
CUTTING PLANES FOR LARGE MIXED INTEGER
PROGRAMMING MODELS

A Thesis
Presented to

The Academic Faculty

by

Marcos G. Goycoolea

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Industrial and Systems Engineering in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2006

CUTTING PLANES FOR LARGE MIXED INTEGER
PROGRAMMING MODELS

Approved by:

William J. Cook, Adviser
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Robin Thomas
Department of Mathematics
Georgia Institute of Technology

George L. Nemhauser
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Zonghao Gu
Ilog, Inc.

Ellis L. Johnson
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: November 9, 2006

ACKNOWLEDGEMENTS

The author was supported in part by ONR Grant N00014-03-1-0040, by NSF Grant DMI-

0245609, and by the Presidential and Goizueta Fellowships of Georgia Tech.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

I INTRODUCION . 1

1.1 Overview . 1

1.2 The traveling salesman problem (TSP) 3

1.3 The mixed integer knapsack problem (MIKP) 5

1.4 The mixed integer rounding (MIR) cut 7

II A NEW CLASS OF VALID INEQUALITIES FOR THE TRAVELING SALES-
MAN PROBLEM . 11

2.1 Introduction . 11

2.2 Background: classes of TSP inequalities 13

2.2.1 The bipartition, clique-tree, and comb inequalities 13

2.2.2 The star inequalities . 14

2.2.3 The domino-parity inequalities . 15

2.3 The generalized domino-parity (GDP) inequalities 16

2.3.1 Multi-dominoes . 16

2.3.2 Defining the GDP inequalities . 18

2.3.3 Stars and bipartitions are GDP inequalities 20

2.4 Properties of violated GDP inequalities 23

2.4.1 A characterization of violated GDP inequalities 23

2.4.2 Planar duality and violated GDP inequalities 25

2.5 Separating GDP inequalities in planar graphs 32

2.5.1 Step 1: Generating a set of candidate teeth 33

iv

2.5.2 Step 2: Putting it all together . 34

2.6 Final remarks . 41

III MIXED INTEGER KNAPSACK PROBLEMS 44

3.1 Introduction . 44

3.1.1 Background . 45

3.1.2 About this chapter: Motivation and contribution 48

3.2 Infeasible, unbounded, and trivial instances of MIKP 49

3.3 Preprocessing an instance of MIKP . 55

3.4 Solving the LP relaxation of PP-MIKP 58

3.4.1 Characterizing optimality . 59

3.4.2 The phase I algorithm . 62

3.4.3 The primal phase II algorithm . 62

3.4.4 The dual phase II algorithm . 64

3.5 A branch and bound algorithm for MIKP 64

3.5.1 Variable branching . 64

3.5.2 Reduced cost bound improvements 67

3.6 Domination, branch and bound, and MIKP 71

3.6.1 Cost-Domination . 71

3.6.2 Lexicographic-Domination . 74

3.6.3 Domination tuples: Important properties 76

3.6.4 An improved branch and bound algorithm: Using domination . . 81

3.6.5 Examples: Using domination tables 85

3.6.6 Building a domination table . 87

3.7 Computational results . 88

3.8 Domination and general integer programming 97

3.8.1 Integral generating sets, integer programming, and domination . . 97

3.8.2 The KBB algorithm and domination branching 99

3.8.3 Final remarks . 100

IV THE MIXED INTEGER ROUNDING CUT 102

4.1 Introduction . 102

v

4.1.1 Background . 103

4.1.2 In this chapter . 105

4.2 A simple inequality system . 105

4.3 The MIR inequality . 107

4.4 The complemented-MIR (c-MIR) inequality 108

4.5 Making use of the MIR inequalities . 109

4.5.1 Before generating any cuts . 109

4.5.2 Generating cuts . 114

4.5.3 After generating cuts . 120

4.6 Group cuts, knapsack cuts, and the MIR 121

4.6.1 Group cuts and the MIR . 121

4.6.2 Knapsack cuts and the MIR . 125

4.7 Computations . 129

4.7.1 Tableau rows . 130

4.7.2 Formulation rows . 142

4.7.3 Knapsack cuts . 146

REFERENCES . 152

VITA . 159

vi

LIST OF TABLES

3.1 Comparing KBB and CPLEX: Summary . 91

3.2 Using CPLEX with the KBB pre-processor: Summary 92

3.3 Comparing different diving strategies: Summary 93

3.4 Using the optimal solution as an upper bound: Summary 94

3.5 The importance of reduced-cost bound improvements: Summary 95

4.1 Tableau-MIRs: Settings of separation algorithm. 130

4.2 Effect of integer scaling on tableau-MIRs after ten rounds. 138

4.3 Formulation-MIRs: Settings of separation algorithm. 142

4.4 Effect of delayed MIRs on tableau rows and results of Dash and Günluk. . 147

4.5 Instances for which there were no violated delayed tableau-MIRs. 150

vii

LIST OF FIGURES

2.1 Example of a bipartition constraint on three handles. 14

2.2 A two-parity constraint represented in Ḡ∗ 27

2.3 Representation of a domino in G∗ and Ḡ∗ . 32

3.1 Comparing KBB and CPLEX: Histogram 91

3.2 Using CPLEX with the KBB pre-processor: Histogram 92

3.3 Comparing different diving strategies: Histogram 94

3.4 Using the optimal solution as an upper bound: Histogram 95

3.5 The importance of reduced-cost bound improvements: Histogram 96

4.1 A simple mixed integer set . 106

4.2 Convergence of tableau-MIRs after eight rounds. 131

4.3 Effect of using exact arithmetic in order to generate safe tableau-MIRs (1st
round). 132

4.4 Effect of using exact arithmetic in order to generate safe tableau-MIRs (10th
round). 133

4.5 Form of the tableau-MIR: Round 1. 134

4.6 Form of the tableau-MIR: Round 10. 135

4.7 Effectiveness of tableau-MIRs with and without cut elimination. 135

4.8 Effect of integer scaling on tableau-MIRs after one round. 136

4.9 Effect of integer scaling on tableau-MIRs after ten rounds. 137

4.10 The effect of variable complementation on tableau-MIRs after one round. . 139

4.11 The effect of variable complementation on tableau-MIRs after ten rounds. . 139

4.12 The effect of selecting a subset of tableau-MIRs after one round 140

4.13 The effect of selecting a subset of tableau-MIRs after ten rounds 141

4.14 Convergence of formulation-MIRs: First and final rounds. 143

4.15 The effect of variable complementation on formulation-MIRs after one round. 144

viii

4.16 The effect of variable complementation on formulation-MIRs after the final
round. 144

4.17 The effect of coefficient-scaling on formulation-MIRs after the first round. . 145

4.18 The effect of coefficient-scaling on formulation-MIRs after the final round. 146

ix

CHAPTER 1

Introducion

1.1 Overview

In this thesis I focus on cutting planes for large Mixed Integer Programs (MIPs) in the con-

text of Branch and Cut algorithms. More specifically, I describe two independent cutting-

plane studies. The first of these deals with cutting planes for the Traveling Salesman

Problem (TSP), the second with cutting planes for general Mixed Integer Programming.

In the first chapter of this thesis, where I describe my work concerning the TSP, I intro-

duce a new family of constraints called the Generalized Domino-Parity (GDP) Inequalities.

I present the following results for this class of inequalities:

• The class of GDP inequalities is valid for the Traveling Salesman Problem and Graph-

ical Traveling Salesman Problem.

• The class of GDP inequalities generalizes most of the well-known TSP inequalities; in-

cluding combs, domino-parity constraints, clique-trees, bipartitions, paths, and stars.

• A sub-class of the GDP inequalities which contains all clique-trees (having a fixed

number of handles) can be separated exactly, in polynomial time, on planar graphs.

In the second chapter of this thesis I describe work concerning an efficient algorithm for

the Mixed Integer Knapsack Problem (MIKP). Studying the MIKP is an important first

1

step in being able to derive valid inequalities for Mixed Integer Programming Problems

consisting of a single row. More precisely,

• I present a specialized simplex-based algorithm for solving the linear programming

relaxation of the mixed integer knapsack problem. This algorithm is combined with

a pre-processing algorithm which can quickly detect unbounded or infeasible problem

instances, and is able to reduce problem size by means of variable aggregation and

variable elimination techniques.

• I discuss how to implement an effective branch and bound algorithm for solving in-

stances of MIKP. The main feature of this algorithm is that it exploits cost and

lexicographic dominance in order to significantly improve solution times. I present

computational tests showing the effectiveness of the proposed branch-and-bound al-

gorithm, and show that this algorithm outperforms the commercial mixed integer

programming solver CPLEX. While it is not surprising that a problem-specific algo-

rithm such as the one proposed should outperform a general-use optimization software,

it is important to note that only alternative for solving this type of problem is mixed

integer programming.

• I discuss how the domination-based methodology can be extended to general integer

programming problems.

In the third chapter of this thesis I initiate a study of cutting planes for general MIPs.

The long term goal of this study is to better understand cutting planes derived from single-

row relaxations, and relaxations consisting of two or a few rows. The part of this study

which I discuss in this thesis pertains to single row systems, and specifically focuses much

on the well-known Mixed Integer Rounding (MIR) Inequalities. More specifically, I address

the following issues:

• How best to implement a Mixed Integer Rounding cut separation algorithm. Here I

study how best to set certain parameters and how to deal with issues arising from

numerical stability.

2

• I address a question raised by Sanjeeb Dash and Oktay Günluk [40]. This question

concerns the difficulty of finding cutting planes derived from single-row relaxations

which outperform the MIR inequality in practice. In order to answer this question

an algorithm is proposed which requires the use of the MIKP solver presented in the

second chapter.

1.2 The traveling salesman problem (TSP)

Let G = (V, E) be a complete graph with edge costs (ce : e ∈ E). The symmetric travel-

ing salesman problem, or TSP, consists in finding a minimum-cost simple cycle (or tour)

traversing all nodes of G. In the Dantzig, Fulkerson, and Johnson [37] cutting-plane method

for the TSP, an integer programming model of the problem is defined using 0-1 variables

xe indicating if edge e is to be used in the optimal tour or not. By solving the Linear

Programming (LP) relaxation of this formulation, and iteratively finding linear inequalities

(or cutting planes) which were satisfied by all tour variables, Dantzig, Fulkerson and John-

son were able to solve a problems with 49 nodes. Considering the limited computational

resources of the time, this was quite an achievement, and to date, this approach remains

the most successful exact solution procedure for solving the TSP (see Jünger, Reinelt, and

Rinaldi [70] and Naddef [84] for surveys of the broad literature on this approach).

The key step to the Dantzig, Fulkerson, and Johnson approach lies in being able to

efficiently identify violated inequalities which are valid for the TSP. This step is often called

separation. Much of the TSP literature is devoted to the study of classes of inequalities that

are valid for the TSP, and which can be separated efficiently. Unfortunately, aside from

the well-known subtour elimination constraints and the separation algorithm of blossom-

inequalities (due to Padberg and Rao [91]), polynomial-time separation algorithms for tsp

inequalities have proven to be elusive.

Besides the subtour elimination inequalities, perhaps the two best-known classes of

constraints for the TSP are combs and clique-trees (see Chvátal [31], Grötschel and Pad-

berg [65], and Grötschel and Pulleyblank [66]). The absence of efficient separation algo-

rithms for these classes of inequalities has lead to the use of various heuristic methods

3

for handling them within cutting-plane algorithms. These heuristics are effective in many

cases (see Padberg and Rinaldi [92], Applegate et al. [7], and Naddef and Thienel [86]), but

additional exact methods could be critical in pushing TSP codes on to larger test instances.

An interesting new approach to TSP separation problems was adopted by Letchford [73],

building on earlier work of Fleischer and Tardos [50]. Given an LP solution vector x∗, the

support graph G∗ is the sub-graph of G induced by the edge-set E∗ = {e ∈ E : x∗
e > 0}.

Letchford [73] introduced a new class of TSP inequalities which generalizes combs, called

domino-parity constraints, and provided a separation algorithm in the case where G∗ is a

planar graph.

Letchford’s results are very interesting for several reasons:

• It is a long-standing open question whether or not comb inequalities can be separated

in polynomial time. While Letchford’s result does not resolve this issue, it may be an

important first step in that direction.

• An initial computational study of this algorithm by Boyd et al. [28], combining a

computer implementation with by-hand computations, showed that the method can

produce strong cutting planes for instances with up to 1,000 nodes. Cook, Espinoza,

and Goycoolea [34] further studied Letchford’s algorithm, presenting a range of pro-

cedures for improving its practical performance, and showed that it was very effective

for solving instances with up to 30,000 nodes. In fact, by using the domino-parity

cutting planes, they managed to solve two of the three remaining unsolved TSPLIB

instances.

• Restricting the separation of comb inequalities to the case in which the support graph

is planar is very practical for computation. While it is usually not the case (see

Cook, Espinoza, and Goycoolea [34]) that the support graph G∗ is planar, the graph

G∗ tends to be very sparse, and very “planar-like”. Both reported implementations

of Domino-Parity inequalities exploit this by using a procedure, which, given an LP

solution vector x∗, “approximates” it by a vector x∗∗ such that G∗∗ is planar, and then

proceeds to separate the point x∗∗. This approximation scheme, usually performed

4

by doing edge-contractions and edge-deletions, turns out to be remarkably effective.

Furthermore, Cook, Espinoza, and Goycoolea [34] show that under certain conditions

this approximation can be done “safely”, i.e., in such a way as to guarantee that there

is a violated inequality for x∗∗ if and only if there is such an inequality for x∗. It would

be interesting to see how this procedure of approximating the point to be separated

could be applied to other integer programming applications.

• By generalizing comb inequalities to the class of Domino-Parity constraints, Letchford

showed that behind comb inequalities, there is a much richer combinatorial structure.

When Letchford’s result first appeared, however, there was some concern that the

class of Domino-Parity constraints might not be of much interest as a super-class of

combs, as it may contain many weak valid inequalities. However, a recent result by

Naddef [87] showed that under very generous conditions, Domino-Parity constraints

are facet-defining.

In this work I present an extension to the work of Letchford, by introducing a new class

of inequalities called the Generalized Domino Parity (GDP) constraints. Just as Domino-

Parity constraints generalize comb-inequalities, I show that GDP constraints generalize the

most well-known multiple-handled constraints, including clique-tree, bipartition, path, and

star inequalities. Furthermore, I show that a sub-set of GDP constraints containing all of

the clique-tree inequalities can be separated in polynomial time, provided that the support

graph G∗ is planar, and provided that we restrict the number of handles to a fixed, maximum

size h.

1.3 The mixed integer knapsack problem (MIKP)

Consider a positive integer n. For each k ∈ {1, . . . , n} let ak, ck ∈ Q, lk,∈ Q ∪ {−∞},

and uk ∈ Q ∪ {+∞}. Let b ∈ Q, and consider I ⊆ {1, . . . , n}. The following problem will

henceforth be referred to as the Mixed Integer Knapsack Problem (MIKP) :

5

(MIKP) max
n∑

k=1
ckxk

s.t.,
n∑

k=1
akxk ≤ b

lk ≤ xk ≤ uk, ∀k = 1, . . . , n

xk ∈ Z, ∀k ∈ I

In Chapter 3 I present an algorithm for solving MIKP, that is, an algorithm which

either (a) proves MIKP is infeasible, (b) proves MIKP is unbounded, or (c) finds an optimal

solution to MIKP.

There are many variants of the MIKP which have been studied in the literature. In these

it is traditionally assumed that all objective function coefficients, all constraint coefficients,

and all variables must take integer and non-negative values. In addition:

• In the Knapsack Problem (KP), li = 0 and ui = 1 for all i ∈ 1, . . . , n.

• In the Bounded Knapsack Problem (BKP), li = 0 and ui < +∞ for all i ∈ 1, . . . , n.

• In the Unbounded Knapsack Problem (UKP), li = 0 and ui = +∞ for all i ∈ 1, . . . , n.

For a complete survey of these problems, as well as an up-to-date account of the most

effective solution methodologies, the books by Kellerer, Pferschy, and Pisinger [72], and

Martello and Toth [80] provide an excellent source of material.

Most modern algorithms for solving KP, BKP, and UKP are based either on branch-and-

bound (following the work of Horowitz and Sahni [67]) or dynamic programming (following

the work of Bellman [20]). However, the most efficient codes seldom make explicit use of

Linear Programming. Further, I am not aware of any research having been conducted on

mixed-integer variants of the knapsack problem, or variants of the knapsack problem in

which some, but not all, of the variables are allowed to be unbounded as occurs in MIKP.

In Chapter 3 I present an LP-based branch-and-bound algorithm for MIKP. Solving

MIKP is fundamentally different than solving KP, BKP, and UKP, given that (1) it is not

clear how continuous variables should be introduced in the current solution methodologies

6

for KP, BKP, and UKP, and (2) MIKP works simultaneously with both bounded and

unbounded variables.

The methodology that I propose is a linear-programming-based algorithm which ex-

ploits dominance conditions. One interesting aspect of this approach is that it differs from

traditional linear-programming based algorithms by allowing feasible solutions to be pruned

during the branching phase. The idea is that feasible solutions will only be pruned if ei-

ther (a) they are not optimal (cost-domination-criteria), or (b) if they are optimal, but

somewhere else in the tree it is known that there is another optimal solution (lexicographic-

domination-criteria).

As I will show, the proposed algorithm performs quite well in practice, outperforming

the general-use mixed integer programming solver CPLEX. While it is not surprising that

a problem-specific algorithm such as the one proposed should outperform a general-use op-

timization software, it is important to note that only alternative for solving this type of

problem is mixed integer programming. Notwithstanding, it seems clear from the compu-

tational study that the success of the algorithm is mostly due to the way domination is

exploited. And this use of domination seems something that is actually not so problem-

specific, but rather, something that can be applied to general mixed integer programming

problems. Because of this success, a final section is included in this chapter where the main

ideas behind the domination methodology are generalized. It would be interesting if the

methodologies employed for this problem could effectively be implemented so as to improve

the performance of general integer programming branch and bound algorithms.

1.4 The mixed integer rounding (MIR) cut

Consider b ∈ R, a, c ∈ Rn and l, u ∈ Rn ∪ {+∞,−∞}. Let n1, n2 be integers such that

n = n1 + n2, and consider:

Q = {x ∈ Zn1 × Rn2 : ax ≤ b, l ≤ x ≤ u}.

Deriving strong valid inequalities for Q is of great practical importance to Mixed Integer

Programming. This is because valid inequalities for single inequality systems such as Q can

7

be used as cutting-planes for multiple-row systems. In fact, let A ∈ Rm×n and consider

P = {x ∈ Zn1 × Rn2 : Ax ≤ b, l ≤ x ≤ u}.

If we assume that a is a conic combination of rows obtained from A we have P ⊆ Q. Hence,

any inequality which is valid for Q will be valid for P .

Say that any valid inequality derived from a single row system is a knapsack cut. To

date, the most successful cutting planes used for general mixed integer programming are all

knapsack cuts. In fact, the Gomory Mixed Integer cut, and the Knapsack Cover inequal-

ities are both classes of knapsack cuts. For a detailed study of the importance of these

inequalities, see Bixby, Gu, Rothberg and Wunderling [24].

For the purposes of this thesis we will study the Gomory Mixed Integer cut as a member

of a slightly broader class of inequalities known as the Mixed Integer Rounding (MIR)

Inequalities. What is remarkable is that there exists a very simple “template” which can

be used to derive an MIR from any single valid inequality of an MIP. When derived from

the “correct” valid inequality, the MIR can be tremendously effective.

A fundamental question concerning MIR cuts is the following: What other inequalities

derived from single valid inequalities are there? If the MIR is so effective, is there perhaps

another class of inequalities which can easily be derived from single valid inequalities which

is comparable?

Various researchers have tried to address these questions. Two important directions are

as follows: The first direction starts from the observation that MIR inequalities are facets

of the master cyclic group polyhedron (see Gomory and Johnson, [59], [60]). The work of

Aaroz, Evans, Gomory and Johnson [9], Gomory, Johnson, and Evans [61], Dash and Günluk

[42], [41], Dash, Goycoolea, and Günluk [38], and Fischetti and Saturni [49] attempt, both

theoretically and computationally, to derive other facets of the cyclic group polyhedron. The

second direction starts from the observation that MIR inequalities can be derived by lifting

simpler systems with less variables. The work of Atamtürk [10], [11], Atamtürk and Rajan

[12], Agra and Constantino [2], and Richard, de Farias, and Nemhauser [99] are examples

which follow this approach. Though many new families of cuts have been derived through

8

these approaches, and much insight has been gained regarding the underlying structure

of mixed integer cuts, little success has been achieved in being able to improve upon the

performance of the MIR computationally.

Define as a group cut any valid inequality of the master cyclic group polyhedron. Re-

cently, Dash and Günluk [40] made a startling computational observation: Observing that

MIRs were the only group cuts to consistently yield positive results in separation algorithms,

they devised an experiment which after adding MIR inequalities derived from tableau rows

of a problem, tested if any other group cuts derived from those same tableau rows could

possibly be violated. After performing this experiment on a very large set of MIP instances,

they found that in a significant number of them, a notable 35% of the problems, no group

cuts were violated in any of the tableau rows after the MIRs were added. This experiment,

of course, would largely explain many of the unsuccessful attempts at adding additional

classes of cuts.

For the second part of my thesis work I will begin a further exploration of this phe-

nomenon by means of computational tests. For this, I focus on two main steps:

• Implementation of an MIR inequality separation tool

The MIR inequality, as described in the literature, is not effective if used “as-is”.

Many techniques need to be used to obtain an effective implementation. Some of

these techniques include: Scaling, bound complementation, using integrality of artifi-

cial variables, relaxing cut coefficients to increase numerical stability, etc. In Chapter

4 I present a computational section outlining the relative importance of different im-

plementation features for separating MIR inequalities. An important part of working

with MIR inequalities consists in effectively dealing with issues arising from numeri-

cal instability. These issues – if not properly dealt with – can very often lead to the

generation of inequalities which are invalid. An extended discussion on this issue is

also included, and some computational results illustrating the effectiveness of “safely”

generated MIR inequalities are presented.

• An Empirical follow up of Dash and Günluk’s observation

9

In Chapter 4 I also follow up on Dash and Günluk’s observation by conducting an

extended version of their experiment. The set-up is as follows: I solve each LP to

optimality, save a copy of the tableau rows, add the GMI inequalities, and resolve.

Then, instead of checking if there are any violated group-relaxation cuts, I check

if there are any violated knapsack cuts. Furthermore, I do these tests both with

finite and rational arithmetic. In order to do this separation I use the mixed integer

knapsack solver developed in Chapter 3. The methodology follows the frameworks of

Boyd [25] for Fenchel cut separation and of Applegate, Bixby, Chvátal and Cook [8]

for Local Cut separation. Formally, let x∗ correspond to the current fractional LP

solution. Let X = {x1, . . . , xk} represent the extreme-point solutions of Q, and let

R = {r1, . . . , rq} represent the extreme-rays of Q. Then, there exists no cutting plane

separating x∗ if and only if there exists λ ∈ Rk and α ∈ Rq such that,

k∑
i=1

λi = 1

k∑
i=1

λixi +
q∑

j=1
αjrj = x∗

αi ≥ 0

Thus, the problem of testing separability reduces to determining if an LP is feasible

or not. This problem is tackled with column generation, and using the mixed integer

knapsack solver as a pricing oracle.

10

CHAPTER 2

A new class of valid inequalities for

the traveling salesman problem

2.1 Introduction

Let G = (V, E) be a complete graph with edge costs (ce : e ∈ E). If we identity each

node in V with a “city”, and each edge cost ce with the “distance” or “cost” associated

to traveling between a pair of cities, the symmetric traveling salesman problem, or TSP,

consists in finding a minimum-cost tour by which to visit every city in G exactly once, and

return back to the starting point. Formally, this problem can be restated as that of finding

a minimum-cost Hamilton tour in G.

In the Dantzig, Fulkerson, and Johnson [37] cutting-plane method for the TSP, an integer

programming model of the problem is defined using 0-1 variables xe indicating if edge e is

to be used in the optimal tour or not. By solving the Linear Programming (LP) relaxation

of this formulation, and iteratively finding linear inequalities (or cutting planes) which were

satisfied by all tour variables, Dantzig, Fulkerson and Johnson were able to solve a problem

with 49 nodes which consisted in visiting all of the state capitals in the US. Considering the

limited computational resources of the time, this was quite an achievement, and to date,

this approach remains the most successful exact solution procedure for solving the TSP (see

Jünger, Reinelt, and Rinaldi [70] and Naddef [84] for surveys of the broad literature on this

11

approach).

Rather than trying to identify just any linear inequality violated by the LP relaxation,

the method of Dantzig, Fulkerson, and Johnson actually focuses on identifying specific

classes of inequalities, and the separation is combined with a branch-and-bound scheme

in order to effectively finish solving the problem. Several important classes of inequalities

have been studied in the literature, the most important of which are the subtour elimination

constraints.

For any S ⊆ V , let δ(S) denote the set of edges with exactly one end in S and let E(S)

denote the set of edges having both ends in S. For disjoint sets S, T ⊆ V , let E(S : T)

denote the set of edges having one end in S and one end in T . For any set F ⊆ E, define

x(F) :=
∑

(xe : e ∈ F).

The subtour elimination constraints can formally be stated as follows:

x(δ(S)) ≥ 2 ∀ ∅ += S ! V. (2.1)

An important property of these constraints is that the corresponding separation problem

can be solved efficiently, that is, given a non-negative vector x∗ a violated constraint can

be found in polynomial time, provided one exists.

Many classes of inequalities that are valid for the TSP have been proposed which ex-

tend the subtour elimination constraints in different ways. However, for the most part

polynomial-time separation algorithms have proven to be elusive.

The absence of other efficient separation algorithms has lead to the use of various heuris-

tic methods for handling TSP inequalities within cutting-plane algorithms. The heuristics

are effective in many cases (see Padberg and Rinaldi [92], Applegate, Bixby, Chvátal and

Cook [7], and Naddef and Thienel [85], [86]), but additional exact methods could be critical

in pushing TSP codes on to larger test instances.

An interesting new approach to TSP separation problems was adopted by Letchford [73],

building on earlier work of Fleischer and Tardos [50]. Given an LP solution vector x∗, the

support graph G∗ is the subgraph of G induced by the edge set E∗ = {e ∈ E : x∗
e > 0}.

Letchford [73] introduced a new class of TSP inequalities, called domino-parity constraints,

12

and provided a separation algorithm in the case where G∗ is a planar graph. An initial com-

putational study of this algorithm by Boyd, Cockburn, and Vela [28], combining a computer

implementation with by-hand computations, showed that the method can produce strong

cutting planes for instances with up to 1,000 nodes. Cook, Espinoza, and Goycoolea [34] au-

tomated the methodology and extended it with heuristics and ad-hoc bounds. A computer

implementation which used these techniques together with Concorde [7] had tremendous

success, solving two previously unsolved instances of the TSP obtained from TSPLIB [98].

In this chapter we present a generalization of Letchford’s results. We begin in Section

2.2 by describing in detail the classes of comb, clique-tree, bipartition, star, and domino-

parity inequalities. We proceed, in Section 2.3, to define a new class of inequalities for the

TSP which we call the generalized domino-parity (GDP) constraints, and show that these

generalize all the afore-mentioned inequalities. In Section 2.4 we prove that violated GDP

constraints may be characterized much in the same way as Letchford [73] characterizes

violated domino-parity constraints. In Section 2.5 we use this characterization to give a

polynomial time algorithm which, for any fixed h, separates a super-class of clique-tree

inequalities.

2.2 Background: classes of TSP inequalities

2.2.1 The bipartition, clique-tree, and comb inequalities

Consider the families H = {H1, . . . , Hh} and T = {T 1, . . . , T t}, where, ∅ ! H i ! V for

i = 1, . . . , h and ∅ ! T j ! V for j = 1, . . . , t. Assume that,

1. H i ∩ Hj = ∅ for 1 ≤ i < j ≤ h,

2. T i ∩ T j = ∅ for 1 ≤ i < j ≤ t,

3. T j \ H i += ∅ for 1 ≤ i ≤ h, 1 ≤ j ≤ t.

We will say that every set H ∈ H is a handle, and every set T ∈ T is a tooth.

For every j = 1, . . . , t define tj = |{i ∈ 1, . . . , h : T j ∩ H i += ∅}|, and assume tj ≥ 1. If

T j \
⋃
{H i : i = 1, . . . , h} is non-empty, define βj = 1, else define βj = tj/(tj −1). For every

i = 1, . . . , h define hi = |{j ∈ 1, . . . , t : H i ∩ T j += ∅}|, and assume hi is odd.

13

Boyd and Cunningham [27] proved that the following constraint, known as the bipartition

inequality, is valid for the TSP:

h∑

i=1

x(δ(H i)) +
t∑

j=1

βjx(δ(T j)) ≥ h +
h∑

i=1

hi + 2
t∑

j=1

βj . (2.2)

Define a graph whose node-set is the union of H and T . Define an edge between H i

and T j in this graph if H i ∩ T j += ∅. This graph is called the intersection graph defined by

H and T . Note that an intersection graph is always bipartite. If every tooth in T j ∈ T is

such that βj = 1, and in addition, the intersection graph defined by H and T is a tree, it is

easy to see that (2.2) is equivalent to,

h∑

i=1

x(δ(H i)) +
t∑

j=1

x(δ(T j)) ≥ 2h + 3t − 1. (2.3)

This constraint, introduced by Grötschel and Pulleyblank [66], is known as a clique-tree

inequality. A clique-tree inequality having a single handle is known as a comb inequality

(see Chvátal [31], and Grötschel and Padberg [65]).

In Figure 2.1 we illustrate a bipartition constraint with three handles and ten non-

degenerate teeth. This constraint has the form,

3∑

i=1

x(δ(Hi)) +
10∑

j=1

x(δ(Tj)) ≥ 44.

H1 H2

H3

Figure 2.1: Example of a bipartition constraint on three handles.

2.2.2 The star inequalities

As before, consider the collections H = {H1, . . . , Hh} and T = {T 1, . . . , T t}, where, ∅ !

H i ! V for i = 1, . . . , h and ∅ ! T j ! V for j = 1, . . . , t. Now, assume:

14

1. H1 ⊂ H2 ⊂ . . . ⊂ Hh,

2. T j ∩ T k = ∅ ∀1 ≤ j < k ≤ t,

3. H1 ∩ T j += ∅ for 1 ≤ j ≤ t,

4. T j \ Hh += ∅ for 1 ≤ j ≤ t,

5. (H i+1 \ H i) \
⋃t

j=1 T j = ∅ for 1 ≤ i ≤ h − 1.

We say that Î = {l, l + 1, . . . , l + r} ⊆ {1, . . . , h} is an interval corresponding to tooth Tj if

(i) H i ∩ T j = Hk ∩ T j for all i, k ∈ Î and if (ii) H i ∩ T j += Hk ∩ T j for all i ∈ Î , k /∈ Î; that

is, if Î is a maximal index set of (successive) handles which have the same intersection with

T j . Consider α ∈ Nh, and γ ∈ Nt. Assume that H and T satisfy the interval property with

regards to α and γ; that is, assume that for each 1 ≤ j ≤ t, and each interval Î of T j , we

have γj ≥
∑

i∈Î αi. The following constraint, known as a star inequality (see Fleischmann

[51]), is valid for the TSP:

h∑

i=1

αix(δ(H i)) +
t∑

j=1

γjx(δ(T j)) ≥ (t + 1)
h∑

i=1

αi + 2
t∑

j=1

γj . (2.4)

2.2.3 The domino-parity inequalities

A domino is a pair {T1, T} such that ∅ ! T1 ! T ! V . Let r be a positive integer and

suppose that E1, . . . , Er are edge sets, i.e., Ej ⊆ E for j = 1, . . . , r. For each e ∈ E, define

µe = |{j ∈ {1, . . . , r} : e ∈ Ej}|. That is, µe denotes the number of edge sets in which e

appears. Let H ! V . Sets E1, . . . , Er are said to support the cut δ(H) if δ(H) = {e ∈ E : µe

is odd}. Observe that if E1, . . . , Er supports the cut δ(H) and x corresponds to a tour ,

then
∑

e∈E µexe is even valued. In fact,
∑

e∈E µexe = x(δ(H)) +
∑

e∈δ(H) xe(µe − 1) +
∑

e∈E\δ(H) µexe, and every term on the right is even-valued. Thus, the support of a cut is

a kind of generalization of a cut.

Let p be a positive odd integer, and consider T , a collection of p dominoes. Let H ⊆ V .

Suppose that F ⊆ E, together with the sets {E(T1 : T \T1)}{T1,T}∈T , supports the cut δ(H)

and define µH
e accordingly. The following constraint, known as the domino-parity inequality

(see Letchford [73]) is valid for the TSP:

∑

e∈E

µH
e xe +

∑

{T1,T}∈T

x(δ(T)) ≥ 3p + 1. (2.5)

15

It is easy to see that domino-parity constraints generalize comb inequalities. In fact, let

T define the teeth of a comb inequality, and let H be its handle. For every T ∈ T define a

domino {T ∩H, T}. It is not difficult to verify that these dominoes, together with H, define

a domino-parity inequality (see Letchford [73]).

2.3 The generalized domino-parity (GDP) inequalities

In this section, we construct a generalization of the domino-parity inequalities and show

that this generalized class of constraints strictly contains bipartition and star inequalities,

much in the same way as domino-parity inequalities contain comb inequalities.

2.3.1 Multi-dominoes

Consider a non-negative integer k and a family of node sets T̂ = {T1, T2, . . . , Tk, T} such

that ∅ += Ti ! T ! V, ∀i = 1, . . . , k. We say that this family defines a multi-domino if

for any set ∅ += K ⊆ {1, . . . , k}, the edges
⋃
{E(Ti : T \ Ti) : i ∈ K} define a |K| + 1 (or

greater) cut in the subgraph of the complete graph G induced by T .

Consider a positive integer k and a family of node sets T̂ = {T1, T2, . . . , Tk, T} satisfying

∅ += Ti ! T ! V, ∀i = 1, . . . , k. T̂ is said to define a degenerate multi-domino if {T1, . . . , Tk}

defines a partition of T .

Note that unless otherwise specified, we will use the term multi-domino to refer both to

degenerate and non-degenerate multi-dominoes.

In general, given a multi-domino T̂ = {T1, . . . , Tk, T}, we will say that T is its ground-set,

and T1, . . . , Tk are its halves. If a multi-domino T̂ has k halves, we say that it is a k-domino,

and write κ(T̂) = k. Observe that k-dominoes (both degenerate and non-degenerate) satisfy

the following recursive condition: If you remove any number 0 < r ≤ k of halves from a k-

domino (leaving the ground set intact), you obtain a k− r domino which is non-degenerate.

In addition, note that the definition of a 1-domino is equivalent to the domino definition

of Letchford [73], and a 0-domino consists of a singleton containing a ground set and no

halves. Whenever a multi-domino has more than one half, we will say that it is large.

Finally, observe that for notation purposes, we will distinguish a multi-domino T̂ from its

ground set T by using a hat (“ ˆ ”) symbol.

16

If a k-domino T̂ is degenerate, define β(T̂) = k
k−1 . Otherwise, define β(T̂) = 1.

Lemma 2.1. Let T̂ = {T1, T2, . . . , Tk, T} be a k−domino. If x satisfies all subtour con-

straints, then
β(T̂)

2
(x(δ(T)) − 2) +

k∑

i=1

x(E(Ti : T \ Ti)) ≥ k.

Proof. Assume x satisfies all subtour constraints. If k = 0 the result trivially follows

from the subtour elimination constraints, so assume k ≥ 1 and let B1, B2, . . . , Br

correspond to the partition of T obtained by removing the edge sets E(T1 : T \

T1), E(T2 : T \ T2), . . . , E(Tk : T \ Tk) from the subgraph of G induced by T . Note

that
r∑

i=1

x(δ(Bi)) = x(δ(T)) +
r∑

i=1

x(E(Bi : T \ Bi)).

