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SUMMARY

The air transportation demand at large hubs in the U.S. is anticipated to

double in the near future. Current runway construction plans at selected airports can

relieve some capacity and delay problems, but many are doubtful that this solution is

sufficient to accommodate the anticipated demand growth in the National Airspace

System (NAS). With the worsening congestion problem, it is imperative to seek al-

ternative solutions other than costly runway constructions. In this respect, many

researchers and organizations have been building models and performing analyses of

the NAS. However, the complexity and size of the problem results in an overwhelming

task for transportation system modelers. This research seeks to compose an active

design algorithm for an evolutionary airline network model so as to include network

specific control properties. An airline network designer, referred to as a network archi-

tect, can use this tool to assess the possibilities of gaining more capacity by changing

the network configuration.

Since the Airline Deregulation Act of 1978, the airline service network has evolved

into a distinct Hub-and-Spoke (H&S) network. Enplanement demand on the H&S

network is the sum of Origin-Destination (O-D) demand and transfer demand. Even

though the flight or enplanement demand is a function of O-D demand and passen-

ger routings on the airline network, the distinction between enplanement and O-D

demand is not often made. Instead, many demand forecast practices in current days

are based on scale-ups from the enplanements, which include the demand to and

from transferring network hubs. Based on this research, it was found that the current

demand prediction practice can be improved by dissecting enplanements further into

smaller pieces of information. As a result, enplanement demand is decomposed into
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intrinsic and variable parts. The proposed intrinsic demand model is based on the

concept of ‘true’ O-D demand which includes the direction of each round trip travel.

The result from using true O-D concept reveals the socioeconomic functional roles

of airports on the network. Linear trends are observed for both the produced and

attracted demand from the data. Therefore, this approach is expected to provide

more accurate prediction capability.

With the intrinsic demand model in place, the variable part of the demand is

modeled on an air transportation network model, which is built with accelerated

evolution scheme. The accelerated evolution scheme was introduced to view the air

transportation network as an evolutionary one instead of a parametric one. The

network model takes in intrinsic demand data before undergoing an evolution path

to generate a target network. The results from the network model suggest that air

transportation networks can be modeled using evolutionary structure and it was pos-

sible to generate a closely emulated NAS. A dehubbing scenario study of Lambert-St.

Louis International Airport demonstrated the prediction capability of the proposed

network model. The overall process from intrinsic demand modeling and evolutionary

network modeling is unique and it is highly beneficial for simulating active control of

air transportation networks.

xvii



CHAPTER I

INTRODUCTION

1.1 Motivation

1.1.1 Growing air transportation demand

Air transportation systems have become a crucial part in our daily life. The society’s

mobility freedom has grown dramatically since air transportation became an afford-

able mode of transportation and its supporting infrastructure is well established. In

particular, air travel made it possible for the majority of people to go to places that

was too expensive or too tedious to reach previously. In modern days, air travel has

become the dominant travel mode in long-haul travel, whereas automobiles remain

the dominant travel mode in short-haul travel because of its convenience, low cost,

and high accessibility. As demand for air travel grows, congestion issues are becoming

more and more severe because the service capacity is not matching up to the growth.

The Federal Aviation Administration (2008a) (FAA) has projected that the revenue

passenger enplanements1 will grow from 776.5 million in 2008 to 1,292.9 million in

2025 as shown in Table 1. It is also predicted that both the passenger and freight

demand will double in the next 20 years and triple within 50 years (The Federal

Transportation Advisory Group, 2001).

With an increasing demand and thus worsening congestion in the National Airspace

System (NAS), it is imperative to seek alternative solutions other than costly runway

constructions. Some adjustments to the NAS can relieve capacity and delay problems,

which include flight schedule shifts to non-congested periods of the day, improvement

1Enplanements (or Enplaned passengers): number of passengers who have boarded any commer-
cial flights
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Table 1: Total scheduled U.S. passenger traffic. [Source: Federal Aviation Adminis-
tration (2008a)]

Fiscal Revenue Enplanements (Millions) Revenue Pax Miles (Billions)
Year DOMESTIC I-NATIONAL SYSTEM DOMESTIC I-NATIONAL SYSTEM

Historical*
2000 641.2 56.4 697.6 512.8 181.8 694.6
2001 625.8 56.7 682.5 507.9 183.3 691.1
2002 575.1 51.2 626.3 473.4 158.2 631.6
2003 587.8 53.3 641.2 492.7 155.6 648.3
2004 628.5 60.5 689.0 540.2 177.0 717.2
2005 669.4 67.4 736.9 576.9 197.2 774.2
2006 668.4 71.6 740.0 582.4 208.5 790.9

2007E 689.4 75.3 764.7 600.1 221.2 821.4

Forecast
2008 696.2 80.2 776.5 603.8 241.0 844.8
2009 720.6 85.0 805.7 624.5 259.9 884.4
2010 746.2 89.8 836.0 650.2 278.0 928.3

2011 767.0 94.7 861.7 671.7 296.2 967.9
2012 789.4 99.3 888.7 696.6 312.6 1,009.2
2013 812.6 104.0 916.6 722.8 329.6 1,052.4
2014 834.6 109.0 943.6 747.3 347.4 1,094.7
2015 859.0 114.1 973.1 776.2 365.9 1,142.1

2016 882.4 119.4 1,001.8 803.8 385.2 1,189.0
2017 907.8 125.0 1,032.8 835.6 405.5 1,241.1
2018 933.5 130.9 1,064.4 867.4 426.5 1,293.9
2019 958.6 136.6 1,095.2 900.8 447.2 1,347.9
2020 984.0 142.5 1,126.5 935.2 468.7 1,403.8

2021 1,008.9 148.2 1,157.2 969.6 489.6 1,459.2
2022 1,035.0 154.4 1,189.4 1,006.3 512.3 1,518.6
2023 1,061.8 160.8 1,222.6 1,044.6 535.9 1,580.5
2024 1,089.3 167.5 1,256.8 1,084.7 560.4 1,645.1
2025 1,118.2 174.7 1,292.9 1,126.9 586.8 1,713.7

Avg Annual
Growth: 2000-07 1.0% 4.2% 1.3% 2.3% 2.8% 2.4%

2007-10 2.7% 6.1% 3.0% 2.7% 7.9% 4.2%
2010-20 2.8% 4.7% 3.0% 3.7% 5.4% 4.2%
2007-25 2.7% 4.8% 3.0% 3.6% 5.6% 4.2%
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of air traffic control, and NAS modernization. But it is doubtful whether those ad-

justments are sufficient for a doubled or tripled demand (Hunter et al., 2005). In this

respect, many researchers and organizations have been building models and perform-

ing analysis of the NAS (O’Kelly and Miller, 1994; Bania et al., 1998; Bonnefoy and

Hansman, 2007).

As far as dealing with the capacity and delay problems of the NAS, the most

commonly used metrics are the numbers of operations and enplanements at an air-

port level. A typical mental model behind this approach is depicted in Figure 1,

demonstrating the relationships between directly observable top-level metrics for a

particular airport.

Figure 1: Enplanements, operations, and delay at an airport. [Source: Lewe (2008)]

In Figure 1, travel demand is directly translated into enplanements. For higher

enplanements, operations are higher when other conditions remain the same. Also,

higher operation increases delays ((+) sign) while higher capacity decreases delays

((-) sign), assuming everything else stays equal. Also, note that this would apply to

point-to-point (P2P) networks as well, where delays are additive and every itinerary

has one segmental trip. When an air transportation network is not purely P2P, this

reasoning does not hold.

1.1.2 Evolving air transportation supply

One of features that make the air transportation system distinguished from other

transportation is that the system has experienced topological reconfiguration in its
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nature of network. Since the Airline Deregulation Act (ADA) of 1978 the NAS ser-

vice network has evolved into a so-called hub-and-spoke (H&S) system (U.S. General

Accounting Office, 1996; Poole and Butler, 1999). Figure 2 shows the route maps of

Delta airlines, illustrating the evolution path.

Figure 2: Historic Delta Airline route maps

A discontinuity observed between 1959 and 1981 is largely credited to the ADA.

In 1975, entry restriction was eased by the Civil Aeronautics Board (CAB). The

ADA was issued in 1978 and by 1983 no control was enforced. Air carriers, in an

attempt either to maximize their profit or just to simply survive, have adopted the

H&S system since then.2 Relatively low demands at spoke airports are aggregated

at hubs and bigger airplanes are used at higher frequency between big hub airports.

Major carriers generally service larger cities where demand is high and utilize large

commercial aircraft. Major carriers have been operating with regional carriers to

open the small community markets that they could not service before with their large

aircraft. The technical and financial help from the major carriers helped the growth

of regional carriers, widening the air transportation network coverage. In many cases,

regional airlines partnered with major carriers – called code-sharing – take care of the

smaller demand of hub-to-spoke connections. This way, major airlines can expand

2Further information about economic aspects of airline H&S structure and airline cost with
economies of density and scale can be found in Button (2002) and Caves et al. (1984).
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their service network and utilize economies of scale at the same time. Travelers gain

benefits from the H&S system as well. The travel demand from a small city to a big

hub city is generally larger than the demand from a small city to other small ones.

Also, there is good established demand between hub cities. Therefore, travelers also

have the benefit of having more frequent departures with H&S system. Because of

these benefits, widespread adoption of H&S after deregulation was also observed in

Europe (Burghouwt and Hakfoort, 2001; Burghouwt et al., 2003).

1.1.3 Network effects: concentration and propagation

Even though the H&S system is a valuable choice for air carriers, it increases traffic

on the NAS. For hub airports, enplanements are not only from their own Origin-

Destination (O-D) demand but also from transferring passengers. To show the effects

of hub concentration on enplanements and operations, an example below was devised

in Figure 3. It shows three different cases of the network usage to fulfill the same

O-D travel demand on a transportation network. O-D demand is shown on the left

matrix and enplanements on the example network is shown on the right matrix. The

network diagram in the center shows enplanements on each segment.

Figure 3a shows the P2P network, where the O-D demand is the same as en-

planements demand on the network. O-D demand, which is different from true O-D

demand to be introduced later, is a symmetric demand where the incoming demand

equals the outgoing demand. Figure 3b shows the case when 50 percent of the de-

mand between A, B, and C have to go through the hub airport H. As a result, the

enplanements at H should increase while the enplanements at other spoke airports re-

main the same. In this specific case, the total enplanements on the network increase

by 25 percent and the operations decrease by 25 percent if 10 passenger aircrafts

are used between spoke airports and 50 passenger aircrafts are used for hub connec-

tions. Figure 3c shows the case where all the traffic between A, B, and C have to be

5



(a) Perfect P2P case

(b) H&S emerges

(c) Perfect H&S case

Figure 3: Enplanements and operations change for selected network usage
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made through the hub airport H. In this extreme case, the total enplanements on the

network increase by a dramatic 50 percent (from 1200 to 1800) and the operations

decrease by 50 percent (from 72 to 36). As can be seen in this example, enplanements

or operations depend heavily on the extent of hubbing degree. In all of these cases,

the true origin-destination demands are the same. The only difference is how the net-

work transfers passengers. As a summary, the H&S system increases enplanements

and reduces operations at the system level(Figure 4a). However, both enplanements

and operations increase at the hub airport compared to the P2P case (Figure 4b).

Horizontal axes of the figure represents hub concentration of zero percent (P2P case)

to 100 percent (full H&S case) and vertical axes is notional normalized quantity with

1 to designate the situation of P2P case.
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Figure 4: H&S effect on enplanements and operations at system and hubs.
[Source: Lewe (2008)]

The current NAS lies in between the perfect P2P and the perfect H&S system. It

is a highly concentrated service network, as can be seen in Table 2. Note that about

97 percent of enplanements occur at 137 hub airports. Enplanements by each airport

type is shown in Table 3. These tables show that demand at hub airports can be a
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bottle-neck for the overall performance of the NAS.

Table 2: U.S. airport categorization by Federal Aviation Administration in 2005

Airport Type Definition Number Percentage of En-
planements

Large Hub 1 % or more 30 69.04
Medium Hub At least 0.25 %, but less

than 1 %
38 20.02

Small Hub At least 0.05%, but less
than 0.25%

69 7.75

All Hub 137 96.81
Nonhub Primary3 More than 10,000, but

less than 0.05%
247 3.10

All Primary 384 99.91
Non-Primary CS4 At least 2,500 and no

more than than 10,000
130 0.09

All CS 514 100.00

Table 3: Enplanements by airport hub types, 2001-2005. [Data source: FAA Passen-
ger and All-Cargo Statistics]

Hub Type 2001 2002 2003 2004 2005
Large 457,147,860 447,105,714 464,486,847 484,948,605 508,197,766

Medium 130,637,640 127,082,379 115,177,169 141,078,743 147,411,269
Small 50,350,109 48,664,326 50,202,980 57,569,857 56,246,103

Nonhub 21,287,219 20,286,334 20,178,352 21,196,521 22,826,796

Total 659,422,828 643,138,753 650,045,348 704,793,726 734,681,934

In summary, travel demands are met by the airlines that utilize evolving H&S

system which generates ever-changing “network effects”. It is important to note that

the portion of the network-induced delays become significant when hub concentration

increases. In this light, Figure 1 misses an important component of the dynamics

between enplanements, operations, and delays. Considering the network effects, the

realized relationships on the air transportation network can be depicted as in Figure 5.

Delay problems become worse when hub concentration increases since the high

flight demand at hubs becomes bottlenecked for the connected trips. Therefore, delays

at hubs are not isolated but instead propagates throughout the network. Therefore,

the basis of the present research should be two-fold: First, intrinsic demand modeling
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Figure 5: Enplanements, operations, and delay on H&S system. [Source: Lewe (2008)]

and second, network effect modeling. Intrinsic demand should be predicted prior to

determining enplanements and operations in the network model, discussed next.

1.2 Research objectives

1.2.1 Characterization of intrinsic demand

Even though enplanements are a function of network usage, many of the current prac-

tices of the NAS demand estimation are scale-ups from the baseline as exemplified

by Long, Lee, Gaier, Johnson and Kostiuk (1999). Even the Next Generation Air

Transportation System (NGATS) – the most recent NAS study being conducted by

the Joint Planning & Development Office (JPDO) – has its demand prediction based

on scale-ups from TAF (Borener et al., 2006). Figure 6 shows baseline future scenar-

ios for JPDO evaluation and analysis. As can be seen in the graph, baseline TAF

projection is scaled-up with a higher growth rate for the future scenario generation.

In many works such as Schleicher et al. (2007), 2X- and 3X-demand scenarios have

often been discussed but not defined clearly. Further, Bhadra et al. (2003) and Bhadra

(2003) also pointed out that operations on the NAS is made up of specific airport-

to-airport flows, which can have different behavior compared to growth of terminal

area demand. Scale-up prediction does not generate much problems when the NAS

is dominated by a P2P network. But as the NAS converts into a more H&S system,
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Figure 6: JPDO future demand projections. [Source: Borener et al. (2006)]

issues that were not important for P2P become prominent. The network load depends

on the routings of the passengers. Therefore, the study to reveal the intrinsic demand

of air transportation should proceed any other studies and the transfer demand should

be modeled separately.

In this research, the demand is decomposed into intrinsic and variable ones and a

concept of true O-D demand is introduced to include the directional aspect of round

trip demands. Only round trips are considered for this research because most of the

air travel is round trip due to the difficulty of using other modes of transportation for

long distance travel. The relationships between the true O-D, O-D, and enplanements

demands are represented in Figure 7. True O-D demand is obtained by recording only

the outbound portion of each itinerary (leftmost matrix in Figure 7). This matrix

is important since it represents pure trip generation (row) and attraction (column)

factors of each airport. If the diagonal elements are summed together – i.e, M(a,b) +

M(b,a) – the matrix becomes an O-D demand matrix. An O-D demand is the demand

that needs to be transported. Enplanements numbers realized on the NAS depends

on the topological usages of the airline network. For example, O-D demands (center

matrix in Figure 7) can be serviced on a H&S network to generate enplanements on
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the network (rightmost matrix in Figure 7). This example corresponds to the case

reviewed in Figure 3b on page 6. Therefore, true O-D demand is one of the defining

measures for the NAS along with enplanements characteristics.
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Figure 7: Three types of demand: True O-D, O-D, enplanements demand

1.2.2 Active formulation of network

To recall, the post-deregulation evolution of the NAS happened in a passive man-

ner, meaning out of the control of the aviation authorities, only governed by nat-

ural market forces created between consumers (demand-side) and service providers

(supply-side). As demand continues to outgrow the pace of infrastructure expansion,

the lack of control and understanding of the NAS has resulted in a heavily depended

air transportation network that may not be capable of handling the expected demand

growth in the near future. Despite so, there has been little effort in the active de-

sign of the air transport network with predictive capabilities. These capabilities are

imperative as are design methodologies that can be incorporated to guide the much

needed reshaping of the NAS. To stress the need for such an active design tool, the

notion of the transportation architect is introduced, i.e. the engineers and decision

makers, who are responsible for formulating, analyzing, and optimizing the future

network concepts. To perform his/her tasks, the architect requires tools that offers

the capability to predict performance of the air transportation network as control and

condition variables change. It is also important to be able to reflect these changes
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effectively to the design process of the transportation network. The architect would

need a parametric tool that can evaluate various scenarios with minimal setup time.

Therefore, the modeling philosophy of this research is to build a comparatively sim-

ple model that captures system-level dynamics. It is postulated that evolution is a

key underlying behavior in airline networks that enables practical simulation of the

network.

The process of getting knowledge on a system is evolutionary in nature. Table 4

lists eight stages of knowledge that is defined by Bohn (1994). According to the

definition, the status of the research on the NAS demand and network properties

is at the level between 3 and 5. This reasoning was made because the effect of

modeling evolution in airline network modeling has not been tried and thus not clearly

understood. The main goal of this research is to set up a framework for a demand-

and network-centric analysis of the air transportation system and to expand the state-

of-the-art airline network modeling technique to include evolutionary behaviors.

Table 4: Stages of knowledge. [Source: Bohn (1994)]

Stage Name Comment Typical Form of Knowl-
edge

1 Complete ignorance Nowhere
2 Awareness Pure art Tacit
3 Measure Pretechnological Written
4 Control of the mean Scientific method feasible Written and embodied in

hardware
5 Process capability Local recipe Hardware and operating

manual
6 Process characterization Tradeoffs to reduce costs Empirical Equations (nu-

merical)
7 Know why Science Scientific formulas and al-

gorithms
8 Complete knowledge Nirvana
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1.3 Organization of the thesis

This thesis starts with an introduction to the overall research field with identification

of the problems in Chapter 1. In Chapter 2, existing models and theories that are re-

lated to demand prediction and network simulation are reviewed. Research questions

and hypothesis to achieve the objective of this research will be identified in this chap-

ter following the literature search. Chapter 3 describes general ideas and approaches

taken to solve the problem and the proposed environment is presented. In Chapter 4,

ideas and approaches are turned into concrete models. Detailed parameter settings

for the models are also determined. In Chapter 5, a theoretical baseline that captures

general behavior of the NAS is determined. Also, a practical baseline is determined

that emulates the NAS closely. With the practical baseline, a scenario study of de-

hubbing at Lambert-St. Louis International Airport (STL) is conducted. Finally,

conclusions and recommendations for future research are summarized in Chapter 6.

Also, the contributions of this research to the existing knowledge base is addressed.
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CHAPTER II

LITERATURE REVIEW

Literature review of the aviation demand and network modeling is documented in

this chapter. Research issues are introduced after each subsection, identifying the

need of the research.

2.1 Aviation demand forecasting

There are two types of demand estimation models depending on the considered modes

of transportation. Multimodal demand estimation tools consider different types of

competing transportation modes with the aviation demand modeled as the result of

modal split. Single modal airline-only demand models only consider aviation demand

without considering competition. These models can also be categorized as models

with unknown structure due to their proprietary nature and as the ones with known

structure. Some of the most famous aviation demand forecasting models are reviewed

in this section.

2.1.1 Aviation demand forecast models with unknown structure

Different organizations have developed their own proprietary demand forecast models.

The details of these proprietary models are not well known. But some of them holds

authoritative status and their numbers are widely used in aviation researches. The

most well known among them are the forecasts made by Boeing, Airbus, and Federal

Aviation Association (FAA).

The Boeing Company annually publishes “Current Market Outlook” which con-

tains information about economic issues and air travel growth for world travel (The

Boeing Company, 2008). It projects air travel demand and the fleets of aircrafts
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required to meet the demand. It has separate projection by international regions,

represented by North America, Latin America, Europe, Africa, Middle East, North-

east Asia, Southeast Asia, Southwest Asia, China, and Oceania. It provides gross

level information about travel demand and is not appropriate for obtaining informa-

tion on demand or operations at specific airports in the CONUS. The most recent one

is “Current Market Outlook 2008-2027”, which shows how air transport will change

over the next 20 years.

Airbus also has an equivalent 20 year forecast named “Global Market Forecast”

for the international air travel demand and the fleets of aircraft needed to meet the

anticipated demand (Airbus S.A.S., 2007). It also provides gross level information

about travel demand and is not appropriate for obtaining information on demand or

operations at specific airports in the CONUS. The most recent one at the moment is

“Global Market Forecast 2007 — 2026”.

FAA has a couple of demand forecast models, among which the Terminal Area

Forecast (TAF) system is the official forecast of aviation activity at FAA facilities.

The TAF provides forecasts for active airports in the National Plan of Integrated

Airport System (NPIAS). The TAF includes forecasts for FAA towered airports,

federally contracted towered airports, nonfederal towered airports, and non-towered

airports. Detailed forecasts are prepared for large air carriers, air taxi/commuters,

general aviation, and military. An internet server of FAA provides the historical

data and forecasts, which can be queried using any web browser (Federal Aviation

Administration, 2009b). FAA updates TAF annually and constantly improves the

forecast method. The TAF provides forecasts of the following flight activities.

• Enplanements for air carrier and commuter

• Aircraft operations including

– Itinerant operations for air carrier, air taxi/commuter, general aviation,
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and military

– Local operations (takeoff and landing at the same airport) for general

aviation and military

• Instrument operations

TAF summary report is also available to the general public (Federal Aviation Ad-

ministration, 2008b). More information on TAF database is provided in Appendix D.

2.1.2 Aviation demand forecast models with known structure

Aviation demand models in this category have publicly available publications on

their processes and structures. In this section, three representative demand-centric

models with known structure are overviewed , namely the AvDemand model, the

Transportation Systems Analysis Model (TSAM), and the Mi model.

AvDemand is a software tool that calculates future NAS demand based on FAA

forecasts. It was developed by Sensis Corporation for use by National Aeronautics

and Space Administration (NASA) to generate future air transportation demand in

Air Traffic Management (ATM) experiments (Huang et al., 2004). It has spatially-

explicit representation of the CONUS. The outputs have a generic format so that it

can be integrated with other NASA simulation tools. It does not include intermodal

and multimodal relationships and it does not capture consumer behavior. AvDe-

mand is composed of three main functions, namely demand generation, demand data

input/output, and demand analysis. Demand generation is the core component of

AvDemand and offers two approaches: a flight-based demand growth approach and

a passenger-weighted demand growth approach. Figure 8 shows the demand genera-

tion features of AvDemand. In the flight-based demand growth approach, AvDemand

starts with the baseline flight demand set and assumes a growth rate to generate tar-

get future demand sets. In the passenger-weighted demand generation approach,

AvDemand also starts with the baseline flight demand set and estimates passenger
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demand from the flight demand. It then applies passenger growth rates to calculate

passenger demand for the target future demand. Flight schedules and flight plans are

calculated using a fleet-mix determination and departure time distribution algorithm.

Figure 8: AvDemand demand generation features. [Source: Huang and Schleicher
(2007)]

TSAM is a database-driven demand prediction model to estimate long distance

travel at a county level based upon population and demographics in multimodal

scope (Viken et al., 2006a; Trani et al., 2003; Baik and Trani, 2005). It is initially

developed by Virginia Tech to study Small Aircraft Transportation System (SATS)

program. The mode choice is performed based on the trip purpose, trip cost, time and

time value of the trip. TSAM adops a nested multinomial logit model for mode choice.

The county level demand for air travel after the mode choice is then aggregated to the

airport level. The airport level O-D demand is then assigned to specific routes follow-

ing the traditional four-step transportation planning framework (More information
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on the traditional four-step process can be found in Appendix. A). Figure 9 shows the

model framework of TSAM. When future flight demand growth is modeled, TSAM

utilizes baseline flight schedules and uses the FRATAR algorithm to develop the fu-

ture schedules in the NAS (More information on FRATAR algorithm can be found

in Appendix. A.3.3). These projected flights can be plugged into air transportation

simulators to analyze the impact of the projected demand on the NAS. Viken et al.

(2006a) used the Airspace Concepts Evaluation System (ACES), which was developed

under NASA’s Virtual Airspace Modeling and Simulation (VAMS) project (Couluris

et al., 2003; Zelinski, 2005; National Aeronautics and Space Administration, 2004), as

the airspace simulation program for his research. A description of some of the widely

known airspace simulation programs is provided in Appendix B

Figure 9: TSAM model structure. [Source: Viken et al. (2006a)]

Mi is an agent-based model developed by Lewe at Georgia Tech (Lewe, 2005;

Lewe et al., 2006). Both TSAM and Mi forecast travel demand at the National

Transportation System (NTS) level and consider intermodal and multimodal aspects.
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However Mi is not spatially-explicit but uses virtual NTS concept, where agents

reside and perform transportation activities. The CONUS in Mi is represented with

four locales, which are large-, medium-, small-, and non-metropolitan areas. Using

Agent-Based Modeling (ABM), it tries to capture behavioral aspects of travelers. Its

entity-centric abstraction makes the simulation less computationally complicated. It

models transportation consumers and service providers as agents. Transportation

consumers are modeled based on the demographic and economic characteristics of

the locales. Transportation service providers generate price and time information for

each mode of transportation and business model. Then consumer agents perform

transportation mode choice using a multinomial logit model. Figure 10 shows flow

charts of the Mi model. “TAF” in the graph stands for Transportation Architecture

Field while “S/Ps” represents service providers. The result from the simulation is

annual-based and calibration was performed against the 1995 ATS data.

2.1.3 Research issues

AvDemand is a single mode demand forecast tool. Both TSAM and Mi are multi-

modal demand model, where air transport demand is calculated after modal split.

The main disadvantage of having single mode tool is not accounting for other modes

of transportation and as a result not considering spillage to other modes when socio-

economic property changes occur. But considering the complexity and assumptions

that are involved with holistic models which lead to inevitable errors, modeling air

transportation only can have benefit of having simpler structures and can leads to

equivalent accuracy when properly modeled. Also, AvDemand does not use direc-

tional true O-D concept that is necessary for this proposed investigation and TSAM

and Mi use survey data (1995 ATS), which is exposed to data gathering and human

errors. However, real data collected by the government institutions on the air trans-

portation can be used to build a tailored demand model required for this research.

19



Figure 10: Flow chart of Mi model. [Source: Lewe (2005)]
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One thing to note is that these data on NAS are also prone to human errors. Some

of the erroneous entries found during this research are reported in Appendix D.

2.2 Modeling of complex networks

Complex network is a network with non-trivial topological features as opposed to

simple networks such as lattice or random network. Network theory has evolved as a

part of graph theory in applied mathematics to explain the fundamentals of the net-

work formation and physics behind it. The study of complex network is a relatively

new field and is widely gaining interest in a variety of areas, such as statistical me-

chanics of complex networks (Albert and Barabsi, 2002), large-scale organization of

metabolic networks (Jeong et al., 2000; Ravasz et al., 2002), characterizing the shape

of internet (Albert et al., 1999; Faloutsos et al., 1999), network biology (Barabási

and Oltvai, 2004), engineering problem-solving networks (Braha and Bar-Yam, 2004),

soccer players network (Onody and de Castro, 2004), and epidemic dynamics (Pastor-

Satorras and Vespignani, 2001) as well as airline network modeling (Strogatz, 2001;

Barabási, 2004). As a result, numerous measures have been developed to characterize

networks, including Gini index (Reynolds-Feighan, 2004), degree centrality, between-

ness (Freeman, 1978), closeness, influence measure, etc (Borgatti, 2005). Newman

(2003) provides a good review on the structure and function of complex networks.

In this section, a comparison is made between evolution-based complex network

modeling and airline network analysis to ascertain the benefits of incorporating evolution-

based approach on airline network modelings.

2.2.1 Network model with evolution

There has been rapid progress in the statistical physics of evolving networks resulting

in many publications that attempt to explain the underlying mechanisms for growing

networks (Krapivsky et al., 2000). This research field first started with the consid-

eration of random networks, which has since found much usages in various areas.
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Dorogovtsev and Mendes (2002) published a good review paper on this subject. Two

of the most well-known complex networks are scale-free networks (Caldarelli, 2007;

Caldarelli et al., 2002) and small-world networks (Cohen and Havlin, 2003). Scale-

free networks are characterized by power-law degree distributions while small-world

networks are described by short path length and high clustering. In this section,

general characteristics of random, scale-free, and small-world networks are reviewed.

