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SUMMARY

A new method for generating initial data for simulations of neutron stars in

binary systems. The construction of physically relevant initial data is crucial to accu-

rate assessment of gravitational wave signals relative to theoretical predictions. This

method builds upon the Bowen-York curvature for puncture black holes. This data

is evolved and compared against simulations in the literature with respect to orbital

eccentricity, merger and collapse times, and emitted energy and angular momentum.

The data exhibits some defects, including large central density oscillations in stars

and center of mass drift in unequal-mass systems. Some approaches for improvements

in potential future work are discussed.
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CHAPTER I

INTRODUCTION

Gravitational waves are now observational reality. Having been predicted by Einstein

in 1916 [29], gravitational waves were indirectly observed by Hulse and Taylor in

1974 [34] [58]. They discovered a binary pulsar and Taylor, along with Fowler and

McCulloch, verified it had a gradually contracting orbit, consistent with the energy

losses predicted to escape as gravitational waves, and for this discovery, Hulse and

Taylor were awarded the 1993 Nobel Prize in Physics, but direct proof of gravitational

waves remained elusive until the Laser Interferometer Graviataional-Wave Observa-

tory (LIGO) detected a coalescing binary black hole system on September 14, 2015

[1].

Key to this discovery was the role of numerical relativity—the use of computer

simulations and algorithms to solving Einstein’s equations—to developing templates

of binary black hole systems’ graviataional wave emissions. A thorough bank of

templates allowed the LIGO collaborators to match the observed signal to that of a

binary black hole simulation between two objects of masses 36 and 29 solar masses

(M�), as well as to identify the black holes’ spins, the final merged black hole spin,

and the total amount of energy emitted [59].

In the future, LIGO may detect binary systems involving neutron stars. Templates

for these systems will prove essential to distinguishing black hole binaries from those

with neutron stars, as well as to discern the properties of those neutron stars.

This thesis deals with one aspect of neutron star simulations: the construction of

physically-relevant initial data. Einstein’s equations impose various constraint equa-

tions that must be satisfied at the initial timestep of a simulation. We discuss the

1



techniques used in the literature to make these equations tractable, both from a the-

oretical and numerical standpoint, as well as how we build off of previous approaches

for the procedure presented here.
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CHAPTER II

GENERAL RELATIVITY, EINSTEIN’S EQUATIONS,

AND GRAVITATIONAL WAVES

We begin with an overview of gravitational waves, starting with how they can be

derived from Einstein’s eqeuations.

2.1. A brief introduction to general relativity

The core mathematical model for general relativity is that of pseudo-Riemannian ge-

ometry. Broadly, this is the geometry of curved spaces, but it has a crucial twist:

the lengths of nonzero vectors may be positive, negative, or zero. Given a coordi-

nate system, this information is encoded in the spacetime metric, written gµν in the

conventional index notation1. The metric contains all the inner products of the basis

vectors, and as such, it can be used to compute inner products for all vectors, but

again, these inner products need not be positive-definite.

The derivatives of the metric allow us to define various useful measures of cur-

vature: the Riemann curvature tensor, the Ricci curvature tensor, and the scalar

curvature (or “Ricci scalar”). In particular, the Ricci curvature Rµν and the Ricci

scalar R enter into Einstein’s famous equation:

Rµν +
1

2
gµνR = 8πTµν , (2.1)

1Here Greek characters denote indices ranging over all spacetime dimensions, and Latin characters
will denote those ranging over only spatial dimensions. See Appendix A for further details on
notation and conventions.
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where Tµν is the energy-momentum or stress-energy tensor 2, containing informa-

tion about the energy density, momentum density, pressure, and stress in spacetime.

This is one of the main pieces of physical content in general relativity: curvature,

encoded in the Ricci tensor and scalar—which is, in turn, related to derivatives of the

metric–is directly equal to quantities derived from the presence of matter or mass-

energy.

2.2. General relativity and gravitational waves

Remarkably, even in regions of seemingly empty space, spacetime itself can carry

away energy through gravitational waves.

Consider a metric gµν = ηµν + hµν , where ηµν is the flat spacetime metric and hµν

is some suitably small perturbation3.

With suitably chosen conditions, the Riemann tensor Rαβγδ reduces in part to

Ri0j0 = −1

2

d2hij
dt2

. (2.2)

A metric perturbation obeying this equation is said to be in the transverse-traceless

gauge. There is always freedom to restrict a perturbation into this gauge.

The required conditions are

Dµh
µν = 0, hµ0 = 0, hµµ = 0 (2.3)

These say that the perturbation has zero divergence, that it has no time-time or

time-space components, and that it has no trace. These conditions cast Einstein’s

equations into a convenient wave equation, ensure that all effects of the perturbation

2Factors of G and c have been set equal to 1 as per common usage—these are so-called “geo-
metricized units”. For more information, consult Appendix A.

3This is typically done in Cartesian coordinates, and the determinant of hµν should be much
smaller in magnitude than 1.
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(a) η (b) h+
(c) h+

(d) h× (e) h×

Figure 1: Plus and cross polarizations. From left to right: (a) a ring of test particles,
(b) and (c) the same ring under the influences of a gravitational wave with only h+

polarization, (d) and (e) the ring under influence of a wave with only h× polarization.
In (b)(c)(d)(e), the ring oscillates between the two corresponding states.

are purely spatial in nature, and allow us to write all these equations in terms of h

and not its trace-reversed counterpart h̄.

Another net effect of these conditions is that eight out of ten independent com-

ponents of h are now determined, leaving only two degrees of freedom remaining.

These correpond to two types of polarization states, plus and cross, demonstrated in

Figure 1. The metric perturbation manifests itself as a linear combination of these

polarizations, with amplitudes h+ and h×.

Test particles caught in the presence of this metric perturbation follow the equa-

tion of motion

d2xi

dt2
=

1

2
ηij
d2hjk
dt2

xk, (2.4)

and these particles therefore accelerate directly according to the second time

derivative of the perturbation.

Thus we see that a small metric perturbation can cause motion of particles in

spacetime. The differences in this motion across large regions or distances is how

LIGO detected its first graviataional wave event: LIGO’s laser interferometers are

sensitive to the momentary stretching and compression of spatial distances due to

gravitational waves, as this affects the transit time of light through the instrument.

Light traverses two paths at right angles, and differential compression or expansion

5



of these paths due to gravitational waves results in a different interference pattern

than would otherwise be expected by the ordinary lengths of the arms. The effect

on Earth is tiny—distortions in distances of order 10−21—but over the 4 kilometer

length of a LIGO instrument’s arms, it proved enough to substantiate a detection.

In the case of an outgoing gravitational wave from a localized source, we can

specialize to spherical coordinates. Let r be the radial distance, θ the polar angle,

and φ the azimuthal angle. The h+ polarization is then associated with h+ = hθ̂θ̂ =

−hφ̂φ̂, where θ̂ and φ̂ denote components with respect to a local orthonormal frame.

Similarly, h× = hθ̂φ̂, which is also equal to hφ̂θ̂ by symmetry.

Now, recall we can measure ḧ+ and ḧ×, the second time derivatives of h+ and h×,

using the Riemann tensor, as in Equation 2.2. Hence, we can measure the Riemann

tensor in a simulation and use this to extract the second time derivatives of the strain

polarizations. We do this far from the source of our gravitational waves—as far as is

computationally feasible—to reduce any error inherent in the perturbative approach.

Finally, it is common in the field to combine ḧ+ and ḧ× into a single complex

quantity Ψ4, equal to ḧ+ − iḧ×.4

When it is not necessary to talk about strain directly, we will state many results

about gravitational waves using Ψ4, or its decomposition into spin-weighted spherical

harmonic modes with spin weight s = 2. In particular, the (`,m) = (2, 2) mode

is often dominant for binary systems, and for many of our results, we will confine

ourselves to discussion of only this mode.

4The use of Ψ4 and complex numbers derives from Newman-Penrose formalism [46], which uses
a tetrad of complex, null vectors. These are suitable to extracting components of the Riemann
tensor, which in vacuum is described by 10 independent reals, or 5 complex components—numbered
Ψ0 to Ψ4. Different Newman-Penrose scalars pertain to different types of gravitatational radia-
tion, including ingoing radiation for example. Nevertheless, the information from Newman-Penrose
formalism can always be presented equivalently using manifestly real tensors, and indeed, in one
implementation, the real and imaginary parts of Ψ4 are computed separately, using entirely real
tensor manipulations. Hence, we do not deem it necessary to go into detail about deriving Ψ4 here.

6



CHAPTER III

NUMERICAL RELATIVITY: SOLVING EINSTEIN’S

EQUATIONS WITH COMPUTERS

In practice, the task of solving Einstein’s equations often involves—or even demands—

computer aid. While this includes the use of computer algebra or numerical implemen-

tations of perturbative treatments—for example, post-Newtonian approximations—

the direct solution of Einstein’s equations numerically is what comprises the field of

numerical relativity.

The first task to making Einstein’s equations amenable to numerical integration

is the separation of space and time.

3.1. The 3+1 decomposition

In a neighborhood in which three coordinate funtions are spacelike and one timelike1,

spacetime can be foliated into a continuous family of spatial hypersurfaces. This is

demonstrated in Figure 2. These hypersurfaces are level sets of the time coordinate,

but in general, any given hypersurface has an associated normal (co)vector, and

this normal vector need not be parallel to the basis vector associated with the time

coordinate.

Using the normal vector nµ, we can define a metric tensor intrinsic to a given

hypersurface. This is denoted γµν , and it is equal to

γµν = gµν + nµnν . (3.1)

Because the normal vector obeys nµn
µ = −1, this tensor merely projects out the

1That is, in which each coordinate’s associated basis vector is spacelike or timelike.
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Σt1

αnα

βα

tα

Σt0

Figure 2: Standard 3+1 decomposition of spacetime: hypersurfaces Σt0 and Σt1 cor-
respond to infinitesimally close coordinate times t0, t1 respectively. Each hypersurface
has an intrinsic metric γµν and a normal vector nµ that might not coincide with the
direction of time tα, which is decomposed into a lapse function α and shift vector βµ.

normal components of any given vector. For this reason, the spatial metric is also

referred to as a projection tensor, as it can be used to take a general (four-)vector

and yield that vector’s projection into the hypersurface. Like the spacetime metric,

the spatial metric of a hypersurface is symmetric. We also note that, while we used

spacetime indices in this expression, it should be clear that γ0ν = 0—the spatial

metric is purely spatial, and for this reason, we will have the flexibility to use it with

purely spatial indices i, j, k and so on later.

If the spatial metric is specified on a particular hypersurface, how can we compute

the spatial metric on some nearby hypersurface? This demands an evolution equation,

and indeed, the 3+1 decomposition offers one in terms of the Lie derivative in the

normal direction, Ln:

Lnγαβ = 2γα
µγβ

νD(µnν = −2Kαβ (3.2)

The Lie derivative in the normal direction is a natural derivative operator for

evolution equations: it incorporates both pure time derivatives along with changes

in the direction of time, and using it here gives us the tensor K, the extrinsic curva-

ture, which can be expressed in terms of directional derivatives of the normal vector.

Indeed, the use of derivatives of the normal vector immediately suggests a means

to derive an evolution equation for Kµν : such covariant derivatives appear in the

8



Riemann tensor. Indeed, the requisite contraction is

LnKµν = γµ
ξγν

φnξnφ −KµλKν
λ +

1

α
DµDνα, (3.3)

where α = gtt is the lapse function, and Dµ is the spatial covariant derivative.

With evolution equations for the spatial metric and its associated extrinsic curva-

ture, we are closer to a fully-determined scheme. However, thus far we have used only

6 of the 20 independent components of the Riemann tensor—and in particular, we’ve

only contracted the Riemann tensor with two normal directions. There are remaining

equations that must be obeyed, and these form the basis for constraint equations:

γα
δγβ

εγµ
ζγν

θRδεζθ =(3) Rαβµν +KαµKβν −KανKβµ (3.4)

γα
δγβ

εγµ
λnνRδελν = DβKαµ −DαKβµ (3.5)

(3.6)

where (3)Rαβµν denotes the spatially intrinsic Riemann tensor within the hypersur-

face. Neither of these constraints involves time derivatives; they are true constraints

that should be obeyed on every hypersurface.

To this point, we have expressed the evolution and constraint equations wholly

in terms of the geometry of spacetime. We have not yet used Einstein’s equations to

couple these equations to the stress-energy tensor. Doing so (by contracting the equa-

tions as needed to write equations in terms of the Ricci tensor) yields the canonical

forms of the Hamiltonian constraint and momentum constraints, respectively:

(3)R +K2 −KµνK
µν = 16πnµnνTµν = 16πρ (3.7)

Dµ(Kµν − γµνK) = −8πγνξnφTξφ = 8πSν (3.8)

where K is the trace of the extrinsic curvature, or K = Kα
α = gαβK

αβ. Again,

there are no time derivatives in these equations—they are true spatial constraints,
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relating matter, energy, and stress to the extrinsic curvature, spatial Ricci tensor, and

derivatives thereof. Finally, for the rest of this document, we will use the shorthands

ρ, Sµ to denote the particular components of the stress-energy tensor used here.

Similarly, we can do the same for the evolution equation for the extrinsic curvature.

Let Sµν = γµ
αγν

βTαβ with S its trace, and we have

LnKij = −α−1DiDjα +
[

(3)Rij +KKij − 2KikKj
k + 4π[γij(S − ρ)− 2Sij

]
(3.9)

The equations 3.2, 3.7, 3.8, and 3.9 form the modern Anowitt-Deser-Misner (ADM)

equations [64]2.

However, in itself the modern ADM equations are only a weak basis for a numerical

approach to solving Einstien’s equations. This can be proved with an analysis of

hyperbolicity.

3.2. Hyperbolicity of PDEs

To ensure that a solution to a differential equation remains bounded by an exponen-

tial, let us impose that, for a vector u of evolution variables, we have

u(x, t) = A(~k, t)ei
~k·~x, (3.10)

or in the general case, a solution vector might be a superposition or integral of

such functions over the wavevector ~k. For now, however, we consider the wavevector

~k fixed and confine ourselves to analysis of a single mode.

Suppose there is a linear function H such that H(~k) is a Hermitian, positive-

definite matrix. We can use this to define a norm | · | such that

2The original ADM equations [4] were derived to cast general relativity in a Hamiltonian formu-
lation. Hence, those equations are written in terms of the metric’s canonical conjugate momentum.
The transformation between the conjugate momentum and Kij is trivial, but the two sets of equa-
tions do not have identical solution sets, only identical solutions corresponding to physical systems.
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|v|2 = v†H(~k)v, (3.11)

for any vector (of evolution variables) v.

Let u obey a hyperbolic PDE of the form

∂tu+M i∂iu = 0, (3.12)

where M i are matrices3. Now, impose the condition that ∂t|u|2 = 0, and we see

that

0 = ∂t|u|2 (3.13)

= (∂tu
†)H(~k)u+ u†H(~k)(∂tu) (3.14)

= [iM jkju0]†H(~k)u+ u†H(~k)[iM jkju0] (3.15)

(3.16)

where u0 = u(~x, 0) and v† is the conjugate-transpose of v for any v.

