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SUMMARY

Today’s cloud storage systems lack flexible cost-performance trade-

offs. For example, (a) in database systems, there are only a limited number of

cost-performance options and they are not seamless, (b) in cloud caching systems,

there is no flexibility in performance isolation, and (c) in geo-replication systems, the

cost-performance trade-off is not optimal to various application types.

In this thesis, we present novel system designs that offer greater flexi-

bility for making finer, online cost-performance trade-offs for data storage

systems using (a) data access statistics and (b) models that capture information

regarding cost and user experience. We specifically look at ways of achieving better

cost-latency trade-offs in the following problem domains: (Mutant) NoSQL database

systems, (SpaceLease) cloud caching systems, and (Acorn) geo-replicated, multi-

data center systems.

With NoSQL database storage systems, we observe the inflexibility in the

cost and performance trade-offs: the trade-offs have limited options and the transi-

tion between different cost-performance points are not automatic. We address the

inflexibility by proposing Mutant, a NoSQL database storage layer that seamlessly

trades off cost and performance. We implemented Mutant by modifying RocksDB, a

popular, high-performance NoSQL database, and evaluated with both synthetic and

real-world workloads to demonstrate the seamless and automatic cost-performance

trade-offs.

With edge cloud caching systems, we observe the unpredictable performance

in public cloud cache services: CPs (content providers) pay the same amount of price,
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but they get unstable cache hit rate over time. We address the performance unpre-

dictability by proposing SpaceLease, a performance-isolated cache architecture that

uses dedicated resource for caching data in the edge cloud platform. We implemented

SpaceLease and showed up to 79% reduction in the performance variability with a

minimal cost overhead. In addition to the stable performance, SpaceLease also (a)

provides a control that trades off cost and hit rate, (b) maximizes the aggregate cache

utility across data centers, and (c) adapts quickly to changing workload patterns.

With geo-distributed multi-data center replication systems, we observe

that (a) better replication decisions can be made by using the “right” object attribute

for each application type, such as topics for public video sharing applications and users

for social network applications, and (b) using the combinations of the attributes and

extra random replicas makes better replications under a cost or latency constraint.

In response, we developed Acorn, an attribute-based partial geo-replication sys-

tem, and showed that Acorn delivers up to a 90% cost reduction or a 91% latency

reduction.
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CHAPTER I

COST-PERFORMANCE TRACE-OFFS IN CLOUD

STORAGE SYSTEMS

“We live in a world full of data, and it’s expanding at astonishing rates.”

– Data never sleeps [62].

The volume and the growth rate of data is extraordinary. First, the data volume

is enormous: the total volume of data in data centers is predicted to be as big as 2.6

ZB (zettabytes, 1021) by 2021 [38]. To put the number into perspective, 2.6 ZB is the

sum of disk sizes when each and every one in the US buys 8 1-TB disks. Second, the

data growth rate is very high. For example, every minute, people post 50 K photos

on Instagram and 500 K tweets on Twitter [62]. By 2021, global data center IP traffic

is expected to grow in threefolds, with an CAGR (compound annual growth rate) of

25% [38]. Thus, the cost of storing such exploding volume of data would be massive,

and it is no surprise that companies strive to find ways to lower storage cost.

At the same time, companies are finding it difficult to distribute data while meet-

ing the key performance indicators, which are often expressed by access latencies.

There is evidence that data access latencies are directly related to the level of user

experience and company revenue. For example, (a) Google reports that people switch

to a competitor website due to a delay as small as 250 ms [75], (b) Amazon reports

every 100 ms of delay costs the company 1% in sales [71], and (c) Bing and Google

agree that slow pages lose users [99]. Due to the scale of these web service companies,

even a small improvement in latency would translate to a huge increase in revenue.

Out of the overall service latency, data access time is often the bottleneck in many

systems including: NoSQL database systems [117], Big data systems [40], and Data
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analytics systems [65].

The two goals – achieving low cost and achieving high performance – are conflicting

by nature, and each business has a unique requirement in the cost-performance spec-

trum. However, today’s cloud storage systems lack flexible cost-performance

trade-offs, and businesses need to settle for suboptimal cost-performance options.

We look at the lack of trade-offs in three different system domains: database systems,

cloud caching systems, and geo-replication systems.

• NoSQL Database Systems: Cloud infrastructure vendors today offer a wide

range of storage types on which a NoSQL database system can run: from fast,

expensive storage devices to slow, inexpensive ones. The storage options differ in

their storage media type (e.g., SSD, HDD), storage system architecture (e.g., locally

attached storage or RAID storage attached remotely), and encoding techniques

(e.g., different configurations of erasure coding) [80, 56, 9]. The storage options

allow building a database with a specific cost-performance trade-off, however the

trade-off options are very limited and the database systems can not make

a seamless transition from one trade-off point to another.

• Edge Cloud Caching Systems: Cloud cache providers today offer a pay-as-

you-go web caching service to help small to medium businesses deploy web caches

without a large upfront investment. However, the cloud cache services are best

effort: they neither make any performance isolation guarantees nor they provide

any cost-performance trade-off. Thus, CPs (content providers), which are

the clients of the cache services, do not have any control over the per-

formance isolation level or cache hit rate they experience using a cost

knob.

• Geo-Replicated Storage Systems: Global web services replicate their data in

4



geographically distributed data centers for high service availability and fault toler-

ance [30]. To lower the increasing cost of data replication, partial geo-replication

schemes have been proposed. However, existing partial replications are (a)

static in the replication attributes they use and (b) do not provide flex-

ibility in the cost and data access hit rate trade-offs.

At the core of the each problem domain lies the data placement problem: (a) how

database records should be placed between fast, expensive storage devices and slow,

inexpensive storage devices, (b) how cache resource should be allocated to each edge

data center of a CP (content provider), and (c) how data should be replicated into

different data centers.

Arriving at an optimal data placement solution in terms of cost and benefits,

i.e., the data storage and movement cost and data access performance, requires a

deep characterization of (a) the data access patterns and benefit metrics and (b) the

infrastructure resource parameters and their costs. Achieving the optimal data place-

ment in practice is hard for the examples mentioned above, because of the inherent

variability in their workloads and the complexity of the decision space.

Because of the difficult requirements, people settle for practical solutions with

policies that use simple metrics and data placement heuristics when making data

placement decisions such as where to place the data in the storage hierarchy, how

much storage resource should be allocated in the storage locations, or whether to

replicate a particular data item to a data center. Examples of such practical solutions

include migrating objects that is older than an age threshold to an inexpensive, cold

storage [84], BLOB storage systems triplicating data such as Facebook Haystack [23],

and partially geo-replicated database replicating data on third access [63].

Those solutions, while practical, eschew potential opportunities for further opti-

mizations for a given workload to arrive at concrete discrete point in the cost-benefit

space. As the volume and value of data continue to grow, ignoring these optimization
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opportunities can lead to a significant increase in the incurred data placement costs

or in the lost opportunity to provide the desired data access experience to end users.

This is further exacerbated by the fact that the types of applications benefiting from

these types of data management frameworks continue to increase, thus making it less

likely that the default policies are well adjusted for the characteristics of these new

workloads.

An immediate question, explored in this thesis, is: are there practical solu-

tions that can provide finer-grained controls in the achievable cost-benefit

trade-off for arbitrary workloads? In other words, we focus on providing flexible

cost-benefit trade-offs, and specifically explore new methods that can improve and

customize the trade-offs in a workload-specific manner.

1.1 Thesis Statement

Operational cost is a primary concern for today’s tech startups, with the cloud hav-

ing made a way with the up front capital expenditure and folding these costs into

their pay-as-you-go resource prices. Yet today’s data processing and storage systems

don’t treat cost as a design goal, resulting in systems without an explicit cost con-

trol knobs. The inflexible-cost system design resulted in cloud applications that are

not able to fine-tune their cost to their requirements. As cloud workloads continue

to scale in terms of data volume and data demand, without new fine-grained

cost-performance controls, cloud data storage technologies will lead to

prohibitive data storage costs for cloud customers, or will fail to deliver

desired performance guarantees.

In this thesis, we present cost-configurable cloud storage system design

principles, where cost is a first-class citizen. First, we characterize the data

access patterns in various dimensions, such as object keyspace, time, and geographic
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location, using new models and metrics. Then, we identify the data placement strate-

gies that provide fine-grained trade-offs between the storage system cost and perfor-

mance. The systems following the data placement strategies provide configurable cost

while achieving the highest benefits.

We apply the data placement design principles to several problem domains in-

cluding (a) data organization in LSM tree-based NoSQL database systems, (b) edge

cloud caching systems, and (c) proactive data replication in geo-replicated, multi-

data center systems, and show it is possible to achieve fine-grained cost-performance

trade-offs in storage systems.

1.2 Contributions

Towards the vision of providing flexible cost-performance trade-offs in the cloud stor-

age systems, I’ve worked on:

• Mutant: An LSM tree-based NoSQL database storage layer that provides seam-

less and automatic cost-performance trade-offs by monitoring the access frequencies

of the database storage blocks and partitioning the blocks into different storage de-

vice classes (Chapter 2).

• SpaceLease: A deploy-your-own cloud cache architecture with flexible cost-performance

trade-offs that provides CPs a control over the cost, performance isolation level,

and cache hit rate (Chapter 3).

• Acorn: A geo-replicated storage system with better cost and user experience

trade-offs by making improved geo-replication decisions using object access statis-

tics and object attributes (Chapter 4).

In Chapter 5, we discuss the related work and, Chapter 6 concludes this thesis and

present ideas for future research.
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CHAPTER II

IN LSM TREE DATABASES

In this chapter, we explore the cost-performance trade-offs in LSM tree-based NoSQL

database systems. Traditional databases have limited options in their cost and per-

formance, and making a transition between a cost-performance point to another is

manual and time-consuming. We explore the database storage system designs for

flexible cost-performance trade-offs and demonstrate how the system designs enable

such trade-offs.

2.1 Cost-Performance Trace-Offs in LSM Tree Databases

The growing volume of data processed by today’s global web services and applications,

normally hosted on cloud platforms, has made cost effectiveness a primary design goal

for the underlying databases. For example, if the 100,000-node Cassandra clusters

Apple uses to fuel their services were instead hosted on AWS (Amazon Web Services),

then the annual operational costs would exceed $370M2. Companies, however, also

wish to minimize their database latencies since high user-perceived response times of

websites lose users [76] and decrease revenue [71]. Since magnetic storage is a common

latency bottleneck, cloud vendors offer premium storage media like enterprise-grade

SSDs [9, 81] and NVMe SSDs [32]. Yet even with optimizations on such drives, like

limiting power usage [39, 22] or expanding the encoding density [84, 116], the price of

lower-latency storage media can eat up the lion’s share of the total cost of operating

a database in the cloud (Figure 2).

Trading off database cost and latency involves tedious and error-prone effort for

2Conservatively calculated using the price of AWS EC2 c3.2xlarge instance, of which storage size
adequately hosts the clusters’ data.
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Figure 1: Mutant provides seamless cost-performance trade-offs between “fast
database” and “slow database”, and better cost-performance trade-offs with an extra
optimization.

operators. Consider, for instance, the challenges faced by an engineer intending to

transition a large database system operating in the cloud to meet a budget cut. When

the database system accommodates only one form of storage medium at a time, they

must identify a cheaper media – normally a limited set of options – while minimizing

the ensuing latencies. They then live-migrate data to the new database and ultimately

all customer-facing applications, a process that can take months as in the case of

Netflix [15]. Every subsequent change in the budget, including possible side-effects

from the subsequent change in latencies, undergoes a similar laborious process. In the

rare cases where the database does support multiple storage media, such as the round-

robin strategy in Cassandra [105] or per-level storage mapping in RocksDB [50], the

engineer is stuck with either a static configuration and a suboptimal cost-performance

trade-off, or they must undertake cumbersome manual partitioning of data and yet

still be limited in their cost options to accommodate budget restrictions.

We argue that cloud databases should support seamless cost-performance trade-

offs that are aware of budgets, avoiding the need to manually migrate data to a new

database configuration when workloads or cost objectives change. Here, we present
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Figure 2: Fast storage is costly. Cost to host an IaaS database instance for 1 year
using various storage devices. Storage cost can be more than 2× the cost of CPU and
memory. Based on the pricing of EC2 i2.2xlarge instance (I/O-optimized with 1.6
TiB storage device) [9].

Mutant: a layer for log-structured merge tree (LSM-tree) data stores [89, 54] that

automatically maintains a cost budget while minimizing latency by dynamically keep-

ing frequently-accessed records on fast storage and less-frequently-accessed data on

cheaper storage. Rather than the trade-off between cost-performance points being

zero-sum, we find that by further optimizing the placement of metadata, Mutant

enables the data store to simultaneously achieve both low cost and low latency (Fig-

ure 1).

The key insight behind Mutant is to exploit three properties of today’s data

stores. First, the access patterns in modern workloads exhibit strong temporal local-

ity, and the popularity of objects fades over time [31, 69]. Second, LSM-tree designs

imply that data that arrives in succession is grouped into the same SSTable, be-

ing split off when full. Because of the access patterns, the frequency of which an

SSTable is accessed decreases with the SSTable’s age. Third, each SSTable of which

the database is comprised is a portable unit, allowing them to be readily migrated

between various cloud storage media. Mutant combines these properties and contin-

uously migrates older SSTables and, thus, colder data to slower and cheaper storage

devices.
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Dynamically navigating the cost-performance trade-off comes with challenges. To

minimize data access latencies while meeting the storage cost SLO (service level ob-

jective), the Mutant design includes lightweight tracking of access patterns and a

computationally-efficient algorithm to organize SSTables by their access frequencies.

Migrations of SSTables are not free, so Mutant also contains a mechanism to mini-

mize rate of SSTable migrations when SSTable access frequencies are in flux.

We implement Mutant by modifying RocksDB, a popular, high-performance

LSM tree-based key-value store [52]. We evaluated our implementation on a trace

from the backend database of a real-world application (the QuizUp trivia app) and the

YCSB benchmark [41]. We found that Mutant provides seamless cost-performance

trade-off, allowing fine-grained decision making on database cost through an SLO.

We also found that with our further optimizations, Mutant reduced the data access

latencies by up to 36.8% at the same cost compared to an unmodified database.

This chapter makes the following contributions:

• We demonstrate that the locality of record references in real-world workloads corre-

sponds with the locality of SSTable references: there is a high disparity in SSTable

access frequencies.

• We design an LSM tree database storage layer that provides seamless cost-performance

trade-offs by organizing SSTables with an algorithm that has minimal computation

and IO overheads using SSTable temperature, an SSTable access popularity metric

robust from noise.

• We further improve the cost-performance trade-offs with optimizations such as

SSTable component organization, a tight integration of SSTable compactions and

migrations, and SSTable migration resistance.

