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SUMMARY

The statistical anaysis of data has been regularly shaped by the challenges that new

problems in science, engineering and finance have to offer. During recent years, the advances

in computational information handling and the development of new technologies capable

of measuring and storing massive amount of data, tilted the attention of many researches

toward new kinds of statistical problems mainly characterized by a vast increment in size

and complexity. The exploded number of data points favored the use of non-parametric

models, in particular for prediction and feature extraction. The complexity of the data im-

plied the use of new approaches for dealing with high dimensional problems and functional

data. Using classical inference methods for fitting data in this framework lead to non-stable

solutions due to the large number of parameters.

Although different in nature, the majority of these new statistical techniques require the

solution of an ill-posed problem. Given the inherent over-parametrization, it is necessary

to add assumptions that produce regular solutions. In general, some restrictions need to

be attached to the class of models that are fitted, for example, structural smoothness is

assumed in the case of non-parametric function estimation, or sparsity in the case of high

dimensional linear models.

The present dissertation, in general, is about finding stable solutions to statistical models

with very large number of parameters and to analyze their asymptotic statistical properties.

In particular, it is centered in the study of regularization methods based on penalized esti-

mation. Those procedures find an estimator that is the result of an optimization problem

balancing out the fitting to the data with the plausability of the estimation. Adding a pe-

nalization term, in conjunction with corresponding assumptions about the class of possible

values for the true parameter, permits to create a better trade-off between the deterministic

and the stochastic errors. As pointed out in Bickel and Li (2006), the particular combi-

nation of restrictions and penalty may serve two purposes: to construct a good predictor
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and to select the relevant variables in the prediction. This thesis has three parts, each one

contained in a different chapter.

The first chapter studies a smoothness regularization estimator for an infinite dimensional

parameter in an exponential family model with functional predictors. The main objective

is to analysis the asymptotic statistcal properties of the proposed estimator. We focused

on the Reproducing Kernel Hilbert space approach and show that regardless the generality

of the method, minimax optimal convergence rates are achieved. This research project en-

hances the set of tools that can be used for Functional Data Analysis, specifically, allowing

for a computational convenient estimation of the regression problem in settings where the

response is discrete or the zero mean additive error assumption is not appropiate. In order

to derive the asymptotic analysis of the estimator, we developed a simultaneous diagonal-

ization tool for two positive definite operators: the kernel operator and the operator defined

by the second Frechet derivative of the expected data fit functional. By using the proposed

simultaneous diagonalization tool we obtained sharper bounds on the minimax rates.

The second chapter studies the statistical properties of the method of regularization using

Radial Basis Functions in the context of linear inverse problems. Radial basis function

regularization is widely used in machine learning because of its demonstrated effectiveness

in numerous applications and computational advantages. We consider a known compact

linear operator A from L2(−π, π) to L2(−π, π), and suppose that y is observable, where

Af = y. Even if the range of A is dense, finding f by inverting the operator A can be

an ill-conditioned problem. The regularization here serves two purposes, one is creating a

stable solution for the inverse problem (A−1) and the other is prevent the over-fitting on

the nonparametric estimation of f0. The particular interest in this project is to analysis

the statistical properties of the estimator f̂λ. Different degrees for the the ill-posedness in

the inversion of the operator A are considered: mildly and severly ill-posed. Also, we study

different types fo radial basis kernels classified by the strength of the penalization norm:

Gaussian, Multiquadrics and Spline type of kernels.

The third chapter deals with the problem of Individualized Treatment Rule (ITR) and

analyzes the solution of it trough Discriminant Analysis. The ITR problem is one of the

x



primary interest of personalized medicine, where the treatment (or type of medicine) assig-

ment is done based on the particular patient’s prognosis covariates in order to maximizes

some reward function (response to treatment). Data generated from a random clinical trial

is considered. Given that the different treatments form a categorical set, maximizing the

empirical value function is an NP-hard computational problem. The usual approach in the

literature is a two stage procedure, where first the mean response is estimated and then

the estimator is maximized according to the best rule. This approach is prone to generate

suboptimal solutions when the functional class considered is not rich enough. We consider

estimating directly the decision rule by maximizing the expected value, usign a surrogate

function in order to make the optimization problem computationaly feasible (convex pro-

gramming). Necessary and sufficient conditions for Infinite Sample Consistency on the

surrogate function are found for different scenarios: binary treatment selection, treatment

selection with witholding and milti-treatment selection.
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CHAPTER I

REPRODUCING KERNEL HILBERT SPACE APPROACH TO

GENERAL FUNCTIONAL LINEAR REGRESSION FOR

EXPONENTIAL FAMILIES

1.1 Introduction.

Many statistical analyses require the process and manipulation of data that take the form

of random curves. This is the result of new technologies, arising in different research fields,

that can produce massive number of observations. Those curves are usually smoothed ver-

sions of longitudinal data measured over a very fine grid of points that can be modeled as

functional data. During recent years many new statistical methodologies have been devel-

oped for functional data analysis. A compendium of these advances can be found in Ferraty

and Romain (2010) and Ramsay and Silverman (2005). Special attention has been directed

to the modeling of a scalar response with functional predictors, being the functional linear

regression the most renowned case (see, e.g., Cardot, Ferraty and Sarda (2003), Cai and

Hall (2006) and Yuan and Cai (2010)). However, in numerous applications there exist some

restrictions on the characterization of the response variable, for instance when this response

is categorical or when the usual zero mean additive error assumption does not seem to

be appropiate. A natural alternative is the use a generallized linear model adapted for a

functional predictor.

We consider the functional generalized linear model where the response Y follows a proba-

bility distribution in the exponential family with density

fθ0(y) = exp(θ0y − ω(θ0)), (1)

and canonical parameter θ0(X) =
[
α0 +

∫
τ β0X

]
∈ R, with X being a second order stochas-

tic process on a compact domain τ . β0 is the unknown slope function and α0 is the unknown

scalar intercept. We assume one observes a training data (x1, y1), · · · , (xn, yn) consisting

of the realization of n independent copies of (X,Y ). Our purspose is to estimate the slope

parameter β0 and, based on it, present a point estimator for θ0(X).

We propose in this chapter a regularization procedure for estimating the aforementioned

parameters, for which, we will assume hereafter that β0 belongs to a reproducing kernel

1



Hilbert space H ⊂ L2(τ). In general, the method of regularization combines two non-

negative functionals of the parameters (α, β). The first one is a data fit functional `n(α, β)

that measures how well the data is explained as a realization of a random sample with

associated densities fθi(yi) and θi = α +
∫
τ βxi. We shall use the negative loglikelihood

of the data as the data fit functional. The second functional is a penalty term J(β) that

prevents the overfitting of the estimator by giving less chance of being selected to solutions

that are not plausable. We choose J(β) as a norm (or semi-norm) in the reproducing kernel

Hilbert space H. Therefore, the method of regularization estimates (α0, β0) by(
α̂nλ, β̂nλ

)
= arg min

c∈R,β∈H
`n(c, β) + λJ(β), (2)

where λ ≥ 0 is the tuning parameter that balances out the two criteria represented by `n

and J respectively. Note that the selection of H and J changes profoundly the nature of the

numerical estimation that, in general, is a minimization problem on an infinite dimensional

space. More details can be found in Wahba (1990).

The generalized linear model with functional predictor has been the subject of some previ-

ous investigations with a variety of estimation methods other than the reproducing kernel

Hilbert space regularization. For example, James (2002) investigate some fitting algorithms

for applied cases. Müller and Stadmüller (2005) studied quasi likelihood estimation for a

truncated version of the slope coefficients in the Karhunen-Loève expansion produced by

the covariance operator of X(t). Cardot and Sarda (2005) proposed a B-splines estimator

and presented a L2 rate of convergence. Dou, Pollard & Zhou (2010) extended the theory

developed by Hall and Horowitz (2007) for observations coming from an exponential family.

They proposed a maximun likelihood estimator for a finite dimensional projection of the

canonical parameter θ(X) using the basis generated by functional principal components es-

timation of the covariance operator. The method of regularization for estimating the slope

parameter that we investigate in the present paper offers some numerical or theoretical

advantages when compared with the aforementioned procedures. In particular, it possesses

the capacity of being solved numerically as a finite dimensional convex problem, but with

the generality of being adapted to many reproducing Hilbert spaces associated with differ-

ent types of kernel. An important theoretical property of the method of regularization is

that it does not depend on the functional principal component analysis (FPCA). Therefore,

it avoids some restrictive assumptions on the spacing between the eigenvalues of the covari-

ance operator and on the Fourier coefficients of β0 with respect to the basis generated by

the principal components. In the FPCA-based methods, the estimator of β0 is a projection
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on the subspace generated by the span of a truncated sequence of the eignefunctions ob-

tained by the estimation of the principal components. That implies that a condition for the

success of these approaches is that β0 can be expressed efficiently in the principal compo-

nents basis. The method of regularization estimator on the contrary, performs a shrinkage

that penalizes rough solutions in terms of the H basis generated by the kernel operator,

obtaining a smoother solution in relation to the selected kernel function.

In section 1.2 we provide the theoretical framework necessary for the aymptotic analysis of

the regularization estimator. Section 1.3 presents the main results concerning the conver-

gence rates for the estimators of β0 and the prediction θ0(X). Some numerical results that

ilustrate the benefits of the method are shown in section 1.4. The most relevant proofs of

our results are presented in Appendix A.

1.2 Methodology

We consider a family of exponential probability measures {Fθ : θ ∈ R} with corresponding

densities fθ(y) = exp (yθ − ω(θ)). Using the notation ω(r) to represent the r-th derivative of

the fucntion ω(·), the mean and the variance of a random variable with associated density

fθ are ω(1)(θ) and ω(2)(θ) respectively. In order to avoid degenerated cases it is assumed

that ω(2)(θ) > 0 for all θ ∈ R.

Suppose one observes the realization of n random data points (X1, Y1), · · · , (Xn, Yn) as

independent copies of (Y,X), where X := {X(t) : t ∈ τ} is a second order stochastic process.

Let Pyx be the joint probability distribution of Y and X, Px the marginal distribution of

the random process X and Py|x the conditional distribution of Y given X. We assume that

Py|x = Fθ0(X) for θ0(X) = α0 +
∫
τ β0X. For the second order stochastic process X taking

values in L2(τ), the distribution Px is characterized by its mean µ(t) and its covariance

function C(s, t) for s, t ∈ τ . It is assumed that C(·, ·) is continuous and square integrable

with some aditional conditions that will be discussed in section 1.2.3. Without loss of

generality we will suposse that X(t) is a centered process, e.g., µ(t) = 0 for t ∈ τ .

In order to develop the statistical analysis of our proposed estimators for β0 and θ0(X), we

make the following assumptions concerning the distribution Pyx.

Assumption 1 Assumptions on Pyx.

(i) ω(·) is three times continuous differentiable on R.

3



(ii) There exists a constant M such that for any f ∈ L2(τ),

E
(∫

τ
f(t) [X(t)− µ(t)] dt

)4

≤M

[
E
(∫

τ
f(t) [X(t)− µ(t)] dt

)2
]2

. (3)

(iii) For all f ∈ L2(τ) and r = 1, 2, 3

E
[
ω(r)

(∫
τ
Xf

)]4

<∞. (4)

(iv) For all β, f, g, h ∈ L2(τ),

Var

[
ω(2)

(∫
τ
Xβ

)(∫
τ
Xf

)(∫
τ
Xg

)]
< ∞, (5)

Var

[
ω(3)

(∫
τ
Xβ

)(∫
τ
Xf

)(∫
τ
Xg

)(∫
τ
Xh

)]
< ∞. (6)

Assumption 1(i) restricts the set of exponential distributions for which our results apply.

For example, the canonical parametrizatoin of a Gamma or an Inverse Gaussian distribution

implies that this assumption does not hold (see e.g. McCullagh and Nelder (1989)). Never-

theless, many cases of interest are cover under this requirement. Assumption 1(ii) bounds

the fourth moment of any linear funcional of X and is satisifed for a Gaussian process (with

M = 3) for example. Although the assumption 1(iii) is stronger, we consider that still cover

many of the interest cases for application. For example, if X is a Gaussian process we know

that
∫
τ Xf is a normal random varaible and taking ω(θ) = exp(θ) it is easily checked that

this assumption holds.

1.2.1 Regularization Estimation

In this paper we focus on the estimation of the function parameter β0 using a smoothness

regularization methodology. Before presenting the analysis of the statistical asymptotic

properties of the resulting estimator, we start by disscusing some aspects on the characteri-

zation of the computational estimation procedure. Our purpose is to present the estimator

defined in 2 as the solution of a finite dimensional convex minimization problem.

The main idea of the method of regularization is to introduce a penalty term J(β) to prevent

the overfitting in the solution. In general J(β) penalizes the roughness of the solution, and

in particular, for the Reproducing Hilbert Space approach J(β) corrresponds to a squared

norm (or a seminorm) associated with the reproducing Hilbert space H. Let H0 be the

null space formed by J(·) in H, that is, H0 = {β ∈ H : J(β) = 0}. It follows that H0

is a linear subspace of H, for which it is required that dim(H0) = M ≤ n. We denote by

4



{ξ1, · · · , ξM} an orthonormal basis for H0. Let H1 be the orthogonal complement of H0

such that H = H0 ⊕ H1. Thus, for any f ∈ H it is possible to write f =
∑

i≤M ciξi + f1,

where (c1 · · · , cm) ∈ RM and f1 is the projection of f in H1. In this context, H1 forms a

reproducing kernel Hilbert space for which there exists one associated reproducing kernel

K : τ ×τ → [0,∞) such that, if f ∈ H1, J(f) = ‖f‖2H = ‖f‖2K . It will be assumed hereafter

that K(·, ·) is continuous on τ × τ and square integrable.

Associated with the kernel K(·, ·) there is a nonnegative definite operator on L2 constructed

as

[Kf ] (t) =

∫
τ
K(s, t)f(s)ds (7)

for any f ∈ L2. In what follows this operator will be represented as Kf : L2 → H1 for

brevity in the notation. The main computational advantage of using reproducing kernel

estimators comes from the reproducing property of this operator that allows to obtain the

representer of any bounded linear functional in H. In our particular case, for any β ∈ H

and a fixed x ∈ L2 we are interested in the functional
∫
τ x(t)β(t)dt, for which there exists

a representer function ηx ∈ H such that∫
τ
x(t)β(t)dt = 〈ηx, β〉H,

and ηx = Kx. Some further details about the properties of the RKHS can be found in

Aronszajn (1950) and Cucker and Smale (2001), and inside the context of general smoothing

spline models, in Wahba (1990).

Recall that the regularization estimator is given by

(α̂nλ, β̂nλ) := arg min
c∈R,β∈H

`nλ(c, β), (8)

where `nλ(c, β) = `n(c, β) +λJ(β). The data fit functional `n(c, β) used in 8 is the negative

of the empirical loglikelihood, that is

`n(c, β) =
1

n

∑
i≤n

[
ω

(
c+

∫
τ
Xiβ

)
− Yi

(
c+

∫
τ
Xiβ

)]
. (9)

The convexity of `nλ(c, β) is guaranteed by the condition ω(2)(θ) > 0 for all θ ∈ R. Although

the solution 8 for β̂nλ is defined in an infinite dimensional parameter space, the Representer

theorem for spline models (see Wahba (1990)) assures that the estimator can presented

as the solution of a convex minimization problem in finite dimensions. More specifically,

the estimator β̂nλ will be an element of H and there exist d = (d1, · · · , dM ) ∈ RM and

b = (b1, · · · , bn) ∈ Rn such that

β̂nλ =

M∑
i=1

diξi +

n∑
j=1

cjKxi. (10)
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This result facilitates the numerical implementation of the method given that the optimiza-

tion problem is solve on the variables c,d and b; and also helps to develop a simpler analysis

for the statistical properties of β̂nλ.

1.2.2 Derivatives and Approximation by Linearization

Our main objective is to analysis the large sample behavior of the regularization estimator

defined in 8. We place particular emphasis on the estimator for the function β0 and in order

to achieve more clarity in the presentation we will assume in what follows that α0 = 0. The

major purpose of this study is to find the asymptotic rates of convergence for a properly

defined risk function evaluated on
(
β̂nλ, β0

)
. We begin by setting up the notation and

some definitions that play a fundamental role in the functional analysis of the penalized

likelihood `nλ and others related functionals on H.

We use the notation D to represent the Fréchet derivative operator in a general normed

linear space. Recall that for a functional ` : H → R, if ` is differentiable at β then D`(β) is

a bounded functional defined on H. Higher order derivatives will be represented as Dr`, for

r = 2, 3. It follows that D2`(β) ∈ B(H,H), where B(H,H) is the class of all boundel linear

operators in H. For f, g ∈ H we use the notation D2`(β)fg to represent 〈f,D2`(β)g〉H.

It will be assumed that the negative loglikelohood `n(β) converges to a limiting functional

`∞(β) := E`n(β) for all β ∈ H. The purpose of this limiting functional is to characterize

the target parameter β0 as its minimizer. Note that for any f ∈ H and a fixed β,

D`∞(β)f = EX
[(∫

τ
Xf

)(
ω(1)

(∫
τ
Xβ

)
− ω(1)

(∫
τ
Xβ0

))]
. (11)

CauchySchwarz inequality and assumptions 1 assures that D`∞(β)f < ∞ and therefore,

D`∞(β0)f = 0. The convexity of ω(·) implies that `∞ achieves its minimun at β0.

Similary, a limiting functional for the penalized negative loglikelihood `nλ is defined as

`∞λ(β) := E`nλ(β) = `∞(β) + λJ(β). The introduction of this functional allows us to

define β∞λ as the argument that minimizes it on H, and consequently, for any f ∈ H,

D`∞λ(β∞λ)f = 0. Note that for smaller values of λ, β∞λ is expected to approach the

target parameter β0.

With these definitions, the estimation error can be decomposed as(
β̂nλ − β0

)
=
(
β̂nλ − β∞λ

)
+ (β∞λ − β0) . (12)

The two terms at the right can be understood as the squared bias and the stochastic

variability. To be consistent with the previous literature (see e.g. Cox (1988) and Yuan and
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Cai (2010)) they will be called Deterministic error and Stochastic error respectively.