It follows that

β(T̂)
2

(x(δ(T)) − 2) =
β(T̂)

2

(
r∑

i=1

(x(δ(Bi)) − x(E(Bi : T \ Bi))) − 2

)
. (2.6)

However, note that if T̂ is non-degenerate, then β(T̂) = 1 and

r∑

i=1

x(E(Bi : T \ Bi)) ≤ 2
k∑

i=1

x(E(Ti : T \ Ti)).

On the other hand, if T̂ is degenerate, then β(T̂) ≤ 2 and each Ti can be assumed

equal to Bi. Thus, in either case, we have

β(T̂)
2

r∑

i=1

x(E(Bi : T \ Bi)) ≤
k∑

i=1

x(E(Ti : T \ Ti)). (2.7)

Finally, note that if T̂ is non-degenerate, then r > k and β(T̂) = 1. Likewise, if T̂ is

degenerate then r = k and β(T̂) = k/(k−1). Thus, in both cases, β(T̂)(2r−2)/2 ≥ k,

and
β(T̂)

2

(
r∑

i=1

x(δ(Bi)) − 2

)
≥ β(T̂)

2
(2r − 2) ≥ k. (2.8)

Putting together (2.6), (2.7), and (2.8) we get the desired result.

17

2.3.2 Defining the GDP inequalities

Recall that comb inequalities require an odd number of teeth to intersect the handle of

the constraint. However, for domino-parity inequalities, this requirement is relaxed, and

though no conditions are imposed in terms of intersections, an odd number of teeth is still

associated to the handle, but in a more abstract way through the notion of “supporting a

cut”. Again, in bipartition inequalities, handles are required to intersect an odd number

of teeth. Since we are interested in generalizing domino-parity constraints to a class of

inequalities containing bipartitions, we will need to generalize this association between

handles and teeth to multiple handle configurations. In order to do this, we will map teeth,

which in our new inequalities will be represented by multi-dominoes, to handles, by means

of a function Φ, which associates each half of a multi-domino to a handle.

Consider a positive integer h and a family T of multi-dominoes. Let Φ define a map

between halves of the multi-dominoes in T and numbers in {1, . . . , h}. That is, for every

multi-domino T̂ ∈ T , such that κ(T̂) ≥ 1, and every j ∈ 1, . . . , κ(T̂), let Φ(T̂ , j) take a

value in {1, . . . , h}. We say that Φ is an h-tooth association defined over T , and whenever

Φ(T̂ , j) = i for some i ∈ {1, . . . , h} we will say that the i-th handle and T̂ are associated to

each other by means of Φ.

Theorem 2.1. Consider a family of node sets H = {H1, . . . , Hh}, and a family of multi-

dominoes T . Let Φ define an h-tooth association over T , and assume that |Φ−1(i)| is odd,

for each i = 1, . . . , h. For each Hi ∈ H define Fi ⊆ E such that {Fi} and {E(Tj : T \ Tj) :

Φ(T̂ , j) = i} support the cut δ(Hi) in G and define µi accordingly. Then the inequality

h∑

i=1

µix +
∑

T̂∈T

β(T̂)x(δ(T)) ≥ h +
h∑

i=1

hi + 2
∑

T∈T
β(T̂). (2.9)

is satisfied by all tours, where hi = |Φ−1(i)| for each i = 1, . . . , h.

Proof. We use induction on h, the case h = 0 following from the validity of the

subtour constraints. Let x̂ be the incidence vector of a tour. If there exists io ∈

{1, . . . , k} such that µio x̂ > hio −1, then, since µio x̂ is even valued (see Section 2.2.3),

we have µio x̂ ≥ hio + 1. For every T̂ ∈ T define T̂ ∗ = {T1, T2, . . . , Tκ(T), T} \ {Tj :

18

Φ(T̂ , j) = io}. Note that for each T̂ ∈ T we have β(T̂ ∗) ≤ β(T̂). Thus, by induction,

the inequality obtained by removing handle Hio , replacing each T̂ ∈ T by T̂ ∗, and

using the same association Φ, renumbering appropriately,

k∑

i=1,i%=io

µix +
∑

T̂ ∗∈T

β(T̂ ∗)x(δ(T)) ≥ (h − 1) +
k∑

i=1,i%=io

hi + 2
∑

T̂ ∗∈T

β(T̂ ∗)

is valid. Then (2.9) follows since (β(T̂) − β(T̂ ∗))x̂(δ(T)) ≥ (β(T̂) − β(T̂ ∗))2, and

µio x̂ ≥ hio + 1.

Now assume that µix̂ ≤ hi − 1 for each i = 1, . . . , h. From Lemma 2.1 we have for

each T ∈ T

β(T̂)(x̂(δ(T)) − 2) ≥ 2κ(T) − 2
κ(T)∑

j=1

x̂(E(Tj : T \ Tj)). (2.10)

Noting that,
∑

T̂∈T

κ(T̂) =
h∑

i=1

hi,

and,
h∑

i=1

x̂(Fi) +
∑

T̂∈T

κ(T̂)∑

j=1

x̂(E(Tj : T \ Tj)) =
h∑

i=1

µix̂

and then summing over (2.10) we obtain,

∑

T∈T
β(T̂)(x̂(δ(T)) − 2) ≥ 2

∑

T̂∈T

κ(T̂) − 2
∑

T̂∈T

κ(T̂)∑

j=1

x̂(E(Tj : T \ Tj))

≥ 2
h∑

i=1

hi − 2
h∑

i=1

µix̂

=
h∑

i=1

hi +
h∑

i=1

(
hi − µix̂

)
−

h∑

i=1

µix̂

≥
h∑

i=1

hi + h −
∑

i=1

µix̂.

We refer to the inequalities (2.9) as generalized domino-parity (GDP) inequalities. As in

other well-known TSP inequalities, we will denote the sets H1, . . . , Hh as handles, and the

multi-dominoes T̂ ∈ T as teeth. We will say that teeth with more than one half are large

teeth. If a multi-parity constraint has h handles, we say that it is an h-parity constraint.

19

When h = 1, and every tooth is non-degenerate and restricted to having at most one half,

this class coincides with that of the domino-parity inequalities of Letchford [73]. In order to

represent generalized domino-parity inequalities we will identify them in terms of the tuples

(H,Φ, T), or equivalently, the tuples (F ,Φ, T), corresponding to the handles (or sets Fi),

the h-tooth association, and the teeth which define them.

2.3.3 Stars and bipartitions are GDP inequalities

Proposition 2.1. The class of h−parity inequalities contains the class of bipartition in-

equalities having h handles.

Proof. Consider a bipartition inequality with handles H = {H1, . . . , Hh} and teeth

T = {T 1, . . . , T t}. Define a set of multi-dominoes T ′ and an h-tooth association Φ

by repeating the following procedure:

Step 1. Choose a tooth T j ∈ T and define a zero-domino T̂ j ∈ T ′ having ground

set T j .

Step 2. For each handle H i ∈ H such that T j ∩ H i += ∅: Let r = κ(T̂ j). Add half

T j ∩ H i to T̂ , and define Φ(T̂ , r + 1) = i.

It is easy to see that this procedure leads to a valid h-parity inequality which coincides

with the original bipartition inequality.

Given that bipartition inequalities generalize clique-tree inequalities, Proposition 2.1

also tells us that h-parity inequalities generalize clique-tree inequalities on h handles.

Proposition 2.2. The class of GDP inequalities contains the class of star inequalities.

Proof. Consider a star inequality:

h∑

i=1

αix(δ(H i)) +
t∑

j=1

γjx(δ(T j)) ≥ (t + 1)
h∑

i=1

αi + 2
t∑

j=1

γj . (2.11)

Assume T = {T 1, . . . , T t}, H = {H1, . . . , Hh}, α, and γ are defined as in Section

2.2. We construct a family of teeth T ′ and handles H′ as follows: For each set H i ∈ H

we define αi copies of Hi in H′. We will denote the k-th copy of handle H i ∈ H as

20

H ′(i, k). Likewise, for each set T j ∈ T we will define γj zero-dominoes in T ′, each

having T j as a ground set. We will denote the k-th tooth defined from T j ∈ T as

T̂ ′(j, k). Note that h′ =
∑h

i=1 αi will correspond to the total number of handles in H′,

and t′ =
∑t

i=1 γj will correspond to the total number of teeth in T ′. We now focus on

adding the appropriate halves to each tooth in T , and on defining an appropriate h′-

tooth association Φ over T ′ such that |Φ−1(i)| is odd for each i = 1, . . . , h′. The idea

will be that to each handle in H′ we will associate exactly t teeth in T ′ (thus ensuring

the parity condition) and to each tooth in T ′ we will assign at most h handles in H′.

To define the halves of the teeth in T ′ and to define Φ we proceed algorithmically.

For this, let I be the set of all intervals associated to the star inequality.

Step 1. Choose T j ∈ T and an associated interval I. Define H′(I) = {H ′(i, k) ∈

H′ : i ∈ I, 1 ≤ k ≤ αi} and T ′(j) = {T̂ ′(j, k) ∈ T ′ : 1 ≤ k ≤ γj}. Since
∑

i∈I αi ≤ γj

it follows that |H′(I)| ≤ |T ′(j)|.

Step 2. Choose H ′(i, k) ∈ H′(I) and T̂ ′(j, p) ∈ T ′(j). Denote H ′(i, k) by H ′
q and

T̂ ′(j, p) by T̂ ′ (in order to use our indexing conventions). Let r = κ(T̂ ′) + 1, add a

half Tr+1 = H i ∩ T j to T̂ ′, and define Φ(T̂ , r + 1) = q. Remove H ′(i, k) from H′(I)

and remove T̂ ′(j, k) from T ′(j). If H′(I) is non-empty, go back to Step 2. Otherwise,

proceed to Step 3.

Step 3. Remove I from I. If T j has no more associated intervals, remove T j from

T . If T is non-empty, go to Step 1. Otherwise, stop.

To see that this construction leads to a valid GDP inequality, we first show that

|Φ−1(q)| = t for all handles H ′
q ∈ H. To see this, observe that for every handle

H i ∈ H and every tooth T j ∈ T there exists exactly one interval I associated to

T j such that i ∈ I. Consider the iteration of Step 1 when T j and I are the current

tooth-interval pair. In this iteration, all αi copies of Hi in H′ will be in set H′(I).

Since |H′(I)| ≤ |T ′(j)|, each of these copies will be assigned to some tooth T̂ ′ ∈ T ′

by Φ. Given that for every other interval associated to T j these copies of H i will not

21

be assigned to any teeth, the conclusion follows.

Next, we show that the multi-dominoes in T ′ are well defined. Given that every

half added to multi-dominoes in Step 2 is contained in the corresponding ground set,

we just need to show that the recursive cut condition holds. To see this, consider

a multi-domino T̂ ′(j, k) ∈ T ′. Observe that all of the halves of T̂ ′(j, k) were added

in different iterations of Step 2. Thus, every half of T̂ ′(j, k) is of the form T j ∩ H i,

where the sets H i are such that their respective indices are in different intervals of

tooth T j . Given that any two sets Hi1 and Hi2 corresponding to different intervals of

a same tooth T j ∈ T are such that one of the corresponding halves strictly contains

the other, it follows that all of the halves of T̂ ′(j, k) can be sorted by strict inclusion.

It is easy to see that this implies that the recursive cut condition holds.

Thus, we have that (H′,Φ, T ′) defines a GDP inequality.

To see that the right-hand-side of the GDP inequality coincides with that of the

original star inequality, recall that h′ =
∑h

i=1 αi and |T ′| =
∑t

i=1 γj . Further, for

every handle H ′
q ∈ H′ we have that h′

q = t, and for every tooth T̂ ′ ∈ T ′ we have

that β(T̂ ′) = 1. Thus, the right-hand side of the GDP inequality is h′ +
∑h′

q=1 h′
q +

|T ′| =
∑h

i=1 αi + t
∑h

i=1 αi + 2
∑t

i=1 γj , which coincides with the right-hand-side of

the corresponding star inequality.

To see that the left hand side coincides, we first show that every handle H ′(i, k) ∈ H′

has assigned t teeth whose ground sets are disjoint of each other. In fact, consider a

handle H ′(i, k) ∈ H′ and a ground set T j . All of the teeth in T ′ whose ground-set

is T j are in T ′(j); all other teeth in T ′ have ground sets which are disjoint from T j .

Observe that there is a single interval I associated to T j such that H ′(i, k) ∈ H′(I).

Thus there is only one iteration of Step 2 in which handle H ′(i, k) could be assigned a

tooth with ground set T j . Since in Step 2 each handle is assigned at most one tooth,

it follows that all of the teeth assigned to H ′(i, k) have disjoint ground sets.

Given that for each handle H ′
q ∈ H′ all of the assigned teeth are disjoint, it follows

that µqx = x(δ(H ′
q)). Further, given that for each handle Hi ∈ H there are αi

22

copies in H′ it follows that
∑h′

q=1 µqx =
∑h

i=1 αix(δ(Hi)). Analogously, we know

that T ′ can be partitioned into the collections T ′(j) with j = 1, . . . , t, and that each

collection T ′(j) has γj multi-dominoes with ground-set T j . Thus,
∑

T̂ ′∈T ′ x(δ(T ′)) =
∑t

j=1 γjx(δ(T j)). From this we conclude that the left-hand side of the resulting GDP

inequality and that of the original star inequality coincide.

What the preceding discussion highlights is that star inequalities are nothing more than

GDP inequalities such that: (a) for every pair of handles, one must contain the other, and

(b) every pair of teeth either have completely disjoint ground sets, or the ground sets are

exactly alike.

Note that in addition to containing bipartition and star inequalities, the class of GDP

inequalities contains many other new and different structures. For instance, note that

a tooth in a GDP inequality can be associated many times to the same handle. Also,

GDP inequalities allow many configurations which may be obtained by combining star and

bipartition inequalities, as well as abstractions of star and bipartition inequalities where

teeth are allowed to intersect each other.

It is easy to see that not all GDP inequalities define facets of the TSP polytope, but

the class does provide a common framework for possibly extending Letchford’s algorithm

to super-classes of other inequalities that have proven to be effective in TSP codes.

2.4 Properties of violated GDP inequalities

In this section we describe necessary and sufficient conditions for an h-parity constraint to

be violated.

2.4.1 A characterization of violated GDP inequalities

Define the weight of k-domino T̂ = {T1, T2, . . . , Tk, T} to be

w(T̂) := β(T̂)(x(δ(T)) − 2) +
k∑

i=1

x(E(Ti : T \ Ti)) − k. (2.12)

Lemma 2.2. Consider an h-parity inequality defined by H, T , and Φ. Let Fi be such that

{E(Tj : T \ Tj) : Φ(T̂ , j) = i} and {Fi} support the cut δ(Hi) for each i = 1, . . . , h. The

23

slack of the h-parity inequality is

∑

T̂∈T

w(T̂) +
h∑

i=1

x(Fi) − h.

Proof. The slack is,

h∑

i=1

µix +
∑

T̂∈T

β(T̂)x(δ(T)) − h −
h∑

i=1

hi − 2
∑

T̂∈T

β(T̂)

=
h∑

i=1

x(Fi) +
∑

T̂∈T

κ(T̂)∑

j=1

x(E(Tj : T \ Tj)) +
∑

T̂∈T

(
β(T̂) (x(δ(T)) − 2) − κ(T̂)

)
− h

=
h∑

i=1

x(Fi) +
∑

T̂∈T



β(T̂) (x(δ(T)) − 2) +
κ(T̂)∑

j=1

x(E(Tj : T \ Tj)) − κ(T̂)



− h

=
h∑

i=1

x(Fi) +
∑

T̂∈T

w(T̂) − h.

Note that Lemma 2.1 and Lemma 2.2 together imply that if x satisfies all subtour elimination

constraints, then a violated h-parity constraint must satisfy

0 ≤ β(T̂)
2

(x(δ(T)) − 2) ≤ w(T̂) < h ∀T̂ ∈ T . (2.13)

Further, note that in many classes of well-known TSP inequalities, the handles are disjoint

and halves of a multi-domino correspond to tooth-handle intersections (for example, clique-

tree inequalities and bipartition inequalities - see Proposition 2.1). In these cases it is

not difficult to see that every k-domino T̂ participating in such inequalities will satisfy

w(T̂) ≥
∑k

j=1 x(δ(Tj)) − k − 2. Thus, if all subtour elimination constraints are satisfied,

w(T̂) ≥ k − 2. This means that it is possible to bound the number of teeth having three or

more halves which participate in violated h-parity constraints.

Lemma 2.3. There exists an h-parity inequality with slack s∗ iff there exist a family of

multi-dominoes T , an h-tooth association Φ, and sets Ri ⊆ E∗ for all i ∈ {1, . . . , h} such

that:

1. |Φ−1(i)| is odd, for all i = 1, . . . , h.

2. {E∗(Tj : T \ Tj) : Φ(T̂ , j) = i} and {Ri} support a cut in G∗ for all i = 1, . . . , h.

24

3. s∗ =
h∑

i=1
x∗(Ri) +

∑

T̂∈T
w(T̂) − h.

Proof. From Theorem 2.1 and Lemma 2.2, there exists an h-parity inequality with

slack s∗ iff there exists a family of node sets H = {H1, . . . , Hh} in G, a family of edge

sets {F1, . . . , Fh} in G, a family of multi-dominoes T in G, and an h-tooth association

Φ defined over T , such that:

(a) |Φ−1(i)| is odd, for i = 1, . . . , h.

(b) {E(Tj : T \ Tj) : Φ(T̂ , j) = i} and {Fi} support the cut δ(Hi) in G for all

i = 1, . . . , h.

(c) s∗ =
h∑

i=1
x∗(Fi) +

∑

T̂∈T
w(T̂) − h.

Necessity is trivial, since we can just take Ri = Fi ∩ E∗. So we focus on sufficiency.

Assume that T and Φ define an h-tooth association, and sets Ri ⊆ E∗ for i ∈ 1, . . . , h

are such that (ii) and (iii) hold. For each i ∈ 1, . . . , h let Hi ⊆ V be one shore of the

cut supported by {E∗(Tj : T \ Tj) : Φ(T̂ , j) = i} and Ri. A set Fi satisfying (b)-(c)

can be obtained from Ri by adding edges e ∈ δ(Hi) such that x∗
e = 0.

2.4.2 Planar duality and violated GDP inequalities

We henceforth assume that G∗ is a planar graph and let Ḡ∗ denote the planar dual of G∗.

For any subset F ⊆ E(G∗), denote by F̄ the corresponding edges in Ḡ∗ . For each ē ∈ Ḡ∗

let x∗
ē = x∗

e.

A graph is called Eulerian if every node has even degree. (As in Letchford [73], we do

not require that Eulerian graphs be connected.)

Let r be a positive integer and suppose that E1, . . . , Er are edge sets satisfying Ei ⊆

E∗, i = 1, . . . , r. As before, let µe = |{i : e ∈ Ei}|. The collection {Ēi : i = 1, . . . , r} is said

to support an Eulerian subgraph in Ḡ∗ if the edges ē for which µe is odd form an Eulerian

subgraph in Ḡ∗ .

We say that a cut C ⊆ E(G) is minimal if removing any subset of edges from C results

in an edge set which does not define a cut. Observe that for any set A ! V the cut δ(A) can

always be decomposed into an edge disjoint union of minimal cuts. A well known result (see

25

Mohar and Thomassen [83]) is that if G is planar and C ⊆ E(G) is a minimal cut, then C is

a simple cycle in Ḡ∗ . Since every eulerian subgraph can be decomposed into edge disjoint

simple cycles, this result implies that {Ēi : i = 1. . . . , r} supports an Eulerian subgraph in

Ḡ∗ iff {Ei : i = 1, . . . , r} supports a cut in G∗. This observation implies the following dual

version of Lemma 2.3.

Lemma 2.4. There exists an h-parity inequality having slack s∗ iff there exist a family of

multi-dominoes T , an h-tooth association Φ, and sets R̄i ⊆ Ē∗ for all i ∈ {1, . . . , h} such

that:

1. |Φ−1(i)| is odd, for all i = 1, . . . , h.

2. {E∗(Tj : T \ Tj) : Φ(T̂ , j) = i} and {R̄i} support an Eulerian subgraph in Ḡ∗ for all

i = 1, . . . , h.

3. s∗ =
h∑

i=1
x∗(R̄i) +

∑

T̂∈T
w(T̂) − h.

Proof. Follows from the definitions.

In Figure 2.2 we illustrate the relevant edges of a two-parity constraint in the dual

graph Ḡ∗ . This example has a total of six teeth. Also we assume that one of the teeth

strictly contains two other teeth. In the illustration the dark circles represent nodes in

V̄ ∗, the solid lines represent edges in R̄i for i = 1, 2, the dashed lines represent edges in

δ(T) for T ∈ T , and the dotted lines represent edges in E(Tj : T \ Tj) for j ∈ 1, . . . , h such

that Φ(T, j) ∈ {1, 2}. Note that the solid and dotted lines together support two Eulerian

subgraphs, one for each handle.

Lemma 2.5. Let edge sets {E1, . . . , Ek} support an eulerian subgraph in G.

(a) Let S ⊆ E(G) be eulerian, and assume S = S1∪S2∪ . . .∪Sk, where the sets S1, . . . , Sk

are pairwise disjoint. Then, if {E1, . . . , Ek} supports the eulerian subgraph D, the

edge sets {E1∆S1, E2∆S2, E3∆S3, . . . , Ek∆Sk} support the eulerian subgraph D∆S.

(b) Consider any edge set S ⊆ E(G), then {E1∆S, E2∆S, E3, . . . , Ek} supports the same

eulerian subgraph as {E1, E2, . . . , Ek} in G.

26

H1

H2

Figure 2.2: A two-parity constraint represented in Ḡ∗

Proof. (a) For each edge e ∈ E, let µe represent the number of sets in {E1, . . . , Ek}

containing edge e. Let µ′
e represent the number of sets in {E1∆S1, . . . , Ek∆Sk} con-

taining edge e. Observe that µe = µ′
e for each edge e ∈ E \ S. Now consider e ∈ Si.

Observe that e ∈ Ei ∩ Si implies µ′
e = µe − 1, and e ∈ Si \ Ei implies µ′

e = µe + 1.

Now consider the sets D = {e ∈ E : µe is odd } and D′ = {e ∈ E : µ′
e is odd }. From

the previous arguments it follows that e ∈ S ∩ D implies e /∈ D′. Likewise, e ∈ S \ D

implies e ∈ D′. Thus, D′ = (D \ (S ∩ D)) ∪ (S \ D) = (D \ S) ∪ (S \ D) = D∆S.

Given that D is eulerian and S is eulerian, it follows that D∆S is eulerian. Hence,

{E1∆S1, . . . , Ek∆Sk} supports the eulerian subgraph D∆S.

(b) Let e ∈ S. There are four cases to consider: (i) e /∈ E1 and e /∈ E2. In this case, e

is added to both E1 and E2, thus µe is incremented by two, and so the parity remains

the same. (ii) e ∈ E1 and e /∈ E2. In this case e will be removed from E1 but added

to E2, so µe will not change. (iii) e /∈ E1 and e ∈ E2. In this case e will be removed

from E2 but added to E1, so µe will not change. (iv) e ∈ E1 and e ∈ E2. In this case

e will be removed from both E1 and E2, so µe will decrease by two, and its parity

will not change.

Lemma 2.6. Let edge sets {E1, . . . , Ek} support a cut in G, and assume G is planar.

27

(a) Let S ⊆ E(G) define a cut δ(A) for some A ! V , and assume S = S1 ∪ S2 ∪ . . . ∪ Sk,

where the sets S1, . . . , Sk are pairwise disjoint. Then, {E1∆S1, . . . , Ek∆Sk} supports

a cut in G, though not necessarily the same cut supported by {E1, . . . , Ek}.

(b) Consider any edge set S ⊆ E(G), then {E1∆S, E2∆S, E3, . . . , Ek} supports the same

cut as {E1, E2, . . . , Ek} in G.

Proof.

Follows directly from Lemma 2.5 and planarity of G.

Lemma 2.7. Consider a fractional solution x∗ such that G∗ is planar, and an h-parity

constraint (F ,Φ, T) such that T̂ = {T1, T} ∈ T is a degenerate one-domino. It is possible

to replace T̂ with a non-degenerate tooth and obtain another h-parity constraint with less

than or equal slack than that of (F ,Φ, T).

Proof. Consider any edge e = {u, v} ∈ E and define a non-degenerate one-domino

T̂ ′ = {{u}, {u, v}}. Observe that w(T̂ ′) = 1 − x∗
e. Assume that Φ(T̂ , 1) = i and

let {Fi, E(T1 : T \ T1), E1, . . . , Ek} be the support set of the i-th handle, where sets

E1, . . . , Ek correspond to the edge sets derived from other multi-dominoes. From part

(b) of Lemma 2.6, we know that {Fi, E(T1 : T \ T1), E1, . . . , Ek} and {Fi∆{e}, E(T1 :

T \T1)∆{e}, E1, . . . , Ek} support the same handle. Further, observe that T̂ degenerate

implies that E(T1 : T \ T1) = ∅ and so E(T1 : T \ T1)∆{e} = {e} = E(T ′
1, T

′). Let

F ′
i = Fi∆{e}. Observe that,

x∗(Fi) + w(T̂) = x∗(Fi) + 2x(δ(T)) − 3

≥ x∗(Fi) + 1 = x∗(Fi) + x∗
e − x∗

e + 1

≥ x∗(F ′
i) + 1 − x∗

e = x∗(F ′
i) + w(T̂ ′).

Let F ′ = F \ {Fi} ∪ {F ′
i} and T ′ = T \ {T̂} ∪ {T̂ ′}. Further, define Φ′ equal to Φ

but for the fact that Φ′(T̂ ′, 1) = i. From Lemma 2.3 we know that (F ′,Φ′, T ′) defines

a valid h-parity inequality, and from Lemma 2.2 it follows that the slack of this new

inequality is less than or equal that of (F ,Φ, T). Thus we conclude our result.

28

Lemma 2.8. Consider a fractional solution x∗ such that G∗ is planar, and an h-parity

constraint (F ,Φ, T) with a non-degenerate tooth T̂ = {T1, T} ∈ T . Assume that both

δ(T) and δ(T1) are not minimal cuts. It is possible to replace T̂ with a non-degenerate

tooth T̂ ′ = {T ′
1, T

′} such that (a) δ(T ′) and δ(T ′
1) are minimal cuts, (b) δ(T ′) ⊆ δ(T) and

δ(T ′
1) ⊆ δ(T1), and (c) δ(T ′

1) ∪ δ(T ′) ! δ(T1) ∪ δ(T). Further, the new h-parity constraint

has less than or equal slack than that of (F ,Φ, T).

Proof. Let C = δ(T) and D = δ(T1). Observe that C and D can be decomposed into

edge disjoint unions of simple cycles C1, C2, . . . , Cq and D1, D2, . . . , Dr respectively.

Given that T̂ non-degenerate there must exist i ∈ {1, . . . , q} and j ∈ {1, . . . , r} such

that Ci += Dj . Given that T1 ⊆ T we have that C and D do not cross with respect to

the planar embedding. Thus there exist ∅ ! T ′
1 ! T ′ ! V such that δ(T ′) = Ci and

δ(T ′
1) = Di. It follows that {T ′

1, T
′} defines a one-domino satisfying (a) and (b). If

δ(T ′) = δ(T) or δ(T ′
1) = δ(T1) it is easy to see that δ(T ′

1)∪δ(T ′) ! δ(T1)∪δ(T). Thus,

assume δ(T ′) ! δ(T) and δ(T ′
1) ! δ(T1). Observe that for δ(T ′

1)∪δ(T ′) = δ(T1)∪δ(T)

it must follow that δ(T) \ δ(T ′) ⊆ δ(T ′
1) and δ(T1) \ δ(T ′

1) ⊆ δ(T ′). Thus, since δ(T ′)

and δ(T ′
1) are minimal cuts, this in turn must imply that δ(T) \ δ(T ′) = δ(T ′

1) and

δ(T1) \ δ(T ′
1) = δ(T ′), which means δ(T1) = δ(T ′

1) ∪ (δ(T1) \ δ(T ′
1)) = (δ(T) \ δ(T ′)) ∪

(δ(T1) \ δ(T ′
1)) = (δ(T) \ δ(T ′))∪ δ(T ′) = δ(T). However, this means T̂ is degenerate,

which contradicts our initial hypothesis.

We now show that it is possible to construct an h-parity constraint with teeth T ′ =

T \ {T̂} ∪ {T̂ ′} having less than or equal slack.

Assume that Φ(T̂ , 1) = i and let {Fi, E(T1 : T \T1), E1, . . . , Ek} be the support set of

the i-th handle, where sets E1, . . . , Ek correspond to the edge sets derived from other

multi-dominoes. Let D = δ(T) \ δ(T ′) and D1 = δ(T1) \ δ(T ′
1). Observe that,

E(T ′
1 : T ′ \ T ′

1) = (E(T1 : T \ T1) \ D1) ∪ (δ(T ′
1) ∩ D).

29

In fact,

E(T ′
1 : T ′ \ T ′

1) = δ(T ′
1) \ δ(T ′) = (δ(T1) \ D1) \ (δ(T) \ D)

= (δ(T1) \ D1 \ δ(T)) ∪ ((δ(T1) \ D1) ∩ D)

= ((δ(T1) \ δ(T)) \ D1) ∪ (δ(T ′
1) ∩ D).

Next, observe that E(T1 : T \ T1) \ D1 = E(T1 : T \ T1) \ (D1 ∩ E(T1 : T \ T1)) =

E(T1 : T \ T1)∆(D1 ∩ E(T1 : T \ T1)). Thus, from part (b) of Lemma 2.6, {Fi, E(T1 :

T \ T1), E1, . . . , Ek} supports the same cut as {Fi∆(D1 ∩ E(T1 : T \ T1)), E(T1 :

T \T1)\D1, E1, . . . , Ek}. Also, since D is eulerian, and D = (D∩δ(T ′
1))∪ (D \δ(T ′

1)),

it follows from part (a) of Lemma 2.6 that since {Fi∆(D1 ∩ E(T1 : T \ T1)), E(T1 :

T \T1)\D1, E1, . . . , Ek} supports a cut, then so does {(Fi∆(D1∩E(T1 : T \T1)))∆(D\

δ(T ′
1)), (E(T1 : T \T1)\D1)∪(δ(T ′

1)∩D), E1, . . . , Ek}. Thus, defining F ′
i = (Fi∆(D1∩

E(T1 : T \ T1)))∆(D \ δ(T ′
1)) we have that {F ′

i , E(T ′
1 : T ′ \ T ′

1), E1, . . . , Ek} supports

a cut. Finally, note that x∗(F ′
i) ≤ x∗(Fi) + x∗(E(T1 : T \ T1) ∩ D1) + x∗(D \ δ(T ′

1))

and that x∗(E(T ′
1 : T ′ \ T ′

1)) ≤ x∗((E(T1 : T \ T1)) \ D1) + x∗(D ∩ δ(T ′
1)). Thus,

x∗(F ′
i) + x∗(E(T ′

1 : T ′ \ T ′
1)) ≤ x∗(Fi) + x∗(E(T1 : T \ T1)) + x∗(D). Hence,

x∗(F ′
i) + w(T̂ ′) = x∗(F ′

i) + x∗(δ(T ′)) + x∗(E(T ′
i : T ′ \ T ′

i)) − 3

≤ x∗(Fi) + x∗(E(T1 : T \ T1)) + x∗(δ(T ′)) + x∗(D) − 3

≤ x∗(Fi) + x∗(E(T1 : T \ T1)) + x∗(δ(T)) − 3

≤ x∗(Fi) + w(T̂).

Let F ′ = F \ {Fi} ∪ {F ′
i} and T ′ = T \ {T̂} ∪ {T̂ ′}. Further, define Φ′ equal to Φ

but for the fact that Φ′(T̂ ′, 1) = i. From Lemma 2.3 we know that (F ′,Φ′, T ′) defines

a valid h-parity inequality, and from Lemma 2.2 it follows that the slack of this new

inequality is less than or equal that of (F ,Φ, T).

Lemma 2.9. Consider a fractional solution x∗ such that G∗ is planar. There exists a

maximally violated h-parity constraint (F ,Φ, T) such that every one-domino T̂ = {T1, T} ∈

T satisfies:

30

(Q1) T̂ is non-degenerate,

(Q2) δ(T) and δ(T1) define minimal cuts, and

(Q3) δ(T \ T1) defines a minimal cut.

Proof. From Lemmas 2.7 and 2.8 it is easy to see that there exists a maximally

violated h-parity constraint (F ,Φ, T) such that (Q1) and (Q2) hold for every one-

domino. Assume that L̂ = {L1, L} ∈ T is a one-domino not satisfying (Q3). Let

T̂ = {T1, T} be a one-domino where T1 = L \ L1 and T = L. It is easy to see that

tooth L̂ can be substituted by T̂ to obtain an identical constraint. Further, observe

that δ(L)∪ δ(L1) = δ(T)∪ δ(T1). Since T̂ does not satisfy (Q2) we can apply Lemma

2.8 to substitute T̂ by yet another one-domino T̂ ′ = {T ′
1, T

′} satisfying (Q1) and (Q2),

and such that δ(T ′) ∪ δ(T ′
1) ! δ(T) ∪ δ(T1). By repeatedly applying this procedure a

finite number of times (because we can only remove so many edges from the original set

δ(L)∪δ(L1)) we will eventually obtain a tooth satisfying (Q1)-(Q3). We can apply this

procedure to all one-dominoes not satisfying (Q1)-(Q3) to eventually obtain another

maximally violated h-parity constraint satisfying the required conditions.

This allows us to use the following result:

Theorem 2.2 (Letchford [73]). Let x∗ be a fractional solution satisfying all of the subtour

elimination constraints. Let T̂ = {T1, T} be a one-domino satisfying (Q1), (Q2), and (Q3).

If G∗ is a planar graph, then there exist two vertices s, t ∈ Ḡ∗ such that each of the following

edge sets is an (s, t) path in Ḡ∗ :

(i) E∗(T1 : T \ T1),

(ii) E∗(T1 : V \ T1),

(iii) E∗(T \ T1 : V \ T).

Furthermore, these three (s, t) paths are edge disjoint and also have no vertices in common

other than s and t.

31

An example of this result is depicted in Figure 2.3. In illustration (a) a one-domino is

drawn in graph G∗. In this picture, the dotted lines represent the boundary of the domino

and of its half, the dashed lines represent the edges in δ(T) ∪ E(T1 : T \ T1), and the

solid lines represent other edges in the graph. In illustration (b) the edges defining the

same domino are depicted in graph Ḡ∗ . Again, the dashed lines correspond to the edges

in δ(T) ∪ E(T1 : T \ T1), and the solid lines correspond to the remaining edges. As can be

seen in the latter illustration, the dashed lines define three edge disjoint paths which join

vertices s and t, and which do not have any other vertices in common.

(a) A one-domino in G∗

s t

(b) A one-domino in Ḡ∗

Figure 2.3: Representation of a domino in G∗ and Ḡ∗ .

2.5 Separating GDP inequalities in planar graphs

Let D(h, l, r) represent the set of all generalized domino-parity inequalities (H,Φ, T) such

that (a) the number of handles is not greater than h, e.g. |H| ≤ h, (b) the number of large

teeth is not greater than l, e.g. |T̂ ∈ T : κ(T̂) ≥ 2| ≤ l, and (c) no tooth has more than r

halves, e.g. κ(T̂) ≤ r for all T̂ ∈ T .

