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SUMMARY

We design, analyze, and optimize distributed detection and estimation algorithms

in a large, shared-channel, single-hop wireless sensor network (WSN). The fusion cen-

ter (FC) is allocated a shared transmission channel to collect local decisions/estimates

but cannot collect all of them because of limited energy, bandwidth, or time. A strat-

egy for this situation that is based on a combination of probabilistic node selection

and probabilistic transmission scheduling is developed to improve the performance of

distributed detection and estimation algoirthms. Specifically, we propose a reliability-

based splitting algorithm that enables the FC to collect local decisions/estimates in

descending order of their reliabilities through a shared channel. The algorithm di-

vides the transmission channel into time frames and the sensor nodes into groups

based on their observation reliabilities. Only nodes with a specified range of reliabil-

ities compete for the channel using slotted ALOHA within each frame. Nodes with

the most reliable decisions/estimates attempt transmission in the first frame; nodes

with the next most reliable set of decisions/estimates attempt in the next frame; etc.

The set of reliability thresholds used to divide the nodes into groups affects the per-

formance of distributed detection/estimation applications by controlling a tradeoff

between channel throughput and the quality of local decisions/estimates.

The performance of the reliability-based splitting algorithm is analyzed in three

scenarios: time-constrained distributed detection; sequential distributed detection;

and time-constrained estimation. Performance measures of interest – including detec-

tion error probability, efficacy, asymptotic relative efficiency, and estimator variance –

are derived and used to determine optimal and suboptimal reliability thresholds. We

also propose and analyze algorithms that exploit information from the occurrence of

collisions to improve the performance of both time-constrained distributed detection

and sequential distributed detection.
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CHAPTER I

INTRODUCTION

Advances in electronics and wireless communications have enabled the creation of

cost-effective wireless sensor networks (WSNs). In these networks, a number of small,

inexpensive, often battery-powered sensor nodes are deployed in a geographic area.

The network’s sensor nodes perform such functions as environmental monitoring,

surveillance, event detection, etc., in which they make observations of their local

environments, process those observations, and share the results with each other or

a fusion center (FC) over a wireless communication channel. The existence of such

WSNs has renewed interest in distributed/decentralized signal processing algorithms

that support the detection and estimation tasks these networks are asked to perform.

The focus of this thesis is the development of new signal processing algorithms and the

analysis of the improvements they enable in the performance of distributed detection

and estimation tasks.

An overview of prior research in this area is provided in Section 1.1. It fo-

cuses on prior efforts in the design, analysis, and optimization of distributed de-

tection/estimation algorithms. In these distributed detection/estimation algorithms,

a number of sensor nodes are grouped together to monitor the state of an event.

They then wirelessly send their individual decisions/estimates/observations to the

FC. Based on the received local decisions/estimates/observations, the FC computes

a global decision/estimate.

The objective of this dissertation is to design, analyze, and optimize distributed

detection/estimation algorithms in a large, shared-channel1, single-hop WSN in which

1A data packet is transmitted successfully if no other packets are transmitted during this time.
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the FC cannot collect local decisions/estimates from all of the nodes to produce a

global decision/estimate. This can occur if the time allowed for making a global

decision is limited, if the FC does not have sufficient energy, or if the communication

channel is very limited or unreliable. When this does occur, the immediate challenge

is to develop a strategy to collect the “best” local decisions, which would be the ones

that are least corrupted by noise, nearest to an event being observed, or have reliable

communications with the FC. In other words, a node-selection strategy is required.

In addition, since all local decisions/estimates/observations are sent through a shared

channel, a suitable transmission-scheduling strategy is necessary. We address these

challenges through probabilistic selection and scheduling. The scope and organization

of the dissertation are provided in Section 1.2.

1.1 Background and Literature Review

In this section, we provide an overview of prior work that is closely related to the

topic of this thesis.

1.1.1 Single-Hop Distributed Detection with a Centralized Fusion Center

A simple single-hop centralized fusion system for distributed detection is shown in

Fig. 1, where gn and ηn are the observation gain and additive noise of the nth sensor

node, respectively. The sensor nodes observe an event through observation channels

that experience additive noise and/or observation gains. Based on these observations,

the sensor nodes might either make and transmit local decisions or quantize and trans-

mit their observations. These transmissions are then received by the FC via a shared

wireless communication channel. Upon receiving these local decisions/observations,

the FC uses either a fixed-sample-size (FSS) detector or a sequential detector to fuse

the received data to compute a global decision. If local decisions are sent, the FC’s

fusing process is called decision fusion. If local observations are sent, the FC’s fusing

process is called data fusion. Clearly, the performance of a data fusion algorithm will
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Figure 1: A model of single-hop distributed detection with a centralized FC.
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Figure 2: Types of transmission channels. Note that we do not show channel gains
and additive noise in the MIMO channel model.

be at least as good as the performance of a decision fusion algorithm.

The transmission channels that the nodes use to send their local decisions/observations

to the FC can be categorized into four types:

1. Parallel Access Channel (PAC): In the PAC, the local decisions/observations

are sent to the FC via orthogonal channels, such as in TDMA or FDMA. The

model of the PAC is shown in Fig. 2(a). Mathematically, the received signal y

at the FC can be written as y =
∑N

n=1

(
hnbn + vn), where hn, bn, and vn are the

channel gain, the transmitted decision/observation, and the additive noise of

the nth node, respectively. Therefore, the effect of the additive noise increases

as N increases. Note that a special case of the PAC with no knowledges of
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the channel gains and the additive noise is studied in [68, 75], where the local

decisions received at the FC will have bits flipped according to a known cross-

over probability.

2. Multiple Access Channel (MAC): In the MAC, the local decisions/observations

are modulated with different and orthogonal waveforms and then sent to the

FC. One example of a MAC is the CDMA channel. A model of this type of

MAC is shown in Fig. 2(b). Mathematically, the received signal y at the FC can

be written as y =
∑N

n=1 hnbnφn + v, where φn is the nth orthogonal waveform

and v is a common additive noise. In the MAC, the effect of the additive noise

does not increase as N increases.

3. Multiple-Input Multiple-Output (MIMO) channel: A model of the MIMO chan-

nel is shown in Fig. 2(c), where the FC is equipped with multiple antennas. The

MIMO channel can be thought as a combination between the PAC and MAC.

4. Random Multiple Access (RMA) channel: In the RMA channel, time on a sin-

gle channel is divided into time slots. Each sensor node will send its local

decision/observation to the FC by transmitting in these slots according to the

slotted ALOHA protocol, a CSMA-based protocol, or some other RMA proto-

cols. The nodes randomly and independently choose slots in which to transmit,

so collisions will occur. In the most typical collision model, a node will suc-

cessfully send its decision/observation to the FC only if it is the only one that

transmits in that time slot; otherwise, its packet is lost and is either dropped

or retransmitted later. An RMA channel is used when it is not possible for the

system to schedule the nodes’ transmissions in advance.

Examples of the work on distributed detection categorized by the FC’s detectors and

type of transmission channels are shown in Table 1.
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Table 1: Examples of the work on distributed detection categorized by the FC’s
detectors and the transmission channels.

Detector PAC MAC MIMO RMA

FSS [4,6, 20,22,50,57] [6, 46,48,50,74,96] [23,24,56,98] [5, 19]
Sequential [77, 95] - - [2, 53,92,93]

Generally speaking, there are two mandatory derivations in distributed detection:

optimal fusion rules and performance measures. The optimal fusion rules depend

on the transmission channel used, and can be found in the papers provided in the

table. The performance measures that are typically used include: probability of a

false alarm, probability of a miss, and probability of detection error. Unfortunately,

closed-form expressions for these performance measures are often difficult or impossi-

ble to obtain. Approximations and asymptotic performance measures are thus derived

instead. Typically, the central-limit theorem is extensively used to compute approxi-

mations of these performance measures, such as in [2,5,24,46,70]. On the other hand,

some asymptotic measures can be obtained in closed-form, including:

• Error exponent (when the number of collected decisions/observations approaches

infinity) [5, 48,50,68],

• Kullback-Leibler divergence [54, 83],

• Efficacy (when the observation SNR approaches zero),

• Asymptotic relative efficiency (a relative performance between two schemes

when the observation SNR approaches zeros) [29,32,67].

Distributed detection can be extended to multi-hop topologies, where the local

decisions/observations must be forwarded by one or more other nodes before they

can reach the FC [4, 49, 60, 68, 71, 72]. The optimal distributed detection rule in a

serial/tandem network was derived in [71, 72]. However, asymptotically, the per-

formance of the serial distributed detection algorithm is worse than that of the
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parallel distributed detection algorithm [60]. Aggregation strategies to reduce the

traffic load in multi-hop distributed detection were studied in [68]. In addition to

multi-hop strategies, distributed detection with a mobile FC has been proposed

in [2, 53, 70], where the FC moves around the area of interest to collect the local

decisions/observations via single-hop transmissions.

1.1.2 Distributed Estimation

In distributed estimation [91], the FC computes a global parameter estimate from the

sensor nodes’ local estimates, which are quantized versions of the observations. Many

efforts have focused on designing the sensor nodes’ optimal quantizers. Binary quan-

tizers (i.e., binary local estimates) minimizing the Cramer-Rao lower bound (CRLB)

were studied in [66], while adaptive binary quantizers were proposed in [30,39]. The

performance degradation caused by use of binary local estimates was derived in [21].

The optimal quantizers for multiple-bit estimates were investigated in [51,78].

Many fusion rules for distributed estimation have been studied in [91]. A popular

approach is the best linear unbiased estimator (BLUE) [90]. The global estimate un-

der a BLUE approach is obtained from a weighted sum of the local estimates, where

the weights are computed from the sensor nodes’ noise variances. Under resource

constraints on, for example, power and number of bits, [47, 69, 88] formulated opti-

mization problems to find optimal allocation strategies, all of which depend on the

local noise variances.

1.1.3 Sensor-Selection Strategies

In distributed detection/estimation, the local decisions/estimates possess different

reliabilities (probabilities of correct decision/estimate) because of observation noise

or other error sources. Strategies used to collecting only the most reliable deci-

sions/estimates can help to improve the WSN’s performance and reduce energy con-

sumption. Indeed, there are two interesting sensor-selection strategies: censoring
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sensors [65] and ordered transmissions [13], which we now summarize.

The censoring-sensor strategy introduced by [65] for distributed detection demon-

strates that only reliable decisions should be collected and fused by the FC. In

this strategy, only the nodes with likelihood-ratio (LR) values greater than a pre-

determined threshold send their LR values to the FC. A global decision is then made

from these very reliable LR values. On the other hand, the nodes with LR values

below the preset threshold do not transmit their local decisions and can sleep in or-

der to save energy. The censoring-sensor strategy has been applied and studied in

many scenarios where either LR values or binary decisions are sent to the FC; see,

for example, a scenario [2] with a mobile FC and a scenario in [22] with a multi-level

censoring-sensor strategy. An example of distributed estimation using a censoring-

sensor strategy has been introduced in [55].

An ordered-transmission strategy, introduced by [13], combines the censoring-

sensor strategy with a sequential detector. The LR values computed from the nodes’

observations are sent in descending order of their magnitude to the FC; i.e., the most

reliable decisions are sent first. It can be conjectured that this strategy provides the

fastest way to reach a required performance measure. Examples of algorithms using

the ordered-transmission strategy can be found in [11,15,37,52,94].

1.1.4 Random-Access Protocols

Under resource constraints such as time, bandwidth, and energy, not all local de-

cisions/estimates/observations will be collected. A sensor-selection strategy might

then be applied. In this case, the perfect transmission scheduling is not applicable.

Therefore, a random-access protocol, which is a probabilistic transmission-scheduling

method, must be exploited instead.

Random-access protocols consist of two parts: channel access and collision reso-

lution. Channel access determines how nodes transmit their packets. For example, in
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ALOHA [1] the nodes send their packets immediately upon receipt, while in carrier

sense multiple access (CSMA) [42] the nodes sense whether the channel is in use before

sending their packets. Because of a lack of perfect scheduling/coordination amongst

the nodes, packet collisions are inherent in any system using a random-access protocol.

Therefore, a collision resolution strategy is used to retransmit collided packets. Ex-

amples of collision resolution strategies include: tree algorithms [17,82], probabilistic-

backoff strategies [10, 36], and heuristic-backoff strategies [43]. Probabilistic back-off

strategies are used extensively in industrial standards for wireless networks, including

IEEE 802.11.a/b/g/n/etc. (WiFi) and IEEE 802.15.4 (ZigBee).

Likewise, applications that use random-access protocols in distributed detection

and estimation have been studied in many scenarios, especially when there is no

information on which nodes will be active at any given time. In [2,53,70], a mobile FC

moves around the area of interest to collect the local decisions. Since the FC does not

know which nodes are within the current communication range, they cannot schedule

the transmission of local-decision transmissions, and slotted ALOHA or CSMA/CA is

used as the channel-access protocol. In [19,92,93], the censoring-sensor and ordered-

transmission strategies2 are applicable for distributed detection/estimation using a

shared channel by exploiting slotted ALOHA. These schemes proposed threshold-

based slotted-ALOHA protocols, where local decisions whose reliabilities are larger

than a threshold are sent to the FC during a particular time frame.

1.2 Scope and Organization

We propose a reliability-based splitting algorithm for a large, shared-channel, single-

hop distributed detection/estimation whose FC is not able to collect local deci-

sions/estimates/observations from all sensor nodes. The principles and assumptions

underlying the reliability-based splitting algorithm are as follows:

2The censoring-sensor [65] and ordered-transmission strategies [13] require a complete knowledge
of decisions/estimates’ reliabilities to properly schedule the nodes’ transmissions.
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Figure 3: The transmission channel is divided into frames. Each frame consists of
K time slots.

1. Frame-based transmission channel: We assume that a single shared channel is

provided for the considered distributed detection/estimation application. The

transmission channel is divided into frames, where each frame consists of K

time slots, as shown in Fig. 3, unless we specify otherwise.

2. Reliability-based splitting strategy: The sensor nodes are divided into M + 1

groups according to a set of reliability thresholds {r̂1, r̂2, . . . , r̂M}. The mth

group contains the nodes whose observations have reliabilities r ∈ [r̂m, r̂m−1).

The reliability thresholds {r̂m} and the observation reliability r depend on appli-

cations and will be defined in the chapters that follow. Note that the (M + 1)st

group contains the nodes whose observations have reliabilities r < r̂M .

3. Sensor processing: A node collects an observation and computes its observa-

tion’s reliability. If its observation’s reliability r is such that r ∈ [r̂m, r̂m−1), then

it schedules the transmission of its local decision/estimate/observation within

the mth frame.

4. Channel access protocol: When the mth frame arrives, each node with r ∈

[r̂m, r̂m−1) will use slotted ALOHA to send their decisions/estimates/observations.

5. Fusion center processing: Upon receipt of the local decisions/estimates/observations,

the FC computes a global decision/estimate using a specified fusion rule.

We apply the the reliability-based splitting algorithm in distributed detection/estimation

with constraints. Two types of constraints are considered in this dissertation: time

and performance. For the time constraint, the FC has to make a global decision/estimation
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at the end of a specific collection time. This is equivalent to a fixed-sample-size anal-

ysis. On the other hand, for the performance constraint, the FC continues collecting

local decisions/estimates/observations until the required performance level is reached.

This is equivalent to a sequential analysis. As a result, we organize the chapters as

shown in Fig. 4 and summarize the details as follows.

• Chapter 2: We apply the reliability-based splitting algorithm in distributed de-

tection applications in which the FC has a limited time to collect and process

local decisions to produce a global decision. We thoroughly study and exam-

ine the performance of the proposed scheme by determining the detection error

probability (DEP), efficacy, and asymptotic relative efficiency (ARE). The opti-

mization problems that yield the reliability thresholds for the collection scheme

are formulated. We show, for example, that the reliability thresholds maxi-

mizing the channel throughput are not always optimal. Because the proposed

scheme orders transmissions of the local-decisions in approximately descending

order of reliability but suffers collisions, it will offer better performance than

a collision-free scheme with no reliability ordering when the time constraint

prevents transmission of all local decisions. The transition point between the

two schemes is found by deriving the ARE of the proposed scheme relative to

a TDMA-based scheme.
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• Chapter 3: We derive collision-aware fusion rules for time-constrained dis-

tributed detection using the reliability-based splitting algorithm. Unlike other

distributed detection algorithms with random-access protocols in which packet

collisions are treated as errors and ignored, a collision-aware fusion rule exploits

the numbers of successful and collision time slots in making a global decision.

The numerical results show that the collision-aware distributed detection out-

performs TDMA-based distributed detection.

• Chapter 4: We propose an ordered sequential detection scheme which jointly in-

tegrates the reliability-based splitting algorithm, an ordered-transmission strat-

egy, and a sequential probability ratio test (SPRT). The proposed scheme allows

the FC to collect the local observations in descending order of their reliabilities

by using the reliability-based splitting algorithm. As it receives successfully

transmitted observations, the FC sequentially decides whether to make a global

decision or to continue collecting more local observations. The numerical re-

sults show that the proposed scheme significantly outperforms a conventional

SPRT scheme. The improvement increases as the number of sensor nodes in

the network increases.

