, and r are used to label the amino acids either as residue pairing or

non-residue pairing. In the first multiplication term, p represents the residue pairing

interactions. For instance, p = 1 represents the first residue pairing interaction in
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C m
k , where Rp

m, Rp
m+1 are the interacting amino acids. Note that the residue pairing

interactions can be numbered in any order. The indices q and r are used for the

remaining amino acids that do not make an interaction with the opposing segment.

To be more specific, q is used to label the amino acids in segment Bm that do not

make any interaction with amino acids in Bm+1. Similarly, r is used to count the

amino acids in Bm+1 that do not have a partner in Bm. The range of p, q, and r

depends on the number of contacts in C m
k . The interaction probability of a segment

pair, P (C m
k |O k, I k,D ), is then computed by taking the product of the contributions

from interacting amino acid pairs as well as single amino acids, which do not have any

match in the opposite segment. Note that in a β-strand that interacts with two β-

strands, an amino acid might not make an interaction with the previous segment but

can possibly make an interaction with another amino acid in the second interacting

segment.

Unfortunately, we do not have enough data to fully estimate the terms on the

right hand side of Eq. (54). For this reason, we drop the dependency to (O k, I k) and

approximate P (C k | O k, I k,D ) as follows

P (C m
k | D ) =

∏
p

P (RP = 1 | Rp
m, Rp

m+1)×
∏

q

P (RP = 0 | Rq
m) (55)

×
∏

r

P (RP = 0 | Rr
m+1)

P (C k | D ) =
r−1∏
m=1

P (C m
k | D ) (56)

P (C k | O k, I k,D ) =
P (C k | D )∑

(C ′
k | O k,I k) P (C ′

k | D )
. (57)

Eqs. 55, and 56 simply compute the probability of C k and Eq. (57) normalizes it to

obtain the conditional probability. Similar to Eq. (54), P (RP = 1 | Rp
m, Rp

m+1) in

Eq. (55) represents the probability of an amino acid pair to make a residue pairing

interaction, and the terms P (RP = 0 | Rq
m), P (RP = 0 | Rr

m+1) represent the

probability of an amino acid in one segment not to make an interaction with any
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amino acid in the opposite segment. These terms can be reliably estimated from

the latest available data because they do not contain any dependency to (O k, I k).

Similar to Eq. (53), Eq. (56) computes the contact map score of the kth β-sheet.

In Eq. (57), the sum of scores is computed for all possible residue pairing patterns

that are realizable for a given (O k, I k). This value can be efficiently computed as

∑

(C k | O k,I k)

P (C k | D ) =
∑

(C k | O k,I k)

r−1∏
m=1

P (C m
k | D ) (58)

=
∑

(C 1
k | O k,I k)

...
∑

(C r−1
k | O k,I k)

r−1∏
m=1

P (C m
k | D ) (59)

=
r−1∏
m=1

∑

(C m
k | O k,I k)

P (C m
k | D ). (60)

Eq. (58) follows from Eq. (56). In Eqs. 59 and 60, instead of sampling all possible

C k one by one, we sample all possible C m
k for the segment pairs in C k and take

the product of sums to get the sum of P (C k | D ) values. The logic behind this

approach can also be explained by the following equation, where the sums of products

is converted to the product of sums.

∑
i

∑
j

∑

k

XiYjZk = (
∑

i

Xi)(
∑

j

Yj)(
∑

k

Zk). (61)

The sum of the scores of all possible contact maps for a segment pair

(i.e.,
∑

(C m
k | O k,I k) P (C m

k | D )) can be computed using dynamic programming,

which is explained in Section 4.2.1.4.3.b. To illustrate how the term P (C k |O k, I k,D )

is computed, it is useful to consider the example shown in Figure 3(a). Let the upper

β-strand segment be the first segment of the sheet, which is denoted by B1. We need

to first compute P (C k | D ) using Eqs. 55 and 56:

P (C k | D ) = P (C 1
k | D )P (C 2

k | D ),

where C 1
k is the contact map (or the residue pairing interaction pattern) for the

segment pair (B1,B2), and C 2
k is the contact map for the segment pair (B2,B3). The
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terms P (C 1
k | D ) and P (C 2

k | D ) become:

P (C 1
k | D ) = P (RP = 1 | Q, V )P (RP = 1 | D, L)× ...× P (RP = 0 | G)

P (C 2
k | D ) = P (RP = 0 | V )P (RP = 0 | L)P (RP = 1 | I, R)

× ...× P (RP = 1 | G,C),

where P (RP = 1 | Q, V ) is the probability of the amino acid Q to make a residue

pairing interaction with the amino acid V in the second segment, and P (RP = 0 | G)

is the probability of the amino acid G not to make a residue pairing interaction with

any amino acid in the second segment. Then, P (C k | O k, I k,D ) can be computed

using Eqs. 57- 60. In the next section, we will explain the algorithms developed for

efficient computation of the optimum β-sheet conformation.

4.2.1.4 Computational Methods

The Size of the Search Space

To determine the most likely β-sheet conformation, it is necessary to search the

space of conformations using efficient algorithms. There can be many alternatives for

grouping β-strands into β-sheets, ordering them spatially, defining their interaction

types, and matching their amino acids. The number of possible grouping combinations

G for a protein with up to 10 β-strands is shown in Table 40. From this table, the

number of possible β-sheet groups rises exponentially with the number of β-strands.

In the next level, for a given grouping vector G , we need to consider the number of

Table 40: Number of possible ways to group β-strands into β-sheets.
# β-strands # Grouping

combinations
2 1
3 1
4 6
5 11
6 89

# β-strands # Grouping
combinations

7 162
8 2140
9 8359
10 75778

ways to sample (O , I ) pair, i.e., the β-sheet motifs. For a β-sheet with n β-strands,

103



the total number of such motifs is given by n! × 2n−2 (the proof can be found in

Ruczinski et al [131]). After analyzing the number of possible (O , I ) values, in the

third level, we should consider the number of samples we can generate for C , i.e.,

contact map or the amino acid residue pairing pattern of all β-sheets given the vector

set (G ,O , I ). The number of possible contact maps depends on the length of the

β-strands and rises exponentially as the number of β-strands increases.