In order to facilitate the asymptotic analysis, we approximate the roots β̂nλ and β∞λ by their

linearized forms derived from first order Taylor series expansion. Let G∞λ(β) := D2`∞λ(β),

then we define

β̄∞λ := β0 −G−1
∞λ(β0)D`∞λ(β0) (13)

β̄nλ := β∞λ −G−1
∞λ(β∞λ)D`nλ(β∞λ). (14)

Note that in definition 14, G∞λ has been used to make the linearization instead of the

usual form D2`nλ. For the purpose of this section, the existence of these linearizations is

assumed to be true. Further analysis about the operator G∞λ, its inverse and other high

order derivatives will be discussed in section 1.2.3. Using the Taylor series expansion of `∞λ

around β0, it is easy to check that

(
β̄∞λ − β∞λ

)
= G−1

∞λ(β0)

∫
τ

∫
τ
x1

[
D3`∞ (β0 + x1x2φ1)φ1φ1

]
dx1dx2, (15)

where φ1 = (β∞λ − β0). Similary, using the expansion of `nλ around β∞λ, for φ2 =(
β̂nλ − β∞λ

)
it follows that(

β̄nλ − β̂∞λ
)

= G−1
∞λ(β∞λ)D2`nλφ2 − φ2

+ G−1
∞λ(β∞λ)

∫
τ

∫
τ
x1

[
D3`n (β∞λ + x1x2φ2)φ2φ2

]
dx1dx2. (16)

These first order approximations will play a strategic role in further analysis as long as β̂nλ

and β∞λ will be replaced by their linearized counterparts in the error definition 12.

1.2.3 Simultaneous Diagonalization, Norms and Inverse Operators

Before we address the asymptotic analysis of the estimator 8, it is necessary to identify

some operators on H that are involved in the analysis and to define a plausible set of norms

on which the convergence rates can be derived. One of the common characteristics of the

estimators obtained by the method of regularization is that the solution of 8 is expressed

as a combination of operators that come separately from the data fit functional `n and

the penalty term J . Consider for example the case of the sum of squared errors, that is,

when `n(β) =
∑

i≤n (yi − Li(β))2 for some functionals Li. The resulting regularization

estimator has the form β̂nλ =
(
D2`nλ

)−1∑
n≤n yiL

∗
i , where L∗i stands for the adjoint of Li

(see Cox(1988) for more details), and D2`nλ = D2`n+λD2J does not depend on β because

`nλ is a quadratic functional. In order to study the large sample properties of β̂nλ, it is very

helpful to determine the eigensystem structure D2`nλ, and consequentely it is important to

7



find a simultaneous diagonalization for D2`n and D2J .

In this section, we will derive a simultaneous diagonailzation for two operators related with

D2`nλ, the covariance operator associated with the covariance function of X(t) and the

operator K defined in 19. This problem has been addressed already in Yuan and Cai (2010)

and (2012). This result will be used to approximate a diagonalization for G∞λ(β) in the

linearizations 13 and 14 and to constrct a more convenient equivalent norm in H.

By Mercer’s theorem, the kernel K(·, ·) is susceptible to the following spectral decomposition

K(s, t) =

∞∑
k=1

ρkψk(s)ψk(t), (17)

where {ψ1, ψ2, · · · } and ρ1 ≥ ρ2 ≥ · · · represent respectively the eigenfunctions and eigen-

values of the operator K. It follows that Kψk = ρkψk for all k ≥ 1. Recall that {ψ1, ψ2, · · · }

form an orthonormal basis for L2.

Similary, given that the covariance function C(·, ·) is assumed continuous and square inte-

grable, it is possible to write

C(s, t) =
∞∑
k=1

µkφk(s)φk(t), (18)

where {φ1, φ2, · · · } and µ1 ≥ µ2 ≥ · · · define the eigen structure of the positive definte

operator on H

[Cf ] (t) =

∫
τ
C(s, t)f(s)ds, (19)

and consequentely, Cφk = µkφk and 〈φk, φj〉L2 = δkj , where δkj is the Kronecker’s delta.

Note that the eigenfunctions associated to K and C respectively are not necessarily related,

as they can form a completely different set of functions. However, we need to find a common

structure in which a combination of the two operators can be diagonalized. More concretely,

we need to find a linear structure for the operator C + λD2J , with λ ≥ 0. We start by

defining a new norm for every f ∈ H as

‖f‖2R = 〈f, Cf〉L2 + J(f). (20)

Note that if 〈f, Cf〉L2 is strictly positive for all f 6= 0 in H0, then ‖ · ‖R is a well defined

norm for all functions in H. We will make this assumption thereafter. From Proposition 2

in Yuan and Cai (2010), it follows that ‖ · ‖R and ‖ · ‖H are equivalent norms, that is, there

exist constants 0 < a ≤ b such that for all f ∈ H, a‖f‖R ≤ ‖f‖H ≤ b‖f‖R. Let B(·, ·) be

the quadratic functional in H ×H such that ‖f‖2R = B(f, f), then it is possible to define

the inner product 〈f, g〉R for all f and g in H as

〈f, g〉R = B(f, g) =
1

4

[
‖f + g‖2R − ‖f − g‖2R

]
. (21)
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Note that (H, ‖ · ‖R) defines a Reproducing Kernel Hilbert space. Let R(·, ·) be its repro-

ducing kernel function and R the associated operator. Defining the bounded linear operator

R1/2CR1/2, with eigenvalues ν1 ≥ ν2 ≥ · · · and eigenfunctions {ζ1, ζ2, · · · }, and writting

ϕk = ν
−1/2
k R1/2ζk for k = 1.2. · · · , it is possible to derive the following results

〈ϕj , ϕk〉R = (νjνk)
−1/2〈ζj , ζk〉L2 = ν−1

k δjk, (22)

and

〈ϕj , Cϕk〉L2 = (νjνk)
−1/2〈ζj , R1/2CR1/2ζk〉L2 = δjk. (23)

The set of functions {ϕ1, ϕ2, · · · } will be the H basis in which the simultaneous diagonal-

izatoin can be constructed. From Theorem 3 in Yuan and Cai (2010) it follows that for any

f ∈ H, f =
∑

k≥1 fkϕk, where fk = νk〈f, ϕk〉R. Writtng γk =
(
ν−1
k − 1

)−1
, it is easy to

show that

〈f, f〉R =
∑
k≥1

(
1 + γ−1

k

)
f2
k , (24)

where 〈f, Cf〉L2 =
∑

k≥1 f
2
k and J(f) =

∑
k≥1 γ

−1
k f2

k . From definition 21 it follows also

that for f, g ∈ H

〈f, g〉R =
∑
k≥1

(
1 + γ−1

k

)
fkgk. (25)

Given the characteristics of the operator C we can define a class of monotone Hilbert spaces

that will be necessary to the study the convergence in a suitable set of intermediate norms.

In such a way, for 0 ≤ a and f ∈ H we define the squared norm

‖f‖2a =
∑
k≥1

(
1 + γ−ak

)
f2
k . (26)

We callHa the Banach space (with respect to the norm ‖·‖a) generated after the completion

of the set {f ∈ H : ‖f‖a <∞}. For 0 ≤ a ≤ 1, there exists a direct correspondence between

definition 26 and the K-method of interpolation for Hilbert spaces (see Tartar (2000), Triebel

(1978) and Cox (1988) for more details), and it could be easily derived that Ha is a Hilbert

space with inner product

〈f, g〉a =
∑
k≥1

(
1 + γ−ak

)
fkgk.

Note that Hc ⊂ Hd whenever d ≤ c and the inclusion Hc ↪→ Hd is continuous. Without

loss of generality it can be assumed that ‖f‖c ≤ ‖f‖d. Furthermore, making a = 1 we

get ‖f‖1 = ‖f‖R, and for a = 0, ‖f‖20 = 2〈f, Cf〉L2 = 2E
(∫

τ X̃f
)2

, where X̃ is a sample

independent copy of the random process X. It is clear that for 0 ≤ α ≤ 1, H ⊂ Hα (element

wise), and therefore, β0, β̂nλ ∈ Hα. For technical reasons that will become evident during
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the asymptotic study of the convergence rates, we will conveniently develop the variational

analysis on the space Hα for some generic 0 ≤ α ≤ 1. We need to assure before that D2J ,

which is originally defined in H, can be properly extended to Hα. To do so, note that there

exists a non-negative self-adjoint operator W ∈ B(H,H) such that for any β, f, g ∈ H,

D2J(β)fg = 〈f,Wg〉H. If we select two functions such that β1 ∈ H and β2 ∈ H2−α ⊂ H,

by Lemma 2.1 in Cox and O’Sullivan (1990) it follows that 〈β2,Wβ1〉H ≤ ‖β2‖2−α‖β1‖α,

and therefore, W ∈ B (Hα,Hα) for 0 ≤ α ≤ 1.

Recall that our objective is to find a basis in Hα such that D2`∞ and D2J can be both

diagonalized. The difficulty however, is that the operator D2`∞(β∗) depends on some

β∗ ∈ Hα and this basis changes subsequently. In the special case in which fλ(y) is the density

function of a Normal random variable, D2`∞(β∗) is independent of β∗ and D2`∞(β∗)fg =

〈f, Cg〉L2 . However this is not true in general for different distributions in the exponential

family. The strategy we shall follow to circunvent this problem is to create eigen structures

that behave asymptoticaly like {(ϕk, γk) : k ≥ 1} and allow to diagonalize the operator

G∞λ(β∗).

Let β∗ be any fixed function in Hα. From the definition of `∞(β∗, for any f, g ∈ Hα, we

have

D2`∞(β∗)fg = EX
[
ω(2)

(∫
τ
Xβ∗

)∫
τ
Xf

∫
τ
Xg

]
:= EY

[∫
τ
Y f

∫
τ
Y g

]
,

where we define Y (t) := X(t)
[
ω(2)

(∫
τ Xβ

∗)] 1
2 for t ∈ τ . By Cauchy-Schwarz inequality

and assumptions 1 (ii) and (iii), it is easy to check that Y (t) is a second order process and

therefore it is possible to define some covariance function U(β∗)(t1, t2) for t1, t2 ∈ τ , and a

respective integral operator on L2(τ) such that

〈f, U(β∗)g〉L2 := D2`∞(β∗)fg. (27)

Note that the above definition is independent of the particular Hαto which β∗ belongs.

Thus, for β∗ ∈ Hα and f ∈ H, with a little abuse in the notation it is possible to define a

seminorm in H as

‖f‖2R∗ = 〈f, U(β∗)f〉L2 + J(f). (28)

The following theorem shows that no matter the specific β∗ it is possible to construct a

common basis for diagonalizing U(β∗) and W simultaneously using the results obtained in

the analysis with the covariance operator instead.
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Theorem 1 If assumptions 1 hold, for any β∗ ∈ Hα such that ‖β∗‖2α ≤ M for some

M <∞, then

(i) ‖ · ‖R∗ and ‖ · ‖H are equivalent norms in H.

(ii) There exists an eigenstructure {(ϕ∗k, γ∗k) : k ≥ 1}, with γ∗k =
(
ν∗k
−1 − 1

)−1
and ν∗1 ≥

ν∗2 ≥ · · · , such that

〈ϕ∗j , ϕ∗k〉R∗ = ν∗k
−1δjk (29)

〈ϕ∗j , U(β∗)ϕ∗k〉L2 = δjk. (30)

(iii) For any f ∈ H

f =
∑
k≥1

f∗kϕ
∗
k, (31)

where f∗k = ν∗k〈f, ϕ∗k〉R∗.

(iv) There exist constans 0 < m ≤M <∞ such that for k large enough,

mγk ≤ γ∗k ≤Mγk.� (32)

Recall that the basis representation in (H, ‖ · ‖R∗) is associated with a particular function

β∗ ∈ Hα. The following corollary extends the results of theorem 1 in order to define a

common system for diagonalizing G∞λ(β∗).

Corollary 2 Let β∗ be a function in a bounded set in Hα. Then, for any f ∈ H, 〈f, f〉R∗ =∑
k≥1(1 + γ∗k

−1)f∗2k. Furthermore,

〈U(β∗)f, f〉L2 =
∑
k≥1

f∗2k, (33)

and

J(f) =
∑
k≥1

γ∗−1f∗2k.� (34)

We define also, for 0 ≤ a ≤ 1, a continuous set of norms in H that are going to be useful in

further analysis of the convergence rates. Similar to 26, for any f ∈ H,

‖f‖2a∗ = (1 + γ∗k
−a)f∗2k. (35)

Following the K-method of interpolation, and noting that the inclusion H → L2(τ) is

compact, we define the Hilbert space Ha∗ as the completion of {f ∈ H : ‖f‖a∗ < ∞}, and

it follows that Ha∗ = Ha as Banach spaces, with equivalent norms.
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As a result of corollary 2 it is possible to writte

〈G∞λ(β∗)f, f〉R∗ = D2`∞(β∗)ff + λJ(f)

=
∑
k≥1

(
1 + λγ∗−1

)
f∗2k. (36)

The following proposition shows that the inverse of the operator G∞λ(β∗) is well defined

in Hα for the cases that will be used in the asymptotic analysis. In particular, it will show

that the linearizations defined in 13 and 14 are correctly defined on Hα.

Proposition 3 Let H be a bounded set in Hα. If 0 ≤ α ≤ 1 and β∗ ∈ H, then the operator

G−1
∞λ(β∗)θ is bounded and well defined in H for θ = D`(ξ1), D2`(ξ1)ξ2, or D3`(ξ1)ξ2ξ3, with

` = `nλ or `∞λ and ξ1, ξ2, ξ3 ∈ Hα.

An elementary consequence of proposition 3 and theorem 1 is that for θ (as defined in

the former proposition) there exists a constant M > 0 such that

‖G∞λ(β∗)−1θ‖2α ≤ M‖G∞λ(β∗)−1θ‖2α∗

= M
∑
k≥1

(
1 + γ∗k

−α) (1 + λγ∗−1
)−2

θ∗k
2. (37)

Although the eigenstructure {(ϕk, γk) : k ≥ 1} is definitive for the operational analysis

of the estimator, it does not have an obvious relation with the eigenstructures of the kernel

and the covariance operators, K and C respectively. The rate of decay for the eigenvaues

{γk} play a fundamental role in the asymptoric analysis of β̂nλ, however, there is not a

general explicit form to determine each γk in terms of {ρk} and {µk}.

Some assumptions will have to be made in order to characterize the sequence {γk}. One

option is to assume that the set of functions {ψk} and {φk} form the same basis in L2,

that is, ψk = φk for k = 1, · · · . In this case, γk = ρkµk (see proposition 4 in Yuan and

Cai (2010)). This relation is the usual implicit condition that is made in the FPCA based

appraches for solving functional regression models (see, e.g., Cai and Hall (2006)) or more

recently FLR for general exponential families (see Dou, Pollard and Zhou (2010)).

When H is a Sobolev space of order m in τ = [0, 1], and C satisfies the Sacks-Ylvisaker

conditions of order r ≥ 0 it is possible to show that γk � ρkµk. Hereafter the notation

ak � bk represents that for two sequences {ak} and {bk}, ak
bk

is bounded away from 0 and

∞ as k → ∞. More details can be found in Sacks and Ylvisaker (1970), Yuan and Cai

(2010), and Ritter, Wasilkowski and Woźniakowski (1995). For the purpose of our analysis,

we make some more general assumtions (Assumption 2) for which the two aforementioned

cases are special instances.
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Assumption 2 The following assumptions are related to the eigenvalues and eigenfunc-

tions behavior of the kernel and covariance operators.

(i) There existis a constant r > 1
2 such that the eigenvalues for the reproducing kernel K

satify ρk � k−2r.

(ii) There existis a constant s > 1
2 such that the eigenvalues for the covariance operator

C satify µk � k−2s.

(iii) γk � ρkµk, for γk as described in 24.

Assumption 2[(i)] determines the smootheness properties of the functions in H with basis

{ψk : k ≥ 1} in terms of the parameter r, and Assumption 2[(ii)] describes the smootheness

of the random process {X(t) : t ∈ τ} in terms of s. We call F(s.M) the class of probability

distributions in Y and X such that assumptions 1 and assumptions 2[(ii)-(iii)] are satisfied.

1.2.4 Bias and Variance Approximation

Our main objective is to analyse the asymptotic behavior of the risk fucntion defined as

Ed
(
β̂nλ, β0

)
, where d(·, ·) is a well defined distance in Hα. It follows from the bias and

variance sepparation in 12 that

Ed
(
β̂nλ, β0

)
≤ Ed

(
β̂nλ, β∞λ

)
+ Ed (β∞λ, β0) .

In order to facilitate the analysis and produce a more comprehensive solution, we take the

two quantities at the right of the last expression sepparately. The linearizations defined

in 13 and 14 have the purpose of approximating the bias and the variance by replacing

β̂nλ ≈ β̄nλ in the variance and β∞λ ≈ β̄∞λ in the bias respectively. The two following

theorems validate these approximations when using d (β1, β2) = ‖β1− β2‖2a for any value of

a in [0, α], where α ≤ 1 .

Theorem 4 If ‖β̄∞λ − β0‖2α → 0 as λ → 0, then, for 0 ≤ α ≤ 1
2

[
1− 1

2(r+s)

]
there exists

some λ0 such that for λ ∈ [0, λ0]

sup
β0∈H

‖β∞λ − β0‖2a ≤ 4‖β̄∞λ − β0‖2a. (38)

Theorem 5 If there exists a sequence λn such that n−1λ
−α− 1

2(r+s)
n → 0 as n → ∞ with

1
2(r+s) < α ≤ 1, and ‖β̄nλn − β∞λn‖2a = op(1) for 0 ≤ a ≤ α, then

sup
F∈F(s,M)

‖β̂nλ − β∞λn‖2a = Op
(
‖β̄nλn − β∞λn‖2a

)
. (39)
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Theorems 4 and 5 allow us to find the convergence rate for E‖β̂nλ, β0‖2a using the lin-

earized versions of the squared bias and the varaince respectively.