• Chapter 5: We propose an ordered sequential detection algorithm that is aware

of packet collisions. Unlike many schemes, where packet collisions are treated

as errors and ignored, the FC in the proposed scheme can partially retrieve the

observations from collisions. As a result, the FC sequentially decides whether

to make a global decision or to continue collecting more local observations by

using both the successfully received observations and these partially retrieved

observations. Numerical results show that the proposed approach significantly

outperforms a conventional SPRT scheme.

• Chapter 6: We consider distributed estimation applications in which the FC has
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a limited time to collect local estimates The reliability-based splitting algorithm

is applied in a time-constrained distributed estimation application in which the

FC uses a best linear unbiased estimator (BLUE) to compute a global estimate.

As the performance of the schemes depends on the reliability thresholds, the

number of bits representing the estimates, and the number of time slots in a

frame, we formulate time-constrained optimization problems and derive meth-

ods to obtain the optimal values of these parameters. An interesting result

shows that the optimal reliability thresholds do not maximize the channel’s

throughput.
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CHAPTER II

RELIABILITY-BASED SPLITTING ALGORITHMS FOR

TIME-CONSTRAINED DISTRIBUTED DETECTION

2.1 Introduction

In a common model of wireless sensor networks (WSNs) that perform distributed

detection [12,79], a number of small, inexpensive, sensor-equipped nodes are dispersed

over or move around a geographic area to detect events. The local decisions that they

make about these events are collected over a wireless channel and processed by a fusion

center (FC) to make a reliable global decision. However, when resources such as time,

bandwidth, and energy are limited, it may not be possible for the FC to collect the

local decisions from all nodes. A sensor-selection strategy is thus required.

Distributed detection schemes with sensor-selection strategies have been studied

extensively. The censoring-sensor strategy introduced by [65] demonstrates that only

reliable decisions should be collected and fused by the FC. Distributed detection with

multiple-level censoring has been proposed in [22, 94]. As an extension of censoring

strategies, [13] proposed an ordered-transmission strategy that combines a censoring-

sensor strategy with a sequential detector and the transmission, in descending order,

of the likelihood ratios (LR) computed from the nodes’ observations. The principle of

the ordered-transmission strategy naturally fits in the problems of distributed signal

processing with resource constraints. Interesting examples of applying the ordered-

transmission strategy can be found in [11, 15, 37, 52, 94]. These papers all considered

distributed systems with no transmission collisions ; they typically assume parallel

access channels, not shared channels. They thus did not have to develop transmission

scheduling algorithms or account for collisions in the channel.
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Nodes in a WSN usually share a single channel and use random access protocols,

such as ALOHA or CSMA/CA, or scheduling protocols, such as TDMA, to control

access to the channel [7]. Distributed detection over a channel with a random ac-

cess protocol has been studied in, for example, [19, 44, 92, 93, 97]. Random access

protocols with adaptive collision resolution algorithms were proposed in [92, 97]. A

distributed detection scheme exploiting a threshold-based slotted ALOHA protocol

has been studied in [19,44], where the multiuser diversity [3,64] is applied. A slotted-

ALOHA protocol with a splitting-tree algorithm for sequential distributed detection

was proposed in [93].

2.1.1 Scope and Proposed Scheme

In this chapter, we design a distributed detection scheme that integrates sensor-

selection, transmission and decision fusion strategies. We consider the problem of

distributed detection in a large, shared-channel1 WSN in which every node is within

a single-hop of the FC. Time on the shared channel is divided into time slots and

at most one node’s decision can be transmitted successfully in each slot. The FC

is allowed T time slots, called the collection time, to gather local decisions from

the nodes and make a global decision. Each node’s local decision is assumed to be

available at the beginning of the collection time and is not updated during T . Note

that this is different from the scenario considered in [19]. For a binary WSN, only

binary decisions {1,−1} are sent to the FC. We further assume that the number of

nodes, N , is larger than T , in which case the FC cannot collect local decisions from

all of the nodes.

In an optimal strategy for the above problem, the FC would collect the T most

reliable local decisions [13] and fuse them after weighting them according to a function

of their reliabilities [18, 68, 75]. This implies that each transmitting node must send

1We assume a collision model in which a node’s transmission is successful only if it is the only
one to transmit during that time.
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Figure 6: The proposed scheme consists of three layers: sensor processing, channel
access, and fusion-center processing. The procedures in each layer are described in
Section 2.1.1.

both its local decision and the reliability of that decision to the FC. If the nodes save

energy by sending only their local binary decisions, the FC does not have information

on the reliability of each local decision it receives. However, if the arrival times

of local decisions at the FC depend on their reliabilities as in [13, 19], the FC is

able to approximate the reliabilities of the received binary decisions. Inspired by

[13,18,19,65], we devise the following time-constrained distributed-detection scheme.

Proposed Scheme: The collection time T is divided into M frames, where each
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frame consists of K time slots; i.e., T = KM , as shown in Fig. 5. The proposed

scheme shown in Fig. 6 performs the following steps. Further details are provided in

Section 2.2.

1) Reliability-based splitting strategy: The sensor nodes are divided into M + 1

groups according to a set of reliability thresholds {r̂m}, for m = 1, . . . ,M , where

0 ≤ r̂M ≤ . . . ≤ r̂1 <∞. The mth group contains the nodes whose observations have

reliabilities r ∈ [r̂m, r̂m−1), where the observation reliability r is defined in Section 2.2,

and r̂0 = ∞. Note that the (M + 1)st group contains the nodes whose observations

have reliabilities r < r̂M .

2) Sensor processing: A node collects an observation, makes a binary local deci-

sion, and computes its observation’s reliability. If its observation’s reliability r is such

that r ∈ [r̂m, r̂m−1), then it schedules the transmission of its local decision within the

mth frame.

3) Channel access protocol: We assume for simplicity that the WSN uses slotted

ALOHA; CSMA could be used but would be significantly more complex to analyze.

When the mth frame arrives, each node with r ∈ [r̂m, r̂m−1) independently and

randomly chooses one of the K slots in which to transmit its local decision. After

sending their decisions, these sensor nodes leave the collection process.

4) Fusion center processing: At the FC, the hard decision dk,m corresponding to

the signal received at the kth time slot of the mth frame is obtained. The test statistic

zps is computed from a weighted sum of {dk,m}. Thereafter, a global decision UG is

made by using zps.

The reliability thresholds control a tradeoff between the number of successfully

received local decisions at the FC and their decision reliabilities. This tradeoff will be

studied in Section 2.3.2. Note that when K = 1, the collection-time structure of the

proposed scheme is partially similar to that modeled in [19, Sec. IV]. Furthermore,
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when K = 1, it is almost equivalent to that each sensor node uses a reliability-

countdown timer [13] to know when to send its local decision.

There are three characteristics of the proposed scheme worth mentioning.

1) Collision avoidance by use of frame-based random access: At any given relia-

bility value, there might be more than one node whose reliabilities are close to this

value (within a particular range). If a reliability-countdown timer [13] or K = 1 is

used, transmission collisions will certainly occur. To reduce the number of collisions

among nodes with similar reliabilities, we should have K > 1 and these nodes should

independently and randomly choose one of the K slots in which to transmit their

local decisions.

2) Header-time reduction by no retransmission: In the proposed scheme, we are

considering a case of extremely limited resources in which only one single commu-

nication channel and limited collection time are available. Unfortunately, allowing

a retransmission strategy induces significant overhead, including: feedback of ACKs

from the FC, back-off times to sort out collisions, and transmit-receive switching

times for sensor nodes. Therefore, the proposed scheme does not use a retransmission

strategy in the current scenario. Consequently, the sensor nodes operate only in the

transmit mode.

3) Complexity compared with a TDMA-based scheme: We will compare the perfor-

mance of the proposed scheme to that of a TDMA-based scheme, so a comparison of

their complexities is appropriate. Both schemes require the nodes to be able to follow

a specific transmission schedule that has been determined and transmitted to them by

the FC or has been stored in the nodes before deployment. In our proposed scheme,

we assume that the set of reliability thresholds are computed at the FC before being

transmitted to the nodes at the start of the collection period. Thus, the two schemes

have comparable overheads from the point of view of the sensor nodes. We do not

consider how/when to update the reliability thresholds in our algorithm because we
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focus in this work on optimizing the performance over one collection time.

By jointly designing the channel access scheme and the fusion rule, the proposed

scheme addresses: (1) how to best transmit local decisions when resources are limited

to a single communication channel and a fixed collection time, and (2) how to improve

the performance of distributed detection algorithms.

2.1.2 Summary of Results

A distributed detection scheme that uses a reliability-based splitting algorithm in a

frame-based random access channel is modeled, and parameters that optimize its

performance are determined. As the number of reliability intervals used to split the

population is increased, the performance of the scheme improves significantly. The

performance of this scheme is then compared with that of a collision-free (TDMA)

scheme in which information about the reliability of decisions is not available. When

the time to collect decisions is less than a certain threshold, the proposed scheme offers

better performance than the TDMA-based scheme, despite the presence of collisions.

We determine this threshold by deriving the relative efficiency of the two schemes.

We study our proposed scheme in a worst-case scenario: all local decisions that

arrive within a frame are assigned the lowest reliability allowed in that frame. We thus

obtain guaranteed lower bounds on performance. The performance of the proposed

scheme is measured by its detection error probability (DEP), efficacy, and asymptotic

relative efficiency (ARE) with respect to a TDMA-based scheme. Approximations of

the DEP, efficacy, and ARE are derived and shown in (8), (16), and (27), respectively.

These reveal the roles of the proposed scheme’s parameters and variables: {r̂m}, M ,

N , T , SNR, random access (the probability of successful transmission), and noise

distribution. We, thus, use these approximations of the DEP, efficacy, and ARE to

answer the following questions.

1) What are the optimal and possibly suboptimal but good reliability thresholds?:
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The effects of the thresholds {r̂m} on the DEP (8) and efficacy (16) are studied.

We have formulated constrained optimization problems in (11) and (19) to find the

thresholds minimizing the DEP (8) and maximizing the efficacy (16), respectively.

Since solving these optimization problems is computationally complex for large M ,

we propose a set of possibly suboptimal reliability thresholds called the maximum-

throughput thresholds, which maximize the channel throughput per time slot. We

find that the maximum-throughput thresholds are optimal in many cases, such as

high SNR or low T , but not in general. Necessary and sufficient conditions for these

maximum-throughput thresholds to be optimal are shown in Sections 2.3.2 and 2.4.2.

Specific numerical values are determined in Section 2.6.

2) Can the proposed scheme achieve any required performance by increasing N for

a fixed T?: We study the efficacy of the proposed scheme to answer this question.

Using the maximum-throughput thresholds and under the considered system model,

the efficacy (22) reveals that if we have
f ′X(x)

fX(x)
→ −∞ as x → ∞, where fX(x) and

f ′X(x) are the noise distribution and its first derivative, respectively, then the proposed

scheme can achieve any value of efficacy by increasing the network size N . This is

important because in the proposed scheme the FC collects only a subset of the most

reliable local decisions.

3) When does the proposed scheme outperform a TDMA-based scheme?: We derive

and study the ARE of the proposed scheme relative to a TDMA-based scheme in

Section 2.5. The ARE shows a tradeoff between an intelligent collection strategy

in which channel collisions are allowed and a random collection strategy in which

transmission times are pre-assigned. The expression of the ARE (27) reveals the

effects of the collection time, the thresholds, and the noise distribution. We use the

ARE to indicate when the proposed scheme asymptotically outperforms a TDMA-

based scheme for collecting local decisions from the nodes. For example, as shown

in Section 2.6.5, when the observation noise is Gaussian, the numerical results show
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Table 2: A summary of key variables and notation.

θ Event strength
nm Number of active nodes in the mth frame
n̄m Expectation of nm
pc Channel cross-over probability
pe,m Probability of local decision error in the mth frame
ps,m Probability of successful transmission in the mth frame
p̄s,m Probability of successful transmission in the mth frame

when the number of active nodes is n̄m
r̂ = {r̂m} Set of reliability thresholds
r̂∗ = {r̂∗m} Set of optimal thresholds
r̂? = {r̂?m} Set of asymptotically optimal thresholds
r̂◦ = {r̂◦m} Set of maximum-throughput thresholds
r̂� = {r̂�m} Set of asymptotic maximum-throughput thresholds
x Observation noise
K Total number of time slots in a frame
Km Minimum value between K and nm
K̄m Minimum value between K and n̄m
M Total number of frames in one collection time
N Total number of nodes in the network
SNR Observation signal-to-noise ratio
T Allowed collection time
W = {Wm} Set of weights
W∗ = {W ∗m} Set of optimal weights
W? = {W ?

m} Set of asymptotically optimal weights

(̆·) Variable inside divided by K
(̌·) Variable inside divided by N
f ′(z) First derivative of f(z) w.r.t. the variable z
f ′′(z) Second derivative of f(z) w.r.t. the variable z

that the proposed scheme asymptotically outperforms the TDMA-based scheme if

T
N
< 0.19 for M = 1 and T

N
< 0.55 as M →∞.

The chapter is organized as follows. Section 2.2 describes the proposed system.

The DEP and its optimal parameters are developed and discussed in Section 2.3. We

investigate the asymptotic performance of the proposed scheme in Section 2.4, where

the efficacy and its optimal parameter values are considered, and Section 2.5, where

the ARE is studied. Numerical results are shown in Sections 2.6. Conclusions are

provided in Section 2.7. To assist the reader, we provide a summary of frequently

used variables and notation in Table 2.
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2.2 System Model

N sensor nodes are spread over an area to detect events of interest. Assume that

the spatially localized and noisy observation y collected by a node is given by:2 H1 :

y = θ + x and H0 : y = x, where θ > 0 and the observation noise x seen by

each node is independent and identically distributed (IID) with probability density

function (PDF) fX(x). Then, the conditional PDFs of y are: f(y|H1) = fX(y − θ)

and f(y|H0) = fX(y).

Assumption 1. We have the following assumptions:

1) The PDF fX(x) considered in this chapter is continuous, symmetric about

zero, unimodal, with infinite support, and has a monotone likelihood ratio3.

2) The probabilities that H1 happens and H0 happens are equally likely: Pr(H1) =

Pr(H0). This can be relaxed but doing so leads to obscuring details. �

Note that The proposed scheme does still work without the “monotone likelihood

ratio” assumption. The derivations of DEP, efficacy, and ARE do not actually require

this property. The proposed scheme, the DEP, efficacy, and ARE are functions of the

given reliability thresholds. However, some analytical expressions and results shown

subsequently would need to be modified and computation of the reliability thresholds

would be more complex.

Based on the above assumptions about fX(x), the absolute value of the log-

likelihood ratio (LLR) of y,
∣∣ log fX(y−θ)

fX(y)

∣∣, is an even function of y with a reflection

point at y = θ
2
. Therefore, instead of the LLR value, we define an observation re-

liability by r = |y − θ
2
|, which is a difference between the observation strength and

the decision’s threshold θ
2
. By defining the reliability in this way, we will later have

2A shift-in-mean model has been extensively used in distributed detection, for example, [13, 19,
22,44,65,92–94].

3The monotone likelihood ratio property gives d
dy

(
fX(y−θ)
fX(y)

)
≥ 0 or, equivalently,

f ′X(x1)
fX(x1)

≥ f ′X(x2)
fX(x2)

for all x1 ≤ x2. It leads to a single contiguous reliability interval, [r̂m, r̂m−1), for each m, which
simplifies our results.
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a clear vision of the effect of the reliability thresholds {r̂m} on the proposed scheme.

Instead of studying the performance of the proposed scheme in an average sense, we

are interested in a worst-case scenario:

Assumption 2. A worst-case scenario – all local decisions that arrive within a frame

are assigned the smallest reliability in the range associated with that frame. �

The worst-case scenario provides lower bounds on performance. More optimistic

but less reliable results would be obtained if the average reliability in the interval

were used instead of the minimum reliability.

2.2.1 Sensor Processing

Each node makes its own local decision u independently using its observation value

y. We have u = 1{y≥ θ
2
} − 1{y< θ

2
}, where the operator 1{A} is 1 if A is true and 0

otherwise. We exploit a set of M reliability thresholds, {r̂m}, for m = 1, . . . ,M ,

where 0 ≤ r̂M ≤ r̂M−1 ≤ . . . ≤ r̂1, to control nodes’ channel access, which will be

explained in Section 2.2.2. Let um be a binary local decision being transmitted in the

mth frame. According to the assumption on the worst-case scenario, the reliability

of um is r̂m. Therefore, we have

Pr(um = 1|H1) =
fX( θ

2
− r̂m)

fX( θ
2
− r̂m) + fX( θ

2
+ r̂m)

, (1)

and Pr(um = −1|H1) = 1− Pr(um = 1|H1). Since fX(x) is symmetric, we also have

Pr(um = −1|H0) = Pr(um = 1|H1) and Pr(um = 1|H0) = Pr(um = −1|H1).