Now, let P denote the principal symbol, such that P (~k) = Mik
i, and we see that

our condition reduces to

P †H −HP = 0 (3.17)

where, again, P,H are still both functions of the wavevector ~k. We can now

refer to H as the symmetrizer, and we can deduce whether such a function exists by

examining the properties of the principal symbol. The cases of interest are

1. P is independent of direction. H is therefore independent of ~k completely. This

3We do not treat the case with a nonzero source term or matrices M i that vary in time, space,
or solution vector here. The analysis is similar, however, and some of the differences are discussed
in [2].
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case can be identified by all the M i being Hermitian, and the system is said to

be symmetric hyperbolic.

2. P (~k) always has real eigenvalues, which are distinct from one another, and a

complete set of eigenvectors. The system is strictly hyperbolic.

3. P (~k) has real eigenvalues that are not necessarily distinct, and a complete set

of eigenvectors. The system is strongly hyperbolic.

4. P (~k) has real eigenvalues but an incomplete set of eigenvectors. The system is

weakly hyperbolic.

Crucially, only for some of these categories is a hyperbolic PDE well-posed. In

particular, a solution is well-posed if its norm |u| is bounded by Cebt|u0| for some

positive constants C, b. Such does not hold for the weakly hyperbolic case, and the

modern ADM equations, cast in a first-order formalism, are merely weakly hyperbolic

[38].

For this reason, we must modify the modern ADM equations—at minimum, by

recasting them in terms of more convenient variables, or by adding or subtracting

constraint equations—to arrive at a well-posed scheme. This is exactly what the

BSSN formulation does.

3.3. The BSSN formulation

Though there are several strongly or symmetric hyperbolic formulations of Einstein’s

equations, the basis for our project is the BSSN formulation4 [45] [56] [11].

In BSSN, we decompose the spatial metric into γij = e4φγ̄ij, with γ̄, the determi-

nant of γij, set equal to 1. We will call γij the conformal (spatial) metric.

4Though commonly called BSSN for “Baumgarte-Shapiro-Shibata-Nakamura,” Oohara and Ko-
jima contributed to the original paper [45] as well.
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Similarly, we write the extrinsic curvature as Kij = e4φĀij + 1
3
γijK, so that Āij is

conformally related to the traceless part of the extrinsic curvature.

Finally, we use derivatives of the conformal spatial metric to define

Γ̄i = −∂jγij. (3.18)

With these fundamental variables, we arrive at the following evolution equations:

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i (3.19)

∂tγ̄ij = −2αĀij + βk∂kγ̄ij + γ̄k(i∂j)β
k − 2

3
γij∂kβ

k (3.20)

∂tK = −γijDjDiα + α

(
ĀijĀ

ij +
1

3
K2

)
+ 4πα(ρ+ S) + βi∂iK (3.21)

∂tAij = e−4φ
[
−(D{iDj}α + α((3)R{ij} − 8πS{ij})

]
+ α(KĀij − 2Ā+ i`Ā`j (3.22)

+ βk∂kĀij + Āk(i∂j)β
k − 2

3
Āij∂kβ

k (3.23)

∂tΓ̄
i = −2Āij∂jα + 2α

(
Γ̄ijkĀ

kj − 2

3
γ̄ij∂jK − 8πγ̄ijSj + 6Āij∂jφ

)
(3.24)

+ βj∂jΓ̄
i − Γ̄j∂jβ

i +
2

3
Γi∂jβ

j +
1

3
γ̄i`∂`∂jβ

j + γ̄`j∂j∂`β
i (3.25)

where X(ij) = (Xij + Xji)/2 for any X, and X{ij} = X(ij) − γijX/3, with X

without indices denoting the trace. Here, (3)Rij can be expressed in terms of the

BSSN variables as

(3)Rij = ¯(3)Rij − 2(D̄iD̄jφ+ γ̄ij γ̄
`mD̄`Dmφ) + 4(D̄iφD̄jφ− γ̄ij γ̄`mD̄`φD̄mφ) (3.26)

BSSN relies on the concept of conformal rescaling. Many of the fundamental vari-

ables are physical quantities multiplied by some conformal factor, or powers thereof.

While one interpretation may be that these conformal quantities are mere conve-

niences, it is nevertheless common to hear talk of “conformal space” as opposed to

“physical” space or spacetime. This is especially true when the conformal spatial
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metric is a flat metric, as is often chosen to be the case at initial data. Conformal

quantities’ transformation laws are not fixed but rather flexible and chosen to suit

convenience.

BSSN has been shown to be strongly hyperbolic [53] and while strong hyperbolicity

in itself is not enough to guarantee that a numerical scheme is suitable for simulations,

the BSSN formalism is used today to the point that, outside of specific comparisons

with other formalisms, its use is well-accepted at this point: for instance, [57] refers

to at least three other papers by the same group all with similar numerical setup,

which includes the use of BSSN for their spacetime evolution.

With a well-posed and high-performing numerical scheme in hand, there are only

a few remaining problems for a practical implementation: the computation of spatial

derivatives, integration in time, choice of gauge conditions, hydrodynamics, and initial

data.

3.4. Computation of spatial derivatives through finite differencing, and

the use of adaptive mesh refinement

The BSSN scheme requires second-order spatial derivatives. One way these can be

estimated is through finite differencing. For example, consider three points: p −

h, p, p+h. A second-derivative of a function f at 0 can be estimated through judicious

use of Taylor expansions:

f(p± h) = f(p)± hf ′(p) +
1

2
h2f ′′(p)± 1

6
h3f ′′′(p) +O(h4) (3.27)

Using this expansion, we can estimate the second derivative at an arbitrary point:

f ′′(p) ≈ f(p+ h) + f(p− h)− 2f(p)

h2
(3.28)

The error in this approximation is of order h2.
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Similar formulas exist for derivative operators in multiple dimensions. In practice,

we often use fourth-order accurate approximations or even better.

The use of a mesh of points for finite differencing demands that we cover our

computational domain with points, storing the values of all functions on these points.

Uniformly resolved grids for this purpose would be prohibitively expensive.

For this reason, we use mesh refinement: the use of a series of nested meshes,

each with higher spatial resolution than its parent (typically, by a factor of 2, so that

every other point coincides with a point on the parent mesh). These meshes are more

refined in areas of interest—the immediate vicinity around a black hole horizon or

a neutron star—and less refined at longer distances, particularly where distance is

needed to reduce near-field influences on gravitational waveforms.

Fixed mesh refinement involves a static, unchanging set of nested meshes. While

this may be reasonable for some problems, we can imagine some binary systems in

which covering both objects with only fixed, unmoving boxes would adversely affect

our ability to resolve the objects. Instead, we use adaptive mesh refinement [12]

implemented in Carpet[24][54].

3.5. Time integration with the method of lines

The method of lines is one way to complete the time integration of the BSSN equa-

tions. With the spatial derivatives computed using finite differencing, we can attack

the evolution equations of BSSN as though they are ordinary differential equations.

This opens up a suite of integration methods.

Suppose we have a PDE of the form

∂tu = s+Du (3.29)

where u, s are vectors of variables, and D is some spatial differentiation operator.

In the method of lines (MoL), we compute or estimate the spatial derivatives
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first. We might do this with finite differencing and, in doing so, arrive at a set of

coupled ODEs. For instance, if we let D be a first derivative in the x-direction, we

can compute it with a centered difference, and arrive at the equation

∂tui = si +
ui+1 − ui−1

2∆x
. (3.30)

As there are no other explicit derivatives left, we can eliminate the time deriva-

tive through ODE integration. In principle, the particular ODE integrator used is

arbitrary. Fourth-order Runge-Kutta is a common choice.

The method of lines affords us solutions in time as though it were a continuous

variable. In practice, numerical ODE integrators still generate solutions in time on

a discrete lattice of times—though the time spacing between lattice points can be

much smaller than for spatial points in finite differencing for the same computational

cost. In practice, the value for a full timestep must obey the Courant-Friedrichs-Lewy

(CFL, or Courant) condition [27]:

C = v
∆t

∆x
≤ Cmax (3.31)

where C is the Courant factor, v is the speed of propagation, δt is the timestep,

δx the spatial grid spacing (in one dimension; analogous forms of this equation exist

for several dimensions), and Cmax is a maximum value dictated by the numerical

scheme—typically, we take it to be 1/2. Since disturbances propagate at the speed

of light in spacetime, v = c = 1 in geometricized units, and our condition reduces to

∆t/∆x ≤ 1/2.

With the method of lines and finite differencing, we are very close to being able

to evolve the fundamental variables of the BSSN formulation. However, the gauge

quantities α, βi remain.
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3.5.1 Choosing the lapse and shift: the 1 + log and gamma driver condi-
tions, and the moving puncture gauge

The BSSN formalism does not prescribe the gauge functions α, βi. Indeed, some of

the more obvious choices prove unsuitable for evolution but may be useful for initial

data.

A common condition for the lapse is maximal slicing, the condition that K = 0

and ∂tK = 0, which generates an elliptic equation

D2α = α(KijKij + 4π[ρ+ S]). (3.32)

Various factors of constraint equations could be added to this, but regardless, the

maximal slicing condition maximizes the volume of a spatial hypersurface [64]. This

can be a useful property in black hole spacetimes, in which we might want to minimize

the loss of space flowing into a horizon, which is a property of geodesic slicing (α = 1).

A similar condition on the shift is called minimal distortion. We will only state

the condition and its properties:

(∆Lβ)i = 2AijDjα +
4

3
αγijDjK + 16παSi, (3.33)

which minimizes the shear deformation of an ideal spheroid, with respect to our

coordinates, as it evolves in time [64].

The maximal slicing and minimal distortion conditions have very desirable prop-

erties, but they pose elliptic equations that would have to be enforced in time, and

for this reason, they are not amenable to the hyperbolic evolution offered by the use

of the method of lines. Instead, one approach is to construct evolution equations for

these functions—evolution equations that do not alter the overall hyperbolicity of the

scheme—and reduce the problem of choosing lapse and shift to that of initial data.

The 1 + log and “gamma driver” conditions do just that.
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The 1+log slicing condition [15] dictates the lapse function α through an evolution

equation5:

α̇ = −α2f(α)K. (3.34)

There are two common choices for f(α): N/α, with N a constant, or 1. The case

N = 2 yields a solution of the form α = 1 + log γ, and this is the historical basis

for the name “1 + log” slicing, of which the equation above is a more generalized

version. This lapse condition has proven to be very robust, sharing some of the well-

behaved properties of more expensive slicing conditions like maximal slicing, in which

α obeys an elliptic PDE. Hyperbolic slicing conditions like this one are much cheaper

by comparison, and they can be solved alongside the rest of the scheme using method

of lines.

As with the lapse, there is a family of shift conditions that are hyperbolic in

nature, similarly easy to solve alongside the rest of the scheme, and that show good

numerical properties. This is the gamma driver shift condition [22]:

∂tβ
i = Bi (3.35)

∂tB
i =

3

4
χ∂tΓ̄

i − ηBi (3.36)

We use a modified version of the gamma driver shift condition that has better

behavior for moving punctures [61], in part through the introduction of advection

terms:

Lnβi =
3

4

Bi

α
(3.37)

LnBi = LnΓ̄i − ηB
i

α
(3.38)

5[15] actually uses a generalized equation with the shift present, but the form we use in our
simulations is reflected here, without shift involved.

18



With conditions for the lapse and shift, our system of equations is now closed,

and we can evolve the conformal spatial metric and the other fundamental variables

of the BSSN formalism, recovering physical variables as needed, to simulate vacuum

spacetimes—such as binary black hole systems to predict their gravitational waves.

For systems with neutron stars, however, we must have a means to evolve the

stress-energy tensor.

3.6. General relativistic hydrodynamics

For our purposes, matter like that in a neutron star can be modeled as a perfect

fluid6. In our geometricized units, the stress energy tensor T µν of such a fluid can

be written in terms of the rest mass density ρ0, the enthalpy h, the pressure p, the

four-velocity uα, and the metric as

T µν = ρ0hu
µuν + pgµν (3.39)

The equations governing the evolution of these fluid variables are the continuity

equation and the Bianchi identities:

Dµ(ρ0u
µ) = 0 (3.40)

DµT
µν = 0 (3.41)

These equations guarantee that mass and non-gravitational energy and momen-

tum are conserved.

The Valencia formulation [8] of general relativistic hydrodynamics is a scheme

using various “conservative” variables that are functions or combinations of the pre-

vious “primitive” variables. With the Lorentz factor W given by W = −uαnα and

vi = ui/W + βi/α, the conservative variables are

6A more complete description of a neutron star—internal structure, radiative effects, etc. would
be well below the resolution we can afford.
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D = ρ0W (3.42)

Si = ρ0hW
2 (3.43)

E = ρ0hW
2 − p−D, (3.44)

with D the rest mass density with respect to the simulation frame (ρ0 is the rest

mass density in the fluid’s own rest frame), Si the momentum density, and E the

enrgy. The resulting evolution equations are

LnD = KD − 1

α
Dk(αDv

k) (3.45)

LnSi = − 1

α
(E +D)Diα +KSi − 1

α
Dk[α(Sivk + γikp)] (3.46)

LnE = (E + p+D)

[
vmvnKmn −

1

α
vm∂mα

]
+K(E + p)− 1

α
Dk[αv

k(E + p)],

(3.47)

where Dk is a covariant derivative in the spatial hypersurface. An equation of

state is required to close the system. Two common equations of state are the ideal

fluid equation of state and the polytropic equation of state.

The ideal fluid equation of state is

p = (Γ− 1)ρ0ε, (3.48)

where Γ here is the adiabatic index (not related to the Christoffel symbols), and

ε is the internal energy density, ε = ρ0h− p− 1 in our units.

The polytropic equation of state has instead,

p = Kρ
1+1/N
0 (3.49)

with N some positive constant.

20



Curiously, the ideal fluid equation of state can be integrated to yield a similar

equation, p = KρΓ
0 , but this holds only while the assumptions of an ideal fluid hold: in

particular, that changes to the fluid are adiabatic—slow compared to the timescale for

the fluid to settle into equilibrium. Any hydrodynamical shock violates this condition,

for example. For this reason, the polytropic and ideal fluid equations of state are

similar, but not quite the same.

With an equation of state available, we can convert freely between the conservative

and primitive variables as needed, and often we must do so, as the primitive variables

are easier to relate to physical quantities while the conservative variables are more

convenient for use with the method of lines.

The practical computation of hydrodynamic flows still requires handling of shocks:

physical discontinuities in the flow of material. To do this, we describe briefly the

method used by the Whisky code [6] [63], which we use for our simultaions.

Without going into great detail, Whisky computes a spatial average q̃ of the conser-

vative variables q over Cartesian cells. This spatial average is no longer discontinuous,

and thus it is q̃ that is directly evolved using the method of lines.