• We implement Mutant by extending RocksDB, evaluate with a synthetic mi-

crobenchmarking tool and a real-world workload trace, and demonstrate that (a)
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Mutant provides seamless cost-performance trade-offs and (b) Mutant-opt, an

optimized version of Mutant, reduces latency significantly over RocksDB.

2.2 Data Accesses in LSM Tree Databases

The SSTables and SSTable components of LSM-tree databases have significant data

access disparity. Here, we will argue that this imbalance is created from locality in

workloads, and gives us an opportunity to separate out hotter and colder data at an

SSTable level to store on different storage media.

2.2.1 Preliminaries: LSM-Tree Databases

Our target non-relational databases (BigTable, HBase, Cassandra, LevelDB and

RocksDB), all popular for modern web services for their reputed scalability and high

write throughput, all share a common data structure for storage: the log-structured

merge (LSM) tree [33, 70, 54, 52, 106]. We start with a brief overview of how LSM

tree-based storage is organized, in particular the core operations (and namesake) of

log-structured writes and merge-style reads, deferring further details to the litera-

ture [89].

Writes: When a record is written to an LSM-tree database, it is first written to the

commit log for durability, and then written to the MemTable, an in-memory balanced

tree. When the MemTable becomes full from the record insertions, the records are

flushed to a new SSTable. SSTable contains a list of records ordered by their keys:

the term SSTable originates from sorted-string table. The batch writing of records

is the key design for achieving high write throughputs by transforming random disk

IOs to sequential IOs. A record modification is made by appending a new version to

the database, and a record deletion is made by appending a special deletion marker,

tombstone.

Reads: When a record is read, the database consults the MemTable and the SSTables
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that can possibly contain the record, merges all matched records, and then returns

the merged result to the client.

Leveled compaction: The merge-style record read implies that read performance

will depend on the number of SSTables that need to be opened, the number of which

is called a read amplification factor. To reduce the read amplification, the database

reorganizes SSTables in the background through a process called SSTable compaction.

In this work, we focus on the leveled compaction strategy [89] that was made popular

by LevelDB, and has been adopted by Cassandra and RocksDB [48, 52].

The basic version of leveled compaction decreases read amplification by imposing

two rules to organize SSTables into a hierarchy. First, SSTables at the same level

are responsible for disjoint keyspace ranges, which guarantees a read operation to

read at most-one SSTable per level1. Second, the number of SSTables at each level

increases exponentially from the previous level, normally by a factor of 10. Thus, a

read operation in a database consisting of N SSTables only needs to look up O(logN)

SSTables [72, 54, 48, 50].

2.2.2 Locality in Web Workloads

Modern web workloads have repeatedly been shown to have high temporal data access

locality: access frequency drops off quickly with age [69, 103, 31]. We observe that a

similar temporal locality exists with database records from the analysis of a real-world

database access trace: we gathered a 16 day trace of the key-value stores underly-

ing Plain Vanilla’s QuizUp trivia app while serving tens of millions of players [94].

Figure 3 shows a sharp drop of record accesses as records become old.

1Level-0 SSTables are exceptions to the rule, however, databases limit those SSTables to a small
number.
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Figure 3: Record age and its access frequency from the QuizUp data access
trace. Access frequencies are aggregated over all records and normalized.

2.2.3 Locality in SSTable Accesses

The locality in record accesses, combined with the batch writing of records to SSTa-

bles, leads to the locality in SSTable accesses. We confirm the SSTable access fre-

quency disparity by analyzing the SSTable accesses using the QuizUp workload. First,

at a given time, only a small number of SSTables are frequently accessed and the oth-

ers are minimally accessed: the difference between the most and the least frequently

accessed ones is as big as 4 orders of magnitudes (see Figure 4). Second, the access

disparity persists throughout the time, as shown by the time vs. SSTable accesses

in Figure 5. As more records are inserted over time, the number of infrequently ac-

cessed SSTables (“cold” SSTables) increases, while the number of frequently accessed

SSTables (“hot” SSTables) stays about the same.

2.2.4 Locality in SSTable Component Accesses

Not only do SSTables have different access frequencies, but also SSTable components

have different access frequencies. In this subsection, we analyze how frequently each of

the SSTable components are accessed. An SSTable consists of metadata and database

records, and metadata includes a Bloom filter and a record index, both of which reduce

the read IOs: Bloom filter [27] is for quickly skipping an SSTable when the record
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Figure 5: SSTable access frequencies over time. Each rectangle represents an
SSTable with a color representing its access frequency. SSTable heights at the same
time are drawn proportionally to their sizes.

doesn’t exist in it, and record index is for efficiently locating record offsets.

Component Access Frequencies: To read a record, the database makes a sequence

of SSTable component accesses: First, the database checks the keyspace range of the

SSTables at each level to find the SSTables that may contain the record. There

is at most 1 such SSTable per level thanks to the leveled organization of SSTables

(§2.2.1); in other words, there are at most N SSTables, where N is the number of

levels. Second, for each SSTable that passes the keyspace range test, the database
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checks the Bloom filter to see if the record is in the SSTable or not. Out of the N

SSTables, there is only 1 SSTable that contains the record and N − 1 SSTables that

do not. In the former SSTable, the Bloom filter always answers maybe1, in the latter

SSTables, the Bloom filter answers maybe with a false positive ratio fp. Thus, on

average, 1 + (N − 1) · fp read requests go to the next step. The number becomes

approximately 1 when fp is very small such as 0.01, which is the case with most of the

databases. Third, using the record index, the database locates and reads the record.

Component Sizes: Bloom filter size depends on the false positive ratio, regardless

of the number of elements it filters: the smaller the false positive ratio fp is, the

bigger the filter becomes. Record index size depends on the number of records in an

SSTable and the density of the index entries. Some databases like Cassandra have a

top-level, sparse index and a bottom-level, full index, while others such as RocksDB

have a single sparse index. Database records account for the majority of the SSTable

space.

We present an access frequency and size breakdown of an SSTable by their components

in Table 1. In the order of Bloom filter, record index, and records, the access frequency

decreases and the size increases: the access frequency to size ratio varies by more than

3 orders of magnitudes with a typical number of levels, 3 or more.

2.2.5 Cloud Storage Opportunities

With such high access frequency disparities among SSTables and among SSTable

components, it would be a waste of resources if we were to keep all data files in

fast, expensive devices; likewise, it would be a lost opportunity in performance if we

were to keep all files in slow, inexpensive devices. Fortunately, cloud vendors provide

various storage options with different cost-performance trade-offs: for example, AWS

1Bloom filter tests if an item is in a set or not, and answers a definitely no or a maybe with a
small false positive ratio.
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Table 1: Access frequency and size of SSTable components. The sizes are
taken from a representative SSTable with 127,167 1-KB records. N is the number of
levels.

File names
(simplified)

Type
Access frequency

(relative to
Bloom filter)

Size Access
frequency

/ sizeBytes %

Filter.db Bloom filter 1 149,848 0.11 869

Summary.db Index (top)
≈ 1

N

15,056 0.01
60/N

Index.db Index (bottom) 2,152,386 1.62
Data.db Records 130,219,353 98.24 1/N

Table 2: Cloud vendors provide storage options with various cost and per-
formance.

Storage type
Cost

IOPS($/GB/month)

Local SSD
0.528 Varies by

the instance type

Remote SSD 0.100 Max 10,000

Remote Magnetic 0.045 Max 500

Remote Magnetic
0.025 Max 250Cold

offers various block storage devices as in Table 2. The pricing is based on block

storage in the AWS us-east-1 region in Feb. 2018 [102, 9] (§2.5.1). We assume that

local SSD volumes are elastic, and inferred its unit price (See §2.5.1). In addition

to that, most of the storages are elastic: you use as much storage as needed and

pay for just the amount you used, and there is no practical limit on its size. For a

simple storage cost model, we assume the storage cost is linear to its space. Premium

storages with complex cost models, such as dedicated network bandwidth between a

VM and storage or provisioned I/O models, are not considered in this work.
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2.3 System Design for Seamless Cost-Performance Trade-
Offs

Motivated by the strong access locality of SSTables and SSTable components, we

design Mutant, a storage layer for LSM-tree non-relational database systems that

organizes SSTables and SSTable components into different storage types by their

access frequencies, thus taking advantage of the low latency of the fast storage devices

and the low cost of slower storage devices.

2.3.1 SSTable Organization

From the highly skewed SSTable access frequencies that we’ve observed in §2.2.3, it

becomes straightforward to store SSTables into different storage types. The strategy

for organizing SSTables onto fast and slow storage devices depends on operator in-

tentions, defined as an SLO. A prototypical cost-based SLO could be: “we will pay

no more than $0.03/GB/month for the database storage, while keeping the storage

latency to a minimum.” We focus on the cost-based SLO in this work and leave the

latency-based SLO as a future work.

2.3.1.1 Cost SLO-Based Organization

The above SLO can be broken down into two parts: the optimization goal (a minimum

latency) and the constraint ($3/GB/month). Putting hard bounds on cloud storage

latencies is challenging for two reasons. First, the exact latency characteristics are

unknown – cloud vendors tend not to make latency guarantees on their platforms due

to the inherent performance variability associated with multi-tenant environments.

Second, SSTables are concurrent data structures with possible contention that can

add non-trivial delays. We relax the latency optimization objective into an achievable

goal: maximize the number of accesses to the fast device. In this chapter, we focus on

dual storage device configurations – a database with both a fast storage device and

a slow one – and leave the multi-level storage configurations as a future work. For

18



completeness, we convert the size constraint similarly. The high-level optimization

problem is now as follows:

Find a subset of SSTables to be stored in the fast storage (optimization goal)

such that the sum of fast storage SSTable accesses is maximized, (constraint) while

bounding the volume of SSTables in fast storage.

First, we translate the cost budget constraint to a storage size constraint, which

consists of the two sub-constraints: (a) the total SSTable size is partitioned into fast

and slow storage, and (b) the sum of fast and slow storage device costs should not

exceed the total storage cost budget.
PfSf + PsSs ≤ Cmax

Sf + Ss = S

(1)

where Cmax is the storage cost budget, or max cost, S is the sum of all SSTable

sizes, Sf and Ss are the sum of all SSTable sizes in the fast storage and slow storage,

respectively, Pf and Ps are the unit prices for the two storages media types. Solving

Eq 1 for Sf gives the fast storage size constraint as in Eq 2.

Sf <
Cmax − PsS

Pf − Ps

= Sf,max (2)

We formulate the general optimization goal as:

maximize
∑

i∈SSTables

Aixi

subject to
∑

i∈SSTables

Sixi ≤ Sf,max and xi ∈ {0, 1}
(3)

where Ai is the number of accesses to the SSTable i, Si is the size of the SSTable i,

and xi represents whether the SSTable i is stored in the fast storage or not.

The resulting optimization problem, Eq 3, is equivalent to a 0/1 knapsack problem.

In knapsack problems, you are given a set of items that each has a value and a weight,

and you want to maximize the value of the items you can put in your backpack without
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exceeding a fixed a weight capacity. In our problem setting, the value and weight of

an item correspond to the size and access frequency of an SSTable; the backpack’s

weight capacity matches the maximum fast storage device size, Sf,max.

2.3.1.2 Greedy SSTable Organization

The 0/1 knapsack problem is a well-known NP-hard problem and often solved with

a dynamic programming technique to give a fully polynomial time approximation

scheme (FPTAS) for the problem. However, this approach for organizing SSTables

has two complications.

First, the computational complexity of the dynamic programming-based algorithm

is impractical: it takes both O(nW ) time and O(nW ) space, where n is the number

of SSTables and W is the number of different sub-capacities to consider. To illustrate

the scale, a 1 TiB disk using 64 MiB SSTables will contain 10,000s of SSTables and

have 1012 sub-capacities to consider since SSTable sizes can vary at the level of bytes.

Moreover, this O(nW ) time complexity would be incurred every epoch during which

SSTables are reorganized.

Second, optimally organizing SSTables at each organization epoch can cause fre-

quent back-and-forth SSTable migrations. Suppose you have a cost SLO of $3/record

and the database uses two storage devices, a fast and a slow storage that cost

$5/record and $1/record, respectively. Initially, the average cost/record is 2.71 =

5×3+1×(2+2)
3+2+2

, with the maximum amount of SSTables in the fast storage while satisfy-

ing the cost SLO (Figure 6a at time t1). When a new SSTable D is added, it most

likely contains the most popular items and is placed on the leftmost side (Figure 6a at

time t2). We assume that the existing SSTables cool down (as seen in §2.3.1.3), and

their relative temperature ordering remains the same. This results in $3.40/record,

temporarily violating the cost SLO; however, at the next SSTable organization epoch,

the SSTables are organized with an optimal knapsack solution, bringing the cost down
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Figure 6: Greedy SSTable organization reduces SSTable migrations.

to $3.00/record (Figure 6a at time t2′). Similarly, when another SSTable E is added,

the SLO is temporarily violated, but observed soon after (Figure 6a at time t3 and

t3′). During the organizations, SSTable B migrates back-and-forth between storage

types, a maneuver that is harmful to read latencies: the latencies can temporarily

spike by more than an order of magnitude.

To overcome these challenges, we use a simple greedy 2-approximation algorithm.

Here, items are ordered by decreasing ratio of value to weight, and then put in the

backpack one at a time until no more items fit. In our problem setting, an item’s

value to weight ratio corresponds to an SSTable’s access frequency divided by its size,

which is captured by SSTable temperature (defined in §2.3.1.3). The computational

complexity of the greedy algorithms is O(n log n) with O(n) space instead of O(nW )

for both with dynamic programming. The log-factor in the time stems from the need

to keep SSTable references sorted in-place by temperature. However, the instanta-

neous worst-case access latency of the SSTables chosen to put into fast versus cold

storage can be twice that of the dynamic programming algorithm [67], although we

rarely see worst-case behavior exhibited in practice. The algorithmic trade-off thus

lies between reducing computational complexity versus minimizing SSTable accesses

latency.
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2.3.1.3 SSTable Temperature

So far, we have discussed optimal choices moment-to-moment, but access latencies

are dynamical quantities that depend on the workload. Mutant monitors SSTable

accesses with an atomic counter for each SSTable. However, näıvely using the counters

for prioritizing popular tables has two problems:

• Variable SSTable sizes: The size of SSTables can differ from the configured

maximum size (64 MiB in RocksDB and 160 MiB in Cassandra). Smaller SSTables

are created at the compaction boundaries where the SSTables are almost always

not full. Bigger SSTables are created at L0, where SSTables are compacted to

each other with a compaction strategy different from leveled compaction such as

size-tiered compaction.

• Fluctuations of the observed access frequency: The counters can easily be

swayed by temporary access spikes and dips: for example, an SSTable can be fre-

quently accessed during a burst and then cease to receive any accesses, a problem

arising when a client has a networking issue, or a higher-layer cache effectively gets

flushed due to code changes, faults or maintenance. Such temporary fluctuations

could cause SSTables to be frequency reorganized.