The possible underlying mechanism for scale-free networks are also introduced.

2.2.1.1 Random network

Random network was systematically studied first by Erdös and Rényi in the 1950s

and 1960s (Erdös and Rényi, 1959, 1960; Ravindran, 2007). They proposed uniform

random graphs, which is now called ER graph, that does not show specific patterns.

It is an evolutionary network that starts with N disconnected nodes. It connects

two randomly selected nodes with the probability of an edge between them being

0 < p < 1. The ER graph is written as Gn,p, where n is the number of nodes in

the graph and p is the probability of connection between any pair of nodes, and is

independent of the existence of other connections in the graph. The degree of node ‘A’

(kA) is defined as the number of connections of ‘A’ and it is also called neighbors. The

average degree of ER graph is found to be z = p
n−1
≈ p

n
when n is large enough. The

probability of a node having degree k becomes pk =n Ck ·pk ·(1−p)n−k = e−z ·zk

k!
. There

are other random graph models developed by other researchers. For example, the

Gn,m model describes a graph that is composed of n nodes with m randomly selected

edges. Different models generate different degree distributions but the connections of

random networks are completely random, implying that the degrees of all the vertices

are integers drawn independently identically from specific distributions. After Erdös

and Rényi, a good number of interesting publications in the evolutionary network

research were proposed.
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There are physical systems that demonstrate abrupt phase changes at certain

points such as liquid/gas, magnetization, superconductivity, etc. One of the most

interesting phenomena of a random graph is that it also shows a distinct phase tran-

sition. A Giant Component (GC) is defined as a connected subgraph that contains a

majority of all the nodes in the graph. If the network evolves with increasing p, after

a certain point in the evolution, the graph experiences phase transition from a dis-

connected to a connected network with emergence of GC. From theory, it is expected

that most of the connected components are small with the largest having O(log(n))

vertices when p < 1/n. Sharp transition occurs at p = 1/n and the largest component

contains a finite fraction (F ) of the total number of vertices, Cmax = F · n, and all

other components remain at the size of O(log(n)). When p is close to log(n)/n, the

graph is expected to be completely connected.

Random networks have a single hump when its connectivity is represented with

distributions. The nodes at the peak of the distribution are called the characteristic

nodes and make up the majority of nodes with the same connectivity in the network.

Only a small number of nodes lie outside this hump range. Random network is also

called an exponential network since the degree decays rapidly, i.e. exponentially. The

most representative exponential network in the U.S. transportation system is the

highway network. Highway network resembles grid network that is also characterized

by the existence of the characteristic nodes. Figure 11 shows the characteristics of

the U.S. highway system.
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(a) Poisson distribution (b) U.S. highway network

Figure 11: Random network. [Source: Barabási and Bonabeau (2003)]

2.2.1.2 Scale-free network

Unlike random network, most network systems that are observed in nature do not

exhibit purely random behavior. Instead, the majority of them show power-law be-

havior of the degree distribution (heavy tail) and clustering. If the degree distribution

follows a power-law, it does not have a peak in the distribution. Power-law distribu-

tion is described as most nodes having few connections and some nodes having a lot

of connections. In other words, all levels of degree size exists or also referred to as

“no” scale (or scale-free). The nodes with very high degree in a scale-free network

are often called ‘hubs’. There are many processes that generates a power-law degree

distribution. Figure 12 shows an example of scale-free network.

(a) Power-law distribution (b) Scale-free Network

Figure 12: Scale-free network. [Source: Barabási and Bonabeau (2003)]
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Scale-free network exhibits robustness under random disruptions. However, when

malicious attack is inflicted on the hubs, scale-free network exhibits catastrophic

effects due to the concentration of network flows (Albert et al., 2000; Tu, 2000; Jeong

et al., 2001). Figure 13 shows an example of random failures and malicious attacks

on the hubs. The vertices with high degrees are a special concern because they have

critical roles, such as in the spread of diseases, the transmission of packets in the

internet, or the bottleneck problem in the air transportation system.

(a) Random network - Accidental node failure

(b) Scale-free network - Accidental node failure

(c) Scale-free network - Attacks on hubs

Figure 13: Failure: random vs. scale-free network. [Source: Barabási and Bonabeau
(2003)]
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Scale-free networks are frequently observed in real life, including world wide web,

social, protein, and citation networks. The most representative scale-free network in

U.S. transportation system is airline network. Many researches have proposed un-

derlying mechanisms for scale-free networks (Newman, 2004; Barabási et al., 1999).

The idea of preferential attachment is a “rich-get-richer” philosophy, meaning vertices

with more connections gets a higher chance of being connected. Preferential attach-

ments has been proposed as an underlying mechanism of power law distribution of

connectivity in networks (Dorogovtsev et al., 2000), which include the distribution

of the city sizes (Simon, 1955), the citation network (Price, 1976), individual wealth

distribution (Price, 1976), and the number of pages linked to certain pages on the

world wide web (Barabási and Albert, 1999; Huberman and Adamic, 1999). Figure 14

shows a model proposed by Barabási and Bonabeau (2003) that generates scale-free

network by growth and preferential attachment. In this model, a node is added each

step (growth) and the introduced node is attached to two existing nodes with the

linear probability of connection (preferential attachment), linear meaning that a new

node is twice more likely to be attached to an existing node if it has twice as many

links as others. Barabási (2004) claims that this is the first model to explain the

scale-free power laws seen in real networks.

Figure 14: Growth and preferential attachment generating scale-free network.
[Source: Barabási and Bonabeau (2003)]

Since it is a fairly new research field, there are ambiguities in the terms used by
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different researchers. In order to clarify the definition of scale-free networks, Li et al.

(2005) published a technical report providing precise definitions.

2.2.1.3 Small-world network

Small world network refers to a network where arbitrary two vertices are separated by

small number of connections. The name comes from an analogy with the small-world

phenomenon, which was first proposed by Frigyes Karinthy in 1929 and tested by

Stanley Milgram in 1967. It describes any two people on a social network are only

separated by six degrees of separation. In other words, the diameter of the network

is six. Watts and Strogatz (1998) published the first small-world network model. A

wide variety of networks including random and scale-free network show characteristics

of small-world network.

2.2.1.4 Network value

When there is a network with N nodes, 1
2
N(N − 1) possible interconnections exist.

If one connection has the same value as the others, the total network value is K ×

N(N − 1), where K is a constant. So, with the addition of one user to the network,

the total network value increases at a rate approximately proportional to N2 when

N is large, resulting in the fact that the value of the network per node being N − 1

rather than a constant. This is often referred to as Metcalfe’s law which means that

one additional node gives bigger value than one to the network.

Metcalfe’s law implies a “critical mass” phenomenon. If number of users is smaller

than the “critical mass”, the network usage decreases until it finally dies out, while

with a greater number of users, the usage grows. This observation applies to the

Internet development. After some time from the inception of Internet, its usage

reached critical mass. As the World Wide Web and Web browsers evolve, it attracted

more users and content providers added more services to the Internet. As the online

communities grew — like online stores, government services, and activity clubs — the
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value of the network increased and the Internet continued attracting more and more

users, resulting in again, more value for each user, and so on. Metcalfe’s observation

is also described as the “network effect”. Network effect is a phenomenon where the

value of a product or a service to the user is an increasing function of the number

of users. In transportation systems, there exist direct and indirect network effects.

A direct network effect is a case when there is direct relationship between the usage

and the value of the network. An indirect effect plays behind the scene. A network

effect in the air transportation network can be expressed using a virtuous cycle as in

Figure 15, with situations that have positive effect on one another. Figure 15 includes

both direct and indirect network effects.

Figure 15: Air transportation network effects virtuous cycle

A direct effect shows that increasing the number of connected cities connected

through the new transportation service also increases the value of the network. An

indirect effect is not as obvious but can still be noticed. For example, the usage of

the new system not only depends on the number of connected cities, but also on the

convenience and mobility of the transportation system. Travelers choose a service

that brings the highest value to him or her from among the available options. As the

new system gains more support, it will bring a higher value in terms of convenience

and mobility to the traveler making it more likely for the traveler to find the best value

with the service. This positive feedback loop induces more of the system adoption
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and support in the community until the new system dominates the market or the

equilibrium point among the services is reached. So, increased installed base induces

an increase in number of support systems available, and the resulting increased service

induces more installed base.

2.2.2 Airline network modeling

Airline network modeling takes a form of flight scheduling (Brueckner, 2004; Brueck-

ner and Zhang, 2001) and fleet routing (Dobson and Lederer, 1993; Desaulniers et al.,

1997; González, 2006) problem and is generally set up as a cost minimization (Yan

and Tseng, 2002; Adler and Berechman, 2001) or profit maximizing problem (Lederer

and Nambimadom, 1998). In this respect, Weidner (1996) developed a model that

explains airline hubbing in the NAS. Yang and Kornfeld (2003) formulated package

delivery system also in the context of cost minimization to show how H&S and P2P

structures are formed under various environments. Hsiao and Hansen (2005) devel-

oped an equilibrium model for air transportation network flow. Hsu and Wen (2000)

applied Grey theory and multi-objective programming method to develop a model

capable of designing airline network. Adler (2005) developed a model that analyzes

the H&S network design issue under competition in a game theory framework. There

are numerous studies and simulation efforts on the NAS (National Aeronautics and

Space Administration, 2004; Niedringhaus, 2004). There are also numerous other

studies that describes airlines’ choice in network structure (Oum et al., 1995), with

similar mathematical settings to solve for equilibrium network. As a tool to char-

acterize the network, many network measures have also been developed (Alderighi

et al., 2007). There have also been attempts to address the relationships between

demand uncertainty and airline network structure (Barla and Constantatos, 2000).

As evidenced in the literature, airline network modeling and analysis have been done

with equilibrium network, not evolutionary ones.
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2.2.3 Research issues

It was identified that valuable insights from graph theory has not been extensively ex-

ploited in air transportation network models (Kotegawa and DeLaurentis, 2007). The

need for airline network modeling with a graph theory approach was also discussed

in a workshop on transportation network topologies organized by the NASA Langley

research center (Alexandrov, 2004). Researchers promote preferential attachment as

possible explanation for power-law distribution in many network systems and model

them with evolutionary nature, instead of modeling networks for equilibrium, which is

popular among researchers in the transportation field (Marcotte and Nguyen, 1998).

Even though airline network clearly exhibits power-law distribution, practices of air-

line network modeling have not included the evolution scheme. Therefore, the pos-

sibility of enhancing the state-of-the-art modeling technique using evolution scheme

needs to be investigated. However, DeLaurentis et al. (2008) pointed out that few

airports entered the NAS and the rerouting process dominated the evolution in the

recent years, making Barabási-Albert (also called BA) model not appropriate for the

airline network modeling. Hence, different evolution scheme should be needed in the

context of airline networks.

2.3 Literature review summary

From the reviewed data, theories and models, it can be concluded that the current

data and models are insufficient on their own to realize the motivation of building an

active design tool because the demand models do not have true O-D information and

the network models do not incorporate evolutionary growth. Additionally, the NAS

evolved without much control similar to the world wide web. Researchers have shown

that there is order hidden in the web: their connections follow a universal power-law.

Similarly, the NAS also have universal power-law connections and may be explained
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using a preferential attachment in a growing network model. Therefore, a new ap-

proach needs to be formulated. In this thesis, an active control algorithm for the air

transportation network is formulated by building a demand model that utilizes true

O-D concept and a network model that grows with preferential attachment scheme.

Accuracy is always a big concern when building an engineering model. This is

particularly so for air transportation system as the cost involved with infrastructure

construction is high. However, a study by Flyvbjerg et al. (2006) provids with high

statistical significance that demand forecasts generally have been done poorly for

infrastructure planning projects, even for highly detailed simulations. For example,

the TRANSIMS project by Los Alamos National Laboratory did not show much

benefits in accuracy. On the other hand, the researches on complex network modeling

show that simple and elegant characterization can open possibilities to the analysis

of complex system. Therefore, this research will try to capture the essence of the

true nature of demand and network properties in an airline network with the simplest

possible setting.

2.4 Research questions and hypotheses

The research objectives were introduced in Chapter 1, while the current practices and

theories were reviewed in this chapter. Research questions and hypotheses that were

raised during the course of the research are presented.

2.4.1 Research Question 1: How can the intrinsic demand model be gen-
erated?

The real NAS cannot be known perfectly because of its size and complexity. However,

it is reasonable to think that its aspects are captured in the data collected by BTS.

The two public data that can be used for building a true O-D based demand model

is the DB1B and T100. DB1B is a 10% sample that tracks individual trips, while

T100 is an aggregated data reported by all the certified airlines operating in the U.S..

31



Therefore, T100 captures the overall picture of the NAS but does not include detailed

trip information. Hence, it is proposed to build a NAS demand model based on so-

cioeconomic data in order to generate the trends captured in the detailed sample data

(DB1B). The result is then compared to T100 to ensure that the small-scale model is

representative of the full-scale meta world. So, the hypothesis for the first question

is as follows.

Hypothesis 1:

A demand prediction model that predicts intrinsic need can be built based on so-

cioeconomic characteristics.

Having dealt with the demand model, the next research question is as follows.

2.4.2 Research Question 2: Is airline network evolutionary?

This question is necessary to select the best structure for an airline network model.

It is widely agreed that the cost associated with changing the topological usage of the

airline network is very high. When there is resistance, the previous state has a great

amount of influence on the next state (in other words, current state is input to the

next state), suggesting a stepwise evolution scheme. Many evidence also points to

the fact that the airline network is an evolutionary network (See Section 3.1). Since

many evolutionary networks in nature are explained by the preferential attachment

scheme, it is reasonable to apply preferential attachment as a underlying mechanism

for the proposed evolutionary network model. Therefore, the following hypothesis is

made.

Hypothesis 2:

Airline network is evolutionary and can be explained with preferential attachment.
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The next sub-question arises naturally about how to implement preferential at-

tachment in airline network modeling.

2.4.2.1 Research Question 2-1: How can preferential attachment be implemented
in airline network?

This question raises attention on the difference of airline network and abstract net-

works in graph theory. Airline network is a physical network formed by the operation

of aircrafts between airports. When economies of scale are realized by using bigger

airplanes or there is available capacity at certain segments, demand on the segments

are fortified. Therefore, airline network modeling is better approached differently

from general preferential attachment scheme typically used in abstract network mod-

eling. In this research, a network is built by introducing the most demanded airports

first and evolving them to a certain maturity, before introducing the rest within a very

short time period in the evolution timeline. This idea can be explained by critical

mass in Matcalfe’s law reviewed and supported by empirical observation of most evo-

lutionary networks (Mendelson, 2003). The following hypothesis is formed to realize

preferential attachment scheme in airline network modeling.

Hypothesis 2-1:

Airline network can be evolved by adding highly demanded vertices first and evolving

them to a certain maturity before adding the rest within a very short timeline.
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CHAPTER III

APPROACH

Based on the motivation (Chapter 1) and findings from the literature review (Chap-

ter 2), some research questions and hypotheses were made (Section 2.4). In this

section, a formulation of the aviation demand model and the active design algorithm

are presented. As with most cases, models are applicable only under expectable cir-

cumstances. Radical or catastrophic events are often not captured in these general

models. Similarly, this formulation is limited to the normal case and should not be

applied to anomalies in the market. Therefore, validation of this formulation can be

applied to the data until September11th, 2001 and significantly after it.

The focus of this research is to build an evolutionary airline network model through

preferential attachment. The three major components of air transportation network

capacity are the airlines, the air traffic control, and the airports (Merlis, 2001). It is

also assumed that there is appropriate air traffic control such that the impact from air

traffic control is minimal. This is a reasonable assumption as traffic control related

delays are not common in the United States. Therefore, only the airlines and airports

are modeled in this research.

Domain analysis is a crucial element that leads to the abstraction of a system.

Due to the different ways of representing a selected system, the resulting abstractions

do not normally converge into a unique model, especially for a complex system. Since

many appropriate models for a select system can exist, there is no definite way to

conceptualize a system. In light of that, the approach taken in this thesis is not the

best but that it represents a novel approach in the modeling of evolutionary airline

network. This is achieved through an active design algorithm that expands the design
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space of the NAS.

3.1 Investigation of the NAS

An investigation of the NAS characteristics was performed based on the available

data.

3.1.1 NAS decomposition by connectivity

The NAS is characterized by tightly-coupled interactions between consumer and ser-

vice provider in the transportation system. These complex interactions make it dif-

ficult to fully observe and understand the underlying behavior of the transportation

network. To investigate the network-level characteristics Figure 16 was drawn for

the NAS in 2005. Figure 16a shows the connection matrix ordered by the number of

connections and Figure 16b shows the operations matrix ordered by the number of

operations, highest being located on the top left corner. It can be observed in the fig-

ure that the NAS is a highly concentrated H&S network and ordering by connections

or operations results in almost same graph.
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Figure 16: NAS map in 2005. Points on the plot indicate airports as a connected
origin (horizontal) - destination (vertical) pair

To find out if the same characteristics are observed from different perspectives,
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a decomposition of the NAS by cliques was attempted as shown in Figure 17. The

largest clique that is fully-connected to one another (maximal clique) is categorized

as the top level (α-level). The remaining airports are classified with respect to their

connectivity to the α-level airports. β-level airports are airports that have connections

to any of the α-level airports and ω-level airports are the ones that do not have any

connection to any defined α-level airports. A sample result of this process for 2005

is shown in Figure 18. Figure 18a shows the map of connections that are ordered

by number of operations and it also shows the characteristics of the ‘rich-get-richer’

network. In studying the evolution of the NAS network, annual changes in the size

of each network level were investigated and depicted in Figure 18b. Examination

of the connection matrix for each year (not shown) suggested that both H&S (α-β

connections) and P2P travel (β-β, β-ω, ω-ω connections) are growing faster than

hub-to-hub (α-α connections) travel.

α - level

β - level

ω - level

Figure 17: Network decomposition by maximal clique. [Source: Lewe (2008)]

Several assumptions were made in order to generate the α-, β-, and ω-levels net-

works. First, only airports in the CONUS are considered. Second, the large list of

NAS flight segments is truncated by considering only airport pairs with greater than

or equal to 365 annual scheduled departures. Third, all the airports are sorted in

ascending order based on the total number of outgoing operations.

In an attempt to see the evidence of the ‘rich-get-richer’ network in local lev-

els, the previously decomposed network using maximal clique was subdivided using
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Figure 18: NAS network connections, grouped by α-, β-, and ω-level, 2004

geographical split. Figure 19 shows the result of the network decomposition for a

subdivided NAS. For this purpose, the CONUS is divided into three regions, namely

(1) Western, (2) Central, and (3) Eastern. As expected, it is observed that the con-

nections between airports within the same region are much denser than with other

regions either at the same or different network levels. This implies the significant in-

fluence of physical landscape and geometric distance in shaping the NAS, particularly

for airports represented by the β-level networks, which tend to be smaller hubs and

regional airports. These β-level airports are also heavily connected to α-level airports

but sparsely connected to ω-level airports, indicating strong preferential attachments

existing in the NAS. Since airports at each network level are sorted in the order of

operation levels, the distinct gathering of dots towards the upper left corner of each

region forms a natural boundary for the region, implying that airports with higher

demand have more connections between them.

After visually inspecting the connections between airports in the NAS, the oper-

ations and the passenger demand levels were investigated to find more evidence of

preferential attachment.
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Figure 19: NAS network connections, grouped by α-, β-, and ω-level, subdivided by
region, 2004

NAS has evolved into a distinct H&S system. H&S system are best explained

by preferential attachment in a growing network. A network that has grown by

preferential attachment scheme shows power-law distribution (See Chapter 2) and

historical observation of the NAS shows this power-law distribution. Figure 20 shows

power-law behaviors of connected links, operations, and enplanements at airports

on NAS for 1990 and 2005. The bin sizes for the frequency aggregation in this

study were 10 for links, 20,000 for operations, and 1,500,000 for enplanements. Since

there are many airports that have very little usage (for example, 1 operation per

year), the operations and enplanements plot considers airports with more than 730

operations per year (2 operations per day average) and 7,300 enplanements per year

(20 enplanements per day average). Even with the cutoff of 730 departures and 7,300

enplanements, the graph shows the emergence of low-demand airports in 2005 that

deviates from general power-law.

As introduced in Section 2.2, this power-law distribution indicates preferential

attachment. A hypothesis that the current NAS can be simulated by preferentially

attaching airports in a growing the network is put forth and an active design algorithm
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Figure 20: Power-law behavior of links, operations, and enplanements of the NAS
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is created based on it. Also, it was identified from this study that there should be a

mechanism in a network model that can give more or less attraction to preferential

attachment scheme to accommodate the fact that the NAS has airports that deviates

from power-law behavior. Therefore, another sub-hypothesis is added to answer the

research question 2-1, which are reorganized with the research question as below.

Research Question 2-1:

How can preferential attachment be implemented in airline network?

Hypothesis 2-1-1:

Airline network can be evolved by adding highly demanded vertices first and evolv-

ing them to a certain maturity before adding the rest within a very short timeline.

Hypothesis 2-1-2:

Many airports in the NAS deviates from general power-law. By introducing at-

traction factors and fine-tuning the attractiveness on a growing network, the real

transportation network can be emulated.

3.1.2 Other findings from database study

Figure 21 shows enplanements and operations in the U.S.. Here, airports that are

part of OEP 35 airports are categorized as hub airports. The trend on Figure 21

(a) shows that total enplanements have been increasing rapidly in the hub-hub and

hub-spoke connections, due to a higher degree of hub concentration. The operations

trend in Figure 21 (b) suggests that operations between hub-spoke and spoke-spoke

have increased rapidly recently. This results reflects the observation in the airline

industry where full-service carriers choose H&S to cover all markets while low-cost

carriers select P2P. Both of these services are increasing in quantity. The coexistence

of these business models can be explained with the game-theory framework developed

by Alderighi et al. (2005). The emergence of low-cost carriers bring many research

interest to this field (Morrell, 2005; Reynolds-Feighan, 2001).
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(a) Enplanements trends

(b) Operations trends

Figure 21: Enplanements and operations trends in the NAS
* OEP35 airports are denominated as Hubs. All other airports are Spokes.

Source : T100Dsegmentdata
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Another interesting trend is observed. Figure 22a shows flight O-D pair count of

regional, national, and major airlines. Certified air carriers are categorized by BTS

by annual operating revenues as in Table 5.

Table 5: U.S. Air Carrier Categorization by Bureau of Transportation Statistics

Code Carrier group Annual operating revenues
1 Large Regional Carriers $20 million to $100 million
2 National Carriers $100 million to $1 billion
3 Major Carriers Over $1 billion
4 Medium Regional Carriers Up to $20 million

Figure 22b shows service artery length. (Here, the term ‘artery length’ is defined as

the summation of all the O-D pair distances without duplication.) The postulation for

this phenomena is that many previously un-serviced small markets are now serviced

by regional airlines.

The above phenomena shows the trend of hub concentration and increased hub-

spoke network traffic on the NAS. Though true O-D demand is different from en-

planements demand and H&S from P2P network, there is a lack of research that

deals with the true O-D demand and network effects at the same time.

3.2 Aviation demand model

This section presents an approach that addresses the limitations of current practices

on aviation demand. As opposed to segment and airport enplanement metrics used

in many studies, ‘true’ O-D demand is a focal point in this research. An aviation

demand model analogous to the gravity law is hypothesized to uncover the under-

lying mechanics governing produced and attracted enplanements at a local airport.

Also, the granularity of the model is on the Metroplex Airport Operation (MAO)

level since airports service the base demand of their region together. MAO is a re-

cently emerging concept across the air transportation community aiming to achieve

the effective use of adjacent airports where air traffic demand is the greatest. There is
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(a) O-D pair counts

(b) Service artery length

Figure 22: O-D pair counts and service artery length. [Source : T100D segment data]
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another term that is widely used in the aviation community called Multiple Airport

System (MAS), which describes the trend of emergence in the vicinity of primary

airports when demand reaches the limit of the primary ones. The emergence of sec-

ondary airports leads to the development of multiple airport system. Hansen and

Weidner (1995) used 50 km (30 miles) as its boundary and Bonnefoy and Hansman

(2007) used 50 miles in their analysis. MAO is different from MAS in that it deals

with operational synchronization of airports. The MAO vision is one where run-

ways are dynamically allocated and interconnection between airports are established.

However, the technical challenges associated with this new concept of operations are

not trivial. Three most significant challenges are (1) restructuring of the NAS and

dynamic allocation of existing runways, (2) equalization of security issues between

small and large airports, (3) fast ground transportation for the rapid movement of

passengers, baggage, and crew. In addition to the technical challenges, the concept

creates many other challenges in different dimensions such as political, economical,

and societal arenas. Since the implementation requires careful coordination between

public and private organizations, impact analysis of the plan needs to be performed

to justify the anticipated investment. By building a true O-D based demand model,

this research is expected to increase the accuracy of demand prediction of the NAS

and help unconventional studies, such as the MAO.

3.2.1 Concept and terminology

Before discussing the aviation demand, related concept and terminology are illus-

trated in Figure 23. Directional true O-D demand (tij) represents the number of

outgoing trips from origin i to destination j. This information can be collectively

presented in the form of a N -by-N trip matrix, where N indicates the number of

locales considered. Sum of elements on row i of the true O-D matrix is the produced
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enplanements of airport i (Pi) and sum of elements on column j is the attracted en-

planements of airport j (Aj). In most cases, tij is not the same as tji. However, the

O-D demand that needs to be served in both directions are the same since travelers

eventually return to their origin location. It is this symmetric demand τij (= tij + tji)

that the airlines have to serve, thus becoming the focus of the aviation demand study.

Even though the O-D demand (τij) is the demand to be served, the true O-D demand

(tij) should be the basis of demand measure since tij is not tractable from τij unless

additional information on either tij or tji is available (It should be noted that the true

O-D matrix (tij) is different from O-D matrix (τij) or enplanements matrix (Eij)).

τ = t + t'

ji

tij

Directional trip

tij≠ tji

tji

Round trip

τij = τji ji

τij

τji

t32t31

t23t21

t13t12 P1

P2
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A1 A2 A3

True OTrue O--D MatrixD Matrix

1 2 3

1

2

3
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D

1020

3040

4060

t = [tij ]

4060

40100

60100

τ = [τij ]

Figure 23: Trip demand terminology. [Source: Lewe (2008)]

The H&S network formed by airlines as a result of economic concerns makes

the airline network unique. For the case of perfect P2P service, the O-D demand

(τij) becomes identical to the enplanements demand (Eij) at each segment. On the

other hand, if some of the travelers have connections, the O-D demand and en-

planements become different and the total sum of the enplanements on the network

becomes higher than the total sum of the O-D demand. To aide in demand analysis,

a characterization scheme called the ‘PACE’ breakdown is introduced as illustrated
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in Figure 24. In this terminology, enplanements at airport i (Ei) are divided into

produced (Pi), attracted (Ai), and connecting enplanements (Ci) at i. The symbol

representation used in the figure are:

• Trip starts from an open end

• Connected lines represent one itinerary

• Filled circles indicate origin (O) or destination (D) where a trip break occurs

• Hollow circles indicate a connecting airport(s)

[Pi]Produced Enplanements at i

Attracted Enplanements at i

Connection Enplanements at i

Enplanements at i

[Ai]

[Ci]

[Ei]

+

+

=

Invariant type � directly from t

Variant type � f (τ , Network)

DO

C1

C2

PO

AD

C1

C2

Figure 24: Notations for demand characterization. [Source: Lewe (2008)]

Clearly, Ci has a functional relationship with the passenger routings as well as

with tij. In contrast, Pi and Ai, which are collectively categorized as generated

enplanements (Gi), have an invariant nature with respect to the network. Figure 25

exemplifies the difference between t, τ , and E where there is a true O-D demand of

size one from ‘a’ to ‘b’ on an airline network. In this case tab = 1 and tba = 0. If we

assume that the traveler comes back home the next day and this daily demand occurs

every day, on any day after the first day there is one person going from ‘a’ to ‘b’,

and another person coming back from ‘b’ to ‘a’. Therefore, the O-D demand becomes

τab = 1 and τba = 1. If this O-D demand is serviced by nonstop flight (left figure),

the network enplanements increases by two, i.e. ∆E = (Eab = 1) + (Eba = 1) = 2.