This shifts the problem of shock capturing to those of “reconstruction” and the

“Riemann problem”:

First, there is the computation of q from the average q̃. For this, we use piecewise

parabolic method [25] as implemented in [6]. As the name suggests, this method

involves interpolation with a quadratic polynomial, but we will not discuss the finer

details here.

Second, we must solve a “Riemann problem” after reconstruction. Riemann prob-

lems in general deal with discontinuous data, and that is precisely what we have here:

we recontruct the conservative variables q from their spatial averages q̃ on cells. We

do this on the faces of the cells, for that is what is required to compute the fluxes. As

a result, reconstruction gives us two values: q1 from one of the cells and q2 from the
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other. We use these as discontinuous initial data in the evolution equations q near

the face, and once equipped with a Riemann solver to evolve that data in time, we

can then estimate the fluxes as a function of time, giving us the information needed

to carry out the evolution of q with the method of lines.

3.7. The Cactus framework

The Cactus code offers a common set of code to manage and develop simulations.

Common code, called the flesh, defines and manages how various modules—called

thorns—can interact and when their routines are run.

The base model of a Cactus simulation involves the scheduling of routines. Each

thorn must specify routines that the Cactus infrastructure will call directly. These

scheduled functions then have access to information about the simulation domain and

variables on the grid—the sum total of which is called the grid hierarchy. Scheduled

routines may require access to each individual component of the grid or might be

global in scope, requiring only sporadic information.

Cactus offers a basic structure for the schedule to divide a simulation step into

distinct phases. Some of these timebins include bins for initial data, evolution (that

is, the computation of time derivatives and then the updating of variables according

to numerical integration), and analysis.

Thorns must specify not only a schedule but an interface—describing functions

that should be available as well as functions provided for other thorns to use—and

a set of parameters that should be provided at runtime, along with default values,

or that the thorn might use from other thorns, or that the thorn might extend,

providing additional allowed values. Parameters could be integers, real numbers,

arbitrary strings, a restricted set of keywords, or boolean values.

Thorns handle a wide range of functionality—from offering packaged versions of

libraries like LAPACK to providing grid structure and adaptive mesh refinement in
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Carpet to generating initial data in TwoPunctures [3] to computing gravitational

wave emissions in WeylScal4 [7].

It is within this common framework for simulations that we develop a new pre-

scription for initial data: by writing new initial data thorns to fit within the Cactus

framework, as well as by modifying existing thorns that aid in this process.

Now, we can discuss the mathematics of initial data in general, as well as specific

decompositions used, in preparation for explaining our initial data.

3.8. Putting it all together: the Einstein Toolkit and Maya

Throughout this chapter, we have taken care to point out that, while much of the

mathematics and algorithms is general, we are also describing the particular imple-

mentations and tools we use for our numerical relativity simulations. For example,

we said our hydrodynamics code ultimately stems from Whisky and that we use

Carpet for adaptive mesh refinement. These disparate codes can be used together

through the Cactus framework.

One project to contribute thorns specifically for numerical relativity simulations is

the Einstein Toolkit project [42], which performs continued development for grav-

itational waveform extraction, as well as their own hydrodynamics code GRHydro

[44], descended from Whisky, and their own spacetime evolution code, McLach-

lan[43] [21].

While we at Georgia Tech use many EinsteinToolkit thorns, we maintain our

own spacetime and hydrodynamics evolution codes. Together with our in-house anal-

ysis thorns, these are called Maya. The evolution codes are nevertheless quite similar:

our spacetime evolution uses Mathematica through Kranc [36] [39] to generate C

code with tensor operations unrolled, just as McLachlan does, and our hydrody-

namics code is also based off Whisky.

At this point, we have covered elements of how a numerical relativity computation
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is approached in practice, but one crucial aspect remains: the generation of initial

data for our simulations—data that should be as close as possible to the physical

system we wish to model and that obeys the constraints on the initial timeslice.
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CHAPTER IV

INITIAL DATA FOR NUMERICAL RELATIVITY

SIMULATIONS

Regardless of the particular scheme, a physical simulation here consists of a set of

evolution and constraint equations. The evolution equations dictate the time deriva-

tives of quantities: if we know the values of all quantities in the scheme on some initial

spatial hypersurface, we can update those quantities to another nearby hypersurface

(another member of the family of spatial hypersurfaces described by coordinate time)

through the evolution equations.

However, the task of computing the values on that initial hypersurface is what

we concern ourselves with here. Whatever values we wish to populate the initial

hypersurface with, those values should obey the constraint equations. We will describe

some methods that are applicable to or inform the task of generating initial data for

neutron stars in binaries here.

4.1. Properties of binary systems in general relativity

A general consideration is that we expect reasonable data for binary systems to have

low eccentricity: gravitational radiation emission reduces eccentricity [49]. While

some eccentric binary systems are considered in the literature, we will spend the rest

of our time here discussing initial data for binary systems in quasicircular orbits—as

fully circular orbits are impossible without a continual influx of gravitational radiation

to replace what the system emits.
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4.2. Quasiequilibrium data for binary systems

First, we will discuss one approach to initial data: the use of the conformal thin-

sandwich decomposition to generate sequences of quasiequilibrium systems—that is,

sequences of configurations that are in approximate equilibrium, or such that the

orbital timescale is far longer than that required for objects to achieve equilibrium

even as energy and angular momentum are lost through gravitational radiation.

To understand quasiequilibrium sequences, we must discuss the conformal thin

sandwich decomposition that it is based upon.

4.2.1 The conformal thin sandwich (CTS) decomposition

The conformal thin sandwich decomposition [65][51] relies on specifying the time

derivative of the spatial metric as part of the initial data. This has some advantages:

time evolution in a neighborhood near the initial hypersurface can be controlled or

dictated, and approximate symmetries of the system can be incorporated into the

initial data, solving for those time derivatives that remain.

The full CTS scheme1 allows us to specify γ̄ij, K, and their time derivatives

ūij = ∂tγ̄ij and ∂tK.

Some variables used include the traceless extrinsic curvature, Aij = Kij−γijK/3,

and its conformal counterpart Āij, given by Āij = Aijψ10. The differential operator L̄

obeys (L̄X)ij = D̄iXj +D̄jX i−2γ̄ijDkX
k/3, where D̄i denotes a covariant derivative

with respect to the conformal spatial metric. Finally, it is conventional to use ᾱ =

α/ψ6. The extended CTS equations then result from the following:

• By substitution into the momentum constraint—Equation 3.8—yielding Equa-

tion 4.1

1We present only the extended CTS scheme here, which specifies ∂tK instead of the densitized
lapse ᾱ, as this is more popular for quasiequilibrium data.
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• By substitution into the Hamiltonian constraint—Equation 3.7—yielding Equa-

tion 4.2

• By identfiying αK with ∂t
√
g (with g the determinant of the full spacetime

metric) and taking a determinant of the full Einstein equations, yielding Equa-

tion 4.3

• By definition of the extrinsic curvature as Kij = ∂tγij and substitution of the

conformal quantities, yielding Equation 4.4

Those equations are now presented below:

0 = (∆̄Lβ)i − (L̄β)ijD̄j log ᾱ− ᾱD̄j(ᾱ
−1ūij)− 4

3
αD̄iK − 16πᾱψ10Si (4.1)

0 = D̄2ψ − 1

8
ψR̄− 1

12
ψ5K2 +

1

8
ψ−7ĀijĀij + 2πψ5ρ (4.2)

0 = D̄2(αψ)− αψ
(

7

8
ψ−8ĀijĀij +

5

12
ψ4K2 +

1

8
R̄ + 2πψ4[ρ+ 2S]

)
+ ψ5∂tK − ψ5βiD̄iK (4.3)

Āij =
1

2ᾱ

[
(L̄β)ij − ūij

]
(4.4)

(4.5)

where ψ is the conformal factor and obeys ψ = e−φ, where φ is the BSSN variable

evolved by Equation 3.19.

The CTS equations put some constraints on the lapse and shift, consistent with

the idea that, by specifying a time derivative of the conformal spatial metric, we are

constraining ourselves to coordinates consistent with that derivative.

In common application for binary initial data, we choose ūij = ∂tK = K = 0,

reducing the free data to just the conformal spatial metric, which we choose to be

γ̄ij = δij for Cartesian coordinates.

Nevertheless, even with these simplifications, the CTS scheme reduces to three

coupled, elliptic PDEs. These are, not surprisingly, difficult to solve. One library
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available for such a problem is the Lorene code [16], which uses multi-domain spec-

tral methods for solving PDEs.

Regardless of difficulty, the CTS system is well suited to quasiequilibrium data

because we can identify the basic vector corresponding to our time coordinate with

an approximate Killing vector. Killing vectors correspond to symmetries, and that’s

exactly the condition we would like to impose here: approximate time-translational

symmetry.

4.2.2 Use of CTS in binary system initial data

There are several remaining issues in need of resolution to leverage CTS data into a

practical model for initial data for quasicircular binary systems. We will not go into

great detail on these, only summarizing some results:

Ensuring quasiequilibrium evolution of apparent horizons and neutron

stars. The CTS equations with an approximate helical Killing vector let us, essen-

tially, evolve a binary system in a corotating coordinate frame. Nevertheless, the size

and shape of apparent horizons2 or the size and shape of neutron stars might not be

guaranteed to be momentarily in equilibrium.

For black holes, the evolution of an apparent horizon can be enforced using bound-

ary conditions on the horizon. For neutron stars, we must solve the hydrodynamics

equations for hydrostatic equilibrium. This admits two common solutions: the coro-

tating star, which rotates along with the corotating coordinates, appearing not to

rotate in that frame; or the irrotational star, which is somewhat more complicated

as a solution but more astrophysically relevant. Either way, the use of multidomain

solvers is powerful here: hydrodynamics equations involving the matter variables but

not the spacetime variables will be nontrivial within the stars and trivial outside, and

2The determination of an event horizon requires global characterization of spacetime, but ap-
parent horizons are characterized by more local conditions and therefore the horizons of choice for
characterizing black holes in numerical relativity.
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indeed, this is a capability offered by Lorene.

Regardless of the method used to solve them, the resulting equations couple a

velocity potential Φ, enthalpy h, and rest mass density ρ0 to the lapse α, and for this

reason, the equations must be solved alongside with the CTS equations.

Ensuring quasicircularity of orbits. Whether a system involves black holes,

neutron stars, or a combination of the two, ensuring approximate circularity of an

orbital system relies on a correct choice of orbital angular velocity, which enters

the equations through the approximate helical Killing vector kαhel = ∂αt + Ωorb∂
α
φ .

For spacetimes that admit a timelike Killing vector, there is a corresponding mass

quantity—the Komar mass MK . One way to solve for the correct orbital angular

velocity of two black holes with a given separation is to ensure that the ADM mass

and Komar mass are identical [31]. One must be careful to do this in an inertial frame

(not the corotating frame that quasiequilibrium sequence simulations are performed

in).

A quasiequilibrium sequence. Once we can construct initial data for a partic-

ular separation, we can do so for several separations. Provided that these separations

are all, at the least, outside the innermost stable circular orbit, then we can generate

quasiequilibrium sequences of initial data for binary systems, and in doing so, we

can study the relationships between binding energy and orbital angular frequency, or

other such properties of initial data.

QE data has been used over the past decade and a half for binary black holes [31]

as well as binaries involving neutron stars [28].

4.3. Puncture initial data for black holes

Another approach to binary black hole initial data is the use of punctured domains—

the computational domain consists of all but the black hole singularity points. While

this method is of no use to neutron stars specifically, we can still use a puncture for
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a black hole companion in a binary system, and we will use many of the techniques

used for puncture initial data in our procedure as well.

4.3.1 The conformal transverse-traceless (CTT) decomposition

The conformal transverse-traceless decomposition3 breaks up the traceless extrinsic

curvature Āij into transverse-traceless ĀijTT and longitudinal ĀijL terms that obey

Āij = ĀijTT + ĀijL (4.6)

D̄jĀ
ij
TT = 0 (4.7)

ĀijL = D̄iW j + D̄jW i − 2

3
γ̄ijD̄kW

k, (4.8)

where W is some vector potential. A simplifying result of this decomposition is

that the divergence of Ā becomes a vector Laplacian of W : that is, D̄j = (∆̄W )i.

This allows us to rewrite the momentum constraint in terms of W as

(∆̄W )i − 2

3
ψ6γ̄ijD̄jK = 8πψ10Si, (4.9)

and in doing so, along with the Hamiltonian constraint, we can choose to specify

γ̄ij, Ā
ij
TT , and K and use the constraints to solve for ψ,W i. The stress-energy-tensor

terms from ρ, Si will themselves come from whatever sources we specify as well.

In itself, the CTT decomposition helps us eliminate derivatives of all the Ā com-

ponents in favor of second derivatives of W , but we can go one step further: the

structure of the momentum constraint now admits analytic solutions, so we can avoid

attacking it numerically altogether.

3The history of the CTT decomposition is somewhat unclear. Even in [17], which uses CTT
extensively, primary references to the decomposition are to non-journal articles, as well as to [66],
which is far more general in scope and only cited in [17] with respect to the decomposition of ĀijL
into derivatives of W i. Nevertheless, the decomposition is treated in major texts, including in [2].
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4.3.2 Bowen-York curvature for black holes

Bowen-York curvature [19] is one family of these analytic solutions to the momentum

constraint Equation 4.9. In these solutions, ρ = 0 and Si = 0, as we are in vacuum4.

We choose two further simplifying assumptions: that K = 0 on the initial timeslice,

and γ̄ij = δij. These conditions are known as maximal slicing and conformal flatness,

respectively. In such a choice, the covariant derivatives reduce to common ones, and

the derivative of K term vanishes, so the momentum constraint reduces to

∆̄W i = 0 = ∂j∂jW
i +

1

3
∂i∂jW

j (4.10)

One family of solutions to this equation has the form

W i = − 1

4r
[7P i + `iP j`j] +

1

r2
[εijk`jJk] (4.11)

The vectors P, J are constant vectors, and ` is the unit radial vector, with r the

radial coordinate (or related to Cartesian coordinates in the usual way). As parts of a

family of solutions, the vectors P, J have no intrinsic meaning. However, constructing

the ADM integral for linear momentum yields

P i
ADM =

1

8π
lim
r→∞

∮
(Ki

j − δijK)`j dS = P i (4.12)

A similar equation holds for J—the P, J vectors in the Bowen-York solutions

are identical to the total ADM linear and angular momentum, respectively, of the

spacetime they generate. Moreover, since the momentum constraints are linear now,

any number of Bowen-York solutions can be superposed to yield another solution:

that is, we can generate initial data for any number of black holes with arbitrary

spins and momenta. All we need do is solve the Hamiltonian constraint at the end to

4Black hole spacetimes are universally referred to as vacuum spacetimes in practice, for any
nonzero stress-energy tensor should be confined to the singularity itself.
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compute the conformal factor, which we can do with an explicit form for the extrinsic

curvature. The longitudinal part of the conformal, traceless extrinsic curvature is

ĀijL =
3

2r2
[P i`j + P j`i − (ηij − `i`j)(P k`k)], (4.13)

ĀijL =
3

r3
[εik`Jk```

j + εjk`Jk```
i] (4.14)

where again, we choose K = 0 and ĀijTT = 0 as well, fully specifying the extrinsic

curvature.

