
CHANGE-EFFECTS ANALYSIS FOR EFFECTIVE TESTING AND
VALIDATION OF EVOLVING SOFTWARE

A Thesis
Presented to

The Academic Faculty

by

Raúl A. Santelices

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
August 2012

CHANGE-EFFECTS ANALYSIS FOR EFFECTIVE TESTING AND
VALIDATION OF EVOLVING SOFTWARE

Approved by:

Dr. Mary Jean Harrold, Advisor
College of Computing
Georgia Institute of Technology

Dr. Santosh Pande
College of Computing
Georgia Institute of Technology

Dr. David Notkin
Computer Science and Engineering
University of Washington

Dr. Spencer Rugaber
College of Computing
Georgia Institute of Technology

Dr. Alessandro Orso
College of Computing
Georgia Institute of Technology

Date Approved: 25 April 2012

To my loving family and my great mentors and friends,

for their incredible support and understanding

iii

ACKNOWLEDGEMENTS

The completion of my Ph.D. in Computer Science is a dream made true thanks to the won-

derful experiences, lessons, and opportunities I have been so fortunate to receive throughout

my entire life. The people responsible for shaping who I am are, first of all, my dear par-

ents, Mónica Ahués and Raúl Santelices II, and my sweet sister Daniela. I owe them my

eternal gratitude for their support, love, nourishing, and encouragement.

A very special place in my heart is reserved for my sweet, loving wife, Sara Fuchs.

My greatest blessing in my years in Atlanta working on my Ph.D. was to find her. Sara

has been an angel with her incredible support and understanding, giving me the strength to

make the final push to complete this dissertation—by far the most difficult part. I could not

have made it without her. I give Sara much more credit than she wants to take.

During my studies and professional career in Chile, I had the honor and fortune to in-

teract with more classmates, mentors, and colleagues than I can possibly list here. These

marvelous people had, in one way or another, a profound impact in my career and eventu-

ally in my decision to go for the Ph.D. degree. I want to give special thanks to the following

people: Drs. Miguel Nussbaum and Patricio Rodrı́guez, who gave me the opportunities and

support that led me to discover and fulfill my academic interests; professors Jaime Navón

and Yadran Eterovic, for their support and encouragement; my classmates, colleagues, and

friends who provided me with the most stimulating environment, among whom I count

Cristian Rodrı́guez, José Pablo Zagal, Sandra Suárez, Ximena López, Rodrigo Marchant,

Jorge Villalón, Carlo Fabricatore, Amparo Minaya, Marcela Salinas, Patricia Flores, Va-

leria Valdivia, and Florencia Gómez; and my personal friends Ángel Abusleme, Álvaro

Delgado, Pablo Baltera (R.I.P.), Gustavo Olivares, and Álvaro Cortés.

The United States received me in 2005 as my second home. I have met here another

iv

bunch of fantastic people who have taught me and shared with me so much. Among them,

the figure of my advisor, professor Mary Jean Harrold, stands out. I simply fall short in

words to express how lucky and privileged I am that Mary Jean took me under her wing

and led me through all these years with admirable wisdom, patience, generosity, work ethic,

and dedication. I cannot imagine having a better advisor and role model.

One of the wonders that Mary Jean has produced is her group at Georgia Tech: the

Aristotle Research Group (ARG) that I also know as my “academic family”. Among my

lab-mates and friends at the ARG who provided me with such a stimulating and fun envi-

ronment are: James A. Jones, Taweesup (Term) Apiwattanapong, James F. Bowring, Pavan

K. Chittimalli, Carsten Goerg, Saswat Anand and his wife Aliva Pattnaik and their son

Rrishi, George K. Baah, Hina B. Shah, Sangmin Park, Yanbing Yu, Wanchun (Paul) Li,

Sarah Clark, Jake Cobb, Mijung Kim, Chaitanya P. Namburi, Ahmed Sayed Ahmed, Shu-

juan Jiang, Yuxia (Sabrina) Sun, Rashmitha Chittimalli, Heena Macwan, and Jai Kejriwal.

But not only ARG gave me the tools and lessons that let me complete this disserta-

tion and take off in my academic career. I also owe my gratitude to professor Alessandro

(Alex) Orso for his cheerful and complementary visions and advice, and to professor David

Notkin, for his unparalleled enthusiasm, encouragement, and generosity, even in the mid-

dle of serious health difficulties. I also want to thank professors Santosh Pande, Spencer

Rugaber, Andy Podgurski, H. Venkateswaran, Santosh Vempala, and Nate Clarke, and my

fellow students and friends James Clause, William G. J. Halfond, Christoph Csallner, Shau-

vik Roy Choudhary, Chris Parnin, Eli Tilevich, and Arjan Seesing.

Finally, I want to give my special thanks to the University of Notre Dame, its College

of Engineering, and the Computer Science and Engineering department for their under-

standing, support, and encouragement while I was working with them and at the same

time completing this dissertation. I am particularly indebted to Kevin Bowyer, Peter Kil-

patrick, M. Brian Blake, John Stewman, Greg Madey, Scott Emrich, Aaron Striegel, Jesús

Izaguirre, and so many others at this wonderful institution.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xii

SUMMARY . xiv

I INTRODUCTION . 1

1.1 Thesis Statement . 3

1.2 Overview of the Dissertation . 3

1.3 Contributions . 5

II BACKGROUND . 7

2.1 Program Analysis . 7

2.1.1 Control Flow Analysis . 7

2.1.2 Program Dependencies . 10

2.1.3 Slicing . 12

2.1.4 Symbolic Execution . 14

2.2 Fault Propagation Models . 15

2.3 Regression Testing and Test-suite Augmentation 17

2.3.1 Coverage-based Testing Criteria for Whole Software 18

2.3.2 Coverage-based Testing Criteria for Modified Software 18

III FOUNDATIONS OF CHANGE-EFFECTS ANALYSIS 19

3.1 Formal Model of the Effects of Changes 19

3.1.1 Working Example . 19

3.1.2 Definition of Code Change . 20

3.1.3 Effects of Individual Changes 24

3.1.4 Effects of Multiple Changes . 26

3.2 Computation of the Effects of Changes 28

vi

3.2.1 Chain Conditions . 28

3.2.2 State Conditions . 31

3.3 Related Work . 33

IV SCALABILITY OF CHANGE-EFFECTS ANALYSIS 36

4.1 Motivation . 37

4.2 The SPD Technique . 39

4.2.1 Working Example . 39

4.2.2 Overview of the SPD Technique 40

4.2.3 Abstraction of Loops and Complex Code 43

4.2.4 Construction of Path Families 45

4.2.5 Partition of Path Families . 47

4.2.6 The SPD Algorithm . 50

4.3 Implementation of SPD . 53

4.4 Study: Path-space Reduction . 54

4.4.1 Empirical Setup . 54

4.4.2 Results and Analysis . 55

4.4.3 Threats to Validity . 59

4.5 Related Work . 59

V ANALYSIS AND TESTING OF INDIVIDUAL CHANGES 63

5.1 Study of Coverage-based Testing of Individual Changes 63

5.1.1 Empirical Setup . 64

5.1.2 Results and Analysis . 66

5.2 Propagation-based Testing of Individual Changes 67

5.2.1 Overview . 68

5.2.2 Technique . 70

5.3 Implementation of Propagation-based Technique 75

5.4 Evaluation of Propagation-based Technique 76

5.4.1 Study using Traditional Symbolic Execution 76

vii

5.4.2 Study using SPD . 80

5.4.3 Threats to Validity . 85

5.5 Related Work . 85

VI DEMAND-DRIVEN TESTING OF CHANGES 88

6.1 Limitations of Propagation-based Testing Requirements 88

6.2 Demand-driven Propagation-based Testing Strategies 89

6.3 Implementation of Demand-driven Strategies 93

6.4 Comprehensive Study of Demand-driven Strategies 94

6.4.1 Empirical Setup . 94

6.4.2 Results and Analysis . 98

6.4.3 Threats to Validity . 111

6.5 Case Studies of Demand-driven Strategies 112

6.5.1 Empirical Setup . 113

6.5.2 Results and Analysis: Schedule1 116

6.5.3 Results and Analysis: Ant . 119

6.5.4 Threats to Validity . 123

6.6 Related Work . 124

VII ANALYSIS AND TESTING OF MULTIPLE CHANGES 126

7.1 Adapted Testing Requirements for Multiple Changes 126

7.1.1 Multiple-change Context for Individual Changes 126

7.1.2 Case Study: Multiple-change Context for Individual Changes . . 128

7.2 Interactions among Multiple Changes 129

7.2.1 Motivation for Change-interaction Detection 130

7.2.2 Towards Accurate Change-Interaction Detection 131

7.2.3 A Precise Change-interaction Detection Technique 133

7.2.4 Implementation of SCHID . 137

7.2.5 Study of Change-interaction Detection Techniques 138

7.3 Related Work . 145

viii

VIII CONCLUSION AND FUTURE WORK . 148

8.1 Merit . 149

8.2 Future Work . 151

REFERENCES . 154

VITA . 164

ix

LIST OF TABLES

1 Static and dynamic forward slices for sample statements from prog in
Figure 3. 13

2 Symbolic execution for program E in Figure 2 15

3 Subjects for the study of SPD. 55

4 Paths and path families explored to compute PFCs in the study. Path-family
construction had a comparatively negligible cost. 56

5 Subjects for preliminary change-testing studies. 64

6 Difference detection for test-suite augmentation criteria on Tcas. 66

7 Difference detection for test-suite augmentation criteria on NanoXML. . . . 67

8 Dependence chains in program E and change ch1 from Figure 13. 71

9 Propagation paths covered for change testing. 81

10 Subjects, test cases, and changes for study of demand-driven testing of
changes. 95

11 Average number of differences, test-suite sizes, and ds-ratios per testing
strategy for all changes. 99

12 Statistical confidence of ds-ratio superiority of strategies versus each other. 104

13 Classification of changes by detectability limit. 107

14 Statistical confidence of advantage of PROP over the other strategies per
detectability limit. 109

15 Subjects, test cases, and changes for case studies of change testing. 113

16 Test-suite augmentation using DU for Schedule1, change v1. 117

17 Test-suite augmentation using CHAIN for Schedule1, change v1. 118

18 Test-suite augmentation using PROP for Schedule1, change v1. 118

19 Test-suite augmentation using DU for Ant 1.8.2, change r663061. 120

20 Test-suite augmentation using CHAIN for Ant 1.8.2, change r663061. . . . 121

21 Test-suite augmentation using PROP for Ant 1.8.2, change r663061. 121

22 Forward slices for the changes in the example program prog’ of Figure 4. 131

23 Subjects used for the study of SCHID. 139

24 Change-interaction detection results for Tot info (1052 test inputs). 141

x

25 Change-interaction detection results for Schedule1 (2650 test inputs). . . . 141

26 Change-interaction detection results for NanoXML v1 (214 test inputs). . . 142

27 Change-interaction detection results for NanoXML v5 (216 test inputs). . . 142

xi

LIST OF FIGURES

1 Test-suite augmentation process for evolving software. 5

2 Example program E with two changes (a), its CFG (b), and its PDG (c). . . 8

3 Example program prog (a) and its PDG (b). 12

4 Example program prog with four changes that produce version prog’,
and the PDG for prog’. 20

5 Example of a code change. To the left, the ICFG of program P and its sub-
ICFG G (nodes 2 and 3). In the middle, sub-ICFG G′, partial functions IN
and OUT, and entry nodes e and e′. To the right, the ICFG of the modified
program P ′. 22

6 Procedure that computes the effects of a change. 30

7 Example program addElem (left), its control-flow graph (CFG) (top right),
and its control-dependence graph (ICDG) (bottom right). 40

8 The 12 paths in Figure 7 form four groups, one for each value of sz15.
SPD finds these groups without enumerating all paths. 43

9 Partition of path families for sz15 in Figure 7. Here, path families are
represented by graphs. The initial path family <> is partitioned into path
families <4F> and <4T>, which are then partitioned into the final four
path families from Figure 8. 45

10 The algorithm for computing a Symbolic Program Decomposition (SPD)
for all paths between two points. 49

11 Average number of feasible paths or path families analyzed for TRADSE
and SPD, and average ratios of these values. 57

12 Intuitive view of proposed testing criteria for evolving software. 70

13 Example program E with two changes (a), its CFG (b), and its PDG (c). . . 71

14 The algorithm for computing chain and state testing requirements. 73

15 Average increase in difference-detection (in logarithmic scale) with respect
to TRADSE versus analysis time, for all changes in Tcas. 83

16 Average increase in difference-detection with respect to TRADSE versus
analysis time, for all changes in NanoXML. 84

17 Algorithm for demand-driven, propagation-based testing of a change. . . . 91

18 Average differences found by each strategy. 101

19 Average ratio of differences found to test-suite size (ds-ratio) per strategy. . 102

xii

20 Cost-effectiveness (ds-ratio) increase over STMT of all strategies per de-
tectability limit. 109

21 Algorithm for accurately detecting runtime change interactions. 134

22 Toolset and process describing the implementation of SCHID. 137

23 Relationships among techniques for change-interaction detection. 140

xiii

SUMMARY

The constant modification of software during its life cycle poses many challenges for

developers and testers because changes might not behave as expected or may introduce

erroneous side effects. For those reasons, it is of critical importance to analyze, test, and

validate software every time it changes.

The most common method for validating modified software is regression testing, which

identifies differences in the behavior of software caused by changes and determines the

correctness of those differences. Most research to this date has focused on the efficiency

of regression testing by selecting and prioritizing existing test cases affected by changes.

However, little attention has been given to finding whether the test suite adequately tests

the effects of changes (i.e., behavior differences in the modified software) and which of

those effects are missed during testing. In practice, it is necessary to augment the test suite

to exercise the untested effects.

The thesis of this research is that the effects of changes on software behavior can be

computed with enough precision to help testers analyze the consequences of changes and

augment their test suites. To demonstrate this thesis, this dissertation uses novel insights

to develop a fundamental understanding of how changes affect the behavior of software.

Based on these foundations, the dissertation defines and studies new techniques that detect

these effects in cost-effective ways. These techniques support test-suite augmentation by

(1) identifying the effects of individual changes that should be tested, (2) identifying the

combined effects of multiple changes that occur during testing, and (3) optimizing the

computation of these effects.

xiv

CHAPTER I

INTRODUCTION

The constant modification of software during its life cycle creates serious challenges for

developers and testers because changes might not behave as expected or may introduce

erroneous side effects. For example, changing the type of a collection of items from a set

to a list can lead to undesired duplicate items. For another example, adding minimum-age

constraints to a banking system can prevent children from monitoring their accounts even

if only parents can perform sensitive operations.

When developers modify a program, they must check the correctness of their changes

by identifying and analyzing the effects of those changes on the behavior of the program. To

check their changes, developers typically perform regression testing, which is the activity

of re-testing a program after it is modified (e.g., [12,17,49,53,54,65,66,69,77,88,89,115]).

Most research on regression testing has focused on the efficiency of this activity through ap-

proaches such as (1) selecting a subset of the test cases that need to be re-run (e.g., [25,88]),

(2) prioritizing test cases to find errors earlier (e.g., [90, 103]), and (3) reducing the size of

the test suite according to some criterion (e.g., [52,114]). However, little attention has been

given to the effectiveness of regression testing, which requires not only identifying existing

test cases affected by changes, but also understanding how changes affect the behavior of

a program and what new test cases are needed to exercise new behaviors. Finding as many

differences as possible caused by changes in the behavior of a program is a necessity to

determine whether those changes are correct or not.

Change-testing approaches in the literature determine new test-coverage requirements

for a change by identifying elements, such as statements or branches, that might be affected

1

by the change and, therefore, need to be covered during testing [17,49,87]. These coverage-

based techniques, however, consider only the location of the change and ignore how the

program state is modified. Because they ignore important information about the effects

of a change, these techniques are too conservative and therefore imprecise, as studies of

related analyses suggest [18, 23]. Furthermore, these change-testing approaches had not

been evaluated empirically prior to this dissertation.

A related class of techniques that explicitly search for effects of a change is change-

impact analysis (e.g., [5, 7, 13, 20, 21, 46, 68, 70, 75, 76, 81, 83]), which identifies parts of

the software that are potentially affected by a change. Developers can use change-impact

analysis to decide which existing tests to re-run during regression testing and which new

tests to create for impacted components. Unfortunately, existing change-impact analysis

techniques are too coarse grained or too imprecise, or both. Coarse-grained impact analy-

ses identify affected classes or methods (e.g., [5,21,83]), which can be useful as a first step

for developers to understand the consequences of a change, but do not describe which parts

of those classes or methods are affected or how they are affected. In contrast, fine-grained

impact analyses that use code dependencies (e.g., [16, 57]) are too imprecise because they

either find, in a conservative way, an excessive portion of the program as potentially af-

fected or miss affected code not revealed as impacted by a specific set of executions.

An additional challenge for the analysis of changes stems from the more general and

typical case in which multiple changes are made to software. In this context, analyzing

each change individually is often inadequate because developers make sets of changes in

a program to either accomplish a common goal or perform separate, independent tasks. In

the first case, developers need to check that changes interact as expected. In the second

case, developers need to ensure that changes do not interfere with each other unexpectedly.

This second case is particularly important when multiple developers work in parallel and

then have to merge safely their respective changes. Existing approaches for determining the

interaction of changes, however, face similar problems to the analysis of single changes:

2

they either use coarse representations of changes [83,113] (e.g., modified methods) or rely

on imprecise analyses [19, 56] (e.g., all possibly affected statements).

The existing research and its limitations indicate that the problem of analyzing and

testing changes presents serious challenges but also unique opportunities. One main obser-

vation from this problem is that the analysis of changes can exploit not only the knowledge

of the location of the changes (i.e., which parts of the program are modified), as most ex-

isting techniques do, but also their semantics (i.e., how the program state is modified by

changes and how those state modifications propagate throughout the program). Because

existing research on change testing has not fully exploited this semantic knowledge, the

following question arises: Can the semantics—also called effects—of the changes be an-

alyzed in enough detail for assessing and testing changes? The thesis statement of this

dissertation suggests a positive answer to this question.

1.1 Thesis Statement

The thesis of this dissertation is that the effects that changes have on the behavior of soft-

ware can be analyzed automatically and with enough precision to help developers discover,

exercise, and assess the observable consequences of changes in a cost-effective manner.

1.2 Overview of the Dissertation

To support this thesis, this dissertation presents (1) comprehensive empirical evaluations of

existing approaches for testing changes, (2) new foundations for analyzing the effects of

changes, (3) new techniques for analyzing and testing changes based on these foundations,

and (4) a set of studies that validate the new techniques and indicate that they are signifi-

cantly more effective than existing approaches for change analysis and testing. Chapter 2

provides the necessary terminology and background to understand these contents.

At the heart of this dissertation lies a novel class of program analyses, called change-

effects analysis and presented in Chapter 3, that compute with unprecedented precision

3

the effects of changes—how program states and control flow differ because of changes.

Change-effects analysis determines which behaviors of the program are affected and which

new behaviors are introduced by changes. Developers can use this information to assess

effectively how well a test suite exercises the differences in behavior, which differences are

still untested, and how changes interact with each other to produce those differences.

The computation of change effects, however, might come at a considerable cost because

a large or even infinite number of program paths might have to be analyzed. To address this

problem, Chapter 4 presents a new approach for path-sensitive analysis of software that

can alleviate considerably the cost of change-effects analysis and other important software-

engineering tasks. This approach exploits dependencies in the program code to improve

the cost-effectiveness of path analysis. Although the full computation of change effects

remains an intractable problem in general, this new approach can increase dramatically the

extent of the analysis that can be performed for practical approximations of change effects

presented in the chapters that follow.

A major application of change-effects analysis is test-suite augmentation for evolving

software1 [6, 92, 96], which is the two-step process of assessing an existing test suite and

adding new test cases for the untested effects of the changes. Figure 1 shows the aug-

mentation process in which program P , which is tested by test suite T , is modified to

obtain version P ′, for which an augmented test suite T ′ is obtained. Developers first as-

sess how well T and the test cases T+ that developers add during the modification of P

test the effects of the changes in P ′ (Step 1). Then, the developers add new test cases to

T∪T+ to exercise the untested effects (Step 2). Building on the foundations and techniques

from Chapters 3 and 4, this dissertation presents new test-suite augmentation techniques in

Chapters 5 and 6. These new techniques are much more effective than existing change-

testing approaches, as the experiments described in these chapters show. The techniques

work by formulating and monitoring change-testing requirements that developers use to

1 Evolving software refers to software that undergoes modifications over time.

4

Program P Test suite T

P’ version of P
Test suite T new test

cases +

tests

tests

Assessment: how
well does T test P’ ?

Addition: which new
test cases are needed?

changes
to

is
reused

1 2

augmented
test suite T’

Added tests T+

Figure 1: Test-suite augmentation process for evolving software.

augment their test suites. Satisfying these testing requirements guarantees that the effects

of changes propagate within the program, and, eventually, produce new differences in its

output to help developers assess the correctness of the changes.

Another important application of change-effects analysis is the precise detection of

interactions among multiple changes. Chapter 7 presents an exact definition of change in-

teraction based on the fundamental concepts of Chapter 3 and develops a new technique

that determines precisely whether and where changes interact with each other. The em-

pirical results presented in that chapter demonstrate not only the effectiveness of the new

technique but also reveal that fine-grained approximations obtained by existing analyses,

usually regarded as state of the art, are too imprecise for detecting change interactions.

Finally, Chapter 8 provides a conclusion to this dissertation, an analysis of its merits,

and a discussion of future research directions that this dissertation opens.

1.3 Contributions

This dissertation makes the following contributions to the fields of software engineering

and program analysis:

5

1. Principled foundations for describing precisely how changes in program code affect

the behavior of modified software.

2. A new class of precise analyses, called change-effects analysis and based on these

foundations, that identify the effects that a change has or can have on the behavior of

a program.

3. A new supporting program analysis that speeds up change-effects analysis and po-

tentially other important software-engineering techniques.

4. New and cost-effective test-suite-augmentation approaches that, based on these anal-

yses, identify and monitor testing requirements for changes.

5. A new technique, also based on these analyses, that identifies whether and when

changes interact with each other in a program execution. This technique lets devel-

opers decide whether to merge changes and shows which interactions are tested.

6. Empirical evidence of the effectiveness of these techniques and the mechanisms for

controlling their cost.

6

CHAPTER II

BACKGROUND

This dissertation builds on the areas of program analysis, fault propagation, and regression

testing, and this chapter provides the necessary definitions and background in these areas.

Section 2.1 describes program analysis. Program analysis identifies properties of program

code needed to calculate the effects of changes. Section 2.2 presents fault propagation

models that describe the conditions under which the effects of faults propagate through

the code. These models can be directly applied to the effects of changes as well. Finally,

Section 2.3 discusses background on regression testing, which is the process within which

the analysis of changes usually takes place.

2.1 Program Analysis

Several program analysis techniques are needed to identify the elements and relationships

in program code that can be affected by changes. Control-flow analysis (Section 2.1.1)

builds graph representations of all possible sequences of statements in program executions.

Control- and data-dependence (Section 2.1.2) analyses identify the dependencies among

statements that arise from control decisions and computations in the program. Slicing

(Section 2.1.3) uses these dependencies to identify the subset of a program or execution

that affects or is affected by a certain control decision or computation. Finally, symbolic

execution (Section 2.1.4) produces an algebraic representation of the cumulative effect on

the program state of statements in a path or set of paths of the program.

2.1.1 Control Flow Analysis

In this research, a statement is a line of executable code (i.e., code that can modify a pro-

gram state or path). Without loss of generality, we assume that a statement contains at most

7

program E(int x, y) // x,y ∈ [1,10]
1. if (x <= 2) // ch1: if (x > 2)

2. ++y

3. else

4. --y

5. // ch2: y *= 2

6. if (y > 2)

7. print 1

8. else

9. print 0

(a)

T

2 4

ENTRY

F

1

T

7 9

F

6

EXIT

(b)

2 4

ENTRY 1

T

6

F

START

7 9

T F

y

y

T T T

control dependence

data dependence

(c)

Figure 2: Example program E with two changes (a), its CFG (b), and its PDG (c).

one procedure call (i.e., function or method call). A statement that contains a procedure

call is a call site. The executable code of a program procedure can be represented by its

control-flow graph [2], defined next.

DEFINITION 1. A control-flow graph (CFG) for a procedure p is a connected directed

graph1 G=(V,E) where V is the set of nodes and E is the set of edges. For each statement

in p other than a call site, V contains a node. For each call site in p, V contains a call node

and a return node that represent the points before and after the call, respectively. Each of

these nodes is labeled with a unique identifier (e.g., the line number) for the corresponding

statement, followed by a suffix ’a’ if it is a call node and ’b’ if it is a return node. V also

contains two distinguished nodes EN (or ENTRY) and EX (or EXIT) for the entry to and exit

from p, respectively. In V , only EN has no predecessors and only EX has no successors.

The edges in E represent the flow of control among the elements in p represented by the

nodes in V . For each call site in p, E contains an edge from the corresponding call node to

the corresponding return node. If p has multiple exit statements, E contains an edge from

each node corresponding to an exit statement to node EX. An edge e whose source node

1A directed graph is connected if, for all pairs of nodes (a, b), there is a path from a to b or from b to a.

8

has multiple outgoing edges is labeled with the control decision that causes e to be taken.

To illustrate, consider the single-procedure program E in Figure 2(a) and its CFG graph

in Figure 2(b). E has nine statements, six of which correspond to executable statements (the

empty statement 5 and the else statements 3 and 8 are ignored) represented by nodes in the

graph. Node 1, for example, is a conditional statement with two outgoing edges: the true

branch (1,2) labeled “T”, and the false branch (1,4) labeled “F”. Node ENTRY represents

the entry to the procedure and node EXIT represents the exit from the procedure.

A CFG is suitable for intraprocedural (within procedures) analyses. However, differ-

ent procedures in a program interact via procedure calls at call sites; such interactions need

to be modeled for an interprocedural (across procedures) analysis. Therefore, to analyze

programs with multiple procedures, researchers have developed graph representations such

as supergraphs [84] and interprocedural control-flow graphs (ICFG) [101]. In this disser-

tation, we use the ICFG representation.

DEFINITION 2. An interprocedural control-flow graph (ICFG) for a program P is a

connected directed graph GP=(V P , EP) where V P is the union of the node sets of the

CFGs of all procedures of P and EP = (Ecfgs − Ea,b) ∪ Einter, where

• Ecfgs is the union of all edge sets of the CFGs of all procedures of P ,

• Ea,b is the set of all edges connecting call nodes to return nodes, and

• Einter is the set of all call edges (a, ENp) and return edges (EXp, b) connecting the

call and return nodes for all call sites in P to the procedures p that they can call.

A call site that uses a function pointer or performs a virtual call might have more than

one target procedure. In this research, a call site whose call node has more than one out-

going call edge in Einter is treated as a branching node and each call edge from that node

is labeled with the signature of the target procedure. Also, procedures might terminate

abnormally by halting or throwing an exception, which creates special control dependen-

cies [101]. These and any other kinds of control flow are represented by CFGs and ICFGs.

9

Not all paths in the ICFG of a program correspond to paths in that program—only

realizable paths do.

DEFINITION 3. A realizable path in the ICFG of a program is a path for which every

call edge (a, ENp) is matched by its corresponding return edge (EXp, b).

Henceforth, we use the term path to refer only to realizable paths in ICFGs. Two other

necessary control-flow concepts are dominance and post-dominance.

DEFINITION 4. A node m in a CFG or ICFG G dominates a node n in G if and only if

every path from every entry node of G to node n contains m.

DEFINITION 5. A node m in a CFG or ICFG G post-dominates a node n in G if and

only if every path from n to every exit node of G contains m.

2.1.2 Program Dependencies

The control decisions and the manipulation of variables in the statements of a program give

rise to dependencies among those statements. If a statement s1 is dependent on a statement

s2, we also say that a node n1 for s1 in a CFG or ICFG G is dependent on a node n2 for s2

in G. Dependencies created by control decisions are called control dependencies [41].

DEFINITION 6. A statement s1 is control-dependent on a statement s2 with label L if s2

has a successor u (along an edge labeled L) and a successor v such that s1 post-dominates

u but s1 does not post-dominate v.

In other words, a statement s1 is control dependent on a statement s2 if s2 has two or

more outgoing edges and, for at least one but not all those edges, s1 necessarily executes

after taking that edge. If so, the control (execution) of s1 depends on the decision at s2.

A control dependence can be written as (a, b) or (a, b, L) (the latter form if the decision

matters), where b is control dependent on a for decision L. To illustrate, consider program

E in Figure 2(a) and its CFG in Figure 2(b). In this program, statement 2 is control-

dependent on statement 1 for decision T, written as (1, 2,T).

10

Dependencies created by accesses to program variables are called data dependencies [2].

DEFINITION 7. A statement s1 is data dependent on a statement s2 with label v if: (1)

s2 defines (assigns a value to) a variable v; (2) there is a definition-clear path for v from s2

to s1 (i.e., a path containing no other definition of v); and (3) s1 uses (reads) v. The pair of

definition and use in a data dependence is called definition-use pair, or simply du-pair.

A data dependence can be written as (a, b) or (a, b, v), where statement b is data-

dependent on statement a for variable v. For example, in Figure 2, statement 6 is data

dependent on statement 2 for variable y, represented as (2, 6, y).

Podgurski and Clarke defined semantic dependence [79] among statements.

DEFINITION 8. A statement s1 is semantically dependent on a statement s2 if, for some

execution of the program, a change can be made to the value computed at s2 that causes a

change in the values used by s1 or in the number or location of the occurrences of s1.

Based on this definition of dependence of s1 on s2, we can also say that statement s1 is

semantically dependent on a particular change C in statement s2 that affects s1 in at least

one execution. Semantic dependencies, however, represent an ideal but not always practical

goal of analysis. For instance, finding whether a sequence of dependencies (control or data)

is also a semantic dependence is an undecidable problem.

DEFINITION 9. A program dependence graph (PDG) [41] for a program P is a graph

D=(V D, ED) where V D contains one node for each node in the ICFG of P and ED is

the set of edges representing the control and data dependencies among the statements of

P that the corresponding nodes represent. Each control-dependence edge is labeled with

the control decision for which the target node is dependent on the source node. Each data-

dependence edge is labeled with the variable that the source node defines and the target

node uses. V D also contains a special node START. For every node n in the ICFG of P that

is not control dependent on any other node, there is a control-dependence edge with label

T (true) from START to n.

11

prog(int n, int m[])
int r, i, a

1. r = n

2. for (i=1 to 4) {
3. if (m[i] > 0)
4. a = 4

else
5. a = 2

6. r += a
}

7. print r > 0

(a)

T T
T

T
1 2 7

3 6

T
r

r
r

i
r

i

STARTPDG for prog

3

5

6
T F

a

a4

(b)

Figure 3: Example program prog (a) and its PDG (b).

Figure 2(c) shows the PDG for the example program E, in which solid edges, labeled

with the corresponding decisions, represent control dependencies and dashed edges, la-

beled with the corresponding variables, represent data dependencies.

It is also possible—and useful—to define partial versions of PDGs restricted to one

kind of dependence only.

DEFINITION 10. An interprocedural control-dependence graph (ICDG) [101] for a

program P is the PDG for P without the data-dependence edges.

2.1.3 Slicing

This section describes slicing from the perspective of the potential effects of changes on

the rest of the program. Figure 3(a) shows the example program prog used in this section

to illustrate slicing. Figure 3(b) shows the PDG for prog. This program inputs an integer n

and an array of integers m, and initializes r to n at statement 1. In the loop in statements 2–

6, the program iteratively determines the value of a—depending on the value of m[i]—and

adds a to r. Finally, at statement 7, the program outputs 1 if r > 0 or 0 otherwise.

To determine which parts of the program may be affected by a change in a statement,

the static forward slice from that statement can be used.

12

Table 1: Static and dynamic forward slices for sample statements from prog in Figure 3.
statement static slice dynamic slice (first occurrence)

input: n=5, m=[1,-1,0,3]
1 1, 6, 7 11,61,62,63,64,71

4 4, 6, 7, 8 41,61,62,63,64,71,81

7 7 71

DEFINITION 11. The static forward slice [55,57,112] from a statement s in a program

P is the set containing s and the statements for all nodes directly or transitively reachable

along control and data dependencies in the PDG of P from the node for statement s.

To illustrate, consider program prog and its PDG in Figure 3. Table 1, in its second

column, shows the static forward slices for three different nodes in prog. For example, the

static forward slice from node 1 consists of {1, 6, 7}.

To determine for a particular execution which statements may be affected by a change

in statement s, a dynamic forward slice can be computed from s in that execution.

DEFINITION 12. The dynamic forward slice [16, 55, 57] from a statement s for an

execution E of program P is the set containing s and the statements for all nodes directly

or transitively reachable from the node for s along control and data dependencies in the

PDG of program P for execution E.

In this dissertation, we use the finest-grained form of dynamic slice, which is based

on statement occurrences [1]: the ith occurrence of statement s in the execution is de-

noted si. The third column in Table 1 shows the dynamic forward slice for the first oc-

currence of the corresponding statement (first column) in the execution of prog on in-

put {n=5, m=[1,-1,0,3]}. (Note that, for prog and this input, the execution history is

11,21,31,41,61,22,32,51,62,23,33,52,63,24,34,42,64,71,81.) For example, the dynamic forward

slice for statement occurrence 41 consists of the set {41,61,62,63,64,71,81}.

13

2.1.4 Symbolic Execution

Symbolic execution [27,63] analyzes a program by executing it with symbolic inputs along

some program path. Symbolically executing all paths in a program to a given point, if

feasible, provides a description of the semantics of the program up to that point. Symbolic

execution represents the values of program variables at any given point in a program path

as algebraic expressions by interpreting the operations performed along that path on the

symbolic inputs. The symbolic state of a program at a given point consists of the set of

symbolic values for the variables in scope at that point. The set of constraints that the inputs

must satisfy to follow a path is called a path condition and is a conjunction of constraints

pi or ¬pi (depending on the branch taken), one for each predicate traversed along the path.

Each pi is obtained by substituting the variables used in the corresponding predicate with

their symbolic values. Symbolic execution on all paths to a program point represents the set

of all possible states at that point as a disjunction of clauses, one for each path that reaches

the point. These clauses are of the form PCi ⇒ Si, where PCi is the path condition for

path i and Si is the symbolic state after executing path i.

To illustrate, consider program E in Figure 2. Symbolic execution first assigns sym-

bolic values x0 and y0 to inputs x and y, respectively. When statement 1 is executed, the

technique computes the path conditions for the true and false branches, which are x0 ≤ 2

and x0 > 2, respectively. These conditions are shown in column path condition of Table 2,

for statements 2 and 4. The values of variables at the entry of each statement are shown in

column symbolic state. For example, after evaluating statement 2, the technique updates the

value of y to y0 + 1. The execution of the remaining statements is performed analogously.

Each row in Table 2 shows the path conditions and the symbolic values at the entry of the

corresponding statement, after traversing all paths to that statement. For example, there are

two path conditions and symbolic states for statement 7. Each path condition in the second

column implies the symbolic state on its right in the third column. Symbolic execution

associates with each statement the disjunction of all rows for that statement, where each

14

Table 2: Symbolic execution for program E in Figure 2
statement path condition symbolic state

1 true x = x0, y = y0
2 x0 ≤ 2 x = x0, y = y0
4 x0 > 2 x = x0, y = y0

6 x0 ≤ 2 x = x0, y = y0 + 1
x0 > 2 x = x0, y = y0 − 1

7 (x0 ≤ 2) ∧ (y0 > 3) x = x0, y = y0 + 1
(x0 > 2) ∧ (y0 > 1) x = x0, y = y0 − 1

9 (x0 ≤ 2) ∧ (y0 ≤ 3) x = x0, y = y0 + 1
(x0 > 2) ∧ (y0 ≤ 1) x = x0, y = y0 − 1

row represents a path condition and its corresponding symbolic state.

