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SUMMARY

The increasing demand for high density storage devices has led to innovative data record-

ing paradigms like optical holographic memories and patterned media. In holographic mem-

ories, data is stored in the form of two-dimensional pages within the volume of a recording

material. These memories promise ultra-high volumetric densities (1Tb/cm3) and ultra-fast

readout speeds (1Gb/s) and could be the future hard drives based on nanoscale technol-

ogy. To realize the potential of these devices, significant research needs to be done in many

multi-disciplinary areas, such as material science, optics, information theory, and signal pro-

cessing. Consequently, coding theorists and signal processing practitioners are interested in

developing efficient two-dimensional constrained codes, error correcting codes, and signal

processing algorithms for holographic systems.

Holographic data storage is just one application where two-dimensional coding theory

can be put into practice. From a theoretical perspective, the study of two- and higher-

dimensional constrained systems is an active area of research in symbolic dynamics, a branch

of mathematics dealing with discrete dynamical systems. The applications of this theory

have deep consequences in other areas, such as mathematical physics, finite automata theory,

and languages in computer science. Thus, it is important to understand the fundamental

limits of two-dimensional constrained systems.

The theory behind one-dimensional constrained channels is well known. There are a

number of algorithms for constructing codes with rates as close to capacity as desired.

However, computing the capacity and constructing codes for higher-dimensional constrained

systems is an open problem. There are a few cases where tight bounds for two-dimensional

capacity are known. Also, there are hardly any efficient algorithms for constructing two-

dimensional codes.

In this thesis, we propose tiling algorithms for constructing a few classes of two-dimensional

xii



runlength-limited codes on a rectangular lattice and derive bounds for the channel capac-

ity. We present sequential nested-block coding algorithms with rates close to the derived

capacity lower bounds. The proposed tiling algorithms are constructive and have low en-

coding complexities. Motivated by recent advances in localized holography, we generalize

our bounds and coding algorithms for two-dimensional M-ary runlength-limited channels.

The storage and retrieval of information from a holographic drive can be modeled as

data transmission over a noisy communications channel. We derive a lower bound for the

capacity of holographic channels and analyze the density versus multiplexing trade-off. This

result is useful for deciding the number of recorded pages and for choosing the right code

for maximizing the volumetric storage density.

The pixel misregistration problem is an important topic in signal reconstruction theory.

In a holographic system, the spatial light modulator (SLM) and the detector arrays are

not perfectly aligned. This leads to interpixel crosstalk. We develop a channel model and

propose an algorithm for recovering data bits in the presence of pixel misregistration and

noise.
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CHAPTER I

INTRODUCTION

The storage and retrieval of digital information is an important aspect of digital commu-

nication theory and practice. Information theory provides a basis for understanding the

fundamental limits for reliable data storage. Using advanced coding theory techniques,

practical algorithms can be designed which approach these theoretical limits. Thus, com-

puting limits for achievable data rates in storage channels and designing practical codes that

approach these limits constitute the key steps for realizing devices with ultra-high storage

densities.

Almost all storage channels in magnetic and optical recording are imperfect. In other

words, channel limitations and imperfections coupled with media noise make it unsuitable

for writing information bits directly into these channels. We need a combination of modula-

tion codes and error correction codes to work with these systems. Modulation codes modify

the information bits to suit the channel requirements. For example, a modulation code can

be used to minimize the amount of spectral power at zero frequency. Error correction codes

(ECC) are used for protecting against the channel errors by adding redundancy to the data

so that the noise-corrupted data patterns can be retrieved correctly.

Many electronic devices, like magnetic discs, compact discs (CDs), and digital video discs

(DVDs), popularly use a class of constrained modulation codes called runlength-limited

(RLL) codes. These codes are used for reducing the intersymbol interference (ISI) and for

ensuring timing recovery during detection by maintaining the runlength of zeros between

any two consecutive ones within a specified range. RLL codes are also used for spectral

shaping. In addition to constrained codes, powerful algebraic error correcting codes, such

as Reed Solomon (RS) codes, are used to combat the effects of media noise and erasures

resulting from scratches. Recently, iterative codes, such as low-density parity-check codes

(LDPCs) and turbo codes, have been proposed for high-density data storage applications.
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The advent of novel optical recording technologies, like volume holographic memories,

has sparked significant research interest in the coding theory and signal processing commu-

nities. In a holographic system, data is recorded in the form of two-dimensional (2-D) pages

within the volume of a holographic material. Since an entire page of data can be retrieved

at once, this storage technique promises ultra-fast data access rates. Since many pages can

be recorded within the medium, ultra-high storage densities can be realized. Consequently,

there is an increased theoretical interest in developing 2-D constrained codes and error cor-

recting codes for holographic applications. Two-dimensional constrained codes can be used

for overcoming the effects of interpixel interference (IPI) and for ensuring timing recovery

during detection. The capacity analysis of 2-D constrained channels and the construction

of 2-D rate-efficient constrained codes are some of the important challenges in this field.

The storage and retrieval of holographic data can be viewed as data transmission over a

noisy channel that distorts information either in a deterministic or in a stochastic manner.

Computing the capacity of noisy holographic channels and designing 2-D error correcting

codes for correcting burst errors of a given geometrical shape are some of the important

problems in this area.

In a much broader context, analyzing the capacity of higher-dimensional constrained

channels and designing multi-dimensional constrained codes are fundamental problems in

symbolic dynamics and in the emerging field of multi-dimensional information theory. The

theory behind constrained coding has many applications in other fields, like finite automata

theory, statistical mechanics, and theoretical chemistry.

In this dissertation, we focus on the constrained coding and signal processing aspects

for holography. On the information-theoretic front, we examine the noiseless capacity of

2-D binary runlength-limited channels. We derive bounds for the capacity of a few RLL

channels and propose 2-D codes that achieve the lower bounds. The derived bounds and

coding techniques are constructive and can be easily generalized to the multi-dimensional

case. Motivated by recent developments in localized holographic recording, we examine

the capacity of multi-level 2-D RLL constrained channels for high-density applications. We

generalize our bounds and coding algorithms on the binary RLL constraints to 2-D M-ary

2



RLL constraints. We also derive a lower bound for the capacity of a noisy holographic

channel and use this result for optimizing the number of pages that can be stored within

the medium. This result has some interesting theoretical and practical implications.

Signal processing is an essential component in any data storage system design. Some of

the signal processing challenges for holography include modeling, 2-D equalization for IPI

compensation, and noise removal. A practical holographic device can have many shortcom-

ings despite careful engineering. Some of these issues arise because of the limitations in the

fabrication and design of the optical components. The inherent effects of the band-limiting

aperture, diffraction, misfocus, optical aberration, material shrinkage, and mechanical mo-

tion of optical components lead to interpixel crosstalk. Signal processing algorithms are

needed for recovering the data by removing the residual energy from unintended pixels.

By designing efficient algorithms for overcoming media noise and interpixel crosstalk, the

signal-to-noise ratio (SNR) can be improved. This facilitates increased data storage densi-

ties. On the signal processing front, we propose algorithms for signal recovery resulting from

combined 2-D translational and rotational misalignments. Our technique can be applied to

other optical imaging systems with square apertures.

The remainder of the thesis is organized as follows. In chapter 2, we discuss the physics

of holographic storage. We present an overview of the information-theoretic concepts related

to constrained channels. This overview serves as background information for the succeed-

ing chapters. We also outline the signal processing challenges in holography and review

some of the existing techniques and algorithms. In chapter 3, we present two algorithms

for constructing (1,∞, d, k) 2-D RLL arrays and derive bounds for the capacity of these

constrained channels. In chapter 4, we present two tiling algorithms for constructing a class

of (d1,∞, d2,∞) and (0, k1, 0, k2) 2-D RLL arrays. Using these constructions, we derive

the capacity bounds and coding algorithms for these constrained channels. In chapter 5,

we extend our constructions and capacity bounds on the binary RLL constraints to a more

general class of M-ary 2-D RLL channels. In chapter 6, we derive bounds for the capacity

of noisy holographic channels and present an analysis of the fundamental trade-off between

the storage density and multiplexing of holograms. In chapter 7, we address some of the

3



signal processing issues in a holographic channel. In particular, we develop a technique for

signal recovery resulting from 2-D pixel misalignment. Finally, in chapter 8, we present con-

clusions and ideas for future work. Detailed derivations and additional results are relegated

to the Appendices.
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CHAPTER II

BACKGROUND INFORMATION

In this chapter, we present an overview of the principles of holographic recording, highlight

the coding and signal processing issues in holographic systems, review the basic concepts

relating to constrained channels, and discuss previous work related to the contents of this

thesis.

The increasing demand for higher storage densities at lower costs necessitates evolu-

tionary storage technologies. Conventional magnetic and optical recording [3] are reaching

a point where physical constraints limit the storage of tiny individual bits on the surface

of the medium. The advent of holographic data storage offers many advantages and could

be a viable alternative to conventional data recording technologies. Holographic storage is

a volumetric approach in which information is recorded as an optical interference pattern

within the holographic material. Since data is stored within the volume of the medium

as opposed to on the surface, intriguingly high storage densities can be realized. We need

innovation in the fabrication of optical holographic materials and components, the devel-

opment of advanced coding and signal processing algorithms, and the design of efficient

system architectures to realize a practical holographic device.

In section 2.1, we give a brief overview of holographic recording. We present the physics

of holographic recording, highlight the advantages of holographic memories, and present

the configuration of a working holographic system. In section 2.2, we discuss the media

requirements for a holographic device and point out some important optical considerations.

In section 2.3, we discuss the coding and signal processing aspects of holography. In section

2.4, we introduce constrained channels and discuss their information-theoretic aspects. In

section 2.5, we highlight the pixel misregistration problem. We summarize our discussions

in section 2.6.
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2.1 Holographic Recording

In holographic storage, a page of information is stored as an optical interference pattern by

intersecting two coherent laser beams at a spot within the volume of the medium, as shown

in Figure 1. The stored interference pattern is called a hologram. Depending on the material

properties, several holograms can be stacked within the medium. The theoretical limits for

data storage density could be tens of terabits per cubic centimeter [3]. In subsection 2.1.1,

we discuss the actual storage and retrieval mechanism in greater detail.

photosensitive crystal

plane wave front

point source

interference pattern

Figure 1: Schematic of a grating pattern produced by the interaction of a point source with
a reference beam. The interference pattern is stored in a photosensitive crystal.

2.1.1 Physics of Holographic Storage

In a coherent holographic setup, a laser beam called the object beam intersects another

coherent plane wave front called the reference beam to produce a grating pattern. The light

and dark regions of the grating pattern interact with the photosenstive material, causing the

transportation and trapping of electrons within the medium. This results in local changes

in the physical/chemical properties of the material such as refractive index, absorption, or

thickness of the medium. Thus, grating patterns are replicated and stored as local changes

in the material properties. This is how holograms are stored within the medium. To recover

one of the two interfering beams, the stored grating pattern in the material is illuminated

with the other beam. In other words, by illuminating the grating pattern with the reference

beam, the object wave can be reconstructed. This is illustrated in Figure 2.
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photosensitive crystal 
holding the grating pattern

reference wave front

reconstructed object 
beam

Figure 2: Schematic of re-creating the object beam by illuminating the stored interference
pattern with a reference beam.

By changing the wavelength of the source, or by changing the reference angle (angle

multiplexing), several holograms can be stacked within the material, depending on its prop-

erties. The retrieval of holograms can be done independently by illuminating the stored

grating pattern with the reference beam that was used for creating it.

Figure 3 shows a basic holographic setup. A laser source modulates a programmable

pixelated grid array called a spatial light modulator (SLM) to form an object beam. The

SLM is typically a liquid crystal panel found in most electronic displays. The information-

bearing object beam interferes with the reference beam, creating a grating pattern within

the medium. The original object beam is later retrieved by illuminating the stored pat-

tern with the reference wave that created it. The re-created object beam is projected on a

high-quality pixelated array of photodetectors called a charge-coupled device (CCD) to re-

cover the digital data. The imaging process must be of very high quality for replicating the

original data. Despite a well-engineered imaging system, there will always be minor optical

aberrations as a result of diffraction and misfocus, resulting in interpixel crosstalk. It is pos-

sible to avoid having an expensive imaging system by using phase-conjugated readout. In

phase-conjugated readout, the reconstructed object beam gets backpropagated through the

same optics that created it, thereby compensating for some of the imaging imperfections.

However, the imaging systems must be properly aligned. Optical and mechanical distor-

tions such as translation and rotational misalignments coupled with magnification errors

introduce additional errors. This requires special coding and signal processing techniques

for data recovery. We discuss these problems in section 2.2.
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4-F

Detection

CCD Array

reference beam
Recording

SLM Array

Laser source

doubly doped crystal
(LiNbO3,)

interference

Figure 3: Basic holographic system configuration: recording and detection.

2.1.2 Advantages of Holographic Memories

Holographic memories offer a number of advantages. In this subsection, we discuss some of

the benefits of holographic storage.

• Ultra-high Capacity: Data is recorded in the form of two-dimensional pages. Several

thousand pages can be stored within the volume of the medium, depending on the

material properties. Thus, holographic memories promise very high densities. How-

ever, the ultimate limits for storage density are dictated by the available SNR that

the material can provide. By designing sophisticated codes that can achieve these

limits, coding gains can be realized. Ultra-high density in holographic memories can

be realized through a combination of better media and advanced coding techniques.

• Ultra-fast Data Rates: Unlike disk drives that require electro-mechanical actuators

for accurate positioning, optical laser beams do not have any inertia [3]. This saves a

considerable amount of time in reading and writing. Most important, data is inher-

ently stored and retrieved in a pagewise manner. This amounts to massive parallelism,

a feature not found in conventional storage. The overall system can be viewed as a

high rate data channel realized from relatively slower low-cost parallel channels.

• Associate Retrieval: This is one of the novel features of holographic storage and is akin

to content addressable memories found in neural networks. To understand what this
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means, consider the problem of indexing a hologram without knowing its address. By

embedding a search pattern on the object beam and illuminating the stored patterns,

we can reconstruct all the reference beams that were used to create the patterns. The

intensity that is diffracted by each grating into its corresponding reference beam is

proportional to the search pattern and the content of the data page. By choosing the

reference beam with the highest intensity and reading the corresponding page with

this reference, we can obtain the closest match to a given search pattern. This concept

has an interesting application as a parallel search algorithm in very large databases.

While all these advantages are evidently foreseen, the cost of lenses and lasers is a

limiting factor for the mass production of these systems at present.

2.1.3 Components and Configurations of a Basic Holographic System

The important components of a holographic setup are shown in Figure 3 [3]. A laser

source such as a krypton laser (676nm) is used for producing a coherent plane wavefront

for creating grating patterns. The SLM modulates digital information onto a laser beam,

producing an object beam. The two lenses are used for imaging the data. A storage material

such as doubly doped lithium niobate or barium titanate records the holograms. The CCD

array is used to collect data from the reconstructed object beam. The SLM and CCD

arrays are usually a few tens of micrometers in pitch size and hold around one mega pixel.

Other optical hardware components such as collimators, beamsplitters, and waveplates are

needed. Collimators are used for producing a fine point beam. Beamsplitters split the laser

beam into two parts; one beam creates the object wavefront, and the other beam is used

for reference. Waveplates are needed for controlling the amount of polarization. Special

hardware is needed for aligning the SLM and CCD. Depending on the type of multiplexing,

additional hardware is needed. For example, in the case of angle multiplexing, a beam-

steering system is required for changing the angle of the reference beam. For a wavelength

multiplexing system, a fast tunable laser source is needed.

We now discuss different configurations for a holographic storage system. The most

popular configuration is the ‘4-F’ configuration, as shown in Figure 2.3. In this setup, the
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two lenses are separated by the sum of their focal lengths, and the SLM and CCD are four

focal lengths apart. Each lens produces a Fourier transform in two dimensions [3]. The

recorded hologram within the medium is in fact the Fourier transform of the SLM data. At

the detector, the second lens Fourier transforms the recovered object beam, and the original

data is imaged on the CCD. The imaging geometry, i.e., the angle between the reference

and object beams is another factor that influences system performance. It is reported in

[57] that limiting this angle to less than 90 degrees achieves better system performance

compared to fixing the angle at 90 degrees.

Other holographic configurations, like localized recording [34], have been recently ex-

plored. In localized holography, the holographic crystal is divided into a number of slices.

The reference beam is used to selectively sensitize each slice of the crystal. Using this tech-

nique, one can record a few hundred holograms compared to a thousand holograms in the

angle multiplexed case. However, from a storage standpoint, localized holography provides

improved SNR properties that can be exploited to design multi-level codes for maximizing

the ultimate storage density. Localized holography offers many advantages, like the selec-

tive erasure of holograms and increased readout persistence. These features are not present

in angle multiplexed holography.

In the following section, we highlight the media requirements for improving the dynamic

range of holographic systems.

2.2 Media Requirements

We have discussed the basic principles of holographic storage. We need to explore materials

that can actually meet the practical requirements. Ideally, it is desired to have a compactly

sized material holding many holograms. In practice, there are many trade-offs between the

size and the material properties affecting the overall system performance. In this section,

we outline some of the desirable media properties and give examples of such recording

materials.

The imaging of information from the SLM to the CCD must be accurate so that the

information conveyed by a pixel at the SLM is accurately received at the intended detector
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pixel. Since the holographic material is inherently part of this imaging process, the recording

medium must be fabricated in a homogenous way throughout its entire volume so that

different areas accessed during readouts produce nearly the same image quality. The amount

of noise produced as a result of the scattering of light by the material determines the

fundamental limits on the data storage density and the bit error rate performance of the

system. It is reported in [3] that inorganic crystals have a lower scattering level than the

best organic media.

A rather obvious choice to improve absolute storage is to increase the thickness of the

medium. However, limitations in the physical and chemical properties of the recording

process prevent an arbitrary scaling of thickness.

In the next subsection, we review some basic terms referred to in holographic recording.

2.2.1 Sensitivity and Dynamic Range

The term sensitivity [3] refers to the amount of refractive index modulation per unit expo-

sure. The diffraction efficiency (η) dictates the amount of energy in the readout signal and

is proportional to the square of the modulation index and thickness. We can express the

recording sensitivity S (in cm/J) as

S =
η

1
2

Ilt
, (1)

where I is the total intensity, l is the medium thickness, and t is the exposure time. The

normalized sensitivity Sn = Sl can be used to compare different materials of varying thick-

nesses.

It is desired that the readout signal power be maximized and the readout times be

minimized.

The term dynamic range refers to the overall response of the medium with many stored

holograms in it. This is often expressed in terms of a quantity called M/#, introduced in

[33]. For angle multiplexed holography, the diffraction efficiency (ηangle) is related to M/#

and the number of holograms P as

ηangle =
(
M/#
P

)2

. (2)
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For localized holography, the diffraction efficiency is given by

ηlocal =
(
M/#
P

)
. (3)

The parameter M/# can be measured experimentally [33] and depends on the physical

properties of the photorefractive crystal such as impurity doping level, oxidation state,

absorption coefficient, electro-optic coefficient and photoconductivity. Other factors, such

as grating period, modulation depth, and stability of the interference pattern influence

M/#. The equation for characterizing M/# is given by

M/# =
A0τe
τr

(4)

where A0 is the saturation grating strength, τr is the recording time constant, and τe is the

erasure time constant.

Stabilizing holograms is an important issue in holographic storage. Many organic pho-

topolymer materials are subjected to aging because of the induced stresses during recording

and also because of the residual reactive substances left within the material. This causes

erasures over a long period of time. Erasures are also likely to occur because of the thermal

diffusion of molecules that record the hologram and can be restored by trapping the mobile

charge carriers either by thermal or electronic fixing.

2.2.2 Read-write Holographic Storage

Holographic memories must be non-volatile and read-writeable for commercial applications.

This requires the selective erasure and recording of holograms. The selective erasure of holo-

grams can be accomplished by rearranging the trapped charges in the photorefractive ma-

terial by light illumination. Selective charge re-excitations can often lead to the undesirable

[10] erasures of other holograms during normal readouts. To overcome such effects, alter-

native methods for achieving non-volatile storage need to be explored. In one such method,

recording is done at a wavelength of light that gets absorbed only in the presence of a third

‘gating’ beam of different wavelength. This third beam exists only during recording and

is switched off when data is being read. Photorefractive materials like lithium niobate can
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be optimized for gated two-color recording by doping the crystal with two dopants such as

manganese and iron, or by changing the ratio of lithium and niobium in the compound [10].

In the case of impurity dopants, one trap, such as Mn, creates a deep trap near the

middle of the band gap, while the other dopant, such as Fe, creates a shallower trap near the

valance band. Gating occurs in the deep trap. The shallower trap provides an intermediate

level for gated recording. Charges excited in the shallower trap persist longer in the dark

and can be populated with low-power laser beams.

To summarize, information is recorded by creating a grating pattern in the presence

of a sensitizing beam such as a monochromatic beam of light in the visible region. Non-

destructive readout is accomplished by using just the writing beam.

2.3 Coding and Signal Processing

In the previous sections, we discussed how innovative optics and material choice can lead

to increased dynamic range and sensitivity. From a communications standpoint, the entire

process of sending information, storing it as a hologram, and receiving it at the detector

is just another instance of a noisy communications channel. The ultimate limit for the

storage and transmission of information is limited by the noise floor in the channel. We

need to compute information-theoretic limits for predicting the amount of data storage and

for designing codes that can achieve those limits. We also need equalization and signal

detection algorithms for compensating channel distortions and for recovering the data from

detected samples. In this section, we discuss various coding and signal processing aspects

of holography. Parts of this section are explored in greater detail in succeeding chapters.

2.3.1 Channel Modeling and Equalization

Signal intensity is a detected signal at the CCD. This must be transformed to digital data.

The first step toward this task is channel equalization to undo the effects of distortion.

To equalize the channel distortion, it is beneficial to have a channel model that accurately

represents the recording and reading mechanism. Several models for holographic channels

have been proposed. Heanue, Gurkan, and Hesselink [23] proposed a 2-D space-invariant
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interpixel interference channel model. In their channel model, data gets filtered by a two-

dimensional channel transfer function. The filtered signal gets corrupted by additive white

noise. The horizontal span L of the 2-D filter determines the length of the ISI memory. The

inputs take values from a multi-level alphabet of size M , and detection is accomplished row

by row by constructing a 2-D Viterbi algorithm with ML states. This model works fine as

long as there is a constant lateral misalignment in two dimensions. Chugg, Chen, and Neifeld

[13] developed minimum mean squared error (MMSE) equalizers for two-dimensional finite

contrast space-invariant ISI channels and studied the improvement of storage densities after

equalization. Vadde and Kumar [53] considered two different channel models, one linear

in amplitude and the other linear in intensity, and studied the effect of post-equalization

for characterizing bit-error rates in these models. Keskinoz and Kumar [28] proposed the

discrete magnitude-squared channel model by considering quadratic non-linearity in holo-

graphic systems. Other popular equalization techniques include adaptive 2-D equalizers

using the least mean squares (LMS) algorithm.