1.3 Convergence Rates

We show in this section the main results for the asymptotic poperties of the regularized

estimator β̂nλ. Recall that for these results are given for a class of norms ‖ · ‖a in Hα for

0 ≤ a ≤ α ≤ 1. The following theorem presents the optimal rate of convergence for an

appropriate choosen tuning parameter λn.

Theorem 6 If (r + s) > 3
2 and

λn � n
−2(r+s)
2(r+s)+1 ,

then, for each ε > 0 there exists a finite constant Cε such that

lim sup
n→∞

sup
F∈F(s,M),β0∈H

P

(
‖β̂nλ − β0‖2a > Cεn

− 2(1−a)(r+s)
2(r+s)+1

)
< ε (40)

for any 0 ≤ a ≤ α and α = 1
2

[
1− 1

2(r+s)

]
.

The next theorem shows that the rate of convergence of the regularization estimator β̂nλ

presented in theorem 6 is optimal (in minimax sense) among all the possible estimators

obtained from the data. Let B be the set of all measurable functions from the observations

(X1, Y1), · · · , (Xn, Yn).

Theorem 7 For a and α as defined in theorem 6, there exists a constant d > 0 such that

lim inf
n→∞

inf
β∈B

sup
F∈F(s,M),β0∈H

P

(
‖β − β0‖2a > dn

− 2(1−a)(r+s)
2(r+s)+1

)
> 0. (41)

It follows then from theorems 6 and 7 that if we choose λn � n
−2(r+s)
2(r+s)+1 , the proposed esti-

mator β̂nλ is rate optimal. The proof of theorem 7 is a trivial adaptation of the proof of

theorem 7 in Yuan and Cai (2010), where it was showed that in the special case of fy(θ)

being a normal density with constant variance and with eigenfunctions ψk = φk for all

k ≥ 1, infβ∈B ‖β − β0‖2a ≥ c · n
− 2(1−a)(r+s)

2(r+s)+1 .

Having an estimation for the function parameter β0 it is possible to define a point es-

timator for the canonical parameter in the exponential density as
∫
τ X̃β̂nλ, for a new

observation of the predictor X̃ independent of the sample. We can use the fact that

1
2‖β‖

2
0 = EX̃

(∫
τ X̃β

)2
= 〈β,Cβ〉L2 to define the mean squared error of this estimator

as ‖β̂nλ − β0‖0. The following corollary of theorems 6 and 7 establish this result.
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Corollary 8 Let X̃ be a copy of the stochastic process X independent of the sample. Then

for all F ∈ F(s,M) and β0 ∈ H, and with λn as defined in theorem 6

sup
F∈F(s,M)

EX̃E(X1,Y1),··· ,(Xn,Yn)

[∫
τ
X̃
(
β̂nλ − β0

)]2

� n−
2(r+s)

2(r+s)+1

for n large enough.

1.4 Numerical Studies

In order to show the computational merits of the estimator 2 and to present some supporting

evidence for the derived theoretical properties, we performed a series of numerical simula-

tions with finite sample size scenarios. The main advantage of using the RKHS approach

in the present context is that the resulting estimator is a finite dimensional (of order n)

well defined convex minimization problem, as β̂nλ can be expressed as a linear combination

of basis functions related with the kernel K. Standard convex programming algorithms

can be used to solve β̂nλ. A very conveninet numerical approach to solve the problem is

the use of Iterative Rewieghted Least Squares method. This procedure corresponds to the

scoring variation of the Newton-Raphson descending method to find the root of the first

derivative of `nλ with respect to c and d in 10. In the context of General Linear Models

with exponential families, the latter method has been extensively implemented and a rather

simple modification of it, taking into account the penalty terms in the weight matrix and

the score function in each iteration, can be utilized to find β̂nλ.

To make our simulation results more comparable we use similar settings to the ones used in

Yuan and Cai (2010) and Hall and Horowitz (2007) with pertinent modifications to adapt

them into the context of general linear model and a reproducing kernel norm type of penalty.

We chose the particular case when the response is binary and follows a bernoulli distribution

(y ∈ {0, 1}), that is, the Logistic Functional Regression model. We assume τ = [0, 1] and

set the second order process X to be generated as

X =
80∑
k=1

ζkZkφk,

where φ1(t) = 1 and φk+1(t) =
√

2 cos(kπt). Zk are independent copies of a uniform

random variable on
[
−
√

3,
√

3
]

and ζk is a deterministic sequence. Note that the spectral

decomposition of the covariance operator in 18 implies that µk = ζ2
k and Cφk = µkφk.

To show the benefits of the method over the procedures based on Functional Principal

Components Analysis, and following Hall and Horowitz (2007) we choose two different

scenarios for ζk, one of them well spaced and the other one with respective closely-spaced
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eigenvalues. For the well spaced eigenvalues we define ζk = (−1)k+1k−ν/2 and for the second

case

ζk =


1 k = 1;

0.2(−1)k+1(1− 0.0001k) 2 ≤ k ≤ 4;

0.2(−1)k+1
[
(5bk/5c)−ν/2 − 0.0001(k mod 5)

]
k ≥ 5.

In each case we consider ν = 1.1 and ν = 2. For ilustrative purposes we define K in the

spectral domain 17 with ψ1(t) = 1 and ψk+1(t) =
√

2 cos(2kπt). Also, we select ρk = k−2r

for k ≤ 40 and ρk = 0 if k > 40, considering the cases r = 3
4 and r = 1. Note that in H a

simultaneous diagonalization for C and K may be done using the basis {ψk} and with γk

in assumption 2 (iii) being ρkµ2k � ρkµk. The true parameter function β0 is defined as

β0 =

40∑
k=1

4(−1)k+1k−2ψk.

To explore the effect of the sample size and ilustrate the theoretical convergence rates we

consider n = 50, 100, 200 and 500. At each simulation scenario we run the experiment

1000 times and average on two measures of statistical performance for the estimator β̂nλ:

the integrated mean squared error ‖β0 − β̂nλ‖2L2
and the prediction error (point estimator)

‖β0− β̂nλ‖20. In order to select the value of the parameter λ we used a data driven approach.

For n = 50 and 100, leave-one-out crossvalidation was used, and for n = 200 and 500 we

used ten fold crossvalidation.

For the estimation error, note that the eigenfunctions ψk are used to construct the spectral

decomposition of the operator R, that is, ϕk = ψk in 22. Therefore, using a slightly

modified proof ot Proposition 4 in Yuan and Cai (2010), it would be easy to show that

in this particular setting, ‖β0 − β̂nλ‖L2 would be an equivalent norm to ‖β0 − β̂nλ‖ ν
r+ν

, as

defined 26. Consequently, by theorem 6 the theoretical convergence rate for the estimation

error ‖β0 − β̂nλ‖L2 is n
−2r

2(r+ν)+1 . Similarly, by corollary 8, the rate of decay for ‖β0 − β̂nλ‖0
is n

−2(r+ν)
2(r+ν)+1 .

In figure 1, the estimation errors ‖β0−β̂nλ‖2L2
for the well spaced sequence of eigenvalues

ζk are presented. The left and right sides correspond to the case when the smootheness

degree of the Kernel operator K is set up with r = 3
4 and r = 1 respectively. The axes

are reshaped to the logarithmic scale and therefore, a descending linear pattern is expected

in each case. As expected from the theoretical results, increasing the value of ν makes the

estimation error bigger for a fixed n and flatten the line (the slope increases). Note that

our results are asymptotically relevant and for n = 50 the differences are not as clear as

for larger sample size. Figure 2 presents in a similar layout the results for the prediction
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Figure 1: Estimation errors in logarithmic scale.

error ‖β0 − β̂nλ‖20. Note that in this case increasing ν should result in a bigger prediction

error and a more pronounced slope. The differences between the two panel show that for a

bigger values of r, the convergence rate is less sensible to the variation in ν.

In figure 3 similar results are presented for estimation and prediction errors when the

eigenvalues of the covariance operator are closely spaced. In both plots (left and right)

r = 3/4. Note that the results in this case are similar to the well spaced scenarions and the

same interpretations apply.
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Figure 2: Prediction errors in logarithmic scale.
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Figure 3: Estimation and Prediction errors in logarithmic scale when the eigenvalues in the
covariance operator are closely spaced.
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CHAPTER II

RADIAL BASIS REGULARIZATION FOR LINEAR INVERSE

PROBLEMS WITH RANDOM NOISE

2.1 Introduction

In this chapter, the statistical properties of method of regularization with radial basis func-

tions in the context of linear inverse problems are studied. Radial basis function regulariza-

tion is widely used in machine learning because of its demonstrated eectiveness in numerous

applications and computational advantages. From a statistical viewpoint, one of the main

advantages of radial basis function regularization in general and Gaussian radial basis func-

tion regularization in particular is their ability to adapt to varying degree of smoothness

in a direct problem. We show here that similar approaches for inverse problems not only

share such adaptivity to the smoothness of the signal but also can accommodate dierent

degrees of ill-posedness. These results render further theoretical support to the superior

performance observed empirically for radial basis function regularization.

Radial basis function regularization is one of the most popular tools in statistical learning

(see, e.g., Girosi, Jones, and Poggio (1993); Smola, Schölkopf, and Müller (1998); Wahba

(1999); Evgeniou, Pontil, and Poggio (2000); Lin and Brown (2004); Lin and Yuan (2006)).

Let Φ(x) = φ(‖x‖) for vector x ∈ Rd be a radial basis function where φ : [0,+∞) → R

is a univariate function. Typical examples include φ(r) = r2m log(r) (thin plate spline),

φ(r) = e−%r
2/2 (Gaussian), and φ(r) = (c2 + r2)1/2 (multiquadrics) among others. When

KΦ(x, y) = Φ(x − y) is (conditionally) positive definite in that for any n ∈ Z and any

distinct x1, ..., xn ∈ Rd,
n∑
j=1

n∑
k=1

ajakK(xj , xk) > 0,

Φ can be identified with a reproducing kernel Hilbert space (Aronszajn (1950)), denoted by

HΦ. The squared norm in HΦ can be written as

J(f) = (2π)−d/2
∫
Rd
|f̃(ω)|2/Φ̃(ω)dω

for any function f ∈ HΦ, where f̃ stands for the Fourier transform of f , that is,

f̃(ω) = (2π)−d/2
∫
Rd
f(x)e−ix

Tωdx.
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The method of regularization with a radial basis function estimates a functional parameter

by the solution to

min
f∈HΦ

{L(f, data) + λJ(f)},

where L is the empirical loss, often taken to be the negative log-likelihood. The tuning

parameter λ > 0 controls the trade-off between minimizing the empirical loss and obtaining

a smooth solution.

Consider in particular estimating a periodic function f0 : [−π, π] → R based on noisy

observations of Af where A is a bounded linear operator, i.e.,

dY (t) = (Af0)(t)dt+ εdW (t), t ∈ [−π, π]. (42)

Here ε > 0 is the noise level and W (t) is a standard Brownian motion on [−π, π]. The

white noise model (42) connects to a number of common statistical problems in the light

of results on its equivalence to nonparametric regression (Brown and Low, 1996), density

estimation (Nussbaum, 1996), spectral density estimation (Golubev and Nussbaum, 1998),

and nonparametric generalized regression (Grama and Nussbaum, 1997). The radial basis

function regularization in this case gives the following estimate of f0:

f̂λ = arg min
f∈HΦ

{
‖Y −Af‖2L2

+ λJ(f)
}
.

Lin and Brown (2004) and Lin and Yuan (2006) recently studied the statistical properties

of f̂λ in a special case when A is the identity operator. They found that when f is a

member of any finite-order Sobolev spaces, the method of regularization with many radial

basis functions is rate optimal when the tuning parameter is appropriately chosen, which

partially explains the success of such methods in this particular setting. Of course in many

applications, A is not an identity operator but rather a general compact operator. Problems

of this type can be found in almost all areas of science and engineering (see, e.g., Chalmond

(2008); Kaipo and Somersalo (2004); Ramm (2009)). These problems, commonly referred to

as inverse problems, are often ill-posed and therefore, fundamentally more difficult than the

case when A is the identity, often referred to as direct problems (see, e.g., Cavalier (2008)).

In this paper, we study the statistical properties of radial basis function regularization

estimator f̂λ in this setting.

Similar to direct problems, the difficulty in estimating f0 in an inverse problem is de-

termined by the complexity of the functional class it belongs to. Differing from direct

problems, in an inverse problem, the difficulty of estimating f0 also depends on the degree
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of ill-posedness of the linear operator A. We consider a variety of combinations of func-

tional classes and linear operators and show that for many common choices of radial basis

functions, f̂λ is rate optimal whenever λ is appropriately tuned. Our results suggest that

the superior statistical properties established earlier for the direct problems continue to

hold in the inverse problems and therefore further make clear why the radial basis function

regularization is so effective in a wider range of applications.

The rest of this chapter is organized as follows. In the next section, we describe in more

detail the parameter spaces and the ill-posedness of the problem. We study in Section 2.3

the statistical properties of radial basis function regularization. Section 2.4 reports results

from numerical experiments to illustrate the implications of our theoretical development.

We close with some discussions in Section 2.5. The proof of theorem 9 is presented in

section 2.6. The proofs of theorems 10 and 11 are similar to the first one and are ommited

for clarity in the presentation.

2.2 Radial Basis Function Regularization in Linear Inverse Problems

The white noise model (42) can be expressed in terms of the corresponding Fourier coef-

ficients and leads to a sequence model that is often more amenable to statistical analysis

(see, e.g., Johnstone, 1998).

2.2.1 Sequence model via singular value decomposition

Let A∗ be the adjoint operator of A. Because of the compactness of A, A∗A admits spectral

decomposition

A∗Af =
∞∑
k=1

b2k〈f, ϕk〉L2ϕk (43)

for any square integrable periodic function f , where the eigenfunctions {ϕ1, ϕ2, . . .} consti-

tute an orthornormal basis of L2, the collection of square integrable periodic functions, and

the eigenvalues {b21, b22, . . .} are arranged in a non-increasing order without loss of generality.

Denote by ψk the normalized image of ϕk, that is, Aϕk = bkψk. It is easy to show that

A∗ψk = bkϕk.

From the singular value decomposition, we can convert the linear inverse problem (42) into

a sequence model. More specifically, observe that

yk := 〈Y, ψk〉L2 = 〈Af0, ψk〉L2 + 〈εW,ψk〉L2 = bk〈f0, ψk〉L2 + ε〈W,ψk〉L2 =: bkθk + εξk

for k = 1, 2, . . ..
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Unlike the direct problem where all singular values are one, in an inverse problem,

bk → 0 as k → ∞. The vanishing singular values poses challenges in inverting the linear

operator A and makes the problem ill-posed. As a result, the estimation of f0 becomes

fundamentally more difficult for an inverse problem than for a direct problem. The rate of

decay of {bk : k ≥ 1} quantifies the ill-posedness. Typically, an inverse problem is called

mildly ill-posed if bk ∼ k−β and severe ill-posed if bk ∼ exp(−βk) for some parameter β > 0

often referred to as the degree of ill-posedness. Hereafter, ak ∼ bk means that both ak/bk

and bk/ak are bounded away from zero.

2.2.2 Parameter spaces

In addition to the ill-posedness, the difficulty of estimating f0 in (42) is also determined

by the parameter space for the functional parameter. It is often convenient to describe

the parameters space using the Fourier coefficient with respect to the basis {ψk : k ≥ 1}.

Typically, f0 belongs to the functional class corresponding to an ellipsoid Θ in the space of

Fourier coefficients {θk : k ≥ 1}:

Θ =

(θk : k ≥ 1) :
∑
k≥1

a2
kθ

2
k ≤ Q

 , (44)

for a non-deceasing sequence 0 ≤ a1 ≤ a2 ≤ . . . such that ak →∞ as k →∞, and a positive

constant Q.

It is instructive to consider the case when {ψk : k ≥ 1} is the usual trigonometric basis,

that is, ψ1(t) = (2π)−1/2, ψ2l(t) = π−1/2 sin(lt) and ψ2l+1(t) = π−1/2 cos(lt) for l ≥ 1. In

this case, the usual Sobolev spaces are perhaps the most popular examples of Θ. Let Sm(Q)

be the mth order Sobolev space of periodic functions on [−π, π], that is,

Sm(Q) =

{
f ∈ L2 : f is 2π−periodic, and

∫ π

−π
f2 + (f (m))2 ≤ Q

}
.

Simple calculation shows that Sm(Q) can also be equivalently expressed as

Sm(Q) =

f ∈ L2 : f =
∑
k≥1

θkψk,
∑
k≥1

a2
kθ

2
k ≤ Q, a1 = 1, a2l = a2l+1 = k2m + 1

 .

In the same spirit, analytic functions or sometimes referred to as infinit-order Sobolev space

can be described as

S∞(α;Q) =

f ∈ L2 : f =
∑
k≥1

θkψk,
∑
k≥1

a2
kθ

2
k ≤ Q, a1 = 1, a2l = a2l+1 = eαl

 .
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See Johnstone (1998) for details.

Appealing to this connection, in what follows, we shall write

Θα(Q) =

(θk : k ≥ 1) :
∑
k≥1

a2
kθ

2
k ≤ Q, a1 = 1, a2l = a2l+1 = kα + 1


as Sobolev type of spaces of order α; and

Θ∞(α;Q) =

(θk : k ≥ 1) :
∑
k≥1

a2
kθ

2
k ≤ Q, a1 = 1, a2l = a2l+1 = eαk


to represent spaces similar to S∞.

2.2.3 Radial basis function regularization

We now describe the radial basis functions and the reproducing kernel Hilbert spaces they

induce. Because we focus here on periodic functions, it is natural to consider periodized

radial basis functions

Φ0(r) =
∑
k∈Z

Φ(r − 2πk),

where Φ is a radial basis function. See Smola, Schölkopf and Müller (1998), Lin and Brown

(2004) among others for further discussion of periodized radial basis functions and their

applications in machine learning. As shown in Lin and Yuan (2006), Φ0 (or equivalently

KΦ0) is positive definite so long as Φ is positive definite and furthermore the norm of HΦ0

can be given by

‖f‖2HΦ0
=
∑
k≥1

γkθ
2
k,

where θks are the Fourier coefficients of f , and γ1 = (2π)−1/2{Φ̃(0)}−1, γ2l = γ2l+1 =

(2π)−1/2{Φ̃(l)}−1, l = 1, 2, . . .. When {ψk : k ≥ 1} is taken to be the classical trigonomet-

ric basis, the method of regularization with radial basis function Φ0 can be equivalently

expressed in terms of the sequence of Fourier coefficients:

f̂λ = arg min
f=
∑
k≥0 θkψk∈HΦ0

∑
k≥1

(yk − bkθk)2 + λ
∑
k≥1

γkθ
2
k

 .

