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SUMMARY

With advances in optical transmission technologies that offer high bandwidths and sus-

tained growth of Internet traffic, network speed has reached a phenomenal level putting

high pressure on network devices. Meanwhile, the ever-increasing requirements of network

applications demand more functionalities to be fulfilled along with the packet transmission.

Network processors are new types of processors with multiple threads and multiple

processor cores on the same chip. The multicore design offers enormous parallel processing

power to handle high speed packet streams, which are mostly independent. To expedite

packet processing and provide enough programmability, network processors are designed

with special features like simplified ISA and pipeline, banked register file, special functional

units etc. The multithreaded chip multiprocessor design together with other architectural

peculiarities raise new challenges for compiler optimizations. Moreover, the unique demands

of network applications, such as real time scheduling and packet scheduling, put a heavy

burden on the programmers and compiler writers. In this work, we study several compiler

optimization techniques on the popular Intel IXP network processor.

Due to very high clocking speeds, the memory gap on this network processor is huge,

making registers extremely precious. Moreover, the register file is split into two banks,

and for any ALU instruction, the two source operands must come from different banks.

We present and compare three different approaches to do register allocation and bank

assignment. We introduce the notion of register conflict graph (RCG), which captures the

dual-bank constraint. Generally, the problem is to break odd cycles on the RCG with

minimal performance loss. This work was built as a post-pass optimizer for Intel’s IXP

1200 series.

We also address the problem of sharing registers across multiple threads in order to

maximize the utilization of hardware resources. Context switches on the IXP network

xii



processor only happen when long latency operations are encountered. As a result, context

switches are highly frequent. Therefore, the designer of the IXP network processor decided

to make context switches extremely lightweight, i.e. only the program counter(PC) is

stored together with the context. Since registers are not saved and restored during context

switches, it becomes difficult to share registers across threads. For a conventional processor,

each thread can assume that it can use the entire register file, because registers are always

part of the context. However, with lightweight context switch, each thread must take a

separate piece of the register file, making register usage inefficient.

We found that even if registers are not protected across context switches, some registers

can still be shared across threads as long as those registers are not used across context

switch boundaries. This leads to big savings on the precious register resource, which in

turn contributes to speedup as some memory accesses are converted into register references.

In the development tools Intel used to ship, there was no support for this type of active

register allocation. Therefore, we designed a compiler framework to systematically estimate

the register requirements across threads and then balance register allocation by designating

private and shared registers at different program points in a thread.

Furthermore, using compiler analysis to share registers across threads could be overly

conservative due to the lack of runtime information. For example, some registers might be

unused if context switches occur in a particular sequence. Thus, we propose to use compiler

to provide information regarding which registers are dead at each context switch point.

Then, the hardware dynamically converts register accesses to memory accesses.

Programs executing on network processors typically have runtime constraints. Schedul-

ing of multiple threads sharing a CPU must be orchestrated by the OS and the hardware

using certain sharing policies. Real time applications demand a real time aware OS kernel

to meet their specified deadlines. However, due to stringent performance requirements on

network processors, which process packets from very high speed network traffic, neither OS

nor hardware mechanisms is typically feasible/available. Because network processors target

very high-speed lines and pushing such solutions into the hardware would be simply unac-

ceptable. On the other hand, the operating system poses a huge overhead, which is generally

xiii



not affordable on a network processor. In this research, we demonstrate that a compiler

approach could achieve some of the OS scheduling and real time scheduling functionalities

without introducing a hefty overhead.

xiv



CHAPTER I

INTRODUCTION

The speed of the network is increasing at a dramatic pace. With advances in optical trans-

mission technologies and sustained growth of Internet traffic, network speed has reached a

phenomenal level putting high pressure on network devices. Lots of research efforts have

focused on supporting higher line speed and a larger number of line interfaces [53]. Recent

industrial trend indicates that current high-speed routers can target OC-192 (10 Gb/s) or

OC-768 (40 Gb/s) line rates. However, it is anticipated that the next generation routers

would support OC-768 or even OC-3072 (160 Gb/s) line rates with hundreds of interfaces.

On the other hand, the ever-increasing requirements of network applications demand

more functionalities to be fulfilled along with the packet transmission. The explosive devel-

opment of the Internet has motivated packet processing at higher protocol layers. Typical

service disciplines such as stateless and stateful classification of packets, QoS support, real-

time constraints, traffic shaping, intrusion detection, security support, active networks,

etc. put a heavy computation burden on network devices and add more complexity to

their designs. Besides, due to the high variation of advanced packet processing and ser-

vice provisioning, a highly flexible infrastructure is desirable that could easily adapt to and

accommodate new implementations without reconstructing the entire system.

1.1 The Emergence of Network Processors

Network processors have historically evolved from routers and so we first take a look at

their evolution. Traditionally, there are two ways to build routers, however both have their

disadvantages in face of higher line speed and the need for programmability.

1.1.1 Routers built with GPP

Early routers were built on top of general-purpose processors with dedicated routing soft-

ware to process and forward packets among network interfaces. Software-based routers are
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suitable for low-speed networks because the overhead of general-purpose processors severely

limits the packet speed they can handle. For example, even at OC-192 line speed, we have

to deal with a packet stream of up to 32M packet/s, or 32ns/packet. Software-based so-

lution cannot keep pace with this line speed even for simple packet forwarding. The wide

deployments of virtual private networks (VPNs) and secure IP (IPSec) leads to expen-

sive encryption/decryption operations being performed on the packets during routing. [10]

shows that on a real 600Mhz Alpha 21264 workstation dedicated for cipher encryption,

the standard encryption algorithm 3DES can only deliver 7.32MB/s, not even enough to

saturate a trailing edge 100Mbs Ethernet link. On the contrary, a hardware implemen-

tation can improve the throughput of 3DES by over 700%. Although relying on software

implementation makes them highly programmable, (i.e. the routing software can be easily

updated and enhanced), the tremendous amount of overhead sets a stringent performance

and scalability limit, therefore restricts such routers to small scale periphery networks.

1.1.2 ASIC-based Routers

ASIC-based routers are built with ASIC chips manufactured by equipment vendors. These

chips are hardwired embedded chips to maximize the performance for common packet pro-

cessing modules. The standard architecture design principle of targeting the speedup of

most common operations is widely applied to ASIC-based routers. Ethernet switches for

layer-2 processing are deployed with little extra functionalities but can handle most local

traffic with an astonishing speed. Later, layer-3 switch/routers were on the market and

achieved a great success. However the high performance of such products is at the cost of

sacrificing variability and advanced features. Most of them focus on the de facto IP pro-

tocol while largely ignoring other complicated routing algorithms and service disciplines as

mentioned earlier. Secondly, ASIC-based routers have a long design cycle. These products

have no programmability or little programmability. Every functional update that requires

redesigning must take at least 12 months, significantly hindering the deployment cycle.
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1.1.3 Network Processor and Its Market Growth

Network processors are new types of processors dedicated to network processing. In other

words, they are Application Specific Instruction Processors (ASIP) geared towards both

fast speed and flexibility. A network processor contains multiple packet processors and a

number of special hardware units. In this manner, the speed of network processors can be

comparable to their ASIC counterparts. At the same time, their programmability allows a

wide range of applications being implemented.

Notice that it is almost impossible for software based packet processing to attain OC-192

or higher processing rates which is commonplace in core and edge networks. For network

processors, OC-192 has been reached by most vendors. On the other hand, value-added

services, such as QoS and VPN are desirable in enterprise networks, access points, etc.

However these services are constantly changing; new features are frequently being added,

therefore such services should be deployed with high flexibility. In short, network processors

combine the benefits of programmability of software-based routers and the high performance

of ASIC-based routers.

However, network processors are in stark contrast to either GPP or ASIC based routers,

since the tradeoff between flexibility and speed still exists. Due to this reason, network

processors are particularly designed in terms of their specialized hardware components,

ISAs, programming interface and compiler support.

Despite of the downturn in network and communication sector, the network processor

market is growing rapidly in recent years. A forecast made by technology analyst firm

Semico Research Corp [20] (as shown in Figure 1) predicted that the total revenue of the

network processor market will reach $ 600 million in 2007. Not only we observe major

network processor vendors like AMCC, Intel, IBM, Motorola, Agere etc. fiercely competing

for this fast growing market, there are also a number of companies such as Teja, Network

Speed, FutureSoft, etc. embarking on the software development and system integration

services for network processors. Network processors provide a broad range of functionalities

and lay basis for a wide variety of applications to be implemented with strong hardware

support.
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Figure 1: Network processor revenue trend

With many network processor vendors and products on the market, in this chapter, we

intend to summarize their characteristics from several aspects. We will first address the

application domain of network processors, then the architectural and compiler supports on

typical network processors.

1.2 Functionalities of Network Processors and Their Tar-
get Applications

Network processors provide a broad range of functionalities and lay basis for a wide variety of

network applications to be implemented with strong hardware support. With many network

processor vendors and products on the market, in this section we intend to summarize their

characteristics. We will also address the application domain of network processors.

1.2.1 Basic Packet Classification and Forwarding

Processing packets depending on their contents and forwarding them after classification are

the basic functionalities that must be supported on network processors. Network processors

are typically equipped with specialized hardware to accelerate such operations because they

are highly optimized for these common cases [63, 52, 41]. For example, IP lookup engines,

hash units can help IP packet forwarding. For network processors, ample flexibility is
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available to process packets belonging to a wide range of protocols. Also packet classification

and forwarding get more complicated as higher layers of the protocol stack are concerned.

1.2.2 Traffic Management

Traffic management involves routing packets following certain rules or algorithms. Packet

transmission can be orchestrated by their QoS requirements, packet scheduling algorithm,

or real-time constraints [15] amongst other things. For example, packets can be first cat-

egorized into flows. Different flows may have their distinct QoS properties. It is likely

that multimedia traffic such as voice and video will constitute an increasingly larger por-

tion of the future Internet traffic. Unlike normal data packets, voice and video are quite

different in that loss of a limited number of packets can be tolerated. These requirements

can be translated into QoS specifications for each flow and handled accordingly in network

processors. Packet scheduling based on scheduling algorithms like Priority Class based ap-

proaches, First Come First Serve, Fair Queueing/Weighted Fair Queueing (FQ/WFQ) have

been extensively studied in network domain. The goals of packet scheduling include sharing

the bandwidth properly, enforcing a predetermined policy etc. Normally, packets are as-

signed priorities after being processed. At the output port, the outgoing packets are ordered

according to their priorities. Packet transmission will follow that order. Moreover, routers

can be thought as one type of real-time systems that process packets in real-time. Real-time

constraints are tightly tied to QoS specification for packet flows. Packets are distinguished

and categorized according to their real-time properties instead of being transmitted with

best effort. In this manner, more important (urgent) packets are handled more promptly.

Typical real-time scheduling algorithms are Rate Monotonic (RM), Earliest Deadline First

(EDF), Minimal Laxity First (MLF), Dynamic Window-Constrained Scheduling (DWCS),

etc. All of these applications involve eliciting information (such as priorities) from the

packets, classifying them, queuing them and finally outputting them at the egress points.

1.2.3 Advanced Features

Network processors can be easily reprogrammed, which allows almost all kinds of applica-

tions to be implemented as long as the code can fit into the processor code store. There are
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a variety of applications that can be ported to network processors and actually some of them

are a part of active industrial efforts. For example, network security systems have attracted

lots of attentions in recent years due to the widespread of computer viruses and network

intrusion activities. Encryption/decryption algorithms are computational intensive, but can

be more efficiently performed on network processor with certain amount of specialized hard-

ware. Other examples are pattern-matching virus signatures, content inspection [67], etc.

Attempting such processing at packet level is more beneficial since the system has no chance

of getting infected; moreover critical information about sources of attack is only possible

at packet level. Techniques such as IPTraceBack are very useful to trace the route back;

one cannot simply rely on information in packet headers since addresses are often spoofed.

Network processors extend the packet processing towards higher-layer protocols, where the

ability to capture and analyze payload at layer 4 or higher is desirable. For instance, the

so-called ”web server switches” can utilize higher-layer information to direct packet streams

to a number of web servers in order to achieve load balancing or early determination of

required service. However, as we move up the protocol stack, a higher degree of variety

is encountered compared with relatively simple and stable protocols found in layer 2 and

layer 3. The processing must be catered towards application needs, which might be highly

custom-oriented and volatile. To some extent, network processors fit such needs very well.

More generally, network processors offer system developers an alternative means to con-

struct part of the software that originally reside on general-purpose processors but with a

tight liaison to the communication networks. For example, middleware for distributed net-

work systems can be partly implemented on network processors to improve their efficiency.

Moreover, access control software, firewalls and VPN are possible candidates for a network

processor centralized infrastructure. The above application scenarios indicate special needs

for a special type of processing fulfilled by programmable network processors. Next, we

discuss the architecture, which caters to such needs.
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1.3 Architecture Overview

Achieving high processing speed as well as providing enough programmability requires care-

ful architectural design. The architecture of network processors considers many special

properties for packet processing and takes advantage of them.

1.3.1 Exploiting Parallelism Through Multitheaded Multicore Design

Obviously, under high packet rate and even a moderate amount of processing workload for

each packet, the total amount of computation power substantially exceeds the capability

of a single processor. Due to the strong independence among network packets, exploiting

parallelism at packet level is a natural way to improve the overall throughput. Thus, network

processors typically incorporate multiple processor cores and multiple threads to handle

independent packets concurrently. For example, the Intel IXP 2800 processor contains 16

packet processing engines and 8 threads running on each engine; IBM PowerNP4GS3 has

8 programmable units and 4 threads on each unit. It is highly likely that future industrial

products might assemble more packet processors and threads as this trend has been observed

from recent generations of network processor products (e.g. IXP 1200 only has 6 packet

processors). Meanwhile, with multiple threads on the same processor running similar code,

their code can be shared across threads on the same engine, reducing total code size.

1.3.2 Concise ISA and Simplified Pipeline on Packet Processing Engines

Typically, multiple packet processing engines are placed on the same die to reduce the

communication overhead. Such chip multi-processor architecture takes advantage of higher

level of integration provided by the modern IC technology. However, the pipeline of each

packet processing engine is actually quite simple. Normally a concise RISC instruction set is

adopted. In this way, the underlying hardware can be made very simple, greatly increasing

the operating frequency. Besides, due to the number of packet processing engines, the

complexity of each individual engine is kept small to reduce the overall hardware cost. New

generations of general purpose processors spend a lot of architectural resources to increase

the instruction level parallelism. On the contrary, packet processing has already enjoyed
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sufficient amount of parallelism in the packet stream. Therefore, their design philosophy

focuses on increasing the number of processors to exploit packet level parallelism instead

of complicating each processor to get more parallelism from the processing of one packet.

As an example, the packet processing engines on the Intel IXP processor are all in-order

issued. For IXP2800, only 6 stages are in the pipeline. Note that, although this design

philosophy renders it possible to pack a higher number of packet processors on one chip,

the simplified pipeline also lowers the performance and lengthens the processing time for

each packet. Meanwhile, although multiple threads can be deployed to make better use of

each processor, multi-threading support is typically very weak. For example, we have not

seen simultaneous multi-threading being implemented on any network processors. Context

switch is very simple and fast and inter-thread management is left to the user.

1.3.3 Special Units

Typically network processors have specialized ASIC units to speedup common packet pro-

cessing operations. In other words, network processors are domain specific processors,

therefore many common, non-programmable operations can be extracted and can benefit

from specialized hardware units. For example, the hash units and IP lookup engine are

helpful for packet processing; also encryption/decryption engines are included to boost se-

curity oriented applications; other examples are the pattern-processing engine (PPE) and

Checksum/CRC engine on Agere PayloadPlus, Queue Management Unit and Table Lookup

Units on Motorola C-5e.

Some network processors even include powerful co-processors to assist with packet pro-

cessors, such as the Routing Switch Processor (RSP), Fast Pattern Processor (FPP) on

Agere PayloadPlus; DPPU co-processor on IBM PowerNP; Fabric Processor (FP) on Mo-

torola C-5e etc.

1.3.4 Other Peculiarities

Network processors typically have many specialties in their ISA and architectural designs,

which offer plenty of research topics especially for compiler design and optimization. Since

this research is primarily based on the Intel IXP processor family, we would like to enumerate
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a few of them as follows.

The ISA contains special instructions such as the ones for hash units, scratchpad op-

erations, controlling transmission state machines that are specially designed for IXP. Most

ALU instructions can be completed in 1 cycle, while long latency instructions could trigger

context switches to hide the latency.

The register file consists of general purpose registers, transfer registers for SRAM and

transfer registers for DRAM. The general purpose registers are split into two banks. The two

source operands of an ALU instruction must come from different banks. Transfer registers

are for accessing SRAM or DRAM, such that the processor can continue processing with

general purpose registers while memory accesses read/write transfer registers. Each transfer

register number actually refers to two registers, one read transfer register and one write

transfer register. Access to SDRAM memory is restricted to 8-byte boundaries and access

to SRAM is restricted to 4-byte boundaries. Each thread can access all registers on the

processor, however part of the register file can be accessed faster and rest of them must be

accessed with indirect addressing mode.

Context switch is lightweight and non-preemptive. During context switches, nothing

except PC is saved. In this manner, each context switch only takes 1 cycle. A thread gives

up the processor only through explicit instructions.

1.4 Compiler Support

Since network processors are designed to allow the execution of user programs, a develop-

ment tool set must be provided for programmers. Although programs running on network

processors cannot be as large as the ones for general purpose processors, sufficient compiler

supports are still very important because: 1) the code size on network processors may be-

come too large to be hand-optimizable. For example, IBM PowerNP4GS3 has 128KB code

store, Intel IXP 2800 has 4K instructions (40 bit per instruction) and Motorola C-5e has

8KB code store on each processor. Thus, programming network processors with assembly

can be very time-consuming and error-prone; 2) as mentioned earlier, the architectures of

network processors are quite distinct including many special features. These features even
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differ significantly from product to product. Therefore it becomes very difficult to ask the

programmer to explore the best code for a particular architectural feature. As will be ad-

dressed in later sections, our experience on the Intel IXP network processor shows that

introducing compiler optimizations for some architecture features generates very impressive

performance results.

Noticeably, several network processors have provided their developing tool suites, which

support programming with high level languages. For instance, Intel IXP processor can be

programmed with a subset of ANSI-C and the C code is then compiled with their Micro-C

compiler. The company is also developing a more advanced compiler currently. Motorola C-

5e is shipped with a full suite of software developing tools including a GNU-based C compiler

and debugger, simulator etc. The Agere PayloadPlus can be programmed with high-level

domain-specific language. On the other hand, some products like Cisco Toaster 2 and IBM

Power NP lack a program interface of high level language. Interestingly, as surveyed in [71]

popular network processor products on the market tend to have good programming tool

support. They found the 3 products mentioned above by Intel, Motorola and Agere have

gained more market shares recently.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes the details of the archi-

tecture of our target system and compiler challenges; Chapter 3 presents compiler optimiza-

tions for dual-bank register allocation; Chapter 4 is about how to sharing registers across

multiple threads; Chapter 5 extends it to a dynamic approach based on both compiler and

architectural support; Chapter 6 shows a novel way of managing runtime constraints with

compiler techniques; Finally, Chapter 7 and Chapter 8 are for related work and conclusion.
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CHAPTER II

COMPILER OPTIMIZATION FOR NETWORK

PROCESSORS

This chapter will provide an introduction to the architecture of the network processor

platform used in this work. We will also demonstrate the challenges of improving the

performance of this network processor.

2.1 Introduction to the Intel IXP network Processor

In this research, we target a highly flexible and very popular network processor family-

Intel’s IXP. The IXP network processor family is designed to help meet the requirements

of network products, ranging from cost-effective entry-level devices to high-performance

solutions. It integrates a number of high-speed processor cores with programmable mul-

tithreaded packet processing processors called microengines, expanded instruction stores,

and enhanced functionality, which enable manufacturers to flexibly meet a variety of re-

quirements including faster line speeds, multi-protocol support, enhanced feature sets, data

handling reliability, and lower cost.

There are three product lines for the IXP network processor that are being manufactured–

Intel IXP4xx, IXP12xx [34, 35] and IXP2xxx [36, 37]. The IXP4xx products aim for low-

end applications, such as small-to-medium enterprises, and networked embedded systems.

IXP12xx series target wire-speed processing for OC-3 to OC-12 multiservice network appli-

cations. The newest ones are the IXP2xxx network processors, which are the most versatile

and powerful, designed for network access, edge, and core applications from T1/E1 to OC-

192 (10Gb/s).

Most of our work was done based on the IXP12xx network processor series, since it

was introduced and donated to Georgia Tech during the time we started our research.

As a matter of fact, later products–the IXP2xxx series–share a lot of similarities with
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Figure 2: IXP 1200 Network processor diagram

the IXP12xx processors. Next, we will describe the architectural design of the IXP1200

network processor and briefly about the IXP28xx network processor, which are the two

representative processors of the product series.

The growing demand for higher-performance network equipments raises the performance

bar for silicon components. The IXP1200 network processor is a key component of Intel

IXA (Intel eXchange Architecture) and is specifically designed for network control tasks,

including Layer 3 processing of packets (or ATM cells) in real time. IXP1200 network pro-

cessors are designed for wire-speed deep packet inspection and forwarding, while supporting

multiple protocols required by todays networks.

Figure 2 shows the block diagram of the IXP1200 network processor. The processor

consists of a StrongArm core, which functions as a traditional microprocessor. Connected

to this core are six RISC Microengines or Processing Units (PUs), which are responsible for

managing the network data. These microengines are four-way hardware threaded yielding

24 system threads per IXP 1200. Both the Strong Arm core and the six microengines run

at the same clock rate (232 MHz). Furthermore, all the microengines are connected to a

high-speed bus (IX bus, 80 MHz) for receiving and transmitting packet data. On the other

side of the IX bus are external MAC devices (media access controllers). The MAC devices

can be either multi-port 10/100BT Ethernet MAC, Gigabit Ethernet MAC, or ATM MAC.
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We have two types of IXP boards. One type of board (evaluation board) has two multi-

port Ethernet MAC devices connecting to the IX bus, one supporting eight 10/100BT ports

and the other supporting two Gigabit ports. The evaluation board has 4MB SRAM (32-bit

bus) and 32MB SDRAM (64-bit bus). The other type of board (Radisys board) has much

more memory space than the evaluation board (8MB SRAM and 256MB SDRAM), but

supports only four 10/100BT ports. Both the StrongArm core and the microengines can

access all the address space of the SRAM and the SDRAM. As performance requirements

increase, meeting the power budget for a product design also becomes a significant challenge.

IXP1200 network processors typically dissipate 5 watts of power or less.

Briefly, the IXP architecture has the following properties.

1. Highly parallelizable, totally 24 threads. Context switch is extremely lightweight (zero

overhead). In fact, only the program counter (PC) is saved and restored.

2. Layered storage distribution. There is a 4 KB micro-code space for each microengine.

Code are stored in on-chip memory. 128 GPR (general purpose register) and 32

Read/Write transmission registers are present for each microengine. For parallel fetch-

ing, the registers are separated into two banks. Multiple shared memory resources in

the form of on-chip Scratchpad (4KB), SRAM, and SDRAM.

3. Compact instruction set, which includes about 50 miscellaneous instructions. All

the ALU instructions can be finished in one cycle, this contains only plus, minus,

boolean operations with or without shift. Other listed instructions are branch, mem-

ory read/write, field operation, hash table operations, context switch, etc. However,

no integer division or multiplication instruction is supported. There is also no FPU.

4. Miscellaneous hardware accelerated functionalities such as SRAM lock, hardware 48bit

hash, and hardware memory freelist. As we have mentioned earlier, the on-chip mem-

ory on IXP is quite limited, however, the off-chip memory is spacious which can be

fetched with very long delay.

Figure 3 shows the data path in one of the microengines. We can see there are three
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Figure 3: Data path in a micro-engine

types of registers in the register file–general purpose registers (GPRs), SRAM transfer

registers and SDRAM transfer registers. A total of 256 General purpose registers (GPRs)

are physically split into two banks–bank A and bank B. The ALU unit inside the processor

core has two input ports. At any time, either bank A or bank B is connected to one of the

two input ports. On the other hand, the output from the ALU unit is accessible from both

banks. This design can potentially support a large number of GPRs and can control the

cirtical path delay due to the increased register file connections. To shorten the execution

time for ALU instructions, operands are fetched in parallel. Due to the above design of

data paths coupled with the parallel fetch of operands, restrictions are imposed on operand
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Figure 4: IXP 2800 Network processor diagram

register residency. Each ALU instruction can have two register-resident source operands

which must come from different register banks. For instance, an instruction x=y+z requires

registers y and z to be in separate banks. However, the destination register x can be in

either bank A or bank B.

Both SRAM and SDRAM registers are split into read and write registers. To store a

data to SRAM or SDRAM, the data must go through the write registers. Similarly, to read

a data from SRAM or SDRAM, the data must go through read registers. The total number

of transfer registers is 128, which is equally divided into SRAM read, SRAM write, SDRAM

read and SDRAM write registers.

IXP2xxx series is a recent member of the IXP family. More functionalities are added

including more threads and processor cores. Figure 4 shows the high level diagram of the

IXP2800 processor. The processor can reach 1.4 GHZ clock rate and can process 28 million

OC-192 packets per second over SONET. The RISC architecture allows a very concise

instruction set and all ALU instructions (including plus, minus, shift, XOR, AND etc) take

1 cycle. The total number of microengines is increased to 16, organized into 4 clusters,
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and each microengine now contains 8 threads. Code on each microengine can take 4K

instructions, and each instruction is lengthened from 32 bits to 40 bits. The total number

of GPRs on each microengine is doubled to 256 (128 per bank), however the number of

registers per thread is still 32. On the other hand, the number of transfer registers is

quadrupled (to 512), perhaps because the memory/processor speedup is more phenomenal.