Figure 4 shows the schematic of a physical model [28] for volume holographic memories.

The input xi,j takes values from a discrete set of M-ary alphabets and gets filtered by the

2-D impulse response corresponding to the SLM shape p(x, y). The resulting signal s1(x, y)

is Fourier transformed by the first lens, filtered by the aperture shape transfer function

hA(x, y), and finally replicated in the medium. During readout, the stored hologram is

inverse Fourier transformed by the second lens. This signal is then focused on the CCD,

which integrates the magnitude squared of the readout signal s2(x, y) over its region of

support and outputs the intensity Ii,j . This model is closer to a physically realistic holo-

graphic channel model than the previous models [53], [23], [13]. We note that the system is

assumed to be linear between the SLM and the CCD [28]. In reality, there could be channel

non-linearities, in which case the classical notion of linearity and convolution do not apply.

However, in practice such non-linearities can be ignored to develop a tractable mathemat-

ical framework using linear systems theory for the best approximation of the underlying

process.
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Figure 4: Physical model for a holographic system: linear system approximations.

2.3.2 Signal Detection

Signal detection is the next step after modeling and equalization. The goal of a signal

detection algorithm is to recover information bits from the detected and equalized signal

values. Detection techniques can be as simple as threshold detection [5] to more sophisti-

cated maximum likelihood-based techniques [5].

• Threshold Detection:

In threshold detection, the input pixels take values from an M-ary alphabet corre-

sponding to the different gray-level pixel values. Based on the probability distribu-

tion of the received intensity as a function of the gray-level, optimum threshold levels

are chosen for decoding the detected pixel values by minimizing the probability of

bit-error rates. An illustration of threshold detection is shown in Figure 5. In cases

where combined noise effects occur as a result of scattering and detector electronics,

deciding optimum thresholds is often difficult. When spatial variations in intensity

occur, threshold detection can perform poorly. In such cases, modulation codes can

be beneficial to facilitate threshold detection.

• Maximum Likelihood:

In maximum likelihood detection, information bits are sequentially decoded based on

a sequence of observations. We briefly explain how maximum likelihood sequence

detection is done in the 1-D case and then discuss 2-D detection done in [23]. ISI
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Figure 5: Example of a four level threshold detection scheme.

channels have memory. This means the received signal at any given instant depends

on the previous samples. The operation of an ISI channel can be visualized by a trellis

diagram shown in Figure 6.

n 1+n 2+n 3+n

0

1

2

3

time

Figure 6: Example of a trellis diagram: There are four states in the trellis, each state
transition results in the emission of a binary symbol.

Let us suppose that the channel has D delay elements in its impulse response and

takes on binary input. The channel memory of D elements corresponds to 2D states.

For the sake of illustration, we choose two delays corresponding to four possible states

‘0’, ‘1’, ‘2’, and ‘3’, as shown in Figure 6. Depending on the binary input values,

the channel outputs a received signal and moves to the next state, as shown in the
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trellis. As data symbols are transmitted, the system traces a path through the trellis.

The sequence detection problem can be framed as follows. Given a sequence of k

received values r = (r1, r2, ..., rk), we are interested in obtaining the data sequence

x = (x1, x2, ..., xk) that maximizes the conditional probability

P (r|x) = P (r1, r2, ..., rk|x1, x2, ..., xk). (5)

Since the channel memory is D, (5) can be simplified as

P (r|x) =
D∏

i=1

P (ri|xi−D, xi−D+1, ..., xi). (6)

Depending on the noise statistics, (6) can be simplified. Using the Viterbi algorithm

[5], the optimum data sequence that maximizes the maximum likelihood (ML) metric

in (6) can be obtained.

Though ML detection for 1-D channels is well understood, extension to two dimen-

sions is not straightforward. Two-dimensional Viterbi detection with decision feed-

back equalization (DF-VA) was studied in [23]. In the DF-VA algorithm, the Viterbi

detector operates on the 2-D channel transfer function. For example, with a 2-D

channel matrix of size L × L, the ISI memory corresponds to length L − 1. The al-

gorithm proceeds by decoding symbols row by row. In each iteration, it is assumed

that data in the previous rows are known and correctly decoded. The next row is

decoded by subtracting the information about the previous row. Similar detectors

are used in multi-track channels in magnetic recording. The DF-VA technique cannot

accomodate the time-varying changes as a result of rotational misalignments and non-

uniform material shrinkages. More powerful techniques and generalizations are needed

for handling time-varying channel effects. Error propagation is another limitation of

this technique. Any error made in the decisions in the previous rows will affect the

decisions in decoding the current row. Such error propagations can be catastrophic,

leading to a large number of decoding errors, especially under low SNRs.

More sophisticated iterative-based detection is explored in [31].
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2.3.3 Channel Codes

Channel codes can be classified into two categories, namely, modulation codes and error

correction codes. Modulation codes are used to combat ISI and facilitate detection. Error

correction codes introduce controlled redundancy across data pages to identify and rectify

bit errors. In this section, we highlight the need for such channel codes through examples.

A. Modulation codes

The role of modulation codes is to shape the coded data according to the channel

characteristics so that data is less prone to errors. Choosing an appropriate modulation

code facilitates detection and decoding. We pointed out in subsection 2.2.2 that threshold

detection performs poorly when there are frequent spatial variations in the data pages. An

alternative to threshold decoding is to use balanced arrays (dc-free array codes) together

with a simple detection scheme. Since the variation in pixel intensity is not much in a

small local neighborhood of the detector array, coding data patterns using balanced arrays

facilitates simple detection algorithms. For instance, by reading N binary coded pixels,

N/2 pixels with the highest intensity can be declared ‘1’ and the rest as zeros [3]. The real

challenge is to design asymptotically unity rate 2-D balanced codes, i.e., codewords that

have the least amount of redundancy. Algorithms for constructing such balanced arrays are

reported in [36] and [52].

Sometimes we need codes for shaping the power spectrum of the channel data. Such

codes are called spectral shaping codes. Low-pass filtering codes [4] (codes that eliminate

patterns with rapidly changing ones and zeros, i.e., having high spatial frequency) and

spectral-null codes [26] (codes that exhibit a null at zero frequency) are examples of spec-

tral shaping codes. Compensating for IPI and ensuring timing recovery in 2-D detectors is

an important application of modulation codes like runlength-limited codes [25] and checker-

board codes. Constructing efficient 2-D RLL codes is a challenging problem. We explore

constrained codes in detail in the succeeding chapters.

B. Error Correction Codes

In holographic channels, errors occur in the form of 2-D bursts of a certain geometrical

shape and are not independent and identically distributed. Further, error rates can vary
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over data pages [3]. For example, bits at the center of a page are less likely to be in error

than those near edges. Designing simple and efficient 2-D burst error correcting codes for

different error rate regions is an interesting problem.

Several authors [1], [9], [24] have investigated the problem of designing optimal burst

error correcting codes on a rectangular lattice. To correct burst errors, optimal interleav-

ing strategies must be adopted. The problem of optimal interleaving in one-dimension

is straightforward. Designing interleaving strategies for higher-dimensional constraints is

a challenging problem. Blaum, Bruck, and Vardy [8] developed efficient two- and three-

dimensional interleaving schemes requiring the smallest possible number of distinct codes

without repetitions. Etzion and Vardy [18] have investigated two-dimensional interleav-

ing schemes with repetitions. A procedure for constructing two-dimensional burst error

correcting codes for an arbitrary geometry and burst size and building efficient decoding

algorithms is an open problem.

2.3.4 Capacity and Storage Density

We pointed out in the beginning of the thesis that the holographic channel is just another

instance of a digital communication channel. Computing the Shannon limit [40] for maxi-

mum information transfer in a holographic channel provides insight for achievable storage

densities in the system. This limit is a function of the signal and noise powers of the system

and is insightful for developing codes. In fact, one can either develop new coding algorithms

or modify a plethora of existing coding algorithms [29] to suit the channel requirements.

The overall density is a function of the available SNR in the medium and can be maxi-

mized by appropriately choosing the number of stored pages and the number of gray levels.

Experimental capacity estimation is reported in [3]. In this thesis, we derive lower bounds

for the capacity of the holographic channel. Using existing techniques, we can guarantee

codes that can achieve the lower bounds.

2.4 Constrained Channels

Many discrete communication channels, such as those in magnetic and optical recording,

[25] allow only a fixed set of input patterns. Such channels are called constrained channels.
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The reference to constrained channels dates back to Shannon’s classic paper [40]. In this

section, we discuss 1-D constrained channels and extend the definitions to 2-D constraints.

2.4.1 One-dimensional Constraints: Definitions and Preliminaries

The maximum information rate for noiseless constrained channels was defined by Shannon

[40] as follows:

Definition 2.1. The capacity C of a constrained channel is given by C = limT→∞
log2(N(T ))

T ,

where N(T ) denotes the total number of allowed signals of duration T .

It was also proved by Shannon that there exists a coding scheme with an average rate

R for reliably encoding the source information across the channel with capacity C defined

above. The following theorem [40] relates the coding rate, channel capacity, and source

entropy for reliable data transmission.

Theorem 2.1. Let a source have an entropy H (bits per symbol) and a channel capacity C

(bits per second). It is not possible to transmit at an average rate R (symbols per second)

greater than C
H .

An example of a constrained channel is the runlength-limited (RLL) channel frequently

encountered in magnetic and optical recording [25]. The RLL channel accepts binary se-

quences with restrictions on the runlength of the number of zeros between consecutive ones

and is defined below.

Definition 2.2. A binary sequence {0, 1}m satisfies the (d, k) constraint if there are at least

d zeros and at most k zeros between any two ones in the sequence.

The d constraint helps in mitigating intersymbol interference and the k constraint en-

sures adequate timing to the detector circuitry.

Sequences satisfying (d, k) constraints can be obtained by a random walk on the graph

shown in Figure 7.

Theorem 2.2. The capacity of a (d, k) constrained channel is given by [40]

C(d,k) = log2(λmax)
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Figure 7: Constrained graph G(d,k).

where λmax is the largest real root of the characteristic equation zk+1 − zk−d − zk−d−1 −

....− z − 1 = 0.

We can alternatively formulate computing capacity by a maxentropic random walk on

G(d,k), shown in Figure 7. The adjacency matrix for the graph G(d,k) is given as A = [aij ],

where aij = 1 if state j can be reached from state i and zero otherwise. The following result

is equivalent to Theorem 2.2 [40].

Remark 2.1. Theorem 2.2 is equivalent to computing log2(λmax) where λmax is the largest

eigenvalue of the adjacency matrix of G(d,k).

Codes designed for a RLL-constrained channel are called RLL codes. These codes can

be either fixed length or variable length. A fixed-length (d, k) constrained code is a one-to-

one mapping f : {0, 1}p → {0, 1}q of p information bits to q channel bits such that the rate

p
q < C(d,k). There are coding schemes [30] that approach as close to C(d,k) as desired. There

are rate-efficient variable length codes [7] that achieve C(d,k) for several choices of d and k.

2.4.2 Higher Dimensional Constraints

Holographic channels and channels for patterned media are classic examples of two-dimensional

storage channels. Encoding data over 2-D channels can be visualized as writing sequences

on a plane with correlations in both dimensions. Constrained channels need not be re-

stricted to storage. Relationships to the entropy of formal languages and the probability

of constructing crosswords are instances of the 2-D constrained coding problem [25]. The

study of two- and higher-dimensional constraints has important applications in areas of
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mathematical physics and chemistry, such as statistical mechanics and lattice packings. For

example, quoting Baxter [6], the arrangements of dimers on an m × n 2-D lattice can be

uniquely defined by specifying if chemical bonds linking adjacent lattice sites are occupied

by a dimer. The specification of chemical bonds in 2-D can be mathematically replicated

to 2-D constraints. These specifications can be further generalized to multi-dimensional

(multi-D) constraints when dealing with arrangements of dimers in solids. Thus, the theory

of higher-dimensional constrained channels is a fundamental problem with many applica-

tions of interest in basic science and engineering.

There are several 2-D constraints of interest. Examples of some 2-D constraints in-

clude RLL constraints and checkerboard constraints. These constraints can be defined over

lattices of different geometrical shapes such as a rectangle, hexagon etc.

We now introduce some definitions for 2-D constrained channels by extending the defi-

nitions in the 1-D case.

Definition 2.3. The noiseless capacity of a 2-D constrained channel over a hyper rectan-

gular lattice is given by C2D = limm,n→∞
log2(Nm,n)

mn where Nm,n is the total number of 2-D

constrained sequences on a rectangular lattice of size m× n.

We are interested in the special case of 2-D RLL constraints for holography applications.

An array satisfying 2-D runlength-limited constraints is defined as follows.

Definition 2.4. A 2-D binary array satisfies (d1, k1, d2, k2) RLL constraints, if there are

at least d1 zeros and at most k1 zeros between any two ones in all the rows, and at least d2

zeros and at most k2 zeros between any two ones in all the columns.

Figure 8 shows an example of a 2-D runlength-limited constraint. The horizontal run-

length of zeros is either one or two, and the vertical runlength of zeros is between one and

three.

Computing the capacity C2D for runlength-limited channels is a well-known open prob-

lem in the field. Using sub-additivity, it was proven in [27] that the limit in Definition 2.4

exists. However, there is no closed-form solution for exactly computing capacity. Bounds for

the capacity of 2-D RLL channels are known in a few cases. Calkin and Wilf [12] obtained
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(1,2,1,3) Runlength-limited constraint

Figure 8: Example of a (1, 2, 1, 3) runlength-limited constraint on a 5× 5 rectangle.

tight bounds for the capacity of the hard square model, i.e., the (1,∞,1,∞) constraint, based

on an extension of Engel’s results [16]. Kato and Zeger [27] derived capacity bounds in a

few cases and demonstrated the existence of zero capacity regions in some cases. Forch-

hammer and Justesen [19] introduced a new class of 2-D random processes called cylindrical

processes and used this concept to derive entropy bounds for 2-D constrained random fields.

Very few efficient algorithms exist for constructing 2-D RLL constrained codes. Siegel

and Wolf [41] developed bit-stuffing lower bounds for symmetric (d,∞) constraints. Their

construction is simple and effective for constructing variable rate two-dimensional codes for

symmetric constraints. Roth, Siegel, and Wolf [39] derived an exact analysis of the bit-

stuffing algorithm for the hard-square constraint and developed an efficient coding scheme

for the same. Halevy et al. [21] extended the basic bit-stuffing bound idea to obtain

improved bounds for some 2-D constraints. We explore 2-D RLL constraints in more detail

in the suceeding chapters.

There are other non-RLL constraints, like the checkerboard constraints shown in Figure

9, in which zeros surrounding a one satisfy a certain geometric rule. For example, in the

hexagonal constraint, a one must be surrounded by zeros in the north, south, east, west,

and the diagonals in the northeast and southwest directions.

Weeks and Blahut [56] obtained numerical bounds for the capacity of some non-RLL

checkerboard constraints and used Richardson interpolation to conjecture tighter bounds.
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Figure 9: Examples of checkerboard constraints. (a) One is surrounded by four zeros in
a diamond geometry. (b) One is surrounded by zeros in a square geometry. (c) One is
surrounded by six zeros in a hexagonal geometry.

Nagy and Zeger [35] derived the asymptotic capacity of open convex symmetric non-RLL

checkerboard constraints and proved that channels with square, diamond, and hexagonal

checkerboard constraints have the same capacity. In general, computing the capacity of 2-D

constrained channels is a difficult problem. There is no known general solution for exactly

computing capacity and for constructing codes for these channels.

2.5 Pixel Misregistration

Pixel misregistration is a well-studied problem in image processing [38]. There are many

applications such as compressed video decoding, optical imaging, and magnetic resonance

imaging where image misregistration problems are frequently encountered. Depending on

different signal models, several misregistration compensation techniques have been devel-

oped.

In a holographic system, the signal received at the detector suffers from both pixel

blurring and interpixel crosstalk. Deviations in the lateral pixel alignments of the SLM and

CCD and effects of rotation and magnification can lead to significant interpixel cross talk,

leading to reduced signal-to-noise ratios. Hence, we need algorithms for compensating the

effect of misalignments before decoding any information.

Figure 10 shows the schematic of a lateral misalignment [11] between the imaging arrays.

The SLM and CCD have a fractional horizontal offset σx. Following the physical model

in Figure 4 [28], the observed signal at the detector pixel is intensity (I) from the intended
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Figure 10: Schematic of lateral pixel misalignment.

pixels and cross talk from neighboring pixels. The goal of the problem is to recover the

information bits (x) from observed samples. Burr and Weiss [11] developed non-linear com-

pensation techniques for lateral pixel misregistration by sucessive interference cancellation.

They showed improved error performance after compensation. However, time-varying in-

terpixel cross talk resulting from combined translation and rotation has not been addressed

in [11]. In chapter 6, we extend the algorithm of [11] for the combined translation and

rotation case based on the assumption that the misalignment parameters are constant over

different pages.

2.6 Summary

In this chapter, we presented an overview of the holographic system and its basic ingredients.

We highlighted various system-level issues and challenges for realizing a holographic storage

device. To benefit from holographic storage, a practical system should have the right choice

of storage material, carefully designed optical components, efficient channel codes, and

signal processing algorithms working in tandem.

In our current work, we look at holographic channels from a communications and

information-theoretic perspective. We are interested in developing constrained modula-

tion codes and signal processing algorithms for holographic channels. Though our work

relating to 2-D constrained codes has practical applications to holography, it is a theoret-

ical study on one of the important problems in mathematical physics. In the suceeding

chapters, we examine 2-D constrained channels in detail. We present theoretical limits
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for the achievable storage density in holographic channels and suggest the application of

multi-level codes. Finally, we address the pixel misregistration problem due to combined

translation and rotation and present signal recovery algorithms.
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CHAPTER III

CONSTRUCTIONS AND CAPACITY BOUNDS FOR

(1,∞, D, K) RUNLENGTH-LIMITED CONSTRAINED

CHANNELS

In chapter 2, we presented an overview of 2-D constrained channels. In this chapter, we

examine the simplest type of 2-D RLL constraints, i.e., (1,∞, d, k) constraints. We present

two algorithms for constructing (1,∞, d, k) binary RLL arrays. The first algorithm is based

on the adjacency approach. The second algorithm is based on an iterative construction.

We derive capacity bounds and present numerical results.

This chapter is organized as follows. In section 3.1, we present two constructions for

obtaining 2-D RLL arrays satisfying the constraints. In section 3.2, we present bounds for

the capacity of the constraints. Numerical results are discussed in section 3.3. The results

are summarized in section 3.4.

3.1 Constructions

One-dimensional constrained sequences can be realized by a random walk on a constrained

graph, as shown in Figure 7. However, such graphical representations are not known for 2-D

RLL constraints. Hence, it is important to develop algorithms describing the construction of

2-D constrained arrays to gain insight for computing the capacity and for designing efficient

codes. Etzion [17] described rules for merging any two arbitrary 2-D RLL arrays to an array

that satisfies the given constraints and discussed the Hamming distance of such patterns.

Such a merging approach in [17] requires constructing RLL arrays in the first place. In

this section, we present two simple algorithms for constructing 2-D RLL arrays satisfying

(1,∞, d, k) constraints on an m × n rectangular grid. The first approach is based on the

well-known adjacency method [30]. The second approach is called the iterative approach
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[45]. Both of these approaches are equivalent representations and are useful to understand

the structure of 2-D constrained arrays with an eye towards computing the capacity. We

will now describe the adjacency construction in detail.

3.1.1 Adjacency Approach

The main idea behind the adjacency approach is to somehow reduce the 2-D problem to

a 1-D framework and apply known techniques for determining the capacity. This type of

construction is well-known [30], [12] in coding theory. The construction is outlined in the

following steps:

Outline of the Adjacency Construction

1. Construct an exhaustive set S of all column vectors of length m, satisfying the 1-D

(d, k) constraint.

2. Let V denote the set of vertices of a graph G such that |V| = |S|. Construct a

one-to-one function f : S → V for mapping each vector x ∈ S to a vertex v ∈ V.

3. For any two vertices vi, vj ∈ V, construct a directed edge eij iff xi · xj = 0. The (·)

operator is the dot product of the vectors xi and xj in the real field.

Following the above three steps, we have constructed a first-order Markov chain rep-

resenting the graph of a (1,∞,d,k) RLL constraint. It is easy to observe that an n−step

random walk on this graph will result in a 2-D binary array of size m× n that satisfies the

constraints.

We will illustrate the procedure through an example. Suppose we want to construct a

(1,∞, 1, 2) RLL array on a 4×5 grid, we first start with a set of all (1, 2) column constrained

sequences of length 4, as shown in Figure 11 (a). We associate each column constrained

vector to a state in a graph. For instance, the column vector [1001]T is associated with

state 1 and so on. Following Step 2 of the adjacency construction, we construct a graph,

as shown in Figure 11 (b). It is easy to see that the dot product in Step 3 of the algorithm

ensures that the row constraint is satisfied, i.e., we are forced to write a zero after writing a
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Figure 11: Schematic of the adjacency approach for constructing valid (1,∞, d, k) 2-D
arrays on a 4× 5 grid. (a) An exhaustive set of column vectors of length 4 satisfying (1, 2)
constraints. (b) Constructing a constrained graph G for generating valid 2-D arrays. (c)
Schematic of a 2-D array obtained by doing a random walk along the transitions 3→ 4→
5→ 1→ 2.

one in any particular row. Finally, by doing a random walk on the graph, shown in Figure

11 (b), we can construct all valid 2-D arrays, like the one in Figure 11 (c).

The above construction is intuitively appealing and can be used to derive bounds for

the channel capacity. From a practical perspective, generating 2-D arrays of an arbitrary

large column length m is difficult due to the combinatorial explosion in the number of

states as a function of m. We need other constructions that can overcome this spatial

complexity. In the following subsection, we describe an equivalent construction called the

iterative approach.

3.1.2 Iterative Approach

We highlight an alternative strategy for writing (1,∞, d, k) constrained arrays on an m× n

rectangular grid. The key ideas behind the approach are as follows:

• A sequence of phrases (a phrase is a sequence of zeros followed by a one) is constructed

by a random walk on a 1-D (d,k) constrained graph G(d,k), shown in Figure 7.

• For every ‘1’ that occurs along the first column, a ‘0’ is placed adjacent to it (i.e.,
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along the next column). This ‘bit-stuffing’ ensures that the (1,∞) row constraint is

satisfied.