Consider, for example, the periodic Gaussian kernel

G0(r) =
∑
k∈Z

G(r − 2πk),

where

G(r) =
1√

2π%2
exp

(
− r2

2%2

)
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for some parameter % > 0. Simple calculation yields that γ2l = γ2l+1 = el
2%2/2. Other pop-

ular examples include periodic multiquadratics and Wendland kernels (Wendland (1998))

that corresponds to γ2l = γ2l+1 = el% and γ2l = γ2l+1 = k% respectively. There are also

other common choices of radial basis functions for which γk behaves similarly to these three

examples. See Buhlmann (2003) for further details.

2.3 Main Results

Following the discussion before, we shall focus on the following sequence model hereafter:

yk = bkθk + εξk, k = 1, 2, . . . . (45)

The inverse problem under investigation is either mildly or severely ill-posed, that is, bk ∼

k−β or bk ∼ e−βk respectively. We shall also consider Sobolev type of parameter spaces,

that is, (θk : k ≥ 1) ∈ Θα for some α > 1/2 or Θ∞(α,Q). Our primary interest is to

evaluate the statistical performance of radial basis function regularization:

(θ̂kλ : k ≥ 1) = arg min
(ηk:k≥1)

∑
k≥1

(yk − bkηk)2 + λ
∑
k≥1

γkη
2
k

 . (46)

In particular, we consider three different types of radial basis functions: (1) γk ∼ eγk
2

for

some γ > 0 with periodic Gaussian kernel as a typical example; (2) γk ∼ eγk with periodic

multiquadrics kernel as a typical example; and (3) γk ∼ kγ with periodic Wendland kernel

or the usual spline kernels (see, e.g., Wahba (1990)) as typical examples.

We begin with Gaussian type of kernel, that is, γk = eγk
2

for some γ > 0.

Theorem 9 Assume that γk ∼ eγk
2

for some γ > 0.

(a) (Mildly ill-posed with Sobolev spaces) If bk ∼ k−β and

λ ∼ exp
(
−ε

4
2α+2β+1

)
,

then

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

4α
2α+2β+1 .

(b) (Mildly ill-posed with analytic functions) If bk ∼ k−β and

λ ∼ exp

(
− γ

4α2

(
log

1

ε2

)2
)
,

then

sup
(θk:k≥1)∈Θ∞(α,Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε2

(
log

1

ε2

)2β+1

.
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(c) (Severely ill-posed with Sobolev spaces) If bk ∼ k−β and

λ ∼ exp

(
−
(

log
1

ε2

)2
)
,

then

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼
(

log
1

ε

)−2α

.

(d) (Severely ill-posed with analytic functions) If bk ∼ e−βk and

λ ∼ exp

(
− γ

(2α+ 2β)2

(
log

1

ε2

)2
)
,

then

sup
(θk:k≥1)∈Θ∞(α,Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

2α
α+β .

We note that all the rates obtained in Theorem 9 are minimax optimal (see, e.g., Cavalier

(2008)). In other words, from Theorem 9, when the tuning parameter λ is appropriately

chosen, Gaussian radial basis function regularization is rate optimal for all combinations of

ill-posedness as well as parameter spaces. This result, together with similar results for direct

problems (Lin and Brown (2004)), partly explain its success in numerous applications.

Next we consider the case with a multiquadrics type of kernel.

Theorem 10 Assume that γk ∼ eγk for some γ > 0.

(a) (Mildly ill-posed with Sobolev spaces) If bk ∼ k−β and

λ ∼ exp
(
−ε−

2
2α+2β+1

)
,

then

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

4α
2α+2β+1 .

(b) (Mildly ill-posed with analytic functions) If bk ∼ k−β, then

sup
(θk:k≥1)∈Θ∞(α,Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε2

(
log

1

ε2

)2β+1

.

provided that

λ ∼

 ε
γ
α γ > α− 2β

ε γ ≤ α− 2β
.

25



(c) (Severely ill-posed with Sobolev spaces) If bk ∼ k−β and λ ∼ ε2, then

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼
(

log
1

ε

)−2α

.

(d) (Severely ill-posed with analytic functions) Suppose that bk ∼ e−βk. If γ > α−2β and

λ ∼ ε−
β+γ
α+β ,

then

sup
(θk:k≥1)∈Θ∞(α,Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

2α
α+β .

If γ ≤ α− 2β, then the best achievable rate is

sup
(θk:k≥1)∈Θ∞(α,Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

4β+2γ
3β+γ ,

and it is attained when

λ ∼ ε
2β+γ
3β+γ .

From Theorem 10, regularization with multiquadrics type of kernel is also rate optimal

for finite-order Sobolev spaces. For analytic functions, however, its behavior is more com-

plex. When the inverse problem is mildly ill-posed, it can still achieve the optimal rate but

different tuning parameters are needed to attain the optimal rate depending on whether γ

is larger than α − 2β. However, for severely ill-posed problems, the minimax optimal rate

can only be achieved when γ > α−2β. The transition point α−2β is somewhat surprising.

Observe that HΦ0 ⊆ S∞(α,Q) if γ ≥ α and S∞(α,Q) ⊂ HΦ0 otherwise. Thus Theorem 10

essentially states that regularization with multiquadrics type of kernel is always rate opti-

mal if the reproducing kernel Hilbert space induced by the radial basis function is smaller

than the parameter space. But even when the parameter space is larger than the induced

space, that is, γ < α, it is still capable of achieving the minimax optimal rate so long as

γ > α− 2β.

Now consider the Wendland/spline type of kernel.

Theorem 11 Assume that γk ∼ kγ for some γ > 1/2.

(a) (Mildly ill-posed with Sobolev spaces) Suppose that bk ∼ k−β. If γ > α− 2β and

λ ∼ ε
4α

2α+2β+1 ,

then

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

4α
2α+2β+1 .
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If γ ≤ α− 2β, the best achivable rate is

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

2(4β+2γ)
6β+2γ+1 ,

and it is attained when

λ ∼ ε
4β+2γ

6β+2γ+1 .

(b) (Mildly ill-posed with analytic functions) Suppose the bk ∼ k−β. If γ > α− 2β and

λ ∼ ε2
(

log
1

ε

)−2β−γ
,

then

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε2

(
log

1

ε

)2β+1

.

If γ ≤ α− 2β, the best achievable rate is

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

2(4β+2γ)
6β+2γ+1 ,

and it is attained when

λ ∼ ε
4β+2γ

6β+2γ+1 .

(c) (Severely ill-posed with Sobolev spaces) If bk ∼ e−βk

λ ∼ ε2

then

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼
(

log
1

ε

)−2α

(d) (Severely ill-posed with analytic functions) Suppose bk ∼ e−βk. If γ > α − 2β, then

the achievable rate is

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

2β
α+2β ,

and it is attained when

λ ∼ ε
4β

α+2β .

When γ ≤ α− 2β, the best achievable rate is

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
∼ ε

4
3 ,

and it is attained when λ ∼ ε
2
3 .
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Theorem 11 indicates that the method of regularization with Wendland or spline type

of kernel is also capable of attaining the minimax optimal rate but only so if γ is sufficiently

large, or equivalently, the reproducing kernel Hilbert space HΦ0 is sufficiently small.

Our main results are summarized in Table 1.

2.4 Risk Analysis of Radial Basis Function Regularization

In order to establish the results presented in the previous section we start by setting out a

general framework. Recall that the regularization estimator (θ̂kλ : k ≥ 1) is defined as

(θ̂kλ : k ≥ 1) = arg min
(ηk:k≥1)

∑
k≥1

(yk − bkηk)2 + λ
∑
k≥1

γkη
2
k

 .

It can be written explicitly as

θ̂kλ =
bk

b2k + λγ−1
k

yk , k = 1, 2, · · · . (47)

In particular, here we consider

bk ∼

 k−β Mildly ill− posed

exp(−βk) Severely ill− posed
.

Furthermore, the true Fourier coefficients (θk : k ≥ 1) are assumed to be in an ellipsiod

Θ(Q) =

(θk : k ≥ 1) :
∑
k≥1

a2
kθ

2
k ≤ Q

 ,

where

ak ∼

 kα Θ = Θα(Q)

exp(αk) Θ = Θ∞(α;Q)
.

Observe that the risk of the radial basis function regularization estimator (θ̂kλ : k ≥ 1) can

be decomposed as the sum of the squared bias and the variance:∑
k≥1

E
(
θ̂kλ − θk

)2
=
∑
k≥1

(
Eθ̂kλ − θk

)2
+
∑
k≥1

Var
(
θ̂kλ

)
=: B2

θ

(
θ̂λ

)
+ Varθ

(
θ̂λ

)
. (48)

By (47), we can further write

B2
θ

(
θ̂λ

)
=
∑
k≥1

λ2γ−2
k θ2

k(
b2k + λγ−1

k

)2
and

Varθ

(
θ̂λ

)
= ε2

∑
k≥1

b2k(
b2k + λγ−1

k

)2 .
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The squared bias and variance can be further bounded as follows:

B2
θ

(
θ̂λ

)
≤ max

k

{
λ2γ−2

k a−2
k(

b2k + λγ−1
k

)2
}∑

k≥1

a2
kθ

2
k

 ≤ max
k

(
λ2γ−2

k a−2
k

b4k + λ2γ−2
k

)∑
k≥1

a2
kθ

2
k

 , (49)

and

Varθ

(
θ̂λ

)
≤ ε2

∑
k≥1

b2kγ
2
k

b4kγ
2
k + λ2

. (50)

Some selected proofs will be presented in Section 2.6.

2.5 Numerical Experiments

To ilustrate the performance of the the estimator (47), we carried out some numerical

experiments. The main purpose is to demonstrate the actual convergence rates when the

noise level ε, as described in (42), goes to zero.

All the simulations are made in the domain of the coefficients for the trigonometric basis

{ψk : k ≥ 1} of L2(−π, π), implying that all the parameters are generated as sequences in

`2. We consider in particular, two functions f =
∑

k≥1 θkψk where

θk ∼

 k−2 for (θk : k ≥ 1) ∈ Θα(Q) , α < 3
2

exp(−2k) for (θk : k ≥ 1) ∈ Θ∞(α;Q) , α < 2
,

representing Sobolev type or analytic type of functions repectively. We also consider two

operators A corresponding to mildly or severe ill-posed situations respectively:

bk ∼

 k−2 for Mildly ill− posed

exp(−2k) for Severely ill− posed
.

For simplicity, we assure that γ > α− 2β in each possible sccenario choosing γ = 2 in all of

the three types of kernel considered.

To understand the asymptotic behavior of the regularized estimator, we consider a set of

values for the noise level as ε = j
100 for j = 1, 2, · · · , 15. In each case we estimate the

parameter (θk : k ≥ 1) using (47) and calculate the integrated squared error by ‖θ̂λ − θ‖`2 .

We performed 100 replications for each setting to obtain a fair approximation of the risk.

As usual in nonparametric estimators, the tuning parameter should be selected in order to

minimize the risk. To do so, in each setting we calculate (θ̂k : k ≥ 1) for each λ ∈ Λ, where

Λ = {λi : λi = exp(−i/5) , i = 1, · · · , 100}, and select the estimator θ̂λ∗ such that

λ∗ = arg min
λ∈Λ

‖θ̂λ − θ‖`2 .
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The results are presented in Figure 4. In each plot, we include also the minimax optimal

rate adjusted by a constant. As can be seen, the simulated rates have a similar decay as

the theoretical minimax counterparts, indicating the estimate is rate optimal.

Figure 4: Comparison of the risk of radial basis function regularization. The results are
averaged over 100 replications.

2.6 Proof of Theorem 9

We begin with the case when γk ∼ eγk
2

for some γ > 0.

2.6.0.1 Mildly ill-posed with Sobolev spaces

In this case, bk ∼ k−β and ak ∼ kα. From (49)

sup
θ∈Θα(Q)

B2
θ

(
θ̂λ

)
≤ Cλ2

(
min
x≥1

{
x2α−4β exp(−2γx2) + λ2x2α

})−1

. (51)

Hereafter we use C as a generic positive constant which may take different values at each

appearance. By the first order condition, the minimum on the right hand side is achieved
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at the root of (
2α− 4β

x
− 4γx

)
x2α−4β exp(−2γx2) +

2αλ2

x
x2α = 0,

implying that

sup
θ∈Θα(Q)

B2
θ

(
θ̂λ

)
≤ C (− log λ)−α . (52)

Now consider Varθ

(
θ̂λ

)
. From (50)

Varθ

(
θ̂λ

)
≤ ε2

∑
k≥1

k−2β exp(−2γk2)

k−4β exp(−2γk2) + λ2
≈ ε2

∫ ∞
1

x−2β exp(−2γx2)

x−4β exp(−2γx2) + λ2
dx.

The integral on the rightmost hand side can be bounded by∫ ∞
1

1

x−2β + λ2x2β exp(2γx2)
dx ≤

∫ x0

1
x2βdx+

∫ ∞
x0

λ−2x−2β exp(−2γx2)dx,

where x0 is the positive root of

x−2β = λ2x2β exp(2γx2),

which is of the order
(
−γ−1 log λ

) 1
2 . Because∫ ∞

x0

λ−2x−2β exp(−2γx2)dx = o
(
x2β

0

)
,

for small values of λ, we have

∑
k≥1

Var
(
θ̂kλ

)
= O

(
ε2
(

log
1

λ

)2α+ 1
2

)
(53)

as λ→ 0.

Combining (52) and (53), we have

∑
k≥1

E
(
θ̂kλ − θk

)2
= O

((
log

1

λ

)−α
+ ε2

(
log

1

λ

)β+1/2
)

as ε→ 0. Taking

λ = O
(

exp
(
−ε

4
2α+2β+1

))
yields

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
= O

(
exp

(
−ε

4α
2α+2β+1

))
,

as ε→ 0.
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2.6.0.2 Mildly ill-posed with analytic function

For this case, bk ∼ k−β and ak ∼ exp(αk). First observe that the variance Varθ

(
θ̂λ

)
does

not change with the parameter space and can still be bounded as in (53). On the other

hand, from (49),

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(
θ̂λ

)
≤ Cλ2

(
min
x≥1

{
x−4β exp(2αx− 2γx2) + λ2 exp(2αx)

})−1

,

and following the first order condition for the minimization on the right hand side, we have

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(
θ̂λ

)
= O

(
exp

[
−2α

(
−1

γ
log λ

)1/2
])

, (54)

as λ→ 0. Summing up, we have∑
k≥1

E
(
θ̂kλ − θk

)2
= O

(
exp

[
−2α

(
−1

γ
log λ

)1/2
]

+ ε2
(

log
1

λ

)β+1/2
)
, (55)

as ε→ 0. Consequently, if λ takes the optimal value

λ = O

(
exp

(
− γ

2α2

(
log

1

ε2

)2
))

,

the risk is minimax rate optimal, i.e.,

sup
(θk:k≥1)∈Θ∞(α,Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
= O

(
ε2
(

log
1

ε

)2β+1
)
,

as ε→ 0.

2.6.0.3 Severely ill-posed with Sobolev spaces

In this case, bk ∼ exp(−βk) and ak ∼ kα. Inequality (49) implies

sup
θ∈Θα(Q)

B2
θ

(
θ̂λ

)
≤ Cλ2

(
min
x≥1

{
x2α exp(−4βx− 2γx2) + λ2x2α

})−1

,

where, after minimizing the function inside the brackets, we get

sup
θ∈Θα(Q)

B2
θ

(
θ̂λ

)
= O

(
(− log λ)−α

)
as λ→ 0. (56)

The variance Varθ

(
θ̂λ

)
can be bounded using (50). In particular,

Varθ

(
θ̂λ

)
≤ ε2

∑
k≥1

exp(−2βk − 2γk2)

exp(−4βk − 2γk2) + λ2

≈ ε2
∫ ∞

1

exp(−2βx− 2γx2)dx

exp(−4βx− 2γx2) + λ2

≤ ε2ε2
(∫ x0

1
exp(2βx)dx+

∫ ∞
x0

λ−2 exp(−2βx− 2γx2)dx

)
,
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where x0 is the positive root of

exp(−2βx) = λ2 exp(2βx+ 2γx2).

It can be easily derived that

x0 = O
((
−γ−1 log λ

)1/2)
as λ→ 0. Observing that∫ ∞

x0

λ−2 exp(−2βx− 2γx2)dx = o (exp(2βx0)) ,

we have

Varθ

(
θ̂λ

)
= O

(
ε2 exp

(
2β
(
−γ−1 log λ

)1/2))
(57)

as ε→ 0. Combining (56) and (57), we have∑
k≥1

E
(
θ̂kλ − θk

)2
= O

(
(− log λ)−α + ε2 exp

(
2β
(
−γ−1 log λ

)1/2))
(58)

as ε→ 0, attaining the minimax optimal rate of convergence

sup
(θk:k≥1)∈Θα(Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
= O

((
log

1

ε

)−2α
)
,

when

λ = O

(
exp

(
−
(

log
1

ε2

)2
))

as ε→ 0.