Moreover, a special type of register called next neighbor register is introduced to facilitate

inter-processor communication. Essentially, all microengines are sequentially numbered.

Data written into a next neighbor register can be read by its next neighbor microengine.

The network processor provides more heterogeneous memory components with different

capacities and latencies. Each microengine has its local memory, which is only around 2KB.

Also, the scratchpad, SRAM and SDRAM are available with increasing latencies. Each bit

of the scratchpad can be operated individually; SRAM memory cell can be locked/unlocked.

2.2 Compiler Challenges

Although network speed is still being improved with more advanced technologies, we ob-

serve that such new technologies are slowly deployed due to the over-supply of network

bandwidth on the backbone networks [1] and consumers’ preference to products with bet-

ter performance/price ratio. Consequently, equipment vendors no longer view performance

or throughput as the sole goal in developing new products. The emergence of network

processors indicates such shifting of focus from high speed ASICs to easily programmable

network processor products. Likewise, major network processors have undergone several

generations till now, from early products with less programmability, unfriendly user inter-

faces and software supports to newer generations that have improved significantly in their

ease of programming and application development.

The motivation of compiler design and optimization for network processors comes from

several aspects. First, the programming interface has become an important factor which

could affect the popularity of the product and a company’s revenue. Therefore, a high level

language and friendly programming environment are preferred. As concluded in [71], Intel’s

IXP network processor has shown the fastest revenue growth in 2003 mainly due to their
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flexibility and strong software support. We believe that ease of programming will continue

to play an important role as the performance of competing network processors offer more

and more features and larger program to be installed on network processors.

However, network processor architecture has many specially designed features as ad-

dresses in the previous section. Most of these features are not seen on general-purpose

processors. Also, the architecture of network processors varies greatly among different

equipment providers. Therefore it becomes very difficult to construct good compilers that

can efficiently compile source code in high level language to machine code. This is also

one of the reasons that early network processors rely heavily or even entirely on assembly

programming, such that the programmer can directly control the quality of the code at

assembly level. Even now, some of the mainstream products only support assembly level

coding. However it is difficult to perform architecture specific optimizations at assembly

level. Most importantly, lower level programming has induced lots of complaints from pro-

grammers, esp. they now have to deal with a much larger code base on new generation

network processors. Thus, compiler development has caught significant attentions from the

network processor vendors.

Actually, compiler optimization for network processor has become an emerging research

topic [29, 66, 43, 47, 16]. There are several challenges facing us. One is to define a high

level language with domain specific features that could help the programmers to write code

expediently. We believe that exposing certain architecture features in the programming

language can help compiler optimizations, but should be limited to a reasonable scale such

that their negative effects are avoided. For example, on the IXP network processor, the

memory hierarchy includes local on-chip memory (available on IXP2xxx series), global on-

chip SRAM (a.k.a. scratchpad), off-chip SRAM and DRAM etc. We could allow user

specification of which data structure should be put on which memory component, such that

latency-critical data are put closer to the processor. However, when low-latency memory

components are not enough to hold all latency-critical data, some of them must be moved

to off-chip. In such scenario, we would say compiler optimization combined with user

specification is likely to achieve the best result.
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Figure 5: IXP1200 SRAM and SDRAM latency distribution

Notice that, the memory/processor speedup gap is huge on network processors due in

large part to their high clocking frequency and lack of caches. Figure 5 shows the latency

distribution of SRAM and SDRAM for the IXP1200 network processor. The X-axis stands

for the delay (cycles) between consecutive requests. The Y-axis is the latency to complete

the memory access. This figure demonstrates that the latency varies a lot for both SRAM

and SDRAM accesses. Also, the inter-request delay could affect the latency. A small inter-

request delay lengthens memory access latency due to more competition in the memory

subsystem. Once the inter-request delay is large enough to avoid contentions, the curve

plateaus. On average, SRAM latency is around 40-50 cycles, while SDRAM latency is in

the range of 50 to 200 cycles. For new generations of the IXP network processors, the latency

(in terms of number of cycles) is even larger. SRAM latency is over 150 cycles on IXP2800,

while SDRAM latency is over 300 cycles. These data tell us that fully utilizing registers

is extremely important to bridge the processor/memory gap on network processors. This

motivates our work on register allocations as will be presented in the following chapters.

Besides language definition, compiler optimization catered towards special hardware
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needs is another important topic. The goal of compiler optimization is to generate code

that is far superior to hand-crafted code by making the best out of what the hardware

provides. As will be addressed in the next section, we have looked at interesting problems

on the Intel IXP processor, such as the dual bank register assignment problem, inter-

thread register allocation etc. Since many of the network processor features are not seen on

other processors, we frequently need to model the problems in a new way and solve them

individually. The relatively small footprint of the code on network processors makes the

performance very sensitive to the effectiveness of compiler optimizations. Meanwhile, due

to the small problem size, aggressive compilation techniques can be applied to obtain good

results. For example, some papers have attempted Integer Linear Programming (ILP) [29]

to search for the optimal solution. They have shown that the compilation time is still

acceptable with ILP solvers.

Due to the unique application needs and lack of OS and sophisticated hardware, new

problems open up on network processors that sometime are out of the scope of a traditional

compiler. One possibility is to use compile-time information to guide runtime constraints.

Notice that network processors typically lack strong OS support, which could harm their

runtime performance. With multiple threads running on the same processor, issues like

proper resource sharing, processor scheduling, I/O control, etc. could emerge just as on

general purpose processors. Therefore, using compiler information to provide certain level

of runtime support could be a viable way to improve the performance of multi-threading.

Moreover, the overhead of compiler is typically tolerable compared with OS overhead if one

were installed on the network processor.

2.3 Register Allocation

Register allocation is one of the phases during compilation. The compiler attempts to

allocate as many variables (or virtual registers) to registers as possible. This is because

registers can be assessed much faster than the memory, and registers are always a scarce

resource. The register allocator must determine which values should be in registers at each

program point.

19



There have been a wealth of research in literature about register allocation such as [24,

31, 42, 19, 2, 11, 12, 13, 17, 28, 8]. Register allocation could be viewed as a graph-coloring

problem. Such allocator was first designed and implemented by Chaitin in 1981 [12, 13].

A graph-coloring register allocator first builds an Interference Graph. Each variable is

represented by a node on the interence grpah. An edge connecting two nodes indicates that

the two nodes cannot be put into the same register, since they have been used simultaneously

(or co-live) in at least one program point. The problem then becomes how to color the

interference graph with N colors, where N is the total number of registers that are available.

To do so, the graph is reduced in size in repeating steps until no further simplication is

possible. If the graph is not colorable, some variables must be put into memory, then the

graph is re-colored until a solution is obtained.

Later, several work [8, 28] improved the graph-coloring algorithm proposed by Chaitin.

Briggs et. el. [8] suggested an optimistic coloring approach. Instead of spilling variables into

memory immediately when the graph cannot be simplified, they put those variables onto

the stack temporarily, hoping that they can be colored during the coloring phase. More

recently, George et. el [28] further improves the alogrithm with an iterated approach that

can better integrate multiple phases.

Chow and Hennessy’s allocator [17] uses a frequency sensitive heuristic to guide the

order of coloring and splitting. The allocator can take advantage of frequency information

supplied by the client to prioritize decisions such as coalescing and spilling. This addition

should improve code quality, especially for programs with tight loops.

Lueh et. el. [49, 48] proposed fusion-based register allocation, which breaks up register

allocation into a per-region basis. The simplest region is a basic block. Inside each region,

spilling is performed such that the resulting interference graph is simplifiable. A transparent

live range is one that is live on entry and exit to a region and is not used within the region.

Sometimes, transparent live ranges are spilled for the graph to be simplifiable, although the

actually spilling of transparent live ranges is delayed.
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In Kim’s dissertation [42], several innovative techniques are proposed for frequency sen-

sitive region-based register allocation to improve the code quality generated by the region-

based approach. In this manner, the compilation time can be reduced by almost half of its

global counterpart, while maintaining the execution time within 5% of the global approach.

Live range splitting is a technique to reduce the spill amount which has been employed by

many optimizing compilers [19, 7]. Long live ranges are split into shorter ones by inserting

copies and load stores at appropriate places in the code.

Although graph coloring is recognized as a good technique for register allocation, for

large interference graphs, the memory demands could be quite high. Gupta et. el. [31] pre-

sented an algorithm that uses the notion of clique separators to reduce the space overhead.

It first partitions the code into code segments using clique separators. Each code partition

is colored independently. The colorings of all partitions are combined to obtain a register

allocation for the entire program.

Appel and George [2] partition the register allocation problem for the Pentium into two

subproblems: optimal placement of spill code followed by register coalescing; they use ILP

solver for the former, such that the number of spills is optimal. The coalescence phase

afterwards does not add more spills. Also, only involving ILP solver in the first subproblem

could greatly reduce compilation time.

We have a recent work on register allocation [78], which proposes to use a new encoding

scheme to increase the number of architected registers exposed to the programmer. Instead

of encoding the absolute register number, differential encoding encodes the difference be-

tween two consecutive register numbers accessed along the path. Also, register allocation

is combined with differential encoding to reduce its overhead.

For embedded processors, the backend varies a lot due to the fact that most of them

are specially designed for particular purposes. Therefore, the register allocation phase must

take into consideration the underlying hardware provision to maximize the performance.

Researches in this area [24] is still very active.

Register allocation is one of the problems we have looked at on the IXP network proces-

sor. It is important to maximize the use of registers on this network processor for several
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reasons.

First, the design philosophy of network processors is quite different from general purpose

processors. Since there is already plenty of packet-level parallelism to be exploited, instead

of trying to extract parallelism from a single program by employing complicated hardware

mechanisms, it is more profitable to just deploy a large number of very simple processors to

take advantage of the packet level parallelism. Therefore, the design of the network processor

typically simplifies each processor but increases the number of processors. For IXP, the

register file is greatly simplified. Each bank only has one port. Second, as mentioned

earlier, the memory access latency could be huge. Therefore, putting variables into the

registers could greatly improve performance by cutting down the access latency. Third,

functions are typically inlined to avoid function invocation overhead. This could further

increase the register pressure.
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CHAPTER III

INTRA-THREAD REGISTER ALLOCATION

In this chapter, we will look at the register allocation problem with regard to a single thread.

As mentioned earlier, the register architecture of the IXP network processor is very special.

In particular, the general purpose registers (GPRs) are split into two banks. This gives rise

to the dual-bank register assignment problem.

3.1 Dual-bank Register Assignment Problem

The design of dual-bank register file raises the problem of register allocation with consid-

eration to the bank assignments. Without such consideration, register allocation is handi-

capped, and in some cases, even impossible. Figure 6 gives two examples to illustrate the

dual-bank assignment problem. In these examples, we assume that the total number of

physical registers is four, two in each bank. In Figure 6.a, without the above register bank

restrictions, each of the variables can be assigned one physical register. However, the three

instructions require variable a to be in the opposite bank of variable b, c and d. Thus, if

variable a is in bank A, the other three variables must be in bank B, which is not possible

(since there are only two physical registers in bank B). Figure 6.b shows variables a and b

must be in opposite banks. Similarly, variables a and c, variables b and c must be in oppo-

site banks too. This creates the problem that even if physical registers are enough, we still

cannot satisfy all bank constraints, since the first two instructions require variable b and

c to be in the same bank, which contradicts with the last instruction. Obviously, the first

example shows that the dual-bank constraint may cause imbalance of register requirements

to the two banks. The second example shows that if the bank constraints form a cyclical

conflict, then no bank assignment is possible without resolving the conflict.

The current implementation of the IXP assembler takes passive approaches to the bank

assignment problems. The first problem will generate a “not enough registers” message
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 1. b=a+b 
2. c=a+c 
3. d=a+d 

(a) (b) 

1. a=a+b 
2. c=a+c 
3. d=b+c 

a�bank A 
b�bank B 
c�bank B 
d�bank B 

a�bank A 
b�bank B 
c�? 

Figure 6: Example of the Dual-bank assignment problem

to the programmer, while the second problem will cause an error messages prompting the

programmer to fix the unresolvable conflict. Obviously, it is difficult for the user to make

the right decisions. As we will illustrate later, there are non-obvious trade-offs involved that

can actually achieve low-overheads for both register spill and code growth. These tradeoffs

are not easily perceivable by the users. With the development of high-level language support

for the IXP processor, it is no long appropriate to ask users to resolve the conflicts (and

also there is no need to provide ”user understandable code” at assembly level), after the

code has been transformed from the high-level language. A compiler solution is desirable

to automatically assign both registers and banks.

The dual-bank register allocation problem is to determine the physical register allocation

together with the bank assignment of that physical register for each virtual register. It

aims to reduce the overhead due to additional spill code and other extra instructions which

can degrade the performance and cause code growth. Speeding up the execution is at the

highest priority; therefore reducing the number of spills becomes most important due to the

long memory latency.

3.2 Register Conflict subGraph and No-conflict Rule

To represent the register constraints for the dual-bank assignment problem, in this section,

we introduce the concept of Register Conflict subGraph (RCG). We build upon the standard

representation of Interference Graph used in coloring based allocators. Interference Graph

(IG) represents each Live Range as a node in the graph and an edge between two nodes

means that the two live ranges interfere with each other or are co-live at some program
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point. We call the edges in the interference graph Interference Edges. To distinguish the

interference graph before and after the register allocation, we define Virtual Interference

Graph (VIG) and Physical interference graph (PIG). The live ranges (nodes) on VIG are

Virtual Live Ranges, which are associated with virtual registers. Similarly, live ranges on

the PIG are Physical Live Ranges, which correspond to physical registers1. Some edges

in the interference graph are further distinguished as Conflict Edges, which are defined as

follows.

Definition 1. Conflict Edge

If two live ranges interfere in the same ALU instruction as two source operands, the inter-

ference edge connecting them is called a conflict edge. They are said to conflict with each

other.

Obviously, we have the following claim: A conflict edge must be an interference edge.

Definition 2. Register Conflict subGraph (RCG)

The register conflict graph is a subgraph of the interference graph consisting only of conflict

edges and all nodes.

Similarly, we have the definition of Virtual Register Conflict subGraph (VRCG) and

Physical Register Conflict subGraph (PRCG) based on the underlying interference graph.

Figure 7 shows two RCGs corresponding to the examples in Figure 6. Figure 7.a is the

RCG for Figure 6.a. Note that all interference edges are conflict edges for this example. We

can observe that there are edges from a to b, c and d, which means, a and b,c,d form two

separate groups that should be put into different banks. In Figure 7.b, the RCG forms an

odd-cycle, which means that the nodes cannot be separated into two groups such that the

nodes in the same group do not conflict with each other.

Given a RCG, we can judge if the nodes (either virtual or physical live ranges) in the

graph can be categorized into two groups with each group being assigned to one of the

register banks. If this is possible, we say the RCG is bank conflict-free, otherwise it leads

1We define the virtual live ranges to be maximal du-ud chain (or a web) on the VIG, that can be separately
allocated. For PIG, physical live ranges correspond to the physical register names, which can be the union
of several virtual live ranges that are assigned the same physical register.
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Figure 7: Examples of the RCG

to a bank conflict that should be resolved. The bank conflict property is also applicable

to the IG, i.e. we say an IG has bank conflict if its RCG exhibits a bank conflict. The

problem of determining whether a RCG is conflict-free is equivalent to determining if the

RCG is bipartite. The following No-conflict rule gives the necessary and sufficient condition

to judge whether a RCG has conflicts.

No-conflict Rule. The RCG is conflict-free if and only if it contains no odd-length cycle.

Proof: This problem is equivalent to determining if the RCG is a bipartite graph. Accord-

ing to the property of the bipartite graph, no odd-length cycle should exist. This is also a

sufficient condition.

Thus, the example in Figure 6.b has a conflict, since its RCG (shown in Figure 7.b) is

a length-3 cycle, but the example in Figure 6.a is conflict-free due to the absence of any

cycle.

Note that, the No-conflict rule applies to both VRCG and PRCG; however, it gives no

guarantee for balancing register assignment in each bank group. From the perspective of

register allocation, the number of total physical registers available for each bank is fixed.

Typically, the number of physical registers available to bank A equals that of bank B

which means register allocator should make an effort towards balancing allocated registers

equally between the two banks. We define such a problem as Balanced Dual-bank Register

Assignment. Accordingly, the RCG with equal number of nodes in each bank group and

conflict-free is called Balanced Conflict-free RCG. Therefore, the example in Figure 6.a
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shows a conflict-free but not a balanced conflict-free RCG.

3.3 Phase Ordering

Register bank assignment is closely related to the register allocator that performs virtual

to physical register mapping. There are three approaches we can take to perform register

allocation together with bank assignment.

The first method is to assign register banks before virtual registers are mapped to

physical registers. We call it pre-RA bank assignment approach. All conflicts are resolved

on the VRCG before the register allocator takes over. The second approach is to do register

allocation first and then assign the banks to physical registers, at the same time resolve

conflicts on the PRCG. This is called post-RA bank assignment. Finally, a combined register

allocation approach can consider the register bank assignment at the same time as register

allocation.

3.4 Pre-RA Bank Assignment Approach

We can designate the bank assignment for each virtual register before the register allocation

(mapping of virtual to physical registers) is done. According to the No-conflict rule, if there

are odd cycles of conflict edges in the VRCG, the VRCG has conflicts. The following claim

says that sometimes the conflicts may continue to exist after the register allocation.

Claim. If the VRCG doesn’t meet the No-conflict rule, the conflicts will persists after a

Chaitin style register allocation assuming no spill is generated.

In general, any graph coloring allocator coupled with other phases meets the above

claim. These include, for example, Chaitin’s [12, 13], Briggs [8], and Appel & George’s [28]

register allocators. The claim can be easily verified. During the register allocation, the

only possibility is to map multiple virtual registers to the same physical register through

coalescence or coloring. If an odd cycle exists on the VRCG, no edge on the cycle can be

collapsed since the interfering nodes cannot be coalesced during the register allocation.

The pre-RA bank assignment approach regards the register allocation pass as a black

box and assigns the banks to the virtual registers first. After the bank assignment is done,
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Figure 8: Edge breaking through live range splitting on RCG

virtual registers are grouped according to their bank assignments. The register allocation

is then done separately for each bank.

To avoid conflicts, all odd-length cycles should be removed to make the graph bipartite.

A straightforward way to remove odd-length cycles is to break the cycle at some node point

in the RCG by splitting the live range of the node.

Figure 8 shows an example of breaking a cycle in the RCG. Figure 8.a gives the code

segment in which the live range of variable a consists of 1 definition and 3 uses across

a conditional branch. Figure 8.b shows the RCG. Variable a conflicts with b, c and d.

Figure 8.c shows the live range using the control flow graph (i.e. du/ud chain of variable

a). In Figure 8.b, if we want to break the cycles passing edge (a,c), (because (a,c) is a part

of an odd cycle) we can simply split the live range at point Y (Figure 8.c), which means

after point Y, the live range is renamed, for example to a’. Figure 8.d shows the RCG after

splitting. At the split point, we need to insert a move instruction a’=a, so the live range

gets separated. One instruction is added in the code and one extra node is added on the

RCG. If we want to break the cycles spanning both edges (a,c) and (a,d), one choice is to
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split at both points Y and Z, i.e. renaming the live range to a’ after point Y and renaming

the live range to a” after point Z (Figure 8.e). This requires two move instructions and two

additional nodes on the RCG. However, we can split the live range at point X, which leads

to the RCG in Figure 8.f. We rename the live range at point X to a’. In this case, the cost

is only one move insertion and one additional node on the RCG but we cannot break the

cycles that pass both (a, c) and (a,d).

The problem of making RCG bipartite (breaking all odd cycles) with minimal cost

is shown to be NP-complete by reducing a graph problem called Maximal Bipartite Sub-

graph [57] to it.

Theorem 1. The problem of making RCG bipartite (break all odd cycles) with minimal

cost is NP-complete.

Proof: Firstly, it is trivial to show the problem is polynomial-time verifiable. Next,

we reduce the maximal bipartite subgraph problem to it. The maximal bipartite subgraph

problem is to find the minimal number of edges to be deleted to make a given graph

bipartite. Suppose, we are given an instance of this problem-an undirected graph G(V,E).

We construct a program code with a two-level CFG. The first level basic blocks (BBs)

represent nodes on G called node BBs. The second level BBs represent edges on G called

edge BBs. Each edge BB is connected to the two node BBs on the edge. In each node

BB, there is one instruction that makes an assignment to a variable. In each edge BB, the

two variables from its node BBs conflict as source operands of an ALU instruction. Now,

the constructed graph has a RCG equivalent to G. In addition, breaking an edge on G is

equivalent to splitting the live range in the corresponding edge BB by inserting a move

instruction before the ALU instruction. Therefore, we have reduced the maximal bipartite

subgraph problem to the problem of making RCG bipartite with minimal cost. Figure 9

shows an example.

There has been substantial work done on the Maximal Bipartite Subgraph problem in

graph theory [59, 38]. Several approximation algorithms have been proposed. For example,
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Figure 9: Illustration for proving that making RCG bipartite is NP-complete

[59] gives an algorithm with complexity of O(n4). However, these approaches assume that

the underlying graph does not have length-3 cycles which are not true in our case. Besides,

they target the minimal number of edges removed to make the graph bipartite, while we

must consider live range splitting on the nodes and the cost is not uniform for node splitting.

Finally, their analysis gives a rather loose lower bound with regard to the quality of the

solution. Actually the solution of our algorithm is far beyond the lower bound calculated

by these papers. Specifically, our heuristic algorithm below takes into consideration the

special properties of RCG that can greatly reduce the complexity of the algorithm while

maintaining quality of the solution.

Before presenting the heuristic algorithm, we briefly discuss the detection of odd cycles

in the RCG. Here, we define that if two cycles have at least one edge that is different, then

the two cycles are said to be different. For any algorithm that can resolve all the conflicts

in the RCG, it needs to break all the odd-length cycles in the graph. However, a simple

estimation tells us that finding all odd-length cycles will take exponential time to finish. A

brute-force algorithm must try up to
(n−1)/2∑

k=1

C2k+1
n possibilities to find out all odd cycles,

where n is the total number of nodes in the RCG. This sum has a complexity of O(2n),since

we know
n∑

k=0

Ck
n, which is almost twice of

(n−1)/2∑
k=1

C2k+1
n .

However, in real programs most of the odd cycles are small (we will give some data in
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Figure 10: Duplication in counting odd cycles

later sections). Another observation is that the brute force searching may include duplica-

tions. In Figure 10, two odd cycles can be found i.e. abe and abcde. However, if edge (a,b)

is removed, both cycles are broken. If edge (b,e) is removed, then cycle abcde still remains.

This example shows that if two cycles share edges, breaking one of them can cause the other

to disappear automatically.

Our heuristic algorithm starts with the shortest odd cycles, after breaking shorter ones,

we move on to find longer cycles and break them, until all cycles are gone. As shown in

Figure 10, the removal of shorter cycles may break longer cycles as well. The main data

structure for odd cycle detection is called Breadth-First Hierarchy as described below.

3.4.1 Breadth-First Hierarchy

Given a RCG, we build a breadth-first hierarchy from one of the root nodes following the

breadth-first searching algorithm. The procedure is in Figure 11:

The root node r is the only first level node. After visiting the root node, we visit and

mark its directly connected neighbors, which are marked as second level nodes. Next, we

visit neighbors of second level nodes that are unmarked and assign them level three and so

on. It is easy to notice that the level of a node is its minimal distance to the root plus one.

Besides, the time complexity to construct the breadth-first hierarchy is O(n2). Next, we

give two lemmas about the breadth-first hierarchy.
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Input: root r 
Output: The breadth-first hierarchy 
Level_num: number of levels in the hierarchy; 
Node_level_set[]:array of sets; 
Algorithm: 
Function Build_Breadth_First_Hierarchy(node r) 
Begin 
    Node_level_set[1]�{r}; mark r; 
    Level_num=1; 
    While Node_level_set[Level_num] not empty do 
        For each node p in Node_level_set[Level_num] do 
            Add all p’s directly connected neighbors that have not   
            been marked to Node_level_set[Level_num+1]; 
            Mark all newly added nodes.  
        od 
        Level_num++ 
    Endw 
    Return Level_num, Node_level_set[] 
End 

Figure 11: Building the breadth-first hierarchy

Lemma 1. If an edge e connects node p and node q on the RCG, then |node level(p) −
node level(q)| ≤ 1, where node level gives the level of the node on the breadth first hierarchy.

Proof: Without loss of generality, assume node level(p) > node level(q), if there is an edge

from node q to node p, then p should be on level node level(q)+1, which proves the Lemma.

Lemma 2. The RCG is conflict-free, iff any edge (p, q) ≥ |node level(p)−node level(q)| =
1.

Proof: From Lemma 1, we only need to show node level(p) <> node level(q). If this

condition is not satisfied, (i.e. if node level(p) = node level(q) ), we find a path from root r

to p called path(r,p) and a path from r to q called path(r,q), each with node level(p) nodes.

Let s be the latest common node for the two paths, i.e. path(s, p) and path(s,q) only share

node s. We then have an odd cycle s → p → q → s. On the contrary, we can separate the

nodes into two groups; all nodes in odd level form one group, and all nodes in even level

form another group. Then there are no edges within these two groups and thus, the graph

is bipartite and conflict-free.