However if the O-D demand is serviced with a connection at a hub ‘h’ (right figure),

the network enplanements increases by four, i.e. ∆E = (Eah = 1)+(Ehb = 1)+(Ebh =

1)+(Eha = 1) = 4. This ‘PACE’ breakdown is the backbone of the proposed intrinsic

demand model.
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Ehb = 1
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t � τ� Network � E (Enplanement matrix)
True O/D Segment O/D

Figure 25: t, τ , and E on airline network. [Source: Lewe (2008)]

3.2.2 Available database

3.2.2.1 Origin and destination survey (DB1B)

Since the 1938 Civil Aeronautics Act, the federal government has collected and an-

alyzed aviation data from commercial airlines. After the Civil Aeronautics Board

Sunset Act of 1984, the Department of Transportation (DOT) became responsible

for the handling of information on civil aeronautics. Currently, the aviation data

that are submitted by U.S. air carriers are maintained by the Office of Airline In-

formation (OAI) within Bureau of Transportation Statistics (BTS). Title 14, Code

of Federal Regulations (CFR), PART 241 - UNIFORM SYSTEM OF ACCOUNTS

AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS requires U.S. air

carriers that provide scheduled passenger services with one or more aircrafts with the

seating of 60 or more passengers to submit a quarterly origin and destination survey

to the DOT. The source of this data is passenger tickets collected at the gate from

the enplaned passengers. In this process, only tickets with the serial numbers ending

in zero are selected. This process makes the total amount of data approximately 10

percent of the total enplaned passengers. Reporting air carriers compile this data in

a prescribed format as illustrated in Figure 26.

The example itinerary in Figure 26 describes the information below.

1. Three passengers on this itinerary.
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Figure 26: Illustration: A compressed line item in an O&D Survey. [Source: Bureau
of Transportation Statistics (1998)]

2. Origin in Washington, D.C. National Airport (DCA) with United Airlines (UA)

as the carrier and at a discounted coach fare (YD) to Chicago, Illinois O’Hare

Airport (ORD).

3. Northwest Airlines (NW) as the carrier at a discounted coach fare to the desti-

nation of Minneapolis-St. Paul, Minnesota (MSP)

4. United Airlines as the carrier at a full coach fare (Y) when the passengers

returned to Chicago.

5. United Airlines as the carrier at the full coach fare to Washington, D.C.

6. The total itinerary fare was $300 per passenger.

The Bureau of Transportation Statistics (BTS) provides the Airline Origin and

Destination Survey (DB1B) database on their website (Bureau of Transportation

Statistics, 2008). DB1B is a 10-percent sample of airline ticket information from re-

porting carriers and is composed of three databases, namely (1) DB1BCoupon, (2)

DB1BMarket, and (3) DB1BTicket. The main difference between DB1BCoupon and

DB1BMarket data is that the DB1BCoupon contains intermediate airport informa-

tion for flights, while the DB1BMarket contains only the origin and final destination

information obtained from their market-extracting algorithm. A snapshot of the

download web site for DB1BCoupon is shown in Figure 27, and a sample of the data

in DB1BCoupon is shown in Figure 28. The data includes origin, destination, and

other details of itinerary of passengers with each record distinguished by itinerary ID
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and market ID. Table 6 shows the enplanements change in the DB1B data. As seen

in the table, the number of airports serviced has been reduced, suggesting that airline

demand has been aggregated at more popular airports.

Figure 27: Snapshot - DB1BCoupon download site

If DB1B is accurate in their true O-D and transfer demand, passenger transfer

rate can be obtained directly. In other words, DB1B data can be used to differen-

tiate between visitors, connecting passengers, or returning residents. For example,

if a record from DB1B shows no travel “break” for the arrival at an airport, then

the traveler is a connecting passenger at the airport. If a record shows a “break”

but it is not the concluding travel, then the traveler is a visitor to the airport. Fi-

nally, if a record concludes at the origin airport, then the traveler is assumed to be

a local resident returning home (Detroit Metropolitan Wayne County Airport and

University of Michigan, 2006). However, according to the audit reports by Bureau

of Transportation Statistics (1998); Department of Transportation (2005), the O-D

pair data from DB1B are neither accurate nor complete. Therefore, users should be

careful in extracting O-D market information directly from it.

Unfortunately, DB1B does not have time information and the trip breaks are

49



Figure 28: Sample DB1BCoupon Data

Table 6: Enplanements from DB1B Data

Ticket Market Coupon #Airports
in Ticket

#Airports
in Market

#Airports
in Coupon

1993 17,443,018 28,979,673 41,209,930 664 711 718
1994 19,860,005 32,634,801 46,196,314 613 687 701
1995 20,859,756 33,795,743 47,462,315 630 693 703
1996 22,451,307 36,367,042 50,741,430 631 683 693
1997 23,155,148 37,933,675 52,916,644 637 689 697
1998 22,534,464 38,823,126 54,269,640 640 690 697
1999 22,596,321 40,781,098 56,733,664 635 674 681
2000 23,778,182 42,863,761 59,350,552 616 649 659
2001 21,964,978 40,057,068 55,748,893 601 630 637
2002 21,154,107 38,735,926 54,291,718 570 606 609
2003 21,554,183 39,295,652 54,929,729 561 597 603
2004 23,557,758 42,617,212 58,725,814 518 554 556
2005 25,229,561 45,097,309 61,512,861 492 512 514
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calculated according to their directional passenger concept which describes itinerary

construction and circuity rules (Department of Transportation, 2005). Consequently,

trips with multiple stops can be troublesome to determine their true origin and desti-

nation. One problematic example of this approach is shown in Figure 29. Figure 29a

shows that the directional passenger concept used in DB1B always treats “Albu-

querque (ABQ) → Denver (DEN) → Reno (RNO)” as a single directional passenger

trip but divides “ABQ→ DEN→ Las Vegas (LAS)” into two single trips of “ABQ→

DEN” and “DEN → LAS”. In Figure 29b, the directional passenger concept divides

a round trip “ABQ → DEN → LAS → San Francisco (SFO) → ABQ” into “ABQ

→ DEN”, “DEN → LAS → SFO”, and “SFO → ABQ”.

RNORNO

ABQABQ
LASLAS

DENDEN

(a) ABQ → DEN → LAS/RNO (b) ABQ → DEN → LAS → SFO → ABQ

Figure 29: Problems with DB1B circuity rules. [Example from Department of Trans-
portation (2005)]

Missing time information in DB1B also generates unclear market information for

multiple coupon trips. Some example travel data from DB1B is shown in Figure 30.

Figure 30a shows a trip with two trip breaks, first of which at “CMH” and the second

at “EWR”. This trip is recorded as one-way trip since the origin (“LGA”) and the

destination (“EWR”) are not the same. However, considering the proximity of the

two origin and destination airports, this is essentially a roundtrip. Figure 30b shows

a trip starting and ending at “LIT” with five trip breaks at “BWI”, “ATL”, “TPA”,

“ATL”, and “LIT”. Considering the fact that the trip breaks are computed using the

directional passenger concept, this calculated O-D market can be debated.
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(a) Practical roundtrip but recorded as
oneway trip

(b) Trips can be interpreted in many ways

Figure 30: Unclear market information on DB1B. [Data source : DB1B]

As one can see from this example, direct usage of DB1B can result in misrepresen-

tation of the true demand. There are also cases where round-trips are misrepresented

as one-way trips if the travel involves ground transportation or separately purchased

tickets. Since the true O-D demand cannot be obtained directly, a method is needed

to estimate this measure.

3.2.2.2 1995 American Travel Survey

The 1995 American Travel Survey (ATS) was developed and conducted by BTS to

collect information of long-distance travel made by people residing in the United

States (Department of Transportation, 1999). The data includes over half a million

person trips from 163 Metropolitan Statistical Areas (MSA) in the CONUS listing

transport mode taken for the trips. This data can be used at the aggregate level but

individual O-D level data has numerous errors that should not be neglected. Some of

the errors were reported by Lim (2008).

3.2.2.3 Air carrier statistics (Form 41 Traffic) - T-100 data bank

All certified U.S. carriers and international carriers that have at least one point of ser-

vice in the U.S. or its territories have to report monthly air carrier traffic information
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on Form 41, Schedule T100. The data is collected by the Office of Airline Informa-

tion (OAI) within the BTS and stored in the air carrier statistics database (Bureau

of Transportation Statistics, 2009a). The coverage of the monthly data dated from

1990 to present.

This database is often used by various users to analyze traffic patterns and mar-

ket shares as well as to generate reports on passenger, freight, and mails transported.

T100 also contains number of passengers enplaned as well as aircraft types, and num-

ber of departures, making it possible to calculate carrier load factors. T100 is a

widely accepted reliable benchmark for passengers in segmental trips. The database

can be accessed through BTS web site (http://www.transtats.bts.gov). A snap-

shot of the download web site for T-100 Domestic (T100D) market data is shown in

Figure 31.

Figure 31: Snapshot - T-100 domestic market data download site

T100D is composed of two data, namely (1) T100D Market and (2) T100D Seg-

ment. T100D does not include passenger itinerary information and airfare, while

DB1B does. Instead, the reporting carriers compile data from their market stand-

point rather than the traveler’s standpoint. Therefore, T100D Market data does not
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correspond with passenger O-D demand. Figure 32 shows sample data collected from

a T100D Market while Figure 33 shows sample data collected from a T100D Segment.

Figure 34 illustrates the difference between segment and market data in T100D.

YEAR QUARTER MONTH ORIGIN ORIGIN_CITY_NAME ORIGIN_CITY_NUM ORIGIN_STATE_ABR ORIGIN_STATE_FIPS ORIGIN_STATE_NM ORIGIN_WAC
2005 1 1 GSP Greenville/Spartanburg, SC 33530 SC 45 South Carolina 37
2005 1 1 GSP Greenville/Spartanburg, SC 33530 SC 45 South Carolina 37
2005 1 1 GSP Greenville/Spartanburg, SC 33530 SC 45 South Carolina 37
2005 1 1 GUC Gunnison, CO 34380 CO 8 Colorado 82
2005 1 1 HDN Steamboat Springs/Hayden, CO 85730 CO 8 Colorado 82
2005 1 1 HDN Steamboat Springs/Hayden, CO 85730 CO 8 Colorado 82
2005 1 1 HDN Steamboat Springs/Hayden, CO 85730 CO 8 Colorado 82
2005 1 1 HNL Honolulu, HI 36930 HI 15 Hawaii 2
2005 1 1 HNL Honolulu, HI 36930 HI 15 Hawaii 2
2005 1 1 HNL Honolulu, HI 36930 HI 15 Hawaii 2

DEST DEST_CITY_NAME DEST_CITY_NUM DEST_STATE_ABR DEST_STATE_FIPS DEST_STATE_NM DEST_WAC AIRLINE_ID UNIQUE_CARRIER UNIQUE_CARRIER_NAME
AUS Austin, TX 6100 TX 48 Texas 74 19790 DL Delta Air Lines Inc.
DTW Detroit, MI 24260 MI 26 Michigan 43 19790 DL Delta Air Lines Inc.
ORD Chicago, IL 18500 IL 17 Illinois 41 19790 DL Delta Air Lines Inc.
ATL Atlanta, GA 5852 GA 13 Georgia 34 19790 DL Delta Air Lines Inc.
ATL Atlanta, GA 5852 GA 13 Georgia 34 19790 DL Delta Air Lines Inc.
CVG Cincinnati, OH 19271 OH 39 Ohio 52 19790 DL Delta Air Lines Inc.
SLC Salt Lake City, UT 79071 UT 49 Utah 87 19790 DL Delta Air Lines Inc.
ATL Atlanta, GA 5852 GA 13 Georgia 34 19790 DL Delta Air Lines Inc.
CVG Cincinnati, OH 19271 OH 39 Ohio 52 19790 DL Delta Air Lines Inc.
LAX Los Angeles, CA 51410 CA 6 California 91 19790 DL Delta Air Lines Inc.

UNIQUE_CARRIER_ENTITY REGION CARRIER CARRIER_NAME CARRIER_GROUP CARRIER_GROUP_NEW DISTANCE DISTANCE_GROUP CLASS PASSENGERS FREIGHT MAIL
1260 D DL Delta Air Lines Inc. 3 3 957 2 F 20 0 0
1260 D DL Delta Air Lines Inc. 3 3 508 2 F 32 0 0
1260 D DL Delta Air Lines Inc. 3 3 577 2 F 21 20 0
1260 D DL Delta Air Lines Inc. 3 3 1301 3 F 453 0 0
1260 D DL Delta Air Lines Inc. 3 3 1340 3 F 514 0 0
1260 D DL Delta Air Lines Inc. 3 3 1202 3 F 616 0 0
1260 D DL Delta Air Lines Inc. 3 3 250 1 F 2242 0 120
1260 D DL Delta Air Lines Inc. 3 3 4502 10 F 14721 1136998 88533
1260 D DL Delta Air Lines Inc. 3 3 4433 9 F 5902 201906 9022
1260 D DL Delta Air Lines Inc. 3 3 2556 6 F 6927 899191 30168

Figure 32: Sample T100D market data

3.2.2.4 Summary

Finding intrinsic aviation demand starts from identifying credible sources of infor-

mation. DB1B database is the only credible publicly available database that tracks

passenger itineraries. There is also the 1995 American Travel Survey, however it was

concluded in this work that these two sets of data project very different views of the

travel market. Figure 35 compares the pdf of ‘L-strip sum’ from DB1B (left) and

ATS (right). L-strip sum is a concept introduced to compare 3-dimensional matrix

on 2-dimensional space by using Eq. (1).

L(i) =
∑
j<i

(Eij + Eji), i ≥ 2 (1)

As such, they cannot be used together. Since real data are considered to be more

reliable, DB1B was used for further investigation. Even so, during the course of this
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YEAR QUARTER MONTH ORIGIN ORIGIN_CITY_NAME ORIGIN_CITY_NUM ORIGIN_STATE_ABR ORIGIN_STATE_FIPS ORIGIN_STATE_NM ORIGIN_WAC DEST DEST_CITY_NAME DEST_CITY_NUM DEST_STATE_ABR DEST_STATE_FIPS
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 BUF Buffalo, NY 13742 NY 36
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 BWI Baltimore, MD 7231 MD 24
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 BWI Baltimore, MD 7231 MD 24
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 BWI Baltimore, MD 7231 MD 24
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 BWI Baltimore, MD 7231 MD 24
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 CLE Cleveland, OH 19770 OH 39
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 CMH Columbus, OH 20570 OH 39
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 CMH Columbus, OH 20570 OH 39
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 DCA Washington, DC 96460 DC 11
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 DCA Washington, DC 96460 DC 11
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 DCA Washington, DC 96460 DC 11
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 DCA Washington, DC 96460 DC 11
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 DEN Denver, CO 24091 CO 8
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 DEN Denver, CO 24091 CO 8
2005 1 1 CVG Cincinnati, OH 19271 OH 39 Ohio 52 DEN Denver, CO 24091 CO 8

DEST_STATE_NM DEST_WAC AIRLINE_ID UNIQUE_CARRIER UNIQUE_CARRIER_NAME UNIQUE_CARRIER_ENTITY REGION CARRIER CARRIER_NAME CARRIER_GROUP CARRIER_GROUP_NEW DISTANCE DISTANCE_GROUP
New York 22 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 410 1
Maryland 35 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 430 1
Maryland 35 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 430 1
Maryland 35 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 430 1
Maryland 35 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 430 1
Ohio 44 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 221 1
Ohio 44 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 116 1
Ohio 44 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 116 1
District of Columbia 32 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 411 1
District of Columbia 32 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 411 1
District of Columbia 32 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 411 1
District of Columbia 32 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 411 1
Colorado 82 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 1069 3
Colorado 82 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 1069 3
Colorado 82 19790 DL Delta Air Lines Inc. 1260 D DL Delta Air Lines Inc. 3 3 1069 3

CLASS AIRCRAFT_GROUP AIRCRAFT_TYPE AIRCRAFT_CONFIG DEPARTURES_SCHEDULED DEPARTURES_PERFORMED PAYLOAD SEATS PASSENGERS FREIGHT MAIL RAMP_TO_RAMP AIR_TIME
F 6 620 1 1 1 30765 100 100 0 12 87 59
F 6 614 1 1 1 41000 150 67 0 0 83 63
F 6 620 1 5 4 120340 400 232 1254 53 385 279
F 6 622 1 57 54 2763090 9864 4925 27877 5779 4955 3434
F 6 655 1 30 28 974400 3976 2204 7401 1395 2497 1797
F 6 620 1 92 85 2561595 8500 4346 6791 69675 5785 3620
F 6 614 1 1 1 41000 150 81 112 115 46 28
F 6 655 1 92 87 3027600 12354 5779 10900 18677 4634 2426
F 6 614 1 31 28 1148000 4200 2721 95 0 2490 1695
F 6 620 1 55 53 1593435 5300 4041 97 2838 4586 3260
F 6 655 1 62 59 2053200 8378 2656 330 672 4984 3569
F 6 656 1 1 1 39450 150 139 0 0 76 61
F 6 614 1 1 1 41000 150 126 1019 350 169 157
F 6 622 1 1 1 51705 183 57 1260 500 171 154
F 6 655 1 122 119 4141200 16898 11523 32016 93977 22684 19215

Figure 33: Sample T100D segment data

Figure 34: Difference between segment and market data in T100D. [Source: Bhadra
and Texter (2004)]
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research, it was concluded that even the raw data from DB1B can be erroneous (Bu-

reau of Transportation Statistics, 1998; Department of Transportation, 2005) and

must be pre-processed before it can be meaningfully utilized to obtain true O-D and

connecting enplanements data. Another public database that is useful for this study

is the aforementioned T-100D which is a complete enumeration of the airline opera-

tions. Although T-100D does not track passengers, it served as a calibration datum

at a later part of this work.

Figure 35: Difference between DB1B and 1995 ATS

3.3 Active design algorithm for airline network

This section presents an approach for active design algorithm of the airline network.

The purpose of this research is to expand the NAS design space by incorporating

network control variables into consideration. From an historical observations, it is

hypothesized that the NAS is characterized as an evolutionary network with prefer-

ential attachment. Therefore, the proposed active design algorithm uses preferential

attachment and introduces a concept of accelerated growth scheme. Additionally,

the modeling effort will not be focused on building a detailed model but rather on

capturing the general characteristic behavior of the NAS. This approach is necessary

because the NAS is not an efficient system. Airline network has physical resources
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that are costly to move around. Because of this resistance and highly uncertain envi-

ronment which the network is exposed to, the NAS operates as a non-efficient system.

While the purpose of modeling for an efficient system operating at optimal condition

is to find a rigorous model for accurate market prediction, the purpose of modeling

for an inefficient system is not so because of the behavior of not choosing optimal

options. A modeler’s role in this case should be to find a way to capture the general

behavior. In this research, efforts have been given to build a concise model that cap-

tures general behavior of the evolutionary airline network. Other considerations for

building a general airline operations model can be found in a paper by Rosenberger

et al. (2002).

3.3.1 Accelerated evolution schemes

As observed in the previous section, the NAS shows many traits of preferentially

attached network. Having established that the NAS is a non-efficient system, the

goal of this research is to capture the behavior of the NAS rather than building an

accurate model. Probabilistic choice model is introduced to serve this purpose and

model the uncertainties involved in passenger routing. It reflects the situation when

airlines and passengers do not choose the optimal options, which happens frequently

in the NAS. In this respect, another sub-hypothesis is added to answer the research

question 2-1 from Section 2.4 at this point as below:

Hypothesis 2-1-3:

Probabilistic choice model can capture the non-optimal route choice behavior on the

NAS.

In order to construct the target network from a baseline state, the question of how

to evolve the network needs to be answered. For this purpose, two evolution schemes

are introduced to simulate the evolution of the NAS. In the first scheme, the airports

are added one by one to the network and connected to the pre-existing airports in the
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network by preferential attachment. In this scheme, the airports introduced earlier

gets more connections than the airports introduced later. The other evolution scheme

starts with a certain number of airports and the network grows by a certain fraction

of the total demand in each step. The first process is named as spatial expansion since

it increases the number of nodes in the network, whereas the second scheme is named

as chronological progression since it mimics the time-wise evolution of the network.

These two basic schemes for accelerated evolution of NAS are shown in Figure 36.

(a) Spatial expansion: Adding a node (airport) one by one

(b) Chronological progression: Gradually increasing demand quantity

Figure 36: Two accelerated evolution schemes of the airline network model.
[Source: Lewe (2008)]

It is hypothesized that these two evolution schemes are two representative charac-

teristics of the NAS evolution. Therefore, another sub-hypothesis is added to answer

the research question 2-1 from Section 2.4 at this point as below:

Hypothesis 2-1-4:

The growth of NAS can be emulated by spatial and chronological evolution scheme.

58



3.3.2 Route choice method

As O-D demand is served, routings for each respective demand has to be determined.

The logit model detailed in Appendix. A.4 is used to compute the route choice. The

process of using the logit model is described as follows:

1. The utilities associated with each routing are computed.

2. Using the logit model the probability of using a routing for transporting the

O-D demand is represented as in the following equation.

P (i) =
eU(i)

n∑
z=1

eU(z)

where,

P (i): Probability of selecting route i

U(z): Utility associated with route z

n: Number of routings considered

The quantity assigned to each routing option is computed as a product of the O-D

demand and the probability of each routing, P (i). The route choice with the logit

model can be performed with either utility or disutility associated with each route.

In order to use the logit model with utility values, the profit and cost related to each

option needs to be computed. There has been an effort by Brueckner et al. (1992) to

link air fare and airline network structure, which can then be used to come up with

utilities of airlines and passengers as a difference between benefit and cost for each

side. And in order to use the logit model with disutility values, only the associated

cost needs to be determined. The the utility or disutility values for an option i is

computed as a weighted average of the airline and passenger cost, as in the following
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equation:

Disutili = w × AirlineDisutili + (1− w)× PaxDisutili

or

Utili = w × AirlineUtili + (1− w)× PaxUtili

where, w is a weight factor which designates whether the network formation is more

favorable to the airline’s benefit or to the passengers’ benefit.

Another consideration is also given to the demand level for operation. In real

airline network, if a given segment operation results in an average load factor below

the breakeven point, a managerial decision needs to be made to avoid losses. The

available options are 1) do not service the segment, 2) change airplanes to smaller

size, or 3) service the demand with one or more stop operations. One or more stop

operations are introduced where the existing segment demand alone is not sufficient

but routing passengers from other segment can generate enough revenue to make the

service economically viable. If the simulation is set to a threshold demand, some

segments will not be served until the segmental demand reaches this threshold.

3.3.3 Segmental fleet selection

Planning for airline scheduling is a very large and complex problem, which is typically

divided and optimized at each step. Airline flight scheduling and fleeting problem is

an old problem that has been studied by many researchers (Yan and Tseng, 2002).

Figure 37 shows the sequential process of airline schedule planning described in Lo-

hatepanont and Barnhart (2004). Once the service plan is determined, only fleet

routing needs to be planned. Airline routing plans are usually seasonal, covering

mostly three months and typically with a weekly repetitive plan. Disturbances on

the travel plan, such as canceled flights, can lead to the cancelation of other flights

because of lack of availability of aircraft. In the route planning step, it is important

to determine the minimum number of aircraft needed to cover the service plan.
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Schedule Development

Schedule Design

Airline Schedule Planning
Starts 12 months prior to operation
Lasts 9 months

: Decides on OD pair

Maintenance feasible rotation
(Same location for start and end)

: Changes schedule for new demands

: Determines “How Many” and “When”

Route Development

Revenue Management

Crew Scheduling

Fleet Assignment

Aircraft Rotation

Frequency Planning

Timetable Development

: Matches seating capacity with demand

Schedule Development

Schedule Design

Airline Schedule Planning

Figure 37: Typical airline schedule planning steps

In this research, one optimal aircraft type is assigned for each segment operation.

Since the main purpose of this research is not in the development of a scheduling

algorithm, a simplified method is used to obtain minimum aircraft and corresponding

fleet for each segment. This segmental optimization with respect to aircraft type and

quantity are different from general airline fleeting and scheduling addressed earlier.

However, the difference is within the context of either globally or segmentally optimal

solution. Therefore, it is assumed that the approach to find local optimal solution

still captures the network formation trend.

The process of the segmental fleet selection is described in this section. If fixed cost

and variable cost against characteristics of aircraft such as speed, range, and capacity

are represented in equations, optimal vehicle and the frequency of the service in the

segment can be obtained easily. One hypothetical case is shown in Figure 38. The

plots of the fixed and variable cost can differ when viewed with different sets of inde-

pendent variable values. Lederer and Nambimadom (1998) did a similar study where

the variable cost per available seat-mile and the fixed cost per available seat-day are

regressed against the aircraft size. In reality, aircraft have very diverse characteristics
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which makes regression highly inefficient. Therefore, an alternative approach is taken

with several representative aircraft represented by discrete sets of characteristics, A,

B, C, D, and E in Figure 38. In the simulation, the best performing aircraft for each

segmental operation is selected.

variable cost/seat

fixed cost/seat

S
eg

m
en

ta
l

C
os

t

PAXA B C D E

Figure 38: Rubberized vehicle in hypothetical case

There are also approaches to scale up the baseline model under expected growth

factors to generate flight schedules (Viken et al., 2006b). However, growth factor

based models are limited because they assume same resource usages, such as same

load factor and aircrafts. Therefore, it is not a good option for the formulation of

active design framework.

3.3.4 Simulation framework

In the study of transportation systems, closed-form analytical solutions normally do

not exist because of a great deal of uncertainties and unknown relationships, which

are hard to model. Therefore, an analysis of these system requires the credibility of

modeling and simulation. In addition to combining several databases, a new true O-

D based demand model and a evolution-based active design algorithm of the airline

network model are required to address the hypotheses put forth in this research.

Proper modeling environment is also a critical element in the design and management

of this work.
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Having considered the problems, research questions and hypotheses, a flexible en-

vironment with domain and analysis scalability is necessary. Domain scalability refers

to the capability of incorporating different domain knowledges. Domain scalability is

a valuable property when it is required to add a new system to the environment for

which it was not originally designed. Analysis scalability refers to the flexibility of

using different analysis programs and is a desirable characteristic of the environment

when variable fidelity analyses are required in the different design phases. In an envi-

ronment that contains rapidly evolving or revolutionary entities, an environment with

domain scalability is demanded. In a design process that involves different phases of

the product design, an environment with analysis scalability is demanded. In terms

of software architecture an interface-based code is more advantages over a monolithic

structured code. Therefore, design and implementation of the proposed models should

be based on a highly scalable architecture. The framework will be built on modular

architecture with interfaces so that the framework can be extended to incorporate

new modules to be developed later or different level of fidelity modules can be com-

posed and switched. The added advantage of having different fidelity-level codes is

the capability to achieve reasonable simulation setup time and run time, depending

on the importance of each module and availability of data.

Before Object-Oriented Programming (OOP) emerged, structured programming

paradigm was popularly used to construct simulation environment. During this struc-

tural programming era, functional decomposition of the considered system was per-

formed by taking a top-down design approach to divide a large system into sub oper-

ating units and then integrating them into a single monolithic synthesis code. This

structured framework proved to be good for modeling a stationary system but due

to the non-modular construction it had difficulties when there is a need for making

changes. In many cases, small changes within a function can generate errors in many

parts of the program because components are linked together in a monolithic code.
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Emergence of OOP technique brought a new approach to systems modeling. Using

OOP, the real system’s properties and behaviors are contained in isolated models, i.e.

classes. Having properties and related behaviors in isolated packages help designers to

have a system-wide view since it resembles the real life system. The prominent bene-

fits of object orientation in the development of a cooperative design environment lies

in the encapsulation of behaviors. Encapsulating behavior becomes a very important

part when there is a lot of of uncertainties on the actual construction of subcom-

ponents. Hence, there is a lot to be gained by providing an architecture defined by

interfaces. A cooperative environment that is defined by interfaces is also flexible

enough to conveniently replace its components and incorporate future changes.

In summary, the three prominent benefits with using OOP can be described as

below.

1. Encapsulation gives the benefit of modular construction and information hiding.

Since each participant can build the environment on their own and hide impor-

tant information, active participation of the stakeholders in the development of

the design environment are encouraged. In this way the expertise of each dis-

cipline can be incorporated efficiently and the maintenance can be performed

independently at the disciplinary level. Therefore, when changes to the model

are needed, this can be done within the object limiting impact propagation.

2. Inheritance makes codes more reusable by letting subclasses share common

behavior from superclasses. When there are many types of vehicles in the

transportation network, some properties are common to all while others are

unique to the each vehicle. By creating a parent object with common properties,

any changes made to the parent object affect all child objects. Also, common

interfaces can be enforced by using ‘abstract class’ and ‘interface class’.

3. Polymorphism makes it possible to treat objects in the same family generically
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and get different behavior from each object. Using polymorphism, it is possible

to have different implementations of a certain functionality. As a result, calling

the same function can perform different work for each entity.
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CHAPTER IV

IMPLEMENTATION

The approach introduced in Chap.3 is implemented in this chapter. Specific setups

of equations and parameter values are determined and the reason is explained.