• (d,k) sequences are constructed in the second column such that the overall column

constraints are satisfied consistent with the ‘bit-stuffing’ in the previous step. This is

accomplished by doing a random walk from an appropriate pre-determined state on

G(d,k) to satisfy the column constraints.

Unlike the previous method, the iterative approach does not require encoding in blocks

of column vectors and is not restricted by combinatorial complexity of generating column

vectors.

Outline of the Iterative Construction

There are a total of k + 1 states in the graph G(d,k), shown in Figure 7. Let us denote

them sequentially as 0, 1, ..., k.

1. We introduce the following variables:

c ≡ column number

f ≡ look ahead free position where a bit can be written (anticipation)

p ≡ position where a ‘1’ was most recently output (memory)

a ≡ look ahead occupied position of a ‘0’ (anticipation)

2. Along the first column, construct a sequence of phrases by doing a random walk on

G(d,k). For every ‘1’ that occurs in this column, stuff a ‘0’ adjacent to it.

Initialize: c = 2;

3. Start in the cth column. Set f ← 1; p ← f .

• Locate a.

• Starting from state 1, make a random walk of length a − f on G(d,k). Let this

sequence be Y .
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4. Update the following parameters:

• p ← position of the most recent ‘1’ output in Y .

• f ← free position where a bit can be written.

• a ← immediate position where there is an occupied ‘0’.

5. If f − p < d,

• Stuff d− f + p zeros to ensure that the d constraint is satisfied. Update f .

• Perform a random walk of length a − f starting from the state s = d. Let this

sequence be Y . (Note that starting from state d ensures that the k constraint is

not violated.)

Else

• Make a random walk of length a− f starting from the state s = f − p on G(d,k).

Let this sequence be Y . Starting from this state ensures that the k constraint is

satisfied.

End

6. Loop over Step 4 until all the m rows are filled.

7. For every ‘1’ occurring in this column, stuff a ‘0’ adjacent to it.

8. c ← c+ 1.

9. Loop over Step 3 until all the n columns are filled.

10. Stop.

The iterative algorithm clearly precludes the necessity of storing random vectors of

length m and building a complicated graph for generating the 2-D arrays. This algorithm

constructs a 2-D (1,∞, d, k) code.
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3.2 Capacity Bounds

The constructions presented in the previous section are helpful for analyzing the information-

theoretic rate of the constraints. In this section, we derive the capacity bounds for (1,∞, d, k)

constraints.

Recall from Step 2 of the adjacency construction, the adjacency matrix A(m) = [aij ]

(subscript m indicates that the adjacency matrix is a function of the column length m) is

such that for any two column vectors xi and xj , aij = 1 iff xi.xj = 0. Here the dot product

is on the real field.

We note the following observations with respect to the (1,∞, d, k) RLL constraints.

Observation 3.1. The following statements are trivially true:

1. |V| is at least 2mC(d,k)

2. The adjacency matrix A(m) is always symmetric.

The first part of Observation 3.1 indicates that we have an exponential increase in the

number of states of the Markov chain as a function of m. The second part of Observation

3.1 is helpful for deriving a lower bound for the capacity of these constraints. Calkin and

Wilf [12] obtained a tight lower bound on the asymptotic growth rate of largest eigenvalue of

A(m) for the (1,∞, 1,∞), i.e., the hard-square constraint based on the maximum principle.

We sketch the proof of their result in the following theorem. We note that this result holds

true for the (1,∞, d, k) case as well.

Theorem 3.1. The capacity of (1,∞, d, k) constrained channels is lower bounded by

C(1,∞,d,k) ≥ log2

(
p

√
λp+2q

λ2q

)
,

where λm is the largest eigenvalue of the adjacency matrix formed by column vectors of

length m.

Proof. Let g(m,n, x) be the number of binary arrays of size m × n with the rightmost

column x. After one step on the Markov chain G, we have

g(m,n+ 1, y) =
∑
x∈S

A(m)(y, :)g(m,n, x) (7)
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where, A(m)(y, :) denotes the row vector of A(m) corresponding to the column vector y.

After a total of n steps on the graph G, the total number of binary arrays on an m× n

grid is

g(m,n) = uTAn
(m)u, (8)

where u is a column vector of all ones.

The adjacency matrix is real and symmetric from Observation 3.1. Thus, for any positive

integer p, Ap
(m) = Am

(p). Using the maximum principle we have,

λp
m =

uTAp
(m)u

uTu
, (9)

where λp
m is the largest eigenvalue of Ap

(m).

Since (9) holds true for any linear transformation of the vector u, for any integer q, we

can rewrite (9) as

λp
m =

(Aq
(m)u)

TAp
(m)A

q
(m)u

(Aq
(m)u)

TAq
(m)u

=
uTAp+2q

(m) u

uTA2q
(m)u

. (10)

The above equation holds true for every positive integer q. Since limm→∞(λm)
1
m exists

[27], (10) can be simplified as,

lim
m→∞

(λm)
1
m ≥ p

√
λp+2q

λ2q
. (11)

We have derived a lower bound for the largest eigenvalue of the adjacency matrix A(m)

when m→∞. From Remark 2.1, the capacity of a 1-D RLL constrained channel is log2(λ),

where λ is the largest eigenvalue of the adjacency matrix of the constrained graph. Using

this remark, the theorem follows.

To obtain an upper bound for the capacity, we invoke the following definition of a Markov

process [15].

Consider a stochastic process X1, X2, ..., Xn indexed by a sequence of discrete random

variables. Let P (X1X2...Xn) denote the joint probability distribution of the sequence of

random variables.

33



Definition 3.1. A discrete stochastic process X1, X2, ... is said to be a first-order Markov

process if, for all n = 1, 2, ...

P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, ..., X1 = x1) = P (Xn+1 = xn+1|Xn = xn).

In the following theorem, we derive an expression for computing an upper bound for the

capacity.

Theorem 3.2. The capacity of (1,∞, d, k) constrained channels is upper bounded by

C(1,∞,d,k) ≤ limm→∞
1
mH(X(m)

2 |X(m)
1 ),

where H(X(m)
2 |X(m)

1 ) is the conditional entropy of the Markov chain G.

Proof. From the adjacency construction, the graph G is a first-order Markov process. The

number of states in the Markov chain is a function of the column length m. For a given

m, the conditional probability P (X(m)
n+1|X

(m)
n ) is invariant with time, i.e., the probability of

being in a certain state at time n+1 given the previous state at time n is independent of time.

Choosing a stationary probability distribution for the states, we have P (X(m)
n+1) = P (X(m)

n ).

Computing the maximum entropy rate for the stationary Markov process representing

G,

C(1,∞,d,k) ≤ lim
m,n→∞

sup
P (X

(m)
1 X

(m)
2 ...X

(m)
n )

1
m
H(X(m)

1 , X
(m)
2 , ..., X(m)

n ). (12)

Using the chain rule for entropy and expanding the joint entropy term in (12),

C(1,∞,d,k) ≤ lim
m,n→∞

1
m

sup
P (X

(m)
1 X

(m)
2 ...X

(m)
n )

n∑
i=1

H(X(m)
i |X(m)

i−1 , ..., X
(m)
1 ). (13)

Using stationarity and Markovity of the underlying random process, we can simplify (13)

as

C(1,∞,d,k) ≤ lim
m→∞

sup
P (X

(m)
2 |X(m)

1 )

1
m
H(X(m)

2 |X(m)
1 ). (14)

It should be noted that the above result in Theorem 3.2 holds true for asymptotic values

of m. Computing the conditional entropy for finite m is always an estimate.
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3.3 Numerical Results

We will compute numerical results based on the theorems we presented in the previous

section. Table 1 shows the computed lower bounds for a few constraints. For example,

to compute the bound for (1,∞, 3,∞) constraints, we choose p = 3, q = 2. The largest

eigenvalue of the adjacency matrix obtained by splicing all (3,∞) column vectors of length

p + 2q = 7 was evaluated as 10.5334. Similarly, the largest eigenvalue corresponding to

the adjacency matrix obtained by splicing all (3,∞) column vectors of length 2q = 4 was

evaluated as 4.2361. Using Theorem 3.1, we compute C(1,∞,3,∞) ≥ 0.4381.

Table 1: Lower bounds for (1,∞, d, k) constraints

(1,∞, d, k) Lower Bound

(1,∞, 2,∞) 0.4995
(1,∞, 3,∞) 0.4381
(1,∞, 1, 4) 0.4094
(1,∞, 2, 5) 0.2848

Table 2 shows the upper bound computations for the same constraints considered in

Table 1. The upper bounds were evaluated for a column length of 7 in all cases.

Table 2: Upper bound estimates for (1,∞, d, k) constraints

(1,∞, d, k) Upper Bound Estimate

(1,∞, 2,∞) 0.5263
(1,∞, 3,∞) 0.4853
(1,∞, 1, 4) 0.5068
(1,∞, 3, 5) 0.4196

3.4 Summary

In this chapter, we presented two simple algorithms for constructing arrays satisfying

(1,∞, d, k) RLL constraints. The class of (1,∞, d, k) constraints are relatively the simple

to analyze. We presented bounds for the capacity of the constraints by applying existing

approaches. The computation of the capacity bounds is useful for a code designer to know
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the limits for achievable code rates. In the next chapter, we examine other RLL constraints,

derive capacity bounds and present coding algorithms.
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CHAPTER IV

CAPACITY BOUNDS AND CODING ALGORITHMS

FOR ASYMMETRIC (D,∞) AND (0, K)

RUNLENGTH-LIMITED CONSTRAINED CHANNELS

In the previous chapter, we presented two simple algorithms for generating (1,∞, d, k) RLL

arrays and derived bounds for the capacity of (1,∞, d, k) constrained channels. However,

the constructions and bounding techniques that we presented in the earlier chapter cannot

be straightforwardly generalized for analyzing the capacity of other RLL constraints. The

lack of graph-based structures makes this combinatorial problem challenging.

The capacity of 2-D asymmetric RLL constrained channels is hardly known. In a few

cases, Kato and Zeger point out the existence of positive/zero [27] capacity regions. There

are very few efficient coding algorithms for constructing 2-D arrays. Siegel and Wolf [41] de-

veloped the bit-stuffing bounds for 2-D symmetric (d,∞) and (0, k) RLL constraints. Their

bound is constructive for obtaining variable-rate coded arrays satisfying the constraints.

Roth, Siegel, and Wolf [39] analyzed the bit-stuffing algorithm in detail for the hard-square

constraint. Improved bit-stuffing bounds for symmetric (d,∞) constraints are reported in

[21]. In this chapter, we examine the capacity of two classes of asymmetric RLL constraints

and present coding algorithms for mapping the raw bits to 2-D RLL arrays.

This chapter is organized as follows. In section 4.1, we present two tiling algorithms for

constructing 2-D (d1,∞, d2,∞) RLL arrays. We examine the Hamming weight structure of

these arrays and derive capacity bounds based on a combination of probability and combi-

natorial approaches. In section 4.3, we present an algorithm for constructing sequentially

nested block codes for (d1,∞, d2,∞) constraints and present numerical results in section

4.4. In section 4.5, we present an algorithm for constructing (0, k1, 0, k2) RLL arrays. We

derive bounds for the capacity of (0, k1, 0, k2) constrained channels in section 4.6 and present
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a coding algorithm in section 4.7. Numerical results for the capacity of (0, k1, 0, k2) con-

strained channels are discussed in section 4.8, followed by a chapter summary in section

4.9.

4.1 Asymmetric (d,∞) Constraints

In this section, we describe two simple algorithms for constructing an ensemble of all 2-

D binary arrays satisfying the (d1,∞, d2,∞) RLL constraints on an m × n rectangular

grid. In the first approach, (d2,∞) column vectors are spliced according to certain merging

conditions so that the resulting 2-D array satisfies the overall constraints, in a block by block

construction. In the second approach, RLL arrays are generated by sequentially writing

column constrained sequences resulting from a random walk on the column constrained

graph such that the overall 2-D constraints are satisfied. We will explain the two algorithms

in detail and also review the bit-stuffing technique [41] for purposes of comparison.

4.1.1 Tiling Algorithm-A

We first present a few facts for sequentially writing binary patterns satisfying the 2-D

constraints. The algorithm easily follows from these facts. Throughout this chapter, we

refer to a valid array as a 2-D binary array satisfying the constraints on an m× n grid.

Let S(d2,∞)
m denote the set of all (d2,∞) column vectors of length m. Every column in a

valid 2-D array is an element of the set S(d2,∞)
m . Let z(m)

i ∈ S(d2,∞)
m represent the ith column

vector of a valid array.

In Fact 4.1, we prove that the sequence of column vectors of a valid 2-D array has a

memory d1. The proof of this property follows from a straightforward extension of the ideas

presented in [30] and is helpful for analyzing the structure of the 2-D constraints.

Fact 4.1. The vector sequence {z(m)
i }ni=1 over the alphabet set S(d2,∞)

m has a finite memory

d1.

Proof. Let u = z1z2...zn be a block of column vectors whose block length is greater than d1.

Let us imagine a device that reads the column vectors sequentially from z1 through zn to

1A derivation on the exact size of the set S(d2,∞)
m based on combinatorics is outlined in the next section.
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ascertain if u satisfies the 2-D constraints. At any point i, the device will need a memory

of past d1 columns. Thus the vector sequence formed by {z(m)
i }ni=1 is a d1-step memory

process.

The following lemma provides the necessary and sufficient conditions for creating valid

2-D arrays.

Lemma 4.1. Let z(m)
i , z

(m)
j ∈ S(d2,∞)

m denote any two arbitrary column vectors on an m×

n grid satisfying the constraints. The vectors z
(m)
i and z

(m)
j (i < j) satisfy the set of

orthogonality conditions iff

z
(m)
i · z(m)

j = 0, 1 ≤ i ≤ n& i+ 1 ≤ j ≤ i+ d1, (15)

where (·) is the usual vector inner product on the real field.

Proof. We prove that these conditions are necessary and sufficient for sequentially writing

{z(m)
i }ni=1. To prove that these conditions are necessary, let us assume that one of these

conditions fail. Without any loss of generality, suppose that for some fixed i and j in the

ranges specified above, z(m)
j · z(m)

i 6= 0. This implies that there is a ‘1’ in column i that

is not at least d1 away from a ‘1’ in the jth column. Hence, the horizontal constraints are

violated.

To prove that these conditions are sufficient, recall from Fact 4.1 that z(m)
j depends only

on the previous d1 columns. In other words, for every ‘1’ occurring in the column vector

z
(m)
j , there must have been at least d1 zeros to its left. Thus, for a fixed i, z(m)

j · z(m)
i = 0

for values of j in the range i+ 1 ≤ j ≤ i+ d1.

Fact 4.1 and Lemma 4.1 are summarized in a simple algorithm as follows:

Outline of the Algorithm - A

1. Initialize: j = 2. Choose any random vector z(m)
1 ∈ S(d2,∞)

m for the first column.
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2. Start from the jth column. Choose a vector z(m)
j ∈ S(d2,∞)

m such that z(m)
j · z(m)

i = 0

and max{1, j − d1} ≤ i ≤ j − 1.

3. j ← j + 1.

4. Loop over Step 2 until all the columns are filled.

The set of merging conditions in Lemma 4.1 leading to tiling Algorithm-A can be visu-

alized as concatenating a set of valid rectangular arrays of size m× d1 so that the resulting

array satisfies the overall constraints. This procedure is somewhat similar to the adjacency

construction described in section 3.1.1.

In Figure 12, we illustrate the construction of (2,∞, 2,∞) arrays on a 4× 5 grid. First,

we form a set of all 4 × 2 arrays satisfying the (2,∞, 2,∞) constraint. Each such array

represents the state of a directed graph G. We have not explicitly illustrated the graph G

since the number of states of this graph is 27, corresponding to the number of all 4 × 2

arrays, as shown in Figure 12 (a). There is a directed edge from state i to state j on G if the

merger of two arrays is a valid array. It is an important point to note that the adjacency

matrix of G is no longer symmetric. This observation is illustrated in Figure 12 (b). Hence,

Theorem 3.1 does not hold for these constraints.

Before concluding this subsection, we would like to discuss the complexity of Algorithm-

A. Note that the time complexity of the algorithm is proportional to the number of columns

sequentially written. Calculating the conditions specified by Lemma 4.1 are the only com-

putations needed. However, the space complexity of this approach is exponential in m since

we need to store all of the column vectors of length m.

4.1.2 Tiling Algorithm - B

In this subsection, we highlight a second tiling algorithm for generating valid 2-D arrays sat-

isfying (d1,∞,d2,∞) RLL constraints. The key ideas behind this approach are summarized

as follows:

• A sequence of phrases is constructed along the first column by doing a random walk

on a 1-D (d2,∞) constrained graph G(d2,∞).
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Figure 12: Schematic of the adjacency approach for constructing valid (d1,∞, d2,∞) 2-
D arrays on a 4 × 5 grid. (a) Illustration of an exhaustive set of 2-D arrays of size 4 × 2,
satisfying the (2,∞, 2,∞) constraint. (b) Illustration of a case where directed edges between
any two states need not be reflexive. In this example we can go from state i to state j, but
not the other way. (c) Schematic of a 2-D array satisfying the (2,∞, 2,∞) constraint.

• For every ‘1’ that occurs along the first column, d1 zeros are placed adjacent to

the rightside of the current column. This ‘bit stuffing’ ensures that the (d1,∞) row

constraint is satisfied.

• (d2,∞) sequences are constructed in the second column consistent with the ‘bit stuff-

ing’ in the previous step by doing a random walk on G(d2,∞). The above steps are

iteratively repeated for the subsequent columns.

Tiling scheme-B does not require writing sequences in blocks of column vectors and cir-

cumvents the need for storing any column vectors. The above ideas are summarized in an

algorithm below.

Consider the 1-D (d,∞) constrained graph, as shown in Figure 13.

Outline of Algorithm - B

1. Initialize: i = 1, d = d2.

2. Start from the ith column. Along the vacant spaces in the ith column, do a random

walk on G(d2,∞), shown in Figure 13, by starting from the last state, i.e., d2.
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Figure 13: Constrained graph G(d,∞).

3. Identify the row locations where a ‘1’ occurs in the ith column. Stuff d1 zeros hori-

zontally along the next d1 columns of the row locations containing the ones in the ith

column.

4. i← i+ 1.

5. Loop over Step 2 until all the columns are filled.

It is clear that the vacant spaces along the first column will be the entire column length

m, but for the subsequent columns, the vacant space is dictated by the zero bit-stuffing

because of the previous d1 columns. It is easy to observe that the random walk process in

Algorithm-B is shift invariant. Further, this is not a maxentropic random walk because of

the zero bit stuffing induced from the previous d1 columns.

In Lemma 4.2, we show that both tiling schemes are equivalent. In other words, both

schemes produce valid 2-D arrays.

Lemma 4.2. Tiling Algorithms A and Algorithm-B are equivalent.

Proof. We will prove this by using induction on the number of columns.

Case n = 1:

When the number of columns is one, Algorithm-A chooses a valid column vector of length

m from the set S(d2,∞)
m . This is identical to a random walk of length m according to

Algorithm-B. Thus, the result is verified to be trivially true for n = 1.

Case n = p:

Let us assume that the result holds true for n = p and look into the case for n = p+ 1.

Case n = p+ 1:

At this point, recall that Algorithm-A picks a column vector z(m)
n ∈ S(d2,∞)

m according to the
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conditions specified in Lemma 4.1. To verify the equivalence, we note that writing sequences

in the nth column according to Algorithm-B satisfies the orthogonality conditions because

of the horizontal bit stuffing. Furthermore, the random walk process starting from state

d2 in Algorithm-B ensures that no sequences are lost. Thus, the ensemble of all arrays

produced by both algorithms is the same. Since both of these schemes are sequential in

nature, they must have the same maxentropic rate.

4.1.3 Bit-stuffing Algorithm

In this subsection, we discuss the bit-stuffing algorithm by Siegel and Wolf [41] for con-

structing symmetric (d,∞) constrained arrays. The bit-stuffing encoder converts an ar-

bitrary binary sequence into a sequence of statistically independent p−biased bits. The

probability of a ‘1’ in the converted sequence is p. This conversion is accomplished by using

a distribution transformer at a rate penalty of h(p), where h(p) is the binary entropy func-

tion [15]. Using a p−biased source, the source statistics can be best adjusted for matching

the channel statistics and maximizing the average code rate.

The basic idea in the bit-stuffing algorithm is to write p−biased bits along successive

diagonals of a rectangular lattice. The following steps illustrate the key encoding ideas of

the bit-stuffing algorithm.

• Whenever a ‘1’ occurs in the the p−biased source sequence, d zeros are inserted to

the right of it and below it.

• In writing the p−biased sequence down the diagonals, any position already occupied

by a previous stuffed zero is skipped.

Decoding is tuned to the encoding principle. The bits are read successively from the

array. The zero bits that are stuffed are deleted and ignored. The remaining bits are from

the p− biased source. These bits are invertibly mapped back to the original data bits.

Halevy et al. [21] presented a detailed analysis on the coding rate of the bit-stuffing

algorithm for symmetric (d,∞) constraints and generalized this idea for hexagonal (d,∞)
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constraints.

In the next section, we derive bounds for the capacity of asymmetric (d,∞) constraints

based on the tiling algorithms presented in sections 4.1.1 and 4.1.2. We later compare our

results against known bit-stuffing bounds.

4.2 Capacity Bounds for Asymmetric (d,∞) Constraints

The tiling schemes presented in the previous section are useful for enumerating all valid

2-D arrays on a rectangular grid. Before we begin to derive the bounds [46], [43] we first

analyze a few properties concerning the size of the set of all 1-D (d,∞) sequences of length

m. This result will be used later in the derivations.

In Lemma 4.3, we obtain the maximum and minimum Hamming weights of a 1-D RLL

sequence of length m.

Lemma 4.3. The maximum and minimum Hamming weights of a (d, k) RLL sequence of

length m are

wmax = bm+d
d+1 c, wmin = b m

k+1c.

Proof. The code has to be length m. To maximize the number of ones, we have to ensure

that the runlength of zeros between any two consecutive ones is minimum, i.e., we maintain

the runlength of zeros to be d. Consider the sequence 10a110a2 ......0ap1, where, each ai = d

for 1 ≤ i ≤ wmax − 1. We have

m− wmax − (wmax − 1)d ≥ 0. (16)

Seeking the smallest integer solution to (16), wmax is verified.

To obtain the minimum Hamming weight, we should maintain a runlength of k con-

secutive zeros between two ones. Consider the sequences of the type 0a110a21......0ap1 and

10a110a2 ......10ap , where each ai = k for a string of zeros between two consecutive ones and

in-between d and k at the leading and trailing ends. Using this observation, we have

m− wmin − wmink ≥ 0 (17)
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Seeking the nearest integer solution to (17), wmin is verified. It is trivial to see that wmin = 0

when k =∞.