What remains, then, is to solve for the conformal factor when there are obvious

physical singularities. This is the reason for the puncture method.

4.3.3 Black holes as punctures

The method of Brandt and Brügmann [20] considers black holes as punctures—

isolated points not part of the domain of the conformal factor—and shows reduces

the solving of the conformal factor to an equation for a related quantity u that is

entirely regular even in the neighborhood of the puncture locations.

In particular, a conformal factor solution for stationary, nonspinning black hole is

ψ0,m = 1 + m/2r, with m the bare mass an arbitrary parameter5. This solution has

desirable properties at infinity: the conformal factor falls off to 1, so that asymptoti-

cally, the spacetime geometry approaches that of a flat spacetime.

Brandt and Brügmann showed that, using the Bowen-York curvature for an arbi-

trary number of black holes, one can decompose the conformal factor into

ψ =

(∑
i

ψi0,mi

)
+ u (4.15)

5The bare mass coincides with the ADM mass in this particular case, but in other cases, we will
use conformal factors of this form as initial guesses for numerical algorithms, and the bare mass will
have no physical meaning.
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Since each of the ψ0 terms satisfies ∇2ψ0 = 0, we can eliminate them from the

Hamiltonian constraint freely, even though they are not regular at the puncture lo-

cations, and arrive at the following equation:

∇2u+
1

8
ψ−7ĀijĀij + 2πρψ5 = 0 (4.16)

An analysis of the limiting behavior of the extrinsic curvature terms shows they

are suppressed faster than ri
3 near the puncture locations, where ri is the distance to

the ith puncture. Hence, u is completely regular everywhere, even at the punctures,

and we can solve the Hamiltonian constraint by solving for u from Equation 4.16 and

then adding on the nonregular parts of the conformal factor afterward.

4.3.4 Solving the Hamiltonian constraint with TwoPunctures

TwoPunctures [3] is the name of the original standalone code that implemented a

Hamiltonian constraint solver in accordance with the puncture method, and specif-

ically for the case of up to two distinct punctures. This name carried over to the

EinsteinToolkit, where TwoPunctures lives on as one of several initial data

thorns.

TwoPunctures uses a spectral coordinate system, with coordinates (A,B, φ).

This compactifies the infinite spatial hypersurface into a finite region of spectral

coordinate space, allowing the solver to enforce boundary conditions at infinity by

evaluating at a finite point in spectral space. The spectral method is, essentially, a de-

composition of the function u into Chebyshev basis functions in the A,B coordinates

and Fourier basis functions in the φ coordinate.

TwoPunctures then uses a Newton-Raphson iterative algorithm for root-finding:

the constraint equation is written in the form f(u) = 0, and Newton-Raphson finds

the value of u (in actuality, the vector of coefficients for the Chebyshev-Fourier basis

functions) that satisfies the equation, up to a specified tolerance. In the Einstein
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Toolkit, the solution for u is then used to find the conformal factor at the grid

points of the finite-differencing mesh, and the user has the option to evaluate the full

Chebyshev-Fourier solution directly or approximate the value with Taylor expansion

from the nearest spectral gridpoint.

The original TwoPunctures code, as well as the version used in the Einstein

Toolkit, handles only black holes. Additional terms from matter variables—from

hydrodynamics—require modifications to the solver, sometimes in nontrivial ways.

4.3.5 Building a quasicircular black hole binary with CTT/Bowen-York
data

Unlike with CTS data, we have no approximate helical Killing vector to guaran-

tee quasicircularity. We discuss two approaches to constructing such a system with

puncture-based CTT data here.

One method involves computing an effective potential [26] [9]. Define the binding

energy Eb as

Eb = MADM −M1 −M2, (4.17)

where M1,M2 are the total masses of the invidiual black holes, which can be

computed either using the spin Ji and irreducible mass Ai of each hole, or in the

puncture approach, using the value of the regular part of the conformal factor ui and

the bare masses mi by

Mi = mi

(
1 + ui +

∑
i 6=j

mj

2|~ri − ~rj|

)
. (4.18)

Under the effective potential method, we set the momenta Pi equal in magnitude

and opposite in direction for each object, and orthogonal to the line of separation of

the two objects. Then, we vary the separation distance ` to find a local minimum in

the binding energy: that is, to find where ∂Eb/∂` = 0, while holding the two masses
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fixed.

Even with this method, however, the may be unacceptable levels of eccentricity.

The reason is simple: an inspiral involves a gradual loss of separation, whereas with

momenta orthogonal to separation, there is no instantaneous loss of separation. One

method suggested to counter this is to evolve a binary through a few orbits, measure

the eccentricity, and supply inward radial momentum to counter this [50]. Such a

procedure might need to be repeated a few times to converge on a low eccentricity

setup, which increases computational expense.

Instead, an alternative—which we will use in our simulations—is to compute the

momenta through post-Newtonian approximations of many long-distance orbits, up

to a desired separation [35].

In brief, a post-Newtonian expansion is a series expansion. For example, the

Lorentz factor W explicitly obeys

W =
1√

1− v2/c2
, (4.19)

where here, temporarily, we will leave factors of c explicit. A post-Newtonian

expansion of W in powers of v/c looks like

W ≈ 1 +
1

2

v2

c2
+O(v4), (4.20)

where O(v4) means that higher-order terms are at least of order v4. A post-

Newtonian expansion in this manner expands in terms of quantities that should be

small (like v/c in this example) and neglects higher-order terms as a result.

The use of post-Newtonian approximation to simulate the long-distance orbits and

generate initial momenta for simulations with full GR reduces measured eccentricity

by upwards of a factor of 5 in [35] compared to näıve quasicircular data. Given an

initial separation, mass ratio, and total mass, post-Newtonian integration allows us

to generate momenta for the system.
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4.3.6 Adding hydro to TwoPunctures’ Newton-Raphson solver

The problem of adding hydrodynamics terms to the Hamiltonian constraint has long

been known, even well before the implementation of a solver in TwoPunctures.

York [64] argued that any terms proportional to ψn, with n > 1 , would make the

second-order PDE unsolvable, as no algorithm could be guaranteed to converge in

the face of small perturbations.

Instead, one approach to this problem is to perform conformal rescaling on the

source term ρ from the stress-energy tensor. The choice ρ̄ = ρψ8 is common, as the

rescaling that is common for the momentum constraint—S̄i = Siψ10—can be used

with this rescaling to compute an energy quantity that is conformally invariant. We

will later see that this choice is convenient for other reasons.

With this rescaling in mind, we can now use a TwoPunctures-style solver even

with hydrodynamics, solving the equation

∆̄u+
1

8
ψ−7ĀijĀij + 2πρ̄ψ−3 = 0 (4.21)

4.3.7 Recovering the matter primitives after conformal rescaling

When we provide the conformal energy density ρ̄, we have to recover the rest mass

density ρ0 and four-velocity uα after solving the Hamiltonian constraint. We can

reconstitute these variables using the following relations:

ρH = ρ0hW
2 − p = ρ̄ψ−8 (4.22)

Si = ρ0hW
2vi = S̄iψ−10 (4.23)

(4.24)

Once we have solved the Hamiltonian constraint, the values of ρH , S
i are known;

we consider them fixed. We construct a function of f such that f(ρ0) yet ρH , S
i
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maintain these fixed values. That function is6

f(ρ0) = [ρH + p(ρ0)]2 − [ρH + p(ρ0)]ρ0h(ρ0)− γijSiSj (4.25)

where p, h are functions of ρ0 by way of the known equation of state, and γij =

δijψ
4—though at any given point γijS

iSj can also be considered a fixed quantity.

Substituting the expressions from Equation 4.22 and Equation 4.23 yields a function

that is manifestly zero for any physically consistent set of variables. All that remains

is to find the value of ρ0 that is indeed consistent with these equations.

For this problem, we use Newton’s method with Aitken acceleration—combined,

these comprise “Steffensen’s method”. Given a sequence of Newton’s method values

xi, we compute the accelerated sequence x̂i which obeys

x̂i = xi −
(xi+1 − xi)2

xi+2 − 2xi+1 + xi
(4.26)

We use Steffensen’s method to achieve faster convergence toward a solution than

the traditional Newton’s method7.

The algorithm in practice recovers ρ0, and from there, other matter primitives

follow. In particular, the Lorentz factor W obeys

W 2 =
1

2
+

√
1 + 4γijSiSj/(ρ0h)2

2
, (4.27)

which follows from the expression for γijS
iSj and the quadratic formula. The

rest of the fluid primitives follow from the equation of state (determines p, h, etc.) ,

from normalization of the four-velocity (determines the magnitude of vi), or from the

direction of the momentum density (determines the individual components of vi up

6We’re not aware of a prior publication that uses this approach. We attribute the implementation
of this method to Roland Haas.

7We credit the implementation of this technique for this purpose to Reid Priedhorsky and Brian
Gough, though the Newton’s method iteration itself they implemented through calls to the GNU
Scientific Library (GSL).
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to a function of W , which is already known).
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CHAPTER V

BOWEN-TYPE EXTRINSIC CURVATURE FOR

SPHERICALLY-SYMMETRIC SOURCES

The primary basis for this work is a generalization of Bowen-York curvature for spher-

ically symmetric sources of momentum [17] [47]. This generalized Bowen-type cur-

vature uses the same CTT decomposition as in the case of puncture black holes

using Bowen-York curvature, but now generalized to extended, spherically symmetric

sources.

5.1. Bowen’s original generalization

As Bowen-York curvature offers an analytic solution to Equation 4.10, the spherically

symmetric Bowen-type curvature offers an analytic solution to

∆̄W i = 8πS̄i = ∂j∂jW
i +

1

3
∂i∂jW

j, (5.1)

where again S̄i = Siψ10, with Sα = −γαβnγTβγ being the momentum density.

Bowen decomposes W i into two functions: another vector potential V i and a

scalar potential θ, with the two obeying

W i = V i − 1

4
∂iθ. (5.2)

When substituted into the momentum constraint, these result in a coupled set of

second-order PDEs:
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∂i∂
iV j = 8πS̄j (5.3)

∂i∂
iθ = ∂iV

i. (5.4)

This decomposition is precisely that which is used for the linear momentum part

of the Bowen-York curvature, with S̄j replaced by a suitable delta function or solved

everywhere other than a puncture—either way, the result is the same.

In the more general case, however, we substitute S̄i = P iσ, with σ being a radial

function only and P i an “arbitrary” vector1.

The function σ plays the role of a radial momentum density, and it is normalized

so that

P i =

∫
M

S̄i(r) dV =

∫
M

P iσ dV = P i

∫
M

σ dV, (5.5)

or, more plainly,

∫
M

σ dV = 1, (5.6)

where M is the extent of the compact source. Solving Equation 5.3 and Equa-

tion 5.4 together with these assumptions yields

V i = −2P iF (5.7)

θ = −2Pix
iH, (5.8)

where the functions F,H are radial and obey2

1We will later show that this is, in fact, the ADM linear momentum of the spacetime.
2We assume that the underlying source has compact support—in this case, a limiting radius r0.

We do not write r0 into the integrals here, as the contribution from σ is zero outside the source, and
hence, doing so is unnecessary.
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F =
1

r
Q+ J (5.9)

Q(r) =

∫ r

0

4πσ(s)s2 ds (5.10)

J(r) =

∫ ∞
r

4πσ(s)s ds (5.11)

H(r) =
1

r3

∫ r

0

F (r)s2 ds. (5.12)

The resulting form of the vector potential W i is

W i = −2P iF +
1

2
P iH +

1

2
`ixjPjH

′. (5.13)

The corresponding extrinsic curvature in the exterior of the source is given in [17]

as

ĀijL =
3

2r2
[P i`j+P j`i−(δij−`i`j)P k`k]+

3Cmax

2r4
[P i`j+P j`i+(δij−5`i`j)P k`k], (5.14)

with the constant Cmax given by

Cmax =
1

2π

∫
1

s
− F (s) dV. (5.15)

Notice that the first term in Equation 5.14 is precisely the Bowen-York curvature

for a black hole with linear momentum. The constant Cmax therefore quantifies the

deviation of the source from a point source.

For spinning stars, Oohara and Nakamura [47] extended Bowen’s work to the case

of a star with momentum density S̄i = εijkJjxkκ. κ plays the role of an angular mo-

mentum density the way σ does for the linear case. The corresponding normalization

conditions, vector potential, and extrinsic curvature are
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1 =

∫ ∞
0

8π

3
s4κ dsW i = −εijkJjxkFF (r) =

N(r)

r3
+ U(r) (5.16)

N(r) =

∫ r

0

8π

3
s4κ dsU(r) =

∫ ∞
r

8π

3
sκ dsĀLij =

3N

r3
[εik`J

k```j + εjk`J
k```i] (5.17)

The extrinsic curvature here is near-identical to that of a spinning, Bowen-York

black hole in Equation 4.14, save for the factor of N—which, by the normalization

condition on κ, must go to 1 in the exterior of the star. Hence, in the exterior of a

spinning source, both black holes and neutron stars have the same extrinsic curvature

for the same J , the total ADM angular momentum.

We will now proceed to present our improvements and additions to the work of

Bowen, Oohara, and Nakamura. As Oohara and Nakamura did for the spinning case,

we derive a general form of the extrinsic curvature for a spherically symmetric source

with linear momentum. We can then use such an expression to set the extrinsic cur-

vature of a star with linear and angular momentum, and to superpose such solutions,

for the purpose of constructing initial data of binary systems with neutron stars, or

a mix of neutron stars and black holes.

5.2. The interior form of the extrinsic curvature for sources of linear

momentum

At the end of last section, we saw that Bowen [17] had derived a natural extension of

the Bowen-York curvature, one that provides a solution to the momentum constraint

for arbitrary spherically symmetric sources of linear momentum.

For practical use in a numerical relativity code, however, this derivation omitted

two crucial needs: first, it contained an explicit expression for the extrinsic curvature

only in the exterior of the star, and second, it only considered linear momentum.

While Oohara and Nakamura [47] stated a result for sources with spin, the explicit

solution for ĀijL everywhere in the linear momentum case remained to be shown. We
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proceed to derive this now.

Using the vector potential equation Equation 5.1, we can derive a fully general

expression for the extrinsic curvature in terms of the functions F,H in Equation 5.9

and Equation 5.12. The necessary relationship under the CTT decomposition is

Equation 4.8, which we restate here:

ĀijL = D̄iWj + D̄jW i − 2

3
γ̄ij∇kWk.

With conformal flatness, the conformal covariant derivatives D̄i reduce to their

flat space counterparts ∂i, and in Cartesian coordinates, ∂i = ∂i.