2.2 Fault Propagation Models

A number of researchers have worked on theoretical aspects of fault propagation for fault-

based testing. Fault-based testing [34, 51] restricts testing to a class of faults and tests the

software for the absence of faults of that particular kind. Typically, the faults considered are

simple transformations of code at specific locations. There are two main assumptions that

justify this testing approach: the competent programmer hypothesis [34], which states that

developers create programs that are syntactically close to a hypothetical correct version,

and the coupling effect [34], which states that test data that reveals simple faults is also

sensitive enough to uncover more complex faults. The theoretical work on fault-based

testing described in this section can be naturally applied to changes. Changes, like faults,

can be seen as code transformations; the only difference between changes and faults is that

the location and semantics of changes are known.

Morell [71] developed a theory to understand and systematize fault-based testing. Fault-

based testing restricts testing to a class of faults and tests the software for the absence of

these faults. Morell’s theory provides a framework where classes of faults are specified

as sets of transformations (alternative expressions) on different locations in the code and

establishes as the goal of testing the selection of input data that differentiate all alternative

15

programs produced by those transformations from the original program. To achieve this

goal, Morell proposed symbolic testing, in which transformations are symbolic (i.e., they

represent potentially infinite alternatives), the original program and its alternatives are rep-

resented as symbolic functions of the input, and the condition for test inputs to distinguish

an alternative from the original program is expressed as a propagation assertion in which

the symbolic functions are required to differ. Although symbolically evaluating complete

programs is impractical, Morell’s theory makes symbolic testing an ideal formalism for

developing and analyzing less complex, approximate approaches.

Richardson and Thompson [85] proposed the RELAY model of fault detection, which

refines Morell’s theory by describing in detail the different steps involved in the execution

and propagation of a fault to cause an observable failure. These steps include the origina-

tion of a potential failure (i.e., an erroneous state) when executing a faulty component, the

computational transfer of this failure to the containing expression, and the transfer from

computation to computation of faulty states via information flows (i.e., chains of control

and data dependencies) until a failure is revealed to an external observer. The authors used

this model of failure origination and transfer conditions to identify one of the main weak-

nesses of traditional testing criteria based on coverage of program entities (e.g., branches,

data dependencies) [86], which is their inability to address coincidental correctness—the

case in which a fault executes but the error is not transferred to the output. In Refer-

ence [105], the same authors explored in detail the transfer conditions in the RELAY model

and acknowledged that symbolic execution is needed to provide accurate transfer condi-

tions, which, in general, makes the process too complex. Nonetheless, the RELAY model

gives additional insights to Morell’s theory for developing approximations of fault (and

change) propagation.

Voas also used the notions of origination and transfer of erroneous states in his PIE

model [109]. In this model, the testing criterion for a fault should ensure that the fault is

executed (E), that it infects the state (I), and that the infected state propagates to the output

16

(P). Rather than specify and solve these conditions in detail, however, Voas used this model

to construct a technique that estimates the probability that certain program locations cause

observable failures if they contain faults. Nevertheless, the PIE model is very convenient

to succinctly refer to the main steps of the RELAY model.

The three models described in this section were designed for single faults [71,86,109] or

multiple faults that do not interfere with each other [86]. In general, however, developers

make multiple changes to software before re-testing it. To the best of our knowledge,

no fundamental model exists that describes how the effects of multiple faults or changes

interact with each other and propagate in combination to the output.

2.3 Regression Testing and Test-suite Augmentation

Regression testing is an important task in software testing that consists of re-testing soft-

ware after it is modified [12, 17,45, 49,53, 54,65, 66,69, 72, 77,88, 89,115] to discover any

regressions (i.e., program behaviors that stop working correctly) introduced by changes.

Typically, an existing test suite is re-used to perform regression testing. Also, because

changes might introduce new features or exhibit side effects, new test cases might be

needed. Within regression testing, we call test suite augmentation [6, 92] the two-step

process that assesses the existing test suite and adds new test cases as needed. Figure 1

illustrates the augmentation process.

Most research on regression testing has focused on efficiency aspects that reduce the cost

of re-running the test suite (e.g., [25, 52, 88, 114]) and increase the probability of finding

regression errors early in the process (e.g., [90, 103]). Research on efficiency includes the

analysis of correlations between deviations in program spectra (i.e., profiling information)

and regression faults (e.g., [54, 115]) to better identify test cases that need to be re-run.

Regarding the effectiveness of regression testing and, in particular, test-suite augmen-

tation, Section 2.3.1 addresses coverage-based testing techniques for whole programs that

inspire change-specific testing approaches and Section 2.3.2 describes existing research on

17

such change-testing approaches.

2.3.1 Coverage-based Testing Criteria for Whole Software

A large body of work has addressed software testing based on white-box coverage criteria

aimed at discovering faults hiding anywhere in an implementation. These criteria define

which entities in the program must be covered (i.e., executed at least once) during test-

ing [12, 45, 72]. A test suite (i.e., a collection of test cases) for a program is considered

adequate for a white-box testing criterion C if it covers all entities in that program required

by C. Some testing criteria require that all control-flow entities of some kind [58, 59, 72]

(e.g., statements, branches, paths) are covered, while other criteria require the coverage of

all data-flow entities of some kind [12, 45, 67, 82] (e.g., definition-use pairs, chains of data

dependencies). Frankl and Weyuker [45] provided a hierarchy of the main control- and

data-flow testing criteria that shows the subsumption relationships among these criteria.

2.3.2 Coverage-based Testing Criteria for Modified Software

Whole-program coverage criteria aims at discovering faults whose existence and location

are unknown. In the case of modified software, however, the changes and their location

are known. Researchers have exploited this information at least partially by proposing to

test the effects of changes by conservatively identifying entities, such as branches or data

dependencies, that might be affected by the changes and requiring the coverage of these

entities by a regression test suite [17, 49, 87]. Affected entities are identified in these tech-

niques via forward traversal of control and data dependencies from the locations affected

by changes—the approach corresponding to forward program slicing [55, 57, 112]. Thus,

these testing techniques use specialized coverage criteria that require the coverage of only

affected subsets of program entities instead of all such entities, as whole-program criteria

do (Section 2.3.1). The effectiveness of these change-testing techniques, however, has not

been evaluated empirically prior to this dissertation.

18

CHAPTER III

FOUNDATIONS OF CHANGE-EFFECTS ANALYSIS

This chapter provides the foundations for the automatic analysis of the effects of changes.

While being a contribution for any research on software changes, these foundations serve in

particular as the core components of the change analysis and testing techniques presented

in Chapters 5, 6, and 7.

In this chapter, Section 3.1 formally defines the effects of a change, Section 3.2 shows

how to compute these effects, and Section 3.3 discusses related work.

3.1 Formal Model of the Effects of Changes

This section presents a formal model of program-code changes and their effects. The guid-

ing principle for this model is that

A change C in a program affects an element e of that program if applying C to

the program alters in any way the behavior of e.

Element e can be a statement or even another change. The behavior of a change is the

set of differences caused by the change in the behavior of the changed statements.

This section formalizes the concepts of “changes” in program code and the “effects” of

those changes. Section 3.1.1 presents the example used to illustrate the model, Section 3.1.2

defines what we mean by a change in code, and Sections 3.1.3 and 3.1.4 present the model

for individual and multiple changes, respectively.

3.1.1 Working Example

Figure 4 shows the example program prog, originally presented in Figure 3, with four

changes shown as comments: ch1, ch2, ch3, and ch4. Applying these changes to prog

19

prog(int n, int m[]) // → prog’
int r, i, a

1. r = n // ch1: r = n - 1

2. for (i=1 to 4) {
3. if (m[i] > 0)
4. a = 4 // ch2: a = 5

else
5. a = 2

6. r += a
}

7. print r > 0 // ch3: print r > -10

8. /* nothing */ // ch4: print a

T T
T

T

1 2 7

3

5

6

T

T F
a

a

r
r

r

i
r

i

8 4

a

a

T

START

Figure 4: Example program prog with four changes that produce version prog’, and the
PDG for prog’.

produces the modified version called prog’. To the right of the program, Figure 4 shows

the PDG for prog’. The PDG for prog is identical except for the absence of node 8 and

edges (4,8,a) and (START,8). Recall that prog inputs an integer n and an array of integers

m, and initializes r to n at line 1. In the loop of lines 2–6, the program iteratively determines

the value of a—depending on the value of m[i]—and adds a to r. Finally, at line 7, the

program outputs 1 if r > 0 or 0 otherwise (line 8 is empty in prog). In the modified

program prog’, change ch1 modifies the expression at line 1 to decrement n by 1, ch2

changes the value assigned to a at line 4, ch3 modifies the expression evaluated and printed

at line 7, and ch4 inserts print a at the end.

3.1.2 Definition of Code Change

To define the effects of a change, in this dissertation, first we must define the notion of

change in the executable code of a program.1 Informally, a code change in a program

P is a mapping between a set of executable statements in P and a new set of executable

statements that replaces the former set to produce the modified program P ′. To support the

concepts and techniques in the rest of this dissertation, and without loss of generality, we

1By program, we mean a syntactically-correct (compilable) sequence of declarations and executable code.

20

assume that the area of the program where a code change is made has a single entry point.

Formally, the next two definitions establish what a code change is and how it is specified.

DEFINITION 13. A sub-ICFG is a non-empty, connected directed graph GS=(V S, ES)

that is a subgraph of an ICFG2 and where V S contains exactly one node e that has no

predecessors and is the entry of the subgraph. Node e is not necessarily an EN node. We

say that GS is a sub-ICFG of an ICFG I if GS is both a sub-ICFG and a subgraph of I .

DEFINITION 14. A code change in a program P is a description of modifications of

the executable code of P and is specified by a tuple <G, G′, IN, OUT>, where G is a sub-

ICFG of the ICFG I of P , G′ is a sub-ICFG that differs from G (i.e., the node sets, edge

sets, or corresponding statements differ), and IN and OUT are partial functions E→V×Lε

where E is the set of edges in I , V ′ is the set of nodes in G′, and Lε is the set of control-

decision labels, including the empty label ε. The domain of IN consists of all edges (m,n)

in I such that m is not in G and n is the entry e of G. The image of IN is {e′}×Lε (i.e., e′

maps to e for all edges that enter G). The domain of OUT consists of all edges (m,n) in I

such that m is in G and n is not in G.

The purpose of the specification <G, G′, IN, OUT> for a code change is that sub-

ICFG G specifies the part of the ICFG I of P (the original code in P) to replace and

sub-ICFG G′ specifies the subgraph (new code in P) that replaces G in I . The modified

program P ′ is obtained from the ICFG I ′ that results from applying this change to ICFG

I . Partial functions IN and OUT specify how G′ connects to the rest of I when G′ replaces

G. Definition 14 indicates that all edges in I that enter G target the entry node e of G.

Thus, given an edge (m,e) from the domain of IN and IN((m,e)) = (e′,l), edge (m,e) is

replaced by edge (m,e′) with label l when applying the change. The edges that leave G

in I , however, can leave from any node in G. Each edge (m,n) in the domain of OUT is

replaced by edge (m′,n) with label l, where OUT((m,n)) = (m′,l).

2An ICFG is an interprocedural control-flow graph. See Definition 2 in Section 2.1.1.

21

7 8

T F

4 5

ENTRY

3

T F

1

EXIT

7 8

6

T F

2

G G’

4 5

ENTRY

1

EXIT

6

IN((1,2)) = (6,)

OUT((3,4)) = (7,)

OUT((3,5)) = (8,)

ICFG(P) ICFG(P’)

e = 2 e’ = 6

Figure 5: Example of a code change. To the left, the ICFG of program P and its sub-ICFG
G (nodes 2 and 3). In the middle, sub-ICFG G′, partial functions IN and OUT, and entry
nodes e and e′. To the right, the ICFG of the modified program P ′.

The single-entry property of code changes is needed for the definition of the effects of

changes presented in Section 3.1.3. This constraint, however, does not affect the ability of

Definition 14 to describe changes in code—it simply implies that modified areas in P with

multiple entries can be specified either as separate, possibly overlapping code changes, or

as one code change whose sub-ICFGs G and G′ include all modified nodes as well as nodes

e and e′ that dominate (see Definition 4 in Section 2.1.1) all nodes in G and G′, respectively.

To illustrate Definition 14, consider the code change in Figure 5. The figure shows

the ICFG of program P on the left, inside which sub-ICFG G is highlighted. G consists

of nodes 2 and 3 and edge (2,3). The code corresponding to each node is not important

for this example and therefore is not listed. The middle of the figure shows sub-ICFG

G′, partial functions IN and OUT, and entry nodes e and e′. The resulting ICFG of the

modified program P ′ is shown on the right. In this ICFG, the modified area is highlighted

and corresponds to sub-ICFG G′, which replaces sub-ICFG G. IN maps the only edge

entering the change in G, (1,2), to node 6 (e′) of G′ with no label. Thus, edge (1,2) is

replaced by unlabeled edge (1,6) in the ICFG of P ′. OUT maps nodes 4 and 5 of G to

22

nodes 7 and 8 of G′, respectively, with empty labels. Thus, edges (3,4) with label T and

(3,5) with label F are replaced by edges (7,4) and (7,5) with no labels in the ICFG of P ′.

For a more concrete example, consider change ch1 in prog (Figure 4). Both G and

G′ for ch1 consist of node 1, whose corresponding statement is modified. Because node 1

is the only node in the change, both e and e′ are node 1. In this example, IN maps edge

(EN,1) in G to node 1 in G′ with no label and OUT maps (1,2) in G to node 1 in G′ without

label. For another example, ch4 in Figure 4 represents the insertion of node 8 between

nodes 7 and EX in prog. In this example, because neither G nor G′ can be empty, G can be

defined as node 7—even though the corresponding statement is not modified—and G′ can

be specified by nodes 7 and 8 and edge (7,8). IN maps edge (2,7) to node 7, thus preserving

edge (2,7) in the ICFG of prog’, and OUT maps edge (7,EX) to node 8 to replace edge

(7,EX) with (8,EX). All labels are empty. Node 7 is both e and e′ for this change.

An example of how Definition 14 handles code areas with multiple entry points is the

change resulting from the union of ch2 and ch3 in prog in Figure 4, which we denote by

ch{2,3}. Both G and G′ contain nodes 4 and 7 because the corresponding statements are

modified. However, if only those nodes were in G and G′, the edges in the domain of IN

would have to include (3,4) and (2,7), violating the property that the target of those edges

is a unique node. Hence, G and G′ must also contain nodes e and e′ that dominate all other

nodes in their respective graphs.3 Therefore, change ch{2,3} can be made consistent with

Definition 14 by having both e and e′ be node 2, G consist of nodes {2, 3, 4, 7} and edges

{(2,3), (2,7), (3,4)}, and G′ consist of nodes {2, 3, 4, 7, 8} and edges {(2,3), (2,7), (3,4),

(7,8)}. For this change, IN maps edge (1,2) to node 2 with no label and OUT maps edges

(4,6) and (7,EX) to nodes 4 and 8, respectively, with no labels.

3Because a sub-ICFG is a connected graph, its entry node dominates all other nodes in the sub-ICFG.

23

3.1.3 Effects of Individual Changes

To facilitate the discussion, hereafter, code changes are simply called changes and program

executions are considered reproducible (i.e., all executions for the same input are identi-

cal).4 Let P and P ′ be two versions5 of a program where P ′ is the result of applying the set

of N changes {Ci | 1 ≤ i ≤ N} to P . Let P ′\C be the program version that results from

applying all changes except C to P .

Changes alter the states of the program and/or the instructions that get executed. The

next three definitions formalize the concepts of sequences of instructions and states for

programs and changes.

DEFINITION 15. The execution history of a program for input I is the sequence of

statements executed when that program is run with input I .

DEFINITION 16. The augmented execution history of a program for input I is an exten-

sion of the execution history of that program for input I , where each statement occurrence

sj is paired with the parts of the program state modified by sj . The parts of the state mod-

ified by a statement occurrence sj are all variables defined at sj and the program counter

(i.e., the index of the next statement).

For example, consider program prog’ (Figure 4) and input {n=5, m=[1,-1,0,3]}.

Let pc denote the program counter after a statement execution. The first five elements in

the augmented execution history of prog’ are:

<11,{r=4,pc=2}>, <21,{i=1,pc=3}>, <31,{pc=4}>, <41,{a=5,pc=6}>, and

<61,{r=9,pc=2}>.

A change C may or may not occur (i.e., execute) during a program execution, and if it

occurs, it might do so multiple times. C occurs during an execution if at least one of its

statements in the modified program is executed.

4If all sources of non-determinism in an execution, such as thread interleavings and random values, are
captured and made part of the input, the execution is reproducible.

5A version of a program is that program with a set of changes applied to it.

24

DEFINITION 17. The augmented execution history of a change C on program P for

an execution of P is the sequence of occurrences of the location (entry point) of change C

in that execution and, for each occurrence, the subset of the augmented execution history

of the program containing only statements that are semantically dependent on C in that

execution. (See Definition 8 in Section 2.1.2 for the definition of semantic dependence.)

For program prog’ from Figure 4, executed on input {n=5, m=[1,-1,0,3]}, the

augmented execution history of change ch2 contains three occurrences of the change: 41,

42, and 43. The subset of the augmented execution history for occurrence 41 of ch2 in this

example is:

<41,{a=5,pc=6}>, <61,{r=9,pc=2}>, <62,{r=11,pc=2}>, <63,{r=13,pc=2}>,

<64,{r=18,pc=2}>, and <71,{out=1,pc=8}>

where out denotes the value of the output. Note that the subsets for 42 and 43 overlap with

the subset for 41 on all elements after 42 and 43, respectively.

After a change occurs, the executions of the versions of the program with and without

the change potentially diverge in path or state or both, from that point. That divergence con-

tinues for part of the respective execution histories afterwards, possibly for the remainder

of those two executions. The next definition formalizes this divergence.

DEFINITION 18. Given an execution of modified program P ′ with input I , the effects

of change C on that execution are the differences6 in the augmented execution histories of

C on P ′ and P ′\C for input I .

DEFINITION 19. The effects of change C on program P ′ are the union of the effects of

C on all possible executions of P ′.

The effects of a change on a modified program reflect the actual meaning of that change

6The differences between two sequences can be specified by a set of additions, deletions, and modifica-
tions of their elements. Because there might be multiple such sets that specify the differences between two
sequences, we use the term differences more broadly to represent all possible such sets.

25

for the behavior of the program. Thus, a change can be viewed not just as a localized syntac-

tic modification of the code, but more precisely as the collection of behavioral differences

(i.e., differences in states or paths) caused by the syntactic modification. Such differences

are initiated at the location of the change and propagate to all affected parts of the program,

however far from the location of the change they are.

3.1.4 Effects of Multiple Changes

Changes in programs usually do not occur in isolation. Thus, it is necessary to define

what the effects of multiple changes on each other mean—how these effects interact. The

guiding principle for multiple changes in our formal model is that

A change C1 affects another change C2 if the presence of C1 alters in any way

the effects of C2 on the program.

This section provides formal definitions of dependence among changes and change

interaction, including a proof that change interaction is a symmetric relation.

The context for the effects of a change C is the entire program with all other changes

in place, rather than just the syntactic location of C and the original program with change

C. Because the meaning of C corresponds to its effects on the entire modified program,

any modification of those effects caused by other changes is an interaction with C. This

consideration leads to the definition of semantic dependence among changes.

DEFINITION 20. A change C1 is semantically dependent on a change C2 in program

P ′ if the effects of C1 on P ′ differ from the effects of that same change on P ′\C2 (i.e., P ′

without the changes in C2).

In other words, C1 semantically depends on C2 if the presence or absence of C2 on

the modified program P ′ determines which effects C1 has on P ′. This definition of se-

mantic change-dependence is similar to the semantic dependence among two statements as

defined by Podgurski and Clarke [79], except for two differences. First, semantic change-

dependence uses the augmented execution history of a change, which includes not only the

26

syntactically modified statements but also all statements and states affected by that change

across the program. Second, instead of considering all possible changes to the computa-

tions performed at the source of the dependence, our definition uses the concrete change

C1 between P ′\C2 and in P ′. This second difference is key for making possible the com-

putation of such dependencies, especially for individual executions.

The semantic dependence between two changes is a symmetric relation. The following

theorem formalizes this property.

THEOREM 1. If a change C1 is semantically dependent on a change C2, then change

C2 is also semantically dependent on change C1.

PROOF OF THEOREM 1. The proof is by contradiction. Assume that C1 is semantically

dependent on C2 but C2 is not semantically dependent on C1. Consider an execution in

which the set of effects of C1 is non-empty on either P ′ or P ′\C2 . For that execution, let

a and b describe the respective parts of the execution histories of P ′ and P ′\C1 that differ

(a and b describe the effect of C1 on P ′). Note that a may be equal to b (in which case,

a and b would be empty). Also, let c and d describe the respective parts of the execution

histories of P ′\C2 and P ′\C1,C2 that differ (c and d describe the effects of C1 on P ′\C2).

Again, c may be equal to d. However, it cannot be the case that both a = b and c = d,

because, if so, there would be no difference in the effect of C1 on P ′ and P ′\C2 , and C1

would not be dependent on C2 (recall our assumption that C1 is dependent on C2). Thus,

a 6= b ∨ c 6= d—there is a non-empty effect of C1 on either the program pair (P ′, P ′\C1)

or the pair (P ′\C2 , P ′\C1,C2). Thus, because the effect of C1 is non-empty on at least one

of those program pairs, and because the effect is different between those two pairs (by

Definition 20), a must differ from c or b must differ from d. In other words, either the

execution histories of P ′ and P ′\C2 differ or the execution histories of P ′\C1 and P ′\C1,C2

differ, so C2 has a non-empty effect on at least one of these pairs. For those two effects of

C2 to be equal—we assumed that C2 is not semantically dependent on C1—it is necessary

that a = b ∧ c = d, which contradicts our previous conclusion that a 6= b ∨ c 6= d. Thus,

27

if C1 is semantically dependent on C2, the effects of C2 on P ′ and P ′\C1 must be different

and, by Definition 20, C2 is semantically dependent on C1. 2

3.2 Computation of the Effects of Changes

Based on the formal model of change effects (Section 3.1) and the principles of the PIE

model (Section 2.2), we can give now a systematic approach for computing the conditions

that cause a change to affect the behavior of a program. These conditions are captured and

computed by procedure COMPUTEEFFECTS7 listed in Figure 6. The procedure inputs the

original (unmodified) program P and change C (see Definition 14) and, at line 1, computes

the modified program P ′ by applying C to P .

According to definitions 18 and 19, the effects of a change are the differences in the

augmented execution history of the change (Definition 17) for P and P ′. Thus, the effects

of a change cannot be fully specified in terms of either program alone. For example, in

Figure 4, the execution history of change ch4 in prog is the history of line 7 (subgraph G

of ch4). This history is not modified in prog’ and, therefore, it provides no clue on what

program behaviors are affected. Only the inserted code for that change (graph G′ of ch4)

specifies that it is the output that is affected by the change.

To cover all affected behaviors, COMPUTEEFFECTS outputs the effects of change C as

a set of PIE conditions for two sets of dependence chains (sequences): one set for G in P

and the other for G′ (for P ′). The computation of effects is thus performed in two steps

(two iterations of the loop of lines 2–20), one for P and the other for P ′. The conditions

computed inside this loop are described next in the next two sections.

3.2.1 Chain Conditions

The augmented execution history of a change (Definition 17 in Section 3.1.3), a key part of

the definition of the effects of a change (Definitions 18 and 19 in Section 3.1.3), uses the

7We use procedure instead of algorithm because COMPUTEEFFECTS might not terminate.

28

semantic dependencies among statements. Computing semantic dependencies for all possi-

ble executions is an undecidable problem, but semantic dependencies can be approximated

by syntactic dependencies (i.e., possible dependencies identified by a program analysis).

DEFINITION 21. A node n is syntactically dependent on a node m in the ICFG of a pro-

gram P and according to a safe analysis A,8 if and only if there is a chain of dependencies

(control or data or both) identified by A in P that starts at m and ends at n.

DEFINITION 22. A dependence chain is a pair <n,seq> where n is the starting node

and seq is a possibly-empty sequence of dependencies where the target node of each de-

pendence is the source node of the next dependence in seq.

Syntactic dependence is a necessary condition for semantic dependence (see Section

3.1.3). Thus, a natural choice for a procedure that computes the effects of a change is to

compute first the dependence chains from the change in both P and P ′. For example, in

program prog of Figure 4 with and without change ch2, there are four chains from node

4 to node 7: <4, ((4,6), (6,7))>, <4, ((4,6), (6,6), (6,7))>, <4, ((4,6), (6,6), (6,6), (6,7))>,

and <4, ((4,6), (6,6), (6,6), (6,6), (6,7))>.

Lines 4–13 and 16–17 of procedure COMPUTEEFFECTS (Figure 6) compute the chain

conditions for the change in program. The chain conditions are the constraints on the

program input for reaching each node in the change and executing each dependence chain

from those nodes. The constraints for each chain are the path condition (see Section 2.1.4)

of the paths that cover it.9 Lines 4–7 begin this computation by creating one “empty” chain

<n, ()> for each definition or branching decision in each node n of the change in program

and placing this chain in a work list used in the rest of the procedure. Lines 6–8 assign

to each empty chain, as the condition for its execution, the path condition for reaching its

starting node by calling reachingCondition.

8A program analysis is safe if it has no false negatives such as missed dependencies.
9We use “path condition” not only for single paths but also for the disjunction of path conditions for all

paths that reach a node or that cover a dependence.

29

Procedure COMPUTEEFFECTS

Inputs: P : program; C: change
Output: effects: map program→ dependence chain→ conditions

(1) P ′ := applyChange (P , C)
(2) foreach program ∈ { P , P ′ }
(3) altProgram := P ′ if program is P ; P otherwise
(4) chainWorklist := createEmptyChains (program, change)
(5) foreach emptyChain ∈ chainWorklist
(6) effects[program][emptyChain] := reachingCondition (program, start(emptyChain))
(7) endfor

// incremental computation of conditions
(8) while chainWorklist 6= ∅
(9) prefixChain := pop (chainWorklist)
(10) foreach dep ∈ nextDependencies (program, prefixChain)
(11) chain := append (prefixChain, dep)

// chain conditions
(12) depCond := coverCondition (program, prefixChain, dep)
(13) chainCond := effects[program][prefixChain] ∧ depCond

// state conditions
(14) (S, Salt) := PSE Dep (program, altProgram, dep)
(15) stateCond := live(S) 6= live(Salt) ∨ (pc(S) ∧ ¬ pc(Salt))

(16) effects[program][chain] := chainCond ∧ stateCond
(17) push (chainWorklist, chain)
(18) endfor
(19) endwhile
(20) endfor
(21) return effects

Figure 6: Procedure that computes the effects of a change.

The while loop in lines 8–19 iterates over the work list of chains until the list is empty,

extracting one chain at a time at line 9 and placing it in prefixChain. For each prefixChain,

the for loop of lines 10–18 extends it with every control or data dependence that starts

where the prefix chain ends (line 11). For each dependence, the loop computes its coverage

conditions (line 12) in terms of the program variables at the source of the dependence and

then computes the chain conditions for the extended chain as the conjunction of the chain

conditions of the prefix chain and the conditions for the new dependence (line 13). The

auxiliary procedure coverCondition takes not only the program and the dependence but

also the prefix chain to ensure that only realizable paths (i.e., paths whose procedure call

30

and return edges match) are considered. Line 16 stores this chain condition for the extended

chain along with the state condition (see Section 3.2.2) for the chain. Finally, line 17 adds

the chain to the work list to be further extended in later iterations of the while loop.

3.2.2 State Conditions

Syntactic dependence, although necessary, is not a sufficient condition for semantic depen-

dence of a node s on a change C—the infection created by a change might not propagate

through any chain connecting C and s. For example, node 7 in program prog’ is con-

nected to change ch1 via node 6 by a chain of data dependencies on variable r, but the

value printed by node 7 is not affected by ch1 unless the value of r that reaches that point

is 0 with ch1 and thus 1 without ch1. Hence, to obtain the effects of a change C on a point

in the program, additional conditions on the program state are needed.

Despite the undecidability of computing semantic dependencies, it is possible to add

conditions on the program state for such dependencies incrementally from the change, as

shown in procedure COMPUTEEFFECTS of Figure 6. Recall that the while loop in the

procedure extends each chain one control or data dependence at a time. Although the

computation of effects for a particular program point might not terminate due to cycles in

control- or data-flow, an incremental procedure for computing these effects can be the basis

for useful approximations such as those presented in the next chapters.

The program state can be logically divided in two parts: the program variables and the

program counter (i.e., the pointer to the next instruction to execute). Thus, there are two

cases in which an infection propagates throughout a dependence chain:

• Case 1: the infection is a difference in the value of at least one program variable.

• Case 2: the infection is a difference in the program counter that causes a divergence

in the paths taken by the program.

To compute the two cases of state conditions, line 14 invokes PSE Dep to perform

partial symbolic execution [6, 92] defined next.

31

DEFINITION 23. Partial symbolic execution, or PSE for short, is a form of symbolic

execution that starts and ends at arbitrary points in the program and uses as symbolic input

the program variables at the start point. The result of PSE consists of the state of the

program at the end point and the path condition9 for reaching that point from the start

point. Both results are in terms of the symbols for the variables at the start point.

PSE Dep applies PSE to the paths that cover dependence dep in program and its al-

ternate altProgram (determined at line 3) and returns the respective symbolic states S and

Salt at the end of those paths. The symbols in these states are the program variables at the

source node of the dependence. The symbol for each of these variables, however, is equated

to the symbolic value of the variable already available effects when adding the state con-

dition at line 16. Similarly, PSE Dep uses placeholder conditions p and palt stating that

the execution in the respective program reaches the source node of the dependence; those

placeholders are replaced at line 16 by the actual path conditions for reaching the end of

the prefix chain.

Condition palt is not satisfiable if the source of dependence dep does not exist in alt-

Program or is modified so that the last dependence in prefixChain does not exist or does

not end in that node. Also, the path condition in Salt is not satisfiable if dep does not exist

in altProgram (i.e., in altProgram, the source or target node do not exist or there is no

dependence between those nodes).

For Case 1, line 15 of the procedure specifies in the first term of the disjunction that the

value of some live variable10 at the target of the dependence differs in the two programs.

Only live variables are of interest because any differences in the values of dead variables11

do not affect the behavior of program.

For Case 2, the procedure at line 15 specifies in the second term of the disjunction that

the path condition in S must hold while the path condition in Salt must not hold. One way

10A variable v is live at a program point n if there is a definition-clear path for v from n to a use of v.
11A variable v is dead at a program point n if there is no definition-clear path for v from n to any use of v.

32

in which the negation of the path condition in Salt can be satisfied is that altProgram simply

does not reach the source node of dep.

3.3 Related Work

In References [6] and [92], we introduced partial symbolic execution (PSE) and symbolic

state differencing as mechanisms for testing the effects of changes. In this chapter, we

defined the foundations for that work by developing a comprehensive formal model of

the effects of changes (Section 3.1) that underlie and justify those mechanisms and by

specifying in full how those effects can be obtained programmatically (Section 3.2). We

presented earlier versions of the work in this chapter in References [92] and [97].

A number of theories and models of fault propagation have been proposed in the lit-

erature. These models target fault-based testing, a form of testing that focuses on specific

classes of faults to improve the chances of discovering faults in those classes. Although

these models address faults instead of changes, the same principles for the propagation of

faults can be applied to the propagation of the effects of changes.

Morell [71] presented a theory that, given a class of faults, defines the conditions under

which fault-based testing for individual faults in that class succeeds at reaching the output.

These conditions are formulated as a set of fault-propagation equations that can be solved

using symbolic evaluation. Our formal model of the effects of changes (Section 3.1) is con-

sistent with Morell’s theory. Unlike this theory, however, our model also provides precise

definitions of what a change in program code is, how the effects of such a change manifest

in individual executions, and how changes affect a program at each point and for all pos-

sible executions. Also unlike Morell’s model, our model addresses multiple changes and

their possibly-interacting effects. Furthermore, the definitions in our model lead directly

to the formulation of a programmatic approach for obtaining the effects of changes (Sec-

tion 3.2)—an approach from which practical and effective approximations can be derived,

as shown in the next chapters of this dissertation.

33

Richardson and Thompson [85], inspired by Morell’s theory, defined a framework

called RELAY that identifies the different phases involved in executing a fault and prop-

agating it to the output to produce an observable failure. In this framework, users can

specify, for a class of faults, the conditions under which faults in that class transfer from

instruction to instruction to the output. Although RELAY does not specify concrete trans-

fer conditions for faults, the authors later defined the transfer conditions for specific kinds

of instructions to illustrate how the framework is used [105]. These conditions, however,

unlike our model and computational approach presented in this chapter, are insufficient to

specify in general the effects of a change and their propagation throughout the program.

Voas defined the PIE model [109] to describe in a simpler way the same notions of

origination and transfer of erroneous states present in the RELAY framework. In this model,

a fault is revealed by the output if it executes (E), infects the program state (I), and the

infected state propagates to the output (P). Like, RELAY, however, the PIE model only

identifies these phases without giving the conditions that carry out these phases. Although

Voas defined the PIE model for a technique that estimates the testability of program code,

the PIE model also provides a convenient and succinct way to refer to the main phases of

the RELAY framework. In this dissertation, we use the PIE model to justify and illustrate

the different aspects of the effects of changes and their computation.

Other techniques exist that compute approximations of the effects of changes for test-

ing and impact analysis. For testing changes, Binkley [17], Rothermel and Harrold [87],

and Gupta and colleagues [50] present techniques that use slicing [57, 112] to obtain test-

ing requirements corresponding to individual data- and control-dependencies affected by a

change. These techniques, however, are quite limited for representing the effects of changes

accurately. A dependence that is potentially affected by a change is not necessarily exe-

cuted exclusively as part of the propagation of the effects of the change. Also, individual

dependencies do not reflect the different and complex ways in which dependencies interact

to propagate infections. Furthermore, these techniques do not account for the differences

34

in the values of variables in the program. Meanwhile, change-impact analysis techniques

(e.g., [20, 21, 68, 76, 83]) identify elements such as methods or statements that are possi-

bly affected by a change and therefore need special attention. These techniques, however,

are no better than change-testing approaches for modeling the effects of changes at a fine-

grained level, for similar reasons. Such techniques either rely on slicing only or identify

coarse-grained entities such as methods executed after a change.

35

CHAPTER IV

SCALABILITY OF CHANGE-EFFECTS ANALYSIS

Symbolic execution [28, 63] is a key analysis needed for computing the effects of changes

and many other applications in software engineering. Unfortunately, however, this tech-

nique has serious scalability problems because the number of paths in a program grows

exponentially with the size of the program (or, for PSE, with the distance between the start

and end nodes). The number of paths to analyze can, in fact, be infinite. For this reason,

techniques that use symbolic execution in practice, such as the one presented in the next

chapter, must limit in some way the extent of the analysis performed. Therefore, any in-

crease in the number of paths that can be symbolically executed for the same amount of

time can have a great, positive impact in the cost-effectiveness of practical techniques.

This chapter presents a new technique, called Symbolic Program Decomposition (or

SPD), for symbolic execution of multiple paths that is more scalable than existing tech-

niques, which symbolically execute control-flow paths individually. SPD exploits control

and data dependencies to avoid analyzing unnecessary combinations of subpaths. SPD can

also compute a safe approximation of symbolic execution by abstracting away symbolic

subterms arbitrarily to further scale the analysis at the cost of precision.

In this chapter, Section 4.1 gives a detailed motivation for this new technique in the con-

text of existing research in symbolic execution. Then, Section 4.2 presents and illustrates

the SPD technique and Section 4.3 discusses its implementation. Section 4.4 presents a

study that uses this implementation to assess the ability of SPD to save path-exploration

costs. Finally, Section 4.5 discusses related work in detail.

36

4.1 Motivation

Approaches for symbolic execution of individual paths have been presented that heuristi-

cally select new paths to explore in ways that get increasingly “closer” to target program

points and, thus, reduce the number of paths analyzed [47, 99, 116]. Further research on

modularity has made symbolic execution more efficient by computing reusable method

summaries [3, 24]. However, despite these advances, the scalability of symbolic execu-

tion on all paths is still compromised by the path-explosion problem. For relatively large

programs and components, only a small set of paths can be symbolically executed for a

reasonable computational budget.