Aside: wmax is the total depth of a simple tree based algorithm for generating an

exhaustive set of (d,∞) sequences of length m.

In the following theorem, we derive an expression for the size of the set of all 1-D (d,∞)

RLL sequences of length m.

Theorem 4.1. The size of the set of all (d,∞) vectors of length m is

|S(d2,∞)
m | =

bm+d
d+1

c∑
w=0

Tw(m− w − (w − 1)d);Tw(x) = (w+x)!
x!w! , x ≥ 0.

Proof. For a (d,∞) sequence, wmin = 0 since k = ∞. Determining the size of the set of

all vectors of length m with a Hamming weight w can be framed as the number of integer

solutions (if they exist) to
w−1∑
i=1

bi = m− w − (w − 1)d, (18)

such that bi ≥ 0. The number of integer solutions to (18) is given by Tw(m−w− (w− 1)d).

The total size |Sm| is now the sum over all possible Hamming weights. Using Lemma 4.3,

the theorem follows.

Using Theorem 4.1, we can obtain the Hamming weight distribution of the set of all

(d,∞) sequences of length m. Using Theorem 4.1, we have an alternative formula for

computing the capacity of 1-D constraints in a combinatorial way.

Remark 4.1. The capacity of 1-D RLL (d,∞) sequences can be numerically computed as

C(d,∞) = limm→∞
log2(|S(d2,∞)

m |)
m

We note that Lemma 4.3 and Theorem 4.1 will be the key tools for obtaining the

combinatorial lower bounds for the capacity of the 2-D constraints.

Before embarking on the proofs, we would like to point out some observations on the

tiling algorithms. Let Z(m)
i denote the random variable representing the ith column vector.

Clearly, the index i is also the time index since we are sequentially writing the columns.
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Proposition 4.1. The probability Pi(Z
(m)
i = z

(m)
i |Z(m)

i−1 = z
(m)
i−1 , Z

(m)
i−2 = z

(m)
i−2 , ..., Z

(m)
1 =

z
(m)
1 )=P (Z(m)

i = z
(m)
i |Z(m)

i−1 = z
(m)
i−1 , Z

(m)
i−2 = z

(m)
i−2 , ..., Z

(m)
i−d1

= z
(m)
i−d1

) and is independent of i

for i ≥ d1 + 1.

Proof. Consider the conditional probability of the random variable Z(m)
i conditioned on all

the previous columns. As usual, z(m)
i is the value that the random variable Z(m)

i can take.

Pi(Z
(m)
i = z

(m)
i |Z(m)

i−1 = z
(m)
i−1 , ..., Z

(m)
1 = z

(m)
1 ) =

Pi(Z
(m)
i = z

(m)
i , Z

(m)
i−1 = z

(m)
i−1 , ..., Z

(m)
1 = z

(m)
1 )

Pi(Z
(m)
i−1 = z

(m)
i−1 , ..., Z

(m)
1 = z

(m)
1 )

.

(19)

From Fact 4.1, at any step i, it suffices to observe the random variables from Z
(m)
i−1 to

Z
(m)
i−d1

. Hence, we can rewrite equation (19) as

Pi(Z
(m)
i = z

(m)
i |Z(m)

i−1 = z
(m)
i−1 , ..., Z

(m)
1 = z

(m)
1 ) =

Pi(Z
(m)
i = z

(m)
i , Z

(m)
i−1 = z

(m)
i−1 , ..., Z

(m)
i−d1

= z
(m)
i−d1

)

Pi(Z
(m)
i−1 = z

(m)
i−1 , ..., Z

(m)
i−d1

= z
(m)
i−d1

)
.

(20)

Given a valid block z
(m)
i−d1

z
(m)
i−d1+1...z

(m)
i−1 , Z(m)

i is independent of i. Thus, we can write

the conditional probability mass function (pmf) as

P (Z(m)
d1+1|Z

(m)
d1

, ..., Z
(m)
1 ) = P (Z(m)

n |Z(m)
n−1, ..., Z

(m)
n−d1

). (21)

Equation (21) implies that the process of writing any column at step i conditioned on

the previous d1 columns is a homogenous dth order shift-invariant Markov process.

Using Proposition 4.1, we can derive an upper bound for the capacity.

Theorem 4.2. The capacity of (d1,∞, d2,∞) constrained channels is upper bounded by

C(d1,∞,d2,∞) ≤ limm→∞
1
mH(Z(m)

d1+1|Z
(m)
d1

, ..., Z
(m)
1 ),

where H(Z(m)
d1+1|Z

(m)
d1

, ..., Z
(m)
1 ) is the conditional entropy of the d1 +1th column conditioned

on the previous d1 columns.

Proof. Let us consider tiling Algorithm-A. The maximum information rate is given by
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RA = lim
m,n→∞

n∑
i=1

H(Z(m)
i |Z(m)

i−1 , ..., Z
(m)
1 )

mn
. (22)

From equation (21) in Proposition 4.1, for i ≥ d1 + 1, we infer that

H(Z(m)
i |Z(m)

i−1 = z
(m)
i−1 , ..., Z

(m)
1 = z

(m)
1 ) = H(Z(m)

i |Z(m)
i−1 = z

(m)
i−1 , ..., Z

(m)
i−d1

= z
(m)
i−d1

) = log2(|U|),

(23)

where U is the set of all valid column vectors that satisfy the orthogonality conditions in

Lemma 4.1 such that each vector in that set can be concatenated with a previous valid

block. However, the unresolved step is the joint pmf of a block of m× d1 column vectors.

At this point, it must be noted that the joint pmf of a set of random variables repre-

senting a block of d1 column vectors is time varying. In other words, for i 6= j

Pi(Z
(m)
i Z

(m)
i−1 ...Z

(m)
i−d1

) 6= Pj(Z
(m)
j Z

(m)
j−1...Z

(m)
j−d1

). (24)

Consider the least upper bound of the sequence of conditional entropies in the limiting

case.

H(Z(m)
d1+1|Z

(m)
d1

, ..., Z
(m)
1 ) = lim

n→∞
sup

Pn(Z
(m)
n Z

(m)
n−1...Z

(m)
n−d1

)

H(Z(m)
n |Z(m)

n−1, ..., Z
(m)
n−d1

) (25)

Using (23) and (25), we can bound (22) as

RA ≤ lim
m→∞

1
m

lim
n→∞

H(Z(m)
1 ) + ...+H(Z(m)

d1
|Z(m)

d1−1, ..., Z
(m)
1 ) + (n− d1)H(Z(m)

d1+1|Z
(m)
d1

, ..., Z
(m)
1 )

n
.

(26)

Evaluating R
(m)
A for a large value m, we get C ≤ 1

mH(Z(m)
d1+1|Z

(m)
d1

, ..., Z
(m)
1 ). Using

this method, we can numerically obtain an estimate for the capacity upper bound of the

constraints.

Corollary 4.1. The following bound is trivially true:

m
m+d2

R
(m)
A ≤ C ≤ R(m)

A , where R(m)
A = 1

mH(Z(m)
d1+1|Z

(m)
d1

, ..., Z
(m)
1 ).
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Proof. Let R(m)
A be the maximum information rate on an (m × ∞) grid resulting from

Algorithm-A. By stuffing d2 rows of all zero vectors along the bottom rows, we can always

tile the entire plane. The information rate resulting from the stuffing of d2 rows of all zero

vectors can be obtained as m
m+d2

R
(m)
A . This result serves as a simple lower bound, proving

the corollary.

Our next step is to get a closed-form formula for the joint pmf and the conditional

entropy in terms of the Hamming weight distribution. From the tiling algorithms, for every

‘1’ that occurs in a particular column, d1 zeros are stuffed horizontally to the right to satisfy

the row constraint. This creates vacant spaces along the successive columns.

The sequences that can be written along the vacant spaces of the columns can be cate-

gorized into the following two cases.

Case 1: In this case, we allow (d2,∞) constrained sequences to be written along the

vacant spaces of the columns. The idea is illustrated in Figure 14.

Case 2: In this case, we place sequences 6∈ (d2,∞) along the vacant spaces. But, the

resulting array satisfies the overall (d2,∞) column constraints. This idea is illustrated in

Figure 15.

0
0
0
1
0
0
0

1
0
0

1
0
0

0
0
0
0
1
0
0

0
0
0

0
1

1 0 0

0 0

0 0

0 0
0 0

0 0

0 0

1
0 0

bits written by making a random 
walk on a        constrained graph

horizontal stuffed zeros

( )∞,3

Figure 14: Illustration of the configuration for case 1 for writing (2,∞, 3,∞) RLL arrays.
Schematic for writing the (3,∞) sequences along the vacant spaces.
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1 0 0

0 0

0 0

0 0
0 0

0 0

0 0

1

1

0
1

0

0

0

In column 3, sequence 010100 (marked in bold) 
is carefully inserted to satisfy  vertical constraints.

0 0

bits written by making a random 
walk on a          constrained graph

horizontal stuffed zeros

( )∞,3

Figure 15: Illustration of the configuration for Case 2 for writing (2,∞, 3,∞) RLL arrays.
Non (3,∞) sequences are inserted carefully between the horizontal stuffed zeros such that
the overall column constraints are satisfied in the second column. In the third column, the
sequence 010100 is inserted between the stuffed zeros such that the overall (3,∞) column
constraints are satisfied. The random walk on G(3,∞) is then resumed over the remaining
vacant spaces in the column.

We note that the above two cases covers all the possibilities for generating valid arrays.

Consider the conditional band entropy of the d1 + 1th column conditioned on the previous

d1 columns. Let W1,W2, ...,Wd1 denote the random variables representing the Hamming

weights of a set of sequences placed along the columns from one to d1, respectively. As-

suming a uniform joint pmf over all the blocks of memory d1, the information rate resulting

from Case 1 can be obtained in the following combinatorial way.

Lemma 4.4. The information rate obtained by enumerating all the configurations belonging

to Case 1 is lower bounded as

limm→∞
1
m

bm+d2
d2+1

c∑
w1=0

bm−w1+d2
d2+1

c∑
w2=0

...

b

m−
d1−1∑
j=1

wj+d2

d2+1
c∑

wd1
=0

PW1W2...Wd1
log2(ψ),

where,
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• PW1W2...Wd1
is the joint probability mass function of the first d1 column constrained

sequences with the Hamming weights w1,w2,...,wd1 respectively.

• ψ =
b

m−
d1∑

j=1

wj+d2

d2+1
c∑

wd1+1=0
Twd1+1

(
m−

d1+1∑
j=1

wj − (wd1+1 − 1)d2

)
.

• Tw(m) denotes the number of all valid (d2,∞) 1-D sequences of length m and Hamming

weight w.

Proof. Consider the placement of all valid column vectors of Hamming weight w1 in the

first column. When a ‘1’ occurs in the first column, the tiling algorithm introduces stuffed

zeros along the next d1 columns of that row. The total free space in the second column

is effectively m − w1. Continuing this process iteratively for the next d1 columns over the

Hamming weights w2, w3, ..., wd1 , the effective free space length in the d1 + 1th column is

m−
d1∑

j=1
wj .

Let S(d2,∞)
(d1+1) denote the set of all (d2,∞) column vectors that can be placed in the d1+1th.

Denote S(d2,∞)
w,i to represent the set of all valid (d2,∞) column vectors of Hamming weight

w in the ith column. The number of sequences that can be placed in the ith column is given

by

|S(d2,∞)
(i) | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b

m−
i−1∑
j=1

wj+d2

d2+1
c⋃

w=0

S
(d2,∞)
w,i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (27)

Since the placement of a vector of Hamming weight w in the ith column depends on the

set of vectors with Hamming weights w1, w2, ..., wi−1 from the previous columns, the joint

probability mass function can be obtained as

PW1W2,...,Wd1
=

d1∏
j=1

P (Wj = wj |W1 = w1, ...,Wj−1 = wj−1). (28)

The conditional pmf in (28) can be obtained as
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P (Wj = wj |W1 = w1,W2 = w2, ...,Wj−1 = wj−1) =
Twj (m−

j∑
k=1

wk − (wj − 1)d2)

|S(j)|
. (29)

Using (28) and (27), we can lower bound the entropy rate of the first d1 columns as

lim
m→∞

1
m

bm+d2
d2+1

c∑
w1=0

bm−w1+d2
d2+1

c∑
w2=0

...

b
m−
∑d1−1

j=1
wj+d2

d2+1
c∑

wd1
=0

P (w1, w2, ..., wd1) log2(ψ). (30)

Let α = {0, 0d21} be an alphabet set. Let P (0d21) = p be the probability of emitting

the sequence 0d21 from the set α. Lemma 4.4 is equivalent to writing independent and

identically distributed (i.i.d) sequences chosen from the alphabet set α along the vacant

spaces of the columns. Based on this fact, the following expression can be derived.

Lemma 4.5. The information rate computed from Lemma 4.4 is equivalent to

R
(1)
(d1,∞,d2,∞) ≥ sup

p∈[0,1]

h(p)
(1+d1p)(1+d2p) .

Proof. LetW1 andW2 be the random variables corresponding to the emission of the alpha-

bets 0d21 and 0 respectively. The entropy rate of this source is

Hn = sup
p∈[0,1]

h(p)
E(W1 +W2)

= sup
p∈[0,1]

h(p)
1 + d2p

(31)

Let fs be the random variable representing the available free space length. By stuffing

d1 zeros horizontally, we can compute the available free space by the recursion

E(fs) = m− d1pE(fs). (32)

The rate corresponding to Case 1 is now lower bounded as

R(d1,∞,d2,∞) ≥
E(fs)
m

Hn. (33)

Using (32) and (31) in (33), the lemma follows.
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Though the Hamming weight structure is insightful, it is still difficult to enumerate all

the cases pertaining to Case 2 especially for large values of d1.

We will use the structure of tiling Algorithm-B to derive a constructive lower bound for

the 2-D capacity. The basic idea is to compute the exact entropy rate for configurations

belonging to Case 1 by assuming an ‘identical composition’ of valid column constrained

sequences across all the columns. In other words, the entropy rate obtained by writing

column constrained sequences in each column is the same and depends on the horizontal

bit stuffing resulting from the previous d1 columns.

Consider a random walk on the graph G(d,∞). Let xt be a bit emitted at time t. Let st

denote the state of the graph at time t. Let the probability of emitting a zero in the last

state be P (xt = 0|st = d) = p. The probability of emitting a zero from all the other states

i = 0, 1, ..., d−1 is P (xt = 0|st = i) = 1. The probability state transition matrix is given by

A = [aij ] = P (st+1 = j|st = i). Let π = [π0, π1, ..., πd] be the row vector containing steady

state probabilities of all the states.

Theorem 4.3. The capacity of (d1,∞, d2,∞) constrained channels is lower bounded by

C(d1,∞,d2,∞) ≥ sup
0≤p≤1

h(p)
1+(d1+d2)(1−p) ,

where h(p) = −p log2(p)− (1− p) log2(1− p).

Proof. We are working with a column constrained graph. Solving the eigenvalue relation

πA = π, the steady state probability πi for states i = 0, 1, .., d2 − 1 is the same and equals,

πi =
1− p

1 + d2 − d2p
(34)

For the last state, the steady state probability πd2 is given by

πd2 =
1

1 + d2 − d2p
. (35)

The entropy rate for the 1-D Markov chain is obtained as

Hm = πd2h(p). (36)
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Horizontal bit-stuffing creates vacant spaces in the suceeding columns, restricting the

amount of the available free space where the coded bits can be written. Let fs be the length

of the free space where bits can be written. The probability of emitting a one (P (1)) from

the graph G(d2,∞) is given by

P (1) = πd2(1− p). (37)

The expected length of fs can be computed as

E(fs) = m− d1P (1)E(fs). (38)

The capacity of (d1,∞, d2,∞) constrained channels can be lower bounded as

C(d1,∞,d2,∞) ≥ lim
m→∞

sup
0≤p≤1

E(fs)
m

Hm. (39)

Using (37) in (38) and (35) in (36), we can simplify (40) as

C(d1,∞,d2,∞) ≥ sup
0≤p≤1

h(p)
1 + (d1 + d2)(1− p)

(40)

So far, we considered the case where the (d2,∞) constraints are along the columns. But,

the capacity is invariant to swapping the row and column constraints. In other words,

C(d1,∞,d2,∞) = C(d2,∞,d1,∞) (41)

Deriving the above analysis for the case when the column constraints are (d1,∞), we

arrive at the same result as in equation (40). This proves the theorem.

4.3 Coding Schemes for Asymmetric (d,∞) Constraints

In the previous sections, we discussed algorithms for constructing arrays satisfying the con-

straints and derived bounds for the maximum asymptotic information rate. In this section,

we will develop an algorithm for mapping the information bits to coded arrays. We pro-

pose an algorithm based on the well-known state splitting technique [2] for constructing

53



2-D coded arrays. Our coding technique is sequential with a nested fixed rate column con-

strained code [46]. This is different from the variable rate bit-stuffing algorithm [41].

A: Constructing the Encoder

To obtain a mapping of raw bits to a 2-D coded array, we apply the ideas presented in

tiling Algorithm-B along with the state splitting algorithm. The procedure is highlighted

in the following steps.

1. Fix integers p and q that relatively are prime such that p
q ≤ Cd2,∞, where Cd2,∞ is

the 1-D capacity of the column constraints.

2. Obtain the qth power of the (d2,∞) constrained graph, i.e., G(q).

3. Perform the basic v-consistent splitting of G(q) and obtain the final encoder graph G′

according to the state splitting algorithm [2].

4. Initialize: column i = 1.

5. Map the raw binary sequences to coded sequences in the ith column by writing along

the vacant spaces.

6. For every ‘1’ occurring in ith column of the coded array, stuff d1 zeros to the right

along the next columns.

7. Go to the next column and iterate over Step 5 over all the remaining columns.

8. Terminate the procedure after encoding all the columns.

B: Decoding Process

The decoding process follows the encoding principle. The following steps illustrate the

procedure.

1. Initialize i = n, i.e., last column of the coded array.
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Figure 16: (a) (2,∞) column constrained graph G(2,∞). (b) second power Graph G2. (c)
final encoder construction G′ for (2,∞) constraints with rate 1/2.

2. Look back from columns i − d1 to i − 1 and identify all the ones occurring in these

columns.

3. Remove the stuffed zeros occurring in the next d1 columns.

4. The resulting sequence is a code from the encoder graph G′.

5. Decode the original bits p from the coded q binary blocks.

6. i← i− 1. Iterate from Step 2 until all the bits are recovered.

C: Sequential Codes for (1,∞, 2,∞) RLL Constraints

We will illustrate the encoding process with the design of a sequential code for the

(1,∞, 2,∞) RLL constraint. The 1-D capacity of (2,∞) constraints is 0.5538. For the

purpose of demonstrating an invertible mapping, we fix the rate of the column code as 0.5.

As a first step, consider the constrained graph G(2,∞), shown in Figure 16 (a). The graph

has 3 states.

By considering all paths of length 2 originating from each state of G(2,∞) and terminating

in all the possible states, we obtain the graph G2, as shown in Figure 16 (b).
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After splitting and merging the states of G2 using the state splitting algorithm [30], we

arrive at the final encoder state transition diagram, as shown in Figure 16 (c).

Consider the encoding of raw data on an (m× n) grid. For the sake of illustration, we

will assume a 4 × 5 grid array. Let the input sequence be {10110101}. Let the starting

state be ‘0’ in G′. The output sequence can be obtained as {10, 01, 00, 10, 01, 00, 00, 10} by

stepping through the graph G′ starting from the state 0. We start by writing the coded

sequence in the first column. Whenever a ‘1’ appears in the coded sequence, a zero is written

horizontally in the next column to the right. The coding pattern continues and we obtain a

coded array, as shown in Figure 17. It is easy to note that the decoding procedure is tuned

to the encoding principle. The coded array is scanned from the last column, the stuffed

zeros are identified and deleted. This results in a 1-D coded sequence that was created from

G′. The raw bits can be easily extracted knowing the initial state.

1

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

Figure 17: Schematic of a (1,∞, 2,∞) coded array on a 4 × 5 grid. The marked circles
indicate stuffed bits.

At this point, we would like to comment on the choice of the decoder. We can use

either an initial state dependent decoder or a sliding block decoder. The choice of a sliding

block decoder circumvents the problems associated with the initial state dependencies and

catastrophic error propagation. The construction of such decoders is well-known [30] and

will not be addressed here. We considered a simple state dependent decoder for the purpose

of illustrating a one-to-one mapping.
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4.4 Numerical Results for the Capacity of Asymmetric (d,∞)
Constraints

In this section, we present the numerical results based on the capacity analysis presented

in section 3. In the first example we will evaluate the capacity of 1-D (d,∞) RLL con-

straints using Theorem 4.1 and compare it with the capacity computed using the adjacency

approach[40].

We note from Table 3 that the combinatorial formula evaluated for finite ‘m’ is an upper

bound. The numerical values computed using Theorem 4.1 for m = 165 agree well within

less than 1% of the actual capacity. The numerical values approach the capacity of the

constraint when m→∞.

Table 3: Capacity for 1-D (d,∞) constraints

Constraint Combinatorial Formula-Thm 4.1 Adjacency Approach

1 (1,∞) 0.69562 0.69424
2 (2,∞) 0.55384 0.55146
3 (3,∞) 0.46814 0.46495
4 (4,∞) 0.40954 0.40568

In the second example, we consider a class of symmetric (d,∞, d,∞) constraints. In

Table 4, we compare our upper bound and lower bounds computed from Theorems 4.2

and Theorem 4.3 with Theorem 8 [27] and the improved bit-stuffing lower bound [21] re-

spectively. Since it is computationally intensive to obtain an exhaustive set of orthogonal

column vectors for evaluating Theorem 4.2 for large values of m, we evaluate the bounds

for m = 12.

From Table 4, we infer that our capacity upper bounds are better than the analytical

results presented in [27]. Our lower bound agrees fairly well with the improved bit-stuffing

lower bound [21]. The numerical results for our lower bounds and the bit-stuffing bound

[41] are exactly the same, despite being derived from a different formula. This fact can

be interpreted as follows. The entropy rate of the Markov chain for (d,∞) constraints is

mainly due to the uncertainty in the last state of G(d,∞) and is equivalent to writing biased

bits from a distribution transformer[41].
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Table 4: Capacity estimates for (d,∞, d,∞) constraints

d Thm 4.2-Upper bound Upper bound [27] Thm 4.3-Lower Bound Lower Bound [21]

1 0.5932 1.000 0.5515 0.5878
2 0.4294 0.7501 0.4056 0.4267
3 0.3530 0.6206 0.3281 0.3402
4 0.3078 0.5366 0.2787 0.2858

We now present a few capacity results for other asymmetric constraints for various values

of d1 and d2. Tables 5 and 6 show the numerical computation of the bounds for a class of

(1,∞,d,∞) and (2,∞,d,∞) constraints respectively. Since we are computing the conditional

entropy upper bound for a finite value of m, i.e., m = 12, the upper bound computation

will be an estimate for the capacity. However, the lower bound computation is a strict

analytical bound.