4.1 Demand model implementation

4.1.1 Creation of sDB1B from DB1B database

As overviewed in Section 3.2.2, lack of time information make DB1B difficult to be

used to deduce reliable true O-D demand. To avoid this problem, this research lim-

its the scope to symmetric 2- and 4-coupon data with single-coupon trips paired-up

according to the intrinsic true O-D demand ratios (i.e., tij to tji ) obtained from the

symmetric 2- and 4-coupon data. The final product after these pre-processing treat-

ments is named the “sDB1B”, which stands for Symmetric DB1B database. sDB1B

for year 1997 accounts for 70 percent of the DB1B enplanements from the itineraries

within the Continental United States (CONUS) and the total enplanements from

DB1B are about 9.4 percent of the enplanements in T-100D segment data. sDB1B

loses information on trips with more than two connections and multiple destination

trips. However, the analysis showed that sDB1B sufficiently captures the character-

istics of the original DB1B. By parsing all records in sDB1B, not only produced (Pi),

attracted (Ai), and connection enplanements (Ci) at the airport level but also the

enplanements at the segment level (Eij) can be retrieved. A sample of the sDB1B

is shown in Table 7. To make sure that the data maintains the characteristics of

real world, Eij from sDB1B was first compared to that from T-100D segment data.

Figure 39 shows 3-dimensional depictions of enplanements matrix from each database
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where the xy-plane represents a 470-by-470 matrix sorted by the size of airport en-

planements in descending order.

Table 7: Sample records from sDB1B

ORIGIN HUB DEST PAX

BDL ATL PFN 85
BDL ATL PHX 34
BDL ATL PIT 1
BDL ATL PNS 115
BDL ATL RDU 9
BDL ATL RIC 1
BDL ATL ROA 3
BDL ATL RSW 558
BDL ATL SAN 17
BDL ATL SAT 34
BDL ATL SAV 242

Enplanement matrix (from sDB1B) Enplanement matrix (from T-100D)

Figure 39: Enplanements comparison in 3D

As seen in Figure 39, it is difficult to gauge to what extent the two distributions

are similar to each other. A numerical comparison was performed by converting

the 3-dimensional matrix to a 2-dimensional form by using L-strip sum where the

values in the enplanement matrix are summed up using Eq. (1), which was introduced

earlier in Section 3.2.2. Figure 40 shows how the L-strip sum, L(i), employed to

compare the 3-dimensional data on a 2-dimensional space. The comparison of these

two distributions shows that sDB1B represents the real data with good accuracy.
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Here, Affinity Measure (AM) is defined in Eq. (2).

L(i) =
∑
j<i

(Eij + Eji), i ≥ 2 (2)

AM =

N−1∑
i=1

|cdfA(i)− cdfB(i)|

N − 1

where N is the number of airports in the network.

sDB1B

T-100D

Affinity Measure = 0.007

R2 = 0.997

E

E

Pi, Ai and Ci

Demand Plot: sDB1B - 1997

Demand Plot: T-100D - 1997

pdf: T-100D - 1997

pdf: sDB1B - 1997

Line Plot: x: sDB1B y: T-100D

Figure 40: Enplanements comparison in 2D. [Source: Lewe (2008)]

4.1.2 Analysis of the demand data sets from sDB1B

Having created sDB1B, all of its data were processed with the PACE breakdown.

The results gave a complete information on P , A, C for all airports. The two charts

in Figure 41 demonstrate how this information can be analyzed for selected airports.

In Figure 41a, airports above the 45-degree line have more connecting enplanements

(Ci) than generated enplanements (Gi, recall that Gi = Pi + Ai), thus, playing the
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role of hubs on the network. On the other hand, airports below the 45-degree line are

the ones where majority of the enplanements represent true O-D demand. Also, the

135 degree line (dotted line) represents a line of constant total enplanements (Ei),

indicating that airports close to an arbitrary 135 degree line have a similar number

of total enplanements. Evidently, Atlanta (ATL) is depicted as a major hub with

a large number of connecting enplanements that exceeds the number of generated

enplanements. The figure also shows that while Charlotte (CLT) and LaGuardia

(LGA) have similar total enplanements (close to the same dotted line), they take

on very different roles in the NAS. Figure 41b shows the Ai vs. Pi graph. Airports

above the 45 degree line have more attracted than produced enplanements, thus

showing the characteristics of tourist cities. Airports on the same arbitrary 135-

degree dotted line have similar number of generated enplanements. Most notably, the

figure depicts Las Vegas (LAS) as a major tourist city that attracts a large number

of air travelers. Also, even though Atlanta (ATL) and Orlando (MCO) have similar

number of generated enplanements, MCO is evidently attracting more visitors than

it is producing enplanements as compared to ATL which has a balanced number of

attracted and produced enplanements.
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Figure 41: Demand characterization example plot with data from sDB1B, Year 2005
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The PACE breakdown can also provide insights pertaining to the different forms

of enplanements at the NAS-level. Figure 42a shows there has been a dramatic change

in the composition of the different forms of enplanement after the year 2001, largely

due to the propagating effects of September 11th. Figure 42b shows the interesting

finding of a gradual decrease in the proportion of connection enplanements to total

enplanements, suggesting that the NAS is moving towards a more P2P network.

However, since sDB1B is a partial database of DB1B, which in itself is a collection

of the total enplanements in the NAS, further investigations is necessary before any

conclusive observations can be made.
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Figure 42: PACE analysis: NAS, from 1993-2005

After reviewing the NAS-level trends, airport-level characteristics were inspected

as shown in Figure 43, with the produced, attracted, and connection enplanements

for the top 10 individual airports in each measure. While produced and attracted

enplanements are shown to gradually increase until year 2000 before experiencing a

trend shift due to September 11th, connection enplanements does not reflect similar

trends, which calls for further investigation of these relationships.

Figure 44 was obtained from sDB1B for the years 1993 through 2005 for the OEP35

airports which account for approximately 75 percent of the total enplanements in the

U.S.. The trends of the PACE values in Figure 44 shows valuable information on the
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Figure 43: PACE analysis: top 10 airports, from 1993-2005
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changing roles of the airports in the NAS. Figure 44a shows that there are no trends

observed between Ci and Gi and the only meaningful observation is the dramatic drop

in the “hubbing” activities at the St. Louis (STL) airport as a result of the dissolution

of TransWorld Airlines (TWA). Since Ci is dependent upon network usage of the

servicing airlines, which can vary on a short term basis, the lack of a general trend

is not uncommon. Meanwhile, Figure 44b shows the relationship between Ai and

Pi enplanements. In this plot, linear relationships are observed for all the airports,

keeping the Ai/Pi at a nearly consistent ratio that increases only in total volume. The

findings observed from the formulation of the sDB1B database suggest the possibility

of intrinsic O-D demand model based on socioeconomic characteristics. Since the

growth and declination of a region is usually gradual and attracted and produced

trips (Ai/Pi) should be dependent on the socioeconomic characteristic of each region,

it is hypothesized that these trends can be predicted if appropriate data are available.

4.1.3 Demand model hypothesis

Two observations can be made from Figure 44b. First, the trajectories of Ai and Pi

for over a decade across all airports show very strong linear correlations. Practical

usage of this finding is that once Pi is known then Ai can be solved for with assurance

even if extrapolation of the linear trend is needed. In fact, 31 out of 35 OEP airports

have the linear regression coefficient R2 greater than 0.900 with the highest being

0.994. This linear relationship implies that modeling of Ai and Pi can be readily

achieved as opposed to cases of having non-linear or even chaotic ones. Second, an

intrinsic nature of an airport or its surrounding locales plays a role as observed by the

different slopes of these linear correlations. From these observations, the following

hypothesis is proposed: Model of Ai or Pi can be made by identifying socioeconomic

characteristics of surrounding locales and finding their functional relationships with

Ai or Pi. If proven true, the resulting aviation demand model is expected to improve
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Figure 44: Demand characterization of OEP35 using PACE, from 1993-2005
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the predictive capability of today’s demand estimation methods. To examine this

hypothesis, a push and pull model was created. This push and pull model starts

from the assumption that surrounding locales exert a certain influence to the target

airport. The basic form of the equation should have attenuating factor that reduces

the effect from each point mass as in a gravity field.

Also, the airports in close proximity should be combined as one since they serve

the base demand of the region together. Therefore, categorizing by administrative

boundaries should not be used. Figure 45 depicts this idea. Figure 45a shows that

three airports on the left serves the more populated area while one airport on the right

serves the less populated area. Figure 45b shows two airports which reside in different

administrative region, such as MSAs, but closely located to each other, serving the

same geometric region.

(a) Multiple airports serving re-
gional demand

(b) Geometrically close
airports, residing in dif-
ferent MSAs

Figure 45: Modeling level: Metroplex operation

Therefore, it is hypothesized that the influence from each county at a specific

location has the form of Eq. (3) and (4).

Xi =
∑
k

xik (3)

xik = β0

∏n
j=1 x factor

βj

jk

Distβn+1
(4)
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where Xi: Aggregate of individual influences from other locales (k) to locale i.

xik: Individual influence from other locales (k) to airport i.

β0, βj, βn+1: Calibration coefficients.

x factorjk: Values of locale k for the selected factor j for the model.

In the above equations, the subscript k denotes a unit locale (county), x factor

represents an socioeconomic variable, and Dist is distance between the county and the

location of interest, i. Figure 46a shows the pictorial description of the aforementioned

model. Meanwhile, Figure 46b shows the distribution of population of all counties

in the CONUS; each bubble representing a county located at its population centroid

with the area being the relative population size.

Pi

pij

Ai

j

i i

k

aik

(a) Influence from each element to Pi and Ai (b) 3,109 counties and population

Figure 46: Concept of the push and pull model. [Source: Lewe (2008)]

4.1.4 Aviation demand model on CONUS

For the implementation of the demand model, it was decided to include population

in both Ai and Pi model. Additionally median household income was added as a

x factor for Pi model and subjectively weighted information on recreation industries,

accommodation, and food services was added for Ai model, resulting in two x factors

for each. Hence, the Eq. (5) and (6) shows a generic form of the model for both Ai

and Pi).
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Xi =
∑
k

xik (5)

xik = β0
(Popk)

β1 × (x factork)
β2

eβ3×δik
(6)

where Popk: Population at locale k

β0, β1, β2, β3: Calibration coefficients.

δik: Hypothetical distance between airport i and a unit locale k (county).

The model considers attenuating influence with exponential to a hypothetical

distance, analogous to the gravity law. The δik measures a distance between airport i

and locale k by calculating (h2 + d2
ik)

1/2 with a calibration parameter h introduced to

account for airport accessibility and a great circle distance dik in miles as a surrogate

of route distance. Therefore the distance term (Dist) in Eq. (4) is replaced with eδik

in this implementation.

The data for industry-specific economic data in county level can be obtained from

Economic Census1 collected by U.S. Census Bureau. Economic Census profiles the

US economy every five years and reports are available for the years of 1992, 1997,

and 2002. Due to the extensive amount of data, it is decided to base the model

on year 1997, which is deemed a ‘normal’ year before the September11th attack.

Population data at this level are only available for the year 19902 and 20003 and the

linear interpolation was used to generate the data for the year 1997. Also, county

population centroids are only available for the year 2000 and it is assumed that the

population centroids did not change much. Due to the complexity of the problem,

1Available from http://www.census.gov/epcd/www/econ97.html, last accessed May 2009.
2Available from http://www.census.gov/population/censusdata/90den_stco.txt, last ac-

cessed May 2009.
3Available from http://www.census.gov/geo/www/cenpop/county/ctyctrpg.html, last ac-

cessed May 2009.

76

http://www.census.gov/epcd/www/econ97.html
http://www.census.gov/population/censusdata/90den_stco.txt
http://www.census.gov/geo/www/cenpop/county/ctyctrpg.html


large- and medium-hubs in the CONUS in year 1997 which accounted for 87 percent

of total enplanements in the US were selected for demand model development. These

66 airports are listed in Table 8. One thing to note is that the model combines

metroplex airports together as one airport to account for the fact that those airports

service the same set of base demand of the region. This is a necessary and preventive

measure to make sure estimated production should not be arbitrarily increased by

simply adding hypothetical airports. The considered metroplex airports are listed as

below:

• New York, NY area: EWR, JFK, LGA

• Los Angles, CA area: BUR, LAX, ONT, SNA

• San Francisco, CA area: OAK, SFO, SJC

• Chicago area, IL: MDW, ORD

• Washington, D.C. area: BWI, DCA, IAD

• Dallas, TX area: DAL, DFW

• Houston, TX area: HOU, IAH

• Miami, FL area: FLL, MIA

Therefore, there are 53 nodes (8 metroplex + other 45 airports) in the demand

model.

Table 8: Airports included in the research

ABQ ATL AUS BDL BNA BOS BUF BUR BWI CLE CLT
CMH COS CVG DAL DCA DEN DFW DTW ELP EWR FLL
HOU IAD IAH IND JAX JFK LAS LAX LGA MCI MCO

MDW MEM MIA MKE MSP MSY OAK OKC OMA ONT ORD
PBI PDX PHL PHX PIT PVD RDU RNO RSW SAN SAT
SDF SEA SFO SJC SLC SMF SNA STL TPA TUL TUS
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4.1.5 Results of Pi and Ai

As a first step to building the production model, the x factor in Eq. (6) for production

should be determined and the median household income was the factor of choice.

Median household income data for the year 1997 are available from the Small Area

Income & Poverty Estimates (SAIPE) 4 recorded by the BTS. The following equation

is then used to calculate individual influence on production from county k to airport

i.

pik = β0
(Popk/1000)β1 × (MedIncomek/1000)β2

eβ3×δik
(7)

This individual influence was summed up to generate Pi estimate, which was

compared to Pi available from sDB1B. The coefficients β0, β1, β2, and β3 as well as

h were varied until the result demonstrated a satisfactory fit. From this process, it

was found that a majority of the airport models are well behaved but there are some

airport models that do not have a good fit — admittedly, it was not anticipated that a

simple model could describe the complex NAS. Later on, it was discovered that those

problematic outliers could be categorized into two groups. The first group consists of

airports that are sitting at a big metropolitan area where a much bigger metropolitan

area is in its vicinity, typically 70 to 80 miles apart. The list of these airports, dubbed

as aviation satellites, is shown in Table 9.

In the second group, two airports (ATL and DEN individually) and one group

of metroplex airports (DFW and DAL together) are the only members, dubbed as

aviation stars. The metropolitan area that has this type of airports, in contrast to the

first group, has the opposite situation in general and is traditionally known as a major

aviation hub. The locations of all airports are shown in Figure 47, with the squares,

blue ‘+’ symbols, and red colors representing the aforementioned metroplex airports,

4Available from http://www.census.gov/hhes/www/saipe/, last accessed May 2009.
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Table 9: Aviation satellites and adjacent metros

Airport Location Adjacent Metro(s)

BDL Hartford, CT Boston, MA
New York, NY

MKE Milwaukee, WI Chicago, IL
PBI Palm Beach, FL Miami, FL
PHL Philadelphia, PA New York, NY

Washington, DC
PVD Providence, RI Boston, MA

New York, NY
SAN San Diego, CA Los Angeles, CA
SDF Louisville, KY Cincinnati, OH

Indianapolis, IN
SMF Sacramento, CA San Francisco, CA

aviation satellites, and aviation stars respectively. The remaining well-behaved air-

port models are depicted as black circles.

By eliminating these two outlier groups from the regression analysis, a very sat-

isfactory fit was obtained when the coefficients were β0 = 0.56, β1 = 1.00, β2 = 1.50,

and β3 = 0.05 and the parameter h = 10. The result is plotted in Figure 48 where the

first group shows the estimated production being significantly higher than the actual

values and the second group shows actual production being significantly higher than

the estimated values.

The same process was repeated for the attraction model. After many attempts

of trial and error, a linear combination of industry revenues collected from the eco-

nomic census of 1997 grouped by the North American Industry Classification System

(NAICS) code 713 (Amusement, gambling, and recreation industries), code 721 (Ac-

commodation), and code 722 (Food services and drinking places) was selected for the

x factor for attraction (attraction factor) as in Eq. (8).

attraction factor = 3.5×NAICS 713 +NAICS 721 +NAICS 722 (8)
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where ‘NAICS ddd’: The annual sales figure in millions for the corresponding indus-

try code.

As before, the two outlier groups were not included in the regression and the

coefficients of the attraction model are β0 = 163.31, β1 = 0.00, and β2 = 0.90. Note

that β3 and h were not altered to maintain consistency with the production model.

Having β1 = 0.00 suggests that the population was not a good variable to include

since travelers may prefer less populated areas for their vacations. The result is shown

in Figure 49, exhibiting a poorer result than the production model. This is partly

due to the fact that much of the economic data for the attraction model were either

unavailable or inaccurate: 53 percent of the county level data are missing for NAICS

code 713, 31 percent for code 721, and 22 percent for code 713. It is also noted that

the aviation stars and satellites are showing a similar trend on the graph as observed

in the production model.

4.1.6 Two-factor FRATAR model

With Pi and Ai estimations from the push and pull model (in case one is mindful

about a poor fitting of the attraction model, the linear correlation of Ai/Pi can be

employed to obtain a more accurate Ai), a directional true O-D demand tij can be

determined by a distribution algorithm such as the gravity or entropy model. More

information on gravity and entropy model is included in Appendix A.3.

However, aviation demand data exhibits very high peak between specific popular

city pairs — for example, between New York and Orlando, which makes it difficult

to use them for demand distribution models. Therefore, growth factor models are

well suited for air transportation demand distribution. The traditional growth factor

models use one growth factor for each node because they deal with symmetric demand.

On the other hand, the proposed demand model is based on directional true O-D
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Figure 49: Attraction demand model result. x: Ai from sDB1B, y: Ai from attraction
model

demand, with tij 6= tji. Therefore, two growth factors are needed for each node, i.e.

factors for Pi and Ai.

The FRATAR model is the most popular growth factor model, which uses the

ratio of trip generation quantity of the baseline and the future (Garber and Hoel,

2002). The FRATAR model relies on an existing symmetric O-D demand matrix

which is equivalent to the τ matrix in this thesis. In each iteration, estimated trips

from i to j becomes different than trips from j to i, i.e. τ ′ij 6= τ ′ji and the pair-

wise data are averaged to make them the same. Since it is a growth factor model,

it cannot be used to predict demand between O-D pairs where no demand exists

on the baseline. The FRATAR model has been widely used in air transportation

research (Long, Lee, Gaier, Johnson and Kostiuk, 1999; Smith and Dollyhigh, 2004;

Donohue and Zellweger, 2001) and hence, chosen for the necessary modification in

this research.
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4.1.6.1 Implementation of two-factor FRATAR model

Since t matrix is not symmetric and there has to be two growth factors for Pi and

Ai, the traditional FRATAR model needs to be modified. The main reason for a

two-factor FRATAR model is to have true O-D information in the prediction. When

true O-D information is not needed, τ matrix can be used with traditional FRATAR

process using predicted values of generated demands (Gis) as growth factors. The

results will be the same. The focus is on the fact that the τ matrix can be generated

from t matrix but not the other way round. Equation 9 shows the modified FRATAR

with two factors for this research.

t′ij = (Pi ×GPi)
[

tij ×GAj∑
x tix ×GAx

]
(9)

where

t′ij = number of true O-D demand estimated from i to j

Pi = produced demand from i

GPi = growth factor for Pi

tix = number of true O-D demand from i to x

GAj = growth factor for Aj

In the equation, (Pi × GPi) is an estimate for future trip generation of airport i.

The denominator is an estimate for future attracted demand to all destinations from

airport i. The numerator is an estimate for future attracted demand from i to j .

To illustrate the application of the growth factor model, the following example was

devised. It uses the same tij matrix shown in Figure 7 in Chapter 1 reproduced here

in Table 10. Forecasted demand increase for each airport for the future is shown in

Table 11, where growth factors (GPi and GAi) are simply the ratio of future demand

to current demand (Future-Pi/Pi and Future-Ai/Ai) and AP denotes the airport.

With the information shown in Table 10 and Table 11, the two-factor FRATAR
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Table 10: Present true O-D demand tij

AP A B C D Pi
A - 60 50 10 120
B 40 - 30 30 100
C 50 60 - 20 130
D 90 70 80 - 240
Ai 180 190 160 60 -

Table 11: Predicted and current Pi and Ai

AP Pi Future Pi GPi Ai Future Ai GAi
A 120 144 1.2 180 198 1.1
B 100 110 1.1 190 247 1.3
C 130 182 1.4 160 224 1.4
D 240 312 1.3 60 72 1.2

proceeds as follows. First, the estimates for the next-step true O-D demand (t′ij) is

calculated using Equation 9. The calculations are shown below.

t′AB = (120× 1.2)

[
60× 1.3

60× 1.3 + 50× 1.4 + 10× 1.2

]
= 70.20

t′BA = (110× 1.1)

[
40× 1.1

40× 1.1 + 30× 1.4 + 30× 1.2

]
= 39.67

The same calculations are performed for all the elements in the matrix, resulting

in the values shown in Table 12. As can be seen in the table, Ai does not match

the future Ai, but Pi becomes the same as the future Pi at each iteration. To ensure

convergence in subsequent iterations, GAi is updated with the ratio of (future Ai) /

Ai. The process iterates with updating GAis until the convergence criteria is met.

The final solution of this case is given in Table 13.

One thing to note is that the end result does not match 100 percent of the future

Ai values. This is an inevitable problem of the growth factor model since one growth

factor is used to scale multiple components of the matrix resulting in errors in the final

results. Because the two-factor FRATAR only gives perfectly matching Pi results,

the users of this approach should pay attention if the Ai results are within acceptable
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Table 12: First estimate for true O-D demand t′ij

AP A B C D Pi Future Pi GPi
A - 70.20 63.00 10.80 144.0 144 1
B 39.67 - 37.87 32.46 110.0 110 1
C 63.76 90.42 - 27.82 182.0 182 1
D 102.28 94.01 115.71 - 312.0 312 1
Ai 205.7 254.6 216.6 71.1 - - -

Future Ai 198 247 224 72 - - -
GAi 0.96 0.97 1.03 1.01 - - -

Table 13: Final result for true O-D demand t′ij

AP A B C D Pi Future Pi GPi
A 0.00 67.69 65.40 10.91 144.0 144 1
B 37.94422 0.00 39.29 32.76 110.0 110 1
C 62.98649 90.01 0.00 29.01 182.0 182 1
D 98.93974 91.64 121.42 0.00 312.0 312 1
Ai 199.9 249.3 226.1 72.7 - - -

Future Ai 198 247 224 72 - - -
GAi 0.99 0.99 0.99 0.99 - - -

range. Since the result from the demand modeling showed better performance with

respect to Pi than Ai, the two-factor FRATAR was designed to generate exactly

matching future Pi. Although the total errors can be improved if the accuracy of Pi

can be sacrificed with different equation.

The two-factor FRATAR process scales up the current true O-D demand (tij).

After the scale-up operation, the directional true O-D demand is summed up to

generate τij = tij + tji, which are then fed into the network model to calculate

enplanements on the network. The overall process is depicted in Figure 50.

4.1.6.2 Validation of two-factor FRATAR model for 2000 and 2005

The two-factor FRATAR model was tested to scale up the baseline t matrix. This

validation followed the process depicted in Figure 51. The process is described as

follows. True O-D matrix of year 1997 (t1997) was used as a baseline. Pi and Ai

from year 2005 is inserted as scale factors to the two-factor FRATAR model with the
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Figure 50: Two-factor FRATAR method with predicted Pi and Ai as growth factors

baseline t matrix. The resulting matrix is the predicted matrix for year 2005 (t2005′).

Finally, this t2005′ matrix was compared with t matrix of year 2005 (t2005).

t 1997

Pi from 2005

FRATAR

Ai from 2005
t 2005 t’ 2005

Comparison

Figure 51: Two-factor FRATAR model validation process

In this study, scaling of the baseline t matrix to generate two target sets of year

2000 and 2005 was tested. The baseline t matrix is shown in Figure 52. The scaled

(t2000′) and target (t2000) true O-D matrix (t matrix) is visualized in Figure 53. The

result of the two-factor FRATAR applied to scaling year 1997 baseline to match year

2000 target t matrix shows almost perfect convergence of Ais from scaled matrix to

the Ais from the target with the maximum individual difference of 2E-10. During the
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iteration, the scaled matrix was set to have double precision while the target matrix

is in integer. The sum of the squared error (
∑

i(Ai,FRATAR−Ai,2000)
2) in this specific

case was 1.14E-19. The subfigure 53c shows the Quantile - Quantile (QQ) plot of the

L-strip sum of the scaled (t2000′) and target (t2000) matrix. The results show almost

perfect scaling of the baseline to match the target. Figure 54 shows another case of the

scaled(t2005′) and target(t2005) true O-D matrix (t matrix) validation. As observed

in the investigation of the NAS in Section 3.1, NAS went through severe structure

changes after year 2001. However, the proposed demand model based on Pi and Ai

was able to scale-up the baseline t matrix of year 1997 to match the target year of 2005

almost perfectly. This is because the intrinsic demand maintains its characteristics

as observed in the linear pattern, increasing the accuracy of the demand prediction

if used as growth factors.
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Figure 52: t matrix of year 1997

One thing to note is that the reason the two-factor FRATAR gives very good

scaling here with respect to Ai is because Pi and Ai are highly correlated in this

problem. When the two factors are uncorrelated, the resulting Ais from the scaled
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Figure 53: t matrix: scaled and target: 1997 → 2000
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matrix can be quite different from the target values.

4.1.7 Summary

It was attempted to make an intrinsic O-D demand model that can be fed to the

airline network simulation model to perform active design of it. Therefore, it was

important to separate the variant and invariant demand. As a result, a new demand

characterization technique named ‘PACE’ was tested and a demand model that can

predict produced and attracted demand on the NAS was implemented. Even with

the lack of socioeconomic data available for this model, the model still captures the

prominent trends observed in the real world. However, the model was not able to

generate reasonably good results for use as input to the active design algorithm. The

main reason was the existence of the aviation stars and aviation satellites, which

requires more in-depth analysis. However, further investigation could not be carried

out at this point because of limited data.

Even though the demand model is not complete, this research brought a range of

tangible benefits: a) the importance of intrinsic demand model in H&S network was

emphasized, b) an airport’s role on the air transportation network can be identified in

more explicit way by the newly introduced PACE breakdown technique, c) modeling

of Pi and Ai showed promising results, d) the process to be used for future demand

prediction was illustrated with the two-factor FRATAR model. The scaled results

demonstrated that the Pi and Ai can be used as growth factors with a baseline t

matrix to formulate a demand prediction model that is robust against changes of the

NAS structure.

4.2 Active Design Algorithm Implementation

The overall process is explained in the flow chart shown in Figure 55. The process

proceeds as described below.

1. Initialization: Settings needed for the simulation is determined. The settings
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Figure 55: Active design algorithm flowchart

includes input file names, aircraft types to be used, values for hub-dials, and

the evolution path.

2. Next progression: The program takes a next point on the evolution path —

which determines the number of airports and the proportion of the demand

that are needed to be put into the simulation — and prepare the inputs for the

next cell operation.

3. Cell operation: A series of calculations called ‘cell operation’ are performed

when a cell is selected. This is the core of the program where the trip demand

of each cell (τij) is distributed to appropriate routes.

4. Network update: Following the cell operation, the results of demand distribution

into routes are updated in the program to reflect the calculation. Enplanements

and operations matrix of the network is updated at this point.

5. End of the strip? : It is determined if the selected cell is the last cell to be

considered for the evolution point. If it is the last cell then the process goes to
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‘End of evolution?’. Otherwise, the process goes to the next cell and the cell

operation is performed for the cell.

6. End of evolution? : It is determined if the selected evolution point is the last

one on the path. If it is the last evolution point then the program generates

outputs and ends. Otherwise, the process goes to the next evolution point and

the next progression is performed.

Detailed information on important processes are described in this section.

4.2.1 Accelerated growth

To test the sub-hypothesis SH2-1 and SH2-2, simulations will be performed in the

‘evolution’ space shown in Figure 56. The figure shows evolution trajectory which is a

combination of both the spatial expansion and the chronological progression towards

the final state. To simplify the evolution space, the demand fraction is discretized in

the figure to have the same number of points as the number of airports but it does

not have to be this way. Evolution path is one of the inputs that needs to be specified

at the initialization phase. When a path that goes below or above the diagonal line

as shown in the figure, their effects are very different. The former can be tried when

a network is to be built with small number of the core airports first and mature the

network to a certain point, and then add the rest into the matured network in a short

time period. In many cases, networks observed in nature follows this hypothetical

path. The latter path is the opposite of the former. It increases the network size very

quickly and matures the already big network with longer temporal progression.

In each iteration, some amount of demand is added to the simulation. The amount

is determined by the location of the point on the evolution path. When the next point

is at the n/N on the chronological axis, the incremental demand is calculated by the

following equation.
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∆τijn = τij × (n/N)−
k=n−1∑
k=1

∆τijk

where, n and k denote iteration point. This process is needed since incremental

demand is added to the simulation as positive integer making decimal digits to be

ignored. This process makes sure that nth point has τij × (n/N) demand.

4.2.2 Cell operation

Cell operation is the basis of the active design algorithm. The same calculation is

performed repetitively whenever O-D demand (τij) or its partial set (τ ′ij) is distributed

to routes. The cell operation is exemplified in Figure 57.
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Figure 57: Adding one node
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The situation shown in this figure is where there are three airports in the net-

work and the forth one is newly introduced. The cell operation starts with the cell

(3,0), where the O-D demand between the introduced airport (AP3) and the largest

demanded airport in the network (AP0), denoted as τ ′30, needs to be distributed to

candidate routings. The following steps are taken to perform this job.