To resolve these issues, we smooth the access frequencies through an exponential

average. Specifically, the SSTable temperature is defined as the access frequencies in

the past epoch divided by the SSTable size with an exponential decay applied 1: the

sum of the number of accesses per unit size in the current time window and the cooled-

down temperature of the previous time window. Näıve application of exponential

averages would start temperatures at 0, which interferes with the observation that

SSTables start out hot. Instead, we set the initial temperature in a manner consistent

1It was inspired by Newton’s law of cooling [25].
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with the initial SSTable access frequency as follows:

Tt =


(1− α) ·

A(t−1,t]

S
+ α · Tt−1, if t > 1

A(0,1]

S
, if t = 1

(4)

where Tt is the temperatures at time t, A(t−1,t] is the number of accesses to the SSTable

during the time interval (t− 1, t], S is the SSTable size, and α is a cooling coefficient

in the range of (0, 1].

2.3.2 SSTable Component Organization

We have thus far discussed how Mutant organizes SSTables themselves by their

access frequencies. We discovered that Mutant can further benefit by considering the

components of SSTables in the same light. We observed that the SSTable metadata

portion, specifically the Bloom filter and record index, have multiple magnitudes

higher access-to-size ratios than the SSTable records portion (see §2.2.4). Thus,

Mutant will strive to keep the metadata on fast storage devices, going so far as to

pinning metadata in memory. The trade-off considered here weighs the reduced access

latency for metadata because they are always served from memory to the reduced file

system cache hit ratio for SSTable records due to the reduced memory available for

the file system cache.

The organization of SSTable components depends on the physical layout of an

SSTable. On one hand, in databases that store SSTable components in separate files

(e.g., Cassandra), Mutant stores the metadata files in a configured storage device

such as a fast, expensive one. On the other hand, in databases that store SSTable

components all in a single file (e.g., RocksDB), Mutant chooses not to separate out

the metadata and records. The latter optimization would involve both implementing

a transactional guarantee between the metadata and records, and then rewriting the

storage engine and tools. Instead, Mutant keeps the SSTable metadata in memory
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once it is read. We note that some LSM-tree databases already cache metadata, but

only partially: RocksDB provides an option to keep only the L0 SSTable metadata

in memory.

2.4 Implementation

We implemented Mutant by modifying RocksDB, a high-performance key-value

store that was forked from LevelDB [52]. The core of Mutant was implemented in

C++ with 658 lines of code, and 110 lines of code were used to integrate Mutant

with the database.

2.4.1 Mutant API

Mutant communicates with the database via minimal API consisting of three parts:

Initialization: A database client initializes Mutant with a storage configuration:

for example, a local SSD with $0.528/GB/month and an EBS magnetic disk with

$0.045/GB/month (Listing 2.1). The storage devices are specified from fast to slow

with the (path, unit cost) pairs. A client sets or updates a target cost with SetCost().

SSTable Temperature Monitoring: The database then registers SSTables as they

are created with Register(), unregisters them as they are deleted with Unregister(),

and calls Accessed() so that Mutant can monitor the SSTable accesses.

SSTable Organization: SSTable Organizer triggers an SSTable migration when it

detects an SLO violation or finds a better organization by scheduling a migration with

SchedMigr(). SSTable Migrator then queries for an SSTable to migrate and to which

storage device to migrate the SSTable with PickSstToMigr() and GetTargetDev().

GetTargetDev() is also called by SSTable compactor for the compaction-migration

integration we discuss in §2.4.3.1.

The API and the interactions among Mutant, the database, and the client are

summarized in Listing 2.2 and Figure 7.

24



Options opt;

opt.storages.Add(

"/mnt/local−ssd1/mu−rocks−stg", 0.528,
"/mnt/ebs−st1/mu−rocks−stg", 0.045);

DB::Open(opt);

DB::SetCost(0.2);

Listing 2.1: Database initialization with storage options

// Initialization

void Open(Options);

void SetCost(target cost);

// SSTable temperature monitor

void Register(sstable);

void Unregister(sstable);

void Accessed(sstable);

// SSTable organization

void SchedMigr();

sstable PickSstToMigr();

sstable GetTargetDev();

Listing 2.2: Mutant API

2.4.2 SSTable Organizer

SSTable Organizer (a) updates the SSTable temperatures by fetch-and-reset-ting the

SSTable read counters and (b) organizes SSTables with the temperatures and the

target cost by solving the SSTable placement knapsack problem. SSTable Organizer

runs the organization task every organization epoch such as every second. When an

SSTable migration is needed, SSTable Organizer asks the database for scheduling a

migration. Its interaction with the database and the client is summarized in Figure 8.

The two key data structures used are:

SSTable Access Counter: Each SSTable contains an atomic SSTable access counter

that keeps track of the number of accesses.
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Figure 7: Interactions among the client, the database, and Mutant. Mutant
API is depicted in red. Parameters and return values are omitted for brevity.

SSTable-Temperature Map: Each SSTable is associated with a temperature ob-

ject that consists of the current temperature and the last update time. The SSTable-

Temperature map is concurrently accessed by various database threads as well as

SSTable Organizer itself. To provide maximum concurrency, Mutant protects the

map with a two-level locking: (a) a bottom-level lock for frequent reading and updat-

ing SSTable temperature values and (b) a top-level lock for far less-frequent adding

and removing the SSTable references to and from the map.

SSTable Organizer is concurrently accessed by a number of database threads includ-

ing:

SSTable Flush Job Thread: registers a newly-flushed SSTable with Mutant so

that its temperature is being monitored.

SSTable Compaction Job Thread: queries Mutant for the target storage device

of the compaction output SSTables. Similar to what the SSTable flush job does, the

newly-created SSTables are registered with Mutant.

SSTable Loader Thread: registers an SSTable with Mutant, when it opens an
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Figure 8: SSTable Organizer and its interactions with the client and the
database.

existing SSTable.

SSTable Reader Thread: increments an SSTable access counter.

2.4.3 Optimizations

2.4.3.1 Compaction-Migration Integration

SSTable compaction and SSTable migration are orthogonal events: the former is

triggered by the leveled SSTable organization and the latter is triggered by the

SSTable temperature change. However, SSTable compactions cause SSTable tempera-

ture changes: when SSTables are compacted together, their records are redistributed

among output SSTables by their hashed key order, resulting in similar access fre-

quencies among output SSTables. Consequently, executing SSTable compactions and

migrations separately would have caused an inefficiency, the double SSTable write

problem. Imagine an SSTable in the fast storage is compacted with two SSTables in

the slow storage, creating a new SSTable Ta in the fast storage and two new SSTables

Tb and Tc in the slow storage. Because their temperatures are averaged due to the
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record redistribution, Ta’s temperature will be low enough to trigger a migration,

moving Ta to the slow storage.

Thus, Mutant piggybacks SSTable migrations with SSTable compactions, which

we call compaction-migration, effectively reducing the number of SSTable writes,

which is beneficial for keeping the database latency low. Note that either an SSTable

compaction or an SSTable migration can take place independently: SSTables can be

compacted without being moved to a different storage device (pure compaction), and

an SSTable can be migrated by itself when SSTable Organizer detects an SSTable

temperature change across the organization boundary (single SSTable migration).

We analyze how much SSTable migrations can be piggybacked in §2.5.4.3.

SSTable flushes, although similar to SSTable compactions, are not combined with

SSTable migrations. Since the newly flushed SSTables are the most frequently ac-

cessed (recall §2.2.3), Mutant always writes the newly flushed SSTables to the fast

device, obviating the need to combine SSTable flushes and SSTable migrations.

2.4.3.2 SSTable Migration Resistance

The greedy SSTable organization (§2.3.1.2) reduces the amount of SSTable churns,

the back-and-forth SSTable migrations near the organization temperature boundary.

However, depending on the workload, SSTable churns can still exist: SSTable temper-

atures are constantly changing, and even a slight change of an SSTable temperature

can change the temperature ordering. To further reduce the SSTable churns, Mu-

tant defines SSTable migration resistance, a value that represents the number of

SSTables that don’t get migrated when their temperatures change. The resistance is

tunable by clients and provides a trade-off between the amount of SSTables migrated

and how adaptive Mutant is to the changing SSTable temperatures, which affects

how well Mutant meets the target storage cost. We analyze the trade-off in §2.5.4.2.
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2.5 Evaluation

This section evaluates Mutant by answering the following questions:

• How well does Mutant meet a target cost and adapt to a change in cost? (§2.5.2.1)

• What are the cost-performance trade-offs of Mutant like? (§2.5.2.2)

• How much computation overhead does it take to monitor SSTable temperature and

calculate SSTable placement? (§2.5.3)

• How much does Mutant benefit from the optimizations including SSTable com-

ponent organization? (§2.5.4)

2.5.1 Experiment Setup

We used AWS infrastructure for the evaluations. For the virtual machine instances,

we used EC2 r3.2xlarge instances that come with a local SSD [10]. For fast and slow

storage devices, we used a locally-attached SSD volume and a remotely-attached

magnetic volume, called EBS st1 type. We measured their small, random read and

large, sequential write performances, which are the common IO patterns for LSM

tree databases. Compared to the EBS magnetic volume, local SSD’s read latency

was lower by more than an order of magnitude, and its sequential write throughput

was higher by 42% (Figure 9). Their prices were $0.528 and $0.045 per GB per month,

respectively. Since AWS did not provide a pricing for the local SSD, we inferred the

price from the cost difference of the two instance types, i2.2xlarge and r3.exlarge,

which had the same configuration aside from the storage size [101].

For the evaluation workload, we used (a) YCSB, a workload generator for mi-

crobenchmarking databases [41] and (b) a real-world workload trace from QuizUp.

The QuizUp workload consists of 686 M reads and 24 M writes of 2 M user profile

records for 16 days. Its read:write ratio of 28.58:1 is similar to Facebook’s 30:1 [19].
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Figure 9: Performance of the storage devices, local SSD and EBS magnetic
volumes. File system cache was suppressed with direct IO.

2.5.2 Cost-Performance Trade-Offs

2.5.2.1 Cost Adaptability

To evaluate the automatic cost-performance configuration, we vary the target cost

while running Mutant and analyze its storage cost and database query latency. We

used the YCSB “read latest” workload, which models data access patterns of social

networks, while varying the target cost: we set the initial target cost to $0.4/GB/-

month, lowered it to $0.2/GB/month, and raised it to $0.3/GB/month, as shown in

Figure 10(a). We configured Mutant to update the SSTable temperatures every

second with the cooling coefficient α = 0.999.

Mutant adapted quickly to the target cost changes with a small cost error mar-

gin, as shown in Figure 10(b). When the target cost came down from $0.4 to $0.2,

about 4.5GB of SSTables were migrated from the fast storage to the slow storage at a

speed of 55.7 MB/sec; when the target cost went up from $0.2 to $0.3, about 2.5GB

of SSTables were migrated to the other direction at a speed of 34.1 MB/sec. The

cost error margin depends on the SSTable migration resistance, a trade-off which we

look at in §2.5.4.2: a 5% SSTable migration resistance was used in the evaluation.

Figure 10(c) shows how Mutant organized the SSTables among the fast and slow
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Figure 10: Mutant makes seamless cost-performance trade-offs. Target cost
changes over time (a), changes in underlying storage cost (b), Mutant organizes
SSTables to meet the target cost (c) and the database latencies (d).

storages to meet the target costs.

Database latency changed as Mutant reorganized SSTables to meet the target

costs (Figure 10(d)). Read latency changes were the expected trade-off as SSTables

are reorganized to meet the target costs; write latency was rather stable throughput

the SSTable reorganizations. The stable write latency is from (a) records are first

written in MemTable not causing any disk IOs, then batch-written to the disk, mini-

mizing the IO overhead and (b) commit log is always written to the fast storage device

regardless of the target cost. At the start of the experiment, the latency was high

and the cost was unstable because the file system cache was empty and the SSTable

temperature needed a bit of time to be stabilized. Shortly after, the latency dropped

and the cost stabilized.
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Figure 11: Cost-performance trade-off spectrum of Mutant. Read latency
(left) and write latency (right) controlling throughput (horizontal axis) by varying
the target cost. Colors and symbols represent storage cost.

2.5.2.2 Trade-Off Spectrum

We study the cost-performance trade-off spectrum by analyzing both database through-

put (in IOPS) and latency as the target cost changes. We first set the baseline points

with two unmodified databases: fast database and slow database, as shown in Fig-

ure 11(left). Fast database used a local SSD volume and had about 12× higher

storage cost, 20× higher maximum throughput, and 10× lower read latency than

slow database that used an EBS magnetic volume.

The cost-read latency trade-off is shown in Figure 11(left). As we increased the

target cost from the lower bound (slow database’s cost) to the upper bound (fast

database’s cost), the read latency decreased proportionally. The throughput-latency

curves show some interesting patterns. First, as you increase the throughput, the

latency increases: fast database. This is because the performance bottleneck was

the CPU, and the database saturated when the CPU usage was at 100%. Second,

as you increase the throughput, the latency decreases: slow database. The latency

decrease was from the batching of the read IO requests at the file system layer. The

maximum throughput was 3 K IO/sec due to the rate limiting of the EBS volume [9],

rather than the CPU getting saturated. Third, as you increase the throughput, the
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latency initially decreases and then increases: Mutant. The latency changes are the

combined effect of the benefit of IO batching in slow storage and the saturation of

CPU.

The write latencies stayed about the same throughout the target cost changes

(Figure 11(right)). The result was as expected, since the slow storage is not directly

in the write path: records are batch-written to the slow storage asynchronously.

Figure 11 confirms that Mutant delivers the cost and maximum throughput trade-

off: as the target cost increased, the maximum throughput increased.

The evaluation with the QuizUp workload again confirms that Mutant delivers

a seamless cost-latency trade-off. Similar to with the YCSB workload, we replayed

the QuizUp workload with two baseline databases and Mutant with various cost

configurations as shown in Figure 12.

2.5.2.3 Comparison with Other SSTable Organizations

We compare the cost configurability of Mutant and the other SSTable organization

algorithms, leveled organization and round-robin organization used by RocksDB and

Cassandra. RocksDB organizes SSTables by their levels into the storage devices [50].
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Figure 13: Storage cost of Mutant and the other SSTable organization
strategies. The blue line (with L) represents RocksDB’s leveled organization. SSTa-
bles at a level before the symbol | go to the fast storage; SSTables at a level after
the symbol go to the slow storage. The red line (with RR) represents Cassandra’s
round-robin organization, and the black line represents the seamless organization of
Mutant.

Starting from level 0 and the first storage device, RocksDB stores all SSTables at

current level in the current storage only if all the SSTables can fit in the storage; if

the SSTables don’t fit, RocksDB looks at the next storage device to see if the SSTables

can fit. Cassandra spreads data to storages in a round-robin manner proportional to

the available space of each of the storages [105].