Table 5: Capacity estimates for (1,∞,d,∞) constraints

d R(1,∞,d,∞)(Upper bound) R(1,∞,d,∞)(Lower Bound)

2 0.5167 0.4649
3 0.4613 0.4056
4 0.4149 0.3620

It is not surprising to extrapolate from Tables 5 and 6 that R → 0 when d2 → ∞,

keeping d1 fixed.

Table 6: Capacity estimates for (2,∞, d,∞) constraints

d R(2,∞,d,∞)(Upper bound) R(2,∞,d,∞)(Lower Bound)

3 0.3805 0.3620
4 0.3761 0.3281
5 0.3508 0.3011
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4.5 Asymmetric (0, k) Constraints

In this section, we outline a scheme for writing 2-D asymmetric k-constrained RLL arrays

on an m × n rectangular grid based on the ideas presented in the previous sections. The

encoding procedure is sequential and is done column by column. In the first step, (0, k2)

column constrained sequences are written in the first k1 columns. In the next step, the row

locations where a string of successive zeros spanning the previous k1 columns are identified.

For each such row location, a ‘1’ is placed in the k1 + 1st column adjacent to a string of

successive k1 zeros so that the row constraint is satisfied. The sequences satisfying the

overall column constraints are then written in the vacant positions of the k1 + 1st column.

This procedure is iteratively repeated for all the succeeding columns. The steady state

memory depth of the column by column encoding process is k1. In other words, while

writing constrained sequences in the ith column, we need to track a string of k1 consecutive

zeros that occurred in any row of the previous k1 columns. These ideas are summarized in

a simple algorithm below.

4.5.1 Tiling Algorithm

Consider the constrained graph G(0,k), as shown in Figure 18.

k0

1

0 0
1

1
0

1

Figure 18: Constrained graph G(0,k).

Outline of Algorithm

1. Initialize: j = 1, k = k2.

2. Starting from the first column, do a random walk of length m on G(0,k2) , shown in

Figure 18.

3. Repeat step 2 for the first k1 columns.
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4. Initialize the column index j = k1 + 1.

5. Locate the row indices {ri}pi=1 where a string of k1 consecutive zeros occurred in the

columns from j − k1 to j − 1.

6. For each row index ri, stuff a ‘1’ in the jth column.

7. Write valid sequences along the vacant spaces of the jth column by making a random

walk on G(0,k2) such that the overall column constraints are satisfied.

8. j ← j + 1. Loop over Step 5 until all the n columns are filled.

Figure 19 shows how the constrained arrays can be written using the above tiling algo-

rithm. We note that the random walk process is not a maxentropic random walk on G(0,k2)

since a ‘1’ is stuffed to satisfy the row constraints. The column by column encoding can be

symmetrically extended to the row by row case. As mentioned in Step 7 of the algorithm,

there are many locations where the vacant spaces between stuffed ones is less than k2. Af-

ter stuffing the ones to satisfy the row constraints, we should make a combination of the

following moves:

• Do a random walk on the graph G(0,k2) along the vacant spaces between the stuffed

ones.

• Identify the positions where the runlength of a vacant space between two successive

ones is k2. Insert a string of all zeros within this vacant space of length k2. Over the

remaining vacant space, do a random walk on G(0,k2).

An exhaustive and unique combination of the above moves will result in the enumeration

of all 2-D valid arrays. Some of the configurations resulting from the move in the second

step are depicted in Figure 20.

4.6 Capacity Bounds for Asymmetric (0, k) Constraints

In this section, we analyze the tiling algorithm presented in the previous section for deriving

a lower bound for the capacity of 2-D asymmetric (0, k) constraints. Consider a random
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Figure 19: Schematic of writing (0, k) arrays on a rectangle.

walk on the graph G(0,k2), shown in Figure 18. Let the transition probability of emitting a

zero from any state i = 0, 1, ..., k− 1 be P (0|s = i) = p. Thus, the probability of emitting a

one is P (1|s = i) = 1−p. For the last state, i.e., state k, bit one is emitted with a probability

one. This assumption on the structure of the state transition matrix will help us to derive

analytical bounds as a function of the parameter p. We can relax this assumption and

obtain slightly improved bounds by assuming different probability transitions. In that case,

the analysis outlined below can be directly applied with an additional overhead of tracking

k different transition probabilities for optimization. From the graph G(0,k2), it is clear that

the probability transition matrix A = [ai,j ] is given by

A =



1− p p 0 · · · 0

1− p 0 p · · · 0
...

...
...

. . .
...

1 0 0 · · · 0


. (42)

Let π = [π0, π1, ..., πk2 ] denote the steady state occupancy probabilities of the states

0, 1, ..., k2 respectively. From the eigenvalue relation, we have

πA = π. (43)

Using (42) in (43), the steady state occupancy probabilities πi can be obtained as

πi =
pi

k2∑
j=0

pj

. (44)
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Figure 20: Example: (0, k1, 0, 3) Illustrating Step 7 while encoding 2-D (0, k1, 0, 3) RLL
arrays - some configurations where a string of zeros are intentionally stuffed to generate
additional 2-D sequences.

Using the ideas from the tiling algorithm, we derive a lower bound for the capacity of the

2-D constraints [47] as follows:

Theorem 4.4. The capacity of (0, k1, 0, k2) constrained channels is lower bounded by

C(0,k1,0,k2) ≥ max{ sup
p∈[0,1]

(1−pk2 )(1−pk2+1)k1−1h(p)

(1−pk2+1)k1+pk1 (1−pk2 )k1
, sup
p∈[0,1]

(1−pk1 )(1−pk1+1)k2−1h(p)

(1−pk1+1)k2+pk2 (1−pk1 )k2
}.

Proof. Consider the first case, i.e., encoding the data column by column. Recall from Step

7 of the tiling algorithm that a ‘1’ is forcibly written when there is a string of k1 consecutive

zeros in the previous k1 columns. Denoting the 2-D array by x, let E1 be the event of forcing

to write a ‘1’ in the location xi,j . Clearly, E1 : xi,j−1 = 0
⋂
xi,j−2 = 0

⋂
...
⋂
xi,j−k1 = 0.

Since each of {xi,k = 0}j−k1

k=j−1 are independent events, the overall probability of stuffing a

‘1’ is given by

P (E1) = P1(0)k1 , (45)

where P1(0) is the probability that a ‘0’ was written by a random walk on the column

constrained graph. But we have

P1(0) = p
k2−1∑
k=0

πk
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= (1− πk2)p. (46)

After stuffing a 1 in the row locations of the jth column corresponding to the event E1,

vacant spaces created in this column. Let fs be the random variable denoting the available

free space where bits can be written. The expected length of this free space is given by the

recursion

E(fs) = m− P (E1)E(fs). (47)

The capacity of the column constrained scheme can be lower bounded as

C
(1)
0,k1,0,k2

≥ lim
m→∞

E(fs)
m

R1, (48)

where R1 is the entropy rate of column constrained Markov process. But we can compute

R1 as

R1 =
k2−1∑
k=0

πkh(p)

= (1− πk2)h(p). (49)

Using (47) and (49) in (48) and simplifying, we get

C
(1)
0,k1,0,k2

≥ (1− πk2)h(p)
1 + [p(1− πk2)]k1

. (50)

Using (44) in (50), and maximizing (50) over all the choices of p,

C
(1)
0,k1,0,k2

≥ sup
p∈[0,1]

(1− pk2)(1− pk2+1)k1−1h(p)
(1− pk2+1)k1 + pk1(1− pk2)k1

. (51)

In many cases when k2 > k1, it is possible to improve the bounds by doing a row by

row encoding of data. This is because the assumed structure of the transition probabilities

in the constrained graph benefits the likelihood of stuffing lesser ones to satisfy the row

constraints. Repeating the above analysis for the row by row encoding of data through a

row constrained graph G(0,k1), we get

C
(2)
0,k1,0,k2

≥ sup
p∈[0,1]

(1− pk1)(1− pk1+1)k2−1h(p)
(1− pk1+1)k2 + pk2(1− pk1)k2

. (52)

It is trivial to note that the 2-D capacity of the constraints is the same when the row

and the column constraints are swapped. Picking a better of the two lower bounds from

(51) and (52), the theorem follows.
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We will now establish an upper bound for these constraints by making the following

observations.

Lemma 4.6. The number of sequences satisfying the joint constraints is lesser than or

equal to the number of sequences satisfying either the row or column constraints separately.

N (0,k1,0,k2)
m,n ≤ N (0,∞,0,k2)

m,n .

N (0,k1,0,k2)
m,n ≤ N (0,k1,0,∞)

m,n .

Proof. Consider the process of writing the sequences column by column according to the

tiling algorithm. When the k2 constraint does not exist, column constrained sequences

can be written independently without violating the constraints. Since there is no need for

stuffing a ‘1’ to satisfy the row constraints, the maxentropic rate is bounded by the 1-D

capacity of the column constraints. Similarly, the result holds when row by row encoding

is considered.

Theorem 4.5. The capacity of (0, k1, 0, k2) constrained channels is upper bounded by

C(0,k1,0,k2) ≤ C0,min(k1,k2),

where C0,min(k1,k2) is the minimum of the 1-D capacities for the row and column constraints.

Proof. From Lemma 4.6 we have,

N (0,k1,0,k2)
m,n ≤ N (0,∞,0,k2)

m,n . (53)

N (0,k1,0,k2)
m,n ≤ N (0,k1,0,∞)

m,n . (54)

Taking logarithms on both sides of (53) and (54) in the limiting case,

lim
m,n→∞

log2(N
(0,k1,0,k2)
m,n )
mn

≤ lim
m,n→∞

log2(N
(0,∞,0,k2)
m,n )
mn

(55)

lim
m,n→∞

log2(N
(0,k1,0,k2)
m,n )
mn

≤ lim
m,n→∞

log2(N
(0,k1,0,∞)
m,n )
mn

. (56)
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Equations (55) and (56) actually denote the combinatorial entropy of the 2-D con-

straints. The existence of these limits can be proved by sub-additivity arguments [27].

When either one of the joint constraints do not exist, the resulting combinatorial entropy

is just the entropy of the other 1-D constraint.

lim
m,n→∞

log2(N
(0,∞,0,k2)
m,n )
mn

= C(0,k2) (57)

lim
m,n→∞

log2(N
(0,k1,0,∞)
m,n )
mn

= C(0,k1). (58)

Using (57) and (58) in (55) and (56) respectively, we get

lim
m,n→∞

log2(N
(0,k1,0,k2)
m,n )
mn

= C(0,k1,0,k2) ≤ min{C(0,k1), C(0,k2)}. (59)

Since the 1-D capacity of a (0, k) constraint is a non-decreasing function of k, we conclude

that min{C(0,k1), C(0,k2)} = C0,min(k1,k2). This completes the proof.

4.7 Coding Schemes for Asymmetric (0, k) Constraints

We will sketch the encoding and decoding process for constructing sequential codes with

rates close to the derived 2-D lower bounds.

A: Constructing the Encoder

To obtain an invertible mapping of raw bits to a 2-D coded array, we apply the same

coding ideas that we presented in section 4.3 for (d1,∞, d2,∞) constraints with some minor

modifications. We will outline the steps for clarity.

1. Fix integers p and q that are relatively prime such that p
q ≤ C0,k2 , where C0,k2 is the

capacity of the 1-D column constraint.

2. Obtain the qth power of G(0,k2), i.e., G(q).

3. Perform the basic v-consistent splitting of G(q) and obtain the final encoder graph G′

according to the state splitting algorithm [30].
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4. Initialize: column j = k1 + 1.

5. Map the raw binary sequences to coded sequences along the jth column by writing

along the vacant spaces of that column.

6. Locate the row indices {ri}pi=1 where a string of k1 consecutive zeros occurred in the

columns from j − k1 to j − 1.

7. For each row index rj , stuff a ‘1’ in the jth column.

8. Go to Step 5 or identify locations where the length of the void space between successive

stuffed ones is less than k2. Randomly stuff a string of all zeros in the length of the

void spaces and iterate Step 5 over all the columns.

9. Terminate the procedure after encoding all the columns.

We note that the bit-stuffing due to horizontal constraints will result in an overall rate

approaching the derived lower bounds for the 2-D constraints.

B: Decoding Process

The decoding process follows the encoding principle. The following steps illustrate the

procedure.

1. Initialize: j = n, i.e., last column of the coded array.

2. Look back from the columns j − k1 to j − 1 and identify the locations where an all

zero pattern occurred.

3. Remove the stuffed ones and the string of all zeros of length ≤ k2 (if any) along the

consecutive void spaces in ith column.

4. The resulting sequence is a code from the encoder graph G′.

5. Decode the original p bits from the coded q binary blocks.
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6. j ← j − 1. Iterate from Step 2 until all the bits are recovered.

4.8 Numerical Results for the Capacity of Asymmetric (0, k)
Constraints

In Tables 7 and 8, we show the numerical computation of the bounds for some choices of

the 2-D constrained parameters. We compare our lower and upper bounds with Theorems

3 and 7 in [27] respectively and the bit stuffing lower bounds [41]. From the tables, we

note that our bounds are much better than the bounds in [27], marginally better than bit

stuffing bounds [41], and extend to the general class of asymmetric constraints.

Table 7: Capacity bounds for symmetric (0,k) constraints

k CLB-Thm 4.4 CLB-Thm 3 [27] CLB [41] CUB-Thm 4.5 CUB-Thm.7[27]

1 0.5515 0.4122 0.5515 0.6942 0.7925
2 0.7768 0.4122 0.7769 0.8791 0.9358
3 0.8826 0.7061 0.8788 0.9468 0.9767
4 0.9368 0.7061 0.9320 0.9752 0.9908

Table 8: Capacity bounds for (0,k1,0,k2) constraints

(k1, k2) CLB-Thm 4.4 CUB-Thm 4.5

(1,2) 0.6484 0.6942
(1,8) 0.6942 0.6942
(2,3) 0.8334 0.8791
(2,4) 0.8571 0.8791
(3,5) 0.9288 0.9468

Before we conclude this section, we would like to comment on the bounds and the

code construction. Recall from the tiling algorithms that vacant spaces are created after

stuffing a ‘1’ to satisfy the row(column) constraints. When the length of the vacant space

between any two successive stuffed ones is less than or equal to k2(k1), depending on the

column by column(row by row) encoding scheme, we could randomly choose a set of void

locations and stuff them with a string of zeroes. We could then do a random walk on
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the graph G(0,k2)(G(0,k1)) as depicted in Figure 20. By enumerating all such configurations

and computing the additional combinatorial entropy, we can improve the lower bounds to

approach the capacity of the 2-D constraints. A thorough analysis of this case is a daunting

task. We present an improved enumeration bound for the capacity of the (0, 1, 0, 1) RLL

constraint in Appendix A.

4.9 Summary

In this chapter, we presented tiling algorithms for constructing asymmetric (d,∞) and

(0, k) constrained arrays. We derived bounds for the capacity of these constraints and

highlighted the Hamming weight structure of the arrays. Using the tiling algorithms, we

presented code constructions with rates close to the derived lower bounds. Some of the

bounds on the symmetric case compare well with the existing bounds. In other cases, our

bounds are the first reported bounds for asymmetric constraints. An open problem at this

point in time is to generalize the bounds presented in this chapter to an arbitrary 2-D RLL

constraint with finite d and k constraints.
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CHAPTER V

CAPACITY BOUNDS FOR MULTI-LEVEL

RUNLENGTH-LIMITED CONSTRAINED ARRAYS

Localized holographic recording [34] is characterized by high signal-to-noise ratios sufficient

for supporting multi-level/M-ary channel codes. In an M-ary coding scheme, data is encoded

in M levels, i.e., {0, 1, 2, ...,M − 1}. We can get a raw coding gain of log2(M) using multi-

level codes. Motivated by the application of such codes for ultra-high density localized

holography, we examine the 2-D capacity of M-ary RLL constrained channels. A 2-D M-ary

constrained modulation scheme can be imagined as a combination of pulse amplitude, pulse

width, and pulse position modulation [5] in two dimensions.

In this chapter, we derive the lower bounds for the capacity of asymmetric (M, 0, k)

and (M,d,∞) RLL arrays and deduce coding algorithms by extending the constructions in

chapter 4. This chapter is organized as follows. In section 5.1, we derive bounds for the

capacity of asymmetric (M, 0, k) constraints and present some numerical results in section

5.2. We derive the capacity bounds for asymmetric (M,d,∞) constraints in section 5.3 and

discuss the numerical results in section 5.4. We summarize our results in section 5.5.

First, we begin with a few definitions related to 2-D M-ary RLL arrays.

Definition 5.1. A 2-D array satisfies (M,d1, k1, d2, k2) RLL constraints on a rectangular

lattice if there are at least d1 zeros and at most k1 zeros between any two non-zero symbols

horizontally; and at least d2 zeros and at most k2 zeros between any two non-zero symbols

vertically.

Definition 5.2. The capacity of a noiseless 2-D M-ary RLL constrained channel is defined

as C(M,d1,k1,d2,k2) = limm,n→∞
log2(N

(M,d1,k1,d2,k2)
m,n )

mn .
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5.1 Capacity Bounds for Asymmetric (M, 0, k) Constraints

In this section, we derive a lower bound for the capacity of asymmetric 2-D M-ary k-

constrained arrays [43] by extending our ideas on the binary constraints. Figure 21 shows

the schematic of a 2-D (4, 0, 2, 0, 1) RLL constraint on a 4× 5 grid.
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Figure 21: Schematic of a (4, 0, 2, 0, 1) RLL array on a 4 × 5 grid. Each symbol is from a
4-ary alphabet.

The bounds for the capacity of the constrained channels can be derived using the basic

tiling algorithm presented in [49] and can be summarized as follows.

1. Column constrained sequences are sequentially written along the first k columns by

doing a random walk on an M -ary k-constrained graph, as shown in Figure 22.

2. For every string of k adjacent zeros that are juxtaposed along the k consecutive

columns of a particular row, a non-zero symbol is placed in the k+1st column in that

row. This ensures that the row constraint is satisfied.

3. Along the vacant spaces of the k+ 1st column, constrained sequences are placed such

that the overall column constraints are satisfied.

The above three steps are sequentially repeated for all the columns.

Consider an M -ary 1-D k-constrained graph as shown in Figure 22. Let st denote the

state of the graph at time t. The source emits M -ary alphabets xt ∈ {0, 1, ...,M − 1}, such

that, between any two non-zero symbols there are at most k zeros. The probability state

transition matrix for the graph in Figure 22 is given by, A = [aij ] = P (st+1 = j|st = i). Let

the probability of emitting the symbol 0 from each state be p. In other words, P (xt = 0|st =

i) = p for all the states s = 0, 1, ..., k − 1. Forcing a uniform distribution over all the other
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Figure 22: Schematic of a (M, 0, k) 1-D constrained graph.

alphabets, let the probability of emitting a non-zero symbol b be P (xt = b|st = i) = 1−p
M−1 for

all the states s = 0, 1, ..., k− 1 and uniformly 1
M−1 for the last state, i.e., s = k. We restrict

the transition probabilities in this way so that a computable closed-form expression can

be tractably derived as a function of p and M . In general, non-uniform transition symbol

probabilities can be assumed for obtaining slightly improved bounds. Let π = [π0π1...πk]

denote the row vector representing the steady state occupancy probabilities.

The following theorem provides a lower bound for the capacity of asymmetric (M, 0, k)

2-D RLL constraints.

Theorem 5.1. The capacity of (M, 0, k1, 0, k2) constrained channels is lower bounded by

C(M,0,k1,0,k2) ≥ max{ sup
p∈[0,1]

f1(p)R1(p), sup
p∈[0,1]

f2(p)R2(p)},

where f1(p) = (pk2+1−1)k1

(pk2+1−1)k1+(pk2+1−p)k1
,

R1(p) = [−p log2(p)− (1− p) log2(
1−p
M−1)]( pk2−1

pk2+1−1
) + (pk2+1−pk2

pk2+1−1
) log2(M − 1),

f2(p) = (pk1+1−1)k2

(pk1+1−1)k2+(pk1+1−p)k2
,

R2(p) = [−p log2(p)− (1− p) log2(
1−p
M−1)]( pk1−1

pk1+1−1
) + (pk1+1−pk1

pk1+1−1
) log2(M − 1).

Proof. We will prove this result by using the structure of the probability state transition

matrix described in the previous paragraph. The proof is similar to the analysis in Theorem

4.4.

From the structure of A, the steady state occupancy probabilities πi for each state i
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can be obtained as

πi =
pi

k2∑
j=0

pj

. (60)

Let us consider the case when the encoding is done using a column constrained graph

G(M,0,k2). A non-zero symbol is forcibly written whenever a string of k1 consecutive zeros

occurs in the previous k1 columns. Denoting the 2-D array by x, let E1 be the event of forcing

a non-zero symbol in the location xi,j . Clearly, E1 : xi,j−1 = 0
⋂
xi,j−2 = 0

⋂
...
⋂
xi,j−k1 =

0.

Since each of {xi,k = 0}j−k1

k=j−1 are independent events, the overall event probability of

stuffing a non-zero symbol is given by

P (E1) = P1(0)k1 , (61)

where P1(0) is the probability that a ‘0’ was written by a random walk on the column

constrained graph. But we have

P1(0) = p
k2−1∑
k=0

πk

= (1− πk2)p. (62)

After stuffing a 1 in the row locations of the jth column corresponding to the event E1,

vacant spaces are created along the column. Let fs be the random variable denoting the

available free space where bits can be written. The expected length of this free space is

given by the recursion

E(fs) = m− P (E1)E(fs). (63)

The capacity of the column constrained scheme can be bounded as

C
(1)
M,0,k1,0,k2

≥ lim
m→∞

E(fs)
m

R1, (64)

where R1 is the entropy rate of column constrained Markov process. We can compute R1

as

R1 =
k2−1∑
k=0

πkH(p,
1− p
M − 1

, ...,
1− p
M − 1

) + πk2H(
1− p
M − 1

,
1− p
M − 1

, ...,
1− p
M − 1

), (65)
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where H(.) is the usual entropy function.

Substituting (65) in (64) and simplifying using (60), (63), and (62), the overall 2-D rate

can be maximized over all the possible choices of p as

C
(1)
M,0,k1,0,k2

≥ sup
p∈[0,1]

f1(p)R1(p). (66)

Capacity is invariant to a change in the order of the row and column constraints. Re-

peating the analysis when the column constraint is (M, 0, k1) and the row constraint is

(M, 0, k2), we get

C
(2)
M,0,k1,0,k2

≥ sup
p∈[0,1]

f2(p)R2(p). (67)

Choosing the maximum of the two bounds in (66) and (67), the theorem follows.