1. The disutilities (DU) of connection flights as well as nonstop flight for the

selected O-D pair is calculated. In this example, there are three routing options

as shown in Figure 57a. (In this research only nonstop and one-stop routes are

considered as with the case of development of sDB1B. It was shown before that

sDB1B captures the characteristics of the NAS.)

2. Probabilities of trip distribution is calculated based on the disutilities of the

considered routes using the logit model. The probability of choosing routing i

is represented as follows:

P (i) =
e−DU(i)

2∑
z=0

e−DU(z)

(10)

where,

P (i): Probability of selecting route i

DU(z): Disutility associated with route z

3. O-D demand (τ ′30) is distributed on each route based on the probability P (i).

The following equation is used to perform this job.

∆tripi = floor(τ ′30 × P (i))

where,

∆tripi: Quantity of added demand on route i.

floor(z): A function that rounds the element z to the nearest integers less than

or equal to z.
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Because of the integer conversion with rounding down, there are cases where

O-D demand (τ ′ij) is not completely distributed. This left-over demand is then

added to the routes with high trip probability P (i) one-by-one in a descending

order until the remaining undistributed demand becomes zero. If there are

multiple of routes with the same trip probability, higher demanded airports

(which are closer to the top left corner on the trip matrix) are given priority.

When the τ ′30 is distributed to the considered routes, the operation for the cell

(3,0) is ended. The next cell (3,1) is selected and the same process continues. The

iteration ends and the process goes out of the cell operation after the demand between

the introduced airport (AP3) and the least demand airport (AP2) is distributed. It

should be noted that when one cell is selected, for example (3,0), its symmetric cell

(0,3) is also selected. This is because they describe symmetric demand that are needed

to be transported in the opposite direction. Therefore, when a route is assigned a

certain number of demand from airport i to airport j, there is an equal and opposite

demand from airport j to airport i on the same route. Hence, the symmetric cells are

marked together in Figure 57b.

Inclusion of very unlikely options in the probabilistic choice model can generate

undesirable behavior since the model will generate probabilities for all included op-

tions. During this research, it was found that disutility values of routing options have

only handful of cases that deserve consideration. It is well represented by the long

and slender tail of alternative route options shown in Figure 58a. Therefore, it is

desirable to select only reasonable routings for consideration. To do this, only Pareto

as well as quasi-Pareto routes are considered when using probabilistic choice model.

Figure 58b shows how quasi-Pareto options are selected. After Pareto options are

identified, quasi-Pareto options are determined where the distance of them from any

of the Pareto options are within the influence radius (r).
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4.2.3 Disutility modeling

It was determined that modeling cost as disutility is sufficient for modeling the growth

of the network. The calculated disutility values are used to distribute the partial

O-D demand (τ ′ij) to appropriate routes by employing the logit model. The basic

characteristics of the probabilistic choice model used is described in Appendix A.4.

The incremental combined disutility with respect to route i (∆Disutili) is represented

with Eq. (11).

∆Disutili = [w ×∆AirlineCosti + (1− w)×∆PaxCosti]× α (11)

where ∆AirlineCosti: the incremental cost for serving the the portioned O-D demand

(τ ′ij) through the route option i,

PaxCosti: the cost associated with passengers for the route,

w: a parameter that puts weight on either one of them to reflect the importance of

them on the formation of the network, w ranges from 0 to 1. A transport architect

changes w to alter the network into more P2P by giving more weight to passenger

disutility (decreasing w) or into more H&S by giving more weight to airline disutility

(increasing w).

α: scale factor used to make the difference of disutility more or less discernable. (The

higher, the more discernable.)
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Airline cost (AirlineCost) is modeled differently from passenger cost. For a non-

stop route, the cost of airline becomes the cost of operating aircrafts as follows.

∆AirlineCost (O-D) = ∆FixedCost + ∆VariableCost (O-D)

For a hub connection, the cost of airline becomes the following.

∆AirlineCost (O-Hi-D) = [∆AirlineCost (O-Hi) + ∆AirlineCost (Hi-D)] ×(1−AFi)

where AFi is a hub attraction factor accounting for benefits the airline gets by using

hub at i. The range of attraction factor is [−∞, 1], in which negative value means that

there is penalty in making connection through the selected airport, positive means

benefit, and zero means neutral. Figure 59 shows that hub attraction factor is applied

to the incremental costs of origin-hub and hub-destination operations.

Origin Destination

∆costO-H ∆costH-D

× (1 - AFH )

Hub

Figure 59: Description of hub attraction factor

Passenger cost (PaxCost) are calculated as product of travel time and passengers

average monetary value of time (ValueOfTime). The travel time (TravelTime) is the

total time spent for the itinerary including stopover. Equation for passenger cost is

as follows:

∆PaxCost (O-D) = #Pax × ∆TravelTime (O-D) × ValueOfTime : for nonstop

travel,

∆PaxCost (O-Hi-D) = #Pax × ∆TravelTime (O-Hi-D) × ValueOfTime : for hub

connection,

where #Pax is the number of total passengers.

It should be noted that ∆AirlineCost is always positive or equal to zero, zero being

that no additional aircraft operation is needed to transport the demand. However,
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∆PaxCost can be positive, zero, or negative. Negative ∆PaxCost happens when

newly added demand justifies the usage of faster aircraft on a segment operation, for

example from small turboprop to large jet, therefore reducing the total sum of the

passenger travel time.

4.2.3.1 Normalization and de-normalization of disutility

If disutilities are used as raw values with the logit model, two problems may arise as

described below.

• When the magnitude of the disutility is large, numerical instability can occur

since e−DU may become zero.

• When the difference of disutilities are small relative to their magnitude, the

probabilities of choosing each route becomes indifferent. This becomes problem

when the difference is not ignorable.

Therefore, it is desirable to have a scaling process to put data points in a certain range

of values for the probabilistic choice model. A normalization process was performed

for this purpose. There can be two distinct cases of extreme values as shown in

Figure 60. The figure on the left shows two most dominant Pareto options each on

one axis. There can be multiple Pareto options between these two points. The figure

on the right is a case when there is a single Pareto option. The points on the figure is

used as reference points for the normalization. The first step in the normalization is

to eliminate unnecessary points to reduce computing time. Previously, the influence

radius r was defined to include quasi-Pareto options for the choice model. Quasi-

Pareto is defined as a point that is distanced from the Pareto options by no more than

the influence radius (r). The quasi-Pareto options are identified on the normalized

space. Therefore, the radius, r, is multiplied by the axis values of the reference points

and the points outside of the boundary lines — any points that has larger values than

r × x on x-axis or r × y on y-axis — are eliminated as shown in the figure.
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Figure 60: Cutoff of potential alternatives before Pareto and quasi-Pareto identifica-
tion

After the elimination process, the normalization is performed as described in Fig-

ure 61. The figure on the left shows that when there are two reference points, they

are relocated to (1,0) and (0,1) respectively. When there is a single reference point,

it is located on (1,1) as shown on the figure on the right.

1+ r
X

Y

1

1+ r

1

1+ r
X

Y

1

1+ r

1

Figure 61: Normalization of disutility and consideration of quasi-Pareto options

The actual implementation of the case with two reference points are simpler than

the case with one reference point. In this section x-axis represents airline disutility

and y-axis represents passenger disutility. The equation for the normalization of the

two reference case is below.

• disUtilXi = (disUtilXi −minX)/(maxX−minX)

• disUtilYi = (disUtilYi −minY)/(maxY−minY)

When there is a single reference point, airline disutility can only be positive or

zero while passenger disutility can be positive, zero, or negative. However, passenger
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disutility is always positive when airline disutility is zero. This is because having

airline incremental cost of zero means that the same type and number of aircrafts are

used to serve the added demand. Therefore, the incremental passenger time becomes

always positive due to the added demand. This situation is depicted in Figure 62

with red dot being the extreme value point and blue dot being a neighboring one

(left figure). The figure on the right shows possible areas of the location of the single

Pareto point.

X

Y

X

Y

Figure 62: Possible location of single Pareto point

Note that airline cost can only be greater or equal to zero, where zero being the

case the travel demand can be accommodated without adding more resources. Since

the Pareto point will be scaled to have the x-axis value of 1, the following equation

is used to proportionally scale other points.

1. if minX > 0 then disUtilXi = (disUtilXi −minX)/minX + 1

2. if minX = 0 then disUtilXi = (disUtilXi −minY)/minY + 2

When minX = 0, the first equation cannot be used. In this case minX is replaced

with minY since minY is always positive and it can also be used as a good reference

value. The value of two is added to the equation to have disutility value of one when

the routing i is the single Pareto point. In this case, the y-axis value is used as the

same scaling base for both X and Y as described in Figure 63.
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Figure 63: Same scaling for both axis when minX = 0

With respect to passenger disutilities, there are three cases to consider: 1) minY >

0, 2) minY = 0, and 3) minY < 0. The following equations are used to proportionally

scale other points.

1. if minY > 0 then disUtilYi = (disUtilYi −minY)/minY + 1

2. if minY = 0 then disUtilYi = (disUtilYi −minX)/minX + 2

3. if minY < 0 then disUtilYi = (disUtilYi −minY)/|minY|+ 1

The first and third cases can be represented together, i.e. if minY 6= 0 then

disUtilYi = (disUtilYi −minY)/|minY| + 1. When minY = 0, then minX is used as

the scaling base for Y since it is positive in this case and it can also be used as a

good scaling base. The reason why minX is positive when minY = 0 can be explained

as follows. When minY = 0, which means that incremental passenger time with the

added demand is zero, the aircraft type must have been changed to faster aircraft

type on either one of the segments or both on the considered route. Therefore, the

incremental airline cost should have positive value. So when minY = 0, the same

scaling base is used for X and Y as in Figure 64.

After the normalization, the considered area gets mapped into a space with the

value of one being at the reference point on each axis. Identification of quasi-Pareto

options are performed in this normalized space for the ones within a circle with the

influence radius r from the Pareto options as previously depicted in Figure 58b.
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Figure 64: Same scaling for both axis when minY = 0

The de-normalization is performed to return the disutility value to relative dollar

amounts. This process is necessary because using normalized disutility removes the

information on the dollar difference between options. This relative dollar difference

of the disutilities is used as the input for the logit model to calculate trip distribu-

tion. This dollar difference is different from the difference of absolute dollar value of

the disutility. Example in Figure 65 depicts this process. The de-normalization into

relative dollars is done by dividing each coordinate value with the maximum absolute

values of the dollar-value on both axis. The figure on the left shows initial two Pareto

values of (50, 500) and (250, 50) mapped to (0,1) and (1,0) respectively for the deter-

mination of quasi-Pareto options. The figure on the right shows the location of the

two points after the de-normalization. In this example, all the four coordinate values

were divided by 500. By dividing all the dollar values by the absolute maximum,

it maintains relative difference between considered options. The de-normalization is

performed for both Pareto and quasi-Pareto options.

X

Y

1

(50, 500)

1

X

Y

(250, 50)

(0.1, 1)

(0.5, 0.1)

Figure 65: De-normalization of disutility into relative scale
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The actual implementation considers the same cases as in the process of normal-

ization. The equation for the de-normalization of the two reference case is below.

• disUtilXi = (minX + disUtilXi × (maxX−minX))/maxAbs

• disUtilYi = (minY + disUtilYi × (maxY−minY))/maxAbs

Where maxAbs is the maximum of absolute values of all X and Y coordinate elements.

When there exist single reference point, there are two cases for X and three for Y

to consider as in normalization. The equation used in each case of X is the following.

1. if minX > 0 then disUtilXi = (minX + (disUtilXi − 1)×minX)/maxAbs

2. if minX = 0 then disUtilXi = (minY + (disUtilXi − 2)×minY)/maxAbs

The equation used in each case of Y is the following.

1. if minY 6= 0 then disUtilYi = (minY + (disUtilYi − 1)× |minY|)/maxAbs

2. if minY = 0 then disUtilYi = (minX + (disUtilYi − 2)×minX)/maxAbs

4.2.4 Airline model

4.2.4.1 Representative aircrafts

The active design algorithm performs segmental optimization with respect to the

selection of airplane types. It is decided that each segment considers five options

of representative aircrafts. To select these five aircraft types, the information from

T100D segment database in year 2005 was analyzed. In this process, the extracted

aircraft types from T100D segment database were ordered by number of passengers

and also by operations. The top 95 percent of aircraft types both in total number

of operations or passengers were selected for the categorization, which are 23 aircraft

types. Direct Operating Costs (DOC) for these 23 aircraft types were obtained from

air carrier financial data of ‘Schedule P-52’ from US DOT From 41 in year 2005.

The resulting list of the 23 aircrafts types are in Table 14. The table shows group
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identification number which were categorized by range and capacity of the aircraft

as shown in Figure 66. The speed on the table was obtained by by taking weighted

average with number of operations from T100D segment data within each category.

Table 14: Considered aircrafts for selection of five aircraft classes

Group AC
Type

Description Range Pax Speed #Oper. Avg.
DOC/AirHours

1 461 Embraer Emb-120 Brasilia 887 30 345 206,730 1,108
1 456 Saab-Fairchild 340/B 920 30 300 288,017 1,204
1 483 Dehavilland Dhc8-100

Dash-8
1,174 37 310 228,343 1,373

2 629 Canadair Rj-200er /Rj-440 1,496 45 530 1,246,960 1,892
2 628 Canadair Rj-100/Rj-100er 1,496 45 530 237,261 2,030
2 676 Embraer-140 1,899 44 517 147,071 1,527
2 631 Canadair Rj-700 1,939 70 544 301,950 2,002
2 674 Embraer-135 1,956 37 517 147,699 1,577
2 675 Embraer-145 1,956 50 517 913,942 1,555
3 608 Boeing 717-200 1,646 110 570 204,609 3,280
3 640 Mcdonnell Douglas Dc-9-30 1,882 115 570 139,732 4,035
3 650 Mcdonnell Douglas Dc-9-50 1,882 135 558 54,345 3,917
3 620 Boeing 737-100/200 2,140 104 485 67,555 3,799
4 655 Mcdonnell Douglas Dc9 Su-

per 80/Md81/2/3/7/8
2,359 155 504 731,147 3,769

4 617 Boeing 737-400 2,491 159 485 112,879 3,453
4 619 Boeing 737-300 2,612 128 485 847,870 2,931
4 622 Boeing 757-200 2,620 183 528 480,259 4,399
4 616 Boeing 737-500 2,764 123 485 195,402 3,216
4 614 Boeing 737-800 2,789 160 531 282,050 3,382
5 694 Airbus Industrie A320-

100/200
3,452 150 517 452,811 3,104

5 612 Boeing 737-700/700lr 3,872 140 514 522,363 2,160
5 698 Airbus Industrie A319 4,258 124 517 381,145 2,865
5 626 Boeing 767-300/300er 4,546 269 530 64,383 5,436

To calculate airline disutility, the information of aircrafts on range, capacity, speed,

fixed cost (FC), and variable cost (VC) are needed.

For assessing VC either a generally accepted practice or a publicly available airline

economic database used. One of the most well-known practice for VC calculation is

a method introduced by the Air Transport Association (ATA) for estimating DOC

of airplanes, which was published in 1944 followed by some revisions in 1948, 1955,
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Figure 66: Selecting five aircraft types

and 1960. In 1966, the ATA published a formula for operating cost for the last time

with the document title “Standard Method of Estimating Direct Operating Cost,”

which is the bases of today’s practice of estimating DOC (Radnoti, 2002, chap. 3). A

data-driven approach was used in this research. A good database for assessing VC is

air carrier financial data of ‘Schedule P-52’ from US DOT From 41, which has DOC

reported quarterly by fleet type for large certificated U.S. air carriers. This data

includes depreciation as part of DOC. Since depreciation of the capital value of an

aircraft can be widely different due to individual airline’s situation and depreciation

period, it is decided to separate it from the flight-related costs in the variable cost

assessment in this research.

Fixed cost can be assessed from the airplane price. But airplane prices are tricky

numbers since most of the airlines get special deals and do not pay the list prices.

Therefore, assessed lease price was used for fixed cost. Table 15 shows the subjectively

estimated lease prices for the representative airplane classes. Year 2005 was selected

because Schedule P-52 database started listing ‘Total Aircraft Airborne Hours’ since

year 2003 and also it is better not to use the data collected at the early stages of the
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practice since many database tend to have errors when a new practice starts.

Table 15: Five selected aircraft classes

Class PAX Range
(mile)

Speed
(mph)

DOC /
AirHr

Lease/Mo
Est.($1,000)

Description

TP 32 991 316 1230 80 Turbo Prop
SRLC 49 1724 526 1778 100 Short Range Low Capacity
SRHC 114 1816 556 3656 150 Short Range High Capacity

MR 150 2569 503 3519 200 Medium Range
LR 145 3872 516 2798 260 Long Range

4.2.4.2 Airborne time calculation

Airplane segmental flight time is calculated using the method outlined here. Airborne

time of a flight can be divided into ascending, cruise, and descending phase at its

simplest form. Figure 67 shows schematic view of these flight portions. In the figure,

tA represents ascent, tC for cruise, and tD for descent. Constant speed is assumed

during cruise.

Time

Speed

tA tC
tD

VC

Figure 67: Simplified flight profile

Lewe (2005) suggests that tA and tD needs to be accounted for to increase accuracy

of a simulation. The following equation suggested by Lewe is used to assess tA and

tD in this research.

tA,C,D =
DR

VC
+ TA,D (12)

where DR, VC , and TA,D represent segment distance, cruise speed, and sum of ascent

and descent time (tA,D = tA + tD) respectively.
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To determine tA and tD, a database study on T100D SEGMENT was conducted.

As in other database on NAS, T100D is also error prone. Figure 68a drawn for turbo

prop (TP) class shows many data that have almost zero or irrationally high airtime

for their trip distance. After removing the data points that took less than the flight

time of cruise phase only without tA or tD (i.e. DR/VC) and that took more than two

hours for TA,D to eliminate outliers, new graph was drawn as shown in Figure 68b.

This elimination process was performed using the equation below,

DR/VC < AirT ime < DR/VC + 120

where the units for time and distance are in minutes and miles.

The reference cruise speed (VC) used for the equation is ‘Speed’ column in Table 15.

Representative TA,D is obtained as the y-intersect and the operational cruise speed

VC,OP , not the reference cruise speed by aircraft manufacturer (VC), is obtained by

using the relationship of VC,OP = 1/slope. TA,D for other classes of the airplanes are

obtained in the same way. Figure 69 shows the data plot.
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Figure 68: Finding TA,D for turboprop class

The results for all the five aircraft types have been determined by regressing the

data points and setting VC,OP to 1/slope and TA,D to y-intersect. The results are
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Figure 69: Finding TA,D for SRLC, SRHC, MR, LR Class
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listed in Table 16. One thing to note is that the speed of SRLC shows big disparity

from the published cruise speed. It tells us that published data may not represent

real operational speed when the distance is too short to have optimal cruise speed.

Table 16: Operational speed and ascent/descent time for five representative classes

Class VC,OP tAD Description
TP 277 10.2 Turbo Prop

SRLC 382 15.9 Short Range Low Capacity
SRHC 482 15.5 Short Range High Capacity

MR 481 14.4 Medium Range
LR 494 15.1 Long Range

Another approach can be taken when the operational cruise speed has to be fixed

to a certain value. In this case, the slope is pre-determined as slope = 1/VC,OP and

TA,D becomes y-intersect of a regressed line with the slope that generates the least

error with respect to the regression. Since the speed in Table 15 are not from the

actual operational data but from published ones, it is agreed that data from T100D

represents the real world better.

To calculate the time spent to travel from airport i to airport j, the distance needs

to be known. In this simulation, distance is calculated as the great-circle distance

as an approximation. Great circle distance is the shortest path between two points

on the surface of a sphere. The center of a great circle coincides with the center of

the sphere. The two points divides the great circle into two arcs and the shorter

arc is the great circle distance. The earth is approximately spherical with the radius

ranging from 3,949.901 (polar) to 3,963.189 (equatorial) miles. In the calculation,

authalic mean radius of 3,958.760 mile was selected as the mean radius of the earth.

Geographical formula for great circle distance is as follows. The distance (d) on a

sphere is the product of radius (r) and angular difference (∆σ̂), e.g. d = r × ∆σ̂.

Angular difference (∆σ̂) can be represented using the spherical law of cosines as :

∆σ̂ = arccos(cosφ1cosφ2cos∆λ + sinφ1sinφ2), where 1 and 2 refers to each of the
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two points and φ, λ, ∆ for latitude, longitude, and difference respectively. Since

this equation can have large rounding off errors when distance are small, haversine

formula was used for the calculation. Using this formula, the angular difference is

represented as: ∆σ̂ = 2arcsin(

√
sin2(

φ2 − φ1

2
) + cosφ1cosφ2sin2(

∆λ

2
))

4.2.4.3 Viability consideration

Airlines do not provide service if they cannot generate economic or strategic benefits

from it. However, detailed modeling of their behavior is beyond the scope of this

thesis. Therefore, two simple considerations were made to prevent the simulation

from providing a service when demand is below a threshold, as described below.

1. Cell operation will not be performed for an O-D pair whose demand cannot fill

the half of the smallest airplane. (Load factor of 0.5 for the smallest aircraft is

the criteria for viability consideration.)

2. After the cell operation, if there is a routing that does not meet the same

criteria, it is distributed on the viable routes proportionally.

Figure 70 illustrates this process. In this example, the first segment of the upper

route is assumed that it does not meet the viability criteria (dotted line). Therefore,

the previously assigned demand of size 10 is distributed among the two viable routes

proportionally. The remainder from the calculation is given to the viable routes in

descending order.

4.2.5 Integration of components

Figure 71 shows the relationships between classes of the simulation framework. With

the O-D demand (τ) matrix to be served, traveler objects are generated with the

demand information and stored in the object of the origin airport. Airline object

retrieve the demand information by accessing each airport object and collecting in-

formation on the travelers at the airport. Airlines give ticket object to traveler objects
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Figure 70: Operational viability consideration

for different routes according to the demand distribution from the probabilistic choice

model. Aircraft type and number of aircrafts and operations are determined on the

segment pairs that are part of the routes to serve the changed segmental demands.

In allocating the airplanes, they are added to the higher ranked airport first and then

to lower ranked one on each segment pair and take turns. This way each airport on

each segment pair has equivalent number of aircrafts with the same or one more air-

craft on the higher ranked airport. When the trip distribution process ends, architect

object adds new airports to the network and incremental demand according to the

next evolution point. The process repeats until the calculation for the last evolution

point is finished.
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CHAPTER V

SIMULATION

5.1 Theoretical baseline determination

In this section, the process that was taken to determine theoretical baseline is de-

scribed. Theoretical baseline is the one that captures the trends observed in the real

NAS when attraction factors (AFi) are all neutral.

5.1.1 Selection of network parameters

As the case of the demand model, 66 large and medium hubs in year 1997 were

selected, where 13 airports were categorized into 8 Metroplex airports. Therefore, 53

network nodes were used for the network model. The coordinates for the metroplex

airports’ centers were decided to be at the geometric centers of their component

airports. The time span of the network simulation is one day. Therefore, the annual

demand from sDB1B needs to be converted into daily demand. The following scale

factor was used to convert the annual demand to daily one.

dSF = totalEnpT100D/totalEnpsDB1B ×
1

365

where dSF: scale factor to change annual demand to daily demand.

totalEnpT100D : total enplanements from T100D SEGMENT data for the selected 66

airports.

totalEnpsDB1B : total enplanements from sDB1B data from the travel between the

selected 66 airports.

The values of dSF of each year were calculated with the above equation from year

1993 to 2005, which are given in Table 17.

Before running the active design framework, some network parameter values need
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Table 17: Scale factor for conversion of yearly to daily demand

Year totalEnpT100D totalEnpsDB1B dSF

1993 398,826,893 13,977,440 0.07817
1994 435,929,796 16,035,790 0.07448
1995 449,761,715 16,948,944 0.07270
1996 477,546,981 18,555,680 0.07051
1997 492,798,875 19,529,276 0.06913
1998 502,950,777 21,717,966 0.06345
1999 523,590,204 24,709,592 0.05805
2000 546,393,749 26,091,234 0.05737
2001 509,824,732 24,824,392 0.05627
2002 498,257,022 23,419,176 0.05829
2003 518,905,664 23,274,622 0.06108
2004 558,466,445 25,023,544 0.06114
2005 580,813,380 26,060,230 0.06106

to be determined. Table 18 shows the list of network parameters and the values

deemed reasonable for the theoretical baseline determination.

Table 18: Parameters in the network model

Variables Range Base Description
AFi [−∞ , ∞] 0 A attraction factor for hub connection (0: neu-

tral, positive: benefit, negative: penalty for hub
connection)

limitLF [0 , 1] 0.7 Load factor limit for aircraft
rqp [0 , 1] 0.1 Relative radius for determination of quasi-Pareto

options
w [0 , 1] Weight factor for disutility calculation
α [0 , ∞] Scale factor used to make the difference of disutil-

ity more or less discernable (The higher, the more
discernable)

w and α are the most influential parameters. Therefore, their effect was tested to

determine the theoretical baseline of the framework. Five cases were selected as in

Table 19.

The order of the airports that are added to the simulation is determined by the

size of the enplanements of the target year. For generating the airport order for this

study, the list the 53 airports ranked by the total enplanements from sDB1B in year
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Table 19: Testing w and α for baseline determination

a
1 5 25

w 0 X
0.5 X X X

1 X

2000 in descending order are selected. Table 20 lists the airports with their rankings.

Table 20: Airports ranked w.r.t. enplanements from sDB1B in year 2000

Rank Airport Enp. Rank Airport Enp. Rank Airport Enp.
1 LA 99,264 19 PHL 25,981 37 MEM 10,526
2 CH 98,679 20 SAN 25,433 38 CMH 10,427
3 NY 94,031 21 TPA 23,049 39 MKE 10,205
4 SF 83,311 22 SLC 21,832 40 ABQ 9,802
5 DA 77,505 23 MCI 19,460 41 PBI 9,468
6 ATL 69,808 24 PDX 17,489 42 RNO 9,071
7 WA 66,264 25 CLE 17,480 43 PVD 8,617
8 PHX 58,293 26 CLT 16,582 44 JAX 7,932
9 LAS 54,174 27 CVG 15,962 45 RSW 7,585

10 DEN 50,798 28 RDU 15,891 46 OMA 6,731
11 HU 50,416 29 PIT 15,842 47 BUF 6,162
12 STL 45,791 30 SMF 15,173 48 SDF 6,120
13 MCO 40,341 31 MSY 14,694 49 TUS 5,810
14 MI 38,355 32 BNA 13,238 50 TUL 5,728
15 MSP 36,416 33 IND 11,561 51 OKC 5,542
16 DTW 35,566 34 BDL 11,483 52 ELP 5,112
17 BOS 35,280 35 AUS 11,193 53 COS 4,104
18 SEA 29,737 36 SAT 10,578

5.1.2 Sensitivity study

Figure 72 shows O-D demand (τ) and enplanements comparison of sDB1B of year

2000. The difference between them comes from the enplanements boosts by connec-

tions.

After setting the parameter values and determined the order of the airport entries,

several evolution paths were tested to generate calibrated results against the data

from sDB1B of year 2000. Figure 73 shows the three paths that were taken for the
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Figure 72: Comparison of τ and enplanements matrix of year 2000

analysis. The results from each evolution path is given in the following subsections

one by one. The the attraction factors for connecting flights were neutral (AFi = 0).

Preferential attachment is indirectly applied because the airports are ordered with the

high demand first and the network is constructed connecting to these core airports

first, utilizing the economies of scale, thus providing attractiveness naturally. The

distance demand histograms in the following sections have the bin size of 50 miles.

Affinity measures used for the study was based on CDF of each l-strip. This gives

penalty when numbers do not match for highly demanded airports which consists

majority of trips. Affinity measure for distance demand was based on CDF of each

bin. This also gives penalty when short-range demand is not represented correctly

since the majority of distance demand is short-range trips.

5.1.2.1 Path 1: Spatial-only expansion

The first path chosen for the test was spatial only expansion. In this scheme, each

airport is added to the simulation with its full demand. Figure 74, 75, 76, 77, and

78 show the five cases where (w = 0, α = 5), (w = 0.5, α = 1), (w = 0.5, α = 5),

(w = 0.5, α = 25), and (w = 1, α = 5) respectively on path 1.