Sampling the Search Space and Computation of the Optimum Conformation

Although the number of possible conformations rises exponentially with the num-

ber of β-strands, we can reduce the computational cost by shrinking the search space

to a reasonable subspace and applying efficient sampling algorithms. For the first

objective, we impose β-strand segments as well as residue pairs that are predicted

by the BetaPro method [39] as strong interactions. In addition, we eliminate motifs

from the search space that have reasonably small motif scores. Details on space re-

duction methods can be found in the next two sections. For the second objective, we

follow a hierarchical approach to sample the search space. We observed that if we

sample the possible C patterns after sampling (G ,O , I ), then we make redundant

computations for some β-strand pairs. Therefore, given the amino acid sequence R

and the secondary structure SS , we first compute the optimum residue pairing in-

teractions (or alignments) between all β-strand segment pairs in SS , and store them

together with their alignment scores in a table. For a protein with nS β-strands, there

are nS(nS − 1)/2 possible segment pairs. For each segment pair, we compute both

parallel and anti-parallel alignments. Hence, the total number of segment alignments

becomes nS(nS − 1). The optimum alignment between two β-strand segments can

be computed using the Needleman-Wunsch algorithm [103, 64], which is the global

pairwise sequence alignment algorithm. Details of the Needleman-Wunsch implemen-

tation can be found in Section 4.2.1.4.3. After computing pairwise alignments of all
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possible segment pairs, we sample β-sheet conformations hierarchically. We first sam-

ple G , and for each G , we sample (O , I ). Here, we assume that the β-sheets in G

are independent and sample possible (O k, I k) values for each β-sheet separately3.

If a particular (O k, I k) combination contradicts with the significant segment pairs

and their directions derived using BetaPro, then we eliminate that (O k, I k) from the

search space. For instance, if segments 1 and 2 have strong interaction propensity but

O k pairs segment 1 with segment 3, then we eliminate O k from the search space. In

the next step, for a given (O k, I k) and G , we simply select the best scoring residue

pairing pattern C ∗
k using the alignments we computed earlier. This is formulated as

C ∗
k = arg max

C k

P (C k | O k, I k,G ,D ). (62)

From Eq. (53) we have,

max
C k

P (C k | O k, I k,G ,D ) = max
C k

∏
m

P (C m
k | O k, I k,G ,D ) (63)

=
∏
m

max
C m

k

P (C m
k | O k, I k,G ,D ). (64)

Then, Eq. (62) can be reexpressed as

C ∗
k = arg max

C k

∏
m

P (C m
k | O k, I k,G ,D ) (65)

= Υm arg max
C m

k

P (C m
k | O k, I k,G ,D ) (66)

= Υm(C m
k )∗, (67)

where Υ is the concatenation operator, (C m
k ) is the subset of (C k) that defines the

contact map (or the alignment) between the mth β-strand pair of the kth β-sheet,

and (C m
k )∗ is the optimum contact map for that segment pair. Hence, for a given

(O k, I k,G ) combination, the optimum contact map of the kth β-sheet is constructed

by concatenating the optimum contact maps (or the alignments) of the individual

β-strand pairs (see the definition of C in Section 4.2.1.1).

3k = 1, ..., r, where r is the number of β-sheets in G .
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After computing the optimum contact map for a given (O k, I k,G ), we select the

best scoring ordering and interaction pattern (O ∗
k, I ∗k) for the kth β-sheet as

(O ∗
k, I

∗
k) = arg max

(O k,I k)
P (O k, I k | G ,D )P (C ∗

k | O k, I k,G ,D ) (68)

Let C ∗∗
k be the optimum contact map for (O ∗

k, I
∗
k). In other words, C ∗∗

k is the

optimum among C ∗
k values derived for each (O k, I k). In the next step, we can

combine the optimum ordering, interaction and contact map of all β-sheets and obtain

(O ∗, I ∗,C ∗) for a given G

(O ∗, I ∗,C ∗) = Υr
k=1(O

∗
k, I

∗
k,C

∗∗
k ) (69)

Finally, the best scoring grouping G max and the best scoring contact map C max can

be found as

G max = arg max
G

P (G | D )P (O ∗, I ∗ | G ,D )P (C ∗ | O ∗, I ∗,G ,D )(70)

(O max, I max,C max) = arg max
(O ∗,I ∗,C ∗)

P (O ∗, I ∗ | G max,D )P (C ∗ | O ∗, I ∗,G max,D )

The algorithm for finding the optimum β-sheet conformation is summarized in Algo-

rithm 4.

To reduce the number of computations, we applied various constraints and elim-

inated the low scoring conformations. In the next two sections, we explain space

reduction techniques in more detail. Then, we explain how we compute the best

scoring alignment between a pair of β-strands.

Constraint Based Reduction of the Search Space

To sample possible grouping combinations (i.e., G values), we utilize a simple

recursive algorithm and perform an exhaustive search. Similarly, for each β-sheet in

G , we sample every possible β-sheet motif, i.e., (O , I ) combinations. If the likelihood

of a motif is less than the motif threshold (P (O k, I k |G ,D ) < t1), then we eliminate

that motif from the search space and do not make any further computations. We chose

t1 = 1e − 20, a number close to zero to eliminate unlikely motifs. This approach
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Algorithm 4: Computation of the Optimum β-Sheet Conformation
Input: Amino acid sequence R , secondary structure SS , BetaPro’s residue

pairing probability matrix PP , Bayesian model.
Output: Optimum β-sheet Conformation: (G max,O max, I max,C max)
Extract β-strand segments and residue pairs with strong interaction propensities1

from PP ;
Compute optimum pairwise alignments of β-strand segments both in parallel and2

anti-parallel orientation. Impose amino acid pairs with strong interaction
propensities derived in step 1;
maximum overall score = 0;3

for each G do4

grouping score = P (G | D );5

for each β-sheet in G do6

maximum joint scorek = 0;7

for each (O k, I k) in the β-sheet do8

if (O k, I k) contradicts with the significant segment pairs and their9

directions derived in step 1 then
continue with the next (O k, I k);10

motif score = P (O k, I k | G ,D );11

if (motif score < motif threshold) then12

continue with the next (O k, I k);13

else14

Find C ∗
k, the optimum contact map of the β-sheet for a given15

(O k, I k) using the table of alignments computed earlier.
joint score = P (O k, I k | G ,D )× P (C ∗

k | O k, I k,G ,D );16

if (joint score > maximum joint scorek) then17

(O ∗
k, I

∗
k) = (O k, I k);18

maximum joint scorek = joint score;19

C ∗∗
k = C ∗

k;20

all sheets score =
∏

k maximum joint scorek;21

(O ∗, I ∗,C ∗) = Υr
k=1(O

∗
k, I

∗
k,C

∗∗
k );22

overall score = grouping score × all sheets score;23

if (overall score > maximum overall score) then24

maximum overall score = overall score;25

G max = G ;26

(O max, I max,C max) = (O ∗, I ∗,C ∗);27
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allows us to reduce the set of candidate conformations. The same approach can also

be applied when sampling the G values, particularly when the number of β-strands

is reasonably high.