In this section we present a polynomial-time algorithm which, for fixed integers h, l, r ,

finds a maximally violated constraint in D(h, l, r) in polynomial time, provided G∗ is planar.

The algorithm proceeds in two steps. First, a set of candidate teeth is generated. Second,

an enumeration scheme tests different associations Φ with the candidate teeth in order to

identify a maximally violated inequality.

32

2.5.1 Step 1: Generating a set of candidate teeth

We begin with a simple result which establishes a bound on the weight of teeth participating

in violated inequalities.

Lemma 2.10. Let x∗ be a fractional solution, and let T̂ correspond to a k-domino partic-

ipating in a violated h-parity constraint. Then,

x∗(δ(T)) +
k∑

j=1

x∗(E(Tj : T \ Tj)) < h + k + 2. (2.14)

Proof. We know that

w(T̂) = β(T̂)(x∗(δ(T)) − 2) +
k∑

i=1

x∗(E(Ti : T \ Ti)) − k.

From equation (2.13) we know that w(T̂) < h. In addition, we know β(T̂) ≥ 1. Thus,

(x∗(δ(T)) − 2) +
k∑

i=1

x∗(E(Ti : T \ Ti)) − k ≤ w(T̂) < h.

The result immediately follows.

Consider a fractional solution x∗ and non-negative integers h, l, r. We say that a set of

multi-dominoes L∗ is complete for D(h, l, r) if every constraint (H,Φ, T) ∈ D(h, l, r) which

is violated by x∗ satisfies T ⊆ L∗.

The importance of Lemma 2.10 is that it allows us to construct a complete set of teeth,

as indicated by the following proposition.

Proposition 2.3. Consider x∗ satisfying all of the subtour elimination constraints and

non-negative integers h, l, r. It is possible to construct a complete set of multi-dominoes for

D(h, l, r) in O(nr2+(h+3)(r+1)+1).

Proof. Consider a k-domino T̂ (with k ≤ r) participating in a violated h-parity

constraint. Lemma 2.10 implies x∗(δ(T)) < h + k + 2. In addition, because δ(Tj) ⊆

T ∪ E(Tj : T \ Tj) for each j = 1, . . . , k, it also implies that x∗(δ(Tj)) < h + k + 2.

Thus, it can be seen that the building blocks the multi-dominoes required are the sets

A ! V (G∗) such that x∗(δ(A)) < h + r + 2.

33

Let A = {A ! V : x∗(δ(A)) < h + r + 2}. Since (due to the sub-tour elimination

constraints) all sets A ! V (G∗) satisfy x∗(δ(A)) ≥ 2, we know that they are all

within a factor of α = (h + r + 2)/2 of the min-cut. From Karger [71] it follows that

|A| ≤ (2n)h+r+2. Using the algorithm of Nagamochi [88] it is possible to completely

enumerate A in O(m2n + nh+r+2m), where m is the number of edges in G. Since in

planar graphs m = O(n), we have that the entire enumeration of A can be performed

in O(nh+r+3).

Given the set A it is now possible to build L∗. Start by enumerating k from 1 to

r. Next, enumerate all possible ground sets T ∈ A. Third, enumerate all possible

subsets {T1, . . . , Tk} ⊆ A. If T̂ = {T1, . . . , Tk, T} defines a k-domino, and in addition,

its weight satisfies the bound prescribed by Lemma 2.10 store it in L∗. Otherwise,

discard and keep iterating.

Let f(n, k) be the time required to test if {T1, . . . , Tk, T} defines a k-domino. For

each k = 1, . . . , h this second part of the algorithm will require |A|
(|A|

k

)
f(n, k) iter-

ations. Since |A| = O(nh+r+2), this is equal to O(n(h+r+2)(k+1)f(n, k)). Thus, after

enumerating over all k the running time will be O(rn(h+r+2)(r+1)f(n, r)).

Finally, note that f(n, k) ≤ O(n2k), since to test if {T1, . . . , Tk, T} defines a k-domino,

it suffices to (a) check if T1, . . . , Tk ⊆ T , taking O(n) time, and (b) check all possible

subsets of {T1, . . . , Tk} to see if they define the appropriate cut, taking O(n2k).

Thus we conclude that the total running time required to generate L∗ is bounded by

nh+r+3 + r2rn(h+r+2)(r+1)+1, which is O(nr2+(h+3)(r+1)+1).

Note that we can discard from L∗ any one-dominoes which do not satisfy (Q1)-(Q3)

as in Lemma 2.9, and that this does not affect the overall running time complexity of

the procedure.

2.5.2 Step 2: Putting it all together

Before actually getting to the main separation result, it is necessary to establish some basic

graph theoretic results.

34

Proposition 2.4. Consider a planar graph G. Let S1, S2 be two eulerian subgraphs of G

such that S1 ∪ S2 = E(G). Further, assume that G does not contain more than h − 1 edge

disjoint cycles. Then, the number of nodes having odd degree in the subgraph induced by

S1 \ S2 is bounded by 8h − 4.

Proof. Let F (G) represent the faces of graph G. Define two faces of G as be-

ing adjacent if their respective frontiers share a common edge. First, observe that

|F (G)| < 4h. In fact, if |F (G)| ≥ 4h, from the four-color theorem (See Appel and

Haken [6], Robertson, Sanders, Seymour and Thomas [100]) it would follow that there

exists a set of h non-adjacent faces. This in turn would imply that there exist h edge

disjoint cycles in E(G) (obtain them taking the frontier of the faces), which is con-

tradictory with our problem hypotheses.

From Euler’s Formula we know that if K(G) is the set of connected components in

G, then |E(G)| = |V (G)| + |F (G)| − 1 − |K(G)|. Thus, since |K(G)| ≥ 1, it follows

that |E(G)| < |V (G)| + 4h − 2. For each v ∈ V (G) let d(v) represent the degree of

v in G. Observe that because E(G) is the union of two eulerian subgraphs, d(v) ≥ 2

for all v ∈ V (G). Define δv = 1 if d(v) ≥ 3, and δv = 0 otherwise. It is clear that

2 + δv ≤ d(v) for all v ∈ V (G). Since
∑

v∈V (G) d(v) = 2|E(G)| it follows that

2|V (G)| +
∑

v∈V (G)

δv ≤
∑

v∈V (G)

d(v) = 2|E(G)| < 2|V (G)| + 8h − 4.

Thus,
∑

v∈V (G) δv < 8h−4. However, every node v ∈ V (G) having odd degree is such

that δv = 1. Thus, the number of nodes in G having odd degree is less than 8h − 4.

Finally, consider the subgraph induced by S1 \ S2. Because the number of nodes

having an odd degree in this graph is equal to the number of nodes having an odd

degree in G, the result follows.

Consider a graph G = (V, E), and a set T ⊆ V . We say that J ⊆ E is a T -Join if T is

equal to the set of vertices of odd degree in the graph (V, J). For a thorough background

on T -Joins, see Schrijver [102].

35

Proposition 2.5. Consider a graph G = (V, E). Assume that each edge e ∈ E has non-

negative weight xe, and that E = R ∪ B, where R and B are disjoint. Say that every edge

in R is red, and every edge in B is blue. Consider a set T ⊆ V such that |T | is even. It is

possible to find a minimum weight T -Join having an odd (or even) number of red edges in

O(2|T | + |T |2|V |2 + |V |3).

Proof. The more specific problem of finding a minimum-weight T -Join was shown

to be strongly polynomial by Edmonds [44]. However, this same problem subject to

the parity constraint has proven elusive, and it remains unknown whether it can be

solved in polynomial time for general graphs. What we now proceed to solve is a more

constrained version of this problem in which we allow the exponent of the polynomial

to be a function of |T |.

Say that F ⊆ E is odd if |F ∩ R| is odd; otherwise, say that F is even. Observe that

if J is a T -Join in G, then J = C ∪P1 ∪P2 ∪ . . .∪Pk, where each set Pi is a path with

end-points in T , and set C is (a possibly empty) eulerian subgraph. Further, observe

that there exists a minimum-weight odd (and even) T -Join such that: the paths Pi

are pairwise edge disjoint, the set C is either empty, or an odd simple cycle, and that

if Pi is odd (or even), then Pi is a minimum-weight odd (or even) path connecting its

end-points.

Let C1 be a minimum-weight odd cycle in in G′. Observe that such a cycle can be

computed in O(|V |3) (see Gerards and Schrijver [52]). For each pair of distinct nodes

s, t ∈ T define P 0
st as a minimum-weight even path joining s and t. Likewise, define

P 1
st as a minimum-weight odd path joining s and t. Observe that given s, t ∈ T

finding P 0
st and P 1

st can be achieved in O(|V |2) by solving a shortest path problem in

an appropriate graph (see Gerards and Schrijver [52]). Computing all of the paths

can thus be achieved in O(|T |2|V |2). Define a graph G′ with node set T . For each

pair of distinct nodes s, t ∈ T define an even edge in G′ having end-points s, t and

weight w(P 0
st), and define an odd edge in G′ having end-points s, t and weight w(P 1

st).

The minimum weight odd (or even) perfect-matching problem in G′ can be solved by

36

enumeration in O(2|T |). Let Mo ⊆ E(G′) be the optimal even solution of this sub-

problem, and let M1 be the optimal odd solution of this sub-problem. By unraveling

the edges in Mo and M1 to their corresponding paths, and iteratively removing pairs

of repeated edges until each edge appears at most once in the resulting subgraphs,

it is not difficult to see that we obtain T -Joins Jo and J1 of even and odd parity.

It is not difficult to see that a minimum weight even T -Join is given either by Jo or

J1∆C1, and that a minimum weight odd T -Join is given either by J1 or Jo∆C1.

Proposition 2.6. Consider a graph G = (V, E). Assume that the edge set E is partitioned

into three subsets R, Y, B where each edge in R is labeled red, each edge in Y is labeled

yellow, and each edge in B is labeled blue. In addition, assume that each edge e ∈ E has

a non-negative weight we. We say that a set of edges D ⊆ E defines an RYB subgraph if

D is eulerian and Y ⊆ D. Further, if |D ∩ R| is odd, we say that D is odd, otherwise, we

say that D is even. It is possible to find a minimum-weight odd (or even) RYB subgraph in

O(2|T | + |T |2|V |2 + |V |3), where T is the set of nodes having an odd degree in the subgraph

induced by Y .

Proof. Let T = {v ∈ V : v is the end-point of an odd number of edges e ∈ Y }.

Observe that for any eulerian subgraph D ⊆ E such that Y ⊆ D we will have that

D \ Y is a T -join. Thus, our problem reduces to finding a minimum weight T -Join

J ⊆ E \ Y such that |J ∩ R| is odd (even). Thus the result follows from Proposition

2.5.

Consider non-negative integers h, l, r and a complete set of multi-dominoes L∗ for

D(h, l, r). Consider a collection of large teeth T + ⊆ L∗ and an h-tooth association Φ+

defined over T +. We say that (T ,Φ,R) defines an extension of T + and Φ+ if the following

conditions are met:

• R = {R1, . . . , Rh}, where Ri ⊆ E∗, for i = 1, . . . , h.

• T ⊆ L∗ and T \ T + is a collection of one-dominoes.

• Φ is an h-tooth association over T , and Φ restricted to T + coincides with Φ+.

37

• |Φ−1(i)| is odd, for i = 1, . . . , h.

• {E(Tj : T \ Tj) : Φ(T̂ , j) = i} and {Ri} supports a cut in G∗, for all i = 1, . . . , h.

Proposition 2.7. Consider non-negative integers h, l, r and a fractional solution x∗ satisfy-

ing all of the subtour elimination constraints. Assume G∗ is planar and let L∗ be a complete

set of multi-dominoes for D(h, l, r). Let T + ⊆ L∗ be a collection of large multi-dominoes

such that |T +| ≤ l, and let Φ+ be an h-tooth association defined over T +. It is possible

to identify an extension (T ,Φ,R) of T +,Φ+ minimizing s∗ =
h∑

i=1
x∗(Ri) +

∑

T̂∈T
w(T̂) − h in

O(n3), when h, l, r are treated as constants.

Proof. Since G∗ is a planar graph, it suffices to construct Φ, T and R satisfying the

conditions of Lemma 2.4. That is we must satisfy,

(i) T + ⊆ T and every T̂ ∈ T \ T + is a one-domino.

(ii) Φ restricted to T + is equal to Φ+, and |Φ−1(i)| is odd, for all i = 1, . . . , h.

(iii) {E∗(Tj : T \ Tj) : Φ(T̂ , j) = i} and {R̄i} support an Eulerian subgraph in Ḡ∗

for all i = 1, . . . , h.

(iv) s∗ =
h∑

i=1
x∗(R̄i) +

∑

T̂∈T
w(T̂) − h is of minimum value.

Observe that this can be broken down into h independent problems. For each i ∈

1, . . . , h determine a collection of one-dominoes T i ⊆ L∗ and a set R̄i ⊆ Ē such that,

(a) |T i| + |{(T̂ , j) : T̂ ∈ T + and Φ+(T̂ , j) = i}| is odd.

(b) {E∗(Tj : T \ Tj) : T̂ ∈ T + and Φ+(T̂ , j) = i} and {E∗(T1 : T \T1) : T̂ ∈ T i} and

{R̄i} support an eulerian subgraph in Ḡ∗ .

(c) s∗i = x∗(R̄i) +
∑

T̂∈T i

w(T̂) is of minimum value.

In fact, if we solve each of these h problems, it is just a matter of defining T =

T + ∪ T 1 ∪ T 2 ∪ . . . ∪ T h, and Φ(T̂ , j) = Φ+(T̂ , j) if T̂ ∈ T + and Φ(T̂ , 1) = i for each

T̂ in T i. If we do so, it is easy to see that s∗ = s∗1 + . . . s∗h − h +
∑

T̂∈T +

w(T̂) and that

(i)-(iv) will be satisfied.

Consider any tooth T̂ ∈ T + and j ∈ 1, . . . , κ(T̂). Let S1 = δ(Tj) and S2 = δ(T).

Observe that S1 and S2 define eulerian subgraphs in Ḡ∗ . Further, since S1 ∪ S2 =

38

δ(T)∪E(Tj : T \ Tj), and since x∗(δ(T))+x∗(E(Tj : T \Tj)) < h+ r +2 (see Lemma

2.10), it follows that S1 ∪ S2 cannot contain more than (h + r + 2)/2 edge disjoint

cycles (due to the subtour elimination constraints). Thus, from Proposition 2.4 we

conclude that the number of nodes having odd degree in E(Tj : T \ Tj) is less than

or equal to 4(h + r + 1).

Now consider the multigraph G′ obtained from node set V (Ḡ∗) and edges obtained

from the union (allowing parallel edges) of the sets E(Tj : T \ Tj) such that T̂ ∈ T +

and Φ(T̂ , j) = i. Let O(G′) represent all of the nodes having odd degree in G′.

Observe that |O(G′)| ≤ 4lr(h + r + 1). In fact, we know there are at most l teeth in

T +, and we know that each tooth T̂ ∈ T + is such that κ(T̂) ≤ r. Thus, there can

be at most lr pairs (T̂ , j) such that Φ(T̂ , j) = i with T̂ ∈ T + and j ∈ 1, . . . , κ(T̂).

The bound follows from the fact that each set E(Tj : T \ Tj) can contribute at most

4(h + r + 1) odd-degree nodes to G′.

Iteratively remove from G′ pairs of parallel edges until no more such pairs remain.

Let Yi be the edge set remaining (e.g., Yi will be the set of edges appearing in an odd

number of sets E∗(Tj : T \ Tj) with T̂ ∈ T + and Φ+(T̂ , j) = i). Observe that each

time we remove a pair of parallel edges the number of odd-degree nodes in G′ does

not change. Thus, the number of odd-degree nodes in the subgraph induced by Y is

not more than 4lr(h + r + 1), or simply O(lrh + lr2).

Define another multi-graph, named Mi, having node set V (Ḡ∗). Add edge set Yi to

G′′, label each of these edges as yellow, and assign to each a weight of zero. For each

edge e ∈ Ē add an edge e′ to Mi having the same end-points (call this set of edges

B). Label each of these edges blue, and assign to them a weight equal to x∗
e. Finally,

for each each one-domino in L∗, identify the end-nodes s and t corresponding to its

domino-paths, and add an s-t edge labeled red to Mi with weight equal that of the

domino (call this edge set R).

Consider a set of one-dominoes T i ⊆ L∗ and a set of edges R̄i ⊆ Ē satisfying (a)-(b).

Let R′ be the set of red edges in Mi corresponding to the one-dominoes in T i, and

39

let B′ be the set of blue edges in Mi corresponding to edges in R̄i. Observe that

D = B′ ∪ Y ∪ R′ defines an RYB subgraph of Mi, as defined in Proposition 2.6, and

that the weight of D equals exactly x∗(R̄i) +
∑

T̂∈T i

w(T̂).

Likewise, consider an RYB subgraph D ⊆ E(Mi). If |{T̂ ∈ T + : Φ(T̂ , j) = i, for some j ∈

1, . . . , κ(T̂)}| is even, assume D is odd. Otherwise, assume D is even. Let T i ⊆ L∗

be the one-dominoes associated to red edges in D, and let R̄i ⊆ Ē correspond to the

blue edges in D. Observe that T i and R̄i satisfy the conditions (a)-(b). Further, the

weight of D is equal to exactly, x∗(R̄i) +
∑

T̂∈T i

w(T̂).

Thus, we can see that the problem of identifying the sets T i and R̄i such that s∗i is

minimized, reduces to the problem of finding a minimum weight RYB graph (of the

appropriate parity) in Mi.

The running time of this procedure will be determined by the amount of time required

to find h minimum-weight RYB subgraphs (one for each graph Mi) of the appropriate

parity. From Proposition 2.6, this will equal O(h2lrh+lr2 + h(lrh + lr2)2|V̄ |2 + |V |3).

We are now ready for our main result, which we prove by means of an algorithm.

Theorem 2.3. Consider x∗ such that all of the subtour elimination constraints are satisfied,

and such that the support graph G∗ is planar. It is possible to identify a maximally violated

constraint in D(h, l, r) in O(nlr2+l(h+3)(r+1)+l+3).

Proof. The algorithm works by iterating over three loops: First, we enumerate over

all collections T + ⊆ L∗ such that |T +| = l. Observe that there are
(|L∗|

l

)
such

sets, that is O(nl(r2+(h+3)(r+1)+1)). Second, for each of these sets T + we enumerate

over all possible h-tooth associations Φ+ defined on T +. Given T +, observe that

there are at most hr such associations. Third, for each of these pairs T +,Φ+ we

identify an h-parity extension (T ,Φ,R) of T +,Φ+ minimizing the quantity s∗ =
h∑

i=1
x∗(Ri) +

∑

T̂∈T
w(T̂)− h. This last step requires O(n3). As we have seen in Lemma

2.3, each of these h-parity extensions can be used to obtain an h-parity constraint

40

with slack s∗. Thus, among all of the extensions generated, we keep the one with

smallest value s∗. Note that this h-parity constraint will be optimal (e.g., most

violated). In fact, every optimal h-parity constraint must be an extension of some

pair T +,Φ+, thus every possible h-parity constraint will be indirectly considered

by the algorithm. Putting everything together we get an algorithm that runs in

O(nl(r2+(h+3)(r+1)+1) · hr · n3) = O(nlr2+l(h+3)(r+1)+l+3).

Corollary 2.1. Consider x∗ such that all of the subtour elimination constraints are satisfied,

and such that the support graph G∗ is planar. It is possible to separate a super-class of

clique-tree inequalities having h handles in o(nh4).

Proof. Observe that every clique-tree on h handles has at most h − 1 large teeth.

Further, each large tooth can intersect at most h handles. Thus, considering l = r = h

in Theorem 2.3 we get the desired result.

2.6 Final remarks

In this chapter we have constructed a new, very general class of valid inequalities for the

TSP which contains many other well-known valid TSP inequalities. In addition, we have

shown that assuming planarity of the support graph, and fixing the number of handles and

large teeth, it is possible to separate a super-class of bipartition and clique-tree inequalities

in polynomial time. However, the algorithm we have presented is very slow for practical

separation purposes. In this section we begin by discussing some algorithmic speed-ups.

Then, we remark on the relationship between this result and that proposed by Carr [30] —

who proposed a similar algorithm for non-planar graphs.

By carefully observing the proof of Theorem 2.3, it is possible to see that the bottleneck

of the separation algorithm lies in enumerating all of the candidate sets of large teeth.

In order to improve upon this key step it is necessary to go back to Proposition 2.3 and

reduce the size of the list of candidate teeth L∗. It seems likely that every k-domino

T̂ = {T1, . . . , Tk, T} participating in a violated h-parity constraint satisfies x(δ(Tj)) <

4. The reasoning for this is that halves of a tooth in a violated inequality should be

41

connected, and so should their complementation. Proving this likely requires using an

inductive condition whereby it is assumed that before separating h-parity constraints all

r-parity constraints with r < h have been solved. The benefit of proving this would lie

in that instead of enumerating all possible subsets of A having size k, one could instead

enumerate subsets of B = {B ! V : x(δ(x)) < 4} — which is considerably smaller. Another

possible speed-up might be to improve upon the algorithm of Nagamochi et. al. [88]

by taking into account planarity and the subtour elimination constraints. Perhaps one

alternative to using Nagamochi et. al. algorithm would be to design an algorithm which

works by solving shortest path problems, such as the one used by Letchford [73] to enumerate

one-dominoes. An interesting way of doing this might consist in generalizing (if possible)

Lemma 2.9 to show that there exist maximally violated h-parity constraints where every

k-domino T̂ = {T1, . . . , Tk, T} is such that δ(T), δ(T1), . . . , δ(Tk), δ(T \T1), . . . , δ(T \Tk) are

all minimal cuts. This might allow for a different separation approach which would work

by solving shortest path problems instead of enumerating partial tooth-handle associations

and then completing them.

Next, consider the following Theorem, proven by Carr [30].

Theorem 2.4 (Carr 1997). Consider positive integers h, t and a fractional solution x∗

satisfying all of the subtour elimination constraints. It is possible to separate the class of

bipartition inequalities having h handles and t teeth in polynomial time.

It is easy to see that this result is very similar to that in Theorem 2.3. The main

difference is that in non-planar graphs it seems necessary to specify the total number of

teeth to be separated, whereas in the case of planar graphs it suffices to specify the total

number of large teeth. An interesting observation is that in both cases it is not strictly

necessary to specify a bound on the number of teeth having three or more halves. This is

because of the observation following Lemma 2.2 — that the number of teeth having more

than three halves is naturally bounded by the number of handles. The proof of Carr’s

theorem follows a scheme similar to that of Theorem 2.3. Instead of enumerating h-tooth

associations, Carr enumerates what he calls “backbones” which, essentially, are the same

42

thing. It seems likely that Carr’s proof could be easily extended to separate GDP inequalities

by taking into account the observations made in this chapter, with the restriction that the

number of one-dominoes need be specified in case of non-planar graphs.

43

CHAPTER 3

Mixed integer knapsack problems

3.1 Introduction

Consider a positive integer n. For each k = 1, . . . , n let ak, ck ∈ Q, lk,∈ Q ∪ {−∞}, and

uk ∈ Q ∪ {+∞}. Let b ∈ Q, and consider I ⊆ {1, . . . , n}. The following problem will

henceforth be referred to as the Mixed Integer Knapsack Problem (MIKP) :

(MIKP) max
n∑

k=1
ckxk

s.t.,
n∑

k=1
akxk ≤ b

lk ≤ xk ≤ uk, ∀k = 1, . . . , n

xk ∈ Z, ∀k ∈ I

Throughout this chapter we will assume that for each k = 1, . . . , n either ak += 0 or

ck += 0, else, we could remove variable xk from consideration as it does not affect the

problem.

In this chapter we present an algorithm for solving MIKP. That is, an algorithm which

either (a) proves MIKP is infeasible, (b) proves MIKP is unbounded, or (c) finds an optimal

solution to MIKP.

44

3.1.1 Background

There are many variants of the MIKP which have been studied in the literature. In these

it is traditionally assumed that all objective function coefficients, all constraint coefficients,

and all variables must take integer and non-negative values. In addition:

• In the Knapsack Problem (KP), li = 0 and ui = 1 for all i ∈ 1, . . . , n.

• In the Bounded Knapsack Problem (BKP), li = 0 and ui < +∞ for all i ∈ 1, . . . , n.

• In the Unbounded Knapsack Problem (UKP), li = 0 and ui = +∞ for all i ∈ 1, . . . , n.

Knapsack problems and their variants have a rich history in the research literature. For a

complete survey of these problems, as well as an up-to-date account of the most effective

solution methodologies, the books by Kellerer, Pferschy, and Pisinger [72], and Martello and

Toth [80] provide an excellent source of material. In what follows we give a brief overview

of the most important advances.

Most of the exact algorithms which have been proposed for KP, BKP, and UKP employ

either Branch and Bound or Dynamic Programming, and are typically classified into two

variants: primal-methods, which work by keeping a feasible solution at each iteration, and

primal-dual methods, in which infeasibility is permitted in intermediary stages.

Most branch-and-bound algorithms follow the primal framework originally proposed by

Horowitz and Sahni [67] for KP. Martello and Toth have greatly extended this approach by

use of ad-hoc bounding techniques, basic pre-processing and heuristics. Their extensions

include algorithms for KP [77], [78], and [81], BKP [76] and [80], as well as UKP [76]

and [79]). Pisinger proposed an alternative branch-and-bound algorithm for KP [93] which

worked within a primal-dual framework. This approach seemed to have similar success as

the approaches of Martello and Toth [72].

Dynamic Programming algorithms have their roots in the well-known primal algorithm

of Bellman [20]. However, a different primal-dual approach was presented by Pisinger

[96]. Pisinger has shown that dynamic programming can be very effective methodology

for tackling instances of both KP [94] and BKP [97]. Greenberg and Feldman [64], and

45

Andonov, Poirriez, and Rajopadhye [5] have shown the same for UKP.

It is interesting to note that the most successful algorithm for KP to date is neither a

branch-and-bound algorithm nor a dynamic-programming algorithm. The COMBO algo-

rithm of Martello, Pisinger, and Toth [75] actually uses a mix of branch and bound and

dynamic programming in order to tackle difficult problems.

We now focus on some of main ideas which have been utilized in the afore-mentioned

algorithms.

The Core Concept A key development in the solution of KP, BKP, and UKP was the

observation that only a relatively small subset of variables typically participate in optimal

solutions. This observation, formalized in 1980 by Balas and Zemel [19], led to the concept

of core, an apriori estimate of what that small subset of variables might be. The concept

of a core has evolved much in recent years, and has been applied in many different ways to

improve both branch-and-bound algorithms, as well as dynamic-programming algorithms.

The basic idea is that the optimization is first restricted to variables in the core, and then,

gradually, the core size is increased so as to encompass the entire problem. Interestingly,

Pisinger observed [95] that branch and bound algorithms are very sensitive to the selection

of a core, whereas dynamic algorithms tend to have a much more robust performance and

benefit more from the concept.

Reducing BKP to KP Observe that an instance of BKP can be easily reduced to an

instance of KP by means of a simple transformation. In fact, every non-negative integer

a can be represented uniquely as a partial sum of powers of two. As an example, 29 =

20+22+23+24. This makes it possible to substitute each variable xi in BKP by .log(ui)/+1

binary variables. Again, as an example, consider xi such that ui = 29. We can substitute

variable xi by binary variables x0
i , x1

i , x2
i , x3

i , x4
i , where a0

i = ai, a1
i = 2ai, a2

i = 4ai, a3
i =

8ai, a4
i = (29−8)ai = 11ai, and c0

i = ci, c1
i = 2ci, c2

i = 4ci, c3
i = 8ci, c4

i = (29−8)ci = 11ci.

Kellerer, Pferschy, and Pisinger [72] report that this transformation had the following

impact on branch-and-bound methodologies for BKP:

“During the seventies many papers appeared on specialized branch-and-bound

46

methods for various integer programming problems related to the knapsack fam-

ily. A few of them dealt explicitly with BKP. However, we are not aware of any

relevant publication on this topic since 1979. It seems that further research was

more or less stopped by the observation that these branch-and-bound algorithms

customized for BKP were generally outperformed by the application of branch-

and-bound methods on the instance of KP derived from the transformation ...”

In fact, most of the successful BKP-specific branch-and-bound algorithms actually work

by applying this transformation in different ways.

Dominance and Periodicity A key development in the solution of UKP instances has

been the use of dominance and periodicity.

The earliest studies of domination and periodicity date back to the work of Gilmore and

Gomory [54] in 1963, though these concepts have been extended by many different authors.

The most recent extension of their work is due to Andonov, Poirriez, and Rajopadhye [5].

This extension is the most general, and will have a direct relationship to what will be

pursued in this chapter.

Periodicity can be described as follows in the context of UKP: Consider variables xi

and xj such that ci/ai is greater than cj/aj . This indicates that variable xi is “better” in

some way, as it yields a greater return in the objective function per unit of capacity used up

in the knapsack constraint. Now consider integers ki and kj such that aiki = ajkj . From

the previous observations it is clear that there exists an optimal solution of UKP such that

xj ≤ kj − 1. In fact, every solution such that xj ≥ kj can be “improved” by removing kj

units from xj and adding ki to xi. This will clearly preserve feasibility, and in addition,

because of the ratio condition, this cannot yield a solution which is worse.

Consider an instance of type UKP, and i += j in 1, . . . , n. Say that xi simply dominates

xj if aj ≥ ai and cj ≤ ci. What Gilmore and Gomory fundamentally observed was that if

xi simply dominates xj , then, there exists an optimal solution in which xj is never used;

thus, xj can be eliminated from consideration in the problem.

Martello and Toth [79] later extended this notion in the following way: Say that xi

47

multiply dominates xj if .ai/aj/ ≥ ci/cj . Again, it is easy to see that if xi multiply

dominates xj , the same principle applies.

Finally, Andonov et. al. [5] generalized this notion as follows: Say that a set of indices

I ⊆ {1, . . . , n} is such that the corresponding variables threshold-dominate xj if there exists

an integer multiplier α and a vector π composed of n integers such that,
∑

i∈I πiai ≤ αaj

and
∑

i∈I πici ≥ αcj . Again, given that all the variables are unbounded, this condition

implies that there it is possible to impose xj ≤ α − 1 in the presence of the variables xi

with i ∈ I.

These ideas have been used in a wide-variety of ways. Most notably, the dynamic-

programming algorithm of Andonov et. al. [5], by using these ideas, has become the most

effective algorithm for tackling UKP to date.

It is interesting to note that the notions of dominance and periodicity have not been

used to tackle instances of KP and BKP. In fact, in the approach proposed in this chapter

exactly this will be done, in the even more general class of problems MIKP.

The Mixed Integer Knapsack Problem Curiously enough, we are not aware of any

work pursuing the more general class of problems MIKP. In fact, we are not aware of any

work in which knapsack problems with continuous variables are studied, nor of any work

on knapsack problems having both bounded and unbounded variables.

3.1.2 About this chapter: Motivation and contribution

In this study we present a new branch-and-bound algorithm for MIKP. Solving MIKP is

fundamentally different than solving KP, BKP, and UKP, given that (1) it is not clear how

continuous variables should be introduced in the current solution methodologies for KP,

BKP, and UKP, and (2) MIKP works simultaneously with both bounded and unbounded

variables.

The methodology that we propose is a linear-programming-based algorithm which ex-

ploits dominance conditions similar to those used in algorithms for UKP, but in the context

of problems with bounds. In addition to cost-domination ideas such as those used for UKP,

lexicographic-domination conditions are used to eliminate problems with symmetry. One

48

interesting aspect of this approach is that it differs from traditional linear-programming

based algorithms by allowing feasible solutions to be pruned during the branching phase.

The idea is that feasible solutions will only be pruned if either (a) they are not optimal

(cost-domination-criteria), or (b) if they are optimal, but somewhere else in the tree it is

known that there is another optimal solution (lexicographic-domination-criteria).

As will be seen in the computational section, solving instances of MIKP can be very

difficult, even for very effective mixed integer programming solvers such as CPLEX [69].

The proposed algorithm is shown to be very effective in solving instances of MIKP, much

more effective than CPLEX in fact, both in the amount of time taken to solve problems as

by the size of the branch and bound tree explored to find the optimal solution.

As we will see in Chapter 4, being able to solve MIKP efficiently can have important

applications to better being able to generate cutting planes for single-row relaxations of

general mixed integer programming problems. In addition, being able to solve instances of

MIKP by linear-programming based branch-and-bound algorithms may provide important

insight into how general mixed-integer-programming problems should be tackled as well.

The organization of this chapter is as follows:

In Section 3.2 an easy way of identifying unbounded solutions is presented. In Section

3.3 a way of pre-processing instances of MIKP is presented. In Section 3.4 the issue of

quickly solving the LP-relaxation of MIKP is addressed. In Section 3.5 a simple branch-

and-bound algorithm for MIKP is presented. In Section 3.6 this simple branch-and-bound

algorithm is enhanced by introducing domination-criteria. In Section 3.7 the effectiveness

of the domination-enhanced branch-and-bound scheme is analyzed computationally, and

compared to that of the general mixed-integer-programming solver CPLEX.

3.2 Infeasible, unbounded, and trivial instances of MIKP

In this section we give address two issues: infeasibility and unboundedness. As we will

see, detecting infeasibility and unboundedness is very easy. After describing how to detect

infeasible instances, a simple characterization of unboundedness for MIKP is stated. This

characterization allows us to construct a single-pass linear time algorithm for detecting if

49

MIKP is unbounded. In those cases that MIKP is unbounded, the algorithm provides a proof

by means of ray. In addition, some of the techniques used to characterize unboundedness

also allows us to detect a certain class of instances which we call “trivial”. As the name

suggests, these “trivial” instances are very easy to solve.

In order to detect infeasibility it is possible to do a single-pass through the variables in

any order. First, observe that if there is any variable xi with i = 1, . . . , n such that ai > 0

and li = −∞, or such that ai < 0 and ui = −∞, then the problem is feasible. In fact, if

such a variable exists, regardless of what values the other variables take, xi can be set in

such a way as to make the knapsack constraint be satisfied. Assume this is not the case,

and attempt to construct a feasible solution xo as follows: For each i ∈ 1, . . . , n such that

ai ≥ 0 set xo
i = 0li1 if i ∈ I, and xo

i = li if not. For each i ∈ 1, . . . , n such that ai < 0 set

xo
i = .ui/ if i ∈ I and xo

i = ui if not. Clearly xo satisfies all of the bound and integrality

constraints. In addition, each variable xo
i is such the quantity aixo

i is as small as possible.

Thus, if
∑n

i=1 aixo
i ≤ b we conclude that the problem is feasible, and otherwise, that it is

infeasible.

The concept of “efficiency” which we now proceed to define, will be used throughout

this chapter. Intuitively, the efficiency of a variable tells us how valuable it is relative to

the amount of capacity it uses up in the knapsack constraint.

Definition 3.1. Consider k ∈ {1, . . . , n}. Define,

ek =






ck/ak if ak += 0

+∞ if ak = 0 and ck > 0

−∞ if ak = 0 and ck < 0

We say that ek is the efficiency of variable xk.

In order to characterize unboundedness we will classify some of the unbounded variables

according to the definitions below.

Definition 3.2. Consider k ∈ {1, . . . , n}.

We say that xk is a potentiator if,

(ak ≤ 0, ck > 0, uk = +∞) or (ak ≥ 0, ck < 0, lk = −∞).

50

We say that xk is an accumulator if,

(ak < 0, ck = 0, uk = +∞) or (ak > 0, ck = 0, lk = −∞).

We say that xk is an incrementor if,

(ak > 0, ck > 0, uk = +∞) or (ak < 0, ck < 0, lk = −∞).

We say that xk is a decrementor if,

(ak > 0, ck ≥ 0, lk = −∞) or (ak < 0, ck ≤ 0, uk = +∞).