Figure 13 compares the storage cost of Mutant and the other SSTable organi-

zation algorithms. First, neither of the algorithms is adaptive to the changing target

cost. When the target cost changes, your only option is migrating your data to a

database with a different cost-performance characteristic. Second, leveled SSTable

organization has limited number of configurations. With n SSTable levels and 2 stor-

age types, SSTables can be split in n + 1 different ways. Thus, even when assuming

target cost is to be maintained, there is a limited number of cost-performance options.

2.5.3 Computational Overhead

Computational overhead includes the extra CPU cycles and the amount of memory

needed for the SSTable temperature monitoring and SSTable placement calculation.
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The overhead depends on the number of SSTables: the bigger the number of SSTables,

the more CPU and memory are used for monitoring the temperatures and calculating

the SSTable placement. We ran the YCSB workload with 10K IOPS for 8 hours both

with and without the computation overhead. For a precise measurement, we disabled

SSTable migrations to prevent the filesystem from consuming extra CPU cycles.

The modest overhead shown in Figure 14 confirms the efficient design and im-

plementation of Mutant: (a) minimal CPU overhead through an atomic counter

placed in each SSTable and periodic temperature updates, (b) minimal memory over-

head from the use of the exponential decay model in SSTable temperature, and (c)

the greedy SSTable organization that keeps both CPU and memory overhead low.

Through the experiment, the system consumed 1.67% and 1.61% extra CPU and

memory on average. The peaks in the CPU usage are aligned with SSTable com-

pactions that trigger rewrites for a large number of SSTables. There were fluctuations

in the overhead over time: the overhead was positive at one minute and negative at

the next. Likely explanations include (a) the non-deterministic key generation in

YCSB, which affects the total number of records at a specific time between runs,

which in turn influences the timing of when SSTable compactions are made and when

the JVM garbage collector kicks in and (b) the inherent performance variability in

the multi-tenant cloud environment.

2.5.4 Benefits from Optimizations

2.5.4.1 SSTable Component Organization

To evaluate the benefit of the SSTable component organization, we measure the la-

tencies of the unmodified database and the database with the SSTable component

organization turned on. Since RocksDB SSTables store metadata and records in

the same file, we keep the metadata in memory instead of moving the metadata in

the file system. SSTable component organization benefited the “slow database” (the

database with an EBS magnetic volume) significantly both in terms of the average
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Figure 14: Computation overhead of Mutant. Figure (a) and (b) show the CPU
and memory usage of the unmodified database (in blue) and Mutant with SSTable
temperature monitoring and SSTable organization calculation on (in red). Figure (c)
shows the total number of SSTables.

and tail latencies, as in Figure 15. The latency reduction came from avoiding (a)

reading metadata, the most-frequently accessed data blocks, from the storage device

and (b) unmarshalling the data into memory. The metadata caching evaluation was

fair in terms of the total memory usage: a trade-off of allocating slightly more mem-

ory SSTable metadata and slightly less memory for the file system cache to SSTable

records. In the experiment, when the metadata caching was on, the database pro-

cess used 2.22% more memory on average and the file system cache used 2.22% less

memory.

The latency benefit to the “fast database” was insignificant. which, we think, was

due to the significantly lesser file system cache miss penalty of the local SSD volume,

such as from the DRAM caching provided by many SSDs today, compared to the

EBS magnetic volume (§2.5.1).
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Figure 15: “Slow database” benefited significantly from SSTable component
organization. A latency comparison of the unmodified database (in blue) and the
database with SSTable component organization on (in red).

2.5.4.2 SSTable Migration Resistance

SSTable migration resistance serves as a trade-off knob between the amount of SSTa-

bles migrated and the storage cost conformance (§2.4.3.2). We vary SSTable migration

resistance and analyze its effect on the trade-off between the SSTable migration reduc-

tion and the target cost. As we increased SSTable migration resistance, the number of

migrations first decreased and eventually plateaued out. The plateau point depends

on the workload: with the YCSB “read latest” workload, the plateau happened at

around 13% resistance, as in Figure 16(a). The storage cost increased as the mi-

gration resistance increased, as in Figure 16(b). This is because, with modern web

workload of which most SSTables are migrated towards the slow storage device, a

high resistance makes SSTables stay longer in the fast, expensive storage device than

a low resistance. Storage cost increase was linearly bounded to SSTable migration

resistance: in the experiment, with a ratio of about 0.08 (relative cost / SSTable

migration resistance). One should configure the migration resistance between 0 and
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Figure 16: SSTable migration resistance’s effect on the SSTable migrations
and cost SLO conformance. Figure (a) shows how the amount of SSTable migra-
tions changes by SSTable migration resistance, and (b) shows how the storage cost
changes.

the plateau point of the number of SSTables migrated (13% in this example), because

there is no more benefit from the SSTable migration reduction beyond the plateau

point.

2.5.4.3 SSTable Compaction-Migration

SSTable compaction-migration integration is an optimization that piggybacks SSTable

migrations on SSTable compactions, thus reducing the amount of SSTable migrations

(§2.4.3.1). The breakdown of the SSTable compactions shows that 20.37% of SSTable

migrations were saved from the integration. The number of SSTable compactions

remained consistent throughout the SSTable migration resistance range, since the

compactions were triggered solely by the leveled SSTable organizations, independent

of the SSTable temperature changes.
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2.6 Summary

In this chapter, we have presented Mutant: an LSM tree-based NoSQL database

storage layer that delivers seamless cost-performance trade-offs with efficient algo-

rithms that captures SSTable access popularity and organizes SSTables into different

types of storage devices to meet the changing target cost.
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CHAPTER III

IN EDGE CLOUD CACHE SYSTEMS

In this chapter, we explore the cost-performance trade-offs in edge cloud caching

systems. Today’s cloud caching systems have limited to no options when it comes to

(a) cost and cache hit level or (b) cost and performance isolation level. We explore

the flexible cloud caching system designs that allow such cost-performance trade-offs.

3.1 Cost-Performance Trade-Offs in Edge Cloud Cache Sys-
tems

Many small to medium size CPs (content providers) use cloud cache services to deliver

their content with a low latency. However, cloud cache services often do not deliver

stable performance because of (a) the performance interference among the tenants, (b)

the lack of performance SLAs (service level agreements), and (c) the unpredictability

of the workloads.

Big CPs, such as Netflix and YouTube, avoid the performance interference issue

by building their own CDNs (content delivery networks) [108, 29]. However, building

a private CDN is not an option for many small to medium CPs due to the enormous

initial investment cost and the low cost efficiency when the data request volume is

low.

We propose SpaceLease, an edge cloud cache with cost-performance con-

trol. SpaceLease is deployed on the edge cloud platform, which the research com-

munity and industry leaders envision [93], and uses dedicated computing resource

to store and serve cache items. The use of dedicated resource allows CPs (a) to

gain control over the system cost, thus the performance of the system, and (b) to

have minimal performance interference, which the multi-tenant, shared cloud
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cache services suffer from, consequently removing a dimension of performance unpre-

dictability, and thus costly lag or dissatisfaction from users.

Deploying your own CDN in the edge cloud platform raises architectural and

economic questions such as:

• Where should the data be stored and how much cache space should be allocated in

each edge data center to maximize the cache utility?

• How scalable or adaptive is the CDN to changing workload patterns?

• How much resource does a CP need from a cloud provider to build a sufficiently

good CDN?

We address the questions by identifying cache storage space as the central bot-

tleneck resource for CDNs, and provide an algorithm for identifying how much value

can be extracted from a certain amount of cache space for a given workload type. We

design SpaceLease with the two principles, optimality and adaptability. First,

SpaceLease optimizes cache utility globally by analyzing the workload locally in

each data center. Second, SpaceLease dynamically adapts to changing workload

patterns by continuously updating the cache resource allocation. To support opti-

mality and adaptability, we design the core components:

• Workload Analyzer calculates the cacheability of workload in each data center using

cache item reuse distance analysis.

• Cache Utility Optimizer calculates the optimal partition of the cache resource

among data centers using the input from Workload Analyzer.

• Elastic Cache dynamically resizes the cache resource in each data center to adapt

to changing workload patterns.

We implemented a prototype of SpaceLease on Amazon data centers and eval-

uated it with the synthetic workloads and a 30-day Akamai data access trace. The

evaluation results show that SpaceLease removes the performance interference of
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the shared cloud cache services, adapts quickly to changing workload patterns, and

optimizes the aggregate cache utility of a CP.

This chapter makes the following contributions:

• We identify the performance unpredictability in shared cloud cache services.

• We design a performance-isolated cloud cache architecture that maximizes the cache

utility of a CP over all edge data centers and dynamically adapts to changing

workload patterns.

• We implement SpaceLease and evaluate using both synthetic and real-world work-

load and show that SpaceLease (a) reduces the hit rate variability by up to 79%

and (b) adapts quickly to changing workload patterns.

3.2 Performance Interference and Inflexible Cost-Performance
Trade-Offs

3.2.1 Cloud Cache Services

Low-latency data access is important for web services since it is directly related to

user experience level and financial gain. Users switch to a competitor web site with as

little as 250 ms of page loading time delay [76]. A 100ms increase in the data access

latency translates to 1% revenue loss [71].

To lower the data access latencies, many small to medium size CPs rely on the

cloud cache services such as Amazon CloudFront, Google Cloud CDN, and Azure

CDN [20, 55, 82]. The cloud cache services provide on-demand cache deployment at

large scale alleviating the CPs’ burden of having to build their own cache infrastruc-

ture.
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Table 3: An example periodic-reuse-distance object request sequence. Max-
imum reuse distance is 4 and reuse distance increment is 2. Each shaded rectangle
represents a group of object requests with repeating reuse distances.

Request order 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
Object ID 0 0 1 2 0 3 4 1 1 3 2 2 1 0 · · ·
Reuse distance • 0 • • 2 • • 4 0 2 4 0 2 4 · · ·

4

3.2.2 Cloud Caches Do Not Provide Stable Performance

While cloud cache services are meant to deliver low-latency data accesses, they often

deliver unpredictable performance for reasons including unpredictable workload pat-

terns of a CP and the resource contention among the tenants that share the cache

space.

To look into the performance variability in cloud cache services, we measured

the data access latencies and the cache hit rates of Amazon CloudFront [20], one

of the biggest cloud cache services. To evaluate the cache performance, we made a

deterministic sequence of object requests using reuse distance, the number of unique

objects after the same object was last seen [88]. Specifically, we made periodic-reuse-

distance object requests: objects are chosen to have periodic, evenly-spaced reuse

distances. In the example Table 3, objects are chosen so that their reuse distances

form a repeating sequence of 0, 2, and 4. The first group, from request order 0 to 7,

is an exception: it includes some ∞ reuse distances due to the insufficient number of

previously-seen objects. We used 1.5 M for the maximum reuse distance with 1000

evenly-spaced reuse distances repeating.

The measurement setup (Figure 17) consists of the three parts: a client, a Cloud-

Front distribution, and a data origin. A client machine, representing end users, makes

periodic-reuse-distance object requests with a request rate of 10 requests per second

and object size 30 KB. A CloudFront distribution is a unit of cache deployment that

is allocated in Amazon’s Edge and Regional caches [6]. An object request is served
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Figure 17: Measurement setup of a cloud cache service

by a 2-level cache service: first, a request goes to a closest Edge cache, and, when

the object is not found in the Edge cache, the request goes to the Regional cache.

When the object is not found in the Regional cache, the request goes to the data

origin, an Apache web server serving the objects. The client parses the HTTP re-

sponse header to see whether the request was served from CloudFront or from the

data origin: whether the object was served via a cache miss or a cache hit. We ran

the measurement with a request rate of 10 objects/second for 12 days.

We found that there is a high variability in the latency over time (Figure 18).

Cache hit rate showed two patterns: short dips and long fluctuations. To look

into the short dips, we recorded the cache server IP addresses to where the requests

are routed. We found out that a DNS routing update happened every 1000 requests

and the short dips were caused by new cache servers previously unseen by the CP.

Since the cache servers are new to the CP, it takes some time before they get warm

and the hit rate goes up. The addition of a new server can be from either a new cache

server being added to a cache cluster or an abnormal DNS routing that routes requests

to a remote region, where the cache is “cold” for the CP. The long fluctuations were

likely caused by the resource contention among CPs and the capacity planning of

CloudFront. The variability in hit rate over the 12-day measurement period was

significant.
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Figure 18: Cloud cache services have a high performance variability, which
includes long fluctuations and short dips. A stable workload was requested to Amazon
CloudFront for 3 weeks. Hit rate over time is shown in red, the average hit rate is
shown in blue, and standard deviation are shown on the right.

3.2.3 Resource Distribution Among Data Centers Matters

CPs want to maximize their benefit by maximizing their aggregate cache utility, the

amount of data served from the cache hits. Aggregate cache utility depends on how

the total cache space is split among data centers. To demonstrate how different cache

space splits make different aggregate cache utility, we simulated Akamai workload to

two Akamai edge data centers, DC A and DC B (Figure 19). We made different splits

out of a fixed cache space budget, 347 MB, and ran the workload against an LRU

cache in each data center. As we allocate more cache space to DC A and less space

to DC B, DC A’s cache utility increases fast in the beginning and eventually plateaus

and DC B’s utility decreases slowly in the beginning and eventually drops fast. The

optimal split was when DC A and DC B were allocated about 18% and 82% of the

total cache space, which had 5.98% higher cache utility compared to a naive, even

split.

As workloads change over time, so do the optimal cache splits. To demonstrate

the benefit of dynamic cache space split, we updated the cache space split every day

using Summit, which we explain in §3.3.2.1. We assumed a future knowledge of the

requests to calculate the optimal split in each time range. With the two data center,
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Figure 19: Different splits of cache space among data centers make different
aggregate cache utility. We ran Akamai workload to two data centers, DC A and
DC B, which we allocated different cache spaces as shown in x-axis. An optimal split
of the cache space had 5.98% higher cache utility than an even split of the cache
space.

DC A and DC B, the optimal dynamic split has 4.43% higher cache utility than the

optimal static split (Figure 20). The utility gain is meaningful since the net gain is

positive in spite of the cold cache penalty that comes with the cache resizing.

The cache utility benefit of the optimal cache space allocation suggests that a CP

with a fixed budget should (a) optimally allocate its cache space among data centers

and (b) update the allocation periodically for the changing workload patterns.

3.3 System Design

To solve the cache performance variability problem, we design SpaceLease, a dedicated-

space cache architecture with cache state transfer.

Building a dedicated-space caching system faces new challenges including:

• Optimizing cache space allocation: Given a cost budget, how much space

should be allocated in each of the edge data centers to maximize the aggregate

cache utility?

• Aggregate cache size: How much aggregated cache space should be allocated for

a CP to provide a reasonable performance?
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Figure 20: Dynamic cache space resizing outperforms static cache space
partitioning. The top figure shows the changing cache space of data center A and
B, depicted as Dyn(A) and Dyn(B). The static cache split is shown with Sta(A) and
Sta(B). The middle figure compares cache utility per hour of dynamic and static
split. The bottom figure breaks down cache utility of dynamic and static split by
data centers.