We need only a few identities to efficiently simplify this expression. First, for

any radial function X, ∂iX = X ′`i, where again `i is the unit radial vector. Second,

∂i`j = (ηij − `i`j)/r. The result is then

Āij = (−2F ′+H ′)(P i`j +P j`i)+(rH ′′−H ′)(P k`k)`
i`j +

1

3
(4F ′−rH ′′−H ′)(P k`k)η

ij.

(5.18)

This result is still undesirable, however, as derivatives of H will still contain in-

tegrals of F . To avoid this, we decompose F into Bowen’s Q and J functions as in

equations Equation 5.10 and Equation 5.11, and we compute H through integration

by parts:

H(r) =
1

r3

∫ r

0

r′
2

[
Q(r′)

r′
+ J(r′)

]
ds (5.19)

=
1

r3

[(
1

2
Q(r′)r′

2
+

1

3
J(r′)

)∣∣∣∣r
0

−
∫ r

0

1

2
r′

2
Q′(r′) +

1

3
r′

3
J ′(r′) dr′

]
(5.20)

=
Q(r)

2r
+ J(r)− 1

r3

∫ r

0

2

3
πr′

4
σ(r′) dr′, (5.21)

where in the last equation we use Q′(r) = 4πr2σ(r) and J ′(r) = −2πr4σ(r)/3.

Using this integration by parts approach, we define a function C(r) such that
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C(r) =

∫ r

0

2

3
πr′

4
σ(r′) dr′ (5.22)

H(r) =
Q(r)

2r
+ J(r)− C(r)

r3
. (5.23)

Defining the function C here introducing numerous convenient properties to the

computation. In particular, none of the derivatives F ′, H ′, or H ′′ depend on J , nor

explicitly on the derivatives of Q or C at all.

First, consider F ′:

F ′(r) =
Q′(r)

r
− Q(r)

2r2
+ J ′(r) (5.24)

= 4πrσ(r)− Q(r)

r2
− 4πrσ(r) (5.25)

= −Q(r)

r2
. (5.26)

The Q′(r)/r and J ′(r) terms cancel.

Now, consider H ′ and H ′′:

H ′(r) =
Q′(r)

2r
− Q(r)

2r2
+
J ′(r)

3
− C ′(r)

r3
+

3C(r)

r4
(5.27)

= 2πrσ(r)− Q(r)

2r2
− 4

3
πrσ(r)− 2

3
πrσ(r) +

3C(r)

r4
(5.28)

= −Q(r)

2r2
+

3C(r)

r4
(5.29)

H ′′(r) = −Q
′(r)

2r2
+
Q(r)

r3
+

3C ′(r)

r4
− 12C(r)

r5
(5.30)

= −2πσ(r) +
Q(r)

r3
+ 2πσ(r)− 12C(r)

r5
(5.31)

=
Q(r)

r3
− 12C(r)

r5
. (5.32)

So armed with these expressions, we can now write the extrinsic curvature for a

spherically symmetric object with linear momentum, solely in terms of that momen-

tum, the radial direction, the distance from the center, and these Q and C functions,
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which are simple one-dimensional integrals themselves and do not require repeated

integrations.

Substituting the above into Equation 5.18, we collect like terms from multiples of

Q and C to get

ĀijL =
3Q

2r2
[P i`j+P j`i−(ηij−`i`j)(P k`k)]+

3C

r4
[P i`j+P j`i+(ηij−5`i`j)(P k`k)]. (5.33)

Notice that Q in this expression multiplies the Bowen-York curvature for a black

hole with linear momentum, as stated in Equation 4.13. That is, with Āij written

in terms of the Q and C functions, we can directly relate Bowen’s curvature for

spherically symmetric momentum sources to the simpler case of a black hole. Q is

normalized to 1 in the exterior of the source, and C must also reduce to a constant

in the exterior. At long distances, the C term is attenuated by the 1/r4 factor, and

so, in a limiting process, the object will appear more and more like a black hole.

For this reason, in the accompanying code implementation that computes the

Bowen curvature, we call the Q function the momentum weight and the C function

the point source deviation, for in the case of a black hole, Q = 1 everywhere and

C = 0 everywhere.

We have therefore reduced the problem of finding the extrinsic curvature of a

spherically symmetric source of linear or angular momentum to finding the weighting

functions σ, κ and the corresponding integrals Q,C,N that enter directly into the

curvature.

5.3. The linear and angular momentum weighting functions for a neutron

star

Neither Bowen nor Oohara and Nakamura’s derivations prescribe the linear momen-

tum weighting function σ from equation Equation 5.39 or the angular momentum
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weighting function κ from equation Equation 5.41. These are arbitrary functions of

distance from the center of the source.

In this section, we relate the weighting functions to the hydrodynamical variables

and conformal factor of an isolated Tolman-Oppenheimer-Volkoff (TOV) star [48] in

isotropic coordinates.

First, we consider the physical momentum density Si in terms of the rest energy

density ρ, the pressure p, the Lorentz factor W of fluid with respect to the normal

vector, and the four-velocity ui:

Si = (ρ+ p)Wui (5.34)

In the case of a spherically symmetric source of linear momentum, we can relate

this expression to one using the total linear momentum P i, the linear momentum

weighting function σ, and the conformal factor Φ,

Si = (ρ+ p)Wui = P̄ iσΦ−10 (5.35)

using the typical choice S̄i = SiΦ10.

The notation here can be tricky: we’re equating vectors (or components) in con-

formal space with those in physical space. P i = P̄ i is an integrated quantity, not

a local one, even though the right-hand side is local due to the density σ. Because

of this, if we norm both sides of this equation, we must be careful to use a physical

metric to contract with Si while using a conformal metric to contract with P̄ i. Doing

so yields

|Si|2 = γijS
iSj = (ρ+ p)2W 2(W 2 − 1) (5.36)

= Φ4γ̄ijP̄
iP̄ jσ2Φ−20 = |P̄ |2σ2Φ−16 (5.37)
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This equation suggests defining p̄ = pΦ8 and ρ̄ = ρΦ8 as conformal pressure and

conformal energy density, respectively.

Even with such a choice made, σ is not yet determined. The most we yet know is

that

|P |σ = (ρ̄+ p̄)W
√
W 2 − 1 (5.38)

Now, we make a choice: let σ be defined by

σ = (ρ̄+ p̄)/M (5.39)

for some constant M.

This choice has an immediately desirable property: it makes W a constant over

the source (again, in the case of linear momentum only). This can be verified by

substituting the choice for σ into Equation 5.38 above, yielding |P |/M = W
√
W 2 − 1.

Since |P | andM are constants over space, W must therefore be constant over space,

taking the form

W 2 =
1

2

(
1 +

√
1 +

4|P |2
M2

)
(5.40)

This is precisely what would be expected if M were the mass of a point particle.

So M plays the role of an effective mass, at least for the purposes of Bowen-type

curvature.

In the angular momentum case, we proceed with a similar ansatz as from the

linear case: we choose

κ = (ρ̄+ p̄)/Ī. (5.41)

The resulting form of W is
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W 2 =
1

2

(
1 +

√
1 +

4|J |2r2 sin2 θ

I2

)
(5.42)

This is what would be expected of an object spinning with moment of inertia I.

The constantsM and I must be determined through the normalization conditions

on σ and κ. These yield the following relations:

∫ r0

0

σ(r) dV = 1 =⇒ 1

M

∫ r0

0

4π(ρ̄+ p̄)r2 dr = 1 (5.43)∫ r0

0

2

3
κ(r)r2 dV = 1 =⇒ 1

I

∫ r0

0

8π

3
(ρ̄+ p̄)r4 dr = 1 (5.44)

from which concrete values for M and I follow, provided that ρ̄, p̄ are specified.

Finally, the similarity of these expressions forM and I to the Q and C functions

of section 5.2 should be noted. In practice, we will reuse these integrals for the Q

and C functions. It is, however, strange that the C function ends up related to that

normalization constant for spin. This relationship may bear further study in the

future.
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CHAPTER VI

IMPLEMENTATION

We now present how we implemented a code to compute and use the Bowen-type

curvature for spherically symmetric sources in the context of a numerical relativity

simulation.

6.1. Existing code infrastructure and implementation outline

Georgia Tech already had a framework for NR simulations; Bowen-type curvature of

this form would merely be one part or component in this existing code.

As stated in section 3.7, much infrastructure already exists for numerical relativity

simulations. The problem of implementing this generalized Bowen-type curvature and

integrating it into the rest of the simulation framework required the following pipeline:

• For each spherically symmetric object, specify the conformal energy density ρ̄

and pressure p̄, and the linear and angular momenta P, J .

• Compute the Q,C,N functions for each object, thereby specifying the extrinsic

curvature and solving the momentum constraint.

• Solve the Hamiltonian constraint to compute the conformal factor Φ.

• Use Φ and ρ̄, p̄ to compute the hydrodynamical primitives used by Whisky: the

rest mass density, three-velocity, pressure, internal energy density, and Lorentz

factor.

• For a binary system, compute the mass of each object to check the total mass

and mass ratio, as the momenta provided are computed from post-Newtonian
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inspiral (as in subsection 4.3.5) of a particular system with specified mass ratio

and total mass. If the masses have not converged within tolerance, use an

iterative method to improve guesses for the black hole or star parameters and

repeat.

By comparison, this is what we had available to us before starting this project:

• A post-Newtonian evolution code called PNEvo for point particles that com-

putes the linear and angular momenta of binary companions after evolving them

from a longer initial distance

• A Tolman-Oppenheimer-Volkoff (TOV) star solver, which computed the hydro

variables as a function of Schwarzschild radius from the center of the star.

• TwoPunctures, a Hamiltonian constraint solver using Newton-Raphson it-

eration, modified to work with the Einstein Toolkit and to handle hydro

source terms.

• A primitive variable solver using Steffensen’s method, which computes the hydro

variables for evolution given the conformal variables and the conformal factor.

The following sections detail how we repurposed or supplemented the existing

code available or implemented new code where appropriate.

6.2. Specification of momenta

We chose to use the momenta resulting from PNEvo directly. For a given initial co-

ordinate separation, mass ratio, and total mass, we would use the PNEvo-computed

momenta directly. Future improvements to the pipeline could involve augmenting the

PNEvo code with source terms that account for the actual extent of stars, accounting

for tidal interactions for example.
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6.3. Choice of conformal hydro variables

We chose the conformal hydrodynamical variables based on models of isolated TOV

stars. For a single star, the variables take the form

ρ̄ = ρTOVψ
8
TOV (6.1)

p̄ = pTOVψ
8
TOV. (6.2)

When we simulate multiple stars (e.g. in a neutron star binary), we simply add

the separate contributions. Since the stars are disjoint and have compact support,

this does not have any effect on the value of the conformal variables locally: one star

does not influence another in any meaningful way.

6.4. Computation of the Q,C,N functions and the isotropic TOV solver

With the conformal hydro variables set, the weighting functions σ, κ are determined

by Equation 5.39 and Equation 5.41, respectively.

In practice, the conformal hydro variables are not known exactly because the TOV

solution is not known exactly. Rather, the TOV solution is computed numerically. We

had at our disposal a numerical solver using 4th order Runge-Kutta method (RK4)

for ODE integration, producing the values of the hydro variables at radial points with

a fixed interval, up until a termination condition (for example, a minimum pressure)

was reached.

Our implementation modifies the preexisting RK4 solver to directly integrate

Q′, C ′, N ′.

In addition, the preexisting solver used right-hand sides consistent with a Schwarzschild

TOV solution instead of the isotropic coordinates used in puncture black hole simu-

lations using Bowen-York data, so we modified the solver to isotropic coordinates as

well.
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The primary guide in converting to isotropic coordinates was a Matlab code

provided by Pablo Laguna. This code is also a TOV solver, and it also uses RK4.

One of the key issues it illustrates is the inherent difference between the conformal

factor used during integration and the final conformal factor that will be used for the

rest of the computation.

The issue is the choice of the exterior conformal factor: for a single, isolated object

at rest of mass M , the conformal factor at a distance r in the exterior is typically

chosen to be ψ(r) = 1 +M/2r.

The RK4 integration cannot guarantee this a priori. The integration starts at the

origin and works outward. Even if the mass and radius were known (or prescribed in

advance), a radial integration inward would fail because the TOV equations are stiff.

Hence, in practice, we choose an arbitrary value for the conformal factor at the

origin (typically, 1) and then rescale the conformal factor by a constant factor after

the integration to meet the condition that ψ(r) = 1 +M/2r in the exterior.

In the TOV model alone, this rescaling affects only the conformal factor itself (as

well as the variable Θ = αψ, with α the lapse, that is used in the isotropic solution),

but to compute Q and C inside the same integration loop, powers of the conformal

factor must be accounted for.

Let ψ̃ denote the conformal factor originally solved for in the ODE integration.

Let r̃ be the radial coordinate for this integration, and suppose that ψ̃ = Aψ for some

constant A, where ψ(r) = 1 +M/2r in the exterior (M is a conformal invariant, so it

can be computed using the ODE integrator without rescaling).

Now, let R̃ be the radius of the star in the r̃ coordinates, and R be the corre-

sponding radius in the final r coordinates. Note that A2r̃ = r, as we’re transforming

between two radial coordinates of two sets of isotropic coordinates, and consider the

quantity
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ψ̃(R̃) + ψ̃′(R̃)R̃ = Aψ(R) + A
dr

dr̃
ψ′(R)A−2R (6.3)

= A[ψ(R) + ψ′(R)R] (6.4)

= A

[
1 +

M

2R
− M

2R2
R

]
(6.5)

= A, (6.6)

where we used dr/dr̃ = A2 to simplify. This argument allows us to compute the

value of A, the required factor for conformal rescaling, from the conformal factor

computed with an arbitrary initial condition at the origin.

From here we can compute the necessary rescaling corrections for the Q,C func-

tions. We write these functions first in terms of r, ψ and then in terms of r̃, ψ̃, A. Let

f(r̃) = A2r̃ = r, and we get

Q(r) =
1

M

∫ r

0

4π[ρ(r′) + p(r′)]ψ(r′)8r′
2
dr′ (6.7)

(Q ◦ f)(r̃) =
1

M

∫ f(r̃)

0

4π[ρ(r′) + p(r′)]ψ(r′)8r′
2
dr′ (6.8)

=
1

M

∫ r̃

0

4π[(ρ ◦ f)(r̃′) + (p ◦ f)(r̃′)](ψ ◦ f)(r̃′)8r̃′ 2 (6.9)

=
1

M

∫ r̃

0

4π[(ρ ◦ f)(r̃′) + (p ◦ f)(r̃′)]A−8ψ̃(r̃′)8f(r̃′)
2dr

dr̃
dr̃′ (6.10)

=
1

M

∫ r̃

0

4π[(ρ ◦ f)(r̃′) + (p ◦ f)(r̃′)]A−8ψ̃(r̃′)8A4r̃′2A2 dr̃′ (6.11)

=
1

MA2

∫ r̃

0

4π[ρ̃(r̃′) + p̃(r̃′)]ψ̃(r̃′)8 dr̃′, (6.12)

where ρ̃ is a function of r̃ and similarly for p̃, and the operator ◦ denotes function

composition.