2.2.2 Channel Access Protocol

In the proposed system, the thresholds {r̂m} are used to control nodes’ access to the

channel. Only the nodes with r ∈ [r̂m, r̂m−1) are allowed to send their local decisions

during the mth frame. Since we have 0 ≤ r̂M ≤ r̂M−1 ≤ . . . ≤ r̂1 < ∞, the local

decisions are thus sent to the FC approximately in order from the highest to lowest
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observation reliabilities. Consequently, the number of nodes attempting transmission

in the mth frame, nm, is a random variable. The joint probability mass function

(PMF) of n1, . . ., nM is a multinomial distribution:

f(n) =
N !

n1! · · ·nM+1!
∆F n1

1 (θ) · · ·∆F nM+1

M+1 (θ), (2)

where n = {nm}, nM+1 = N −∑M
m=1 nm, ∆FM+1(θ) = 1−∑M

m=1 ∆Fm(θ), ∆Fm(θ) =

∆F
(+)
m (θ)+∆F

(−)
m (θ), ∆F

(+)
m (θ) =

∫ θ
2

+r̂m−1

θ
2

+r̂m
fX(x) dx, and ∆F

(−)
m (θ) =

∫ θ
2
−r̂m

θ
2
−r̂m−1

fX(x) dx.

The average number of nodes attempting transmission in the mth frame is n̄m =

N∆Fm(θ). Note that because of our assumption about the PDF fX(x), the joint

PMF f(n) does not depend on the hypothesis Hi.

Since the identities and number of the nodes that will attempt transmission in the

mth frame are unknown in advance, we assume a slotted ALOHA protocol enables

them to share the channel. Each node active during this frame will randomly choose

a time slot to send its local decision. Because a collision channel is assumed, a node’s

transmission is successful only if it is the only one to transmit in that slot. Since the

active nodes use a fixed transmission probability strategy, feedback on the channel

state (success, idle, collision) is not necessary. In addition, we do not consider the

case of multi-packet reception in this work. Therefore, the conditional probability of

successful transmission ps,m in any one of the time slots in the mth frame is expressed

as: ps,m = nm
K

(
1− 1

K

)nm−1
, which is a function of the random variable nm. Note that

ps,m is obtained from dividing the expected number of successful time slots (derived

in Appendix B) by K.

The wireless channel is assumed to be a binary symmetric channel (BSC) with

channel crossover probability pc.

2.2.3 Fusion Center Processing

At the FC, the decoded bit at the kth time slot of the mth frame is denoted by

dk,m ∈ {1,−1, 0}, where 0 indicates an unrecoverable bit because of either an idle
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slot or a collision, which happens with probability 1 − ps,m. The bits 1 and −1 are

successfully received with the probability ps,m. In addition to the effect of collisions,

the successfully received bits might still be incorrect because of either channel errors

or observation errors. Similar to many papers, we assume that any um sent at a time

slot in the mth frame has identical PMFs: P (um = 1|Hi) and P (um = −1|Hi), for

i = 0, 1, defined in (1). Therefore, supposing that um is sent, the conditional PMFs

of the decoded bit dk,m can be written as, for i = 0, 1 and j = 1,−1:

Pr(dk,m = j|Hi) = ps,m
[
pcP (um = −j|Hi) + (1− pc)P (um = j|Hi)

]
,

and Pr(dk,m = 0|Hi) = 1 − ps,m. Note that the conditional PMFs of dk,m are inde-

pendent of k. We can show that

Pr(dk,m = 1|H1) = Pr(dk,m = −1|H0) = ps,m(1− pe,m),

Pr(dk,m = 1|H0) = Pr(dk,m = −1|H1) = ps,mpe,m,

where pe,m is the probability of bit error in the mth frame:

pe,m =
pcfX( θ

2
− r̂m) + (1− pc)fX( θ

2
+ r̂m)

fX( θ
2
− r̂m) + fX( θ

2
+ r̂m)

. (3)

After collecting local decisions for T time slots, the FC makes a global decision

UG from the following weighted sum of the number of successfully received/decoded

local decisions:

zps =
M∑
m=1

Wm(am − bm)


> 0, then UG = 1 (H1),

< 0, then UG = −1 (H0),

= 0, randomly choose UG,

(4)

where am is the number of decoded bits equal to 1 obtained from the mth frame, bm

is the number of decoded bits equal to −1 obtained from the mth frame, am + bm ≤

min(K,nm), and Wm is the weight used for local decisions received in the mth frame.

Given the hypothesis Hi, for i = 0 and 1, the joint conditional PMF of am and bm, is

f(am, bm|nm, Hi) =
Km!

am! bm! cm!
(ps,mpm|i)

am
[
ps,m(1− pm|i)

]bm
(1− ps,m)cm , (5)

where Km = min(K,nm), cm = Km − am − bm, and pm|0 = 1− pm|1 = pe,m.
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Remark 1. The optimal fusion rule of the proposed scheme is derived in Appendix C.

We have the following remarks.

1) The optimal fusion rule of the proposed scheme is also in the form of a weighted

sum of am and bm, where the weights are equal to ωm = log
(1−pe,m

pe,m

)
. However, if

we used these weights in (4), it would lead us to an intractable analysis since, for

example, in the approximation of DEP shown in Proposition 1, no terms are canceled

out. Therefore, we leave the weights in (4) as parameters we will optimize later.

2) We will find the optimal weights W ∗
m in the next section. The normalized weight

W ∗m
W ∗M

is slightly different from the normalized weight ωm
ωM

.

3) If f(n) depended on Hi, the optimal fusion rule would be a function of cm

too; i.e., the number of collisions and idle slots in each frame would suggest which

hypothesis is happening. �

2.3 Finite Sample-Size Performance Analysis

In this section, we study the DEP of the proposed scheme for a finite T , the optimal

values of the weights {Wm}, and reliability thresholds {r̂m}. Since a closed-form

expression for the exact DEP has not been found, we use Gaussian approximation to

derive an approximation of the proposed scheme’s DEP. We find the weights {W ∗
m}

that are optimal under this approximation and formulate a constrained optimization

problem to find the optimal thresholds {r̂∗m}.

2.3.1 Derivation of the DEP

The DEP of the proposed scheme is expressed

PE(W, r̂) =
∑
· · ·
∑

n1+...+nM+1=N

PE(W, r̂,n)f(n),

where n = {nm}, W = {Wm}, r̂ = {r̂m}, for m = 1, . . . ,M , and PE(W, r̂,n) is the

DEP depending on the random variables n, and expressed as

PE(W, r̂,n) =
∑
· · ·
∑

a1+b1+c1=K1

· · ·
∑
· · ·
∑

aM+bM+cM=KM

M∏
m=1

f(am, bm|nm, H1)
(
1{zps<0} +

1

2
1{zps=0}

)
,
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We show W and r̂ in the above notation, which will help indicate what W and r̂ we are

using. The number of iterations according to the summations to compute PE(W, r̂) is

equal to
[

(N+M)!
N !M !

][
(K1+2)!

2!K1!

]
· · ·
[

(KM+2)!
2!KM !

]
. Since no closed form of PE(W, r̂) has been

found, an approximation of PE(W, r̂) is derived instead.

Proposition 1. An approximation of PE(W, r̂) can be expressed as

P̃E(W, r̂) = Φ

−
√√√√√ [∑M

m=1WmK̄mp̄s,m(1− 2pe,m)
]2

∑M
m=1W

2
mK̄mp̄s,m

[
1− p̄s,m(1− 2pe,m)2

]
 ,

where Φ(·) is the Gaussian cumulative distribution function, K̄m = min(K, n̄m),

p̄s,m = n̄m
K

(
1− 1

K

)n̄m−1
, n̄m = E{nm}, and E{·} is the expectation operator.

Proof. Please see Appendix D, where the conditional PDF of the test statistic zps is

approximated by its asymptotic distribution, i.e., a Gaussian distribution:

fZ(zps|n, Hi)
approx∼ N

(
µi, σ

2
i

)
, (6)

where µi =
∑M

m=1 WmKmps,m(2pm|i− 1) and σ2
i =

∑M
m=1 W

2
mKmps,m

[
1− ps,m(2pm|i−

1)2
]
. Note that, to obtain the approximation of PE(W, r̂), we also applied Craig’s

formula [25] and Gauss-Hermite quadrature integration.

The optimal weights {W ∗
m} minimizing P̃E(W, r̂) are

W ∗
m =

(1− 2pe,m)

[1− p̄s,m(1− 2pe,m)2]
, (7)

where the proof can be found in Appendix E. Substituting these optimal weights into

P̃E(W, r̂), we have

P̃E(W∗, r̂) = Φ

−
√√√√ M∑

m=1

K̄m
p̄s,m(1− 2pe,m)2

[1− p̄s,m(1− 2pe,m)2]

 , (8)

where W∗ = {W ∗
m}. We notice that p̄s,m(1−2pe,m)2

[1−p̄s,m(1−2pe,m)2]
in (8) is the Deflection Coefficient

(DC) of dk,m, DCm, divided by 4. A higher value of DCm indicates that the detector

has a better ability to distinguish between H1 and H0.
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2.3.2 Optimal and Suboptimal Reliability Thresholds

The reliability thresholds {r̂m} affect the DEP (8) through the variables K̄m, p̄s,m, and

pe,m. The explanations are provided in Appendix F. In summary, varying the relia-

bility thresholds {r̂m} adjusts a tradeoff between the numbers of successfully received

local decisions (K̄mps,m) and the local decision errors (pe,m). To find thresholds {r̂∗m}

that minimize P̃E(W∗, r̂), we formulate a constrained optimization problem, where

constraints are obtained from the following lemma indicating the feasible regions for

{r̂∗m}.

Lemma 1. The reliability thresholds {r̂∗m} that minimize P̃E(W∗, r̂) must satisfy, for

all m, ∫ θ
2
−r̂∗m

θ
2
−r̂∗m−1

fX(x) dx+

∫ θ
2

+r̂∗m−1

θ
2

+r̂∗m

fX(x) dx ≤ K

N
, (9)

where r̂∗0 =∞.

Proof. Please see Appendix F.

Lemma 1 implies that the optimal average number of active nodes in any frame

must be less than or equal to K. Therefore, when the optimal thresholds are used,

the average number of active nodes in the proposed scheme is independent of the size

of the network N . An immediate result is the value of r̂∗M , which is shown below.

Corollary 1. If the optimal reliability thresholds {r̂∗m} are used, r̂∗M ≥ r̂‡, where r̂‡

satisfies ∫ θ
2
−r̂‡

−∞
fX(x) dx+

∫ ∞
θ
2

+r̂‡
fX(x) dx =

T

N
. (10)

Proof. The result is given by Lemma 1.

Therefore, from (8), Lemma 1, and Corollary 1, the optimal thresholds {r̂∗m} can

27



be obtained by solving the following constrained optimization problem:

max
{r̂1,...,r̂M}

M∑
m=1

n̄m
p̄s,m(1− 2pe,m)2

[1− p̄s,m(1− 2pe,m)2]
(11)

s. t.

∫ θ
2
−r̂m

θ
2
−r̂m−1

fX(x) dx+

∫ θ
2

+r̂m−1

θ
2

+r̂m

fX(x) dx ≤ K

N
, ∀m,

r̂‡ ≤ r̂M ≤ r̂M−1 ≤ . . . ≤ r̂1 <∞,

where r̂0 = r̂∗0 = ∞. Because the thresholds r̂‡ depend on T in addition to the

noise distribution fX(x), the collection time T affects the choices of the optimal

thresholds in the proposed scheme. For any T < N , we can restate that, unlike a

quantization process [40,58,63,78], where the optimal thresholds depend on the whole

noise distribution, the proposed scheme’s optimal thresholds are characterized by the

tails of the noise distribution once T is specified. Recall that we assumed the noise

distribution has a monotone likelihood ratio; otherwise, the optimal thresholds will

be characterized by other parts of the PDF.

An analytical solution to Problem (11) has not been found. Numerical methods

(for finding the optimal solution) and suboptimal solutions are studied instead [40,58,

63,78]. Greedy algorithms similar to [78, Section III.A] and [45, Algorithm 2] can be

applied to find a candidate (probably, local optimum) of the set of optimal thresholds

{r̂∗m}.

We now introduce a set of possibly suboptimal thresholds {r̂◦m}, the maximum-

throughput thresholds.

Definition 1. The maximum-throughput thresholds {r̂◦m} are the thresholds satisfy-

ing, for all m = 1, . . ., M ,∫ θ
2
−r̂◦m

θ
2
−r̂◦m−1

fX(x) dx+

∫ θ
2

+r̂◦m−1

θ
2

+r̂◦m

fX(x) dx =
K

N
, (12)

and, 0 ≤ r̂◦M ≤ r̂◦M−1 ≤ . . . ≤ r̂◦1 < r̂◦0 =∞. �

By using the thresholds {r̂◦m}, the average number of nodes participating in each

frame is equal to the number of time slots, K. According to the proposed scheme’s
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channel access protocol (Section 2.2.2), the active nodes in a frame will attempt to

send their decisions with the optimal probability of successful transmission [7]. As a

result, using the thresholds {r̂◦m} maximizes the channel throughput. An important

benefit of the thresholds {r̂◦m} is that they are easily found by using (12).4 However,

in general, as shown in Lemma 1, the maximum throughput does not guarantee

minimization of the DEP of the proposed scheme since the values of the probabilities

{pe,m} have been compromised. From the optimization problem in (11), necessary

conditions for the thresholds {r̂◦m} to be optimal can be shown below.

Proposition 2. If the thresholds r̂◦ = {r̂◦m} are optimal, then λm(r̂◦) ≥ 0, for all m,

where

λm(r̂◦) = −
M∑
i=m

∇(θ)
i (r̂◦)[

fX
(
θ
2
− r̂◦i

)
+ fX

(
θ
2

+ r̂◦i
)] , (13)

∇(θ)
i (r̂◦) =

[
4K
N

(W ∗i )2

(1−2pe,i)
U1,i −W ∗

i U2,iU3,i

+W ∗
i+1U2,iU3,i+1

]
N
(
1− 1

K

)K−1
,

U1,i =
(pc−pe,i)f ′X( θ2−r̂◦i )+(pc+pe,i−1)f ′X( θ2 +r̂◦i )

fX( θ2−r̂◦i )+fX( θ2 +r̂◦i )
,

U2,i = fX
(
θ
2
− r̂◦i

)
+ fX

(
θ
2

+ r̂◦i
)
,

U3,i = (1− 2pe,i) +W ∗
i

[
1 +K ln

(
1− 1

K

)]
,

U3,M+1 = W ∗
M+1 = 0, f ′X(x) = d

dx
fX(x).

Proof. We briefly outline the proof. The Lagrange multipliers that arise when solv-

ing (11) are the variables {λm(r̂◦)} shown in (13), where

∇(θ)
i (r̂◦) =

∂

∂r̂i

M∑
m=1

n̄m
p̄s,m(1− 2pe,m)2

[1− p̄s,m(1− 2pe,m)2]

∣∣∣
r̂i=r̂◦i

.

From the Karush-Kuhn-Tucker (KKT) conditions, when λm(r̂◦) ≥ 0, for all m, the

thresholds {r̂◦m} are KKT points. The derivation of Proposition 2 is straight forward

but tedious and requires a large number of equations. We therefore omit the details.

4The thresholds {r̂◦m} can be computed iteratively; for a given r̂◦m−1, we find r̂◦m.
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Proposition 2 is a tool for the finite sample-size regime to verify whether the

thresholds {r̂◦m} under considered scenarios make the DEP P̃E(W∗, r̂◦) a candidate

for the optimum. The optimal thresholds {r̂∗m} for Gaussian noise are studied in

Section 2.6.2. The numerical results show that the conditions in Proposition 2 are

also sufficient ; i.e., the maximum-throughput thresholds {r̂◦m} are optimal when these

conditions are true.

The conditions in Proposition 2 are also useful in finding the region of T that the

thresholds {r̂◦m} are optimal. When the thresholds {r̂◦m} are not optimal, the DEP

P̃E(W∗, r̂◦) they yield is still very close to the minimum DEP P̃E(W∗, r̂∗). Therefore,

when it is not possible to find the optimal thresholds {r̂∗m} because of computational

complexity (e.g., when M is large), a system designer might choose the thresholds

{r̂◦m}, suffering only a slight performance degradation.

A sufficient condition on of the optimality of the maximum-throughput thresholds

{r̂◦m} is stated in the proposition below, which is very intuitive.

Proposition 3. If we have pe,1 = . . . = pe,M (i.e., all local decisions have the same

reliability), the maximum-throughput thresholds {r̂◦m} are optimal.

Proof. It is obvious from the DEP (8) that if we have pe,1 = . . . = pe,M (i.e., all local

decisions have the same reliability), the maximum-throughput thresholds {r̂◦m} are

optimal since they maximize K̄m and ps,m for all m.

Actually, this condition can be relaxed to pe,1 ≈ . . . ≈ pe,M , which is very likely

to happen when T
N

is small. As shown in Section 2.6.2, the maximum-throughput

thresholds {r̂◦m} are optimal for small T
N

. Note that if the condition pe,1 = . . . = pe,M

is true, there is no benefit to using M > 1.

2.4 Asymptotic Performance Analysis - Efficacy

In this section and the next section, we consider the asymptotic performance of the

proposed scheme when the size of the network is large (N → ∞) and the event
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strength is low (θ → 0). The setup here is different from a traditional asymptotic

analysis in the sense that only a subset of local decisions are collected. Note that

the asymptotic performance as N → ∞ when only the best observation is collected

– called a single-transmission scheme – is studied in [15,52].

Asymptotic analysis has also been used extensively in the study of quantization for

signal detection [40,63], whose optimal quantization thresholds are designed from the

efficacy and overall performance is evaluated based on asymptotic relative efficiency

(ARE). One of the main advantages of asymptotic analysis in this case was that

the absence of θ leads to analytical expressions linking the noise distribution fX(x)

and the parameter values : the optimal weights, optimal thresholds, and suboptimal

thresholds.