In the related field of model checking [107], which exhaustively explores sequences

of states, researchers address the scalability problem by using state abstractions and on-

demand refinement [26]. However, most software model checkers (e.g., [9, 14]) do not

offer control-flow (path) abstractions; instead, they operate directly on the control-flow

graph of the program. Although some techniques use demand-driven expansion of method

calls into constituent paths [8, 24], simply abstracting paths as methods does not prevent

the explosion of the path space when methods are expanded. Another abstraction, called

path slicing [61], simplifies a path to better refine state abstractions, but its result is limited

to the features of the original path and represents only a fraction of the path space.

To alleviate the path-explosion problem of symbolic execution for change-effects anal-

ysis and many other techniques, we developed Symbolic Program Decomposition (SPD).

SPD is a new interprocedural technique for symbolically executing multiple paths that

exploits the dependence structure of programs to obtain the same result as traditional sym-

bolic execution (TRADSE)1 (i.e., symbolic execution of individual control-flow paths, one

by one) but more efficiently. Instead of analyzing control-flow paths one by one, SPD

performs symbolic execution on groups of paths that share common control dependencies,

1Hereafter, we denote traditional symbolic execution as TRADSE.

37

called path families. SPD decomposes (partitions) path families iteratively into constituent

path families according to the data dependencies found within the path families. Because

each of the resulting path families represents, in general, multiple control-flow paths that

do not have to be analyzed individually, SPD can achieve significant savings over TRADSE

while obtaining the same final result.

This section also presents a feature of SPD that lets it trade precision for even more scal-

ability by “dropping” symbolic conditions in a safe manner to produce an over-

approximating abstraction (i.e., an under-constrained description) of the results of sym-

bolic execution. In this way, by sacrificing some precision, SPD can analyze larger sets of

paths than precise symbolic execution. SPD can use any abstraction strategy provided by

the user and designed specifically for the task at hand, such as change analysis. A good

abstraction strategy for a given task makes SPD produce a final set of path families that

is small enough for symbolic execution in practice and that remains effective for that task.

For example, a good strategy for analyzing and testing a change captures the initial prop-

agation conditions for the change while freeing up resources that help identify additional

conditions from code located beyond the limits of a precise analysis.

SPD has a number of potential applications in program analysis and software engineer-

ing, in addition to analyzing changes for regression testing [78, 92]. For example, SPD

can be used to approach test-input generation [47, 99, 116] from a path-family perspective.

For other examples, it can be used for static invariant-discovery [31, 39, 104], bug find-

ing [8, 37, 48], and modular analysis [3, 24]. The symbolic expressions computed by SPD

model, precisely or approximately, the effects of a program module in terms of its input.

Such models can serve as invariants that hold for all possible behaviors of the module and

can be checked against a specification. In addition, over-approximate results from SPD

can be refined iteratively to produce increasingly more precise abstractions.

The main benefit of this new technique is that it can symbolically analyze, for the

same effort, many more paths than TRADSE, improving the cost-effectiveness of many

38

software-engineering applications. By showing how to analyze paths in groups, rather than

individually, using the control- and data-dependence structure of programs, this section

shows that dependencies are a more effective representation of programs for path-sensitive

analysis than simple control-flow. Another benefit of this technique is that, using safe

approximations, it offers further gains in scalability in exchange for some loss in precision.

4.2 The SPD Technique

This section presents the new SPD technique. First, Section 4.2.1 provides the working ex-

ample used to illustrate the technique. Then, Section 4.2.2 gives an overview of SPD and its

core concepts, while Section 4.2.3 describes the abstraction feature of SPD. Sections 4.2.4

and 4.2.5 describe how path families are constructed and partitioned, respectively, in an

iterative fashion by SPD. Finally, Section 4.2.6 presents and explains in detail the SPD

algorithm.

4.2.1 Working Example

Figure 7 shows the example used in the rest of this section. Function addElem, listed on

the left, inputs three numbers and a map reference. In statements 1–3, addElem creates

a new map if it is not initialized and retrieves the size of the map. In statements 4–10, it

retrieves the list q associated with a (if q is empty, it is assigned one element), or, if there is

no such entry, creates a new list q for a and adds entry a→q to the map. In statements 11–

14, the function adds b to q if q is longer than a certain value and prints "succeeded" or

"failed" accordingly. Finally, the function returns the map size.

Figure 7 also shows a partial ICFG of addElem on the top right and the ICDG2 of this

program on the bottom right. For simplicity, in these graphs, the call-site nodes are not

split into call and return nodes. Also, the figure highlights each set of nodes in the ICDG

that share the same control dependence by surrounding that set in a box.

2For the definition of interprocedural control-dependence graph (ICDG), see Definition 10 in Sec-
tion 2.1.2.

39

uint addElem(uint a,b,c; Map m)
List q, int sz

1. if m == null
2. m = new Map
3. sz = m.size

4. if hasKey(m, a)
5. q = getVal(m, a)
6. if q.length == 0
7. q = <a>

else
8. q = <a>
9. m = insert(m, a→q)
10. sz++

11. if q.length >= sz + c
12. print "failed"

else
13. q = append(q, b)
14. print "succeeded"

15. return sz

EN

1

2

T

3

F

hasKey

TF
5

9

getVal8

3

4

insert 69

append

F
T

10

13

insert

T
12

7

11

F

6

EX

14

15

START

EN EX15

T
T T T T

T

1141 3

T

15

2 5 6 12 13 14

11

7 8 9 10

T F F

F

41 3

T

TTT

F

F

7 8 9 10

Figure 7: Example program addElem (left), its control-flow graph (CFG) (top right), and
its control-dependence graph (ICDG) (bottom right).

4.2.2 Overview of the SPD Technique

Consider the example in Figure 7 and suppose that we want to obtain the symbolic value

of sz at statement 15 for all paths of addElem.3 Assume for now that all called functions

(e.g., hasKey) are treated as primitive operations—the analysis does not enter those func-

tions. The value of use sz15 depends on which path we consider. For example, for path

<1F,4F,11F>, sz15 is m0.size + 1, because sz is first assigned m0.size at statement 3

3 We denote the use of variable v at statement n by vn; the symbol v0 denotes the input value for v.
Thus, sz at statement 15 is sz15.

40

and is then incremented by 1 at statement 10. Similarly, for all other paths, we obtain the

respective symbolic value of sz15. Using traditional symbolic execution (TRADSE), path

by path, the value of sz15 can be written as an expression with 12 cases:

{ case <1F,4F,11F>: m0.size + 1;

case <1F,4F,11T>: m0.size + 1;

case <1F,4T,6F,11F>: m0.size;

... }

For simplicity, we do not symbolically evaluate branch conditions such as 1F and 4F

for now. Although TRADSE explores 12 paths, there are paths for which sz15 has the

same value. For example, paths <1F,4F,11F> and <1F,4F,11T> both yield the value

m0.size + 1 because the decision at statement 11 does not affect sz15. Also, the deci-

sion at statement 6 does not affect sz15. Hence, these 12 paths can be grouped as Figure 8

shows, so that the value of sz15 is simplified to four cases:

{ case <1F,4F>: m0.size + 1;

case <1F,4T>: m0.size;

case <1T,4F>: (new Map).size + 1;

case <1T,4T>: (new Map).size; }

In contrast with TRADSE, SPD identifies these four groups of paths without having

to enumerate the 12 paths and simplify the results later. SPD achieves this by initially

grouping all paths between the start and end points into one path family (set of paths)

and then partitioning this path family iteratively until no more partitions are required to

distinguish the cases in which the symbolic result differs. Like TRADSE for paths, SPD

reuses prefixes shared by path families, such as <1F> for path families <1F,4F> and

<1F,4T>. The savings achieved by SPD are the difference between the number of paths

that TRADSE explores and the number of path families that SPD finds. In this example,

the difference is eight.

41

A path family is described by an ordered list of control dependencies (e.g., branches)

shared by its constituent paths. For example, path family <1F,4T> in program addElem

represents the four paths that share branches 1F and 4T. By grouping paths into path fam-

ilies, SPD can compute symbolic values based on shared control dependencies without

analyzing paths individually, which can be infinite if the code contains loops, while ob-

taining the same result as TRADSE. The symbolic condition corresponding to the list of

control dependencies is called path-family condition (PFC)—the multi-path version of a

path condition. The PFC is the condition for traversing any of the paths of the family;

any distinction among these paths is irrelevant for the result. For example, the PFC for

path family <1T> is m0=null. PFCs also include aliasing conditions, as described in

Section 4.2.6.

SPD partitions each path family independently from each other to avoid unnecessary

combinations of conditions that affect different parts of the result.4 For example, if we

want the PFC to statement 12 in addElem, we need the symbolic expression for branch

11T which includes uses q11, sz11, and c11 (always equal to c0). The value of sz11 is the

same as sz15, but q11 is affected by the outcome of the condition at statement 6, so this

condition cannot be ignored in this example. Thus, it would appear that all combinations

of outcomes of the conditions at 1, 4, and 6 are needed because each such combination

results in a different symbolic expression for 11T. However, SPD recognizes that not all

such combinations are necessary because uses q11 and s11 can be computed independently.

For q11, only path families <4T,6F>, <4T,6T>, and <4F> are needed, and for sz11, only

path families <1F,4F>, <1F,4T>, <1T,4F>, and <1T,4T> are required.

To quantify the savings achieved by SPD interprocedurally in this last example, let H ,

G, and I be the number of paths in hasKey, getVal, and insert, respectively. Instead

of analyzing the 2×H × (G× 2 + I) interprocedural paths between statements 1 and 12,

SPD requires, at most, H × (G× 2 + 1) path families for q11 and 2×H path families for

4 Partitions are also path-sensitive to distinguish multiple occurrences of a statement.

42

1 11 1 1 1 1 T 1 T 1 T 1 T 1 T1 T

Path Family <1F,4F> Path Family <1F,4T> Path Family <1T,4F> Path Family <1T,4T>

1

F

9

8

3

4

F

1

3

F

T
5

6

4

1

F

9

8

3

4

F

1

3

F

T
5

6

4

1

3

F

T
5

6

4

1

3

F

T
5

6

4

1

F

9

8

3

4

2

T 1

3

T
5

6

4

2

T 1

3

T
5

6

4

2

T 1

3

T
5

6

4

2

T 1

3

T
5

6

4

2

T1

F

9

8

3

4

2

T

9

10

14

13

15

11

F

15 15

11

F

6

14

13
F

9

10

15

11

T
12

15

T
12

15

11

F

6

15

11

T

7

6

14

13
F T

12

15

11

T

7

6 9

10

14

13

15

11

F

15 15

11

F

6

14

13
F T

12

15

11

F

6

15

11

T

7

6

14

13
F T

12

15

11

T

7

69

10

15

11

T
12

151515 151515 15 15 15 1515 15 15 15 151515

Figure 8: The 12 paths in Figure 7 form four groups, one for each value of sz15. SPD
finds these groups without enumerating all paths.

sz11. (SPD finds that insert does not affect the result.) SPD reuses the analysis of the

H path families, so the savings are H × (G× 2 + I − 3) paths.

4.2.3 Abstraction of Loops and Complex Code

If parts of the code in the example program from Figure 7, such as functions hasKey or

getVal, are complex or contain loops, and that code affects the symbolic value that we

need to compute, then the number of path families to identify can be too large or infi-

nite. To address this problem, SPD provides a mechanism for abstracting intermediate

conditions and values (picked by SPD or the user) in a safe manner, which results in an

over-approximate but simpler result. Abstractions can be used to avoid analyzing all itera-

tions in a loop; typically, SPD limits the number of iterations to analyze, so the remaining

iterations can be safely abstracted.

For example, in addElem, computing the PFC to statement 12 (i.e., the symbolic value

of 11T) involves finding the length of list q at node 11. To that end, SPD looks for the

values of q that can reach 11: getVal(m,a), {a}, and {a}, assigned at statements 5,

7, and 8, respectively. To reach statement 11, these values require branch lists <4T,6F>,

<4T,6T>, and <4F>, respectively. The assignment to q at 5 depends on the return value of

getVal; conditions 4F and 4T depend on the return value of hasKey. Therefore, SPD has

two alternatives: (1) enter these functions and analyze their contents (a complex endeavor),

43

or (2) abstract variable q at 5 and conditions 4F and 4T as *, which represents the top value

(i.e., the set of all possible values for a given type).5 In this example, suppose that SPD

chooses the second alternative. The value * for 4F and 4T means that both conditions have

the value set {true, false} (i.e., both values simultaneously); because one of the values

is true, both 4F and 4T are treated as satisfied, for any input.

The expression for condition 11T is q11.length≥sz11+c0. (Because a, b, and c are

never modified, any use of these variables can be replaced by inputs a0, b0, and c0, respec-

tively.) If we replace q11 with its reaching definitions and their respective reaching (case)

conditions, we obtain the following abstract expression for 11T:

{ case 4T,6F: *.length ≥ sz11 + c0

case 4T,6T: {a0}.length ≥ sz11 + c0

case 4F: {a0}.length ≥ sz11 + c0 }

which, because {a0} is a list of one element, simplifies to

{ case 4T,6F: *.length ≥ sz11 + c0

case 4T,6T: 1 ≥ sz11 + c0

case 4F: 1 ≥ sz11 + c0 }

Meanwhile, sz11 requires 1F and 1T, which are m0=null and m0 6=null, respectively.

Thus, sz11 in path family <4T> is {case m0=null: 0; case m0 6=null: m0.size;}

because the length of new Map is 0. We rewrite sz11 in<4T> as (m0=null)?0:m0.size.

Similarly, in path family <4F>, sz11 is (m0=null)?1:m0.size+1.

We already saw that 4F and 4T are *. 6F and 6T are also * because statement 5 assigns

* to q and, thus, condition *.length=0 is satisfied (the empty list, which belongs to set *,

has length 0). After replacing these conditions and the value of sz11 for each path family,

the final expression for 11T is the value set

5
* is a safe over-approximation of any symbolic expression, so an expression containing * is also a safe

over-approximation of the actual symbolic expression.

44

1

Path Family <1F,4T>

Path Family <1T,4T>Path Family <1T,4F> 1 T

Path Family <1F,4F>

Path Family <4F> Path Family <4T>
Path Family <>

initial
intermediateintermediate

final final

1

3

F

T
5

6

4

1

3

2

T

T

4

Path Family <1T,4T>

1

F

3

4

F

Path Family <1T,4F> 1

F

9

8

3

4

2

1

F

3

4

F
2

T

Path Family <4F>

1

3

F
2

T

T

4

Path Family <4T>

1
2

T

TF
58

3

4

F

T
12

15

11

F
T

7

6

14

13
F

T
12

11

T
5

F
T

7

6

13
F

F

9

8

10

13

11

F T
12

9

10

14

13

15

11

F T
12

15

F

9

8

10

13

11

F T
12

T
12

11

T
5

F
T

7

6

13
F

5

9

8

F
T

10

13
T

12

7

11

F

6

15

15

1414

1515

1515

14

1515 15

14
14

15

Figure 9: Partition of path families for sz15 in Figure 7. Here, path families are represented
by graphs. The initial path family <> is partitioned into path families <4F> and <4T>,
which are then partitioned into the final four path families from Figure 8.

{ *.length ≥ ((m0=null)? 0 : m0.size) + c0,

1 ≥ ((m0=null)? 0 : m0.size) + c0,

1 ≥ ((m0=null)? 1 : m0.size + 1) + c0 }

where the condition case * for each element is omitted—it is trivially true.

The resulting abstract PFC is true if any of its three values is true; the abstractions

applied by SPD make all three symbolic values possible at the same time.6 An input

generator that solves this condition in a way that maximizes the chances of covering state-

ment 12 should pick an input that satisfies all three values. If the solver knows that the fields

length and size of lists and maps are never negative, then it can strengthen this expres-

sion to 0 ≥ ((m0=null)?0:m0.size)+ c0, and, therefore, pick null for m0 and 0 for c0.

This input executes path <1,2,3,4,8,9,10,11,12,15>, which covers the target statement 12.

4.2.4 Construction of Path Families

SPD computes the edge lists for path families by exploring the ICDG. We assume that, for

each ICDG node, the order of execution of its successors within each cd-region7 is known.

6
* includes the null list, so the first element of the PFC can be an error, which we interpret as “not

satisfied” (i.e., false)—although, in this case, this error is spurious.
7 A cd-region is a region that groups all nodes that have the same control dependencies [41].

45

For example, in addElem (Figure 7), to obtain the edge list <11T> describing the family

of all paths from EN to 12, an algorithm can use the knowledge that EN executes before

node 11 in cd-region START-T to determine that node 11 is reachable from EN and then

find the ICDG edge 11T to node 12. In general, however, the ICDG traversal can be more

complex because some path families need to include or avoid intermediate points. For

example, consider finding the edge list for the family of paths between nodes 2 and 13 that

also cover node 7 in Figure 7. Starting at node 2, there is no ICDG path to node 7 and there

is no ICDG path from node 7 to node 13. However, after node 2, the program returns to

the cd-region START-T just after node 1. Similarly, after node 7, the program returns to

START-T just after node 4. Within this cd-region, the program then reaches node 4 from

node 1 and node 11 from node 4. From node 4, edges 4T and 6T lead to node 7, and

from node 11, edge 11F leads to node 13. Thus, this path family is described by edge list

<4T,6T,11F>. Note that not all edges in the list are consecutive in the ICDG.

Informally, the algorithm that finds the edge list from node u to v first looks for a path

in the ICDG from u to v. If this fails, v may still be reachable in the ICDG from some other

node w that executes after u. For example, in Figure 7, there is no ICDG path from node 7

to 13, but there is node 11, which executes after 7, and from which there is an ICDG path

to 13. Thus, the algorithm looks for an ICDG path to v from either u or another node w

that executes after u. Node w can be located after u (in execution order) in the cd-region of

u, or located after an ICDG ancestor u′ of u in the cd-region of u′. In our example, if u is

node 7 and v is node 13, then w is node 11 and u′ is node 4; both u′ and w are in cd-region

START-T, and w is located after u′ in that region.

The rules for the construction of path families are formalized in the next three defini-

tions. We first define executes after.

DEFINITION 24. Node w executes after node u if w is u or (1) there is a cd-region R

that contains u′ and w, where u′ is u or an ICDG ancestor of u, and (2) w is located after

u′ in R.

46

Using this definition, we now define valid ICDG-edge lists.

DEFINITION 25. A list of ICDG edges for nodes s and t is valid if (1) for each pair (e1,

e2) of consecutive edges in that list, the source node v of e2 executes after the first node u

of cd-region e1, (2) the source node s′ of the first edge in the list executes after s, and (3) t

executes after the first node t′ of the cd-region of the last edge of the list. An empty list is

valid if t executes after s.

Valid lists of ICDG edges help define path families precisely.

DEFINITION 26. A path family is a triple <s, t, E>, where s is the starting point, t is

the ending point, and E is a non-empty set of valid ICDG edge lists for node pair (s, t).

To illustrate these definitions, the family of all paths in Figure 7 from EN to 13 that

include 7 is <EN,13,{<4T,6T,11F>}>. The edge list <4T,6T,11F> is valid because (1)

for pairs (4T,6T) and (6T,11F), the source node of the second edge on each pair executes

after nodes 5 (the first node of region 4T) and 7 (the first node of region 6T), respectively;

(2) node 4 executes after EN; and (3) node 13 is the first node of region 11F. In this example,

E contains one edge list, but, in general, multiple edge lists might be needed to describe the

paths between s and t. If, for example, an ICDG has loops, then E might contain an infinite

number of edge lists. In such a case, E can be described finitely using regular expressions

or, to consider only realizable paths for the interprocedural case, context-free grammars.

4.2.5 Partition of Path Families

SPD starts with an initial path family that represents all paths to analyze between two

points. SPD then partitions the initial path family into intermediate path families, which

are subsets of the paths of the original family. The partitioning is determined by the data

dependencies (reaching definitions) for variables used in the PFC of the initial family and

the expression to symbolically evaluate. The lists of ICDG edges describing the partitioned

path families “refine” the original list with additional edges inserted at any point. SPD

continues this process iteratively on the intermediate families until it obtains the set of final

47

path families that cause the desired symbolic expression to contain only input symbols.

For the example of Figure 7 in which sz15 is computed intraprocedurally, Figure 9

shows the partitions performed, where each path family is depicted as a control-flow graph.

SPD partitions the initial path family <> (Figure 9, middle) using the reaching definitions

for sz15 at statements 3 and 10 and the respective conditions, <4T> and <4F>, under

which these definitions of sz reach sz11 (the condition for the definition of sz at 3 is

<4T> to avoid the re-definition at 10). The result of splitting the path family <> is the

pair of intermediate path families <4F> and <4T> in Figure 9. In addition, for each

intermediate path family, SPD substitutes for sz15 the right-hand side expression of the

corresponding definition. Thus, SPD transforms the initial { case <>: sz15; } into

{ case <4F>: sz10 + 1; case <4T>: m3.size; }

SPD continues by finding one reaching definition at 3 for use sz10 within path family

<4F> and replacing sz10 with m3.size. Because there is only one definition for sz10, the

path family <4F> does not need to be partitioned any further—<4F> is also the condition

for that definition to reach sz10. Finally, SPD finds that m3 (now occurring in both cases

of the expression) is reached by the definition of m at statement 2 and by input m0, whose

respective conditions are <1T> and <1F>. After partitioning path families <4F> and

<4T> with <1T> and <1F>, and replacing m3 with the respective values, SPD produces

the set of final path families (the two leftmost and two rightmost path families in Figure 9)

that form the same result as Expression (1) above. In summary, for our example, SPD

produces a minimal expression by exploring only four cases (final path families), in contrast

with TRADSE, which explores all 12 paths. Furthermore, if we included the paths from all

functions and also expanded 4F and 4T, the savings in the number of cases analyzed would

be even greater because only the code in hasKey affects sz15.

48

Algorithm DOSPD
Input: P : program to analyze

s, t: start and end statements in P
V : set of variables to evaluate at t
Abstract: boolean function on use-path pairs

Output: PFC(s→t): path-family condition from s to t
Vsym: symbolic values of variables in V

(1) PFC(s→t) = findEdgeLists(s, t)
(2) Vsym = {<u, PFC(s→t)> | u ∈ V × {t}}
(3) workset = Vsym

(4) foreach term C ∈ PFC(s→t)
(5) p = getPrefixToTerm(PFC(s→t), C)
(6) foreach use u ∈ C
(7) workset ∪ = <u, p> // initially not expanded
(8) endfor
(9) endfor
(10) while workset 6= ∅
(11) pick and remove <u, p> from workset
(12) if Abstract(<u, p>)
(13) linkPairs(<u, p>, <*, p>)
(14) mark <u, p> expanded
(15) continue to (10)
(16) endif
(17) D = getReachingDefinitions(u, p)
(18) I = getReachingInputs(u, p)
(19) foreach assignment-path pair <a,pa> ∈ D ∪ I
(20) p′ = getDefClearPathFamily(pa, var(u), p)
(21) linkPairs(<u, p>, <a, p′>)
(22) foreach use ua ∈ rhs(a)
(23) if <ua, pa> not expanded: workset ∪ =¡ua, pa>
(24) endfor
(25) foreach term C ∈ p′

(26) pc = getPrefixToTerm(p′, C)
(27) foreach use uc ∈ C
(28) if <uc, pc> not expanded: workset ∪ =<uc, pc¿
(29) endfor
(30) endfor
(31) endfor
(32) mark <u, p> expanded
(33) endwhile
(34) return PFC(s→t), Vsym

Figure 10: The algorithm for computing a Symbolic Program Decomposition (SPD) for
all paths between two points.

49

4.2.6 The SPD Algorithm

In this section, we formally present algorithm DOSPD, listed in Figure 10, that performs

symbolic program decomposition (SPD) for the set of all paths between two program

points, using control and data dependencies. DOSPD inputs a program P , a starting point s

in P , an ending point t in P , a (possibly empty) set V of variables to symbolically evaluate

at t, and an abstraction function Abstract. DOSPD outputs the PFC to reach t from s and

the symbolic values at t of the variables in V . DOSPD treats s as the entry point, so a

variable x at entry s is the symbolic input x0.

4.2.6.1 Initial Steps

At line 1, DOSPD invokes findEdgeLists (not shown) to initialize PFC(s→t) with the set E

of ICDG-edge lists describing the initial path family. This description provides the top-level

terms (i.e., the conditions given by the ICDG edges) for PFC(s→t); those terms will be later

expanded into full symbolic expressions. For example, the initial path family between EN

and 12 in Figure 7, which we call FEN→12, is <EN, 12, {<11T>}>. For FEN→12, 11T is

the only top-level term. At line 2, DOSPD creates the set Vsym containing a pseudo-use of

each variable v in V at t (i.e., a pair (v, t) treated by SPD as a use of v at t, regardless of

whether v is used at t or not). Each pseudo-use is paired in Vsym with the condition required

to reach t: PFC(s→t). For example, if V is {q}, then Vsym is assigned {<q12,FEN→12>}.

At line 3, DOSPD initializes the working set workset of use-path pairs (i.e., pairs of uses

and the PFCs to reach those uses from s) with all use-path pairs from Vsym. In lines 4–9,

DOSPD adds to workset all uses of variables from the top-level terms of PFC(s→t) (e.g.,

sz11), pairing each use u in those terms with the corresponding prefix of PFC(s→t) (e.g.,

<EN,11,{<>}>) computed by getPrefixToTerm (not shown), that ends at the term where

u is located. For a general example, consider PFC <s,t,{<A,B,C>,<D,E>}>; the prefix

of B in this path family is <s,t,{<A>}>, where the first list was trimmed and the second

list was discarded.

50

4.2.6.2 Abstraction Decision

In lines 10–33, DOSPD proceeds to iteratively pick and remove from workset one use-path

pair <u,p> (line 11). The call to the user-provided Abstract at line 12 decides whether the

pair <u,p> is abstracted away. If Abstract returns true, DOSPD proceeds to lines 13–15,

which link (assign) to <u,p> the value * and the same path family p, mark the pair as

expanded (processed), and continue to the next iteration—skipping the regular processing

of lines 17–32. In this case, no new elements are added to workset. For example, if Abstract

decides to abstract <sz11,FEN→11>, then the value of sz11 in FEN→11 is * and this pair is

not further processed.

4.2.6.3 Backward Expansion

At lines 17–31, DOSPD backward-expands u within p. Backward expansion of a use u

in path family p first uses getReachingDefinitions and getReachingInputs (not shown) at

lines 17–18 to find the data dependencies for u: all definitions and inputs for the variable of

u that might reach the location of u through some definition-clear path within path family

p. For example, use m3 is reachable by definition m2 and input m0. In lines 19–31, for

each such definition or input a and its associated path family pa (which ends at a), DOSPD

calls getDefClearPathFamily (line 20, not shown) to compute path family p′ describing all

paths from s that reach a and then continue to u within the constraining p and without

redefining the variable in u. For example, if u is m3, a is m0, and pa is FEN→EN , then

p′ is <EN,3,{<1F>}>. p′ includes the aliasing conditions that specify that the variable

of a is the same as the variable of u and that, for each potential re-definition k for a, the

paths through k are either excluded or the variable at k differs from the variable at a. For

example, for a definition of field h.f that might reach a use q.f within p, p′ includes a

special condition stating that the symbolic value of h in pa equals q at the end of p′. The

resulting pair <a,p′> is then linked to <u,p> at line 21 as a reaching definition or input

for u in p—if p and p′ are satisfied, then u = a.

51

4.2.6.4 Additional Uses

Identifying the definitions and inputs for u and their reaching conditions is, however,

not sufficient for obtaining the symbolic value of u in p. All uses on the right-hand

side (i.e., defining) expressions at definitions, as well as all uses in path family p′, also

have to be backward expanded until only input symbols are left. Thus, in lines 22–24,

DOSPD adds to workset every use ua on the right-hand side8 of a, associating each ua

with path family pa, which ends at ua. For example, if a is the definition of sz at 3, then

pair <m3,<EN,3,{<>}> is added to workset. Meanwhile, lines 25–30 identify uses uc

in the terms of PFC p′ (including aliasing conditions), pairing each use with the prefix

PFC pc of p′ that ends at that use, and adds those pairs to workset. For example, if p′ is

<EN,7,{<4T,6T>}, then, for term 6T, pair <q6,{<4T>}> is added to workset. Note that

DOSPD only adds pairs to workset if they are not already backward expanded; this is how

SPD reuses computations. Finally, the working pair is marked as expanded at line 32.

4.2.6.5 Symbolic Result

When the while loop ends, all uses in PFC(s→t) and V , as well as all uses transitively

reachable through definitions and PFCs linked to those initial uses, have been expanded

within their respective constraining path families. At this point, the linking process has

produced an acyclic graph of use-path pairs that induces a case-like symbolic expression

for all variables of interest in terms of the symbolic inputs. If needed, the explicit symbolic

values for PFC(s→t) and V can be obtained by replacing all use-path pairs with their

linked definitions and inputs and continuing through the use-path pairs on right-hand-side

expressions and PFCs for those reaching definitions and inputs. However, the graph form

of the result is, in general, more convenient than the full symbolic expression because

it avoids the redundancy caused by multiple replacements of intermediate nodes. These

nodes can be interpreted as special variables (e.g., <sz11,FEN→11>), keeping the size of

8 The right-hand side for an input is empty.

52

the expression under control without losing any information.

4.2.6.6 Complexity and Termination

The worst-case complexity of SPD is exponential in the number of program points that

affect PFC(s→t) or V because SPD does a path-sensitive traversal of the data- and control-

dependence graphs. This complexity, however, is not greater than that of TRADSE because,

unlike TRADSE, SPD does not traverse points or combinations of ICDG edges that do not

affect the result. SPD also requires a dependence analysis of the program, but the cost of

this analysis is only polynomial.

If the dependencies affecting PFC(s→t) or V are cyclic, DOSPD might not terminate.

Thus, the abstraction function should be designed to identify such situations and abstract

away uses to enforce termination. An alternative is to find closed-form expressions for the

effects of cycles [28]. When this is not possible, however, DOSPD could be made to limit

the number of iterations per loop—the typical approach used in the literature (e.g., [8,24]).

4.3 Implementation of SPD

To support the evaluation of SPD, we implemented this technique as a tool called JSPD that

we describe in this section. JSPD is based on DUA-FORENSICS [93], an interprocedural

control- and data-dependence analysis tool that uses Soot [106] to analyze Java-bytecode

programs. JSPD checks the feasibility of path families using the CVC3 SMT solver [11].

Also, to better analyze realistic Java programs that use libraries and contain loops, JSPD

uses two mechanisms: (1) manually-encoded models of the effects of library calls to focus

the analysis on the application code rather than the library code, and (2) user-provided

limits for the length of control-dependence edge lists for path families and for the number

of iterations per loop. By default, JSPD sets these limits to 10 and 2, respectively. The

length limit might seem small, but long control-flow paths can exist within this limit and

all such paths are analyzed by JSPD.

53

For abstraction, JSPD uses a generic strategy parameterized by a symbolic expression-

tree depth limit e: JSPD replaces with * all symbolic terms “below” depth e in the resulting

symbolic expression trees. For example, when computing a PFC to a certain point, the uses

in the conditions for reaching that point are located at depth 0, the PFCs and definitions

for those uses are located at depth 1, and so on. The goal of this strategy is to abstract

uses and PFCs that are “less important” than the uses and PFCs at depth e or less. Thus,

the resulting symbolic expressions are over-approximated as multi-valued expressions (see

Section 4.2.3).

In addition to SPD and this abstraction strategy, we implemented TRADSE using the

same JSPD tool to provide a fair comparison during our experiments. To that end, we added

a mode to JSPD in which all final path families are individual paths.

4.4 Study: Path-space Reduction

The goal of this study was to assess the gains in efficiency that SPD can achieve for

multiple-path symbolic execution by measuring the reduction in the number of paths or

path families that SPD (without abstractions) analyzes with respect to TRADSE for the

same result.9 First, we present the empirical setup, then, we analyze the results, and finally

we discuss threats to the validity of this study.

4.4.1 Empirical Setup

Table 3 lists the subjects we used in our study. For each subject, the first column gives

the name, the second column provides a short description, and the third column shows

the size in non-comment non-blank lines of Java source code. Tcas, Tot info, Schedule1,

and Print tokens1 are small programs from the Siemens suite that we translated from C to

Java. NanoXML and XML-security are libraries used by many systems. We obtained these

subjects from the SIR repository [36].

9For a study of the benefits of SPD and abstractions for computing change effects, see Section 5.4.2 in
Chapter 5.

54

Table 3: Subjects for the study of SPD.
subject description lines of code
Tcas air collision avoidance 131
Tot info information measure 283
Schedule1 priority scheduler 290
Print tokens1 lexical analyzer 478
NanoXML lean XML parser 3497
XML-security signature and encryption 21613

For this experiment, we symbolically executed all paths without abstractions, bounded

by the default length and iteration limits of JSPD, between pairs of statements in the subjects

listed in Table 3. For each of Tcas, Tot info, Schedule1, and Print tokens1, we randomly

selected 10 statements and computed the PFCs for reaching those statements from the entry

of the program. For each of NanoXML and XML-security, we randomly chose 10 methods

and 10 target statements (anywhere in the program) and computed the PFC from the entry

of each method to the corresponding target statement. We considered only target statements

for which JSPD found more than one path from the respective method.

To measure the cost of using SPD for computing each PFC, we counted the number of

path families required by SPD and compared it with the number of control-flow paths re-

quired by TRADSE. For both techniques, we counted only the path families that CVC3 did

not find to be infeasible. We also measured the cost in time incurred by SPD to construct

the path families.

We ran our experiments on a dual-core 3 GHz machine with 2 GB of RAM running

32-bit Linux and Sun’s Java virtual machine.

4.4.2 Results and Analysis

Table 4 shows, for each subject and PFC (first column for each subject), the number of

control-flow paths and path families analyzed using TRADSE and SPD, respectively (sec-

ond and third columns for each subject). The last two rows show, for each subject, the av-

erage number of paths per technique and the average ratio of TRADSE paths to SPD path

55

Table 4: Paths and path families explored to compute PFCs in the study. Path-family
construction had a comparatively negligible cost.

paths Tcas # paths Tot info # paths Schedule1
PFC TRADSE SPD PFC TRADSE SPD PFC TRADSE SPD
1 2,520 71 1 2 2 1 965,353 338
2 40 15 2 58,741,054 122 2 53,301 126
3 18 11 3 2 2 3 83,915,178 1,695
4 280 27 4 2 2 4 686,090,932 1,990
5 120 23 5 2 2 5 64 8
6 1,680 31 6 112 2 6 64 8
7 2,240 35 7 112 2 7 343,609,576 1,016
8 13,680 79 8 40,332,449 122 8 28,189,300 554
9 13,760 83 9 40,332,449 122 9 2,541,388 122

10 18 11 10 6,538,717 122 10 4,939,084 135
avg. 3,436 39 avg. 14,594,490 55 avg. 115,030,424 599

paths Print tokens1 # paths NanoXML # paths XML-security
PFC TRADSE SPD PFC TRADSE SPD PFC TRADSE SPD
1 1,082,127,580 400 1 2,621 50 1 23,039 43
2 642,994,146 638 2 8,001 22 2 490 57
3 642,994,146 642 3 195 15 3 201 14
4 2 2 4 3,347 53 4 145 21
5 642,994,146 642 5 195 15 5 9,997 691
6 594,023,890 630 6 1,732 29 6 115,781 118
7 594,023,890 624 7 112 84 7 15,882 31
8 594,023,890 626 8 19,352 26 8 29,737,820 275
9 642,994,146 642 9 4,276 35 9 463 52

10 642,994,146 642 10 4,056 35 10 19,813 100
avg. 607,916,998 549 avg. 4,389 36 avg. 2,992,363 140

56

Figure 11: Average number of feasible paths or path families analyzed for TRADSE and
SPD, and average ratios of these values.

families explored. For example, for PFC 1 in Tcas, TRADSE had to explore 2,520 paths,

whereas SPD only explored 71 path families. On average for Tcas (second-to-last row),

TRADSE explored 3,436 paths per PFC, whereas SPD covered the same paths by explor-

ing only 39 path families. Figure 11 presents, in a logarithmic scale, the average number

of paths or path families explored by TRADSE and SPD per subject and for all subjects.