Lemma 1 shows that the edges on the RCG only appear between nodes from adjacent
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levels on the hierarchy. Lemma 2 implies that no two nodes on the same level being

connected is equivelant to the RCG being conflict-free. In other words, if a RCG is not

conflict-free, there must be an edge that connects two nodes on the same level. We call such

an edge Parallel Edge. Next, we present Lemma 3 that will be used later in our heuristic

algorithm to detect odd cycles with length k, where k is an odd number greater than 3.

This lemma can help to build a fast algorithm to detect all such cycles.

Lemma 3. The smallest odd cycle is of length k (k is an odd number), iff there is no parallel

edge on any breadth-first hierarchy up to level (k − 1)/2.

Proof: Briefly, the proof is similar to that of lemma 2. If there is a parallel edge on a level

less than (k − 1)/2, we will find an odd cycle that is less than k.

Thus, to find all odd cycles of length k (assuming non-existence of shorter odd cycles)

in the RCG, we build n breadth-first hierarchies with each of the n nodes as root nodes. All

the hierarchies only need to be built up to (k − 1)/2 level and checked for parallel edges.

Since the algorithm runs faster when k is small and most odd cycles are actually small, we

find this odd cycle detection algorithm finishes quickly in our implementation.

3.4.2 Live Range Splitting Patterns

Live range splitting patterns represent the possibilities a live range can be split. For each

live range, we can find out all splitting patterns. For example, in Figure 8, we observe 4

possibilities to split the live range, i.e. X, Y, Z or (Y, Z). For each splitting pattern, we

can calculate its cost. Although the number of splitting pattern may grow exponentially, in

practice only a few live ranges contain a large number of uses as source operands. This is

probably due to the nature of the applications running on the network processors. Also, the

live range defined as connected du/ud chains can achieve value separation, which leads to

smaller number of splitting patterns due to reduced number of uses associated with each live

range. In implementation, we specify a limit of 1000 patterns for each live range, otherwise

the live range is forced to be split as if it is involved in every cycle. In our evaluation, we

show that this almost invariably happens.
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Input: VRCG, CFG 
Output: VRCG (no conflict),CFG, set of split live ranges 
 
Algorithm: 
Function Pre_RA_Bank_Assignment 
Begin 
    Construct patterns (calculate costs) for all live ranges, store to Pattern_set 
    For m=3 to n, step 2 
        Detect all odd cycles with cycle length m, store to Cycle_set; 
        while (Cycle_set <> empty) do 
            For each pattern p in Pattern_set do 
                w=cost of using p 
                bn=number of cycle p can break in Cycle_set                 
                The priority of pattern p is bn/w 
            od 
            The pattern with highest priority is applied on VRCG, CFG 
            Remove broken cycles from Cycle_set 
            Update Pattern_set if necessary 
        Od 
    Endfor 
    Return VRCG, CFG and the set of split live ranges 
End 

Figure 12: Pre-RA bank assignment heuristics

3.4.3 The Pre-Register Bank Assignment Heuristic Algorithm

As mentioned before, our heuristic algorithm breaks odd cycles from the shortest, i.e. size

three and goes to longer cycles as it proceeds. The algorithm is listed in Figure 12. It

executes for several iterations, where each iteration breaks all cycles of length m. m takes

odd integers from 3 to n. During each round, two sets are built. The Cycle set stores all

cycles with length m. The Pattern set stores all patterns. Then we examine each pattern

to see how many cycles it can break in the Cycle set, the priority function for applying a

pattern is calculated as the number of cycles it can break divided by the cost (the number

of moves inserted). The pattern with highest priority is chosen. After a pattern is applied

to CFG and VRCG, all broken cycles are removed from Cycle set and the Pattern set is

also updated, since new live ranges are added and the old live ranges might be altered. The

algorithm picks the most favorable pattern and proceeds with that pattern. The following

claim guarantees the algorithm will eventually remove all odd cycles.
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Claim. Assume k is an odd number greater than 3, then after all length < k odd cycles are

broken, the breaking of length-k cycles will not create shorter odd cycles.

This is obvious, since during the whole process, nodes are not merged to form new cycles

on RCG. The complexity of the algorithm in the main loops is roughly O(n×P×M), where

n is the number of nodes on the original graph, P is the maximal number of patterns in

the Pattern set and M is the maximal size of the Cycle set. Since most odd-cycles are

short and breaking shorter cycles may break longer ones as well, the outer-most for loop in

Figure 12 normally finishes early. From Figure 12, we notice that the update of Cycle set

and Pattern set can be done with marginal computation.

The drawback of this approach is the difficulty to control the register pressure in each

group, which may lead to imbalanced pressure between the two banks during register allo-

cation. For example, assume that the virtual registers are grouped equally when they are

passed to the register allocator. However, it then turns out that one of the groups needs

more physical registers to avoid spilling, while the other group has free registers. As it is

hard to judge the physical register and spill code that will be generated before the register

allocation, the pre-register allocation approach may result in imbalanced spill. In other

words, it may increase the overall spill cost. However, after the RCG becomes conflict-free,

this problem can be alleviated by making the RCG near-balanced before passing it to the

register allocator.

3.4.4 Near-Balancing the RCG

After live range splitting, it is quite likely that the RCG is no longer a connected graph.

By identifying the connected components of the RCG, we can near-balance the number of

nodes in the two banks through separate bank assignment to each connected component

of the RCG. Suppose the RCG has m connected subgraphs: G1, G2 . . . Gm, each with a

subset of the nodes and edges of the RCG. Since the m subgraphs are all conflict-free, i.e.

bipartite, we can separate each Gi into GAi and GBi, such that no conflict edge is inside

GAi and GBi (This can be done to construct a breadth-first hierarchy and separate odd

level and even level nodes). Let Ai = |GAi|, Bi = |GBi| and the number of total nodes
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is n =
∑

Ai +
∑

Bi. We want to minimize |n2 −
∑

Ci|, where Ci = Ai or Bi. In our

implementation, we apply exhaustive search, which takes O(2p), since p is typically less

than 10. For larger p, a fully polynomial time algorithm can be derived from the subset

sum algorithm [64], which closely approximates the optimum in polynomial time.

3.5 Post-RA Bank Assignment

Although the pre-RA bank assignment can avoid conflicts during the register allocation, it

creates imbalanced register requirements (higher chromatic number for one of the register

banks). On the contrary, the post-RA bank assignment approach allocates register with

well-known register allocation algorithms to minimize the spills in the first place. Our bank

assignment algorithm is invoked to resolve bank conflicts and balance physical register

distribution across banks. The post-RA bank assignment algorithm will not increase spill

code. Although some physical live ranges are split after moves are inserted, the cost is much

lower than spills. As we know, the register allocator can map different virtual registers to

the same physical register. Therefore, physical live ranges are typically larger than virtual

ones. The post-RA bank assignment problem shares many properties with the pre-RA bank

assignment problem. Therefore, some of the techniques can be borrowed. However, there

are clear differences between these two approaches. Firstly, we cannot simply rename a live

range, because each physical live range is allocated a physical register. If a live range is

split, we must find an available physical register to hold the new live range. Secondly, the

PRCG must be balanced and conflicts removed.

3.5.1 Cost for Splitting Patterns

The cost of splitting patterns for physical live ranges are calculated differently. Especially

the cost to split at a certain point is not just equal to the inserted move instruction. In

building the Pattern set for the heuristic algorithm, we categorize the cost for a pattern

into 3 types:

1. If the register pressure in the renamed program segment (for example, in Figure 8.c,

from point Y to instruction a op c) is less than the number of available physical
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 1. … 
2. … 
3. …=a op b 
4. … 
5. … 

(a) 

1. a  =a ⊕ X 
2. X = a ⊕ X    
3. …=X op b //X=aorig, a=aorig⊕Xorig 
4. X = a ⊕ X  //X=Xorig, a=aorig⊕Xorig 
5. a  = a ⊕ X  //X=Xorig, a=aorig 

1. … 
2. … 
3. a  =a op b 
4. … 
5. … 

(b) 

1. b  =b ⊕ X 
2. X = b ⊕ X    
3. …=a op X //X=borig, b=borig⊕Xorig 
4. X = b ⊕ X  //X=Xorig, b=borig⊕Xorig 
5. b  = b ⊕ X  //X=Xorig, b=borig 

Figure 13: In-place bank exchange

registers, then the splitting cost is set to the cost for move insertion.

2. If condition in (1) is not true, we look around near the splitting point to find the

chance of rematerialization, and calculate the cost accordingly.

3. Finally, we count the cost of doing in-place bank exchange.

3.5.1.1 Rematerialization

Rematerialization has been used by [8] to free a register through recomputing the value

in-place before it is needed to avoid carrying the value in the register. We check for re-

materialization before we analyze the splitting patterns; thus the register pressure in some

region of the program can be reduced.

3.5.1.2 In-place Bank Exchange

After all the above endeavors fail, we have the last resort to solve the bank conflicts using

this technique. In-place bank exchange requires no additional registers, however it requires

4 ALU instructions to remove one conflict edge on the RCG. Although it can be expensive

in terms of space in contrast to a register spill, in-place bank exchange saves runtime cycles
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and most importantly, guarantees that odd cycles can be broken in the worst case without

incurring spills.

Figure 13 illustrates two cases to break a conflict edge between live range a and b. In

Figure 13.a, we assume that the destination operand of instruction (3) is not a. We insert

two XOR instructions before and two XOR instructions after the ALU instruction in line

3. The register X is an occupied physical register that is in the opposite bank to variable

a, thus it is also in the opposite bank to variable b. The first two exchanges put variable

a in X and then the instruction in line 3 is conflict-free. The last two XOR instructions

restore the values of a and X. The conflict edge between a and b can be removed, because

the two variables can be assigned physical registers in the same bank now. Figure 13.b

shows the case when a is the destination operand. We can exchange b and X to remove

the conflict. In-place bank exchanges are special splitting patterns that are provided for all

edges. Therefore all odd cycles can be broken in the worst case with these patterns.

3.5.2 Balancing Register Numbers in Two Banks

In this section, we discuss the balancing of registers in the two banks. After the removal of

all odd cycles, we can apply the same bank assignment approach as the pre-RA algorithm

to obtain a near-balanced RCG. After that, we have to reassign some of the live ranges to

the opposite bank, which could induce conflicts. The induced conflicts have to be resolved

at the cost of inserted instructions.

Suppose the live ranges on the RCG have been grouped into two groups, BankA and

BankB. Also assume, |BankA| > |BankB|. We attempt to pick one of the nodes in BankA

and move it to BankB and estimate the cost of resolving the conflicts due to this move by

again using the minimal cost splitting pattern. This procedure is repeated until the number

of nodes in the two banks are equal. If the difference between |BankA| and |BankB| is small

(as it usually is), we can attempt all combinations of moves for (|BankA| − |BankB|)/2

nodes from BankA to BankB, which gives better solution than moving nodes one by one

from BankA to BankB, but takes slightly longer time to finish.
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Input: PRCG, CFG 
Output: PRCG (balanced and conflictless), CFG 
 
Algorithm: 
Function Post_RA_Bank_Assignment 
Begin 
    Register_allocation 
    Construct patterns for all live ranges, including in-place exchange 
        patterns, store to Pattern_set 
    Foreach pattern p in Pattern_set do 
        Calculate the cost for p (with available register, rematerialization or  
            In-place exchange) 
    od 
     
    Break all odd cycles //the same as in Pre_RA_Bank_Assignment 
     
    Near-balancing the two bank groups 
    If |BankA|<>|BankB| then 
        Balance the bank by moving nodes between them. 
    Endif 
 
    Return PRCG, CFG 
End 

Figure 14: Post-RA bank assignment heuristics

3.5.3 Heuristic Algorithm for Post-RA Bank Assignment

We discuss the algorithm for post-RA bank assignment algorithm in this section. In Fig-

ure 14, the procedure Post RA Bank Assignment consists of 4 parts: register allocation,

constructing and calculating the cost for pattern, breaking odd cycles and balancing the

two bank groups. After register allocation is done (assuming a monolithic register file), the

Pattern set is constructed. Cost calculation is more complicated than the pre-RA bank

assignment. Next, odd cycles are broken as in the previous section. Bank balancing has

two steps. The near-balancing algorithm in the previous section is applied first, because it

incurs no cost. Then, the approach described in the previous subsection applied to achieve

a perfect balance.
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3.6 Combined Register Allocation Approach

As mentioned before, it is possible to combine register allocation with register bank assign-

ment. However, as many register allocation algorithms have been proposed in literature,

we do not want to delve into all possibilities. In this section, we briefly introduce our com-

bined algorithm based on a Briggs-style register allocator [8]. In contrast to the original

algorithm, we have several modifications.

The allocator takes nodes from the interference graph and pushes them to one of the

stacks.

1. Two stacks are maintained for the two banks.

2. During “coalesce”, coalescence is performed only when the two nodes do not interfere

with each other. In addition, coalescence should not create new odd cycles.

3. In the “simplify” stage, we push each node on the IG to one of the stacks. Nodes can

be marked as “spill” or “conflict”. Nodes are pushed in the following order.

a) We pick a node and push it to a stack that causes no conflict (with nodes still on

the IG) and no spilling (with neighbor number less than the number of registers in

one bank).

b) If a) fails, find a node that does not need spilling (but has bank conflicts) and with

minimal cost to resolve the conflict, push it to one of the stacks.

c) If both a) and b) fail, find a node that must be spilled but with minimal spill cost

as calculated by Brigg’s algorithm and push it to one of the stacks.

4. During “select”, we pop nodes from the two stacks one by one in the order they are

pushed to the stacks.

a) Give the node a color (the color must belong to the bank of that node) that is

different from all colored neighbors on the IG, and that has no conflict with nodes

already on the IG.

b) If the color is available, but there is conflict, we resolve the conflict as in the

previous section.
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 Live in: s1, s2, s3 
 
1. t1=s1+s2 
2. t2=s2+s3 
3. t3=s1+s3 
 
Live out: t1,t2,t3 

(a) (b) 

1. s1=s1+s2 
2. s3=s2+s3 
3. s2=s1-2*s2 
4. s2=s2+s3 
mapping: 
t1—s1 
t2—s3 
t3—s2 
 

1. t1=s1 op1 s2 
2. t2=s2 op2 s3 
3. t3=s1 op3 s3 
Application rule: 
t3=f2(f1(s2, t1), t2)  
or 
t3= f2(f1(s2, t2), t1) 
f1 and f2 are ALU instrs 

(c) 

Figure 15: Example for removal of conflict involving triangle cycles

c) If both a) and b) fail, the node must be spilled.

One difficulty in the combined approach is that we do not know the bank assignments

of the remaining nodes on the IG during “simplify”. In the worst case, we have to assume

all neighbors will be in the same bank, so only half of the registers are available for coloring.

This causes a lot of nodes to be marked as “spill”.

3.7 Some Enabling Techniques

This section discusses two types of optimizations that can help with the aforementioned

approaches. As shown later, these approaches do not require additional virtual or physical

registers but can help to reduce the number of odd cycles on the RCG.

3.7.1 Removal of Length-3 Odd Cycle Conflicts

Figure 15 shows an example on how to remove conflicts involving odd cycles of length

three. Recall that we attempt to break odd cycles in the order of increasing lengths (refer

to Figure 12 and Figure 14) and thus, applying this transformation could break cycles of

higher order as well. Figure 15.a is a code segment where three operands s1, s2, s3 form

an odd cycle of length 3 on the RCG. Note that, all three operands are live in but not live

out, while the 3 destination registers are the only live-outs. Figure 15.a shows the code

transformation that removes the conflict edge < s1, s3 >. Also notice that the instruction

in line 3 is supported by the IXP, which does a left shift before minus. Figure 15.c gives

a general form of the code segment and the rule for this transformation to be legal. f1
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 Calculate a+b+c 
 
1. d=a+b 
2. e=d+c 

 

(a) (b) (c) 

a b 

c d 

Calculate a+b+c 
 
1. d=a+c 
2. e=d+b 

 

a b 

c d 

Calculate a+b+c 
 
1. d=b+c 
2. e=d+a 

 

a b 

c d 

Figure 16: Example for application of algebraic laws

and f2 must be supported instructions. “plus”, “minus” are most commonly seen operators

that find this transformation useful. This optimization is applicable to pre-RA and post-

RA bank assignment. But for post-RA bank assignment, it merges live ranges, which may

result in new odd cycles. In our implementation we have a simple check before the code

transformation is applied in post-RA setting.

3.7.2 Application of Algebraic Laws

Algebraic laws such as associativity, distributivity can be applied to change the edge con-

nectivities on the RCG, so as to reduce conflicts on the graph. These optimizations can be

invoked on the RCG to break some of the cycles.

In Figure 16, three cases are shown to calculate a+b+c. With associativity, we can cal-

culate a+b first or a+c first or b+c first. Therefore, on the RCG, 3 kinds of connectivities

are possible, given that an ALU instruction can have at most two register operands. The

choice largely depends on the number of odd cycles each one would create. In our imple-

mentation, we focus on the number of triangles that can go through these edges. It can

be easily counted using breadth-first hierarchy based on the first two levels of nodes. The

calculation order with the least number of length-3 odd cycles is chosen. More generally,

most 2-operand ALU instructions satisfying associativity can be transformed with this law.
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Intel C compiler 

IXP C code 

IXP assembler and linker 

IXP assembly code 

Restore Virtual Reg 

Machine code 

Reg. Alloc. 

Post-RA Bank 
Assign. 

Post-RA Bank 
Assign. 

Reg. Alloc. 

Combined 
Reg. Alloc and  
Bank Assign. 

Figure 17: Compilation flowchart

3.8 Experimental Results

We evaluate the algorithms with the Intel-provided IXP1200 Developer Workbench 2.01.

The IXP1200 workbench supports cycle-accurate simulation for IXP microengines and other

peripherals with high fidelity. It provides both assembler and a C compiler supporting a

subset of ANSI C.

We experimented with 8 benchmark programs to see the effectiveness of the three ap-

proaches. These benchmarks are collected from Commbench [72], Netbench [51], and a

packet scheduling algorithm from [75]. The benchmark programs are rewritten in IXP C

code and a few of them are directly written in assembly (micro-code). For the assembly code

generated by the C compiler, we restore all virtual registers. Figure 17 shows the flowchart

of the compilation process. The register allocation and bank assignment pass have three

modules, i.e. Post-RA, Pre-RA and combined-RA. The general register alloator is the one

proposed by Briggs et.al. [8]. Our pass builds the CFG, IG and RCG from the assembly

code, after simple translation of the assembly directives. The IXP assembly consists of only

40 RISC instructions, which makes the translation easy. For one thread, the number of
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Table 1: Benchmark applications

 
 Code Size #live ranges #interference edges #conflict edges 

Drr 108 11 55 25 
Fir2dim 447 36 120 71 

Frag 271 26 133 65 
Kmp 123 13 53 27 
Lzw 126 18 105 36 
Md5 913 142 630 246 

Wraps (receive) 875 145 643 236 
Wraps (send) 921 135 464 193 

 

total physical registers is 32 (the benchmarks are assumed to be run on only one thread).

Therefore, 16 registers are available in each bank.

Table 1 shows the properties of the benchmark programs. The code size is the number

of instructions after code generation. The number of live ranges and interference edges are

listed in 3rd and 4th column. On average, the degree of the live ranges on the interference

graph is about 9. The last column shows the number of conflict edges. Conflict edges are

much less than interference edges. Only a small fraction of instructions become conflict

edges, because only ALU instructions with two source GPR operands establish conflict

edges in the RCG. Among these instructions, some conflict edges are identical.

Table 2 shows the cycle length distribution. We separate columns into two categories.

Table 2.a shows the distribution of cycle length before the two enabling techniques in Sec-

tion 3.7 are applied. Table 2.b are the distribution after these techniques are used. We apply

the enabling techniques before register allocation and bank assignment. From Table 2, we

find most cycles are of length 3. Cycles with length greater than or equal to 7 are rare. The

techniques in Section 3.7 seem to have limited effects, especially for larger benchmarks.

Table 3 gives the number of instructions inserted to apply the patterns (we do not

included instructions for spills, this will be counted in the next table) to break odd cycles

and balance the banks. They include ”move insertion” and ”in-place exchange” etc. for

post-RA bank assignments. The results signify that post-RA adds more instructions than

the other two. This is due to the more ambitious conflict breaking attempted by this stage
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Table 2: Cycle length distribution

 
 Without algebraic law & triangle conflict removal 
 Length-3 Length-5 Length ?  7 

Drr 7 1 0 
Fir2dim 48 2 0 

Frag 51 3 1 
Kmp 8 0 0 
Lzw 49 4 0 
Md5 836 13 2 

Wraps (receive) 1132 19 3 
Wraps (send) 842 10 0 

(a) 
 With algebraic law & triangle conflict removal 

 Length-3 Length-5 Length ?  7 
Drr 7 1 0 

Fir2dim 48 2 0 
Frag 49 3 1 
Kmp 8 0 0 
Lzw 44 4 0 
Md5 827 12 1 

Wraps (receive) 1101 17 3 
Wraps (send) 840 10 0 

(b) 

 

Table 3: Comparison for number of inserted instructions

 
 Pre-RA Post-RA Combined-RA 

Drr 3 5 5 
Fir2dim 10 18 11 

Frag 8 20 8 
Kmp 3 8 4 
Lzw 4 10 3 
Md5 38 59 19 

Wraps (receive) 35 62 23 
Wraps (send) 29 55 21 
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Table 4: Comparison for number of spills

 
 Pre-RA Post-RA Combined-RA 

Drr 2 0 4 
Fir2dim 5 0 7 

Frag 3 0 8 
Kmp 2 0 2 
Lzw 2 0 5 
Md5 30 23 35 

Wraps (receive) 45 38 56 
Wraps (send) 52 38 57 

 

adding many instructions. Since virtual registers have been allocated physical registers,

more odd cycles may result. Nodes on the physical RCG are more costly to split, because

they represent several nodes for virtual live ranges. A combined-RA approach tends to

generate fewer additional instructions, however, as we will see later, more spills are created.

Table 4 gives the number of spills generated by each approach. The combined-RA is

worst, since the graph coloring works poorly when two stacks are assumed. Many nodes are

marked as spill when pushing to the stack because the number of neighbors they have on

the graph is larger than the number of physical registers in one register bank, but actually

their neighbors on the graph may finally go to the opposite bank, which is not known at

the time they are pushed onto the stack. Post-RA is the best in reducing number of spills

(since it assumes one bank when doing RA), which compensates the increased number of

additional instructions due to the high cost of spills.

The compilation time for all benchmarks is within 1 second on a Pentium 4 machine.

Obviously, the combined-RA approach is polynomial time algorithm. For pre-RA and

post-RA algorithm, the majority of the compilation time is spent on cycle breaking. As

mentioned in Section 3.4.3, the complexity of the cycle breaking is O(n×P ×M). However,

if the outmost loop can finish early, the complexity is close to O(P ×M). Since we have

set the bound for M, the complexity is further controlled by O(P ) ×Max(M). Finally, P

is the maximum among the numbers of different odd-length cycles. Normally, this is the

number of length-3 cycles on the RCG, which should be in O(n3).
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In conclusion, our Post-RA bank assignment is successful in breaking odd cycles and

balancing banks without increasing spills. The extra instructions cannot offset the benefits

of spill reduction. Pre-RA generates more spills than Post-RA but less than the current

version of the combined-RA.
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CHAPTER IV

INTER-THREAD REGISTER ALLOCATION

The previous chapter focuses on the register allocation problem for a single thread. Note

that, the entire register file of each micro-engine is shared by all threads. Therefore, it is

possible to allocate registers also across threads.

4.1 Special Features Regarding Multithreading

As shown in Figure 18, typically, each microengine (PU) gets packets from its input queues,

processes it and then writes to its output queues, or the input queues of the next PU in the

next pipeline stage. With pipeline processing, typically, some PUs are in charge of getting

packets from the input ports; some handle packet processing and some are for output ports.

Our optimization focuses on the code across different threads of the same PU. Some of

the important features are as follows:

1. Shared register file but typically non-overlapped partitions. The general purpose reg-

ister (GPR) file is shared by the 4 threads. Each thread has access to all registers;

however without optimization, each thread is normally allocated non-overlapping part

of the register file. The main reason that the register file should be partitioned results

from light-weighted context switch as discussed below.

2. Non-preemptable thread execution. There is no operating system, no control present

over the threads sharing the CPU. A thread gives up the CPU only when it blocks

on I/O or other long latency operation or executes a context switch (ctx switch)

instruction voluntarily1.

3. Light-weighted context switch. Context switch is cheap (only PC is saved), this is

also the reason registers are normally allocated in a non-overlapped fashion from the

1ctx switch instruction can be inserted by the programmer to achieve fair sharing of the CPU.
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Figure 18: Pipeline

register file. If a register is allocated to two threads, after context switch, the content

in that register may be modified by the other thread. Since registers are neither

automatically saved nor restored during a context switch such possibilities exist and

this is where it becomes a compiler problem to manage registers.

4. Cheap ALU, expensive memory access. No cache is available for memory accesses;

at least 20 cycles are needed for each load/store instruction. Context switches are

typically followed to hide the long latency of memory accesses. In contrast, all ALU

instructions can be completed in 1 cycle. Large memory latency makes the overall

performance sensitive to spills even though they may be few in number.