Search Space Reduction using BetaPro

To further reduce the space of configurations, we found it useful to utilize the

amino acid pairs predicted by BetaPro [39] with significant scores. BetaPro generates

a pairing probability matrix, for all β-strand residue pairs using secondary structure,

solvent accessibility and PSSM profiles, and information. In this table, each entry is

a real value in the range [0, 1] and represents the propensity of an amino acid pair to

make a contact. If the total number of amino acids that are labeled as β-strands is nR,

then the size of the pairing probability matrix becomes nR × nR. We observed that

when the residue pairing score is above a certain threshold, then with high confidence

there is a contact between the pair. Let Sres−pair denote the residue pairing score for

a pair of amino acid residues. We consider two categories: (1) high scoring residue

pairs (Sres−pair > 0.16); (2) mid scoring residue pairs (0.02 < Sres−pair ≤ 0.16).4

We applied the following heuristics before aligning the β-strand segments. For

each segment pair, we first select the corresponding sub-block from the BetaPro’s

pairing probability matrix and identify whether the segments form a significant pair.

To align the ith and jth segments, we choose the sub-array in the pairing probability

matrix where the rows of the sub-array correspond to the ith segment and columns

to the jth segment. The size of this block becomes nr×nc, where nr and nc are equal

to the number of amino acid residues in the ith and jth segments, respectively. Then,

we search the diagonals of the sub-block (both in parallel and anti-parallel directions)

and check if there is a high or mid scoring residue pair (see Figure 13). If the number

of high scoring residue pairs in a diagonal is greater than equal to two, then we flag

the segment pair as high scoring and store it in a table. If the total number of high

4All the thresholds used in this section are found empirically.
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scoring residue pairs in all diagonals is less than two, then we check if there is a mid-

scoring residue pair. Similar to the high scoring case, we search the diagonals of the

sub-block and identify mid-scoring residue pairs. If the number of mid scoring residue

pairs in a diagonal is greater than equal to three and if the average score of such pairs

is greater than or equal to 0.08, then we flag the segment pair as mid scoring and

store it in a table. The average score for a set of amino acid pairs is computed simply

as the sum of the residue pairing scores divided by the total number of residue pairs.

After assigning a segment pair to the high or mid scoring category, we select the

high and mid scoring residue pairs for those segments. If the segment pair is in the

high scoring category, we first find the diagonal that has the highest average residue

pairing score and select the significant residue pairs on that diagonal. Then, we

eliminate the diagonals that share the same rows and columns with the best scoring

diagonal. Finally, we select the diagonals that are immediate neighbors of the best

diagonal. The steps of the selection process is illustrated in Figure 14. This approach

ensures that each amino acid residue makes at most one contact with the partner

β-strands and allows gapped alignments. For example, the diagonals (a) and (d) in

Figure 14 should generate the alignment shown in Figure 15.

 M K T V D A S D P 
H          
D          
V          
S          
K          
R          
S          
 

(a) 

(b) 

Figure 13: A sub-block of the BetaPro’s residue pairing probability matrix. Each
entry represents the probability of an amino acid pair to make a contact. In this
figure, the segments being compared are HDVSKRS and MKTVDASDP. Diagonals
of the sub-block are searched for high and mid scoring residue pairs: (a) a diagonal
in parallel direction, (b) a diagonal in anti-parallel direction.
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For mid scoring residue pairs, we scan the diagonals of the sub-block (both in

parallel and anti-parallel directions) and store the residue pairs for which the aver-

age diagonal score is the highest (see Figure 16). Here, we do not consider a second

neighboring diagonal because for mid-scoring segments the residue pairing probabil-

ities take lower values and hence the signal to noise ratio is smaller. However, we

still allow gapped alignments for the mid-scoring case. The only difference is gapped

alignments are not imposed by residue pairs derived from BetaPro as in the high

scoring case. The average score of a diagonal is again computed as the sum of the

mid scoring residue pairs on that diagonal divided by the total number of residue

pairs.

 M K T V D A S D P 
H          
D          
V          
S          
K          
R          
S          
 

 

(a) 

(b) 

(c) 

(d) 

 

Figure 14: Identifying high-scoring residue pairs for a high scoring segment pair.
(a): The diagonal with the best average residue pairing score. (b) and (c): Diagonals
that are eliminated for sharing the same rows and columns with the best scoring
diagonal. (d): A neighbor of the top scoring diagonal. The selected residue pairs are:
H-P, D-D, V-S, S-D, K-V, R-T, S-K.

After storing segment and residue pairs with significant scores, we sort the segment

pairs according to the average residue pair score. Then, we eliminate segment pairs

that contribute to a cycle using a simple cycle detection algorithm from the graph

theory. This step is necessary because our model does not cover β-barrels which are

characterized by cyclic segment graphs. As an example to a cyclic pairing graph we

H D V - S K R S - 
| | |  | | | |  
P D S A D V T K M 
 

Figure 15: The alignment expected from the high scoring residue pairs for the
sub-block of the example pairing probability matrix.
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can consider the following segment pairs 1-2, 2-3, 3-1, in which the segments 1 to 3

form a cyclic interaction graph. Our cycle elimination algorithm is as follows. We

first check if the stored segment pairs form a cycle. This could be achieved using a

simple cycle detection algorithm [109]. If there is a cycle, then we remove a segment

pair with the lowest average residue pair score and check for cycles again. If there is

no cycle, we terminate. If there is still a cycle, then we insert the removed segment

pair back to the table and remove the second lowest segment pair. We continue until

no cycle condition is satisfied. If no cycle condition is not satisfied by removing a

single segment pair, then this means that there is more than one cycle. In that case,

we explicitly identify the cycles including their edges and vertices and remove from

each cycle the lowest scoring segment pair. Details of the heuristics applied in this

section is summarized in Algorithm 5.

After identifying segments and residue pairs that are imposed in subsequent steps,

we align every possible segment pair considering the residue pairs with significant

scores. This is explained in the next section.

Pairwise Alignment of Segments using the Needleman-Wunsch Algorithm

We used the Needleman-Wunsch algorithm [103, 64] to compute the optimum

alignment between a pair of β-strand segments. The classical implementation of the

algorithm uses dynamic programming and consists of three steps: (1) initialization,

(2) forward pass, (3) backtracking. In Needleman-Wunsch algorithm, the score of a

 M K T V D A S D P 
H          
D          
V          
S          
K          
R          
S          
 

Figure 16: Identifying mid-scoring residue pairs for a mid-scoring segment pair.
Only the residue pairs on the diagonal that have the highest average score are selected.
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Algorithm 5: Selecting The Significant β-Strand Segments and Residue
Pairs

Input: β-strand segments (segment of amino acids) in SS and BetaPro’s
residue pairing probability matrix PP . Number of segments is nS .