The procedure to compute Q then follows: we compute the derivative of Q ◦ f

with respect to r̃ and integrate this in the ODE solver. Then, using the value of A

computed from ψ̃ and its derivative, we enforce the condition Q(R) = 1. In practice,
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this means integrating q =MA2(Q ◦ f) and then setting q(R̃) =M.

We use the same general procedure for the C and N functions. Here, we present

only the results:

(C ◦ f)(r̃) =
1

MA−2

∫ r̃

0

2π

3
[ρ̃(r̃′) + p̃(r̃′)]ψ̃(r̃′)8 dr̃′ (6.13)

(N ◦ f)(r̃) =
1

IA
−2

∫ r̃

0

8π

3
[ρ̃(r̃′) + p̃(r̃′)]ψ̃(r̃′)8 dr̃′ (6.14)

Notice that C,N are proportional as a consequence of our choices for σ, κ. Our

implementation computes them separately, but in principle, a more efficient imple-

mentation could compute N only (so as to more easily compute I) and then compute

C = NI/4M.

Furthermore, an alternative implementation might choose to leave the TOV solver

untouched and compute Q,C,N using the resulting table of data instead—perhaps

using Simpson’s rule or another quadrature method. This would have an advantage

in reusing the TOV solver as it stands more easily, and a table of ρ, p data could be a

generic representation for spherically symmetric solutions on a discrete radial lattice.

We are strongly considering such a change in the future, to further modularize the

code.

Regardless, the rest of our modified, isotropic TOV solver involves ODE integra-

tion of the following equations, which can be derived from the conformal thin sandwich

formalism (and hence, the TOV equations represent a spherically symmetric solution

to the CTS equations with a timelike Killing vector):

1

r2
(r2ψ′)′ = −2πψ5ρ (6.15)

1

r2
(r2θ′)′ = −2πθψ4(ρ+ 6p) (6.16)

p′ = −(ρ+ p)

(
θ′

θ
− ψ′

ψ

)
(6.17)
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where θ = αψ and primes denote radial derivatives. We rearrange these equations

into a first-order system for ODE integration.

6.5. Interpolation of TOV functions

The numerical integration of the TOV matter functions (as well as the curvature

functions Q,C,N derived from them) yields values on an evenly-spaced radial lattice.

This lattice cannot in general coincide with the grid points of the Cartesian mesh nor

with the spectral grid points used by the TwoPunctures solver. The results must

be interpolated.

As with the TOV solver’s RK4 routine, the interpolation method we had available

to us was a linear interpolation algorithm attributed to Roland Haas. We replaced

this routine with piecewise third-order Lagrange interpolation: for any point, we used

the four closest known data points to construct a third-order interpolating polynomial

to interpolate to the target point.

While three continuous derivatives should not be necessary (the Hamiltonian con-

straint should only require two), the cubic interpolant requires two points on either

side of the target and therefore does not require arbitrary asymmetry in the interpo-

lation method.

6.6. Solving the Hamiltonian constraint with TwoPunctures

Marcus Ansorg and Erik Schnetter originally ported Ansorg’s TwoPunctures stan-

dalone to the Cactus framework. Tanja Bode later modified this thorn to han-

dle Teukolsky waves and, presumably, (though it is not clearly documented) matter

sources in general, in accordance with [64]. Again, per discussion there (and covered

in subsection 4.3.6), general matter sources require conformal rescaling for the Hamil-

tonian constraint PDE to be well-posed. For this reason, the matter source term in

this “TwoPuncturesMatter” thorn has the form 2πρ̄HΦ−3.
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We made minor structural changes to TwoPuncturesMatter for use with our

generalized Bowen-type curvature:

First, we removed unnecessary code for solving the momentum constraint; our

generalized Bowen-type curvature automatically solves this constraint.

Second, since all information about the distribution of matter, the initial confor-

mal factor guesses, and the extrinsic curvature are computed in a thorn we wrote

called BowenID, the TwoPunctures-like thorn that solves the Hamiltonian con-

straint does not need to compute any of these source terms on its own. Rather, it need

only get them through a Cactus aliased function, which we named getSourceInfo,

providing the conformal factor (singular parts and nonsingular), the conformal Hamil-

tonian energy density ρ̄, the extrinsic curvature, and the conformal momentum density

S̄ (which will not be needed until we construct the primitive hydro variables).

Hence, our new TwoPuncturesSolver is literally just a Hamiltonian constraint

solver using a spectral grid. It has no awareness of whether the underlying source

terms involve black holes, TOV stars, or anything else. This increased separation

fosters modularity, but it does shift the burden of computing masses to other thorns,

which we will discuss later.

Finally, we separated the computation of TwoPuncturesSolver’s solution

from the setting of the metric and extrinsic curvature variables. This allows us to

generate new solutions based on changing system parameters without looping over

the entire mesh, and it is necessary for the iterative procedure to converge on the

masses of the objects in a binary system.

6.7. Iterating on the parameters to converge on final masses

Once the hydro primitives are set, we have completely specified all that is required

to start evolution—at least, for the parameters we specified. In practice, the TOV

solution is governed by (among other things) a choice of central density, and the
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puncture black holes are governed by bare mass parameters. There is no guarantee

(yet) that these choices will correspond to the masses (total mass and mass ratio)

that governed the choice of momenta for the extrinsic curvature.

The most straightforward way to solve this problem is to treat it as a two-

dimensional root-finding problem.

We had available a thorn called Baum, written by Frank Herrmann and based

off methods in [9]. This approach was originally meant to search for binding energy

minima, as described in subsection 4.3.5. For our purposes, this method was out-

moded: Baum uses a secant method on each parameter individually to converge on a

solution. Such a method is not very well formulated, especially when the parameters

differ significantly in relative size (as our black hole bare masses and TOV central

densities often do, in the case of mixed binaries).

Rather than repurpose Baum, we wrote a new iterative solver based on Broyden’s

method, particularly the “bad” Broyden method [40]: given a vector function f , we

generate a sequence of approximate inverse Jacobians Hi and approximate roots xi

according to

xi+1 = xi −Hi[f(xi)] (6.18)

Hi+1 = Hi −
∆xi −Hi[∆fi]

∆fTi Hi∆fi
∆fTi (6.19)

where aT is the transpose of a, fi = f(xi), and ∆bi = bi− bi−1 for any sequence b.

We felt this quasi-Newton method appropriate as computing the Jacobian for our

system (essentially, a function from the TwoPuncturesSolver conformal factor

solution to the masses) would’ve been prohibitively expensive, if not impossible. In-

stead, Broyden’s method converges rapidly and seldom gets stuck, and it estimates

the Jacobian reasonably well in just four TwoPuncturesSolver evaluations.

Our implementation of Broyden’s method is intended to be modular: the core
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routine is implemented as a higher-order function, accepting an arbitrary function

of the required signature (essentially, the function we’re finding the root of) as well

as a function governing the termination of the iteration procedure (either because

tolerance is met or a maximum number of iterations is reached).

That modularity goal is one reason why our Broyden’s method code makes heavy

use of monads and functors: to allow the core data being manipulated to sit alongside

various other, less essential data (like a verbose log) or other similar transformations,

with minimal impact on the core algorithm. We will expound on our use and imple-

mentation of monads in section 6.10.

6.8. Mass measures of TOV stars and black holes

To complete the initial data procedure, we need some measure of the compact objects’

masses.

For black holes, we continue to use Equation 4.18.

For TOV stars, the situation is less settled. There are several candidates for the

right mass quantity, but what we found ensures the best circularity is to use the

isolated ADM mass of the star. In practice, this cannot be computed directly: unlike

with puncture black holes, the isolated ADM mass of a star does not cleanly decouple

from the ADM mass of the rest of the system.

Instead, we make one more assumption: that the “isolated ADM mass” and rest

mass are both conserved throughout. This is a stronger assumption than that used

in the QE literature, in which only the rest mass is presumed conserved (see, for

example, [10]), but QE data has no need for a notion like the “isolated ADM mass”

that we need here.

At any rate, the rest mass M0 can be computed by

M0 =

∫
Σ

ρ0α
√
γαut d3x, (6.20)
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where Σ is the full 3D hypersurface, α is the lapse, γ the determinant of the three-

metric, and ut the time component of the four-velocity of fluid. This integral has no

interaction terms; individual stars’ rest masses can be determined by integrals over

their separate extents.

For a given equation of state, there should exist a locally invertible function be-

tween rest mass and isolated ADM mass. In practice, we presume that the ratio

between rest mass and isolated ADM mass is approximately constant over the range

of rest masses we encounter in producing initial data. Thus, for any given rest mass

we find, we have an estimate of the isolated ADM mass merely from running the

TOV solver once.

An alternative solution to this problem would be to find the rest mass correspond-

ing to the target isolated ADM mass and then running the iterative procedure for

initial data with a target rest mass. This would require several additional runs of the

TOV solver, so we chose not to pursue this method.

6.9. Computation of the masses

To compute a black hole’s mass, we evaluate the Chebyshev polynomial solution for

the nonsingular part of the conformal factor, u, at the puncture location. Contribu-

tions from any other sources that may be singular somewhere else in the hypersurface

(but not at this black hole’s puncture) are also added, and then the Equation 4.18 is

used.

For computation of TOV rest mass, we must evaluate the hydro primitives at least

to the point of computing the rest mass density ρ0 and Lorentz factor W . Hence, we

use our PrimitiveSolver thorn to compute these primitives, given the conformal

factor at a point and the conformal hydro variables derived from the TOV solution,

as in subsection 4.3.7.
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Then, we integrate according to Equation 6.20. Encapsulated in our thorn Ba-

sicIntegrator, our algorithm for computing this integral is extremely basic: we

establish a rectangular (usually square) box around the star, divide the box into

points, and use a composite rectangular rule.

Owing to the general challenges of 3D numerical integration, as well as the ap-

proximate nature of the relation between rest mass and isolated ADM mass, we felt a

more sophisticated algorithm might introduce disproportionate complexity for com-

paratively small reductions in total error for the initial data. Nevertheless, any more

sophisticated 3D quadrature method could be used here.

Finally, a remark on the computation of u: a faster method for computing u

involves Taylor expansion from the nearest TwoPunctures collocation point. This

may be suitable for early iterations on the masses and could potentially speed up

the initial data procedure overall, with evaluation used only in the final step before

evolution.

6.10. Functors, monads, and category theory: high-level manipulation of

functions

Both BasicIntegrator and Broyden rely on the power of functors or monads

for high-level computations [62], imported through a standalone template thorn we

wrote, FunctionalToolkit.

Applied to computer science, a category-theoretic functor F is a map that specifies

1. For every data type A, an associated data type F (A), and

2. For types A,B, a map for functions of signature A → B to functions of sig-

nature F (A) → F (B), in a manner preserving identity functions and function

composition

In implementing functors in C++, a given functor takes the form of a templated
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class, having a templated member function called fmap that transforms functions in

the specified manner.

The basic structure of a functor allows us to avoid repeating ourselves in code

with common computational patterns. For example, the Maybe functor allows us to

deal with computations that may take a particular value or a default value. Code

like this. . .

if(have_value)

{

func(value);

}

else

{

func(default_value );

}

can be replaced systematically by a method accomplishing the same thing:

template <typename A>

class Maybe

{

private:

bool have_value;

A value;

public:

/* other methods excerpted */

template <typename F>
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const auto maybe(const F& func , const A& default_value)

-> decltype(func(default_value ))

{

return have_value ? func(value) : func(default_value );

}

};

Thus far, functors might not seem very useful. Indeed, the member function

fmap would simply apply a function to value or, if have value is false, return

another Maybe with the same, but of the new type. A general List structure can

be understood as a functor, with fmap corresponding boardly to std::transform

for standard containers, but the power of functors is more apparent with their more

specific cousins: monads.

Monads introduce an additional operation called join, which for a monad M and

arbitrary type A has signature join : M2(A) → M(A). join allows us to flatten

nested functor data. This is most useful in combination with fmap on functions of

signature A→M(B), defining another function called bind, which obeys

bind : [A→M(B)]→ [M(A)→M(B)]

bind(f) = (join ◦ fmap)(f) (6.21)

The usefulness of monads is the power of the tools fmap and bind. Some monads

include Writer, which holds a string of output along with the main value of the

computation, as well as Either, which holds a plain value or an alternative data value

that, once introduced, propagates untouched through the rest of the computation

until explicitly handled. These handle the common problems of verbose output or

exceptions, respectively. fmap allows us to write functions that are blind to the monad

that might be used in a computation and then promote the function, and bind does
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a similar thing with functions that must produce errors or log output, and so on.

In BasicIntegrator, the vector of data values is encapsulated in a List monad.

Most other functions are plain functions (e.g. from integers to reals, etc.) and pro-

moted to act on List with fmap. List itself uses std::vector as its underlying data,

with std::transform, std::accumulate and so on as backend functions.

In Broyden, the base Broyden algorithm is written to be insensitive to the monad

used in the overall computation. In the actual initial data pipeline, we use a combi-

nation of monads: Either is used to pick up errors from Cactus infrastructure calls,

and IO is used to encapsulate the stateful manipulations of Cactus.

The use of IO monad results in a proliferation of lambda functions being passed

around, using std::function as a generic container for function objects of specified

signature. While it may increase readability—the mere use of IO indicates that a

function may no longer be referentially transparent, or a simple mathematical function

of its inputs—the performance overhead of passing so many lambda functions may

demand reconsideration in the future.

In Broyden, the IO and Either monads are combined using a monad transformer[41]:

for any given monad M , a monad transformer T produces T (M), which is also a

monad. In doing so, the monad transformer also guarantees the existence of a func-

tion liftT : M(A)→ T (M)(A) for any type A. lift therefore promotes objects from a

base monad to the transformed monad.

We implement a monad transformer in C++ using template-template parameters.

Here is a skeletal outline of our EitherT monad transformer:

template <typename L, template <typename > class Md, typename A>

class EitherT

{

private:

Md <Either <L,A> > value;
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public:

Md <Either <L,A> > run() const

{

return value;

}

...

};

Here, L is the fixed error type of the Either, Md is the type of the base monad

being transformed, and A is the base type of data that the monadic object will be

associated with. In this case, we also provide a method called run, which we use to

break out of the monad transformer into a monad with a monadic type as its base

type. This is useful when we must use methods associated with the template Md in

order to remove that layer of the “monadic onion”.

The fmap and join operations for monad transformers are more complex than for

plain monads. For example, the join operation for EL, the EitherT monad transformer

with error type L, is

joinEL(M)(x) =
[
unitEL(M) ◦ fmapM [runEL ◦{eitherEL(leftEL)(id)}] ◦ runEL(M)

]
(x),

(6.22)

where LeftEL denotes the constructor for Either data with error type L that holds

a value of type L (i.e. is not data of the base data type; in typical usage, this would

be an Either corresponding to an error message or exception type, not the expected

data type of the computation).
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CHAPTER VII

TESTS AND ANALYSIS

We now discuss various tests and analyses of the initial data pipeline.