2.6.0.4 Severely ill-posed with Analytic functions

For this case, bk ∼ exp(−βk) and ak ∼ exp(αk). Following similar arguments as before,

from Inequality (49)

sup
(θk:k≥1)∈Θ∞(α,Q)

B2
θ

(
θ̂λ

)
≤ Cλ2

(
min
x≥1

{
exp[(2α− 4β)x− 2γx2] + λ2 exp(2αx)

})−1

= O
(

exp
[
−2α

(
−γ−1 log λ

)1/2])
as λ goes to 0. On the other hand, the variance can still be bounded by (57). Hence,

∑
k≥1

E
(
θ̂kλ − θk

)2
= O

(
exp

[
−2α

(
−γ−1 log λ

)1/2]
+ ε2 exp

(
2β

(
1

γ
log

1

λ

)1/2
))

(59)
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as ε→ 0, which implies that if

λ = O

(
exp

(
− γ

(2α+ 2β)2

(
log

1

ε2

)2
))

,

the radial basis function regularization achieves the optimal rate of convergence

sup
(θk:k≥1)∈Θ∞(α,Q)

∑
k≥1

E
(
θ̂kλ − θk

)2
= O

(
ε

4α
2α+2β

)
as ε→ 0.
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CHAPTER III

A DISCRIMINANT APPROACH TO TREATMENT SELECTION.

INFINITE SAMPLE CONSISTENCY ANALYSIS

3.1 Introduction

One of the leading challenges in personalized medicine is to select treatments and clinical

decisions according to the individual patient’s requirements. The necessity for a individ-

ual treatment rule comes from the incresing number of studies that show heterogeneity on

the patient’s response, not just acrross different individuals but also in different times of

the illness treatment. During the last years personalized medicine and the individualized

treatment selection has become a priority in the health system (see e.g. Lesko (2007) and

Piquette-Miller and Grant (2007)). In this chapter, we are interested in the problem of

assigning the best treatment for a patient with particular prognosis covariates. To achieve

that, we estimate the best decision rule from the data generated in a clinical trial. It is

important to clarify that this approach differs from a different point of view in personalized

medicine, in which the individuals are classified into risk groups, and each group has a

matching treatment.

We assume that the data is generated from a clinical trial such that, for each patient in

the trial, we observe a triplet: patient’s individual prognostic covariates (pretreatment vari-

ables) X ∈ X , treatment assignment A ∈ A, and a clinical outcome called reward R that

measures the benefit of the treatment with higher values being better. It is assumed that

trial is randomized in the sense the for a particular x ∈ X , there is a defined probability

for each possible treatment with p(a|x) := P (A = a|X = x) > 0 for each (a, x) ∈ A × X .

We also assume the the reward function is bounded and without loss of generality for the

purpose of our analysis R is a positive random variable with probability one. The patient

selection rule follows a probability density h0(x) for x ∈ X . We define P as the probability

distribution of (X,A,R), with associated likelihood for an observation h0(x)p(a|x)h1(r|x, a),

where h1 is the conditional density of R on X and A.

The main goal of treatment selection problems is to select the best treatment A∗ after ob-

serving the corresponding covariates X∗ so that the resulting reward is maximized. There-

fore, assuming that the data generating mechanism is known, the natural course of action
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is dictated by the Bayes rule. To clearly express this, we define the Value function as

V (a;X∗) := E (R|A = a,X = X∗) , a ∈ A, X∗ ∈ X ,

that measures the expected reward when a particular treatment is assigned. Then, the

optimal treatment is given by

A∗ = arg max
a∈A

V (a;X∗), (60)

and in particular, if A = {−1, 1} then

A∗ =

 1 if V (1;X∗) > V (−1;X = X∗)

−1 if V (1;X = X∗) < V (−1;X = X∗)
.

An Individualized Treatment Rule (ITR) is a decision (non random) function d : X → A,

that is, is a completely defined mechanism to assign a treatment a ∈ A to any possible

patient with pretreatment variable x ∈ X . If in particular we define d∗(X
∗) := A∗, then d∗

is a Bayes optimal decision rule.

In order to derive a data driven estimation procedure for d∗, it is necessary to define a

performance measure for an arbitrary ITR d. For that purpose, we will use the expected

value function. Let P d be the probabillity distribution of (X,A,R) conditioned toA = d(X).

The assumptions on the distribution P make P d absolutely continuous with respect to P

(see Qian and Murphy (2011)) and therefore, the expected value function is

V (d) := EV (d(X), X) =

∫
R
dP d

dP
dP = E

[
R
I(A = d(X)

p(A|X)

]
, (61)

where dP d/dP corresponds to the RadonNikodym derivative and I(·) is the indicator func-

tion. It is clear that

d∗ = arg max
d

V (d),

where the maximum is defined on the set of all possible desicion rules. We call V (d∗)

the Optimal Expected Value. Givent i.i.d observations (Xi, Ai, Ri) of n subjects in the

randomized trial, it is possible to define the empirical version of V as

Vn(d) := En
[
R
I(A = d(X)

p(A|X)

]
=

1

n

n∑
i=1

Ri
I(Ai = d(Xi))

p(Ai|Xi)
. (62)

Trying to estimate d∗ maximizing directly 62 is a computational NP-hard problem given

the non-concavity of the objective function.

The existing methods to estimate the optimal ITR are based on three different paradigms:
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• Treatment Effect based. The main idea is to estimate the value function V (a, x) and

replace in 60 to obtain d∗.

• Treatment Difference based. Under this paradigm, first is estimated the difference

value function H(x) = V (1, x)− V (−1, x) and replace d̂∗ = sign(H(x)).

• Treatment Rule Classification based. Under this paradigm a classification procedure

is used to directly estimate the set X+ : x ∈ X : V (1, x) > V (−1, x).

Methods based on the third paradigm above usually rely on a direct maximization of 62,

however, given the computational challenges, it is often assumed that d∗ belongs to a very

simple class of ITR functions F and that X is a low dimensional space. Some particular

approaches are in Murphy et al. 2001 and Robins et al. 2008 in the seeting of Dynamic

Treatment Regimes. For the first and second paradigms mentioned above, note that there

is a (sometimes implicit) two stage estimation method. That is, d∗ is estimated indirectly

and the statistical criteria to estimate the value function (usually minimizing the prediction

error) does not always match with the objective of maximizing the expected value function.

Some examples of this apprach can be found in Qian and Murphy (2011) and Moodie et

al. (2009). Particularly in Qian and Murphy (2011) there is an explicit description of the

risk of choosing a suboptimal ITR with this two stage method when the estimated expected

value function is overfitted.

We are interested in a different approach on which the empirical value function is directly

maximized over a rich functional class F with a penalization term to regularize the overfit-

ting. The main idea is to solve the problem usign a similar path that learning alrgorithms

use to overcome the classification problem with convex minimization. Although the similar-

ities are evident, the nature of the estimating the optimal ITR is different as long as the the

interest is a classification based on the maximum of a response random variable (R). We

investigate what some of the learning classification machinery have to offer to solve the ITR

selection problem in a more computationally feasible way and to evaluate if that solution

has good asymptotic statistical properties. Previous work on that direction is presented

in Zhao, Zeng, Rush and Kosorok (2012) with emphasis on a support vector machine look

alike method usign a hinge surrogate value function. We extend their methods to a much

more general setting with generic type of surrogate value functions in a Reproducing Kernel

Hilbert Space regularization framework.

Specifically, here we analyze the effect of using a surrogate value function in order to make

the optimization problem tractable. Sufficient conditions for Infinite Sapmle Consistency
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(Fisher consistency) are established, When the surrogated version of the problem is used

and the maximization allows for Infinite Sample Consistency, convergence bounds on the

surrogated expected value function can be translated to the 0-1 value function counterpart.

That facilitates the asymptotic analysis for the convergence of the estimated ITR to d∗.

3.2 Theoretical Framework and Methodology

For clarity in the presentation we shall describe the notation an the problem set up assuming

that there are two treatment options, that is, A = {−1, 1}. The case of a multicategory setA

will be described in section 3.3.2. As is typical in statistical learning classification problems,

associated with a particular ITR d it is possible to define a measurable discriminant function

f such that d(x) = sign(f(x)) for all x ∈ X . Similarly, we call f∗ the Bayes optimal rule,

where d∗ = sign(f∗). Thus, the expected value function can be easily adapted as

V (f) := EV (f(X), X) = E
[
R
I(A = sign (f(X))

p(A|X)

]
,

with the empirical version being Vn(f) = EnV (f(X), X). It is clear that Vn(f) is not concave

in f and direct maximization is an NP-hard problem. The remedy that has been applied in

statistical learning theory to circumvent this obstacle is to use a surrogate function φ that

replace the step discountinuity caused by the expression I(A = sign (f(X)). Replacing this

part with a concave function φ evaluated in Af(X) allows to estimate f∗ using the tools of

convex optimization.

For a specific surrogate function φ, we define the expected surrogate value function as

Vφ(f) := E
[
R
φ(Af(X)

p(A|X)

]
, (63)

and the φ-optimal value as V ∗φ = supf Vφ(f). Similarly, we define the empirical (surrogate)

value function as

V φ
n (f) :=

1

n

n∑
i=1

(
Ri
φ(Aif(Xi)

p(Ai|Xi)

)
, (64)

for a decision function f : X → R. We consider the estimator for the optimal ITR d∗ as

d̂φn = sign(f̂φn ) where

f̂φn = arg max
f∈F

V φ
n (f), (65)

and F is a closed convex functional class. We consider a rich enough class F to avoid

selecting suboptimal treatments, but with a controlled size mechanism to avoid overfitting.

Regularization is an appropriate approach to find a good estimator f̂φn . If ‖ ·‖H ia the norm

of a Reproducing Kernel Hilbert Space H with associated kernel K it is possible to redefine
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the estimator as

f̂φn = arg max
f∈H

(
V φ
n (f)− λ‖f‖2H

)
, (66)

where λ is a tuning parameter that balances out the two terms in the equation. The Rep-

resenter theorem assures that f̂φn can be solved as a convex optimization problem in finite

dimensions, even that the space H can be infinite dimensional.

Using V φ
n in 65 or 66 instead of Vn changes the rules of the estimation. The first im-

portant difference is that, as a function of the sample size, the sequence of estimators f̂φn

can be “φ-consistent”, that is Vφ(f̂φn ) → V ∗φ , but that does not necessarily implies that

f̂φn (x) → f∗(x) for all x ∈ X up to null probability sets. That is, asymptoticaly, f̂φn may

not lead to the optimal ITR d∗, and that depends enterely on the function φ that is used.

When limn→∞ sign(f̂φn ) = d∗ almost sure in X , we say that the respective surrogate value

function φ is Infinite Sample Consistent. This property has received different names in

the classification learning literature, as classification calibrated (e.g., Bartlett, Jordan and

McAuliffe (2006)) or Fisher Consistent (e.g., Lin (2004)).

In machine learning literature, the surrogated version of the loss function has been seen as

a practical solution from a computational point of view. However, in the statistical analysis

of the estimator f̂φn we are interested in two measures of quality: the estimation error that

concerns with the stochastic perturbation in finite samples and the approximation error

that is related to the bias introduced in the class H. As discussed in Zhang (2003) and

Bartlett, Jordan and McAuliffe (2006) in the context of binary classification, for a particular

f it is easier to find upper bounds in the surrogate value deficit V ∗φ − Vφ(f) than in the

0-1 expected value deficit V (f∗) − V (f). Given that we are interested in the asymptotic

behavior of the last quantity, we can translate its value from the surrogate version. If φ is

Infinite Samlple Consistent, then it is possible to find a function ψ : [0, 1]→ R+ such that

ψ (V (f∗)− V (f)) ≤ V ∗φ − Vφ(f), (67)

where ψ is increasing on some set [0, t) for t > 0. We want the bound produced by ψ−1

to be as tight as possible. Under low noise conditions (Tsybavov (2001)), this bounds can

be improved. Note that the value deficit is relative to the infimum over all measurable

functions f , but f̂φn ∈ H. The surrogate value deficit can be split into two components as

ψ (V (f∗)− V (f)) ≤
(

sup
h∈H

Vφ(h)− Vφ(f)

)
+

(
V ∗φ − sup

h∈H
Vφ(h)

)
, (68)

where the terms on the right of the inequality represent respectively the estimation and

the approximation error measured in the surrogate value. For some universal kernels K
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Figure 5: Comparison of different Surrogate Value fucntions.

associated with the Hilbert space H the approximation error vanishes and therefore it is

possible to find convergent rates for V (f∗)−V (f). The particular case of the Gaussian kernel

function K was studied in Zhao, Zeng, Rush and Kosorok (2012) for the ITR problem.

It is therefore clear that in the statistical analysis for the estimation of the optimal ITR

through the minimization of 66, Infinite Sample Consistency of φ plays a fundamental role.

Some examples of the functions that could be used as surrogate φ are

• Hinge surrogate: φ(x) = 1−max(1− x, 0).

• Least Squares surrogate: φ(x) = 1− (1− x)2.

• Exponential Surrogate: φ(x) = 1− exp(−x).

• Squared Hinge Surrogate: φ(x) = 1−max((1− x)2, 0).

• Logistic Surrogate: φ(x) = 1− log(1 + exp(−x)).

Figure 5 presents a visual comparison of them. Note that all of them are concanve on R

and also differentiable, with exemptions in the hinge and squared hinge cases that are not

differentiable at one.

41



3.3 Infinite Sample Consistency. Main Results.

To facilitate the analysis of the surrogate value function it is convenient to avoid dependency

on X by defining the conditional φ-value function. We shall assume that A = {−1, 1} for the

next definitions, but additional scenarions with multi-treatment selection and witholding

option wiil be studied also. For all x ∈ X we say that

Qx(f) := E
[
R
φ(Af(X)

p(A|X)

∣∣∣∣X = x

]
=
∑
a∈A

φ(af(x))E(R|A = a,X = x)

= φ(f(x))E(R|A = 1, X = x) + φ(−f(x))E(R|A = −1, X = x), (69)

is the conditional φ-value function of f(x). Note that Vφ(f) = EXQX(f) and that the

dependency on φ has been left implicit. In general, it is possible to study the consistency

problem pointwise, that is, the Infinite Sample Consistency can be defined and for each

particular x ∈ X . Thus, we drop the x dependency in definition 69. Writing r1 = E(R|A =

1, X = x) and r−1 = E(R|A = −1, X = x), we express 69 as

Qr(f) = φ(f)r1 + φ(−r)r−1. (70)

Recall that d∗(x) = sign(r1 − r−1). Given that our intention is to find the conditions

on which φ is Infinite Sample Consistent, for the following definition, we do not make

any assumptions on φ and we can not assure that supf∈RQr(f) is achieved or uniquely

determined. To avoid the nuisance of dealing with unbounded cases for any values r1 and

r−1, it is assumed hereafter that φ is bounded above, that is, supy∈R φ(y) <∞.

Definition 1 φ is Infinite Sample Consistent if for any sequence f (1), f (2), · · · ⊂ R such

that

lim
i→∞

Qr(f
(i)) = sup

g∈R
Qr(g),

then,

lim
i→∞

sign
(
f (i)(r1 − r−1)

)
= 1. �

The assumptions on the probability density h1(r|x, a) imply that 0 < rj < ∞ with proba-

bility one for j ∈ A. Therefore, if φ is concave, the supf∈RQr(f) is attained and uniquely

defined (φ bounded above implies that φ(x) → −∞ when x → ∞ or x → −∞) making

possible to write

fφ(x) = arg max
f∈R

Qr(f),
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and consequently, fφ(x) = arg maxf Vφ(f), where the maximum is taken over all measurable

functions. In this case, by definition 1, φ is Infinite Sample Consistent if

dφ(x) := sign(fφ(x)) = d∗.

For the following theorem we assume that φ is concave, that is the general case we are

interesterd in.

Theorem 12 Assume that φ is concave. Then dφ = d∗ , that is, dφ is infinite sample

consistent, if and only if φ(·) is differentiable at zero and φ′(0) > 0.

Proof. For simplicity, we define

η :=
r1

r1 + r−1
=

E(R|X = x,A = 1)

E(R|X = x,A = 1) + E(R|X = x,A = −1)
, (71)

and, with a slight abuse in the notation, we write

Qη(f) :=
1

r1 + r−1
Qr(f) = φ(f)η + φ(−f)(1− η). (72)

It is clear that fφ(x) is also a maximizing argument of Qη(f). Note that using this notation,

it is possible to rewrite the optimal Bayes decision d∗ as

d∗(X) =

 1 If η(X) ≥ 1/2

−1 If η(X) < 1/2
.

We consider the ‘if ’ part of the proof first, and start by the case when η < 1/2. We need

to prove that for all x ∈ X , fφ(x) < 0. Because φ is concave, for any h > 0 it follows that

φ(0) + hφ′(0) ≥ φ(h)

φ(0)− hφ′(0) ≥ φ(−h). (73)

Therefore, noting that Qη(0) = φ(0), it is derived that

Qη(h)−Qη(0) = η (φ(h)− φ(0)) + (1− η) (φ(−h)− φ(0))

≤ ηφ′(0)h− (1− η)φ′(0)h = hφ′(0) (2η − 1) ,

that is, given φ′(0) > 0, for any h > 0, Qη(h) − Qη(0) < 0. Consequently, fφ ≤ 0 because

it is a maximum. To prove the strict inequality, note that given that φ is differentiable at

zero, by definition, for any ε > 0 there exists a δ(ε) > 0 such that

δ−1 (φ(δ)− φ(0)) ≥ φ′(0)− ε

δ−1 (φ(0)− φ(−δ)) ≤ φ′(0) + ε.
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This implies that

Qη(−δ)−Qη(0) = η (φ(−δ)− φ(0)) + (1− η) (φ(δ)− φ(0))

≥ ηδ
(
−φ′(0)− ε

)
+ (1− η)δ

(
φ′(0)− ε

)
= δ

(
φ′(0)(1− 2η)− ε

)
,

thus, making ε small enough, (φ′(0)(1− 2η)− ε) > 0. It follows that fφ < 0.

Now we consider the case when η ≥ 1/2. From the inequalities derived in 73, for any h > 0,

Qη(−h)−Qη(0) ≤ hφ′(0) (1− 2η) ≤ 0,

and in consequence fφ ≥ 0. This concludes the proof for the necessary conditions in the

theorem.