These numbers are shown by the first two bars—TRADSE and SPD—for each case. The

third bar for each case, avg. ratio, shows the average of the ratios of paths explored by

TRADSE to the path families explored by SPD. For example, the ratio of explored paths

for PFC 1 in Tcas is 35 : 1 (not shown) and, for all PFCs in Tcas, the average ratio is 51 : 1

(see also Table 4). In Figure 11, the average of ratios for all 60 PFCs is 211,933 : 1.

The cost of constructing path families using SPD was usually a few seconds—negligible

compared with the dozens or even hundreds of minutes it took to explore the paths and path

families.

For most PFCs, the results show a large reduction in the number of path families ex-

plored by SPD to compute the PFCs with respect to the number of paths that must be

explored by TRADSE. For many cases in Tot info (e.g., PFC 2), Schedule1 (e.g., PFC 4),

and Print tokens1 (e.g., PFC 1), and for one case in XML-security (PFC 8), the reduction

57

is especially dramatic. Overall, for all subjects, there is an average reduction of orders

of magnitude in exploration costs of using SPD with respect to TRADSE. For Tcas, the

reduction is less than for the other subjects—“only” 51 times on average as the last row

of Table 4 shows—which is explained by the small size of this subject and the absence of

loops. For Tot info, Schedule1, and Print tokens1, which are only slightly larger than Tcas

but more complex and contain loops, the average reduction is very large. The results for

these three subjects suggest that considerable portions of their code contain series of inde-

pendent computations that SPD does not analyze in combination but that lead to a dramatic

explosion in the total number of control-flow paths. For NanoXML, and especially XML-

security, which are real-world subjects, the average savings ratios are also considerable:

155 and 11,042 times, respectively. Note that, for XML-security, PFC 8 greatly influences

this average; without that PFC, the average ratio is 253 : 1. These results confirm that im-

portant savings can also be achieved for larger and more complex subjects than the Siemens

subjects. The variety of these results also reflects the diversity in the complexity of code

across different programs and within each program. Also, recall that these results are con-

strained by the edge-list length and iteration limits discussed in Section 4.3; it is reasonable

to expect that these differences keep growing at similar rates if those limits are increased.

The results of this study highlight the significant potential of SPD for shrinking path-

exploration costs, which impacts a variety of applications. These results make it clear that

exploiting the dependence structure of programs is crucial for making symbolic execution

of multiple paths more scalable than current approaches. Note that SPD requires a depen-

dence analysis to operate, which can be computed beforehand or on demand. However,

dependencies often are already computed by many client analyses, and even if they are

not, the cost of dependence analysis grows only polynomially with the size of the program,

whereas path exploration is an exponential-cost problem that dominates the overall analysis

cost.

58

4.4.3 Threats to Validity

The main internal threat to the validity of our results is the potential presence of errors in

our JSPD tool, including our manual modeling of Java library methods. To minimize this

threat, we tested JSPD on diverse examples and subjects, making extensive use of runtime

checks and manually examining results.

The main external threat is the representativeness of our subject programs. To reduce

this threat, we used subjects of different styles and purposes. Yet, PFCs on more subjects

of different kinds need to be studied to generalize the conclusions of our studies.

4.5 Related Work

Symbolic execution was first introduced as a forward analysis of control-flow paths [27,63].

Backward substitution was later presented as an alternative method for performing sym-

bolic execution and the term global symbolic evaluation was used to refer to the symbolic

execution of all program paths [28]. Our SPD technique, in fact, performs global symbolic

evaluation between two points in a program using backward substitution. SPD, however,

analyzes paths in groups instead of individually, is driven by program dependencies in-

stead of control-flow, and provides an over-approximation mechanism to reduce complex-

ity. These features of SPD greatly improve the scalability of global symbolic evaluation.

Software model checking [9, 14, 107] exhaustively explores all sequences of states

in programs using state abstractions (e.g., symbolic states) and refinement to reduce the

search space with respect to the checked properties. Most software model checkers, how-

ever, work on the control-flow graph of the program, whereas SPD exploits a new kind of

abstraction—path families—to explore paths in groups. Some techniques group paths as

methods [8,24], but methods are coarse abstractions—paths still must be analyzed individ-

ually after a method is expanded. SPD, in contrast, provides a fine-grained grouping of

paths, based on control and data dependencies, which groups paths regardless of method

59

boundaries and is based strictly on the similarity of their effects on each separate compo-

nent of the final result.

Path slicing [61] removes irrelevant portions of a counterexample path for effective re-

finement of state abstractions in software model checking. Interestingly, a sliced path cor-

responds to a path family described by the preserved portions of the original path. However,

a sliced path is equivalent to only one of the “final” path families produced by SPD—the

path families that are not partitioned any further. Also, unlike path slicing’s bottom-up ap-

proach, SPD works in a top-down fashion by partitioning path families without requiring

any initial individual control-flow path.

Bug-finding approaches (e.g., [24, 37, 43, 73]) generate verification conditions (VCs)

that logically describe programs along with the properties to check. Efficient versions of

bug-finding approaches that are based on the concept of weakest preconditions [35] control

the size of the VC by summarizing the effects of code fragments [10, 43] or by performing

a demand-driven backward analysis from the points of interest [24, 73]. These techniques,

however, operate on control-flow paths instead of taking advantage of program dependen-

cies and thus, unlike SPD, they may analyze irrelevant portions of the code. One bug-

finding technique that does take dependencies into account is Miniatur [37], which slices

the VC to remove the portions of the program that are irrelevant for the checked property.

SPD, however, performs slicing at the path level, which permits multiple occurrences of

the same use (i.e., a variable and a location) by distinguishing its context—the constraining

path family. SPD only associates with each pair of use and context the reaching definitions

and inputs for that context. Moreover, SPD can also over-approximate a use with *. An-

other technique [102] also uses control dependencies to compute path conditions between

two points, but this technique only partially expands the conditional terms as functions of

the input, so in general it does not produce a complete symbolic-execution result.

Many representations of programs for compiler optimization have been proposed. The

60

Value Dependence Graph (VDG) [111], in particular, uses program dependencies to trans-

form loop bodies and procedures in a way that is similar to SPD. Like Miniatur, how-

ever, the VDG is constrained to one occurrence of each value (variable use), whereas SPD

works on use-path pairs to distinguish contexts, integrates aliasing conditions, and provides

an over-approximation mechanism. On a related note, the static single assignment (SSA)

form [33] or some variant of it is commonly used—implicitly or explicitly—by many of

these techniques to distinguish different values of variables coming from different paths.

SPD lazily determines at each use location, and for each path family, the value of the

variable based on the reaching definitions and inputs within that path family. However, it

remains to be seen whether using SSA’s phi-functions within each path family provides any

improvement for SPD.

Uninterpreted functions are used for operations or code segments whose semantics are

unknown or not supported by solvers. They are often associated with abstract behaviors

(e.g., [22]) to simplify verification. They are also used for symbolic execution when com-

paring two programs to skip the analysis of identical segments [32, 78, 100]. The value *

in SPD can be seen as an uninterpreted function that replaces terms in symbolic expres-

sions with a particular meaning: top. This is the same meaning assigned by some analyses

(e.g., [14, 38]) to unsupported operations such as multiplication. SPD, however, uses *

more generally to abstract away arbitrary subtrees of the resulting expression tree.

Researchers have combined symbolic analysis with data-flow analysis to achieve trade-

offs between precision and efficiency (e.g., [15, 42, 104]). Most of these approaches intro-

duce symbolic predicates to the lattice of data-flow facts to increase precision. SPD, how-

ever, starts with a fully path-sensitive analysis and only performs approximations based

on a user-provided strategy to avoid the complexity of expanding certain subterms. In

that sense, SPD can be seen as an instantiation of the framework of configurable program

analysis [15].

Finally, a number of test-input generation techniques are based on symbolic execution,

61

including “dynamic” symbolic execution (DSE) [47, 99, 116] (also called “concolic” test-

ing). We believe that our approach, based on path families, can improve these techniques,

which use a smart exploration of individual control-flow paths. We also expect that modu-

lar analysis based on SPD will improve the control-flow based approach for compositional

DSE [3].

62

CHAPTER V

ANALYSIS AND TESTING OF INDIVIDUAL CHANGES

This chapter presents and studies a principled and practical new technique for comput-

ing testing requirements for individual changes (i.e., regardless of other changes). This

technique is rooted in the formal model and computational approach for effects of changes

presented in Chapter 3. To begin, Section 5.1 addresses existing coverage-based techniques

for testing changes (i.e., techniques based on covering program entities) and provides the

first empirical evaluation of these techniques. Section 5.2 presents our new technique for

testing changes, which we regard as propagation-based because of its roots in the PIE

model (Section 2.2) and Chapter 3. Then, Sections 5.3 and 5.4 describe the implemen-

tation and evaluation, respectively, of this new technique. Finally, Section 5.5 discusses

related work.

5.1 Study of Coverage-based Testing of Individual Changes

A major problem with existing research on coverage-based testing of changes [17, 49, 87]

(described in Section 2.3.2) is that no empirical evaluation of these coverage criteria has

been performed. The only hints about the potential strength of these criteria come from

their reliance on forward static slicing [57, 112], which can be considerably imprecise [18,

23]. The most closely related empirical studies available correspond to applications of

change-impact analysis (e.g., [20, 21, 68, 76, 83]) that identify program entities potentially

affected by a change at some location. However, change-impact analysis techniques usu-

ally identify entities of coarser granularity than statements, such as methods and classes.

Therefore, empirical studies of the existing coverage-based strategies for testing changes

are needed.

The goal of this section is to provide a preliminary empirical evaluation of the ability of

63

Table 5: Subjects for preliminary change-testing studies.
subject description lines of code test cases changes
Tcas air traffic 131 1608 6
NanoXML-v1 XML parser 3497 214 7
NanoXML-v5 XML parser 4782 216 2

coverage-based approaches to reveal observably-different behaviors caused by changes—

behaviors that need inspection by testers—and identify the necessities of further research.

5.1.1 Empirical Setup

To empirically evaluate coverage criteria representative of existing work, we extended

the DUA-FORENSICS [93] dependence-analysis tool to monitor the coverage of affected

branches and du-pairs in program executions after a change is covered. DUA-FORENSICS

is implemented in Java and uses the Soot Framework [91, 106]. DUA-FORENSICS can

determine the dependence distance from the change (i.e., the number of dependencies tra-

versed from the change) at which each testing requirement is covered.

Table 5 lists the subject programs used in this study, their sizes in non-comment, non-

blank lines of code, the size of the pool of test cases provided with the subject, and the

number of changes studied per subject. The pools of test cases for these subjects are de-

signed to be representative of the kinds of test cases that developers conceive in practice

while providing enough test cases to construct different test suites satisfying the same crite-

rion, for different coverage criteria. The changes were made by other researchers for their

own studies.

The first subject, Tcas, is an air traffic collision-avoidance algorithm for avionics sys-

tems. This subject was adapted by Hutchins and colleagues for coverage-testing stud-

ies [60] and is representative of modules with straightforward logic found in many in-

dustrial domains. We used a version of Tcas translated to Java from the original version

in C, and considered its first six changes. For a second subject, we used NanoXML, an

XML parser available at the SIR repository [36, 40] that, in contrast to Tcas, represents

64

more complex, object-oriented software. We used all changes provided with version v1 of

NanoXML. For two of these changes, however, all test cases covering those changes reveal

differences in the output. To compensate for these “uninteresting” changes, we included

two changes from version v5 of NanoXML (the version most different from v1). The first

two changes in v5 are located in unreachable code, as we confirmed manually, so we used

the third and fourth changes provided with that version.

The existing coverage-based approaches define two types of entities affected by changes:

branches and du-pairs. DUA-FORENSICS finds these entities using forward static slicing

and monitors their coverage at runtime. For completeness, we also studied the coverage of

the statements modified by the change, which the simplest way of testing a change. Also,

to support a side-by-side comparison with the technique presented next in Section 5.2,

we considered only those testing requirements (branches and du-pairs) covered within the

same distance that the toolset for the technique of that section was able to reach. A more

comprehensive study of coverage criteria is presented in Chapter 6 as part of the evaluation

of the demand-driven alternative for the new technique.

In this study, for each change, we used the available pool of test cases to construct

test suites for each criterion that maximize the coverage achievable for that criterion and

that pool. To minimize randomness in the results for individual test suites, we created

100 different test suites for each coverage criterion studied. We constructed each test suite

by picking from the pool one random test case at a time without replacement and adding

that test case to the test suite if it increased the coverage of the test suite. To estimate

the probability that using each criterion reveals a difference in the output, we computed

the percentage of test suites for that criterion that revealed a difference in the output—our

measure of success.

65

Table 6: Difference detection for test-suite augmentation criteria on Tcas.
change distance STMT BR DU CHAIN PROP

1 3 41.1% 41.1% 47.3% 47.3% 100%
2 6 15.2% 15.2% 15.2% 16.9% 54.1%
3 6 2% 3.2% 2% 18.4% 18.6%
4 6 10% 19.4% 10% 100% 100%
5 6 0.7% 0.7% 0.7% 3.5% 3.7%
6 5 2.1% 3.7% 2.1% 4.6% 100%

5.1.2 Results and Analysis

Tables 6 and 7 show the results of this study, using DUA-FORENSICS, for the changes

in Tcas and NanoXML, respectively. In each table, column change identifies the change

with a number and distance (or d) the dependence distance reached by the technique of

Section 5.2. The change numbers reflect the order in which they are provided with each

subject. For NanoXML, changes 1–7 are from version v1 and changes 8 and 9 are from

version v5. Distance d is specified only when simply covering the changed statements does

not guarantee a difference in the output. Otherwise, distance is 0 and denoted by a dash (-).

Columns STMT, BR, and DU in these tables report the probability of revealing dif-

ferences in the output using test suites satisfying the three coverage criteria: all changed

statements (STMT), all affected branches within distance d of the change (BR), and all af-

fected du-pairs within distance d of the change (DU).1 When the BR and DU criteria are

not applicable (i.e., when the change only affects control flow or data flow, but not both),

they default to STMT, which corresponds to testing requirements at distance 0.

To illustrate, consider Change 1 in Tcas (Table 6). The table indicates that 41.1% of

the test suites covering the requirements set by STMT or BR within distance 3 revealed a

difference in the output, while 47.3% of the test suites covering DU at distance 3 or less

revealed a difference—a slight increase over STMT and BR.

1The last two columns in these tables are used in Section 5.4.

66

Table 7: Difference detection for test-suite augmentation criteria on NanoXML.
change distance STMT BR DU CHAIN PROP

1 2 52.2% 100% 52.2% 100% 100%
2 3 67.2% 67.2% 67.2% 67.2% 67.2%
3 3 0% 0% 10.4% 10.4% 10.4%
4 3 13.4% 13.4% 48.7% 48.7% 100%
5 - 100% 100% 100% 100% 100%
6 - 100% 100% 100% 100% 100%
7 3 18.7% 18.7% 18.7% 18.7% 18.7%
8 4 35% 35% 35% 66% 66%
9 4 21.9% 21.9% 21.9% 42.2% 42.2%

The results show that, for most of these changes, coverage criteria do not provide con-

fidence that differences in the output will be revealed. The probabilities in those cases are

far less than 100%, even though, for every change, there is at least one test case in the pool

that produces a difference. Therefore, the three coverage-based approaches are not capable

of describing with enough detail the conditions that distinguish difference-revealing test

cases from the rest.

The exceptions are changes 1, 5, and 6 in NanoXML (Table 7). Changes 5 and 6 are

trivial in that, using this test pool, simply covering the modified statements guarantees that a

difference is observed (hence, d is not specified). For Change 1, covering affected branches

guarantees a difference, but not affected du-pairs or changed statements. In all, for most

changes and criteria, the chances of observing a difference in the output are low—less than

50% for all changes except for the aforementioned exceptions and Change 2 in NanoXML.

This initial study suggests that existing coverage-based approaches for testing changes,

at least under distance constraints, do not provide enough confidence that changes are exer-

cised in ways that propagate their effects to the output. Thus, better approaches are needed.

5.2 Propagation-based Testing of Individual Changes

A careful analysis of coverage-based approaches and their preliminary evaluation from

Section 5.1 suggests that their deficiencies stem from failing to exploit all the information

67

that a change provides. Coverage-based approaches require the coverage of the changed

locations and potentially-affected entities but do not consider how the change affects the

program state, how those entities are affected, and how the output is affected when those

entities are affected. Approaches based only on the coverage of the change and affected

entities only guarantee that the change is executed, as required by the PIE model adapted

for changes (Section 2.2), but they do not provide sufficient guarantees that the state of the

program is infected by the change and that the infection propagates to the output.

This section presents our new propagation-based technique for testing changes that

explicitly addresses the infection and propagation requirements of the PIE model. This

technique computes and monitors test-suite augmentation requirements (see Section 2.3)

for individual changes based on a precise analysis of those changes. A preliminary ver-

sion of this technique was presented in Reference [6] and then improved and evaluated in

References [92] and [94].

5.2.1 Overview

The technique adapts the procedure COMPUTEEFFECTS of Figure 6 in Section 3.2, which

computes the effects of a change on any point in the program, to make it applicable in prac-

tice. The technique works in two phases. Phase 1 identifies the dependence chains in the

program (Definition 22) through which the effects of a change might propagate to the out-

put. These chains are what we call the chain testing requirements in this technique—they

should be covered as a necessary (albeit not sufficient) condition for exercising the many

paths through which the effects of a change might propagate. Phase 2 uses partial symbolic

execution (PSE) (Definition 23) to compute the infection and propagation conditions (i.e.,

the state conditions of Section 3.2.2) for the effects of the change along each dependence

chain found in Phase 1. The conditions computed in Phase 2 for each chain are what we

call the state testing requirements for those chains.

68

Computing all the requirements for covering a change, infecting the state, and prop-

agating the infection to the output is impractical in general. Hence, the technique makes

two simplifications. First, the technique omits the conditions for reaching the change from

the entry of the program that COMPUTEEFFECTS obtains in Line 6 because an existing test

suite created for high code coverage should already cover the change. Second, the tech-

nique sets a limit d on the distance from the change (i.e., the length of each chain from each

node in the change) that the analysis is allowed to reach along each chain. This limit can be

specified by the developer or a tool that uses this technique. The testing requirements ob-

tained by this technique are, for two reasons, a safe approximation of the conditions for the

execution, infection, and propagation of changes to the output. The first reason is that a test

case that does not satisfy these requirements on a chain is guaranteed not to propagate an

infection to the output through that chain. The second reason is that these requirements are

a necessary but not sufficient condition for test cases to propagate an infection to the output

through a chain. Thus, by requiring the propagation of an infection to distance d on each

chain from the change, the technique aims at increasing, with respect to a coverage-based

approach, the probability that the infection will keep propagating beyond that distance and

eventually affect the output. The emphasis on propagation is the reason why we classify

this technique as propagation-based.

Figure 12 provides an intuitive view of the way the technique works. The goal is to

create requirements for the difference-revealing subset of all possible test cases, which are

the test cases that produce an observably-different behavior in the original and modified

programs. This subset is first approximated by test cases that just cover the change (i.e.,

criterion STMT in Section 5.1). From that point, the ideal subset is increasingly better

approximated by subsets that satisfy the chain and state requirements for each distance

because, as the distance increases, the test suites that satisfy those requirements restrict

more and more the test cases that can possibly propagate an infection to the output. For

each distance d, the requirements subsume BR and DU (Section 5.1) within that distance.

69

difference
revealing

universe of
all possible
test cases

test cases for
chain and state
requirements
and different
distances d=1

d=2
...

test cases
for simple
change
coverage

Figure 12: Intuitive view of proposed testing criteria for evolving software.

5.2.2 Technique

This section presents and illustrates in detail the propagation-based technique for analyzing

and testing changes individually. Section 5.2.2.1 presents Phase 1, while Section 5.2.2.2

presents Phase 2.

5.2.2.1 Phase 1: Chain Requirements

A simple strategy for testing a change is STMT—cover all changed statements. However,

as shown in Section 5.1, this strategy often fails to guarantee that all possible effects of the

change on different parts of the program are tested. Consider, for example, program E in

Figure 13 and change ch1. Let E1 be this modified version. This program has 10×10=100

test inputs. Examining the code in Figure 13 reveals that the change produces a different

observable behavior in E1 (i.e., a different output with respect to E) if and only if y ∈ [2, 3],

which corresponds to 20 inputs, or 20% of the input space. Hence, randomly picking an

input that covers the change has a rather small chance of causing a difference.

In many cases, an adequate test suite for the simple change-coverage strategy exercises

only a small fraction of all dependence chains along which a change may propagate. Be-

cause the effects of a change can propagate forward along any of the chains starting from

the change, an adequate testing strategy should require the coverage of all such chains.

70

program E(int x, y) // x,y ∈ [1,10]
1. if (x <= 2) // ch1: if (x > 2)

2. ++y

3. else

4. --y

5. // ch2: y *= 2

6. if (y > 2)

7. print 1

8. else

9. print 0

(a)

T

2 4

ENTRY

F

1

T

7 9

F

6

EXIT

(b)

2 4

ENTRY 1

T

6

F

START

7 9

T F

y

y

T T T

control dependence

data dependence

(c)

Figure 13: Example program E with two changes (a), its CFG (b), and its PDG (c).

Table 8: Dependence chains in program E and change ch1 from Figure 13.

distance chains inputs differences

1 q1,1 = <1, (1, 2)> 80 16
q1,2 = <1, (1, 4)> 20 4

2 q2,1 = <1, (1, 2), (2, 6, y)> 80 16
q2,1 = <1, (1, 4), (4, 6, y)> 20 4

3

q3,1 = <1, (1, 2), (2, 6, y), (6, 7)> 72 16
q3,2 = <1, (1, 2), (2, 6, y), (6, 9)> 8 0
q3,3 = <1, (1, 4), (4, 6, y), (6, 7)> 14 0
q3,4 = <1, (1, 4), (4, 6, y), (6, 9)> 6 4

Table 8 shows all dependence chains reaching distances 1, 2, and 3 from the change (State-

ment 1) in programs E and E1—the chains of lengths 1, 2, and 3, respectively. A chain qn,i

corresponds to the ith chain of length n. For each chain, columns inputs and differences

show the number of inputs that cover the chain and the number of covering inputs that also

reveal a difference in the output.

Consider the requirement of propagating the effects of the change along all chains of

length one (i.e., along direct dependences) from this change. Two control dependences

must be tested: (1, 2) and (1, 4). Table 8 shows that, for (1, 2), there are 80 covering

inputs, 16 of which reveal a difference. For (1, 4), there are 20 possible inputs, four of

71

which reveal a difference. Each chain has a probability of 20% of revealing a difference. A

test suite T that covers all dependencies from the change in this example has thus a 36%2

chance of revealing a difference. Therefore, covering all chains of length one increases the

probability of difference detection from 20% to 36% with respect to simply covering the

change.

Consider now dependence chains of length greater than one. The number of chains

can grow exponentially with their length, but in practice it is possible to cover chains of a

limited length. In the case of change ch1, there are four chains of length 3 reaching output

statements 7 and 9. Two of these chains can reveal a difference, as Table 8 shows: q3,1,

which is covered by 72 inputs, revealing a difference in 16 cases (22.2%), and chain q3,4,

which is covered by six inputs, revealing a difference in four cases (66.7%). A test suite

that covers all chains of length 3 would thus reveal a difference with probability 74.1%.

A random test suite of size 4, in comparison, has a 59% chance of revealing a difference.

This example shows that longer chains can improve the chances of revealing a different

behavior after a change, compared to shorter chains or simple change coverage (i.e., chains

of length 0) by requiring a well-distributed coverage of propagation paths from the change.

Figure 14 presents algorithm COMPUTEREQS, which computes the testing require-

ments for a set of changes. COMPUTEREQS is a practical variant of procedure COM-

PUTEEFFECTS (see Figure 6 in Section 3.2) for computing the effects of changes. Like

COMPUTEEFFECTS, COMPUTEREQS inputs program P and change C. COMPUTEREQS,

however, also inputs two parameters, d for the maximum distance (length) for the chains

starting at the change and l for the maximum path length. These parameters are used to

guarantee termination in a reasonable amount of time. Distance d is the maximum length of

the dependence chains, as explained in Section 5.2.1. Limit l is discussed in Section 5.2.2.2.

2The probability of T revealing a difference is 1−
∏

t∈T (1− pt), where pt is the probability of test case
t revealing a difference.

72

Algorithm COMPUTEREQS

Inputs: P : program; C: change; d: distance limit; l: path length limit
Output: requirements: map program→ dependence chain→ conditions

(1) P ′ := applyChange (P , C)
(2) foreach program ∈ { P , P ′ }
(3) altProgram := P ′ if program is P ; P otherwise
(4) chainWorklist := createEmptyChains (program, change)
(5) foreach emptyChain ∈ chainWorklist
(6) requirements[program][emptyChain] := ∅
(7) endfor

// incremental computation of conditions
(8) while chainWorklist 6= ∅
(9) prefixChain := pop (chainWorklist)
(10) foreach dep ∈ nextDependencies (program, prefixChain)
(11) chain := append (prefixChain, dep)

// chain requirements
(12) depCond := dep if isRealizable (program, prefixChain, dep) ; false otherwise
(13) chainCond := requirements[program][prefixChain] ∧ depCond

// state requirements
(14) (S, Salt) := PSE Dep Limit (program, altProgram, dep, l)
(15) stateCond := live(S) 6= live(Salt) ∨ (pc(S) ∧ ¬ pc(Salt))

(16) requirements[program][chain] := chainCond ∧ stateCond
(17) if length (chain) < d
(18) push (chainWorklist, chain)
(19) endif
(20) endfor
(21) endwhile
(22) endfor
(23) return requirements

Figure 14: The algorithm for computing chain and state testing requirements.

The computation of chain requirements in COMPUTEREQS is identical to the com-

putation of chain conditions in COMPUTEEFFECTS except for two differences. The first

difference is that, at Line 6, the conditions for reaching the change are empty—these con-

ditions are omitted for the reasons given in Section 5.2.1. The second difference is that,

at Lines 17–19, the extended chain is added to the work list only if its length has not yet

reached distance d.

In the rest of this dissertation, we use CHAIN to represent the strategy of satisfying

chain requirements during testing.

73

5.2.2.2 Phase 2: State Requirements

Chain requirements can increase the probability of finding output differences, but they

cannot guarantee that the effects of the change propagate to the end of each chain. For

example, for program E and change ch1 in Figure 13, Table 8 shows that only 16 out of 72

inputs (22%) that cover chain q3,1 reveal a difference in the output. The reason is that the

program state after covering chain q3,1 and reaching Statement 7 in E might be the same

as the state at Statement 7 in E1 for the same input. Hence, to guarantee propagation of

the infection to the end point of each chain—thus increasing the chances that the infection

will keep propagating after that point and reach the output—algorithm COMPUTEREQS

computes state requirements for each of the chains.

Like procedure COMPUTEEFFECTS, algorithm COMPUTEREQS performs partial sym-

bolic execution (PSE) (Definition 23) on each dependence to obtain the state conditions

for Cases 1 and 2 (Section 3.2.2) in which P and P ′ can differ: some live variable differs

or the path conditions differ. These two state requirements for a chain reduce the space of

test cases covering the chain to those that propagate an infection to the end of the chain,

thus increasing the chances of propagating the infection to the output. However, unlike

COMPUTEEFFECTS, COMPUTEREQS uses at Line 14 a modified version of PSE that takes

into account the limit l provided as input.

In COMPUTEREQS, PSE stops analyzing a control-flow path that covers a dependence

when this path reaches length l, thus avoiding the costly analysis of paths that are too

long—perhaps infinitely long. When PSE stops analyzing a path, it stops adding terms

to the conjunction that is the path condition for that path. In that case, the incomplete

path condition might be satisfied even though, in reality, the path might not be covered

because some condition after the lth node in the path is not satisfied. Similarly, if a variable

v is updated in a path after the limit l for that path is reached, the value v is considered

unknown—it can have any value. In such a case, whether v differs in the original and

modified programs cannot be determined (unless v does not exist in one of the programs).

74

To illustrate, consider again Figure 13. Using symbolic execution, the technique de-

fines the state of E1 at the change point as {x = x0, y = y0}. After following chain q3,1,

the symbolic state in E1 is {x = x0, y = y0 + 1}, and the path condition for this chain is

x0 > 2 ∧ y0 > 1. In the example, both x and y are dead at Statement 7, so the live states are

the same in E1 and E, that is, Case 1 for q3,1 is not satisfied. However, the path condition in

E for all paths to Statement 7 is (x0 ≤ 2 ∧ y0 > 1) ∨ (x0 > 2 ∧ y0 > 3), so Case 2 for q3,1

(pc(S ′) ∧¬pc(S)) is satisfied by x0 > 2 and y0 ∈ [2, 3]. Condition 2 reduces the number of

test cases that cover the chain from 72 to 16, which are exactly those revealing a difference.

Constraining the other difference-revealing chain, q3,4, also yields a 100% detection.

In the rest of this dissertation, we use PROP to represent the strategy of satisfying

CHAIN (chain requirements) and the state requirements for each such chain during test-

ing.

5.3 Implementation of Propagation-based Technique

To support our evaluation of the new propagation-based testing requirements, we imple-

mented COMPUTEREQS in Java as part of a tool called MATRIXRELOADED3 that uses

DUA-FORENSICS [93] and Soot [91,106] to analyze and instrument software in Java byte-

code format. MATRIXRELOADED consists of two main parts: (1) a program analyzer that

implements algorithm COMPUTEREQS (Figure 14) to identify test-suite augmentation re-

quirements, and (2) a monitoring component that instruments the original and modified

programs and monitors at runtime the coverage of the augmentation requirements.

MATRIXRELOADED reuses the extension of DUA-FORENSICS, described in Section

5.1.1, to identify chains of control and data dependences from any point in the program.

The other key component of MATRIXRELOADED is a symbolic-execution engine that

3In Reference [6], we presented and used an earlier and partial implementation that we called MATRIX.

75

supports partial symbolic execution (PSE), which systematically explores all paths be-

tween a pair of arbitrary points in the program. The symbolic states computed by MA-

TRIXRELOADED are expressed in terms of the symbolic values of live variables at the entry

of the starting point. In the implementation for this study, the symbolic executor visits each

statement at most twice and replaces the Java libraries with models (i.e., approximations)

of their effects on the symbolic state. To improve the efficiency of the symbolic executor,

the implementation leverages lazy-initialization [108].

5.4 Evaluation of Propagation-based Technique

In this section, we evaluate our propagation-based testing technique of Section 5.2 and

compare it with the existing coverage-based approaches described in Section 5.1. To that

end, we present two empirical studies in this section. The first study, in Section 5.4.1, uses

TRADSE (traditional symbolic execution) to compute propagation-based requirements.

The second study, in Section 5.4.2, evaluates the improvements achieved by replacing

TRADSE with SPD (Chapter 4) for computing propagation-based testing requirements.

Finally, in Section 5.4.3, we discuss the threats to the validity of these studies.

5.4.1 Study using Traditional Symbolic Execution

The goals of this first study are to assess the ability for detecting output differences of using

the propagation-based testing requirements produced by algorithm COMPUTEREQS (Sec-

tion 5.2) and to compare the abilities of these requirements and the requirements defined

by existing coverage-based approaches for testing changes.

5.4.1.1 Empirical Setup

For this study, we used the same two subjects and the same test cases and changes utilized

for the evaluation of existing change-testing techniques in Section 5.1. These subjects,

listed in Table 5, correspond to software of different nature and complexity. Tcas is rep-

resentative of modules with straightforward logic that can be found in avionics systems

76

and other industrial domains. NanoXML, in contrast, represents more complex, object-

oriented software that relies on Java libraries. The pools of test cases for these subjects

can be considered as representative of the test cases that testers create in practice because

they are large and they cover—often with redundancy—the space of program behaviors

comprehensively.

We ran our toolset on an Intel Core Duo 2 GHz machine with 1 GB RAM. Because

our technique focuses on changes and their effects at a certain distance, the scalability of

the approach in this machine or any other environment is affected by the complexity of the

subject rather than its size.

Similar to the study of existing techniques in Section 5.1, for each change in this study,

we created 100 different test suites for each of our propagation-based strategies. We studied

not only PROP, but also CHAIN to help us assess the extent to which each of the two com-

ponents of PROP—CHAIN and the state requirements for each chain in CHAIN—contribute

to the effectiveness of the whole technique. To measure the ability of each strategy to pro-

duce observable differences that reveal the effects of a change to developers, we computed

the percentage of the 100 test suites for that strategy that produced a different output in the

original and modified programs. We compared the difference-detection abilities of these

strategies with the results of the existing coverage-based strategies presented in Section 5.1:

STMT (changed statements), BR (affected branches), and DU (affected du-pairs).

For CHAIN and PROP, we used the greatest distance d that MATRIXRELOADED could

reach for PROP within the memory constraints of the machine used and the path-length limit

l, which was set to 10 branches per path. On the performance side, the tool always took

less than eight minutes to successfully analyze a pair of program versions and generate

requirements. Thus, for the distances within the reach of this tool in this study and this

path-length limit, the time required to generate the testing requirements was not an issue.

77

5.4.1.2 Results and Analysis

The last two columns in Tables 6 and 7 of Section 5.1 present, for Tcas and NanoXML,

respectively, the percentage of the test suites satisfying the CHAIN and PROP requirements

for each change that revealed a difference in the output. These two columns, which corre-

spond to our propagation-based testing requirements, are separated from the columns for

coverage-based criteria by a double line. Aside from the results presented in these tables,

the average for all changes in Tcas of the maximum size of the test suites satisfying the

PROP requirements was 5.8 test cases, whereas the average of that maximum size for the

changes in NanoXML was 2.4 test cases.

For all changes in Tcas, Table 6 shows that the effectiveness of existing coverage-based

criteria is low—between 0.7% and 47.3%, and below 16% in all but one case. In con-

trast, the propagation-based strategy PROP always showed a higher detection rate—in most

cases, by a considerable amount. Some of the improvements are due to the chain require-

ments (CHAIN) alone, such as for Change 4. In other cases, such as for Changes 1, 2,

and 6, the improvements observed are due to the addition of state requirements to chain

requirements (i.e., PROP). However, there are cases in which, despite the improvements,

detection rates remain low (e.g., Changes 3 and 5) after applying the new technique. For

those cases, we hypothesize that the distances reached are not sufficient to provide accept-

able confidence of propagation of the infection to the output and that greater distances,

which require enhanced algorithmic and implementation support, are necessary. The study

of the effect of SPD on PROP in Section 5.4.2 and the alternative approach of Chapter 6

provide important insights on the benefits of greater distances.

For NanoXML, our technique shows an improvement in detection with respect to sim-

pler criteria for three out of the seven “interesting” changes listed in Table 7: Changes 4,

8, and 9. BR and DU, which are subsumed by CHAIN, sufficed for Changes 1 and 3 to

improve on simple change coverage (i.e., STMT) although for Change 3 the detection rate

78

was still low. Meanwhile, STMT showed the same effectiveness as the other strategies—

coverage-based and propagation-based—for the remaining Changes 2 and 7. To understand

this last result, we manually inspected the code and found that, in both cases, (1) the in-

fected states can reach an output, (2) the dependence chains from the changes to the output

are longer than the maximum distance MATRIXRELOADED could analyze, and (3) the ex-

isting test cases that satisfy the new requirements do not always propagate the infected

part of the state to the output. In other words, PROP pushed the infected state up to the

longest distance reached by the tool, often achieving propagation to the end, but could not

guarantee that the output itself would be infected.

The improvements achieved by propagation-based testing for NanoXML, within the

short distances achieved, were not as dramatic as in the case of Tcas. However, there

are important differences between the two subjects that help explain these results. First,

NanoXML makes extensive use of Java strings and containers, and we found that the in-

fected state is often confined to objects of these types. Because MATRIXRELOADED re-

places library objects with approximate models, the tool cannot distinguish within these

libraries some of the details of the real propagation conditions for the changes. Second,

NanoXML uses heap objects and polymorphism, unlike Tcas, therefore imposing a con-

siderably higher burden on symbolic execution due to lazy initialization. These compli-

cations make it harder for the dependence analysis and symbolic execution to operate on

NanoXML than on Tcas, as reflected by the shorter distances reached on NanoXML. Nev-

ertheless, the results for NanoXML, even at short distances, are promising; they suggest

that this new approach can exercise more change-related behaviors in real object-oriented

software, compared to existing change-testing criteria. The results for Tcas are also promis-

ing because they indicate that this technique can be quite effective for detecting differences

in similar modules within larger software.