The above features of the IXP network processor are driven by design philosophy to

simplify hardware so as to increase the clock rate and execution speed. For instance, context

switch is kept very simple and fast (1 cycle latency). Therefore, only program counter (pc)

is saved but no registers are saved because it can cause long delay in context switch which

may offset the benefits of CPU sharing. On the other hand, since all the hardware details

are exposed, compiler can make prudent decisions regarding register sharing etc. Next, we

propose the multi-threaded register allocation problem.

4.2 The Register Allocation Problem

As mentioned above, although the register file can be accessed by all threads, it has to

be partitioned without overlap across threads because no register is saved/restored during

context switches. Here, we argue that some registers can be safely shared by all threads

through compiler analysis since thread switch is predictable
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1. a=… 
2. ctx_switc

h 
3. if(…)br 

L1 
4. b=… 
5. …=a+b 
6. c=… 
7. br L2 

L1: 
8. c=… 
9. …=a+c 
10. b=… 

L2: 
11. …=b+c 

Thread 1 

(a) 

1. ctx_switch 
2. d=… 
3. …=d+… 
4. store… 

Thread 2 

1. r1=… 
2. ctx_switch 
3. if(…)br L1 
4. r2=… 
5. …=r1+r2 
6. r3=… 
7. br L2 
L1: 
8. r3=… 
9. …=r1+r3 
10. r2=… 
L2: 
11. …=r2+r3 
12. load… 

Thread 1 

(b) 

1. ctx_switch 
2. r2=… 
3. …=r2+… 
4. store… 

Thread 2 

1. r1=… 
2. ctx_switch 
3. if(…)br L1 
4. r2=… 
5. …=r1+r2 
6. r1(r3)=… 
7. br L2 
L1: 
8. r2(r3)=… 
9. …=r1+r2(r3) 
10. r1(r3)=r2(r3)* 
11. r2=… 
L2: 
12. …=r2+r1(r3) 
13. load… 

Thread 1 

(c) 

Figure 19: Example of register sharing and move insertion

The example in Figure 19 illustrates the problem and possible ways to solve it. In

Figure 19.a shows code for the two threads. Assume all variables are dead after their last

use in the code. In thread 1, a code segment contains 12 instructions, including two context

switch instructions–ctx switch gives up CPU voluntarily and a load causes context switch to

wait for I/O operation. Any pair of the 3 variables interferes with each other (co-live at some

program points), so in Figure 19.b, they are assigned 3 different physical registers. Notice

that variable a is live across ctx switch instruction, so it must be allocated to a physical

register that is not used by any other thread, because when thread 1 is context switched at

this point, other thread should not modify the physical register of variable a, which means

only thread 1 should use the register. On the contrary, variable b and c are only used

between two context switch instructions. In other word, when thread 1 is switched out,

both b and c must be dead. Therefore, it is safe to reuse the physical registers allocated to

b and c in other threads. Thread 2 has 4 instructions, with two context switch instructions.

d is only live between two context switch instructions, therefore d can share a physical

registers with other threads. Simply, r2 is shared - used for b in thread 1 and d in thread 2,
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because the code guarantees that when context is switched to thread 2, r2 contains a dead

value (b) for thread 1. Similarly, when context is switched to thread 1, r2 contains a dead

value (d) in thread 2. This example shows the benefit of sharing registers and lowering total

register requirements from four to three. We now illustrate that through another technique

(live range splitting), one can reduce the total register requirement further.

Three registers seem necessary for thread 1, however we notice that at any program

point, only two variables are co-live. This prompts our technique of splitting one of the

variables and inserting a move instruction at certain point. This is demonstrated in Fig-

ure 19.c. In instruction 6, r3 is replaced by r1, while from instruction 8 to 9, r3 is replaced

by r2. Instruction 10 copies r2 to r1, so in instruction 12, we have a consistent replacement

(r3 → r1). We have managed to reduce total register requirements down to two now.

The above example illustrates the potential benefits of register sharing across threads

and live range splitting. To further justify that multi-threaded register allocation is impor-

tant, and a compiler solution is feasible, we list some properties of the programs that run

on the networks to support this argument.

1. For IXP1200, the hardware provides seemingly enough registers. 128 general purpose

registers (GPRs) can be used for each PU. However, for each thread, only 32 GPRs are

available if no GPR is shared across threads. Register sharing on IXP is a software-

only solution, unlike some SMTs (Simultaneous Multi-threading) where it is hardware

managed. Compiler designates and allocates a register either as a shared or private

one.

2. Since there is no operating system to manage threads, memory access, context switch

etc. are all explicit and thus context switch is predictable at compilation time.

3. As shown in our experiments, context switch instructions are typically less than 10%

of the total instructions and many variables are not live across context switch instruc-

tions.

4. PUs are assigned with different tasks. Packets are processed in pipeline fashion.

Currently, task assignment cannot be done automatically. Although in most cases,
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the same task is assigned to threads on the same microengine. This actually leads to

low utilization of the CPU, because it is hard to chop tasks properly so that they all

take roughly 1/4 of the computation power of the PU. Therefore, we should assume

tasks might be different for threads on the same PU.

Item 1 indicates that registers may not be sufficient on the network processor. Item 2

and 3 support the feasibility of a compiler solution to optimize register allocation. Finally,

item 4 prompts two kinds of problems, i.e. symmetric vs. asymmetric register allocation,

which will be defined in next section.

4.3 Preliminaries

4.3.1 System Model

We study a multithreaded network processor that can run multiple threads on a single

processing unit. The threads on one PU share the computation power of the PU and

register files etc. Formally, the model is as follows:

1. There are totally Nreg registers that can be used by Nthd threads sharing a single PU.

2. Explicit context switch. A thread does not give up the CPU once it starts execution

on it, until a context switch instruction is met. Context switch can happen due to

explicit instruction or long latency instructions like a load or a store.

3. Context switch is very cheap (only PC is saved) and it is intended to hide long latency

operations.

4. The purpose of multithreading on the same PU is mainly for latency hiding and con-

currency. When one thread is stalled due to I/O or other long latency operations,

other thread can take the CPU. Therefore, code on different threads are almost in-

dependent. Thread communication or synchronization rarely happens, however, our

current solutions still works under such circumstances. As a future work, knowledge

about thread communication or synchronization might be exploited to improve the

register allocator.
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5. All registers are accessible by all threads, but registers used by one thread at the point

of context switch should not be used anywhere by other threads (later, we will define

these registers as private registers), because this might cause unexpected modification

to registers and lead to unsafe code.

6. Move instruction is much cheaper than spill.

7. Code on different threads of the same PU can be different.

4.3.2 Problem Classification

As mentioned earlier, programs executing on different threads can be identical. We call

the register allocation problem under such circumstances Symmetric Register Allocation

(SRA). On the contrary, Asymmetric Register Allocation (ARA) assumes different programs

for different threads. Mixing threads with different computation requirements can achieve

better CPU utilization. Since SRA is a sub-problem of ARA, in this paper, we develop

our approaches based on ARA. Notice that, although currently most real programs are

for SRA, we are not intentionally complicating the problem, because our algorithms are

equally necessary and important to SRA, as will be illustrated later, SRA only reduces

searching space during inter-thread register allocation, while all techniques in this paper

are applicable to both problems. Our goal is to develop general techniques that can apply

without undue restrictions.

4.3.3 Objectives

The number of total available registers is limited. Therefore, in a multithreaded network

processor model, we aim to (for ARA) balance register allocation among all threads, so

that more registers are allocated to the thread with higher register pressure, and register

allocation is catered to the requirements of different threads in the system. Furthermore,

designating a larger number of shared registers can help all threads to internally adjust their

register pressures without causing spills.

In case there are not enough registers available for all threads, we attempt to split the

live ranges inside a thread by using move instructions. Also, our objective is to minimize
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the number of move instructions inserted. The results show that move insertion is cheap

and effective.

4.3.4 Problem Formulation

To formalize the problem, we define several concepts.

Definition 3. PRi

Number of private registers for thread i, these are physical registers only (exclusively) used

by thread i.

Definition 4. SRi

Number of shared registers needed by thread i, these are physical registers used by thread

i, but other thread may use them as well.

Definition 5. Ri

Number of total physical registers needed by thread i, equals PRi + SRi.

Definition 6. SGR

Number of globally shared registers needed, it is the maximum of shared register demands

of each thread, since shared registers can be used by all threads, this is the maximum of all

SRs.

Definition 7. Nreg

Total number of physical registers available on a PU.

For a thread, PR is the number of physical registers that are exclusively allocated to

it or the number of physical registers that can be live across context switch instructions,

while SR is the number of allocated physical registers that are dead during context switches,

which means they can be shared across threads. For example, in Figure 19.b, for thread 1,

PR1 = 1, SR1 = 2, for thread 2, PR2 = 0, SR2 = 1, therefore, SGR=2.

The relationship and restrictions among these variables are illustrated as the following

conditions:

1. SGR = Max(SR1, SR2...SRNthd
)
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2.
∑
i

PRi + SGR ≤ Nreg

3. PRi + SRi = Ri

4. For SRA, all PRi’s and SRi’s are equal.

Given these restrictions, we need to assign registers in a way that the overall register

need is satisfied and spills are minimized.

4.4 Construction of the Interference Graph

4.4.1 Non-Switch Region

Definition 8. Non-Switch Region (NSR)

A non-switch region is a maximal connected sub-graph of the CFG without any internal

context switch instructions. It contains connected parts from several basic blocks. The

boundaries of the NSR are either context switch instructions or program entry/exit points.

Definition 9. Context Switch Boundary (CSB)

The program point of a context switch instruction. A CSB separates the basic block it

resides, thus becomes the boundary of NSR(s).

A NSR can be constructed by starting from an individual instruction and grown it until

all nearby instructions are either context switch instruction or program entry/exit points.

To illustrate, Figure 20.a shows the CFG and NSR for a code segment from benchmark

“frag” in the Commbench suite [72]. This code segment is from one of the functions to

calculate the IP checksum. The CFG consists of 10 basic blocks. Noticeably, there are

four context switch instructions, i.e. the read instructions in BB3 and BB7, the explicit

ctx switch instructions in BB5 and BB6. The ctx switch instructions are inserted by the

programmer to avoid CPU monopoly.

Figure 20.b shows the NSRs. After terminating the CFG at the points of context

switch instructions (boundaries), we get 3 NSRs. These NSRs are bound by either program

entry/exit points or context switch instructions (CSBs). We can assume all terminating

are inside basic blocks, therefore some basic blocks are split, like BB5 is split into BB5.a
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read tmp1�[buf], 1 
sum+=tmp1&0xFFFF 
buf=buf+2 
if!(sum&0x80000000) 
        br BB5 

Sum=(sum&0xFFFF) 
         +(sum>>16) 

len-=2 
ctx_switch 
Goto BB2 

If (len<2) br BB6 

Sum=0 

ctx_switch 
If!(len) goto BB8 

Read tmp2�[buf],1 
Sum+=tmp2&0xFFFF 

If!(sum>>16)br BB10 

Sum=(sum&0xFFFF) 
         +(sum>>16) 
goto BB8 

return ~sum 
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Figure 20: Program CFG and the constructed NSR
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in NSR2 and BB5.b in NSR1. Sometimes, two parts of a separated basic block still belong

to the same NSR like the BB7 in Figure 20. For the example in Figure 19, thread 1 has

two NSRs, instruction 1 and 2 are in NSR1 and instructions 2 to 12 constitute NSR2. For

thread 2, all instructions form one NSR.

4.4.2 Interference Graphs

After building the NSR, we then build the interference graph, which will guide register

requirement estimation and register allocation. We need to distinguish two kinds of inter-

ferences and introduce some other definitions for the interference graph.

Definition 10. Node

Live range of a virtual register or variable2

Definition 11. Boundary Node

Node that is live across the CSB, which may interfere with other boundary nodes.

Definition 12. Internal Node

Node that is not live across any CSB.

Definition 13. Boundary Interference

If two boundary nodes are co-live across the same CSB, they are said to be boundary

interfering with each other.

Definition 14. Internal Interference

If two nodes (internal or boundary nodes) interfere (co-live at a program point) within a

NSR.

Definition 15. Boundary Interference Graph (BIG)

A graph consists of all boundary nodes and edges only representing boundary interference.

Definition 16. Internal Interference Graph (IIG)

For each NSR, we have an IIG, which only includes the internal nodes live within this NSR

and their interference edges.

2Here, we assume each live range represents one variable.
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Figure 21: Global interference graph for the example

Definition 17. Global Interference Graph (GIG)

The global interference graph includes both boundary nodes and internal nodes. An edge

is added if any two nodes (internal or boundary) interfere with each other.

The GIG of the code for the example in Figure 20 is drawn in Figure 21. We assume

both len and buf are live at the entry point as the length and the buffer pointer of the

packet are calculated. Also, we assume all variables are dead after their last use in the

code. From Figure 20.b, we can see both variable tmp1 and tmp2 are only live within an

NSR, so they are internal nodes. Other variables are live across CSB boundaries. They are

boundary nodes. For memory read, since all data is first loaded into transfer registers, the

destination register is not assumed to be live across the memory read i.e. the CSB. At BB1,

sum, buf and len interfere with each other internally (they also interfere at CSB), thus, the

3 nodes form a clique on the GIG. tmp1 interferes with sum, buf and len in BB3.b, but at

the live point of tmp2 in BB7.b, both buf and len are dead. Thus, sum, buf and len form

a BIG; the IIG1 for NSR1 is empty; the IIG2 for NSR2 includes only tmp1, the IIG3 for

NSR3 includes only tmp2.

Obviously, we have the following claims for each thread.

Claim. To avoid spills, the GIG should be colored with R colors and the BIG should be

colored with PR colors. Each IIG, as a part of the GIG, should be colored with no more

than R colors.

Claim. Internal nodes on different IIGs are not connected i.e. they do not interfere with
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 Build NSR, Interference Graphs 

Estimate Lower/Upper bounds 

Inter-thread Register Allocation Intra-thread Register Allocation 

Figure 22: Overall framework

each other.

Notice that, NSRs and interference graphs can be constructed inter-procedurally. CFGs

and NSRs of different functions are connected with edges linking function calls and return

points.

4.5 Overall Framework

Figure 22 shows our framework to perform register allocation. Our first step is to build NSR

and interference graphs, we then try to estimate the lower and upper bound of PR and R for

each thread. Starting from the upper bound the inter-thread register allocator reduces the

overall register requirement gradually until it is within Nreg. During this process, when the

inter-thread register allocator intends to reduce PR or SR, it calls the intra-thread allocators

for all threads. The inter-thread allocator goes towards the direction of the smallest cost

increase. The framework allows the intra-thread register allocator to be built separately

from the inter-thread register allocator.

4.6 Register Number Estimation

As the first step toward assigning registers to multiple threads, we need to estimate the

number of registers each thread needs based on the interference graph. The estimation

helps guide the distribution of registers to threads at the beginning. Here, we are concerned

with finding the bounds for R and PR as defined below. We do not estimate bounds for

SR, since the number of SR is always equal to R-PR.

Definition 18. MinPR, MaxPR
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Minimal, maximal number of PR

Definition 19. MinR,MaxR

Minimal, maximal number of R

4.6.1 Lower Bound Estimation

The lower bound is the minimum number of registers a thread needs. First we can get

an estimation for the minimum number of private registers (MinPR) one thread needs. A

rough estimation is MinPR ≥ RegPCSBmax = Max(number of co-live registers at CSBs).

It is obvious that if at a CSB point, there are RegPCSBmax nodes (variables) co-live,

we need at least this number of private registers since they cannot be shared during context

switch. In other words, the minimal number of private registers needed is at least equal to

the maximal number of nodes co-live at the CSB boundaries.

The following lemma says that this bound can be reached if enough move instructions

are inserted. Also, we will explain more about move instruction insertion later.

Lemma 4. Regardless of shared registers, MinPR can be made equal to RegPCSBmax by

inserting move instructions.

Proof: If we are given private registers PR1, PR2 . . . PRRegPCSBmax , and at a certain

CSB, there are V1, V2 . . . Vn, totally n variables live across, RegPCSBmax ≥ n. Simply,

inserting n move instructions PR1 = V1, PR2 = V2, . . . PRn = Vn before the CSB and

n move instructions V1 = PR1, V2 = PR2, . . . Vn = PRn after the CSB can make the

code equivalent to the original and the number of private registers needed is no more than

RegPCSBmax.

However, in reality, move instruction still costs 1 cycle in our model, although it is much

cheaper than spill, we still need to keep the number of inserted move instructions small.

Similarly, we can estimate the MinR needed.

MinR ≥ RegPmax = Max(number of co-live registers at program points)

This lower bound is also achievable given enough move instructions. The proof is similar

to the one above.
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4.6.2 Upper Bound Estimation

The upper bound gives the maximal number of registers required without any extra move

instructions inserted. According to the first claim in section 4.4.2, the best estimation for

MaxPR and MaxR is the minimal number of colors required to color BIG and GIG. However,

for GIG the coloring problem is slightly different from the traditional graph coloring. In

summary, the problem is to find a coloring scheme for a thread which satisfies:

1. All boundary nodes are colored with at most MaxPR colors

2. All nodes are MaxR colorable

3. Any two interfering nodes are colored differently

For the GIG in Figure 21, all boundary nodes can be minimally colored with 3 colors;

thus, MaxPR=3. And, all nodes can be minimally colored with 4 colors (there is one 4-node

clique), so MaxR=4 → SR=1.

Actually, there is a tradeoff between MaxPR and MaxR estimation. Reducing MaxPR

may induce a larger MaxR. To minimize MaxPR, we can first remove all internal nodes and

color the BIG minimally, then insert back the internal nodes and color the graph assuming

all boundary nodes have fixed color. To find the tighest (minimal) value of MaxR, we should

ignore the condition 1 above, i.e. we could assume that all nodes are indistinguishable and

we could simply color the GIG as usual using any coloring allocator. Such a coloring would

then minimize MaxR but may give a higher MaxPR.

We take an approach slightly different from the first one, i.e. we minimize the MaxPR

first. This approach is motivated by the fact that increasing PR causes direct increase in

the total number of registers, while increasing SR only affects the total number of registers

when this SR is the maximum among all threads. Based on the second claim mentioned in

Section 4.4.2, (i.e. IIGs are not connected with each other) we can color IIGs and BIG sepa-

rately and then merge them together to keep a tight control on colorability. After merging,

edges added between BIG and IIGs may cause conflicts. For example, in Figure 21,when

IIGs and BIG are colored separately, variable sum may get the same color as tmp1, leading
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BIG is colored with PR colors 
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Figure 23: Estimate the maximal register requirements

to color conflict when the edge between them is added during the merge. A general algo-

rithm to color the whole graph altogether may take much more time, since the graph can

be big (it includes all live ranges in the program. Some code in our experiment contains

hundreds of nodes). Our approach is similar to the fusion-based or region-based register

allocation [11], except that our regions are chosen as the IIGs and BIG. The algorithm (Fig-

ure 23.a) first builds BIG and IIGs from the GIG and colors each of them independently. In

other words, the BIG is colored with color number from 1 to PR, while each IIG is colored

with color number from 1 up to R. Some IIGs may be colored with less than R colors, but

an IIG can be colored with at most R colors.

The next step tries to merge each IIG with the BIG. The edges between IIG and BIG

can cause problems if the two end nodes of an edge have the same color. Such edges are

called Conflict Edges. The loop in Figure 23.a shows how to resolve all the conflict edges.
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We illustrate the procedure in Figure 23.b. Suppose boundary node s and internal node t

is colored with the same color. If s’s color can be changed to another color within color

number 1 to PR or t’s color can be changed to another color within color number 1 to R,

then one of them can be changed to another color to remove this conflict edge. If that

fails, we heuristically try to change their neighbors’ colors to see if the two nodes can be

recolored after that. After all these attempts fail, we have to increase R and t is re-colored

with the new color. The algorithm gives MaxPR and MaxR finally. The complexity of the

algorithm is
∑

O(mini color(IIGi)) + O(mini color(BIG)) + O(#Edge between BIG and

IIGs). In contrast, the complexity to color the whole graph is O(mini color(GIG)). This

means the algorithm is also quite fast to try out a given coloring for a thread.

4.7 Interthread Register Allocation

4.7.1 Our Approach

One of the difficulties in register allocation for multiple threads is that we do not know

exactly how many registers each thread needs. Trying all combinations to find out the best

register allocation will cause tremendous amount of compilation time and will be infeasible

to build into any practical system. Our approach is to first get an estimation (range) of how

many registers are needed by individual thread via the algorithm proposed in the previous

section. From this starting point, we use a greedy heuristic algorithm to approach a sub-

optimal solution by reducing the total number of required physical registers gradually. The

algorithm also encapsulates the intra-thread register allocator, so that it can be developed

independently.

4.7.2 The Register Allocation Algorithm

After getting the estimated upper bounds MaxPRi and MaxRi for each thread, Let SRi =

MaxRi −MaxPRi and PRi = MaxPRi. We can check the following condition:

∑

i

PRi+Max(S1, S2...SNthd
) ≤ Nreg(∗∗)

If this holds, we can assign SGR = Max(S1, S2...SNthd
) as the number of globally shared
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INPUT:  Nthd, Nreg, CFGs of all threads 
OUTPUT: all PRi and SRi, SGR, CFGs after register allocation 
 
/*Intra-thread register allocator, returns move cost*/ 
Intra_thd_allocator(CFG, GIG, PR, SR); 
 
ALGORITHM: Inter_thd_reg_allocation 

1. Build_GIG() 
2.  
3. Estimate_reg_requirement() 
4.  
5. While(sum(PRi)+max(SR1,SR2…SRNthd)>Nreg) 
6.     Foreach PRi>MinPRi and PRi+SRi>MinRi do 
7.         cost_PRi=Register allocation cost after reducing PRi 

by 1. 
8.     od 
9.  
10.     max_SR=max(SR1, SR2…SRNthd) 
11.     cost_SR= Register allocation cost after reducing all SRs  
12.                      that equal max_SR by 1, if all such SRs can 
13.                      be reduced(by checking PR+SR>MinR) 
14.     Find the min one among cost_SR, cost_PR1,cost_PR2… 
15.     Choose the one with minimal cost, modify PRs and SRs. 
16. Endw 
17.  
18. Actually modify the CFGs based on new PRs and SRs 
19. SGR= Max(SRi) 
20. Return all PRi and SRi, SGR, all CFGs 

    

Figure 24: Algorithm for inter-thread register allocation

registers and MaxPRi as the number of private registers for each thread to satisfy all register

requirements. If the above condition (**) cannot hold good, the register requirement is too

high. We must either reduce the PR(s) or SR(s) to satisfy (**).

From (**), we can see, there are two ways to reduce the left side value. Either we can

reduce one of the PRi, which will result in direct reduction of the left-side value, or to

reduce SRi. We should reduce the one(s) with the maximal value. In case multiple SRi’s

have the same maximal value, we should consider reducing one of the PRi if that costs less.

The inter-thread register allocation algorithm is shown in Figure 24.

The algorithm first builds GIG and gets the estimations for each thread. If the needed

registers are enough (less than Nreg), the program simply allocates register and return.

Otherwise, it enters a loop to gradually reduce the number of overall register requirement

through a greedy algorithm, i.e. every time we choose a direction that can achieve the

minimal cost. To reduce the register requirement (i.e. the left side of (**)) by 1, we have
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many choices. Either we can reduce one of the PRs by 1 or reduce all the maximal SR(s) by 1

to cut down Max(SR1, SR2...SRNthd
). Every time the PR in one thread is reduced, we check

if it is larger than the lower bound. Also, the lower bound of Ri = PRi + SRi >= MinRi

is verified when either PRi or SRi is reduced.

The function Intra thd allocator is an intra-thread register allocator. It accepts the PR

and SR, then tries to return an allocation using PR and SR number of registers. This

function is called when we calculate register allocation cost for each thread and when we

finally modify the CFGs. It returns the allocation cost. Actually, the interference graph

and coloring scheme given by the function Estimate reg requirement can be passed to the

intra-thread register allocator as a starting point. However, to provide more flexibility, we

leave this to the implementation of Intra thd allocacor.

The complexity of our heuristic algorithm is O(Nreg ×Nthd)×O(Intra thd allocator),

which largely depends on the complexity of the intra-thread register allocator. Our regis-

ter allocation algorithm generates satisfactory solution for all benchmark programs within

almost negligible compilation time.

4.8 Intrathread Register Allocation

The intra-thread register allocator attempts to allocate up to PR number of physical regis-

ters to boundary nodes and up to R=PR+SR physical registers to all nodes.

4.8.1 Move Insertion and Live Range Splitting

Our intra-register allocation is based on live range splitting and move instruction insertion.

Live range splitting has been used in register allocation [17] to spill part of the live range to

memory. In this paper, we attempt to split the live ranges by inserting move instructions

to reduce the chromatic number. Lemma 1 has shown that through live range splitting

MinPR can be reached. Figure 25 gives another example. In Figure 25.a, live ranges A

B and C interfere with each other at three different CSB points. The lower bound lemma

in Section 4.4 gives MinPR=2, but the interference graph must be colored with 3 colors,

because A,B, and C form a clique. In Figure 25.b we split the live range of variable A

into A1 and A2 by inserting move instruction at the split point. The resulting interference
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Figure 25: Live range splitting via move insertion

graph can be colored with 2 colors which is equal to MinPR. Notice that, this is also the

way we reduce the number of registers required in the first example (Figure 19.c).

In our intra-thread allocation algorithm, we focus on live range splitting through move

insertion because spill is too expensive on network processor and our experiments show

MinPR (MinR) is much smaller than MaxPR (MaxR). This provides us room to reduce

chromatic number toward the lower bound by inserting move instructions.