Output: β-strand segments and residue pairs with strong interaction
propensities.

for i = 1 : nS do1

for j = 1 : nS do2

if i = j then3

continue;4

else5

Extract the (i, j)th sub-block of PP ;6

Count the number of high scoring residue pairs (nhigh) in parallel7

and anti-parallel diagonals of the sub-block;
if (∃ a diagonal with nhigh ≥ 2) then8

Flag (i, j) as a high scoring segment pair;9

Select the high scoring residue pairs;10

else11

Count the number of mid scoring residue pairs (nmid) in12

parallel and anti-parallel diagonals of the sub-block;
if (∃ a diagonal with nmid ≥ 3) AND (average score > 0.08)13

then
Flag (i, j) as a mid scoring segment pair;14

Select the mid scoring residue pairs;15

else16

continue;17

Drop segment pairs that are part of a cycle. Start eliminating the segment18

pairs with the lowest average score;

path is computed by adding match or gap scores since they are essentially log-odds

values. For the β-strand alignment problem, we used a similar approach. We first

initialized the dynamic programming matrix at position (0, 0) to 0. We then set s(i, j)

to log P (RP = 1 | Ri, Rj), which is the match/mismatch score for aligning the amino

acid Ri to Rj (see Section 4.2.1.3). For gap scores, we chose d(i) as log P (RP = 0 | Ri)

and d(j) as log P (RP = 0 | Rj), where d(i) is the gap penalty score for aligning the

ith amino acid of the first sequence to a gap symbol, and d(j) is the gap score for

aligning the jth amino acid of the second sequence to a gap symbol. The dynamic

programming matrix is then computed by adding the match/mismatch and gap scores
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as formulated in Eqs. 71 to 73.

M(i, 0) = M(i− 1, 0) + d(i) 1 ≤ i ≤ l1 (71)

M(0, j) = M(0, j − 1) + d(j) 1 ≤ j ≤ l2 (72)

M(i, j) = max





M(i− 1, j − 1) + s(i, j)

M(i− 1, j) + d(i)

M(i, j − 1) + d(j)

(73)

After computing the dynamic programming matrix, we start from the cell indexed

as (l1, l2), and perform backtracking to find the optimum alignment path. For this

purpose, we used the same backtracking algorithm as in the classical implementa-

tion of the Needleman-Wunsch algorithm [53, 103, 64]. The alignment score is then

converted to a probability value by computing its exponential.

Enforcing High and Mid Scoring Residue Pairs in the Alignment

As explained in Section 4.2.1.4, the alignment between a pair of β-strand segments

is computed using the Needleman-Wunsch algorithm. After identifying high and mid

scoring residue pairs, we need to make sure that the optimum alignment path passes

through such pairs. This can be achieved by a simple modification of the Needleman-

Wunsch algorithm. Let the β-strand segments that will be aligned have l1 and l2

amino acids, respectively. Also, let the mth amino acid of the first segment and the

nth amino acid of the second segment have a significant residue pairing probability

score. In the classical implementation of the Needleman-Wunsch algorithm, first, a

dynamic programming matrix, which contains the alignment scores of sub-paths up

to a certain residue pair is computed in the forward pass. Since our alignment should

pair the mth amino acid of the first segment to the nth amino acid of the second

segment, we need to make sure that the alignment path makes a transaction from

(m−1, n−1) to (m,n). This can be easily guaranteed by setting the scores of the cells

(m, 0), (m, 1), ..., (m,n− 1) and (0, n), (1, n), ..., (m− 1, n) to 0 as shown in Figure 17
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during the forward pass. When this step is repeated for all residue pairs in the high

or mid scoring category, they are guaranteed to appear in the resulting alignment.

The Sum of the Alignment Scores

In Eq. (60), for each segment pair in a given β-sheet, the sum of the alignment

scores of all possible residue pairing combinations has to be computed. This can

be performed efficiently using a dynamic programming approach. Let Msum denote

a dynamic programming matrix, similar to the M matrix used in the Needleman-

Wunsch algorithm. The only difference is that Msum includes the sum of the scores

of alignment paths instead of the maximum scores. The initialization of Msum is the

same as that of the M matrix. On the other hand, the forward pass equation takes

the following form:

Msum(i, j) = log(eMsum(i−1,j−1)+s(i,j) + eMsum(i−1,j)+d(i) + eMsum(i,j−1)+d(j)), (74)

where e is the exponential. Therefore, at each position, instead of choosing the

maximum score, we compute the sum of scores. Then, the sum of the scores of

all possible alignments expressed as
∑

(C m
k | O k,I k) P (C m

k | D ) becomes equal to

exp(Msum(l1, l2)). This can be easily proved using Eq. (61), which is omitted here for

simplicity.

Computation Times

 W Y L I T E S 
A    0    
K    0    
V 0 0 0     
D        
Q        
 
 
 Figure 17: Modification of the dynamic programming matrix during the forward

pass of the Needleman-Wunsch algorithm. The segments being aligned are AKVDQ
and WYLITES. The amino acid residues V and I are detected as a significant residue
pair. To ensure the alignment path matches V to I, the cells shown are assigned to
zero. This discards all the paths that do not pair V with I.

114



The BetaPro method has three modular blocks. The first block generates a pair-

ing probability matrix using the amino acid sequence, secondary structure, solvent

accessibility and PSSM profiles. The second and third blocks compute the optimum

β-sheet conformation by dynamic programming. Computationally, the first block is

more intensive as compared to the second and third blocks due to the derivation of

PSSM profiles using the PSI-BLAST algorithm. On average, the last two blocks take

at most a couple of seconds to execute, whereas the first block’s execution time is on

the order of minutes.

Our method uses the pairing probability matrix of BetaPro to extract the amino

acid pairs that have strong interaction propensities. Therefore, we first execute the

first block of BetaPro and then, we sample possible conformations using efficient

algorithms. Since we reduce the space of conformations significantly through the

utilization of BetaPro’s pairing probability matrix, our computations are significantly

reduced. On average our method computes the optimum conformation of a protein

with six or less β-strands in 0.31 seconds. For proteins with four β-strands it takes

approximately 1 second to compute the optimum conformation. This is the same for

proteins with five or six β-strands. Therefore, our method is computationally efficient

and the computation time does not rise exponentially with the number of β-strands.

Note that we implemented our method on a Windows XP OS, with an Intel Pentium

III Xeon processor, 930 MHz CPU and 640MB RAM. BetaPro and PSI-BLAST on

the other hand are implemented on a 32-bit GNU/Linux machine with Intel Pentium

IV processor, 3.0 GHz CPU and 2GB RAM.

4.2.2 Beta-Sheet Prediction for Proteins with > 6 Beta-Strands

The Bayesian nature of the Ruczinski model requires sufficient amount of training

data to reliably estimate probability distributions. As the number of β-strands in-

crease, the number of possible motifs rise exponentially. For proteins with more than
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four β-strands, Ruczinski model reduces the feature set (or dimensions) by group-

ing proteins according to their structural properties. In our simulations we observed

that, for proteins with more than six β-strands, the model becomes less specific and

therefore its discriminative power reduces (the result not shown). For such proteins,

instead of utilizing a Bayesian approach, we simply choose the same β-strand pairing

predictions as BetaPro. Then, we compute gapped alignments of the paired β-strands

both in parallel and anti-parallel directions. Here, for simplicity, we set the gap scores

to zero and compute the score of an alignment by taking the sum of the residue pair-

ing probability values derived using BetaPro. Finally, we select the interaction type

and the residue pairing patterns with maximum alignment scores.