116



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

1

2

3

2/53 53/53Demand Fraction

2

53

N
od

e

Figure 73: Evolution paths taken to select baseline
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(d) Distance demand QQ plot

Figure 74: Results: w = 0 and α = 5 on spatial-only expansion
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Figure 75: Results: w = 0.5 and α = 1 on spatial-only expansion
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Figure 76: Results: w = 0.5 and α = 5 on spatial-only expansion
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(d) Distance demand QQ plot

Figure 77: Results: w = 0.5 and α = 25 on spatial-only expansion
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Figure 78: Results: w = 1 and α = 5 on spatial-only expansion
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5.1.2.2 Path 2: Convex path

The evolution points selected for this analysis were generated with piecewise cubic

Hermite interpolation function in Matlab with the three points of (0.0378,2), (0.7594,

14.7500), and (1, 53), among which the first and last are the start and end point of

the evolution and the middle point reside on the 135 degree diagonal line at three

quarter of its length from the left. Figure 79, 80, 81, 82, and 83 show the five cases

where (w = 0, α = 5), (w = 0.5, α = 1), (w = 0.5, α = 5), (w = 0.5, α = 25), and

(w = 1, α = 5) respectively on path 2.
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(d) Distance demand QQ plot

Figure 79: Results: w = 0 and α = 5 on convex path
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(d) Distance demand QQ plot

Figure 80: Results: w = 0.5 and α = 1 on convex path
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Figure 81: Results: w = 0.5 and α = 5 on convex path
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Figure 82: Results: w = 0.5 and α = 25 on convex path
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Figure 83: Results: w = 1 and α = 5 on convex path
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5.1.2.3 Path 3: Concave path

The evolution points selected for this analysis were generated by mirroring the points

of the convex path case against the diagonal line. In other words, the concave and

convex points are symmetric against the diagonal line. Figure 84, 85, 86, 87, and

88 show the five cases where (w = 0, α = 5), (w = 0.5, α = 1), (w = 0.5, α = 5),

(w = 0.5, α = 25), and (w = 1, α = 5) respectively on path 4.
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(d) Distance demand QQ plot

Figure 84: Results: w = 0 and α = 5 on concave path
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Figure 85: Results: w = 0.5 and α = 1 on concave path
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Figure 86: Results: w = 0.5 and α = 5 on concave path

129



0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8
x 10

4

L-Strip

S
um

 o
f 

E
np

la
ne

m
en

ts

Enplanements L-Strip Sum

 

 

sim2000

sDB1B2000

(a) Enplanements l-strip sum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CDF(i) from sDB1B

C
D

F
(i)

 f
ro

m
 S

im
ul

at
io

n

Enplanements L-Strip Quantile-Quantile Plot

Affinity Measure = 0.0719

(b) Enplanements l-strip QQ plot

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Distance (miles)

E
np

la
ne

m
en

ts

Distance Demand

 

 

sim2000

sDB1B2000

(c) Distance demand

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CDF(i) from sDB1B

C
D

F
(i)

 f
ro

m
 S

im
ul

at
io

n

Distance Demand Quantile-Quantile Plot

Affinity Measure = 0.0421

(d) Distance demand QQ plot

Figure 87: Results: w = 0.5 and α = 25 on concave path
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Figure 88: Results: w = 1 and α = 5 on concave path
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5.1.3 Baseline determination

The results from this study showed the best results when α = 1 for all the three

evolution paths. Therefore, the baseline value for α was set to 1. w values that are

probable to generate better results (i.e. w = 1 for path 1, w = 0 and w = 1 for path

2, and w = 0 for path 3) were tested. A summary that shows Affinity Measure (AM)

for enplanements l-strip sum and distance demand is in Table 21.

The results from the convex path progression (path 2) shows that it generated a

network which is very close network to sDB1B. A diagonal progression that follows

the 45 degree line was also tested but the convex path was superior. QQ plots of the

convex path show lines that are most close to the diagonal line. The diagonal line on

QQ plots describe the same distribution whether or not the magnitude are different.

The best results with respect to AM for both enplanements and distance demand

were also from the convex path. When second order polynomial graph was drawn for

AM with respect to w when α = 1 for enplanements as in Figure 89a, the value of w

for the minimum is around w = 0.6. However, AM for distance is minimum at w = 1

as in Figure 89b.
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(a) Affinity measures for enplanements
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(b) Affinity measures for distance demand

Figure 89: Affinity measures on convex path

Therefore, the baseline value for w was selected to be at 0.75 as a compromise.

The results from the baseline is shown in Figure 90.
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Table 21: Affinity measure values from baseline determination study

(a) Spatial: Enplanements

a
1 5 25

0 0.0113
w 0.5 0.0092 0.0107 0.0131

1 0.0089 0.0075

(b) Spatial: Distance

a
1 5 25

0 0.0296
w 0.5 0.0159 0.0193 0.0300

1 0.0134 0.0123

(c) Convex: Enplanements

a
1 5 25

0 0.0053 0.0096
w 0.5 0.0051 0.011 0.0212

1 0.0052 0.0118

(d) Convex: Distance

a
1 5 25

0 0.0089 0.0193
w 0.5 0.0063 0.0067 0.0126

1 0.0055 0.0037

(e) Concave: Enplanements

a
1 5 25

0 0.0437 0.0393
w 0.5 0.0438 0.0473 0.0719

1 0.0783

(f) Concave: Distance

a
1 5 25

0 0.0266 0.0121
w 0.5 0.0335 0.0416 0.0421

1 0.0527
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Figure 90: Results from baseline: w = 0.75 and α = 1 on convex path
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5.1.4 Findings

It was observed that the results from the active design algorithm is heavily dependent

on the evolution path chosen. It can be visually observed that the total enplanements

gets higher as the path deviates more from the spatial progression. It was also shown

that it was possible to generate quite accurate results from the evolutionary network

model by selecting a certain path without setting attraction factors. This reveals a

significant finding regarding airline network modeling practice. It can be postulated

that the chosen evolution path played a significant role in compensating for the in-

completeness in the model to generate the desired result. It can be visualized with

an example of making a mold of an object, depicted in Figure 91. In this example,

we have a eccentrically shaped block object that needs to be molded. If we have a

rigid mold that does not match the shape of the block, the cast will not be the same

shape no matter how hard we try. But if we have a flexible container, whose shape

can easily be changed, it is possible to generate well-fit mold by morphing it even

when the initial mold had imperfections. The eccentrically shaped block is analogous

to the true nature of the airline network and the mold is to a simulation that mimics

it.

Figure 91: Analogy of airline network and a simulation to a eccentric block and a
mold

It was also observed that the evolution path that resulted in a network similar to

sDB1B has convex shape. This means that the considered network is best modeled

in the accelerated evolution scheme if small number of airports are evolved first to

a certain critical point to form the initial structure of the core network and the
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rest of the airports are entered in a very short time period. This corresponds to

the Matcalfe’s law stating that network evolves slowly first and it speeds up after

it reaches critical mass. Also, it should be noted that we are looking at a subset

of the NAS. Therefore, it can be postulated that when all the airports in the NAS

are considered, the proper evolution path might demonstrate an ‘S’ shaped curve

extending the path obtained from this research. This postulation is made from the

observation that many networked system sets the initial structure slowly, expand very

fast until they mature, and then the expansion slows down as it approaches its full

maturity. Figure 92 describes that the evolution path from this research might be a

part of the overall picture.

Top 53 Airports The NAS

Figure 92: Possible shape of overall evolution path

5.2 Practical baseline determination

In this section, fine tuning of the model parameters was performed with the adjust-

ments of attraction factors of individual airports to generate the practical baseline.

The studies in this section were conducted using spatial progression on evolution

space. Spatial progression was selected since the convex path takes significantly more

time to follow — 20 hours vs. 30 minutes. The main reason for this difference in

calculation time is because the incremental demand between the pre-existing nodes
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on the network that follows spatial progression is zero, eliminating the need for trip

distribution calculation.

In this study, the airports were listed by Gi in descending order and added to

the simulation to give benefits of preferential attachment to the airports with higher

O-D demand. It should be noted that the airports were ordered by enplanements for

the determination of theoretical baseline in Section 5.1 since enplanements include

connecting passengers, which provides more information to the model and helps it

to generate the emulated NAS better. With practical baseline, meaningful studies of

real-life networks can be performed.

5.2.1 Before AFi adjustment

A simulation was performed using spatial progression with the settings of the theo-

retical baseline other than the evolution path. The results are shown in Figure 93.
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Figure 93: Comparison of enplanements from simulation before AFi adjustment and
sDB1B of year 2000

5.2.2 After AFi adjustment

AFi of the selected airline hubs were increased as shown in Table 22. These airports

were the hubs of major airlines in year 2000. The result of enplanements and distance
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demand from the simulation compared the data from sDB1B of year 2000 is shown

in Figure 94 and Figure 95. It should be noted that the AFi settings are not unique

and various combinations of AFi can generate very similar results.

Table 22: AFi of the selected hubs for practical baseline buildup

Airport AFi
ATL 0.14
CH 0.04
CLT 0.2
CVG 0.29
DA 0.13

DEN 0.09
DTW 0.06

HU 0.24
MEM 0.39
MSP 0.11
PHX 0.11
PIT 0.12
SLC 0.18
STL 0.2

The comparison of enplanements from the practical baseline and sDB1B of year

2000 is given in Figure 96. It also supports the claim that the proposed framework is

flexible enough to generate a network that is very similar to the NAS.

Figure 97 shows snapshots of the network on its evolution to its final stage. The

last two subfigures (Figure 97e and Figure 97f) compares the enplanements from the

simulation and from sDB1B. The visual comparison shows very close match. It should

be noted that seven-color scale was used on the map, on which thicker and darker

designates higher segmental enplanements.

Figure 98 shows comparison maps with segmental enplanements from the simu-

lation and sDB1B. On these maps, seven-color scale was used based on the ranks of

segmental enplanements.

Operations demand vs. distance by aircraft type was also analyzed. However,
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Figure 94: Comparison of enplanements from simulation with adjusted AFi and
sDB1B of year 2000
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Figure 95: Comparison of enplanements l-strip sum and distance demand from sim-
ulation with adjusted AFi and sDB1B of year 2000
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Figure 96: Prediction vs. actual: Enplanements from simulation with adjusted AFi
and sDB1B of year 2000

since capacity plays an important role in selecting aircraft types in the simulation,

the five aircrafts were grouped into low- and high-capacity aircrafts, which are (TP,

SRLC) and (SRHC, MR, and LR). The aggregated operations by aircraft type vs.

the real-world data from T100D are compared in Figure 99 as distributions. The

comparison of the low-capacity aircraft shows quite different characteristics. This

discrepancy may have come from the following three reasons:

• Only one airline serves the whole O-D demand in the simulation while multiple

airlines share the demand in the NAS. Therefore, the simulation tends to select

high-capacity aircraft due to economies of scale.

• Segmentally optimal aircraft type is used in the simulation while sub-optimal

aircraft types are used by airlines in the NAS to maximize the utilization of

their resources.

• Aircraft economical characteristics in this research were obtained by data gath-

ering for variable cost and assumptions for fixed cost. Therefore, erroneous
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(a) Progression 1: 3 airports (b) Progression 5: 7 airports

(c) Progression 11: 13 airports (d) Progression 31: 33 airports

(e) Progression 51: 53 airports (f) Segmental enplanements from sDB1B: 53 air-
ports

Figure 97: Snapshots of practical baseline progression
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(a) Top 1st to 200th from simulation (b) Top 1st to 200th from sDB1B

(c) Top 201st to 800th from simulation (d) Top 201st to 800th from sDB1B

(e) Top 801st to 2108th from simulation (f) Top 801st to 2108th from sDB1B

Figure 98: Segmental enplanements comparison by ranks
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Figure 99: Operations demand vs. distance by aircraft type
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data entry and difference of accounting practices between airlines combined

with inappropriate can alter the attractiveness of individual aircraft type.

However, the comparison of the high-capacity aircraft shows that the practical

baseline is very close to the NAS. It is because they service the majority of the

demand in both simulation and the NAS.

5.3 Dehubbing of STL

To demonstrate the prediction capability that is unique to the proposed framework,

dehubbing scenario of Lambert-St. Louis International Airport (STL) was simulated.

STL was the hub of Trans World Airlines (TWA) before it was acquired by American

Airlines in 2001. TWA was one of the biggest domestic air carriers serving the most

major cities. Therefore, STL has lost its role as a hub since then as it was witnessed

in Figure 43c and Figure 44a in Chapter 4.

In this study, AFi of the model for STL was decreased from 0.2 to 0.0, providing

no incentives for hub connection at STL. The airports were ordered by Gi of year 2005

since the intent was to model th dehubbing of STL in year 2005. Figure 100a shows

the practical baseline where AFSTL = 0.2 and Figure 100b shows the results from

setting AFSTL = 0. The simulation results show that STL loses its hub role and other

airports take extra load, which is similar to what happened in the NAS. However, it

should be noted that the simulation cannot generate perfectly matching prediction

since various strategic decisions are made in real air transportation network.

A visual comparison of the emulated and real NAS are shown in Figure 101 where

thicker line describes higher enplanements. Figure 101a shows a route map of the

NAS obtained from T100D for year 2000 when STL was used significantly by TWA

and Figure 101b is the result of the simulation before setting attraction factor of STL

neutral. Both maps depict very close markets in route-level. Figure 101c shows a route

map of the NAS from T100D for year 2005 when STL lost its hub role completely.
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Figure 100: Comparison of enplanements before/after setting AFi = 0 for STL
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Figure 101d is the result of simulated dehubbing of STL. Visual comparison of the

two maps shows that the result of the dehubbing scenario of STL closely matches

what really happened on the NAS in route-level.

(a) Real: Route map from STL of year 2000 from
T100D

(b) Simulation: Route map from STL before de-
hubbing

(c) Real: Route map from STL of year 2005 from
T100D

(d) Simulation: Route map from STL after de-
hubbing

Figure 101: Segmental enplanements comparison by ranks
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CHAPTER VI

CONCLUSIONS

6.1 Revisiting research questions and hypotheses

In this section, the research questions and hypotheses that were raised in the course

of this research are summarized and how they were addressed is described. Research

Question 1 was raised after pointing out the problems of direct modeling of enplane-

ments in H&S air transportation network study as exemplified in Figure 3, 4, 7, and

6 in Chapter 1. In an effort to differentiate intrinsic demand (τij) from variable one

(Eij), the ‘PACE’ terminology and process was implemented. The decomposition of

demand using PACE revealed the roles of airports on the air transportation network

and produced (Pi) and attracted (Ai) demand demonstrated linear growth patterns.

The linear pattern suggested that they are correlated with socioeconomic character-

istics. Therefore, Hypothesis 1 was made as below.

Research Question 1:

How can the intrinsic demand model be generated?

Hypothesis 1:

A demand prediction model that predicts intrinsic need can be built based on so-

cioeconomic characteristics.

In the process to build models for Pi and Ai, many databases were overviewed and

DB1B was selected as the best candidate from which the intrinsic demand character-

istics can be extracted. However, due to the built-in error of DB1B, it was processed

to collect only symmetric 2- and 4-coupon data with single-coupon trips paired-up

according to the true O-D demand ratios (i.e., tij to tji) obtained from the symmetric

2- and 4-coupon data. The final product was named sDB1B and it was validated
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against T100D to verify they are acceptably similar. With sDB1B at hand, the de-

mand models to predict Pi and Ai were pursued. As an approach, a ‘Push-and-pull’

model that resembles the gravity law with county-level influences residing at their

population centroid was tested. Even with the lack of available county-level socioe-

conomic data, this simple model generated very promising results, which was enough

to prove the Hypothesis 1.

The importance of modeling intrinsic demand was demonstrated using the two-

factor FRATAR model introduced in Section 4.1.6, which scaled up the baseline τij

matrix with Pi and Ai as growth factors. Even though the NAS went through severe

structure changes as observed in the investigation of the NAS in Section 3.1, it was

possible to generate highly accurate τij matrix of year 2005 from the one of year 1997.

After the intrinsic demand modeling process was set up, the next question was

about how to generate airline network model. The literature search in the field of

airline network modeling revealed that current practices treat the network as equi-

librium system, not evolutionary one. Therefore, Research Question 2 about the

evolutionary nature of the airline network was raised. Since there was enough infor-

mation about the evolutionary nature of the NAS, an effort was made to preserve the

structure of the evolving NAS when building an airline network model. Since major-

ity of complex networks can be explained with preferential attachment as overviewed

in Section 2.2, Hypothesis 2 was made as below.

Research Question 2:

Is airline network evolutionary?

Hypothesis 2:

Airline network is evolutionary and can be explained with preferential attachment.

Now the next question (Research Question 2-1) was about how to implement

preferential attachment in an airline network model. Four hypotheses were made as
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the study progressed with the ideas from the literature search (Hypothesis 2-1-1),

database study (Hypothesis 2-1-2), and pure reasoning (Hypothesis 2-1-3 and

Hypothesis 2-1-4), which are summarized below.

Research Question 2-1:

How can preferential attachment be implemented in airline network?

Hypothesis 2-1-1:

Airline network can be evolved by adding highly demanded vertices first and evolv-

ing them to a certain maturity before adding the rest within a very short timeline.

Hypothesis 2-1-2:

Many airports in the NAS deviates from general power-law. By introducing at-

traction factors and fine-tuning the attractiveness on a growing network, the real

transportation network can be emulated.

Hypothesis 2-1-3:

Probabilistic choice model can capture the non-optimal route choice behavior on the

NAS.

Hypothesis 2-1-4:

The growth of NAS can be emulated by spatial and chronological evolution scheme.

Based on these four hypotheses, an evolutionary airline network model was com-

posed as described in Section 3.3 and Section 4.2. The proposed evolutionary air

transportation network model tries to capture non-optimal behavior of the network

by utilizing multinomial logit model in its core. The number of airports and the O-D

demand at each iteration is determined by the predetermined evolution path. The

results from the theoretical baseline study in Section 5.1 showed that the evolution

path that resulted in a network similar to sDB1B has convex shape. The convex

path adds small number of airports into the simulation and evolve them to form the

initial structure of the core network and inserts the rest of the airports in a very short
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time period. Therefore, the study showed that Hypothesis 2-1-1 was appropriate.

Also, a point was made that overall evolution path for the whole NAS might have ‘S’

shape curve as described in Figure 92. It was also shown that evolution path works

as a mechanism that compensates incompleteness of airline network model. The

study of practical baseline determination in Section 5.2 showed that the NAS can

emulated very closely by fine-tuning the model with attraction factors. This proves

Hypothesis 2-1-2 stating that the deviation from general power-law of the airports

in the NAS can be modeled with the attraction factors. Since the Hypothesis 2-1-1

and Hypothesis 2-1-2 were proved, the rest two hypotheses (Hypothesis 2-1-3

and Hypothesis 2-1-4) that were used to generate the simulation framework are

indirectly proved to be appropriate.

6.2 Contribution

The inherent complexity of the NAS made it difficult for the researchers to under-

stand the dynamics existing in the system. In this research, intrinsic demand was

separated from the network enplanements and active design algorithm was created for

transport architect, who wants to investigate the impact of network topology changes.

The research was performed with a new perspective for both demand and network

modeling. Since the current state-of-the-art airline network models do not include

evolutionary network modeling scheme and topological usage changes of the airline

network are not treated explicitly, this new active design algorithm can be a good

tool for a transport architect who desires to expand his/her design space to include

topological changes of the airline network. The main contribution of this research

is in developing a method for demand- and network-centric analysis and viewing the

airline network from evolutionary point of view. The contributions are summarized

below.

1. Decoupled variant and invariant element from enplanements demand (Section 4.1)
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• Demonstrated that demand modeling should focus on invariant element

• Future true O-D demand matrix was successfully generated when there

was significant disturbances in the topological structure of the NAS

2. Created evolution-based airline network model (Section 4.2)

• New modeling approach that preserves the evolutionary nature of the NAS

was created

• Developed a design process for evolutionary air transportation networks

where the process starts with intrinsic demand (t) matrix, the growth of it

is performed using the predicted Pi and Ai utilizing two-factor FRATAR,

and the variable demand is modeled on a evolutionary network model.

• An architect of airline network can perform network studies by changing

the attraction factors for hub connections, extending conventional study

with fixed topology to topologically unconstrained ones.

6.3 Future work

When sDB1B was constructed, only symmetric trips are gathered. However, if in-

telligent data gathering techniques can be used to extract more information such

as multiple destination trips from DB1B, more fruitful results are expected to be

obtained.

It was shown that two-factor FRATAR process could be used to scale baseline t

demand matrix. When more accurate future Pi and Ai can be obtained by building a

model with better socio-economical data, it is expected that accurate future t matrix

can be obtained utilizaing the two-factor FRATAR model. Also, in the development

process of Pi and Ai model, only single point in time (year 1997) was used. Enhanced

models can be built if multiple calibration points are available. Other forms of the

models may also be tried to improve the accuracy, such as in analogy of source-sink
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model in fluid mechanics or magnetic field model in physics.

Even though the evolutionary air transportation network model demonstrated

prediction capability using the dehubbing of STL (See Section 5.3, the functional

relationship between the attraction factors (AFi) and the characteristics of airports

in real life was not determined. Also, AFi sets used to generate the practical baseline

in Section 5.2 is not unique. Various combinations of AFi adjustment can generate

similar results. What and how to select the best combination still remains as a

question. A research in this area will bring a great deal of benefit to the prediction

of future air transportation networks.

The methods and results obtained from this research may also be extended to ana-

lyze itinerary-centric aspect of the airline network. The extension of this research into

itinerary-centric analysis is important since it gives focus to passengers and passenger

delays are more significant than flight delays. Itinerary-centric analysis will open the

door for addressing the problem of itinerary-centric delay propagation, which may

include the whole passenger itinerary of complete curb-to-curb travel. The analy-

sis of the curb-to-curb delay propagation in the NAS will provide valuable input for

the enhancement of the NTS development. Also this research can be extended to

link aircraft design problems with strategic airline network development problems to

come up with the best design of the aircraft for the anticipated airline network by

concurrently optimizing vehicle design and network flow as suggested by Taylor and

de Weck (2007) and Mane et al. (2007).

153



***

154



APPENDIX A

GENERAL TRANSPORTATION DEMAND

FORECASTING

In this section, the general transportation demand forecasting processes are overviewed.

General transportation demand forecasting involves estimating the number of trav-

elers and vehicles in single or multi mode cases. Examples of forecasts include the

number of cars on a specific routes on a highway, number of airplanes landing per hour

at an airport, or the number of passengers at a seaport. Usually the process starts

with building a demand model by finding the relationship between current traffic data

and socio-economic characteristics of the considered regions, for example population,

income, accommodation and food sales, employment rate, travel cost, etc. Inserting

futures of those socio-economic values in the model results in the prediction. Trans-

portation demand forecasts are important in developing capacity and growth plans,

to calculate economic and environmental impact studies, etc.

In this section, the characteristics of selected demand estimation models, trip

distribution models, and choice models are introduced.

A.1 Traditional four-step process

These steps usually consists of four steps starting from the gross demand estimation

and ending with determining routes for each travel as below.

1. Macroscopic demand estimation: Travel demand in each zone is estimated from

the macroscopic demand estimation models.

2. Trip distribution: Trip demand is distributed among zones in the network using

the demand distribution model. The results become the gross demand on each
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origin-destination (OD) pair. The most popular models are gravity model and

entropy model.

3. Transportation mode choice: Transportation modes (auto, bus, train,or air) are

selected for each OD pair. The most popular discrete choice model for this

purpose is of the logit form developed by Daniel McFadden.

4. Travel route assignment: The specific route of the selected mode of transporta-

tion from origin to destination is selected.

A.2 Demand estimation models

Airline operations research often involves prediction of the air travel demand. Macro-

scopic demand models are used when the aggregate or regional development levels of

transportation service need to be described. The number of travelers and the number

of takeoffs at a region are typical usages of the macroscopic models. On the other

hand, microscopic models are used to assess detailed properties of transportation ser-

vices. Passenger traffic along a specific route and the number of passengers in each

mode of transportation are typical usages of microscopic models.

A.2.1 Gross travel demand estimation model

There exist many macroscopic demand models from simple linear models to com-

plicated socio-economic models. The two most common ways of differentiating the

demand models are time based models and socio-economy based demand models.

The time based models predict demand volume using previous trends. Since it

is generally agreed that there exist relationship between the transportation system

demand and the socio-economic characteristics of a considered market, time based

models don’t capture the cause and effect relationship. Some of the most widely used

time based demand models are given below. In these models, all the variables except

time need to be estimated from the existing demand data.
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y = kt+m (Linear)

y = k + a× bt (Exponential)

y = k × abt (Gompertz Curve)

y = k
1+be−at (Pearl-Reed curve, Logistic curve)

Another way of constructing a demand model is to connect certain socio-economic

characteristics and the demand level of a certain transportation mode. Socio-economy

based models use historical data on the number of people, income, number of tourists,

and other suitable socio-economic characteristics to capture the relationship behind

the actual demand. Also, the speed, cost, and other characteristics of the transporta-

tion services can be included in the model. Historical data collection and traveler

surveys are the most common way of obtaining the required information. With the

data, the model is calibrated and the transportation system demand is forecasted by

changing values of the socio-economic variables to the expected level. The general

form of the socio-economy based demand model is below.

Yt = a
m∏
i=1

Sbiit

n∏
j=1

T
cj
jt

Where,

m : total number of socio-economic characteristics.

n : total number of transportation characteristics.

Yt : number of air passengers in year t.

Sit : ith socio-economic variable value in year t.

Tjt : jth transportation characteristic value in year t.

a, bi, cj : parameters.
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A.2.2 Intercity travel demand estimation model

Intercity travel demand estimation models can be categorized into two types depend-

ing on the distance of the travel — short and medium haul and long haul travel. In

the short and medium haul travel cases, travelers are sensitive to the price and the

level of convenience of other modes of transportation to their specific needs. There-

fore, multimode models need to be used that include many competitive modes of

transportation, e.g. personal auto, bus, and trains. For long haul travel, airline is the

dominant choice of transportation and other services rapidly lose attractiveness due

to too much travel time as the distance increases.

To assess new transportation service effectiveness, a demand model should have

an ability to predict percentage share of each modes of transportation services in

the regions considered. The abstract mode model developed by Quandt and Baumol

(1966) can be used for the purpose and it can estimate the number of passengers that

would choose a new mode of transportation (Teodorović, 1988). The abstract model

assumes that a traveler’s transportation mode choice depends on both relative and

best characteristics of the systems. The abstract model in the original form is shown

below.

Tkij = α0P
α1
i ·P

α2
j ·Y

α3
i ·Y

α4
j ·M

α5
i ·M

α6
j ·N

α7
ij ·(Hb

ij)
β0·(Hr

kij)
β1·(Cb

ij)
γ0·(Cr

kij)
γ1·(Db

ij)
δ0·(Dr

kij)
δ1

Where,

Tkij : the number of trips between city i and city j by transportation mode k.

Pi, Pj : the populations in cities i and j

Yi, Yj : the average national income in cities i and j

Mi,Mj : the percentage of the population employed in industry in cities i and j

Nij : the number of different transportation modes operating between cities i and j

Hb
ij : the least possible travel time between cities i and j
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Hr
kij : relative travel time between cities i and j by transportation mode k

Cb
ij : the least possible travel costs between i and j

Cr
kij : relative travel costs between i and j by transportation mode k

Db
ij : the greatest frequency (number of departures) between cities i and j

Dr
kij : relative frequency between cities i and j by transportation mode k

α0, α1, α2, α3, α4, α5, α6, α7, β0, β1, γ0, γ1, δ0, δ1 : parameters estimated statistically

The equation can be calibrated to data by applying logarithms on both sides and

using multiple regression methods with the linearized form. By putting the charac-

teristics of the new transportation system into the calibrated model, the number of

passengers who will use the new transportation system can be estimated.

A.3 Trip distribution models

A.3.1 Entropy model

A.3.1.1 Entropy theory in transportation systems research

Information theory was started by Claude E. Shannon with his paper “A Mathemat-

ical Theory of Communication” (Shannon, 1948). In the paper, Shannon devised a

measure of uncertainty and provided a mathematical background of entropy theory in

communication networks. The information-theoretic entropy is measured to solve a

communication problem of efficiently transferring information through noisy commu-

nication channels. His idea evolved into two main branches of research — Information

theory and coding theory.

The information theoretic approach can be applied to a trip distribution problem

on a transportation network. Trip distribution models generate trips between individ-

ual cities with the travel demand established in the previous steps. Even though there

are many other trip distribution models frequently used in airline operations research,

entropy models are chosen for review due to its solid mathematical explanation.

Using the notation of Teodorović (1988) and denoting the number of trips from
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origin i to destination j to be Tij, flight frequencies of an air transportation system

can be represented as a square matrix. Figure 102 illustrates this process. The column

on the right side of the travel matrix is the assessed outgoing trip demand from each

city. The row at the bottom is the assessed incoming trip to each city. With the

demand information, the trip from city i to city j (Tij) should be obtained using the

trip distribution model.