4.8.2 Intra-thread Register Allocation Algorithm

Our register allocator works incrementally, i.e. it records the context (interference graph

with split nodes and the position of move instructions) of the last 2 invocations and modifies

the context to satisfy the new PR and SR values. Notice that the inter-thread allocation

algorithm in Figure 24 calls Intra thd allocator multiple times. In each step, either it accepts

the previous context and reduces PR or SR by 1 or it rejects the previous modification

and starts from the previous previous context and reduces PR or SR by 1. Incremental

modification can save time for otherwise repetitive work. Further, based on the records of

the two contexts, we can assume that each time the allocator is invoked, it attempts to

reduce either PR or SR by 1 from one of the recorded contexts. We name these two kinds

of invocation as Reduce-PR invocation and Reduce-SR invocation.
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4.8.2.1 Reduce-PR Invocation

In this type of invocation, the allocator wants to reduce the PR by one from its last invo-

cation. In other words, the last accepted context can color all boundary nodes with PR

colors and this invocation wants to color it with PR-1 colors.

In this stage, we assume all move instructions are inserted near the CSB. With this

assumption, we do not need to alter the colors of internal nodes. Normally, changing

the color of both internal and boundary nodes might induce more move instructions (in

this case, we must split the live range to recolor an internal nodes) and increase the cost

accordingly. Later, we will show that some of the move instructions at the CSB can be

eliminated by merging them with move instructions inside the NSR. This actually relocates

the move instructions from the CSB boundary. Before discussing our algorithm, we first

define Neighbor Color Number (NCN).

Definition 20. Neighbor Color Number (NCN)

The number of colors used by the neighbors of a given node in a colored graph.

The algorithm in Figure 26 uses function NCN(t, BIG) to get the neighbor color number

of node t on the BIG. The algorithm also works in a greedy manner. It tries each color c in

PR colors and checks the cost to eliminate that color. Then, the color with least elimination

cost is selected to be eliminated and all needed move instructions are inserted. Function

Set color node(c,BIG) returns the set of nodes on BIG with color c. We need to change

every node in this set to a different color in PR.

First, we check the NCN of t that has color c on the BIG. If this number is less than

PR-1 (which means there is at least one color available in PR not used by its neighbors), we

can change t to another color. Since we have changed t’s color on BIG and t may internally

interfere with other internal nodes or boundary nodes (two boundary nodes can interfere

only inside NSR but not on the CSB), we need to check if there is a color conflict. The

function Cut if conflict(t, c, c′) attempts to insert move instructions to disconnect such

edges. Figure 27 shows how the disconnection is done and the corresponding changes on

the GIG. In Figure 27.a, s is originally colored with color c’; after node t is changed to color
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INPUT:  PR, SR 
OUTPUT: cost (number of inserted move instructions) 
 
Static context_pre, context_pre_pre 
 

1. FUNCTION Reduce_PR(context):cost 
2. Begin 
3.     Foreach color c in PR do 
4.         Cost=0        
5.         Foreach node t in Set_color_node(c,BIG) do 
6.             If NCN(t,BIG)<PR-1 then 
7.                 Change t to another color c’ in PR other than c. 
8.                 Cost+=min(Cut_if_conflict(t,c,c’)) for all possible c’ 
9.             Else 
10.                 Cost+=min(NSR_exclusion_cost(t,c,c’)) for each 
11.                             color c’ in PR other than c 
12.                 Add newly split node with color c to 

Set_color_node(c,BIG) 
13.                             if it is boundary node 
14.             Endif 
15.         od 
16.         Eliminate_unnecessary_move()      
17.         Record to min_cost if this cost is smaller and record the 

context. 
18.     od 
19.     Keep the minimal cost context and return min_cost 
20. End 

 
21. FUNCTION Reduce_SR(context):cost  
22. Begin 
23.     Foreach color c in SR 
24.         Cost=0 
25.         Foreach NSRi color c is used do 
26.             Foreach internal node t in Set_color_node(c,IIGi) do 
27.                 If NCN(t, GIG)<R-1 then 
28.                     Color t with a color other than c. 
29.                 Else 
30.                     Cost+=min(live_range_exclusion_cost(t,c,c’))  
31.                                For each color c’ in R other than c 
32.                     Add newly split node with color c to 

Set_color_node(c,IIGi) 
33.                 Endif 
34.             od 
35.         od 
36.         Eliminate_unnecessary_move()      
37.         Record to min_cost if this cost is smaller and record the 

context. 
38.     od 
39.     Keep the minimal cost context and return min_cost 
40. End 

 
41. FUNCTION Intra_thd_allocator(PR,SR):cost 
42. Begin 
43.     According to the accepted context, pick stored either context_pre  
44.         or context_pre_pre => context. 
45.     If(PR is reduced) return Reduce_PR(context) 
46.     Else if (SR is reduced) return Reduce_SR(context) 
47.     Else return cost for the context //no change 
48. End 

 

Figure 26: Algorithm for intra-thread register allocation
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Figure 27: Node splitting to change the color of node t

c’ from color c, it conflicts with internal node s. We insert a move at the CSB, so live range

t is split. The part of the live range t in NSR2 becomes t’, and this part can keep color c,

so it does not conflict with s, while, on the BIG, t is changed to color c’. Figure 27.b shows

the changes on the GIG. The edge between t and s gets eliminated after t’ splits from t. t’

keeps the original color of t, so in the IIG, it is compatible with s, while on the BIG, the

color of t is changed. In the algorithm, we try every candidate color for t and pick the one

with minimal cost.

If this step fails, i.e. NCN(t ,BIG)=PR-1, the algorithm calls function NSR exclusion cost

(t,c,c’) to get the cost of changing t to another color c’ and to exclude all the NSRs with

conflict nodes. NSR exclusion cost looks at each NSR where t is live to see if there is any

node with color c’ in it. If so, the NSR is excluded by splitting the live range of t in that

NSR and by inserting move instructions. In our approach, the NSRs are split in whole, i.e.

either the live range in that NSR is kept with color c’ (if no conflict) or the live range is

split (after splitting, t’ in that NSR keeps color c).

Figure 28 shows how NSR exclusion is done. Boundary node t cannot change to color c’

because the boundary node r and the internal node s are using color c’. The conflict NSRs

are NSR2 and NSR3, where s and r are live. So, these two NSRs are excluded from the live

range of the original boundary node t. On the GIG, we see t’ is split from t, and t now can
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Figure 28: NSR exclusion to reduce PR

be colored with c’. t’ keeps color c and it is still compatible with s and r. Notice that, after

splitting, the edge originally connected from r to t is connected to t’. Therefore, the NCN

of t is reduced and t can be recolored with c’. The algorithm tries each color other than c

to recolor t and finds the minimal value to finally color t. Also notice that, after this step,

t’ is colored with c and, if it is a boundary node, we should add t’ to Set color node(c,BIG)

and we will color it with some other color during the later iterations. Set color node(c,BIG)

will not increase infinitely, since further splitting t’ will finally generate internal nodes.

4.8.2.2 Reduce-SR Invocation

To reduce SR, we check with each color c in SR to see which one should be reduced with

minimal cost. The cost is calculated by adding up costs in every NSR where this color is

used. Also notice that in this step, all boundary nodes are assumed to have fixed colors so

that the phase will not affect the PR number.

The algorithm tries to recolor node with color c in a NSR to other color. If the node

on the GIG has NCN less than R-1, we can just pick that color and color the node without

any cost. Otherwise, live range splitting is needed.

Live range splitting is illustrated in Figure 29. In Figure 29.a, the example has 3 basic

blocks. Live range t is recolored with color c’, however, live range s also uses color c’. Our

algorithm then splits t at the boundary where the two live ranges overlap. After splitting,

t’ can still use color c, and t is now changes to c’. We assign the color with minimal cost
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Figure 29: Excluding a live range within NSR to reduce SR

to node t. After the splitting, node t’ is push into Set color node(c,IIGi), because now it

bears color c.

This process will finally stop. After each splitting, the live range with color c is reduced.

Since the value R − 1 ≥ RegPmax (according to the lower bound estimation in Section 4.6

and the algorithm in Figure 23), in the extreme case, each live range is a single program

point, there will be at most RegPmax nodes co-live and live range with color c can always

be recolored.

4.8.2.3 Eliminate Unnecessary Moves

During the attempt to reduce PR, we assume that all move instructions are inserted near

the CSB boundary and during Reduce SR, some move instructions are inserted inside the

NSR. At this point, we can merge some of the internal move instructions with those at

the boundary. For two consecutive moves, the first move instruction to the live range is

unnecessary if the color at the entrance to the first move is also acceptable in the region

between the two move instructions. We can safely eliminate the first move and this actually

relaxes the restriction in Reduce PR to bind moves to the CSB.
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4.9 The SRA Problem

For the SRA problem, given PRs are equal and SRs are also equal. The restriction can be

rewritten in a simple form:

Nthd × PR + SR ≤ Nreg

Thus, the inter-thread register allocation algorithm can also be simplified. There are

only two possibilities to reduce the register requirements. Due to the shrunk solution space,

for algorithm in Figure 24, we can actually traverse all the possible PRs and SRs to find

the best solution.

4.10 Experimental Results

The evaluation of our algorithm is done with the Intel-provided simulation environment-

IXP1200 Developer Benchmark 2.01. The IXP1200 workbench supports cycle-accurate

simulation for IXP microengines and other peripheries with high fidelity.

In this section, we experiment with 11 benchmark programs and some of their combi-

nations to see the effectiveness of the register allocator. These benchmarks are collected

from Commbench [72], Netbench [51], Intel provided example code and a packet scheduling

algorithm from [75]. To evaluate our algorithm, the benchmark programs are rewritten in

IXP C code (a subset of standard C) and a few of them are directly written in assembly

(microcode). For those written in assembly code, we restore the virtual registers so that

our register allocator can work on the live ranges from scratch. Our pass builds the CFG

and interference graph from the assembly code, after simple translation of the assembly

directives. The assembly code is then passed to the assembler to generate machine code.

The IXP assembly consists of only 40 RISC instructions which makes the translation easy.

The assembler simply exits if too many registers are required. However, after our pass,

the register requirements are always satisfied, so the machine code can be generated prop-

erly. Table 5 shows the properties of the benchmark programs. The code size is number

of instructions after code generation. The cycle counts are measured as follows: for some

programs like L2l3forward, it cannot run to a stop in finite time, since these programs all
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Table 5: Benchmark applications

 
 Code Size Cycle/ iteration #CTX insns w/o spills #live ranges 

Crc 78 52280 6 14 

Drr 108 207037 12 11 

Fir2dim 447 159149 32 36 

Frag 271 28620 30 26 

Kmp 123 148059 12 13 

L2l3fwd (Rec) 635 1253.34 55 131 

L2l3fwd (Send) 690 721.28 88 115 

Lzw 126 43163 12 18 

Md5 913 3983292 56 142 

Wraps(receive) 875 2048.37 85 145 

Wraps(send) 921 1264.87 103 135 

(a) 
 RegPmax RegPCSBmax MaxR MaxPR #NSR Ave.NSR Size 

Crc 6 5 9 8 4 19.5 

Drr 5 4 8 6 7 15.43 

Fir2dim 21 17 27 20 19 23.53 

Frag 16 12 22 18 18  15.06 

Kmp 7 5 10 7 5 24.6 

L2l3fwd (Rec) 30 28 35 34 28 22.67 

L2l3fwd (Send) 24 21 31 25 33 20.91 

Lzw 13 10 15 11 9 14 

Md5 41 37 60 46 31 29.45 

Wraps(receive) 45 39 59 47 32 27.34 

Wraps(send) 49 40 65 50 37 24.89 

(b) 
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runs in a while loop to accept and process packets, the cycle counts are average number per

iteration of the main loop. We list CTX instructions (context switch instructions, which in-

cludes load/store, voluntary context switch and other I/O operations that can cause context

switch) each benchmark has. Roughly, about 10% instructions are CTX instructions. The

CTX instructions here do not include spill instructions, as we have removed all spills and

reconstructed original live ranges (we did this based on the source code and the annotations

embedded in the generated assembly code by the Intel IXP compiler). The number of live

ranges (nodes on the GIG) is listed in the last column of Table 5.a. These numbers come

from the restored virtual registers.

In Table 5.b, column 1 and 2 are maximal register pressures in the program (RegPmax)

and maximal register pressure at the CSBs (RegPCSBmax). These are the lower bound

estimation for register requirements of the threads. Column 3 and 4 are the upper bound

estimation for R and PR based on the algorithm in Figure 23. The last two columns give

statistics for the numbers of NSRs and their average sizes. One observation is that normally

larger NSR leads to bigger difference between the maximal and minimal value of P and PR.

Because more internal nodes can exist in larger NSRs, the register pressure for GIG should

exceed the BIG with larger margin.

Figure 30 evaluates our inter-thread register allocation algorithm for SRA. The same

evaluation for ARA is combined in Table 3. For each benchmark program, we show two

relevant bars. The first bar is the number of registers allocated to the benchmark assuming

only single thread is available. We use a Chaitin [12] style register allocator for comparison

with our shared register allocator. The second is the number of registers (private plus

shared registers) assigned with our inter-thread register allocation algorithm. The same

benchmark is assumed to execute on four threads. The algorithm continues until the cost

returned is non-zero, which means we want to test how many PRs and SRs are needed

without any move instruction insertions with the inter-thread allocation algorithm. If no

shared registers are used and each thread runs the single-thread register allocator, many

registers are wasted. Compared to the case with multi-threaded register requirements, the

average total register saving for all benchmarks is 24%.
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Figure 30: Original vs. SRA register allocation

In Table 6, we collect data for the extreme case with our register allocation algorithm,

i.e. the maximal number of move instructions that will be inserted, if only the minimal

number of registers is allocated. This means our algorithm must split many live ranges to

reach the minimal number of registers. The move insertion overhead in the extreme case

is mostly within 10% of the total number of instructions for the benchmarks. This cost is

affordable compared to the overhead due to register spill if the register number is out of

range with the single thread register allocation algorithm.

Finally, Table 7 evaluates our register allocation algorithm for ARA with 3 scenarios.

Notice that all tasks are periodic, independently sharing the CPU and executing forever.

Thus, we measure the performance improvements of each thread in terms of the percentage

reduction of cycles per iteration. The first scenario puts two Md5 programs on thread 0 and

1, two fir2dim on thread 2 and 3. This can be a processing module between the receiving

and sending module. Our data show the number of PRs and SRs assigned, the number of

live ranges after the register allocation (#Live Ranges), context switch instruction number

reduction and cycle change. The column “#CTX Reg Spill” is the original code generated

by the Intel compiler that allocates registers with spilling and without register sharing
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Table 6: Minimal case move insertion

 
 PR SR # Move 

Crc 5 1 10 
Drr 4 1 11 

Fir2dim 17 4 19 
Frag 12 4 15 
Kmp 5 2 8 

L2l3_Rec 28 2 23 
L2l3_Send 21 3 30 

Lzw 10 3 7 
Md5 37 4 45 

Wraps(receive) 39 6 47 

Wraps(send) 40 9 50 

 

 

across threads (only allocate 32 registers for each thread). And, “#CTX Reg Sharing” is

the number with our allocator (actually no change compared with Table 5, because we avoid

spills). The same is true for cycle count (“#Cycle Reg Spill” and “#Cycle Reg Sharing”).

The fir2dim actually runs slower due to inserted moves. But this is profitable due to the

big saving from Md5. Thus, the allocator is able to boost the performance of critical thread

(Md5) by slightly slowing down the less performance critical one (fir2dim). The second

scenario consists of L2l3fwd receive and send on thread 0 and 1, and Md5 on thread 2 and

3. This can be a complete processing modules serving on one sending and one receiving

ports. The results still show the spills are saved for Md5 with minor costs for moves on

L2l3fwd threads. The last scenario runs wraps receive and send on thread 0 and 1, fir2dim

and frag on thread 2 and 3. The allocator balances register allocation to satisfy the wraps

thread. Due to a high register pressure, wraps receive and send can run much slower (due

to spills) if registers are not allocated properly. Our results show that over 20% speedup is

achieved for wraps, whereas only slight slowdown is incurred for the other two benchmarks,

which is in accordance with our optimization objective of boosting performance critical

threads.
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Table 7: Static and dynamic results for different ARA scenarios

  
 Benchmark 

(Thread#) 
PR SR #Live 

Ranges 
#Move 

Inserted 
#CTX 

Reg Spill 
#CTX Reg. 

sharing 

Md5(0,1) 41 10 152 20 79 56 Scenario 1 

Fir2dim(2,3) 18 10 38 4 32 32 

L2l3fwd_rec(0) 28 5 133 24 55 55 

L2l3fwd_send(1) 21 5 120 18 88 88 

Scenario 2 

Md5(2,3) 37 5 165 38 79 56 
Wraps_rec(0) 42 11 161 40 123 85 

Wraps_send(1) 44 11 153 36 141 103 

Fir2dim(2) 17 11 40 6 32 32 

Scenario 3 

Frag(3) 14 11 28 4 30 30 

(a) 
 Benchmark 

(Thread#) 
#CTX 

Reduction 
#Cycle    

Reg Spill 
#Cycle   Reg. 

sharing 
#Cycle 

Reduction 

Md5(0,1) 29.11% 5028375 4039294 19.67% Scenario 1 

Fir2dim(2,3) 0 159149 163515 -2.74% 
L2l3fwd_rec(0) 0 1253.34 1273.06 -1.57% 

L2l3fwd_send(1) 0 721.28 749.18 -3.87% 

Scenario 2 

Md5(2,3) 29.11% 5028375 4113871 18.19% 
Wraps_rec(0) 30.89% 2773.13 2134.52 23.03% 

Wraps_send(1) 26.95% 1709.36 1334.71 21.92% 
Fir2dim(2) 0 159149 164201 -3.17% 

Scenario 3 

Frag(3) 0 28620 28979 -1.25% 

(b) 
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CHAPTER V

INTER-THREAD REGISTER ALLOCATION WITH

HARDWARE SUPPORT

The inter-thread register allocation work presented in the previous chapter shows promising

results. However, it would be interesting to perform register sharing across threads in a

more dynamic manner. In this chapter, we intend to look at the problem from a different

angle. Some hardware support is assumed to be available to help the compiler analysis.

A hybrid (hardware/compiler) design is studied that can greatly improve register sharing

across threads.

5.1 Register Utilization and Idle Cycles

As a matter of fact, allocating registers across threads without overlapping is not efficient

in utilizing all registers. Conceivably, if the register pressure is low in some code segments

of one thread, other threads cannot benefit from that. In our experiments, we find out

that the register utilization for the benchmarks is quite low. Table 8 shows the register

utilization for 8 benchmarks. We compute register utilization using the following formula,

which determines how long a register is occupied (in terms of cycles) on average.

Table 8: Register Utilization Pre-Optimization

Benchmark Register Utilization
ipfdwr (1 PU) 22.27%
ipfdwr (4 PU) 23.02%
md4 (1 PU) 17.94%
md4 (4 PU) 12.67%
nat (1 PU) 25.74%
nat (4 PU) 25.35%
url (1 PU) 12.95%
url (4 PU) 10.60%
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Table 9: Number of Idle Cycles for each Benchmark

Benchmark # Idle Cycles
ipfdwr (1 PU) 71
ipfdwr (4 PU) 88210
md4 (1 PU) 620388
md4 (4 PU) 9574894
nat (1 PU) 101284
nat (4 PU) 106866
url (1 PU) 1006534
url (4 PU) 7728240

∑numRegs
r∈regset

∑numCycles
i=0 liveAt(r, i)

numRegs ∗ numCycles

Due to the unevenness of register pressure in each thread, although register utilization is

low on average, spills still cannot be avoided. Due to the long latency of memory operations,

spills are very damaging to the performance as observed from our benchmark applications.

When all PUs are waiting for memory operations, the processing power is wasted. Thus,

the lack of a cache, the high cost of memory accesses, and the symmetric programs typically

executed on the IXP create a situation of long periods of idle activity. Table 9 shows the

number of cycles that each benchmark spends in the idle state. One can see that a large

number of idle cycles are spent by a given PU due to the above reason.

Therefore, these data motivate us to allow registers to be allocated flexibly across

threads, which not only improves the utilization of the register file, but also transforms more

memory operations into register operations, reducing the number of idle cycles. Moreover,

the work presented in the previous section only allocates registers statically across threads

without considering runtime information. Next, we will discuss why a dynamic approach

could be more effective.

5.2 Motivation for a Dynamic Approach

In summary, the static (compiler) approach assumes that shared registers can be accessed

by all threads safely, while private registers can only be accessed by one particular thread.
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1. a=…

2. ctx_switch

3. b=…

4. …=a+b

5. c=…

6. d=c

7. load…

8. …=d


1. ctx_switch

2. e=…

3. …=e

4. ctx_switch


(a)


1. r1=…

2. ctx_switch

3. r2=…

4. …=r1+r2

5. r2=…

6. r1=r2

7. load…

8. …=r1


1. ctx_switch

2. r2=…

3. …=r2

4. ctx_switch


(b)


Thread 1
 Thread 2
 Thread 1
 Thread 2


Figure 31: Example for inter-thread register allocation

In other words, private registers on different threads must be separately allocated.

Although the compiler approach can significantly speedup the application on the network

processor over the traditional network processor technique of partitioning the register file

into equal sets of private registers, it still makes conservative assumptions regarding the co-

liveness of live ranges on different threads. One of the major assumptions is that a context

switch in one thread can jump to any context switch points of other threads. For example,

in Figure 31.a, we assume context switches from both the second and seventh instructions

in thread 1 can jump to the second instruction in thread 2 (i.e. thread 2 takes a context

switch at the first instruction to thread 1, then thread 1 context switches back and thread

2 continues from the second instruction.). This is a conservative assumption, which greatly

limits register allocation. However, it might happen that at runtime, context switches are

never conducted in this manner. If context switch does not go from either instruction 2 or 7

in thread 1 to instruction 2 in thread 2, we can safely allocate the private register of thread

1 (r1) to thread 2. Even if such context switches occur occasionally, a dynamic approach

might be able to find a private register of other threads that are not used.

In summary, statically allocating private vs. share registers is not flexible in that private

registers allocated to live ranges on different threads may not actually co-live at runtime.

In other words, with runtime knowledge, we can possibly share some of the private registers

on different threads.

A dynamic strategy also allows us to allocate registers for aliased values. Static alias

analysis [55, 3] is a conservative means to determine whether a set of names which contain
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a=b
 a=b+2


*a=b

*b=c


Figure 32: Example for alias analysis

Table 10: Memory Access Patterns for handwritten benchmarks

Benchmark # PU Double-Loads Total Mem Access
ipfwdr 1 349931 (64.5%) 542762 (2.26%)
ipfwdr 4 1319746 (64.1%) 2058690 (4.31%)
md4 1 115367 (11.1%) 1040293 (4.59%)
md4 4 152655 (6.47%) 2359585 (6.86%)
nat 1 373967 (58.3%) 641675 (2.70%)
nat 4 548310 (55.0%) 997007 (2.08%)
url 1 479226 (49.5%) 967742 (4.40%)

memory locations will ever intersect. If their intersection is an empty set, it is safe to assign

each location to a register, otherwise they must be accessed through memory. As will be

proposed shortly, our strategy of delaying part of the register allocation till run-time exposes

the literal locations to us. Figure 32 shows an example of aliasing problem. In this problem,

the write to memory location a may be unnecessary if a holds the same value as b. However,

there is no way to statically determine this information. At run-time, we know the actual

values of a and b so it is safe to replace the memory operation with a fast move instruction.

Early research on superscalar machines [45] has revealed that a significant number of store

instructions are redundant. Our experiments show that there is great potential to remove

redundant load and stores to expediate the program execution. Table 10 shows that a large

portion of memory accesses are comprised of redundant loads.

5.3 Our Appraoch

In this section, we propose our approach of dynamically allocating registers across threads.

We first statically identify dead registers at each context switch point and store this infor-

mation for runtime use. The hardware captures opportunities to put memory contents to
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Figure 33: Example for non-switch region

dead registers so as to reduce the number of load/stores by dynamically converting them

to move instructions.

5.3.1 Static Analysis

Our algorithm takes the source code (IXP micro-code) as input and outputs an annotated

version of the file. We assume the existing register allocator uses a simple allocation strategy,

which divides the register evenly among threads.

First, we create a control flow graph (CFG) which divides the blocks into non-switch

regions. As mentioned earlier, non-switch regions are maximal connected components on the

CFG, which are bounded with either context switch points or program entry/exit points.

Figure 33 shows an example of a CFG that has been divided into non-switch regions.

Basically the CFG is split at the context switch points.

We then use the following dataflow equations to discover the dead registers,

Dead-Out(BB) =
⋂

s∈Succ(BB)
Dead-In(s)

Dead-In(BB) = Dead-Out(BB)−Use(BB)−Def(BB)

Dead-In(EXIT ) = U
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Table 11: Register Allocation Patterns in Handwritten Benchmarks

Benchmark Never-Used Avg. Dead-Rest
ipfwdr 8 13.57
md4 9 12.44
nat 8 15.09
url 9 15.12

It is important to note that Dead-In and Dead-Out are not the inverse of the traditional

Live-In and Live-Out. A dead register is made live by a use or a def. This is because it

is unsafe to use a dead register across a new definition of it, even if that definition is never

used. For example,

alu_add A15, A16, B15 // A15=A16+A15

alu_add A16, A15, B16 // A16=A15+A16

...

alu_add A15, A16, B15 // A15=A16+A15

Here the first operand is the destination operand. By traditional dataflow analysis, A15

is dead after its use in the second line. However, it’s cleary unsafe to treat A15 as if it is

dead for the rest of the program.