We proceed now with the ‘only if ’ part of the proof. Note that if fφ maximizes Qη(f), it

follows that Qη(fφ)− φ(0) ≥ 0, where

Qη(fφ)− φ(0) = η (φ(fφ)− φ(0)) + (1− η) (φ(−fφ)− φ(0)) . (74)

Note that in the case of η < 1/2 the inequality is strict. The reason of this is that if

Qη(fφ) = φ(0) then φ(y) = c ∈ R for y ∈ [fφ,−fφ] (by the definition of concavity), and

subsequently, −fφ > 0 is also a maximizing argument, which contradicts the infinite sample

consistency property.

We need to prove that φ′(0) > 0. Let [a, b] be the subderivative of φ at zero, that is a and

b are the right and left limits when h→ 0 of the function h−1(φ(h)− φ(0)). First is going

to be proved that a > 0. Suposse by contradiction that a ≤ 0. If η < 1/2 then fφ < 0 from

the infinite sample consistency definition. Therefore, φ(−fφ) ≤ φ(0), and replacing in 74,

it is necessary that φ(fφ) > φ(0) in order to keep the optimality property of fφ. Given that

fφ < 0 and the concavity of φ, we have that a ≤ b ≤ 0. Consequentely, the following two

inequalities hold

φ(fφ)− φ(0) ≤ bfφ

φ(0)− φ(−fφ) ≥ afφ,

which implies that Qη(fφ)−φ(0) ≤ fφ (bη − (1− η)a) ≤ 0, which contradicts that fφ is the

maximun. Therefore, it is concluded that a > 0.

It remains to prove that a = b. To do so, suppose by contradiction that 0 < a < b. This

implies that it is possible to define a/(a + b) < η < 1/2, and therefore fφ < 0. It is clear

that

φ(−fφ)− φ(0) < −afφ

φ(0)− φ(fφ) > −bfφ,
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so, Qη(fφ) − φ(0) < f∗φ (bη − (1− η)a) < 0, which contraticts the fact that fφ maximizes

Qη. It follows that φ is differentiable at zero and φ′(0) > 0. �

3.3.1 Treatment Selection Withholding

For many clinical treatment selections the cost of choosing the incorrect treatment can be

very sustantial. In such cases, it is preferable to define some no decisive region for which

the assigment to an specific procedure is inconclusive. We consider the ITR problem with

the option of not making any decision because the assigment is not strong enough. We call

this the rejection option.

Considering two possible treatments, that is, A = {−1, 1}; we define the Individualized

Treatment Rule with rejection option as a function d : X → Ā where Ā = {−1, 0, 1}. The

optimal (Bayes) ITR d∗ is the decision that maximizes the expected value function as

d∗ := arg max
d

E
[
R`(A, d(X))

p(A|X)

]
,

where

`(A, d) =


0 If d 6= A and d 6= 0

c If d = 0

1 If d = A

,

for some 0 ≤ c < 1/2. Defining η as in 71,

η(x) =
E(R|X = x,A = 1)

E(R|X = x,A = 1) + E(R|X = x,A = −1)
,

it is easy to check (see e.g. Barlett and Wegkamp (2008) and Yuan and Wegkamp(2010)

for the classification problem) that

d∗(X) =


1 If η(X) > 1− c

0 If c ≤ η(X) ≤ 1− c

−1 If η(X) < c

.

Let φ(·) be a surrogate concave function, and

fφ := arg max
f

E
[
Rφ(Af(X))

p(A|X)

]
,

where the maximum is taken over all measurable functions f . The decision rule d associated

with a function f can be determined as

d(X) := D(f(X), δ)) =


1 If f(X) > δ

0 If − δ ≤ f ≤ δ

−1 If f < −δ

,
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for a parameter δ(c, φ) ≥ 0. In particular, we call dφ = D(fφ(X), δ)). The following theorem

gives necessary and sufficient conditions on φ to be Infinite Sample Consistent.

Theorem 13 Assume φ is concave. Then, dφ = d∗ if and only if φ(·) is differentiable at δ

and −δ, φ′(δ) > 0, and
φ′(δ)

φ′(δ) + φ′(−δ)
= c.

Proof. Using the definition of Qη (f) in 81 it is clear that fφ is a maximizing argument of

it. We shall consider first the ‘if ’ part of the proof, which is going to be divided in three

different cases: η < c, η > 1− c and c ≤ η ≤ 1− c.

Case 1: η < c. Note that φ concave implies that φ′(−δ) ≥ φ′(δ) > 0, and therefore, for any

h > 0,

φ(−δ + h)− φ(−δ) < φ′(−δ)h

φ(δ)− φ(δ − h) > φ′(δ)h. (75)

Consequently, using the fact that φ′(−δ) = φ′(δ)1−c
c , we have

Qη(h− δ)−Qη(−δ) < ηhφ′(δ)
1− c
c
− (1− η)hφ′(δ)

= hφ′(δ)
(η
c
− 1
)
< 0.

This means that fφ ≤ −δ. We now have to prove that fφ 6= −δ. Given φ differentiable at

−δ and δ, for any ε > 0 there exist some positive constants ξ1(ε) and ξ2(ε) such that

ξ−1
1 (φ(−δ)− φ(−δ − ξ1)) ≤ φ′(−δ) + ε

ξ−1
2 (φ(δ + ξ2)− φ(δ)) ≥ φ′(δ)− ε. (76)

Writing ξ(ε) = max{ξ1(ε), ξ2(ε)} we have

Qη(−δ − ξ)−Qη(−δ) = η (φ(−δ − ξ)− φ(−δ)) + (1− η) (φ(δ + ξ)− φ(δ))

≥ ηξ
(
−φ′(−δ)− ε

)
+ (1− η)ξ (φ(δ)− ε)

= ξ
(
φ(δ)

(
1− η

c

)
− ε
)
.

Therefore, for ε small enough, Qη(−δ − ξ)−Qη(−δ) > 0. It follows that fφ < −δ.

Case 2: η > 1− c. Using the inequalities 75, for any h > 0 we get

Qη(δ − h)−Qη(δ) < −ηhφ′(−δ) c

1− c
+ (1− η)hφ(−δ)

= hφ(−δ)
(

1− η

1− c

)
< 0,
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and therefore, fφ ≥ δ. In order to prove the strict inequality, it is possible to use the

inequalities 75 and the respective definition of ξ(ε) to make

Qη(δ + ξ)−Qη(δ) ≥ ηξ
(
φ′(δ)− ε

)
+ (1− η)ξ

(
−φ′(−δ)− ε

)
= ξ

(
φ′(−δ)

(
η

1− c
− 1

)
− ε
)
.

It follows that for a properly choosen ε, Qη(δ + ξ)−Qη(δ) > 0 and thus fφ > δ.

Case 3: c ≤ η ≤ 1− c. Observe that for any h > 0 the following inequalities hold

φ(δ + h)− φ(δ) < φ′(δ)h

φ(−δ)− φ(−δ − h) > φ′(−δ)h.

Subsequently, we have that

Qη(δ + h)−Qη(δ) < hφ′(−δ)
(

η

1− c
− 1

)
< 0,

which implies that fφ ≤ δ. In a similar way

Qη(−δ − h)−Qη(−δ) < hφ′(δ)
(

1− η

c

)
< 0,

which means that fφ ≥ −δ. Therefore, fφ ∈ [−δ, δ].

We consider now the ‘only if ’ part of the proof. Note first that given that fφ maximizes

Qη(f) the next two inequalities follow

Qη(fφ)−Qη(δ) = η (φ(fφ)− φ(δ)) + (1− η) (φ(−fφ)− φ(−δ)) ≥ 0 (77)

Qη(fφ)−Qη(−δ) = η (φ(fφ)− φ(−δ)) + (1− η) (φ(−fφ)− φ(δ)) ≥ 0. (78)

Note the first inequality is strict if η > 1 − c and so is the second one when η < c. Let

[a−, b−] and [a+, b+] the respective subderivatives of φ at −δ and δ. We need to prove that

a+ > 0, that a− = b− and a+ = b+, and also that a+/(a+ + a−) = c. We shall start by

proving that a+ > 0. Assume by contradiction that a+ ≤ 0. If η > 1− c, by the optimality

of fφ we have that fφ > δ. Thus, φ(fφ) ≤ φ(δ), and replacing in the inequality 77 it is

concluded that φ(−fφ) > φ(−δ). In consequence, b− ≤ 0 and a− ≤ 0, which implies that

φ(fφ) ≤ φ(−δ). Replacing in 78 it follows that φ(−fφ)− φ(δ) ≥ 0, and thus, a+ ≤ b+ ≤ 0.

Using this, ee can construct the next pair of inequalities

φ(fφ)− φ(δ) ≤ a+(fφ − δ)

φ(−fφ)− φ(−δ) ≤ −b−(fφ − δ),
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which implies that Qη(fφ)−Qη(δ) ≤ (fφ − δ) (a+η − (1− η)b−)) ≤ (fφ − δ)(2η− 1)b− ≤ 0.

This contradicts the optimality of fφ and therefore it is prooved that a+ > 0.

We will now prove that φ is differentiable at δ and −δ, and that a+/(a− + a+) = c. To

do so, recall that we already proved that 0 < a+ ≤ b+ ≤ a− ≤ b−, and consequentely,

b−/a+ = a−/b+ if and only if a− = b− and a+ = b+. Therefore, it is sufficient to prove that

a+

a+ + b−
= c =

b+
b+ + a−

.

Assume by contradiction that a+

a++b−
< c, which implies that b−

a++b−
> 1− c. Suppose that

1− c < η < b−
a++b−

. It follows that fφ > δ and thus

φ(fφ)− φ(δ) ≤ a+(fφ − δ)

φ(−δ)− φ(−fφ) ≥ b−(fφ − δ).

Replacing in inequality 77, we have that Qη(fφ)−Qη(δ) ≤ (fφ − δ) (η(a+ + b−)− b−) < 0

that is a contradiciton. Therefore, a+

a++b−
≥ c. Similarly, assume now that b+

b++a−
> c and

choose c < η < b+
b++a−

. This implies that −δ ≤ fφ ≤ δ and

φ(fφ)− φ(−δ) ≤ a−(fφ + δ)

φ(δ)− φ(−fφ) ≥ b+(fφ + δ).

Replacing in inequality 78 it follows that Qη(fφ)−Qη(−δ) ≤ (fφ+δ) (η(a− + b+)− b+) < 0,

which contradicts the infinite sample consistency of fφ, and in consequence, b+
b++a−

≤ c.

That proves that φ is differentiable at −δ and δ and that

φ′(δ)

φ′(δ) + φ′(−δ)
= c. �

3.3.2 Multicategory Treatment Selection

Suppose the the treatment selection A belongs to the set A ∈ {1, 2, · · · ,K}, and for any

d ∈ A define

d∗ := arg max
d

EXEA,R
[
R
I(A = d(X))

p(A|X)

]
= arg max

d

K∑
c=1

E [I(d(x) = c)R|X = x,A = c] .

Then d∗(X) = arg maxc E(R|X,A = c).

For each c ∈ {1, · · · ,K} let fc : X → R be a real function from the sample space of X and

f = (f1, · · · , fK). Suppose that there exists some f ∈ Ω ⊂ RK , and Φ : Ω→ RK , such that

for all x ∈ X

fΦ(x) := arg max
f

K∑
c=1

E [Φc(f)R|X = x,A = c] , (79)
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where Φc is the c-th component of Φ. The Φ-classification is made as

dΦ(x) = arg max
c∈{1,··· ,K}

f∗c (x),

where fΦ = (f∗1 , · · · , f∗K). It is assumed thereafter that Φc is continuous and bounded above

for all c ∈ A. Note that the maximum element of fΦ may not be uniquely defined, however

a rule for breaking ties can be easily determined and as long as it remains always the same,

it does not affect the consistency analysis. We shall assume hereafter that this maximum

is unique.

In the multiclass classification, checking for infinite sample consistency depends highly on

the specific procedure tha is utilized, concretely, on the particular selection of the set Ω and

the surrogate function Φ. The nature of the problem difficults the use of the definition 79

given that, in general, the existence of a maximum point is not assured inside the set Ω.

We shall use therefore a more general definition for infinite sample consistency associated

with a particular method, that is, with the definition of Φ1, · · · ,Φk and Ω, instead of the

solution in 79.

For all X∗ ∈ X and a ∈ A, define

ηa(X
∗) =

E(R|X = X∗, A = a)∑K
k=1 E(R|X = X∗, A = k)

, (80)

so that
∑K

a=1 ηa(X
∗) = 1. As a function of X∗ we define

Qη(X∗)(f(X∗)) =
K∑
a=1

ηa(X
∗)Φa(f(X∗)), (81)

and Q∗η(X∗) := supf∈ΩQη(X∗)(f(X∗)). Note that Q∗η(X∗) <∞ because each Φa is continuous

and bounded above. We will omit the dependency on X∗ in the notation herafter.

We say that the classification method with surrogate functions Φ1, · · · ,Φk on the set Ω ⊂

RK is Infinite Sample Consistent if for all η1, η2, · · · , ηK such that ηa ≥ 0 for a ∈ A,∑K
a=1 ηa = 1 and ηc < supa∈A ηa, it follows that

Q∗η > sup
f∈Ω:fc=maxa∈A fa

Qη(f). (82)

This definition implies that no matter the values of η1, η2, · · · , ηK (and therefore no matter

the particular X∗) the maximization of 81 with respect to f ∈ Ω always leads to the Bayes

rule d∗(X
∗). We will present now sufficient conditions for Infinite Sample Consistency for

two classification methods, the first one using Ω = RK , and the second with the constrained

domain Ω = {f ∈ RK :
∑

a∈A fa = 0}.
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3.3.2.1 Pairwise Comparison.

In this case, for Ω = RK and

Φa(f) =
K∑
k=1

φ(fa − fk),

for a real value function φ. Note that it is implied that φ is continuous and bounded above.

Theorem 14 If φ : R→ R is a non-decreasing concave differentiable function with φ′(0) >

0, and there exists some x0 such that φ(x) = φ(x0) for all x ≥ x0; then the pairwise

comparison method is Infinite Sample Consistent.

Proof.

Assume first that there exists some fφ = (f∗1 , · · · , f∗K) ∈ Ω such that Qη(fφ) = Q∗η, that is,

Qη(f) attains its maximum value and thus fφ ∈ arg maxf∈ΩQη(f). Suppose that ηk∗ > ηc

for all c ∈ A such that c 6= k∗. We have to prove that f∗k∗ > f∗c .

We will start proving by contradiction that f∗k∗ ≥ f∗c . Assume by the contrary that f∗k∗ < f∗c ,

and define g = (g1, · · · , gK) ∈ Ω such that gc = f∗k∗ , gk∗ = f∗c and gk = f∗k for all other

k ∈ A. It follows that

Qη(g) = Q∗η + (ηc − ηk∗)
K∑
a=1

φ(f∗k∗ − f∗a ) + (ηk∗ − ηc)
K∑
a=1

φ(f∗c − f∗a )

= Qη ∗+(ηk∗ − ηc)

φ(f∗c − f∗k∗)− φ(f∗k∗ − f∗c ) +
K∑

a6=c,k∗
(φ(f∗c − f∗a )− φ(f∗k∗ − f∗a ))

 ,
however, φ non-decreasing and φ′(0) > 0 implies that φ(f∗c − f∗k∗) > φ(f∗k∗ − f∗c ), and

φ(f∗c − f∗a ) ≥ φ(f∗k∗ − f∗a ) for all a 6= c, k∗. Consequently, Qη(g) > Q∗η, and this is a

contradiction on the optimality of fφ. It follows that f∗k∗ ≥ f∗c .

Now we wil prove that the inequality has to be strict, that is, f∗k∗ > f∗c . Assume by

contradiction that f∗k∗ = f∗c . From the first order condition on the optimality of fφ it is

derived that 0 =
δQη(f)
δfk∗

∣∣∣
fφ

=
δQη(f)
δfc

∣∣∣
fφ

. Substracting the second term from the first one, we

have

(ηk∗ − ηc)
K∑
a=1

φ′(f∗k∗ − f∗a ) = 0.

However, given that φ is non-decreasing,
∑K

a=1 φ
′(f∗k∗ − f∗a ) ≥ φ′(f∗k∗ − f∗k∗) +φ′(f∗k∗ − f∗c ) =

2φ′(0) > 0. Consequently, f∗k∗ > f∗c . This proves that d∗ = dΦ if Qη(f) attains its maximum

in the set Ω.

We proceed to prove Infinite Sample Consistency according to the general definition 82.

Note first that it is possible to define a sequence of real vectors f (m) = (f
(m)
1 , · · · , f (m)

K ) in
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Ω such that Qη(f
(m)) → Q∗η. Thus, a classification method based on Φ1, · · · ,ΦK and Ω is

infinite sample consistent if and only if{
k ∈ A : lim

m→∞

(
f

(m)
k − sup

a∈A
f (m)
a

)
= 0

}
⊆ arg max

a∈A
ηa, (83)

as long as the set in the left hand side is not empty. Assume again that ηk∗ > ηc for all c ∈ A

such that c 6= k∗. We need to prove that limm→∞ supa∈A f
(m)
a = limm→∞ f

(m)
k∗ . Suppose

by contradiction that this is not true. That implies that we can find a subsequence f (m′)

such that f
(m′)
c ≥ f

(m′)
k∗ for all m′. In the case that ηk∗ = 1 this is clearly a contradiction

because Qη(f
(m′)) will not converge to the supremum. We can assume then that ηk∗ < 1.

We claim that we can select f (m′) to be a bounded sequence. In order to prove that, note

that because φ is non-decreasing and concave, for x → −∞, φ(x) → −∞. We define the

partition A = A+ ∪ A0, where A = {a ∈ A : ηa > 0}, and A0 contains the indexes with

ηa = 0. Suppose that for one specific index a′, f
(m′)
a′ cannot be bounded below. If a′ ∈ A+,

then Qη(f
(m′)) cannot be bouded below neither, and therefore it could not converge to

the supremum. Moreover, note that Qη

(
f (m′)

)
→ Q∗η < ∞ implies that

(
f

(m′)
a′ − f (m′)

a

)
are bounded below for a′ ∈ A+ and a ∈ A. Therefore, f

(m′)
a′ is a bounded sequence for

all a′ ∈ A+ and consequently, f
(m′)
k are bounded above for all k ∈ A0. It follows that

for each m′ it is possible to define a new sequence h(m′) =
(
h

(m′)
1 , · · · , h(m′)

K

)
such that

h
(m′)
a = f

(m′)
a − mink∈A+ f

(m′)
k . Note that all the arguments in h

(m′)
a′ are non-negative for

a′ ∈ A+ and Qη

(
h(m′)

)
→ Q∗η < ∞ because the value of Qη(·) depends only on the

differences f
(m′)
a′ − f

(m′)
a . For k ∈ A0 we can redefine h

(m′)
k = max{h(m′)

k ,−x0} without

altering the value of Qη

(
h(m′)

)
. Now h(m′) is a bounded sequence.