Figure 102: Trip distribution process

To set up the equations for a trip distribution model, the following equalities are

introduced by defining Tij: the number of trips from origin i to destination j, ai: the

number of trips generated by node i, bj: the number of trips attracted to node j, and

k: the total number of trips.

ai =
n∑
j=1

Tij bj =
m∑
i=1

Tij k =
m∑
i=1

ai =
m∑
j=1

bj

ui =
ai
k

vj =
bj
k

pij =
Tij
k

m∑
i=1

ui =
m∑
j=1

vj =
m∑
i=1

m∑
j=1

pij = 1

With the notations given above, the entropy of the transportation network can be
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defined as:

H =
m∑
i=1

m∑
j=1

pijln(pij)

The probabilities of trips being made between all cities in the network can be

calculated by finding the condition for maximum entropy.

A.3.1.2 Proportional model

The proportional model is formulated by enforcing the basic entropy model to match

the number of outgoing and incoming trips on the network. The equations that need

to be solved to calculate the probabilities pij are given below.

H =
m∑
i=1

n∑
j=1

pijln(pij)

m∑
j=1

pij = ui ∀i

m∑
i=1

pij = vj ∀j

m∑
i=1

m∑
j=1

pij = 1

To solve the equations, the Lagrangian function F and Lagrange multipliers α, β,

and γ are introduced to find the solution.

F = −
m∑
i=1

m∑
j=1

pijlnpij −
m∑
i=1

αi(
m∑
j=1

pij − ui)−
m∑
j=1

βj(
m∑
i=1

pij − vj)− γ(
m∑
i=1

m∑
j=1

pij − 1)

(13)

To generate the equations that can be solved for pij, partial derivatives are taken

on the above equation and each of them are set equal to zero. For the solution, the

following equations need to be solved together.
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∂F

∂pij
= −lnpij − 1− αi − βj − γ = 0 (14)

∂F

∂αi
= −

m∑
j=1

pij + ui = 0 (15)

∂F

∂βi
= −

m∑
i=1

pij + vj = 0 (16)

∂F

∂γ
= −

m∑
i=1

m∑
j=1

pij + 1 = 0 (17)

From (14) , pij is represented as below

pij = e−(1+αi+βj+γ) (18)

Substituting (18) with pij in (15), (16), and (17) result,

ui = e−(1+αi+γ)

m∑
j=1

e−βj (19)

vj = e−(1+βj+γ)

m∑
i=1

e−αi (20)

e−(1+γ)

m∑
i=1

m∑
j=1

e−αie−βj = 1 (21)

Now, multiplying (19) and (20), and simplifying the result with (21) gives the

equation for pij.

ui · vj = e−2(1+γ)e−αie−βj

m∑
i=1

m∑
j=1

e−αie−βj = e−(1+αi+βj+γ) = pij (22)

This equation estimates that the probability of travel between the two cities are

equal to the product of the probability of travel generation of the city i and the
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probability of travel attraction of the city j. From the definition, the frequency of

the travel between the city i and the city j is estimated as below.

Tij =
ai · bj
k

(23)

A.3.1.3 Mean trip length model

The mean trip length model is formulated when the cost factor is included in the

proportional model. The name originated from the fact that the trip length is often

included in the cost calculation. By denoting cij as the trip cost from city i to city j,

the total cost of a transportation network, TC, can be represented as below,

TC =
m∑
i=1

m∑
j=1

Tijcij

Since pij = Tij/k, the average cost per passenger of a transportation network,

AC = TC/k, can be represented as below,

AC =
m∑
i=1

m∑
j=1

pijcij

By incorporating the cost information into the proportional model, equations for

the mean trip length model is formulated. The resulting trip probabilities between

city i and city j, pij, are obtained by finding the maximum entropy (H) that satisfies

the constraints. The entropy equation and constraints for the situation are given

below.

H =
m∑
i=1

n∑
j=1

pijln(pij)

m∑
j=1

pij = ui

m∑
i=1

pij = vj
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m∑
i=1

m∑
j=1

pij = 1

m∑
i=1

m∑
j=1

pijcij = AC

To solve the equations, Lagrangian function F and Lagrange multiplier α, β, γ,

and ψ are introduced.

F = −
m∑
i=1

m∑
j=1

pijlnpij −
m∑
i=1

αi m∑
j=1

pij − ui− m∑
j=1

βj(
m∑
i=1

pij − vj)

− γ(
m∑
i=1

m∑
j=1

pij − 1)− ψ(
m∑
i=1

m∑
j=1

pijcij − AC)

To generate the equations that can be solve for pij, partial derivatives are taken

on the above equation and each of them are set equal to zero. For the solution, the

following equations need to be solved together.

∂F

∂pij
= −lnpij − 1− αi − βj − γ − ψcij = 0 (24)

∂F

∂αi
= −

m∑
j=1

pij + ui = 0 (25)

∂F

∂βi
= −

m∑
i=1

pij + vj = 0 (26)

∂F

∂γ
= −

m∑
i=1

m∑
j=1

pij + 1 = 0 (27)

∂F

∂ψ
= −

m∑
i=1

m∑
j=1

pijcij + AC = 0 (28)

From (24), pij is represented as below.

164



pij = e−(1+αi+βj+γ+ψcij) (29)

Substituting (29) with pij in (25), (26), (27), and (28) result,

ui = e−(1+αi+γ)

m∑
j=1

e−βj−ψcij (30)

vj = e−(1+βj+γ)

m∑
i=1

e−αi−ψcij (31)

e−(1+γ)

m∑
i=1

m∑
j=1

e−αi−βj−ψcij = 1 (32)

AC = e−(1+γ)

m∑
i=1

m∑
j=1

cije
−αi−βj−ψcij (33)

An iterative method can be used to solve the equations above for pij. To simplify

the equations, substitutions are made as below.

Pi = e−1−αi−γ

Qij = e−ψcij

Rj = e−βj

After the substitutions, pij is represented as pij = PiQijRj.

The equations to be solved become the following.

ui = Pi

m∑
j=1

QijRj (34)

vj = Rj

m∑
i=1

PiQij (35)
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AC =
m∑
i=1

m∑
j=1

cijPiQijRj (36)

In the first iteration, the values for ψ and βj are assumed giving the starting

values for Qij and Rj. The value of Qij doesn’t change until the converged solution

is obtained. The recommended value for ψ is 1/AC and AC is arbitrarily selected

initially (Potts and Oliver, 1972).

The value of the first Rj is commonly set to be, R
(1)
j = vj . Then the P

(1)
i in the

first iteration becomes as below.

P
(1)
i =

ui∑m
j=1QijR

(1)
j

(37)

The above result can be used to calculate R
(2)
j in the second iteration as below.

R
(2)
j =

vj∑m
i=1 P

(1)
i Qij

(38)

The iteration continues until the convergence criterion is satisfied. The equations

on the kth iteration are as below.

R
(k)
j =

vj
m∑
i=1

P
(k−1)
i Qij

P
(k)
i =

ui
m∑
j=1

QijR
(k)
j

After each iteration, pij is calculated using the equation below.

p
(k)
ij = P

(k)
i QijR

(k)
j

Iteration continues until the following stopping condition is met.

max
ij
{|p(k)

ij − p
(k−1)
ij |} ≤ ε1
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When iteration ends, a confirmation test should be performed to check the rest of

the conditions are met using the equation below.

AC =
m∑
i=1

m∑
j=1

cijPiQijRj

m∑
i=1

m∑
j=1

pij = 1

The value of AC is changed and the process is repeated until the assumed AC and

the calculated AC after iteration matches.

|AC − AC ′| ≤ ε2

A.3.2 Gravity model

Gravity model is the most widely used and documented trip distribution in trans-

portation research community (Garber and Hoel, 2002). As in the law of gravity, the

travel demand between origin and destination is directly proportional to the produced

demand quantity of the origin and the attracted demand quantity of the destination.

Mathematical form of the gravity model is expressed in Equation 39, reproduced

from Garber and Hoel (2002).

Tij = Pi

[
Aj · Fij ·Kij∑
j Aj · Fij ·Kij

]
(39)

where

Tij = number of trips from zone i to zone j

Pi = produced trips in zone i

Aj = attracted trips to zone j

Fij = an inverse function of travel time i

Kij = socioeconomic adjustment factor for interchange ij
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A.3.3 Growth factor model: FRATAR Model

Growth factor models can be used when there are data available for O-D matrix for

base year and the trip generation values for each zone for the future year. Because

growth factor models scales up the base O-D matrix, they cannot be used to forecast

traffic between zones where there is no base demand. Also, they cannot reflect travel

friction changes such as travel time between zones. FRATAR method is the most

popular growth factor model, which calculates future trip estimation by proportioning

the relative growth between zones. Equation 40 shows the the mathematical form of

FRATAR model, reproduced from Garber and Hoel (2002).

Tij = (ti ·Gi)

[
tij ·Gj∑
x tix ·Gx

]
(40)

where

Tij = number of trips estimated from zone i to zone j

ti = present trip generation in zone i

Gx = growth factor of zone x

Ti = tiGi = future trip generation in zone i

tix = number of trips between zone i and other zones x

tij = present trips between zone i and zone j

Gj = growth factor of zone j

A.4 Choice models: Logit model

In transportation research, there are many choice models that can be used to model

an individual traveler’s decision on selecting a certain mode of transportation. Choice

models almost always deal with personal preferences like comforts, speed, cost, etc.

Even though these individual preferences obviously affect travelers’ behavior, it is

difficult to assess them. The most widely accepted method for this problem is to poll

some of the travelers and gather information on them to build a choice model. When

polling non-demographic factors, typically a scale is used to capture the traveler’s
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opinion. Travelers are asked to place an ‘X’ mark on the scale and the numerical

value of each traveler’s response is obtained by measuring the relative position of the

‘X’ mark on the scale. An example of the scale for safety evaluation is shown in

Figure 103.

Figure 103: Example: Safety evaluation scale. [Source: Teodorović (1988)]

There are mainly two different types of choice models — Deterministic models and

stochastic models. Deterministic models produce the same choice for each individual

if the individual is in the same situation as others. Stochastic models add stochastic

properties that allow a traveler to make different choices even when the captured

situation is the same. It is known that stochastic models better model real life

situations because there are many random effects that cannot be modeled into the

choice model. Also the fact that travelers have different evaluation criteria for the

utility of a specific transportation makes stochastic models a better choice. Another

reason can be that travelers don’t have the same level of information as others in

many cases or they just don’t choose the optimal solution even when they clearly see

it.

Stochastic choice models consist of a deterministic part and a stochastic part. The

deterministic aspect of the utility function V (i) can be any function but most often

it takes a linear form as in the equation below.

V (i) = a1X1i + a2X2i + ...+ anXni

Where,

X1i, X2i, ..., Xni : variable values related to the choice of alternative Ai.
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a1, a2, ..., an : parameters to be estimated from data.

The stochastic aspect of the utility function e(i) is added to V (i) to make a stochas-

tic choice model. Here, e(i) follows a certain distribution to capture the uncertainty

involved with the choice. By adding e(i) to V (i), the stochastic utility function U(i)

can be represented as below.

U(i) = V (i) + e(i)

Choice models assume that a certain mode of transportation is selected when

it has the biggest utility function value for the traveler. Thus, the probability of

choosing alternative Ai when U(i) = U (1)(i), e(i) = e(1)(i) becomes the following.

p(1)(i) = p[U (1)(i) > U (1)(j),∀j 6= i] = p[e(1)(j) < V (i)− V (j) + e(1)(i), ∀j 6= i]

Since the probability of having e(i) = e(1)(i) is f [e(i)]d[e(i)] — where f [e(i)]

denotes Probability Density Function (PDF) of e(i) and d[e(i)] an infinitesimal incre-

ment of e(i) — the probability of choosing alternative Ai becomes the integration over

the entire range of e(i). By denoting F [e(j)] the Cumulative Distribution Function

(CDF) of e(j), this probability can be expressed as the following.

p(i) =

∫
e(i)

F [V (i)− V (j) + e(i),∀j 6= i]f [e(i)]d[e(i)] (41)

The Logit model is one of the most famous stochastic choice models that is widely

used in modern transportation researches. The Logit model starts from the above

general choice model and adds two assumptions.

1. The stochastic variable e(i) follows Gumbel’s PDF

2. e(i) is independent of others, i.e. e(j), e(k), etc.
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Gumbel’s PDF has the functional form as expressed below.

f(x) = λe−x · e−λe−x

, λ > 0, −∞ < x < +∞

By integration, CDF of the Gumbel’s function becomes the following.

F (x) = e−λe
−x

After some calculation after putting Gumbel’s distribution into equation (41),

the probability to choose alternative i among others are represented as the equation

below.

p(s) =
eV (s)

z∑
i=1

eV (i)

Logit models are calibrated to a specific data set using the maximum likelihood

method. The process of calibrating the Logit model depends on the type of the

data. If the data set is a disaggregated type, the model is configured to generate an

individual’s choice probability. When the data are aggregated then a choice model

represents group behaviors. In that case, it is assumed that the probability of choosing

a specific transportation mode is the same for all the travelers.

When the data are disaggregated type, the probability that the rth traveler chooses

the sth mode of transportation p(r, s) is represented as below.

p(r, s) =
eV (r,s)

z∑
i=1

eV (r,i)

Using the above expression, the probability P (n1, n2, . . . , nz) that n1 travelers

choose mode A1, n2 choose mode A2, . . . , and nz choose mode Az is represented as

the equation below.

P (n1, n2, ..., nz) =
n!

n1!n2!...nz!

z∏
s=1

∏
r∈Qs

p(r, s)
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To find maximum probability, the likelihood function can be defined the same as

P (n1, n2, ..., nz) as below.

L =
n!

n1!n2!...nz!

z∏
s=1

∏
r∈Qs

p(r, s)

The following equation is obtained by taking natural log on both sides.

lnL = ln
n!

n1!n2!...nz!
+

z∑
s=1

∑
r∈Qs

lnp(r, s)

Since the first term in the equation above is a constant, finding a condition for

the maximum of L is equivalent to finding a condition for the maximum of the second

term only. By defining L =
∑z

s=1

∑
r∈Qs

lnp(r, s), the condition can be obtained at

maximum L.

If linear deterministic utility function is assumed, i.e. V (r, s) = a1sX1rs+a2sX2rs+

...+ amsXmrs, the above equation can be expanded to become the following.

L =
z∑
s=1

∑
r∈Qs

lnp(r, s) =
z∑
s=1

∑
r∈Qs

ln
eV (r,s)

z∑
t=1

eV (r,t)

=
z∑
s=1

∑
r∈Qs

[V (r, s)− ln
z∑
t=1

eV (r,t)]

=
z∑
s=1

∑
r∈Qs

[
m∑
i=1

aisXirs − ln
z∑
t=1

e
∑m

i=1 aitXirt ]

Where,

s: the number of alternative modes.

m: the number of variables in the choice criteria

X1i, X2i, . . . , Xni: evaluation of rth passenger on sth mode of transportation

The parameter values, a1s, a2s, . . . , ams are estimated by choosing the values that

generate maximum probability of having the data at hand. To find the condition,

partial derivatives on L are taken and set to be zero as below.
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∂L

∂ais
=

m∑
i=1

Xirs −
m∑
i=1

Xirs ·
e

∑m
i=1 aisXirs∑z

t=1 e
∑m

i=1 aitXirt
= 0, s = 1, . . . , z

The above equation can be solved by iterative methods. The problem with the

disaggregated model is that the number of p(r, s) to be calculated is equal to the

product of the number of travelers and the number of transportation modes. The large

number of calculation required can be a significant burden for large scale simulation.

If a choice model is based on aggregated data, it is assumed that the variable

values X ′s in the utility function is the same for all the individuals. In effect, the

probability of choosing a specific transportation mode becomes constant. In equation

form it becomes, p(r, s) = p(s). It makes the likelihood function take the form below.

L =
n!

n1!n2!...nz!

z∏
s=1

[p(s)]ns

The following equation is obtained by taking natural log function on both sides.

lnL = ln
n!

n1!n2!...nz!
+

z∑
s=1

nslnp(s)

By taking only the right term and defining L as below, it is required to find the

condition that maximizes L.

L =
z∑
s=1

nslnp(s) =
z∑
s=1

nsln
eV (s)

z∑
i=1

eV (i)

=
z∑
s=1

nse
V (s) − (n1 + . . .+ nz)ln(

z∑
i=1

eV (i))

Parameters are calculated again by letting ∂L
∂ais

= 0.

Logit models are widely used to predict the performance of a new transport mode

in a specific market. Impact of the air fare on a specific route is a popular usage

of this model. It should also be noted that the aggregated models make assumption

that everyone’s utility function value is the same for the same mode of transportation

service. As a result, the aggregated model deviates more from a real situation. As a

tradeoff, groups of people that has similar evaluation (X ′s) for the alternatives can

be aggregated and the values of X ′s are set to the mean of each group.
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APPENDIX B

AIRSPACE SIMULATION PROGRAMS

There have been many NAS modeling and simulation tools. In this section, the most

well-known tools are reviewed.

B.1 Airspace Concept Evaluation System (ACES)

ACES is a fast-time NAS simulation environment for analysis of novel concepts in air

traffic management. It is an agent-based simulation tool that flies individual aircraft

for one day of activity. The development effort is being conducted by NASA Ames

Research Center under the Virtual Airspace Simulation Technologies (VAST) sub-

project of the Virtual Airspace Modeling and Simulation (VAMS) project. ACES

covers the gate-to-gate operations and the highly coupled interactions in the NAS are

modeled. It is the most widely used airspace simulation model by NASA. It is also

used by the U.S. Air Transportation Joint Planning and Development Office (JPDO)

to identify potential problems when NAS is not expanded to meet the future demand

and to evaluate relevant strategies (Roth and Miraflor, 2004). ACES does not capture

service providers’ behavior. Therefore, demand is a static input which is not altered

by the actions of the service providers.

The ACES architecture integrates an agent-based modeling framework with the

distributed simulation architecture, called High Level Architecture (HLA). Figure 104

shows ACES Agents and Messages structure. Some validation efforts have been tried

by Zelinski (2005).
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Figure 104: ACES agents and messages structure. [Source: Couluris et al. (2003)]

B.2 MIT Extensible Air Network Simulation
(MEANS)

The MIT Extensible Air Network Simulation (MEANS) is a high-level event-based

NAS simulation model that can be used to simulate the aircraft movements both

on the ground and in the air with probabilistic capabilities. The development of

MEANS started in 2001 as a tool to assess the congestion problem of an airline at

a hub. Its main objectives are to study new operational concepts and developing

strategic planning environment with congestion prediction. In the current version,

the NAS is represented by a network of 205 airports (Clarke et al., 2007).

MEANS is a result of compromise between fidelity and tractability. This tradeoff

was necessary since the NAS is a very large complex system and modeling its entirety

is too time consuming and is not desired when many scenarios need to be studied in

a strategic assessment. Fine-grained modules can be used for sensitive components

and coarse-grained modules for insensitive ones. Therefore, many components have
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simplified abstraction of the NAS. For example, in the en route phase modeling,

aircrafts’ tracks and conflicts resolution are not modeled and in the in-ground phase

taxiways and paths are not modeled.

MEANS was implemented in C++ and its modular and extendable architecture

makes it possible to combine various fidelity tools or incorporate custom made mod-

ules without changes to the core interfaces. The MEANS has seven modules in the

current version as depicted in Figure 105. Aircrafts change states following the six

states shown in the dotted boxes in the figure.

Figure 105: MEANS module relationships. [Source: Clarke et al. (2007)]

The four modules in the center of the diagram are state modules that take care of

the movement of aircrafts (as well as crews and passengers) through states. The Air

Traffic Control System Command Center (ATCSCC) module and the airline mod-

ule change the flight schedule and are referred to as decision-making modules. The

characteristics of the seven modules are listed in Table 23.

The inputs that MEANS needs are the aircraft to be used and the sequence of flight

schedules (origin, destination, scheduled departure time, and scheduled arrival time)

that each aircraft are to fly. This flight data are determined using the Airline Service
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Table 23: Characteristics of seven modules in MEANS

State Modules Gate
Taxi
Tower
Enroute

Informational Module Weather
Decision Making Module Air Traffic Control Systems Command Center

Airline

Quality Performance (ASQP) database. Since the ASQP database only contains data

provided by airlines that account for at least one percent of all domestic passengers,

artificial flight legs are added to match the hourly real flight demand represented in

the Enhanced Traffic Management System (ETMS) database. The flights derived

from the ASQP database are tracked but the artificial flights plays a role to fill the

demand in the system, such as the departure queue. MEANS requires different levels

of information for its modules. Table 24 summarizes the data required.

Table 24: Data requirements for MEANS modules

Data Requirements Data Source
Schedule Detailed scheduled flight information ASQP database

ETMS database
Airport Capacities Runway configuration and capacity FAA Benchmark Report

Theoretical Generation
Airborne, Taxi,
Ground Times

Historical distributions ASQP

Weather Severity NOAA weather record

Taxi-out and taxi-in times can be modeled as a single value, historical distribution,

or estimation based on aircraft passing behavior. In the simulation, the Ground

Delay Program (GDP) is initiated by the ATCSCC module when predicted demand

is higher than the predicted capacity by a specified amount for a specified duration at

an airport. GDP initiates ground stops for all flights in the NAS that are scheduled

to land at the airport during the period when the predicted demand exceeds the

predicted capacity. The airline module cancels or reschedules flights in response to
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delays. In the simulation, each passenger is tracked. When flights are cancelled or

delayed such that the connection is not possible for their initial itinerary, they are

re-accommodated on later flights when possible.

The primary output from the MEANS is a set of files containing flight and pas-

senger information. Its output includes detailed time information for each aircraft,

desired and obtained itineraries for passengers, and delay and cancellation character-

istics. Its stochastic capabilities are achieved through multiple runs with the same

data and different random seed.

B.3 LMINET

LMINET is a network queueing model of the NAS developed by Logistics Manage-

ment Institute (LMI) for NASA. It is a fast-time model that covers flight schedules of

over 600 Official Airline Guide (OAG)-derived airports, over 3000 National Plan of In-

tegrated Airport Systems (NPIAS)-derived airports, and OAG-derived international

airports. It can calculate delays at 102 airports and en route airspace constraints at

995 sectors. The inputs to the simulation include the flight schedule, flight trajecto-

ries, airport runway configuration, and airport weather conditions.

LMINET is composed of 64 major US airports and they account for more than 80

percent of the airline flights in 1997. Airports, TRACONs, and ARTCC sectors are

connected with sequences of queues. LMINET is driven by demand and weather con-

dition. Both of them are provided as hour-by-hour values and aggregate level analysis

is performed. It is not a simulation but an analytical model that does not track air-

craft. Queues are represented as arrival and service processes with distributions. The

model is stochastic in nature. The LMINNET is driven by the scheduled departures

from the airports within the network and the scheduled arrivals from the airports out-

side the network. Operations at airports are modeled by a queueing network shown

in Figure 106.
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Figure 106: Queues in the LMINET airport model. [Source: Long, Lee, Johnson,
Gaier and Kostiuk (1999)]

The airport queueing network model proceeds as follows.

1. Traffic enters the arrival queue, qA, with a Poisson process with parameter

λA(t)

2. The arrival queue has a Poisson service time with parameter µA(t)

3. Traffic enters the taxi-in queue, qta, that has a Poisson service with parameter

µta

4. After turnaround delay(τ), the traffic enters the ready-to-depart reservoir, R

5. Departures enter the queue for aircraft, qp, with a Poisson process with param-

eter λD(t)

6. Departure aircraft are assigned with a Poisson process with parameter µp(t)

and R is reduced by 1. After the assignment, the aircraft enters the taxi-out

queue, qtd, that has a Poisson service time with parameter µtd(t)

7. The aircraft enters the departure runway queue, qD, that has a Poisson service

process with parameter µD(t)

8. The aircraft is fed into the rest of LMINET.
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ARTCC and TRACON sectors are modeled as M/Ek/N/N+q multi-server queues,

which are Poisson arrivals, service time of Erlang distribution with parameter k, N

servers, and maximum number in the system to be N+q. TRACON of an airport is

modeled with two arrival sectors and one departure sector.

B.4 Simulation Model (SIMMOD)

SIMMOD has a highly detailed network representation of airfield and airspaces. Com-

plex network models need to be developed by the user. Input requirements include

flight paths and paths between gates and runways. SIMMOD has a database with 19

types of aircraft performance characteristics. SIMMOD generates detailed flight level

outputs including aircraft travel times, delays, fuel consumption, and flow informa-

tion. It can simulate probabilistic events and produces detailed flight level outputs.

SIMMOD is frequently used in airport surface operations and capacity studies. Traf-

fic follows a pre-specified network of nodes and links with the pre-specified operation

strategies. It is a one-dimensional model that checks conflicts only along the longitu-

dinal path. Due to its non-modular architecture, SIMMOD is not a proper tool for

radical ATM concept studies.

A single run of 24 hour simulation at a major airport takes about 3-5 minutes.

SIMMOD is a widely used airport and airspace model in the world. Its major ap-

plication has been in the study of the impacts of various operational concepts at

airports and reconfiguration of regional or terminal airspace on the capacity and

delay. SIMMOD requires significant user training and understanding of ATM and

airport operations.

B.5 The National Airspace System Performance Capability
(NASPAC)

NASPAC is a macroscopic system-wide model of air traffic flows and delays that was

initially developed by the MITRE Corporation for the FAA in the late 1980s. It is
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a useful tool when assessing new concepts in traffic flow management. It is the first

model that was explicitly developed for the purpose of assessing delay propagation and

congestion in the NAS. The simulation tracks aircrafts through the daily itineraries

and generates deterministic information on delays and traffic flows for the input. It

simulates individual flight but the output is aggregate delays and flow rates. The

simulation requires complete schedule of aircraft itineraries in the interested airspace,

airport capacities and other ATM resources, and aircraft performance as inputs. The

modeling of ATM resources is not detailed. The level of details of the modeling can

be varied for the problem at hand. NASPAC needs significant user training and input

data.

B.6 Total Airspace and Airport Modeler (TAAM)

TAAM is a detailed large-scale network simulation model of airport and airspace

developed by The Preston Group (TPG) and Australian Civil Aviation Authority

(CAA). TAAM can simulate most ATM operations and the entire gate to gate pro-

cesses are modeled in detail. TAAM is a 4D flight simulation that is capable of entire

air traffic system simulation. TAAM requires significant input data that represent

the entire air traffic system. The inputs includes airport descriptions, airspace route

and sector layouts, geographical features, air traffic control and airport usage rules,

aircraft performance characteristics, etc. To use TAAM, significant user training and

input data preparation are required.

B.7 Detailed Policy Assessment Tool (DPAT)

DPAT is a fast-time discrete-event simulation whose scope covers global air traffic.

DPAT is built on a parallel discrete-event simulation engine, called Georgia Tech Time

Warp (GTW), which uses optimistic computing technology and achieves very fast run

times. It is a very fast network of queueing model that tracks individual flights and

their itineraries. DPAT predicts air traffic delays at airports and airspace sectors and
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propagates delays over the flights’ itineraries. DPAT is derived from National Airspace

System Performance Analysis Capability (NASPAC) but it is much faster due to

parallel processing and improvements in coding. It has significant data requirements

and much of the required data should be generated using other simulations

B.8 Future ATM Concepts Evaluation Tool (FACET)

FACET is NAS simulation that is designed for the evaluation of advanced ATM

strategies. It is written in “Java” and “C” and it is platform independent. Its’ mod-

ular architecture provides flexibility for fast reconfiguration for new ATM concepts.

It mainly focuses on airspace operations and lacks in airport operations modeling.

FACET models enroute airspace over the entire continental U.S. It has 4-D trajec-

tory modeling capabilities, dynamic models for turns and acceleration/deceleration,

climb/descent performance models for 66 aircraft types that are mapped to over 500

types, and weather models. Figure 107 shows schematic overview of FACET. FACET

interfaces with ETMS data. It currently runs on Sun, SGI, PC, and Mac.

Figure 107: Schematic overview of FACET. [Source: National Aeronautics and Space
Administration (2003)]
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APPENDIX C

DELAY PROBLEMS OF THE NAS

C.1 Delay problems are getting worse

With the growth of enplanements and passenger miles, flight demands are also ex-

pected to grow proportionally. When flight demands reach the capacity of busy hub

airports, flight and passenger delay problems become focal issues. Figure 108 shows

the flight operations, on-time, arrival delayed, canceled and diverted flights from 1988

to 2005, taken from the Bureau of Transportation Statistics (BTS)’s Airline On-Time

Performance database (Bureau of Transportation Statistics, 2009b). Airline On-Time

Performance data contains data reported by US certified air carriers and accounts for

at least one percent of the domestic scheduled passenger revenues. The delay criteria

used in the database is when a flight arrives more than 15 mins after its published

arrival time. Definitions of some of the frequently used BTS terms are listed in

Table 25.

Seen in the Figure 108, arrival delays have been increasing since 2002 as the air

travel demand recovered from the shock of the 2001 terrorist attack. As the congestion

and delay worsened, customer complaints also increased correspondingly (Department

of Transportation, 2009), resulting in additional cost to both the airlines and air

transportation users. As such many researches and modeling studies were dedicated

to the delay analysis and improvement efforts of these delay problems (Viken et al.,

2006a; Department of Transportation et al., 2004).