Observe that if xk is an accumulator, then it is also a decrementor. Furthermore, con-

sider a free variable xk. Observe that xk is a decrementor if and only if it is an incrementor.

Intuitively, when MIKP has a potentiator, the problem should be unbounded. In fact,

consider a feasible solution x to MIKP. If ak ≤ 0, ck > 0 and uk = +∞, then, if we

arbitrarily increase xk, the problem will remain feasible, yet the objective function value

will increase. Likewise, if ck < 0 we can arbitrarily decrease xk to achieve the same effect.

Similarly, if MIKP has an incrementor xi and a decrementor xj such that ei > ej , the

problem should be unbounded. This is because the variable xj can be used to “cancel” out

the effect of xi in the knapsack constraint, while yet being such that the net difference in

objective value is positive.

If MIKP has an accumulator, the problem should be easy to solve. This is because

accumulators allow us to arbitrarily reduce the left-hand side of the knapsack constraint

without incurring any cost to the objective function.

Formally, these observations are summarized in the following lemmas.

Lemma 3.1. If MIKB is feasible and admits a potentiator, then MIKP is unbounded.

Proof. Let xi be a potentiator. If ci > 0 define π ∈ Qn so that πi = 1 and πi = 0

for k ∈ {1, . . . , n} \ {i}. Otherwise, define π so that πi = −1 and πk = 0 for k ∈

{1, . . . , n}\{i}. It is easy to see that in either case π defines a ray and πc > 0. Hence,

MIKP is unbounded.

51

Lemma 3.2. If MIKB is feasible, and admits an incrementor xi and a decrementor xj such

that ei > ej , then MIKP is unbounded.

Proof. Assume the conditions of the lemma, and define π ∈ Qn such that,

πk =






0 if k ∈ {1, . . . , n} \ {i, j},

ai if k = i and ci ≥ 0,

−aj if k = i and ci < 0,

ai if k = j and cj ≥ 0,

−aj if k = j and cj < 0.

Observe that π is a ray. In addition, because ei > ej and πa = 0 it follows that

πc > 0. Hence, MIKP is unbounded.

Proposition 3.1. MIKP is unbounded if and only one of the following conditions hold,

• MIKP is feasible and admits a potentiator xj .

• MIKP is feasible and admits an incrementor xi and a decrementor xj such that ei > ej .

Proof. We have already seen that if either condition holds, then MIKP is unbounded.

Hence, we focus on the converse.

Suppose that MIKP is unbounded and that it does not admit a potentiator.

Let π be a ray such that πc > 0 and such that r = |{k ∈ 1, . . . , n : πk += 0}| is

minimized.

The intuition behind this proof is as follows: Among those indices k such that πk += 0,

there must exist k such that xk is an incrementor and there must exist k such that

xk is a decrementor. Choosing xi to be the most efficient such incrementor, and xj

the least efficient such decrementor, it is possible to prove that a necessary condition

for π to be a ray is that ei > ej . Thus, the proposition would hold.

Note that if πk += 0, then, ck > 0 implies ak > 0. Likewise, ck < 0 implies ak < 0.

If not, we would have either that xk is potentiator, or that setting πk = 0 we obtain

another ray with smaller value r.

52

If πk += 0 and ck = 0 then ak += 0. Otherwise, setting πk = 0 we can contradict

minimality of r.

Let K+ = {k ∈ 1, . . . , n : πkck > 0} and K− = {k ∈ 1, . . . , n : πkck ≤ 0}. Observe

that k ∈ K+ implies xk is an incrementor and πkak > 0. In fact, assume k ∈ K+. We

have πk > 0 implies uk = ∞ and ck > 0. Thus, ak > 0, and so xk is an incrementor.

On the other hand, πk < 0 implies lk = −∞ and ck < 0. Thus ak < 0 and again, xk

is an incrementor.

Observe that k ∈ K− implies xk is a decrementor and πkak ≤ 0. In fact, assume

k ∈ K−. We have πk > 0 implies uk = ∞ and ck ≤ 0. If ck = 0 then πk > 0 implies

ak < 0. Thus xk is a decrementor. If ck < 0 this implies ak < 0, and again xk is

a decrementor. On the other hand, πk < 0 implies lk = −∞ and ck ≥ 0. If ck = 0

then πk < 0 implies ak > 0. If ck > 0 we know ak > 0. Thus, in either case xk is a

decrementor.

Note that because πa ≤ 0 and πc > 0 must be satisfied, both K+ and K− must be

non-empty sets. Without loss of generality, we will now assume that k1 > k2 implies

ek1 ≥ ek2 .

Let k1 = min{k : k ∈ K+} and let k2 = max{k : k ∈ K−}. We now prove that

ek1 > ek2 .

Suppose that ek1 ≤ ek2 . Because of the way in which k1 and k2 are defined, it follows

that ek ≤ ek1 for all k ∈ K+. Likewise, it follows that ek ≥ ek2 for all k ∈ K−.

Assume that cπ > 0, and let K = {k ∈ 1, . . . , n : πk += 0}.

53

We have that,

0 < πc =
∑

k∈K

πkck =
∑

k∈K

πkekak

=
∑

k∈K+

πkekak +
∑

k∈K−

πkekak

≤ ek1

∑

k∈K+

πkak + ek2

∑

k∈K−

πkak

≤ ek2

∑

k∈K

πkak

= ek2πa.

However, because ek2 ≥ 0, it follows from above that πa > 0 and ek2 > 0. However,

this is contradictory with π being a ray.

We thus have that ek1 > ek2 . However, k1 and k2 now satisfy the second condition of

the proposition.

Note that even if MIKP is bounded, it may still admit an accumulator.

Definition 3.3. Consider an instance of MIKP which is feasible and not unbounded. If

MIKP has an accumulator, we say that MIKP is trivial.

Proposition 3.2. Assume that MIKP is feasible and not unbounded. In addition, let j

correspond to an accumulator of MIKP. For each k ∈ 1, . . . , n such that k += j define:

• Uk =






.uk/ if k ∈ I,

uk otherwise.

• Lk =






0lk1 if k ∈ I,

lk otherwise.

• xk =






Uk if (ck > 0) or (ck = 0 and uk < ∞),

Lk if (ck < 0) or (ck = 0 and lk > −∞),

0 if ck = 0 and xk is free.

In addition, if aj < 0 let

xj = max









−

∑
k %=j

akxk − b

aj




, lk





.

54

Otherwise, if aj > 0 let

xj = min






−

∑
k %=j

akxk − b

aj

 , uk





.

Then, x is well-defined and corresponds to an optimal solution of MIKP.

Proof. To see that x is well-defined, note that j is also a decrementor. Because j cor-

responds to a variable with null efficiency, and because the problem is not unbounded,

there can be no incrementors or potentiators. Thus, for k ∈ {1, . . . , n} \ {j} we have

that ck > 0 implies uk < ∞. Likewise, ck < 0 implies lk > −∞.

It is easy to see that by the way in which xj is defined, x is feasible for MIKP.

To see that x is optimal, simply note that whenever ck > 0, the variable xk takes as

large a value as the bounds permit. Likewise, when ck < 0 the variable xk is as small

as the bounds permit.

Algorithm 1 is a one-pass algorithm for detecting if MIKP is unbounded or trivial. In

case that the instance is found to be unbounded or trivial, the algorithm returns indices

corresponding to a potentiator, an accumulator, or an incrementor/decrementor pair.

3.3 Preprocessing an instance of MIKP

In this section we are concerned with reducing an instance of MIKP to another, equivalent

instance of MIKP which is easier to solve. A series of procedures for pre-processing an

instance of MIKP are now presented. These are presented as distinct and independent

procedures which should be performed one after another in steps. However, in an efficient

implementation it is possible to perform most of these in one single linear-time pass. Most of

these ideas are not new, and are the same as the pre-processing techniques used for general

mixed integer programming problems. For a thorough introduction to pre-preprocessing

see Savelsbergh [101].

Throughout this section we adopt the following conventions: ∞ + ∞ = ∞, if x > 0

then x · ∞ = ∞, if x < 0 then x · ∞ = −∞, ∞ · ∞ = ∞, .−∞/ = −∞, 0∞1 = ∞, and

−∞ ·∞ = −∞.

55

Algorithm 1 Detecting unbounded and trivial solutions
Input: c, a, b, e, l, u
1: ko ← −1
2: k1 ← −1; k2 ← −1
3: e+ ← −∞; e− ← +∞
4: status ← problem is not unbounded and is not trivial
5: for i = 1 to n do
6: if xi is a potentiator then
7: ko ← i
8: status ← potentiator
9: return

10: else if xi is an incrementor and ei > e+ then
11: e+ ← ei

12: k1 ← i
13: else if xi is an decrementor and ei < e− then
14: e− ← ei

15: k2 ← i
16: end if
17: end for
18: if e+ > e− then
19: status ← incrementor/decrementor pair
20: return
21: else if e− = 0 then
22: status ← accumulator
23: end if
24: return

Step 1. Test if MIKP is infeasible, trivial or unbounded. This can be done as

proposed in the previous section. If the problem is infeasible, trivial or unbounded there is

no need for further pre-processing, as the problem has been solved.

Note that if MIKP is feasible, not trivial and not unbounded, then it has no potentiators

and no accumulators. In addition if variable xi is an incrementor, and xj a decrementor,

then ei ≤ ej .

Step 2. Strengthen bounds. Consider a variable xk. Define,

Uk =






+∞ if ak ≤ 0,(
b −
∑

i%=k:ai>0
aili −

∑
i%=k:ai<0

aiui

)
/ak otherwise.

Lk =






−∞ if ak ≥ 0,(
b −
∑

i%=k:ai>0
aiui −

∑
i%=k:ai<0

aili

)
/ak otherwise.

56

Observe that these values are well-defined. That is, there are no divisions by zero and we

never evaluate the expression ∞ − ∞.

If k /∈ I then re-define uk := min{uk, Uk} and lk := max{lk, Lk}. Otherwise, if k ∈ I

re-define uk := min{uk, .Uk/} and lk := max{lk, 0Lk1}. Observe that these bounds, if finite,

are tight.

Step 3. Fix values of variables. Consider a variable xk.

If ak ≤ 0 and ck ≥ 0 we may fix xk = uk. In fact, since xk is not an accumulator

or potentiator, uk < +∞. On the other hand, because the bounds have already been

strengthened, we know that uk is an admissible value for xk.

Else, if ak ≥ 0 and ck ≤ 0 we may fix xk = lk. In fact, since k is not an accumulator

or potentiator, lk > −∞. On the other hand, because the bounds have already been

strengthened, we know that lk is an admissible value for xk.

Note that after fixing variables as described above, we can substitute out the values

in MIKP and obtain a smaller problem with a new right-hand side. After doing these

substitutions we obtain a smaller instance of MIKP such that each variable xk satisfies

(ak > 0 and ck > 0) or (ak < 0 and ck < 0).

Step 4. Complement variables. For simplicity, we will substitute variables so that the

lower-bound is always non-negative. Consider a variable xk. If −∞ < lk < 0 substitute

x′
k = (xk − lk). If lk = −∞ substitute x′

k = uk − xk.

Step 5. Sort data. Sort the variables in order of decreasing efficiency. Break first ties if

variables are of integer type or not. Break second ties by value of ak.

Step 6. Aggregate variables. Consider two variables xi and xj for which ai = aj , ci =

cj and (i ∈ I) = (j ∈ I). These two variables can be aggregated into a single variable xk

such that ak = ai, ck = ci, lk = li + lj , uk = ui + uj , and k ∈ I if and only if i ∈ I. This

elimination of symmetry will be very helpful later in speeding up the branch and bound

algorithm. Note that identifying variables to be aggregated is very easy and can be done in

linear time given the way the variable indices are sorted.

57

After pre-processing we obtain the following problem:

PP-MIKP max
∑

k∈P∪N
ckxk

s.t.,
∑

k∈P∪N
akxk ≤ b

lk ≤ xk ≤ uk, ∀k ∈ P ∪ N

xk ∈ Z, ∀k ∈ I

where, P = {k : ck > 0 and ak > 0}, and N = {k : ck < 0 and ak < 0}.

PP-MIKP satisfies the following conditions:

• PP-MIKP is feasible.

• PP-MIKP is not unbounded, and is not trivial.

• The variable indices are sorted, as described in Step 5.

• All variables xk are such that (ak > 0 and ck > 0) or (ak < 0 and ck < 0). If the

former condition holds, we say k ∈ P . If the latter condition holds, we say k ∈ N .

• For each k ∈ P ∪ N , we have lk ≥ 0.

• For each k ∈ P ∪N , all finite bounds are tight; that is, there exists a feasible solution

to MIKP which achieves the bound.

• There are no two identical variables.

3.4 Solving the LP relaxation of PP-MIKP

In this section we discuss how to solve the linear programming relaxation of PP-MIKP.

That is, we focus in solving the problem,

LP-PP-MIKP max
∑

k∈P∪N
ckxk

s.t.,
∑

k∈P∪N
akxk ≤ b

lk ≤ xk ≤ uk, ∀k ∈ P ∪ N.

58

Note that LP-PP-MIKP is nothing more than a linear programming problem. As thus,

any Simplex-based linear programming software package would do to solve it. However, this

single row variant of a linear programming problem is so much simpler than its multiple-row

variants that it merits a closer look.

In this section we present a bare-bones linear-programming approach for solving LP-

PP-MIKP. In essence, what is proposed is not new; it is simply a special case of the Simplex

algorithm, which extends in a simple way Dantzig’s algorithm for solving the linear pro-

gramming relaxation of bounded, positive coefficient knapsack problems. However, looking

at the mechanics of solving this problem reveals that it is very easy. The algorithm pro-

posed is trivial to implement, and, as we will see in the computational results section, runs

considerably faster than available commercial packages designed for more general problems.

In addition, with little effort it is possible to implement this to work with exact arithmetic.

3.4.1 Characterizing optimality

Definition 3.4. We say that x∗ ∈ R|P |+|N | is tight for PP-MIKP if,

∑

k∈P∪N

akx
∗
k = b.

Lemma 3.3. If there exists a tight feasible solution for LP-PP-MIKP, then there exists a

tight optimal solution for LP-PP-MIKP.

Proof. Let x̂ be an optimal solution of LP-PP-MIKP which is not tight. If x̂i = ui

for all i ∈ P and x̂j = lj for all j ∈ N , then there clearly exists no tight feasible

solution of LP-PP-MIKP.

If there exists i ∈ P such that x̂i < ui, we can increase x̂i by a small amount,

maintaining feasibility, yet at the same time increasing the objective function value.

Likewise, if there exists j ∈ N such that x̂j > lj , we can decrease x̂j by a small amount,

maintaining feasibility, yet at the same time increasing the objective function value.

Either case contradicts optimality of x̂.

Definition 3.5. Say that x∗ ∈ R|P |+|N | is k-efficient for LP-PP-MIKP if lk ≤ x∗
k ≤ uk and,

• i ∈ P and i > k implies x∗
i = li.

59

• i ∈ P and i < k implies x∗
i = ui.

• i ∈ N and i > k implies x∗
i = ui.

• i ∈ N and i < k implies x∗
i = li.

Theorem 3.1. If x∗ is tight and k-efficient for PP-MIKP, then x∗ is an optimal solution

of LP-PP-MIKP.

Proof. Let x∗ be tight and k-efficient for LP-PP-MIKP. From Lemma 3.3, we know

that there exists at least one tight optimal solution of LP-PP-MIKP. Define ∆(x, x∗) =

{i ∈ P ∪ N : xi += x∗}, and let x̂ represent a tight optimal solution of LP-PP-MIKP

minimizing |∆(x, x∗)|. If |∆(x̂, x∗)| = 0 we are done. Hence, assume |∆(x̂, x∗)| > 0.

Consider i ∈ ∆(x̂, x∗). Note that aix∗
i += aix̂i and

∑
i∈P∪N aix∗

i =
∑

i∈P∪N aix̂i

implies that there must exist j ∈ ∆(x̂, x∗) such that i += j, and such that (ajx∗
j −

aj x̂j)(aix∗
i − aix̂i) < 0.

Without loss of generality, assume that ai(x∗
i − x̂i) > 0 and aj(x∗

j − x̂j) < 0.

Note that i ≤ k and j ≥ k.

In fact, i ∈ P implies ai > 0, hence x∗
i > x̂i. However, this is only possible if x∗

i > li,

thus i ≤ k. If i ∈ N we have ai < 0, thus x∗
i < x̂i. Again, this is only possible if

x∗
i < ui, thus i ≤ k.

Analogously, j ∈ P implies aj > 0, hence x∗
j < x̂j . However, this is only possible if

x∗
i < ui, thus j ≥ k. If j ∈ N we have aj < 0, thus x∗

j > x̂j . Again, this is only

possible if x∗
j > li, and so j ≥ k.

This implies that ei ≥ ej .

Now consider a very small value, ε > 0, and define xε as follows,

xεk =






x̂j − ε
ai(x∗

i −x̂i)
aj

if k = j,

x̂i + ε(x∗
i − x̂i) if k = i,

x̂k otherwise.

60

Note that:

cxε − cx̂ = −εcj
ai(x∗

i − x̂i)
aj

+ εci(x∗
i − x̂i) = εai(x∗

i − x̂i)
(

ci

ai
− cj

aj

)
≥ 0,

and,

axε = ax̂ − εaj
ai(x∗

i − x̂i)
aj

+ aiε(x∗
i − x̂i) = ax̂ = b.

Furthermore, xεi = εx∗
i + (1 − ε)x̂i. Thus, li ≤ xεi ≤ ui.

Also, since aj(x∗
j − x̂j) < 0, we know that x∗

j > x̂j , implies aj < 0, and x∗
j < x̂j

implies aj > 0. Thus, since ε > 0, and ai(x∗
i − x̂i) > 0, we conclude lj ≤ xεj ≤ uj .

Hence, either cxε − cx̂ > 0, in which case we contradict the optimality of x̂, or, we

conclude that xε is tight and optimal for LP-PP-MIKP.

Finally, if xε is optimal, observe that as ε increases, |xεi − x∗
i | and |xεj − x∗

j | decrease.

Thus, by sufficiently increasing ε we will obtain a tight optimal solution of LP-PP-

MIKP such that |∆(xε, x∗)| < |∆(x̂, x∗)|, contradicting the fact that x̂ minimizes

|∆(x̂, x∗)|.

61

3.4.2 The phase I algorithm

The Phase I Algorithm takes as input an instance of LP-PP-MIKP, and does one of two

things: (a) It proves that the instance is infeasible, or (b) it generates x, a k-efficient solution

of the instance, having non-negative slack.

The algorithm begins by defining k = max{j ∈ P ∪N : j ∈ N and uj = +∞}, assuming

that if the latter set is empty, then k = −1. If k = −1 it generates the solution x, where,

for j ∈ P ∪ N ,

xj =






lj if j ∈ P,

uj if j ∈ N.

If k > −1 it generates the solution x, where, for j ∈ (P ∪ N) \ {k},

xj =






uj if j ∈ P and j < k,

lj if j ∈ P and j > k,

uj if j ∈ N and j > k,

lj if j ∈ N and j < k

and where,

xk = max




−
1
ak




∑

j %=k

ajxj − b



 , lk




 .

Observe that if k = −1 then the algorithm may generate an infeasible solution. In this

case it is easy to see that the problem itself is infeasible. Also note that when the algorithm

generates a feasible solution, this solution will be efficient. Thus, if the solution is tight

it will be optimal. Algorithm 2 shows how a Phase I algorithm for LP-PP-MIKP may be

implemented.

3.4.3 The primal phase II algorithm

The primal phase II algorithm takes as input an efficient solution of LP-PP-MIKP with

non-negative slack, and finds from this an optimal solution to the problem. For this, it

works by either increasing the values of positive coefficient variables, or decreasing the

values of negative coefficient variables in a successive manner until the tightness condition

is met, or until all of the variables are at their bounds and the iteration can’t proceed.

62

Algorithm 2 The Phase I Algorithm
Input: c, a, l, u, P, N .
Output: k, xk, objective, activity, status.
1: k ← −1
2: activity ← 0
3: objective ← 0
4: for j = n − 1 to 0 do
5: if j ∈ N and uj = +∞ then
6: k ← j
7: xk ← lj
8: break
9: end if

10: end for
11: for j = 0 to n − 1 do
12: if j ≤ k then
13: if j ∈ P then
14: activity ← activity + uj |aj |
15: objective ← objective + uj |cj |
16: else
17: activity ← activity − lj |aj |
18: objective ← objective − lj |cj |
19: end if
20: else
21: if j ∈ P then
22: activity ← activity + lj |aj |
23: objective ← objective + lj |cj |
24: else
25: activity ← activity − uj |aj |
26: objective ← objective − uj |cj |
27: end if
28: end if
29: end for
30: if activity < b then
31: status ← feasible solution
32: return
33: else if activity = b then
34: status ← optimal solution
35: return
36: else if activity > b and k > −1 then
37: xk ← (activity − b)/|ak|
38: status ← optimal solution
39: return
40: else
41: status ← problem infeasible
42: return
43: end if

63

In order to preserve efficiency at each step it iterates by modifying the variables in order

of decreasing efficiency. The algorithm always terminates with an optimal solution of the

problem. Algorithm 3 shows how a Primal Phase II procedure for LP-PP-MIKP may be

implemented.

3.4.4 The dual phase II algorithm

The dual phase II algorithm takes as input an efficient solution of LP-PP-MIKP with non-

positive slack, and finds from this, an optimal solution to the problem. For this, it works

by either decreasing the values of positive coefficient variables, or increasing the values of

negative coefficient variables in a successive manner until the tightness condition is met, or

until all of the variables are at their bounds and the iteration can’t proceed. In order to

preserve efficiency at each step it iterates by modifying the variables in order of increasing

efficiency. The algorithm either terminates with an optimal solution of the problem, or a

proof that the problem is infeasible. Algorithm 4 shows how a Dual Phase II procedure for

LP-PP-MIKP may be implemented.

3.5 A branch and bound algorithm for MIKP

3.5.1 Variable branching

At each step of the branch-and-bound algorithm, we are presented with an instance of PP-

MIKP, and an optimal solution to the corresponding linear relaxation, LP-PP-MIKP. This

solution is both tight and efficient, and is fully characterized by the values k, xk, activity

and objective. If variable k is of continuous type, we know that the current solution is

optimal for PP-MIKP. Likewise, if variable k is of integer type, and in addition, xk takes

on an integer value, then the current solution is also optimal for PP-MIKP.

Now, assume that k is of integer type and xk currently takes on a fractional value, say

fk. The simplest branching rule consists in defining two branches: In the first (which we

call the down direction), we change the upper bound of variable xk so that xk ≤ .fk/. In

the other, (which we call the up direction), we change the lower bound of variable xk so

that xk ≥ 0fk1.

64

Algorithm 3 Primal Phase II Algorithm
Input: c, a, l, u, P, N, k, xk, objective, activity.
Output: k, xk, objective, activity, status.
1: while activity < b do
2: if k ∈ P then
3: if uk < +∞ and ak ∗ (uk − xk) < (b − activity) then
4: activity ← activity + ak ∗ (uk − xk)
5: objective ← objective + (uk − xk) ∗ ck

6: else
7: objective ← objective + (b − activity) ∗ ck/ak

8: xk ← xk + (b − activity)/ak

9: activity ← b
10: status ← tight optimal
11: return
12: end if
13: else
14: if |ak| ∗ (xk − lk) < (b − activity) then
15: activity ← activity + |ak| ∗ (xk − lk)
16: objective ← objective + (xk − lk) ∗ |ck|
17: else
18: objective ← objective + (b − activity) ∗ |ck|/|ak|
19: xk ← xk − (b − activity)/|ak|
20: activity ← b
21: status ← tight optimal
22: return
23: end if
24: end if
25: k ← k + 1
26: if k ∈ P then
27: xk ← lk
28: end if
29: if k ∈ N then
30: xk ← uk

31: end if
32: end while
33: status ← optimal
34: return

65

Algorithm 4 Dual Phase II Algorithm
Input: c, a, l, u, P, N, k, xk, objective, activity.
Output: k, xk, objective, activity, status.
1: while activity > b do
2: if k ∈ P then
3: if ak ∗ (xk − lk) < (activity − b) then
4: activity ← activity − ak ∗ (xk − lk)
5: objective ← objective − ck ∗ (xk − lk)
6: else
7: objective ← objective − (activity − b) ∗ ck/ak

8: xk ← xk − (activity − b)/ak

9: activity ← b
10: status ← tight optimal
11: return
12: end if
13: else
14: if uk < +∞ and |ak| ∗ (uk − xk) < (activity − b) then
15: activity ← activity − |ak| ∗ (uk − xk)
16: objective ← objective − |ck| ∗ (uk − xk)
17: else
18: objective ← objective − (activity − b) ∗ |ck|/|ak|
19: xk ← xk + (activity − b)/|ak|
20: activity ← b
21: status ← tight optimal
22: return
23: end if
24: end if
25: k ← k − 1
26: if k ∈ P then
27: xk ← uk

28: else
29: xk ← lk
30: end if
31: end while
32: status ← problem infeasible
33: return

66

After branching we would like to avoid solving the new linear programming relaxation

of PP-MIKP to optimality from scratch; rather, we would prefer to hot-start the solve from

the current solution that we have. This is very easy to do. In the down-direction we round

down xk, and in the up-direction we round up xk. Then, activity and objective are updated.

If activity increased, we now have an efficient solution with negative slack, so we use the

dual phase II algorithm to re-solve. Otherwise, we have an efficient solution with positive

slack, so we use the primal phase II algorithm to re-solve.

Algorithm 5 illustrates this procedure.

3.5.2 Reduced cost bound improvements

In order to speed up the run-time of branch and bound algorithms, it is often desirable

to improve variable bounds as early as possible in the branching tree. One way of doing

so consists in using information derived from the optimal tableau of an LP-relaxation, and

combining this information with valid lower bounds.

Consider the use of a slack variable s. We can re-formulate PP-MIKP as,

PP-MIKP max
∑

k∈P∪N
ckxk

s.t.,
∑

k∈P∪N
akxk + s = b

s ≥ 0

lk ≤ xk ≤ uk, ∀k ∈ P ∪ N

xk ∈ Z, ∀k ∈ I.

Choose any i ∈ I and substitute,

xi =
1
ai



b − s −
∑

k∈P∪N\{i}

akxk





in the objective function. We obtain the equivalent objective function representation:

(b − s)
ci

ai
+
∑

k∈P∪N\{i}

(
ck − ak

ci

ai

)
xk.

67

Algorithm 5 Branching
Input: c, a, l, u, P, N, k, xk, objective, activity, branch direction.
Output: k, xk, objective, activity, status.
1: if branch direction = down then
2: uk ← .xk/
3: activity ← activity + ak(uk − xk)
4: objective ← objective − ck(uk − xk)
5: xk ← uk

6: if ak > 0 then
7: PrimalPhaseII(c, a, l, u, P, N, k, xk, objective, activity)

↪→ k, xk, objective, activity, status
8: return
9: else

10: DualPhaseII(c, a, l, u, P, N, k, xk, objective, activity)
↪→ k, xk, , objective, activity, status

11: return
12: end if
13: else
14: lk ← 0xk1
15: activity ← activity − ak(xk − lk)
16: objective ← objective + ck(xk − lk)
17: xk ← lk
18: if ak > 0 then
19: DualPhaseII(c, a, l, u, P, N, k, xk, objective, activity)

↪→ k, xk, , objective, activity, status
20: return
21: else
22: PrimalPhaseII(c, a, l, u, P, N, k, xk, objective, activity)

↪→ k, xk, objective, activity, status
23: return
24: end if
25: end if

68

Define zi
o = bei and c̄i

k = (ck − akei). Problem PP-MIKP can be re-written as,

PP-MIKP(i) max zi
o − eis +

∑
k∈P∪N

c̄i
kxk

s.t.,
∑

k∈P∪N
akxk + s = b

s ≥ 0

lk ≤ xk ≤ uk, ∀k ∈ P ∪ N

xk ∈ Z, ∀k ∈ I.

Now consider the following relaxation of PP-MIKP(i), where the knapsack constraint

has been eliminated from consideration:

RPP-MIKP(i) max zi
o − eis +

∑
k∈P∪N

c̄i
kxk

s.t.,

s ≥ 0

lk ≤ xk ≤ uk, ∀k ∈ P ∪ N

xk ∈ Z, ∀k ∈ I.

Let z∗ denote the optimal solution of PP-MIKP, and let z∗i denote the optimal solution

of the relaxation RPP-MIKP(i). Clearly, z∗i ≥ z∗.

Suppose we have a lower bound zlb on the optimal objective function value. That is,

zlb satisfies z∗ ≥ zlb. An easy way to obtain such a lower bound is from feasible solutions

to PP-MIKP. In fact, let x correspond to a feasible solution of PP-MIKP. Define z(x) =
∑

k∈P∪N ckxk. Clearly, z(x) ≤ z∗.

Now consider a variable xj with j ∈ I.

Suppose you would like to impose xj ≥ αj , where αj > li.

If, after re-defining uj = αj − 1, we have that z∗i ≤ zlb, then the imposed bound is valid

for the original problem. In fact, z∗i ≤ zlb implies z∗ ≤ zlb. Hence, if the condition holds,

every solution which does not satisfy the considered lower bound has a low objective value,

and so, the bound is valid.

Analogously, suppose we want to impose xj ≤ βj , where βj < uj . Then, if after re-

defining lj = βj +1, we have that z∗i ≤ zlb, then the new upper bound is valid for PP-MIKP

69

by the same reasoning.

In general, solving system RPP-MIKP(i) is trivial, since there is no constraint linking

the different variables. For this, simply fix every variable xj such that c̄i
j > 0 to its upper

bound, and every variable such that c̄i
j ≤ 0 at its lower bound. Finally, set s = 0. In

general, however, it is not even necessary to do this.

Assume x∗ is the optimal solution of LP-PP-MIKP. We know that there exists i such

that x∗ is i-efficient, and we can assume x∗ is tight (else x∗ would be optimal for PP-MIKP

as well).

Because x∗ is i-efficient and optimal for PP-MIKP it follows that for k += i,

c̄i
k > 0 ⇒ x∗

k = uk and c̄i
k ≤ 0 ⇒ x∗

k = lk.

Thus, z∗ = z∗i , and x∗ solves both LP-PP-MIKP(i) and LP-RPP-MIKP(i).

Furthermore, it is easy to update the value of z∗i after bound changes have been made,

and check if z∗i ≤ zlb. Let ∆ = z∗ − zlb.

Proposition 3.3. Consider j ∈ I such that c̄i
j > 0. Let δj be a non-negative integer such

that δj c̄i
j ≥ ∆. We may change the lower bound of xj to,

Lj = max{lj , uj − δj/}.

Proof. Consider a solution (x′, s′) of PP-MIKP(i) such that x′
j < uj − δj . We have,

c̄i
jxj < c̄i

juj − c̄i
jδj

≤ c̄i
juj − c̄i

j∆/c̄i
j

≤ c̄i
juj −∆.

Thus,

zi
o − eis

′ + c̄i
jx

′ = zi
o − eis

′ +
∑

k %=j

c̄i
kx

′
k + c̄i

jx
′
j

< zi
o − eis

′ +
∑

k %=j

c̄i
kx

′
k + (c̄i

juj −∆)

≤ zi
o − eis

∗ +
∑

k %=j

c̄i
kx

∗
k + c̄i

juj −∆

= z∗ −∆ = zlb.

70

Thus, x′ is such that cx′ ≤ zlb.

Proposition 3.4. Consider j ∈ I such that c̄i
j < 0. Let δj be a non-negative integer such

that −δj c̄i
j ≥ ∆. We may change the upper bound of xj to,

Uj = min{uj , lj + δj}.

Proof. Consider a solution (x′, s′) of PP-MIKP such that x′
j > lj + δj . We have,

c̄i
jxj < c̄i

jlj + c̄i
jδj

≤ c̄i
jlj −∆.

Thus,

zi
o − eis

′ + c̄i
jx

′ = zi
o − eis

′ +
∑

k %=j

c̄i
kx

′
k + c̄i

jx
′
j

< zi
o − eis

′ +
∑

k %=j

c̄i
kx

′
k + (c̄i

jlj −∆)

≤ zi
o − eis

∗ +
∑

k %=j

c̄i
kx

∗
k + c̄i

jlj −∆

= z∗ −∆ = zlb.

Thus, x′ is such that cx′ ≤ zlb.

3.6 Domination, branch and bound, and MIKP

As will be seen later in the computational results section, using a simple branch and bound

algorithm as described in the previous sections is not enough to successfully tackle problems

of practical size. In this section we concentrate on using a property called domination to

improve the performance of branch and bound algorithms. The main idea of what will be

done is that every time a variable bound is changed, this may have implications that lead

us to change other bounds as well. By carefully identifying such implications, it is often

possible to fix not just one, but several bounds at each node of the branch and bound tree.

3.6.1 Cost-Domination

Definition 3.6. Consider x1 and x2, two feasible solution of PP-MIKP. We say that x1

cost-dominates x2 if,

cx1 > cx2 and ax1 ≤ ax2. (3.1)

71

It is easy to see that a necessary condition for x to be optimal is that it is not cost-

dominated by any other solution. Let us begin by giving some simple sufficient conditions

for cost-domination.

Definition 3.7. Consider indices i, j ∈ I, and non-zero integers ki, kj . If,

aiki + ajkj ≥ 0 and ciki + cjkj < 0 (3.2)

and in addition,

li − ui ≤ ki ≤ ui − li and lj − uj ≤ kj ≤ uj − lj (3.3)

we say that (i, j, ki, kj) define an integer cost-domination tuple.

Proposition 3.5. Consider a solution x of PP-MIKP and let (i, j, ki, kj) be an integer

cost-domination tuple.

• If ki ≥ 0 and kj ≥ 0, then

xi ≥ li + ki and xj ≥ lj + kj

implies x is cost-dominated.

• If ki ≥ 0 and kj ≤ 0, then

xi ≥ li + ki and xj ≤ uj + kj

implies x is cost-dominated.

• If ki ≤ 0 and kj ≥ 0, then

xi ≤ ui + ki and xj ≥ lj + kj

implies x is cost-dominated.

• If ki ≤ 0 and kj ≤ 0, then

xi ≤ ui + ki and xj ≤ uj + kj

implies x is cost-dominated.

72

Proof. Define x′ so that,

x′
l =






xi − ki if l = i,

xj − kj if l = j,

xl otherwise.

ki ≥ 0 and xi ≥ li + ki implies li ≤ xi − ki ≤ ui.

ki ≤ 0 and xi ≤ ui + ki implies li ≤ xi − ki ≤ ui.

Thus, in either case, we have li ≤ x′
i ≤ ui.

Analogously, li ≤ x′
j ≤ ui.

Also, observe that

aix′
i + ajx′

j = aixi − aiki + ajxj − ajkj ≤ aixi + ajxj

and,

cix′
i + cjx′

j = cixi − ciki + cjxj − cjkj < cixi + cjxj

Thus, x′ is feasible for PP-MIKP, and x′ cost-dominates x.

The following proposition follows directly.

Proposition 3.6. Consider an integer cost-domination tuple (i, j, ki, kj). Every optimal

solution of PP-MIKP satisfies the following conditions:

If ki ≥ 0 and kj ≥ 0,

xi ≥ li + ki ⇒ xj ≤ lj + kj − 1.

If ki ≥ 0 and kj ≤ 0,

xi ≥ li + ki ⇒ xj ≥ uj + kj + 1.

If ki ≤ 0 and kj ≤ 0,

xi ≤ ui + ki ⇒ xj ≥ uj + kj + 1.

If ki ≤ 0 and kj ≥ 0,

xi ≤ ui + ki ⇒ xj ≤ lj + kj − 1.

73

Proof. Every optimal solution to PP-MIKP must be non-cost-dominated. Hence,

the result follows from Proposition 3.5.