We can choose a convergent subsequence h(m′′) to an element h ∈ Ω such that h
(m′)
c ≥ h(m′)

k∗

and Qη(h) = Q∗η, however this is a contradiction because we already proved that if h ∈ Ω

then h
(m′)
c < h

(m′)
k∗ . This proves that the selection method is Infinite Sample Consistent.

3.3.2.2 Constrained Comparison Method

In this case, for Ω = {f ∈ RK :
∑K

k=1 fk = 0},

Φa(f) =
K∑
k 6=a

φ(−fk),

for a continuous real value function φ bounded above.

Theorem 15 If φ(·) is a concave function differentiable in (−∞, 0] with φ′(0) > 0, then

the Constrained Comparison selection method is Infinite Sample Consistent.

51



Proof.

Note that it is possible to write Qη(fφ) =
∑K

a=1(1−ηa)φ(−f∗a ), and whitout loss of generality

it is possible to assume that 1 ≥ η1 > η2 ≥ · · · ≥ ηK . Similar to the proof of theorem 14,

we assume first that there exists some fφ = (f∗1 , · · · , f∗K) ∈ Ω such that Qη(fφ) = Q∗η, that

is, Qη(f) attains its maximum value and thus fφ ∈ arg maxf∈ΩQη(f).

First it is going to be proved that f∗1 ≥ 0. Suppose by contradiction that f∗1 < 0, then,

given the restriction in Ω there exists at least one c ∈ A such that c 6= 1 and f∗c > 0

with ηc < η1. The concavity of φ, and differentiability at 0 implies that for any constant

0 < x < min{−f∗1 , f∗c }, φ(−f∗c + x) − φ(−f∗c ) > φ(−f∗1 ) − φ(−f∗1 − x). Now, let g be a

function in Ω such that ga = f∗a for all a ∈ A such that a 6= 1, c, g1 = f∗1 −x and gc = f∗c +x.

It follows that

Qη(g)−Qη(fφ) = (1− η1) [φ(−f∗1 − x)− φ(−f∗1 )] + (1− ηc) [φ(−f∗c + x)− φ(−f∗c )]

≥ (1− η1) ([φ(−f∗c + x)− φ(−f∗c )]− [φ(−f∗1 )− φ(−f∗1 − x)]) .

Therefore, Qη(g) − Q∗η > 0 if η1 < 1, and because the case η1 = 1 trivially satisfies the

condition, this contradicts the optimality of fφ, ant therefore, f∗1 ≥ 0.

Now it is going to be proved that f∗1 > f∗c for any c ∈ A such that c 6= 1. Suppose by

contradiction that there exist one c for which f∗c > f∗1 ≥ 0, then, by the concavity of φ, it

follows that

φ(−f∗c ) ≤ φ(−f∗1 )− φ′(−f∗1 )(f∗c − f∗1 ).

If h ∈ Ω is defined as ha = f∗a for all a ∈ A such that a 6= 1, c, h1 = f∗c and hc = f∗1 , we

have

Qη(h)−Qη(fφ) = (η1 − ηc) [φ(−f∗1 )− φ(−φ∗c)]

≥ (η1 − ηc)φ′(−f∗1 )(f∗c − f∗1 ) ≥ (η1 − ηc)φ′(0)(f∗c − f∗1 ) > 0.

This contradicts the optimality of fφ. We have proved then that if Qη(fφ) = Q∗η with fφ ∈ Ω,

dΦ = d∗.

Now we will prove Infinite Sample Consistency according to definition 82. Suppose by con-

tradiction that there exist a sequence f (m) =
(
f

(m)
1 , · · · , f (m)

K

)
∈ Ω such that Qη

(
f (m)

)
→

Q∗η and f
(m)
c ≥ f

(m)
1 for all m and c ∈ A such that c 6= 1. By concavity of φ, and given

φ′(0) > 0, it follows that φ(x) → −∞ as x → −∞. Therefore, boundedness in the se-

quence Qη
(
f (m)

)
implies that each f

(m)
a is bounded above for a ∈ A. Given that Ω imposes

the restriction
∑

a∈A f
(m)
a = 0 for all m, we have that all the f

(m)
a are also bounded be-

low. Thus, it is possible to choose a convergent subsequence f (m′) → f = (f1 · · · , fK) such
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that Qη(f) = Q∗η, but this is a contradiction because we proved already that if f ∈ Ω,

then f1 > fc. This proves that the Constrained Comparison Method is Infinite Sample

Consistent.
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APPENDIX A

RELEVANT PROOFS IN CHAPTER I

In order to make the presentations of the proofs more clear we will assume thereafter that

E(X) = 0 and τ = [0, 1].

A.1 Proof of Theorem 1

(i) For any β∗ ∈ H it follows that

〈f, U(β∗)f〉L2 = D2`∞(β∗)ff

= EX

[
ω(2)

(∫
τ
Xβ∗

)(∫
τ
Xf

)2
]
.

By Cauchy-Schwarz inequality and applying assumptions 1 (ii) and (iii), it follows

that there exits a constant 0 ≤M ′ <∞ such that

〈f, U(β∗)f〉L2 ≤M ′E
(∫

τ
Xf

)2

= M ′〈Cf, f〉L2 . (84)

Also, strict convexity of ω implies that for any θ ∈ R, ω(2)(θ) > 0. By assumption

1 (i), ω(2) is continuously differentiable, and therefore, for any r > 0, there exists an

ε > 0 such that ω(2)(θ) ≥ ε if |θ| ≤ r. In order to make the notation more clear, for

β∗ ∈ Hα such that ‖β∗‖2α ≤M , we will write W ∗ :=
∫
τ Xβ

∗. Note that boundednes of

the operator C1/2 implies that Var(W ∗) = 〈β∗, Cβ∗〉L2 = 〈C1/2β∗, C1/2β∗〉L2 ≤ cM ,

for some positive constant c. Now, using conditional probability we have

E

[
ω(2)(W ∗)

(∫
τ
Xf

)2
]
≥ E

[
ω(2)(W ∗)

(∫
τ
Xf

)2 ∣∣∣∣|W ∗| ≤ r
]
P (|W ∗| ≤ r)

≥ ε〈f, Cf〉L2P (|W ∗| ≤ r)2 .

By Markov inequality, it follows that P (|W ∗| ≤ r) ≥ (1 − cM
r2 ), thus, for r2 < cM

we conclude that there exists some constant m′ > 0 such that 〈f, U(β∗)f〉L2 >

m′〈f, Cf〉L2 .

From Proposition 2 in Yuan and Cai (2010) we have that there exist some constants

0 < a ≤ b such that for any f ∈ H it follows that a‖f‖2H ≤ 〈f, Cf〉L2 +J(f) ≤ b‖f‖2H,

and therefore, there constants 0 < m′′ ≤M ′′ such that

m′′‖f‖2H ≤ 〈f, U(β∗)f〉L2 + J(f) ≤M ′′‖f‖2H.
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Consequently, ‖ · ‖R∗ and ‖ · ‖H are equivalent norms.

(ii) Let R∗(·, ·) be the reproducing kernel associated with the norm ‖ · ‖R∗ , and R∗ the

associated integral operator on L2(τ). Now we define a positive integral operator as

R∗1/2U(β∗)R∗1/2, and by Mercer’s theorem it has a spectral decomposition with eigen-

values ν∗1 ≥ ν∗2 ≥ · · · and eigenfunctions {ζ∗1 , ζ∗2 , · · · }. Defining ϕ∗k = ν∗k
−1/2R∗1/2ζ∗k

for each k ≥ 1 it follows that

〈ϕ∗j , ϕ∗k〉R∗ =
(
ν∗j ν
∗
k

)−1/2 〈ζ∗j , R∗ζ∗k〉R∗ =
(
ν∗j ν
∗
k

)−1/2 〈ζ∗j , ζ∗k〉L2 = ν∗k
−1δjk,

and

〈ϕ∗j , U(β∗)ϕ∗k〉L2 =
(
ν∗j ν
∗
k

)−1/2 〈ζ∗j , R∗
1/2U(β∗)R∗1/2ζ∗k〉L2 = δjk.

(iii) Because {ζ∗1 , ζ∗2 , · · · } forms an orthonormal basis for L2(τ), it is possible to write

f =
∑

k≥1 ζ
∗
k〈f, ζ∗k〉L2 , and given that R∗1/2 is a positive definite bounded operator,

we have that f = R∗1/2R∗−1/2f , where

R∗−1/2f =
∑
k≥1

ζ∗k〈R∗
−1/2f, ζ∗k〉L2 =

∑
k≥1

ν∗kR
∗−1/2ϕ∗k〈R∗

−1/2f,R∗−1/2ϕ∗k〉L2

= R∗−1/2
∑
k≥1

ν∗kϕ
∗
k〈f, ϕ∗k〉R∗ ,

and it follows that f =
∑

k≥1 f
∗
kϕ
∗
k.

(iv) This is a direct consequence of the equivalence between the norms ‖·‖R and ‖·‖R∗ (both

of them are equivalent to ‖ · ‖H). Note that for any f ∈ H there exists some constant

c ≥ 1 such that c−1‖f‖R ≤ ‖f‖R∗ ≤ c‖f‖R. We define two sequences of functions in

H as gk := ϕkνk and hk := ϕ∗kν
∗
k . Note that limk→∞ ‖gk‖R = limk→∞ νk = 0, and

similarly, limk→∞ ‖gk‖R∗ = 0. By the equivalence ot the two norms, we have that

(gk − hk)→ 0, and thus, by triangle inequality

‖gk − hk‖R ≥
∣∣∣‖gk‖R − ‖hk‖R∣∣∣ =

∣∣∣νk − ‖hk‖R∣∣∣.
Therefore, for k large enough there exists some constant c′ such that c′−1‖hk‖R ≤

νk ≤ c′‖hk‖R, but because ‖hk‖R∗ = ν∗k , making c′′ = c · c′ it follows that

c′′
−1
ν∗k ≤ νk ≤ c′′ν∗k ,

and the result follows from writting m = c′′−1 and M = c′′. �
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A.2 Proof of Proposition 3

Recall that for β∗ ∈ H, G∞λ(β∗) = D2`∞(β∗) + λD2J . By theorem 1 and 1.2.3 it is

concluded that for f, g ∈ H, A(f, g) := 〈f,G∞λ(β∗)g〉R∗ is a bounded and coercive bilinear

form in H. Therefore, by Lax-Milgram lemma G∞λ(β∗)−1 is a bounded operator on H.

We will start by proving that for any ξ1 ∈ Hα∗ , it happens that D`∞(ξ1) ∈ H. By lemma

3.1 in Cox (1988) and lemma 2.1 in Cox and O’Sullivan (1990) it is derived that for any

θ ∈ Hα and some constant c, θ ∈ Hα+c∗ (that is, ‖θ‖2α+c∗ < ∞) if supθ′〈θ, θ′〉R∗ < ∞ for

all θ′ ∈ Hα such that ‖θ′‖2α−c∗ = 1. Folllowing the same arguments that they present, we

have that D`∞(ξ1) (as a element in the dual space of Hα∗) belongs to H2−α∗ and therefore

D`∞(ξ1) ∈ H. Similar analysis can be applied to D`n(ξ1).

Now, as showed before, J(θ) := 〈θ,Wθ〉H can be extended to an operator in B(Hα,Hα).

Therefore, for any ξ1 ∈ Hα we have that DJ(ξ1) = Wξ1 ∈ Hα, and

G∞λ(β∗)−1Wξ1 = G∞λ(β∗)−1 1

λ

[
G∞λ(β∗)−D2`∞(β∗)

]
ξ1.

Thus, it is enough to prove that D2`∞(β∗)ξ1 is a wel defined element in H. To check this,

note that for any θ ∈ H

〈θ,D2`∞(β∗)ξ1〉R∗ = 〈θ, U(β∗)ξ1〉L2 = 2〈θ, ξ1〉0∗ ≤ m‖θ‖0‖ξ1‖0, (85)

for some constant m. Therefore, D2`∞(β∗)ξ1 ∈ H2 ⊂ H. It follows that D`∞λ(ξ1) ∈ H,

and therefore, G∞λ(β∗)−1D2`∞(β∗)ξ1 is a well defined element in H ⊂ Hα.

The other different cases mentioned in the Proposition can be derived from this, or can be

presented in a similar way. We will not show each of them fro brevity in the presentation.

�

A.3 Proof of Theorem 4

Note first that

(β∞λ − β0) =
(
β∞λ − β̄∞λ

)
+
(
β̄∞λ − β0

)
,

and replacing
(
β∞λ − β̄∞λ

)
as in equation 15 we obtain

β̄∞λ − β0 = φ1 +G−1
∞λ(β0)

∫
τ

∫
τ
x1

[
D3`∞ (β0 + x1x2φ1)φ1φ1

]
dx1dx2, (86)

for φ1 = (β∞λ − β0). In order to bound this expression, we define

K3(λ, a) = sup
β3∈Hα

sup
u,v
‖G−1
∞λ(β0)D3`∞(β3)uv‖a (87)
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for 0 ≤ a ≤ α and u, v ∈ Hα such that ‖u‖α = ‖v‖α = 1. It is easy to check from 86 that

‖β∞λ − β0‖a ≤ ‖β̄∞λ − β0‖a +
1

2
K3(λ, a)‖β∞λ − β0‖2α. (88)

The following lemma is going to be crucial for the continuation of the analysis. For clarity

in the presentation, its proof wil be shown after the proof of theorem 6.

Lemma 16 If α ≤ 1
2

(
1− 1

2(r+s)

)
, then, for any 0 ≤ a ≤ α, K3(λ, a)‖β̄∞λ − β0‖α → 0 as

λ→ 0. �

For ϑ ∈ Hα we define the operator

Hλ(ϑ) =
(
β̄∞λ − β0

)
+G−1

∞λ(β0)

∫
τ

∫
τ
x1

[
D3`∞ (β0 + x1x2ϑ)ϑϑ

]
dx1dx2. (89)

If β̄∞λ ∈ Hα, it is clear that Hλ(β∞λ − β0) = (β∞λ − β0) and therefore
(
β∞λ − β̄∞λ

)
=

Hλ(β∞λ − β0)−Hλ(0). From the definition of K3(λ, a) it follows that for a ≤ α

‖Hλ(ϑ)‖a ≤ ‖
(
β̄∞λ − β0

)
‖a +

1

2
K3(λ, a)‖ϑ‖2α.

Let bβ(r) a closed ball in Hα centered in β with radious r. Defining dλ = ‖β̄∞λ − β0‖α,

then for any ϑ ∈ b0(2dλ) it follows that ‖Hλ(ϑ)‖α ≤ dλ+ 2K3(λ, α)d2
λ. Using lemma 16 it is

possible to choose a fixed λ0 such that for λ ≤ λ0, dλ ≤ 1 and K3(λ, α)dλ ≤ 1
2 . Therefore,

Hλ(b0(2dλ)) ∈ b0(2dλ).

Now, using a Taylor series expansion of the functional D`∞λ(β0 + ϑ) around β0 it is easy

to check that

Hλ(ϑ) = G−1
∞λ(β0) [D`∞λ(β0 + ϑ)−D`∞λ(β0)] +

(
β̄∞λ − β0

)
− ϑ,

and therefore

Hλ(ϑ1)−Hλ(ϑ2) = G−1
∞λ(β0) [D`∞λ(β0 + ϑ1)−D`∞λ(β0 + ϑ2)]− (ϑ1 − ϑ2). (90)

Expanding a Taylos series of D`∞λ(β0 + ϑ1) around (β0 + ϑ2), it is derived that

[D`∞λ(β0 + ϑ1)−D`∞λ(β0 + ϑ2) =

∫
τ
D2`∞λ(β0 + ϑ2 + x(ϑ1 − ϑ2))(ϑ1 − ϑ2)dx.

Now for the term inside the integral of the last expression we can use a Taylor series

expansion once again around β0 as

D2`∞λ(β0 + ϑ1 + s(ϑ1 − ϑ2))(ϑ1 − ϑ2) = D2`∞λ(β0)(ϑ1 − ϑ2)

+

∫
τ
D3`∞λ(β0 + y(ϑ2 + x(ϑ1 − ϑ2)))(ϑ1 − ϑ2)(ϑ2 + x(ϑ1 − ϑ2))dy. (91)
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If ϑ1, ϑ2 ∈ b0(2dλ), then (ϑ2 + x(ϑ1 − ϑ2)) ∈ b0(2dλ) for all x ∈ [0, 1]. Replacing 91 in 90

and taking the Hα norm, it follows that

‖Hλ(ϑ1)−Hλ(ϑ2)‖α ≤ K3(λ, α)‖ϑ1 − ϑ2‖α2dλ ≤ ‖ϑ1 − ϑ2‖α, (92)

if λ ≤ λ0. It is concluded then that Hλ(ϑ) is a contraction map on b0(2dλ) and consequently,

by the contraction theorem (see e.g. Debnath and Mikusiński (1990)) there exists an unique

function ϑ∗ such that Hλ(ϑ∗) = ϑ∗. It follows that (β∞λ − β0) ∈ b0(2dλ) and this completes

the proof. �

A.4 Proof of Theorem 5

We start by defining the following expressions

K2(λ, a) = sup
β∈Hα

sup
u
‖G−1
∞λ(β∞λ)

(
D2`nλ(β)u−D2`∞λ(β)u

)
‖a (93)

K3n(λ, a) = sup
β∈Hα

sup
u,v
‖G−1
∞λ(β∞λ)D3`nλ(β)uv‖a, (94)

for a ≤ α and vectors u, v ∈ Hα such that ‖u‖α = ‖v‖α = 1. Wrinting dn = ‖β̄nλ − β∞λ‖α
and the open ball in b0(2dn) ∈ Hα, we define the following operator for all ϑ ∈ b0(2dn)

Hn(ϑ) = (β̄nλ − β∞λ) +G−1
∞λ(β∞λ)D2`nλ(β∞λ)ϑ− ϑ

+G−1
∞λ(β∞λ)

∫
τ

∫
τ
x1

[
D3`n (β∞λ + x1x2ϑ)ϑϑ

]
dx1dx2. (95)

Using equation 16, it is clear that Hn(β̂nλ−β∞λ) = β̂nλ−β∞λ. We will prove that Hn(·) is

a contraction map in b0(2dn), for which we need to bound some results using the following

lemma.