4.2.3 Datasets

4.2.3.1 CulledPDB

The CulledPDB set is compiled from the PDB [15] by the Dunbrack lab [7]. In

this thesis and in the work by Ruczinski et al. [131] the set with sequence identity

percentage cut-off 25% and resolution cut-off 2.5Å is used. Since the CulledPDB lists

are updated periodically, the datasets grow in time. Therefore the version used by

Ruczinski et al. is smaller in size (approximately 2000 non-homologous chains) than

the one we downloaded in May 2007, which contains 2234 chains. The latest version

of this dataset can be obtained from the PISCES server [14].

4.2.3.2 BetaSheet916

The BetaSheet916 set is extracted from the PDB as of May 2004 by Cheng and

Baldi [39]. This dataset contains 916 chains with an HSSP threshold of 0, which

corresponds to a sequence identity of 15-20%. The set is splitted randomly and

evenly into 10 folds (subsets) to perform cross validation. Details of how the set

is compiled can be found in Cheng and Baldi [39] and the set can be downloaded

from [2].

116



4.2.4 BetaPro and PSI-BLAST

We downloaded and installed the BetaPro method from [2]. BetaPro uses PSI-BLAST

version 2.2.8 to generate PSSM profiles. In our simulations, we used the latest versions

of the PSI-BLAST (version 2.2.18) and the NR database (as of July 2008), which are

obtained from the NCBI’s archives [12].

4.3 Results and Discussion

4.3.1 Accuracy Measures

To assess the prediction performance, we used the sensitivity (TP/(TP+FN)) and the

positive predictive value (TP/(TP+FP)) as the accuracy measures. We evaluated the

predictions in the following categories: β-strand pairing, pairing direction (parallel

or anti-parallel), and amino acid residue pairing (contact map). In each category,

we computed the sensitivity and positive predictive value measures separately. For

instance, the contact map sensitivity is computed as the total number of correctly

predicted amino acid pairs divided by the total number of amino acid pairs in the

dataset.

4.3.2 Experimental Settings

For the BetaPro method, we used the greedy graph algorithm to predict the β-sheet

topology. Similar to the paper by Cheng and Baldi [39], we used true (native) sec-

ondary structure assignments and solvent accessibility measures, which are available

in the DSSP database [11]. Hence, the results reported in this work serve as an upper

bound on the performance obtained by predicted versions of secondary structure and

solvent accessibility.

4.3.2.1 Model Training

The following distributions were learned from the training data: grouping distrib-

ution P (G | D ), motif distribution P (O k, I k | D ), and contact map distribution
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P (C k | O k, I k,D ). The parameters used in modeling the grouping and motif distri-

butions were estimated by Ruczinski [130] from the Culled PDB database, which is a

database of non-homologous proteins (see Section 4.2.3.1). In the Culled PDB release

used by Ruczinski, there were 1602 two stranded β-sheets, and 872 four stranded β-

sheets (the number of three stranded β-sheets is not provided). Out of 96 possible

four stranded motifs, Ruczinski observed only 48 motifs in the database. Among

those, 18 motifs were observed only once and less than 20 motifs were observed ten

times or more. Ruczinski used 8 bins for two stranded, 96 bins for three stranded

and 1536 bins for four stranded β-sheets to estimate the probability distributions of

motifs conditioned on the helical status and the connector lengths state between β-

strands. Therefore, each bin represents a different configuration (or folding topology)

including the motif type, helical status and connector lengths state. Ruczinski also

used pseudo-counts and performed bin collapsing when the number of counts in bins

were significantly low. This prevents the model to overfit to particular configurations.

In the following sections, we provide details on the estimation of the parameters in

our model.

Grouping Distribution

We used the same parameters as in Ruczinski [130] for P (G | D ). We computed

the term #[crossings(SD, nSH , nS)] in Eq. (9.13) of Ruczinski [130] using the Culled

PDB dataset as it was not available in [130].

Motif Distribution

We used the estimated values in [130, 131] for proteins with two and three β-

strands. For four stranded proteins, only the frequency information of the most

common motifs is available in [130, 131]. Here, we used those frequencies as the

probability values of the most common motifs and we assigned equal conditional

probabilities to the remaining less common motifs. For example, the most frequent

motif for a non-helical protein having short connectors (column L1 of Figure 9.9(b)
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in [130] or column L1 of Figure 3 in [131]) was O =(1-2-3-4) and I = (AP,AP, AP ).

In our model, the probability of this motif is represented by P (O k, I k | H = 0, L =

(SSS)) (see Eq. (51)) and this probability was estimated by Ruczinski as 0.85. To the

remaining 95 possible motifs, we assigned equal conditional probability values i.e.,

P (O k, I k | H = 0, L = (SSS)) = 0.15/95. For proteins with a higher number of β-

strands, we estimated the parameters P (Pp, J | n,H,L, F ) and kn,L(Pp, P
s
p , J, Js, F )

(see Appendix A.2) using the CulledPDB dataset as of May 2007 (see Section 4.2.3.1)

as they were not available in [130]. For P (F | H,L) and P (P s
p , Js | n,H, L, F, Pp, J),

we used the estimated values in Ruczinski [130].

Contact Map Distribution

Contact map distribution depends on the parameters P (RP = 1 | Rp
m, Rp

m+1),

P (RP = 0 | Rq
m), P (RP = 0 | Rr

m+1) in Eq. (55). In this section, we estimated

those probability distributions from the BetaSheet916 dataset (see Section 4.2.3.2) for

which, the secondary structure assignments are taken from the DSSP database [11].

In the cross validation experiment, we only used the folds that form the training set.

To estimate those parameters, we used the maximum-likelihood estimation procedure

where we count the observed number of occurrences, and apply a proper normalization

factor to compute probability values.

4.3.3 10-Fold Cross Validation on BetaSheet916

In the first set of simulations, we performed a 10 fold cross validation on the Be-

taSheet916 set, which contains 916 proteins extracted from the Protein Data Bank

(PDB) (see Section 4.2.3.2 for details). In a cross validation experiment, at each

step, a fold is selected as a test data and remaining folds form the training set. Then

predictions are computed for proteins in the test set with the models trained on the

training set. This process is repeated until all proteins in the original set are tested.