In this section, we derive the efficacy of the proposed scheme and use it to find op-

timal weights and thresholds. Furthermore, we will use efficacy to determine whether

the proposed scheme can achieve any efficacy value as N →∞.

For our asymptotic analysis to be meaningful, we must determine how several

variables should behave as a function of N :

1) We set θ = γ√
N

, where γ is a constant [41]. Therefore, we have θ → 0 as

N →∞.

2) As N →∞, we keep the following ratios constant: T
N

= Ť and T
K

= M , where

0 < Ť ≤ 1. Note that, as N →∞, T and K must also approach ∞.

Any variables with the notation (̌·) and (̆·) have been normalized by N and K,

respectively. Since θ → 0, we will be able to clearly see the effect of the noise

distribution.

2.4.1 Derivation of the Efficacy

As discusses above, as N → ∞ we will also have T → ∞, and K → ∞. The test

statistic zps in (4) is asymptotically a Gaussian random variable with the PDF shown
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in (6). Let ξ(W, r̂,n) denote the efficacy of the proposed scheme, which can be

expressed as [41]

ξ(W, r̂,n) = lim
N→∞

1

T

[
∂
∂θ
E{zps|H1}

∣∣
θ=0

]2
Var{zps|H0}|θ=0

(14)

= lim
N→∞

1

4M

{∑M
m=1WmK̆mps,m

[
(1− 2pc)

f ′X(r̂m)

fX(r̂m)

]}2

∑M
m=1W

2
mK̆mps,m

,

where Var{zps|H0} is the variance of zps given H0, and K̆m = min
(
1, nm

K

)
. In the

derivation of (14), since the PDF fX(x) is symmetric about zero (Assumption 1), we

have fX(−r̂m) = fX(r̂m) and f ′X(−r̂m) = −f ′X(r̂m). Note that ξ(W, r̂,n) is a function

of random variables {nm}. Applying similar steps in Appendix E, we can show that

the asymptotically optimal weights W? = {W ?
m}, which maximize ξ(W, r̂,n), are

W ?
m = −f ′X(r̂m)

fX(r̂m)
. With {W ?

m}, we find the efficacy ξ(W?, r̂,n), as shown in the lemma

below.

Lemma 2. With the asymptotically optimal weights {W ?
m}, the efficacy of the pro-

posed scheme can be expressed as

ξ(W?, r̂, ň) =
M

4Ť 2

M∑
m=1

min

(
Ť

M
, ňm

)
ňme

−M
Ť
ňm

[
(1− 2pc)

f ′X(r̂m)

fX(r̂m)

]2

. (15)

Note that ξ(W?, r̂, ň) is a function of random variables {ňm}, where ňm = nm
N

.

Proof. Substituting {W ?
m} into (14), we have

ξ(W?, r̂, ň) = lim
N→∞

1

4M

M∑
m=1

K̆mps,m

[
(1− 2pc)

f ′X(r̂m)

fX(r̂m)

]2

.

Let ňm = nm
N

. We have K̆m = min
(

1, ňmN
T/M

)
= min

(
1, ňM

Ť

)
= M

Ť
min

(
Ť
M
, ňm

)
,

where Ť
M

is the normalized (by N) frame length. Similarly, we have ps,m = ňmN
T/M[(

1− 1
K

)K] ňmNT/M
− 1
K

. As N → ∞, we have K → ∞ and, then, ps,m → M
Ť
ňme

−M
Ť
ñm .

Consequently, we rewrite ξ(W?, r̂, ň) as (15).

Since no closed form of Eň {ξ(W?, r̂, ň)} has been found, we derive an approxi-

mation:
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Proposition 4. An approximation of Eň {ξ(W?, r̂, ň)} can be expressed as

ξ̃(W?, r̂) =
1

4Ť

M∑
m=1

min

(
Ť

M
, 2∆F (+)

m (0)

)
×

M

Ť
2∆F (+)

m (0)e−
M
Ť

2∆F
(+)
m (0)

[
(1− 2pc)

f ′X(r̂m)

fX(r̂m)

]2

. (16)

Proof. We briefly outline the proof. By using the Demoivre-Laplace theorem [61],

the joint PDF of the random variables {ňm} can be approximated as

f(ň1, . . . , ňM) ≈
M∏
m=1

1√
2πσ̌m

e
− (ňm−µ̌m)2

2σ̌2
m , (17)

where σ̌2
m = 2∆F

(+)
m (0)

(
1− 2∆F

(+)
m (0)

)
and µ̌m = 2∆F

(+)
m (0). We then use Gauss-

Hermite quadrature integration along with (17) and apply the same steps shown

in [44, Appendix A].

Notice that: the term 2∆F
(+)
m (0) represents the normalized (by N) number of

active nodes in a frame; the term M
Ť

2∆F
(+)
m (0)e−

M
Ť

2∆F
(+)
m (0) represents the successful

transmission probability when using slotted ALOHA; and the term
[
(1− 2pc)

f ′X(r̂m)

fX(r̂m)

]2

is obtained from
[
d
dθ

(2pe,m − 1)
∣∣
θ=0

]2
.

2.4.2 Optimal and Suboptimal Reliability Thresholds

Similar to Section 2.3, to find the asymptotically optimal thresholds {r̂?m} maximizing

ξ̃(W?, r̂), we formulate a constrained optimization problem, where the constraints

are obtained from the following lemma indicating the feasible region of {r̂?m}.

Lemma 3. The thresholds {r̂?m} maximizing ξ̃(W?, r̂) must satisfy, for all m,∫ r̂?m−1

r̂?m

fX(x) dx = FX(r̂?m−1)− FX(r̂?m) ≤ 1

2

Ť

M
, (18)

where FX(x) is the cumulative distribution function (CDF).

Proof. The proof is similar to that of Lemma 1.
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From Lemma 3, we have
∑M

m=1

[
FX(r̂?m−1)− FX(r̂?m)

]
= 1−FX(r̂?M) ≤ 1

2
Ť , where

FX(r̂?0) = 1. Therefore, the corollary below is obtained.

Corollary 2. If the thresholds {r̂?m} maximizing ξ̃(W?, r̂), are used, we have r̂?M ≥

F−1
X

(
1− 1

2
Ť
)
, where F−1

X (·) denotes the inverse CDF. �

Therefore, from (16), Lemma 3, and Corollary 2, asymptotically optimal thresh-

olds {r̂?m} can be obtained by solving the following constrained optimization problem:

max
{r̂1,...,r̂M}

M∑
m=1

e−
2M
Ť

∆F
(+)
m (0)

[
∆F (+)

m (0)
f ′X(r̂m)

fX(r̂m)

]2

(19)

s. t. FX(r̂m−1)− FX(r̂m) ≤ 1

2

Ť

M
,

F−1
X

(
1− 1

2
Ť
)
≤ r̂M ≤ r̂M−1 ≤ . . . ≤ r̂1 <∞.

The objective function is obtained from the fact that, under these constraints, we

have min
(
Ť
M
, 2∆F

(+)
m (0)

)
= 2∆F

(+)
m (0), and, then, ξ̃(W?, r̂) = (1 − 2pc)

2 M
Ť 2

∑M
m=1

e−
2M
Ť

∆F
(+)
m (0)

[
∆F

(+)
m (0)

f ′X(r̂m)

fX(r̂m)

]2
. Since (1−2pc)

2 M
Ť 2 does not depend on {r̂m}, we omit

it in the expression of the objective function. Note that, according to Corollary 2,

the value of the efficacy is characterized by the tails of the noise distribution fX(x).

We might apply Greedy algorithms similar to [78, Section III.A] and [45, Algo-

rithm 2] to find the asymptotically optimal thresholds {r̂?m}. However, these algo-

rithms might return a set of locally optimal thresholds. In addition, we consider a set

of possibly suboptimal thresholds {r̂�m} called the asymptotic maximum-throughput

thresholds.

Definition 2. Under the low observation SNR regime, the asymptotic maximum-

throughput thresholds {r̂�m} are the thresholds satisfying, for m = 1, . . ., M ,

FX(r̂�m−1)− FX(r̂�m) =
1

2

Ť

M
, (20)

and, 0 ≤ r̂�M ≤ r̂�M−1 ≤ . . . ≤ r̂�1 < r̂�0 =∞. �
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When the thresholds {r̂�m} are used, the areas of the CDF between the two con-

secutive thresholds are equal to half of the normalized frame length. On the other

hand, the expected normalized number of active nodes is equal to the normalized

frame length. From (19), for the low SNR observation, necessary conditions for the

thresholds {r̂�m} to be optimal can be shown below.

Proposition 5. For the low SNR observation, if the asymptotic maximum-throughput

thresholds r̂� = {r̂�m} are optimal, νm(r̂�) ≥ 0, for all m, where

νm(r̂�) = −
M∑
i=m

∇(0)
i (r̂�)

fX(r̂�i )
, (21)

∇(0)
i (r̂�) = 1

2
Ť
M
e−1
(
Ť
M

f ′X(r̂�i )

fX(r̂�i )
V1,i − fX(r̂�i )V2,i

)
,

V1,i =
f ′′X(r̂�i )

fX(r̂�i )
−
[
f ′X(r̂�i )

fX(r̂�i )

]2

,

V2,i =
[
f ′X(r̂�i )

fX(r̂�i )

]2

−
[
f ′X(r̂�i+1)

fX(r̂�i+1)

]2

,
f ′X(r̂�M+1)

fX(r̂�M+1)
= 0.

Proof. The proof is similar to that of Proposition 2. The Lagrange multipliers are

{νm(r̂�)}, where ∇(0)
m (r̂�) = ∂

∂r̂m

∑M
m=1 e

− 2M
Ť

∆F
(+)
m (0)

[
∆F

(+)
m (0)

f ′X(r̂�m)

fX(r̂�m)

]2 ∣∣∣
r̂m=r̂�m

. The

above conditions are from the KKT conditions. Similarly, since the derivation of

Proposition 5 is straight forward but tedious, we omit the details.

As shown in Section 2.6.4, for Gaussian noise, the thresholds {r̂�m} are optimal for

a small Ť and the conditions in Proposition 5 are sufficient. A sufficient condition

for the optimality of the asymptotic maximum-throughput thresholds {r̂�m} can be

stated as below.

Proposition 6. If
f ′X(x)

fX(x)
is a constant for x ≥ F−1

X

(
1− 1

2
Ť
)
, the asymptotic maximum-

throughput thresholds {r̂�m} are optimal.

Proof. When
f ′X(x)

fX(x)
is a constant, the efficacy (16) is a function of min

(
Ť
M
, 2∆F

(+)
m (0)

)
and M

Ť
2∆F

(+)
m (0)e−

M
Ť

2∆F
(+)
m (0), which are maximized at the thresholds {r̂�m}. Note

that this condition is required only for x ≥ F−1
X

(
1 − 1

2
Ť
)
, i.e., a tail of the noise

distribution.

35



Corollary 3. For T
N
→ 0, the maximum-throughput thresholds {r̂�m} are optimal.

Proof. It is a direct result from Proposition 6. For T
N
→ 0, we have x → ∞. The

term
f ′X(x)

fX(x)
is a constant or approaches −∞ as x→∞.

2.4.3 Properties of the Efficacy

In distributed detection using the censoring-sensor or ordered-transmission strategy,

there is an interesting question: Can the proposed scheme achieve any desired per-

formance measure by increasing N for a fixed T , and under what conditions? For

comparison, in a typical distributed detection scheme, N is also the number of local

decisions received at the FC. Therefore, there is no problem achieving a desired per-

formance measure as N → ∞. On the other hand, what we are considering here is

a case in which the number of local decisions received at the FC is fixed (according

to a fixed T ). We can study this behavior in the proposed scheme by letting Ť get

smaller:

Proposition 7.

1) Assume that the maximum-throughput thresholds {r̂�m} are used. The efficacy

is a nonincreasing function of Ť .

2) Assume that the optimal thresholds {r̂?m} or the maximum-throughput thresholds

{r̂�m} are used. If we have
f ′X(x)

fX(x)
→ −∞ as x→∞, the proposed scheme can achieve

any efficacy value as N →∞.

Proof. By substituting the maximum-throughput thresholds {r̂�m} into (16), we have

a nice form:

ξ̃(W?, r̂�) =
(1− 2pc)

2e−1

4M

M∑
m=1

[f ′X(r̂�m)

fX(r̂�m)

]2

. (22)

The thresholds r̂�m depend on Ť as shown in Definition 2. Consider Ť1 and Ť2,

where Ť1 ≤ Ť2. Let {r̂�1,m} and {r̂�2,m} be the corresponding maximum-throughput

thresholds obtained from Ť1 and Ť2, respectively. Therefore, we have r̂�1,1 ≥ r̂�2,1,
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r̂�1,2 ≥ r̂�2,2, . . ., and r̂�1,M ≥ r̂�2,M . Because of the assumption that the PDF fX(x) has

the monotone likelihood ratio:
f ′X(x)

fX(x)
≤ 0 and

f ′X(r̂�1,m)

fX(r̂�1,m)
≤ f ′X(r̂�2,m)

fX(r̂�2,m)
for all m, we have[

f ′X(r̂�1,m)

fX(r̂�1,m)

]2

≥
[
f ′X(r̂�2,m)

fX(r̂�2,m)

]2

for all m. Therefore, we have proved the first statement.

When we let Ť get smaller, r̂�M will get larger. Therefore, if the considered PDF

has the property
f ′X(x)

fX(x)
→ −∞ as x→∞, we have ξ̃(W?, r̂�)→∞. Since ξ̃(W?, r̂?) ≥

ξ̃(W?, r̂�), the condition is also applicable to the optimal thresholds {r̂?m}. In other

words, whether the efficacy of the proposed scheme is bounded can be seen from the

value of
f ′X(x)

fX(x)
as x→∞. Therefore, we have proved the second statement.

Recall that, in the proposed scheme, increasing Ť means that the scheme collects

additional local decisions with lower reliabilities. As shown in the first statement in

the proposition (which considers θ → 0), increasing Ť does not improve the efficacy.

Instead, the efficacy is maximized as Ť → 0, or r̂�M →∞. This conclusion is similar

to the problem considered in [15], where the global decision is made based only on

the most reliable local observation.

2.5 Asymptotic Performance Analysis - ARE

In addition to the DEP and efficacy, we are also interested in the relative efficiency of

the proposed scheme; specifically, the Pittman asymptotic relative efficiency (ARE).

The relative efficiency has been used extensively for performance comparisons between

two schemes. Examples can be found in classic signal detection [63,73] and distributed

signal processing [16, 32, 78]. In this section, we derive the ARE of the proposed

scheme relative to a TDMA-based scheme. For a shared channel, TDMA is a popular

channel access protocol because it completely avoids collisions and can thus achieve

full channel utilization. However, when N > T , without any advance information on

the nodes’ observation reliabilities, a distributed detection scheme based on TDMA

must blindly collect T local decisions out of the N available. The question that

immediately arises is: When is the TDMA scheme outperformed by our proposed
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modification to slotted ALOHA that orders the transmission of decisions by their

reliabilities? The ARE will give this answer by indicating the range of T
N

that the

proposed scheme asymptotically outperforms the TDMA-based scheme. In addition,

the ARE allows us to study the effect of different noise distributions fX(x), as shown

in Section 2.6.5.

2.5.1 Derivation of the ARE

The ARE is defined as

ARE(W, r̂,n) = lim
N→∞

Tts(α, β, θ)

Tps(α, β, θ,W, r̂,n)
, (23)

where Tts(α, β, θ) and Tps(α, β, θ,W, r̂,n) are the collection time for the TDMA-based

scheme and the proposed scheme, respectively, to achieve the same probabilities of

false alarm α and detection β for a given θ. An ARE larger than one indicates that

the proposed scheme requires a smaller collection time than the TDMA-based scheme

to achieve the same probabilities, and, as a result, the proposed scheme offers better

performance. The expressions of Tts(α, β, θ) and Tps(α, β, θ,W, r̂,n) are derived in

the lemmas below. The proofs of Lemmas 4 and 5 can be executed in a manner

similar to that shown in [29].

Lemma 4. Consider distributed detection using TDMA with N identical nodes in

the network. The noisy observation is defined in Section 2.2, and the local decision

rule is u = 1{y≥θ/2} − 1{y<θ/2}. The local decisions are sent to the FC according to

a pre-assigned order to avoid collisions. The FC’s test statistic is a sum of the local

decisions. The asymptotic distribution given Hi of the test statistic is a Gaussian

distribution with mean µtdma,i = Tpi and variance σ2
tdma,i = Tpi(1 − pi), where p0 =

1 − p1 = p̄e and p̄e = pcFX( θ
2
) + (1 − pc)

[
1 − FX( θ

2
)
]
. Asymptotically, the collection

time to achieve a probability of false alarm α and a probability of detection β is

Tts(α, β, θ) =
p̄e(1− p̄e)
(1− 2p̄e)2

[Φ−1(1− α)− Φ−1(1− β)]2, (24)
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where Φ(·) is the Gaussian CDF. �

Lemma 5. With the optimal weights W∗ = {W ∗
m} (shown in Section 2.3) and thresh-

olds r̂ = {r̂m}, asymptotically, the collection time that the proposed scheme needs to

achieve a probability of false alarm α and a probability of detection β is expressed as

Tps(α, β, θ,W
∗, r̂,n) =

M

4

[
Φ−1(1− α)− Φ−1(1− β)

]2×[
M∑
m=1

K̆m
ps,m(1− 2pe,m)

[1− ps,m(1− 2pe,m)2]

]−1

, (25)

where K̆m = min
(
1, nm

K

)
. Note that Tps(α, β, θ,W

∗, r̂,n) is a function of random

variables {nm}. �

From (24) and (25), ARE(W∗, r̂,n) can be shown below.