Define for every non-zero rational number q the function

sign(q) =






1 if q > 0

−1 otherwise

Observation 3.1. Consider distinct pairs (i, j, k1
i , k

1
j) and (i, j, k2

i , k
2
j), each satisfying (3.2)

and (3.3). Further, assume that sign(k1
i) = sign(k2

i) and sign(k1
j) = sign(k2

j). Then, if

1 ≤ |k1
i | ≤ |k2

i | and 1 ≤ |k1
j | ≤ |k2

j |, the implications derived from (i, j, k1
i , k

1
j) are stronger

than those derived from (i, j, k2
i , k

2
j). Thus, if (i, j, k1

i , k
1
j) ∈ D, there is no need to store

(i, j, k2
i , k

2
j) in D as well.

3.6.2 Lexicographic-Domination

Definition 3.8. Consider x1 and x2, two feasible solution of PP-MIKP. We say that x1

lexicographically-dominates x2 if,

cx1 = cx2 and ax1 ≤ ax2 (3.4)

and in addition, there exists i ∈ {1, . . . , n} such that x1
i < x2

i and:

∀k ∈ {1, . . . , (i − 1)}, x1
k = x2

k.

Definition 3.9. Consider indices i, j ∈ I such that i < j, and non-zero integers ki, kj . If,

aiki + ajkj = 0 and ciki + cjkj = 0 (3.5)

and in addition,

1 ≤ ki ≤ ui − li and lj − uj ≤ kj ≤ uj − lj (3.6)

we say that (i, j, ki, kj) define an integer lexicographic-domination tuple.

Proposition 3.7. Consider a solution x of PP-MIKP and let (i, j, ki, kj) be an integer

lexicographic-domination tuple.

74

• If kj ≥ 0, then

xi ≥ li + ki and xj ≥ lj + kj

implies x is lexicographically-dominated.

• If kj ≤ 0, then

xi ≥ li + ki and xj ≤ uj + kj

implies x is lexicographically-dominated.

Proof. Define x′ so that,

x′
l =






xi − ki if l = i,

xj − kj if l = j,

xl otherwise.

ki ≥ 0 and xi ≥ li + ki implies li ≤ xi − ki ≤ ui.

kj ≥ 0 and xj ≥ lj + ki implies lj ≤ xj − kj ≤ uj .

kj ≤ 0 and xj ≤ uj + kj implies lj ≤ xj − kj ≤ uj .

Thus, l ≤ x′ ≤ u.

Also, observe that

aix′
i + ajx′

j = aixi − aiki + ajxj − ajkj = aixi + ajxj

and,

cix′
i + cjx′

j = cixi − ciki + cjxj − cjkj = cixi + cjxj .

Observe that x′
i < xi. In addition, since j > i, we have 1 ≤ k < i implies x′

k = xk.

Thus, x′ is feasible for PP-MIKP, and x′ lexicographically-dominates x.

The following proposition follows directly.

Proposition 3.8. Consider an integer lexicographic-domination tuple (i, j, ki, kj). There

exists an optimal solution x of PP-MIKP such that:

75

• If kj ≥ 0,

xi ≥ li + ki ⇒ xj ≤ lj + kj − 1

and

xj ≥ lj + kj ⇒ xi ≤ lj + kj − 1.

• If kj ≤ 0,

xi ≥ li + ki ⇒ xj ≥ uj + kj + 1

and

xj ≤ uj + kj ⇒ xi ≤ li + ki − 1.

Proof. Follows from the fact that PP-MIKP admits a non-lexicographically domi-

nated optimal solution, and Proposition 3.7.

3.6.3 Domination tuples: Important properties

In this section we establish some fundamental properties of domination tuples. These

properties will allow us to effectively use the derived implications that originate from these

in the context of a branch and bound algorithm.

Observe that all non-zero rational numbers satisfy |q| = q · sign(q). Throughout this

section we will make use of the fact that instances of PP-MIKP satisfy the following prop-

erties: For all i, j ∈ P ∪ N we have ai, aj , ci, cj are all non-zero, sign(ai) = sign(ci), and

sign(aj) = sign(cj).

Cost-Domination Tuples

Here we address some basic questions: Do cost-domination tuples exist? How many can

exist? What can we say about them?

Proposition 3.9. Consider ci, ai, cj , aj ∈ Q \ {0}. If (cj , aj) and (ci, ai) are linearly inde-

pendent, there exist non-zero integers ki and kj satisfying aiki+ajkj = 0 and ciki+cjkj < 0.

Proof. Observe that ai
aj

is a rational number, hence there exist integers k′
i, k

′
j such

that − ai
aj

=
k′

j

k′
i
. If cik′

i + cjk′
j ≤ 0, let ki = k′

i and kj = k′
j . Otherwise, let ki = −k′

i

and kj = −k′
j . Clearly, aiki + ajkj = 0 and ciki + cjkj ≤ 0. It is easy to see that the

latter inequality is strict if and only if the linear independence holds.

76

What this result highlights is that, given i, j ∈ I, it is easy to know if there exist ki

and kj such that (3.2) holds. Moreover, observe that if such a pair exists, then there exist

an infinite amount of other such pairs (ki, kj). In fact, if (k1
i , k

1
j) and (k2

i , k
2
j) satisfy the

condition, then so does (k1
i + k2

i , k
2
j + k2

j). Thus, taking integer multiples of any one pair

we immediately get an infinite amount of other pairs.

At first glance, this may seem a problem. After all, this could imply that there exist an

infinite amount of cost-domination tuples to consider. However, as we will see shortly, we

really need consider at most one cost-domination tuple for each pair i, j ∈ I. In order to

see this we must first go through some preliminary proofs.

First, a simple observation which will simplify the coming case-analysis.

Observation 3.2. Consider i, j ∈ I. Then, ki, kj ∈ Q \ {0} satisfy (3.2) and (3.3) if and

only if,

|ai|kisign(ai) + |aj |kjsign(aj) ≥ 0 and |ci|kisign(ai) + |cj |kjsign(aj) < 0

and

li − ui ≤ kisign(ai) ≤ ui − li and lj − uj ≤ kjsign(aj) ≤ uj − lj .

The importance of this observation is as follows: If we determine k′
i and k′

j such that,

|ai|k′
i + |aj |k′

j ≥ 0 and |ci|k′
i + |cj |k′

j < 0

and,

li − ui ≤ k′
i ≤ ui − li and lj − uj ≤ k′

j ≤ uj − lj

then, ki = sign(ai)k′
i and kj = sign(aj)k′

j will satisfy (3.2) and (3.3), and thus they will

define a cost-domination tuple. As we will see, this means we can restrict our attention to

the cases where ai, ci, aj , cj are all strictly positive.

Observation 3.3. Assume ai, ci, aj , cj are all strictly positive.

Integers ki, kj satisfy (3.2) if and only if,

−aj

ai
kj ≤ ki < −cj

ci
kj .

77

Analogously, ki, kj satisfy (3.2) if and only if,

−ai

aj
ki ≤ kj < − ci

cj
ki.

Observation 3.4. Assume ai, ci, aj , cj are all strictly positive. If ki, kj satisfy (3.2), then

sign(ki) += sign(kj).

Observation 3.5. Assume ai, ci, aj , cj are all strictly positive. If ki, kj satisfy (3.2), then

sign(kj) = 1 if and only if cj

aj
< ci

ai
.

Proof. Observation 3.3 is trivial, and Observation 3.4 follows directly from Observa-

tion 3.3. Thus, we focus on Observation 3.5.

Note that Observation 3.3 implies −aj

ai
kj < − cj

ci
kj . However,

−aj

ai
kj < −cj

ci
kj ⇐⇒ cj

aj
kj <

ci

ai
kj .

Where from the result follows.

Proposition 3.10. Assume ai, ci, aj , cj are all strictly positive, and consider i, j ∈ I. Con-

sider two distinct integer pairs (k1
i , k

2
j) and (k2

i , k
2
j) satisfying condition (3.2). If |k1

i | ≤ |k2
i |,

let ki = k1
i . Otherwise, let ki = k2

i . Analogously, if |k1
j | ≤ |k2

j |, let kj = k1
j . Otherwise, let

kj = k2
j . Then, it follows that the pair (ki, kj) satisfies condition (3.2).

Proof. From the previous lemmas we know that sign(k1
i) = sign(k2

i), sign(k1
j) =

sign(k2
j), and sign(k1

i) += sign(k1
j). Without loss of generality, assume sign(k1

i) = 1

and sign(k2
j) = −1, as the reverse case will be analogous.

If (ki, kj) = (k1
i , k

1
j) or (ki, kj) = (k2

i , k
2
j), the result follows trivially. Moreover, we

may assume without loss of generality that |k1
i | ≤ |k2

i |, thus (ki, kj) = (k1
i , k

2
j).

Observe aj > 0 and k1
j ≤ kj < 0 implies ajk1

j ≤ ajkj . Thus aiki+ajkj ≥ aik1
i +ajk1

j ≥

0.

On the other hand, ci > 0 and 0 ≤ ki ≤ k2
i imply ciki ≤ cik2

i . Thus ciki + cjkj ≤

cik2
i + cjk2

j < 0.

78

Theorem 3.2. Consider an instance of PP-MIKP, and i, j ∈ I such that (ai, ci) and (aj , cj)

are linearly independent. Exactly one of the two following conditions hold:

• There exists no cost-domination tuple (i, j, ki, kj).

• There exists a cost-domination tuple (i, j, ko
i , k

o
j) such that all other cost-domination

tuples (i, j, ki, kj) satisfy: |ki| ≥ |ko
i |, |kj | ≥ |ko

j |, sign(ki) = sign(ko
i), and sign(kj) =

sign(ko
j).

If there exists a cost-domination tuple for i, j ∈ I we say that (i, j, ko
i , k

o
j) is the minimal

cost-domination tuple for i, j.

Proof. Assume that there exists some cost-domination tuple for i, j ∈ I.

First, assume that ai, ci, aj , cj are all positive.

Let (i, j, k1
i , k

1
j) be a cost-domination tuple such that |k1

i | is minimized. Also, let

(i, j, k2
i , k

2
j) be a cost-domination tuple such that |k2

j | is minimized. Let ko
i = k1

i and

ko
j = k2

j . From Proposition 3.10 it follows aiko
i + ajko

j ≥ 0 and ciko
i + cjko

j < 0. In

addition, ko
i = k1

i implies ko
i non-zero, and li−ui ≤ ko

i ≤ ui− li. Analogously, ko
j = k1

j

implies ko
j non-zero, and lj −uj ≤ ko

j ≤ uj − lj . Thus, (i, j, ko
i , k

o
j) is a cost-domination

tuple, and the minimality condition hold.

From Observation 3.5 if follows that if cj/aj < ci/ai then all cost-domination pairs

must satisfy sign(kj) = 1. From this, and Observation 3.4, it follows that in ad-

dition they must satisfy sign(ki) = −1. Analogously, if cj/aj ≥ ci/ai then all cost-

domination pairs must satisfy sign(kj) = −1 and sign(ki) = 1. Thus the sign equality

condition holds.

If ai, ci, aj , cj are not all positive, the result directly follows from the previous analysis

and Observation 3.2.

Finally, an important proposition which will be used in the next section:

Proposition 3.11. Consider i, j ∈ I such that ui = uj = +∞, and, such that (ci, ai) and

(cj , aj) are linearly independent. There exists a minimal cost-domination tuple for (i, j).

79

Proof. From Proposition 3.9 we know there exist non-zero integers ki, kj such that

aiki + ajkj = 0 and ciki + cjkj < 0. Further, given that ui = uj = +∞, it is clear

that li − ui ≤ ki ≤ ui − li and lj − uj ≤ kj ≤ uj − lj . Thus, (i, j, ki, kj) defines

a cost-domination tuple. The existence of a minimal cost-domination tuple follows

from Theorem 3.2.

Lexicographic Domination-Tuples Here we address the same basic questions we tack-

led concerning Cost-Domination Tuples.

Proposition 3.12. Consider ci, ai, cj , aj ∈ Q \ {0}. If (cj , aj) and (ci, ai) are linearly

dependent, there exist non-zero integers ko
i and ko

j such that (i) aiko
i + ajko

j = 0 and

ciko
i + cjko

j = 0, (ii) For all other pairs ki, kj such that aiki + ajkj = 0 and ciki + cjkj = 0

hold, we have that |ko
i | ≤ |ki| and |ko

j | ≤ |kj |, and (iii) ko
i > 0.

Proof. Observe that ai
aj

is a rational number, hence there exist integers ki, kj such

that − ai
aj

= kj

ki
. Clearly, this implies aiki + ajkj = 0. That ciki + cjkj = 0 follows

from the linear dependence. Thus (i) follows. Further, we can select ki and kj to be

relative prime (by factorizing −ai/aj), and thus obtain a minimal pair, as desired in

(ii). Part (iii) follows immediately as we can multiply both ko
i and ko

j by minus one if

it does not hold, and still satisfy (i) and (ii).

Theorem 3.3. Consider an instance of PP-MIKP, and i, j ∈ I such that (ai, ci) and (aj , cj)

are linearly dependent. Exactly one of the two following conditions hold:

• There exists no lexicographic domination tuple (i, j, ki, kj).

• There exists a lexicographic domination tuple (i, j, ko
i , k

o
j) such that all other lexico-

graphic domination tuples (i, j, ki, kj) satisfy: |ki| ≥ |ko
i |, |kj | ≥ |ko

j |, sign(ki) = 1,

and sign(kj) = sign(ko
j).

If there exists a lexicographic domination tuple for i, j ∈ I we say that (i, j, ko
i , k

o
j) is the

minimal lexicographic domination tuple for i, j.

Proof. Follows directly from Proposition 3.12.

80

Finally, an important Proposition which will be used in the next section:

Proposition 3.13. Consider i, j ∈ I such that ui = uj = +∞, and, such that (ci, ai) and

(cj , aj) are linearly dependent. There exists a minimal lexicographic-domination tuple for

(i, j).

Proof. From Proposition 3.12 we know there exist non-zero integers ki, kj such that

aiki + ajkj = 0, ciki + cjkj = 0, and ki > 0. Further, given that ui = uj = +∞, it

is clear that 1 ≤ ki ≤ ui − li and lj − uj ≤ kj ≤ uj − lj . Thus, (i, j, ki, kj) defines a

lexicographic-domination tuple. The existence of a minimal lexicographic-domination

tuple follows from Theorem 3.3.

Domination Tables

Definition 3.10. Consider the set D comprised of all minimal cost-domination tuples and

all minimal lexicographic-domination tuples for PP-MIKP. We say that D is the domination

table of PP-MIKP.

From Theorem 3.2 and Theorem 3.3 we know that such a domination table is well

defined, and has a polynomial number of entries (in terms of the number of variables).

Domination Tables summarize the most important information associated to domination

tuples, in terms of the implications which can be derived from them. In fact, by observing

Proposition 3.6 and Proposition 3.8 we can see that the strongest implications follow from

minimal domination tuples.

3.6.4 An improved branch and bound algorithm: Using domination

In this section we focus on how to utilize a domination table in order to speed up the branch

and bound algorithm described in Section 3.5.

Branching A domination table can be used to reduce the number of nodes in a branch

and bound tree by changing variable bounds at every node of the tree.

Assume that at some node in the branch and bound tree we impose the upper bound

constraint xi ≤ αi:

81

• If there exists (i, j, ki, kj) ∈ D such that ki ≤ 0, kj ≥ 0 and such that αi ≤ ui + ki,

then we can impose the constraint xj ≤ min{lj + kj − 1, uj}.

In fact, imposing xi ≤ αi implies xi ≤ ui+ki in that sub-tree, hence that xj ≤ lj+kj−1

can be imposed follows from the previous section.

• If there exists (i, j, ki, kj) ∈ D such that ki ≤ 0, kj ≤ 0 and such that αi ≤ ui + ki,

then we can impose the constraint xj ≥ max{uj + kj + 1, lj}.

Analogously, if at some node we impose the constraint xi ≥ βi:

• If there exists (i, j, ki, kj) ∈ D such that ki ≥ 0, kj ≥ 0 and such that βi ≥ li + ki,

then we can impose the constraint xj ≤ min{lj + kj − 1, uj}.

In fact, imposing xi ≥ βi implies xi ≥ li+ki in that sub-tree, hence that xj ≤ lj+kj−1

can be imposed follows from the previous section.

• If there exists (i, j, ki, kj) ∈ D such that ki ≥ 0, kj ≤ 0 and such that βi ≥ li + ki,

then, we can impose the constraint xj ≥ max{uj + kj + 1, lj}.

Reduced-Cost Bound Improvements A domination table can also be used to more

effectively improve variable bounds during the reduced-cost bound improvement phase.

To see this, consider a variable xj , with j ∈ I, such that c̄i
j > 0.

Consider δj ∈ Z+, and suppose we want to know if the bound xj ≥ uj − δj is valid for

the problem. As we saw before, if c̄i
jδj ≥ ∆, then the answer is yes. Using domination,

however, we might be able to determine if said bound is valid even if c̄i
jδj < ∆.

As before, consider LP-RPP-MIKP(i), and re-define in this problem uj = uj − δj − 1.

Consider each variable xq with q ∈ I \ {j, i}.

If c̄i
q > 0 and from a domination table we know that xj ≥ βj implies xq ≥ βq, and in

addition, βj ≤ uj − δj − 1, then re-define uq = βq − 1.

If c̄i
q < 0 and from a domination table we know that xj ≥ βj implies xq ≤ αq, and in

addition, βj ≤ uj − δj − 1, then re-define lq = αq + 1.

If, after these bound changes, we have z∗i ≤ zlb then the proposed bound change, for

example xj ≥ uj − δj , is valid for PP-MIKP.

82

Analogously, consider a variable xj , with j ∈ I, such that c̄i
j < 0.

Consider δj ∈ Z+, and suppose we want to know if the bound xj ≤ lj + δj is valid for

the problem.

As before, consider LP-RPP-MIKP(i), and re-define lj = lj + δj + 1.

Consider each variable xq with q ∈ I \ {j, i}.

If c̄i
q > 0 and from a domination table we know that xj ≤ αj implies xq ≥ βq, and in

addition, αj ≥ lj + δj + 1, then re-define uq = βq − 1.

If c̄i
q < 0 and from a domination table we know that xj ≤ αj implies xq ≤ αq, and in

addition, αj ≥ lj − δj + 1, then re-define lq = αq + 1.

If, after these bound changes, we have z∗i ≤ zlb then the proposed bound change, e.g.

xj ≤ lj + δj , is valid for PP-MIKP.

Fixing bounds a-priori An interesting application of the domination concept is that

it allows us to fix bounds even before we initiate the branching process in the presence of

unbounded variables. This is interesting not only because it can help eliminate an infinite

amount of feasible solutions from consideration, but also, because once every variable is

bounded, it is possible to complement variables and obtain a problem where all coefficients

are positive. This can greatly ease the burden of programming and case-analysis, and, in

case that all of the variables are integer, this might even allow for the use of more specialized

algorithms, such as those mentioned in Section 3.1.1 for KP and BKP.

In order to show this we proceed in two steps:

Step 1: Given any two indices i, j ∈ I such that ui = uj = +∞ and such that sign(ai) =

sign(aj), it is possible to fix one one of these upper bounds to a finite value.

If (ci, ai) and (cj , aj) are linearly independent, then Proposition 3.11 assures us that there

exists a domination tuple (i, j). Likewise, if If (ci, ai) and (cj , aj) are linearly dependent,

Proposition 3.13 assures us the same.

Now consider the minimal domination tuple (i, j, ki, kj). First, note that either ki > 0 or

kj > 0. In fact, if ki < 0 and kj < 0 we know that (i, j, ki, kj) is a cost-domination tuple. In

this case Proposition 3.5 implies that every finite solution to PP-MIKP is cost-dominated.

However, this is only possible if the problem is unbounded, which we know not to be the

83

case from our initial hypothesis regarding PP-MIKP.

Without loss of generality assume ki > 0. Note that kj < 0. In fact, if ki > 0 and

kj > 0, given that sign(ai) = sign(aj) = sign(ci) = sign(cj), it would be impossible that

aiki + ajkj ≤ 0 and ciki + cjkj ≥ 0.

Thus we have ki > 0 and kj < 0. However, from Proposition 3.5 and Proposition 3.7 we

know that: every solution x such that xi ≥ li + ki and xj ≤ uj + kj is dominated. Given

that uj = +∞ we conclude that all non-dominated solutions must satisfy xi ≤ li + ki − 1.

Step 2: After completing the previous step, we know that there can be at most two

unbounded variables: one of each sign.

First, assume that there is only one unbounded variable xk and assume that k ∈ P .

Observe that the smallest left hand side achievable by the rest of the variables is:

Lk =
∑

i∈P\{k}

liai +
∑

i∈N

uiai.

Then, because ck > 0 and ak > 0 we know that in an optimal solution, xk will never be

greater than (b − Lk)/ak because otherwise the solution would be infeasible. Hence we can

impose xk ≤ (b − Lk)/ak if xk is continuous, and xk ≤ .(b − Lk)/ak/ if xk is integer.

Second, assume that there is only one unbounded variable xk and assume that k ∈ N .

Observe that the greatest left hand side achievable by the rest of the variables is:

Uk =
∑

i∈P

uiai +
∑

i∈N\{k}

liai.

Then, because ck < 0 and ak < 0 we know that in an optimal solution, xk will never take

a value greater than (b − Uk)/ak because if it does, we can decrease xk while preserving

feasibility and increasing the objective function value.

Third, assume that there are two unbounded variables: xp and xq with p ∈ P and

q ∈ N . From the previous analysis we know that there exists kp > 0 and kq > 0 such that

(p, q, kp, kq) define a cost-domination pair. Thus, from Proposition 3.5 it follows that all

optimal solutions satisfy xp ≤ lp + kp − 1 or xq ≤ lq + kq − 1. Define,

Lk,p =
∑

i∈P\{k}
liai +

∑

i∈N\{q}
uiai.

84

If xq ≥ lq + kq we know that xp ≤ lp + kp − 1. Otherwise, from the previous analysis, we

know that if xq ≤ lq +kq −1, then xp ≤ [b−Lk,p −aq(lq +kq −1)]/ap. Thus, we can impose:

xp ≤ max{lp + kp − 1, [b − Lk,p − aq(lq + kq − 1)]/ap}.

Analogously, we can impose:

xq ≤ max{lq + kq − 1, [b − Uk,p − ap(lp + kp − 1)]/aq}

where,

Uk,p =
∑

i∈P\{k}

uiai +
∑

i∈N\{q}

liai.

3.6.5 Examples: Using domination tables

In this section we illustrate via some simple (albeit pathological) examples the practical

importance of using domination in the context of a branch and bound algorithm.

Cost-Domination Consider an odd positive integer n, and rational values 0 < ε2 < ε3 <

. . . < εn << 1. Consider the following instance of a binary knapsack problem:

max x1 + (1 − ε2)x2 + . . . + (1 − εn)xn

s.t.

x1 + (1 + ε2)x2 + . . . + (1 + εn)xn ≤ n/2

xi ∈ {0, 1} ∀i ∈ 1, . . . , n.

Let m = (n − 1)/2. It is easy to see that when εn is very small, the optimal answer is

given by x1 = x2 = . . . = xm = 1 and xm+1 = xm+2 = . . . = xn = 0.

Observe that for 1 ≤ i < j ≤ n we have that for ki = −1, kj = 1, the tuple (i, j, ki, kj)

is cost-dominating. Thus, if we use a cost-domination branching scheme, every time we

branch up on a variable xi (e.g., imposing xi = 1), we will be fixing xk = 1 for every k < i.

In addition, every time we branch down on a variable xi (e.g., imposing xi = 0), we will be

fixing xk = 0 for all k > i. In this way, it is easy to see that a branch and bound algorithm

will only need to branch once in order to optimally solve the problem.

Assume, instead, that we do not use a cost-domination branching scheme. Observe that

if we fix m variables or less to their bounds, regardless of the variables fixed, and regardless

85

of the bounds to which we fix them, the linear-programming relaxation bound obtained will

be strictly greater than the optimal value. Thus, in a normal branch and bound scheme,

it will be necessary to explore (at least) a full tree of depth m. However, this tree size is

exponential!

Lexicographic-Domination Consider the following trivial integer knapsack problem:

max x1 − 2x2

s.t.

x1 − 2x2 ≤ 1.5

x1, x2 ∈ Z

x1 ≥ 0, x2 ≥ 0.

It is easy to see that the solutions given by x1 = 2k + 1 and x2 = k are optimal for all

positive integers k, and that the optimal solution value is 1.

Observe that for k1 = 2, k2 = 1 the tuple (1, 2, k1, k2) is lexicographically dominating.

Thus, a domination-based branch and bound algorithm will solve this problem in five nodes.

In fact, the optimal solution that will be obtained by applying the afore-described LP

relaxation algorithm will be x∗
1 = 1.5 and x∗

2 = 0. In the down-branch, we will impose

x1 ≤ 1, which will give us the optimal integer solution to the problem. Then, in the up-

branch we will impose x1 ≥ 2. However, because of the domination-tuple, in this branch

we will also impose x2 ≤ 1. This will result in an optimal value of x∗
1 = 2 and x2 = 0.25.

However, after branching but once more it easy to see that the branching will conclude

(setting x2 = 0 results in an infeasible node, and setting x2 = 1 results in the optimal

solution once again).

Now, note that if we modify the lower bounds so that x1 ≥ r1 and x2 ≥ r2, where

r1, r2 ∈ Z+, then, the LP-relaxation of the problem has value 1.5. This means that a

normal branch and bound algorithm will never terminate! In fact, it is easy to see that

if we branch normally, there will always be a node in which only the lower bounds of x1

and x2 have been changed. This node will never be pruned, because the upper bound it

provides is always 1.5.

86

3.6.6 Building a domination table

In this section we are concerned with describing an algorithm for actually constructing

a domination table. Throughout this section we will consider i, j ∈ I, and make use of

Observation 3.2 assuming ci, cj , ai, aj are all positive rationals. In addition, we will assume

that (cj , aj) and (ci, ai) are linearly independent, as the linear dependent case is trivial.

Our goal will be to find a minimal cost-domination tuple (i, j, ki, kj) or prove no such pair

exists.

First, note that from Observation 3.4 and Observation 3.5, it follows that if cj

aj
≤ ci

ai
,

then kj > 0 and ki < 0. Likewise, if cj

aj
> ci

ai
, then kj < 0 and ki > 0. Without loss of

generality we will assume kj > 0 and ki < 0, since the other case is strictly analogous.

Next, observe that given a value ko
i it is easy to determine if there exists kj such that

(ko
i , kj) satisfies (3.2). In fact, from Observation 3.3 it is easy to see that kj exists if and

only if, ⌈
−ai

aj
ko

i

⌉
< − ci

cj
ko

i

Furthermore, then the smallest such kj has value
⌈
− ai

aj
ko

i

⌉
.

Analogously, observe that given a value ko
j it easy to determine if there exists ki such

that (ki, ko
j) satisfies (3.2). In fact, Observation 3.3 implies that such a ki exists if and only

if,

−aj

ai
ko

j ≤
⌈
−cj

ci
ko

j

⌉
− 1

Furthermore, if the inequality holds, then the largest such ki has value
⌈
− cj

ci
ko

j

⌉
− 1. Recall

that we are interested in the ki minimizing |ki|, hence, since ki < 0, we look for the largest

possible value.

Now, given ki we know how to get kj if such exists. Likewise, given kj we know how to

get ki, provided such exists. What we do next is simply enumerate over possible values of

ki or kj until we find a pair satisfying the desired conditions.

Let (ka
i , ka

j) be such that aika
i + ajka

j = 0 and cika
i + cjka

j < 0. Such a pair of integers

is easy to compute. Observe that any minimal pair (ki, kj) will satisfy

- 1 ≤ kj ≤ min{ka
j , uj − lj},

87

- max{ka
i , li − ui} ≤ ki ≤ −1.

In order to minimize the amount of effort then, it seems wisest to enumerate over ki

or kj depending on which has a smaller feasibility interval, always starting from the value

closest to 0.

The entire procedure is summarized in Algorithm 6, where it is assumed that ai, aj , ci, cj

are all positive rational numbers. Note that the algorithm incorporates an auxiliary con-

stant LOOP MAX. Setting this to a finite value may lead to the algorithm returning a

failure code, even in the case where (ci, ai) and (cj , aj) are linearly independent. However,

incorporating this constant may, in cases where numbers are very badly conditioned, speed

up the process of filling up a domination table considerably.

3.7 Computational results

In this section, computational results obtained after testing the ideas mentioned in this

chapter are described. All of the implementations were written in the “C” and “C++”

programming languages, and compiled with the gcc and g++ compilers, version 3.2, on a

Linux operating system, version 2.4.27. The computers used to run the implementations

were all Intel Xeon dual-processor machines, each with 2GB of RAM, running at 2.66GHz

per processor. All of the knapsack algorithms were implemented with templates, thus

allowing for them to use different types of numerical precision. However, in this study

we just focus on using the standard double floating point arithmetic implemented in the

“C++” programming language.

We shall henceforth refer to our algorithm as KBB, for Knapsack Branch and Bound.

All of the techniques in this chapter have been implemented, with the exception of the

domination-induced reduced-cost bound improvement technique which is a later develop-

ment. Whenever we say that KBB is ran with its full functionality, we mean that all of the

improvement techniques described in the chapter except this one. The KBB algorithm, by

default, is set to work with a precision of 10−6.

In order to assess the performance of our algorithms we use as a benchmark the CPLEX

mixed-integer programming solver, version 9.0. We change the settings of CPLEX so that

88

Algorithm 6 Obtaining ki and kj

Input: ai, ci, li, ui, aj , cj , lj , uj

Output: status, ki, kj

1: if (ci, ai) and (cj , aj) are linearly dependent then
2: status ← failure
3: return
4: else if cj/aj > ci/ai then
5: Swap (ci, ai, li, ui) and (cj , aj , lj , uj)
6: Compute ki, kj (recursion) and obtain status
7: Swap ki and kj

8: return
9: end if

10: Compute ka
i and ka

j such that aika
i + ajka

j = 0 and cika
i + cjka

j < 0
11: Li ← max{li − ui, ka

i , −1 ∗ LOOP MAX}
12: Uj ← min{uj − lj , ka

j , LOOP MAX}
13: if |Li| ≤ |Uj | then
14: for ki = −1 to Li do
15: kj ← 0−ki(ai/aj)1
16: if kj < −ki(ci/cj) then
17: status ← success
18: return
19: end if
20: end for
21: else
22: for kj = 1 to Uj do
23: ki ← 0−kj(cj/ci)1 − 1
24: if ki ≥ −kj(aj/ai) then
25: status ← success
26: return
27: end if
28: end for
29: end if
30: status ← failure
31: return

89

optimality is ensured by a tolerance of 10−6. This is the only change of settings we impose

on CPLEX, otherwise all other settings are set to their default values.

All tests in this chapter will be done on a library of problems which we call mikp hard

consisting of 1,556 problems. These problems make up the most difficult set of individual

knapsack instances encountered in the applications described in Chapter 4.

In order to summarize results we shall present some tables. In these tables we make use

of the following notation:

• time: Represents the amount of time, in seconds, to solve the problem using branch

and bound. This includes pre-processing time, and in cases where domination is

employed, the computation of the domination table.

• bbnodes: Represents the total number of branch and bound nodes explored in order

to solve the problem to optimality by the algorithm.

• nvars: Represents the total number of variables in the original instance.

• ppnvars: Represents the total number of variables in the pre-processed instance.

Whenever we use the prefix “avg-” before any of these terms, we mean that the correspond-

ing values have been averaged over the total.

In order to present additional information we will also use cumulative histogram curves.

In these curves, time will be plotted in the x-axis, and the number of instances in the y-axis.

In this way, a point (to, no) on a curve will mean that no of the problem instances were

solved in to seconds or less. These graphs will always be plotted using a logarithmic scale in

the x axis in order to account for the large range of different solution times observed. These

curves provide a wealth of information that is often missed when just looking at averages.

Full tables are not presented due to the large number of problems being considered.

Performance of the algorithm We first test the KBB algorithm with all of its features

on the problem instances of mikp hard. For comparison, we also solve each of these instances

with CPLEX. A summary of the computations is presented in Table 3.1, and the histogram

curves in Figure 3.1.

90

Table 3.1: Comparing KBB and CPLEX: Summary

cpx kbb
avg-time 15.50 1.66
avg-bbnodes 176,699 110,396
errors 49 0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01 0.1 1 10 100 1000 10000

CPLEX versus the KBB algorithm (all features)

cpx
kbb

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01 0.1 1 10 100 1000 10000

CPLEX versus the KBB algorithm (all features)

cpx
kbb

Figure 3.1: Comparing KBB and CPLEX: Histogram

As can be seen from Table 3.1 and Figure 3.1 the KBB algorithm significantly outper-

forms the CPLEX algorithm. This is not surprising, perhaps, if we consider that KBB is

a problem-specific algorithm. However, it is important to note that KBB is the only alter-

native to date for solving these problems. Observe that most of the instances are solved in

less than a second by KBB, yet CPLEX takes just less than 10 seconds to solve the same

amount of instances. Finally, observe that CPLEX has a particularly difficult time solving

some of the problems. In fact, there are three instances which take CPLEX over 2,000 sec-

onds to solve, whereas the most difficult problem for KBB takes just over 100 seconds. It

would seem from the numbers that the large reduction in the number of branch and nodes

afforded by the KBB algorithm is key in obtaining this quality of solution speed.

91

The pre-processor In order to best understand what it is that makes KBB work so much

better than CPLEX, the first thing we wanted to ensure was that this difference is not due

to simply to the pre-processing algorithm. In order to answer this, all of the instances in

mikp hard were ran twice with CPLEX; once with our pre-processor (pp-cpx), and once

without (cpx). Note that in pp-cpx the CPLEX pre-processor was not deactivated. That

is, those instances are pre-processed twice; once by the KBB pre-processor, and once by

CPLEX. A summary of the computations is presented in Table 3.2, and the histogram

curves in Figure 3.2.

Table 3.2: Using CPLEX with the KBB pre-processor: Summary

cpx pp-cpx
avg-time 15.50 20.77
avg-bbnodes 176,699 227,781
errors 49 55

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01 0.1 1 10 100 1000 10000

CPLEX with and without the external pre-processor

cpx
ppcpx

Figure 3.2: Using CPLEX with the KBB pre-processor: Histogram

As can be seen from Table 3.2 and Figure 3.2 the KBB pre-processor has little impact

on the performance of CPLEX. This is not surprising, perhaps, if we consider that CPLEX

92

already counts with its own, very effective set of pre-processing routines. It is curious to

note that CPLEX is often hampered by the KBB pre-processing. It can be seen in Figure

3.2 that on the more difficult instances CPLEX performs better if the problems are not

pre-processed first.

Diving strategies When programming the KBB algorithm, a question which came up

was: How should the branch-and-bound node-selection be designed? While it seemed nat-

ural to adopt a Depth-First-Search strategy, the criteria by which to select the node down

which to dive was not clear. Preliminary runs on a small subset of the problems in mikp hard

had shown that the optimization process was very sensitive to the decision, so four different

strategies were compared over all the instances. These strategies are: up, where diving is

always done first on the branch in which the lower bound was increased, down, the reverse

of the up strategy, least-infeas, where diving is always done in the direction of least infea-

sibility (e.g. where the rounding was less), and most-infeas, the reverse of least-infeas. A

summary of the computations is presented in Table 3.3, and the histogram curves in Figure

3.3.