• Elastic cache resizing: How should the cache be resized to adapt to changing

workload patterns?

We contrast SpaceLease and the traditional, shared cache systems in Table 4.

3.3.1 Performance Isolation

SpaceLease provides cache performance isolation by design: we use cloud VMs for

hosting the cache service and VM resources are isolated from the other VMs. The

degree of performance isolation varies by the metrics and the resource type. Cache

47



Table 4: Dedicated- vs. shared-cache architecture

Dedicated cache Shared cache

Performance
isolation

Provided by design: the cache VM storage
is dedicated to a CP.

Not provided. A CP’s performance
changes by the other tenants’ workloads.

Cache utility
optimization

An opportunity to optimize the cache
utility custom tailored to a CP’s work-
load.

A CP doesn’t have a control over the
cache performance in each data center.

Elastic cache
resizing

Needs a system component that change
the cache space dynamically to changing
workload patterns.

Not provided. A change in a CP’s work-
load pattern changes its effective cache
size, affecting the performance of the
other tenants.

hit rate with SpaceLease is completely isolated form the other VMs, provided the

system is not saturated, a case that rarely happens in the web caching systems,

which are protected by admission controls. Data access latency can vary by the

VM interference, especially when they share a secondary storage such as SSDs [Koh,

Jian’s]. CPU and memory have relatively minimal interference to the secondary

storage. The impact of the latency interference is ignorable compared with that of

the cache hit rate interference: with a cache miss, a data access request needs to go

to the data source.

3.3.2 Cache Utility Optimization

Since SpaceLease allocates a dedicated cache space in each data center for a CP, the

natural follow-up problem is cache utility optimization: how much space should

be allocated in each data center?

We solve the problem by allocating a small amount of cache space repeatedly to

where the “value” of the cache space is the biggest. To quantify the value, we use the

metric cache utility, which is the amount of data served from cache hits. Since data

accesses have locality, a typical cache utility grows fast when the cache size is small

and the growth slows down as the cache size becomes bigger. Cache utility curve

is a characteristic of the workload arriving at a data center, and can be calculated

by monitoring the data accesses at the data center. Cache utility analyzer, a
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component of SpaceLease, samples the data access requests and builds the utility

curves. We present a formal description Summit in the next subsection, the optimal

cache allocation algorithm.

3.3.2.1 Summit: Utility-based Cache Space Allocation

Let us assume that a CP is considering the space allocation among N different edge

data centers, call them 1, 2, . . . , N , possibly from different cloud operators.

Costs: A CP is interested in leasing out some amount of cache space in each data cen-

ter. For the cache space, we focus on the memory (RAM) as the primary, performance-

isolated cache item storage. Thus, the cache space cost becomes the VM leasing cost.

Big cloud vendors have pricing models that charge proportionally to the amount of

memory [AWS, Google Azure].

Benefits: The benefits a CP derive for every cache hit is twofold. First, the end-user

gets lower latencies and thus higher level of user experience that directly translates

into measurable profit for the CP [Amazon, Bing and Google]. Second, the hit means

that content is served out of the edge cache instead of hitting the aggregation point

or the wider Internet, which is a saving of the precious backhaul network bandwidth

for the network operator. These savings are assumed to be passed on to the CP in

some capacity. Together, we can assume that the CP derives some dollar utility from

the cache hits.

Objective: Together, the CP is interested in leasing resources on those cache nodes

that provide the greatest cache benefit over costs, without exceeding a budget of at

most P dollars spent. Formally, let ~x denote the set of space allocations (xi)
N
i=1 such

that xi ≥ 0 and

cost(~x) =
N∑
i=1

cixi ≤ B (5)

where ci > 0 denotes the per-gigabyte price per time unit that the CP would be
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charged for each additional unit of space of cache in data center i. Note that the

value of ci could change every epoch, such as (a) in respond to demand, such as spot

pricing [8], and (b) variable VM instance prices in different data centers [12].

The benefit is the financial gain from the amount of data served from the cache

hits, or utility, denoted by util:

util(~x) =
N∑
i=1

Ui (6)

Ui = αi · vi · hi (7)

where Ui is the cache utility in data center i, which is the product of the data volume-

to-dollar cost conversion constant αi, the requested data volume vi, and the cache hit

rate hi. Cache utility changes by the amount of cache space xi. Similar to cache hit

rate curve construction, cache utility curve can be estimated through spatial sampling

of the request stream [112]. Moreover, Ui is concave for LRU cache-replacement.

Methods, such as Talus or SLIDE [24, 111], can be used to force cache replacement

schemes to produce concave hit rate curves, even for online streams.

With the cost(~x) and util(~x), the objective of the CP is maximizing the gain(~x),

the difference of util(~x) and cost(~x):

max{gain(~x) = util(~x)− cost(~x)} (8)

We propose Summit (algorithm 1), a greedy algorithm that climbs the steepest

gain curve little by little, while the slope of the curve is positive and the CP’s budget

doesn’t run out. Summit is close to optimal.

Theorem 3.3.1 When the hit gain curves gain(~x) are concave and non-decreasing,

the allocation ~x by the greedy algorithm algorithm 1 is near-optimal. Specifically,

gain(~x) ≥ gain(opt) while cost(~x) ≤ cost(opt) + maxi=1,...,N ci.
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Input: gain(i, j), i ∈ N : gain in DCi, the i-th data center, when the j
amount of cache space is allocated. B: cost budget for the aggregate
cache space.

Output: xi: cache space allocation in DCi.

/* Initialize cache space at each DC to 0 */

1 for i ∈ N do
2 xi ← 0

/* Greedily allocate cache space by following the gain curve that

has the steepest line segment */

3 while cost(~x) < B do
4 (i,∆gain)← maxi∈N(gain(i, xi + 1)− gain(i, xi))
5 if ∆gain ≤ 0 then
6 break

7 xi ← xi + 1

Algorithm 1: Summit: Utility-based cache space allocation

3.3.2.2 Adaptability to Changing Workloads

To provide a consistent performance under the changing workloads, SpaceLease

runs Summit periodically and adjusts its cache size to the current workload.

3.4 Evaluation

We evaluate SpaceLease to answer the following questions:

• Does SpaceLease provide a stable performance? (§3.4.1) How much does a CP

pay for the stable performance? (§3.4.1.1)

• Does SpaceLease provide configurable cost-performance trade-offs? (§3.4.2)

• How well does SpaceLease adapts to changing workload patterns? (§3.4.3)

3.4.1 Stable Performance

To evaluate the performance stableness of SpaceLease, we ran workload static-1.5M

that we used for measuring the CloudFront performance variability (§3.2.2). against

a SpaceLease edge data center with a total cache size of 37.3 GB and 5 cache nodes.
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SpacLease:
 sd=0.010413
 avg=0.722310
 win_size_sec=100

CloudFront:
 sd=0.049062
 avg=0.723820
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Figure 21: SpaceLease provides stable hit rate: no long fluctuations or short
dips. The red and blue lines are the hit rates of SpaceLease and CloudFront. The
reduction in standard deviation was 79%.

We set the total cache size to 48 GB, which matched the hit rate of the CloudFront

evaluation. Since SpaceLease uses the dedicated resource by design, the hit rate

stayed stable during the entire evaluation time (Figure 21). There was no short dips

or long fluctuations unlike in the CloudFront evaluation. The reduction in standard

deviation was 79%: 0.0104 compared with 0.0491 of the CloudFront evaluation.

3.4.1.1 Cost of Stable Performance

To evaluate the cost of the stable performance, we compared the cost of running

workload static-1.5M on SpaceLease and CloudFront. To our surprise, Space-

Lease cost 10.09% less than CloudFront: $51.936 vs. $57.766 (Table 5). The cost

difference, however, is arbitrary and depends on the factors including:

• The workload density. Cache node cost does not change by the number of requests

or the traffic volume, thus the relative cache node cost becomes lower as the re-

quest rate goes higher as long as the cache nodes can handle the requests without

performance degradation. Workload static-1.5M had 10 30-KB object requests /

second and any higher request rate or bigger average object size would have lowered

the relative cost.

• Cache node hardware configuration. We used an AWS t2.nano instance for the cache
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Table 5: Cost of SpaceLease and CloudFront with workload static-1.5M for 3
weeks. The costs are in USD in the AWS US East region [14, 12].

Space Cloud Exp
Lease Front type

Cache nodes 5.200 - CapEx

Requests - 13.608
Cache-to-user
traff

46.719 44.124 OpEx

Cache-to-origin
traff

0.017 0.034

Total 51.936 57.766

node, which had 1 vCPU, 0.5 GiB of memory [11] and an EBS general purpose

SSD volume for storing the cache items [13]. In this example, the resource was

underutilized: the CPU usage during the experiment was around 1%. We even

tested with the request rate of up to 200 request / second, which is 20× higher

than workload static-1.5M, but there wasn’t a meaningful increase in the CPU

usage. Thus, the cost would have been even lower with a further lower-end instance

type without sacrificing performance.

To demonstrate how much effect the request rate has on the relative cost of Space-

Lease and CloudFront, we compared the costs with various request rates (Figure 22).

When the request rate is lower than the break-even point, which is around 5 requests

/ second, SpaceLease costs more than CloudFront because of the relatively high

CapEx (capital expenditure). After the break-even point, SpaceLease costs less

than CloudFront, which aligns with why companies with a large traffic volume build

their own CDNs [108, 29].

3.4.2 Cost Configurability

To evaluate the cost-performance trade-offs of SpaceLease, we monitored cache

hit rate while changing the cost of SpaceLease in the middle of serving the client
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Figure 22: Cost overhead of SpaceLease over CloudFront becomes smaller
as the request rate goes up. SL and CF on the left y-axis represent the cost of
SpaceLease and CloudFront.

requests. For the client requests, we replayed data access traces of an Akamai CP in

an edge data center, which had 11 M requests for 20 days. Initially (Phase 1) we set

the cost budget to $46.61/month. Then after about 6.5 days (Phase 2), we increase

the cost to $84.74, and after another 6.5 days (Phase 3), we decreased the cost down

to $21.18 (Figure 23(a)). Cache hit rate followed the cost changes: in Phase 2, when

10 more cache nodes were added, hit rate went up slowly and eventually plateaued

when the cache nodes became warmed up, and in Phase 3, when 15 cache nodes were

terminated, hit rate sharply dropped and eventually plateaued (Figure 23(b)). The

number of cache nodes, which responds to the cost budget, was what drove the cache

hit rate changes (Figure 23(c)). There were small delays between the cost changes

and the number of cache nodes, which were caused by the cache node VM launch

time, cache server initialization time, and the load balancer reconfiguration time.

This demonstrates the flexible cost-configurability of SpaceLease in contrast to the

single cost-performance point of cloud cache services.
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Figure 23: SpaceLease provides cost-performance trade-offs. (a) shows the
changing cost budget. (b) shows cache hit rate with the changing cost in red and
with a fixed cost in blue. (c) shows the number of cache nodes SpaceLease allocated.

3.4.3 Adaptability to Changing Workloads

To evaluate how well SpaceLease adapts to the changing workload to meet the

target hit rate, we measure the hit rate while varying the cacheability of the workload.

We made requests with randomly generated reuse distances with varying max rd,

maximum reuse distance, in a way that their distribution form a concave curve. The

object ID of the i-th request Oi is calculated with the following steps:

• Generate a random number ri in the range [0, 1] with a uniform random distribution

• Generate the reuse distance RDi by curving the distribution with the curve param-

eter k and multiplying it with max rd: RDi = max rd ∗ (1− (1− dk)1/k)

• Calculate Oi with by selecting the object ID with reuse distance RDi from the use

order history data structure.
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Figure 24: SpaceLease adapts to changing workload patterns. (a) shows the
changing workload patterns. (b) shows the number of cache nodes: the blue line is
what Cache Space Optimizer tells Cache Manager and the read line is the actual
number of cache nodes in the data center. (c) shows the aggregated cache hit rate.

We set the target hit rate to 0.8 and varied max rd from 150 K to 450 K down to 300

K, each of which we will call 1×, 3×, and 2× cacheability workloads (Figure 24(a)).

Initially, we set the number of cache nodes to 7 to meet the target cache hit

rate, 0.8, with the 1× workload. When we changed the workload to 3×, Cache

Utility Analyzer started to generate wider utility curves that would require more

cache space to meet the target cache hit rate, Cache Space Optimizer calculated new

cache space to meet the target cache hit rate, and Cache Manager started to allocate

more cache nodes, making the number of cache nodes to 22. When we changed the

workload down to 2×, similar steps happened that eventually made Cache Manager

to deallocated some cache nodes, making the number of cache nodes to 14.

There were delays when the workload pattern changed until the number of cache

nodes changed, which can be broken down as:
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• Cache resize interval: how often Cache Space Optimizer recalculates the optimal

cache size and sends new cache sizes to Cache Manager in each data center. Cache

resize interval is in sync with Utility curve report interval, which states how often

a Cache Utility Analyzer reports its utility curve to Cache Space Optimizer. The

parameter serves as a control knob that decides the responsiveness of SpaceLease

to a workload change and the accuracy of the utility curve, which determines the

accuracy of the optimal cache space allocation.

• Delays from exponential filter: the exponential filter smooths out the jitters at the

cost of a delayed response to the cache resize command. The exponential parameter

of 0.3 smoothed out most of the jitters (Figure 24(b)), but introduced a 2× Cache

resize intervals of delay.

• Cache node launch time: the time for launching a cache nodes VM and for the cache

server, Apache Traffic Server, to get ready to serve requests. This time depends on

the Cloud platforms and the instance type. With a small AWS EC2 type (t3.micro),

the launch time was 60 seconds on average. The time could be further reduced with

containerizaion technologies such as Docker.

• Load balancer reconfiguration time: the time for Load Balancer to update the

keyspace mapping to cache nodes. The reconfiguration time was small enough to

be ignorable.

• Cache node termination time: the time for terminating a cache node. The time is

masked since SpaceLease terminates a cache node in the background after a Load

Balancer reconfiguration.

Table 6 summarizes the breakdown of the delays.

Cache hit rate followed the target hit rate well as in Figure 24(c), which shows

that the utility curve-, thus reuse distance-, based space allocation is a good metric

for non-LRU algorithms as well: Apache Traffic Server uses CLFUS (circular LFU
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Table 6: Breakdown of cache resize time, how long it takes for a cache size change
to take effect. The items in parenthesis are for increasing the cache size.

Cache resize sub task
Time
(sec)

Cache resize interval 10
Delay from exponential filter 20
(Cache node launch time) (≈ 60)
Load balancer reconfiguration
time

≈ 0.02

Total
≈ 40

(≈ 100)

by sizes) for RAM cache and FIFO for disk cache by default [46, 21]. During the

workload transition time, there were temporary dips and spikes. When the workload

cacheability increased to 3×, cache hit rate dipped because there was not enough

space to cache the requests, started to go up as soon as the new cache nodes were

added, and eventually met the target hit rate when the new cache nodes got warmed

up. When the workload cacheability decreased down to 2×, hit rate spiked due to

the over-provisioning of cache space, started to dip when some of the cache nodes are

removed, and eventually went up to meet the target hit rate. The dip was below the

target cache hit rate because the remaining cache nodes needed to get warmed up

for the newly assigned keyspace ranges that were previously assigned to those just

deleted nodes.