7.1. Description of test cases

We considered four main systems or cases to analyze.

7.1.1 Common features of our test cases

For all cases, we use a polytropic equation of state for the TOV stellar model. For

all binaries, we position the objects along the x-axis of the computational domain,

approximately such that the center of mass is at the origin (to the extent that such a

quantity may be defined). For all binaries, we set the momentum of one object (for

its Bowen curvature) equal and opposite to the momentum of the other.

Each simulation’s grid structure consists of nested boxes, each typically (but not

absolutely) with the same number of points as the next coarser box immediately con-

taining it, but with half the extent per dimension and therefore twice the resolution,

and sharing the same center as the next coarser box. In practice, we often move boxes

from their parents’ centers to track black holes or neutron stars in motion: we fix

some number of boxes to be immovable, and then the rest follow an object, steered by

an algorithm to find the root of the shift (for black holes) or a search over a region for

maximum rest mass density (for neutron stars). Finally, with two compact objects to

consider, and without rotational symmetry of the system in the general case, a single

coarse box might have two daughter sets of boxes, with each set tracking a different

object, and with the separate sets of boxes ultimately merging into a single hierarchy

as the objects coalesce.
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In some of the coarser refinement levels, we may elect not to perform time refine-

ment between meshes: that is, the time step for one refinement level is the same as

that of the next coarser level. Otherwise, most levels use timesteps that are 1/2 that

of the next coarser level. When levels differ in spatial resolution by a factor of 2 as

well, this condition ensures that the Courant factor is preserved between levels.

In our binary systems, the parameters given are those we computed through our

Broyden’s method procedure. We use cubical boxes for integration of rest mass den-

sity, with 60 points per side length, which we set to the radius of the TOV model. We

set target masses according to mass ratio and relative tolerances to 10−5. For compu-

tation of the initial Jacobian, we estimate the derivatives through finite differencing

about a range of ±5% about the initial parameters. We choose the dimensionless

value ρ0,cK—the product of the central rest mass density and the polytropic con-

stant for our polytropic, Γ = 2 equation of state—to characterize TOV stars. For

black holes, we use a bare mass equal to the target mass, even though we know that

the correct bare mass will almost always be smaller.

The simulations are carried out using the Einstein Toolkit in conjunction with

Georgia Tech’s Maya code for spacetime evolution and Whisky code for hydrody-

namics, and with the use of computational resources from XSEDE and the Stampede

supercluster at the University of Texas.

Now, the systems we considered:

7.1.2 An isolated neutron star

This is a TOV stellar model using an initial polytropic equation of state with poly-

tropic constantK = 100M2
� and Γ = 2 and central rest mass density ρ0,c = .1249/K =

6.235 × 1014 gcm−3. The resulting star has radius 13.4 km and isolated ADM mass

MNS = 1.543M�. We consider various momenta for this star, directed along the

x-axis, up to |P |/M = 0.4. We carried out this simulation with code unit M = M�.
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Grid structures for this case vary, as we considered a variety of momenta, necessi-

tating long, rectangular grids with more space in the x-direction. However, the finest

box in each case is cubical, with 60 points per dimension (without symmetry) and

an extent of 9.10335M , entirely containing the star at the initial timestep. These

simulations have 5 levels of refinement, and we enforce reflection symmetry over the

xy-plane.

7.1.3 A black/hole neutron star (“mixed”) binary

For the star, we set ρ0,c/K = 0.138492 and K = 123.641M2
�, as this is a common

value in the literature, and it allows us to match system M50.145b in [55], although

we choose a coordinate separation approximately 10% larger than theirs.

We choose a mass ratio q = MBH/MNS = 5, and set the bare mass of the black hole,

mBH = .824968M . These values are the result of our Broyden’s method iterative pro-

cedure, combined with initial momenta of (P x
BH, P

y
BH) = (−0.000821827, 0.0592790)M

(these values rounded) and initial separation d = 8.78M , with M ≈ 9.26M�. In phys-

ical units, the star has gravitational mass 1.54M�.

The grid structure for this case has 8 levels of refinement with cubical extent of

±134.223M in the x- and y-directions. In the z-direction, the extent is [0, 134.223]

due to reflection symmetry. On the coarsest level, there are 64 points per x or y side.

On all other levels, there are 60 points. The finest level has side length .98308M and

resolution 0.0327693M ≈ .30M�. The coarsest 5 levels have the same timestep size.

7.1.4 A double neutron star binary

This is an equal-mass, nonspinning binary. Each star has ρ0,c/K = 0.130576. The

code unit and total mass is M = 3.14M�. The stars’ separation is d = 12M , and their

momenta are ±(−0.000696566, 0.0851143)M . These parameters allow us to consider

similarities to the “1.62-45” system in [5], although we increase the initial coordinate

system from 45 km to 54.6 km.
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The grid has reflection symmetry about the orbital (xy) plane and rotational

symmetry in this plane as well: hence, the actual computational domain is only the

+x,+z quadrant. The grid has 7 levels of refinement, with boundaries at ±192.793M

in the y-direction. The finest level has side length 2.91521M in the y-direction at

time 0. The grid’s five finest levels may all move to track the motion of one star’s

center in the computational domain (the other star’s center will always be out of the

domain due to symmetry). We performed this simulation with three different spatial

resolutions, with 60, 88, or 120 points across the side length in the y-direction. Only

the finest 2 levels have time refinement over the other 5.

7.1.5 A spinning double neutron star binary

This is also an equal-mass system, but with spin: each star has spin angular mo-

mentum S = (0, 0,−0.0125), corresponding to dimensionless spin parameter a =

|J |/M2
NS = 0.05. Thus, the stars’ spins are aligned, not only with each other but with

the orbital axis of rotation as well.

Each star has ρ0,cK = 0.137266, and their momenta are±(0.000542612,−0.08096414)M ,

with M = 3.14M�. The initial separation is still d = 12M . We chose these parame-

ters to be similar to system Γ−−050 in [13], though our separation is larger by an unclear

amount.

Like with the nonspinning DNS, the grid has reflection and rotational symmetry,

7 levels of refinement, a maximum extent of ±195.501M and a finest level extent of

2.86378M . Otherwise, the details of the grid structure are substantially the same as

that of the nonspinning case. We do, however, only perform this simulation with 60

points across the finest box.
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Figure 3: Comparison of various possible mass measures for a neutron star with
momentum. M0 is the rest mass, MADM is the ADM mass of the system, and M?W is
the isolated ADM mass of a stationary TOV model multiplied by the Lorentz factor
W (which is uniform by construction). We fit the ADM mass to a quadratic in P , as
it is expected to obey such a relation in the low momentum limit.

7.2. Isolated star tests

Our isolated star tests comprise various checks on the validity of the data for a range

of momenta, down to the zero velocity limit:

System rest mass and ADM mass as a function of momentum. In Fig-

ure 3, we compare rest mass and ADM mass for an isolated star as a function of

momentum, ranging from |P |/MTOV = 0 to 0.4. In general, the rest mass is larger

than the ADM mass, but both exhibit quadratic scaling with the momentum, as
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Figure 4: TOV star comparison of the conformal factor Φ and rest mass density ρ0

before (black) and after (red dashed) passing through our modified TwoPunctures
solver for solving the Hamiltonian constraint, as well as subsequent hydrodynamic
variable reconstitution with PrimitiveSolver.

expected when expanding the Lorentz factor to its lowest order terms in P : that

is, we expect that the ADM mass MADM = MTOVW , where W is the Lorentz fac-

tor and obeys W = (1 − |P |2/M2
TOV)1/2. Expanding this in a Taylor series gives

MADM(|P |) = MADM(0) + C|P |2 for some constant C, which we have determined

through a quadratic fit. Similar logic applies for the rest mass.

Comparison of TOV data before and after Hamiltonian constraint solv-

ing. A crucial test of correctness is that the TOV solution is not materially changed

when we pass pure TOV data through the Hamiltonian constraint solver. That is, in
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the presence of no momentum, our algorithm should not introduce substantial differ-

ences in the initial data from a TOV solution. Figure 4 demonstrates the agreement

between the rest mass density and conformal factor before and after our version of

TwoPunctures is used to solve the Hamiltonian constraint.

Evolution and stability of a star with momentum. We evolved a single star

with |P |/MTOV = 0.2 to examine long-term stability. Some effects of this evolution

are shown in Figure 5. The left panel shows how the density profile along the x-axis

changes over time. As simulation time progresses, deformations along the leading

edge become more prominent. We attribute this to the nonphysical nature of the

perfectly spherical shape that Bowen curvature imposes.

Moreover, the effects of a nonphysical initial shape are evident in the longterm

evolution of the maximum rest mass density, in the right panel of Figure 5. Here, the

central density fluctuates upwards of 3% over time.

Gravitational radiation from a star with momentum. Finally, we consider

the gravitational radiation emitted from a star with this data. For the same case as

above, we consider a star with momentum and extract the (l,m) = (2, 2) spherical

harmonic mode of Ψ4 at a distance r = 150M� from the origin. The characterisic

spike of spurious radiation is similar to that from Bowen-York data for black holes

and is a general property of the conformal flatness approximation used here.

7.3. Binary system tests

Here we discuss various features of our binary systems, including comparisons to

systems in the literature.

7.3.1 Central density variation in stars

Our data exhibits significant variation in the central density of stars during a compact

object binary simulation.
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Figure 5: Additional comparisons for a star with |P |/MTOV = 0.2.
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As evident in Figure 7, our stars experience central density oscillations on the order

of 10% during inspiral, and this phenomenon is consistent (though the amplitude

decreases over time) in each of our three binary test cases. This is a defect not shared

by quasiequlibrium data, which solves the hydrodynamical equations on the initial

timeslice in a more expensive, but also more systematic manner.

Ultimately, we believe that the data will have to be improved to remove this defect

as, among other reasons, it may introduce high frequency oscillations in the frequency

of Ψ4. One possible strategy to remedy this defect is to make the stars nonspherical.

Bowen suggested a means to decompose sources into spherical harmonic modes (see

subsection 8.1.2), but given that we expect stars with linear or angular momentum

to take on spheroidal shapes, we may have to consider some spheroidal harmonic

decomposition instead. This would drastically increase the complexity of the initial

data, as well. We expand on this idea later.

7.3.2 Center of mass drift

In our mixed binary case, the center of mass of the system drifts significantly away

from the origin, even during inspiral. We compute the center of mass riCM = M1r
i
1 +

M2r
i
2, where r1, r2 are the Cartesian coordinate positions of objects 1 and 2, and

similarly for the masses M1 and M2, which are presumed from the prescribed mass

ratio and total mass of the system.

Figure 8 shows the progressive drift of the center of mass in this mixed binary

system. The drift remains small or nonexistent during the first 100M of time evo-

lution. While this drift remains unexplained, anecdotally we have noticed that, as

we improved our initial data procedure (particularly the computation of masses to

match the PN initial data), the amount of drift has decreased. This suggests that

the measurement of NS mass can be further improved. Alternatively, there could be

a better choice of gauge for shift evolution. We do not, at this time, believe that
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Figure 9: Convergence measurements for our nonspinning DNS simulation. Simula-
tions at low (L), medium (M), and high (H) resolutions are used, and their differences
are plotted. The residuals between high and medium (H-M) and medium to low (M-
L) are compared with multiplying the larger residual by 2.49—a factor corresponding
to second order convergence with our resolutions.

this drift represents actual kick velocity due to asymmetric emission of gravitational

radiation, nor do we think this is a numerical effect from the position of refinement

boundaries (which could, in principle, reflect gravitational waves back into the system

and alter system dynamics).

7.3.3 Waveform convergence

We verify here that our gravitational wave signals converge with increasing resolution

and extraction radius.
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First, we examine effects of increasing resolution. We performed our nonspinning

DNS simulation with 60, 88, and 120 points per dimension (ignoring symmetries) on

the finest mesh. We compare the absolute value of residuals between the gravitational

waveforms produced in Figure 9.

We presume that, for a resolution (grid spacing) ∆, a numerically computed func-

tion f obeys

f(∆) = f(0) + u(∆), (7.1)

where f(0) is the exact solution to the differential equation. According to Richard-

son [52], we can expand u as a Taylor series:

u(∆) = u1∆ +
1

2
u2∆2 +

1

3!
u3∆3 + . . . (7.2)

Then, for our resolutions that are h/60, h/88, h/120 (with h a fixed value that will

ultimately cancel), we obtain two equations:

f

(
h

60

)
− f

(
h

88

)
≈ u1

h

240
+ 7.432× 10−5u2h

2 + . . . (7.3)

f

(
h

88

)
− f

(
h

120

)
≈ u1

h

330
+ 2.984× 10−5u2h

2 + . . . (7.4)

Experimentally, we find that the differences in our measured waveforms closely

matches the ratio of the second order terms, or approximately 2.491 : 1, as shown in

Figure 9. This suggests u1 = 0 and that the finite differencing error is dominated by

those terms second-order in h. Though this analysis uses the gravitational waveform,

this behavior is broadly consistent with previous studies of the Whisky code for GR

hydrodynamics [14], which also showed approximately second-order convergence.

We also present an estimate of the error in our high-resolution using Richardson

expansion. In brief, we expand u = rΨ
(2,2)
4 in a power series in the resolution ∆. For

an order n scheme, we have
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u(∆) = u(0) + En∆n +O(∆n+1) = u(0) + ε(∆), (7.5)

where ε(∆) is the error with respect to the exact solution u(0) as a funciton of

the resolution. We can then estimate the error for any given resolution given a lower

resolution solution:

u(∆1)− u(∆2) = En(∆n
1 −∆n

2 ) +O(∆n+1) (7.6)

= En∆n
2

(
∆n

1

∆n
2

− 1

)
+O(∆n+1) (7.7)

= ε(∆2)

(
∆2

1

∆2
2

− 1

)
+O(∆n+1) (7.8)

Since we measure u(∆1), u(∆2) directly with our simulations, and we know that

our waveforms exhibit approximately second-order convergence (n = 2), we solve

these equations for the high-resolution error ε(∆2). We performed this analysis on

the magnitude and phase of rΨ
(2,2)
4 , from a time after the first orbit to just before the

final inspiral/merger phase.

We find that the relative error in the magnitude is under 10% on this interval, and

the absolute error in the phase is under 0.4 radians in the late stages of the inspiral.

7.3.4 Radiated energy and angular momentum

Gravitational waves carry away energy and angular momentum from their sources.

Let Ḧ = −ψ4, so that H = h+ + ih× is a “complex strain”. The energy radiated

is then [23]

Ė = lim
r→∞

r2

16π

∮
|Ḣ|2 dΩ (7.9)

Ṗ i == lim
r→∞

∮
`i|Ḣ|2 dΩ, (7.10)
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Figure 10: Richardson errors for the absolute value and phase of r|Ψ(2,2)
4 | in our

nonspinning DNS system.