Proposition 8. With the optimal weights {W ∗
m}, the ARE of the proposed scheme

relative to the distributed detection using TDMA is expressed as

ARE(W∗, r̂, ň) =
M

4Ť 2

[
1

fX(0)

]2 M∑
m=1

min

(
Ť

M
, ňm

)
ňme

−M
Ť
ňm

[
f ′X(r̂m)

fX(r̂m)

]2

, (26)

where Ť = T
N

and ňm = nm
N

.

Proof. Please see Appendix G.

There is no pc in (26), since the channel error affects both schemes equally. Fur-

thermore, unlike conventional ARE values [27,29], which are constants, ARE(W∗, r̂, ň)

is a function of the normalized collection time Ť of the proposed scheme. The effect of

Ť on the ARE will be discussed at the end of this section and shown in Section 2.6.5.

Since there is no closed form of Eň {ARE(W∗, r̂, ň)} has been found, we derive an

approximation, which is shown below.

Proposition 9. An approximation of Eň {ARE(W∗, r̂, ň)} can be expressed as

˜ARE(W∗, r̂) =
M

2Ť 2

[
1

fX(0)

]2 M∑
m=1

min

(
Ť

M
, 2∆F (+)

m (0)

)
×

e−
2M
Ť

∆F
(+)
m (0)∆F (+)

m (0)

[
f ′X(r̂m)

fX(r̂m)

]2

. (27)

39



Proof. The proof is similar to that of Proposition 4.

We see that ˜ARE(W∗, r̂) is a function of ξ̃(W∗, r̂) shown in (16). The optimal

thresholds of ˜ARE(W∗, r̂) are the thresholds {r̂?m} discussed in Section 2.4.2. The

necessary and sufficient conditions provided in Propositions 5 and 6 for the thresholds

{r̂�m} optimizing ˜ARE(W∗, r̂) hold.

Similar to the efficacy, ˜ARE(W∗, r̂) with the thresholds r̂� = {r̂�m} has a nice

form:

˜ARE(W∗, r̂�) =
e−1

4

[
1

fX(0)

]2
1

M

M∑
m=1

{
f ′X(r̂�m)

fX(r̂�m)

}2

. (28)

As M →∞, we have

˜ARE
∞

(W∗, r̂�) =
e−1

4

[
1

fX(0)

]2

EX

{[
f ′X(x)

fX(x)

]2 ∣∣∣∣x ≥ r̂�M

}
,

which is an upper bound of ˜ARE(W∗, r̂�). We see that ˜ARE(W∗, r̂�) consists of three

terms. The term e−1 is the optimal throughput per time slot (of slotted ALOHA)

obtained from use of the thresholds {r̂�m}. The term
[

1
fX(0)

]2

is obtained from the

TDMA-based scheme. Finally, the term 1
M

∑M
m=1

{
f ′X(r̂�m)

fX(r̂�m)

}2

is obtained from the pro-

posed scheme. Since the ARE is a function of the efficacy, Proposition 7 is applicable

to the ARE, too. Specifically, ˜ARE(W∗, r̂�) is a nonincreasing function of Ť (equiv-

alently, a nondecreasing function of r̂�M), and unbounded as Ť → ∞ if
f ′X(x)

fX(x)
→ −∞

as x→∞. These will be shown in Section 2.6.5.

2.5.2 Preferred Collection Time

Our main objective in deriving the ARE is to find the largest normalized collection

time Ť = T
N

for which the proposed scheme outperforms the TDMA-based scheme.

The proposition below provides such a Ť .

Proposition 10. Assume that the optimal threshold {r̂?m} or the maximum-throughput
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thresholds {r̂�m} are used. The proposed scheme asymptotically outperforms the TDMA-

based scheme for any Ť satisfying the following condition:

− f ′X(x)

fX(x)

∣∣∣∣
x=F−1

X (1−0.5Ť )

> 2e
1
2fX(0). (29)

Proof. Condition (29) is directly obtained from (28) with M = 1, and r̂�1 = F−1
X (1−

0.5Ť ). Recall that
f ′X(x)

fX(x)
is a negative value. During the derivation, when we take

a square root, the minus sign has to be added in front of
f ′X(x)

fX(x)
. Since we derive

Condition (29) based on M = 1, the proposed scheme with any M will asymptotically

outperform the TDMA-based scheme for any Ť satisfying Condition (29).

We see that Ť satisfying Condition (29) depends on the noise distribution fX(x).

The effect of the noise distribution will be studied in Section 2.6.5.

2.6 Numerical Results and Discussions

2.6.1 Validation of the DEP Approximation; Comparisons

We investigate the validity of the DEP approximation expressed in (8) and compare

the DEPs of the proposed scheme with a TDMA-based scheme in Fig. 7. The obser-

vation noise x is a Gaussian random variable with zero mean and unit variance. The

maximum-throughput thresholds {r̂◦m} are used. The number of frames M is equal

to 5. The other parameter values are shown in the figure’s caption. In this figure,

we show the DEPs versus the collection time T , where those DEPs are from Monte

Carlo simulations of the TDMA-based scheme (TS-SIM), Monte Carlo simulations of

the proposed scheme (PS-SIM), and the analytical expressions (8) of the proposed

scheme (PS-ANA). The number of Monte Carlo trials is 106 for SNR = −3 and 0

dB, and 107 for SNR = 3 dB. The simulation results PS-SIM are also obtained from

the worst-case assumption, where the error probabilities of local decisions are equal

to (3), and the FC makes a global decision from (4) with the optimal weights {W ∗
m}

defined in (7).

41



20 40 60 80 100 120 140 160
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Collection Time T (Time Slots)

D
et
ec
ti
o
n
E
rr
o
r
P
ro
b
a
b
il
it
y

 

 

OTS-SIM: SNR=−3 dB
TS-SIM: SNR=−3 dB
PS-SIM: SNR=−3 dB
PS-ANA: SNR=−3 dB
TS-SIM: SNR=0 dB
PS-SIM: SNR=0 dB
PS-ANA: SNR=0 dB
TS-SIM: SNR=3 dB
PS-SIM: SNR=3 dB
PS-ANA: SNR=3 dB

Figure 7: We compare the DEPs of the proposed scheme (PS-SIM) with the TDMA-
based scheme (TS-SIM), where both are obtained from simulations. We also validate
the approximation of the proposed scheme’s DEP expressed in (8) by comparing the
DEPs from (8) (PS-ANA) with the proposed scheme’s DEP obtained from simulations
(PS-SIM). The DEP of the oracle TDMA-based scheme (OTS-SIM) for SNR= −3
dB is show as a benchmark. The observation noise is Gaussian with zero mean and
unit variance. The other parameters are set as follows for both the simulations and
analytical results: N = 200, pc = 0.05, {W ∗

m}, {r̂◦m}, and M = 5. The DEPs are
shown for SNR = −3, 0, 3 dB.

In addition, we show the DEP of an oracle TDMA-based scheme (OTS-SIM) for

SNR= −3 dB in Fig. 7. Note that OTS-SIM is obtained from Monte Carlo simulations

with 106 trials. In the oracle TDMA-based scheme, the FC knows the reliabilities of

the nodes’ observations, and perfectly schedules the local-decision transmissions in

descending order of the reliabilities with the collision-free TDMA. Indeed, the oracle

TDMA-based scheme is not practical in our scenario (or, generally, in any scenarios

with large N). However, we use it here as a benchmark where the DEP of a supreme

scheme is. Note that the DEPs of the oracle TDMA-based scheme for SNR= 0 dB

and SNR= 3 dB are omitted since their values are out of the considered range.

As shown in Fig. 7, PS-SIM and PS-ANA from the approximation (8) match quite
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well under the given ranges of the parameter values. Therefore, the DEP approxi-

mation (8), P̃E(W∗, r̂), will be used to investigate the optimal thresholds in the next

subsection.

Comparisons between the DEPs from TS-SIM and PS-SIM demonstrate a signifi-

cant DEP improvement by use of the proposed scheme over the TDMA-based scheme

when T is small. For the TDMA-based scheme, since the reliabilities of the nodes’

observations are not known in advance, the FC must collect T local decisions blindly

from the N deployed nodes (T < N). Consequently, the FC makes a global decision

from a composite of diverse local decision reliabilities using the unweighted version

of the sum of local decisions in (4). In contrast, the proposed scheme’s FC is able to

collect the local decisions in approximately descending order of their reliabilities and

makes a global decision from a weighted sum of the received local decisions. Statis-

tically, since the maximum-throughput thresholds {r̂◦m} are used here, the proposed

scheme’s FC receives e−1 of the T most reliable local decisions. However, the advan-

tage of ordered collection of local decisions decreases when T is large, because most

of the collected local decisions at the end are unreliable and some reliable decisions

have been lost in collisions in earlier frames.

As shown in Fig. 7, we have the following interesting results. First, in the proposed

scheme, there exists an optimal collection time T ∗(θ) such that spending more time

collecting local decisions does not improve the DEP any further. This is also true

when the optimal thresholds {r̂∗m} are used, as shown in the next section. Similar

results are also shown in [65, 81]. In Fig. 7, we notice that T ∗(θ) gets smaller as θ

decreases. Second, let T (θ) be the collection time such that the DEPs of the proposed

scheme and the TDMA-based scheme are equal. We see that the proposed scheme

outperforms the TDMA-based scheme for all T < T (θ). From Fig. 7, T (θ) is a non

decreasing function of the observation SNR. The results here are consistent with the

ARE shown in Section 2.6.5. Asymptotically, as θ → 0, from the ARE results in
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Table 3: For M = 5 and SNR= 5 dB: optimal thresholds, maximum throughput
thresholds, and the necessary conditions (13). The other parameters are N = 100,
pc = 0.05, and {W ∗

m}.

Optimal Thresholds
T r̂∗1 r̂∗2 r̂∗3 r̂∗4 r̂∗5 P̃E(W∗, r̂∗)
20 2.64 2.30 2.07 1.90 1.75 1.42× 10−3

40 2.30 1.90 1.62 1.39 1.19 1.23× 10−4

60 2.07 1.62 1.29 1.01 0.76 4.14× 10−5

80 1.93 1.44 1.08 0.78 0.49 3.97× 10−5

Maximum Throughput Thresholds Conditions (13)
T r̂◦1 r̂◦2 r̂◦3 r̂◦4 r̂◦5 P̃E(W∗, r̂◦) min{λm(r̂◦)}
20 2.64 2.30 2.07 1.90 1.75 1.42× 10−3 26.6
40 2.30 1.90 1.62 1.39 1.19 1.23× 10−4 15.9
60 2.07 1.62 1.29 1.01 0.76 4.14× 10−5 3.8
80 1.89 1.39 1.01 0.68 0.37 4.35× 10−5 −4.6

Section 2.6.5, we have 0.19N ≤ T (0) ≤ 0.55N , depending on M .

2.6.2 Optimal Thresholds

We show the optimal thresholds {r̂∗m} and the DEP P̃E(W∗, r̂∗) in Table 3 for M = 5

and SNR= 5 dB. The optimal thresholds are obtained from the constrained opti-

mization problem (11), where we search all feasible sets of thresholds {r̂m} for the

set of optimal thresholds. Note that we use r̂0 = 5 instead of ∞ and discretize the

reliability value r into discrete values with a resolution of 0.01. For a comparison, we

also show the maximum-throughput thresholds {r̂◦m}, the DEP P̃E(W∗, r̂◦), and the

values of min{λm(r̂◦)} of the necessary conditions in Proposition 2 in those tables.

The rows with min{λm(r̂◦)} < 0 are highlighted. The observation noise x is assumed

to be Gaussian with zero mean and unit variance. The other parameters used are:

N = 100, pc = 0.05.

From Table 3, for a small T , we see that not only the thresholds {r̂◦m} satisfy

the conditions (13), where λm(r̂◦) ≥ 0 for all m, but they are also optimal. These

results indicate that the conditions (13) are sufficient for Gaussian noise. Therefore,

by using the conditions (13), we can also find the optimal thresholds for Gaussian

noise in other scenarios. Even though the thresholds {r̂◦m} are not optimal for a
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Figure 8: τ̌(θ) versus SNR for various M when the observation noise is Gaussian,
N = 1000, and pc = 0.05. The thresholds {r̂◦m} are optimal when Ť ≤ τ̌(θ).

large T , the DEP P̃E(W∗, r̂◦) they yield is only slightly higher than the minimum

DEP P̃E(W∗, r̂∗). For a large T , we notice that the optimal thresholds {r̂∗m} favor an

expected number of active nodes in some frames that is less than K.

Furthermore, the maximum-throughput thresholds are optimal in a larger range of

T as SNR orM increases. This is studied as follows. Let τ(θ) = max {T : λm(r̂◦) ≥ 0,∀m},

τ̌(θ) = τ(θ)
N

, and Ť = T
N

. The variable τ(θ) is the maximum T for which the condi-

tions (13) are still true and τ̌(θ) is its normalized version. In other words, for Gaussian

noise, the thresholds {r̂◦m} are optimal when Ť ≤ τ̌(θ). By using the conditions (13),

we show the relationship among τ̌(θ), M , and SNR in Fig. 8 for Gaussian noise and

N = 1000. It is clear that τ̌(θ) is a nondecreasing function of M and SNR. On the

other hand, at SNR = −10 dB, we obtain τ̌(θ) = 0.238, 0.276, 0.305, and 0.310 for

M = 1, 2, 5, and 10, respectively. Therefore, for Gaussian noise and N = 1000, we

can say that the maximum-throughput thresholds {r̂◦m} are optimal for all Ť ≤ 0.238

when SNR ≥ −10 dB regardless of M .

2.6.3 Effects of M and N

In the proposed scheme, the parameters M and N are choices that a system de-

signer must specify before deploying the network. The effects of these parameters on

P̃E(W∗, r̂◦) are shown in Fig. 9. The thresholds {r̂◦m} are optimal for these scenarios.
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Figure 9: We show the effects of M and N on the DEP of the proposed scheme
P̃E(W∗, r̂◦). The maximum-throughput thresholds {r̂◦m}, which are optimal in this
case, are used. The other parameters are Gaussian noise, T = 50, SNR = 5 dB, and
pc = 0.05.

Table 4: For M = 5: asymptotically optimal thresholds, asymptotic maximum-
throughput thresholds, and the necessary conditions (21).

Asymptotically Optimal Thresholds
Ť r̂?1 r̂?2 r̂?3 r̂?4 r̂?5 ξ(W?, r̂?)
0.2 2.05 1.75 1.55 1.41 1.28 0.1958
0.4 1.80 1.44 1.20 1.02 0.86 0.1207
0.6 1.80 1.35 1.04 0.81 0.61 0.0808
0.8 1.67 1.23 0.94 0.68 0.44 0.0585

Asymptotic Maximum Throughput Thresholds Conditions (21)
Ť r̂�1 r̂�2 r̂�3 r̂�4 r̂�5 ξ(W?, r̂�) min{νm(r̂�)}
0.2 2.05 1.75 1.55 1.41 1.28 0.1958 0.0038
0.4 1.75 1.41 1.17 0.99 0.84 0.1200 −0.0052
0.6 1.55 1.18 0.92 0.71 0.53 0.0802 −0.0160
0.8 1.41 1.00 0.71 0.47 0.26 0.0559 −0.0256

The parameter values are set as follows: T = 50, SNR= 5 dB, and pc = 0.05. Clearly,

increasing M improves P̃E(W∗, r̂◦) by ensuring that the received local decisions are

weighted properly by {W ∗
m}. A large DEP improvement is noticeable when increasing

M = 1 to M = 2 for a low N . This makes it clear that using multiple frames (M > 1)

is beneficial. The proposed scheme exploits an advantage of multi-user diversity: as

N increases, more nodes will experience better observation reliabilities, which leads

to reliability thresholds that yield an improved DEP.
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2.6.4 Asymptotically Optimal Thresholds

We show the asymptotically optimal thresholds {r̂?m} and the efficacy ξ(W?, r̂?) in

Table 4 for M = 5. The optimal thresholds {r̂?m} are obtained by searching all feasible

sets of reliability thresholds for the set of optimal thresholds, where r is discretized

with a resolution of 0.01 and r̂0 = 5. In addition, we show the asymptotic maximum-

throughput thresholds {r̂�m}, the efficacy ξ(W?, r̂�), and min{νm(r̂�)}, where νm(r̂�)

is from (21), for a comparison. The observation noise is Gaussian with zero mean

and unit variance. The rows with min{νm(r̂�)} < 0 are highlighted. The results show

that, for Gaussian noise, the thresholds {r̂�m} are asymptotically optimal for small

Ť , which is consistent with the results in Fig. 8. Similarly, the conditions (21) are

sufficient for Gaussian noise. When the thresholds {r̂�m} are suboptimal, the efficacy

ξ(W?, r̂�) is slightly lower than the maximum efficacy ξ(W?, r̂?).