3.5 Summary

In this chapter, we have presented SpaceLease, an edge cloud CDN with cost-

performance trade-offs, including (a) cost and performance isolation trade-offs and (b)

cost and cache hit rate trade-offs, with data structures and algorithms that capture

the workload cacheability effectively and a scalable system that resizes the cache

resource in each edge data center of a content provider.
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CHAPTER IV

IN GEO-REPLICATION SYSTEMS

In this chapter, we explore the cost-performance trade-offs in geo-replication systems.

To reduce the increasing cost of geo-replication, companies and research communities

have proposed partial geo-replications. However, the existing partial geo-replications

are (a) not optimal to all application types and (b) limited in their cost-performance

trade-off options. We present a geo-replication system that (a) is flexible in its repli-

cation decisions to meet the various data access patterns from applications and (b)

makes fine-grained cost-performance trade-offs.

4.1 Cost-Performance Trade-offs in Geo-Replication Sys-
tems

Large-scale, data-intensive services (e.g., YouTube, Instagram, Facebook, Twitter,

etc.) rely on their ability to provide timely access of continuously evolving content

to a globally distributed client base. In support of such functionality, accesses to and

manipulations of content are carried out across multiple geographically distributed

data centers. Such replicated facilities enable low service latency for data collection

and provision, and, through replication, improved fault tolerance in terms of service

and data availability.

But replication comes at price: the added storage and network costs grow pro-

portionally in the number of data center replicas and the increasing volume of data

being stored [37]. Several geo-replication systems have been recently introduced, each

making a different trade-off between costs and benefits [64, 115, 109, 104, 18]. On

one extreme of the spectrum are full replication systems, such as Cassandra, HBase

and MySQL Cluster, which replicate all data in every data center. These systems
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thus minimize data access latency while also maximizing replication cost. On the

other extreme are no-active replication systems where data is stored only in the ori-

gin data center and replicated to other data centers only when absolutely needed.

These systems minimize cost at the price of added latency, and are the default mode

of operation for caching systems and content-distribution networks. Between these

two contrasts are partial replication systems which seek to lower cost by replicating

data only in places where the data is deemed most likely to be consumed based on

the statistics of objects and metadata they collect.

The performance of partial replication systems depends critically on how well

future data accesses can be predicted. Most partial replication systems, such as

caches, assume that future access patterns closely mirror the past, thus exploiting

any temporal locality that is exhibited. On one hand, this assumption is crucial for

prediction, for instance Brodersen [31] and Kumar [69] show that YouTube videos

and Facebook photos remain popular for some time period and then quickly lose

their popularity as they age. On the other hand, overreliance on temporal locality

misses out on opportunities for more cost-effective geo-replication. A näıve caching

system, for instance, built to exploit temporal locality would lose out on the rich

geographic locality of data accesses, as illustrated in Figure 25. Here, our trace of

YouTube video access traces shows that most videos are accessed only at their site of

origin. Replication in cache-like replication systems is necessarily reactive: the first

user to access new content always endures the full latency of retrieval from the back-

end storage. Moreover, client and edge caches already exploit much of the temporal

locality exhibited in access traces, forcing the middle layers to replicate data based

on seemingly more uniformly random access patterns [58].

We argue that a geo-replication system that simultaneously minimizes

cost and latency must be able to base replication decisions on richer in-

formation attributes than past access patterns alone. We have seen some
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Figure 25: Spatial locality. (Sec. 4.4.1) YouTube videos were uploaded to the New
York data center and then fully-replicated to all remote data centers. The figure
shows the fraction of data accessed in each data center (depicted in red). On average,
91% of the video replicas (depicted in blue) in remote data centers were not accessed.
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Figure 26: Cost and latency comparison of replication models from the experiments in
Section 4.4. “User-based” represents existing, user-based partial replication systems.
The horizontal and vertical axes respectively denote the cost and latency overheads.

initial work towards this research direction: several systems leverage additional knowl-

edge about the user who posted or consumed a piece of content, either explic-

itly [64, 115, 109] or indirectly [104, 18]. Whereas user attribute can be useful in

private data-sharing applications, such as social network applications, they are less

good predictors in public data-sharing applications, such as YouTube and Flickr,

where a majority of data is accessed through alternative, non-social channels [31].

Moreover, current replication systems consider at most one attribute at a time, miss-

ing opportunities to combine interesting content features for better estimation.
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To address the shortcomings of the existing systems, we propose Acorn, an

Attribute-based COntinuous partial geo-ReplicatioN system, which achieves lower

cost and latency than existing systems. Acorn uses three design principles:

(i) Replicate based on multiple attributes,

(ii) Replicate based on the appropriate attributes for each application, and

(iii) Replicate continuously, even if it implies exploring unknown data.

A key idea behind Acorn is that replication decisions should be applied to collections

of content objects, which Acorn determines from attributes, rather than reasoning

only about individual objects with no shared relationship or history across different

objects. Acorn could therefore proactively replicate a new piece of content c in the

appropriate data centers because the system was familiar with c’s attributes. By

design, Acorn is not able to proactively replicate new content that exhibits new

attributes previously unseen by the system. Instead, Acorn uses continuous random

replication methods to explore such content and selectively replicate it to reduce

end-user latencies.

4.2 Design Principles for Better, Fine-grained Cost-Latency
Trade-Offs

To achieve low-cost geo-replication while also providing low-latency data accesses, we

follow three design principles.

4.2.1 Use appropriate attributes for each type of application

Different types of applications have different data access patterns. In private data-

sharing applications, such as Facebook or Snapchat, objects are accessed mostly

through friends, thus making “user” the best attribute to monitor and predict fu-

ture accesses. On the other hand, public data-sharing applications, such as YouTube

or Flickr, have diverse sources of accesses. For example, the majority (63%) of
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Figure 27: Data access locality. (a) Access locations of YouTube videos with the
topic “Wimbledon” from Jan. 1st to June 7th, 2014. (§4.4.) The radius of each circle
represents the number of accesses in a 5-degree longitude and 5-degree latitude area.
“Wimbledon” becomes globally popular after June 7th, because the event commences
at the end of June. (b) The number of accesses to the same videos per week in 2014.

YouTube accesses are from non-user-based (non-social) channels, such as search and

in-application navigation [31]. For these applications, “topic” is a better attribute

for making replication decisions than “user”. Figure 27 shows an example of topic’s

strong data access locality both geographically and temporally. Videos with the topic

“Wimbledon” are mostly accessed from North and South America and Europe from

Jan. 1st to June 7th, so they don’t need to be replicated to Africa, Asia, or Australia.

Although we focus on the type of applications that exhibit data access locality,

which is most likely the case with geo-replicated, global-scale applications, we note

that there are other types of applications that have different access patterns. For

example, restrictions on government and medical data require them to be stored in

specific facilities or areas. Static, application-specific replication policies would better

serve those applications.

4.2.2 Use multiple attributes

Multi-attribute-based replications have lower cost under a latency SLO (service level

objective), or lower latency under a cost SLO, compared to single-attribute-based
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Figure 28: Multiple attributes are beneficial. Cost and latency comparison of
single- vs. multi-attribute-based replications. S, M, S+R, and NA represent single-
attribute based replication, multi-attribute based replication, single-attribute based
replication plus extra random replicas, no-active replication, and full replication, re-
spectively.

ones, even when additional extra random replicas are used to remedy any limitations

from the predictive use of the single attribute. Using a data attribute, you can make a

better replication decision as to where a replica should be placed than making replicas

at random places.1 In the same manner, using two attributes will most likely give

you better replication decisions than using one attribute and adding extra random

replicas; in Figure 28(a), the multi-attribute replication M has lower cost than the

single-attribute with random replication solution (S + R). For example, replicating

YouTube videos to Atlanta, Georgia, when either (a) they have the topic “tennis”2

or (b) they are uploaded by the user “John Isner”3, has a lower cost than replicating

them to Atlanta than when (a) they have the topic “tennis” or (c) with an extra 15%

probability. Another example is Snapchat prefetching videos of nearby friends, so

1This is the rationale behind all history-based prediction systems, including the existing user-
based partial replication systems. There could be anti-patterns on which the geographic and tem-
poral locality doesn’t hold such as a repeating pattern of an attribute being popular briefly and not
accessed at all for the duration of popularity monitor window. However, the anti-patterns rarely
happen with user-generated data.

2Atlanta has the highest number of USTA members per capita in the US.
3Isner played for University of Georgia and is a top-ranked tennis player in the US as of May.

2016.
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that users can watch them even without a good network connectivity. Some videos

will be watched and others will not. You could increase the prediction accuracy by

adding another attribute capturing “interest” (or “topic”), such as “tennis”.

In the same manner, using multiple attributes achieves lower latency than using

a single attribute under cost SLOs, as shown in Figure 28(b). In general, we expect

that Mn, a partial replication system making replication decisions with n attributes,

has lower cost and latency than Mn−1 plus extra random replicas:

CostMn < CostMn−1+R

LatMn < LatMn−1+R.

(9)

The difference either in cost or latency between those systems becomes smaller as n

gets bigger.

When you add extra replicas with a uniform probability distribution, the cost

increases and the latency decreases mostly linearly, as depicted with the line from S

to Full in Figure 28. This is because, regardless of data access patterns, i.e., whether

your objects are uniformly accessed or some small amount of your objects are accessed

far more often than the others, by adding extra replicas randomly, you are giving each

of the objects a same amount of extra chance to be replicated in each local data center.

However, we note that it can be off of the straight line, depending on the randomness

of extra replica placement and the characteristic of the workload’s attributes. Also,

this is when you have a sufficient number of objects in each data center. With a small

number of objects, cost increase and latency reduction form a step function.

4.2.3 Use continuous replications

The attribute-popularity-based access predictions replicate objects to where they are

likely to be accessed in the future; however, not all future accesses can be predicted.

For example, accesses to objects with a new attribute or attribute that hasn’t ap-

peared for a long time can not be predicted. To achieve further cost reduction under
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Figure 29: Navigating SLO constraints. Cost and latency reduction of continuous
replications under SLO constraints. Attributes are labeled with attr1 to attrn by
their angles from the line extending full replication along the y-axis. attrn can be a
single or a combination of multiple attributes. One the left, the blue and (red+blue)
areas represent the sum of all costs of continuous and non-continuous replication,
respectively. On the right, they represent the sum of all latencies.

latency SLO constraints, or latency reduction under cost SLO constraints, you can

add extra random replicas. This “continuous” replication allows a replication system

to meet the SLOs without having to settle for suboptimal ones. Figure 29 explains

this in more detail. In Figure 29(a), when you have a latency SLO LatSLO between

Latn+1 and Latn that can be achieved with attributes attrn+1 or attrn, respectively,

you can use a replication on the broken line (attrn, b, attrn+1), where b is the intersec-

tion point of the line (attrn, Full) and the vertical line extending attrn+1. The cost

of such replication system is:

Cost =


Costn + CostR, if LatSLO ≥ Latb

Costn+1, otherwise.

(10)

Without continuous replication, you would have to use attrn+1 that has a higher cost

Costn+1 to satisfy LatSLO. Cost reduction RCost of continuous replication systems

over non-continuous ones is

RCost = Costn+1 −min (Costn+1,Costn + CostR) (11)
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Figure 30: Overview of the Acorn system architecture.

, where CostR is the cost of the extra random replicas. In the same manner, a latency

reduction RLat of

RLat = Latn − (Latn − LatR) (12)

can be achieved, as shown in Figure 29(b).

4.3 System Design and Implementation

Acorn consists of several Acorn servers – each of which stores a subset of objects

and metadata for scalability and fault-tolerance – and a client library that applications

link against, as shown in Figure 30.

Metadata DB consists of attribute popularity tables – which store both local and

remote popularity of attributes – and object location tables.

4.3.1 Attribute popularity monitor

Acorn servers in each data center monitor the popularity of each attribute inde-

pendently from other data centers using a sliding time window per each attribute,

as shown in Figure 31. For example, Acorn can monitor two attribute popularities;
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Figure 31: Attribute popularity monitor.

one for “user” and the other for “topic”. Popularity of an attribute item is increased

as it enters the sliding time window and decreased as it exits the window. The length

of the sliding time window is configurable for each application. In general, short win-

dows give adaptability to changing data access patterns, and long windows remember

access history better, thus are better for attributes that do not happen very often.

Popularity counters are shared by all Acorn servers in a data center. A popularity

threshold per each attribute determines whether an attribute item is popular or un-

popular. A low threshold detects changes of popularity faster, but suffers from noise;

on the other hand, a high threshold is robust from noise, but not adaptive to changes.

4.3.2 Popularity synchronization between data centers

Acorn synchronizes attribute popularity metadata periodically with remote data

centers, as shown in Figure 32. An attribute popularity synchronizer node, selected

from Acorn servers in a data center, acts as a proxy for the synchronization. This

resembles Cassandra’s approach of using a coordinator node to aid inter-data cen-

ter communication [95]. During every synchronization epoch, a synchronizer node

calculates changes in popularity items since the previous epoch, i.e., newly popular
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items and items that are no longer popular, and broadcasts them to remote data

centers with the current synchronization epoch ID. Upon receiving an update from

a remote data center, a synchronizer node first checks the synchronization epoch ID

of the update to make sure it is getting an incremental update. If the update fails

to pass the check, i.e., if the epoch ID value is not bigger than the previous one by

one, the receiving node sends a retransmission request with the expected synchro-

nization epoch ID to the sender node. When updates keep failing the check, e.g.,

from a synchronizer node being unavailable from a network outage for more than one

synchronization period, the receiving node sends a full-attribute-popularity-transmit

request.

All current and previous snapshots are partitioned and stored across Acorn

servers in a data center in the same way objects are stored, as depicted in red color

in Figure 32. The previous local attribute popularity snapshot is cached in the main

memory of the synchronizer node for a fast calculation of changes at the next syn-

chronization epoch.

The synchronization frequency is configurable to best serve the workload of an

application. The frequency is a tradeoff between synchronization overhead and keep-

ing more up-to-date attribute popularity snapshots: the more often you synchronize,

the higher synchronization cost you pay, but you obtain the more accurate knowledge

of remote attribute popularity. An extreme example is to propagate updates as soon

as there is a change in popularity, which is similar to the way Cassandra propagates

mutations. As a last step, Acorn compresses the changes to further reduce the

inter-data center network traffic.
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4.3.3 Partial Replication

Upon a write request, Acorn makes replication decisions independently in each data

center based on its attribute popularity snapshots, as shown in Figure 33(a). In con-

trast to existing work, Acorn does not involve any global component, which usually

provides availability and fault-tolerance; global placement manager of SpanStore [115]

or global configuration service of Tuba [18].