Table 11 shows a significant number of the registers ( 6%) are never allocated. Dead-Rest

is the number of registers which are dead for the remainder of the program. We compute

Dead-Rest at the edge of every non-switch region.

We then annotate every context-switch instruction with a bit vector containing all of

the current dead-rest registers. The bit vector is 128 bits long, which requires extending the

length of memory instruction. If the program uses only thread relative register references,

then we can reduce the bit vector size to 32 bits.

Notice the program might use memory operations to communicate between PUs. In

such cases, we first determine which addresses are used for inter-engine communication

and which are used for spill values. Then, we extend the option field of every memory

operation to note whether a memory operation is local or global. Actually, the inter PU
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communication can be done mostly through Next Neighbor Registers, which are available

on new generations of the IXP processors [36].

5.3.2 Dynamic Analysis

Our dynamic analysis is to map memory addresses to dead registers. We then replace any

instructions which use the mapped memory address with fast register-move instructions.

For example, if the address 128 is the target of a store instruction and GPRs A15-17 are

dead, we can rewrite the following instruction sequence. Here, $0 is a transfer register;

SRAM access must go through transfer registers.

alu_add $0, A3, B4

sram_write $0, 128, ..., CTX_SWAP

...

sram_read $0, 128, ..., CTX_SWAP

alu_add A1, B2, $0

as

alu_add A16, A3, B4

alu_b A15, A16

...

alu_b A17, A15

alu_add A1, B2, A17

Now suppose that only GPR A15 is dead. We greedily allocate the dead register to next

address that requires it, the write transfer register $0. Now there are no remaining registers

to allocate for the address 128. The following instruction sequence will be executed by our

hardware,

alu_add A15, A3, B4

alu_b $0, A15

sram_write $0, 128, ..., CTX_SWAP
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Figure 34: Finite state machine for Dynamic Allocation

...

sram_read $0, 128, ..., CTX_SWAP

alu_add A1, B2, $0

This transformation preserves the correctness of the original code, at the cost of an

additional move instruction.

We insert our new hardware into the fourth pipeline stage. At that point, the ALU

output forms the memory address for any memory operation. This allows us to use the

actual value of a memory address instead of an alias for it.

Figure 34 formally illustrates the finite state machine for our allocation hardware. We

check if the current memory address is already stored in the table; if so, we replace the

memory operation with a register move instruction. If the current memory address is not

in the table, we allocate one of the remaining dead registers and create a map between the

dead register and the address. In the remainder of this section, we explain in detail how

this process is done in hardware.

The hardware uses pieces of the register-file to create a register lookup table–Figure 35.

We make GPR 127 a special-register which contains the root entries of the table. Entry 1
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Figure 35: The register lookup table components

can hold a book-keeping entry from GPR0-31, entry 2 holds a register between GPR32-63,

etc. The state field indicates whether the book-keeping entry is valid.

Each book-keeping entry contains the type of memory accessed along with the address.

The type tag also doubles as a valid bit, with type 0 corresponding to the invalid state. The

memory is then bypassed by accessing the register in the Register Map entry. In the case of

Figure 35, GPR16+offset contains the contents of memory address 0x0F000. The value 16

is relative to the table entry. The Next Entry field contains a link to another bookkeeping

entry that has a position -3/+4 offset from the current register. If the value of this field is

0, then the next-entry is null.

Figure 36 illustrates an example of a register file which doubles as the components of

our data structure. Register 127 has a valid entry 1 which points to Register 16. Register

16’s type entry shows that there is valid SRAM data entry in register 4. It also has a link

to the next bookkeeping entry located in Register 19. Register 19’s next-entry field is 0, so

it is final book-keeping entry in this area of the register file.

If the current address is not in the lookup table, the hardware allocates an unused

register. It determines that a register is a candidate for allocation if it appears in the

intersection of the dead-rest bit-vectors for all four threads at the most recent context

switch. For example, if registers 0-2 are dead in threads 0-2 and registers 0,2 are dead in
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Figure 36: An example register file

thread 3, the hardware computes

1110...0 & 1110...0 & 1110...0 & 1010...0 = 1010...0

so registers 0 and 2 are candidates for allocation. It arbitrarily selects the first bit which

is set, so in this case the hardware will allocate register 0 to the next memory address.

We model the latency of our algorithm as 6 cycles. This is a conservative estimate of

the time we expect it would require in an actual processor. The running time of each bit

operation is 1 cycle, for a total of 2 cycles. We estimate the time for a table lookup or

insertion to be 2 cycles on average, for a total of 4 cycles. Thus, the total running time is

6 cycles.

5.3.3 Other Considerations

5.3.3.1 Transfer Registers

The processor uses transfer registers [34] when transmitting to external devices such as

SRAM. Transfer registers are not general-purpose and can only be exclusively read or

written. A transfer register must appear as the source of a store operation instruction,
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but it cannot be used as the corresponding source register in the new move instruction. For

example, if we wished to map address 128 to register A1, transforming

sram_write $0, 128, ..., CTX_SWAP

into

alu_b A1, $0

The value of $0 in the resulting instruction is the value of the read transfer register $0,

not the value of the write transfer register.

For our address-register mapping scheme to work, instructions that use transfer registers

must replace those registers with general purpose registers. This can mean that 2 general

purpose registers are required for each memory-address transfer-register pair, but in practice

one transfer register is used for a large number of memory addresses.

Statically, we need to account for the case where a transfer register is the source of a

memory operation such as t fifo wr, a write to the transfer FIFO, that is not rewritten by

our address-register mapper. We do this by looking for the next store instruction following

a transfer register definition and the previous load instruction following a transfer register

use. If the load or store instruction is not a possible remap target, we note that in the option

field of the corresponding instruction that uses the transfer register. If the transfer register

is the source of both types (via a branch), then we split the instruction into a mappable

and non-mappable version. For example, the following program

immed $0 1

sram_write $0 B0 0 1

immed $1 5

t_fifo_wr $1 B1 B2 1

t_fifo_rd $2 B2 0 1

alu_add A1 A3 $2

immed $1 7

br=ctx 0 L0
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t_fifo_wr $1 B3 0 1

L0: sram_write $1 B0 0 1

is transformed into

immed $0 1

sram_write $0 B0 0 1

immed $1 5 NO_MAP

t_fifo_wr $1 B1 B2 1

t_fifo_rd $2 B2 0 1

alu_add A1 A3 $2 NO_MAP

immed $1 7

immed $1 7 NO_MAP

br=ctx 0 L0

t_fifo_wr $1 B3 0

L0: sram_write $1 B0 0

This example shows all possible cases. The transfer register instructions associated with

the FIFO operations are annotated with the NO MAP option. The transfer register instruction

that is the source of both a t fifo wr instruction and a sram write instruction is split into

two transfer register instructions, one of which has the NO MAP option.

5.3.3.2 Unpacking Memory Instructions

A memory instruction can load or store a range of words at once. In that case the transfer

register specified in the destination slot only represents the start of the range of transfer

registers used in the operation. We need to unpack the memory operation, so that each

transfer register is exposed in the instruction stream.

For example,

sram_write $0 B0 0 4

is transformed into
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sram_write $0 B0 0 1

sram_write $1 B0 1 1

sram_write $2 B0 2 1

sram_write $3 B0 3 1

5.4 Experimental Results

We use the NePSim (Network Processor Simulator) open-source IXP1200 simulator [50, 74]

to implement the hardware modifications. Benchmarks are selected from the Netbench [51]

benchmark suite. We are only able to run a subset of the benchmark suite that has been

ported to NePSim [50].

Table 12 to Table 14 shows the results of running our algorithm on the benchmark. Each

benchmark executes forever, so we run the first 8000000 instructions on each benchmark

before halting. The benchmarks are run on all 6 PUs (4 intermediate PUs) and on 3 PUs

(1 intermediate PU).

Table 12 shows the SRAM dynamic load+store counts before and after optimization.

There are two factors which limit the number of load+stores that can be removed: 1) Most

importantly, our optimization requires many registers, while the number of available dead

registers is limited. 2) Some of the load+store activity facilitates inter-engine communi-

cation; these cannot be removed. The store numbers are universally better than the load

numbers because any store can be immediately allocated to a register, while a load requires

that a corresponding store is already allocated to a register.

Table 13 shows the reduction in idle cycles. The idle cycle reduction varies wildly across

benchmarks, but there exists a correlation between the dynamic load+store count and the

idle cycle reduction. Also, the relative number of idle cycles removed decreases when number

of PUs increases. This is probably due to the increase in cross-PU communication.

Table 14 shows the increase the packet throughput for each benchmark. Intuitively a

decrease in idle cycles should cause an increase in throughput performance. The throughput

however is a complicated function of many parameters not just idle cycles. We examined
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Table 12: Comparison for dynamic Load+Store Counts

Benchmark # SRAM Loads # SRAM Loads % Decrease
Pre-Opt Post-Opt

ipfdwr (1 PU) 339643 301484 11%
ipfdwr (4 PU) 1284455 1134751 12%
md4 (1 PU) 674500 571901 15%
md4 (4 PU) 1739127 1471492 15%
nat (1 PU) 491110 364786 25%
nat (4 PU) 732668 568279 23%
url (1 PU) 860114 785074 9%
url (4 PU) 2612944 2407754 8%
Benchmark # SRAM Stores # SRAM Stores % Decrease

Pre-Opt Post-Opt
ipfdwr (1 PU) 91515 74127 19%
ipfdwr (4 PU) 351549 283618 19%
md4 (1 PU) 320169 256253 20%
md4 (4 PU) 894918 187932 21%
nat (1 PU) 207839 149644 28%
nat (4 PU) 346453 261299 25%
url (1 PU) 132049 94208 12%
url (4 PU) 420058 365450 13%

Table 13: Comparison for idle Cycles

Benchmark Idle Cycle Idle Cycle % Decrease
Count Pre-Opt Count Post-Opt

ipfdwr (1 PU) 139 61 221%
ipfdwr (4 PU) 88217 88210 0%
md4 (1 PU) 629387 469737 25.4%
md4 (4 PU) 9574894 9470987 1.1%
nat (1 PU) 101284 26676 73.7%
nat (4 PU) 106866 38325 64.1%
url (1 PU) 1006534 860238 14.5%
url (4 PU) 7728240 7079193 8.4%
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Table 14: Comparison for throughput

Benchmark #Pkts #Pkts % Increase
Pre-Opt Post-Opt

ipfdwr (1 PU) 18297 18701 2.21%
ipfdwr (4 PU) 70302 75490 7.38%
md4 (1 PU) 4210 4485 6.53%
nat (1 PU) 28645 32755 14.35%
nat (4 PU) 44898 50101 11.59%
url (1 PU) 2174 2245 3.27%
url (4 PU) 7139 7387 3.47%

Table 15: Occurrences of memory accesses by type

Benchmark Removed Spills Cross-Communication Out of Space
ipfdwr (1 PU) 55547 22248 353363
ipfdwr (4 PU) 217635 31599 1386770
md4 (1 PU) 166515 52399 775755
md4 (4 PU) 974621 181459 1477965
nat (1 PU) 184519 33410 481020
nat (4 PU) 249543 81628 747950
url (1 PU) 112881 47425 831857
url (4 PU) 259798 204846 3292800

the benchmarks and the throughput is mainly a function of the design and inter PE com-

munication which is not handled by our framework. In some cases, the idle cycles form a

part of the critical path and our framework optimized it away significantly. For example,

there is a 14% increase in the speed of the nat benchmark, which is promising.

Table 15 shows the different reasons that the algorithm is unable to remove all spills.

Cross-communication indicates a memory access that is inherently unremovable with the

current IXP hardware. It is a memory access the programmer uses for communication with

another microengine rather than for storage purposes. The more important reason that the

hardware cannot remove a spill is due to size restrictions. The program only has a limited

amount of dead registers, furthermore the CAM table can only hold 8 different addresses

simultaneously.
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CHAPTER VI

COMPILER OPTIMIZATION FOR MANAGING

RUNTIME CONSTRAINTS

In this chapter, we will look at a completely different problem for the IXP network proces-

sor. Instead of managing register allocation, some runtime constraints could be effectively

realized by the compiler. Due to the lack of OS, such functionalities are highly desirable on

the network processor. We demonstrate that they can be achieved solely through compiler

analysis and optimizations.

6.1 Motivation

Most network applications have real-time constraints because packets have real-time require-

ments such as maximal delay, deadline, sustained rate, etc. Typically network processors

are programmed by putting different packet processing tasks on different micro-engines –

the output of one task feeding the other. The tasks run asynchronously and are designed so

that output of one is guaranteed to be available at a certain interval. This translates into

real time constraints on tasks (in other words, a task must complete by a certain deadline).

On the other hand, to maximize parallelism, each task is implemented through multiple

threads on a given micro-engine. Also, as discussed earlier, due to increase in the size of

available code store, one could now program the NPs in heterogeneous manner. Under a

certain design objective, it may be desirable to put multiple heterogeneous threads on one

NP to eliminate inter-thread communication that could otherwise be quite heavy in terms

of latency and delays. In this work, we assume that such a design decision has been taken

by the application developer analyzing higher level application characteristics. At lower

(implementation) level, the big question is then how to make the design work with respect

to the real time constraints? The key question is how to map the real-time constraints of

tasks to run-time constraints of individual threads comprising the tasks and how to schedule
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the threads to meet the task requirements. The real time scheduling research has fortu-

nately addressed this problem and it is possible to select a particular scheduling scheme

to give the required guarantee [46, 68]. By choosing appropriate scheduling scheme that

arbitrates among threads, one can develop requirements for runtime constraints that must

be obeyed by the threads. These are the scheduling constraints which are then conveyed to

our compiler by the developer which then attempts to implement them. Although the real

time literature addresses the issues of how to develop constraints from real time require-

ments, it leaves the issues of their efficient implementation open. The focus of this work

is on developing compiler strategies that implement such run time constraints efficiently

(without performance degradation) in the absence of any OS or hardware support.

As we know, programs executing on a general purpose processor require runtime support

both from the hardware and the operating system. Scheduling of multiple programs sharing

a CPU must be orchestrated by the OS and the hardware using certain sharing policies.

Real time applications require a real-time aware OS kernel to meet their specified deadlines.

Modern computers have been built with increasingly sophisticated hardware and OS

to ascertain that an application’s runtime constraints are satisfied. However, in case of

network processors, both OS and hardware supports are normally absent. This is due

to multiple reasons. First, the OS overhead is unbearable in most cases. For example, on

general purpose processors, the operating system can take actions during the context switch.

Normally, context switches happen infrequently, therefore pose very small overhead to the

program execution. However, on NPs a context switch might occur after a small amount

of processing has taken place (e.g. as observed on Intel’s IXP processor, context switches

happen every 10-20 cycles to hide long latency operations) and such overhead could become

a huge bottleneck for an application, even if a small amount of OS intervention is imposed

during context switches. Thus, OS solutions to such processors are not really feasible. On

the other hand, network processors are geared towards very high-speed lines. As the speed

of the underlying network keeps increasing (10 giga-bits per second etc), resorting to the

hardware to provide runtime supports would be simply unacceptable due to large silicon

real estate needs and mechanisms that might unduly slow the critical path and the clock.

94



 

start 

Input Queue 
Empty? 

Idle 
Part 

 
Processing 

Part 

Y N 

Figure 37: Thread execution model

In short, to provide comparable performance to their counterparts, i.e. the traditional

ASIC routers, runtime support from both hardware and the operating system are largely

sacrificed. For example, IXP 1200 almost gives a raw machine to the running applications.

The CPU is scheduled in a round-robin fashion. Threads are not pre-emptable unless they

give up the CPU by executing the instruction which causes a context switch. Also, no

hardware interrupts and OS are currently available on the packet processing engine due

to reasons discussed above. As a result, special approaches must be devised for network

processors to satisfy applications’ runtime constraints without involving hardware or OS.

6.2 Background

As mentioned in the previous chapters, there are several PUs on the network processor.

These PUs can be assumed to work in a pipeline fashion. Each PU gets packets from its

input queues, processes it and then writes to its output queues, or the input queues of the

PU in the next pipeline stage. With pipeline processing, typically some PUs are in charge

of getting packets from the input ports; some handle packet processing and some are for

output ports.

With multiple threads on each PU, the CPU is better utilized since when one thread

is stalled, the CPU can context switch to another thread. As will be addressed later,

context switching is lightweight in that only PC is saved, therefore threads normally have

non-overlapping regions of the register file and the memory for their private use (therefore
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Figure 38: Thread execution on the IXP

there is no need to save them during context switches), although each thread can access all

registers and memory locations. A small amount of data such as the routing table, might

be shared which is typically held in the main memory.

We perform our optimizations on a per thread basis. The thread execution model is

shown in Figure 37. Code on each thread must be running in an infinite loop servicing

packets. If there are packets in the input queue, the thread enters the processing part,

otherwise it is in the idle part. After idling for a short period, it checks the input queue again.

Since there is no interrupt supported, each thread must poll the input queue frequently.

The thread code is stored on-chip, so there is no latency for instruction fetching. Multi-

threading and context switching are extremely light-weight. At any moment, the CPU

executes code from one of the threads if at least one thread is not stalled. No cycles are

wasted during a context switch; the hardware only saves the PC of the current thread and

then switches to a new thread. As mentioned before, thread state can be stored in their

private registers or in memory, thus there is no need to save/restore anything except the

PC during context switches.

Most instructions can be completed in 1 cycle. Long latency instructions must perform

context switch to hide the latency. Here, we define ctx-trigger instructions as instructions

that can cause context switch. There are many types of ctx-trigger instructions, including

long latency instructions such as memory accesses, hash operations, etc. are included as ctx-

trigger instructions. The ctx-trigger instructions in the original code before our optimization

are called native ctx-trigger instructions.

Since there is no interrupt present which can stop a thread’s execution and no thread
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Figure 39: Use ctx instruction to wait on signals

can preempt other threads, a thread will always take the CPU if no ctx-trigger instruction

is encountered. Therefore, manually written code could easily lead to imbalanced sharing

of the CPU 1. To help with that, IXP has a particular kind of ctx-trigger instruction called

the ctx instruction. The basic functionality of the ctx instruction is to voluntarily surrender

the CPU to other threads without doing any long latency operations (another use is to wait

on signals as discussed later). After executing a ctx instruction, the thread gives up CPU

to other thread (in a round robin manner) and it becomes ready immediately. In other

words, it can resume execution as soon as the CPU schedules it again (after finishing one

round of round-robin). The programmer can intentionally insert some ctx instructions if he

perceives that one thread might take too much CPU time.

When the thread executes a ctx-trigger instruction, the CPU searches threads sequen-

tially from the current thread, e.g. 1,2,3,4,1,2,3,4 . . . until a non-stalled thread is found and

schedules it for execution. If all threads are stalled, the CPU is idle. We show an example in

Figure 38 to illustrate how multi-threaded execution might occur. Assume the CPU starts

execution from the first instruction in thread 1. It executes instructions until the sram rd

instruction is encountered. sram rd issues read command to the SRAM memory, which

causes the thread to give up CPU and stall until the completion of the read operation. The

hardware then looks for the next thread to execute. If the next thread is not stalled at

this time, it starts execution. Thus, threads 2 and 3 execute their respective instructions

as shown. After thread 4 executes ctx, it gives up the CPU and thread 1 is scheduled.

1As stated in the IXP manual [34]: “It is the programmer’s responsibility to write his/her code so that
this does not happen.”
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Notice that, it is not always true that all threads can be executed in each round. When

thread 1 is scheduled again, it is possible that the read operation has not completed yet,

therefore thread 1 may still be stalled. If so, the hardware will schedule thread 2 instead.

In this work, we make sure that a thread is not stalled as follows. The compiler controls

the time distance between two ctx-trigger instructions for each thread such that it meets

the following criterion. If the sum of the execution time of all other threads in each round

is greater than the time to complete any long latency instruction, the stalled thread will

be ready before it is scheduled again in the next round. However, if the stall latency is

too long, one could start the corresponding operation early (without a context switch),

after doing some useful work, then perform context switch. For example, in Figure 39.a,

after issuing a read command to SRAM (the option “nc” means “no context switch”), the

thread continues execution, until the “ctx sram” instruction, which does a context switch

and waits on the signal from SRAM. In this way, the thread’s stall time can be reduced

through compiler optimizations.

Notice that, the original code typically lacks proper control of context switches, easily

leading to unnecessary stalls, i.e. situations in which none of the threads are ready. We

observe that roughly 20% CPU time is wasted due to such stalls. Our optimization also

aims to reduce such stalls leading to performance improvement.

It is also possible to perform interthread synchronization using special signals sent from

one thread to another. In Figure 39.b, “ctx interthd” causes the thread to give up CPU

and get stalled. When the interthread signal is received from the second thread, the stalled

thread becomes ready and starts execution when the round robin control reaches it.

6.3 Runtime Constraints

We study a number of well-known constraints involving CPU scheduling, real-time schedul-

ing and packet scheduling that can be used to fine tune task pipelining. Real-time and

packet scheduling have long been studied in research area, although NOT widely imple-

mented in ASIC dominated era. With the growing NP market, they are highly likely to

be installed on NPs. For example, packet scheduling can be used to provide differential
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Table 16: Runtime constraints and approaches

 
Category Constraint Approach 

(Weighted) Round Robin—(W)RR FCS CPU Scheduling 
Priority Sharing—PS FCS 
Rate Monotonic—RM FCS Real-time 

Scheduling Earliest Deadline First—EDF DCS 
Priority Class—PC  FCS 
First Come First Serve—FCFS DCS 

Packet Scheduling 

(Weighted)Fair Queueing—(W)FQ FCS 
 

services, i.e. some packets like critical video frames are processed more urgently.

We will show that these constraints can be satisfied by the two approaches proposed.

One is called Fixed Context Switch (FCS) and the other is Dynamic Context Switch (DCS).

To provide an overall picture, we list the constraints being considered and the approaches

accordingly in Table 16.

As listed in Table 16, with either FCS or DCS, 7 types of constraints can be tackled.

For CPU scheduling, weighted round robin (WRR) involves assigning a fixed weight to

each running thread. Each thread gets a share of the CPU time that is proportional to

its weight. The second one, called priority sharing (PS), involves assigning each thread a

priority. High priority threads can preempt low priority threads. For real-time scheduling,

two classic schemes are included, i.e. Rate Monotonic (RM) and Earliest Deadline First

(EDF) [46]. RM is for periodic threads, where short period threads can preempt long period

threads. EDF works for threads with different deadlines; the thread with earliest deadline

is served first. The last three constraints deal with packet scheduling. All threads receive

and process packets from their input queues. With the Priority class (PC) constraint, each

thread serves incoming packets using a certain priority class. Packet classes with higher

priority should be served earlier. First Come First Serve (FCFS) simply serves packets

according to their arrival times. Finally, Weighted Fair Queueing (WFQ) [25] is similar

to the WRR for CPU scheduling. The original definition of WFQ assumes packets are
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prioritized but could not be split; however, ideally packets should be split into very small

pieces and served in a WRR fashion to achieve weighted fair sharing of the bandwidth. So,

the algorithm attempts to send complete packets but approximates the ideal case as closely

as possible. Normally the bandwidth is not the bottleneck due to the long processing time

inside the network processor. Also packet transmission is treated as a part of the processing

that moves packets in pieces from the internal SDRAM to outside transmission hardware.

Thus, the WFQ is the same as sharing the processing power in a WRR fashion. In other

words, WFQ is equivalent to WRR sharing of the CPU on each processing unit.

Both FCS and DCS insert ctx instructions at particular points of the program to control

context switches of threads. FCS inserted ctx instructions do not wait on inter-thread signals

and can resume execution in the next round. Conversely, a DCS inserted ctx instruction

must wait on the inter-thread signal and the corresponding thread is stalled until the signal is

received. Thus, with a control thread, DCS can manage the threads’ runtime behavior more

adaptively. DCS is more flexible and powerful, however, it increases execution overhead.

6.4 Fixed Context Switch (FCS)

Fixed Context Switch (FCS) problem is defined as:

The compiler inserts ctx and other padding instructions (will be defined shortly) in the

threads such that the runtime constraints can be met. “Fixed” means that those ctx in-

structions do not wait on signals, the thread will resume execution in the next round. The

optimization target is to reduce the number of useless padding instructions.

Next, we give examples of how compiler inserted ctx instructions can change the runtime

behavior of threads.

6.4.1 Examples

We begin with an example that illustrates how to implement WRR CPU sharing with ctx

insertions.

In Figure 40.a, we show two threads sharing one CPU. For simplicity, we assume both

threads contain only sequential code, which are all non ctx-trigger instructions. Also, as

mentioned in the previous section, each non ctx-trigger instruction takes 1 cycle. Thread 1
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Figure 40: Example 1-Weighted Round Robin

has weight 2 and thread 2 has weight 3, i.e. the CPU time taken by thread 1 vs. thread 2

should be at the ratio 2:3. In Figure 40.b, ctx instructions are inserted. For thread 1, we

insert one ctx after every two instructions. For thread 2, we insert one ctx after every three

instructions. The runtime execution trace is shown in Figure 40.c. Since the hardware only

schedules threads in a round robin fashion, every time a thread executes ctx, the CPU is

switched to the other thread. After each thread is executed 3 times, we observe that thread

1 takes 6 units of CPU time (black boxes), and thread 2 takes 9 units of CPU time (grey

boxes). Although the underlying hardware has no intention to allocate CPU time differently

for the two threads, compiler inserted ctx has achieved WRR CPU sharing between the two

threads. Compared with the implementation in a traditional computer, which includes

hardware generated time interrupts and interrupt handlers inside the operating system, the

compiler solution here is much simpler and lightweight. Notice that, actually we can insert

fewer ctx instructions, e.g. insert one ctx after every 10 instructions in thread 1 and insert

one ctx after every 15 instructions in thread 2 as long as the same ratio is kept.