Once the predictions are complete, then prediction accuracy is computed.
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4.3.3.1 Performance for Proteins with ≤ 4 β-Strands

In this simulation, we performed a 10 fold cross validation experiment on BetaSheet916

and evaluated BetaZa (our method) and BetaPro for proteins with less than or equal

to four β-strands. In each fold of the BetaSheet916, we only considered proteins with

less than or equal to four β-strands (a total of 67 proteins). Furthermore, since the

current version of our model allows up to two β-strand partners for proteins with

six or less β-strands, we eliminated proteins that had β-strand segments interacting

with more than 2 segments. Among the 67 proteins, there was only one protein with

more than 2 segmental partner. Therefore, the total number of proteins tested from

all folds becomes 66, which contain a total of 163 β-strand pairs and 1846 β-residue

pairs.

Comparing the performances of BetaPro and BetaZa, we obtained the results

summarized in Table 41, for sensitivity and positive predictive value (PPV) measures.

From these results, we can conclude that BetaZa significantly outperforms BetaPro

for proteins with less than or equal to four β-strands.

Table 41: Sensitivity and Positive Predictive Value measures, evaluated on the
BetaSheet916 set. Proteins with four or less β-strands are used as the test data.
Each β-strand has less than three segmental partners.

Measure Sensitivity (%) PPV (%)
Prediction Strand Pairing Contact Strand Pairing Contact
Category Pairing Direction Map Pairing Direction Map
BetaPro 81.595 79.755 72.264 85.807 83.871 73.702
BetaZa 90.798 88.344 82.232 90.244 87.805 81.965

4.3.3.2 Performance for Proteins with ≤ 6 β-Strands

In the next step, we extended our test set to include proteins with six or less β-strands

and repeated the 10 fold cross validation experiment performed in Section 4.3.3.1.

There were a total of 187 such proteins in BetaSheet916. Among those, 16 had

β-strands with more than 2 segmental partners. Eliminating those, our test data
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contained 171 proteins from all folds with 586 β-strand pairs and 5838 β-residue

pairs.

The sensitivity and positive predictive value measures are shown in Table 42.

For proteins with six or less β-strands, BetaZa is significantly more accurate than

BetaPro. This is also validated by evaluating the accuracy for proteins with a fixed

number of β-strands. Table 43 shows the performance for proteins with five β-strands,

whereas Table 44 shows the performance for proteins with six β-strands. Although the

positive predictive value measure of BetaPro is slightly better than BetaZa in segment

pairing and interaction type categories, BetaZa performs better in sensitivity measure

and especially in the contact map category. BetaPro’s higher positive predictive value

measure is caused by its tendency to generate fewer number of predictions instead of

generating higher true positives.

Table 42: Sensitivity and Positive Predictive Value measures, evaluated on the
BetaSheet916 set. Proteins with six or less β-strands are used as the test data. Each
β-strand has less than three segmental partners.

Measure Sensitivity (%) PPV (%)
Prediction Strand Pairing Contact Strand Pairing Contact
Category Pairing Direction Map Pairing Direction Map
BetaPro 79.010 77.133 71.634 83.877 81.884 73.575
BetaZa 83.271 80.370 77.665 84.282 81.347 79.541

Table 43: Sensitivity and Positive Predictive Value measures, evaluated on the
BetaSheet916 set. Proteins with five β-strands are used as the test data. Each β-
strand has less than three segmental partners.

Measure Sensitivity (%) PPV (%)
Prediction Strand Pairing Contact Strand Pairing Contact
Category Pairing Direction Map Pairing Direction Map
BetaPro 80.349 78.603 74.803 88.462 86.534 78.947
BetaZa 83.843 80.349 77.865 86.099 82.511 79.181
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Table 44: Sensitivity and Positive Predictive Value measures, evaluated on the
BetaSheet916 set. Proteins with six β-strands are used as the test data. Each β-
strand has less than three segmental partners.

Measure Sensitivity (%) PPV (%)
Prediction Strand Pairing Contact Strand Pairing Contact
Category Pairing Direction Map Pairing Direction Map
BetaPro 75.258 73.196 66.706 77.249 75.132 66.628
BetaZa 76.289 73.711 72.333 76.684 74.093 77.125

4.3.3.3 Overall Performance

In this simulation, we evaluated the accuracy on the full set of proteins by performing

a 10 fold cross validation experiment on BeteSheet916. This set contains a total

of 8172 β-strand pairs and 31638 β-residue pairs. For proteins with six or less β-

strands, we computed the predictions as described in Section 4.2.1, and for proteins

that contain more than six β-strands as in Section 4.2.2. Among proteins with six

or less β-strands, we eliminated those with more than two segmental interactions

(removing only 16 proteins). For the remaining proteins, we allowed a β-strand to

interact with more than two segments because we used BetaPro to compute β-strand

pairing predictions. Hence, the overall accuracy of BetaZa is not significantly different

from that of BetaPro in the first two categories. However, due to gapped alignments

of β-strands, the β-residue pairing accuracy of BetaZa is better than BetaPro by 3%

both in sensitivity and positive predictive value measures.

Table 45: Sensitivity and Positive Predictive Value measures, evaluated on the
BetaSheet916 set. Only 16 proteins that had: (1) ≤ 6 β-strands and (2) at least one
β-strand with more than two segmental interactions are excluded from the test data.

Measure Sensitivity (%) PPV (%)
Prediction Strand Pairing Contact Strand Pairing Contact
Category Pairing Direction Map Pairing Direction Map
BetaPro 68.903 66.072 63.411 61.921 59.376 54.373
BetaZa 69.075 66.244 66.477 61.911 59.373 57.211
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4.3.3.4 Performance of BetaZa for Individual Configurations

The analysis performed by Ruczinski et al. [131] shows that a handful of β-sheet

configurations are much more frequent than the others. This means that higher

probability values will be assigned to such configurations. In that case, it becomes

important to verify that our method is capable of generating accurate predictions

for less frequent configurations. To understand this, we analyzed the performance

on individual proteins. For this purpose, we considered proteins with less than or

equal to four β-strands as in Section 4.3.3.1. There are 66 proteins and 39 distinct

configurations in this test data. Here, a configuration is represented by the following

features: β-sheet motif (spatial ordering and interaction types), helical status of the

protein, and the length states of the segments that connect β-strands. We defined

a configuration as less frequent when the motif probability assigned by the model is

less than 0.05. The motif frequencies can be found in Ruczinski et al. [131].

Table 46 shows the sensitivity and positive predictive value of individual β-sheet

configurations. In each row, the features that characterize the configuration as well

as the motif probabilities conditioned on the helical status and connecting lengths

states are listed. In this table, the symbol ”|” is used to separate β-sheets in the

spatial ordering representation. For instance, 1-2|3-4 means that the first and the

second β-strands form the first β-sheet; the third and the fourth β-strands form the

second β-sheet; and there is no interaction between the second and the third segments.