By letting k1 = k2 = k in Theorem 5.1, we can obtain a lower bound for the capacity of

symmetric (M, 0, k) constrained channels using the following corollary.

Corollary 5.1. The capacity of (M, 0, k) constrained channels is lower bounded by

C(M,0,k) ≥ sup
p∈[0,1]

(pk+1−1)k

(pk+1−1)k+(pk+1−p)kR(p),

where R(p) = [−p log2(p)− (1− p) log2(
1−p
M−1)]( pk−1

pk+1−1
) + (pk+1−pk

pk+1−1
) log2(M − 1).

The following theorem provides an upper bound for the 2-D capacity of M-ary asym-

metric (0, k) RLL constraints. The derivation is straightforward and we avoid a repetitive

proof here.

Theorem 5.2. The capacity of (M, 0, k1, 0, k2) constrained channels is upper bounded by

C(M,0,k1,0,k2) ≤ C(M,0,min(k1,k2)),

where C(M,0,min(k1,k2)) is the minimum of the 1-D capacities for M-ary (0, k) row and column

constraints.
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We note that the coding algorithms presented in the previous section for the binary can

be straightforwardly extended to the M-ary case and we avoid repetitive discussions.

5.2 Numerical Results for Asymmetric (M, 0, k) Constraints

In Tables 9 and 10, we show the numerical computation of the bounds for some choices of

the 2-D constrained parameters.

Table 9 shows the computation of the bounds for the symmetric case. The bounds are

tight for increasing values of k. We believe that the lower bound is closer to capacity than

the upper bound.

Table 9: Capacity bounds for (M, 0, k) constraints

(M,k) CLB-Thm 5.1 CUB-Thm 5.2

(2,2) 0.7768 0.8791
(4,2) 1.9113 1.9824
(2,3) 0.8826 0.9468
(4,3) 1.9727 1.9957

Table 10: Capacity bounds for (M, 0, k1, 0, k2) constraints

(M,k1, k2) CLB-Thm 5.1 CUB-Thm 5.2

(2,1,3) 0.6805 0.6942
(3,2,4) 1.5349 1.5458
(4,3,5) 1.9937 1.9957
(5,4,7) 2.3215 2.3216

We note that the upper and lower bounds are tight for increasing values of k1 and k2

and approach log2(M) for large values of k1 and k2.

5.3 Capacity Bounds for Asymmetric (M, d,∞) Constraints

In this section, we derive bounds for the capacity of (M,d,∞) constraints. By definition,

a (M,d1,∞, d2,∞) RLL constraint has at least d1 zeros and at least d2 zeros between any

two non-zero symbols along rows and columns respectively. Figure 23 shows the schematic

of a 2-D (M, 1,∞, 2,∞) array on a 4× 5 grid. We can construct M-ary coded sequences by
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Figure 23: Schematic of a (4, 1,∞, 2,∞) RLL array on a 4× 5 grid.

a minor modification of the tiling Algorithm-B described in section 4.1. Instead of stuffing

d1 zeros for the occurrence of a one along any column, we stuff d1 zeros across the columns

for every non-zero symbol that occurs in any particular column.

The random walk mechanism on a M-ary constrained graph is described in Figure 24. We

assume that the probability of emitting a non-zero symbol from the last state is uniformly

1−p
M−1 . The probability of emitting a zero is p for state d, and one for all the other states. By

proceeding with the analysis as outlined in Theorem 5.1, we can prove the following result.

0 0 0
0 0 0

M-1

2

1

0

Figure 24: Schematic of the (M,d,∞) constrained graph.

Theorem 5.3. The capacity of (M,d1,∞, d2,∞) constrained channels is lower bounded by

C(M,d1,∞,d2,∞) ≥ sup
p∈[0,1]

−p log2(p)−(1−p) log2( 1−p
M−1

)

1+(d1+d2)(1−p) .

By substituting d1 = d2 = d in Theorem 5.3, we have the following corollary.

Corollary 5.2. The capacity of (M,d,∞) constrained channels is lower bounded by

C(M,d,∞) ≥ sup
p∈[0,1]

−p log2(p)−(1−p) log2( 1−p
M−1

)

1+2d(1−p) .
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5.4 Numerical Results for Asymmetric (M, d,∞) Constraints

In Tables 11 and 12, we show the numerical computation of the bounds for some choices of

the 2-D constrained parameters.

Table 11: Capacity bounds for (M,d,∞) constraints

(M,d) CLB- Thm 5.3

(4,2) 0.6203
(8,2) 0.8062
(4,3) 0.4848
(8,3) 0.6183

Table 12: Capacity lower bounds for (M,d1,∞, d2,∞) constraints

(M,d1, d2) CLB-Thm 5.3

(2,1,3) 0.4056
(3,2,4) 0.3281
(4,3,5) 0.4025
(5,4,7) 0.3509

For large values of d1 and d2, the 2-D capacity shrinks to zero.

5.5 Summary

In this chapter, we examined the capacity of 2-D M-ary RLL constraints motivated by

applications in localized holography. By extending our tiling algorithms and bounding

techniques for the binary case, we generalized the bounding techniques for computing the

capacity of (M, 0, k1, 0, k2) and (M,d1,∞, d2,∞) constraints. The coding algorithms for

the 2-D M-ary RLL case can be derived by a straightforward extension of our algorithms

for the binary case.
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CHAPTER VI

M-ARY, BINARY, AND SPACE-VOLUME

MULTIPLEXING TRADE-OFFS FOR HOLOGRAPHIC

CHANNELS

We are interested in the theoretical limits for the amount of error-free information that can

be physically stored and retrieved from a holographic disk drive. The achievable storage

density is a function of the number of recorded pages per unit volume, the number of pixels

per page, and the capacity of the holographic channel. We pointed out in chapter 2 that

the channel capacity ultimately determines the amount of information that can be stored

within the medium. If the channel capacity is zero, irrespective of system enhancements,

zero storage density is realized. Thus, the capacity of holographic channels is an important

result to understand the physical limits for data storage. We need to compute information-

theoretic limits for predicting the amount of data storage and for designing multi-level codes

that can achieve these limits. Recently, with the introduction of advanced coding techniques

such as low density parity check codes applied to multi-level coding [20], [42], [54], [55], it

is possible to come very close to the theoretical limits given in this chapter using practical

algorithms.

In this chapter, we derive a lower bound for the channel capacity using the transmission

model developed by Heanue et al [22]. Using this bound, we examine the trade-off between

the storage density and the number of recorded pages for angle multiplexing and localized

holographic recording [51], [50]. We optimize the number of recorded pages and the desired

level of a modulation code for maximizing the storage density. This chapter is organized as

follows. In section 6.1, we present the transmission model for holographic channels. In sec-

tion 6.2, we highlight the need for M-ary modulation codes for holography and determine the

i.i.d capacity of holographic channels. In section 6.3, we present an analysis for maximizing
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the volumetric storage density by examining the density versus multiplexing trade-off. In

section 6.4, we review the bit-error rate versus signal-to-noise ratio performance of M-ary

codes for holographic channels and summarize the results in section 6.5.

6.1 Transmission Model for Holographic Channels

In this section, we review the transmission model [22] developed by Heanue, Bashaw, and

Hesselink. This model will be used in our subsequent analysis. The information storage

in holographic channels can be modeled as data transmission over a noisy communications

channel. The magnitude of the received signal r can be represented by the vector addition

of the signal amplitude A and a random noise phasor. The noise is predominantly due

to optical scattering and is characterized by a circularly symmetric Gaussian probability

distribution. The detector is a square law device that records the intensity y = |r|2 of

the received signal. Assuming that the magnitude and phase of the received signal are

independent, the probability density function (pdf) of the magnitude of the received vector

r is given by [22]

pR(r) =
r

σ2
exp

(
−r

2 +A2

2σ2

)
Io

(
rA

σ2

)
, (68)

where I0 is the zero-order modified Bessel function of the first kind, and σ2 is the noise

variance. We note that (68) is a Rician pdf commonly seen in wireless communication

systems for describing the output statistics of an incoherent receiver.

At the CCD, the detected signal is intensity whose pdf is given by

pY (y) =
1

2σ2
exp

(
−y +A2

2σ2

)
Io

(√
yA2

σ2

)
. (69)

Let xH and xL denote the transmitted intensities for the ‘On’ and ‘Off’ pixels respec-

tively. Define the signal-to-noise ratio as S = xH
2σ2 and the contrast factor as c = xH

xL
. Let

ỹ = y
xH

be the normalized detected intensity. Using these definitions in (69), the pdf of the

2We note that this definition of SNR is actually the peak SNR, and is a commonly used definition in the
optics community. However, in communication theory the standard definition for the SNR is average SNR
and given by S = E(y)

σ2 . For consistency, we adhere to the peak SNR definition [22] in our analysis.
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normalized detected intensities for the ‘On’ and the ‘Off’ pixels are respectively given by

[22]

p1(ỹ) = S exp [−S(ỹ + 1)] I0
(
2S
√
ỹ
)
, (70)

p0(ỹ) = S exp
[
−S

(
ỹ +

1
c

)]
I0

2S

√
ỹ

c

 . (71)

Figure 25 shows the pdf of the ‘On’ and ‘Off’ pixels evaluated for different contrast

ratios at 5dB SNR. As we can observe from the plots in Figure 25, an infinite contrast ratio

is preferred since the probability of error is minimized for detection. However, practical

systems always have a finite contrast ratio, which makes the detector design complicated.

The transmission model that we described in this section is for the binary case. In the next

section, we address the M-ary encoding of pixels and analyze the channel capacity.
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6.2 M-ary Encoding of Pixels

In the M-ary encoding scheme, each SLM pixel is encoded as a gray-level with a certain

intensity level chosen from a set of M intensity levels. Typically, M is chosen as a power

of two so that an integer number of bits can be assigned to each level. At the detector, the
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Figure 25: Probability density function of the received intensity (a) SNR = 5dB, c = ∞
(b) SNR = 5dB, c = 2

received intensity should be properly distinguished from neighboring pixel intensities. The

detection process can be done using a simple thresholding scheme.

One of the main points of interest is the spacing of the intensity levels to minimize the

bit-error rate. There are two simple possibilities:

• Equal spacing in amplitude.

• Equal spacing in intensity.

When the SLM amplitude levels are equally spaced, the intensity levels are quadratically

spaced. The transmitted intensity level xm for the mth level is given by

xm =
(√

xL +m

√
xH −

√
xL

M − 1

)2

. (72)

When the intensity levels are equally spaced, the intensity level xm for the mth level is

given by

xm = xL +m
xH − xL

M − 1
. (73)

The variance in the detected intensity depends on the transmitted signal. From (69),

the standard deviation of the detected intensity can be computed as [22]
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σ2
y = 4σ2(σ2 +A2). (74)

From equation (74), we infer that the variance in the intensity of the detected signal depends

on the intensity of the transmitted signal. This suggests that a non-uniform spacing of the

intensities can reduce bit-error rates since the overlapping probability regions of the detected

signals are minimal. Simulation results in [22] suggest a uniform spacing in the amplitude

levels so that the bit-error rates are minimized. For our subsequent analysis, we assume

a uniform spacing of amplitudes. However, an optimal strategy for placing the intensities

needs to be worked out analytically.

6.2.1 Lower Bound for the Capacity of the Holographic Channel

With a uniform spacing of SLM amplitudes, the pdf of the normalized intensity for the mth

level is given by

pm(ỹ) = S exp
[
−S

(
ỹ +

xm

xH

)]
I0

(
2S

√
ỹxm

xH

)
. (75)

Using (75), we can compute a lower bound for the holographic channel capacity C. The

following theorem provides a lower bound for the holographic channel capacity as a function

of the signal-to-noise ratio.

Theorem 6.1. The capacity C of a holographic channel is lower bounded by

C ≥ sup
M

1
M

[
∞∫
0

M−1∑
m=0

pm(ỹ) log2(pm(ỹ))dỹ −
M−1∑
m=0

∞∫
0
pm(ỹ) log2

(∑M−1

m=0
pm(ỹ)

M

)
dỹ

]
.

Proof. To determine the holographic channel capacity, we need to determine the a pri-

ori probability distribution of the input x that maximizes the mutual information I(x, y)

between the input and output y [15]. In other words,

C = sup
p(x)

I(x; y). (76)

To get a computable lower bound, we pick a particular family of probability distributions

and compute the mutual information. By choosing a uniform probability distribution at

the input, the a priori probability of each SLM intensity level is assumed to be 1
M for all
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the M levels. The mutual information computed for a uniform distribution is called the

i.i.d capacity of the channel (Ci.i.d) and will always be a lower bound for the true capacity.

For the transmission model in (75), the i.i.d capacity can be computed as

Ci.i.d(M) = I(x, ỹ) = h(ỹ)− h(ỹ|x), (77)

where h(ỹ) and h(ỹ|x) are the differential and conditional differential entropies respectively.

Equation (75) is the conditional pdf for a certain intensity level. The overall pdf of the

detected intensity is given by

p(ỹ) =
M−1∑
m=0

1
M
pm(ỹ). (78)

Using (78) and (75), we compute the differential entropy terms in (77) as

h(ỹ) = −
∫ ∞

0
p(ỹ) log2(p(ỹ))dỹ (79)

h(ỹ|x) = − 1
M

M−1∑
m=0

∫ ∞

0
pm(ỹ) log2(pm(ỹ))dỹ. (80)

Substituting (79) and (80) in (77), the theorem follows.

We note that Theorem 6.1 can be computed using numerical integration.

In Figure 26 (a), we plot the i.i.d capacity versus SNR for different values of M at an

infinite contrast ratio. As we can observe from Figure 26 (a), for a given number of levels

M , the i.i.d capacity converges to log2(M) at high SNRs. This observation can be explained

as follows. When the noise floor approaches zero, the output is a close replica of the input.

The mutual information reduces to computing the self-entropy of the source. Assuming a

uniform prior distribution, the self-entropy is log2(M) bits.

Figure 26 (b) shows the computation of i.i.d capacity for a small contrast ratio c = 2. For

a given SNR and an M -ary level, a low contrast ratio decreases the achievable information

rate.
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Figure 26: Plot of the i.i.d capacity curves for several M-ary levels as a function of SNR
(a) c =∞ (b) c = 2
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We note that Ci.i.d is not a monotonically increasing function of the modulation level

M . This fact can be observed in Figures 26 (a) and (b). In other words, for a given SNR,

it may be such that a lower value of M can give a higher i.i.d capacity. This is because

we are fixing the input distribution to be uniform. Only when the channel description is

exactly known for real continuous inputs, the prior distribution of the input can be chosen

to maximize the mutual information according to equation (76).

Theorem 6.1 is useful for two reasons. First, we can guarantee a certain achievable

information rate using an M -ary modulation code. Second, we can use a combination of

2-D modulation and error correcting codes to achieve Ci.i.d for any given SNR. Of course,

designing rate-efficient 2-D modulation/error correcting codes can be challenging in practice.

6.2.2 Overall Storage Density

Computing the overall storage density Ds is the main focus of practical interest. The

achievable rate R(S) (bits/channel use) is a function of the available SNR (S) that the

material can provide. The number of recorded pages P per unit volume is a function of the

diffraction efficiency which is related to the SNR of the system.

Suppose each data page has B pixels per page coded at an average rate R, the overall

storage density Ds in bits per unit volume is given by

Ds = P (S)BR(S). (81)

The number of SLM pixels B per page is fixed. Using Theorem 6.1, we can compute

R(S). The next step is to compute P (S) and optimize Ds for a given SNR. In the next

section, we study the trade-off between the storage density and multiplexing and suggest

the optimal number of pages that should be recorded.

6.3 Density versus Multiplexing Trade-off

In this section, we examine angle multiplexing [3] and localized recording [34] from a signal-

to-noise ratio point of view. We pointed out in section 2.2.1 that the diffraction efficiency

is related to the recording mechanism.
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• In angle multiplexed holography, several holograms share the entire volume of the

holographic medium, as illustrated in Figure 27. The diffraction efficiency of each

hologram is inversely proportional to the square of the number of recorded holograms

[14].

doubly doped crystal

sensitizing 
beam

object 
beam

SLM

reference 
beam

Figure 27: Angular multiplexing holography: holograms overlap over the entire volume of
the doubly doped crystal.

• In localized holography, each hologram is recorded within a thin slice of the medium,

as shown in Figure 28. The diffraction efficiency of a hologram in localized recording

is inversely proportional to the number of recorded holograms.

doubly doped crystal

reference 
beamsensitizing 

beam

object 
beam

SLM

Figure 28: Localized holography: holograms are recorded within the slices along the doubly
doped crystal.
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Localized holography offers the unique advantage of selective recording and erasure of

holograms which is not present in angle multiplexed volume holography. From a storage

standpoint, by using localized holography, we can record a few hundred holograms compared

to a thousand holograms in the angle multiplexed case. However, localized holography

provides improved SNR than angle multiplexing. By designing multi-level codes for localized

holography, we can achieve higher coding gains, thereby, maximizing the overall storage

density.

Thus, given the SNR budget for a material/medium, we are interested in maximizing

the density Ds by optimally choosing the number of recorded pages and the number of

levels of a multi-level modulation code. To make meaningful comparisons, we fix M/# to

be the same for both recording mechanisms. Let this constant be κ.

Let us first consider localized holography. Fixing the number of slices/holograms, let

this number be Ml. The resulting SNR for localized holography Slo is given by

Slo =
κ

2Plσ2
. (82)

Assuming that the channel statistics do not change with the recording mechanism, the

information rate can be computed by reading the maximum value of i.i.d capacity for Slo

from Figure 26. The overall density for localized holography D(l)
s is computed as

D(l)
s =

κ

2σ2Slo
BR(Slo). (83)

Since Pl is fixed, D(l)
s can be exactly computed.

We now look into the angle multiplexing case. Let Pa be the number of pages that can

be multiplexed within the volume of the medium. The storage density D(a)
s is given by

D(a)
s = PaBR

(
κ2

2P 2
aσ

2

)
. (84)

To achieve the best storage density, we need to optimize (84) with respect to the number

of pages and the number of levels. The optimum density (D∗) is given by

D∗ = max
Pa,M

D(a)
s . (85)
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Figure 29: Achievable storage density as a function of the SNR for M=2 levels.

Example: We will explain this trade-off with an example. Let κ = 3 and σ2 = 10−6.

Choosing Ml = 400 with B = 106 pixels/page, the SNR can be computed as Slo = 38.75dB.

The best rate for 38.75dB can be read from Figure 26 (a) as 4.5 bits/channel use. Thus,

D
(l)
s = 1.8Gb per unit volume for localized holography.

Following the optimization in (85), for angle multiplexing, a storage density of at least

0.62Gb per unit volume can be achieved using binary recording over 753 pages. Figure 29

shows the optimization results for the binary case.

Thus, given two different recording schemes with the same material and constraints,

M-ary localized recording seemed better in this example. The theoretical analysis can be

worked out for different practical choices of the system parameters.

6.4 Probability of Error for Threshold Detection

In the previous sections, we developed a framework for analyzing the capacity and the

overall storage density of holographic channels. These results suggest using a joint mod-

ulation/error correcting code, for reliable storage and retrieval of digital data. To recover

the information bits, we need efficient detection algorithms. The construction of practical

maximum likelihood (ML) detectors is an open problem in 2-D signal processing. However,

a simple algorithm can be realized using threshold detection. In threshold detection, an
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Figure 30: Probability of error for threshold detection for M=2 levels and different constrast
ratios.

optimum threshold is chosen for comparing the detected signal statistics for decoding the

symbols. Heanue, Bashaw, and Hesselink [22] analyzed the probability of error for M-ary

threshold detection. The probability of error as a function of the SNR can be computed as

Perror =
M−1∑
m=0

1
M

[∫ ỹT,m

0
pm(ỹ)dỹ +

∫ ∞

ỹT,m+1

pm(ỹ)dỹ

]
, (86)

where yT,m is the threshold between the levels m− 1 and m.

Figure 30 shows the probability of error as a function of the SNR for different contrast

ratios. The optimal thresholds were chosen according to equations (9) and (10) in [22]. We

infer that maintaining a practically large contrast ratio (infinite contrast is hard to realize)

using better optical systems can provide improved bit error rates.

6.5 Summary

We presented an analysis for the storage density versus multiplexing trade-off of holographic

channels. This result proves that recording a lot of holograms does not necessarily maximize

the storage density. There is an optimal choice for the number of recorded pages and the

number of levels of a multi-level code that maximizes the volumetric density. We analyzed

our results for localized holography and angle multiplexed holography. These results are
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analytical and useful for understanding the benefits and limitations of various recording

schemes. We also reviewed results for the probability of error of a threshold detector. We

conclude that maintaining a high contrast ratio is beneficial for reducing the bit error rate

and increasing the capacity. An exact description of the channel in terms of the conditional

probability distribution for real continuous inputs is needed. Such a model will be helpful

for precisely characterizing the holographic channel capacity.
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CHAPTER VII

TWO-DIMENSIONAL TRANSLATION AND

ROTATIONAL PIXEL MISREGISTRATION: SIGNAL

RECOVERY AND PERFORMANCE LIMITS

Signal processing is an integral part of any data storage system. A practical holographic

system has several optical components with inherent limitations in the fabrication and

design. We need signal processing algorithms to model the data, to compensate interpixel

interference, and to recover the data from noisy detected samples.

The detection and imaging process in most systems is not perfect. The inherent effects

of band-limiting aperture, diffraction, misfocus, magnification, optical aberrations, and ma-

terial shrinkage [14] lead to interpixel interference. We need signal processing algorithms to

remove the residual energy from unintended pixels and recover the transmitted data.

The detection process in a holographic system is non-linear. The signal intensity in-

tegrated over the effective spatial aperture of the detector pixel is received at the CCD.

The integrating effect coupled with interpixel cross talk and random noise makes the signal

recovery problem rather difficult. Several authors have considered 2-D linear models for sig-

nal recovery based on different optimality criteria. There are signal processing algorithms

[13], [23], [28], [53], for reducing interpixel interference, for correcting pixel blurs, and for

recovering the signal from a linear combination of known pixel patterns. However, there

are relatively very few algorithms [11], [23], [32], for correcting pixel shifts. Burr developed

signal reconstruction algorithms [11] for compensating fractional lateral shifts in two dimen-

sions. Rotational misalignments lead to non-uniform fractional shifts that are not constant

over pixels. In other words, pixels that are farther away from the center suffer more severe

distortion than those at the center.