80



where `i is the unit radial vector, once again. The angular momentum radiated is

[60]

J̇z = − lim
r→∞

r2

16π
<
∮
∂phiHḢ

† dΩ. (7.11)

In practice, we decompose ψ4 into spin-weighted spherical harmonics with spin

weight s = 2, and in some cases, we only consider the (s, `,m) = (2, 2,±2) mode of

ψ4, which we will refer to consistently as ψ
(2,±2)
4 .

In both our mixed binary and spinning DNS binary, we find a shortfall of gravi-

tational radiation, both in terms of energy and angular momentum radiated through

the (`,m) = (2, 2) mode. For our spinning DNS binary, the energy and angular mo-

mentum radiated through the (2, 2) mode are .7% and 16%, respectively, compared

to 1.2% and 18% in [13]. Similarly, for our mixed binary, we find the energy radiated

to be .7% versus 1% in [55].

One factor in common for both systems is that we use a larger initial separation,

which näıvely would lead us to expect even more energy and momentum radiated—

though most energy and momentum should be radiated from merger, and less so from

inspiral.

Instead, that we see a consistent deficit may suggest a defect in our merger phase

dynamics. The low resolutions of both of these simulations could be a factor, but

[33] suggests that resolution should have only a weak effect on energy and momentum

radiated beyond 60 points per dimension. Since our reference system for our non-

spinning DNS has no information about energy or momentum radiated, this remains

an unsolved problem for the data.

7.3.5 Orbital eccentricity

A key test of circularity is to measure orbital eccentricity. We follow [35] in fitting

the coordinate separation to a function Dc of the form
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Figure 11: Nonspinning DNS coordinate separation and eccentricity plots. Top panel:
Coordinate separation (black) and corresponding fit (red), computed according to
Equation 7.12 and [35]. Bottom panel: relative error (D −Dc)/Dc, with D the raw
coordinate separation and Dc the fit. Eccentricity is approximately the magnitude of
the extrema of relative error. We omit some period of time at the beginning of the
simulation and near merger.
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Figure 12: Like Figure 11, but for our mixed binary system.
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Figure 13: Like Figure 11, but for our spinning DNS system.
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Dc(t) = A1

√
t− T + A2(t− T ) + A3(t− T )3/2 + A4(t− T )4 (7.12)

where T is the merger time, and the constants Ai are the fit parameters to be

determined. The eccentricity can then be read off as the magnitude of the extrema.

However, our data is quite noisy, which we attribute to our tracking of the star (which

searches for the maximum rest mass density in a region, and will therefore only report

positions that are grid points1) as well as the oscilations of central density, which may

account for some of the higher frequency oscillations seen in the residuals.

In any event, our results are exhibited in Figures 11, 12, and 13. We measure

eccentricity near 3% for each case. This is rather large compared to that resulting

from the eccentricity reduction techniques of [50], for example, which are typically an

order of magnitude lower.

7.3.6 Merger and collapse timescales

Our simulations show inconsistent differences in merger and collapse timescales. While

some of this can be attributed to resolution, this may speak to a general deficiency due

to spurious central density oscillations or merely differences due to gauge conditions.

Our best data comes from our nonspinning DNS simulations, for we have data

from three different resolutions. Here, we see a difference in merger timescales vary

by roughly 100Mtot (or about 1.5 ms) and collapse timescales vary by 200Mtot (3 ms)

between our lowest and highest resolutions.

By comparison, the system in [5] shows a shorter merger timescale (6 ms compared

to 10 ms) from 45 km coordinate separation. We believe fundamental differences in

gauge could be at issue here and that comparison according to proper separation or

orbital angular velocity might reduce the differences in these numbers, if such can be

precisely quantified.

1[?] considered finding the center of rest mass instead and found that this reduced such noise
considerably. This remains a promising option in the future.
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In contrast, our collapse timescale is much shorter. The hypermassive neutron

star (HMNS) formed by the merger of the two stars collapses to a black hole in 5 ms

for our highest resolution simulation versus 10 ms for the reference system in [?].

Consequently, the reference system exhibits more cycles of gravitational waves from

the HMNS compared to our system. The differences here could be attributed to the

unphysical oscillations in density that are present in inspiral; we believe these may

fundamentally alter the dynamics of merger.

We make no statements about comparing our spinning DNS system to the refer-

ence system in this respect, as the reference states no initial coordinate separation

(only proper separation) and no particular initial orbital angular velocity (which we

could, in principle, compare against). Hence, there is no basis for comparison of

merger time, and in both their system and ours, the HMNS collapses almost imedi-

ately, due to the spin of the HMNS working in opposition of orbital angular momen-

tum.
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CHAPTER VIII

FUTURE WORK AND CONCLUSIONS

The work presented thus far is an early attempt to generate initial data for binary sys-

tems with neutron stars in a manner using the conformal transverse-traceless (CTT)

decomposition, like in the use of Bowen-York data and puncture black holes. While

this method shares in the simplicity of that approach on several levels—particularly

the convenience of analytic solutions to the momentum constraint—our experiments

have shown several lingering issues that will have to be improved upon in the future—

if the method is to be competitive with the state of the art of quasiequilibrium initial

data.

8.1. Central density oscillations and the nature of equilibrium

Perhaps the biggest challenge for this data going forward is the inherent difficulty of

ensuring approximate equilibrium of neutron stars.

The conformal thin sandwich formalism is suited to constructing quasiequilibrium

data due to the conditions it can impose on derivatives, and the approximate Killing

vector can be used to define a time coordinate and time direction that is natural for a

simulation. In our data, hydrostatic equilibrium cannot be guaranteed, and moreover,

we neglect several effects that should distort the shape of a star under the assumption

of spherical symmetry—in particular, the natural oblate shape a star should assume

when rotating or moving with linear momentum, or the tidal forces exerted when

under the influence of a binary companion. In particular, our measures of density

fluctuation in single stars versus stars in binary systems indicate that tidal influences

are significant: the density fluctuation goes from 3% to 10% or more.
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There are a few possibilities for attacking this problem:

8.1.1 Use of post-Newtonian fluid solutions, or other models for the con-
formal momentum densities

Perhaps the most promising approach—in that it requires minimal modification to the

overall method—is the use of a post-Newtonian fluid model from which to construct

the conformal linear and angular momentum densities σ̄, κ̄.

Our approach to black hole binaries with Bowen-York data relies on post-Newtonian

computations to evolve point particles to the initial separation from which we start

simulation in full general relativity. A similar post-Newtonian estimate of the hydro-

dynamical variables—or even a direct estimate of the conformal momentum densities—

could provide a far better density to base our computations upon. While the momen-

tum densities for our generalized Bowen-type curvature are necessarily spherically

symmetric about the centers of the sources, the conformal factor need not be, and

this could be considered the ultimate source of distortions.

Whether our conformal momentum densities come from post-Newtonian approxi-

mations or other computational approaches, such would relax the conditions we used

in Equation 5.40 and Equation 5.42—in which we chose conformal momentum den-

sities to enforce constant linear or angular velocity for isolated stars.

Perhaps a more radical change in approach would be to consider general, asym-

metric sources of linear and angular momentum. We discuss generating the extrinsic

curvature for such sources in subsection 8.1.2, but we will tackle a broader ques-

tion right now: is a post-Newtonian type of method feasible for simulating neutron

stars—or neutron stars and black holes—to generate both their momenta at some

close separation as well as a matter profile that could be used for extrinsic curvature?

We believe the answer is yes, for there is at least one example in the literature: a

smoothed particle hydrodynamics, post-Newtonian code from Faber and Rasio [30].

While interest in this method seems to have petered out in recent years, the core idea
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would be a great match for our method, and we would only need to simulate the long

inspiral phase, rather than the more complicated dynamics of merger.

An open question, however, would be whether such a method—the use of a PN

hydrodynamical simulation for inspiral, generating initial data for an NR simulation—

would compare well with schemes to generate QE data.

8.1.2 Use of asymmetric sources

Bowen [18] derived a more general form of curvature for sources with no particular

symmetries. This decomposes the source into conventional spherical harmonics, with

radial functions describing those modes’ amplitudes. Coupled with a post-Newtonian

estimate of the hydrodynamical variables at some particular separation, a scheme

could decompose a PN-based solution into modes and proceed from there.

Without going over Bowen’s full derivation, we present merely Bowen’s results:

ĀijL can be written in terms of two potentials—a vector potential V i and a scalar

potential θ such that

ĀijL = ∂iV j + ∂jV i − 1

2
δij∂kV

k − 1

2
∂i∂jθ. (8.1)

The two potentials can be written in terms of the following multipole tensors1:

Qi0i1...i` =
(2`− 1)!!

`!

∫
M

S̄i0x{i1xi2 . . . xi`} dV (8.2)

Ci0i1...i` =
(2`− 1)!!

`!

∫
M

r2S̄i0x{i1xi2 . . . xi`} dV, (8.3)

where curly braces denote the symetric, traceless part of a tensor only. That is,

B{ij} = (Bij +Bji)/2−Bδij/3.

The forms of these tensors Q,C unifies the linear and angular momentum descrip-

tions: for a star with no linear momentum but nonzero total angular momentum, Qi

1We will not reproduce the full forms of V, θ here.
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evaluates to zero, and only Ci survives.

The resulting extrinsic curvature would then be flexible enough for arbitrary

sources—albeit only to the level of multiple expansion tolerable for practical im-

plementation.

However, Bowen himself only provided the exterior solutions for the potentials

V i, θ (though deriving interior solutions should not be difficult and would help prove

the regularity of the extrinsic curvature at the center of a star, or at whatever coor-

dinate origin might be used).

Furthermore, while this curvature can handle arbitrarily-shaped sources, it can

give no guidance on what those sources should be to be in equilibrium or to be

physically relevant. Nevertheless, the forms of the extrinsic curvature derived from

this multipole decomposition would be more compatible with PN-based descriptions

of stars.

8.1.3 Choice of gauge conditions

A remaining freedom we have is the choice of initial gauge conditions. For all our

simulations, we used the UTB lapse α = ψ−2 and zero shift for the initial lapse and

shift, respectively. More sophisticated gauge choices could yield better stability for

the stars.

In point of fact, since the gauge conditions for QE data are exactly those of

maximal slicing and minimal distortion (lapse and shift, respectively), it is possible

to implement these conditions alongside CTT data, but only at the cost of coupling

the gauge conditions to the rest of the initial data. This would render the convenience

of an exact solution to the momentum constraint all but pointless.

A more subtle discussion involves the difference between (extended) CTS gauge

conditions and the gauge conditions we imposed on our simulations.

Our simulations use the initial gauge condition α = 1/ψ2 and βi = 0. These differ
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substantially from extended CTS gauge conditions, and one area to explore going

forward is how close we can get to CTS gauge conditions without spoiling the overall

structure of the CTT equations.

A point of interest is that, for a suitable choice of lapse, the non-extended CTS

equations in vacuum can reduce to the Bowen-York solution [32]. This solution relies

solely on the choice of ᾱ = 1/2, or α = ψ6/2. Should a similar solution relating the

Bowen-type curvature here and the CTS equations be derived, that would suggest a

means to convert between CTS-style QE data and Bowen-type data. That being said,

the gauge choice α = ψ6/2 is numerically unstable for Bowen-type data, as the lapse

would then be infinite at the punctures. This may make the relationship between

Bowen-type data and CTS data more of a curiousity than a useful tool.

Another avenue of investigation would be the difference between the lapse associ-

ated with our CTS TOV model and that used in simulations. If we could construct a

lapse function that reduces to the TOV lapse in the large-separation, low-momentum,

and low-spin limit, that may also help reduce spurious oscillations.

One choice might be to consider the densitized lapse a conformal quantity, just as

ρ̄ and S̄i are.

8.2. Center of mass drift

The center of mass drift seen in our mixed binary simulations could be explained by

inaccuracy in the method for estimating neutron star masses. In such a case, a larger

mass ratio is more sensitive to errors in neutron star mass. A subsequent test of this

idea would be an examination of binaries at several mass ratios, including unequal

mass ratio double neutron star binaries.

Alternatively, this drift could be some kind of gauge effect and, therefore, the

previous discussion about gauge choices could also apply here.

91



8.3. Comparison of initial data with quasuequilibrium methods

One difficulty in direct comparisons of initial data is the direct role the orbital angular

velocity plays in quasiequilibrium data versus the lack of a direct measure of orbital

angular velocity in CTT-based data. This creates a significant obstacle in comparing

our initial data to QE data, particularly in comparing binding energy vs. orbital

angular frequency. Orbital angular frequency is a preferable parameter to describe

binary systems of a given mass ratio and composition (pair of objects) because it is

a gauge invariant.

8.4. Eccentricity reduction

Our analysis of eccentricity in subsection 7.3.5 considers only the eccentricity resulting

from the scheme presented, but alternative schemes often include explicit eccentricity-

reduction steps. For example, the method of [50] uses short evolutions to estimate

eccentricity, considering the inward radial velocities of the objects to be tunable pa-

rameters for QE data. Though that method is based in CTS formalism, the core idea

could be applied to the inward radial momenta here.

Alternatively, the concept of a better post-Newtonian solver for generating initial

momenta and/or matter distributions could be more in line with [35], which sought to

avoid repeated evolutions to reduce eccentricity, and which is the basis for the binary

black hole approach we initially sought to extend.

8.5. Final conclusions and remarks

We have offered a new method for constructing initial data for neutron stars in binary

systems. The method is still in need of refining: central density oscillations have no

obvious solution, eccentricity is at least an order of magnitude higher than would be

competitive with other methods, and center of mass drift in unequal-mass binaries

poses a significant obstacle to reliable gravitational wave extraction.
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Nevertheless, it is our hope that the method proposed can be improved in the

future, whether with some of the suggestions and ideas put forward here or by other

means.
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APPENDIX A

NOTATION AND CONVENTIONS

Throughout this document we commonly use Einstein summation over indices: for

example, aµb
µ ≡ ∑3

µ=0 aµb
µ. The summation range 0–3 applies for Greek indices;

the range 1–3 applies for Latin indices. For those reasons, we may also refer to such

indices as “spacetime” and “spatial” indices, respectively.

It’s common in numerical relativity to adopt units such that G = c = 1. Use

of these “geometricized units” leaves only one scale factor common to mass, length,

and time. We will commonly use M to denote this scale factor, measuring lengths,

durations, and masses all in M . This is convenient in numerical code, as physical

quantities can be converted without need to keep track of factors of G or c. In

recovering metric units, one can convert multiply a quantity measured inM byGM/c2

to recover length, or GM/c3 to recover a time, and the units used for G and c will

generate kilometers or seconds or whatever other units desired. Finally, it is common

to measure M itself in terms of solar masses, M�.
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cal relativity waveforms from binary neutron star mergers and their comparison
with post-newtonian waveforms,” Phys. Rev. D, vol. 85, p. 104030, May 2012.
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