2.6.5 Asymptotic Relative Efficiency

As shown in Section 2.6.4, using the thresholds {r̂�m} gives a slightly lower efficacy

than the maximum. Therefore, for convenience, we will use the asymptotic maximum-

throughput thresholds {r̂�m} in studying the ARE. We show the relative efficiency of

the proposed scheme relative to the TDMA-based scheme in Table 5. The relative

efficiency here is a ratio of the collection time required by the TDMA-based scheme

to the collection time required by the proposed scheme, when both achieve the same

DEP. These collection times, which are from Monte Carlo simulations, are obtained

from an average of 102 collection times that achieve the specified DEP. The number

of trials to compute a DEP is 104. Note that long simulation running times prohibit

us from showing relative efficiencies at a very low SNRs. The parameters are defined

in the table’s caption. For a comparison, the ARE obtained from the analytical

expression (28) are also shown in the table. We see that the AREs obtained from

(28) are slightly lower than the relative efficiencies from the simulations.
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Table 5: Relative efficiencies from simulations. The parameters are: the desired
DEP ≈ 0.005, 0.01, Ť = 0.05, 0.1, 0.5, M = 5, and Gaussian noise with zero mean
and unit variance. Note that the asymptotic maximum-throughput thresholds are
used.

SNR Ť = 0.05 Ť = 0.1 Ť = 0.5
0.005 0.01 0.005 0.01 0.005 0.01

−10 dB 3.022 3.032 2.353 2.328 0.824 0.812
−15 dB 3.016 3.021 2.316 2.284 0.817 0.797

ARE 2.867 2.188 0.761

Next, we use (28) to study the AREs of two types of noise distributions: Gen-

eral Gaussian and General Logistic distributions. A General Gaussian distribution

is classified as a light-tailed distribution with exponential decay, with zero mean

and unit variance: fGG(x) = κ
2AG(κ)Γ(1/κ)

e
−
[
|x|

AG(κ)

]κ
, where AG(κ) =

√
Γ(1/κ)
Γ(3/κ)

, Γ(t) =∫∞
0
yt−1e−y dy is the gamma function, and κ is the decay rate. Note that, since

f ′GG(x)

fGG(x)
= − κ

AG(κ)
xκ−1, we have

f ′GG(x)

fGG(x)
= − 1√

2
for all x when κ = 1, and

f ′GG(x)

fGG(x)
→ −∞

as x→∞ when κ ≥ 2.

A General Logistic distribution is a heavy-tailed distribution, with zero mean

and unit variance: fGL(x) = κe−κx

(1+e−κx)2 , where κ is the decay rate. Note that since

f ′GL(x)

fGL(x)
= −κ (1−e−κx)

(1+e−κx)
, we have

f ′GL(x)

fGL(x)
→ −κ as x→∞. Recall that an ARE larger than

one indicates that the proposed scheme outperforms the TDMA-based scheme. We

denote the ARE for M = 1 by ˜ARE
1
(W∗, r̂�) and for M → ∞ by ˜ARE

∞
(W∗, r̂�),

which are the lower and upper bounds of ˜ARE(W∗, r̂�) for any M , respectively.

We show ˜ARE
1
(W∗, r̂�) and ˜ARE

∞
(W∗, r̂�) versus the normalized collection time

Ť = T
N

for a General Gaussian distribution in Fig. 10(a). Note that the Y-axis is

shown in log-scale. Fig. 10(a) shows that there is no advantage of using the proposed

scheme over the TDMA-based scheme when κ = 1 (Laplacian distribution) because

we have
f ′GG(x)

fGG(x)
= − 1√

2
for all x. Thus, the ordered collection strategy does not work

in this case. As a result, ˜ARE
1
(W∗, r̂�) and ˜ARE

∞
(W∗, r̂�) are equal to e−1 for all

Ť .

On the other hand, increasing the decay rate (κ = 2, 3) significantly favors the
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performance of the proposed scheme. These results are consistent with those shown

in Section 2.6.1 that, as Ť decreases, the proposed scheme requires a smaller number

of local decisions than the TDMA-based scheme does to achieve the same probability

of error. Since the ARE is obtained under the assumption of a low SNR, slight

improvement is obtained when M →∞.

We also see that, for κ = 2 and 3, as Ť → 0, both ˜ARE
1
(W∗, r̂�) and ˜ARE

∞
(W∗, r̂�)

approach infinity, while both ˜ARE
1
(W∗, r̂�) and ˜ARE

∞
(W∗, r̂�) decrease to some

values less than one as Ť → 1. The ARE shown in Fig. 10(a) gives a criterion,

asymptotically, whether to use the proposed scheme over the TDMA-based scheme.

For example, as shown in Fig. 10(a), for κ = 2 (Gaussian distribution), a system

designer would choose the proposed scheme regardless of M when T
N
< 0.19 since

˜ARE
1
(W∗, r̂�) > 1.

We show ˜ARE
1
(W∗, r̂�) and ˜ARE

∞
(W∗, r̂�) versus Ť for a General Logistic dis-

tribution in Fig. 10(b). Unlike the ARE for a light-tailed distribution, the ARE for a

heavy-tailed distribution is bounded as Ť → 0. Therefore, there exists a finite num-

ber such that increasing N beyond this number only slightly improves the proposed

scheme’s performance. We notice that, for the General Logistic distributions, the

ARE values are identical for the considered values of κ. As shown in Fig. 10(b), a

system designer would use the proposed scheme instead of the TDMA-based scheme

regardless of M when T
N
< 0.18 since ˜ARE

1
(W∗, r̂�) > 1.

2.7 Conclusion

We proposed a reliability-based splitting algorithm using slotted ALOHA for time-

constrained distributed detection. The scheme enables the FC to collect the binary

local decisions in descending order of reliability and then optimally weight the success-

fully received local decisions when fusing them to create the global decision. We de-

rived the DEP, efficacy and ARE (relative to a TDMA-based scheme), and used them
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(a) General Gaussian distribution. If, for example, the decay rate κ is 2, the proposed
scheme is better than the TDMA-based scheme when Ť < 0.19 for M = 1 and Ť < 0.55
for M →∞. Note that the AREs of M = 1 and M →∞ when κ = 1 are identical.
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(b) General Logistic distribution. For all considered decay rates, κ (1, 2, and 3), the
proposed scheme is better than the TDMA-based scheme when Ť < 0.18 for M = 1
and Ť < 0.36 for M →∞. Note that the decay rate κ has no effect on the ARE.

Figure 10: We show the ARE ˜ARE
1
(W∗, r̂�) in (28) and ˜ARE

∞
(W∗, r̂�) versus

the normalized collection time Ť of the proposed scheme for two distributions. An
ARE above one indicates that, asymptotically, the proposed scheme outperforms the
TDMA-based scheme.

to determine the following variables: 1) the optimal thresholds and the maximum-

throughput thresholds; 2) the performance bound as N increases; and, 3) asymptot-

ically preferred collection times. The results are summarized in Section 2.1.2.
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CHAPTER III

COLLISION-AWARE DECISION FUSION IN

DISTRIBUTED DETECTION USING RELIABILITY-

BASED SPLITTING ALGORITHMS

3.1 Introduction

In distributed detection [12,79], a number of sensor nodes are deployed in an area to

monitor the events of interest. The local decisions on these events made by the sensor

nodes are collected by the fusion center (FC) over wireless channels. The FC applies

a decision fusion rule on the received local decisions to make a global decision. The

optimal fusion rules have been derived extensively in many scenarios, for example,

classic optimal fusion rule [18], channel-aware fusion rules [20, 57], topology-aware

fusion rules [4, 68, 75], etc. Most of the work has assumed that the FC is able to

collect all local decisions. However, under limited resources, such as bandwidth,

time, and energy, a sensor-selection strategy must be applied.

Two significant sensor-selection strategies have been proposed: censoring sensor

[65] and ordered transmissions [13], which optimize energy and number of transmission

efficiency. Applying these strategies in a finite-bandwidth system requires a proper

channel access method. Many transmission protocols based on random access have

been introduced for distributed detection that incorporates censoring-sensor/ordered-

transmission strategies [19,44,92,93]. However, in these papers, the FC makes a global

decision based on only successfully received local decisions, while considering packet

collisions to be transmission errors. In fact, these collisions might provide useful

information about the events of interest.

In this chapter, we consider a large, single-hop, wireless sensor network (WSN)
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performing distributed detection with a limited collection time and a shared trans-

mission channel. In this scenario, the FC has a limited time to collect the binary

local decisions, which are sent through a shared transmission channel. Since the FC

is not allowed to collect all local decisions, we apply a sensor-selection strategy called

the reliability-based splitting algorithm [44] to the considered distributed detection.

By applying this algorithm, the sensor nodes are divided into groups according to

their observation reliabilities. The sensor nodes in a group will send their binary

decisions in the same assigned frame by using slotted ALOHA. We derive both op-

timal and suboptimal collision-aware fusion rules, where the FC computes a global

decision from not only the successfully received local decisions but also the numbers

of successful transmission slots and collision slots.1 In addition, we proposed a two-

level reliability-based splitting algorithm, where the sensor nodes are divided into

groups based on both observation reliabilities and local decisions they have made.

As a result, the received local decisions are subframe-dependent and invulnerable to

channel errors. The optimal and suboptimal collision-aware fusion rules are derived

as a function of the numbers of successful and collision time slots. The probabilities

of false alarm and miss detection for these collision-aware fusion rules are derived and

evaluated.

The remainder of this chapter is organized as follows. The system model is pro-

vided in Section 3.2. We derive the collision-aware fusion rules and performance

measures of the distributed detection using the reliability-based splitting algorithm

in Section 3.3. The two-level reliability-based splitting algorithm, its collision-aware

fusion rules, and the performance measures are explained and derived in Section 3.4.

The numerical results are shown in Section 3.5. Finally, conclusions are given in

Section 3.6.

1In the proposed schemes, if we know the numbers of successful and collision time slots, we also
know the number of idle time slots.
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3.2 System Model

We consider a distributed detection system with the following assumptions.

3.2.1 Centralized Fusion System

There are N sensor nodes deployed in an area to monitor events. The FC will broad-

cast an inquiry about an event of interest to start the local-decision collection process.

Each node will make an observation of this event, make a local binary decision, and

send it to the FC via a single-hop wireless channel.2

3.2.2 Transmission Channel

We assume that the sensor nodes share a transmission channel when sending their

binary decisions to the FC. The channel is divided into time slots, where the FC

and sensor nodes know when a time slot begins and ends (i.e., synchronous time). A

local decision will be successfully sent to the FC in a time slot if it is the only one

transmitted in that slot; otherwise, the slot is idle or a collision occurs. We assume

that the collisions are solely from the transmissions of the nodes in the considered

network. The length of each time slot is equal to the packet containing a local decision.

3.2.3 Time Constraint

The FC is allocated T time slots to collect local decisions. We assume that T < N ;

i.e., the FC is not able to collect all local decisions.

3.2.4 Binary Hypothesis Testing Model

We assume that the noisy observation at a sensor node, x, is governed by the following

binary hypothesis model:

H0 : x ∼ fX(x|H0) and H1 : x ∼ fX(x|H1),

2Specifically, each node has made one observation on the event of interest.
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Figure 11: The proposed scheme divides the allocated collection time T into M
frames, where each frame consists of K1 time slots.

where fX(x|Hi) is the conditional probability density function (PDF) of x. The

observations are assumed to be independent and identically distributed (IID) given

Hi, for i = 0, 1. The prior probability that H0 happens, Pr(H0), is equal to P0, and,

the prior probability that H1 happens is equal to P1.

3.3 Decision Fusion in Reliability-Based Splitting Algorithm

3.3.1 Scheme’s Outline

The collection time T is divided into M frames, where each frame consists of K1

time slots; i.e., T = K1M , as shown in Fig. 11. The proposed scheme performs the

following steps. At the beginning of the collection time, the FC broadcasts a set

of reliability thresholds {r̂m}, for m = 1, . . . ,M , where 0 ≤ r̂M ≤ . . . ≤ r̂1 < r̂0,

where r̂0 = ∞.3 Each node makes its own local binary decision and computes the

observation reliability r as shown in Section 3.3.2. The nodes with the observation

reliabilities r ∈ [r̂m, r̂m−1) will send their local decisions in the mth frame, and, then,

leave the decision collection process (i.e., no retransmissions).4 More details on the

channel access protocol are shown in Section 3.3.3. Therefore, the sensor nodes are

divided into M +1 groups, where the nodes whose r < r̂M do not send their decisions

to the FC. At the end of the collection time, the FC makes a global decision based

on the fusion rules presented in Section 3.3.4. The probabilities of false alarm and

miss detection are derived in Section 3.3.5.

3Since we have a fixed collection time, other arrangements are possible. However, those might
introduce a difficult mathematical formulation.

4The nodes whose r̂M ≤ r < r̂m is waiting for their frames.
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3.3.2 Sensor Processing and Observation Reliability

Each node will make a local binary decision u from its observation x by using the

following local decision rule:

log
fX(x|H1)

fX(x|H0)

u=1

≷
u=−1

τ. (30)

where τ is a threshold. Note that all nodes use this decision rule. The reliability of a

local decision is equivalent to the observation reliability, which is defined as follows.

Definition 3 (Observation Reliability). Let x be a local observation. The relia-

bility of the observation x, which is denoted by r, is equal to

r =

∣∣∣∣log
fX(x|H1)

fX(x|H0)
− τ
∣∣∣∣ . (31)

Given the reliabilities rA and rB, where rA ≤ rB, let X (−)(rA, rB) be the set of

observations x whose log fX(x|H1)
fX(x|H0)

∈ (−rB, −rA], and let X (+)(rA, rB) be the set of

observations x whose log fX(x|H1)
fX(x|H0)

∈ [rA, rB). Mathematically, we have

X (−)(rA, rB) =

{
x : −rB < log

fX(x|H1)

fX(x|H0)
− τ ≤ −rA

}
,

X (+)(rA, rB) =

{
x : rA ≤ log

fX(x|H1)

fX(x|H0)
− τ < rB

}
,

and X (rA, rB) = X (−)(rA, rB) ∪ X (+)(rA, rB). �

According to the proposed scheme’s channel access protocol, explained in Sec-

tion 3.3.3, the nodes whose observation reliabilities r ∈ [r̂m, r̂m−1) will send their

decisions to the FC in the mth frame. Let um be a local decision sent to the FC in

the mth frame. We have the following probabilities of false alarm and miss detection

for the local decisions:

αm = Pr(um = 1|H0) =

∫
x∈X (+)(r̂m,r̂m−1)

fX(x|H0) dx∫
x∈X (r̂m,r̂m−1)

fX(x|H0) dx
,

βm = Pr(um = −1|H1) =

∫
x∈X (−)(r̂m,r̂m−1)

fX(x|H1) dx∫
x∈X (r̂m,r̂m−1)

fX(x|H1) dx
.
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3.3.3 Channel Access Protocol

The reliability thresholds {r̂m} are used to control nodes’ access to the channel. Only

the nodes with r ∈ [r̂m, r̂m−1) are allowed to send their local decisions during the mth

frame. In other words, the nodes with almost the same reliability will compete for the

channel with each other. For convenience, we have 0 ≤ r̂M ≤ r̂M−1 ≤ . . . ≤ r̂1 <∞.

As a result, the local decisions are thus sent to the FC approximately in order from

the highest to lowest observation reliabilities. Consequently, the number of nodes

attempting transmission in the mth frame, nm, is a random variable. The joint

probability mass function (PMF) of n = (n1, . . . , nM) is a multinomial distribution:

f(n|Hi) =
N !

n1! · · ·nM+1!
qn1

1|i · · · q
nM+1

(M+1)|i, (32)

where qm|i =
∫
x∈X (r̂m,r̂m−1)

fX(x|Hi) dx, q(M+1)|i = 1 −∑M
m=1 qm|i, and nM+1 = N −∑M

m=1 nm. The average number of nodes attempting transmissions in the mth frame,

n̄m|i, is equal to Nqm|i.

Since the identities and number of the nodes that will attempt transmission in the

mth frame are unknown in advance, we assume a slotted ALOHA protocol enables

them to share the channel. Each node active during this frame will send its decision in

a time slot with the probability 1
K1

. Because a collision channel is assumed, a node’s

transmission is successful only if it is the only one to transmit in that slot. Since the

active nodes use a fixed transmission probability strategy, feedback on the channel

state (success, idle, collision) is not necessary. In addition, we do not consider the

case of multi-packet reception in this work. Therefore, in any one of the time slots in

the mth frame, the conditional probabilities of successful transmission pS|nm , idle time

slot pI|nm , and collision pC|nm can be expressed as: pS|nm = nm
K1

(
1− 1

K1

)nm−1
, pI|nm =(

1− 1
K1

)nm
, and pC|nm = 1−pS|nm−pI|nm . Note that the probabilities pS|nm , pI|nm and

pC|nm depend on Hi through the random variable nm as shown in (32). We assume K1

is large enough such that the probability that two or more successful transmissions
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are from the same node is negligible. Furthermore, the wireless channel is assumed

to be a binary symmetric channel (BSC) with the channel-crossover probability ρ.