Lemma 17 For 1
2(r+s) < α ≤ 1, if there exists a sequence λn such that n−1λ

−α− 1
2(r+s)

n → 0,

as n→∞, then for 0 ≤ a ≤ α,

[K2(λn, a) +K3(λn, a)dn] = op(1).�

Now, for any ϑ ∈ Hα,

‖Hn(ϑ)‖α ≤ dn +K2(λ, α)‖ϑ‖α +
1

2
K3n(λ, α)‖ϑ‖2α,

and if ϑ ∈ b0(2dn), it is possible to select n0 large enough to make (K2(λn, α) +K3(λn, α)dn) <

1
2 with high probability. This implies that ‖Hn(ϑ)‖α ≤ dn(1 + 21

2), that is, Hn(b0(2dn)) ∈

b0(2dn).

58



Expanding a Taylor saries of the functional D`nλ(β∞λ + ϑ) around β∞λ it is possible to

check in 95 that

Hn(ϑ) = (β̄nλ − β∞λ) +G−1
∞λ(β∞λ) [D`nλ(β∞λ + ϑ)−D`nλ(β∞λ)]− ϑ, (96)

and therefore, for ϑ1, ϑ2 ∈ Hα,

Hn(ϑ1)−Hn(ϑ2) = G−1
∞λ(β∞λ) [D`nλ(β∞λ + ϑ1)−D`nλ(β∞λ + ϑ2)]− (ϑ1 − ϑ2). (97)

Making a Taylor expansion of D`nλ(β∞λ+ϑ1) around (β∞λ+ϑ2) as in the proof of theorem

4 is can be easily derived that

Hn(ϑ1)−Hn(ϑ2) = G−1
∞λ(β∞λ)D2`nλ(β∞λ)(ϑ1 − ϑ2)− (ϑ1 − ϑ2)

+G−1
∞λ(β∞λ)

∫
τ
D3`nλ(β∞λ + y(ϑ2 + x(ϑ1 − ϑ2)))(ϑ1 − ϑ2)(ϑ2 + x(ϑ1 − ϑ2))dy, (98)

so, if ϑ1, ϑ2 ∈ b0(2dn), with probability arbitrarily close to 1 as n→∞,

‖Hn(ϑ1)−Hn(ϑ2)‖α ≤ [K2(λn, α) +K3n(λn, α)2dn] ‖ϑ1 − ϑ2‖α ≤ ‖ϑ1 − ϑ2‖α. (99)

From this result follows that Hn(·) is a contraction map on b0(2dn) and therefore there exists

an unique ϑ ∈ b0(2dn) such that Hn(ϑ) = ϑ. It is concluded then that with probability

tending to 1 as n→∞, ‖β̂nλn−β∞λn‖a ≤ 2dn for 0 ≤ a ≤ 1
2

(
1− 1

2(r+s)

)
and this completes

the proof. �

A.5 Proof of Theorem 6

From decomposition 12 we know that

‖β̂nλ − β0‖a ≤ ‖β̂nλ − β∞λ‖a + ‖β∞λ − β0‖a,

and if conditions of theorems 4 and 5 are satisfied it follows that for 0 ≤ a ≤ α and

α =
(

1− 1
2(r+s)

)
,

sup
F∈F(s,M)

sup
β0∈H

‖β̂nλn − β0‖a = Op
(
‖β̄∞λn − β0‖a + ‖β̄nλn − β∞λn‖a

)
. (100)

In order to prove the theorem, we will focuse to convergence of the linearized versions for

the bias and varaince respectively presented in the las expression.
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A.5.1 Convergence rate for the linearized bias.

From definition 13 we know that β̄∞λ−β0 = −G−1
∞λ(β0)D`∞λ(β0), and given thatD`∞(β0) =

0 we can write D`∞λ(β0) = D`∞λ(β0) − D`∞(β0) = λDJ(β0). Using the fact that

DJ(f)g =
∑

k≥1 γ
−1
k fkgk, and making β0 = β∗ it follows that

‖β̄∞λ − β0‖2a = ‖G−1
∞λ(β0)D`∞λ(β0)‖2a

= λ2‖G−1
∞λ(β0)DJ(β0)‖2a

≤ λ2C‖G−1
∞λ(β0)DJ(β0)‖2a∗

= λ2C
∑
k≥1

(1 + γ∗k
−a)(1 + λγ∗k

−1)−2
(
γ∗k
−1(β0)∗k

)2
, (101)

where (β0)∗k = ν∗k〈β0, ϕ
∗
k〉R∗ . To bound the sum in 101 we can write

∑
k≥1

(1 + γ∗k
−a)(1 + λγ∗k

−1)−2
(
γ∗k
−1(β0)∗k

)2
≤ sup

k≥1

(1 + γ∗k
−a)γ∗k

−1

(1 + λγ∗k
−1)2

∑
k≥1

γ∗k
−1(β0)∗k

2

= J(β0) sup
k≥1

(1 + γ∗k
−a)γ∗k

−1

(1 + λγ∗k
−1)2

,

and

sup
k≥1

(1 + γ∗k
−a)γ∗k

−1

(1 + λγ∗k
−1)2

≤ sup
x≥0

(1 + x−a)x−1

(1 + λx−1)2

≤ sup
x≥0

(1 + x−a)

(1 + λx−1)2
+ sup

x≥0

x−1

(1 + λx−1)2

= 4λ−1 +O
(
λ−1−a) .

Replacing in 101 it is concluded that there is a positive constant C such that

‖β̄∞λ − β0‖2a ≤ CJ(β0)λ1−a, (102)

and this shows the desired result. Note also that a consequence of this, because the condi-

tions in theorem 4 are satistfied with this inequality, that

‖β∞λ − β0‖2a = O
(
J(β0)λ1−a) . (103)

A.5.2 Convergence rate for the linearized variance.

Note first that β̄nλ − β∞λ = −G−1
∞λ(β∞λ)D`nλ(β∞λ) from definition 14. Also, given

that D`∞λ(β∞λ) = 0, it is possible to write D`nλ(β∞λ) = D`nλ(β∞λ) − D`∞λ(β∞λ) =

D`n(β∞λ)−D`∞(β∞λ). We present explicit expressions for these functional derivatives in
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order to continue with the analysis. For any β, f ∈ Hα,

D`n(β)f =
1

n

∑
i≤n

[
ω(1)

(∫
τ
Xiβ

)
− Yi

] ∫
τ
Xif

D`∞(β)f = EX
[
ω(1)

(∫
τ
Xβ

)
− ω(1)

(∫
τ
Xβ0

)]∫
τ
Xf.

Using the fact that `∞(β) = E`n(β), we have

E (D`nλ(β∞λ)f)2 = E (D`n(β∞λ)f −D`∞(β∞λ)f)2

= Var (D`n(β∞λ)f)

≤ E (D`n(β∞λ)f)2

=
1

n
E
([
ω(1)

(∫
τ
Xβ∞λ

)
− Y

] ∫
τ
Xf

)2

.

Note that E(Y |X) = ω(1)
(∫
τ Xβ0

)
and Var(Y |X) = ω(2)

(∫
τ Xβ0

)
, so we can make

E (D`nλ(β∞λ)f)2 ≤ 1

n
EX
([
ω(1)

(∫
τ
Xβ∞λ

)
− ω(1)

(∫
τ
Xβ0

)]∫
τ
Xf

)2

+
1

n
E
(

[Y − E(Y |X)]

∫
τ
Xf

)2

≤ 1

n

{
EX
[
ω(1)

(∫
τ
Xβ∞λ

)
− ω(1)

(∫
τ
Xβ∞λ

)]4

E
[∫

τ
Xf

]4
}1/2

+
1

n

{
E
[
ω(2)

(∫
τ
Xβ0

)]2

E
[∫

τ
Xf

]4
}1/2

,

where we used Cauchy-Schwarz inequality and conditional variance in the last inequality.

Using assumptions 1 (ii) and (iii) we conclude that there exists a constant M > 0 such that

E (D`nλ(β∞λ)f)2 ≤ M

n
EX
[∫

τ
Xf

]2

=
M

n
〈Cf, f〉L2 . (104)

Thus substituting this into the definition of the linearized variance we have

E‖β̄nλ − β∞λ‖2a = E‖G−1
∞λ(β∞λ)D`nλ(β∞λ)‖2a

≤ CE‖G−1
∞λ(β∞λ)D`nλ(β∞λ)‖2a∗

= C
∑
k≥1

(1 + γ∗k
−a)(1 + λγ∗k

−1)−2E [D`nλ(β∞λ)ϕ∗k]
2

≤ C

n

∑
k≥1

(1 + γ∗k
−a)(1 + λγ∗k

−1)−2〈Cϕ∗k, ϕ∗k〉L2

=
C

n

∑
k≥1

(1 + γ∗k
−a)(1 + λγ∗k

−1)−2, (105)
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where recalling that γ∗k � k−2(r+s) for k large enough,∑
k≥1

(1 + γ∗k
−a)(1 + λγ∗k

−1)−2 ≤ C
∑
k≥1

(1 + k2a(r+s))(1 + λk2(r+s))−2

≤ C

∫ ∞
1

(1 + x2a(r+s))(1 + λx2(r+s))−2

�
∫ ∞

1
x2a(r+s)(1 + λx2(r+s))−2

�
∫ ∞

1

(
1 + λx

2(r+s)
2a(r+s)+1

)−2

� λ
−a− 1

2(r+s) , (106)

and replacing in 105 we have that E‖β̄nλ − β∞λ‖2a ≤ n−1λ
−a− 1

2(r+s) .

A.5.3 Convergence rate for the estimator β̂nλ.

Combining the results from sections A.5.1 and A.5.2 we have that for α = 1
2

[
1− 1

2(r+s)

]
and λ = o

(
n−1λ

−α− 1
2(r+s)

)
, for any 0 ≤ a ≤ 1 and ε > 0 there exists a finite constant Cε

such that

lim sup
n→∞

sup
F∈F(s,M),β0∈H

P
(
‖β̂nλ − β0‖2a > Cε

[
λ1−a + n−1λ

−a− 1
2(r+s)

])
< ε.

Therefore, choosing λ � −2(r+s)
2(r+s)+1 we have that

lim sup
n→∞

sup
F∈F(s,M),β0∈H

P

(
‖β̂nλ − β0‖2a > Cεn

−2(1−a)(r+s)
2(r+s)+1

)
< ε,

and this proves the theorem. �

A.6 Proof of Lemma 16

It is easy to check that for β3 ∈ Hα,

D3`∞(β3)uvw = EX
[(∫

τ
Xu

)(∫
τ
Xv

)(∫
τ
Xw

)
· ω(3)

(∫
τ
Xβ3

)]
(107)

for u, v, w ∈ Hα. Therefore, by Proposition 3 and making β0 = β∗ in definition 37, if

0 ≤ a ≤ α,

‖G−1
∞λ(β0)D3`∞(β3)uv‖2a ≤ M

∑
k≥1

(
1 + γ∗k

−α) (1 + λγ∗−1
)−2
〈D3`∞(β3)uv,Cϕ∗k〉2L2

= M
∑
k≥1

(
1 + γ∗k

−α) (1 + λγ∗−1
)−2 (

D3`∞(β3)uvϕ∗k
)2
,(108)
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where

D3`∞(β3)uvϕ∗k = EX
[(∫

τ
Xu

)(∫
τ
Xv

)(∫
τ
Xϕ∗k

)
· ω(3)

(∫
τ
Xβ3

)]

≤

(
EX
[(∫

τ
Xu

)(∫
τ
Xv

)]2

EX
[(∫

τ
Xϕ∗k

)
ω(3)

(∫
τ
Xβ3

)]2
)1/2

,(109)

by Cauchy-Schwarz inequality. By assumptions 1 (i)-(iii), and using Cauchy-Schwarz in-

equality again in each term, it follows that there exists a constant M<∞ such that

EX
[(∫

τ
Xu

)(∫
τ
Xv

)]2

≤ M〈Cu, u〉2L2
〈Cv, v〉2L2

EX
[(∫

τ
Xϕ∗k

)
ω(3)

(∫
τ
Xβ3

)]2

≤ M〈Cϕ∗k, ϕ∗k〉2L2
.

Replacing in 109 we obtain that D3`∞(β3)uvϕ∗k ≤ M‖u‖0‖v‖0‖ϕ∗k‖0. Now, using the

expression derived in 108 and the result obtained in 106, and for u, v ∈ H such that

‖u‖α = ‖v‖α = 1, it follows that

K3(λ, a) = sup
β3∈Hα

sup
u,v
‖G−1
∞λ(β0)D3`∞(β3)uv‖a

≤ M‖ϕ∗k‖0λ
− 1

2

(
a+ 1

2(r+s)

)
. (110)

Now, from section A.5.1 it is concluded that for 0 ≤ a ≤ α, ‖β∞λ − β0‖2a = O
(
J(β0)λ1−a),

and therefore,

K3(λ, a)‖β∞λ − β0‖α ≤Mλ
1
2

(
1−α−a− 1

2(r+s)

)
.

It follows that if α ≤ 1
2

(
1− 1

2(r+s)

)
, then K3(λ, a)‖β∞λ − β0‖α → 0 as λ → 0, and the

theorem is proved. �

A.7 Proof of Lemma 17

The second order Fréchet derivatives for the functional `nλ and `∞λ, for β, f, g∈ Hα, can

be written respectively as

D2`n(β)fg =
1

n

∑
i≤n

[
ω(2)

(∫
τ
Xiβ

)(∫
τ
Xif

)(∫
τ
Xig

)]
D2`∞(β)fg = EX

[
ω(2)

(∫
τ
Xβ

)(∫
τ
Xf

)(∫
τ
Xg

)]
.

We will start by decomposing the expression K2 (λ, a) in two separate parts. Recall that

G∞λ(β) = D2`∞λ(β), and D2`∞(β)fg = EXD2`n(β)fg. From the definition of K2 (λ, a),
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for 0 ≤ a ≤ α, we have

K2 (λ, a) = sup
β∈Hα

sup
u
‖G−1
∞λ(β∞λ)

[
D2`nλ(β)u−D2`∞λ(β)u

]
‖a

= sup
β∈Hα

sup
u
‖G−1
∞λ(β∞λ)

[
D2`n(β)u−D2`∞(β)u

]
‖a.

By Proposition 3, and making β∞λ = β∗, it follows that

E‖G−1
∞λ(β∞λ)

[
D2`n(β)u−D2`∞(β)u

]
‖2a

≤M
∑
k≥1

(
1 + γ∗k

−α) (1 + λγ∗−1
)−2

E〈D2`n(β)u−D2`∞(β)u,Cϕ∗k〉2L2

= M
∑
k≥1

(
1 + γ∗k

−α) (1 + λγ∗−1
)−2

E
(
D2`n(β)uϕ∗k −D2`∞(β)uϕ∗k

)2
= M

∑
k≥1

(
1 + γ∗k

−α) (1 + λγ∗−1
)−2

Var
(
D2`n(β)uϕ∗k

)
,

and by assumption 1 (iv), it follows that Var
(
D2`n(β)uϕ∗k

)
= O(n−1). Therefore, using

the inequality in 106, we have that

K2(λ, a) = Op

(
n−1/2λ

− 1
2

(
a+ 1

2(r+s)

))
. (111)

Now we focuse in the term K3n(λ, a), for which we have that

K3n(λ, a) = sup
β∈Hα

sup
u,v
‖G−1
∞λ(β∞λ)D3`nλ(β)uv‖a

≤ K3(λ, a) + sup
β∈Hα

sup
u,v
‖G−1
∞λ(β∞λ)

[
D3`nλ(β)uv −D3`∞λ(β)uv

]
‖a,

for u, v ∈ Hα such that ‖u‖α = ‖v‖α = 1. To bound the second term, note that using

β∗ = β∞λ it is possible to write

E‖G−1
∞λ(β∞λ)

[
D3`nλ(β)uv −D3`∞λ(β)uv

]
‖2a

≤M
∑
k≥1

(
1 + γ∗k

−α) (1 + λγ∗−1
)−2

E〈D2`n(β)uv −D3`∞(β)uv,Cϕ∗k〉2L2

= M
∑
k≥1

(
1 + γ∗k

−α) (1 + λγ∗−1
)−2

Var
(
D3`n(β)uvϕ∗k

)
.

By assumption 1 (iv) we know that Var
(
D3`n(β)uvϕ∗k

)
= O(n−1), and together with the

result in 110 it is derived that

K3n(λ, a) = O

(
λ
− 1

2

(
a+ 1

2(r+s)

))
+Op

(
n−1/2λ

− 1
2

(
a+ 1

2(r+s)

))
.
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This result, together with 111 and the bound for ‖β̄nλ − β∞λ‖a derived in section A.5.2, it

follows that

[
K2(λ, a) +K3n(λ, a)‖β̄nλ − β∞λ‖α

]
= Op

(
n−1/2λ

− 1
2

(
a+ 1

2(r+s)

))
+Op

[
n−1/2λ

−
(
a+ 1

2(r+s)

)
+ n−1λ

−
(
a+ 1

2(r+s)

)]
.

Therefore, if there is a decreasing sequence λn → 0 such that n−1λ
−
(
a+ 1

2(r+s)

)
→ 0 as

n→∞, then [
K2(λ, a) +K3n(λ, a)‖β̄nλ − β∞λ‖α

]
= op(1). (112)
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