The Federal Aviation Administration (FAA) has developed airport capacity bench-

marks for 31 of the nation’s busiest airports in 2001 and updated it in 2004 expanding
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Figure 108: Yearly on-time characteristics

Table 25: Flight related terms and definitions. [Source: BTS website]

Terms Description
Arrival Delay Arrival delay equals the difference of the actual arrival time minus

the scheduled arrival time. A flight is considered on-time when it
arrives less than 15 minutes after its published arrival time.

Departure Delay The difference between the scheduled departure time and the actual
departure time from the origin airport gate.

In-Flight Time The total time an aircraft is in the air between an origin-destination
airport pair, i.e. from wheels-off at the origin airport to wheels-
down at the destination airport.

Late Flight A flight arriving or departing 15 minutes or more after the sched-
uled time.

Taxi-In Time The time elapsed between wheels down and arrival at the destina-
tion airport gate.

Taxi-Out Time The time elapsed between departure from the origin airport gate
and wheels off.
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its analysis to a total of 35 airports (Federal Aviation Administration, 2004). It ad-

dresses the relation between airline demand and airport runway capacity. When the

scheduled flight demand at an airport exceeds its capacity at the moment, resulting

delays spread out to the affected routes. Generally, the delay problem is most severe

in Summer when flight demand and weather disturbances are highest. Airport Ca-

pacity Benchmark Report 2004 provides capacity benchmarks for 35 of the nation’s

busiest airports (See Table 26.). These 35 airports are closely monitored and are

part of Operational Evolution Partnership (OEP) (Federal Aviation Administration,

2007). The benchmark numbers in Table 26 show the maximum number of flight

operations that an airport can routinely handle in an hour based on typical runway

usage.

Delays also happen as a consequence of fluctuations in demand. Even when the

average demand is below average capacity, delays can be severe if fluctuation is high.

Figure 109 shows capacity and demand at Chicago - O’Hare International Airport

(ORD) on July12, 2004, illustrating demand exceeding the capacity in regular days

due to fluctuations.

Figure 109: Capacity and demand at ORD on July 12, 2004 (Monday). [Source: Fed-
eral Aviation Administration (2004)]
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Table 26: Capacity benchmarks at OEP 35 airports, 2004. [Source: Federal Aviation
Administration (2004)]

Airport Optimum Marginal IFR
ATL Atlanta Hartsfield-Jackson International 180-188 172-174 158-162
BOS Boston Logan International 123-131 112-117 90-93
BWI Baltimore-Washington International 106-120 80-93 60-71
CLE Cleveland Hopkins 80-80 72-77 64-64
CLT Charlotte/Douglas International 130-131 125-131 102-110
CVG Cincinnati/Northern Kentucky International 120-125 120-124 102-120
DCA Ronald Reagan Washington National 72-87 60-84 48-70
DEN Denver International 210-219 186-202 159-162
DFW Dallas/Fort Worth International 270-279 231-252 186-193
DTW Detroit Metro Wayne County 184-189 168-173 136-145
EWR Newark Liberty International 84-92 80-81 61-66
FLL Fort Lauderdale-Hollywood International 60-62 60-61 52-56
HNL Honolulu International 110-120 60-85 58-60
IAD Washington Dulles International 135-135 114-120 105-113
IAH Houston George Bush Intercontinental 120-143 120-141 108-112
JFK New York John F. Kennedy International 75-87 75-87 64-67
LAS Las Vegas McCarran International 102-113 77-82 70-70
LAX Los Angeles International 137-148 126-132 117-124
LGA New York LaGuardia 78-85 74-84 69-74
MCO Orlando International 144-164 132-144 104-117
MDW Chicago Midway 64-65 64-65 61-64
MEM Memphis International 148-181 140-167 120-132
MIA Miami International 116-121 104-118 92-96
MSP Minneapolis-St Paul International 114-120 112-115 112-114
ORD Chicago O’Hare International 190-200 190-200 136-144
PDX Portland International 116-120 79-80 77-80
PHL Philadelphia International 104-116 96-102 96-96
PHX Phoenix Sky Harbor International 128-150 108-118 108-118
PIT Greater Pittsburgh International 152-160 143-150 119-150

SAN San Diego International - Lindbergh Field 56-58 56-58 48-50
SEA Seattle-Tacoma International 80-84 74-76 57-60
SFO San Francisco International 105-110 81-93 68-72
SLC Salt Lake City International 130-131 110-120 110-113
STL Lambert-St. Louis International 104-113 91-96 64-70
TPA Tampa International 102-105 90-95 74-75
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Aviation gridlock experienced on the NAS calls for a system-wide view to under-

stand the situation and seek solutions (Transportation Research Board, 2001). In

this light, the Joint Planning and Development Office (JPDO) is developing a Con-

cept of Operations (CONOPS) for the Next Generation Air Transportation System

(NextGen) (Joint Planning and Development Office, 2007). FAA developed various

methods to measure the performance of the NAS (Federal Aviation Administration,

2001). O’Connor and Rutishauser (2001) studied the dynamic reductions in aircraft

separation using the Aircraft VOrtex Spacing System (AVOSS). In the AVOSS, the

separation criteria applied to aircraft for wake vortex avoidance is selected for im-

provements. Acknowledging the fact that wake hazard durations are substantially

reduced in many ambient conditions, the overly conservative separation criteria was

relaxed in a real-time proof-of-concept field study at the Dallas Ft. Worth Inter-

national Airport in July, 2000. AVOSS used weather sensors, wake sensors, and

analytical wake prediction algorithms to obtaine 6% of the airport throughput gains,

with peak values close to the theoretical maximum of 16%. The average gain in

airport delay when applied to major airports were 15-50%.

Airport delay can be amplified by small disturbances. For example, consider the

situation where airplanes arrive at the airport at a rate of one per minute. Assuming

that 10 airplanes are already waiting for landing and the airport capacity for landing

is one per minute, then the delay time for a newly arriving airplane is 10 minutes.

If a slight disturbance caused by weather condition delays the landing for 5 minutes,

the queue would now grow to 15 airplanes waiting for landing. It should be noted

that a small amount of delay at an airport in H&S network can cause a significant

propagation throughout the network.

C.1.1 Delay causes

There are mainly four causes major routine delay.
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• Over-scheduling exceeding the capacity of airports: The delay impact of over-

scheduling can be significant due to queueing effect and last throughout the

day.

• Increased number of regional jets generate large demand on airport and airspace:

Scheduled flights aboard regional jets increased from 9 percent in May 2000 to

29 percent in May 2004. This was due to the airliners relying on their regional

partners to serve smaller markets (Department of Transportation, 2004).

• Increased low-cost carriers at large and medium hubs: Low-cost carriers serving

small markets are expanding to large and medium markets. As a result of the

low airfares provided by both the low-cost carriers and the response of major

carriers, new passenger demand is created. This new demand can generate

significant delays on affected airports and airspaces. Low-cost carriers’ market

share have grown from 15 percent in 2000 to 21 percent in 2004 (Department

of Transportation, 2004).

• Increased level of security screening after September11th: After the terrorist at-

tack in September 11, 2001, the Transportation Security Administration (TSA)

was created. By the end of 2002, TSA deployed a federal work force for screening

passengers and baggages. The queues for security check point at busy airports

routinely extends an hour or more.

Delays in the NAS is mainly a result from air traffic density and weather condi-

tions. Occasional delay causes include aircraft mechanical problems.

C.1.2 Alleviating air transportation network delays

Short-term strategies for alleviating air transportation delays:

• Airlines’ voluntary schedule changes.
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• Allocation of capacity administrative intervention to reduce or change scheduled

flights for temporary delay reduction: This approach might be sought for a busy

airport where air carriers are reluctant to adjust schedules for fear of losing

market share. This was the approach undertaken by FAA to alleviate delay

problems at the Chicago O’Hare airport.

Long-term strategies for alleviating air transportation delays:

• New runway construction: New runways provide the most capacity benefit

to the air transportation network. Seven new runways were constructed be-

tween fiscal year 2001 and 2005, four runways were scheduled to open in fiscal

year 2006, with six more under construction (Federal Aviation Administration,

2007).

• Advanced operational concept: Dynamic airspace configuration, airspace super-

density operations, coordinated arrival/departure, etc can also increase capacity

and reduce delays (Joint Planning and Development Office, 2007).

To increase the capacity for the the demand increase, there are eight ongoing

runway projects in OEP (Federal Aviation Administration, 2007). Even though the

additional runways are a guaranteed way of increasing capacity, it is not always an

option due to space and financial constraints. Therefore, it is important to identify

options and seek the best solutions.

C.2 Schedule padding as a response to congestion at hubs

Time information recorded in the Airline On-Time Performance Data are divided into

taxi-out, airtime, and taxi-in time. When the data between 1995 and 2005 for ATL→

ORD was plotted as a distribution shown in Figure 110, characteristics of a shifted

and flattened distribution was observed. This flattened and shifted distribution can

be interpreted as it took more time to travel from Atlanta to Chicago on average.
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Figure 110: Changes in taxi-out, taxi-in, and air time for flights from ATL to ORD
in 1995 (blue) and 2005 (red) (* Data greater than 60 mins are excluded for taxi-in
and taxi-out)

It is also interesting to see a similar trend in the total arrival delays on the NAS.

Figure 111 shows a crude assessment of the arrival delay distribution at Hartsfield-

Jackson Atlanta International Airport (ATL) with respect to the baseline 1988 data.

Figure 111: Arrival delay trend change at ATL

In this study, the highest point on each graph was assumed to be the airlines’

targeted scheduled delay. By shifting the line for 2005 to zero, the on-time percentage

reduced from 72 percent to 60 percent. This crude assessment shows that the delay
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problem is actually worse than it appears. Congestion and resulting delays led airlines

to add slack time to the flight schedule. As an example, the average block time

increase on the route from ATL (Atlanta,GA) to DFW (Dallas/Ft.Worth,TX) is

shown in Figure 112. This shows that scheduled block time increased simultaneously

with actual block time. A possible interpretation of this phenomenon is that as

the delay problem worsens and customer complaints increases, the airlines increased

published block time on the travel routes between busy airports. In this case, average

block time is interpreted as a base flight time for the segment.

Figure 112: Block time change: ATL → DFW (* Data with unusual values (≤ 1 :
10 : 00 or ≥ 5 : 00 : 00) are excluded)

This also accounts for the fact that published delay percentage does not grow even

though the general public experiences more delays. By shifting the delay distribution

through schedule padding, airlines can maintain on-time arrival statistics despite high

demand. Figure 113 shows the total flight operations and percent on-time character-

istics.

As block time padding is an airlines response to the degraded NAS performance,
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(a) Total flight counts. Source: T100D segment data

(b) Percent on-time. Source: On-time performance data

Figure 113: Total flights and percent on-time
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this adaptive change is also considered by including a reference point for delay mea-

sure. Figure 114 shows an example of the effect of block time padding consideration.

In this case study, flight delays from ATL to DFW were corrected with respect to the

baseline block time in 1988. It clearly shows correlation between the flight operations

and on-time performance.

Figure 114: Correlation exists with corrected data: Case study: ATL → DFW

The corrected on-time trend calculation for this case was conducted with the

following procedure.

1. Baseline scheduled block time was based on 1988 average.

2. Difference between baseline and current scheduled block time (padding) was

subtracted from each scheduled arrival time to obtain the corrected scheduled

arrival (See Table 27 for padding calculation) time.

(Corrected Scheduled Arrival Time = Scheduled Arrival Time− Padding)

3. The new delay criteria based on this new scheduled arrival time.

(Corrected Arrival Delay = Actual Arrival Time−Corrected Scheduled Arrival Time)
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Table 27: Average scheduled blocktime and padding

Year Schd. Padding
1988 2:07:31 0:00:00
1989 2:06:58 -0:00:33
1990 2:09:25 0:01:54
1991 2:10:33 0:03:01
1992 2:11:20 0:03:49
1993 2:12:56 0:05:24
1994 2:14:40 0:07:09
1995 2:14:36 0:07:04
1996 2:13:55 0:06:24
1997 2:14:33 0:07:02
1998 2:17:08 0:09:36
1999 2:17:19 0:09:48
2000 2:18:40 0:11:09
2001 2:19:13 0:11:41
2002 2:17:33 0:10:02
2003 2:17:55 0:10:24
2004 2:20:14 0:12:43
2005 2:20:12 0:12:40
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APPENDIX D

NAS-RELATED DATA

D.1 Airline On-Time Performance data

The airline on-time performance data is offered by the Bureau of Transportation

Statistics (BTS). Title 14, Code of Federal Regulations (CFR), part 234 - airline ser-

vice quality performance reports requires domestic certified air carriers that account

for at least 1 percent of domestic scheduled passenger revenues to report on-time per-

formance data. The reporting carriers and the number of operations in descending

order is in Figure 115.

Figure 115: Reporting carriers of on-time performance data in descending order

The raw files of on-time performance data are available for download from BTS

web site (http://www.transtats.bts.gov). The data range is from 1987 and it

is updated monthly. A snap shot of the download web site for the airline on-time

performance data is shown in Figure 116.
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Figure 116: Snapshot - Airline on-time performance data download site

Various arrival delay information can directly be obtained from the airline on-time

performance data as shown in Table 28.
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Many interesting observations can be made from the airline on-time performance

data. Figure 117 shows average on-time probability of flights that are scheduled to

land at ATL for year 1988 and 2005. There is a big drop in late arrivals for year

2005, which can be explained by serious delay propagation problem in later years.

Since the airline network becomes more hub-spoke, delays at one point on the NAS

propagates throughout the day, resulting in significantly low on-time probability in

later times of the day.

On-Time Probability (ATL Inbound)
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Figure 117: Hourly on-time performance change for ATL inbound flights

Seasonal variations of scheduled block time can also be observed from the data.

Figure 118 depicts the average scheduled block time change of operations from ATL

to DFW.

Data in big databases tend to include anomalies. Some of the findings that needs

attention are reported in this section. It has anomalies in the data as shown in

Figure 119. It was found that many of the data has negative air time as shown

in Figure 119a. It is suspected that the flights that operates through midnight (day

change) is susceptible to this type of error. Also, there are many cells that has zeros or

‘nulls’. Figure 119b shows zeros for ‘CRS ARR TIME’ and ‘CRS DEP TIME’ cells.

There are also very late or too early flights as can be seen on ‘ARR DELAY’ column
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Figure 118: Average monthly scheduled block time change (ATL→ DFW )

in Figure 119c. It shows early arrival of 692 and 939 minutes (top of Figure 119c),

which are 11.5 hour and 15.7 hour early. Also, there are arrival delay of 1502, and

1361 minutes (bottom of Figure 119c), which are 25.0 hour and 22.7 hour late. Even

if one can claim 25 hour late flight is possible, having 15 hour early flight is hard to

accept.

(a) Negative air time

(b) Lack of data: zeros or nulls

(c) Too early or too late arrival

Figure 119: Sample anomaly in the airline on-time performance data

The airline on-time performance data also shows spikes at every 5 minute period.

It is suspected that the people who are in charge of reporting tend to round off times

to closest 5 minute intervals. As an example, arrival delay record at ATL is shown
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in Figure 120. In the figure, Y axis is in logarithmic scale and the yearly data from

1988 to 2005 were plotted.
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Figure 120: Arrival delay record at ATL

Another irregularity in the database is incorrect N-Numbers. For example, ‘N405AA’

is registered as balloon on FAA registry1. But it made 1,409 scheduled flights in year

2005 with the average speed of around 327 miles/hour according to the airline on-time

performance data data. The result of the N-Number inquiry is below.

1Available from http://registry.faa.gov/aircraftinquiry/nnum_inquiry.asp, last ac-
cessed May 2009
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FAA Registry N-Number Inquiry Results

N405AA is Assigned

——————

Aircraft Description

Serial Number S55A-252 Type Registration Individual

Manufacturer Name RAVEN Certificate Issue Date 11/08/2006

Model S55A Status Valid

Type Aircraft Balloon Type Engine None

Pending Number Change None Dealer No

Date Change Authorized None Mode S Code 51137465

MFR Year 1975 Fractional Owner NO

——————

Registered Owner

Name THORNHILL ELIZABETH A

Street 67873 30TH AVE

City CATHEDRAL CITY State CALIFORNIA Zip Code 92234-5810

County RIVERSIDE

Country UNITED STATES

Also, there exists non-alphanumeric characters in many of the records, e.g. ‘N823?’,

‘?KNO?’. It is suspected that the N-Number of either FAA or BTS’s airline on-time

performance data is erroneous. An email was sent to Reference Services, National

Transportation Library, Bureau of Transportation Statistics, Research and Innova-

tive Technology Administration, U. S. Department of Transportation to enquire about

these errors. A partial contents of the reply is in the box below. According to the

reply, there is no way to correct these errors.
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Thank you for your patience with your inquiry - after some research, the

data files are not corrupted but invalid numbers, which sometimes happens

for historical data. We downloaded the zip files and found that these in-

valid numbers only occur for Jan-Feb of 2002, and Jan-December of 2001.

Unfortunately there is no way of obtaining this data.

D.2 Enhanced Traffic Management System (ETMS) and
Enhanced Traffic Management System Count (ETMSC)
Data

The Enhanced Traffic Management System (ETMS) is a traffic prediction and plan-

ning tool. Traffic management personnel use ETMS to evaluate traffic demand for all

airports and sectors and apply necessary action so that the traffic demand is within

capacity. ETMSC provides quick access to traffic counts by airport or by city pair

with grouping options such as aircraft type, hour, etc. ETMSC records are created

by combining ETMS records with the Aircraft registry data, oceanic data by city

pairs provided by MITRE, and OPSNET data. The data covers daily flights from

January 2000 and updated daily. The database can be accessed through FAA website

(http://www.apo.data.faa.gov/). A snap shot of a result from ETMSC is shown

in Figure 121.

D.3 Consolidated Operations and Delay Analysis System
(CODAS)

The Consolidated Operations and Delay Analysis System (CODAS) has been created

to estimate individual flight delay. CODAS integrates databases - mainly the ETMS

and the Airline Service Quality Performance (ASQP) System. Additional data from

the Official Airline Guide (OAG) and the carriers’ Computerized Reservation Systems

(CRS) are also used. Aviation System Performance Metrics (ASPM: 2000-Present)

is the successor of CODAS (1997-2000).
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Figure 121: Snapshot - ETMSC

D.4 Aviation System Performance Metrics (ASPM)

The Aviation System Performance Metrics (ASPM) provides information on flight

performance and airport efficiency. The data range for airports is from January

2000 to present. Information on 55 airports is available for the entire period and

additional 20 airports from October 2004. The data range for arrival/departure rates

and runway configuration is from January 1, 2000 and delay information is from

January 1, 1998. The database can be accessed through the FAA website (http:

//www.apo.data.faa.gov/). A snap shot of ASPM is shown in Figure 122.

D.5 Airline Service Quality Performance (ASQP)

According to title 14, part 234 of Code of Federal Regulations (CFR), carriers with

one percent or more of the total domestic scheduled passenger revenues are re-

quired to report flight data that involve any airport in the contiguous US states

that account for one percent or more of domestic scheduled enplanements. The
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Figure 122: Snapshot - ASPM

data includes gate departure, gate arrival, wheels-off and wheels-on time, causal

data for delayed aircrafts, etc. The range of the data covers from June 2003 and

monthly update is performed. The database can be accessed through FAA website

(http://www.apo.data.faa.gov/). A snap shot of a result from the Airline Service

Quality Performance (ASQP) is shown in Figure 123.

D.6 Official Airline Guide (OAG)

The Official Airline Guide (OAG) is a private company that maintains and dis-

tributes information within the passenger and cargo aviation field. Its airline sched-

ules database contains historical and future flight details for more than 3,500 airports

and 1000 airlines. OAG scheduled flight database is used frequently by many research

organizations as an independent data source. The website of OAG can be accessed

at http://www.oagflights.com.
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Figure 123: Snapshot - ASQP

D.7 Operations Network (OPSNET)

The Operations Network (OPSNET) is the official source for air traffic delays and

operations. OPSNET includes preliminary airport traffic counts, instrument oper-

ations, and instrument approaches, as well as delay and airport traffic information.

Daily, monthly, and annual counts are available by facility, state, region, or nationally.

The coverage of the data is from 1990 to present and it is updated daily. Historical

operations are synchronized with the Air Traffic Activity Data System (ATADS). The

database can be accessed through FAA website (http://www.apo.data.faa.gov/).

A snap shot of a result of ‘center’ from OPSNET is shown in Figure 124.

The air traffic and delay data provided by BTS is obtained through FAA. The

FAA receives daily reports on delays and airport traffic and maintains the information

in the OPSNET database. In OPSNET and some other databases, aircraft operations

are categorized as 1) Air Carrier, 2) Air Taxi/Commuter, 3) General Aviation, and

4) Military. The definitions and descriptions for these are given in Table 29.
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Figure 124: Snapshot -OPSNET - center

Table 29: Categories of aircraft operation. [Source: Federal Aviation Administration
(2009a)]

Category Definition

Air Carrier (AC) An aircraft with seating capacity of more than 60 seats or a max-
imum payload capacity of more than 18,000 pounds carrying pas-
sengers or cargo for hire or compensation. This includes US and
foreign flagged carriers.

Air Taxi (AT)/
Commuter
(Comm.)

Aircraft designed to have a maximum seating capacity of 60 seats
or less or a maximum payload capacity of 18,000 pounds or less
carrying passengers or cargo for hire or compensation.

General Aviation
(GA)

Takeoffs and landings of all civil aircraft, except those classified as
air carriers or air taxis.

Military (Mil) All classes of military takeoffs and landings at FAA and FAA-
contracted facilities.
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D.8 Air Traffic Activity Data System (ATADS)

The Air Traffic Activity Data System (ATADS) provides air traffic operations counts

for towered airports, TRACONS, centers as well as instrument and approach counts.

Data can be obtained for daily, monthly, and annual counts categorized by facility,

state, region, or nationally. The official source of the data is the OPSNET. The

database can be accessed through FAA website (http://www.apo.data.faa.gov/).

D.9 Terminal Area Forecast (TAF)

The Terminal Area Forecast(TAF) is the official enplanements and operations forecast

at FAA facilities. Facilities in the forecast are (1) FAA towered airports, (2) Federally

contracted towered airports, (3) Nonfederal towered airports, and (4) Non-towered

airports. The forecasts are made for four main categories, which are (1) Large air

carriers, (2) Air taxi/commuters, (3) General aviation, and (4) Military.

Since significant changes are being made in the aviation industries, the forecasts

are being revised from time to time. Therefore the forecasts need to be accessed

when the update is current. The database can be accessed through FAA website

(http://www.apo.data.faa.gov/). A snap shot of a result from TAF is shown in

Figure 125.

D.10 Airport delay information services

FAA provides many useful information services under Air Traffic Control System

Command Center (ATCSCC). Real time flight delay information is provided from its’

main page, which can be accessed through FAA website (http://www.fly.faa.gov/

flyfaa/usmap.jsp). Also, real time arrival demand information for selected airports

can be obtained through AIRPORT ARRIVAL DEMAND CHART (AADC), which

can be accessed at (http://www.fly.faa.gov/Products/AADC/aadc.html). As in

Figure 126, users can select number of airports from the combo box menu.
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Figure 125: Snapshot - Terminal Area Forecast

Figure 126: Screen capture from AADC
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Bureau of Transportation Statistics(BTS) has a web based service on airline on-

time statistics and delay causes. It can be accessed at http://www.transtats.bts.

gov/OT_Delay/OT_DelayCause1.asp It also provides detailed data on the same topic,

which can be interactively generated from the database depending on the users choice.

Figure 127, shows a screen capture from the web.

Figure 127: Airline on-time statistics and delay causes. [Source: BTS website]
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APPENDIX E

THE OPERATIONAL EVOLUTION PARTNERSHIP

The multi-agency Joint Planning and Development Office (JPDO) is developing the

vision for the Next Generation Air Transportation System (NextGen). Each member

of the JPDO will work on their individual plans. The Operational Evolution Part-

nership (OEP) is the FAA’s plan for implementing the NextGen (Federal Aviation

Administration, 2007). The OEP is an expansion of the original OEP (the Oper-

ational Evolution Plan), which started in year 2001. OEP version 1 describes the

implementation plan, which are divided into three domains:

• Airport development: Capacity enhancements and reducing delays at airports

• Aircraft and operator requirements: Development of standards for the new

capabilities required by NextGen

• Air traffic operations: Developing air traffic control capabilities

The 35 airports included in the OEP accounts for 75 percent of all passenger

enplanements (Federal Aviation Administration, 2007). They are the most heavily

traveled airports located in the most densely populated areas. It was determined

that most of the current delay on the NAS is traced to inadequate throughput (i.e.

departure and arrival rates) at some of the busiest airports. Figure 128 shows the

locations of OEP35 airports. Enplanements at OEP35 airports from year 2001 is

shown in Table 30

The most significant capacity increases can come from the construction of new

runways and runway extensions. Since year 2000, 13 new runways have been built at

the OEP35 airports, which increased the capacity to accommodate 1.6 million more
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Table 30: Enplanements at OEP35 airports. [Data source: FAA Passenger and All-
Cargo Statistics]

Airport 2001 2002 2003 2004 2005
ATL 37,181,068 37,720,556 38,893,670 41,123,857 42,402,653
BWI 10,098,665 9,367,499 9,768,040 10,103,563 9,829,432
BOS 11,739,553 11,077,238 11,087,799 12,758,020 13,214,923
CLT 11,548,952 11,743,157 11,465,366 12,499,476 14,009,608

MDW 7,112,784 7,878,438 8,687,215 9,238,592 8,383,698
ORD 31,529,561 31,706,328 32,920,387 36,100,147 36,720,005
CVG 8,586,907 10,316,170 10,449,930 10,864,547 11,277,068
CLE 5,633,495 5,146,975 5,012,446 5,389,196 5,529,629

DFW 25,610,562 24,761,105 24,976,881 28,063,035 28,079,147
DEN 17,178,872 16,943,564 17,969,754 20,407,002 20,799,886

DTW 15,819,584 15,525,413 15,754,017 17,046,176 17,580,363
FLL 8,015,055 8,266,788 8,682,781 10,040,598 10,729,468
IAH 16,173,551 15,865,479 16,134,684 17,322,065 19,032,196
PIT 9,939,223 8,975,111 7,113,460 6,606,117 5,198,442

HNL 9,810,860 9,406,467 9,044,409 9,579,076 9,784,404
STL 13,264,751 12,474,566 9,922,456 6,377,628 6,844,769
LAS 16,633,435 16,600,807 17,097,738 19,943,025 21,402,688
LAX 29,365,436 26,911,570 26,239,584 28,925,341 29,372,253

MEM 5,560,524 5,231,998 5,411,496 5,295,062 5,630,305
MIA 14,941,663 14,020,686 14,198,321 14,515,591 15,092,763
MSP 15,852,433 15,544,039 16,022,988 17,482,627 17,971,771
JFK 14,553,815 14,552,411 15,676,352 18,586,863 20,199,967
LGA 11,352,248 11,076,032 11,367,309 12,312,561 12,983,410

EWR 15,497,560 14,553,843 14,628,708 15,827,675 16,433,587
MCO 13,622,397 12,921,480 13,375,162 15,270,347 16,592,133
PHL 11,736,129 11,954,469 11,870,928 13,824,332 15,376,569
PHX 17,478,622 17,271,519 18,252,853 19,336,099 20,315,542
PDX 6,168,103 5,978,025 6,059,860 6,379,884 6,798,976
DCA 6,267,395 6,172,065 6,813,148 7,661,532 8,623,907
SLC 8,951,776 8,997,942 8,958,003 8,884,880 10,601,918
SAN 7,506,320 7,392,389 7,565,196 8,135,832 8,628,648
SFO 16,475,611 14,736,137 14,079,173 15,605,822 16,070,127
SEA 13,184,630 12,969,024 13,109,153 14,092,285 14,359,487
TPA 7,901,725 7,726,576 7,672,533 8,436,025 9,297,643
IAD 8,484,112 7,848,911 8,050,506 10,961,614 13,032,502

Total 480,777,377 469,634,777 474,332,306 514,996,492 538,199,887
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Figure 128: OEP 35 benchmark airports. [Source: FAA website]

annual operations. There are ten airfield projects at eight of the OEP35 airports

at the moment. These ten core OEP airports projects will be commissioned through

2011 and it is expected that the potential to accommodate operations at these airports

will be increased by about 400,000 annual operations. Table 31 shows new runway

projects at 8 OEP35 airports. More information about OEP35 airports are given in

Table 32.
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Hub types in the table is defined by the U.S. Department of Transportation,

Federal Aviation Administration. There are four categories depending on the total

enplanements, which are 1) large (> 1% of total enplanements), 2) medium (0.25%−

0.999% of total enplanements), 3) small hubs (0.05%−0.249% of total enplanements),

and 4) nonhub (< 0.05% of total enplanements).
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