79

5.4.2 Study using SPD

The goal of this second study is to assess the benefits in difference-detection effectiveness

of using SPD (Chapter 4) as a more efficient technique than TRADSE for multiple-path

symbolic execution in propagation-based testing strategies. Despite the greater effective-

ness of propagation-based strategies over coverage-based strategies observed in our first

study, the limited distances achieved in that study motivate the use of a more cost-effective

(i.e., more effective for the same amount of time) approach such as SPD.

5.4.2.1 Empirical Setup

For this study, we used the tool JSPD that implements SPD, described in Section 4.3, to

replace the traditional symbolic execution component of MATRIXRELOADED. Thus, JSPD

computed the state requirements for each chain identified by MATRIXRELOADED.

The subjects of this second study are eight changes: four in Tcas and four in release v1

of NanoXML. These are the first four changes available for each of these subjects in the

SIR repository. For Tcas and NanoXML, there are 1608 and 214 test cases, respectively.

We ran this experiment on the same machine and environment of our path-space reduction

study of Section 4.4. For each technique, change, and propagation-path length, we set a

limit of one hour for running JSPD. In almost all cases, JSPD either finished within 30

minutes or had to be stopped after reaching the one-hour limit.

In this second study, we measured the relative effectiveness of using two instances of

SPD with respect to TRADSE for computing test-suite augmentation conditions for differ-

ent changes and for different lengths of the paths from these changes. The two instances

of SPD are SPDprec (i.e., precise SPD, without abstractions) and SPDabs (i.e., SPD with

abstraction level e = 4; see Section 4.3). Specifically, we measured two aspects of effective-

ness. The first aspect is the confidence that the resulting conditions represent good testing

requirements for each change, which we measured by the number of change-propagating

80

Table 9: Propagation paths covered for change testing.

change technique control-flow propagation paths covered
10s 20s 1m 5m 15m 30m

Tcas TRADSE 8 115 374 1184 1184 1184
1 SPDprec 1184 1184 1184 1184 1184 1184
Tcas TRADSE 939 1482 2807 3192 3192 3192
2 SPDprec 3536 4568 4568 4568 4568 4568
Tcas TRADSE 3 4 7 62 290 570
3 SPDprec 4914 13325 13325 13325 13325 13325
Tcas TRADSE 42 70 217 2323 6722 8048
4 SPDprec 8048 8048 8048 8048 8048 8048

NanoXML TRADSE 8 15 38 176 521 581
1 SPDprec 8 220 1268 7558 23282 24985
NanoXML TRADSE 5 329 835 835 835 835
2 SPDprec 6 3800 25263 71903 71903 71903
NanoXML TRADSE 5 177 835 835 835 835
3 SPDprec 5 694 5276 71903 71903 71903
NanoXML TRADSE 2 24 171 182 182 182
4 SPDprec 2 88 670 1144 1144 1144

control-flow paths covered by the analysis.4 The second aspect is the number of output

differences revealed by test suites satisfying those computed conditions.

To minimize the impact of randomness in our results, for each symbolic-execution tech-

nique and propagation-path length, we generated up to 1000 unique test suites—as many as

possible unique test-suites from the available test pool—satisfying the respective require-

ments. For each set of test suites, we computed the average of the number of test-cases

revealing a different output. We generated the test suites randomly from the pool of avail-

able test cases for each subject and change.

4The more of the program is included (even if no new differences are discovered), the more confidence
the tester has that the analysis covers all potential effects of changes.

81

5.4.2.2 Results and Analysis

For every change, path length, and technique, JSPD took a different amount of time to

complete. Thus, to compare the effectiveness of the techniques for the same points in

time (i.e., cost), we constructed for each technique a curve fitting the data points for that

technique. Thus, the effectiveness values presented in this section correspond to points

interpolated from these curves.

Table 9 shows the cost-effectiveness of using SPD for achieving confidence (i.e., cov-

erage of propagation paths) along time with respect to TRADSE. Changes are identified

in the first column by the subject name and a number between 1 and 4. For each change,

there is one row for SPDprec and one for TRADSE;5 each technique is named in the second

column. The remaining columns show the confidence for six points in time—10 and 20

seconds, and 1, 5, 15, and 30 minutes—interpolated from the available data points for each

technique.6 For example, at 1 minute on Change 2 in NanoXML, SPDprec has covered the

equivalent of 25263 control-flow paths, while TRADSE has covered only 835 paths. For

some changes, the number of paths levels off after a certain point in time because data

points beyond that time are not available—the analysis for the chain length either ran out

of memory or did not finish within one hour.

For the first minute, SPDprec is considerably more effective than TRADSE. This trend

continues until the time limit is reached Changes 2 and 3 in Tcas and for all changes in

NanoXML. For Changes 1 and 4 in Tcas, TRADSE catches SPDprec eventually, which is

explained by the limited number of propagation paths from these changes in this subject.

However, for all changes, SPDprec covers either more paths than TRADSE or the same

number of paths in less time. In all, we can conclude that, at least for this set of changes,

SPDprec is more cost-effective at providing confidence than TRADSE by ensuring that more

5SPDabs does not analyze paths with precision, so we omitted it in this table.
6We omitted time points beyond 30 minutes because, as mentioned in Section 5.4.2.1, for all changes,

JSPD terminated either before 30 minutes or after 60 minutes—our time limit.

82

Figure 15: Average increase in difference-detection (in logarithmic scale) with respect to
TRADSE versus analysis time, for all changes in Tcas.

paths that potentially propagate changes are analyzed in less time.

Figures 15 and 16 present a comparison of the average increase in difference-detection

effectiveness (i.e., average number of differences detected by test suites satisfying the com-

puted conditions) achieved by SPDprec and SPDabs with respect to TRADSE along time

for the changes in Tcas and NanoXML, respectively. On each figure, the horizontal axis

represents the analysis time in seconds (in logarithmic scale) and the vertical axis is the

percentage of increase in effectiveness with respect to TRADSE. For Tcas (Figure 15), the

vertical axis is also shown in logarithmic scale to facilitate visualization.

For Change 1 in Tcas and Change 3 in NanoXML (not shown individually in the

graphs), all three techniques had the same effectiveness curves, suggesting that no use-

ful additional conditions were found by SPDprec or SPDabs with respect to TRADSE—only

more confidence was achieved. For all changes in each subject, the average increase in

effectiveness observed in each figure was due to the remaining six changes studied.

For Tcas (Figure 15), both versions of SPD achieved a sharp increase in effectiveness

83

Figure 16: Average increase in difference-detection with respect to TRADSE versus anal-
ysis time, for all changes in NanoXML.

for the first 10 to 60 seconds, which indicates that TRADSE requires more effort to find the

same conditions found by SPD for those times. In the long run, the advantage of SPDprec

over TRADSE in Tcas stabilized at 17%. For Change 3 in Tcas (the details are not shown),

however, SPDabs was less effective than the other techniques after 800 seconds, which

explains the drop of the average for SPDabs in Figure 15 at that point in time. Closely

examining this change and the affected code in Tcas reveals that abstraction prevented

SPDabs from capturing important propagation conditions.

Meanwhile, for NanoXML (Figure 16), SPDabs shows important gains in the long run.

Considering the difficulty of finding propagation conditions beyond the vicinity of changes

in the code—which is covered in the first few minutes by all of the techniques—this result

is particularly encouraging.

In all, the results suggest that SPD without abstractions is the best choice for changes

in straightforward code, such as that of Tcas, while SPD with abstractions—specifically,

SPDabs with e = 4—can capture important information beyond the distances reached by

84

precise analyses and obtain better results for object-oriented programs such as NanoXML.

5.4.3 Threats to Validity

The main internal threat to the validity of our two studies is the potential presence of im-

plementation errors in the different components of MATRIXRELOADED, JSPD, and the

underlying DUA-FORENSICS tool. Potential errors can also exist in our manually-created

models of Java library methods. To minimize this threat, we tested and debugged our tools

to the extent necessary to gain sufficient confidence in them for these studies. This effort

included an extensive use of runtime checks and manual inspection of results.

The main external threat is the representativeness of our subjects—we evaluated two

subjects and a limited number of changes for each of them. To reduce this threat, we chose

two subjects of different coding styles and purposes, and changes on different parts of

these subjects. Nevertheless, more subjects and changes need to be studied to fully assess

the benefits of this technique using either TRADSE or SPD.

5.5 Related Work

An earlier approach that we developed for testing the effects of changes [6] is the work most

closely related to the work in this chapter. Unlike that early work, however, we identified

in the work of this chapter the multiple ways (dependence chains) in which a point in the

program can be affected and we established strong links between our propagation-based

technique and the foundations of change-effects analysis presented in Chapter 3. We also

presented in this chapter, in contrast with that early work, a complete implementation of

our propagation-based approach and more extensive studies, including the assessment of

the benefits of applying the SPD technique of Chapter 4. These studies allowed us to

empirically validate the qualities of our new technique for testing changes.

Several other techniques are related to the analysis of changes and test-suite augmenta-

tion presented in this chapter. These techniques can be classified into three categories.

Techniques in the first category define general testing criteria for software in terms of

85

coverage of program entities, such as statements, branches, and definition-use pairs (e.g.

[45, 67, 74]). These criteria can be adapted, as we did in our studies in this chapter, for

modified software by considering only changed statements or affected data- or control-

dependencies. Our empirical studies in this chapter showed that test suites satisfying our

chain and state requirements have a greater likelihood of revealing different behavior than

those that are based on data- or control-dependence only.

Techniques in the second category correspond to regression testing. The literature on

regression testing is extensive, but most of it focuses on the efficiency of re-running an

existing test suite. A few techniques, however, have been described (but not evaluated) for

identifying and testing the effects of changes. For testing changes, Binkley [17], Rother-

mel and Harrold [87], and Gupta and colleagues [50] present techniques that use slic-

ing [57, 112] to compute testing requirements in the form of individual data- and control-

dependencies that are potentially affected by a change. Finding affected dependencies is

one way of approximating the effects of a change in practice. However, as our studies in

this chapter reveal, this approximation is insufficient for revealing the behavior of a change

in comparison with our propagation-based approach of Section 5.2. The advantages of our

approach can be attributed to the principled approximation of the effects of changes, as

presented in Chapter 3, that includes all the ingredients (dependence chains and state dif-

ferences) that define these effects and uses distance and path-length limits to make their

computation practical.

Techniques in the third category correspond to change-impact analysis (e.g., [20, 21,

68, 76, 83]). Although the main goal of these techniques is to find which parts of the

program might be affected by a change and require further inspection, these techniques, like

the propagation-based approach in this chapter, compute approximations of the effects of

changes to achieve their goal. These techniques, however, suffer the same limitations as the

techniques in the second category because the elements they identify as affected constitute

an incomplete view of how a change affects the behavior of the program. Furthermore,

86

most change-impact analysis techniques use coarse-grained entities such as methods to

represent the potential effects of a change, making them even less precise.

87

CHAPTER VI

DEMAND-DRIVEN TESTING OF CHANGES

In this chapter, we analyze the inherent limits of computing propagation-based testing re-

quirements as presented in Chapter 5 and we formulate an alternative, demand-driven ap-

proach for computing and monitoring these requirements. Section 6.1 discusses those lim-

itations and Section 6.2 presents the demand-driven alternative that addresses those limita-

tions to reach much greater distances and discusses the trade-offs of using this alternative.

Then, Section 6.3 presents our implementation that we use for a comprehensive study of

the new demand-driven approach in Section 6.4 and for case studies of the practicality of

this approach in Section 6.5. Finally, Section 6.6 discusses related work.

6.1 Limitations of Propagation-based Testing Requirements

The distance limit d for the propagation-based strategy of Chapter 5 for testing changes

addresses two problems: (1) the high cost of computing the testing requirements and (2)

the need to present a manageable number of testing requirements to testers. Although the

standard formulation1 of the propagation-based requirements has its benefits—it obtains

the set of all testing requirements within distance d in a way that can be used to automate

the generation of satisfying inputs—this formulation still has two shortcomings:

1. Symbolic execution does not scale well, despite advances for multiple paths [94]

(Chapter 4), compositionality [3], and other optimizations (e.g., [78]). Symbolic

execution is generally intractable due to the path-explosion problem and, thus, the

distances reachable by a propagation-based technique are often insufficient. More-

over, within the distance limits achieved in practice (Section 5.4), for many chains,

1We call standard the technique of Chapter 5 to distinguish it from the demand-driven alternative.

88

some paths that cover these chains cannot be fully analyzed because of their length.

For such paths, the results are an approximation of the actual propagation conditions.

2. Often, a large fraction of the testing requirements identified by the static analysis

of P and P ′ are either infeasible or too difficult to satisfy within a reasonable bud-

get. Thus, many requirements do not get satisfied in practice, and the effort spent in

computing them is wasted.

6.2 Demand-driven Propagation-based Testing Strategies

To circumvent the limitations listed in Section 6.1, we present a new approach for testing

changes using CHAIN and PROP. Instead of computing all testing requirements before-

hand (i.e., statically), the new approach monitors dependence-coverage and state differ-

ences during execution, identifying the satisfaction of testing requirements and extending

each requirement—chain and state conditions—on demand only when necessary. This new

approach preserves the precision of propagation-based testing requirements while avoiding

the cost of symbolic execution and avoiding most of the effort incurred by performing a

full static analysis to find requirements that, later, are not satisfied.

Naturally, using this approach comes at the expense of having the full set of testing

requirements computed a priori. When all requirements are readily available, testers get a

view of all untested affected behaviors, which can support more directly the (semi)automatic

creation or modification of new test cases for unsatisfied requirements. The new approach,

in contrast, provides the set of covered chains and state conditions along with the points in

those chains from which areas of the program with unsatisfied requirements can be reached.

However, the benefits of this new approach can very well justify this trade-off.

The new approach requires only static and dynamic dependence analysis and runtime

state monitoring, in contrast with the technique of Section 5.2, which requires symbolic

execution of all paths that can propagate a change and the enumeration of all dependence

chains within a distance limit. For that reason, the new approach can significantly increase

89

the distances reachable for CHAIN and PROP, as the study in Section 6.4 shows. Also,

this approach removes the burden from the tester of handling a large number of short-

distance requirements and, instead, lets the tester focus on long-distance requirements that

are actually satisfied.

The new approach for propagation-based test-suite augmentation is described by algo-

rithm SATISFYREQSDEMAND in Figure 17. The inputs are the program P , the change C,

a boolean function B that indicates whether the budget allows for more testing, and the

existing test suite TS to be augmented. The first line creates the modified program P ′ by

applying change C to P . Lines 2 and 3 find all control and data dependencies reachable

via any sequence of dependencies that starts at some node in the sub-ICFGs of C (see def-

initions 13 and 14). Lines 4 and 5 instrument these two programs to determine at runtime

the chains of these dependencies covered from the changed nodes and the portion of the

program state that directly affects at runtime each of those dependencies. For a control

dependence, the affecting state is simply the branching decision taken at the source node of

the dependence. For a data dependence, the affecting state is the concrete value assigned

to the variable at the definition.

The algorithm does not enumerate all chains statically. Instead, the algorithm instru-

ments each dependence once such that the coverage of a dependence at runtime is reported

only when the dependence starts at a changed node or when the execution of its source node

is the target at runtime of another dependence dynamically linked to a changed node. The

result of executing each of the instrumented programs is an acyclic directed graph where

the root nodes (i.e., the nodes without predecessors) are occurrences of changed program

statements, the remaining nodes represent occurrences of dependencies, and each edge

(d1, d2) indicates that a changed statement or dependence d1 was immediately followed by

a dependence d2. Thus, the covered dependence chains are the paths in this graph. Also,

each node in this graph except for the root nodes is annotated with the affecting state for

the dependence occurrence associated to that node.

90

Algorithm SATISFYREQSDEMAND

Inputs: P : program; C: change; B: budget function; TS: test suite
Output: TS: test suite; Satisfied: testing requirements

(1) P ′ := applyChange (P , C)
(2) deps := forwardDepChains (P , C)
(3) deps’ := forwardDepChains (P ′, C)
(4) Pins := instrument (P , deps)
(5) P ′

ins := instrument (P ′, deps’)
(6) Satisfied := createEmptyChains (Pins, C) ∪ createEmptyChains (P ′

ins, C)
(7) totalEffort := 0

(8) while B(totalEffort, Satisfied, TS) = true
(9) (t, effortTest) := getNextTest (TS, Pins, P ′

ins, C, Satisfied)
(10) (data, effortEx) := execute (Pins, t)
(11) (data’, effortEx’) := execute (P ′

ins, t)
(12) totalEffort := totalEffort + effortTest + effortEx + effortEx’
(13) addTest := false
(14) foreach prefixChain ∈ Satisfied
(15) foreach dynDep ∈ extendingDeps(prefixChain, data, data’)
(16) chain := append (prefixChain, dynDep)
(17) if chain /∈ Satisfied
(18) Satisfied := Satisfied ∪ chain
(19) addTest := true
(20) endif
(21) if propagates(chain, data, data’)
(22) markProp (chain, Satisfied)
(23) addTest := true
(24) endif
(25) endfor
(26) endfor
(27) TS := TS ∪ (addTest? {t} : ∅)
(28) endwhile
(29) return TS, Satisfied

Figure 17: Algorithm for demand-driven, propagation-based testing of a change.

Line 6 in SATISFYREQSDEMAND initializes the set Satisfied of satisfied testing re-

quirements to “empty” chains at the modified nodes in the instrumented programs—one

chain <n, ()> for each modified node n. Line 7 initializes the counter for the total testing

effort spent in this algorithm.

The main loop of lines 8–28 computes the testing requirements satisfied by the original

91

test suite and by each new test case provided to the algorithm.2 The loop only stops when

function B signals that the budget has been exhausted by returning false, depending on the

effort spent in testing so far, the testing requirements satisfied, or the size of the test suite.

Line 9 obtains the next test case t and the effort involved in obtaining t. In the first |TS|

iterations of the loop, getNextTest returns each of the test cases in TS. In the remaining iter-

ations, getNextTest obtains a new test case from the user or a test-case generator. Each new

test case t is created using the knowledge of the programs, the change, and the requirements

satisfied so far. The concrete mechanism that creates new test cases in getNextTest after the

elements of TS have been processed is determined by the user—each new test case can be

created manually, automatically, or semi-automatically.

Lines 10 and 11 execute the test case on the instrumented versions of the original

and modified programs, respectively, and returns the runtime data—the annotated acyclic

graphs of dependencies linked to the change—collected by the instrumentation and the ef-

fort spent executing the test case and collecting this data. Line 12 adds these runtime efforts

and the test-case creation effort to the effort counter.

The rest of the main loop determines what new testing requirements (CHAIN and PROP)

are satisfied by t and whether t is added to the test suite. Line 13 initializes a flag to false

to assume at first that t should not be added to TS. Then, the loop at lines 14–26 and its

nested loop at lines 15–25 identify, for every chain in Satisfied (called “prefix” chain), all

dependencies in t that extend that prefix chain.3 For each such dependence, Line 16 creates

the extended chain. Lines 17–20 add the extended chain to the set Satisfied if not already

in that set (thus satisfying a new CHAIN requirement) and lines 21–24 mark that chain in

Satisfied as propagated4 if the differences in runtime data indicates so (thus satisfying a

2Test cases at this point need only include the scaffolding and input data to run the program. The creation
of oracles for these test cases can be deferred until the test cases are accepted for addition to the test suite.

3A dependence d extends a chain c if the source node of d is the end node of c and d is covered immediately
after the chain is covered.

4A chain c covered in an execution is marked as propagated if, for each dependence d in the chain, the
affecting program state at the source node of d differs between data and data’.

92

new PROP requirement). In either case, the flag for adding t to the test suite is set because

t satisfies at least one new chain or state requirement.

Finally, Line 27 adds t to the test suite TS if the flag is set, thus augmenting TS. Note

that, for the first |TS| test cases, TS does not change because each t is already in TS. The

purpose of the first |TS| iterations of the main loop is simply to populate Satisfied with all

testing requirements satisfied by the existing test suite before new test cases are created and

to determine whether those new test cases must be added to TS.

6.3 Implementation of Demand-driven Strategies

To support the evaluation of coverage-based and propagation-based strategies in a demand-

driven fashion, we reused the DUA-FORENSICS system for dependence analysis and mon-

itoring [93], which is based on the Soot Analysis Framework [91] and analyzes Java-

bytecode programs. Strategies STMT, BR, and DU (defined in Section 5.1) are already

implemented in DUA-FORENSICS. However, because there is no longer a unique distance

limit in the demand-driven approach, we removed the restrictions to the distances from the

change at which branches and du-pairs are reported covered (i.e., we used the full versions

of BR and DU). Affected branches and du-pairs are reported as covered only if they are

executed after the change has executed.

For the demand-driven CHAIN and PROP strategies described in Section 6.2, we ex-

tended the dynamic dependence analyzer provided by DUA-FORENSICS to identify not

only which entities (i.e., statements and dependencies) are covered after a change but also

which dependencies precede which other dependencies. This ability to track sequences

of dependencies lets DUA-FORENSICS precisely monitor the dependence chains within

each dynamic slice. In addition, for the PROP strategy, we extended DUA-FORENSICS to

identify state modifications performed by each statement in a dependence chain.

93

6.4 Comprehensive Study of Demand-driven Strategies

The goal of this section is to provide a comprehensive study of the demand-driven ap-

proach for propagation-based testing of changes. More concretely, the goals of this study

are (1) to evaluate in detail the cost-effectiveness of the demand-driven approach for de-

tecting differences, which is made possible by the characteristics of this approach, (2) to

use this approach to compare propagation-based strategies and coverage-based strategies to

a greater extent than it was possible with the approach of Section 5.2, and (3) to determine

in which situations the strategies work best. This study uses pools of existing test cases to

represent the test inputs that testers would create during testing.

Section 6.4.1 describes the empirical setup for the study. Then, Section 6.4.2 presents

and analyzes the results of this study. Finally, Section 6.4.3 addresses threats to the validity

of our study and discusses mitigating factors for those threats.

6.4.1 Empirical Setup

To perform this study, we ran our tool (Section 6.3) on a machine with two quad-core Intel

Core i7 CPUs and 12 GB RAM running Red Hat 6 Linux and the Oracle (formerly Sun)

Hotspot 6 Java Virtual Machine.

Next, we present the subjects used in this study, our definitions of metrics of effective-

ness, the concrete research questions for our study goals, and the method used to address

those questions.

6.4.1.1 Subjects

For our study, we considered Java subjects for which a large number of test cases are

available. Therefore, we selected a number of subjects from the Siemens suite [60] that we

translated from C to Java.5 These subjects are listed in Table 10 where the columns show,

respectively, the name of the subject, a short description, the size in lines of code (LOC), the

5From the Siemens suite, we omitted Tcas to give priority to more complex subjects in this suite that can
be analyzed efficiently using the demand-driven approach.

94

Table 10: Subjects, test cases, and changes for study of demand-driven testing of changes.
subject description LOC test cases changes
Tot info information measure 283 1052 8
Schedule1 priority scheduler 290 2650 8
Schedule2 priority scheduler 317 2710 8
Print tokens lexical analyzer 478 4130 9
Print tokens2 lexical analyzer 410 4115 10
NanoXML v1 XML parser 3497 214 7
NanoXML v2 XML parser 4009 214 6
NanoXML v3 XML parser 4608 216 7

total changes: 62

number of test cases available, and the number of changes studied. The pools of test cases

provided with these subjects are very large and comprehensive enough to consider each test

case selected from that pool as representative of the test cases that developers would create

in practice. The Siemens subjects can be seen as representative of small programs as well

as modules within larger programs.

We also studied three releases of NanoXML, an XML parser used in many applications

and whose coding style and complexity make it representative of object-oriented programs.

We obtained these releases of NanoXML from the SIR repository [36].

The changes listed in the last column of Table 10 were introduced by other researchers

for their own studies. These changes were provided along with the test cases and subjects

by the Siemens researchers [60] (the first five subjects) and by the maintainers of the SIR

repository [36] (for NanoXML). In total, we studied 62 changes in eight subjects.

6.4.1.2 Metrics

In this study, we measured of the effectiveness of a test suite by its difference-detection

ability—the number of test cases whose outputs in the original and modified versions of

the program differ. The intuition behind this metric is that the more differences caused by

the change the developer observes, the more information the developer has to either detect

an error or gain confidence that the change is correct. Multiple differences are likely the

95

result of different aspects of the change because each test case satisfies a different set of

requirements—requirements are designed to exercise different effects of the change.

Our measure of cost-effectiveness, or quality, of the test suite was the ratio of its

difference-detection to the size of the test suite, which we call ds-ratio. The greater the

ds-ratio, the better the strategy that created the test suite is at sampling and discriminating

test cases that can cause differences. The maximum possible value of a ds-ratio is 1.0,

which corresponds to the case in which all test cases in the test suite detect a difference.

To support our analysis of the factors affecting the effectiveness of each strategy, we de-

fined the detectability of a change as the ds-ratio for STMT on that change. The detectability

of a change is thus the estimated probability that a test case that covers the change also re-

veals a difference in the output. The lower the detectability of a change, the less likely it is

that a test case reveals a difference for that change and, thus, the greater is the difficulty of

testing that change successfully.

Also, to enable the classification of changes in our study according to the difficulty

of their testing, we defined the detectability limit of a set of changes as the maximum

detectability of all changes in the set.

6.4.1.3 Research Questions

To achieve the goals of our study, we identified four research questions:

RQ1: How cost-effective are propagation-based strategies with respect to ex-

isting techniques for testing changes?

RQ2: How much statistical confidence is there in the cost-effectiveness mea-

sured for each strategy?

RQ3: How do these strategies perform on changes that are difficult to test?

(i.e., changes for which a good strategy is most needed)

RQ4: What are the computational costs of using propagation-based strategies?

96

6.4.1.4 Method

For this study, we designated STMT as our baseline strategy because we consider any strat-

egy that is less effective than randomly exercising a change (i.e., creating tests that just

cover the change without any other goal) to be useless. To evaluate each of the strate-

gies BR, DU, CHAIN, and PROP, for each change in each subject, we used the following

method:

1. For each test case in the pool available for that subject, perform on the original and

modified programs (P and P ′) the analysis and monitoring of the testing require-

ments satisfied by that test case.

2. Using this information, construct 1000 different test suites (or as many such test

suites as exist) by selecting from the pool at random, without replacement, one test

case t at a time until all requirements that the pool can satisfy are satisfied. For

CHAIN and PROP, use the demand-driven approach of Section 6.2 with a budget

function B that terminates when all test cases in the pool have been executed.

3. Compute and record the average difference-detection (i.e., number of test cases that

reveal an output difference), average size, and average ds-ratio of all test suites.

These are the three kinds of data used in our empirical analysis.

For simplicity and accuracy, in the case of STMT, instead of performing this three-step

process, we analytically computed the ds-ratio for each change by dividing the number of

test cases in the pool that produce a different output between P and P ′ by the number of test

cases in that same pool that cover the change. This value represents the minimum ds-ratio

that any useful strategy should achieve for testing a change. Thus, the real benefit of using

a strategy on a change corresponds to the increase in ds-ratio achieved by that strategy with

respect to the ds-ratio for randomly testing that change.

By focusing our comparison of different strategies on the ds-ratios they achieve (or the

differences in ds-ratios with respect to STMT) for each change, we can assess the relative

97

ability of the compared strategies for finding each new difference. Because, in practice, not

all testing requirements can be satisfied within a reasonable budget (especially for changes),

the key question for the testers is: “Given a testing-effort budget B, how many differences

can we detect within this budget by using a given strategy?”. The answer is the product of

the ds-ratio for the strategy and the number of test cases that can be added to the test suite

within budget B using that strategy.

6.4.2 Results and Analysis

For CHAIN and PROP, we experimented with all distances (values of d) that our implemen-

tation was capable of analyzing for each change, which in some cases reached dozens of

dependencies from the change. However, to compute overall results per distance, we used

as maximum value for d the shortest distance reached for all studied changes, which in our

experiments was 10. Considering that the number of dependence chains can grow exponen-

tially with the distance, this is a significant improvement over the original formulation of

propagation-based strategies, which could reach distances of only about four dependencies

in similar subjects [6, 92, 94].

In the rest of this section, we address our research questions.

6.4.2.1 RQ1: Cost-effectiveness of Strategies

Table 11 presents the average results for all strategies. In this table, the header row for each

column except the first denotes the strategy, including all distances for CHAIN and PROP

(sub-columns d1 to d10, respectively) as well as a sub-column for the average results for all

10 distances for each of these strategies (sub-columns avg). The table shows three results

for each strategy—one result per row—which are (1) the average number of differences

for all test suites created for all changes using that strategy, (2) the average size of the test

suites for all changes in that strategy, and (3) the average of the ds-ratios (differences-to-

size ratios) for the test suites for all changes in that strategy. For example, for strategy DU,

for all changes and all test suites created for each change using this strategy, the average

98

Table 11: Average number of differences, test-suite sizes, and ds-ratios per testing strategy
for all changes.

metric STMT BR DU CHAIN
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 avg

diff. 0.32 1.67 4.57 0.45 0.51 0.71 1.04 1.53 2.24 3.20 4.53 6.34 8.41 2.90
size 1.00 7.90 40.1 1.26 2.05 3.06 4.88 10.65 17.82 24.24 34.04 39.56 51.21 18.88
ds-ratio 0.32 0.32 0.35 0.38 0.38 0.40 0.40 0.40 0.41 0.41 0.40 0.40 0.40 0.40

metric PROP
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 avg

diff. 0.89 1.33 2.20 3.15 4.38 5.81 7.34 9.32 11.84 14.93 6.12
size 2.15 3.54 5.59 8.44 15.19 23.50 31.24 42.53 49.61 63.11 24.49
ds-ratio 0.48 0.50 0.52 0.53 0.52 0.52 0.50 0.50 0.49 0.48 0.50

number of differences detected in the output per test suite was 4.57, the average test-suite

size was 40.1 test cases, and the average ds-ratio per test suite was 0.35. Note that, because

0.35 is the result of averaging the ds-ratios, it is not the same as the result of dividing

the average number of differences per test suite by the average size of the test suites—the

average of the ratios is not the same as the ratio of the averages. We regarded the ds-ratio

as a unique quality of each test suite, and we reported its average value separately because

this ratio represents the cost-effectiveness of a strategy.

The results in Table 11 for column STMT reflect that, indeed, every change in our study

required only one test case to cover it (i.e., any test reaching a changed statement would

cover all changed statements). This result is a direct consequence of the relatively small size

of each change—a few lines of code, at most. The ds-ratios for STMT, which correspond

to the detectability of the changes, ranged from 0.001 to 1.0, with an average of 0.32. In

other words, for every 100 test cases, on average for all changes, 32 of them cause an

output difference. Our results per individual change, however, indicate that there is a large

diversity in this ratio. For instance, the standard deviation for detectability is 0.39. In fact,

Table 13 (described later for RQ3) reveals that 14 changes have a detectability of 0.8 or

more whereas nine changes have a detectability of 0.1 or less. Therefore, any interpretation

99

of these results must consider the large diversity in the behavior of these changes.

For BR, somewhat surprisingly, the average ds-ratio was indistinguishable from that for

STMT, whereas for DU this ratio was only barely greater than for STMT and BR. Despite

results in the literature for the Siemens subjects showing that the whole-program counter-

parts of BR and, especially, DU, perform better than random testing [60], these two strate-

gies were barely useful in our study for the parts of the program affected by each change.

This result can be explained by the relatively low coverage attained for BR and DU in these

subjects, which ranged between 50–90% and was lower than for whole-program testing (as

reported in Reference [60]), which often reached 100% for the same subjects. These lower

coverage levels for BR and DU were expected because the difficulty of covering all affected

branches and du-pairs after executing the change is usually greater than simply covering

those branches and du-pairs without constraints.

It is worth noting, however, that for whole-program testing in the Siemens subjects, the

effectiveness of branch and du-pair coverage is unequivocally better than random testing

only at coverage levels of 93–100% [60], which are higher than the coverage levels we

achieved for BR and DU using the same test pools. Thus, it remains to be seen whether

a spike in cost-effectiveness can be observed when reaching a coverage near 100% for

BR and DU (and, for that matter, for our propagation-based strategies). Achieving such a

coverage, however, appears unrealistic because of the added constraint of having to execute

the change before each testing requirement. Because of that constraint, we also expect that

a larger proportion of the testing requirements is infeasible for change testing than for

whole-program testing.

Another interesting result is the much greater number (on average) of differences de-

tected and test-suite sizes for DU than for BR and STMT. These numbers indicate that DU

is much more expensive to satisfy but also suggest that DU provides a greater effectiveness

in total number of differences found. This effectiveness, however, is achieved at only a

slightly greater ds-ratio (a measure of cost-effectiveness) than for BR and STMT. Thus, for

100

0

2

4

6

8

10

12

14

16

d
if

fe
r
e

n
c
e

s
 f

o
u

n
d

Figure 18: Average differences found by each strategy.

a testing budget that contemplates the creation of only a few test cases, DU is not a much

better alternative than BR and STMT.

Table 11 shows, for our propagation-based strategies CHAIN and PROP at every dis-

tance and also on average for all distances, that the ds-ratios were better than for STMT,

BR, and DU—much better in the case of PROP. CHAIN consistently achieved a ds-ratio

of around .40 while finding an increasing number of differences as the distance increased.

At distance 8, CHAIN already found almost as many differences on average as DU while

requiring fewer tests than DU. At distances 9 and 10, CHAIN found more differences than

DU. PROP, however, performed best of all strategies for all distances with a ds-ratio be-

tween .48–.53. The results also show that, on average, PROP detected more differences

than DU starting at distance 6. Furthermore, for that same distance, PROP detects more

than twice the number of differences than CHAIN detects. These results highlight the im-

portance of our new approach for reaching longer distances in propagation-based strategies

and exhibiting a greater effectiveness than coverage-based approaches.

Figures 18 and 19 provide a view, on average for all changes, of the effectiveness of

101

0

0.1

0.2

0.3

0.4

0.5

0.6

d
if

fe
re

n
ce

:s
iz

e
ra

ti
o

s
(d

s-
ra

ti
o

s)

Figure 19: Average ratio of differences found to test-suite size (ds-ratio) per strategy.

our propagation-based strategies per distance and relative to the test-suite size (i.e., the ds-

ratio), respectively, with respect to coverage-based strategies. The bar graph in Figure 18

shows the average number of differences found (vertical axis) for each strategy (horizontal

axis) including all distances for CHAIN and PROP. The number of differences represents

the effectiveness of a strategy, regardless of its cost in number of test cases. This figure

provides a visual description of the magnitude of the differences in effectiveness among all

the strategies that we studied. In particular, the graph highlights that BR is more effective

(i.e., finds more differences) than STMT, DU is much more effective than BR and STMT—

finding more than four differences on average—and that the propagation-based strategies,

CHAIN and PROP, become much more effective as the distance increases and this effective-

ness largely surpasses that of coverage-based strategies for distances greater than or equal

to 9 and 6 for CHAIN and PROP, respectively.

The bar graph in Figure 19 provides a visual comparison of the cost-effectiveness (i.e.

the effectiveness per each unit of cost, which is one test case) (vertical axis) of the strategies

102

studied (horizontal axis) as the average ds-ratio for all 62 changes. This graph shows not

only that BR is not more cost-effective than STMT, but also that the improvement of DU

over STMT is quite small. In contrast, CHAIN has a consistently greater cost-effectiveness

on average than those other strategies, although the difference is not extraordinary, and that

PROP is considerably better than all other strategies, including CHAIN, for all distances.

An interesting aspect observable in this graph is that the cost-effectiveness of PROP spikes

slightly at distance 4 before falling back at distances 9 and 10 to the levels achieved in the

first two distances. This spike in cost-effectiveness, although not considerably higher than

the average for all distances, suggests that the best distribution of the test cases created for

any studied distance is not necessarily achieved at large distances such as 10. After all,

despite finding more differences when the distance increases, it is not surprising that the

ds-ratios for PROP and CHAIN stay relatively constant. The reason for this constancy in

the ds-ratios is that the design goal of propagation-based strategies is to distribute well the

test cases over the behavior space of the change for each distance and that this distribution

should find a proportionally similar number of differences at different distances. We expect

that the ds-ratios begin to approach 1.0 only when the distance limit gets close enough to

the output statements, which was not the case for most changes in our studies. In general,

however, it is unrealistic to expect that testers will achieve distances long enough to reach

the output statements because those distances would be very large (much larger than 10

dependencies). As our results show, at least up to distance 10, the number of test cases

needed grows considerably with the distance. Therefore, to reach the output, testers would

have to create hundreds, if not thousands, of test cases for each change to guarantee a

ds-ratio of 1.0.