After writing an object in a data center, Acorn updates the object location

metadata, which is looked up when an Acorn server misses the object in the local

data center and needs to fetch the object from a remote data center. Acorn uses

a combination of eventual and strong consistency when writing to and reading from

an object location table. It writes object locations asynchronously, i.e., with CL

(consistency level) One1, and reads locations of an object from a local data center.

When there is no object location information in the local data center, then Acorn

1We use Cassandra’s CL (consistency level) term [43], defined as the number of replicas with
successful responses before returning an acknowledgment to client application.
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Figure 33: Steps to issue a write operation (left) and read operation (right) in Acorn.

reads from all data centers, i.e., with CL All. The protocol allows location table

accesses to be predominantly asynchronous or data center-local, resulting in lower

latencies.

A read request first looks for an object in a local data center; then, if the request

misses, the client then fetches the object from the closest (the one with the lowest

network latency) remote data center, as shown in Figure 33(b).

4.3.4 Acorn and Consistency Models

Although Acorn focuses on immutable data, a multi-version concurrency control

(MVCC) system can be built on top of Acorn to store mutable data. The consistency

model such a system would have depends on how it writes and reads object location

metadata:

• Any consistency level weaker than the equivalent of quorum consistency, i.e.,

writes with CL Quorum and reads with CL Quorum, gives you an “eventual”

knowledge of the object locations, and a MVCC system on top of that will have

an eventual consistency.

• With a CL Quorum or stronger, you obtain up-to-date object locations, and any

consistency model can be built on top of this basis; eventual [45], causal (you

have the knowledge of from where to pull objects to meet unmet dependencies)
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[73, 74], RMW (read-my-writes) [104], or strong model.

Without additional extensions, the most natural description of Acorn’s current

model is eventual consistency. Eventual consistency has often been the model of

choice in scalable multi-data center environments where data synchronization costs

are high due to availability and fault-tolerance constraints. Clients may read stale

data and are themselves responsible for reconciling any conflicts [45]. When com-

bined with partial replication, eventually-consistent systems can achieve further cost

reduction by minimizing un-accessed replicas. Clients get consistent results eventu-

ally when the location metadata of the requested objects are synchronized. A RMW

scheme would also be readily compatible with Acorn: since clients rarely change

their data centers, partial replication naturally lowers cost with negligible reduction

in local data center hit ratio.

4.3.5 Implementation Details

We implement Acorn by modifying Apache Cassandra [70], a popular distributed

database management system built for high availability, scalability, and fault-tolerance.

We modify the write path so that the StorageProxy module writes objects to the lo-

cal data center and to a subset of remote data centers by checking their attributes

against attribute popularity snapshots of remote data centers. Internally, CL (con-

sistency level) is modified so that it does not exceed the number of replicas, which

is usually smaller than the requested CL due to partial replication. This allows a

client to wait for the correct number of acknowledgments from remote servers. Stor-

ageProxy, after writing an object to local object DB, updates the object location

table for future on-demand fetch operations to locate the object. Read serves a re-

quested object from a local data center first, and, when it misses the object, it fetches

the object from the closest remote data center. The request is notified to attribute

popularity monitor asynchronously.
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Acorn’s popularity monitor uses Cassandra counters [42] internally to monitor

the popularity of each attribute item. They are “eventually” consistent, just like any

other writes and reads with their CLs less than Quorum. Here are the two reasons

that the counters serves Acorn’s purpose very well. First, they are designed to favor

performance and scalability rather than being “strongly” consistent at all times; we

want a light-weight counter, and a bit of inconsistency in popularity counters rarely

affects whether each popularity item passes the popularity threshold or not. Second,

those inconsistencies requiring conflict resolutions rarely happen. Since we use a data

center-local popularity monitor, there are no mutation propagations that cross data

centers. It makes the counters not suffering from long network delays, which is most

often the cause of counter value conflicts.

Similar to Cassandra’s multi-data center coordinator nodes [95], Acorn has one

attribute popularity synchronizer node per data center, which periodically broadcasts

changes in local attribute popularity tables to remote synchronizer nodes. This saves

the inter-data center communications, since each Acorn server does not need to talk

to multiple remote data center nodes to propagate update when the replication factor

of the attribute popularity table is bigger than 1. Whereas any Cassandra node can

be a coordinator node for each mutation propagation, Acorn designates a static

synchronizer node in each data center.1 Upon reception of changes from remote data

centers, it updates local popularity snapshot tables.

4.4 Evaluation

We evaluate Acorn by comparing it with existing, user-based systems in terms of

cost and latency using two types of applications: a public data-sharing application like

YouTube or Flickr and a private data-sharing application like Facebook or Snapchat.

1This works fine for the purpose of the work. In case the synchronizer node becomes unavailable,
a protocol of voting of the synchronizer node and disseminating the information could be designed.
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Figure 34: Data access and data center locations for a public and private data-
sharing application. Red circles represent the access locations, and the size of each
circle represents the number of accesses in a 1-degree longitude and 1-degree latitude
area. Black dots and labels represent where data centers are placed.

4.4.1 Experimental setup

The workload of the public data-sharing application is gathered from an extensive

crawling of Twitter that have both YouTube links and coordinates. We used the

Snowball crawling method [98, 59] with periodic random seedings to prevent the

crawler from being biased towards nodes with a high number of edges. We assigned

the first tweet about each YouTube video to a write (upload) request to the video, and

the rest of the tweets to read (view) requests to it. The workload had 833 K users,

2.3 M YouTube videos, and 7.2 M accesses to the videos from Aug. 2010 to April

2015. For the private data-sharing application, we used a Yelp dataset [118], which

had 1.1 M reviews, 253 K users, and a 956 K-edge social graph in 5 different regions.

From the dataset, we built social network application requests: users check (read

requests) the latest reviews (write requests) from their friends, just like Facebook

users check the status updates of their friends. It is similar to how SONG [49]

generates social network operations.

We test Acorn with both simulated and real data center setups: a multi-data

center testbed at Georgia Institute of Technology with real-world network latencies
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Figure 35: Sampled latencies of user-based vs. topic-based replications. in
the AWS Singapore data center for the public data-sharing application. For a fair cost
comparison, extra 11.82% of random replicas are added to the user-based replication.

among data centers1 and AWS data centers in 9 different regions. For the purpose of

our experiments, we manually placed data centers to evenly balance the workloads,

as shown in Figure 34.

We used AWS’s pricing model for geo-replication cost, both for storage and inter-

data center networking cost.
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Figure 36: Latency of the public data-sharing application using different at-
tributes. The vertical axis is the average latency over all data centers. The latency
difference between topic-based and user-based replications becomes consistently no-
ticeable after 2.85% of the experiment time, which is shown in the dotted vertical
line.

1The values were obtained from the average ping RTTs among AWS EC2 instances in each
region, and, in those regions where AWS does not provide services, we used RTTs between the
routers of Hurricane Electric’s Network Looking Glass [60]. We used tc, a Linux traffic control tool,
for inserting the network latencies.
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Figure 37: Growth of attributes in crawl of YouTube accesses. The number
of topics grows slower than the number of users both globally (left) and in each data
center (in center and on the right). Different numbers of attributes in each data
center can be explained by the different levels of the diversity of interests, languages,
or demographics in each region. The horizontal axis is the number of YouTube videos,
which grows as the data is being crawled.

4.4.2 Evaluation metrics

To compare replication models independently from application sizes or object sizes,

we use cost and latency overhead as evaluation metrics. We define cost overhead CO

of a replication model as a relative cost to the minimum cost, which is the cost of the

no-active replication model (NA):

CO = (Cost− CostNA)/CostNA. (13)

This gives you a relative cost regardless of your application sizes, whether it’s a

small-scale application or a YouTube-scale one. You can also experiment on a small

scale before deploying a full-scale application. In the same manner, we define latency

overhead LO as a relative latency to the minimum latency:

LO = (Lat− LatFull)/LatFull. (14)

This is independent of your object sizes, whether it’s the size of a tweet or the sizes of

YouTube videos. The partial replication with future knowledge model has a LO = 0

and a CO = 0, which is every partial geo-replication system’s ultimate goal.
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Figure 38: Cost and latency overhead comparisons by attributes and by application
types

4.4.3 The right attributes for each application

Different types of applications have different attributes that replication decisions can

be made best out of. For the public data-sharing application, topic-based replication

consistently outperformed user-based replication, as shown in Figure 35. This is

because data is accessed through various channels, and the “user”-based channel is

not the best one for making replication decisions. In this case, “topic” captures the

popularity of objects better than “user”. In the private data-sharing application,

where data is shared among friends, “user” popularity is a natural choice.

Figure 38 compares cost and latency overhead using different attributes by differ-

ent types of applications.

For the private data-sharing application, the result seem to significantly favor

“user”. The skew can be explained by the strong geometric locality of the friend net-

work graph and the uneven workload. First, most of the inter-data center friendships

are between the 2 close data centers (Phoenix and Las Vegas), and the network dis-

tance between them is very close: the average network latency between them is only

24 ms, compared to 183 ms of the YouTube data center setup. Second, the majority

of the requests come from 2 out of the top 5 regions, as shown in Figure 34(b). Thus,

when you replicate objects to where your friends are popular, not only do you make
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accurate predictions, you do so without much waste (un-accessed objects), compared

to making replications based on “topic” popularity. A workload with a friend network

graph reaching out to more distant data centers or a data center setup with longer

distances among them would have made more un-accessed objects, resulting in a less

favorable result to “user”.

A natural follow-up question is: how do you know which attributes are the best for

your application? Sometimes they are trivial for application designers; for example, in

social network applications, where checking status updates of friends is the most-used

feature, it is trivial that “user” is the best attribute. Other applications can find their

attributes with trial runs of Acorn with some initial part of the data. Figure 36

shows an example of a trial run of less than 3% of the data identifies “topic” as

better than “user”. It is interesting to observe that the latency decreases over time

and stabilizes from around May 2012. The stabilization is because the number of

accesses per unit time in our YouTube dataset increases over time; (a) Our crawler

started from the end of the simulation time period, May 2015, and followed the

links of parents and children. It makes newer videos are more likely to be found

than older videos. (b) YouTube and Twitter have grown over time, and the number

of YouTube videos increases over time. The increased video request density allows

Acorn to make the proactive replication decisions more accurately. One would think

monitoring popularity of “topics” might be impractical since there are an unlimited

number of topics. It turns out, with our YouTube workload, monitoring “topics”

is easier and more scalable than monitoring “users”, since they grow slower both

globally and data center wise, as shown in Figure 37. We believe the number of

topics has saturates at roughly the total number of words in all languages and the

usage of them follows a power law; there are about 1 million English words as of 2016

[107] and, in Twitter, the top 10 languages have an 88% share of all tweets [91].
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Figure 39: Cost and latency overheads comparison of single- vs. multi-
attribute-based replication. Su and St use a single-attribute “user” and “topic”,
respectively, to make replication decisions. M uses both of them.

4.4.4 Multi-attribute based replication

In both public and private data-sharing applications, multi-attribute based repli-

cations outperform single-attribute based ones under SLO constraints, as shown in

Figure 39: up to 23% and 83% cost overhead reductions in the public and private

data-sharing applications, respectively, and up to 4.2% and 86% latency overhead

reductions.

Figure 40 also confirms that using multiple attributes almost always outperforms

using a single attribute. There is a slight latency inversion in the beginning of 2014,

but we think this performance variability is inherent in public, virtualized cloud

environments.

4.4.5 Continuous replication

Figure 41(a) compares the cost of a continuous replication system with the cost of a

non-continuous replication system under latency SLO constraints. When the latency

SLO is high, i.e., when the storage system has a good latency budget, the system can

be configured to no-active replication model and run with the lowest cost. As the

latency SLO decreases, the system needs to move from a no-active replication model to

user-based to topic-based to (user+topic)-based, and finally to full replication model
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Figure 40: Sampled latencies of single attribute- vs. multi attribute-based
replications in the AWS Singapore data center for the public data-sharing appli-
cation. To make a fair cost comparison with the multi attribute-based replication
M, 12.29% and 0.54% of extra random replicas are added to the user-based (Su) and
topic-based (St) replications.

to meet the decreased latency SLO. A non-continuous replication system needs to

follow the red line to meet the decreased latency SLOs, resulting in bigger cost jumps

than a continuous replication system, which has smaller cost jumps since it can add as

many as needed extra random replicas as the latency SLO decreases. The area under

each line represents the sum of all cost under all latency SLOs; the blue area is the

sum of all cost of the continuous replication system and the (red+blue) area is the sum

of all cost of the non-continuous replication system. Our experiments with the public

data-sharing application workload show that the continuous replication system has

an average cost reduction of 40.62% over the non-continuous replication system. In

the same manner, the continuous replication system has an average latency reduction

of 35.00% over the non-continuous replication system under cost SLO constraints as

shown in Figure 41(b).

Overall, Acorn achieves up to 54.28% and 89.91% cost overhead reduction and

37.73% and 90.90% latency overhead reduction for the public and private data-sharing

applications over existing partial replication systems.
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Figure 41: (a) Cost reduction of the continuous replication system over the
non-continuous replication system under latency SLO constraints using the
public data-sharing application workload. Each of the blue and the red line represents
the cost of continuous and non-continuous replication system under latency SLOs.
Cost in the y-axis is plotted in the relative cost to the no-active replication system for
an easy comparison. UT, T, U, and Na at the top of the chart represent (user+topic)-
based, topic-based, user-based, and no-active replication, respectively. Each of the
blue dots represents a replication system by incrementally adding 5% of extra random
replicas from the base replication model. (b) Latency reduction of the continuous
replication system over the non-continuous replication system under cost
SLO constraints. Cost SLO in the x-axis is the relative cost to the no-active
replication system and plotted in logs scale to better show the replication models on
the left.

4.5 Summary

In this chapter, we have presented Acorn, a partial geo-replication system with bet-

ter and flexible cost-performance trade-offs. Acorn (a) makes better cost-performance

trade-offs for various application types by using the right object attributes when mak-

ing replication decisions and (b) supports fine-grained cost-performance trade-offs by

using extra replicas. Compared to user-based replication systems, we showed that

Acorn reduced up to 90% cost overhead and up to 91% latency overhead.
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CHAPTER V

RELATED WORK

The work in this thesis was inspired by a wide distribution of areas in the research

community. In this chapter, we discuss the main themes of the related work to cost-

configurable storage systems in database storage systems and geo-replication systems.