Alternatively, 1-2-3-4 shows that all four β-strands form a single β-sheet. The helical

status and the connecting length states are defined in Section 4.2.1.3. Here NH stands

for non-helical and H for helical protein. Similarly, S denotes a short connector and L

represents a long connector. A connector is a set of helix and/or loop segments that

are in between β-strand pairs adjacent in sequence representation. From this table,

we can observe that although the prediction accuracy of less frequent configurations

is in general lower than the frequent ones, our method was able to generate highly
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accurate predictions for five configurations that have significantly low probability

scores (marked in boldface). This clearly demonstrates that our method is able to

predict less frequent motifs with high accuracy and the increase in the performance

is not simply because of an affinity towards for more frequent motifs or an imbalance

of the training data.
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4.4 Summary

In this chapter, we have shown that elaborate mathematical models combined with ef-

ficient algorithms bring significant improvements to β-sheet prediction. We addressed

the problem of β-sheet prediction defined as the prediction of β-strand pairings, inter-

action types (parallel or anti-parallel), and β-residue interactions (or contact maps).

We analyzed proteins according to the number of β-strands they contain. We in-

troduced a Bayesian approach for proteins with six or less β-strands, in which we

modeled the conformational features in a probabilistic framework by combining the

amino acid pairing potentials with a priori knowledge of β-strand organizations. To

select the optimum β-sheet architecture, we analyzed the space of possible confor-

mations by efficient heuristics, in which we significantly reduce the search space by

enforcing the amino acid pairs that have strong interaction potentials. Furthermore,

we employed an algorithm that finds the optimum pairwise alignment between β-

strands using dynamic programming. For proteins with more than six β-strands, we

first computed β-strand pairings using the BetaPro method. Then, we computed

gapped alignments of the paired β-strands in parallel and anti-parallel directions and

chose the interaction types and β-residue pairings with maximum alignment scores.

We performed a 10-fold cross validation experiment on the BetaSheet916 set and

obtained significant improvements in the prediction accuracy in all categories for pro-

teins with six or less β-strands. For proteins with higher number of β-strands we

obtained significant improvements in the contact map prediction category with other

categories yielding equal performance.
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CHAPTER V

CONCLUSION

In this thesis, we developed Bayesian models and machine learning algorithms for

protein secondary structure and β-sheet prediction.

In protein secondary structure prediction, we concentrated on proteins in the

single-sequence category which do not share any significant similarity with any other

protein. Such “orphan” proteins are difficult targets for functional characterization

and necessitate the utilization of additional knowledge sources. For an orphan protein,

any method of secondary structure prediction performs as a single-sequence method.

Developing better methods of secondary structure prediction from single-sequence

has a definite merit as it helps improving the functional annotation of orphan pro-

teins. With this motivation, we showed that sophisticated dependency models and

training methods bring further improvements to protein secondary structure predic-

tion. As new sequences are added to the database, it will be possible to augment the

dependency structure and obtain even higher accuracy.

Typically protein secondary structure prediction methods suffer from low accu-

racy in predicting β-strands, in which non-local correlations have a significant role. In

this thesis, we developed an N-best strategy to incorporate long-range dependencies

into our secondary structure prediction algorithm. Unfortunately, the incorporation

of non-local interactions into the hidden semi-Markov model did not bring signifi-

cant improvements in the single-sequence setting. Nevertheless, the N-best strategy

is still promising for proteins with evolutionary homologues, which share a larger

portion of the database. As a future work, it is possible to extend the N-best de-

coding approach for the case when evolutionary information in the form of multiple
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alignment profiles (e.g. PSSM profiles) is available. The proposed N-best algorithms

and techniques can also be applied to other problems that employ HMMs such as

gene prediction, topology prediction for outer-membrane proteins, sequence-sequence

and sequence-structure alignments, speech recognition, video scene annotation, and

machine translation.

In β-sheet prediction, we developed Bayesian models and algorithms to compute

the optimum β-sheet conformation given the amino acid sequence, secondary struc-

ture, solvent accessibility and PSSM profiles. The predictions can be improved even

further. First of all, sophisticated methods for the estimation of the residue pair-

ing propensities will definitely improve the accuracy and quality of the predictions.

For this purpose, one can incorporate additional informative features such as HMM

profiles, contact potentials, residue types, segment window information, and protein-

level information [40]. In a second avenue, one can develop more elaborate models

for an enhanced scoring of β-strand organizations. We introduced a Bayesian model

for proteins with six or less β-strands and allowed each β-strand to interact with

at most two other segments. Extension of the model to characterize higher order

segmental interactions can easily be achieved by estimating their probabilities and

sampling them in the search space. For proteins with more than six β-strands, it

is possible to incorporate a richer set of folding rules as in [79]. Finally, as new

proteins are added to the structure database it will be possible to extend the motif

distribution to model longer proteins with many β-strands and extend the coverage of

the Bayesian model. Advances in protein secondary structure and β-sheet prediction

will contribute substantially to the accurate prediction of the function and the 3-D

structure.
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APPENDIX A

BAYESIAN MODELS FOR BETA-SHEET GROUPINGS

AND ORDERINGS

A.1 The Grouping Term P (G | D )

A.1.1 P (SD | nSH , nS)

To model the first component of P (G | D ), the number of crossings is used as a

surrogate. The number of crossings is defined as the number of times that one leaves

a β-sheet and enters another traversing the backbone of the protein from the N-

terminus to the C-terminus (sequential order). In this model, it has been assumed

that given the number of strands and sheets, all decompositions that yield the same

number of crossings are equally likely. For example, the decompositions 1-2-3-1-2-3

and 1-2-3-2-1-3 of six stranded proteins with three β-sheets1 both have 5 crossings

and are considered to be equally likely.

In that case, the model takes the following form:

P (SD | nSH , nS) =
P (#crossings(SD))

#SD∗ (75)

if nSH ≥ 2 and 1 otherwise. In the above equation, #crossings(SD) is the number of

crossings in decomposition SD and #SD∗ is the total number of sheet decompositions

with the same number of crossings.

If there are nSH β-sheets, there can be at least nSH − 1 and at most nS − 1

crossings. It has been found that the physical nature of structure formation favors

proteins with small number of crossings. Hence, it is reasonable to consider two

scenarios: (1) Having the minimum number of crossings; (2) Having the number of

1Numbers represent β-sheets.
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crossings in excess of the minimum. Next, we explain the models derived for each

case in more detail.

(1) #crossings(SD) = nSH − 1: In this scenario, the outcome is binary (having

the minimum number of crossings versus not having the minimum). Therefore it is

possible to use logistic regression to predict this outcome. Based on the available

data, it is useful to distinguish proteins with two β-sheets from proteins with more

than two β-sheets.

log
p

1− p
= −3.372 + 0.653× ns − 1.285× I(nSH>2) (76)

with p being equal to P (#crossings(SD) = nSH − 1), and I being the indicator

function of the argument taking the value of one if nSH > 2 and zero otherwise.