In summary, for RQ1, we can conclude that, based on the changes and subjects used in

this study:

• PROP produces, overall, considerably higher-quality test suites than the other strate-

gies. In other words, PROP discriminates and distributes test cases over the behavior

103

Table 12: Statistical confidence of ds-ratio superiority of strategies versus each other.

strategy CHAIN PROP
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 avg d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 avg

vs STMT × × † † † ‡ ‡ † † † † X X X X X X X X X X X
vs BR × × × × × × × × × × × ‡ X X X X X X X X X X
vs DU × × × × × × × × × × × ‡ X X X X X X ‡ ‡ ‡ X

vs CHAIN (average of all distances): ‡ X X X X X X X X X X

space of changes better than the alternatives. PROP also finds more differences than

DU and the other strategies at distances 6 and greater.

• CHAIN provides, overall, a less cost-effective but potentially simpler alternative of

greater quality than coverage-based strategies.

• The longer distances achieved for propagation-based strategies using our new ap-

proach allow this kind of strategies to be more effective, in number of differences

detected, than DU or BR. The flexibility that the tester has in choosing a distance,

and even increasing it later, also give the tester more opportunities to achieve the

desired results as well as operate within a testing budget.

• DU and BR are virtually indistinguishable from STMT in the average quality (ds-

ratio) of the test suites it produces for the coverage levels achieved. Although DU

finds more differences—it is more comprehensive in its testing requirements than

BR—this benefit comes at the cost of a higher number of test cases with only a

marginally better cost-effectiveness ratio.

6.4.2.2 RQ2: Statistical Analysis of Strategies

When addressing RQ1, we analyzed the average cost-effectiveness per strategy for all 62

changes. However, it is also necessary to quantify how reliable these results are so we

can properly assess the potential validity of these results for other changes and subjects (of

similar characteristics, at least).

104

Table 12 shows the confidence levels derived from paired t-tests [110] applied to the

62 changes in our study. A paired t-test is a statistical hypothesis test that compares

means on two data sets, assumed to be independent and identically normally distributed,

and determines whether they differ from each other in a significant way. We used these

statistical tests to estimate the statistical significance of the improvements in ds-ratios of

propagation-based strategies (columns) with respect to all other strategies (rows). To as-

sess the level of significance for each cell in the table, we distinguished four cases for the

level of confidence—a probability as a percentage—that the ds-ratios for the strategy in the

column are greater than the ds-ratios for the strategy in the corresponding row. The four

cases are:

1. Cross (×): the confidence is less than 95%, which is generally considered insufficient

2. Dagger (†): the confidence is between 95% and 99% (sufficient)

3. Double dagger (‡): the confidence is between 99% and 99.9% (strong)

4. Check mark (X): the confidence is greater than 99.9% (very strong)

In Table 11 we already saw that BR is not better than STMT. DU, however, is slightly

superior to BR and STMT, but this difference is far from being statistically significant ac-

cording to our data. Therefore, we omit DU, BR, or STMT from the columns of Table 12

to simplify its presentation. For the first propagation-based strategy, CHAIN, Table 12 in-

dicates that, on average for all 62 changes, this strategy has sufficient statistical superiority

only over STMT and only for distance 3 or greater. For two distances—6 and 7—the con-

fidence surpasses 99%. These results show that CHAIN can be considered a useful strategy

(i.e., better than randomly testing a change) but do not demonstrate conclusively that this it

is better than coverage-based strategies (BR and DU). Despite the lack of statistical signif-

icance for the improvement of CHAIN over BR and DU, the large number of changes that

we used in this study suggests that CHAIN is indeed better than BR and DU. We expect

105

that an even larger study will confirm the superiority of CHAIN in a statistically significant

way. Confirming the benefits of choosing CHAIN would be a positive development because

CHAIN might be simpler to implement at a commercial scale than PROP.

Table 12 shows unequivocally that the observed superiority of PROP over coverage-

based strategies and even CHAIN (the average for all distances for CHAIN) is statistical

significant with a very high level of confidence—more than 99.9% for all distances of PROP

except for distance 1. The significance of these results for PROP not only confirms what

we observed in previous work [92,94] but also lets us quantify that superiority. On average

for all distances, as Table 11 shows, PROP selects tests that have a 50% probability of

revealing a difference, on average for changes like those we studied here. This probability

is a clear improvement over random change-testing, coverage-based strategies, and even

CHAIN. Therefore, from these results, we can be confident that PROP is a superior testing

strategy for changes and that the strategy CHAIN that PROP subsumes is not enough. In

other words, state-difference information, which has not been considered by researchers

other than coarsely in one previous work [62], is a crucial component for causing the effects

of changes to propagate and become observable.

In summary, for RQ2, we can conclude that, based on the changes and subjects used in

this study:

• PROP has a strong, statistically significant superiority over all other strategies, in-

cluding CHAIN, on the average quality (ds-ratio) of the test suites that it can create.

The observed strength for all distances in PROP leads us to conclude that the state-

difference requirements that distinguish PROP from CHAIN have a significant, posi-

tive impact that makes PROP the best testing strategy for changes that is available in

the literature.

• CHAIN is a useful alternative to PROP for testing changes because, with sufficient

statistical confidence, the average ds-ratio it achieves is better than for STMT. On

106

Table 13: Classification of changes by detectability limit.
detectability limit 1.0 .8 .6 .4 .2 .1 .05 .03 .01 .005 .003 .001
number of changes 62 48 46 43 39 30 22 18 9 7 4 1

average, CHAIN also performs better than DU and BR, although without a suffi-

ciently strong confidence. Larger studies might be required to conclusively confirm

this superiority as well.

• Although DU is slightly better than STMT and BR on average, there is no suffi-

cient statistical evidence that this is in fact the case. Thus, we are not able to con-

clude that coverage-based strategies for testing changes are better than simply testing

changes randomly. This result implies that, before our introduction of propagation-

based strategies in the literature, the existing techniques for creating new tests for

changes—a task also known as test-suite augmentation [92]—were not really useful.

6.4.2.3 RQ3: Effectiveness vs. Testing Difficulty

For RQ1 and RQ2, we discussed the average results of the strategies for all changes and an-

alyzed them statistically, without distinguishing the difficulty of detecting differences (i.e.,

the detectability) for individual changes. However, the changes for which this difficulty

is the greatest are those for which testers need a good testing strategy the most. Thus, for

RQ3, we investigated how the detectability of each change influences the cost-effectiveness

of all strategies. Table 13 shows the number of changes for different detectability limits (de-

fined earlier in this section) in decreasing order of limits. For example, all 62 changes have

a detectability limit 1.0 (i.e., detectability of at most 1.0, which is the maximum possible

value), whereas 39 changes have a limit of 0.2 (i.e., detectability of at most 0.2).

The values in Table 13 reflect the diversity in the behaviors that changes in software

can have. Although all the changes in our study correspond to fixes to observable failures

and therefore produce a difference in at least one test (i.e., they do not represent refactoring

107

changes [44]), this diversity of values show that many changes that can be detected in the

output are detectable only under specific conditions instead of every time they are executed.

The graph in Figure 20 illustrates how much more cost-effective PROP, CHAIN, BR,

and DU are over STMT for the set of changes within each detectability limit. (For PROP

and CHAIN, the graph presents average results for of all distances.) In this graph, the hor-

izontal axis shows detectability limits in decreasing order and the vertical axis is the im-

provement in ds-ratio (cost-effectiveness) of a strategy over STMT—how much more cost-

effective is a strategy than STMT. For detectability limit 1.0, which includes all changes,

the cost-effectiveness increases are those directly derived from the results in Table 11 and

Figure 19. For this limit, PROP is on average 0.58 times (0.58x) more cost-effective than

STMT, CHAIN is 0.24x more cost-effective, DU is 0.9x more cost-effective, and BR is

0.00x more cost-effective (i.e., BR and STMT are equally cost-effective). As the detectabil-

ity limit decreases, however, Figure 20 shows that the cost-effectiveness superiority over

STMT of all coverage-based and propagation-based strategies grows substantially. For in-

stance, at detectability limit 0.10 (which includes 30 changes) PROP is already more than

five times more cost-effective than STMT, and for limits of 0.05 or less (corresponding to 22

changes), PROP is 8–51 times more cost-effective. Although the other three strategies also

exhibit a considerable improvement over random testing, their growth is much slower than

the growth of PROP. CHAIN is twice as effective as STMT (i.e., 1.03x) for a detectability of

0.8 or less, whereas BR and DU achieve the same improvement but only for a detectability

lower than 0.2. CHAIN, however, is still no match for PROP, as the graph indicates. Thus,

our results that distinguish detectability limits to isolate the hardest-to-test changes (i.e.,

changes whose detectability is quite low) strongly supports the superiority of PROP as a

change-testing strategy.

Note, however, that the lower the detectability limit is, the fewer changes are considered

and thus the fewer data points are used in our analysis, which can affect the statistical

significance of our conclusions. For that reason, we used t-tests to compute the statistical

108

0x

10x

20x

30x

40x

50x

PROP_d

CHAIN_d

BR

DU

change detectability limit

d
s-

ra
ti

o
 i
n

cr
e

a
se

 o
v

e
r

ra
n

d
o

m

Figure 20: Cost-effectiveness (ds-ratio) increase over STMT of all strategies per detectabil-
ity limit.

Table 14: Statistical confidence of advantage of PROP over the other strategies per de-
tectability limit.

Detectability limit 1.0 .8 .6 .4 .2 .1 .05 .03 .01 .005 .003 .001
PROP vs STMT X X X X X X X X † × × ×
PROP vs BR X X X X † † × × × × × ×
PROP vs DU X X X X ‡ † × × × × × ×
PROP vs CHAIN X X X X X X X X × × × ×

significance (and, therefore, the confidence) of our results per detectability limit. Table 14

shows these confidence values for the observed superiority of PROP (on average for all

distances) over the other strategies. The markers in this table are the same as in Table 12: ×

for no confidence, † for 95-99% confidence, ‡ for 99-99.9% confidence, and X for 99.9%

or higher confidence. The confidence levels that we obtained indicate that, for changes

within a detectability limit of 0.01 or greater, there is enough confidence that PROP is

superior to STMT. With respect to BR and DU, there is confidence only for detectability

limits of 0.1 or greater, even though with respect to CHAIN the confidence is achieved for

at least a limit of 0.03. This apparent counter-intuitive result is explained by the fact that

109

the ds-ratios BR and DU do not vary alongside PROP as closely as the ratios for CHAIN

do, despite being inferior on average than those for CHAIN. The most likely reason for

this effect is that CHAIN is a subset of PROP and therefore CHAIN has a much stronger

statistical dependence on PROP than BR or DU do.

For detectability limits of 0.01 or less, there is little or no confidence that PROP is

superior to the other strategies, despite the large differences reported in Figure 20 at those

limits, simply because there are not enough data points—9 or less—to make any conclusive

remark. Nevertheless, for detectability limits as low as 0.1, we can conclude that PROP is

a superior strategy with a winning margin that grows as the limit decreases. For lower

limits, we expect that larger studies on changes that are difficult to test will help determine

whether the promising results that we obtained in this study for those low limits are also

statistically significant.

In summary, for RQ3 on these changes and subjects, we can conclude that:

• PROP provides statistically-significant improvements in cost-effectiveness over the

other strategies and these benefits are particularly large when the testing difficulty of

the changes is high (i.e., their detectability is low). This conclusion is particularly

important because low-detectability changes are those in greatest need for a good

testing strategy. Despite the increase in size of our study, however, larger studies

are needed to confirm statistically the particularly dramatic improvement of PROP

observed on changes that are difficult to test.

• For many changes, it is easy to detect a difference during testing, but for about half

the changes it is quite difficult to detect them (the detectability is 0.1 or less). Hence,

STMT (i.e., simply covering the change once) is insufficient for testing changes.

Moreover, the easily detectable changes are likely to be detected by an existing re-

gression test suite that already covers them, so the real need for testers is a good strat-

egy (e.g., PROP) for hard-to-detect changes. Coverage-based strategies show some

110

gains over STMT only for the hardest changes, but propagation-based strategies are

the best—particularly PROP.

6.4.2.4 RQ4: Cost of Propagation-based Strategies

Computing propagation constraints in the studies of Chapter 5 often took one hour for

small distances [92, 94]. In contrast, our new approach, which we studied thoroughly in

this section, usually took only a few minutes. Meanwhile, the runtime overhead for the

test cases was about 600%. This overhead was not as high as we expected, considering

than the overhead of simply monitoring du-pairs can be more than 100% [93] even with

efficient instrumentation and monitoring methods. Moreover, we expect that our tool can

be optimized considerably to reduce this overhead.

6.4.3 Threats to Validity

The main internal threat to the validity of our conclusions is the potential presence of er-

rors in our toolset that can distort the coverage and state differences that we measured for

each test. To minimize this threat, we included diverse checks at different points in the

toolset and manually inspected the results for several changes. Also, it is worth noting that

DUA-FORENSICS has been under constant development and improvement for some years

already [93], and has been used and tested in our previous work [92–94, 97, 98] as well as

ongoing work [95].

Another internal threat to the validity of our study arises from problematic features

of the Java language that are not well supported by the Soot Framework [91] that DUA-

FORENSICS uses, such as reflection and exception flow. Reflection in Java causes transi-

tions of control from one part of the program to another that, in general, cannot be captured

by any analysis. Potential exception flows caused by all the exceptions that can potentially

be thrown from each statement are excessive in number when identified by a safe analysis

system such as Soot. Therefore, for our experiments, and for most uses of systems like

Soot, we ignored such potential flows to allow our technique to operate in a reasonable

111

amount of time and memory. Because of this threat, our implementation of propagation-

based strategies might have underestimated the set of propagations of change effects that

took place when executing the modified programs in our study.

The main external threat to the validity of our results is the representativeness of our

subjects and the tests and changes provided with them. We minimized this threat by using

more subjects and changes than in previous studies—62 different changes in total—that

allowed us to provide strong statistical assurances for our results so that our conclusions

can be extrapolated with confidence to other subjects and changes of similar characteristics.

To further generalize our conclusions, however, it is necessary to incorporate even more

changes and subjects of different types and size and to reach greater levels of satisfaction

of the testing requirements for all strategies.

6.5 Case Studies of Demand-driven Strategies

The goal of this section is to provide complementary evidence to the study of Section 6.4

about the practicality and scalability of propagation-based testing strategies. The study

presented in that section uses pools of test cases provided with each subject as the way to

represent the test cases that developers create in practice. However, to assess the practi-

cality, usability, and scalability of the propagation-based techniques, it is also necessary

to investigate whether these test cases can be created by developers to satisfy the testing

requirements presented to them by those techniques, even for large subjects.

To achieve this goal, we present next two case studies of test-suite augmentation that

we carried on different subjects and changes. First, Section 6.5.1 describes the empirical

setup for the case studies. Then, Sections 6.5.2 and 6.5.3 present and analyze the results of

these studies. Finally, Section 6.5.4 discusses threats to the validity of our studies.

112

Table 15: Subjects, test cases, and changes for case studies of change testing.
subject description LOC test cases change
Schedule1 process scheduler 290 2650 v1
Ant 1.8.2 software-build automation tool 131K 307 r663061

6.5.1 Empirical Setup

For the case studies in this section, we used the two subjects and changes listed in Table 15.

Column subject names the subject, column description gives a brief description of its pur-

pose, column LOC gives the size of the subject in lines of code, test cases indicates how

many test cases are provided with the subject, and column change names the change stud-

ied for each subject. The name of a change is either the version in the Siemens suite [60]

(i.e., v1) or the release in the corresponding Subversion [30] repository (i.e., r663061).

The first subject, Schedule1, belongs to the Siemens suite that we translated from C to

Java. Schedule1 serves as a simple starting point for our manual study of our technique.

The second subject, Ant 1.8.2 [4], is a popular make-like build tool written in Java and

used primarily for Java projects. We chose this version of Ant because its size (greater than

100K lines of code) and complexity let us demonstrate the scalability and practicality of

our technique. For Ant, we studied a change that we call r663061 and that we obtained

from the Subversion repository for this subject—revision 663061.

To perform the case studies, we added to our implementation of the demand-driven

approach (Section 6.3) the ability to interact with the user. The tool starts by analyzing an

existing test suite and collecting the testing requirements it satisfies. The tool identifies the

points in the program where uncovered dependencies can start new chains or branch out of

existing chains to satisfy new chain requirements. The report also includes dependencies

in covered chains for which the state requirements are not satisfied. The tool presents to

the user these chain and state requirements that lie at the vicinity of satisfied requirements.

The requirements are ordered by dependence-distance from the change to let the user decide

113

how to prioritize those requirements.

Using this report, the user constructs a new test case intended to satisfy new require-

ments and feeds that test case to the tool. Then, the tool analyzes that test case by executing

it and determining whether it covers new requirements or not. If the test case does satisfy

new requirements, the tool adds the test case to the test suite. If not, the tool rejects the

test case. In either case, the tool communicates the outcome to the user and presents again

to the user the (possibly updated) report of unsatisfied testing requirements. The user then

decides whether there are more testing requirements that need to be satisfied and, if so,

whether the testing budget allows the next attempt.

For each subject and change listed in Table 15, we used DUA-FORENSICS and the

pool of available test cases to create a starting test suite for the corresponding augmentation

study. We did not use this pool to simulate the creation of new test cases like in previous

studies. We created each starting test suite to maximize statement coverage. Such test suites

are representative of industrial-strength test suites for software that is developed and tested

professionally. We obtained each of these test suites by having our tool randomly pick one

test case at a time from the pool, without replacement, and then determine whether the test

case increased statement coverage. If it did, the test case was added to the test suite. The

process stopped when no more test cases were left in the pool that could increase coverage.

For each change in our study, we created a new starting test suite using this method and

we augmented the test suite using the method described by algorithm SATISFYREQSDE-

MAND in Figure 17 and Section 6.4.1. In our case studies, however, we created each new

test case manually instead of selecting it from the pool. We augmented each starting test

suite separately using each of the following testing strategies:

1. DU, the most cost-effective (albeit marginally) of the coverage-based strategies ac-

cording to the study of Section 6.4

2. CHAIN, our propagation-based strategy that includes chains but not state conditions,

114

to help distinguish the separate contributions of chain and state requirements

3. PROP, our propagation-based strategy with both chain and state requirements

For each strategy, we set a time limit of 90 minutes for augmenting each test suite. This

limit corresponds to the testing budget B in SATISFYREQSDEMAND. At the end of that

period, we stopped and moved on to the next strategy or the next change. For each strategy

and each change, within that period, we iteratively picked as our goal one unsatisfied testing

requirement or set of requirements located close to each other. For each goal, we created a

new test case to try to satisfy it. During this process, we marked every testing requirement

we found that was unsatisfiable—whether it was part of our goal or not—to avoid targeting

it again later and to reduce our estimated count of feasible requirements. If the entirety of

the goal was found unsatisfiable, we moved on to the next goal.

For each test case that we created to try to satisfy the goal, we used our tool to determine

whether new testing requirements for the strategy were satisfied. If so, we added the test

case to the test suite, even if the newly satisfied requirements were not part of the goal (i.e.,

requirements satisfied “accidentally”). If not, we continued by inspecting the test case to

understand why it failed to satisfy the goal, fixing the test case or creating a new one, and

then repeating the process. We also recorded whether the new test case produced a different

output before and after the change—our measure of success.

For the estimated effort, we took into account the number of minutes spent selecting

each goal, checking whether the goal was satisfiable, creating each new test case, and run-

ning our tool (the last one being negligible in comparison to the manual activities). We did

not count in this effort the time we spent fixing problems with our tool or improving it. We

did not count either any interruptions or activities unrelated to the iterative creation of new

test cases. We adjusted, however, for each new subject and change, the estimated effort

for each augmentation after the first augmentation on that subject to account for the knowl-

edge gained in the first augmentation, which helped perform the next augmentations more

115

quickly. To further minimize this issue, we picked a new strategy for the first augmentation

for each new change. In all, our effort estimates were made to represent faithfully the time

spent by a developer with similar experience and ability for each augmentation.

6.5.2 Results and Analysis: Schedule1

The change we studied for Schedule1 was v1, the first change provided with this subject,

which corresponds to the fix of a bug in a function that finds a process in a list [60]. The

bug lies in a termination condition of the loop that traverses the list, making the traversal

continue past the end of the list under specific circumstances.

For our Java implementation of Schedule1, the statement coverage for the entire pro-

gram that the test cases in the pool achieve is 97%. Despite the large number of test cases

in the pool for this subject, however, less than 0.2% of them show a difference in the out-

put for change v1. Thus, not surprisingly, the starting test suite that DUA-FORENSICS

generated did not find any difference. This test suite contained six test cases.

Tables 16, 17, and 18 describe the augmentation processes we carried out for this

change using DU, CHAIN, and PROP as testing strategies, respectively. Each row de-

scribes one step in the augmentation and is numbered by column step. For each step, the

next columns describe various aspects of the step and results at the end of the step: the size

of the resulting test suite, the number of differences found at that point, a short description

of the action carried on in that step, the accumulated effort in minutes, and the percentage

of testing requirements satisfied at that point. For space reasons in these tables, we used

the abbreviation req. for testing requirements. For CHAIN and PROP (Tables 17 and 18),

the last column is subdivided in sub-columns, one for each distance of interest for the aug-

mentation, starting with the first distance that was not 100% satisfied from the beginning.

For the testing requirements in DU, there is no distance distinction among them. For each

step, the action was one of the following:

• analyzed test suite: determined which testing requirements were satisfied by the test

116

Table 16: Test-suite augmentation using DU for Schedule1, change v1.
step test-suite size differences action performed effort req. satisfaction

1 6 0 analyzed test suite 5 77.11%
2 6 0 infeasible req. 35 80.40%
3 7 0 satisfied req. 50 81.82%
4 8 0 satisfied req. 70 82.10%
5 8 0 tried more req. 90 82.10%

suite

• infeasible req.: identified unsatisfiable (infeasible) requirements while trying to cre-

ate the next test case

• satisfied req.: satisfied new requirements with a new test case and added the test case

to the test suite

• tried more req.: tried to satisfy new requirements but run out of time

To illustrate, consider the row for step 2 in Table 17. The test suite in that step grew

by one test case, from 6 test cases in step 1 to 7 test cases. The number of differences,

however, stayed at 0—neither the initial test suite nor the new test case found a difference

in the output. The action satisfied req. indicates that new testing requirements were satisfied

in this step. The accumulated effort, because of this action, increased from 5 to 30 minutes

(i.e., the step took 25 minutes). Lastly, the coverage of chains at distance 5 reached 100%

due to this new test case, 98.2% for distance 6, and 59.0% for distance 7. In consequence,

for the next step, an unsatisfied requirement at distance 6 was picked.

For all three augmentations, the action in the first step was always to analyze the initial

test suite by running our tool to determine which testing requirements were already satis-

fied by the test suite and to identify the sets of unsatisfied testing requirements to target

next, ordered by distance. For CHAIN and PROP, our goal was always to achieve 100% sat-

isfaction at each distance starting from the change before moving on to the next distance.

The reason for this prioritization was two-fold: (1) satisfying a testing requirement r at

117

Table 17: Test-suite augmentation using CHAIN for Schedule1, change v1.
step test-suite differences action performed effort req. satisfaction

size d5 d6 d7
1 6 0 analyzed test suite 5 62.5% 43.9% 32.0%
2 7 0 satisfied req. 30 100.0% 98.2% 59.0%
3 8 0 satisfied req. 80 100.0% 100.0% 61.9%
4 8 0 tried more req. 90 100.0% 100.0% 61.9%

Table 18: Test-suite augmentation using PROP for Schedule1, change v1.
step test-suite differences action performed effort req. satisfaction

size d2 d3
1 6 0 analyzed test suite 5 40.00% 25.00%
2 6 0 infeasible req. 15 66.67% 33.33%
3 7 1 satisfied req. 20 100.00% 50.00%
4 7 1 tried more req. 90 100.00% 50.00%

distance d is a requisite for satisfying requirements that extend r and (2) a testing require-

ment r at a distance d represents a potentially larger set of behaviors than individual testing

requirements that extend r.

Whenever we discovered infeasible requirements while trying to create the next test

case, we reported this event as a separate step to help understand the costs of dealing

with such requirements and to examine how much the satisfaction of requirements, as a

percentage, increased thanks to this discovery. For example, step 2 in Table 18 indicates

that finding infeasible PROP testing requirements while trying to add the first new test took

10 minutes after the initial 5-minute analysis and that this discovery reduced the number of

satisfiable requirements. As a consequence, the satisfaction as a percentage at distances 2

and 3 increased by 26.67% and 8.33%, respectively.

For this change and starting test suite in Schedule1, as tables 16 and 17 show, the

augmentation using DU and CHAIN did not reveal any difference in the output within the

90-minutes budget, despite the addition of at least one new test case using each strategy.

For PROP, in contrast, the augmentation succeeded at finding a difference, which happened

118

after only 20 minutes of work. The reason for the success of using PROP was that, unlike,

DU and CHAIN, which focus on dependencies but ignore state conditions, our tool notified

to us that at distance 2 there were covered chains that did not satisfy the state conditions

necessary to guarantee a propagation of the effects of the change. DU and CHAIN, in

contrast, would skip the dependencies at distance 2 because they were already covered and

would focus instead on uncovered dependencies farther from the change.

In conclusion, for this change in Schedule1 and this starting test suite, PROP was essen-

tial for capturing and communicating to the tester the conditions that had to be satisfied for

the effects of the change to propagate. DU and the partial version of our propagation-based

approach, CHAIN, could not detect this need at distance 2 and caused the tester to waste

effort covering dependencies or extending chains in other points of the program.

6.5.3 Results and Analysis: Ant

Our second case study emphasizes the practical ability of our change-testing technique to

scale to and work in practice on applications of daily use. Thus, we chose a recent version

of Ant [4], 1.8.2, whose size exceeds 100K lines of code (see Table 15). Ant is a popular,

complex, and mature open-source application for automating the build process of software

projects and is written in Java.

The change we studied was introduced by the developers of Ant in revision 663061 of

the Subversion [30] repository for this software. Thus, we called this change r663061. We

chose this change by first selecting the core class Project from package org.apache.tools.ant,

which represents a project during a build. Then, we navigated the history of this class in

the repository backwards in time by examining the changes committed for this class and

stopped at the first change that could have an observable effect in the code of this class:

revision 663061.

The location of the change is method executeTargets(Vector names) of class Project,

which takes the list of the names of the build targets (groups of tasks, such as compiler

119

Table 19: Test-suite augmentation using DU for Ant 1.8.2, change r663061.
step test-suite size differences action performed effort req. satisfaction

1 29 0 analyzed test suite 5 1.91%
2 29 0 infeasible req. 10 1.92%
3 30 0 satisfied req. 30 1.93%
4 30 0 infeasible req. 35 1.94%
5 31 0 satisfied req. 45 1.96%
6 31 0 infeasible req. 55 1.96%
7 32 0 satisfied req. 85 1.97%
8 32 0 tried more req. 90 1.97%

calls) specified by the user of Ant and executes each target. In this method, the change

is code inserted just before the execution of the tasks to store as a string the names of the

targets in a map that maintains the properties defined by the user.

Ant 1.8.2 is equipped with a pool of 307 unit-test classes (see Table 15), many of which

contain more than one test method. Nevertheless, in this study, we regarded each class as a

single test case. Thus, when we run our tool on each of these test cases, the tool reported

for that test case the coverage of all test methods in it. The statement coverage our tool

measured for the entire pool was 76%.

Interestingly, none of these test cases revealed a difference in the output for the change

we studied, which implies that the developers forgot to augment or update their test suite

when adding this change. In revision 663061 in the repository, no test case was created and

no updates were made to existing test cases.

As in our first case study, we used our tool to randomly pick from the pool one test case

at a time, without replacement, and added that test case to our initial test suite if the test case

contributed any new statement coverage. The process stopped when no additional coverage

could be achieved. The resulting initial test suite consisted of 29 test cases—many more

than the six test cases for Schedule1. This is explained by the much greater size of Ant,

which gives more opportunities to different test cases to cover unique parts of the program.

Given this initial test suite, we proceeded to augment it separately using each of the DU,

120

Table 20: Test-suite augmentation using CHAIN for Ant 1.8.2, change r663061.
step test-suite differences action performed effort req. satisfaction

size d3 d4 d5
1 29 0 analyzed test suite 5 25.0% 71.4% 43.5%
2 29 0 infeasible req. 20 100.0% 100.0% 47.9%
3 30 0 satisfied req. 40 100.0% 100.0% 81.1%
4 30 1 infeasible req. 45 100.0% 100.0% 82.0%
5 31 1 satisfied req. 60 100.0% 100.0% 83.8%
6 32 1 satisfied req. 70 100.0% 100.0% 85.6%
7 32 1 tried more req. 90 100.0% 100.0% 85.6%

Table 21: Test-suite augmentation using PROP for Ant 1.8.2, change r663061.
step test-suite differences action performed effort req. satisfaction

size d3 d4 d5
1 29 0 analyzed test suite 5 25.0% 71.4% 42.5%
2 29 0 infeasible req. 20 100.0% 100.0% 46.7%
3 30 0 satisfied req. 40 100.0% 100.0% 79.9%
4 30 1 infeasible req. 45 100.0% 100.0% 80.8%
5 31 1 satisfied req. 60 100.0% 100.0% 81.4%
6 32 1 satisfied req. 70 100.0% 100.0% 82.6%
7 32 1 tried more req. 90 100.0% 100.0% 82.6%

CHAIN, and PROP strategies.

Tables 19, 20, and 21 present the augmentation process for each of these strategies fol-

lowing the same format described in the case study of Schedule1 in Section 6.5.2. The

method used for obtaining these results was the same as in Section 6.5.2. In each table,

column step enumerates the steps of the respective augmentation. For each step, the cor-

responding row contains the size of the test suite at the end of the step, the differences

found so far, the action performed in that step, the effort spent so far (in minutes), and the

percentage of the testing requirements satisfied. Each of the tables for CHAIN and PROP

has three sub-columns within the last column representing the distances for which testing

requirements were targeted at some step during augmentation. For these strategies, the

satisfaction was 100% at distances 1 and 2, so the first distance shown is 3.

121

For each of the three strategies, the number of steps that we completed in 90 minutes

was greater than for the corresponding augmentation in Section 6.5.2. The reason for this

difference is that, despite the greater complexity of Ant, the pool of test cases provided

with it is not as exhaustive as the pool for Schedule1 and, therefore, the initial test suite

was able to cover shorter distances than for Schedule1. This is also the reason why the

starting distance for CHAIN in this case study was much shorter than in the previous study.

The satisfaction levels for DU, as Table 19 shows, were quite small—all of them just

below 2%. The reason for this phenomenon is not only that the test-case pool was smaller

for Ant than for Schedule1, but also that Ant is a much bigger program and thus the number

of du-pairs possibly affected by the change was much larger. Although the coverage levels

for CHAIN and PROP shown in tables 20 and 21 were much greater than for DU, it is

important to remember that the percentages in those tables are for distances of only 5 or

less. For greater distances, the number of CHAIN and PROP testing requirements grows

exponentially and much faster than the number of satisfied requirements.

In terms of effectiveness, we were again unable to detect any difference when aug-

menting the initial test suite with DU. Table 19 shows that, within the 90-minute budget,

we were able to add three new test cases in addition to identifying three sets of infeasible

du-pairs. For each of CHAIN and PROP, in contrast, we succeeded at finding a difference

with the second test case that we constructed and it took 45 minutes for both strategies to

find it. The reason why the augmentations for CHAIN and PROP were almost identical is

that, for almost all covered chains, the state conditions were satisfied. Only for distance

5 the satisfaction was slightly lower for PROP than for CHAIN due to dependencies at the

end of a few of these chains that failed to propagate a state difference. Thus, within the

90-minute budget, the testing requirements targeted in order of distance were almost the

same for CHAIN and PROP, and therefore the effort for each step was the same.

In conclusion, similar to the first case study, the best coverage-based strategy, DU, was

122

unable to find an observable difference for the change, unlike the propagation-based strate-

gies CHAIN and PROP, which found a difference half-way through the process. For this

change, unlike the previous case study, both CHAIN and PROP were equally cost-effective.

Therefore, this change in Ant is an example for which CHAIN alone is responsible for the

effectiveness observed. Also, although we cannot generalize from only one change in a

large subject and two changes in total, these two case studies highlight that propagation-

based testing requirements can be satisfied as easily in practice as coverage-base require-

ments and that the difficulty of satisfying them does not necessarily depend on the size or

complexity of the program. This conclusion is consistent with the fact that, because of the

distance limits, propagation-based strategies are affected mostly by the type of the change

and the surrounding code rather than the entire program.

6.5.4 Threats to Validity

The main internal threats to the validity of these case studies are (1) the possible existence

of errors in our tool and in our use of the tool and (2) the representativeness of the author

of this study as a tester using these test-suite augmentation strategies. The first threat was

mitigated by the maturity of the underlying DUA-FORENSICS tool. The second threat was

addressed by carefully designing the manual augmentation process to make it predictable

and repeatable. Although the effort that different testers would spend augmenting these test

suites may vary according to their expertise, we expect that these efforts will vary by the

same proportion.

The main external threat to the validity of our conclusions is that we studied only two

changes. Although each case was studied in detail, drawing any conclusion about the effec-

tiveness of propagation-based strategies with manual (or automatic) test generation would

require a considerably larger number of subjects and changes to make reliable predictions.

Instead of asserting with certainty the effectiveness of our technique using this manual ap-

proach, the purpose of these studies was simpler: to show that it is possible to perform

123

propagation-based test-suite augmentation in practice by creating new test cases and that

our technique and its implementation can scale to a program like Ant.

6.6 Related Work

The technique for computing propagation-based testing requirements presented in Chap-

ter 5 and Reference [92] directly precedes the work in this chapter. This technique provides

a complete view of all possible effects of a change and presents those effects as testing re-

quirements in a way amenable for use in tools and constraint solvers. However, as discussed

in Section 6.1, this technique is subject to the scalability problem of symbolic execution,

even after accounting for the gains that SPD from Chapter 4) provides. Also, the number

of testing requirement this technique generates can be quite large and hard to satisfy.

In contrast, the demand-driven alternative presented in this chapter circumvents the

need for symbolic execution by placing the emphasis on the state differences observed in

previous executions instead of all possible state differences identified statically. This new

approach points to the tester the locations in the vicinity of the change or covered chains

where unsatisfied testing requirements lie. As a result, the new technique lets the tester

sacrifice the view of all possible effects of a change within a short distance in exchange for

the ability to monitor the coverage of chains and state differences at greater distances.

The existing coverage-based testing techniques [17, 50, 87] described and studied in

Chapter 5 constitute the next most-closely related work to the demand-driven, propagation-

based approach of this chapter. The evaluation of those techniques in Chapter 5, al-

though limited to the distances achieved by the static computation of propagation-based

testing requirements for a side-to-side comparison, already showed the inadequacy of sim-

ple coverage-based testing of changes. The comprehensive study presented in this chapter

not only confirms that inadequacy, but also puts it in full perspective with respect to the real

potential of propagation-based testing demonstrated using the demand-driven approach.

In parallel to the work presented in this chapter, related techniques have been proposed

124

for test-suite augmentation that iteratively modify a test input to expose a difference in the

output [80] or to increase program coverage after the program changes [117, 118]. These

test-input generation techniques are mostly complementary to ours—they can be used to

create test cases that satisfy the requirements computed or pointed to by our approaches. A

distinctive aspect of our approaches with respect to those techniques, however, is that they

cover the space of all effects of a change instead of focusing all resources on one behavior

that might or might not affect the output. This broader treatment of the effects of changes

lets our approaches distribute the testing effort over all affected behaviors of the program

to provide a more complete picture of the change to the tester.