5.1 Cost-configurable Database Storage Systems

LSM Tree Databases: LSM trees, invented by O’Neil [89], have become an attrac-

tive data structure for database systems in the past decade owing to their high write

throughput and suitability for serving modern web workloads [33, 70, 54, 52, 106],

These databases organize SSTables, the building blocks of a table, using various

strategies that strike different read-write performance trade-offs: (a) size-tiered com-

paction used by BigTable, HBase, and Cassandra, (b) leveled compaction used by

Cassandra, LevelDB, and RocksDB, (c) time window compaction used by Cassan-

dra, and (d) universal compaction used by RocksDB [2, 51]. Mutant uses leveled

compaction for its small SSTable sizes, which allows SSTables to be organized across

different storage types with minimal changes to the underlying database. SSTable

sizes under leveled compaction are 64 MiB in RocksDB or 160 MiB in Cassandra by

default; with the other compaction strategies, there is no upper bound on how much

an SSTable can grow.

Optimizations to LSM tree databases include bLSM, which varies the exponential

fanout in the SSTable hierarchy to bound the number of seeks [100], Partitioned Ex-

ponential Files that exploits properties of HDD head schedulers [61], WiscKey that

separates keys from values to reduce write amplification [77], and work of Lim et
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al. that analyzes and optimizes the SSTable compaction parameters [72]. These op-

timizations are orthogonal to how Mutant organizes SSTables and can complement

our approach.

Multi-Storage, LSM Tree Databases: Several prior works use LSM tree databases

across multiple storages. Time-series databases such as LHAM [85] splits the data

at the the component (B+ tree) boundaries, storing lower level component in slower

and cheaper storages. RocksDB organizes SSTables by levels and store lower-level

SSTables in slower and cheaper storages [50]. Cassandra stores SSTables to storages

in a round-robin manner to guarantees even usage of storage devices [105].

In comparison, the cost-performance trade-offs of these approaches lack both con-

figurability and versatility. First, databases are deployed based on a static cost-

performance trade-off, independent of the database’s lifetime. Any modifications and

adjustments involve laborious data migration. Second, the trade-offs are limited in

options. Both with LHAM and RocksDB’s leveled SSTable organization, the data

is split in a coarse-grained manner. LHAM partitions data at the the component

(B+ tree) boundaries, leading to only a small number of components since the com-

ponents grow exponentially in size. Leveled SSTable organization, which partitions

data at the level boundaries, typically produces at most 4 to 5 levels. Cassandra’s

round-robin organization provides only one option, dividing SSTables evenly across

storages.

These multi-storage, LSM tree database storage systems share the same idea as

Mutant: separating data into different storages based on their cost-performance

characteristics. To the best of our knowledge, however, Mutant is the first to provide

a seamless cost-performance trade-off, by taking advantage of the internal LSM tree-

based database store layout, the data access locality from modern web workloads,

and the elastic cloud storage model.
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Hierarchical Storage Systems: The idea of separating working sets into storage

subsystems with different characteristics has been explored in various storage systems.

In block-storage systems, prominent work includes configurable RAID storage sys-

tems such as AutoRAID [113] that organize data into different RAID configurations

based on activity, and SSD-HDD hybrid block storage systems such as Hystor [34]

that identifies slow or semantically critical blocks and stores them on the faster SSD

medium. Work on BLOB (binary large object) storage systems include Facebook’s

binary separation of photos and videos into “hot” and “warm” storage, specifically

HayStack [23] and f4 [84], based on the object types and ages. The diverse cloud

storage options, including AWS S3 Standard, Infrequent access, and Glacier [1] and

Google Storage’s Regional, Nearline, and Coldline [3], can be used as building blocks

for hierarchical storage systems. In-memory database systems such as Siberia [47] and

Anti-caching [44] offload infrequently accessed records to secondary storage devices

in a transactionally safe manner, thus better utilizing memory for “hot” records.

5.2 Cost-configurable Geo-replication Systems

Partial geo-replication systems. Kadambi [64] builds a selective replication sys-

tem on top of Yahoo!’s PNUTS database and makes per-record replication decisions

based on access statistics. It is a natural approach for building partially replicated

social network applications where records are structured by users. SpanStore [115]

makes user-based replication decisions; however, the assumption that clients have the

knowledge of objects access set is unlikely to hold for the class of applications with

dynamic temporal and geometric access patterns. It combines multiple cloud service

providers to increase the geographic density, thus reducing cost as well as meeting

various SLA requirements. Pileus [104] and Tuba [18] select replicas based on clients’

consistency-based SLAs. Tuba builds on Pileus and automates system configura-

tions as data access patterns or latencies change. They make replication decisions
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based on the access statistics of tablets, which are horizontal partitions of tables as in

BigTable [33]. TailGate [109] reduces and flattens network traffic with selective and

delayed replications in social network applications. They use a friend graph and time

difference in data access patterns in different locations. Acorn makes replication

decisions using attributes of contents – “user” is an attribute just as other attributes

such as “topic” or combinations of attributes – which delivers lower cost and service

latency over static attribute based approaches. This generality enables Acorn to

work well with both public and private data-sharing applications. The distributed

design of Acorn enables each data center to make local replication decisions based

on its local view of the other data centers, unlike the central design of SpanStore’s

PM (placement manager) or Tuba’s CS (configuration service). Thus, there is no

need for a global manager or single point of failure.

Partial replication systems. These systems are smaller in scale than partial

geo-replication systems but share similar ideas. Wolfson [114] studies an adaptive

replication algorithm based on object access statistics in multiprocessor systems.

Bestavros [26] studies the speculative data push of web documents by monitoring

their inter-dependency. It is suitable for serving a set of static objects. Cimbiosys [96]

provides filtered replication of content on mobile devices through P2P synchroniza-

tion. Replication decisions are made by looking at file metadata and filtering rules

users specify. DARE [4] studies a distributed adaptive data replication in a Hadoop

cluster. Globus [36] studies replica location service in grid environments.

Database systems. Many RDBMSs and NoSQL databases provide master-slave

and master-master replications over multiple clusters but do not support dynamic

partial replications; Oracle database provides both master-master (multi-master) and

master-slave (materialized view) replications [90]. MySQL has master-slave model [86]

and MySQL Cluster provides multi-master replication [87]. Microsoft SQL Server

provides transactional and snapshot replication (master-slave) and merge replication
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(master-master) [79]. MongoDB and HBase provide only master-slave replications [83,

57]. Cassandra provides the flexibility that clients can effectively configure multi-data

center keyspace (database) by specifying the number of nodes in each data center [70],

however, the configuration is static and does not adapt to dynamic workload.

Stream processing systems and data center monitoring systems. Large-

scale real-time streaming systems, including Spark Streaming [119], Apache Storm [17],

or Apache Flume [16], and data center monitoring systems, such as Ganglia [78] and

Amazon CloudWatch [7], could be modified to monitor attribute popularity in data

centers. Acorn uses Cassandra’s counter to monitor attribute popularity, which fa-

vors scalability and low latency over strict accuracy. In our experiments, inaccuracy

in attribute monitoring was very rare, and even when it happens, clients needed only

a small number of additional object pulls.

5.3 Distributed Caching Systems

CDN systems are similar to partial geo-replication systems in that they make local

copies of popular, immutable objects by either statically or dynamically analyzing

the workload, and a lot of popularity monitoring and management ideas can be

borrowed from them. Borst [28] presents distributed lightweight cooperative algo-

rithms. Venkataramani [110] shows prefetching long-lived objects improves hit rates

with Zipfian-distributed workload. Chen [35] and Fujita [53] replicate objects with

a minimal management overhead by grouping them by their topology or popularity.

Push-based strategies have shown possibilities [66, 92]; for instance, Hulu can save a

lot of traffic by prefetching popular videos to proxies [68].

Acorn is different from CDN systems in the scale of deployment; Acorn is

deployed in “core” data centers, while CDN systems are deployed in “edge” data

centers, which are a lot bigger in numbers. It becomes inefficient to do a cooperative

metadata management (Acorn’s attribute popularity and location databases) as
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the overhead per data center grows linearly with the total number of data centers.

However, in a small scale deployment, CDN systems could borrow ideas from Acorn’s

proactive object replication.

Ager [5] reports caching user-generated content is economically infeasible due to

the long-tail distribution. Our workload analysis of the public and private data-

sharing applications agrees with it.

Facebook’s photo caching stack [58] confirms a low local data center cache hit

rate, 57.59%, which we calculated from the numbers in the paper. It is a common

system design to place partially replicated database systems fronted by caching sys-

tems; the former can be placed in hub regions providing authoritative data, while the

latter absorbs the load from clients at edge data centers. For instance, Netflix has a

Cassandra and Memcached combination [97].
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CHAPTER VI

CONCLUSION

In this chapter, we summarize the contributions of this thesis, the lessons we learned,

and discuss a variety of future directions.

6.1 Summary of Contributions

In this thesis, we have explored the designs for cost-configurable cloud storage

systems in 3 problem domains: LSM tree-based NoSQL database systems, edge cloud

caching systems, and geo-replication storage systems. To provide cost-configurability

in each of the system domains, we analyzed the workloads of the systems, abstracted

the workloads to the metrics that best-represent them, and designed systems that

re-balance the resource to meet the changing workload patterns and goals in real

time.

We identified the fundamental data placement problems in each system domain

and how the placement of data affects the cost and performance of the systems:

(a) cost of cloud NoSQL databases vs. data access latency, (b) cost of edge cloud

caching systems vs. cache hit rate and performance isolation level, and (c) cost

of geo-replication vs. data access latency. Then, we implemented the systems to

demonstrate the efficacy of our ideas and evaluated the systems with both real-world

and synthetic workloads.

Exploring the system designs was not without challenges. The challenges we faced

include (a) understanding how the state-of-the-art tools solve the problems in different

system domains, (b) identifying where the performance bottlenecks are and what

functionality lacks in each of the systems, (c) abstracting the problems in efficient

ways to design and implement the systems, (d) finding ways to seamlessly integrate
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the design into the existing systems, and (e) evaluating the systems extensively on

real cloud platforms to show the effectiveness and the limits of the systems.

We overcame the challenges with by (a) thoroughly analyzing how the existing

systems solve the problems, (b) measuring the performance with various metrics and

examining the functionality, (c) designing time and space efficient data structures

and algorithms to abstract the problem, (d) modular design and implementation

of the systems and exposing minimal API sets to existing systems and clients of

the systems, and (e) using both real world workloads and synthetic workloads that

best evaluate the systems. Collaboration was one of the key factors in the success

of the research. We continuously sought for collaboration opportunities and tried to

expand the collaboration network. Through industry collaboration, we obtained early

feedback, insight into real-world scenarios validating the problems and our solutions,

and realistic, representative workloads.

6.2 Lessons Learned

In this section, we present a summary of general lessons we leaned while working on

this thesis.

• The need for cost-configurable system design in cloud storage systems.

As modern cloud storage systems grow to Internet scale, the inflexibility in the

system cost has become a big problem. Without a system design that considers

cost-configurability as a first class citizen, companies would suffer from either a sig-

nificant amount of cost or a severe performance penalty that leads to a degradation

of user experience levels, thus eventually losing their customer base.

• New enablers for designing cost-configurable cloud storage systems. It

was once believed that providing fine-grained, seamless cost-performance trade-offs

is too expensive or complicated to design. First, there were (a) limited storage

device types and capacity and (b) limited geographic locations that the storage and
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computation is hosted. Second, designing such systems were too complicated be-

cause (a) the traditional storage block designs, such as those of MySIAM or InnoDB

or even using raw storage device volumes, were too coarse grained to support a fine-

grained cost-configurability and (b) optimizing storage resource utility across vari-

ous geographic locations took examining all storage allocation options exhaustively.

New enablers are emerging to make such cost-configurable storage design possible.

First, in the near future, edge cloud computing will allow companies to allocate

computation and storage resource in fine-grained geographic locations in a elastic

manner. Second, new system designs have emerged to allow fine-grained storage

block allocations and global resource usage optimizations. To manage modern big

data, many storage systems adopted fine-grained storage blocks that are managed

in a log-structured manner. Many tools such as calculating data reuse distances

have become popular allowing fast calculations on how much cache resource would

be allocated to get a specific level of performance.

6.3 Future Opportunities

In this section, we present a variety of next possible steps, both incremental and

larger efforts.

6.3.1 Cost-Performance Trade-Offs in NoSQL Database Systems

We have explored the cost-driven cost-performance trade-offs and cost-performance

trade-offs in SSTable granularity. Future work includes exploring:

• Data access latency-driven cost-performance trade-offs. The cost-performance trade-

offs can be driven by the data access latency as well as the database system cost.

However, latency-driven trade-offs, unlike the cost-driven trade-offs, have more chal-

lenges, which come from (a) the inherent unpredictability of the system noise level

in the shared cloud infrastructure platforms and (b) the feedback loop, which the

effort to adjust a latency level affects the latency itself.
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• Finer-grained cost-performance trade-offs. In addition to the proposed SSTable-

level data organization, database records can also be organized in record level. The

data access popularity of a small number of records in an SSTable can change

while the popularity of the others remain the same. Techniques such as record-

level caching or re-insertion of records to MemTable could be used to achieve such

fine-grained cost-performance trade-offs.

6.3.2 Cost-Performance Trade-Offs in Geo-Replication Systems

We have explored the cost-performance trade-offs in partial geo-replications systems.

Future work includes exploring:

• Fault-tolerance with partial geo-replications. One of the trade-offs with a reduced

replication cost is a lower level of fault tolerance. Thus, it would be exciting to

explore how likely it is to loose a data object with a lower number of replicas and

looking at the possible solutions to mitigate the risks.

• Offloading unpopular objects. Modern web workloads exhibit highly skewed data

access patterns, thus a majority of the object are rarely accessed. As well as reduc-

ing the number of replicas, one could explore offloading the object to cold storage

such as Amazon Glacier or Google Cloud Coldline storage and look at the trade-offs

between the reduced cost and the increased data access latency.

• Partial replication under client-defined constraints. Many businesses have geo-

graphic restrictions on where their data is stored. For example, most of government

data and medical data require a stronger security and privacy level and is stored

in a limited set of data centers, and some company data has restrictions on the

countries it can be stored. These restrictions make the cost-performance trade-offs

in partial geo-replication more challenging and exciting.
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6.3.3 Cost-Performance Trade-Offs in Edge Cloud Caching Systems

We have explored the cost-performance trade-offs in edge cloud caching systems.

Future work includes exploring:

• Reducing cold cache misses when resizing the cache cluster. Clients get a lot of cold

cache misses when a cache cluster is resized due to the re-balancing of the keyspace

ranges each cache node is responsible for. One can explore ways of keeping the

cache items when a cache cluster is resized. When a cache cluster is expanding,

the cache items that used to belong to old cache nodes can be incrementally moved

to new cache nodes. When a cache cluster is shrinking, one can keep the most

frequently-accessed cache items from the to-be-decommissioned cache nodes while

evicting the less frequently accessed cache items in the to-be-kept cache nodes.

• Balancing the loads among cache nodes. Consistent hashing is almost universally

used in distributed systems for the minimal data movement when resizing storage

clusters. However, there is an inevitable load imbalance among the cache nodes

regardless of the number of virtual nodes in the cluster. It would be exciting to

explore different hashing algorithms and the trade-offs such as their performance,

computation resource requirements, and scalability.
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