(2) #crossings(SD) > nSH − 1: Let Emax be the maximum number of crossings

by which we can exceed nSH − 1. Then we can define the variable Y as

Y = #crossings− nSH , (77)

where Y ∈ {0, ..., Emax − 1}. Ruczinski [130] approximated the distribution of Y

using a Poisson model:

P (Y = k) =
exp(−λ)λk

k!∑Emax−1
j=0 exp(−λ)λj

j!

(78)

where P (Y = k) is Poisson for k < Emax and 0 otherwise. In this model, the

parameter λ can be estimated as

log(λ) = −1.185 + 0.195× nS − 0.463× I(nSH>2), (79)

which is equivalent to

λ = 0.306× 1.215nS × 0.629I(nSH>2) . (80)
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To summarize the model for the number of crossings, let:

X be the number of crossings in excess of nSH − 1

Y be the number of crossings in excess of nSH , i.e., Y = X − 1

Z be an indicator if the number of crossings exceeds nSH − 1

logistic be the term on the right hand side of Eq. (76)

poisson be the term on the right hand side of Eq. (78)

Then, we have

P (X = 0) = P (Z = 0) =
exp(logistic)

1 + exp(logistic)
, (81)

and for j ∈ {1, ..., Emax} we get

P (X = j) = P (X = j, Z = 1)

= P (X = j | Z = 1)P (Z = 1)

= P (Y = j − 1 | Z = 1)P (Z = 1)

= poisson× 1

1 + exp(logistic)
.

A.1.2 P (nSH | nS)

Since every β-sheet has to have at least two β-strands, the maximum number of

β-sheets is

nSmax = [
nS

2
]. (82)

Let X be the number of β-sheets in excess of the one β-sheet required, and define

n := nSmax − 1, where X ∈ {0, ..., n}. Analyzing the data, X can be modeled as a

binomial distribution assuming

X ∼ B(n, p(nS)). (83)

Ruczinski [130] found that the probability in the binomial distribution does not de-

pend on the number of β-strands, and estimated

p(nS) ≡ p = 0.35. (84)
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A.2 Modeling of P (O k, I k | D ) for proteins with more than
four β-strands

The feature set of the kth β-sheet, Λk, consists of the following components:

Pp : Number of parallel β-strands in a motif

P s
p : Number of parallel β-strands with a short connector in between

J : Number of β-strand pairs adjacent in sequence that are not neighbors in the β-sheet

(i.e.,“jumps”)

Js : Number of jumps with a short connector in between

F : The position of the first β-strand in the β-sheet.

With this representation, we can model the term P (Λk | H,L) as

P (Λk | H, L) = P (Pp, P
s
p , J, Js, F | H, L) (85)

= P (F | H, L)P (Pp, J | F, H, L)P (P s
p , Js | F, Pp, J,H, L).

Next, we will concentrate on each of these terms and present modeling assumptions.

A.2.1 P (F | H, L)

Analyzing the data, it is possible to make the following assumption

P (F | H, L) = P (F | n,H), (86)

where n is the number of β-strands in the β-sheet, and H is the helical status of the

protein. Note that a protein is labeled as helical if at least 20% of its amino acids

are part of an α-helix, and non-helical otherwise. P (F | n, H) is estimated from the

available data in Ruczinski [130].

A.2.2 P (Pp, J | F,H, L)

Similar to the previous section, we assume that

P (Pp, J | F,H, L) = P (Pp, J | F, n,H, L). (87)
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For a fixed n, there are n possibilities for Pp, n possibilities for J , 2 possibilities for

H, 2n−1 possibilities for L, and [n+1
2

] possibilities for F . Therefore, there are approx-

imately 2n−1× n3 bins in the term P (Pp, J | F, n, H, L). Ruczinski [130] performed a

χ2-test and found that Pp and J cannot be assumed to be conditionally independent.

To further simplify the probability term the following criteria is applied: (1) For

F , only discriminate between starting the β-sheet at the first spatial position versus

starting at any other permissable position. In that case, F takes only two values:

F = 1 when starting at the first position and F = 2 otherwise; (2) Certain motifs

occur when all connectors between β-strands are more than ten residues long. Set

L = 1 if all connectors between β-strands are long, and L = 0 otherwise. Based on

these assumptions, we estimated P (Pp, J | F, n,H, L) using the available data derived

from the PDB.

A.2.3 P (P s
p , Js | F, Pp, J,H, L)

Analyzing the data, it reasonable to assume the following conditional independence

P (P s
p , Js | F, Pp, J,H, L) = P (P s

p | F, Pp, J,H, L)P (Js | F, Pp, J,H, L). (88)

In the above equation, the terms in the right hand side can be further simplified by

removing parameters that show weak dependency. This is formulated as

P (P s
p | F, Pp, J,H, L) = P (P s

p | Pp, H, L), (89)

P (Js | F, Pp, J,H, L) = P (Js | J,H,L).

Let np be the number of parallel pairs in the β-sheet, and nsc the number of short

connectors. Since there are n−1 pairs of β-strands in the β-sheet, the lowest possible

number of parallel pairs of β-strands that are connected by a short connector is given

by

l = max(nsc + np − (n− 1), 0). (90)
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The maximum number of parallel pairs of β-strands in the β-sheet that are connected

by a short connector is

u = min(np, nsc). (91)

Since nsc ∈ {l, ..., u}, we are interested in modeling the number of parallel pairs, X,

that are connected by a short connector in excess of l. Hence, X ∈ {0, ..., u− l}. The

data support the following model:

P (P s
p = k + l | n,H,L, Pp) = P (P s

p = k + l | n,H, nsc, np), (92)

= P (X = k)

where

X ∼ B(u− l, ppar(n, H)). (93)

Analyzing the data, Ruczinski [130] observed that the probability of the binomial

term does not change significantly for different β-sheet sizes. ppar(n, SH) is estimated

as follows:

ppar(n,H) = ppar(H) =





0.51 if H = 0

0.24 if H = 1.
(94)

For the number of jumps with a short connector, a similar approach can be used

to derive the model. Let j be the number of jumps in the β-sheet and nsc be the

number of short connectors. Let Y be the number of short jumps in excess of the

lowest possible number of jumps with a short connector. We have

P (Js = k + l | n,H,L, J) = P (Js = k + l | n,H, nsc, j) (95)

= P (Y = k),

where

Y ∼ B(u− l, pjump(n,H)), (96)

and

l = max(nsc + j − (n− 1), 0) (97)

u = min(j, nsc). (98)
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In this case, the binomial term depends on the β-sheet size, and is derived in Ruczin-

ski [130] as

pjump(n,H) = pjump(H) =





0.25 if H = 0 and n = 5 or 6

0.54 if H = 1 and n = 5 or 6

0.18 if H = 0 and n ≥ 7

0.28 if H = 1 and n ≥ 7.

(99)

This completes the modeling of the motif likelihood term P (O k, I k | D ).
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