125

CHAPTER VII

ANALYSIS AND TESTING OF MULTIPLE CHANGES

The most general and typical scenario that developers face is when multiple changes are

made to software. Analyzing changes in this context can be a much more challenging task.

When multiple changes are made, computing the effects of each change individually might

be insufficient to test and validate them. In such cases, developers must also consider the

effects that each change has on other changes.

This chapter addresses the challenges posed by the presence of multiple changes for the

analysis and testing of the effects of changes. Section 7.1 describes how the propagation-

based testing requirements presented in Chapters 5 and 6 can be adapted for multiple-

change scenarios. Then, Section 7.2 presents and evaluates a new technique that detects

with unprecedented precision whether changes affect each other at runtime. Finally, Sec-

tion 7.3 addresses other work that relates to this chapter.

7.1 Adapted Testing Requirements for Multiple Changes

The propagation-based technique of Section 5.2 computes testing requirements that repre-

sent the possible effects of a change within some limits. However, the state requirements

for a change computed by this technique can be affected by the effects of other changes.

In Section 7.1.1, we present a solution for dealing with such circumstances and, in Sec-

tion 7.1.2, we present a case study that uses this solution [92].

7.1.1 Multiple-change Context for Individual Changes

Given a change C1 and a state requirement r for C1, the technique of Section 5.2 assumes

that the set of variables V that appear as symbols in r’s state constraints have the same

values at the entry of C1 in the original program P and the modified program P ′. Hence, if

126

a test case executes another change C2 before C1, and C2 causes one or more variables in

V to have a different value at the entry of C1 (i.e., C2 infects the parts of the state used by

r), then r is no longer applicable for that test case.

One solution for handling such cases is to regard the state constraints for r as “not

satisfied” if any of the variables used in r is infected at the entry of the corresponding

change. For example, consider program E1,2, which is obtained by applying changes 1

and 2 to program E from Figure 13. The state requirement for chain <5, (5, 6, y)> from

change ch2 in E1,2 requires that the value of y at statement 6 be different in E and E1,2.

However, the value y0 of y at the entry of change ch2 will be different in E and E1,2

because change ch1 executes first and alters y0. In that case, the conditions for the state

requirement for a chain, when a variable that appears as a symbol in that requirement has

been infected, might no longer represent the state-propagation conditions for that chain.

In this small example, we could obtain the symbolic value of y0 at statement 5 in E and

E1,2 by analyzing change ch1 at distance 2 and then replacing y0 with the respective sym-

bolic results in the state requirements for change ch2. However, in many cases, changes

are located far away from each other, so the distances that can be reached in practice by

COMPUTEREQS for one change are too short to obtain the symbolic value of an infected

variable at the entry of another change. In such cases, for safety, when a variable in a state

requirement is infected, that requirement should be considered invalid (i.e., unsatisfiable).

To solve this problem, we adapt our propagation-based techniques to use a conserva-

tive but practical approach to determine state-requirement validity: assume that the entire

state of the program is infected after executing a change. This solution distinguishes each

occurrence of a change in an execution, so that at runtime, after a change C executes once,

the monitoring of the satisfaction of state requirements is disabled for all other changes,

including the next execution of C if it occurs. When this monitoring is disabled, state

requirements are not reported as satisfied even if their conditions are satisfied. Chain re-

quirements, however, are always monitored and reported when satisfied.

127

To illustrate, consider program E Figure 13 and both changes. Change ch2 can only

execute after change ch1. Therefore, for all executions, only chain requirements are mon-

itored for change ch2. However, if program E in Figure 13 is modified at statements 2

and 7, then the state requirements for the change at statement 7, which define the effect of

this change on the output value, are invalidated only for executions in which the change

at statement 2 causes a modification of the decision at statement 6. A modification of this

decision is manifested as an infection of the program state for the change at statement 7 by

executing this change in only one of the two versions of the program.

7.1.2 Case Study: Multiple-change Context for Individual Changes

This section presents a case study of interaction between two changes and an analysis of

the consequences on the monitoring of requirements and the detection of differences of

applying the multiple-change handling solution of Section 7.1.1 for these two changes.

An interesting interaction occurs between Changes 1 and 4 in NanoXML-v1. Change 1

is located in the DTD (Document Type Definition) parsing component, whereas Change 4

alters the final step of XML element attribute processing. Suppose that P1 is the program

version with Change 1 only, P4 the version with Change 4 only, and P1,4 the version with

both changes. Out of 214 test cases available, 42 test cases show an output difference

between the two programs. As expected, given that the difference detection using PROP

on each of these changes alone was 100% (see the study in Section 5.4.1), all test suites

created for P1,4 using the multiple-change handling approach of Section 7.1.1 obtained also

a 100% difference detection.

In P1,4, Change 4 is executed by 164 test cases, out of which only seven test cases are

difference-revealing. Interestingly, 135 test cases reach Change 4 before Change 1, but

none of these test cases reveal a difference. Only seven test cases that cover Change 4

reveal a difference in the output, and in all seven cases Change 4 is infected by Change 1.

Thus, state requirements in P1,4 for Change 4 are never satisfied by difference-revealing

128

test cases, even though many other test cases reach this change without infection. In P4,

in contrast, Change 4 is covered by 26 difference-revealing test cases. Because Change 4

greatly benefits in P4 from satisfying PROP over CHAIN (see Table 7), we would expect P1,4

to exhibit a reduction in the ability of PROP to detect differences attributable to Change 4.

To measure the impact of Change 1 on the ability of Change 4 to cause output dif-

ferences in P1,4 when applying PROP with the multiple-change handling approach, we

executed all 164 test cases that cover Change 4 in this version and measured the coverage

of chain requirements for Change 4. From these 164 test cases, we generated 100 unique

test suites satisfying the chain requirements for Change 4 on P1,4, of which 23.7% revealed

a difference in the output. In contrast, the difference detection in P1,4 for simply cover-

ing Change 4 is 3.6%. Thus, considering that using PROP achieves 100% detection for

Change 4 in P4, there is a decrease of 76.3% in difference detection for Change 4 when

Change 1 is also present, due to interference from Change 1. Yet, the multiple-change han-

dling approach for adapting our PROP testing requirements still exhibits a greater difference

detection over just covering Change 4 (23.7% vs. 3.6%).

7.2 Interactions among Multiple Changes

The solution presented in Section 7.1 adapts the testing requirements of individual changes

to scenarios with multiple changes to account for the possibility that changes interact (af-

fect each other). This solution makes the assumption that a change is affected by another

change that executes first. However, the problem of determining whether changes inter-

act or not—and what their combined effects are if they do—can be addressed with much

greater precision. This section presents a precise new technique [97] for achieving that goal

that is based on the same foundations (Chapter 3) on which the propagation-based analysis

of individual changes is built (Chapters 5 and Chapter 6).

First, Sections 7.2.1, 7.2.2 and 7.2.3 motivate, justify, and present, respectively, the new

technique called Semantic Change-Interaction Detection (SCHID). Then, Section 7.2.5

129

presents a study that shows the inaccuracy that existing techniques can exhibit for detecting

change interactions and highlights the necessity of the SCHID technique and the formal

model of Section 3.1 for the analysis of multiple changes.

7.2.1 Motivation for Change-interaction Detection

Developers often introduce multiple changes in software to cooperatively accomplish a

goal, so the combined behaviors of such changes should be explicitly tested. Also, mul-

tiple changes that are introduced for independent purposes and are not supposed to inter-

act might actually interfere. Thus, testers need to know exactly which changes interact

to ensure that related changes are cooperating as intended and that unrelated changes do

not interact unexpectedly, so they can assess and augment their regression test suites ap-

propriately. In particular, the approach presented in Section 7.1 for adapting the testing

requirements for individual changes when other changes interfere can greatly benefit from

a precise interference-detection method that improves the conservative method explored in

that section.

Existing techniques in the literature do not provide accurate information about inter-

actions among changes. Such techniques either use static slicing [112] (a notoriously im-

precise technique [18, 23]) to identify potential interferences among code changes when

merging programs [19, 56] or rely on coarse-grained dynamic analysis [113]. For change-

impact analysis, for example, the Chianti technique [83] explicitly addresses relationships

among multiple changes but operates at a coarse-grained level, identifying only high-level

syntactic dependencies among changes and relating changes covered by the same test cases.

(The study in Section 7.2.5 provides evidence of the inaccuracy of existing techniques for

identifying runtime interactions among code changes.)

Fortunately, the formal model of the effects of changes presented in Section 3.1 of this

130

Table 22: Forward slices for the changes in the example program prog’ of Figure 4.

change static slice dynamic slice (first occurrence)
input: n=5, m=[1,-1,0,3]

ch1 1, 6, 7 11,61,62,63,64,71

ch2 4, 6, 7, 8 41,61,62,63,64,71,81

ch3 7 71

ch4 8 81

dissertation provides important new definitions of how a change alters the behavior of pro-

grams. This model, which serves as the basis for the practical computation of propagation-

based testing requirements (Chapters 5 and 6), can also be used to define a technique for

determining with unprecedented precision whether multiple changes interact or not and

thus overcome the limitations of existing techniques for detecting change interactions. The

reasoning that leads to this new technique and the technique itself are presented next.

7.2.2 Towards Accurate Change-Interaction Detection

Forward slices are important ingredients for computing the effects of changes in practice.

Table 22 lists the forward static slices (second column) for the four changes in program

prog’ of Figure 4 as well as the forward dynamic slices (third column) for the first oc-

currence of each of these changes for input {n=5, m=[1,-1,0,3]}. In this example, the

forward slices for the changed nodes 1, 4, and 7 (i.e., ch1, ch2, and ch3) are the same in

prog’ and prog (also shown in Table 1). Table 22 includes the slices for node 8 in prog’,

which is inserted by ch4).

A naive first attempt to determine which changes might interact in a modified program

would be to identify, for a given change C, all other changes that are in the static forward

slice from C. For example, in the modified program prog’ from Figure 4, the slice from

ch1 contains only ch3. Using such a slice would lead us to identify only ch3 as affected by

ch1. However, variable r, modified at Node 1 by ch1, can also be affected by change ch2

before r reaches Node 7, because nodes 6 and 7 are also in the forward slices of ch2. For

131

instance, for input {n=5, m=[1,-1,0,3]}, the value of r that reaches Node 7 in program

prog’ is 18. If only ch1 were made to the original prog, however, the value of r at that

point would be 16 instead. Therefore, the effects of ch1 actually interact with the effects

of ch2.

Because the goal is to find the actual interactions among changes in modified software,

we use the model of Section 3.1.4. Thus, we regard ch1 and ch2 in this example as

semantically dependent on each other:1 there exists an execution, specified by an input,

of prog’ for which removing any of these changes (i.e., replacing the modified code with

the original code for the change) alters the effects of the other change on that execution.

In other words, the presence of either one of these changes alters the effects of the other

change. A semantic dependence is symmetric: if the effects of one change alter the effects

of another change, then both changes are mutually dependent and, thus, interact. In an

execution of prog’ with input {n=5, m=[1,-1,0,3]}, changes ch1 and ch2 interact

because both alter the value of r for that input. For input {n=5, m=[0,-1,0,0]}, however,

change ch2 is not executed, so it does not interact with ch1. (In general, a change might

execute but not interact with other changes.)

A second attempt to solve this problem is to use an approximation to change interac-

tion by using the intersection of forward slices to identify potential interactions. If the

static forward slices of two changes intersect, then these changes are syntactically depen-

dent (i.e., a dependence found by static analysis). In prog’, for example, the static slices

of changes ch1, ch2, and ch3 intersect at Node 7. Also, the dynamic forward slices of

these changes for input {n=5, m=[0,-1,0,0]} intersect, implying runtime syntactic de-

pendencies among them.

A technique for change-interaction detection, however, should identify actual—not just

potential—change interactions. For example, for the execution of prog’ with a value of 1

for n, there is no semantic dependence (i.e., dependence on the actual effects) between ch1

1Semantic dependence between changes is a symmetric relationship, as proven in Section 3.1.4.

132

and ch3, even though, syntactically, their static and dynamic forward slices intersect at

Node 7. The reason is that ch1 does not affect the semantics of ch3 when n is 1—Node 7,

changed by ch3, will still print 1. Similarly, ch2 interacts semantically with only ch3 for

executions in which the combined effect of the two changes determines whether Node 7

prints 0 or 1.

7.2.3 A Precise Change-interaction Detection Technique

This section presents Semantic Change-Interaction Detection (SCHID), a new technique

for detecting runtime interactions among changes. The technique is based primarily on

Definition 20 of semantic dependence among changes from Section 3.1.4. This definition

of dependence among changes, however, is static (i.e., for all possible executions) and

determining whether two changes are semantically dependent is an undecidable problem.

However, for a finite execution, it is possible to determine whether a semantic dependence

between two changes occurs. We call the occurrence of such a dependence an interaction

among those changes.

DEFINITION 27. Changes C1 and C2 interact in the execution of modified program P ′

on input I if a semantic dependence between C1 and C2 is exercised in that execution. In

other words, C1 and C2 interact if the semantic effect of C1 on P ′ and P ′\C2 for input I

differs or if the semantic effect of C2 on P ′ and P ′\C1 for input I differs.

Unlike the static version of semantic dependence, it is possible to detect dynamic se-

mantic dependence for terminating executions or finite portions of an execution. Algorithm

FINDINTERACTIONS in Figure 21 determines which changes do interact (i.e., whether a se-

mantic dependence is exercised). The algorithm inputs the original program P , a list S of

non-empty sets of changes, and the program input I . The reason for using sets of changes

instead of individual changes is to let the user group related changes and find the effects

among arbitrary groups of changes.

For each pair of change sets in list S, FINDINTERACTIONS determines whether the

133

Algorithm FINDINTERACTIONS

Input: P : program; S: list of change sets; I: input
Output: R: set of pairs of change sets

(1) R := ∅
(2) P ′ := applyChanges (P , S)
(3) for i = 1 to |S|−1
(4) Ci := S[i]

(5) for j = i+ 1 to |S|
(6) Cj := S[j]

(7) if prune(P ′, I , Ci, Cj)
(8) continue at (5)
(9) endif
(10) exHistP ′ := augmExecHist (P ′, I , Ci)
(11) exHistP ′\Ci := augmExecHist (P ′\Ci , I , Ci)
(12) effectOnP ′ := diff (exHistP ′, exHistP ′\Ci)

(13) exHistP ′\Cj := augmExecHist (P ′\Cj , I , Ci)
(14) exHistP ′\Ci∪Cj := augmExecHist (P ′\Ci∪Cj , I , Ci)
(15) effectOnP ′\Cj := diff (exHistP ′, exHistP ′\Ci)

(16) if effectOnP ′ 6= effectOnP ′\Cj

(17) R ∪:= <Ci, Cj>
(18) endif
(19) endfor
(20) endfor
(21) return R

Figure 21: Algorithm for accurately detecting runtime change interactions.

two sets in the pair interact (i.e., whether a semantic dependence between those sets is

exercised according to Definition 27) during the execution of P ′ on I . To do that, the

algorithm determines whether any change in one set interacts with any change in the other

set by analyzing their static and dynamic forward slices, the coverage of those changes, and

the differences in the augmented execution histories of those changes on different versions

of the program. The algorithm then determines whether the effects of one change set alter

the effects of the other change set, in which case these sets interact.

At line 1, the set R of interacting change sets is initialized to the empty set. At line 2, the

algorithm constructs the modified program P ′ by applying all changes in S to the original

program P . The loop at lines 3–20 and its nested loop at lines 5–19 analyze each pair of

134

change sets (lines 7–15) and, if the pair interacts, adds the pair to the result R (lines 16–18).

To determine whether change sets Ci and Cj interact, the algorithm first invokes prune at

line 7 to check some necessary but not sufficient conditions for the interaction of Ci and Cj;

if any of these checks fails, the algorithm skips the analysis of lines 10–18 by continuing to

line 5 for the next pair of change sets. The use of prune lets the algorithm eliminate some

pairs of change sets through a simpler analysis, so that the more expensive subsequent

analysis is applied to a smaller number of pairs.

The conditions checked by prune (not listed in Figure 21) are, in the order checked:

1. The static forward slices of some change in Ci and some change in Cj intersect on

P ′, P ′\Ci
, P ′\Cj

, or P ′\Ci∪Cj
.2

2. The execution of P , P ′\Ci
, P ′\Cj

, or P ′\Ci∪Cj
includes (covers) a change in Ci and

a change in Cj .

3. The dynamic forward slices of a change in Ci and a change in Cj on the execution of

P ′, P ′\Ci
, P ′\Cj

, or P ′\Ci∪Cj
intersect.

To illustrate, consider change sets {ch3} and {ch4} in program prog’ (Figure 4). For

this pair, Check 1 finds that the static slices of ch3 and ch4 do not intersect in prog’, as

Table 22 shows, or any other program version. Thus, these changes cannot interact for any

execution, so they need not be considered further. Next, consider an execution of prog’

for an input in which all elements of m are negative. In this case, any pair in which one set

is {ch2} passes Check 1 because the static slice of ch2 intersects all other static slices (see

Table 22), but Check 2 discards this pair because ch2 is not covered by such an input. For

input {n=5, m=[3,-1,-1,-1]}, however, the pair {ch2} and {ch4} passes the first two

checks but fails Check 3 because the dynamic slices of ch2 and ch4 do not intersect for

any program version. Finally, if all checks pass, FINDINTERACTIONS continues to line 10.

2For accuracy, the interprocedural static-slice intersection should account for calling contexts [19].

135

At lines 10 and 11, FINDINTERACTIONS invokes the auxiliary algorithm augmExecHist

(not listed) to compute the augmented execution histories of the changes in Ci for the mod-

ified program P ′ and the version of P ′ without Ci, respectively. At line 12, the algorithm

computes the differences between these augmented execution histories, which correspond

to the semantic effect of Ci on P ′ (see Definition 18 in Section 3.1.3). Also, lines 13–15

compute the semantic effect of Ci on P ′\Cj
(i.e., the modified version P ′ without Cj).

Line 16 compares the two effects and line 17 adds the pair to R if those effects differ (i.e.,

if Cj altered the semantic effect of Ci on P ′). augmExecHist and diff cache their results

for later iterations to use.

To illustrate lines 10–18, consider again Figure 4 (prog’ is P ′) and single-change sets

{ch1} and {ch2}. For the execution of P ′ on input {n=5, m=[1,-1,0,3]}, the column

labeled dynamic slice in Table 22 shows the part of the augmented execution history of the

first occurrence of each change without state information. At lines 10–12, FINDINTER-

ACTIONS determines that the augmented execution histories of {ch1} on P ′ and P ′\{ch1}

for that input have the same sequence of statement occurrences, but the value of r at each

statement occurrence is 1 greater in P ′\{ch1} than in P ′. This difference is the semantic

effect of {ch1} on P ′. Also, lines 13–15 find that the semantic effect of {ch1} on P ′\{ch2}

corresponds to differences in the values of r in all occurrences of statement 6: at 61, 62,

and 63, r is 1 less in P ′\{ch1,ch2} than in P ′\{ch2} and, at 64, r is 2 less. Line 16 finds that

these effects differ, which implies that {ch1} and {ch2} alter the effects of each other, so

line 17 adds this pair to the result.

For a given list of change sets, the worst-case space and time complexity of FINDIN-

TERACTIONS is linear in the product of the size of the set of variables V in P and the

length of the executions of the different variants of P on input I . This is the cost of finding

the augmented execution histories and their differences. During execution, updating the

dynamic forward slice of a change at a statement occurrence requires, at most, one check

for each “live” definition (up to |V |) and each “live” conditional statement (always one).

136

augmented

Change and
Dependence Analyzer

Instrumenter

Runtime MonitorCoverage Analyzer

P
S

change
coverage

instrumented
program
versions

T

1 2

4 3

program
versions

dependencies

augmented
execution
histories

Runtime MonitorCoverage Analyzer T

change-
interactions
exercised

Figure 22: Toolset and process describing the implementation of SCHID.

When the dynamic slices of multiple occurrences of a change converge at a statement oc-

currence, only one dynamic slice needs to be tracked for that change after that point. Thus,

the number of occurrences of a change does not impose an extra factor on the algorithm’s

complexity. An augmented execution history also includes the value of each modified vari-

able at each point of a dynamic slice, but this is only a constant factor of the total cost.

Finally, the cost of detecting dynamic data dependencies is almost constant if hashing of

live variables is used, so the cost of FINDINTERACTIONS is, in practice, linear in the length

of the execution.

7.2.4 Implementation of SCHID

To support the study of change-interaction detection techniques, we implemented SCHID

using DUA-FORENSICS [93], the dependence analysis toolset described and used in all

other studies in this dissertation.

Figure 22 shows the process that implements the technique as a data-flow diagram

where boxes are processing components and edges represent the flow of elements between

components. The components are numbered 1–4 according to their processing order:

1. The Change and Dependence Analyzer inputs program P and the collection of change

sets S and performs three actions:

137

(a) applies the change sets in S to P to obtain program version P ′ and, for all Ci

and Cj (i < j) in S, versions P ′\Ci
and P ′\Ci,Cj

,

(b) identifies the direct and transitive data- and control-dependencies from the

changed statements on each version, and

(c) discards as “non-interacting” all change-set pairs whose static forward slices do

not intersect in the corresponding versions.

2. The Instrumenter takes the program versions and dependencies produced by Compo-

nent 1 and instruments these versions to generate the change-coverage and execution-

history information needed.

3. The Runtime Monitor runs test suite T on the instrumented program versions pro-

vided by Component 2, collects change-coverage and execution-history information

from the executions, and outputs a coverage report for each test case and program

version.

4. The Coverage Analyzer takes the change-coverage and execution-history reports

from Component 3 and determines, for each test case, which change sets from S were

covered, had their dynamic slices intersected, or interacted according to SCHID.

7.2.5 Study of Change-interaction Detection Techniques

This section presents our study of change-interaction detection whose goal was to as-

sess and compare the accuracy of SCHID and other approaches for this task. For this

study, we used the implementation described in Section 7.2.4 and compared SCHID with

three alternative change-interaction detection techniques when applied to different sets of

changes in Java software. The first two techniques are representative of existing change-

analysis techniques: static-slice intersection (e.g., [19, 56]) and multiple-change coverage

(e.g., [83, 113]). For the third technique, we used dynamic slicing [1, 64] in its finest-

grained formulation to detect change interactions by intersecting dynamic forward slices

138

Table 23: Subjects used for the study of SCHID.
subject description LOC test inputs changes change pairs

Tot info
information

283 1052 4 6
measure

Schedule1
priority

290 2650 4 6
scheduler

NanoXML v1 XML 3497 214 4 6
NanoXML v5 parser 4782 216 4 6

of changes. The static-slice approach determines which changes may interact in the mod-

ified program P ′, for any test case. The coverage approach reports potential interactions

between pairs of changes covered by a test case on P ′. The dynamic-slice approach reports

potential interactions due to intersecting dynamic slices of changes for a test case on P ′.

7.2.5.1 Empirical Setup

For this study, we used four subjects, including their respective test suites. The first two

subjects, Tot info and Schedule1, are part of the Siemens suite that we translated from

C to Java. The remaining subjects are two versions of NanoXML available at the SIR

repository [36, 40]. For each subject, we used the standard test suite and the first four

seeded changes provided with the subject. Table 23 gives details about these subjects. In

the table, for each subject, the second column gives a description, the third column gives

the number of lines of code, the fourth column gives the number of test cases in the test

suite, and the last two columns show, respectively, the number of changes considered and

the corresponding number of change pairs for which potential interactions were analyzed.

(A total of 24 pairs of changes were considered for interaction.)

To compare the accuracy of the interaction-detection techniques, we measured their

precision—the fraction of reported interactions that are real (true positives)—and safety—

the fraction of real interactions missed (false negatives). The three approaches that we

compared with SCHID operate only on P ′. Thus, when these approaches report no inter-

action between changes C1 and C2 on P ′, they may fail to recognize certain interactions

139

static slicing

dynamic slicingSChID
type ISChID

type II
C

DF

E
change-pair

coverage

C

A B

Figure 23: Relationships among techniques for change-interaction detection.

found by SCHID. Specifically, if C1 has no effect on P ′ but has an effect on P ′\C2 , then

C1 and C2 interact, but the three approaches fail to identify this interaction—this is a false

negative in their reports. This kind of interaction occurs, for example, when the effect of

C2 on P ′ prevents C1 from executing on P ′.

To facilitate the discussion, it is useful to classify the interactions found by SCHID into

Type I for interactions where both changes have an effect on P ′ and Type II for all other

interactions. The set diagram of Figure 23 shows the relationships among all techniques

studied: Type-II interactions (A) are false negatives for all techniques but SCHID, while

Type-I interactions (B) are the true positives for those techniques. The diagram also shows

that the false positives reported by dynamic slicing (F) are also reported by static slicing

and change coverage. These two techniques are necessary conditions for dynamic-slice

intersection, but not sufficient (E), because they do not guarantee that after the changes

execute their dynamic slices intersect. Also, the static slices of two changes might intersect,

but the changes might not be covered (C). Similarly, the static slices of two changes might

not intersect but the changes might be covered (D).

In the study, for each subject P , we analyzed the respective four changes as single-

change sets. Thus, for P , we constructed versions P ′, P ′\{Ci} (for i ∈ [1, 4]), and P ′\{Ci,Cj}

(for i, j ∈ [1, 4] and i<j), and run the corresponding test suite on all these versions.

140

Table 24: Change-interaction detection results for Tot info (1052 test inputs).
change change-pair dynamic-slice SCHID
pair coverage intersection

Type I Type II Type I Type II Type I Type II
C1, C2 2 0 2 0 2 0
C1, C3 2 0 0 0 0 0
C1, C4 1 0 1 0 1 0
C2, C3 272 0 7 0 0 0
C2, C4 28 0 28 0 28 0
C3, C4 28 0 3 0 0 0

avg. false pos. 50.3 0.0 1.7 0.0
avg. false neg. 0.0 0.0 0.0 0.0

Table 25: Change-interaction detection results for Schedule1 (2650 test inputs).
change change-pair dynamic-slice SCHID
pair coverage intersection

Type I Type II Type I Type II Type I Type II
C1, C2 852 0 640 0 1 0
C1, C3 773 0 752 0 0 0
C1, C4 773 0 752 0 0 1
C2, C3 710 0 710 0 21 4
C2, C4 710 0 710 0 323 4
C3, C4 866 0 866 0 431 389

avg. false pos. 651.3 0.0 609.0 0.0
avg. false neg. 0.0 66.3 0.0 66.3

7.2.5.2 Results and Analysis

Tables 24–27 show the results, for each subject and all change pairs in that subject, of all

techniques except static-slice intersection. Static slices intersected on all modified subjects,

so they are not shown in the table. In each table, the first column lists all pairs of changes,

the second column shows the number of test cases that covered each pair, the third column

shows the number of test cases for which the dynamic slices of both changes intersected,

and the last column shows the number of test cases for which the changes interacted ac-

cording to SCHID. The results for each technique are divided into Type-I and Type-II

141

Table 26: Change-interaction detection results for NanoXML v1 (214 test inputs).
change change-pair dynamic-slice SCHID
pair coverage intersection

Type I Type II Type I Type II Type I Type II
C1, C2 51 0 51 0 0 67
C1, C3 50 0 50 0 0 67
C1, C4 0 0 0 0 0 0
C2, C3 35 0 35 0 0 15
C2, C4 0 0 0 0 0 66
C3, C4 0 0 0 0 0 50

avg. false pos. 22.7 0.0 22.7 0.0
avg. false neg. 0.0 44.2 0.0 44.2

Table 27: Change-interaction detection results for NanoXML v5 (216 test inputs).
change change-pair dynamic-slice SCHID
pair coverage intersection

Type I Type II Type I Type II Type I Type II
C1, C2 0 0 0 0 0 0
C1, C3 0 0 0 0 0 0
C1, C4 0 0 0 0 0 0
C2, C3 0 0 0 0 0 0
C2, C4 77 0 0 0 0 0
C3, C4 0 0 0 0 0 0

avg. false pos. 12.8 0.0 12.8 0.0
avg. false neg. 0.0 0.0 0.0 0.0

interactions found by that technique. Also, in each table, two rows at the end show the av-

erage number, for the six change pairs, of false positives and false negatives for change-pair

coverage and dynamic-slice intersection (SCHID has no false positives or false negatives).

Recall that, unlike SCHID, these two techniques miss all Type-II interactions.

For example, for pair (C1, C2) in Schedule1 with all changes applied, column change-

pair coverage shows that both changes were covered in 852 of the 2650 test cases. For

that pair, column dynamic-slice intersection shows that in 640 of those test cases the dy-

namic slices of the two changes intersected. Also for that pair, column SCHID reports that

142

only one test case exercised a Type-I interaction, and no test case caused a Type-II interac-

tion. Thus, change-pair coverage and dynamic-slice intersection caused 851 and 639 false

positives, respectively, but no false negatives.

Although static slicing determined that all change pairs may interact, the Type-I results

for SCHID show that, for many pairs, no test case in the test suite exercised Type-I inter-

actions. For example, for Tot info and its test suite, three change pairs did not cause Type-I

interactions, and for NanoXML v5, no interaction was exercised by the test suite. Hence,

static slicing is too imprecise for estimating Type-I interactions in these subjects, at least

for the available test suites. Note, however, that the test suites for Tot info and Schedule1

are quite large, but only a small fraction of those test cases cause actual interactions. Thus,

it may be difficult to find additional test cases that cause the remaining interactions to occur,

if possible at all.

The change-coverage approach performed better than static slicing by detecting that,

for all change pairs, only a fraction of the test cases covered both changes. For example,

for each pair in Schedule1, this approach found that no more than a third of all test cases

covered the two changes on each pair. However, these numbers are still too imprecise to use

to estimate Type-I interactions when compared with the actual results found by SCHID. In

the best case, for this subject (i.e., C3 and C4), the number of Type-I interactions reported

by change coverage was about twice the number of real interactions of this type; in the

worst case (e.g., C1 and C3), all of the reported interactions were false positives.

Surprisingly, the method of intersecting dynamic slices was more precise than change-

pair coverage in only a few cases. For example, for pairs (C2,C3) and (C3,C4) in Tot info,

this technique removed a large proportion of false positives reported by change coverage.

Yet, dynamic-slice intersection was still too imprecise in identifying Type-I interactions as

detected by SCHID. For example, for four pairs in NanoXML v1 and v5, this approach

detected 35–77 potential interactions, all of which were false positives.

Unlike the test suites for Tot info and Schedule1, the test suites for both versions of

143

NanoXML did not exercise any Type-I interactions. There are three reasons that may ex-

plain this phenomenon: (1) the small sizes of Tot info and Schedule1 make their changes

“closer” (in a control- and data-dependence sense) to each other and, thus, make interac-

tions more likely to occur, (2) the large sizes of the test suites for Tot info and Schedule1

increase the likelihood of exercising interactions, and (3) some of the changes provided

with NanoXML cause exceptions to be raised, preventing the execution from continuing

normally and reaching other changes.

Type-II interactions also occurred occasionally, for a total of nine change pairs in

Tot info and NanoXML v1. Although in Tot info the occurrence of Type-II interactions

seems correlated with the occurrence of Type-I interactions, this was not the case in ver-

sion v1 of NanoXML, where many Type-II interactions but no Type-I interactions were

exercised. The presence of only Type-II interactions in NanoXML v1 is explained by the

nature of the changes in this subject, which tend to prevent the execution from reaching

other changes.

In conclusion, the results suggest that covering pairs of changes or having static or

dynamic slices intersect is, often, too imprecise and also unsafe for establishing with

any degree of confidence which interactions among changes actually occur. Hence, of

all techniques evaluated, and at least for the subjects, changes, and test-suites consid-

ered in the study, only SCHID—a precise implementation of our formal model of change

interactions—provides useful results.

7.2.5.3 Case Study in NanoXML

A possible explanation for the failure of the test suites in this study to exercise interactions

for many pairs of changes is that the test suites provided with these subjects are inadequate

for this task. To understand why so few test cases caused actual change interactions, we

manually inspected NanoXML v5 and its test suite of 216 test cases. The static-slice inter-

section approach in this study indicated that all six pairs of changes might interact, but no

144

test case exercised these pairs in practice. Thus, we carefully examined the changes and

test suite for NanoXML v5 and found that the pair (C2, C4) could actually interact. Then,

we created a new test case that, as confirmed by using our toolset, causes a Type-I interac-

tion of this pair. The failure of the original 216 test cases in making C2 and C4 interact is

explained by the subtle conditions that make these particular changes interact.

For the remaining five change pairs in NanoXML v5, we found that they cannot inter-

act: C1 causes an error during DTD parsing that prevents any execution from reaching other

changes, whereas C3 modifies an unhandled exception object after which no other change

can execute. For these reasons, C1 and C3 participate in behaviors that are mutually ex-

clusive with each other and with C2 and C4, even though there are (infeasible) dependence

paths between all of them found by static slicing.

7.2.5.4 Threats to Validity

The main internal threat to the validity of this study is the possibility of implementation

errors in our change and dependence analysis, monitoring, and reporting. This threat is

reduced by the maturity of DUA-FORENSICS, which has been in development for years.

The main external threat to this study is the limited variety, size, and nature of the

subjects and changes used in the study. These subjects, however, have been used exten-

sively for software-engineering studies; NanoXML is also a real-world program. Thus,

although the conclusions for this study cannot be generalized to other types of subjects, the

study highlights the interactions that can occur, the inaccuracy of existing approaches with

respect to SCHID, and the inadequacy of existing test suites in exercising interactions.

7.3 Related Work

Although many techniques exist for regression testing and test-suite augmentation, most

of these techniques address single changes only. The techniques by Rothermel and Har-

rold [87] and Binkley [17] identify the entities (e.g., statements, branches, and du-pairs)

145

affected by a change, but do not analyze relationships among changes. Our own change-

effects analysis and testing techniques [92,94,96] presented in Chapters 5 and 6 also target

individual changes. In contrast, in Section 7.1 of this chapter, we described how devel-

opers can address multiple changes by adapting the testing of individual changes when

interactions with other changes may occur. This adaptation can work even with a very

conservative approach, as shown in the case study in that section.

A more accurate computation of change interference, however, is desirable to ensure

that state requirements are not invalidated unnecessarily. The SCHID technique presented

in Section 7.2 addresses the problem of detecting change interference by building on the

formal model of semantic dependence among changes from Section 3.1.4. Thus, the work

presented in this chapter complements our own published techniques [92, 94, 96] by pro-

viding the precise change-interaction detection needed by them.

In the area of change-interference analysis for safe merging of program versions, there

are static and dynamic techniques related to SCHID. On the static side, Horwitz and col-

leagues [19] [56] present techniques that use static slicing to determine which changes can-

not interfere with each other and can thus be safely merged, although they do not present

empirical studies. Like SCHID, their techniques work on code-level changes. However,

our study in Section 7.2.5 shows that static-slice intersection can be too imprecise to be

useful. On the dynamic side, Wloka and colleagues [113] present a technique that uses

the outcomes of test cases in a test suite to decide which changes can be safely commit-

ted to a repository. This technique is limited in that it operates on coarse-grained changes

(e.g., method modifications) and only identifies compilation dependencies among changes.

SCHID, in contrast, can be used for program merging with accuracy thanks to a precise

definition of semantic dependence to detect actual interactions among changes at runtime.

Another related area is change-impact analysis (e.g., [5, 83]), whose goal is to find

which program elements are affected by changes. To the best of our knowledge, no tech-

nique in this area analyzes the impact that changes have on other changes. A technique

146

by Ren and colleagues [83], called Chianti, addresses multiple changes but only identifies

structural (compilation) dependencies among coarse-grained changes. SCHID, in con-

trast, works on statement-level changes and identifies the precise semantic dependencies

observed among changes.

Finally, a number of techniques address the problem of interaction testing. These tech-

niques aim at effectively testing software that has an exponential number of configurations

(e.g., [29]). Although interaction-testing techniques are loosely related to our work be-

cause they target the interaction of various software entities, such as parameters, features,

and components, none of these techniques have been applied to changes.

147

CHAPTER VIII

CONCLUSION AND FUTURE WORK

Software is changed constantly throughout its life cycle. These changes to software pose

serious challenges to developers and testers who must ensure that software remains cor-

rect after modifications by analyzing and testing those modifications. Existing research

on change analysis and testing has focused either on program entities potentially affected

by the changes—without any empirical validation—or on making regression testing more

efficient. However, when software is changed, new behaviors are introduced and existing

behaviors are modified in ways not anticipated when the original test suite was created.