Next, we give another example showing how priority sharing can be approximated among

three threads with FCS. In Figure 41.a, thread 1 has the highest priority, thread 2 has middle

priority, and thread 3 is lowest. Each solid line represents the sequential non ctx-trigger

instructions for one thread. Solid dots are ctx instructions. From the figure, we can see there
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Figure 41: Example 2-Priority Sharing

are more ctx instructions in thread 1 than in thread 2, and there are more ctx instructions in

thread 2 than in thread 3. Therefore, thread 2 is more frequently interrupted than thread

1 when they are both enabled; and thread 3 is more frequently interrupted when either

thread 1 or thread 2 (or both) is enabled. Figure 41.b shows the runtime trace if thread 1

and 2 are enabled together (solid line is thread 1 and dotted line is thread 2). Thread 2 is

forced to progress slowly. On the other hand, when thread 2 is enabled along with thread

3 (Figure 41.c, dotted line is thread 2 and solid line is thread 3), thread 2 takes most of the

CPU time. Actually, in real programs, threads are always enabled, however they could be

in either the idle part or the processing part-Figure 37. We put many ctx instructions in

the idle part, so the thread is frequently swapped out and takes almost zero CPU time (as

if it is disabled). Notice that FCS can only approximate PS, because lower priority thread

cannot be completely preempted. With DCS, PS can be fully supported but with higher

overhead.

So far, we have shown that insertion of ctx instructions can have an important impact

on the runtime behavior of threads. If ctx-trigger instructions are located at fixed distances,

we can know for sure how long a thread will execute between two context switches, which
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Figure 42: Example 3-control context switch distance with padding instructions

serves as a starting point for us to control a thread’s runtime behavior. Both examples

1 and 2 utilize such property to enforce the runtime constraints. However, fixed distance

insertion is not free when branches exist.

In Figure 42.a, we show a code segment with 3 basic blocks (BBs). In BB 1, sram rd is

a native ctx-trigger instruction followed by 2 non ctx-trigger instructions. In BB 2, csr rd

is a native ctx-trigger instruction followed by 5 non ctx-trigger instructions. If we want

this thread to context switch after every 3 instructions (cycles), a ctx instructions can be

inserted into BB 2 as in Figure 42.b. However, along the two paths to BB 3, we cannot

insert a ctx instruction after the first instruction in BB 3 since it is only 2 instructions

away from the inserted ctx instruction in BB 2 ( although there are 3 instructions from this

insertion to the sram rd instruction in BB 1). The only way to achieve context switch after

every 3 instructions is to insert a nop in BB 2, then insert a ctx instruction after the first

instruction in BB 3. In the resulting code (Figure 42.c), (along any path) the number of

instructions between any two consecutive ctx-trigger instructions is 3. It may be noted that

in general the padding instructions need not be just nops; they could be instructions from

optional computation that could be scattered in a given thread. Modern packet processing

often involves optionally performing some computation, which is not a part of necessary

functionality but is rather a desired functionality that could be supported if “room exists”.
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Such computation could involve statistics gathering for traffic analysis etc.

6.4.2 FCS Formulation

Definition 21. Context Switch Distance (CSD)

The number of non ctx-trigger instructions between two consecutive ctx-trigger instructions

is called CSD.

For our first example in Figure 40.b, CSD=2 for thread 1 and CSD=3 for thread 2. CSD

is path dependent. In Figure 42.b, if we insert a ctx instruction as the second instruction

in BB3, it will have CSD=3 to the sram rd instruction in BB1 and CSD=2 to the ctx

instruction in BB 2.

Definition 22. Padding Instruction

Padding instructions are instructions solely used to increase context switch distance, such

as the nops.

Example: the nop in Figure 42.c.

Definition 23. CSD-k Form and CSD-k Transformation

If by inserting only ctx instructions, a program can have CSD=k everywhere, then it is in

CSD-k form. Here, k is a constant value for that program. The process of converting a

program into CSD-k form by inserting padding instructions is called CSD-k transformation.

Thread 1 in Figure 40.b is in CSD-2 form and thread 2 in Figure 40.b is in CSD-3 form.

The program in Figure 42.a is not in CSD-3 form, but after adding the nop as in Figure 42.c,

it is in CSD-3 form.

Definition 24. Minimal CSD-k Transformation

If the number of inserted padding instructions is minimal after CSD-k transformation, the

transformation is called a minimal CSD-k transformation.

The two threads in Figure 40.b are minimal CSD-2 and CSD-3 transformed, because no

extra padding instructions are inserted.

104



Notice that we do not consider the number of inserted ctx instructions as a measure of ef-

fectiveness of the transformation because our main objective is to minimize the degradation

in the execution speed for one thread under the given value of k. The number of inserted

ctx instructions largely depends on the value of k (if we want a CSD-4 form, roughly 1/5

of the instructions are ctx instructions) and the choice of k’s value is based on the runtime

constraint we want to fulfill. For example, for PS, a high priority thread must be given a

big k, while a low priority thread must be given a small k. We will show that even with OS

scheduling, this overhead is not avoidable. We call such overhead the Scheduling Overhead,

which is not controlled by our algorithm. However padding instructions come as an artifact

of our transformation (in order to transform a flow graph into CSD-k form) and therefore

should be eliminated/minimized during CSD-k transformations. It is important to note

that padding instructions need not be just nops that do useless work but could comprise

optional computation such as statistics gathering for traffic analysis.

6.4.3 CSD-k Form Verification

The first question we need to answer is whether a program is in CSD-k form. Hereby,

we propose the Modulo Marking Algorithm and the Modulo Checking Rule. The modulo

marking algorithm attempts to assign each program point a Modulo Number, and then the

modulo checking rule will check if the modulo number is unique for each program point.

First, we give some definitions.

Definition 25. Program Points

The intermediate points between instructions.

Definition 26. Modulo Number

During modulo marking, each program point is marked with a number from 0 to k-1. If

there is a path from a native ctx-trigger instruction or the entry point of the code to a

program point P with n intermediate instructions along the path, then the modulo number

of P is mod num(P)=n mod k. If the modulo number is not determined yet, we initialize

it as mod num(P)= ⊥.
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Definition 27. Start Point

The program point just before the first instruction in a BB. mod num(start(B)) denotes

the modulo number of B’s start point.

Definition 28. End Point

The program point just after the last instruction in a BB. mod num(end(B)) denotes the

modulo number of B’s end point.

Our basic idea is: ctx-trigger instructions should only exist at the program points with

modulo numbers equal to 0. For native ctx-trigger instructions, the two program points

before and after them are initially given modulo number 0. Also, the start point of the entry

BB is assumed to have modulo number 0 (this is needed to guarantee that each point will

get a modulo number eventually). It is easy to prove the following lemma and corollaries,

which lay the basis for the modulo marking algorithm.

Lemma 5. If there is a path from program point P to Q, and mod num(P)=m, where

m 6= ⊥ , then mod num (Q)= (m + number of instructions on the path) mod k.

Corollary 1. If there is a path from a ctx-trigger instruction to instruction Q, then mod num

(Q)=(number of instructions on the path) mod k.

Corollary 2. If there is a path between two ctx-trigger instructions, then the path length is

a multiple of k.

As shown in Figure 43, modulo marking is a data flow algorithm to get modulo numbers

for the start and end points of all BBs. During propagation, for each BB, its start point

should get the modulo number from the end point of one of its predecessors, if that end

point has a modulo number. (we use the redefined max() operation for this purpose).

During propagation, for each BB, the modulo number of its start point is computed from

its predecessors using the lattice shown in Figure 43. There are two cases when propagating

inside each BB. For a basic block B, if there is no native ctx-trigger instruction in it, we can

use Lemma 5 to get out(B)=(in(B)+Size(B)) mod k. Otherwise, we use Corollary 1 to get

out(B) from the position of the last native-trigger instruction. Once the modulo numbers of
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Input: CFG  G(V,E). 

Propagation: 
                   
in(B)=                                if B<> entry BB and in(B)=  
 
                     (in(B)+Size(B)) mod k---if no ctx-trigger inst. in B 
out(B)=         

(number of inst. from the last ctx-trigger inst to the 
end of B) mod k---if there is ctx-trigger inst. in B 

 
Output Values: 
mod_num(start(B))=in(B) 
mod_num(end(B))=out(B) 

Initialization: 
1.  in(entry BB)=0. 
2.  two program points near each native ctx-trigger instruction 
     are give modulo number 0. 
3.  other program points have modulo number     . 
 

{
 

Lattice:    ,   , 0, 1,…k-1 
For any v, max(v,    )= v, v+    =   , v-    =    , v mod    =    ,  
For any v1, v2, v1    v2=max(v1, v2), 
 

 

                  out(P) 
PЄ pred(B) 

Figure 43: Modulo Marking algorithm

the start and end points of all BBs are decided by the algorithm in Figure 43, the modulo

numbers for program points inside each BB can be inferred with Lemma 5.

After modulo marking, we can verify whether the program is in CSD-k form by the

following Modulo Checking Rules.

• Rule 1: Inside a basic block B, for any native ctx-trigger instruction N, (mod num(start(B))

+(number of inst before N in B) mod k=0.

• Rule 2: For any basic block B, if P and Q are two predecessors of B, then mod num(end(P))

=mod num(end(Q)).

If either Rule 1 or Rule 2 fails, the code is not in CSD-k form. Actually, during modulo

marking, rule 2 can be used to check if the end points of all predecessors of a BB have the

same modulo number.

Theorem 2. The modulo checking rules are correct

Proof: If rule 1 fails, there will be a path from a ctx-trigger instruction to the start of B
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Init 0          
Iter 1 0 2  1       
Iter 2 0 2 2 1 2 2 1 0   
Iter 3 0 2 2 1 2 2 1 0 0 2 

 

Figure 44: Example for CSD-3 verification

and then to N, but its length is not a multiple of k, which contradicts with Corollary 2.

If rule 2 fails, there must be a program point P, such that two modulo numbers are

possible. Suppose two modulo numbers m1 and m2 are possible for P. We can find a nearby

program point with two possible modulo numbers: 0 and (m2-m1) mod k. In other words,

there are two paths from native ctx-trigger instruction(s) to this instruction such that one

path length is a multiple of k but the other is not. So padding instructions must be added

to resolve this conflict.

On the other hand, if both rules hold, the modulo number of each program point is

unique. We can insert ctx instructions to all program points with modulo number 0 (except

those with native ctx-trigger instructions). It is easy to verify CSD=k for all consecutive

ctx-trigger instructions.

Figure 44 gives an example which shows how to verify if a program is in CSD-3 form.

The number in each BB represents the size of the BB. The fourth instruction in BB 2 is

a native ctx-trigger instruction. The entry point (start point of BB 1) always has modulo

number 0 (a native ctx-trigger instruction is assumed there). In iteration 1, the end point

of BB 2 gets modulo number from the ctx-trigger instruction in that BB. In the meantime,
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the end point of BB 1 is assigned a modulo number from its start point. In iteration 2

and 3, all BBs get modulo numbers. Next, we apply the Modulo Checking Rules. In BB 2,

mod num(start(BB 2))=2 and there are 3 instructions before the fourth native ctx-trigger

instruction, however (2+3) mod 3 6= 0. This breaks rule 1. It is easy to see that there are

5 instructions between the entry point of the code and this ctx-trigger instruction along

the path, which violates Corollary 2. Next, for BB 3, the two predecessors are BB1 and

BB4. However, mod num(end(BB 1)=2, and mod num(end(BB 4))=0. This breaks rule

2. We can identify two paths: one from the ctx-trigger instruction at the beginning of the

code going through BB 1 to the start point of BB 3 with length 2; the other goes from the

ctx-trigger instruction in BB 2, traversing through BB 4 till the start point of BB 3 with

length 6. The second path suggests that there should be a ctx instruction at the beginning

of BB 3, however we must add more padding instructions to the first path to make its length

a multiple of 3.

6.4.4 Modulo Graph

Next, we present another representation for the control flow graph, which facilitates CSD-k

form verification and minimal CSD-k transformation. We first introduce the concept of a

Connection Point. Notice that if the CFG is in CSD-k, according to modulo checking rule

2, the modulo number of a BB’s start point must equal to the modulo number(s) of the end

point(s) of its predecessor(s). Therefore, we can assume a single point for these start and

end points. A connection point is defined as follows:

Definition 29. Connection Point

A set of start and end points. It is the transitive closure of start and end points through the

predecessor/successor relationship on the CFG. If the code is in CSD-k form, the modulo

number of a connection point is the modulo number(s) of its element(s).

For example, in Figure 44, there are four connection points, i.e. end (BB1), start

(BB2), start (BB3), end(BB4), start(BB5), start(BB4), end(BB2), end(BB3), start(BB1)

and end(BB5). In addition, it is easy to observe that:

109



 

BB1 

BB2A 

BB3 

BB4 

BB5 

{1e,2As,3s,4e,5s} 

{2Be,3e,4s}
} 

{1s} 

{5e} 

0 

2 

2 
2 

BB2B 

3 

1 
{2Ae ,2Bs} 

2 

1 

6 

2 

5 

BB1 

BB2A 

BB3 

BB4 

BB5 

BB2B 

3 

(a) (b) 

Figure 45: Modulo graph for the example

1. A start or end point must belong to one and only one connection point. In other

words, any two connection points cannot share elements.

2. If the code is not in CSD-k form, the modulo number of a connection point may not

be determined due to the inconsistency of its elements’ modulo number.

3. Each BB links one connection point to another connection point.

Next, we define modulo graph.

Definition 30. Modulo Graph

A weighted directed graph, on which nodes are the connection points. Each BB becomes a

directed edge connecting one connection point (which contains its start point) to another

connection point (which contains its end point). The weight of an edge is: (size of the BB)

mod k. Each ctx-trigger instruction splits its BB and becomes a connection point with

modulo number 0.

In Figure 45, we show how to build a modulo graph for the example in Figure 44. In

Figure 10.a, BB 2 is split at the native ctx-trigger instruction and becomes BB2A and

BB2B. In Figure 45.b, the modulo graph is constructed. The notation in the figure needs

explanation. Here, 1s means start(BB1) and 5e means end(BB5), etc.

Next, we give the definitions of ground point.
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Definition 31. Ground Point

A ground point is a connection point that contains the start point of the entry BB or a

ctx-trigger instruction after that splits a BB. Its modulo number is 0.

In Figure 45.b, {1s} and {2Ae,2Bs} are ground points.

Definition 32. Super Path, Positive Edge, Negative Edge

A super path is a path on the modulo graph regardless of the direction of the edges. If

an edge follows the direction of the super path, we call it a Positive Edge, otherwise, it is

a Negative Edge. Length of a Super Path is defined as (
∑

(length of all positive edges)-
∑

(length of all negative edges)) mod k

For example, on Figure 45.b, there is a super path BB1 → BB4 → BB2B, BB1 is a

positive edge, BB4 and BB2B are negative edges. Its length is (2-2-1) mod k.

Definition 33. Super Loop

A closed super path. Its length is the length of that super path.

Lemma 6. If a program is in CSD-k form, after modulo marking, for any super path from

P to Q, its length is (mod num(Q)-mod num(P)) mod k

Proof: One observation is that if a program is in CSD-k form, according to rule 2, all

program points belonging to the same connection point should have the same modulo num-

ber. Path from P to Q can be separated into many edges P → C1 → C2LQ, based on

Lemma 5, (mod num(P)+
∑

(length of all positive edges)-
∑

(length of all negative edges))

mod k=mod num(Q). Therefore, length of the super path = (mod num(Q)-mod num(P))

mod k.

Theorem 3. The Modulo Graph is in CSD-k form iff the length of any super path between

two ground points is zero and the length of any super loop is zero.

Proof: If the Modulo Graph is in CSD-k form, based on Lemma 2, any super path

between two ground points is zero because mod num(Q)=mod num(P)=0. For any super

loop, we can pick an arbitrary point P on the loop, and regard it as a path from P to P.

Since mod num(P)-mode num(P)=0, its length is 0.
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Figure 46: Illustration for the NP-complete proof

On the other hand, if any super path between two ground points has length 0 and any

super loop has length 0, we first apply the modulo marking algorithm on the graph, then

check if the two rules are satisfied.

Rule 1: Assume N is the first native ctx-trigger instruction in the BB. Now it becomes

a ground point. Suppose start(B) belongs to the connection point CP, according to the

modulo marking algorithm, there is a super path from a ground point G to CP, therefore

mod num(CP)=length of super path G to CP. We extend this super path to N, therefore

the length of the extend path is 0 (between two ground points). Thus, rule 1 is correct. If

N is not the first ctx-trigger instruction. It must has a path with length equal to a multiple

of k to the first ctx-trigger instruction, thus, rule 1 is still valid.

Rule 2: We can find a ground point GP and GQ, so that there is a path from GP to P

with length mod num(end(P)), and there is path from GQ to Q with length mod num(end(Q)).

Since, now both end(P) and end(Q) belong to the same connection point, we can com-

bine the two paths into a path from GP to GQ, which should have length 0. Thus,

mod num(end(P))= mod num (end(Q)).

Theorem 4. The Minimal CSD-k problem is NP complete.

Proof: We reduce the Maximal Bipartite Subgraph problem [57] to CSD-2. Proof for

higher value k is omitted due to the space limitation. Maximal bipartite subgraph problem

is to delete minimal number of edges from an undirected graph to make it bipartite, i.e.
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no odd length cycle in the graph. For each instance of a graph, we build a modulo graph

accordingly. All nodes and edges are mapped to the modulo graph and all edge weights equal

1 (we will show details later). No native ctx-trigger instruction is in the graph (ctx-trigger

instruction at the entry point can be omitted, since we can always flip the modulo numbers,

i.e. 0 → 1 and 1 → 0, of all program points to make the entry point has modulo number

0). According to the constraints in Figure 47, for each edge, we either add 1 instruction

to make it length 2 or leave it unchanged. The objective is to make minimal number of

edges into length 2 (since 2 mod 2=0, making the edge length 2 is to remove the edge from

length counting). After the CSD-2 transformation problem is minimally solved, all super

loop lengths should equal 0, i.e. all cycle length on the original graph should be an even

number. Therefore, solving the minimal CSD-2 transformation problem is equivalent to

solving the maximal bipartite subgraph problem.

To map the graph to a modulo graph, all nodes are ordered first. Edges (BBs) always flow

from lower number nodes to higher number nodes. Assume for each node (i.e. a connection

point), there are m in-coming edges and n out-going edges. We show the mapping so that

each BB has at most two successors as required on IXP. If m≥n, we show the connection

point in Figure 46.a below. If m < n (Figure 46.b), we need some additional BBs. All

additional BBs have size 2 and it is easy to show that no padding instruction should be

added to these BBs in the optimal solution.

6.4.5 Solving Minimal CSD-k Transformation

Modulo Graph gives an elegant way to model the problem mathematically. By defining

the number of padding instructions in each BB as a variable and their total number as our

objective function that should be minimized, we can set up a number of constraints and

solve this problem mathematically. In Figure 47, we assume that there are n connection

points and p (p≤n) of them are not ground points. The modulo number of the connection

points are defined as variables CP1, CP2 . . . CPn. The number of edges (BBs) is m; thus for

each edge (BB), we define the number of padding instructions as variables PI1, P I2, . . . P Im.

The objective is to decide CPs and PIs such that the total number of padding instructions
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Variables: 
1. Connection Points:   CP1, CP2….CPn 
    Among them CP 1, CP2…CPp are not ground points 
    CPp+1,CPp+2…CPn are ground points 
2. Number of Padding Instructions for each edge (BB): 
    PI1, PI2….PIm 
 
Constants: 
Edge Weights:   E1 E2….Em 
 
Objective: 
Min (PI1+ PI2+…+PIm) 
 
Constraints: 
     (1) All variables є [0, k-1] 
     (2) For edge Ei from CPj to CPk,  

       (CPj +Ei+PIi) mod k=CPk (Lemma 1) 
     (3) CPp+1=CPp+2…=CPn=0 
 
 

Figure 47: Mathematical modeling

is minimized.

Obviously, all variables should be in the range [0, k-1]. For an edge (BB) from connection

point CPj to CPk, it must satisfy (CPj + Ei + PIi) mod k=CPk (Lemma 5).

This modeling gives us a way to solve the problem using techniques like integer linear

programming (ILP)(modulo operations can be converted in ILP). However, due to its NP-

completeness, resorting to an ILP solver would take a long time [2]. Next, we give a greedy

heuristic solution, which finds an approximate solution quickly.

From Figure 47, we can observe that the solution should determine CP1 to CPp. We can

group these values into a p-dimensional vector called CPV. After the p values (or the CPV)

are determined, using constraint (2) in Figure 47, all PIs and the value of the objective

function are decided as well. Therefore, we have a function from CPV ∈ [0, k − 1]pto an

integer. The problem is to find the minimal value of this function.

Since the greedy heuristic may end up with a local minimum depending on the initial

value, our heuristic starts with a number of (we set it to 1000) initial values for CPV. These

initial values are randomly generated. From each initial CPV, it attempts to reduce the

objective function in a greedy manner (Figure 48). Each time, one of the CPi is changed

114



 
CPV={CP1,CP2…CPp} є [0,k-1]p 

 

Y 

Try to change one of the 
CPi to a new value so the 
objective function gets 
the biggest reduction. 

 

Generate an 
initial CPV  

Objective 
function 

Reduced? 

N 

Update CPV 

Figure 48: Heuristic algorithm

to a new value so the objective function gets the biggest reduction. The complexity of the

algorithm can be calculated as O((max #iteration) × (#new values tried in each iteration)

× (time to calculate the objective function))= O(mk × kp×m) = O(m2k2p).

6.4.6 Relaxed Minimal CSD-k Transformation

Enforcing CSD strictly could be expensive. In real world applications, a rough approxima-

tion of the context switch distance is typically enough. To relax the CSD-k transformation,

we can slightly change the formation in Figure 47. The second constraint is relaxed with a

D on the right hand side and becomes:

(CPj + Ei + PIi) mod k = CPk ±∆

In this way, we allow the CSD to be slightly changed along each path. In our experiments,

we found that even a small ∆ could help reduce the padding overhead a lot. Accordingly,

the heuristic algorithm in Figure 48 must also take this into consideration by factoring in

the change in the second constraint.

6.4.7 Overhead Reduction via Code Transformations

The above approaches attempt to insert padding instructions without other code transfor-

mations. In this section, we discuss several compiler techniques that can reduce the number

of padding instructions. All these optimizations are applied before the minimal CSD-k

transformation.
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addr1=0x6000 
sram_wr b�[addr1] 
addr2=0x4000 
sram_rd a�[addr2] 
b=c+d 
e=b+a 
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addr1=0x6000 
sram_wr b�[addr1] 
addr2=0x4000 
b=c+d 
sram_rd a�[addr2] 
e=b+a 

Figure 49: Code motion to increase distance

6.4.7.1 Code Motion for longer Context Switch Distance

When native ctx-trigger instructions are located too close to each other, the compiler can

move these instructions to increase the distance. Code motion is restricted by dependencies

among instructions. The example in Figure 49.a shows a code segment, in which the two ctx-

trigger instructions have distance 1. If we want it to be in CSD-2 form without extra padding

instructions, we can simply move the sram rd instruction down by one slot (Figure 49.b).

Our approach first finds all ctx-trigger instruction pairs with distance shorter than k, then

attempts to move them one by one. It might happen that moving one instruction can affect

several pairs. We heuristically require that the sum of the distances for all pairs should be

increased by each code motion.

6.4.7.2 Distance Compensation

Due to the existence of native ctx-trigger instructions, sometimes we must insert a few

padding instructions to increase the distance between these instructions. For example, in

Figure 50.a, the two native ctx-trigger instructions sram rd and csr rd are at CSD=2. If we

want to convert the code into CSD-3 form, a padding instruction must be added between

them (Figure 50.b). However, since the code is in the same BB, it will be executed with

the same frequency, we can keep the CSD between these two native ctx-trigger instructions,

but give a longer CSD later to compensate. Overall, the CPU time given to the thread

is not changed. As shown in Figure 50.c, the ctx instruction is added 4 instructions away

from the csr rd. One limitation is that distance compensation may shorten the round trip
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Figure 50: Distance compensation

time. We should make sure that time for each round trip is still bigger than the stall time

of each thread, such that threads can be ready when scheduled again.

Moreover, we can apply the same technique across basic block boundaries. In Fig-

ure 50.d, the CSDs are all 1 in BB1 and BB2. To make the code CSD-2, we need at least

two padding instructions. However, in Figure 50.e, we compensate it by lengthening the

CSD in BB3, as the sum of the execution frequency of BB1 and BB2 equals the execution

frequency of BB3.

6.4.7.3 Loop Unrolling

For loops that are too short or their lengths are not a multiple of k, loop unrolling can

help reduce the number of padding instructions. In Figure 51.a, the loop contains only 4

instructions, i.e. instruction 3 to 6 (for clarity, branch delay slots are ignored). If we want

it to be in CSD-8 form, 4 nops should be added. However, in Figure 51.b, we can unroll the

loop so no padding instruction is needed. Actually, we replace padding instructions with

the unrolled loop body. Although the code size is still increased, the runtime slowdown due

to useless padding instructions can be avoided.
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1. sum=0 
2. i=0 
3. sum=sum+i 
4. i=i+1 
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7. cmp i, 100 
8. br<0  3# 
 

Figure 51: Loop unrolling

6.4.8 Apply to Runtime Constraints

We now describe briefly how to apply FCS to the other runtime constraints in Table 16.