Table 3.3: Comparing different diving strategies: Summary

up least-inf most-infeas down
avg-time 1.66 2.04 2.14 2.51
avg-bbnodes 110,396 117,838 122,186 128,331

As can be observed in Figure 3.3 all four diving strategies performed similarly well when

considering the entire test set. This does not mean, however, that the instances performed

similarly well on a one-to-one basis. In fact, it was observed that some particular instances

were very sensitive to the diving strategy employed. This is partially reflected in Table 3.3

where it can be seen how the average time and the average number of branch and bound

nodes varied with the diving strategies. At first glance the results summarized in Table

3.3 might seem a bit contradictory with the graph observed in Figure 3.3. However, it is

perfectly explainable by observing the tail of the plots in Figure 3.3, where it can be seen

that a few particular instances took a very long time to solve with some diving strategies -

93

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01 0.1 1 10 100 1000

KBB with four different diving strategies

up
least-inf
most-inf

down

Figure 3.3: Comparing different diving strategies: Histogram

thus greatly affecting the overall averages.

Using heuristics A potential short-coming of the KBB algorithm as presented is that it

does not include a heuristic for quickly generating feasible solutions in the branch and bound

tree. In order to determine the importance which this concern should be given, a simple

experiment was done: Each of the problems in mikp hard was solved twice by the KBB

algorithm. The second time, however, the optimal solution of each problem was provided

as input in order that pruning might speed up the solve. A summary of the computations

is presented in Table 3.4, and the histogram curves in Figure 3.4.

Table 3.4: Using the optimal solution as an upper bound: Summary

kbb kbb w/ bounds
avg-time 1.66 1.47
avg-bbnodes 110,396 105,511

As can be observed from Table 3.4 and Figure 3.4 there was little if any impact from

using the bound obtained from the optimal solution. This is explained by the fact that

94

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01 0.1 1 10 100 1000

KBB with and without the optimal solution bound (all features on)

with
without

Figure 3.4: Using the optimal solution as an upper bound: Histogram

KBB seems to find optimal solutions rather early in the branch and bound algorithm, and

that most of the time is actually spent in proving optimality.

The importance of reduced-cost bound improvements As mentioned before, the

domination-induced reduced-cost bound improvement techniques described in Section 3.6.4

have not been implemented. The motivation for wanting to do so follows from the following

experiment, in which KBB is ran twice, once with its full set of features, and once without

any reduced-cost bound improvement methods at all (e.g., the methodology described in

Section 3.5.2 is turned off). A summary of the computations is presented in Table 3.5, and

the histogram curves in Figure 3.5.

Table 3.5: The importance of reduced-cost bound improvements: Summary

with without
avg-time 1.66 3.72
avg-bbnodes 110,396 300,070

As can be seen from Table 3.5 and Figure 3.5 the reduced cost bound improvement

95

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01 0.1 1 10 100 1000

KBB with and without reduced-cost bound improvement (all other features on)

with
without

Figure 3.5: The importance of reduced-cost bound improvements: Histogram

technique had a big impact in overall solution times. This can be observed in several different

aspects of the computations. For starters, by observing the plot in Figure 3.5 it can be seen

that the longest solution time with the reduced-cost bound enabled took approximately 100

seconds. On the other hand, the longest solution time without the reduced cost bounds

enabled took near 1000 seconds to solve. While this alone might explain the difference in

averages observed in Table 3.5, it can be seen that it is not just a few instances that are

greatly affected. In fact, it can be seen in Figure 3.5 that the behaviour of the algorithm

with the reduced-cost bounds enabled is systematically better. For example, 600 instances

are solved to optimality in 0.1 seconds without the bounds enabled, whereas 800 instances

are solved in the same amount of time with the bounds enabled. Analogously, around 1100

instances are solved to optimality in 1 second without the bounds enabled, whereas just

over 1200 instances are solved to optimality in the same amount of time using the bounds.

This result suggests that an implementation of the dominance-assisted reduced cost

bound improvement technique could lead to important additional improvements.

96

3.8 Domination and general integer programming

Motivated by the success of domination-based branching in the context of MIKP, in this sec-

tion we extend the ideas developed so that they can applied to general integer programming

problems. Though we do not discuss the case of general mixed integer programming prob-

lems, it is our hope that this discussion will illustrate the key concepts which are employed

in the procedure, and that further extensions to mixed integer programming problems will

not be difficult. Further, it is important to remark that the observations made in this

section correspond to very basic concepts, and are the focus of ongoing research.

3.8.1 Integral generating sets, integer programming, and domination

We begin by giving a brief overview of integral generating sets. For a more thorough review

and for complete proofs, see Bertsimas and Weismantel [21].

A subset C of Rn is called a cone if it closed under taking conic combinations, i.e., for

all x, y ∈ C and λ, µ ≥ 0 we have that µx + λy ∈ C. A cone C is called polyhedral if there

exists A ∈ Qm×n such that C = {x ∈ Rn : Ax ≤ 0}.

Let F ⊆ Zn. A set H ⊆ F is an integral generating set of F if for every x ∈ F there exist

{h1, . . . , hk} ⊆ H and multipliers λ1, . . . , λk ∈ Z+ such that x =
∑k

i=1 λihi. An integral

generating set H of F is called an integral basis if it is minimal with respect to inclusion.

An important theorem regarding the relationship of polyhedral cones and integral gen-

erating sets is as follows:

Theorem 3.4 (Giles and Pulleyblank [53]). The set of all integer points in a rational

polyhedral cone has a finite integral generating set.

We now relate the integral generating sets and integer programming.

Consider A ∈ Qm×n, and b ∈ Qm. Let P = {x ∈ Rn : Ax ≤ b}, and let PI = P ∩ Zn.

Consider the integer programming problem,

max{ctx : x ∈ PI}. (3.7)

Let O1, . . . , O2m represent the orthants in Rm. For every j ∈ {1, . . . , 2m} let Cj = {x ∈

97

Rn|Ax ∈ Oj}, and let Hj be an integral generating set of Cj ∩ Zn. Let H =
⋃2m

j=1 Hj .

Observe that Theorem 3.4 implies that there exists a finite set H.

Theorem 3.5. [Graver [63]] x ∈ PI is optimal for problem (3.7) if and only for every h ∈ H

one of the two conditions holds:

• cth ≤ 0

• cth > 0 and x + h /∈ P .

Say that x ∈ PI is cost-dominated if there exists h ∈ H such that cth > 0 and x+h ∈ PI .

Theorem 3.5 clearly implies that x ∈ PI is optimal if and only if x is not cost-dominated.

Say that S ⊆ PI is cost-dominated if there exists h ∈ H such that cth > 0 and such that

for every x ∈ S, x + h ∈ PI . If a set S is cost-dominated it is straight-forward that S does

not contain an optimal solution of (3.7).

Now let Z(d) = {x ∈ PI : ctx = d}, and consider any complete order relationship <L in

Z(d). For example, let x1, x2 ∈ Z(d). Say that x1 <L x2 if there exists i ∈ 1, . . . , n such

that x1
i < x2

i and ∀k ∈ 1, . . . , (i − 1), x1
k = x2

k.

Say that x ∈ PI is lexicographically-dominated if there exists h ∈ H such that cth =

0, x+h ∈ PI and (x+h) <L x. Analogously, say that S ⊆ PI is lexicographically-dominated

if there exists h ∈ H such that cth = 0 and such that every x ∈ S satisfies x + h ∈ PI

and (x + h) <L x. If a set S is lexicographically-dominated it is straight-forward that there

exists an optimal solution of (3.7) outside of S.

Say that a set S ⊆ PI is dominated if S is either cost-dominated or lexicographically-

dominated.

Finally, consider a branch-and-bound tree with nodes {N1, . . . ,Nq}. Let {S1, . . . , Sq}

represent the feasible regions defined at each node. Clearly, Si ⊆ PI for all i = 1, . . . , q. The

idea of domination-branching is to incorporate domination information in the branch-and-

bound exploration in one of two different ways. The first way consists in using a-posteriori

information. That is, if a branch-and-bound node Ni is such that Si dominated, then node

Ni can be pruned from the search tree. The other way consists in using a-priori information.

98

That is, branching rules can be constructed in such a way as to ensure than no set Si will

be dominated.

3.8.2 The KBB algorithm and domination branching

The KBB domination-branching technique described in Section 3.6 uses a simplified version

of the framework outlined in Section 3.8.1. The idea is to exploit the fact that typically

a branch is accomplished by imposing variable bound changes. In order to explain how

this idea fits in with the more general scheme of domination-branching, consider A′ ∈

Qm′×n, b′ ∈ Qm′
, and l, u ∈ Qn such that P = {x ∈ Rn : A′x ≤ b′, l ≤ x ≤ u}, where P is

assumed equivalent the set defined in Section 3.8.1.

Let H ′ be a generating set for {x ∈ Zn : A′x ≤ 0}, and consider x ∈ PI . Observe that

if h ∈ H ′ is such that l ≤ (x + h) ≤ u, then, (x + h) ∈ PI . Thus, if h ∈ H ′ is such that

cth > 0 and l ≤ (x + h) ≤ u, then x is cost-dominated. Likewise, if h ∈ H ′ is such that

cth = 0, l ≤ (x + h) ≤ u, and (x + h) <L x, then x is lexicographically-dominated.

Let Dc = {x ∈ H ′ : ctx > 0}, and let Dl = {x ∈ H ′ : ctx = 0, and (x + y) <L x

for all y ∈ Rn}. Observe that for many order relationships <L, including the definition

given in Section 3.8.1, the set Dl is well-defined. Further, observe that if x ∈ PI is such

that l ≤ (x + h) ≤ u for some h ∈ Dc, then x is cost-dominated. Likewise, if x ∈ PI is

such that l ≤ (x + h) ≤ u for some h ∈ Dl, then x is lexicographically-dominated. Finally,

observe that the cost-domination tuples defined for MIKP in Section 3.6.1 correspond to

a subset of Dc, and that the lexicographic-domination tuples defined for MIKP in Section

3.6.2 correspond to a subset of Dl.

Now consider a branch-and-bound tree in which branching is performed by imposing

upper and lower bounds on variables. If {N1, . . . ,Nq} correspond to the nodes of the

branch-and-bound tree and {S1, . . . , Sq} represent the feasible regions defined at each node,

then there exist l1, . . . , lq and u1, . . . , uq such that l ≤ li, ui ≤ u and Si = PI ∩ {x ∈ Rn :

li ≤ x ≤ ui} for each i = 1, . . . , q.

Observe that if for some i ∈ {1, . . . , q} and some h ∈ H ′ we have that li− l ≤ h ≤ u−ui,

then, for every x ∈ Si we have that l ≤ (x + h) ≤ u. Thus, if at some node Ni we have

99

that there exists h ∈ Dc ∪ Dl such that li − l ≤ h ≤ u − ui, then Si is dominated. Hence,

at every node one could check if such a vector h ∈ Dc ∪ Dl exists, and if so, prune the

respective node. This would correspond to using domination information in an aposteriori

way. Though this idea has not been tested in the context of MIKP, it is a topic of ongoing

research.

Another way of making use of this information is as follows: Consider a node Ni of the

branch-and-bound tree and h ∈ Dc ∪Dl. Assume that there exists an index jo ∈ {1, . . . , n}

such that (a) (hjo > ujo−ui
jo

) or (hjo < lijo
−ljo), and, (b) for all j ∈ {1, . . . , n}\{jo} we have

that lij − lj ≤ hj ≤ uj − ui
j . Then, if (hjo > ujo − ui

jo
), at node Ni we could add constraint

x ≤ ujo−hjo (thus, effectively strengthening the value of ui
jo

). Likewise, if (hi < lijo
−ljo), we

could add constraint x ≥ ljo +hjo (thus, effectively strengthening the value of lijo
). Observe

that this inequalities are valid for the current node of the branch-and-bound tree. In fact,

if these new bounds are not satisfied we will be considering a dominated solution. This in

fact is exactly the same strategy pursued in the KBB domination-branching scheme, where

a subset of Du ∪Dl is kept in memory at all times, and checks are performed at every node

in order to improve bounds as much as possible.

3.8.3 Final remarks

During the last few decades, it can be seen that solving general integer programming prob-

lems has proved to be much harder than solving their binary counterparts. Though much

progress has been recently made in terms of understanding valid inequalities for general in-

teger sets, little work has been done in better understanding the branching process. Branch-

ing, however, seems a natural place to look for improvements. After all, branching is very

prone to the difficulties arising from symmetry and problems in which there are many so-

lutions having variable values similar to each other. This seems especially true in the case

of general integer programming.

While it is not clear yet that domination branching will prove a successful means to

tackling these type of difficulties, there are several reasons which make it an interesting

methodology to consider. On the one hand, lexicographic dominance is a very general way

100

of dealing with certain types of symmetry. On the other hand, cost dominance may help

deal with problems having many solutions which can easily be obtained from another by

simply shifting values from some variables to others.

In any case, there is yet much research to be conducted in order to better understand

domination, both the context of general integer programming, and in the context of MIKP.

For instance, in the context of MIKP it would be very interesting to extend the notion of

domination-pairs to more complex domination vectors. In addition, it would be interesting

to consider mixed-integer domination pairs. That is, domination pairs in which one index

corresponds to that of an integer variable, and the other that of a continuous variable. Yet

another important direction to pursue would consist in, instead of storing domination vec-

tors in memory which are computed a-priori, somehow find these vectors as the algorithm

goes along. Perhaps, by solving a sort of “domination” problem, as opposed to a “separa-

tion” or “pricing” problem. What the experience of MIKP shows is that it might not be

necessary to actually search the entire space of possible domination vectors. Rather, if one

could identify certain classes of such vectors which frequently hinder the branching process,

it may be enough to obtain important gains. This separation process could be used in the

aposteriori way, or perhaps together with alternative branching schemes.

101

CHAPTER 4

The Mixed Integer Rounding Cut

4.1 Introduction

Consider a ∈ Qn, b ∈ Q, I ⊆ {1, . . . , n}, C = {1, . . . , n} \ I, and the following mixed

integer polyhedron:

P = {x ∈ Qn :
n∑

i=1

aixi ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}. (4.1)

For every q ∈ Q define:

• (q)+ = max{q, 0}.

• .q/: the largest integer less-than-or-equal to q.

• 0q1: the smallest integer greater-than-or-equal to q.

• q̂ = q − .q/, e.g. the “fractional” part of q.

• 0q/ = 0q1 if q̂ ≥ 1/2, and 0q/ = .q/ if q̂ < 1/2, e.g. the “nearest” integer to q.

Let C+ = {i ∈ C : ai > 0} and assume b̂ += 0. The inequality:

∑

i∈I

(
min{âi, b̂} + b̂.ai/

)
xi +
∑

i∈C+

aixi ≥ b̂0b1,

is known as the Mixed Integer Rounding (MIR) cut, and is known to be valid for P .

102

4.1.1 Background

The Mixed Integer Rounding cut dates back to the early sixties. More precisely, to the

fractional cut of Gomory [56], [57]. More than just deriving an important valid inequality

for general integer programming, Gomory realized that by repeatedly applying his fractional

cuts, one could theoretically solve any integer programming problem to optimality in a finite

number of iterations. This idea was very exciting at the time, though unfortunately, it met

with little success in practice, as computational results were largely disappointing.

Despite this, much theoretical work ensued up through the 1980s extending these in-

equalities. Gomory [58] first characterized his inequalities in a broader framework by in-

troducing the master cyclic group polyhedra, Gomory and Johnson [59], [60] extended this

framework to mixed integer programming problems, Balas [14] introduced the disjunctive

cut, Nemhauser and Wolsey [89] introduced the Mixed Integer Rounding cut as we know

it today, Cook, Kannan and Schrijver [33] introduced the split cut, and Balas, Ceria and

Cornuéjols [15] introduced the lift-and-project cut. All these authors, as well as many

others, generalized the work of Gomory in some way or another.

During the mid-nineties things took an interesting turn, with an important shift towards

successful computational experiments. Balas, Ceria, Cornuéjols, and Natraj [17] obtained

remarkable results applying the MIR cuts to general mixed integer programming problems

(MIPs). These results were quickly echoed by Bixby, Fenelon, Gu, Rothberg, Wunderling

[23] and many others. Cornuéjols [35] speculates the following regarding the sudden success

of these cuts:

“The truth of the matter is that, although many authors commented on how

bad Gomory cuts worked in practice, very few had actually tried themselves.

Those who tried them made poor implementation decisions, such as (i) adopting

a pure cutting plane approach and (ii) adding cuts one at a time, re-optimizing

the LP after each cut addition.”

Up to this day, Bixby, Gu, Rothberg, Wunderling [24] still report that the MIR cuts are

the most important cutting plane used in commercial MIP solver, CPLEX.

103

During the last decade much work has gone into further pursuing an understanding

of MIR inequalities, and their importance as a tool for solving general MIPs. Marchand

and Wolsey [74] show that many well-known cuts are MIRs, and present an algorithm that

applies the MIR procedure to cuts derived by aggregating original formulation rows and by

complementing variables. Andersen, Cornuéjols, and Li [3], [4], and also Balas and Perre-

gaard [18] relate the MIR inequalities to split cuts and lift-and-project cuts, and show how

these relationships can help in better applying these cuts to solve difficult MIPs. Cornuéjols,

Li, and Vanderbussche [36] obtain the class of k-cuts by scaling MIR inequalities, Caprara

and Fischetti [29] and Fischetti and Lodi [48] apply MIR inequalities to an aggregation of

rows derived by solving an integer programming problem. And the list goes on...

What is remarkable about the MIR is that it is a very simple “template” cut which can

be derived from any single valid inequality of an MIP. What seems clear from all this recent

research is that when derived from the “correct” valid inequality, the MIR inequality can

be very effective.

A fundamental question concerning MIR cuts is the following: What other inequalities

derived from single valid inequalities are there? If the MIR is so effective, is there perhaps

another class of inequalities which can easily be derived from single valid inequalities which

is comparable?

Various researchers have tried to address these questions. These attempts have followed

two main directions: The first direction starts from the observation that MIR inequalities

are facets of the master cyclic group polyhedron (see Gomory and Johnson, [59], [60]).

The work of Aaroz, Evans, Gomory and Johnson [9], Gomory, Johnson, and Evans [61],

Dash and Günluk [42], [41], Dash, Goycoolea, and Günluk [38], and Fischetti and Saturni

[49] attempt, both theoretically and computationally, to derive other facets of the cyclic

group polyhedron. The second direction starts from the observation that MIR inequalities

can be derived by lifting simpler systems with less variables. The work of Atamtürk [10],

[11], Atamtürk and Rajan [12], Agra and Constantino [2], and Richard, de Farias, and

Nemhauser [99] are examples that follow this approach. Though many new families of cuts

have been derived through these approaches, and much insight has been gained regarding

104

the underlying structure of mixed integer cuts, little success has been achieved in being able

to improve upon the performance of the MIR computationally.

Define as a group cut any valid inequality of the master cyclic group polyhedron. Re-

cently, Dash and Günluk [40] made a startling computational observation: Noting that MIRs

were the only group cuts to consistently yield positive results in separation algorithms, they

devised an experiment which after adding MIR inequalities derived from tableau rows of a

problem, tested if any other group cuts derived from those same tableau rows could possibly

be violated. After performing this experiment on a very large set of MIP instances, they

found that in a significant number of them, a notable 35% of the problems, no group cuts

were violated in any of the tableau rows after the MIRs were added. This experiment, of

course, would largely explain many of the unsuccessful attempts at adding additional classes

of cuts.

4.1.2 In this chapter

In this Chapter we follow up on the computational experiments of Dash and Günluk [40].

For this we proceed in two steps. First we discuss the MIR inequalities, and describe the

implementation of a simple heuristic by which MIR inequalities can be separated. When

designing the algorithm we will focus on two issues: Dealing with numerical problems and

selecting heuristic rules for complementing variables and scaling inequalities. We accom-

pany this discussion with some computational tests illustrating the effect of the different

algorithmic parameters.

Second, we discuss an experiment similar to that performed by Dash and Günluk. De-

fine as a knapsack cut any valid inequality of a mixed integer knapsack problem (MIKP)

polyhedron (See Chapter 3). Our goal is to determine if, like in the master cyclic group

polyhedron, after adding MIRs all other knapsack cuts are satisfied.

4.2 A simple inequality system

Consider the mixed integer set,

Q = {x ∈ R, w ∈ Z : w + x ≥ b, x ≥ 0}.

105

Consider the example in Figure 4.1(a), where the dashes represents the sub-space w+x =

b, and the dark lines represent Q.

b

x

w

(a) Feasible region

b
0b1

x

w

(b) A valid inequality

Figure 4.1: A simple mixed integer set

From Figure 4.1(b) it is easy to see that the constraint:

x ≥ b̂ (0b1 − w), (4.2)

is valid for Q. A simple disjunctive proof now follows.

Proof.

First, assume w ≥ 0b1. This implies that 0b1 − w ≤ 0, and hence b̂(0b1 − w) ≤ 0.

Since 0 ≤ x the result follows.

Second, assume w ≤ 0b1 − 1. This implies that −(0b1 − w) ≤ −1, and hence

−(1 − b̂)(0b1 − w) ≤ −(1 − b̂). (4.3)

On the other hand, x + w ≥ b implies x + w ≥ 0b1 − (1 − b̂), and hence,

(0b1 − w) ≤ x + (1 − b̂). (4.4)

Adding (4.3) and (4.4) the result follows.

106

4.3 The MIR inequality

Consider a ∈ Qn, b ∈ Q and disjoint sets I, C such that I ∪ C = {1, . . . , n}. Define

C+ = {j ∈ C : aj > 0} and consider the polyhedron

P= = {x ∈ Qn :
n∑

j=1

ajxj = b, x ≥ 0, xj ∈ Z ∀j ∈ I}. (4.5)

Let S ⊆ I and note that for all x ∈ P=:



∑

S

.aj/xj +
∑

I\S

0aj1xj





︸ ︷︷ ︸
w

+




∑

S

âjxj −
∑

I\S

(1 − âj)xj +
∑

C

ajxj



 = b.

Since −(1 − âj)xj ∀j ∈ I \ S and
∑

C− ajxj are non-positive it follows that

w +

(
∑

S

âjxj +
∑

C+

ajxj

)
≥ b. (4.6)

Given that w ∈ Z and
(∑

S
âjxj +

∑

C+

ajxj

)
∈ R+, from Section 4.2 we have:

(
∑

S

âjxj +
∑

C+

ajxj

)
≥ b̂(0b1 − w). (4.7)

From here we can derive two different forms of the MIR cut, depending on how we substitute

w. If we substitute w =
∑

(.aj/xj : j ∈ S) +
∑

(0aj1xj : j ∈ J \ S) and do the algebra, we

obtain The Simple-Form of the MIR Inequality (MIR1):

∑

S

(âj + b̂.aj/)xj +
∑

I\S

(b̂ + b̂.aj/)xj +
∑

C+

ajxj+ ≥ b̂0b1. (4.8)

If we substitute w = b −
∑

(âjxj : j ∈ S) +
∑

((1 − âj)xj : j ∈ I \ S) −
∑

C+ ajxj +
∑

C− ajxj , we obtain The Normalized-Form of the MIR Inequality (MIR2):

∑

S

âj

b̂
xj +
∑

I\S

(1 − âj)
(1 − b̂)

xj +
1
b̂

∑

C+

ajxj +
1

(1 − b̂)

∑

C−

ajxj ≥ 1. (4.9)

How to choose S? Note that âj ≤ b̂ if and only if (âj + b̂.aj/) ≤ (b̂ + b̂.aj/). Likewise,

âj ≤ b̂ iff âj

b̂
≤ (1−âj)

(1−b̂)
. Hence, it is convenient to choose S = {j ∈ I : âj ≤ b̂} in order to get

the strongest cut possible.

In summary, define f(q1, q2) = min{q̂1, q̂2} + q̂2.q1/ and g(q1, q2) = min{ q̂1
q̂2

, 1−q̂1
1−q̂2

}.

107

Constraint MIR1 is equivalent to,

∑

i∈I

f(ai, b)xi +
∑

i∈C+

aixi ≥ b̂0b1. (4.10)

Constraint MIR2 is equivalent to,

∑

i∈I

g(ai, b)xi +
1
b̂

∑

i∈C+

aixi +
1

1 − b̂

∑

i∈C−

aixi ≥ 1. (4.11)

Note that constraint MIR1 is also valid for P (see (4.1)), since in the derivation the

equality condition was never explicitly used. This does not hold for MIR2.

In the rest of this chapter we will limit ourselves to using the Simple-Form of the MIR

(e.g., MIR1) for several reasons:

• The analysis will always be strictly analogous if we consider MIR2.

• Inequality MIR1 is valid and well-defined even if b̂ = 0.

• MIR1 is numerically convenient as it is not subject to division by very small numbers.

4.4 The complemented-MIR (c-MIR) inequality

For each i ∈ C let lj ∈ Q, uj ∈ Q ∪ {+∞} and for each j ∈ I let lj ∈ Z, uj ∈ Z ∪ {+∞}.

Assume lj ≤ uj for each j = 1, . . . , n and consider the more general polyhedron

P=
B = {x ∈ Qn :

n∑

i=1

ajxj = b, lj ≤ xj ≤ uj ∀j ∈ {1, . . . , n} and xj ∈ Z ∀j ∈ I}. (4.12)

The introduction of lower and upper bounds allows us to introduce a slightly-more

general form of the MIR inequality called the Complemented-MIR (c-MIR) inequalities

(see Marchand and Wolsey [74]), because they can be derived by complementing variables.

For each j = 1, . . . , n, if uj < ∞, define xu
j = (uj − xj). Also, define xl

j = (xj − lj).

Observe that xu
j and xl

j are both bounded below by zero. Furthermore, if xj takes an integer

value, so will xu
j and xl

j .

Let sets U, L define a partition of {1, . . . , n} such that every j ∈ U satisfies uj < ∞. By

substituting variables xj with j ∈ U by (uj − xu
j) and variables xj with j ∈ L by (xl

j + lj),

we obtain the following:

108

∑

j∈U

(−aj)xu
j +
∑

j∈L

ajx
l
j = b −

∑

j∈U

ajuj −
∑

j∈L

ajlj . (4.13)

Observe that xu
j , xl

j ≥ 0 for all j ∈ {1, . . . , n}, hence we can apply the MIR procedure to

obtain a valid inequality for (4.13) subject to the corresponding non-negativity constraints.

Let r = b −
∑
j∈U

ajuj −
∑
j∈L

ajlj . If we apply MIR1 we obtain:

∑

U∩I

f(−aj , r)xu
j +
∑

L∩I

f(aj , r)xl
j −
∑

U∩C+

ajx
u
j +
∑

L∩C+

ajx
l
j ≥ r̂0r1.

If we substitute back the variables we get the following valid inequality in terms of our

original variables:

−
∑

U∩I

f(−aj , r)xj +
∑

L∩I

f(aj , r)xj +
∑

U∩C+

ajxj +
∑

L∩C+

ajxj ≥ R, (4.14)

where,

R = r̂0r1 −
∑

U∩I

f(−aj , r)uj +
∑

L∩I

f(−aj , r)lj −
∑

U∩C+

ajuj +
∑

L∩C+

ajlj .

Constraint (4.14) will henceforth be referred to as the Simple Complemented-MIR in-

equality (c-MIR), or simply, c-MIR1. Observe that deriving the exact form of the Normal

Complemented-MIR inequality, or c-MIR2, is analogous.

4.5 Making use of the MIR inequalities

4.5.1 Before generating any cuts

We now discuss several steps that can be performed before MIR cuts are actually gener-

ated. These steps are designed to make the MIR separation more effective and less time

consuming.

Ranking integer variables It helps to generate an apriori-ranking system for integer

variables having fractional values. A natural, though perhaps naive approach, would consist

in ranking variables according to how “fractional” they are. That is, to every integer variable

xi assign weight wi = |x̂∗
i − 0.5|, and say that a variable xi is more important that xj if

wi < wj . Another method would be to use the so-called “strong-branching” information.

109

For every integer variable x∗
i having a fractional value, branch once and compute the LP

relaxation bound obtained for each of the branches (or do a limited number of pivots

for each branch). Then, assign to wi the “worst” (the largest in case our problem is a

maximization one, or the smallest if minimization) of the two bounds obtained. Then, say

that xi is more important than xj if the bound wi is stronger than bound wj . Note that

most integer programming software packages have a function which provides this strong-

branching information (or some variant thereof) for all variables through a single function

call. Bixby, Fenelon, Gu, Rothberg and Wunderling [24] suggest ranking the variables using

Driebeek penalties [43].

Defining slack variables Working with MIR inequalities requires properly defining slack

variables in order to convert inequality constraints to equality constraints. One way of

defining slack variables is as follows:

• Ranged constraints: Consider a constraint of the form b1 ≤ ax ≤ b2. Define an

alternative constraint of the form ax + s = b2 and where the lower and upper bounds

of continuous variable s are 0 and b2−b1 respectively. Observe that this new constraint

is equivalent to the ranged constraint, because ax−b1 ≥ 0 is equivalent to s ≤ b2−b1,

and b2 − ax ≥ 0 is equivalent to s ≥ 0.

• Less-than-or-equal-to constraints: Consider a constraint of the form ax ≤ b. Define

an alternative constraint of the form ax+s = b, where continuous variable s has lower

bound 0.

• Greater-than-or-equal-to constraints: Consider a constraint of the form ax ≥ b. Define

an alternative constraint of the form ax−s = b, where continuous variable s has lower

bound 0.

When defining slack-variables as described above, the slack variables are treated in a very

general way. They are defined as being continuous and only the most trivial bounds are

defined for them. Consider a less-than-or-equal-to constraint ax ≤ b. If all of the variables

which participate in the constraint are of integer type, define t to be the smallest integer

110

such that ta and tb are integer (i.e., t is the least common multiple of the denominators of

the coefficients and right-hand-side). It is easy to see that an alternative way of converting

the above constraint to equality form consists in defining an integer non-negative variable

s, and defining the equality ax + (1/t)s = b. This method naturally extends to ranged

constraints and greater-than-or-equal-to constraints. In practice, it is desirable to do this

extension only if the value t is not too large. For this, it is advisable to use a parame-

ter MAX SLACK SCALE indicating the largest admissible value of t. In addition, by

observing the bounds of the variables participating in a constraint, it is possible to derive

stronger upper and lower bounds for the slack variables.

Selecting rows An MIR cut can be applied to any valid constraint of an MIP. However,

there are far too many such constraints, and an important issue consists in selecting a

reasonably sized subset. Several different approaches have been used for this. We describe

the most important of these rules.

• Formulation rows. The simplest option consists in selecting rows from the original

formulation rows as supplied by the user. When problems are poorly formulated,

this can lead to important MIR constraints. When selecting formulation rows, it

is helpful to limit the selection to rows which are not trivially facets (for example,

clique constraints and bound constraints), and which involve involve fractional integer

variables.

• Tableau rows. The most typical method consists in deriving MIR cuts from rows of the

current tableau (see Gomory [56], [57], Balas, Ceria, Cornuéjols, and Natraj [17], and

Bixby, Gu, Rothberg and Wunderling [24]). Tableau rows have the advantage that

if the corresponding basic variable is fractional and integer, then it can be proven

that a violated MIR cut exists (these are the well-known Gomory Mixed-Integer Cuts,

or GMIs). Tableau rows are very dense, and are typically poorly conditioned, so it

is not desirable to add MIR inequalities on all of them. Because of this, a possible

selection scheme would be to select those tableau rows corresponding to the most

“important” fractional integer variables, as described above. Here it is advisable to use

111

a parameter MAX TABROW CUTS, indicating the maximum number of tableau

rows to consider. Bixby, Fenelon, Gu, Rothberg, and Wunderling [24] propose setting

this value to 200. Another approach would be to generate all possible MIR cuts from

the tableau rows, and in a subsequent stage select the “best” of these, by considering

the violation, or euclidean distance of the point separated to the cut. This latter

approach is sure to yield the best results, at the cost of taking a longer amount of

time.

• Aggregated formulation rows. Several authors have pursued an approach consisting

of aggregating formulation rows by means of taking linear and conic combinations of

them, and then deriving an MIR inequality for the resulting valid constraint. Some

very successful experiences have been those of Marchand and Wolsey [74], who propose

a heuristic for aggregating rows, Caprara and Fischetti [29], who focus their attention

on using multipliers 0 and 1/2 to combine rows, and Fischetti and Lodi [48], who solve

an IP in order to determine which rows to aggregate, and afterwards apply the MIR

cut.

• Extending the information derived from tableau rows. Andersen, Cornuéjols, and Li

[3] exploit the fact that MIR cuts are in fact split-cuts (see Balas [13] and Cook,

Kannan, and Schrijver [33]). Their “reduce-and-split” algorithm consists in adding

together integer multiples of tableau-rows and applying the MIR template to this new

row. As a counter-part to this idea, Balas and Perregaard [18] exploit the relationship

between MIR cuts and lift-and-project cuts (see Balas, Ceria, and Cornuéjols [16]).

Their algorithms provides a way of pivoting away from the current basis, in such a

way as to obtain a new tableau row to which the MIR template can be applied.

• Delayed tableau rows. Instead of using the current tableau rows, an alternative ap-

proach is to consider the tableau rows derived in some previous iteration of the cut-

separation algorithm. By doing this, one can effectively limit the Chvátal-Gomory

rank (if we allow the notion to be extended to MIPs) of the derived constraints.

Dash, Goycoolea, and Günluk [38], as well as Fischetti and Saturni [49] have used

112

these delayed rows in different ways.

A heuristic for improving numerical stability Consider a valid inequality of the

form ax ≥ b. We describe a procedure which seeks to slightly modify the coefficients and

right-hand-side in such a way as to ensure no feasible solutions are lost, and such that the

obtained cut is numerically “nicer”.

The purpose of these relaxations is to improve the numerical stability of a constraint,

weakening it a bit in hopes of repairing slight infeasibilities, and making the coefficients

a bit nicer in order to help the LP solver. Most of these ideas originate from the MIR

implementation of the Cut Generation Library (CGL), programmed by John Forest, in the

COIN-OR [32] optimization package. Note that in Section 4.5.2.1 we will discuss other ways

of dealing with numerical stability.

• (ROUNDING) If |âj | < 10−12 set aj = .aj1.

Here it assumed that if the fractional part is very small, then the coefficient may as

well be assumed to have been integer. Hence, the coefficient is rounded.

• (INTEGER-PADDING) For each integer variable xj :

– If âj < 10−6 and |âjuj | < 10−6 then set aj = .aj/ and b = b − âjuj .

– Else, if âj < 10−6 set aj = .aj/ + 10−6.

– Else, if (1 − âj) < 10−6 then set aj = 0aj1.

Here, the point is to deal with coefficients that are near-integer but not near enough

that we can just round.

• (CONTINUOUS-PADDING) For each continuous variable xj :

– If ajuj < 10−6 then aj = 0 and b = b − ajuj .

– Else, if aj < 10−6 set aj = 10−6.

With continuous variables it makes little difference if the coefficients are integer or

not (in terms of cut generation). However, if coefficients are zero things can change.

113

• (RATIO-TEST) If the ratio between the highest and lowest coefficient is more than

10000 then do not generate a cut from this row.

This procedure may be easily customized by replacing all values 10−6 by a parameter

PADDING THRESHOLD, all values 10−12 by INTEGER THRESH.

Note that this procedure will convert an equality into an inequality. This means that

this procedure can only be used with MIR1.

Integer scaling One of the most unusual characteristics of MIR cuts is that not only

does their effectiveness depend on the feasible region defined by the constraint from which

they are derived, but also, on the form of the constraint from which they are derived. An

interesting observation in this regard is made by Cornuéjols, Li, and Vanderbussche [36],

who define the k-cuts as the MIR inequalities obtained after scaling the originating row by

an integer k. As they show, these cuts capture information that could completely be missed

by a normal MIR inequality. So far, no publications have appeared indicating how rows

should be scaled in order to obtain the best inequalities. As a simple heuristic, we define

parameters T MIN and T MAX, and scale rows by all integers in between these values.