3.3.4 Optimal and Suboptimal Fusion Rules

Let dk,m be a bit decoded by the FC at the kth time slot in the mth frame. We have

dk,m ∈ {1,−1, e, 0}. The decoded bits dk,m = e and dk,m = 0 indicate unrecoverable

bits because of a collision time slot and an idle time slot, respectively. Therefore, we

have

Pr(dk,m = e|nm, Hi) = Pr(dk,m = e|nm) = pC|nm ,

Pr(dk,m = 0|nm, Hi) = Pr(dk,m = 0|nm) = pI|nm .

(33)

The decoded bit dk,m ∈ {1, −1} indicates a successfully decoded bit with probability

pS|nm . However, the successfully decoded bits might still be incorrect because of either

channel errors or observation errors. Therefore, we have

Pr(dk,m = −1|nm, H0) = pS(−|0)|nm = pS|nm(1− pE|0,m),

Pr(dk,m = 1|nm, H0) = pS(+|0)|nm = pS|nmpE|0,m,

Pr(dk,m = −1|nm, H1) = pS(−|1)|nm = pS|nmpE|1,m,

Pr(dk,m = 1|nm, H1) = pS(+|1)|nm = pS|nm(1− pE|1,m),

(34)

where pE|0,m = ρ(1−αm) + (1− ρ)αm and pE|1,m = ρ(1− βm) + (1− ρ)βm. Note that

the probabilities above do not depend on k.

Let z
(+)
S,m, z

(−)
S,m, zC,m, and zI,m be the numbers of dk,m = 1, dk,m = −1, dk,m = e,

and dk,m = 0, respectively, in the mth frame. Note that z
(+)
S,m+z

(−)
S,m+zC,m+zI,m = K1.

Equivalently, z
(+)
S,m + z

(−)
S,m, zC,m, and zI,m are the numbers of successful, collision, and

idle time slots, respectively, in the mth frame. We denote zm =
(
z

(+)
S,m, z

(−)
S,m, zC,m, zI,m

)
.

The joint probability f(zm|nm, Hi) is, for i = 0, 1,

f(zm|nm, Hi) =
K1!

z
(+)
S,m! z

(−)
S,m! zC,m! zI,m!

p
z

(+)
S,m

S(+|i)|nm
p
z

(−)
S,m

S(−|i)|nm
p
zC,m
C|nm p

zI,m
I|nm , (35)

where pS(+|i)|nm + pS(−|i)|nm + pC|nm + pI|nm = 1. The optimal fusion rule can be

expressed as follows.
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Proposition 11 (Optimal Collision-Aware Fusion Rule). Consider the proposed

scheme described in Section 3.3.1. At the end of the collection time T , the FC re-

ceives the decoded bits {dk,m} for k = 1, . . . , K1 and m = 1, . . . ,M , which result in

z1, . . . , zM . The optimal fusion rule is a function of both successfully decoded bits and

the numbers of successful and collision time slots:

Λ
(
z1, . . . , zM

)
=

M∑
m=1

[
z

(+)
S,m log

(
1− pE|1,m
pE|0,m

)
+ z

(−)
S,m log

(
pE|1,m

1− pE|0,m

)]

+ log


∑ · · ·∑

n1+...+nM+1=N

∏M
m=1 p

zS,m
S|nmp

zI,m
I|nmp

zC,m
C|nmf(n|H1)∑ · · ·∑

n1+...+nM+1=N

∏M
m=1 p

zS,m
S|nmp

zI,m
I|nmp

zC,m
C|nmf(n|H0)

 H1

≷
H0

log
P0

P1

, (36)

where zS,m = z
(+)
S,m + z

(−)
S,m and zI,m = K1 − zS,m − zC,m.

Proof. From Bayes’ rule, we have

log
f
(
z1, . . . , zM |H1

)
f
(
z1, . . . , zM |H0

) H1

≷
H0

log
P0

P1

. (37)

The conditional probability f(z1, . . . , zM |Hi) is equal to

f(z1, . . . , zM |Hi) =
∑
· · ·
∑

n1+...+nM+1=N

M∏
m=1

f(zm|nm, Hi)f(n|Hi). (38)

By substituting (32), (35) and (38) into (37), and after some mathematical manipu-

lation, we obtain (36).

We see that the optimal fusion rule is aware of the collisions through the term on

the second line in (36). The numerator and denominator of this term are proportional

to the likelihood functions of (z1, . . . , zM) given H1 and H0, respectively. Specifically,

given (z1, . . . , zM), which are those the FC has observed, this term will be positive if

H1 is likely to happen, and negative, otherwise. However, there is a case where the

optimal fusion rule cannot exploit (zC,1, . . . , zC,M) or (zI,1, . . . , zI,M) to differentiate

between H0 and H1.
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Corollary 4 (Special Case). Assume that the conditional PDF fX(x|H0) is a shift-

in-mean version of fX(x|H1). Furthermore, the conditional PDF fX(x|H0) is sym-

metric about its mean. The optimal fusion rule is a function of successfully decoded

bits, which can be written as the following weighted sum:

M∑
m=1

[(
z

(+)
S,m − z

(−)
S,m

)
log

(
1− pE|1,m
pE|0,m

)]
H1

≷
H0

log
P0

P1

. (39)

Proof. From the assumption, we have
∑ · · ·∑

n1+...+nM+1=N

∏M
m=1 p

zS,m
S|nmp

zI,m
I|nmp

zC,m
C|nmf(n|Hi) are

identical for both H0 and H1. Specifically, there is no difference between f(n|H0) and

f(n|H1). Therefore, the term on the third line in (36) is equal to zero. In addition,

we have log
(

1−pE|1,m
pE|0,m

)
= − log

(
pE|1,m

1−pE|0,m

)
.

When N or M is large, the computation of the optimal fusion rule in (36) is quite

complicated, and, then, problematic to the FC. A simple fusion rule that is still aware

of the collisions can be shown below.

Corollary 5 (Suboptimal Collision-Aware Fusion Rule). Consider the dis-

tributed detection using the reliability-based splitting algorithm with a set of reliability

thresholds {r̂m}. Assume that the numbers of active nodes are deterministic. Let nm|i

denote the numbers of active nodes in the mth frame given Hi. The optimal fusion

rule shown in (36) can be expressed as a weighted sum of z
(+)
S,m, z

(−)
S,m, and zC,m:

M∑
m=1

[
WS(+),mz

(+)
S,m +WS(−),mz

(−)
S,m +WC,mzC,m

] H1

≷
H0

Γ1, (40)

where

WS(+),m = log
[(1− pE|1,m

pE|0,m

)(pS|nm|1
pS|nm|0

)(pI|nm|0
pI|nm|1

)]
,

WS(−),m = log
[( pE|1,m

1− pE|0,m

)(pS|nm|1
pS|nm|0

)(pI|nm|0
pI|nm|1

)]
,

WC,m = log
[(pC|nm|1
pC|nm|0

)(pI|nm|0
pI|nm|1

)]
,

Γ1 = log
P0

P1

+K1

M∑
m=1

log
(pI|nm|0
pI|nm|1

)
.
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Proof. The fusion rule in (40) is a direct result from (36) when the numbers of active

nodes {nm} are deterministic.

To compute the weights WS(+),m, WS(−),m, and WC,m, we need to choose nm|i.

As shown in Section 3.5, an intuitive choice is the average number of active nodes,

n̄m|i = Nqm|i.

3.3.5 Performance Measures

The probability of false alarm, α, and the probability of missed detection, β, for the

optimal fusion rule (36) are

α =
∑
· · ·
∑

∑
n=N

∑
· · ·
∑

∑
z1=K1

· · ·
∑
· · ·
∑

∑
zM=K1

M∏
m=1

f(zm|nm, H0)f(n|H0)×

[
1{

Λ(z)>log
P0
P1

} +
1

2
1{

Λ(z)=log
P0
P1

}], (41)

β =
∑
· · ·
∑

∑
n=N

∑
· · ·
∑

∑
z1=K1

· · ·
∑
· · ·
∑

∑
zM=K1

M∏
m=1

f(zm|nm, H1)f(n|H1)×

[
1{

Λ(z)<log
P0
P1

} +
1

2
1{

Λ(z)=log
P0
P1

}], (42)

where
∑

n = n1 + . . . + nM+1 = N ,
∑

zm = z
(+)
S,m + z

(−)
S,m + zI,m + zC,m = K1,

zm =
(
z

(+)
S,m, z

(−)
S,m, zI,m, zC,m

)
, z = (z1, . . . , zM), f(zm|nm, Hi) is shown in (35), f(n|Hi)

is shown in (32), and 1{·} is the indicator function. Note that the numbers of iterations

according to the summations in (41) and (42) are equal to
[

(N+M)!
N !M !

][
(K1+3)!

3!K1!

]M
, which

is highly complicated for a large N , K1, or M .

The probability of false alarm, αSub, and the probability of miss detection, βSub,

for the suboptimal fusion rule (40) can be computed in the same way as shown above.

Because the suboptimal fusion rule (40) is a weighted sum of z
(+)
S,m, z

(−)
S,m, and zC,m,

we can derive asymptotical approximations of αSub and βSub as shown below. The

computations of these approximations are very affordable.

Proposition 12 (Approximated Performance Measures). The probability of

false alarm, αSub, and the probability of miss detection, βSub for the suboptimal fusion
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Cm|i =

K1pS(+|i)|am(1− pS(+|i)|am) −K1pS(+|i)|ampS(−|i)|am −K1pS(+|i)|ampC|am
−K1pS(+|i)|ampS(−|i)|am K1pS(−|i)|am(1− pS(−|i)|am) −K1pS(−|i)|ampC|am
−K1pS(+|i)|ampC|am −K1pS(−|i)|ampC|am K1pC|am(1− pC|am)

 .
(45)

rule (40) can be asymptotically (i.e., when K1 is large) approximated as

αSub ≈ 1−
(

1√
π

)M J1∑
j1=1

· · ·
JM∑
jM=1

ωj1 · · ·ωjM×

Φ
(
G0

(
n̄1|0 +

√
2σ1|0νj1 , . . . , n̄M |0 +

√
2σM |0νjM

))
, (43)

βSub ≈
(

1√
π

)M J1∑
j1=1

· · ·
JM∑
jM=1

ωj1 · · ·ωjM×

Φ
(
G1

(
n̄1|1 +

√
2σ1|1νj1 , . . . , n̄M |1 +

√
2σM |1νjM

))
, (44)

where Φ(·) is the Gaussian cumulative distribution function, n̄m|i = Nqm|i from (32),

σm|i =
√
Nqm|i

(
1− qm|i

)
from (32). The values of Jm, νjm and ωjm are obtained from

Gauss-Hermite quadrature integration, where Jm is the number of sample points, νjm

is the root from Hermite polynomial, and ωjm is the associated weight. The function

Gi(a1, . . . , aM) is

Gi(a1, . . . , aM) =
Γ1 −

∑M
m=1 µm|iW

T
m√∑M

m=1 WmCm|iWT
m

,

where Γ1 is defined in Corollary 5, µm|i is the mean vector given Hi, Cm|i is the

covariance matrix given Hi, and Wm is the weight vector. We have

µm|i =
(
K1pS(+|i)|am , K1pS(−|i)|am , K1pC|am

)
,

Cm|i shown in (45), and Wm =
(
WS(+),m, WS(−),m, WC,m

)
defined in Corollary 5.

Proof. Similar to that in Appendix D, the proof applies the limiting distributions

of (32) and (35), which are Gaussian distributions, Craig’s formula [25], and Gauss-

Hermite quadrature integration.
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3.4 Decision Fusion in Two-Level Reliability-Based Split-
ting Algorithm

In this section, we modify the reliability-based splitting algorithm in such a way

that the sensor nodes are divided into groups based on both observation reliabilities

and local decisions. We call this scheme as the two-level reliability-based splitting

algorithm. The details are explained as follows.

3.4.1 Scheme’s Details

The collection time T is divided into M frames; each frame is divided further into 2

subframes; and each subframe consists ofK2 time slots. The structure of the collection

T is shown in Fig. 12, where T = 2K2M . Note that for a given T , we have K2 = K1

2
.

The proposed scheme performs the following steps. At the beginning of the collection

time, the FC broadcasts a set of reliability thresholds {r̂m}, for m = 1, . . . ,M , where

0 ≤ r̂M ≤ . . . ≤ r̂1 < r̂0, where r̂0 =∞. Each node makes its own local binary decision

and computes the observation reliability r similar to those explained in Section 3.3.2.

The nodes with the observation reliabilities r ∈ [r̂m, r̂m−1) and the observations

x ∈ X (−)(r̂m, r̂m−1) will send their local decisions in the (2m − 1)st subframe, and,

then, leave the decision collection process (i.e., no retransmissions). On the other

hand, the nodes with the observation reliabilities r ∈ [r̂m, r̂m−1) and the observations

x ∈ X (+)(r̂m, r̂m−1) will send their local decisions in the 2mth subframe, and, then,

leave the decision collection process. Note that the nodes with x ∈ X (−)(r̂m, r̂m−1)

will make negative local decisions, while the nodes with x ∈ X (+)(r̂m, r̂m−1) will make

positive local decisions. Therefore, the sensor nodes are divided into 2M + 1 groups,

where the nodes whose r < r̂M do not send their decisions to the FC.

Let nl be the number of nodes that will send their decisions in the lth subframe,

where 1 ≤ l ≤ 2M . Note that the lth subframe is in the
⌈
l
2

⌉
nd frame. We have the

62



1
st
 Subframe

(Decision = -1)

1 2

2
nd

 Subframe

(Decision = +1)

1 2

(2M-1)
st
 

Subframe

(Decision = -1)

1 2

2M
th

 Subframe

(Decision = +1)

1 2

1
st
 Frame M

th
 Frame

Collection Time = T  Time Slots

2
K

2
K

2
K

2
K

Figure 12: The proposed scheme divides the allocated collection time T into M
frames; each frame consists of 2 subframes; and each subframe consists of K2 time
slots. The negative local decisions with the reliabilities r ∈ [r̂m, r̂m−1) will be sent
during the (2m−1)st subframe, while the positive local decisions with the reliabilities
r ∈ [r̂m, r̂m−1) will be sent during the 2mth subframe.

joint PMF of n = (n1, . . . , n2M) as a multinomial distribution:

f(n|Hi) =
N !

n1! · · ·n2M+1!
qn1

1|i · · · q
n2M+1

(2M+1)|i, (46)

where q(2m−1)|i =
∫
x∈X (−)(r̂m,r̂m−1)

fX(x|Hi) dx and q2m|i =
∫
x∈X (+)(r̂m,r̂m−1)

fX(x|Hi) dx,

for 1 ≤ m ≤M . In addition, q(2M+1)|i = 1−∑2M
l=1 ql|i, and n2M+1 = N−∑2M

l=1 nl. The

average number of nodes attempting transmissions in the lth subframe, n̄l|i, is equal to

Nql|i. The nodes attempting transmissions in each subframe will use slotted ALOHA

with the transmission probability 1
K2

to send their decisions; specifically, these nodes

will send their decisions at a time slot with the probability 1
K2

. Therefore, in any

one of the time slots in the lth subframe, the conditional probabilities of successful

transmission pS|nl , idle time slot pI|nl , and collision pC|nl are pS|nl = nl
K2

(
1− 1

K2

)nl−1
,

pI|nl =
(
1− 1

K2

)nl , and pC|nl = 1− pS|nl − pI|nl . At the end of the collection time, the

FC makes a global decision based on the fusion rules presented in Section 3.4.2. The

probabilities of false alarm and miss detection are also derived in Section 3.4.2.

This algorithm exploits the channel activity to differentiate between H0 and H1.

Specifically, as will be shown in the next section, the FC will exploit the numbers

of busy time slots (i.e., successful and collision time slots) in subframes to make a

global decision. For a well-behaved distribution, there are two properties that make

this work. First, if H0 happens, we expect that there are more busy time slots in the

(2m− 1)st subframe than 2mth subframe since more nodes have made negative local

decisions than positive local decisions. Similarly, if H1 happens, we expect that there

63



are more busy time slots in the 2mth subframe than (2m − 1)st subframe. Second,

for a set of reliability thresholds {r̂m} such that 0 ≤ r̂M ≤ . . . ≤ r̂1 <∞, we will have

n̄1|0
n̄2|0
≥ · · · ≥ n̄(2M−1)|0

n̄2M|0
if H0 happens, and

n̄2|1
n̄1|1
≥ · · · ≥ n̄2M|1

n̄(2M−1)|1
if H1 happens.

3.4.2 Optimal Fusion Rule, Suboptimal Fusion Rule, and Performance
Measures

Let dk,l be a bit decoded by the FC at the kth time slot in the lth subframe. Similar

to Section 3.3.4, the FC will decode the received local decisions as 1, −1, 0, and e.

However, since the FC knows that the negative local decisions will be sent during

the odd-number subframe, it will treat all successfully received local decisions as −1.

Similarly, since the FC knows that the positive local decisions will be sent during the

even-number subframe, it will treat all successfully received local decisions as 1. We

can see that the successfully decoded bits are subframe-dependent and invulnerable

to the channel errors. As a result, we have the decoded bit dk,l = {s, 0, e}, where

dk,l = s denotes that dk,l is successfully decoded (no matter it is equal to 1 or −1).