WRR and PS were illustrated in Section 6.4.1. For RM, among all threads in their processing

part, the one with shortest period occupies the CPU, so idle parts are given a very short

CSD. Processing parts are given a longer CSD for shorter period threads. PC is similar to

RM, except that threads with higher priority classes are given a longer CSD. Finally, as

explained in Section 6.3, WFQ is similar to WRR.

6.4.9 Other Considerations

Finally, it might be noted that the choice of k really depends upon the application needs.

The value of k should be picked depending on the runtime constraint an application needs

to fulfill (for example, in PS, the thread with lowest priority must have a very small k).

When there are multiple options, the programmer can make the decision based on the

scheduling overhead (due to ctx insertions) and the padding instruction overhead given by

our algorithm. As mentioned in Section 6.4.2, scheduling overhead largely depends on k’s

value, therefore choosing the biggest CSD allowed can minimize the scheduling overhead, i.e.

the dynamic number of ctx instructions executed. However, a big CSD could introduce more

padding instructions. Thus, there is an inherent tradeoff involved between the number of

ctx instructions and padding instructions in the range of allowed k values. The programmer

can use our algorithm to find the overhead for different options, then decide which one to
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Figure 52: Dynamic Context Switch

choose.

6.5 Dynamic Context Switch (DCS)

To control the context switch more adaptively, DCS makes use of the inter-thread signal

to control the length of time a thread should be delayed. Instead of ctx, “ctx interthd” is

issued. This will cause the thread to be stalled until the inter-thread signal is received (which

works like a wake-up signal). Moreover, a Control Thread is needed to send inter-thread

signals to control their execution.

In Figure 52.a, we designate the fourth thread as the control thread. All threads are

CSD-k transformed. The control thread sends out inter-thread signals according to the

runtime policy. In Figure 52.a, when control thread is running, it sends out signals to other

3 threads. Therefore, in the next round, the other 3 threads can proceed to the next “ctx

interthd” instruction. In Figure 52.b, we show how one thread is stalled by DCS. If the

control thread only sends out signals to thread 2 and thread 3, thread 1 will be stalled in

next round. The control thread knows which thread to stall by reading their registers. As

mentioned earlier, the register file is accessible to all threads, but each thread only uses part

of the register file. The control thread can look at particular registers belonging to other

threads to decide which thread(s) to stall.

For example, DCS can implement the two runtime constraints in Table 16-FCFS and
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Table 17: Benchmark properties

 

Benchmarks Code size Cycle/ iteration #native ctx-trigger 
Drr 108 207037 9 

Fir2dim 447 159149 13 
Frag 271 28620 14 
Kmp 123 148059 15 
Lzw 126 43163 13 
Md5 913 3983292 49 

Wraps_recv 875 2048.37 35 
Wraps_send 921 1264.87 37 

 

EDF. For FCFS, each thread should have a register indicating the timestamp of the first

packet in its input queue (or no packet, the thread is in idle part). Once the control thread

detects the thread with earliest packet to service, it blocks all other threads from executing

in their processing part until that thread finishes. For EDF, the deadlines are stored in

threads’ registers. Only the thread with earliest deadline can be executed in its processing

part.

The overhead of DCS includes: 1) one thread is taken as control thread and the control

thread occupies part of the CPU time; 2) some registers are used to convey information to

the control thread. 3) inter-thread signals cannot be used for other purposes.

6.6 Evaluation

We evaluate the algorithms with the Intel-provided IXP1200 Developer Workbench 2.01,

including a cycle-accurate simulator for IXP. We experiment with 8 benchmark programs

collected from Commbench [72], Netbench [51], one program from DSPstone (fir2dim) and

a packet scheduling algorithm [75]. We apply our algorithms on generated assembly code to

automatically insert padding and ctx instructions. We also observe that unnecessary stalls

are reduced.

Table 17 shows some properties of the benchmark programs. The code size is the number

of instructions before our optimization. The cycle count is the average number of cycles for
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Figure 53: Code size growth under different CSDs

each iteration in the processing part. The last column gives number of native ctx-trigger

instructions in the code. Since most of these instructions are for data input/output, we

observe that it takes higher percentage in small benchmarks.

In all cases, we use relaxed minimal CSD-k transformation and set ∆ to 1. Figure 53

gives code growth due to padding and ctx instructions after applying our CSD-k trans-

formations. Data is normalized to the original code size. The bottom part of each bar

represents code growth due to padding instructions, while the upper part represents code

growth due to ctx instructions. Total code sizes are shown as absolute numbers at the top

of each bar. In general, with larger CSD, more padding instructions are added. On average,

the code growth due to padding instructions is 0.4%(CSD-2), 1.3%(CSD-4), 2.9%(CSD-8),

7.9%(CSD-16). Notice that, large benchmarks induce fewer padding instructions (except

md5, which has too many native ctx-trigger instructions). It is probably due to their bigger
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Figure 54: Padding instruction reduction through code transformation (CSD-8)

BBs as we have observed in these benchmarks. The number of additional ctx instructions

is in reverse proportion to the CSD. Also, if the code contains more native ctx-trigger

instructions, fewer extra ctx instructions are needed. On average, the code growth for

ctx instructions is 13.7%(CSD-2), 7.0%(CSD-4), 2.8%(CSD-8), 0.8% (CSD-16). Finally,

the average numbers for total code growth are 14.1%(CSD-2), 8.4%(CSD-4),5.7%(CSD-8),

8.7%(CSD-16).

Figure 54 demonstrates the effectiveness of the 3 code transformations in Section 6.4.7.

All numbers are normalized to the original code size. Only code growth due to padding

instructions is considered. Loop unrolling replaces padding instructions with useful loop

body, which reduces padding instructions by 0.5%. The effectiveness of loop unrolling

depends on how many small loops are encountered. With instruction scheduling, code

growth is cut by 0.6%, while distance compensation contributes about 0.3%. We also

observe that distance compensation is more useful when the CSD is small, because less
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Table 18: Runtime performance

 

Constraint Benchmark Orig. Stall 
Cycle (%) 

CSD CPU time 
(%) 

Padding 
(%) 

Frag 8 61.23 2.83 WRR 
Lzw 

22.5 
4 31.01 1.2 

Wraps_recv (high) 16 89.56 7.41 PS (FCS) 
Wraps_recv (low) 

24.3 
2 7.15 0.1 

Wraps_recv (high) 8 70.67 2.5 PS (DCS) 
Wraps_recv (low) 

24.3 
8 0 0 

 

distance needs to be compensated.

Table 18 illustrates the runtime performance for 3 scenarios. In the first scenario, we

run two different applications on threads. For the other two, the same application is run

on two threads with different runtime constraints. third column shows the cycles spent on

unnecessary stalls in the original code. They are quite significant.

The first scenario schedules two programs-Frag and Lzw-on two threads with WRR. For

WRR, we can choose a large CSD for both threads to reduce scheduling overhead. After

balancing both overheads, we found that CSD-8 for Frag and CSD-4 for Lzw are the best.

Simulation shows Frag takes 61.23% of the CPU time, while Lzw takes 31.01% of the CPU

time. The ratio is very close to the ideal ratio of 2:1. The imprecision might come from

stalls due to long latency ctx-trigger instructions, which are not fully covered when the

total cycles of each round are less than the latency of such instructions. This is likely to

happen since there are only two threads running together. The cycles spent for unavoidable

scheduling overhead are roughly 8%. The last column shows the percentage of cycles spent

on padding instructions, which is less than 4% – a very small amount. As a matter of fact,

the original code of the two threads wastes over 20% CPU due to improper sharing of CPU

and long latency instructions. In other words, with precise timing control of the threads,

CPU cycle wastage is negligible.
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The second scenario tests priority sharing (PS) for two threads running the same bench-

mark. With FCS, the first thread (high priority) should be CSD-16 transformed and the

second one (low priority) should be CSD-2 transformed. During runtime, the first thread

takes most of the CPU time (89.56%), while the second gets 7.15%. Therefore, it approx-

imates PS closely. Cycles wasted for padding instructions take over 3.7% due to the large

CSD value given to the first thread. The scheduling overhead is about 4%. A precise im-

plementation should rely on DCS as shown in the third scenario. Both threads are CSD-8

transformed, so we get a small overhead due to ctx and padding instructions (as shown

in Figure 53). With DCS, the second thread is completely stalled, which means it truth-

fully enforces PS. Compared with FCS, the overhead of DCS is higher due to the control

thread (about 30%), but the padding instruction overhead is only 2.5% for the first thread,

because we do not need to enforce a long CSD in the code as long as the control thread

can take control of its execution. Notice that, for FCS we actually save the CPU cycles

compared with the original code with over 20% CPU time loss due to unnecessary stalls for

long latency instructions. DCS has higher overhead but enforces the constraints with high

fidelity.

Finally, the running time of our algorithm is only a few seconds even for the biggest

benchmark. Since the algorithm is in polynomial time, it should scale very well for larger

benchmarks.

124



CHAPTER VII

RELATED WORK

The research problems we have encountered for network processors are very special, because

network processors are designed for meeting the new requirements of network applications

that have not been targeted by any prior processors.

7.1 Intra-thread Register Allocation

Although our main focus of intra-thread register allocation is on optimizations for a spe-

cial network processor architecture with dual-register file, partitioned register file has long

been adopted by commercial DSP products like Texas Instruments’ VLIW chips. The IXP

network processor’s register file differs from theirs in that 1) only one function unit is pro-

cessing the instructions; 2) the parallel access to the register file is restricted to the two

source operands of the ALU instruction. A recent architecture paper [22] studies multi-

banked architecture and shows its performance advantage.

[39] talks about register allocation for VLIW machines. Although their problem is dif-

ferent from ours, the proposed component graph method gives us valuable enlightenments.

[58] studies the register allocation problem for a dual-bank register file. Register access

requires both register number and a bank specifier, which is decided by a control regis-

ter. The paper proposes to use one register bank called primary bank for global register

allocation and the other called secondary bank for local register allocation. Since their

architecture does not require source operands to be in different banks, the approaches used

are different from us. Also, the separated global and local register allocation may cause

imbalanced register pressure as discussed in this work.
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7.2 Inter-thread Register Allocation

The multi-threaded architecture of the IXP model differs from traditional general pur-

pose multi-threaded processors or SMT processors in that the number of threads and the

code for each thread is known beforehand (at compile time). Further, the architecture ex-

poses context switch to users (actually the programmer should handle everything except

the save/restore of PC for each thread). This makes register sharing across threads dif-

ficult, since registers are not saved during context switches. On the other hand, exposed

architecture features allow the compiler to undertake inter-thread register allocation.

This problem is also different from the traditional concepts of caller-save and callee-save

registers, since registers cannot be saved to the memory during context switches due to

the high cost of memory operations. The only chance to use a register that is also used

(shared) by other threads is to guarantee the register is dead during the context switch.

[30] studies live range analyses for context switches at the procedure boundary on Alpha

machines. Optimizations are conducted to minimize the number of registers that should

be saved during context switches–in [30] it is equivalent to reduce the number of callee-

save registers. In contrast, context switches taking place on the network processor are

more frequent (reaching basic block level) thus require analyses at finer granularities; it is

not profitable to save/restore but allow small deadness at context switch points for a fine

granularity allocation.

[6] talks about the inter-task register allocation problem for embedded systems with

static OS and predetermined tasks. The goal of the paper is to minimize the number

of registers that should be saved during context switches. However, the assumption that

tasks have fixed priority and saving the variables to memory during context switch is not

applicable in our model. Finally, their assumption that tasks can be preempted at any given

program points except for critical sections is not true for our network processor model either.

Therefore, the techniques proposed in their work are not applicable to our problem.

A recent publication [29] studies register allocation problem for single thread on the IXP

network processor. The compiler is dedicated to the particular processor with consideration
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to many architectural details that involve irregularities but they do not focus on an impor-

tant IXP feature–multi-threading. The goal of our paper is to study a generalized model for

multi-threaded register allocation, so it can be extended to other network processors with

similar designs.

Register renaming is an old concept in superscalar processors[54, 65]. There are two

key differences between the renaming mechanism presented here and the renaming unit in a

superscalar processor. The hardware presented here attempts to rename memory addresses

to registers, rather than renaming virtual registers to physical registers. Also, the goal here

is to reduce memory activity, while traditionally it is to remove data dependencies among

instructions, increasing the amount of parallelism.

We focus on the balancing of registers among different threads and the allocation of

shared registers to meet the overall register demands across threads. We show that the

problem is quite involved and provide a systematic solution to balance register requirements

across threads by determining the number of registers that can be put into shared registers

to reduce the overall register requirements.

7.3 Managing Runtime Constraints

Most previous compiler work for real-time or packet processing are at the language level.

Realtime programming languages like Ada can provide language support for helping specify

and implement realtime programs. However, they require realtime constraints to be written

explicitly by the programmer or indirectly through a type system. However, no implemen-

tation details with regard to the particular platform are considered. In this work, we are

interested in a very efficient solution for a specialized network processor. In addition, the

runtime constraints under study are not limited to realtime constraints.

PLAN [33] is a language that can be used to program mobile agents that evaluate on

remote hosts across the network. It also provides language features such that the compu-

tation could be carried out safely and all programs will terminate eventually. In contrast,

our work on the network processor is at a much lower level, which implements some of
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the functionalities of the OS and packet scheduler. Besides, the compiler analysis and opti-

mization proposed in this work do not require any language changes, therefore is completely

transparent to the programmers.

Real-time operating systems (RTOS) like eCos, RTLinux can manage runtime con-

straints. However, they are typically too expensive to be implemented on network proces-

sors. Even a small amount of OS intervention is imposed, the overhead could be unbearable

for fast packet processing. Thus, OS solutions to such processors are not really feasible.

Although implementing runtime constraints through compiler has limitations. For ex-

ample, only some functionalities are implementable with FCS, whereas DCS is much more

expensive than FCS. Also, padding overhead and scheduling overhead have to be consid-

ered. It’s probably the only feasible way for the IXP network processor due to the lack of

OS and full-fledged hardware support.

7.4 Others

The ShangriLa compiler [16] developed by Intel helps the programming on the IXP network

processor by defining a C-like high-level language, together with a number of compiler

optimizations to speedup the execution. The infrastructure relies on a runtime system. It

also proposes stack optimization and profile directed soft cache. We are currently not sure

about how register allocation is conducted in ShangriLa, but it is believed to share some

similarities with our register allocation pass (either intra-thread or inter-thread register

allocation). Satisfying runtime constraints through pure compiler techniques hasn’t been

considered in the ShangriLa compiler.

J. Dai et. el. [23] proposed a technique to automatically partition a sequential packet

processing program into parallel subtasks which can be naturally pipelined and mapped

to the network processor. The transformation ensures that packet processing tasks are

balanced among pipeline stages. Also, minimizing data transmission between pipeline stages

is part of the objective. A compiler phase is designed for the IXP network processor, which

achieves significant speedup for commonly used NPF IP forwarding benchmarks. Although

code and data partitioning hasn’t been seriously studied in this work. We are also interested
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in this topic and plan to work on it in the future.

Much research has been conducted from other aspects such as application level im-

plementations, architectural design optimizations etc. Since the focus of this work is on

compiler optimizations, we will briefly mention these related work. A recent workshop on

network processors held with HPCA collects many interesting papers in this area.

For example, [62] describes the design and implementation of the Dynamic Window-

Constrained Scheduling (DWCS) [70, 69, 68] algorithm to schedule packets on network

processors. The DWCS algorithm characterizes multimedia streams with diverse Quality

of Service (QoS) requirements. Earlier implementations of DWCS on Linux and Solaris

machines use a heap-based implementation, which requires O(n) time to find the next packet

and send it out, and which frequently moves heap elements. For speed improvements and

conservation of memory bandwidth, our design uses a Hierarchically Indexed Linear Queue

(HILQ). The HILQ substantially reduces the number of memory accesses by scattering

packets sparsely into the queue. Experimental results demonstrate improved scalability

compared to a heap-based implementation in supporting thousands of streams with strict

real-time constraints, while causing no loss in accuracy compared to the standard DWCS

algorithm.

Various of hardware improvements or special hardware units are explored in literature

as well. For example, [61] talks about how to design pipelined memory architecture to

improve the throughput of network processors. [44] and [32] proposed microarchitectural

design for routers. Architectural innovations for IP look-up are studied in [5, 4, 40]. [60]

evaluates flexible network processor interfaces. Some other special hardware units for packet

buffers [27], regular expression [9], priority queues [80], packet classification [14] are also

evaluated. For special applications running on network processors, [73] explores how to

accelerate protein motif finding and [21] looked at mixed real-time workloads.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Conclusion

We have looked at several important and also interesting problems regarding compiler op-

timizations for the IXP network processor. Largely, they can be categorized into two types.

The first big category is the register allocation problem for both intra-thread and inter-

thread register allocations. The second problem is how to manage runtime constraints

across multiple threads for the IXP.

The study on intra-thread register allocation [76] discusses three different approaches

for performing register allocation and bank assignment. Bank assignment can be performed

before register allocation, after register allocation or combined with register allocation. We

propose a structure called register conflict graph (RCG) to capture the dual-bank con-

straints. To further improve the effectiveness of the algorithm, we also propose some en-

abling transformations. Our results show that the phase ordering of first doing register

allocation and then assigning banks can reduce the number of spills with affordable cost in

terms of additional instructions.

Allocating registers across threads [77] could further increase the number of effective

registers by sharing some of the registers across threads. The values that are not live

across context switch program points are held in shared registers. Maximizing shared

registers in turn reduces spills and context switches making it safer to keep more ranges in

shared registers. We approach this problem from zero-spill accounting only for mandatory

load/stores. The results show that we are able to minimize register requirements in SRA

setting and are able to improve the cycle counts substantially in the ARA setting for large

benchmarks executing on different threads. This means that it is viable to develop multi-

threaded large applications on IXP effectively with a good compiler support. The solution

is able to speedup the performance of critical threads by meeting their demands through
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maximal sharing of registers.

The dynamic register allocation approach [18] presented earlier attempts to go beyond

the best statically available allocation techniques, by combining static analysis with dynamic

allocation. By dynamically mapping memory addresses onto registers, it can reduce the total

number of dynamic memory operations. In turn, reducing the total number of memory

operations reduces the idle cycle count, which is the goal of all optimizations for systems

with real-time constraints. The results show that this approach is able to reduce idle

cycle counts in all benchmarks and achieve an unweighted average decrease of 51% in idle

cycles with a 8 cycle latency. These results also show that idle counts can be reduced even

further if hardware supporting next neighbor registers is available. The hardware overhead

introduced by our method is insignificant and is off the critical path. It demonstrates that

it is viable to use smart dynamic allocation techniques over existing static algorithms.

To manage runtime constraints, our work [79] provides an effective framework for re-

alizing these constraints purely via compiler-controlled context switches across threads.

Without our compiler optimizations, these constraints can only be enforced by the pro-

grammer, which is time-consuming and error-prone (or even impossible in some cases), and

it is very difficult to achieve with a reasonably small overhead. Although our approach

introduces extra no-ops, we have shown that they do not pose a big performance drag, the

code growth is also small. Also, we put the guarantee for runtime constraints at the highest

priority (as actually intended by the applications); the paper gives a way to achieve these

otherwise impossible goals on the particular network processor. Note that most applications

currently running on network processors haven’t seriously considered runtime constraints.

However they are surely on the horizon for academic and industrial researchers as network

processors provide the right platform to achieve what they have envisioned long time ago.

Our experimental results show the runtime constraints are properly fulfilled. The runtime

overhead is low compared with the original code, where arbitrary context switches can cause

unnecessary stalls and cycle wastage.

Although our current research focuses on a particular network processor, we believe the

techniques that have been proposed in this thesis could potentially have bigger impact.
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Solving dual-bank register allocation shares similarity with dual-bank memory access opti-

mization studied in [81]. The design of new generations of the IXP network processor kept

all the features targeted by this work. For IXP 2400/2800 series network processors, more

threads are available on each processor, therefore the cost of applying dynamic context

switch is relatively lower. Meanwhile, with multi-core design being widely adopted, sharing

critical resources (like the register file) would continue to be an important topic for future

researches. We believe the same architecture could be used for processors under extreme

performance demands. As long as a processor’s thread context switch mechanism is similar

to IXP, the same technique can be applied to achieve better register sharing and to manage

runtime constraints with compiler techniques.

8.2 Future Work

There are several other topics related to optimizations on the IXP network processors that

might be interesting to explore in the future. It is clear that compiler optimization should

target automatic translation from the language semantics to the machine code which could

achieve better performance at runtime by exploiting application properties and hardware

resources. We intend to look at the following problems in our future work.

8.2.1 Heterogeneous Memory

The IXP network processor provides heterogeneous memory components with different ca-

pacities and latencies. For example, the size of the scratchpad and local memory is only

several KB, but can be accessed very fast. SRAM is slower than scratchpad but much larger

as well. DRAM is very big (up to 2G on IXP 2800) but takes long access time (300 cycles).

Besides, additional features exist for scratchpad and SRAM. For example, each bit of the

scratchpad can be operated individually; SRAM memory cell can be locked/unlocked. It

becomes an interesting topic to investigate how to map the program data to different parts

of the memory. During such mapping, we need to consider the properties of the data as well

as the properties of the memory components. In other words, for data we should consider

how frequently they will be used and how much latency they can tolerate. It has been

studied in compiler and architecture research that some of the memory accesses are critical,
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while others could allow a few cycles of slack [26, 56]. If such information can be distilled

through compiler analyses, it will help allocate data to the memory components properly.

Local memory is fast but precious, therefore should be used for the maximal profit. Possible

candidates could be compiler controlled memory [19] for storing spill variables, extended

register file [82] etc. In addition, since each processor core is quite simple, we could think

about how to use compilers to help improve the performance of a single processor via the

given memory hierarchy. In this manner, there will be no overhead being imposed on the

hardware. One possibility would be software prefetching. Notice that no cache is currently

available on packet processors, partly because there is little locality that can be exploited

among independent packets. However as we put more code on the processor, there are

other data which might have good locality, such as the state information if the packet flow

is stateful.

8.2.2 Workload Assignment

A packet in the network processor typically undergoes several processors in a pipelined

fashion. During each stage, a particular processor works on the packet and performs its

task. The reason packet processing typically involves multiple processors is due to the

limited code store size on each processor. Naturally, processors are assigned with different

tasks. For example, some are for receiving, some are for sending, etc. However, currently

it is always users’ responsibility to assign tasks to multiple processors. Consequently, as we

have observed, the task assignment by users normally leads to load imbalance on processors,

since it is very difficult to estimate the computation needs of each task. We believe task

assignment can be improved if more information is obtained for each task, either through

profiling or compiler analyses. Secondly, a program cannot be arbitrarily split and assigned

to different processors. The communication cost must be considered when we split the

program and perform task assignments.

8.2.3 Data Communication Through Next Neighbor Registers

Next neighbor register is a new feature available on IXP 2400/2800. Each processor has

128 next neighbor registers and these registers can be used in two modes. When they are
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used in next neighbor mode, writing to these registers actually causes data to be moved to

the register file of the next processor (numerically), i.e. the next neighboring processor can

get these data by reading from their next neighbor registers. Alternatively, if next neighbor

mode is turned off, these registers are used just as general purpose registers. We believe

the main purpose of next neighbor register is to conveniently transfer data to the next

processor. Since packet processing on network processors is typically in a pipelined fashion

involving a sequence of processors, transferring data through the next neighbor registers is

the fastest way. It would be interesting to study how next neighbor registers should be most

efficiently used. The small number of next neighbor registers, i.e. 128 limits the amount

of data transfer, therefore it is important to identify which data should be passed through

the next neighbor registers and which data should be passed via other ways, such as the

SRAM and DRAM. Moreover, next neighbor registers allow some of the registers to be

shared between two processors. It is possible for the compiler to make use of these registers

for other purposes.

8.2.4 Profile and Application Driven Optimizations

Up till now, all our compiler optimizations rely entirely on static compiler analyses. We

have not attempted to improve the optimizer through profile and application specific infor-

mation. Although static compiler analyses are more widely applicable, profile information

could help a lot especially for network applications. Notice that programs running on the

network processors are relatively stable, i.e. it is not easy to reload new applications at

runtime and code typically run for a long time once installed, therefore in some sense,

profile driven optimizations are more effective on network processors than on general pur-

pose processors. Similarly, compiler optimizations designed for particular applications, i.e.

application-specific optimizations can improve the performance of each application individ-

ually. For network processors, both profile and application driven optimizations deserve

more research efforts to harness their advantages over static compiler analyses. Also, we

need to investigate issues like: what kind of profile information should be collected, what

kind of application specific properties should be looked into, how such knowledge (hint) is
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conveyed along with the code and what kind of runtime supports are necessary to utilize

them.

8.2.5 Optimization Phases

Currently, our optimizations are mostly at the assembly level, i.e. we first translate bench-

marks into assembly with one-to-one mapping to instructions, then the compiler optimizes

the code. This requires the benchmarks to be rewritten or the generated code being re-

covered to a stage without register allocation. It is possible that our algorithm can do a

source level transformation before the Intel Micro-C compiler. For example, the Micro-C

compiler requires explicit specification of where each data unit resides (in SRAM, DRAM,

etc.). By parsing a generic C program, our pass could attempt to automatically give such

specifications. The source code is then transformed to the format the Micro-C compiler is

able to compile.
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