In this chapter, we extend the idea of handling fractional shifts for combined translation
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and rotational distortion [48], [44]. Our algorithm is applicable for optically misaligned

systems with square apertures and for holographic systems with low fill factors in the

transmitter and detector arrays.

The chapter is organized as follows. In section 7.1, we formulate a channel model for

translational and rotational misalignments and derive a bound for the detector efficiency.

In section 7.2, we derive maximum likelihood estimators for determining the unknown mis-

alignment parameters and analyze the asymptotic efficiency of these estimators through

Cramer-Rao bounds. In section 7.3, we develop a compensation algorithm for recovering

information bits from the detector output in the presence of rotation and translation mis-

alignments and additive white Gaussian noise. We also present an analysis for the error

performance of the algorithm. In section 7.4, we present simulation results relating to the

decoding performance. Discussions are summarized in section 7.5.

7.1 Channel Model for Translation and Rotational Mis-
alignment

A coherent holographic setup forms the basis of our channel model. Figure 3 shows the

basic holographic setup. The system comprises of two identical lenses separated by the sum

of their focal lengths. A square aperture of dimensions D is placed in the common focal

plane of the two lenses. This square aperture is a crystalline material where holograms are

recorded. The transmitter is an equispaced pixelated SLM array. The detector array is

typically a charge-coupled device (CCD) and is assumed to be identical to the SLM. The

spatial sampling rate is determined by the spacing of the pixels in the SLM. We assume

that the SLM spacing is identical to the aperture width. The pixel-spread function is the

convolution of the space-invariant impulse response (due to the aperture) with the pixel

shape. The space-invariant impulse response is determined by the continuous space Fourier

transform of the aperture shape. With a square aperture, the impulse response is an

integrated 2-D separable sinc function given by
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Detector Array

SLM Array

Figure 31: Rotation and translational misalignment of the SLM array with respect to the
detector (σx = 0.5, σy = 0.5, α = 3o)

h(x, y) = c

1
2
gSLM∫

− 1
2
gSLM

sin(π(x− x′))
π(x− x′)

dx′

1
2
gSLM∫

− 1
2
gSLM

sin(π(y − y′))
π(y − y′)

dy′, (87)

where gSLM is the SLM fill factor where the transmitted intensity is modulated. The

variables x, x′, y, and y′ are in the units of the pixel dimensions and the normalizing constant

c is chosen so that
∞∫

−∞

∞∫
−∞

h2(x, y)dxdy = 1. The lower and upper limits in the integral of

(87) are due to the planar field intensity from the SLM in the region where the CCD is

placed. We note that h(x, y) = 1 when evaluated at the center of the CCD pixel and is

oscillatory decaying along both the axes. We assume that the pixel pitch dimensions are

normalized to unity.

Figure 31 shows the schematic of a misaligned SLM array with respect to the detector

about the optical axis. It must be noted that the effects of translation and rotation do not

commute with each other. A 2-D translation followed by a rotation must be viewed as the

transformation of translation via the rotational transform. In this chapter, we assume that

there is a rotation first and then a translation. This assumption makes sense since rotation

is an inherent misalignment and cannot be perfectly corrected even though the optical

centers of the two arrays are exactly aligned. The translation could be due to mechanical

misadjustments. The order of translation and rotation do not in any way affect the method
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of analysis but the details of the channel model for the detected signal will be different.

The analysis for translation first followed by rotation can be trivially worked out, like the

rotation first followed by the translation case.

7.1.1 Detected signal and Coordinate Transformations

The angle of rotation α is assumed to be positive in the anti-clockwise direction and the

2-D lateral translations (σx, σy) are such that |σx|, |σx| ≤ 1
2 . The coordinates of any point

on the SLM with respect to the detector can be obtained as R(x, y)T + (σx, σy)T , where R

is the rotational transform given by

R =

 cos(α) − sin(α)

sin(α) cos(α)

 . (88)

The received signal at the detector pixel d(m,n) is given by

d(m,n) =

1
2
gCCD∫

− 1
2
gCCD

1
2
gCCD∫

− 1
2
gCCD

( ∑
mi,ni

gmi,ni(x, y)
√
s(mi, ni)

)2

dxdy + w(m,n), (89)

where gCCD is the CCD fill factor where most of the intensity at the detector pixel is

received. The term s(mi, ni) denotes the binary signal from the SLM pixel with discrete

index (mi, ni) that overlaps with the detector pixel with a 2-D discrete index (m,n). The

term w(m,n) denotes the noise at the output of the detector. For small angles α, the indices

(mi, ni) of the SLM pixels contributing to the cross talk terms in the detected signal d(m,n)

are due to (d(m−σx) cos(α)+(n−σy) sin(α)e, d−(m−σx) sin(α)+(n−σy) cos(α)e), and its

three neighbors on the left, the bottom, and the left-diagonal corners. Referring to Figure

31, let us fix the origin as the center of the detector grid array. The signal at the detector

pixel with top right corner coordinates (1, 2) is indexed as d(1, 2) and has energy mainly

contributed by the SLM pixels s(2, 2), s(2, 1), s(1, 2), and s(1, 1). The kernel gmi,ni(x, y) is

a rotated version of the function h(x, y) and is given by

gmi,ni(x, y) =
1
|R|

h(x− a)h(y − b), (90)

where (a, b) = (mi − 1
2 , ni − 1

2)RT − (σx, σy). Also, |R| = 1 since R is orthonormal.
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Figure 32: Schematic of the rotated and translated kernel g(x, y).

Figure 32 shows the sketch of the kernel g(x, y) centered at the point (1
2 ,

1
2)T . We can

imagine a tiling of such kernels at the center of each SLM pixel. These kernels low pass filter

the transmitted signal causing a pixel blur. The effect of rotation results in a non-uniform

interpixel interference at the intended detector pixel. The goal of the problem is to recover

the transmitted bits from the detected samples {d(m,n)}.

7.1.2 Detector Efficiency

Without loss of generality, we assume that the detector grid array and the SLM array are

of size 2m × 2m and each square is of unit area. Without any coding, every element of

this uniformly spaced grid array is an equally likely binary symbol. Without any noise and

misalignment, 4m2 information bits can be stored and retrieved. Let As and Ad denote the

areas of the transmitted and detected arrays respectively. As a result of translational and

rotational misalignments, not all the SLM pixels land exactly aligned to the CCD array.

We are interested in calculating the resulting inefficiency because of the misalignments.

The number of SLM bits rendered useless is given by the fraction of the area that does

not overlap between the transmitted and detected arrays. Thus, the portion of the channel

not containing As
⋂
Ad is lost due to the misalignments. Hence, the effective area is the

2-D overlapping region between the transmitter and the detector arrays. Ideally, when the

detector has infinite region of support, all the information bits can be recovered. However,
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when the grid arrays are finite, the number of transmitted bits lost (due to effective channel

seen by the detector) is given by

Tbits lost = 4m2
(
As −As

⋂
Ad

As

)
. (91)

From simple coordinate geometry, we can compute the overlapping areas of the CCD

and SLM arrays and obtain an upper bound on the number of transmitted bits that can

be recovered losslessly. The result is stated in Fact 7.1, and the derivation is relegated to

Appendix B for the sake of continuity.

Fact 7.1. For 2m × 2m equally likely binary symbols of the transmitted signal, at most

4m2(1 − Tloss) bits can be recovered from the rotational and translational misalignments.

The parameter Tloss is given by

Tloss = 1
2f(α)g(α) + 1

4 [ε1ε2 + ε3ε4],

where

f(α) = 1 + cot(α)− sin(α)− cot(α) cos(α),

g(α) = 1 + tan(α)− cos(α)− tan(α) sin(α),

ε1 =
±σx ∓ σy cot(α)

m
,

ε2 =
±σx tan(α)∓ σy

m
,

ε3 =
±σx cot(α)± σy

m
,

ε4 =
±σx ± σy tan(α)

m
. (92)

By choosing a large grid array, i.e., as m → ∞, Tloss is a function of α. Asymptotically,

rotational misalignment affects the system performance. We observe that the loss function

Tloss is periodic with π
2 and the maximum loss is around 0.18 bits per pixel occurring at

an angle ±nπ
4 . This absolute loss is unavoidable. When the angle of rotation is 45o, many

detector pixels are rendered useless, implying inefficient use of expensive optical components.

Figure 33 shows a plot of the loss function sketched for 0 ≤ α ≤ π
4 . We note that this

function has a maxima at π
4 . This result is rather intuitive to guess. The number of bits

lost due to the misalignments is rather insignificant for small angles.

95



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
ag

ni
tu

de
 in

 b
its

/p
ix

el

Angle in radians

Figure 33: Loss function in bits/pixel as a function of the angle of rotation.

In the presence of additive noise, the transmitted pixels can suffer errors. In such cases,

the fundamental information rate of the 2-D channel needs to be determined. Let C2D be

the capacity of the 2-D ISI channel. The number of bits that can be recovered losslessly

in the presence of misalignments and noise can be upper bounded as 4m2(1 − TLoss)C2D.

Computing C2D is an open problem. In this chapter, we focus on the signal recovery aspects

for compensating 2-D misalignment.

7.2 Signal Recovery: Parameter Estimation

We now consider the problem of recovering the input pixels from the detected signals. We

assume small angles of rotational misalignment [14], i.e., less than or equal to 3 degrees.

This is a pragmatic assumption. The translation misalignments are a fraction of the pixel.

Typically, |σx|, |σy| ≤ 1
2 . Large angles of rotation can always be compensated for by carefully

aligning the parts until a point where it is difficult to fine tune the angle alignment. Integer

translations can always be easily compensated by coarse alignments and re-indexing the

detected signal coordinates. Without any loss of generality, we assume that the detector

array is a square grid of size 2m× 2m. We define a coordinate system of the detector array

as follows. The coordinate of the center of the detector grid array is designated as the origin

(0, 0). The index for a detector pixel is identified by the coordinate of its right top corner.

The coordinates of the SLM array are referenced with respect to the detector’s coordinate
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system. This convention will be followed throughout the rest of this chapter. There are two

issues that need to be addressed here. The first step is to get an estimate of the unknown

misalignment parameters buried in noise. The next step is to detect and recover the bits.

Parameter estimation is an important precursor step before applying any compensation

technique. Robinson and Milanfar [38] have analyzed the effect of parameter estimation

on the performance of gradient-based image registration techniques. Their analysis is mo-

tivated by the motion estimation problem commonly encountered in video processing ap-

plications. In the present work, we are interested in the bit error rate after misalignment

compensation. Hence, the error measure is formulated in a 2-D communications framework.

We need to estimate the misalignment parameters before feeding this information into

the decoding engine. We assume that the unknown parameters are non-random. By sending

a known preamble of a pixel pattern and measuring the detected signals at a pre-designated

location, we can statistically estimate the parameters. The measured parameters can be

used subsequently in the reconstruction algorithm. Without any loss of generality, we as-

sume that σx and σy are positive, as shown in Figure 31. By presetting the transmitted SLM

array to an all zero pattern except at the locations s(0, 0), and s(2, 2), and by measuring the

detected signals d(0, 0), d(0, 1), d(1, 0), and d(2, 3), we can estimate all the parameters. We

note that we are judiciously choosing the location (0, 0) in the SLM array since any other

location will result in non-causal measurements. At this point, we note that the sign of the

translation parameters can be easily obtained by analyzing the dominant energy from the

neighborhood pixels of the detector array. The following analysis can be trivially extended

for different combinations of the negative and positive pairs of translation offsets.

We now formulate the equations for the detected signals d(0, 0), d(0, 1), d(1, 0), and

d(2, 3) by presetting the transmitted bits as s(0, 0) = 1 and s(2, 2) = 1 and zero everywhere

else. We choose the SLM pixel s(2, 2) since the effect of the blurring function corresponding

to s(0, 0) is very close to zero in the neighborhood of the detector pixels affected by s(2, 2).

We assume low SLM and CCD fill factors so that we can get rid of the integrals in (89) and

evaluate the blurring functions at the center of the detector pixel. By setting s(0, 0) = 1
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and evaluating the integral in (89) at the center of the detector pixel, we have

y1 = d(0, 0) = h2
(
−1

2
− a

)
h2
(
−1

2
− b
)

+N (0, σ2
v), (93)

y2 = d(1, 0) = h2
(

1
2
− a

)
h2
(
−1

2
− b
)

+N (0, σ2
v), (94)

y3 = d(0, 1) = h2
(
−1

2
− a

)
h2
(

1
2
− b
)

+N (0, σ2
v), (95)

where h(x) = sin(πx)
πx . The detector noise is assumed to be zero mean additive white Gaussian

noise with a variance σ2
v . The blurring parameters a, b in the above set of equations can be

obtained using the inverse transformation as

(a, b) = RT
(
−1

2
,−1

2

)
− (σx, σy). (96)

Similarly, we obtain the detected signal d(2, 3) as

y4 = d(2, 3) = h2
(

3
2

+ σx −
3
2
(sin(α) + cos(α))

)
h2
(

5
2

+ σy +
3
2
(sin(α)− cos(α))

)
+N (0, σ2

v).

(97)

It is clear that we cannot simultaneously solve for all the parameters by measuring y1, y2,

and y3, since one of them is redundant. We need a fourth measurement, like the one in

equation (97). Let us define the auxiliary parameters µ1 and µ2 as

µ1 = cos(α) + sin(α) + 2σx (98)

µ2 = cos(α)− sin(α) + 2σy. (99)

Using (98) and (99) in (93), (94), and (95) we have

y1 = h2
(

1
2
(−1 + µ1)

)
h2
(

1
2
(−1 + µ2)

)
+N (0, σ2

v) = f1 +N (0, σ2
v), (100)

y2 = h2
(

1
2
(1 + µ1)

)
h2
(

1
2
(−1 + µ2)

)
+N (0, σ2

v) = f2 +N (0, σ2
v), (101)

y3 = h2
(

1
2
(−1 + µ1)

)
h2
(

1
2
(1 + µ2)

)
+N (0, σ2

v) = f3 +N (0, σ2
v). (102)

Using the above set of equations, we will obtain the ML estimates of µ1 and µ2. By

setting s(0, 0) = 1, and making N independent measurements on y1, the probability density

function (pdf) of y1 is obtained as

pY1(y1|µ1, µ2) =
N∏

i=1

1√
2πσ2

v

exp

(
−(y1(i)− f1)2

2σ2
v

)
. (103)
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By setting the partial derivates of the log likelihood function of (103) to zero, we have

∂ ln pY1(y1|µ1, µ2)
∂µ1

= 0⇒ f1 =
1
N

N∑
i=1

y1(i)

∂ ln pY1(y1|µ1, µ2)
∂µ2

= 0⇒ f1 =
1
N

N∑
i=1

y1(i). (104)

Similarly, by obtaining the joint pdf of N measurements of y2 and y3 and doing an ML

estimation, we obtain f2 and f3 as

f2 =
1
N

N∑
i=1

y2(i) (105)

f3 =
1
N

N∑
i=1

y3(i). (106)

The estimates µ̂1 and µ̂2 can be obtained by solving the following equations

h2
(

1
2(µ̂1 − 1)

)
h2
(

1
2(µ̂1 + 1)

) =

N∑
i=1

y1(i)

N∑
i=1

y2(i)
(107)

h2
(

1
2(µ̂2 − 1)

)
h2
(

1
2(µ̂2 + 1)

) =

N∑
i=1

y1(i)

N∑
i=1

y3(i)
. (108)

We note that the estimates µ̂1 and µ̂2 are asymptotically unbiased and efficient. We will

now use the ML estimates for µ̂1, µ̂2 in y4, and get an ML estimate for α. Expressing σx

and σy in (98) and (99) in terms of µ̂1, µ̂2, and α and plugging it in (97), we have

ỹ4 = h2
(

3
2

+
1
2

(µ̂1 − 4 cos(α)− 4 sin(α))
)
h2
(

5
2

+
1
2

(µ̂2 − 4 cos(α) + 4 sin(α))
)

+N (0, σ2
v)

= f4 +N (0, σ2
v). (109)

Collecting N i.i.d samples of ỹ4, we obtain the joint pdf as

pỸ4
(ỹ4|µ1, µ2) =

N∏
i=1

1√
2πσ2

v

exp

(
−(ỹ4(i)− f4)2

2σ2
v

)
. (110)

Again, doing an ML estimation for α̂, like (104), we numerically compute α̂ from the

following equation.

h2
(

3
2

+
1
2

(µ̂1 − 4 cos(α̂)− 4 sin(α̂))
)
h2
(

5
2

+
1
2

(µ̂2 − 4 cos(α̂) + 4 sin(α̂))
)

=
1
N

N∑
i=1

ỹ4

(111)
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We now derive the Cramer-Rao lower bound (CRLB) [37] for the error variance in estimating

α̂. We note that α̂ is an unbiased estimate of α. The CRLB for unbiased estimators is given

by

var(α̂|α, µ̂1, µ̂2) ≥
1

−E
(

∂2 ln pỸ4
(ỹ4|µ̂1,µ̂2,α)

∂α2

) . (112)

Computing the denominator term we have,

∂ ln pỸ4
(ỹ4|µ̂1, µ̂2, α)
∂α

=
1
σ2

v

∂f4

∂α

[
N∑

i=1

(ỹ4(i)− f4)

]
(113)

∂2 ln pỸ4
(ỹ4|µ̂1, µ̂2, α)
∂α2

=
−N
σ2

v

(
∂f4

∂α

)2

+
1
σ2

v

∂2f4

∂α2

[
N∑

i=1

(ỹ4(i)− f4)

]
(114)

E

(
∂2 ln pỸ4

(ỹ4|µ̂1, µ̂2, α)
∂α2

)
=
−N
σ2

v

(
∂f4

∂α

)2

. (115)

Computing ∂f4

∂α and using this result in (115), (112) can be simplified as

var(α̂|α, µ̂1, µ̂2) ≥
σ2

v

N

1
(z1(α) + z2(α))2

, (116)

where

z1(α) = 2h2 (η1(α))h (η2(α))
η′2(α)
η2(α)

[cos(πη2(α))− h(η2(α))] ,

z2(α) = 2h2(η2(α))h(η1(α))
η′1(α)
η1(α)

[cos(πη1(α))− h(η1(α))] ,

η1(α) =
3
2

+
1
2

(µ̂1 − 4 cos(α̂)− 4 sin(α̂)) ,

η2(α) =
5
2

+
1
2

(µ̂2 − 4 cos(α̂) + 4 sin(α̂)) ,

η′1(α) = 2 sin(α)− 2 cos(α),

η′2(α) = 2 sin(α) + 2 cos(α). (117)

For a given α and the estimates µ̂1 and µ̂2, the right hand side of (116) heads to zero as

N →∞ with z1(α) + z2(α) 6= 0.

7.3 Signal Recovery: Scanning and Decoding

From the structure of equation (89), we observe that the system is fundamentally non-linear

and anti-causal. The non-linearity is because of the cross terms in the squaring process.

The non-causality arises because we cannot initiate a recursion without the knowledge of
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a few transmitted bits. To facilitate a recursion, we need to initialize the SLM pixels in

the boundary layers to zero. To determine the number of such layers that are initialized

to zero, we compute the coordinates of the SLM array that just exceeds the range of the

detector array. Consider the column of pixels at the right most ends. The coordinate

of the right top corner (m, y)T after rotational transform and translation is obtained as

(m cos(α)− y sin(α) + σx,m sin(α) + y cos(α) + σy)
T . The condition where the ordinate y

exceeds m is given by

m sin(α) + y cos(α) + σy > m. (118)

From equation (118), we infer that we need to set the top m −
⌊

m(1−sin(α))−σy

cos(α)

⌋
layer

of SLM pixel bits to zero. Similarly, by symmetry, we set the bottom layer of m −⌊
m(1−sin(α))−σy

cos(α)

⌋
SLM pixels to zero. Proceeding along similar lines, the left and the right-

most m−
⌊

m(1−sin(α))−σx

cos(α)

⌋
layer of SLM pixels are initialized to zero.

The recovery process is done in two blocks. The first block comprises of all the detector

pixels towards the right-half plane of the detector array. The second block consists of all the

pixels in the left-half plane. For the first block, the detector pixels are sequentially scanned

starting from the topmost row until all the transmitted SLM bits are sequentially decoded

from right to left along this row. The scanner moves to the next row and repeats the process

of decoding all the row bits before starting from the next row. This process iterates until

all the bits in the first block are decoded. This idea is illustrated in Figure 34. For the

second block, the scanner starts from the bottommost row in the left-half plane, decodes

all the bits from left to right along that row, moves to the next top row, and iterates the

process until all the bits are recovered.

We can also decode by processing the array of detected signals in four different blocks

corresponding to each of the four quadrants and then average the results. The averaging

technique will be helpful in the presence of severe detector noise when decoding errors tend

to propagate.

It is worthwhile to note that decoding from the edges is counter-intuitive to process-

ing from the center since the bits at the center are more reliable to rotational artifacts.

The reason for this strategy stems from the fact that any other signal processing recovery
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technique will be essentially anti-causal since the neighborhood of the intended pixel has

dependencies on both the sides. Processing the information from the center will require

manipulation of the encoding operation and a predetermined interleaving. To avoid these

complications and overheads, we process the information from the edges. Using this strat-

egy, we can reconstruct bits without any prior encoding or loss in performance. We now

outline the steps for decoding the first block. The procedure is described below in the form

of an algorithm. The decoding algorithm for the second block follows anti-symmetrically in

exactly the same way as the first block.

scan orderscan order

Figure 34: Scanning and decoding the CCD pixels.

Outline of the Algorithm

Introduce the following definitions:

s : Array representing the decoded bits.

d : Array holding the detected signal values.

Initialize:

• Obtain the estimates of the parameters α̂, σ̂x and σ̂y.

• Set all the pixels of the array s along the rows from
⌊

m(1−sin(α̂))−σ̂y

cos(α̂)

⌋
to m as zero.

Also, set all the pixels of the array s from columns
⌊

m(1−sin(α̂))−σ̂x

cos(α̂)

⌋
to m as zero.

Algorithm Steps:
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1. Set the detector index to the top right corner (r, c) = (m,m).

2. Obtain the SLM pixel indices that overlap with (r, c) as (a, b), (a−1, b), (a, b−1), and

(a− 1, b− 1), where (a, b) = (dr cos(α̂) + c sin(α̂)− σ̂xe, d−r sin(α̂) + c cos(α̂)− σ̂ye) .

3. Evaluate the components of the kernel ga−1,b(x, y), ga,b(x, y), and ga,b−1(x, y) at the

center of the detector pixel x = r − 1
2 , y = c− 1

2 .

4. Obtain the component of the signal energy for the SLM pixel (a−1, b−1) as
√
d(r, c)−

q, where q = ga,b

√
s(a, b)− ga−1,b

√
s(a− 1, b)− ga,b−1

√
s(a, b− 1).