4.5.2 Generating cuts

We classify these rows into two groups: Tableau rows corresponding to an optimal basis

will be called Type-I rows, and all other rows will be said to be of Type-II. Observe that

Type-II rows include original formulation rows, delayed tableau rows, and rows obtained

by aggregation.

4.5.2.1 Type-I rows (current-basis tableau rows)

Finding violated inequalities: Consider the constraint:

x0 +
n∑

j=1

ajxj = b

We will assume that this equality corresponds to a tableau row of an MIP, that xo is a basic

variable of integer type, and that b̂ += 0. If we assume that every variable xj with j = 0, . . . , n

satisfies uj = ∞ and lj = 0, then, as we have seen in Section 4.3, the corresponding MIR2

114

inequality has form:

∑

S

âj

b̂
xj +
∑

I\S

(1 − âj)
(1 − b̂)

xj +
1
b̂

∑

C+

ajxj +
1

(1 − b̂)

∑

C−

ajxj ≥ 1.

where S = {j ∈ I : âj ≤ b̂}. Now, observe that since every variable xj with j = 1, . . . , n is

non-basic, then each of these variables has value zero. Further, since a0 = 1 (where a0 is

coefficient of variable x0 in the tableau row), it follows that 0 ∈ I, and hence variable x0

has coefficient zero in the MIR inequality. This implies that the constraint will necessarily

be violated by the current basic solution, and that it will have slack equal to one.

This well-known observation indicates that in MIPs where variables only have non-

negativity bounds, one can always obtain violated MIR inequalities from the tableau row

when the solution is fractional. In fact, these obtained inequalities are the Gomory Mixed

Integer cuts which are commonly employed by commercial mixed integer programming

solvers.

Unfortunately, by further observing MIR2, and considering the conditions under which

the MIR2was derived, it becomes evident that if the lower bound is non-zero, or the upper-

bound is not infinite for some variables, the argument just used does not hold. In order to

remedy this situation the c-MIR is employed.

Again, without loss of generality, assume that the basic variable is x1, and that this

is an integer variable having a fractional value. Define U = {j : xj = uj} and L = {j :

xj = lj} ∪ {0}. Then, substitute variables as indicated in Section 4.4 to obtain constraint

c-MIR1. By using above argument, it is easy to see that if r = b −
∑
j∈U

ajuj −
∑
j∈L

ajlj

is fractional (that is, r̂ += 0), then the cut in the transformed space is violated. Thus,

the corresponding c-MIR is also violated. We call this variable-complementation scheme

COMPLEMENT RULE I.

Obtaining “safe” tableau rows: An important issue concerning the use of MIR in-

equalities based on tableau-rows is assuring that one obtains valid inequalities. In practice,

this can be very difficult due to lack of numerical precision. There are two places where it is

easy to make numerical mistakes: The first of these is in obtaining the actual tableau rows

from which cuts will be derived. The second of these is in generating the MIR inequality.

115

In fact, it is natural to expect that tableau row generation can go wrong. After all,

tableau rows are obtained by using the explicit inverse of a matrix, and it is well-known

that taking matrix inverses is a numerically unstable operation. We now address the issue

in more detail by considering an approach proposed by Sanjeeb Dash [39].

Consider an integer programming problem defined by the constraints Ax = b. Assume

that the rows of A are the vectors a1, . . . , am and let b = (b1, . . . , bm). Consider a basic

optimal solution of the LP relaxation and a corresponding simplex dictionary. Without

loss of generality, assume that variables 1, . . . , m are basic, and let B be the basis matrix.

Consider the k-th tableau row, πkx = πk
o , and the k-th row of the matrix B−1, αk =

(αk
1 , α

k
2 , . . . , α

k
m). We know that π and πo can be obtained by taking a linear combination

of the rows of A and b, using the multipliers in αk. More precisely,

πk =
m∑

i=1

αk
i a

i and πk
o =

m∑

i=1

αk
i bo. (4.15)

Moreover, we know that tableau rows have the special form,

xk +
∑

j≥m+1

πk
j xj = πk

o .

That is, πk
k = 1 and πk

i = 0 ∀i ∈ {1, . . . , m} \ {k}.

The first important observation to keep in mind when generating a tableau row, is that

it is not strictly necessary to get the exact vector αk in order to generate the k-th tableau

row. In fact, let α̃k is an approximation of αk, and define:

π̃k =
m∑

i=1

α̃k
i a

i and π̃k
o =

m∑

i=1

α̃k
i bo.

Though constraint π̃kx = π̃o will only be an approximation of the k-th tableau row, it will

still be a valid equality of the original system from which MIR inequalities can be derived.

The only problem is that it might not have such a nice form as a tableau row. That is, the

coefficients π̃k
k might not be exactly one, and the coefficients π̃k

i with i ∈ {1, . . . , m} \ {k}

might not be exactly zero. Because of this, we call constraint π̃x = π̃o a dirty tableau row.

Second, even after recognizing that it may not be possible to get an exact vector αk,

and that instead, what we really work with is an approximation α̃k, there is still a risk of

116

errors in actually computing π̃k and π̃k
o . In fact, the numbers represented in the vectors α̃k

may be numerically very bad. A vector α̃k may have coefficients that are very large, and

others very small (with several orders of magnitude difference). Furthermore, the numbers

usually have a high degree of precision; that is, their floating-point representation may use

a lot of decimal places. What this means is that when carrying out the multiplications

and additions in order to obtain the vectors π̃k it is likely that many overflows will occur.

Normally, in the “C ”and “C++” programming languages these overflows are not reported

to the user, and hence, the mistakes, though small, can exist without the user knowing.

Thus leading to invalid cuts. Further, these errors greatly propagate as multiple rounds of

cuts are generated. A concern is to somehow control these numerical imprecisions.

Several natural ways of dealing with these issues are possible:

• One very simple option would be to approximate the numbers αk
i from i = 1, . . . , m

by numerically tractable numbers α̃i which would be “unlikely” to result in many

overflows. This approximation may be a diaphontine approximation, or, simply the

result of truncating/rounding the numbers to a certain decimal place. Unfortunately,

this method is very heuristic in nature and it is hard to actually be sure when it might

lead to invalid equalities.

• Another option might consist in using an exact arithmetic software package (or a

higher precision floating point arithmetic package), for example GMP [62], during this

intermediate stage. Most mixed integer programming solvers work in finite precision

floating point arithmetic. Hence, this would require converting the approximation of

the row αk provided by the solver to an exact arithmetic data structure, converting the

original rows of the system to this same data structure, and carrying out the operations

with the enhanced precision structures. Then, after deriving the MIR inequality in this

numerically safe environment, it could be converted back to finite precision floating

point arithmetic. This final conversion, of course, would also have to be very carefully

done. For instance, suppose that in the infinite precision environment we obtain an

inequality βx ≥ βo. The numbers βj and βo might not be representable in the finite

117

precision environment used by the solver. Thus, we would have to approximate every

coefficient βj with a representable coefficient β+
j such that β+

j ≥ βj , and the coefficient

βo with a representable coefficient β−
o such that β−

o ≤ βo. Since the inequality β+x ≥

β− is a relaxation of the actual cut obtained, and since it is representable in the less

precise arithmetic, it could be added to the MIP solver with the certainty that it is

valid.

• Yet another method might be to change the way the finite precision floating point

arithmetic is performed. The way finite precision floating point arithmetic is typically

carried out in modern computers is that the result of arithmetic operations is rounded

to nearest representable number. This rounding could involve either rounding up or

rounding down. Modern computer processors, however, are typically IEEE 754-1985

compliant [68] (see also Goldberg [55]). This means that the way they deal with

unrepresentable results to arithmetic operations can be changed, so that instead of

approximating to the nearest representable number, results could instead be approx-

imated up to the nearest representable number, or down. This change in rounding

modes can be used to generate valid MIR inequalities. In fact, let α̃k be defined as

before. Set the rounding mode to “up” and compute πk,+ =
m∑

i=1
α̃k

i a
i. Set the round-

ing mode to “down” and compute πk,−
o =

m∑
i=1

α̃k
i bo. We now have a valid inequality

of form πk,+x ≥ πk,−
o . Since we no longer have an equality, but rather, we have an

inequality, we have to use the simple form of the MIR (i.e., MIR1) to obtain a valid

constraint from this inequality. Again, by being careful to round “up” or “down” at

the appropriate times, one can generate a valid inequality which is sure to be safe. It

is important to note that when applying this procedure one can obtain cuts which are

weaker than the previous “safe” procedure. However, since floating point operations

are much faster than using exact arithmetic operations, further exploring this idea

might be of great practical use in generating safe MIR inequalities for more than just

one or two rounds as is typically done in commercial MIP solvers.

118

4.5.2.2 Type II rows: non-tableau rows.

As observed in Section 4.5.2.1, when deriving MIR inequalities from optimal basis tableau

rows it is easy to find violated constraints. This is not the case when deriving MIR inequal-

ities from other valid inequalities. Hence, the techniques which must be applied are slightly

different.

The main observation which is exploited when deriving MIR constraints from optimal

basis tableau rows is that these have exactly of one basic variable, and all other variables

are non-basic. This allowed us to use a very simple variable complementation scheme which

almost always assured that generated constraints would be violated. In the case of more

general rows, there may be several fractional basic variables.

This suggests that variable complementation should be done in a more sophisticated

manner. Before, when complementing non-basic variables we were assured that in the trans-

formed space these would take value zero. This can no longer be achieved by complemen-

tation if variables are not at their bounds. An alternative rule, which we call COMPLE-

MENT RULE II, consists in complementing variables so that in the transformed space

they are as close to zero as possible. For this, define the sets U = {j : |xj − uj | < |xj − lj |}

and L = {j : |xj − lj | ≤ |xj − uj |} and then apply c-MIR template (see Marchand and

Wolsey [74]).

Another important condition which was exploited when deriving MIR constraints was

the fact that the right hand side was fractional. This was always the case in tableau

rows corresponding to fractional basic variables of integer type, since the right hand side

corresponded to the value held by the variable. However, in formulation rows, for example,

the right-hand side is often defined to take integer values. Also, observe that in tableau

rows, the coefficient of the basic variable always has a coefficient of one, thus leading to its

having a zero coefficient in the derived cut. Heuristically speaking, this helps achieve the

violation of the cut, as all the other variables are at zero after complementation. Considering

these two observations, it seems a reasonable heuristic to scale rows from which we wish

to derive inequalities so that the coefficient of basic variables becomes integer and so that

119

the right hand side becomes fractional. The heuristic we employ for this uses a parameter

MAX COEFFICIENT SCALE to generate a set A of coefficients by which to scale a

generic inequality ax ≤ b in order to generate c-MIR constraints.

1. Let A = ∅.

2. Select the most important variable xi participating in the constraint which has not

been selected so far, and add ai to A.

3. If |A| =MAX COEFFICIENT SCALE, or there are no further important variables,

go to Step 4. Else, go back to Step 3.

4. For each a ∈ A, scale the cut by multiplying throughout by 1/a, and apply the c-MIR

template.

4.5.3 After generating cuts

After the cut has been generated, it should be decided if the cut will be added to the LP.

For this the following tests can be performed.

• The Violation Test: If the cut is not violated by more than 10−4, do not add the cut.

This value can be customized by means of a MIN VIOLATION parameter.

• The Ratio Test: If the ratio between the highest and lowest coefficient is more

than 100000 then do not add the cut. This value can be customized by means of

a MAX RATIO parameter.

• The Density Test: If the cut has too many non-zeroes (more than 500), do not add the

cut. This value can be customized by means of a MAX NON ZEROES parameter.

In addition, after a cut has been generated, an attempt can be made to “improve” the

coefficients of the cut. One way of doing this could be by applying the numerical stability

heuristic. Another, used by the COIN-OR software [32], consists in doing the following

when all of the lower bounds are non-negative:

120

• Estimate each coefficient (and right-hand side) of the constraint by a rational number

with a bounded denominator, which is greater than or equal to it.

• Find the least common multiple of the denominators of these approximations, and

multiply through to obtain a cut consisting of only integers.

4.6 Group cuts, knapsack cuts, and the MIR

4.6.1 Group cuts and the MIR

In this section we briefly introduce the work of Dash and Günluk [40]. For a more thorough

description of the methodology and background, the reader is advised to consult Dash and

Günluk [40], [41], and [42], in addition to Gomory [58], and Gomory and Johnson [59] from

which we summarize below. Note that throughout this section we employ the notation of

Dash and Günluk.

For integers a, b, c say that a ≡ b mod c, when (a − b) is divisible by c.

Consider r, k ∈ Z where k > r > 0. Gomory [58] defined the master cyclic group

polyhedron of size k and right-hand side r as follows:

P (k, r) = conv

{
w ∈ Zk−1 :

k−1∑

i=1

iwi ≡ r mod k, w ≥ 0

}
. (4.16)

Gomory completely characterized the non-trivial facets (i.e., not a non-negativity con-

straint) of P (k, r) by means of the following theorem:

Theorem 4.1 (Gomory [58]). If r += 0, then
∑k−1

j=1 ηjwj ≥ 1 is a non-trivial facet of P (k, r)

if and only if η = (ηj) is an extreme point of the polyhedron:

ηi + ηj ≥ η(i+j) mod k ∀i, j ∈ {1, . . . , k − 1} (4.17)

ηi + ηj = ηr ∀i, j such that r = (i + j) mod k (4.18)

ηj ≥ 0 ∀j ∈ {1, . . . , k − 1} (4.19)

ηr = 1. (4.20)

Observe that w ∈ P (k, r) if and only if there exists z ∈ Z such that (
∑k−1

i=1 iwi−r) = zk.

121

Thus, dividing by k and re-arranging the terms we get

P (k, r) = conv

{
w ∈ Zk−1 : z +

k−1∑

i=1

i

k
wi = r, w ≥ 0, z ∈ Z

}
. (4.21)

Now consider the slightly more general mixed-integer set

G(k, r) = conv

{
v1, v2 ∈ R, w ∈ Zk−1 : v1 − v2 + z +

k−1∑

i=1

i

k
wi = r, w, v1, v2 ≥ 0, z ∈ Z

}
.

The set G(k, r) is called the mixed-integer extension of the cyclic group polyhedron. Gomory

and Johnson [59] showed that the facets of P (k, r) and G(k, r) are related in the following

way.

Theorem 4.2 (Gomory and Johnson [59]).
∑k−1

i=1 ηiwi ≥ 1 is a facet of P (k, r) if and only

if kη1v1 + kηk−1v2 +
∑k−1

i=1 ηiwi ≥ 1 is a facet of G(k, r).

This means that given a non-negative vector w∗ ∈ Zk−1 and non-negative values v∗1, v
∗
2 ∈

Q it is possible to obtain a non-trivial facet maximizing the violation at (w∗, v∗1, v
∗
2) by

solving the problem:

min{(kv∗1)η1 + (kv∗2)ηk−1 +
k−1∑

i=1

w∗
i ηi : η satisfies (4.17) − (4.20)}. (4.22)

Let us now see how the work of Gomory and Johnson can be theoretically put to use in

order to obtain cutting planes for general MIPs.

Consider a matrix A ∈ Qm×n, a vector d ∈ Qm, and disjoint sets I, C such that I ∪C =

{1, . . . , n}. Assume A has full rank, and A = [B, N] where B is a feasible basis. Let,

PM = {x ∈ Q : Ax = d, x ≥ 0, xi ∈ Z ∀i ∈ I}.

Now consider a system

Q = {x ∈ Q :
∑

i∈I

aixi +
∑

i∈C

aixi = b, x ≥ 0, xi ∈ Z, ∀i ∈ I}.

We will assume that system Q is implied by PM . That is, there exists λ ∈ Qm such

that a = λtA and b = λtd. Hence, PM ⊆ Q, and so, any inequality valid for Q will be valid

for PM . Observe that by re-arranging terms we have

Q = {x ∈ Q : (
∑

i∈I

.ai/xi − .b/) +
∑

i∈C

aixi +
∑

i∈I

âixi = b, x ≥ 0, xi ∈ Z, ∀i ∈ I}.

122

Now assume that âi and b̂ are all multiples of 1/k for some integer k. If k is the smallest

such integer we say that k is the scaling factor of Q. Let C+ = {i ∈ C : ai > 0}, C− = {i ∈

C : ai < 0}, and Ij = {j ∈ I : âi = j/k}. We can correspond system Q to system G(k, r)

by means of the following mapping:

wj =
∑

i∈Ij

xi ∀j = 1, . . . , k − 1.

v1 =
∑

i∈C+

aixi.

v2 = −
∑

i∈C−

aixi.

z =
∑

i∈I

.ai/xi − .b/.

Note that if any Ij = ∅ then we set wj = 0.

Thus, if kη1v1 + kηk−1v2 +
∑k−1

i=1 ηiwi ≥ 1 is a valid inequality for G(k, r), then,

kη1(
∑

i∈C+

aixi) − kηk−1(
∑

i∈C−

aixi) +
k−1∑

j=1

∑

i∈Ij

ηjxi ≥ 1

defines a valid inequality for Q. Dash and Günluk [40] call these inequalities group cuts

for Q. What the preceding discussion highlights is that given a fractional vector x∗ ∈ Qn

such that x∗ ≥ 0 and atx∗ = b, we can apply the mapping x∗ −→ (w∗, v∗1, v
∗
2, z

∗), solve

problem (4.22), find (if any) a maximally violated inequality for G(k, r) in the transformed

space, and then convert it, obtaining a maximally violated (if any) group cut. Note that in

particular, the MIR is a group cut.

While in theory this would seem a promising way of deriving cuts for Q, in practice

it is hard to do so due to the fact that problem (4.22) can involve a very large number of

variables and constraints. In addition, Gomory and Johnson [59] proved that G(k, r) admits

an exponential number of extreme points (as a function of n). Thus, the original idea, as

conceived by Gomory and Johnson, was to identify the most “important” extreme points

of G(k, r), and use these to derive valid inequalities for Q.

Following up on this idea, Gomory, Johnson and Evans [61] describe a computational

approach to identify these “important” facets. Basically, for small values of k, what they

do is a shooting experiment, consisting in randomly choosing directions d and identifying

123

the first facet encountered along the ray λd. Sampling many times, they found (for small

k) that only a small number of facets were “important”. They also found that, by far, the

most important facets correspond, when transformed, to the MIR inequality.

Evans [46], and Dash and Günluk [42], [41] use the information obtained from these

experiments to identify the “second-most-important” group cuts after the MIR, and perform

computational tests in order to determine the impact of these on general MIPs (see Evans

[46] and Dash, Goycoolea, and Günluk [40]). However, on a large number of problems it was

found that these other group cuts had very little effect in further improving the performance

of the MIR inequalities. This brings us to the main point we wish to address in this chapter.

Dash and Günluk [40] set up a computational experiment to answer the following ques-

tion: After adding the MIR cuts to all of the tableau rows in a fractional solution and

resolving, are there any additional violated group cuts for these same tableau rows? Note

that they did not seek to actually identify those potentially violated cuts. As remarked

earlier identifying cuts is an extremely demanding computational task. Instead, Dash and

Günluk simply sought to know if there existed a violated group cut after the MIRs were

added. For this, instead of actually solving (4.22) they used a number of clever bounds to

determine if the optimal value was positive or negative.

Their computational experiment, thus, was as follows. They collected a large set of

test instances including problems from MIPLIB 3.0 [22], MIPLIB 2003 [1], MIPLPLib [82]

and a set of instances collected by Fischetti and Lodi [47]. They then proceeded in five

steps. First, they solved the LP relaxation of each problem. Second, for each tableau row

corresponding to a fractional integer variable they added the corresponding MIR inequality.

Third, they stored each tableau row they used to generate a cut. Fourth, they resolved the

LP. Fifth, they went back to the stored cuts and tested if there were any violated group

cuts. Their results were surprising. Of the 156 problems they tested, they found that in 55

(i.e., 35%), no group cuts were violated after adding the MIRs and resolving.

As a final remark concerning the computational tests of Dash and Günluk [40], note the

124

following: Instead of using the system Q as previously described, they used a system,

QB = {x ∈ Q :
∑

i∈I

aixi +
∑

i∈C

aixi = b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I}

where a and b are again assumed implied by a system Ax = b, but where the additional use

of lower and upper bounds is considered (ui ∈ Q∪{+∞} and li ∈ Q for i = 1, . . . , n). Given

that the theory developed in this section does not account for such use of bounds, they used

COMPLEMENT RULE II, as described earlier, in order to convert the system to one in

which the lower bound is zero, and then they relax the upper bound. It is important to

observe that the complementation rule provides a single instance of type Q. However, there

are up to 2n different possible ways in which the bounds could have been complemented.

Regardless, their result shows that once having chosen such a complementation scheme, the

MIRs suffice to push the fractional solution inside the intersection of the group relaxation

polyhedra.

4.6.2 Knapsack cuts and the MIR

In this section we follow up on the experiments of Dash and Günluk [40]. Instead of

using a complementation rule and relaxing bounds, we work directly with system QB,

calling an inequality which is valid for QB a knapsack cut. Observe that group cuts are

also knapsack cuts. Further, all of the group cuts, for all of the possible variable comple-

mentation/relaxation schemes are also knapsack cuts; thus the class of knapsack cuts is

considerably larger than that of group cuts. The question we seek to answer, given the

result of Dash and Günluk, is as follows: After adding the MIR cuts to all of the tableau

rows in a fractional solution and resolving, are there any additional violated knapsack cuts

for these same tableau rows?

The approach we follow is very similar to that used by Applegate, Bixby, Chvátal and

Cook [7] - henceforth ABCC - and Espinoza [45] in the context of local cuts, and that of

Boyd [25], [26] in the context of Fenchel cuts. Technically, the definition of Fenchel cuts

[25] and knapsack cuts is almost identical. Because Boyd [25], [26] uses a very different

methodology to separate Fenchel cuts than we do to separate knapsack cuts, we will persist

with the name distinction.

125

Consider a fractional value x∗ in the LP relaxation of QB. Observe that if there exists

a knapsack cut which is violated by x∗, because of re-scaling, we may assume that it is

violated by one. Thus, there exists a violated knapsack cut if and only if the following

polyhedron is non-empty (see ABCC [7]):

πx∗ = πo + 1

πxk ≤ πi ∀k = 1, . . . , q

πrk ≤ 0 ∀k = 1, . . . , t

(4.23)

where {xk}q
k=1 corresponds to the set of all extreme points and {µk}t

k=1 the set of all

extreme rays of QB, and any feasible solution π corresponds to such a cut. Observe that

if we consider (4.23) as a minimization problem with an objective function value of all

zeroes, testing infeasibility is equivalent to testing if the dual of the optimization problem

is unbounded. This dual problem consists in solving

max s

s.t.

sx∗ −
∑q

k=1 λkxk −
∑t

k=1 µkrk = 0 (C1)

−s +
∑q

k=1 λk = 0 (C2)

λ ≥ 0, µ ≥ 0.

(4.24)

Observe that if (4.23), or equivalently (4.24), is solved to optimality, and further, the

problem is feasible, then the actual solution yields a knapsack cut π which is violated, and

which in turn could be added to the LP. In fact, this is (essentially) what Boyd [25], [26]

does, and the cuts he obtains are what he calls “Fenchel Cuts”. It is important to note,

however, that Boyd limits his studies to systems QR which are exactly a row of the original

LP formulation. He does not consider tableau rows nor rows obtained in any other way

(such as aggregation, etc.). ABCC [7] also do something similar, but in the context of the

Traveling Salesman Problem. They use a framework similar to the one described above,

where QR, instead of originating from a single row, originates from a multiple row system

consisting of several variables. Espinoza [45] extends this work on local cuts to general

MIPs, and incorporates exact arithmetic into the computations. The systems QR used

126

by Espinoza [45] also originate from tableau rows, but instead, by using a combination of

projections and lifting, Espinoza focuses his attention on systems with several rows and a

small number of variables. It is important to note that in these last two studies, a slightly

different formulation is used for (4.23), in which the objective function is modified so as to

guide the cut selection to prefer cuts which are “deeper” (i.e., such that the distance from

the point separated to the cutting hyperplane is maximized).

Solving problem (4.24) or (4.23) by explicitly formulating it, however, is extremely

difficult. This is because it is not clear how all of the extreme points and rays could

be generated a-priori, and because, even if there were some way of generating them, the

problem would be far too large for modern LP solvers to tackle. We now explain how this

problem can be successfully solved in practice.

First note that (4.24) is unbounded if and only if x∗ ∈ conv(QB). For this, observe that

(4.24) is unbounded if and only if there exists a feasible solution such that s += 0. In fact,

if such a solution exists, it can be scaled, thus increasing the objective function arbitrarily.

Second, note that if a solution is feasible for s += 0, again by scaling, a solution must

be feasible for s = 1. However, any feasible λ, µ which is feasible for s = 1 is such that the

conditions of Minkowski’s Theorem hold (see Nemhauser and Wolsey [90]), or equivalently,

x∗ ∈ conv(QB).

Now, assume that (4.24) is feasible and consider a solution (λ, µ) such that s = 1. It is

easy to see that if for some variable xi we have that x∗
i = li, then every k such that λk += 0

will be such hat xk
i = li. Analogously, if for some variable xi we have that x∗

i = ui, then

every k such that λk += 0 will be such hat xk
i = ui. This allows us to eliminate a great

number of variables. In fact, if x∗
i = li we need not consider the columns for λk, where

xk
i += li. Likewise, if x∗

i = ui we need not consider the columns for λk, where xk
i += ui.

The way the resulting problem is solved is by column generation (see Nemhauser and

Wolsey [90] for an introduction to this method and examples). Starting with a few trivial

columns, at each iteration we solve (4.24) with a restricted number of columns. If the

problem turns out to be unbounded in the restricted set, we conclude that the entire problem

is unbounded and stop. If not, we collect the dual values associated to the rows of (4.24)

127

and solve the oracle problem to determine if by adding any new columns to the problem the

simplex algorithm will pivot. Observe that the problem has one dual variable associated

to each variable in QB corresponding to the constraints (C1), we identify these by π ∈ Qn,

and one additional dual variable corresponding to constraint (C2), which we identify by π0.

The oracle problem consists in determining if there exists a column λk such that πxk > π0

or a column µk such that πrk > 0. More formally, the oracle problem consists in performing

the following steps.

First, solve the problem:

max{πx : x ∈ QB}. (4.25)

Second, if problem (4.25) is bounded, then the optimal solution x′ will correspond to an

extreme point of QB. If πx′ > π0 we add the corresponding column x′ to the restricted

version of (4.24). If πx′ ≤ π0 we conclude that there are no columns which need be added to

the restricted version of (4.24). In fact, this clearly shows that there are no other extreme

points x′′ of QB such that πx′′ > π0. In addition, because the problem is bounded, it also

shows there are no extreme rays r′ of QB such that πr′ > 0. So, in this latter case, we

conclude that the current solution (µ, λ, s) is optimal for (4.24), that x∗ ∈ conv(QB), and

hence, that there are no violated knapsack cuts separating x∗. Third, if problem (4.25)

is unbounded, then we find a ray r′ indicating the unbounded direction. This will be an

extreme ray of QB satisfying πr′ > 0, so we add it to (4.24). Note that we can assume

the problem is always feasible. Were this not the case, then the original MIP which we are

solving would not be infeasible!

If, after solving the oracle problem, we have not concluded that x∗ ∈ conv(QB), then,

we resolve the new restricted (4.24) and iterate.

Note that problem (4.25) is in fact a Mixed Integer Knapsack Problem, and can be solved

by the methodology described in Chapter 3. Also, the fact that we are only interested in

solutions having value greater than π0 means we can use this information in the branch and

bound tree for early pruning of solutions. Finally, note that because we can restrict our

attention to only some of the columns of (4.24) when some variables are at their bounds,

we can solve a simpler version of QB. Let IU = {i = 1, . . . , n : x∗
i = ui}, and IL = {i =

128

1, . . . , n : x∗
i = li}. When solving QB we can fix all of the variables in IU ∪ IL to their

respective bounds before solving. Because x∗ will correspond to a basic feasible solution of

an LP, it will normally be the case that many variables will be at some bound. Hence this

a-priori bound fixing can greatly reduce the number of variables to consider in the oracle.

4.7 Computations

In this section, computational results obtained after testing some ideas mentioned in this

chapter are described. All of the implementations were written in the “C” and “C++”

programming languages, and compiled with the gcc and g++ compilers, version 3.2, on a

Linux operating system, version 2.4.27. The computers used to run the implementations

were all Intel Xeon dual-processor machines, each with 2GB of RAM, running at 2.66GHz

per processor. All of the algorithms were implemented with templates, thus allowing for

them to use different types of numerical precision. Tests are conducted using two distinct

types of numerical precision: “doubles” and “mpq”. The first of these corresponds to

the standard 32 bit implementation of floating point arithmetic employed in the “C” and

“C++” programming languages. The second of these corresponds to using the exact rational

arithmetic library GMP [62], which can be used to represent and perform arithmetic with

any rational number.

We implemented two main algorithms. The first of these is a tool for generating MIR

inequalities. The implementation of this tool follows the guidelines described in the chap-

ter. We test the performance of this separation algorithm on the 65 instances of MIPLIB

3.0 (see Bixby, Ceria, McZeal and Savelsbergh [22]) by generating MIR inequalities over

tableau rows and over formulation rows. We assess the impact of several different param-

eters discussed in the chapter for the generation of violated MIR inequalities. The second

algorithm implemented is a tool for detecting the existence of violated knapsack cuts. Using

the KBB algorithm described in Chapter 3 as an oracle, and following the guidelines given

in this chapter, we implemented a testing algorithm which works both with “doubles” and

“mpq” arithmetic. The tests performed aim to determine whether or not there are violated

knapsack cuts after the completion of the MIR separation algorithm over tableau rows.

129

Table 4.1: Tableau-MIRs: Settings of separation algorithm.

Form of the inequality Standard (MIR1)
Integer scaling No scaling
Cut elimination Whenever a cut has positive slack
Arithmetic Doubles (32 bit floating point representation)
Number of rounds 10
Pre-selection rule No pre-selection
Complementation rule Complementation rule I

It is important to note that when implementing these algorithms, running time was not

a priority. Implementing a generic MIR separation tool which can work with many different

settings and which can operate with different arithmetics is not very compatible with imple-

menting a quick tool with very specific parameters to be used in practice. The same holds

for the violated knapsack cut test. Because of this, no running times are reported, though

it is our next goal to develop a fast tool which can be used in more practical settings.

In order to solve linear programming problems we use the CPLEX LP solver, version

9.0. We use all the default settings of CPLEX for these tests.

In order to present information we will use cumulative histogram curves. In these curves,

gap will be plotted in the x-axis, and number of instances in the y-axis. In this way, a point

(go, no) on a curve will mean that in no of the problem instances a gap of go or more has

been closed by the corresponding algorithm.

4.7.1 Tableau rows

We begin by analyzing the performance of the MIR separation algorithm on tableau rows.

The set-up is as follows: after solving the LP relaxation of each problem, we proceed to

add MIR inequalities derived from the tableau rows, and repeat ten times. The goal is to

evaluate the performance of the MIR separation algorithm, and to determine how to set

some of the parameters discussed in this chapter. After much testing, we concluded that

the following parameters worked very well:

In what remains of this section, we will justify the use of these parameters, and analyze

the performance of the algorithm.

130

Convergence of the MIR separation procedure We begin by observing the impact

of the MIR inequalities as a function of the number of rounds. This effect is illustrated in

Figure 4.2, where the gap closed after 1,2,4 and 8 rounds is plotted.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

rounds 1,2,4,8

Figure 4.2: Convergence of tableau-MIRs after eight rounds.

As can be seen in the graph, the gap-closure improvements tend to decrease logarithmi-

cally with the number of rounds. However, the improvement is steady. For instance, observe

how the number of problems solved to within 60% of the gap evolves with the number of

rounds. It can be seen that after one round, the number of such instances is just under 10.

However, after eight rounds this number goes up to about 30. Considering that the sample

set is of 62 instances, this is quite an improvement.

Unfortunately, it is questionable whether or not the cuts added after 8 rounds are

valid. Though we have not explicitly tested if they are, it is agreed that they often are

not. Most commercial IP solvers (including CPLEX) add at most two rounds of MIR

inequalities derived from tableau rows (Gomory Mixed Integer inequalities) to avoid the

risk of inadvertently cutting off optimal problem solutions. However, as Figure 4.2 shows,

this means that there is a very large potential gap improvement which is being lost.

131

Use of rational arithmetic A natural question which arises is whether or not being

more careful with regards to the validity of the added inequality results in a gap-closure

improvement which is worse. After all, one might argue that the high improvements in

gap-closure observed in Figure 4.2 might mostly be due to invalid inequalities. In order to

tackle this question, we implemented a “safe” version of the MIR separation heuristic which

works by using exact arithmetic in order to generate the inequalities (See Section 4.5.2.1).

Using the same parameters as those used in the previous experiment, we compare the effect

of using exact arithmetic (mpq) versus the effect of using 32 bit floating point arithmetic

(dbl) on the same set of instances. The results are shown in Figure 4.3 for the first round,

and in Figure 4.4 for the tenth round.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

dbl
mpq

Figure 4.3: Effect of using exact arithmetic in order to generate safe tableau-MIRs (1st
round).

As can be observed from Figure 4.3 and Figure 4.4, the impact on gap improvement

had by using exact arithmetic to ensure the generation of valid cuts is almost none. That

is, the bound improvements are nearly the same, and it is difficult to say if any of the two

arithmetics actually performs better than the other.

132

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

dbl
mpq

Figure 4.4: Effect of using exact arithmetic in order to generate safe tableau-MIRs (10th
round).

This suggests that further efforts to generate safe MIRs derived from tableau rows after

the initial rounds might well be a fruitful investment. However, it is important to note

that the exact arithmetic routines implemented are very slow and inadequate for practical

problems. In fact, tableau rows tend to be very dense - especially after a few rounds of the

MIR procedure - hence the number of additions and multiplications required is very large.

Furthermore, operations in exact arithmetic take 100 to 1000 times more time than they

do with 32 bit floating point arithmetic. Instead of using exact arithmetic, an interesting

direction to pursue would consist in changing the rounding modes used by the floating

point arithmetic (see Section 4.5.2.1). Other ways of using generating safe MIR inequalities

quickly could be of great value in solving difficult problems.

Form of the MIR As mentioned in Section 4.3, we have chosen to use the Simple-Form

(MIR1) of the MIR inequality. So far, all tests have been conducted using inequalities in

this form. However, it is important to note that despite the fact that these two inequalities

are equivalent, their use might result in different gap-improvements after repeated iterations

133

of the procedure. In fact, different inequalities might lead the underlying simplex algorithm

to pivot differently, thus leading to different tableau rows from which subsequent cuts are

added. In order to make sure that using MIR1instead of MIR2was not a bad decision, we re-

solved all of the instances using MIR2(the Normalized-Form). The comparison is illustrated

in Figure 4.7.1 for the first round, and Figure 4.7.1 for the tenth round.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

MIR-1
MIR-2

Figure 4.5: Form of the tableau-MIR: Round 1.

As should be expected, after a single round of adding MIR inequalities, both MIR1and

MIR2 behave exactly alike. After the 10th round, however, the same thing cannot be said.

In fact, it is clear that some problems ended up with better gaps using MIR1, while others

ended up with a better gap using MIR2. However, the overall impact is very comparable

and it can be seen that both forms of the MIR perform equivalently well in practice.

Elimination of inactive MIR inequalities In order to speed up the time taken to per-

form the computational tests, we decided to eliminate from the system any MIR inequality

having positive slack. In order to make sure that this did not have a detrimental effect on

the performance of the algorithm, we also solved all of the instances once using the default

settings, except for the fact that cuts were never removed from the system. The comparison

134

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

MIR-1
MIR-2

Figure 4.6: Form of the tableau-MIR: Round 10.

of the runs with and without cut elimination is summarized in Figure 4.7.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

with
without

Figure 4.7: Effectiveness of tableau-MIRs with and without cut elimination.