Therefore, automatic methods are needed that analyze the effects of changes effectively to

support software-engineering tasks such as test-suite augmentation.

This dissertation addresses the challenge of making the analysis of the effects of changes

effective and practical by presenting a set of principled and cost-conscious approaches and

techniques. At a fundamental level, this dissertation provides theoretical foundations of the

effects of changes by defining exactly what a change is, what the effects of a change are

on the behavior of a program, and how changes affect each other. These foundations are

the basis for a principled and accurate computational approach to identify these effects. At

the fundamental level, this dissertation also identifies a costly core aspect of the computa-

tional approach—symbolic execution of multiple paths—and introduces a new technique

that improves substantially the scalability of this form of symbolic execution.

At a practical level, this dissertation presents a number of techniques that provide usable

approximations to the fundamental approach for computing the effects of changes. These

techniques support the analysis and testing of changes by automatically identifying the set

of potential effects of a change within distance limits, providing the means to test those

148

effects on demand, and detecting the interactions that changes exhibit at runtime. The po-

tential effects identified by these approximations can serve as change-testing requirements,

which we call “propagation-based” because they take into account the transfer conditions

on the program state. The studies presented in this dissertation indicate that propagation-

based testing requirements are significantly more effective for detecting behavioral differ-

ences than the testing approaches presented in the literature, which are based only on the

coverage of affected program entities. These studies also show that propagation-based test-

ing requirements can be particularly cost-effective by identifying and satisfying them on

demand. In addition, two case studies in this dissertation illustrate how developers can

satisfy propagation-based testing requirements in practice.

Another practical problem addressed in this dissertation is that developers often make

multiple changes to software and thus the interplay among changes must be accounted for.

For instance, developers need to know whether changes that have different purposes inter-

fere with each other unexpectedly and whether changes that should work together are inter-

acting as expected. Although the problem of determining whether changes affect each other

is undecidable, this dissertation presents and studies a new technique, based on the same

foundations of change-effects analysis, for precisely detecting whether changes interact at

runtime. The studies indicate that this technique, despite its cost, has an unprecedented

level of accuracy for detecting such interactions and that existing dynamic analyses, re-

garded as state-of-the-art, are actually quite insufficient for this task. Thus, new and better

approximations are needed for change-interaction detection.

8.1 Merit

The research presented in this dissertation has several merits that enhance the understanding

and technical development of the analysis of changes for researchers and practitioners.

These merits are:

1. A foundational treatment of the nature of changes and their effects on the behavior

149

of programs that establishes, to an unprecedented level of detail, what these effects

are and how they are obtained programmatically. These foundational concepts can

serve as the basis for a variety of theoretical and practical studies and techniques in

regression testing, software evolution, and other change-related disciplines.

2. A new class of precise analyses of the effects of changes that we call change-effects

analysis and is based on the aforementioned foundations. This class of analyses en-

ables the development of new and more cost-effective techniques for change-related

tasks, including the techniques presented in this dissertation:

(a) A new test-suite augmentation technique that provides developers with a set of

propagation-based testing requirements for a modified program that represents

precisely the space of all possibly affected behaviors, within some limits. The

studies in this dissertation suggest that using these testing requirements is more

effective than using the coverage-based techniques from the literature.

(b) A demand-driven approach for this new test-suite augmentation technique that

provides developers with on-demand information about the satisfaction of test-

ing requirements to allow for greater distances to be reached. The studies in this

dissertation of this approach confirm the superiority that developers can expect

from using propagation-based requirements.

(c) A new technique, SCHID, for accurately detecting whether changes interact

at runtime, which lets developers determine whether it is safe, with respect

to existing test cases, to merge changes that should not affect each other and

whether changes interact as they should during testing. The study of this tech-

nique warns developers that analyses such as dynamic slicing are not precise

for change interaction and that precise techniques such as SCHID are needed.

3. A new supporting approach for more scalable multiple-path symbolic execution that

gives developers more information per unit of time about the effects of changes than

150

using traditional, path-by-path symbolic execution. This new analysis technique also

shows great promise for significant improvements in other applications of symbolic

execution, such as test-data generation and invariant discovery.

8.2 Future Work

The foundations of change-effects analysis presented in this dissertation have broader im-

plications for the future of research on changes and their effects than just the techniques

presented in this dissertation. These foundations can be investigated further as the basis for

theoretical and practical work:

• At the theoretical level, the foundations can provide new insights on how changes

propagate through software components, including not only code but also data (e.g.,

databases, files). New theories can be developed as an extension of these foundations

that better suit changes in concurrent and data-driven software. (Our foundations cur-

rently support virtually all types of software, as long as it is possible to capture all

sources of uncertainty as inputs.) Also, we envision the opportunity of using our

foundations to define a framework for the specification of formal semantics of pro-

gramming changes, much like existing formal semantics of programming languages.

• At the practical level, approximate models of the effects of changes can be created

that, while not necessarily applicable directly, provide solid foundations for tasks

such as change-impact analysis for which current research is inadequate in light of the

results obtained in this dissertation. Specifically, our results highlight the importance

of including state-difference information as a complement of coverage information.

Thus, state-difference information needs to be researched further.

The techniques presented in this dissertation for computing testing requirements are by

no means the only ways in which the effects of changes can be approximated. For example,

various heuristics can be used to identify and prioritize clusters of the effects of changes to

151

focus the testing efforts on the areas that are most likely or most strongly impacted by those

changes. In that line, we have already initiated research on a technique called probabilistic

forward slicing [95] with promising initial results. The technique statically estimates the

chances that any given point in the program is impacted by a change and the strength of

that impact. Because the testing requirements that matter the most for testing are those not

yet satisfied, it is important for developers to determine which not-yet-observed behaviors

of a change are the most affected and likely to satisfy next during testing.

On the experimental side, it is necessary to investigate the ability of change-testing

techniques to not only reveal the observable differences in the behavior of software caused

by changes but also to detect any errors introduced by those changes. Finding differences

caused by changes is already a difficult task, as shown in this dissertation, and therefore

cost-effective techniques such as those developed in this work are needed to find as many

differences as possible as a requisite for detecting change-related errors. However, more

experiments and case studies conducted by developers other than the author should be

conducted in the future to assess the error-detection abilities of these techniques.

Another important avenue of future research is the automation of test-data creation for

satisfying propagation-based testing requirements for changes. Despite recent advances

in test-data generation, the problem of targeted test-data generation (i.e., generation of

inputs for reaching a particular point in the program) is far from solved. Moreover, the

propagation-based testing of changes requires not only the execution of the change, but

also the satisfaction of infection and propagation conditions. Thus, it is unclear whether

test-data generation for change effects can be automated to a satisfactory level, although

the current immaturity of this field suggests that much greater automation can be achieved.

In all, creating test data for change testing is the natural next step in this line of research to

improve upon the purely-manual approach used in our case studies. The large amount of

developer involvement currently limits our ability to study change-testing techniques.

152

One promising direction for improving test-data generation for change-testing and other

goals is the use of SPD. SPD is not only capable of describing multiple related paths suc-

cinctly, but it can also use abstractions to further reduce the burden on the constraint solver

and perhaps open the door for integrating other mechanisms, such as genetic algorithms,

to satisfy abstract conditions. But test-data generation is not the only potential application

of SPD. Other important applications of multiple-path symbolic execution—and thus of

SPD—that could be investigated next include static specification mining, static invariant

detection, verification, and statistical fault localization.

Finally, improvements can be made for the dynamic change-interaction detection tech-

nique presented in Chapter 7 to make its implementation practical for executions longer

than those studied. Because the amount of dependence and state-difference information

collected at runtime and the cost of analyzing that information can be very large, we should

consider two lines of improvement: making the implementation more efficient and develop-

ing less accurate but more scalable approximations. Towards these goals, we are investigat-

ing static analyses that can considerably reduce the amount of instrumentation needed and

keep under control the runtime overhead and the amount of information collected. Good

candidates for achieving these goals are techniques that infer precisely or approximately

the coverage of expensive-to-monitor entities using the coverage of cheaper-to-monitor en-

tities, such as techniques we have already developed [93].

153

REFERENCES

[1] AGRAWAL, H. and HORGAN, J. R., “Dynamic program slicing,” in Proceedings
of ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 246–256, 1990.

[2] AHO, A. V., SETHI, R., and ULLMAN, J. D., Compilers: Principles, Techniques
and Tools. Addison-Wesley, 1986.

[3] ANAND, S., GODEFROID, P., and TILLMANN, N., “Demand-driven compositional
symbolic execution,” in Proceedings of International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pp. 367–381, Mar. 2008.

[4] APACHE SOFTWARE FOUNDATION, THE. Apache Ant version 1.8.2. http://
ant.apache.org/. Sept., 2010.

[5] APIWATTANAPONG, T., ORSO, A., and HARROLD, M. J., “Efficient and pre-
cise dynamic impact analysis using execute-after sequences,” in Proceedings of
IEEE/ACM International Conference on Software Engineering, May 2005.

[6] APIWATTANAPONG, T., SANTELICES, R., CHITTIMALLI, P. K., ORSO, A., and
HARROLD, M. J., “Matrix: Maintenance-oriented testing requirement identifier and
examiner,” in Proceedings of Testing and Academic Industrial Conference Practice
and Research Techniques, pp. 137–146, Aug. 2006.

[7] ARNOLD, R. S. and BOHNER, S. A., “Impact analysis - towards a framework
for comparison,” in Proceedings of IEEE Conference on Software Maintenance,
pp. 292–301, Sept. 1993.

[8] BABIC, D. and HU, A. J., “Calysto: Scalable and precise extended static checking,”
in Proceedings of IEEE/ACM International Conference on Software Engineering,
pp. 211–220, May 2008.

[9] BALL, T., MAJUMDAR, R., MILLSTEIN, T., and RAJAMANI, S. K., “Automatic
predicate abstraction of C programs,” in Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementation, June 2001.

[10] BARNETT, M. and LEINO, K. R. M., “Weakest-precondition of unstructured pro-
grams,” in Proceedings of Workshop on Program Analysis for Software Tools and
Engineering, pp. 82–87, Sept. 2005.

[11] BARRETT, C. and TINELLI, C., “CVC3,” in Proceedings of International Confer-
ence on Computer Aided Verification, vol. 4590 of Lecture Notes in Computer Sci-
ence, pp. 298–302, Springer-Verlag, July 2007.

154

http://ant.apache.org/
http://ant.apache.org/

[12] BEIZER, B., Software Testing Techniques. International Thomson Computer Press;
2nd edition, June 1990.

[13] BENNETT, K. H. and RAJLICH, V. T., “Software maintenance and evolution: a
roadmap,” in Proceedings of Conference on The Future of Software Engineering,
ICSE 2000, pp. 73–87, May 2000.

[14] BEYER, D., HENZINGER, T. A., JHALA, R., and MAJUMDAR, R., “The software
model checker Blast: Applications to software engineering,” International Journal
of Software Tools for Technology Transfer, vol. 9, pp. 505–525, Oct. 2007.

[15] BEYER, D., HENZINGER, T. A., and THÉODULOZ, G., “Configurable software
verification: Concretizing the convergence of model checking and program analy-
sis,” in Proceedings of International Conference on Computer Aided Verification,
pp. 504–518, July 2007.

[16] BINKLEY, D., DANICIC, S., GYIMOTHY, T., HARMAN, M., KISS, A., and OUAR-
BYA, L., “Formalizing executable dynamic and forward slicing,” in Proceedings
of Source Code Analysis and Manipulation, Fourth IEEE International Workshop,
pp. 43–52, Sept. 2004.

[17] BINKLEY, D., “Semantics guided regression test cost reduction,” IEEE Transactions
on Software Engineering, 23(8):498–516, Aug. 1997.

[18] BINKLEY, D., GOLD, N., and HARMAN, M., “An empirical study of static program
slice size,” ACM Transactions Software Engineering and Methodology, vol. 16, Apr.
2007.

[19] BINKLEY, D., HORWITZ, S., and REPS, T., “Program integration for languages
with procedure calls,” ACM Transactions on Software Engineering and Methodol-
ogy, vol. 4, pp. 3–35, Jan. 1995.

[20] BOHNER, S. A. and ARNOLD, R. S., An introduction to software change impact
analysis. In Software Change Impact Analysis, Bohner & Arnold, Eds. IEEE Com-
puter Society Press, pp. 1–26, June 1996.

[21] BRIAND, L. C., WUEST, J., and LOUNIS, H., “Using coupling measurement for
impact analysis in object-oriented systems,” in Proceedings of IEEE International
Conference on Software Maintenance, pp. 475–482, Aug. 1999.

[22] BRYANT, R. E., LAHIRI, S. K., and SESHIA, S. A., “Modeling and verifying sys-
tems using a logic of counter arithmetic with lambda expressions and uninterpreted
functions,” in Proceedings of International Conference on Computer Aided Verifica-
tion, pp. 78–92, July 2002.

[23] CHAMBERS, C., MOCK, M., ATKINSON, D. C., and EGGERS, S. J., “Program slic-
ing with dynamic points-to sets,” IEEE Transactions Software Engineering, vol. 31,
no. 8, pp. 657–678, 2005.

155

[24] CHANDRA, S., FINK, S. J., and SRIDHARAN, M., “Snugglebug: A powerful ap-
proach to weakest preconditions,” in Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 363–374, June 2009.

[25] CHEN, Y. F., ROSENBLUM, D. S., and VO, K. P., “Testtube: A system for selec-
tive regression testing,” in Proceedings of IEEE/ACM International Conference on
Software Engineering, pp. 211–222, May 1994.

[26] CLARKE, E. M., GRUMBERG, O., JHA, S., LU, Y., and VEITH, H.,
“Counterexample-guided abstraction refinement for symbolic model checking,”
Journal of the ACM, vol. 50, no. 5, pp. 752–794, 2003.

[27] CLARKE, L. A., “A system to generate test data and symbolically execute pro-
grams,” IEEE Transactions on Software Engineering, vol. 2, no. 3, pp. 215–222,
1976.

[28] CLARKE, L. A. and RICHARDSON, D. J., “Applications of symbolic evaluation.,”
Journal of Systems and Software, vol. 5, pp. 15–35, Feb. 1985.

[29] COHEN, M. B., GIBBONS, P. B., MUGRIDGE, W. B., and COLBOURN, C. J.,
“Constructing test suites for interaction testing,” in Proceedings of IEEE/ACM In-
ternational Conference on Software Engineering, pp. 38–48, May 2003.

[30] COLLINS-SUSSMAN, B., FITZPATRICK, B. W., and PILATO, C. M., Version Con-
trol with Subversion. The Apache Foundation and O’Reilly Media, Oct. 2011.
http://svnbook.org.

[31] CSALLNER, C., TILLMANN, N., and SMARAGDAKIS, Y., “DySy: Dynamic sym-
bolic execution for invariant inference,” in Proceedings of IEEE/ACM International
Conference on Software Engineering, pp. 281–290, May 2008.

[32] CURRIE, D., FENG, X., FUJITA, M., HU, A. J., KWAN, M., and RAJAN, S., “Em-
bedded software verification using symbolic execution and uninterpreted functions,”
International Journal of Parallel Programming, vol. 34, no. 1, pp. 61–91, 2006.

[33] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., and ZADECK,
F. K., “Efficiently computing static single assignment form and the control depen-
dence graph,” ACM Transactions Programming Languages and Systems, vol. 13,
no. 4, pp. 451–490, 1991.

[34] DEMILLO, R. A., LIPTON, R. J., and SAYWARD, F. G., “Hints on test data se-
lection: Help for the practicing programmer,” Computer, vol. 11, pp. 34–41, Apr.
1978.

[35] DIJKSTRA, E. W., A Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ, Oct. 1976.

156

http://svnbook.org

[36] DO, H., ELBAUM, S., and ROTHERMEL, G., “Supporting controlled experimenta-
tion with testing techniques: An infrastructure and its potential impact,” Empirical
Software Engineering, vol. 10, pp. 405–435, Oct. 2005.

[37] DOLBY, J., VAZIRI, M., and TIP, F., “Finding bugs efficiently with a SAT solver,”
in Proceedings of ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, pp. 195–204, Sept. 2007.

[38] ENGLER, D. and DUNBAR, D., “Under-constrained execution: making automatic
code destruction easy and scalable,” in Proceedings of International Symposium on
Software Testing and Analysis, pp. 1–4, July 2007.

[39] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., and NOTKIN, D., “Dynam-
ically discovering likely program invariants to support program evolution,” IEEE
Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123, 2001.

[40] ESQUARED LAB. Software-artifact Infrastructure Repository., Apr. 2012. http:
//sir.unl.edu. University of Nebraska, Lincoln.

[41] FERRANTE, J., OTTENSTEIN, K., and WARREN, J., “The program dependence
graph and its use in optimization,” ACM Transactions on Programming Languages
and Systems, vol. 9, no. 3, pp. 319–349, 1987.

[42] FISCHER, J., JHALA, R., and MAJUMDAR, R., “Joining dataflow with predicates,”
in Proceedings of ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, pp. 227–236, Sept. 2005.

[43] FLANAGAN, C. and SAXE, J. B., “Avoiding exponential explosion: generating com-
pact verification conditions,” in Proceedings of ACM Symposium on Principles of
Programming Languages, pp. 193–205, Jan. 2001.

[44] FOWLER, M., BECK, K., BRANT, J., OPDYKE, W., and ROBERTS, D., Refactor-
ing: Improving the Design of Existing Code. Addison-Wesley, July 1999.

[45] FRANKL, P. and WEYUKER, E. J., “An applicable family of data flow criteria,”
IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1483–1498, 1988.

[46] GALLAGHER, K. B. and LYLE, J. R., “Using program slicing in software mainte-
nance,” IEEE Transactions Software Engineering, vol. 17, no. 8, pp. 751–761, 1991.

[47] GODEFROID, P., KLARLUND, N., and SEN, K., “DART: Directed automated ran-
dom testing,” in Proceedings of ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, June 2005.

[48] GULAVANI, B. S., HENZINGER, T. A., KANNAN, Y., NORI, A. V., and RAJA-
MANI, S. K., “SYNERGY: A new algorithm for property checking,” in Proceedings
of ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 117–
127, Nov. 2006.

157

http://sir.unl.edu
http://sir.unl.edu

[49] GUPTA, R., HARROLD, M. J., and SOFFA, M. L., “An approach to regression
testing using slicing,” in Proceedings of IEEE Conference on Software Maintenance,
Nov. 1992.

[50] GUPTA, R., HARROLD, M., and SOFFA, M., “Program slicing-based regres-
sion testing techniques,” Journal of Software Testing, Verification, and Reliability,
6(2):83–111, June 1996.

[51] HAMLET, R. G., “Testing programs with the aid of a compiler,” IEEE Transactions
Software Engineering, vol. 3, pp. 279–290, July 1977.

[52] HARROLD, M. J., GUPTA, R., and SOFFA, M. L., “A methodology for controlling
the size of a test suite,” ACM Transactions on Software Engineering and Methodol-
ogy, 2(3):270–285, July 1993.

[53] HARROLD, M. J., JONES, J. A., LI, T., LIANG, D., ORSO, A., PENNINGS, M.,
SINHA, S., SPOON, S. A., and GUJARATHI, A., “Regression test selection for java
software,” in Proceedings of ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 312–326, Nov. 2001.

[54] HARROLD, M., ROTHERMEL, G., SAYRE, K., WU, R., and YI, L., “An empirical
investigation of the relationship between spectra differences and regression faults,”
Journal of Software Testing, Verification and Reliability, vol. 10, pp. 171–194, Sept.
2000.

[55] HORWITZ, S., REPS, T., and BINKLEY, D., “Interprocedural slicing using depen-
dence graphs,” in Proceedings of ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 35–46, June 1988.

[56] HORWITZ, S., PRINS, J., and REPS, T., “Integrating non-interfering versions of
programs,” ACM Transactions on Programming Languages and Systems, vol. 11,
pp. 345–387, July 1989.

[57] HORWITZ, S., REPS, T., and BINKLEY, D., “Interprocedural slicing using de-
pendence graphs,” ACM Transactions on Programming Languages and Systems,
12(1):26-60, Jan. 1990.

[58] HOWDEN, W. E., Tutorial: Software Testing and Validation Techniques. IEEE Com-
puter Society, 1978.

[59] HUANG, J. C., “An approach to program testing,” ACM Computing Surveys, vol. 7,
no. 3, pp. 113–128, 1975.

[60] HUTCHINS, M., FOSTER, H., GORADIA, T., and OSTRAND, T., “Experiments of
the effectiveness of dataflow- and controlflow-based test adequacy criteria,” in Pro-
ceedings of IEEE/ACM International Conference on Software Engineering, pp. 191–
200, May 1994.

158

[61] JHALA, R. and MAJUMDAR, R., “Path slicing,” in Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 38–47,
June 2005.

[62] JIN, W., ORSO, A., and XIE, T., “Automated behavioral regression testing,” in
Proceedings of IEEE International Conference on Software Testing, Verification and
Validation, pp. 137–146, Apr. 2010.

[63] KING, J. C., “Symbolic execution and program testing,” Communications of the
ACM, vol. 19, pp. 385–394, July 1976.

[64] KOREL, B. and LASKI, J., “Dynamic program slicing,” Information Processing
Letters, vol. 29, no. 3, pp. 155–163, 1988.

[65] KOREL, B. and AL-YAMI, A. M., “Automated regression test generation,” in Pro-
ceedings of International Symposium on Software Testing and Analysis, pp. 143–
152, Mar. 1998.

[66] KUNG, D., GAO, J., HSIA, P., TOYASHIMA, Y., and CHEN, C., “Firewall re-
gression testing and software maintenance of object-oriented systems,” Journal of
Object-Oriented Programming, 1994.

[67] LASKI, J. W. and KOREL, B., “A data flow oriented program testing strategy,” IEEE
Transactions on Software Engineering, vol. 9, no. 3, pp. 347–354, 1983.

[68] LAW, J. and ROTHERMEL, G., “Whole program path-based dynamic impact analy-
sis,” in Proceedings of IEEE/ACM International Conference on Software Engineer-
ing, pp. 308–318, May 2003.

[69] LEUNG, H. K. N. and WHITE, L. J., “Insights into regression testing,” in Proceed-
ings IEEE of Conference on Software Maintenance, pp. 60–69, Oct. 1989.

[70] LI, L. and OFFUTT, A. J., “Algorithmic analysis of the impact of changes to object-
oriented software,” in Proceedings of IEEE International Conference on Software
Maintenance, pp. 171–184, Nov. 1996.

[71] MORELL, L., “A Theory of Fault-Based Testing,” IEEE Transactions on Software
Engineering, 16(8):844-857, Aug. 1990.

[72] MYERS, G. J., The Art of Software Testing, 2nd Edition. Wiley, June 2004.

[73] NANDA, M. G. and SINHA, S., “Accurate interprocedural null-dereference analy-
sis for Java,” in Proceedings of IEEE/ACM International Conference on Software
Engineering, pp. 133–143, May 2009.

[74] NTAFOS, S. C., “On required element testing,” IEEE Transactions on Software En-
gineering, 10(6):795–803, Nov. 1984.

159

[75] ORSO, A., APIWATTANAPONG, T., and HARROLD, M. J., “Leveraging field data
for impact analysis and regression testing,” in Proceedings of ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pp. 128–137, Sept. 2003.

[76] ORSO, A., APIWATTANAPONG, T., LAW, J. B., ROTHERMEL, G., and HARROLD,
M. J., “An empirical comparison of dynamic impact analysis algorithms,” in Pro-
ceedings of IEEE/ACM International Conference on Software Engineering, pp. 491–
500, May 2004.

[77] ORSO, A., SHI, N., and HARROLD, M. J., “Scaling regression testing to large
software systems,” in Proceedings of ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 241–252, Nov. 2004.

[78] PERSON, S., DWYER, M. B., ELBAUM, S., and PǍSǍREANU, C. S., “Differential
symbolic execution,” in Proceedings of ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, pp. 226–237, Nov. 2008.

[79] PODGURSKI, A. and CLARKE, L., “A formal model of program dependences and its
implications for software testing, debugging, and maintenance,” IEEE Transactions
on Software Engineering, vol. 16, no. 9, pp. 965–979, 1990.

[80] QI, D., ROYCHOUDHURY, A., and LIANG, Z., “Test generation to expose changes
in evolving programs,” in Proceedings of IEEE/ACM International Conference on
Automated Software Engineering, pp. 397–406, Sept. 2010.

[81] RAJLICH, V. T., “A model for change propagation based on graph rewriting,” in
Proceedings of IEEE International Conference on Software Maintenance, pp. 84–
91, Sept. 1997.

[82] RAPPS, S. and WEYUKER, E. J., “Selecting software test data using data flow infor-
mation,” IEEE Transactions on Software Engineering, vol. 11, no. 4, pp. 367–375,
1985.

[83] REN, X., SHAH, F., TIP, F., RYDER, B. G., and CHESLEY, O., “Chianti: a tool for
change impact analysis of java programs,” in Proceedings of ACM Conference on
Object Oriented Programming Systems, Languages, and Applications, pp. 432–448,
Oct. 2004.

[84] REPS, T., HORWITZ, S., and SAGIV, M., “Precise interprocedural dataflow anal-
ysis via graph reachability,” in Proceedings of ACM Symposium on Principles of
Programming languages, pp. 49–61, 1995.

[85] RICHARDSON, D. and THOMPSON, M. C., “The RELAY model of error detection
and its application,” in Proceedings of Workshop on Software Testing, Analysis and
Verification, pp. 223–230, July 1988.

[86] RICHARDSON, D. J. and THOMPSON, M. C., “An analysis of test data selection
criteria using the RELAY model of fault detection,” IEEE Transactions Software
Engineering, vol. 19, pp. 533–556, June 1993.

160

[87] ROTHERMEL, G. and HARROLD, M. J., “Selecting tests and identifying test cover-
age requirements for modified software,” in Proceedings of International Symposium
on Software Testing and Analysis, pp. 169–184, Aug. 1994.

[88] ROTHERMEL, G. and HARROLD, M. J., “A safe, efficient regression test selection
technique,” ACM Transactions on Software Engineering and Methodology, vol. 6,
pp. 173–210, Apr. 1997.

[89] ROTHERMEL, G., HARROLD, M. J., and DEDHIA, J., “Analyzing regression test
selection techniques,” vol. 22, pp. 529–551, Aug. 1996.

[90] ROTHERMEL, G., UNTCH, R., CHU, C., and HARROLD, M., “Test Case Prioritiza-
tion,” IEEE Transactions on Software Engineering, 27(10):929–948, Oct. 2001.

[91] SABLE RESEARCH GROUP. Soot Analysis Framework., Apr. 2012. http://www.
sable.mcgill.ca/soot. McGill University.

[92] SANTELICES, R., CHITTIMALLI, P. K., APIWATTANAPONG, T., ORSO, A., and
HARROLD, M. J., “Test-suite augmentation for evolving software,” in Proceed-
ings of IEEE/ACM International Conference on Automated Software Engineering,
pp. 218–227, Sept. 2008.

[93] SANTELICES, R. and HARROLD, M. J., “Efficiently monitoring data-flow test cov-
erage,” in Proceedings of IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 343–352, Nov. 2007.

[94] SANTELICES, R. and HARROLD, M. J., “Exploiting program dependencies for scal-
able multiple-path symbolic execution,” in Proceedings of International Symposium
on Software Testing and Analysis, pp. 195–206, July 2010.

[95] SANTELICES, R. and HARROLD, M. J., “Probabilistic slicing for predictive impact
analysis.” Technical Report GIT-CERCS-10-10, CERCS, Georgia Institute of Tech-
nology. 10 pages. http://hdl.handle.net/1853/36917, Nov. 2010.

[96] SANTELICES, R. and HARROLD, M. J., “Applying aggressive propagation-based
strategies for testing changes,” in Proceedings of Fourth IEEE International Confer-
ence on Software Testing, Verification and Validation, pp. 11–20, Mar. 2011.

[97] SANTELICES, R., HARROLD, M. J., and ORSO, A., “Precisely detecting runtime
change interactions for evolving software,” in Proceedings of IEEE International
Conference on Software Testing, Verification and Validation, pp. 429–438, Apr.
2010.

[98] SANTELICES, R., JONES, J. A., YU, Y., and HARROLD, M. J., “Lightweight fault
localization using multiple coverage types,” in Proceedings of IEEE/ACM Interna-
tional Conference on Software Engineering, pp. 56–66, May 2009.

161

http://www.sable.mcgill.ca/soot
http://www.sable.mcgill.ca/soot
http://hdl.handle.net/1853/36917

[99] SEN, K., MARINOV, D., and AGHA, G., “CUTE: A concolic unit testing engine for
C,” in Proceedings of ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 263–272, Sept. 2005.

[100] SIEGEL, S. F., MIRONOVA, A., AVRUNIN, G. S., and CLARKE, L. A., “Combining
symbolic execution with model checking to verify parallel numerical programs,”
ACM Transactions Software Engineering and Methodology, vol. 17, pp. 1–34, Apr.
2008.

[101] SINHA, S., HARROLD, M. J., and ROTHERMEL, G., “Interprocedural control de-
pendence,” ACM Transactions Software Engineering and Methodology, vol. 10,
no. 2, pp. 209–254, 2001.

[102] SNELTING, G., ROBSCHINK, T., and KRINKE, J., “Efficient path conditions in
dependence graphs for software safety analysis,” ACM Transactions Software Engi-
neering and Methodology, vol. 15, pp. 410–457, Oct. 2006.

[103] SRIVASTAVA, A. and THIAGARAJAN, J., “Effectively prioritizing tests in develop-
ment environment,” in Proceedings of International Symposium on Software Testing
and Analysis, pp. 97–106, July 2002.

[104] TAGHDIRI, M., SEATER, R., and JACKSON, D., “Lightweight extraction of syntac-
tic specifications,” in Proceedings of ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 276–286, Nov. 2006.

[105] THOMPSON, M. C., RICHARDSON, D. J., and CLARKE, L. A., “An information
flow model of fault detection,” in Proceedings of International Symposium on Soft-
ware Testing and Analysis, pp. 182–192, July 1993.

[106] VALLÉE-RAI, R., CO, P., GAGNON, E., HENDREN, L., LAM, P., and SUNDARE-
SAN, V., “Soot - a java bytecode optimization framework,” in Proceedings of Con-
ference of the Centre for Advanced Studies on Collaborative Research, p. 13, IBM
Press, 1999.

[107] VISSER, W., HAVELUND, K., BRAT, G., PARK, S., and LERDA, F., “Model check-
ing programs,” Automated Software Engineering, vol. 10, no. 2, pp. 203–232, 2003.

[108] VISSER, W., PǍSǍREANU, C. S., and KHURSHID, S., “Test input generation with
java pathfinder,” in Proceedings of International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pp. 97–107, Mar. 2004.

[109] VOAS, J., “PIE:A Dynamic Failure-Based Technique,” IEEE Transactions on Soft-
ware Engineering, 18(8):717–727, Aug. 1992.

[110] WALPOLE, R. E., MYERS, R. H., MYERS, S. L., and YE, K. E., Probability and
Statistics for Engineers and Scientists (9th Edition). Prentice Hall, Jan. 2011.

162

[111] WEISE, D., CREW, R. F., ERNST, M. D., and STEENSGAARD, B., “Value depen-
dence graphs: Representation without taxation,” in Proceedings of ACM Symposium
on Principles of Programming Languages, pp. 297–310, Jan. 1994.

[112] WEISER, M., “Program slicing,” IEEE Transactions on Software Engineering,
vol. 10, no. 4, pp. 352–357, 1984.

[113] WLOKA, J., RYDER, B., TIP, F., and REN, X., “Safe-commit analysis to facilitate
team software development,” in Proceedings of IEEE/ACM International Confer-
ence on Software Engineering, pp. 507–517, May 2009.

[114] WONG, W. E., HORGAN, J. R., LONDON, S., and MATHUR, A. P., “Effect of
test set minimization on fault detection effectiveness,” in Proceedings of IEEE/ACM
International Conference on Software Engineering, pp. 41–50, Apr. 1995.

[115] XIE, T. and NOTKIN, D., “Checking inside the black box: Regression testing
by comparing value spectra,” IEEE Transactions Software Engineering, vol. 31,
pp. 869–883, Oct. 2005.

[116] XIE, T., TILLMANN, N., DE HALLEUX, P., and SCHULTE, W., “Fitness-guided
path exploration in dynamic symbolic execution,” in Proceedings of IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, June 2009.

[117] XU, Z., KIM, Y., KIM, M., COHEN, M., and ROTHERMEL, G., “Directed test suite
augmentation: techniques and tradeoffs,” in Proceedings Symposium Foundations
Software Engineering, pp. 257–266, Nov. 2010.

[118] XU, Z. and ROTHERMEL, G., “Directed test suite augmentation,” in Asia-Pacific
Software Engineering Conference, pp. 406–413, Dec. 2009.

163

VITA

Raúl Andrés Santelices Ahués was born May 22, 1975 in Santiago, Chile. He attended

Colegio Antártica Chilena for primary and middle school and Colegio San Pedro Nolasco

for high school. In 2000 he simultaneously received the Engineer in Computer Science and

M.S. in Computer Science degrees from Pontificia Universidad Católica de Chile. Between

1997 and 2005, he worked as a software engineer and, later, as a chief software architect

in the educational, mobile, and videogames industries. Between 2003 and 2005, he devel-

oped and taught a Software Architecture course at Pontificia Universidad Católica de Chile,

after which he joined the Ph.D. program at the Georgia Institute of Technology under the

advisement of Dr. Mary Jean Harrold. In August 2011, Raúl joined the academic faculty

of the University of Notre Dame as an Assistant Professor in the Computer Science and

Engineering department.

164

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Thesis Statement
	Overview of the Dissertation
	Contributions

	Chapter 2 — Background
	Program Analysis
	Control Flow Analysis
	Program Dependencies
	Slicing
	Symbolic Execution

	Fault Propagation Models
	Regression Testing and Test-suite Augmentation
	Coverage-based Testing Criteria for Whole Software
	Coverage-based Testing Criteria for Modified Software

	Chapter 3 — Foundations of Change-effects Analysis
	Formal Model of the Effects of Changes
	Working Example
	Definition of Code Change
	Effects of Individual Changes
	Effects of Multiple Changes

	Computation of the Effects of Changes
	Chain Conditions
	State Conditions

	Related Work

	Chapter 4 — Scalability of Change-effects Analysis
	Motivation
	The SPD Technique
	Working Example
	Overview of the SPD Technique
	Abstraction of Loops and Complex Code
	Construction of Path Families
	Partition of Path Families
	The SPD Algorithm

	Implementation of SPD
	Study: Path-space Reduction
	Empirical Setup
	Results and Analysis
	Threats to Validity

	Related Work

	Chapter 5 — Analysis and Testing of Individual Changes
	Study of Coverage-based Testing of Individual Changes
	Empirical Setup
	Results and Analysis

	Propagation-based Testing of Individual Changes
	Overview
	Technique

	Implementation of Propagation-based Technique
	Evaluation of Propagation-based Technique
	Study using Traditional Symbolic Execution
	Study using SPD
	Threats to Validity

	Related Work

	Chapter 6 — Demand-driven Testing of Changes
	Limitations of Propagation-based Testing Requirements
	Demand-driven Propagation-based Testing Strategies
	Implementation of Demand-driven Strategies
	Comprehensive Study of Demand-driven Strategies
	Empirical Setup
	Results and Analysis
	Threats to Validity

	Case Studies of Demand-driven Strategies
	Empirical Setup
	Results and Analysis: Schedule1
	Results and Analysis: Ant
	Threats to Validity

	Related Work

	Chapter 7 — Analysis and Testing of Multiple Changes
	Adapted Testing Requirements for Multiple Changes
	Multiple-change Context for Individual Changes
	Case Study: Multiple-change Context for Individual Changes

	Interactions among Multiple Changes
	Motivation for Change-interaction Detection
	Towards Accurate Change-Interaction Detection
	A Precise Change-interaction Detection Technique
	Implementation of SChID
	Study of Change-interaction Detection Techniques

	Related Work

	Chapter 8 — Conclusion and Future Work
	Merit
	Future Work

	References
	Vita