5. Compute γ =
( √

d(r,c)−q

ga−1,b−1(r− 1
2
,c− 1

2
)

)2

6. If γ ≥ τth, decode s(a− 1, b− 1) = 1, else decode s(a− 1, b− 1) = 0.

7. c← c− 1. Loop back to Step 2 till c = 1.

8. r ← r − 1. Loop back to Step 2 till r = −m+ 2.

We note that the decoding process is simple and the algorithm has no extra storage over-

heads. The time complexity of the algorithm is linear in the number of pixels decoded. We

use threshold detection in Step 6 to circumvent the round off errors and for handling the

detector noise. Since the decoded pixel value is either ‘0’ or a ‘1’ and is equally likely, the

threshold τth is optimally set to 1
2 in the high SNR regions.

7.3.1 Performance Limits and Error Analysis

From the recursive structure of the decoding algorithm, it is apparent that there will be

error propagation effects especially when there is severe detector noise. However, these

effects somewhat counterbalance the amount of residual energy available at the detector.

In this section, we formulate equations for analyzing the error propagation dynamics of the

algorithm.

Let t denote the sequential time index for decoding. The pixel decoded at time t is

dependent on the decoded pixels at time instants t−1, t−2t mod (m), and t−2t mod (m)−1.

From step 5 of the algorithm, neglecting the fractional higher-order terms, we can obtain

103



the decoded bit at time t as

β(t)d̃(t) = β(t)d(t) + β(t− 1)d(t− 1) + β(t− t1)d(t− t1) + β(t− t1 − 1)d(t− t1 − 1)

−(β(t− 1)d̃(t− 1) + β(t− t1)d̃(t− t1) + β(t− t1 − 1)d̃(t− t1 − 1))

+N(0, σ2
v) (119)

where, t1 = 2t mod (m). The term β(t) represents the time-varying component of the

blurring function. Denoting the error by e(t) = d(t)− d̃(t) and simplifying (119), we have

β(t)e(t)+β(t−1)e(t−1)+β(t− t1)e(t− t1)+β(t− t1−1)e(t− t1−1)+N(0, σ2
v) = 0 (120)

Equation (120) implies that the error dynamics are non-linear and time-varying. This fact

explains that significant bit error rates are possible when the noise variance is high. Since

computing the probability of error analytically is intractable, we validate the results through

simulations and explain the deviations based on the error dynamics. At high signal-to-noise

ratios, the decoding errors are less. Hence, the probability of error is dependent mainly on

the local noise threshold and less on the error propagation effects.

Before concluding this section, we would like to briefly comment on the choice of detec-

tors and the asymptotic performance of detection algorithm. In order to make meaningful

comparisons, we need to know the channel capacity in the first place. As pointed out before

in section 2, the capacity of 2-D ISI channels is an open problem. There are a few detection

strategies based on iterative techniques [31] for jointly decoding codes in the presence of

2-D channel ISI with a known time-invariant channel impulse response. These techniques

cannot be formulated in a straightforward for time-varying ISI models like the rotational

misregistration case. Constructing practical efficient finite-complexity detection algorithms

for 2-D noisy ISI channels is an open research problem. Hence, in evaluating the perfor-

mance of our algorithm, we compare our results against a baseline thresholding scheme to

validate the necessity for a compensating technique. This will also serve as a benchmark

for the detector performance.
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7.4 Results and Discussion

In this section, we validate the performance of the estimators and the algorithm through

simulations. We are comparing our algorithm with a baseline thresholding scheme without

compensation since we are not aware of any other algorithm that handles fractional non-

uniform misregistration.

Experiment: 1

In the first experiment, we simulate the performance of the estimators and compute the

CRLB to validate the claims. N = 10000 samples of i.i.d measurements of y1, y2, y3, and

y4 were collected in the presence of additive white Gaussian noise with σ2
v = 0.001. Table

13 shows the true and estimated values of α, σx and σy. It is clear that the estimators are

asymptotically efficient and achieve the Cramer-Rao lower bounds. In practice, it might

not be feasible to obtain 10000 measurements. Instead, the data can be read from a few

hundred recorded holograms to get a rough estimate of the unknown parameter.

Table 13: Estimates of the parameters

(α, σx, σy) (α̂, σ̂x, σ̂y) CRLB for α

(2, 0.25, 0.5) (1.9824, 0.2505, 0.4999) 1.513× 10−5

(2.5, 0.3, 0.5) (2.5382, 0.3002, 0.5003) 1.669× 10−5

Experiment: 2

In the second experiment, we consider pure rotation. The parameters are α = 2, σx = 0

and σy = 0. Several pages of 100 × 100 pixel arrays were modeled to mimic the detector

output with 2 degrees of rotational misalignment. White Gaussian noise was added to the

detector output. Numerically estimated values for α̂ were used in the decoding algorithm.

The noise variance was varied to obtain different SNRs. Table 14 shows the average bit error

rate (BER) versus signal-to-noise ratio after compensation. The above steps were repeated

for different values of α. It is interesting to note that the decoding algorithm performs

well with high SNR and is fairly robust with SNRs around 50dB. The error rate is certainly

higher than that expected for equally likely binary symbols over an additive white Gaussian

channel. This fact can be explained by the non-linear error propagation dynamics outlined
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in the last section. Reducing the crosstalk by compensation will increase the susceptance

to noise. Interestingly, at very low SNRs the bit error rate seems to be rather not too high

when compared to a binary communication over the AWGN channel. It appears that the

residual energy from the neighbors somewhat counterbalances the noise effects in the low

SNR region.

Table 14: SNR versus bit error rate

SNR (dB) BER (α = 2) BER (α = 3)
∞ 0 0
60 0.0088 0.0085
50 0.0320 0.0330
40 0.0770 0.0760
30 0.2078 0.2078
20 0.2995 0.3024
1 0.4400 0.4824

Experiment: 3

In the third experiment, we consider rotation and translation. Several pages of 100 × 100

pixel arrays were modeled to mimic the detector output with the misalignment parameters

outlined in Table 15. The setup for this experiment was done in exactly the same way as in

the previous example. Table 15 shows the average BER versus SNR for the tuple (α, σx, σy).

In this experiment, we compare the results with a simple baseline thresholding scheme to

validate the need for misregistration compensation. The threshold for the baseline scheme

without any misregistration compensation is chosen based on the mean of the detector

intensity values.

It is clear from Table 15 that the misregistration compensation is needed for decoding

bits resulting from interpixel crosstalk. A baseline scheme, such as a simple threshold

detector will perform poorly since it does not have enough local statistics to decode the

bits.

We would like to point out that high bit error rates can result due to sampling at the

Nyquist frequency and can be overcome by oversampling at the SLM. But we limit our

theoretical analysis to Nyquist rate sampling.
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Table 15: SNR versus bit error rate

SNR (dB) BER-Baseline BER-Compensation BER-Baseline BER-Compensation
(2, 1

4 ,
1
2) (2, 1

4 ,
1
2) (2, 1

2 ,
1
2) (2, 1

2 ,
1
2)

∞ 0.3950 0 0.3950 0
60 0.3950 0.0120 0.4152 0.0142
50 0.4152 0.0316 0.4146 0.0338
40 0.4152 0.0804 0.4164 0.1020
30 0.4150 0.1986 0.4154 0.2166
20 0.4194 0.3176 0.4204 0.3230
1 0.4790 0.4394 0.4718 0.4408

7.5 Summary

The fractional pixel misregistration problem is frequently encountered in many imaging

systems. Minor misalignment errors in rotation and translation lead to non-uniform frac-

tional interpixel crosstalk requiring compensation. In this chapter, we formulated a channel

model for handling translational and rotational misalignment for optical imaging systems

like volume holographic memories and derived an upper bound on the number of recoverable

bits. We derived maximum likelihood estimators for determining the unknown misalign-

ment parameters and validated the efficiency of the estimators using Cramer-Rao bounds.

We also developed a misregistration compensation algorithm and validated its performance

through simulations and error propagation models. It is interesting to note that the al-

gorithm performs well in the presence of detector noise. The effect of crosstalk somewhat

counterbalances the effect of noise. When the crosstalk components are removed, the local

statistic is prone to noise. This effect is unavoidable and is inherent in imaging systems

with interpixel crosstalk. The recursive nature of the algorithm leads to decoding error

propagation. This is primarily due to the serial structure of the algorithm. There is a

natural trade-off between the gain in the SNR with crosstalk and the susceptibility to noise

when crosstalk terms are compensated.

We note that bit error rates can be reduced by encoding information bits using powerful

two-dimensional error correcting codes. There are a lot of fundamental problems associ-

ated with 2-D noisy interpixel interference channels. It would be interesting to analytically
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determine the 2-D channel capacity and develop powerful 2-D coding algorithms for maxi-

mizing the information rate over such channels. There are other open research issues that

need to be addressed while designing 2-D detection algorithms. What is the best decoding

algorithm that minimizes the average bit-error rate ? If so, are there bounds on the coding

rate and the probability of error performance trade-off ? There are several other interesting

problems in this area. Many of these problems cannot be solved by a simple extension of

existing 1-D algorithms.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

In this thesis, we dealt with constrained coding and signal processing aspects of holographic

systems. Constrained coding in two-dimensions is an important open problem in mathe-

matical physics with a wide range of applications from theoretical studies in lattice packings

to finite automata theory. In the following section, we summarize the main contributions

of our research.

8.1 Main Contributions

The following are the main results of this thesis.

• We derived bounds for the capacity of 2-D (1,∞, d, k) RLL constrained channels

by extending existing ideas based on the adjacency construction. We proposed low

complexity algorithms for writing valid arrays using an iterative approach.

• We derived bounds for the capacity of asymmetric (d1,∞, d2,∞) and (0, k1, 0, k2)

binary RLL constrained channels. We deduced code constructions that achieve the

derived capacity lower bounds.

• We generalized our ideas for computing the capacity bounds and extended the coding

algorithms for asymmetric multi-level (M,d1,∞, d2,∞) and (M, 0, k1, 0, k2) 2-D RLL

constrained channels. Our results are the first reported analytical bounds for these

constraints. Our ideas can be extended further to a class of multi-dimensional multi-

level RLL constraints.

• We derived a constructive bound for the capacity of holographic channels. We also

analyzed the trade-off between the storage density and the multiplexing rate for holo-

graphic channels. This theoretical result strengthens the existing experimental frame-

work for estimating the volumetric storage density in holographic memories.
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• We developed a channel model for combined two-dimensional translational and rota-

tional misregistration in holographic systems and proposed a signal recovery algorithm

for interpixel interference cancellation. The theory can be extended to other optical

imaging systems.

8.2 Future Work

There are a number of research challenges in the exciting world of 2-D constrained cod-

ing, error correction coding, and signal processing. Two-dimensional information-theoretic

problems have wide spread applicability and impact in other interdisciplinary fields, such

as computer science and physics. Some of these problems are considered quite hard to

tackle. From a mathematical perspective, exactly computing the capacity and developing

efficient coding algorithms for 2-D constrained channels is a contribution to symbolic dy-

namics. From a practical perspective, these results have applications in ultra-high capacity

memories like volume holography and patterned media. We will sumarize some of the open

problems in the field.

• Exactly computing the 2-D capacity of RLL constrained channels is an open problem.

There are very few capacity bounds for 2-D finite (d, k) constraints. Most of the

existing results are very loose bounds. A general theory needs to be developed for

exactly computing the capacity of higher dimensional constrained channels.

• Computing the capacity for 2-D ISI channels is also an open problem. Algorithms

based on iterative constructions are just capacity estimates. A clear analytical frame-

work needs to be developed for this problem. The development of a theory for comput-

ing the capacity of 2-D ISI channels will advance our understanding for constructing

codes and developing efficient detection algorithms for finite 2-D ISI channels.

• There are a number of other problems related to 2-D coding for spectral shaping.

These problems are virtually unexplored. For example, there is no known technique

for designing efficient 2-D higher-order spectral null constraints. Also, analyzing the

2-D power spectral density of modulation and error correcting codes is an interesting
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topic for further research.

• Developing new error correcting codes with modulation code properties is yet another

challenging problem. No work is reported in this field at the moment.

• The development of signal processing techniques for holography is a self-contained

topic in itself. Developing efficient maximum likelihood detectors and extending the

framework of trellis type detection algorithms for two dimensions is a challenging prob-

lem. In our current work on pixel misregistration, we considered the case when the

misalignment parameters are fixed but unknown. A general technique needs to be de-

veloped for efficiently handling time-varying misalignments due to material shrinkage

effects. This can be more practically helpful for an engineer working on holographic

memories.

To conclude, there are a number of rich theoretical problems in the field of multi-

dimensional information theory that warrant further investigation. Many of these

problems are unsolved and have deep consequences in other multi-disciplinary areas.

It is certainly worthwhile to investigate these problems to further our understanding

of higher-dimensional channels and systems.
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APPENDIX A

IMPROVED ENUMERATION TYPE BOUNDS FOR 2-D

(0, 1) AND (1,∞) RLL CONSTRAINTS

In this appendix, we present an analysis for obtaining slightly improved lower bounds for

2-D RLL constraints. We derive these bounds based on the tiling algorithms presented in

Chapter 4.

Proposition A.1. The capacity of (0, 1, 0, 1) constraints can be further lower bounded as

C(0,1,0,1) ≥ sup
p∈[0,1]

[
h(p)
1+2p +

∞∑
s=2

(1−p)2ps+1

1+p+(2s+1)ps+1(1−p)2

(
h(p)
1+p

)]
.

Before we begin with the proof of the proposition, we would like to highlight our motive

for working on this derivation. The bounds presented in Theorem 5.1 and Theorem 5.2 are

tight within 0.5% for values of k greater than 5. Since our approach for computing capacity

is constructive, we are interested in further tightening the lower bound to realize improved

code rates.

We would like to recall the steps while deriving Theorem 5.1. We place a one for every

k consecutive zeros occurring horizontally. Along the vacant spaces created in subsequent

columns, we write valid sequences from a 1-D graph. Consider the (0, 1, 0, 1) constraint.

While writing along the vacant positions within the 2nd column using the constrained graph

G(0,1), two or more consecutive zeros can never occur. Suppose after horizontal bit stuffing of

a one, we have a sequence of the type x1x1x1x1..., where x is a vacant space of unit length.

(A vacant space is space where no bit has previously been written. It is the vacant space

between two consecutive ones in this case.) We can introduce additional zeros in between

the ones and write sequences from G(0,1) along the remaining vacant spaces. We note that

the new set of sequences generated by this process could never have been constructed by just

writing sequences from a (0, 1) constrained graph along the vacant spaces. By enumerating

these patterns, we gain entropy rate.
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Figure 35: Additional valid configurations for generating (M, 0, 1) arrays. (a) Sequence
{110101011} occurs in any column, a complementary sequence xx10101xx (x can be a zero
or a one) is placed in the next column (b) Sequence {11010101011} occurs in any column,
and a complementary sequence xx1010101xx is placed in the next column.

Figure 35 illustrates the idea. In Figure 35 (a), the sequence {110101011} occurs in the

first column. A complementary sequence xx10101xx can be placed in the next column and

the bits can be written along the vacant spaces by doing a random walk on G(0,1). Similarly,

Figure 35 (b) illustrates the case for the sequence {11010101011}. In general, we consider

sequences of the type {1101010.....11} generated by G(0,1), write complementary sequences

in the next column, as shown in Figure 35, and then write sequences by doing a random

walk on G(0,1) along the vacant spaces. Using this idea, we will develop the proof of the

proposition.

Proof. By stuffing a one for every zero that occurs in the previous column of the same row,

the 2-D rate can be computed using Theorem 4.4 as

R1 =
h(p)

1 + 2p
. (121)

After doing a random walk on G(0,1), we observe the occurrences of the subsequences of

the type E2 : {110101011} as shown in Figure 35 (a). Using the adjacency matrix structure
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outlined in section 4.6, the probability of the subsequence {110101011} can be obtained as

p2 = [π0(1− p) + π1]p3(1− p)2. (122)

We focus on a smaller sequence {01010} nested within the subsequence {110101011}.

For every zero occurring in the subsequence 01010, we stuff a one to the right, as shown

in Figure 35. This transforms the pattern in the second column as 1x1x1. We stuff 2

consecutive zeros which further transforms the pattern 1x1x1 as 10101. We note that this

particular configuration of writing ‘two’ consecutive zeros could never have occurred by a

random walk on G(0,1) on the available vacant spaces. After these steps, for the remaining

vacant positions we do a random walk on G(0,1). Since effectively 5 bits are lost for every

occurrence of the sequence {110101011}, the expected free space f (2)
s for writing the bits

along the vacant positions is given by the recursion

E(f (2)
s ) = m− 5p2E(f (2)

s ). (123)

Let Rm be the entropy rate of the 1-D (0, 1) constraint. We can compute Rm as

Rm = π0h(p), (124)

where h(p) is the binary entropy function and π0 = 1
p+1 .

Using (122), (123), and (124) the additional 2-D entropy δR(2) gained due to the event

E2 is given by

δR(2) = p2
E(f (2)

s

m
Rm. (125)

We continue this process for all the other subsequences of the type {11(01)s1}. It is

clear that a subsequence of the type {11(01)s1} is not a subsequence of {11(01)s̃1} for some

value of s̃ 6= s. Thus, the entropy obtained by considering such distinct subsequences is

additive. Now, for every s zeros occurring in the the subsequence {11(01)s1}, 2s+1 bits are

effectively lost. By proceeding in the same way as in (125), the increase in the 2-D entropy

rate is given by
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δR(p) =
∞∑

s=2

(1− p)2ps+1

1 + p+ (2s+ 1)ps+1(1− p)2
(
h(p)
1 + p

)
. (126)

Using (121 and (126), and maximizing the overall 2-D entropy rate over all choices of

p, we get

R = sup
p∈[0,1]

[R1(p) + δR(p)]. (127)

Equation (127) is a constructive lower bound for the 2-D capacity of the (0, 1, 0, 1)

constraints. This proves the proposition.

Computing the bound in the Proposition A.1, we get an improved lower bound as 0.5632.

The 1-D constrained graphs G(0,1) and G(1,∞) are isomorphic to each other. In other

words, one graph can be realized from the other by complementing the bits along the edges.

Thus, Proposition A.1 holds true for the (1,∞, 1,∞) constraint as well.

We note that the analysis can be extended for the M-ary case.
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APPENDIX B

COMPUTING DETECTOR EFFICIENCY

In this appendix, we derive an expression for the number of recoverable bits from misalign-

ments. The basic idea is to find the overlapping areas between the SLM and CCD arrays

using elementary coordinate geometry for computing the detector efficiency.

Let us fix the CCD coordinate system first and then obtain the SLM coordinates. We

are assuming that the SLM is at a positive angle α with respect to the detector and is

shifted by (±σx,±σy)T with respect to the optical center, as shown in Figure 36. Any point

(x, y)T on the CCD plane is mapped to R(x, y)T +(±σx,±σy)T on the SLM. Let the optical

center of the CCD correspond to the coordinate (0, 0). The four corners i.e., the right-top,

the left-top, the left-bottom and the right-bottom corners of the CCD array correspond to

the coordinates (m,m)T , (−m,m)T , (−m,−m)T , and (m,−m)T respectively. Let us denote

these four corners as a, b, c and d respectively. After transformation, these points will be

mapped as:

A = (m cos(α)−m sin(α)± σx,m sin(α)m cos(α)± σy)T

B = (−m cos(α)−m sin(α)± σx,−m sin(α) +m cos(α)± σy)T

C = (−m cos(α) +m sin(α)± σx,−m sin(α)−m cos(α)± σy)T

D = (m cos(α) +m sin(α)± σx,m sin(α)−m cos(α)± σy)T . (128)

The line segment AB intersects the line segments ab and bc at points p and q respectively.

Similarly, the points of intersection r, s, t, u, v, and w can be obtained, as shown in Figure 36.

The coordinates of the points p and q are obtained as follows. From elementary coordinate

geometry, the equation of line AB is given by

y −m sin(α)−m cos(α)∓ σy = tan(α)(x−m cos(α) +m sin(α)∓ σx). (129)

Since the abscissa of q is −m, the ordinate can be obtained by plugging x = −m in (129).
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d(m,-m)c(-m,-m)
ts

u

v

w

q

r

(0,0)

Figure 36: Coordinate system for SLM and CCD planes..

Similarly, the ordinate of p is m and the abscissa can be obtained by plugging y = m in

(129). We obtain the coordinates of p and q as

p = (m(1 + cot(α)− cos(α) cot(α)− sin(α))∓ cot(α)± σx,m)T

q = (−m,m(cos(α)− tan(α) + tan(α) sin(α))± σy ∓ σx tan(α))T . (130)

Using (130), we can obtain the area of the triangle 4pbq as

41 =
1
2
m2

(
1 + cot(α)− cos(α) cot(α)− sin(α) +

±σx ∓ σy cot(α)
m

)
(

1− cos(α) + tan(α)− sin(α) tan(α) +
∓σy ± σx tan(α)

m

)
. (131)

Proceeding in the same way, we obtain the areas of the triangles 4rcs,4udt, and 4vaw as

42,43, and 44 respectively given by

42 =
1
2
m2

(
1 + cot(α)− cos(α) cot(α)− sin(α) +

±σx cot(α)± σy

m

)
(

1− cos(α) + tan(α)− sin(α) tan(α) +
±σy tan(α)± σx

m

)
43 =

1
2
m2

(
1 + cot(α)− cos(α) cot(α)− sin(α) +

∓σx ± σy cot(α)
m

)
(

1− cos(α) + tan(α)− sin(α) tan(α) +
±σy ∓ σx tan(α)

m

)
.

44 =
1
2
m2

(
1 + cot(α)− cos(α) cot(α)− sin(α) +

∓σx cot(α)∓ σy

m

)
(

1− cos(α) + tan(α)− sin(α) tan(α) +
∓σy tan(α)∓ σx

m

)
(132)
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The fractional area At−Ad

⋂
At

At
where the channel containing the transmitted bits is effec-

tively lost is given by

Tloss =
∑4

i=14i

4m2
. (133)

Using (131) and (132) in (133), and simplifying we get,

Tloss =
1
2
f(α)g(α) +

1
4
[ε1ε2 + ε3ε4] (134)

where,

f(α) = 1 + cot(α)− sin(α)− cot(α) cos(α)

g(α) = 1 + tan(α)− cos(α)− tan(α) sin(α)

ε1 =
±σx ∓ σy cot(α)

m

ε2 =
±σx tan(α)∓ σy

m

ε3 =
±σx cot(α)± σy

m

ε4 =
±σx ± σy tan(α)

m
(135)

In the limit when m → ∞, ε1, ε2, ε3, ε4 → 0, the loss is chiefly governed by the term

1
2f(α)g(α).
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