135

As can be see in Figure 4.7, the effect of eliminating inactive MIR inequalities is marginal.

It is important to note that the amount of time required to solve the problem without cut

elimination is considerably more than the amount of time required to solve the problem

with.

Integer scaling The next experiment consists in evaluation the effect of integer scaling.

The procedure is as follows: Instead of generating a single MIR inequality from each tableau

row, T MAX- T MIN different MIR inequalities are generated; one for each integer value

t ∈[T MIN, T MAX]. For each of the tests, T MIN was set to 1. Then, T MAX was

tested with values 1, 3 and 5. The results are summarized in Figure 4.8 for the first round,

and in Figure 4.9 for the tenth round.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

tmax = 1
tmax = 3
tmax = 5

Figure 4.8: Effect of integer scaling on tableau-MIRs after one round.

The results of this experiment are a bit surprising. In fact, consider first Figure 4.8.

As would be expected, the best results are obtained by setting T MAX= 5, followed by

T MAX= 3, with the worst results being for T MAX= 1. This is only natural, considering

that for T MAX= 5 we are adding five times as many cuts as for T MAX= 1. However, the

first surprise is that the improvements result to be very marginal. Next, consider Figure 4.9.

136

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

tmax = 1
tmax = 3
tmax = 5

Figure 4.9: Effect of integer scaling on tableau-MIRs after ten rounds.

This is the really surprising observation: Regardless of the integer scaling parameters used,

the final gaps obtained after 10 rounds are essentially the same. A naive conclusion from

this analysis might be that scaled MIRs are simply not very effective. However, consider

Table 4.2, where a selection of the runs plotted in Figure 4.9 are detailed. In this table,

the gap closed in eight different instances is shown for each of the three different scaling

options.

137

Table 4.2: Effect of integer scaling on tableau-MIRs after ten rounds.

T MAX

Instance 1 3 5

arki001 0.49 0.58 0.64

l152lav 0.33 0.26 0.20

misc06 0.80 0.70 0.69

misc07 0.007 0.01 0.007

mkc 0.48 0.50 0.39

nw04 0.85 1.00 1.00

p0282 0.33 0.21 0.36

rgn 0.42 0.32 0.36

It can be seen in Table 4.2 that the effect depicted in Figure 4.9 does not imply that

the scaled MIRs behave poorly for all instances. In fact, it shows that in some problems

they can help a lot, and that in some problems the addition of of those extra cuts leads

to a worse final gap. The conclusion that must be made is that the effect of adding the

additional scaled cuts is less important than the effect of following different sequences of

basis which determine the tableau rows from which cuts are derived.

Complementing variables Next we analyze the impact of the variable complementation

scheme COMPLEMENT RULE I, as discussed in Section 4.5.2.1. For this we re-solve all

of the problem instances, this time without complementing any variables, and compare the

results to those obtained with the standard settings after the first and tenth rounds. The

results can be seen in Figure 4.10 and Figure 4.11.

As can be seen from the tables, the variable complementation technique is very impor-

tant.

Row pre-selection rules As a final experiment we explore three different tableau row

pre-selection rules (see Section 4.5.1, “Selecting rows”). The idea is that in large problems

it is often too slow to derive MIR inequalities from every single tableau row. Hence, it is

138

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

with
without

Figure 4.10: The effect of variable complementation on tableau-MIRs after one round.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

with
without

Figure 4.11: The effect of variable complementation on tableau-MIRs after ten rounds.

139

important to know what the impact of selecting a small subset of rows might be. For the

purposes of this test we will choose fifty tableau rows at each iteration and only derive MIRs

from those rows. Our set up is as follows: We first rank all of the basic integer variables

having fractional variables by one of three possible criteria: In the first, which we call the

“random” criteria, the ranking of variables corresponds simply to the order in which the

variables have been defined by the user. In the second, which we call the “most fractional”

criteria, variables are ranked depending on how close their value is to 0.5. In the third,

which we call the “strong branching” criteria, we rank variables according to the quality of

the bound given by the strong branching information (see Section 4.5.1, “Ranking integer

variables”). After variables have been ranked, we select the fifty tableau rows corresponding

to the highest-ranked basic integer variables having fractional values. We finally proceed

to derive MIRs only from those tableau rows. The results of each of these three runs is

compared to the results obtained without any row pre-selection in Figure 4.12 after one

round, and in Figure 4.13 after ten rounds.

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

all cuts
strong branching

most fractional
random

Figure 4.12: The effect of selecting a subset of tableau-MIRs after one round

As can be seen in Figure 4.12 and Figure 4.13 there is a non-trivial difference between

140

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

all cuts
strong branching

most fractional
random

Figure 4.13: The effect of selecting a subset of tableau-MIRs after ten rounds

the proposed criteria. First of all, it is clear that deriving MIRs from every row results in

better gaps than deriving MIRs from a subset of rows. Also, it is clear that the “strong

branching” criteria outperforms the “most fractional” criteria, and that the “most frac-

tional” criteria outperforms the “random” criteria. Finally, it is interesting to note that the

“strong branching” criteria does remarkably well considering that the selected subset size of

50 is often much smaller than the original number of tableau rows. Unfortunately, obtaining

the strong branching information was very slow in some cases. This is likely due to the fact

that we allowed the simplex algorithm to perform up to 1000 pivots when trying to derive

the strong branching bounds. This result suggests that it is worthwhile to further explore

the issue of row pre-selection. For example, how does the performance vary if we reduce the

number of pivots from 1000 to a much smaller number? Is 50 the correct number of rows to

select? Is the best number larger, smaller, or should it be determined dynamically? Bixby,

Fenelon, Gu, Rothberg and Wunderling [24] propose setting this value to a fixed 200. They

also suggest using Driebeek penalties. How well do these help rank variables as opposed to

strong branching information?

141

Table 4.3: Formulation-MIRs: Settings of separation algorithm.

Cut elimination Whenever a cut has positive slack
Number of rounds As many as possible
Coefficient scaling 5 highest ranked variables
Complementation rule Complementation rule II

4.7.2 Formulation rows

We now analyze the performance of the MIR separation algorithm on formulation rows. The

set-up is as follows: after solving the LP relaxation of each problem, we proceed to add MIR

inequalities derived from the original formulation rows which define the problem, and repeat

until no more violated inequalities can be found. The goal is to evaluate the performance of

the MIR separation algorithm, and to determine how to set some of the parameters discussed

in this chapter. Our experimentation showed that most of the parameters chosen for the

tableau-MIRs work well on the formulation rows as well, so we focus more on parameters

which are specific to formulation-MIRs. After much testing, we concluded that the following

parameters described in Table 4.3 worked very well.

Of the entire problem set defined by MIPLIB 3.0, we found that in only 26 of the

problems there were violated formulation-MIRs. Thus, our study focuses on these problems.

Convergence of the MIR separation procedure We begin by observing the impact

of the MIR inequalities as a function of the number of rounds. This effect is illustrated

in Figure 4.14, where the gap closed after one round is compared to the gap closed upon

ending the procedure.

As can be observed in Figure 4.14 formulation MIRs manage to close a sizeable gap

on most of the 26 problems. Further, it can be seen that repeatedly iterating results in

important further improvements. For example, in just over ten instances 40% of the gap is

closed after one round. However, after completing the procedure an additional five problems

close that same amount of gap.

It is important to note that though in some cases many rounds were performed (over

thirty in some cases), these iterations were very quick with only a few cuts being added

each time. In most problems, the entire procedure took less than a second. This is quite

142

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

first round
final round

Figure 4.14: Convergence of formulation-MIRs: First and final rounds.

fast considering that little effort was put into making this code efficient.

Complementing variables Next we analyze the impact of the variable complementa-

tion schemes COMPLEMENT RULE I and COMPLEMENT RULE II, as discussed

in Section 4.5.2.1 and Section 4.5.2.2. For this we re-solve all of the problem instances

twice: the first time without complementing any variables, the second time complementing

variables with COMPLEMENT RULE II. We then compare the results to those obtained

with the standard settings after the first and final rounds. The results can be seen in Figure

4.15 and Figure 4.16.

As can be seen from the tables, the variable complementation technique is very impor-

tant. Further, though after the first round it is not clear if COMPLEMENT RULE I or

COMPLEMENT RULE II is better, after the final round it is evident that COMPLE-

MENT RULE II has been a much more effective complementation rule, resulting in more

and better violated MIR inequalities.

143

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

none
rule I
rule II

Figure 4.15: The effect of variable complementation on formulation-MIRs after one round.

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

none
rule I
rule II

Figure 4.16: The effect of variable complementation on formulation-MIRs after the final
round.

144

Coefficient scaling We now analyze the coefficient scaling heuristic described in Sec-

tion 4.5.2.2. The parameter with which we control the experiment is the number of

variables to scale. That is, the parameter MAX COEFFICIENT SCALE. Note that

if MAX COEFFICIENT SCALE= k then up to k different MIRs might be derived from

each row of the original system. Throughout this experiment variables are ranked according

the “most fractional” criteria. The results of this experiment are summarized in Figure 4.17

after the first round, and in Figure 4.18 after the final round.

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

scaling: 1
scaling: 3
scaling: 5

scaling: 10

Figure 4.17: The effect of coefficient-scaling on formulation-MIRs after the first round.

As can be observed in Figure 4.17 and Figure 4.18, there is a sizeable jump from setting

the scaling parameter to 1, to setting it to a larger value. Naturally, after the first round

setting this value to 10 is what works best. But the difference between setting to 1 and

setting it to 5 is marginal. In the final round, however, it is not entirely clear if setting the

scaling parameter to 10 is better than setting it to 5. However, it seems clear that both 5

and 10 are better settings than 1 and 3. Given that 5 is computationally quicker to work

with, it would seem from this small data set that 5 is the best number to use.

145

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

scaling: 1
scaling: 3
scaling: 5

scaling: 10

Figure 4.18: The effect of coefficient-scaling on formulation-MIRs after the final round.

4.7.3 Knapsack cuts

We now tackle the question raised in Section 4.6.2: After adding the MIR cuts to all of

the tableau rows in a fractional solution and resolving, are there any additional violated

knapsack cuts for these same tableau rows?

In order answer this question we could simply apply the procedure outlined in Section

4.6.2 to all of the problems in the test set. However, as this would take a very large amount

of time, we instead imitate the procedure of Dash and Günluk [40], and first attempt to find

violated knapsack cuts by a simpler means. More precisely, after generating the tableau-

MIR inequalities, we proceed to treat the tableau rows used as formulation rows, and

attempt to find formulation-MIRs from these. We call these inequalities delayed tableau-

MIRs, following the notation of Dash, Goycoolea and Günluk [38].

The results obtained generating the tableau-MIRs, and the delayed tableau-MIRs are

outlined in Table 4.4. The first two columns indicate the number of violated tableau-

MIRs identified, and the gap closed by these inequalities for each instance. The second

146

two columns indicate the number of violated delayed tableau-MIRs identified, and the gap

closed by these inequalities together with the tableau-MIRs. Those cases in which no

violated delayed tableau-MIRs are identified are indicated with a hyphen. The last column

of this table indicates if in the experiments of Dash and Günluk [40] the corresponding

problem was found to be such that after adding all tableau-MIRs, no further group cuts

were violated. Note that swath.mps and dano3mip.mps have not been solved to date. Thus

it is not possible to compute the gap closed, and so the corresponding columns are filled

with question marks.

Table 4.4: Effect of delayed MIRs on tableau rows and results

of Dash and Günluk.

tableau MIRs delayed tableau MIRs (Dash and Günluk)

Instance cuts gap cuts gap Group closure?

10teams.mps 145 100.0 % - - no

air03.mps 36 100.0 % - - yes

air04.mps 292 8.1 % 78 8.9 % no

air05.mps 224 4.6 % 76 5.1 % no

arki001.mps 87 29.2 % 30 39.5 % no

bell3a.mps 50 45.1 % - - yes

bell5.mps 36 14.5 % - - no

blend2.mps 6 16.4 % - - yes

cap6000.mps 9 41.6 % 168 59.3 % no

dano3mip 124 ??? - - unclassified

danoint.mps 52 1.7 % - - unclassified

dcmulti.mps 50 47.3 % 46 50.2 % no

dsbmip.mps 18 0.0 % - - yes

egout.mps 40 55.9 % - - yes

enigma.mps 8 0.0 % 73 0.0 % no

Table 4.4 continued.

147

fast0507.mps 357 2.1 % 18 2.2 % no

fiber.mps 40 72.2 % 96 76.5 % no

fixnet6.mps 60 10.5 % - - yes

flugpl.mps 10 11.7 % - - yes

gen.mps 43 55.2 % 4 57.6 % no

gesa2.mps 91 30.9 % - - no

gesa2 o.mps 121 31.0 % - - unclassified

gesa3.mps 100 45.8 % - - no

gesa3 o.mps 145 60.5 % 2 60.5 % no

gt2.mps 12 91.9 % 49 92.6 % no

harp2.mps 30 23.6 % 327 35.2 % no

khb05250.mps 19 74.9 % - - yes

l152lav.mps 53 9.3 % 122 27.3 % no

lseu.mps 12 21.8 % 36 28.4 % no

markshare1.mps 6 0.0 % 233 0.0 % no

markshare2.mps 7 0.0 % 255 0.0 % no

mas74.mps 12 6.7 % 59 7.5 % no

mas76.mps 11 6.4 % 72 7.2 % no

misc03.mps 38 8.6 % - - no

misc06.mps 16 30.4 % - - yes

misc07.mps 47 0.7 % - - yes

mitre.mps 994 82.8 % 184 84.0 % no

mkc.mps 153 13.8 % 1161 21.6 % no

mod008.mps 5 20.1 % 30 22.5 % no

mod010.mps 39 100.0 % 10 100.0 % yes

mod011.mps 32 35.5 % - - yes

modglob.mps 30 17.3 % 6 18.1 % unclassified

noswot.mps 39 0.0 % - - yes

Table 4.4 continued.

148

nw04.mps 6 62.3 % 24 97.7 % yes

p0033.mps 7 56.8 % 27 75.6 % no

p0201.mps 22 33.8 % 8 33.8 % yes

p0282.mps 32 3.7 % 31 8.7 % no

p0548.mps 49 40.7 % 570 67.5 % no

p2756.mps 72 0.5 % 863 57.1 % no

pk1.mps 15 0.0 % 77 0.0 % no

pp08a.mps 51 52.1 % - - yes

pp08aCUTS 46 68.4 % 1 68.4 % unclassified

qiu.mps 36 0.3 % - - yes

qnet1.mps 54 10.6 % 136 11.2 % no

qnet1 o.mps 11 44.5 % 587 49.9 % no

rentacar.mps 17 21.4 % - - yes

rgn.mps 18 1.6 % 31 3.3 % no

rout.mps 38 0.3 % 550 0.3 % unclassified

set1ch.mps 138 38.1 % - - yes

seymour.mps 4488 8.9 % 10 9.5 % no

stein27.mps 84 0.0 % 1 0.0 % no

stein45.mps 218 0.0 % 3 0.0 % no

swath 44 ??? 66 ??? no

vpm1.mps 13 10.0 % 27 11.1 % yes

vpm2.mps 31 13.0 % 25 16.9 % yes

As can be observed from Table 4.4, in 41 of the 65 instances we were able to identify

violated delayed tableau-MIRs. This indicates that each of those 41 instances had violated

knapsack cuts.Note also that there is a strong relationship between those instances which

Dash and Günluk identified as having violated group cuts, with those instances which have

violated delayed tableau-MIRs. In fact, Dash and Günluk established that in 38 of the

149

MIPLIB 3.0 instances there were violated group cuts. Of these 38 instances, 33 coincide

with those in which there are violated delayed tableau-MIRs.

As a next step it becomes necessary to determine if in the 24 instances remaining there

are violated knapsack cuts. These instances are listed in Table 4.5. For this, we employed

the methodology described in Section 4.6.2 using exact arithmetic to ensure the validity of

the results. Of these 24 instances we were able to determine that 23 of them did indeed

have violated knapsack cuts. The one exception was dano3mip, which was much too large

for the current implementation of the algorithm to work.

What the preceding result highlights is that there is a potential for identifying additional

classes of cuts derived from single row systems. However, this study should be followed up

by a procedure which can identify those cuts and add them to the LP relaxation. It is still

possible that these cuts are weak and that they might contribute very little to improving

the bounds, or the time required to solve IPs. Even if this separation procedure is slow,

its value would be of a more empirical nature, providing important guidelines as to where

future research should head in attempting to determine new and better classes of valid

inequalities for general mixed integer programming problems.

Table 4.5: Instances for which there were no violated delayed

tableau-MIRs.

Instance knapsack closure?

10teams.mps no

air03.mps no

bell3a.mps no

bell5.mps no

blend2.mps no

dano3mip.mps -

danoint.mps no

dsbmip.mps no

Table 4.5 continued.

150

egout.mps no

fixnet6.mps no

flugpl.mps no

gesa2.mps no

gesa2 o.mps no

gesa3.mps no

khb05250.mps no

misc03.mps no

misc06.mps no

misc07.mps no

mod011.mps no

noswot.mps no

pp08a.mps no

qiu.mps no

rentacar.mps no

set1ch.mps no

151

REFERENCES

[1] Achterberg, T., Koch, T., and Martin, A., “MIPLIB 2003,” ZIB Technical
Report, vol. 05-28, 2003.

[2] Agra, A. and Constantino, M. F., “Lifting 2-integer knapsack inequalities,” Math-
ematical Programming, vol. To appear, 2006.

[3] Andersen, K., Cornuéjols, G., and Li, Y., “Reduce-and-split cuts: Improving
the performance of mixed-integer gomory cuts,” Management Science, vol. 51, 2005.

[4] Andersen, K., Cornuéjols, G., and Li, Y., “Split closure and intersection cuts,”
Mathematical Programming, vol. 102, pp. 457 – 493, 2005.

[5] Andonov, R., Poirriez, V., and Rajopadhye, S., “Unbounded knapsack problem:
dynamic programming revisited,” European Journal of Operational Research, vol. 123,
pp. 394–407, 2000.

[6] Appel, K. and Haken, W., “Every planar map is four colorable,” Contemporary
Math., vol. 98, 1989.

[7] Applegate, D., Bixby, R. E., Chvátal, V., and Cook, W., “On the solution of
traveling salesman problems,” Documenta Mathematica, vol. Extra Volume Proceed-
ings ICM III, pp. 645–656, 1998.

[8] Applegate, D., Bixby, R. E., Chvátal, V., and Cook, W., “Tsp cuts which
do not conform to the template paradigm,” in Computational Combinatorial Opti-
mization, Optimal or Provably Near-Optimal Solutions [based on a Spring School],
(London, UK), pp. 261–304, Springer-Verlag GmbH, 2001.

[9] Araoz, J., Evans, L., Gomory, R. E., and Johnson, E. L., “Cyclic group and
knapsack facets,” Mathematical Programming, vol. 96, pp. 377–408, May 2003.

[10] Atamtürk, A., “On the facets of the mixed–integer knapsack polyhedron,” Mathe-
matical Programming, vol. 98, pp. 145–175, 2003.

[11] Atamtürk, A., “Sequence independent lifting for mixed–integer programming,” Op-
erations Research, vol. 52, pp. 487–490, 2004.

[12] Atamtürk, A. and Rajan, D., “Valid inequalities for mixed-integer knapsack
from two-integer variable restrictions,” Tech. Rep. BCOL.04.02, IEOR, University
of California–Berkeley, December 2004.

[13] Balas, E., “Intersection cuts - a new type of cutting planes for integer program-
ming.,” Operations Research, vol. 19, pp. 19–39, 1971.

[14] Balas, E., “Facets of the knapsack polytope,” Mathematical Programming, vol. 8,
pp. 146–164, 1975.

152

[15] Balas, E., Ceria, S., and Cornuéjols, G., “A lift-and-project cutting plane al-
gorithm for mixed 0-1 programs,” Mathematical Programming, vol. 58, pp. 295–324,
1993.

[16] Balas, E., Ceria, S., and Cornuéjols, G., “Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework,” Management Science, vol. 42, pp. 1229–1246,
1996.

[17] Balas, E., Ceria, S., Cornuéjols, G., and Natraj, N., “Gomory cuts revisited,”
Operations Research Letters, vol. 19, pp. 1–9, 1996.

[18] Balas, E. and Perregaard, M., “A precise correspondence between lift-and-
project cuts, simple disjuntive cuts, and mixed integer gomory cuts for 0-1 program-
ming,” Mathematical Programming, vol. 94, pp. 221–245, 2003.

[19] Balas, E. and Zemel, E., “An algorithm for large zero-one knapsack problems,”
Operations Research, vol. 28, pp. 1130–1154, 1980.

[20] Bellman, R. E., Dynamic Programming. Princeton University Press, 1957.

[21] Bertsimas, D. and Weismantel, R., Optimization over Integers. Dynamic Ideas,
2005.

[22] Bixby, R. E., Ceria, S., McZeal, C. M., and Savelsbergh, M. W. P., “An
updated mixed integer programming library: MIPLIB 3.0,” Optima, pp. 12–15, June
1998.

[23] Bixby, R. E., Fenelon, M., Gu, Z., Rothberg, E., and Wunderling, R.,
“Mip: Theory and practice - closing the gap,” in System Modelling and Optimization,
pp. 19–50, 1999.

[24] Bixby, R., Gu, Z., Rothberg, E., and Wunderling, R., “Mixed integer pro-
gramming: a progress report,” in The sharpest cut: the impact of Manfred Padberg
and his work. MPS/SIAM Series on Optimization, pp. 309–326, 2004.

[25] Boyd, A. E., “Fenchel cutting planes for integer programs,” Operations Research,
vol. 42, pp. 53–64, 1992.

[26] Boyd, A. E., “Generating fenchel cutting planes for knapsack polyhedra,” Siam
journal on optimization, vol. 3, pp. 734–750, 1993.

[27] Boyd, S. and Cunningham, W., “Small travelling salesman polytopes,” Mathemat-
ics of Operations Research, vol. 16, no. 2, pp. 259–271, 1991.

[28] Boyd, S. C., Cockburn, S., and Vella, D., “On the domino-parity inequalities
for the STSP,” Tech. Rep. TR-2001-10, University of Ottawa, Ottawa, Canada, 2001.

[29] Caprara, A. and Fischetti, F., “0-1/2 chvátal-gomory cuts,” Mathematical Pro-
gramming, vol. 74, pp. 221–236, 1996.

[30] Carr, R., “Separating clique trees and bipartition inequalities having a fixed num-
ber of handles and teeth in polynomial time,” Mathematics of Operations Research,
vol. 22, no. 2, pp. 257–265, 1997.

153

[31] Chvátal, V., “Edmonds polytopes and weakly hamiltonian graphs,” Mathematical
Programming, vol. 5, pp. 29–40, 1973.

[32] COIN-OR, “Computation infrastructure for operations research.” Available on-line
at http://www.coin-or.org (November, 2006).

[33] Cook, W., Kannan, R., and Schrijver, A., “Chvátal closures for mixed integer
programming problems,” Mathematical Programming, vol. 47, pp. 155–174, 1990.

[34] Cook, W. J., Espinoza, D. G., and Goycoolea, M., “Computing with domino-
parity inequalities for the tsp,” INFORMS Journal on Computing, vol. To appear,
2006.

[35] Cornuéjols, G., State-of-the-Art and Recent Advances in Integer Programming,
ch. Revival of the Gomory Cuts in the 1990’s. 2005.

[36] Cornuéjols, G., Li, Y., and Vanderbussche, D., “K-cuts: A variation of gomory
mixed integer cuts from the lp tableau,” Informs Journal on Computing, vol. 15,
pp. 385–396, Fal 2003.

[37] Dantzig, G., Fulkerson, R., and Johnson, S., “Solution of a large-scale traveling
salesman problem,” Operations Research, vol. 2, pp. 393–410, 1954.

[38] Dash, S., Goycoolea, M., and Gunluk, O., “Two-step mir inequalities for mixed-
integer programs,” Optimization Online, Jul 2006.

[39] Dash, S. and Gunluk, O. Internal Communication, 2005-2006.

[40] Dash, S. and Gunluk, O., “On the strength of gomory mixed-integer cuts as group
cuts,” IBM research report RC23967, 2006.

[41] Dash, S. and Gunluk, O., “Valid inequalities based on simple mixed-integer sets,”
Mathematical Programming, vol. 105, pp. 29–53, Jan 2006.

[42] Dash, S. and Günlük, O., “Valid inequalities based on the interpolation procedure,”
Mathematical Programming, vol. 106, pp. 111–136, May 2006.

[43] Driebeek, N., “An algorithm for the solution of mixed integer programming prob-
lems,” Management Science, vol. 12, pp. 576–587, 1966.

[44] Edmonds, J., “Lehman’s switching game and a theorem of Tutte and Nash-
Williams,” Journal of Research of the National Bureau of Standards, vol. 69B, pp. 73–
77, 1965.

[45] Espinoza, D. G., On Linear Programming, Integer Programming and Cutting
Planes. PhD thesis, School of Industrial and Systems Engineering, Georgia Insti-
tute of Technology, March 2006.

[46] Evans, L., Cyclic Group and Knapsack Facets with Applications to Cutting Planes.
PhD thesis, School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology, 2002.

154

[47] Fischetti, A. and Lodi, A., “UNIBO, mixed in-
teger programming instances.” Available on-line at
http://www.or.deis.unibo.it/research pages/ORinstances/MIPs.html (November,
2006).

[48] Fischetti, M. and Lodi, A., “Optimizing over the Chvátal closure,” IPCO, Lecture
notes in computer science, M.Juenger and V. Kaibel, eds, vol. 3509, pp. 12–22, 2005.

[49] Fischetti, M. and Saturni, C., “Mixed-integer cuts from cyclic groups,” Lecture
Notes in Computer Science, vol. 3509, pp. 1–11, 2005.

[50] Fleischer, L. and Tardos, E., “Separating maximally violated comb inequalities
in planar graphs,” Mathematics of Operations Research, vol. 24, pp. 130–148, 1999.

[51] Fleischmann, B., “A new class of cutting planes for the symmetric traveling sales-
man problem,” Mathematical Programming, vol. 40, pp. 225–246, 1988.

[52] Gerards, A. and Schrijver, A., “Matrices with the Edmonds-Johnson property,”
Combinatorica, vol. 6, pp. 365–379, 1986.

[53] Giles, F. and Pulleyblank, W., “Total dual integrality and integer polyhedra,”
Linear Algebra and its Applications, vol. 25, pp. 191–196, 1979.

[54] Gilmore, P. and Gomory, R., “A linear programming approach to the cutting
stock problem, part II,” Operations Research, vol. 11, pp. 863–888, 1963.

[55] Goldberg, D., “What every computer scientist should know about floating-point
arithmetic,” ACM Computing Surveys (CSUR), vol. 23, pp. 5–48, 1991.

[56] Gomory, R. E., “Solving linear programming in integers,” in Combinatorial Anal-
ysis, Proceedinigs of the Symposia in Applied Mathematics, American Mathematical
Society, 1960.

[57] Gomory, R. E., Recent Advances in Mathematical Programming, ch. An Algorithm
for Integer Solutions to Linear Programs, pp. 269–302. McGray-Hill, New York, 1963.

[58] Gomory, R. E., “Some polyhedra related to combinatorial problems,” Journal of
Linear Algebra and its Applications, vol. 2, pp. 451–558, 1969.

[59] Gomory, R. E. and Johnson, E., “Some continuous functions related to corner
polyhedra I,” Mathematical Programming, vol. 3, pp. 23–85, 1972.

[60] Gomory, R. E. and Johnson, E., “Some continuous functions related to corner
polyhedra II,” Mathematical Programming, vol. 3, pp. 359–389, 1972.

[61] Gomory, R., Johnson, E., and Evans, L., “Corner polyhedra and their connection
with cutting planes,” Mathematical Programming, vol. 96, pp. 321–339, May 2003.

[62] Granlund, T., “The GNU multiple precision arithmetic library.” Available on-line
at http://www.swox.com/gmp/ (November, 2006).

[63] Graver, J., “On the foundations of linear and integer programming I,” Mathematical
Programming, vol. 8, pp. 206–226, 1975.

155

[64] Greenberg, H. and Hegerich, R., “A branch search algorithm for the knapsack
problem,” Management Science, vol. 16, pp. 327–332, 1970.

[65] Grötschel, M. and Padberg, M. W., “On the symmetric traveling salesman prob-
lem II: Lifting theorems and facets,” Mathematical Programming, vol. 16, pp. 281–302,
1979.

[66] Grötschel, M. and Pulleyblank, W. R., “Clique tree inequalities and the sym-
metric travelling salesman problem,” Mathematics of Operations Research, vol. 11,
pp. 537–569, 1986.

[67] Horowitz, E. and Sahni, S., “Computing partitions with applications to the knap-
sack problem,” Journal of the ACM, vol. 21, pp. 277–292, 1974.

[68] IEEE, “ANSI/IEEE standard 754-1985, standard for binary floating point arith-
metic.” Available on-line at http://standards.ieee.org/ (November, 2006).

[69] ILOG, “CPLEX, a mathematical programming optimizer.”
http://www.ilog.com/products/cplex (November, 2006).

[70] Jüunger, M., Reinelt, G., and Rinaldi, G., “The traveling salesman problem,”
pp. 225–330, North Holland, Amsterdam, The Netherlands, 1995.

[71] Karger, D., “A new approach to the minimum cut problem,” Journal of the ACM,
vol. 43, pp. 601–640, 1996.

[72] Kellerer, H., Pferschy, U., and Pisinger, D., Knapsack Problems. Springer,
Berlin, Germany, 2004.

[73] Letchford, A. N., “Separating a superclass of comb inequalities in planar graphs,”
Mathematics of Operations Research, vol. 25, pp. 443–454, 2000.

[74] Marchand, H. and Wolsey, L., “Aggregation and mixed integer rounding to solve
mips,” Operations Research, vol. 49, pp. 363–371, 2001.

[75] Martello, S., , Pisinger, D., and Toth, P., “Dynamic programming and strong
bounds for the 0-1 knapsack problem,” Management Science, vol. 45, pp. 414–424,
1999.

[76] Martello, S. and Toth, P., Advances in Operations Research, ch. Branch and
bound algorithms for the solution of general unidimensional knapsack problems,
pp. 295–301. North Holland, 1977.

[77] Martello, S. and Toth, P., “An upper bound for the zero-one knapsack problem
and a branch and bound algorithm,” European Journal of Operations Research, vol. 1,
pp. 169–175, 1977.

[78] Martello, S. and Toth, P., “A new algorithm for the 0-1 knapsack problem,”
Management Science, vol. 34, pp. 633–644, 1988.

[79] Martello, S. and Toth, P., “An exact algorithm for larged unbounded knapsack
problems,” Operations Research Lettrs, vol. 9, pp. 15–20, 1990.

156

[80] Martello, S. and Toth, P., Knapsack Problems: Algorithms and Computer Im-
plementations. J. Wiley, New York, 1990.

[81] Martello, S. and Toth, P., “An exact algorithm for hard 0-1 knapsack problems,”
Operations Research, vol. 45, pp. 768–778, 1997.

[82] Mittelman, H., “MIPLBLIB.” Available online at http://plato.asu.edu/topics/test-
cases.html (November, 2006).

[83] Mohar, B. and Thomassen, C., Graphs on Surfaces. Johns Hopkins University
Press, 2001.

[84] Naddef, D., “Polyhedral theory and branch-and-cut algorithms for the symmetric
traveling salesman problem,” pp. 29–116, Kluwer, Dordrecht, 2002.

[85] Naddef, D. and Thienel, S., “Efficient separation routines for the symmetric trav-
eling salesman problem I: General tools and comb separation,” Mathematical Pro-
gramming, vol. 92, pp. 237–255, 2002.

[86] Naddef, D. and Thienel, S., “Efficient separation routines for the symmetric trav-
eling salesman problem II: Separating multi handle inequalities,” Mathematical Pro-
gramming, vol. 92, pp. 257–283, 2002.

[87] Naddef, D. and Wild, E., “The domino inequalities: Facets for the symmetric
traveling salesman polytope,” Mathematical Programming, vol. 98, pp. 223–251, Sep
2003.

[88] Nagamochi, H., Nishimura, K., and Ibaraki, T., “Computing all small cuts in
undirected networks,” SIAM Journal on Discrete Mathematics, pp. 469–481, 1997.

[89] Nemhauser, G. L. and Wolsey, L. A., “A recursive procedure for generating all
cuts for 0-1 mixed integer programs,” Mathematical Programming, vol. 46, pp. 379–
390, 1990.

[90] Nemhauser, G. L. and Wolsey, L. A., Integer and Combinatorial Optimization.
Discrete Mathematics and Optimization, Wiley-Interscience, 1999.

[91] Padberg, M. W. and Rao, M. R., “Odd minimum cut-sets and b-matchings,”
Mathematics of Operations Research, vol. 7, pp. 67–80, 1982.

[92] Padberg, M. W. and Rinaldi, G., “A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems,” SIAM Review, vol. 33, pp. 60–
100, 1991.

[93] Pisinger, D., “An expanding-core algorithm for the 0-1 knapsack problem,” Euro-
pean Journal of Operations Research, vol. 87, pp. 175–187, 1995.

[94] Pisinger, D., “A minimal algorithm for the 0-1 knapsack problem,” Operations
Research, vol. 45, pp. 758–767, 1997.

[95] Pisinger, D., “Core problems in knapsack algorithms,” Operations Research, vol. 47,
pp. 570–575, 1999.

157

[96] Pisinger, D., “Linear time algorithms for knapsack problems with bounded weights,”
Journal of Algorithms, vol. 34, pp. 1–14, 1999.

[97] Pisinger, D., “A minimal algorithm for the bounded knapsack problem,” INFORMS
Journal on Computing, vol. 34, pp. 75–84, 2000.

[98] Reinelt, G., “TSPLIB - a traveling salesman library,” ORSA Journal on Computing,
vol. 3, pp. 376–384, 1991.

[99] Richard, J., de Farias, I., and Nemhauser, G., “Lifted inequalities for 0-1 mixed
integer programming: Basic theory and algorithms,” Mathematical Programming,
vol. 98, pp. 89–113, 2003.

[100] Robertson, N., Sanders, D., Seymour, P., and Thomas, R., “The four color
theorem,” J. Combin. Theory Ser. B, vol. 70, pp. 2–44, 1997.

[101] Savelsbergh, M., “Preprocessing and probing for mixed integer programming prob-
lems,” ORSA Journal on Computing, vol. 6, pp. 445–454, 1994.

[102] Schrijver, A., Combinatorial Optimization : Polyhedra and Efficiency. Volume A:
Paths, flows, matchings, Chapters 1-38, Springer, 2003.

158

VITA

Marcos Goycoolea was born in St. Paul, MN, on November 27 1975. In March, 1994, he

enrolled at the school of Engineering of Universidad de Chile, from where he received a

Bachelor in Engineering Sciences, with a major in Mathematics (June 2000), and a degree

in Mathematical Engineering (August 2001). While pursuing his studies in Chile, Marcos

worked with Dr. Andres Weintraub, Dr. Francisco Barahona, and Dr. Alan Murray

on integer programming applications to Forest Harvest Scheduling. In August 2001, he

enrolled in the School of Industrial and Systems Engineering at the Georgia Institute of

technology. There, he worked on several research projects, both applied and theoretical.

On the one hand, he worked with a team headed by Dr. George Nemhauser and Dr. Martin

Savelsbergh on routing algorithms for air-taxi transportation services, and on the other,

with Dr. William Cook on the Traveling Salesman Problem, the Mixed Integer Knapsack

Problem, and general Mixed Integer Programming. This thesis covers some of this latter

work.

159