Therefore, we have the following probabilities: Pr(dk,l = s|nl, Hi) = pS|nl , Pr(dk,l =

0|nl, Hi) = pI|nl , and Pr(dk,l = e|nl, Hi) = pC|nl .

Let zS,l, zI,l, and zC,l be the numbers of dk,l = s, dk,l = 0, and dk,l = e, respectively,

in the lth subframe. Note that zS,l + zC,l + zI,l = K2. We denote zl =
(
zS,l, zC,l, zI,l

)
.

The joint probability f(zl|nl, Hi) can be expressed as, for i = 0, 1,

f(zl|nl, Hi) =
K2!

zS,l! zC,l! zI,l!
p
zS,l
S|nl p

zC,l
C|nl p

zI,l
I|nl , (47)

where pS|nl + pC|nl + pI|nl = 1. The optimal fusion rule can be expressed as follows.

Proposition 13 (Optimal Collision-Aware Fusion Rule). Consider the proposed

scheme described in Section 3.4.1. At the end of the collection time T , the FC re-

ceives the decoded bits {dk,l} for k = 1, . . . , K2 and l = 1, . . . , 2M , which result in

z1, . . . , z2M . The optimal fusion rule is a function of the numbers of successful time
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slots, idle time slots, and collision time slots:

log


∑ · · ·∑

n1+...+n2M+1=N

∏2M
l=1 p

zS,l
S|nlp

zI,l
I|nlp

zC,l
C|nlf(n|H1)∑ · · ·∑

n1+...+n2M+1=N

∏2M
l=1 p

zS,l
S|nlp

zI,l
I|nlp

zC,l
C|nlf(n|H0)

 H1

≷
H0

log
P0

P1

. (48)

Proof. The optimal fusion rule (48) is obtained by applying the same steps in the

proof of Proposition 11.

Since the optimal fusion rule (48) has high computational complexity for a large

N or M , we propose a suboptimal but effective fusion rule shown in the corollary

below. To compute the weights WS,l and WC,l in the suboptimal rule (49), we need

to choose nl|i. As shown in Section 3.5, an intuitive choice is the average number of

active nodes, n̄l|i = Nql|i.

Corollary 6 (Suboptimal Collision-Aware Fusion Rule). Consider the dis-

tributed detection described in Section 3.4.1. Assume that the numbers of active nodes

are deterministic. Let nl|i denote the numbers of active nodes in the lth subframe given

Hi. The optimal fusion rule shown in (48) can be expressed as a weighted sum of zS,l

and zC,l:
2M∑
l=1

[
WS,l zS,l +WC,l zC,l

] H1

≷
H0

Γ2, (49)

where WS,l = log
[(pS|nl|1

pS|nl|0

)(pI|nl|0
pI|nl|1

)]
, WC,l = log

[(pC|nl|1
pC|nl|0

)(pI|nl|0
pI|nl|1

)]
, and Γ2 = log P0

P1
+

K2

∑2M
l=1 log

(PI|nl|0
PI|nl|1

)
. �

The probabilities of false alarm and the probabilities of missed detection for the

optimal fusion rule (48) and the suboptimal fusion rule (49) can be derived in a sim-

ilar manner shown in Section 3.3.5. Again, we will face a computation complexity

problem when N , K2, or M is large. It will be shown in Section 3.5 that, under the

considered scenario, the performances of the optimal fusion rule (48) and the subop-

timal fusion rule (49) are very close. Asymptotic approximations of the probabilities

of false alarm and miss detection for the suboptimal fusion rule (49) are shown in the

65



proposition below, which has a reasonable computational complexity. The derivation

of Proposition 14 is similar to that in Proposition 12.

Proposition 14 (Approximated Performance Measures). The probability of

false alarm, αSub, and the probability of miss detection, βSub according to the subopti-

mal rule defined in (49) can be asymptotically (i.e., when K2 is large) approximated

as

αSub ≈ 1−
(

1√
π

)2M J1∑
j1=1

· · ·
J2M∑
j2M=1

ωj1 · · ·ωj2M×

Φ
(
G0

(
n̄1|0 +

√
2σ1|0νj1 , . . . , n̄2M |0 +

√
2σ2M |iνj2M

))
, (50)

βSub ≈
(

1√
π

)2M J1∑
j1=1

· · ·
J2M∑
j2M=1

ωj1 · · ·ωj2M×

Φ
(
G1

(
n̄1|1 +

√
2σ1|1νj1 , . . . , n̄2M |1 +

√
2σ2M |1νj2M

))
, (51)

where Φ(·), n̄l|i, σl|i, Jl, νjl and ωjl are defined similarly to those in Proposition 12.

The function Gi(a1, . . . , a2M) is

Gi(a1, . . . , a2M) =
Γ2 −

∑2M
l=1 µl|iW

T
l√∑2M

l=1 WlCl|iWT
l

,

where Γ2 is defined in Corollary 6, µl|i is the mean vector given Hi, Cl|i is the covari-

ance matrix given Hi, and Wl is the weight vector. We have µl|i =
(
K2pS|al , K2pC|al

)
,

Cl|i =

K2pS|al(1− pS|al) −K2pS|alpC|al

−K2pS|alpC|al K2pC|al(1− pC|al)

 ,
and Wl =

(
WS,l, WC,l

)
defined in Corollary 6. �

3.5 Numerical Results

We use the following shift-in-mean model to evaluate the detection error probabil-

ity (DEP) of the proposed schemes: H0 : x = η, and H1 : x = µ + η, where

µ is a constant, and η is a Gaussian random variable with mean and variance
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equal to zero and σ2, respectively. The prior probabilities Pr(H0) and Pr(H1) are

set to 1
2
. The local decision threshold τ in (30) is set to 0. The reliability of

the observation x is
∣∣∣log fX(x|H1)

fX(x|H0)

∣∣∣ = µ
σ2

∣∣x− µ
2

∣∣. Without loss of generality, in this

case, we define the reliability of the observation x as r =
∣∣x− µ

2

∣∣; i.e., we omit

the scaling factor. Therefore, we have X (−)(r̂m, r̂m−1) =
(
µ
2
− r̂m−1,

µ
2
− r̂m

]
and

X (+)(r̂m, r̂m−1) =
[
µ
2

+ r̂m,
µ
2

+ r̂m−1

)
, where m = 1, . . . ,M . Hence, the DEP of

the distributed detection is equal to the probability of false alarm (or the probabil-

ity of miss detection). For convenience, we will call the proposed scheme using the

reliability-based splitting algorithm in Section 3.3 Scheme I, and the proposed scheme

using the two-level reliability-based splitting algorithm in Section 3.4 Scheme II. We

have K1 = T
M

and K2 = T
2M

. Throughout this performance evaluation, the relia-

bility thresholds {r̂m} are selected such that the expected number of nodes whose

r ∈ [r̂m, r̂m−1) is equal to K1, for all m (if we do not specify otherwise). This set

of reliability thresholds maximizes the throughput in Scheme I [44]. Mathematically,

under this scenario, we choose the reliability thresholds {r̂m} such that, for all m,∫ µ
2
−r̂m

µ
2
−r̂m−1

fX(x|H0) dx+
∫ µ

2
+r̂m−1

µ
2

+r̂m
fX(x|H0) dx = K1

N
[44].

In Fig. 13, we compare the DEPs of a TDMA-based scheme, Scheme I, Scheme II

(using the optimal fusion rule and the suboptimal fusion rule), and the oracle-

TDMA scheme for various observation signal-to-noise ratio (SNR), which is defined

as 10 log10

(
µ2

σ2

)
. The other parameters are specified in the figure’s caption. Note

that under this scenario, the optimal fusion rule and the suboptimal fusion rule of

Scheme I are identical and equal to the fusion rule (39), which makes a global de-

cision based only on the successfully received local decisions. For Scheme II using

the suboptimal fusion rule (49), we use n̄l|i = Nql|i to compute the weights in (49).

In the TDMA-based scheme, the local decisions are sent to the FC in random order

of the reliabilities, while, in the oracle-TDMA scheme, the local decisions are sent

to the FC in descending order of the reliabilities. There are no packet collisions in
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these two schemes. We see that, under this scenario, the DEPs of Scheme II using

the optimal fusion rule and the suboptimal fusion rule are almost identical. Both

Schemes I and II outperform the TDMA-based scheme. However, the performance of

Scheme II is far better than that of Scheme I when the SNR is high. The DEP gap

between Schemes I and II can be interpreted as a value of collision information when

we handle it properly.

We also compare the exact DEPs and the approximated DEPs of Scheme I using

the optimal fusion rule and Scheme II using the suboptimal fusion rule in Fig. 13.

Recall that the optimal fusion rule and the suboptimal fusion rule of Scheme I are

identical. The exact DEPs of Schemes I and II are computed from (41), while the

approximated DEPs of Schemes I and II are obtained from (43) and (50), respectively.

For Scheme I, the parameters Jm, νjm , and ωjm from Gauss-Hermite quadrature in-

tegration are set as follows: Jm = 4 for all m, and (νjm , ωjm) are (0.525, 0.805),

(−0.525, 0.805), (1.651, 0.081), and (−1.651, 0.081). These values are also used in

Scheme II for Jl, νjl , and ωjl . The exact DEP and the approximated DEP of Scheme I

are almost identical. On the other hand, the approximated DEP of Scheme II is a

little bit optimistic when the SNR is large.

In Fig. 14, we show the DEPs of the TDMA-based scheme, Scheme I using the

optimal fusion rule (39) for M = 1 and 2, Scheme II using the suboptimal fusion rule

(49) for M = 1 and 2, and the oracle-TDMA scheme for various N . The parameter

values are shown in the figure’s caption. The DEPs of Schemes I and II are ob-

tained from the approximations (43) and (50), respectively. Scheme I, Scheme II, and

the oracle-TDMA scheme significantly get a benefit from increasing N since more

nodes have highly reliable observations. Increasing M helps to improve the DEPs

of Schemes I and II especially for low N . Note that the improvement gained by

increasing M depends on the shape of the distributions fX(x|Hi).

We study the optimal reliability threshold r̂∗1 when M = 1 and T = 40 in Fig. 15,
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Figure 13: The detection error probabilities (DEPs) of the TDMA-based scheme,
the proposed scheme I, the proposed scheme II (for both optimal and suboptimal
fusion rules), and the oracle-TDMA scheme for various SNR. The other parameters
are N = 50, T = 20, M = 1, ρ = 0.05.
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Figure 14: The detection error probabilities (DEPs) of the TDMA-based scheme,
the proposed scheme I (M = 1 and 2), the proposed scheme II (M = 1 and 2), and the
oracle-TDMA scheme for various N . The other parameters are T = 40, SNR= 0dB,
ρ = 0.05. The DEPs of Schemes I and II are from the approximations.

where we show the DEPs of Scheme I using the optimal fusion rule (39) and Scheme II

using the suboptimal fusion rule (49) versus the expected number of nodes whose

r ∈ [r̂1, ∞). The parameter values are shown in the figure’s caption. As result, we

have K1 = 40 and K2 = 20. Recall that in Figs. 13 and 14, we select {r̂m} such that

the expected number of nodes whose r ∈ [r̂m, r̂m−1) is equal to K1, for all m, which

maximize the throughput of Scheme I. We see that the optimal DEP of Scheme I is
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Figure 15: The detection error probabilities (DEPs) of Scheme I (N = 90 and
150) and Scheme II (N = 90 and 150) versus the expected numbers of nodes whose
r ∈ [r̂1, ∞). The other parameters are T = 40, M = 1, SNR= 0dB, ρ = 0.05. The
DEPs of Schemes I and II are from the approximations.

located where the expected number of nodes whose r ∈ [r̂1, ∞) is less than 40. As a

result, Scheme I prefers more idle time slots than collisions. On the other hand, since

Scheme II exploits the number of busy time slots (i.e., successful and collision time

slots) in making a global decision, the optimal DEP of Scheme II is located where the

expected number of nodes whose r ∈ [r̂1, ∞) is larger than 40 (i.e., there are a lot of

busy time slots in Scheme II).

3.6 Conclusion

We proposed two reliability-based splitting algorithms for distributed detection and

derived the optimal and suboptimal collision-aware fusion rules. In these fusion rules,

the FC will also exploit the numbers of the successful and collision time slots in making

a global decision. Under the considered scenarios, the numerical results showed that

the proposed schemes outperform the TDMA-based scheme. The DEPs gained from

using the optimal and suboptimal fusion rules are almost identical. Therefore, a

system designer might prefer using the suboptimal fusion rules, which are in the form

of a weighted sum, because of their low computation complexity.
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CHAPTER IV

ADAPTIVE RELIABILITY-BASED SPLITTING

ALGORITHMS FOR ORDERED SEQUENTIAL

DETECTION

4.1 Introduction

A popular application of wireless sensor networks (WSNs) is distributed detection

[12,79], where a fusion center (FC) collects the nodes’ local observations on the state

of an event and processes them to make a global decision. Distributed detection

schemes can generally be classified into fixed-sample-size (FSS) detection and the

sequential detection. In FSS detection, the FC will not make a global decision until

after collecting a predefined number of local observations. On the other hand, in

sequential detection, the FC will sequentially compare a test statistic with a stopping

rule, and decide whether to make a global decision or continue the collection process.

It is well known that a class of sequential detection strategies called sequential

probability ratio test (SPRT) [80] requires, on average, a smaller number of obser-

vations than the FSS strategy does to achieve the same probabilities of false alarm

and miss. The average number of observations required by the SPRT can be fur-

ther reduced by incorporating an ordered-transmission strategy [13], where the FC

collects the local observations in descending order of their reliabilities. This strategy

has been applied in many scenarios [37,94], where a transmission protocol to achieve

the ordered-transmission strategy is not considered. However, under a bandwidth

constraint (for example, a shared transmission channel), implementing an ordered-

transmission strategy requires a proper channel access protocol.

One way to achieve an ordered-transmission strategy in a finite-bandwidth system
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is to exploit a random access protocol. Many transmission protocols based on random

access have been introduced for distributed detection that incorporates an ordered-

transmission strategy [19, 44, 92, 93] . In [19, 92], the sensor nodes send their obser-

vations to the FC by using slotted ALOHA. A reliability-based splitting algorithm

for time constrained distributed detection was proposed in [44]. A slotted-ALOHA

protocol with a splitting-tree algorithm for ordering transmissions was introduced

in [93].

In this chapter, we propose an ordered sequential detection based on a joint design

of a reliability-based splitting algorithm [44], an ordered-transmission strategy [13],

and an SPRT [80]. The proposed scheme divides the transmission channel into frames,

where each frame consists of K time slots. At the beginning of each frame, the FC will

sequentially update and announce a reliability threshold, which is used as an admission

control. The reliability threshold will be updated in descending order such that the

observations with the highest reliabilities would be collected earlier. Only nodes that

have observation reliabilities larger than or equal to this reliability threshold and have

not yet successfully sent their observations will attempt transmissions in this frame by

using framed slotted ALOHA. At the end of each frame, the FC will decide whether to

stop the collection process and make a global decision or to continue collecting more

local observations. In addition, a set of suboptimal reliability thresholds is derived,

and the proposed scheme’s performance is evaluated.

The remainder of this chapter is organized as follows. The system model is pro-

vided in Section 4.2. We describe the proposed scheme in Section 4.3, where an

algorithm to compute the reliability thresholds is derived in Section 4.4. The perfor-

mance of the proposed scheme is shown and compared to other related schemes in

Section 4.5. Finally, conclusions are given in Section 4.6.
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4.2 System Model

We consider a distributed detection system with the following assumptions.

4.2.1 Centralized Fusion System

There are N sensor nodes deployed in an area to monitor events. The FC will broad-

cast an inquiry about an event of interest to start the data collection process. Each

node will make an observation of this event; encapsulate it into a data packet; send

it to the FC via a single-hop wireless channel; and, then, leave the collection process

when its packet is sent successfully.1 Note that we assume that the packet length is

long enough that the effect of the observation quantization can be omitted. Further-

more, we do not consider the effect of channel errors here.

4.2.2 Transmission Channel

We assume that the sensor nodes share a transmission channel when sending their data

packets to the FC. The channel is divided into time slots, where the FC and sensor

nodes know when a time slot begins and ends (i.e., synchronous time). A data packet

will be successfully sent to the FC in a time slot if it is the only packet transmitted in

that slot; otherwise the slot is idle or a collision occurs. We assume that the collisions

are solely from the transmissions of the nodes in the considered network. At the

end of each transmission, the FC will send an acknowledgement packet to indicate

whether a data packet was sent successfully or has collided with others. The length

of each time slot is equal to the data packet length plus the acknowledgement packet

length. Therefore, the FC and the nodes are able to monitor the activity on the

channel.

1Specifically, each node has made one observation on the event of interest.
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4.2.3 Binary Hypothesis Testing Model

We assume that the noisy observation at a sensor node, x, is governed by the following

binary hypothesis model:

H0 : x ∼ fX(x|H0) and H1 : x ∼ fX(x|H1),

where fX(x|Hi) is the conditional probability density function (PDF) of x. The

observations are assumed to be independent and identically distributed (IID) given

Hi, for i = 0, 1. The prior probability that H0 happens, Pr(H0), is equal to ν.

4.2.4 Observation Reliability

In detection, the reliability of an observation x can be defined as the magnitude

of the log-likelihood ratio (LLR) of x. Therefore, the observation reliability r of

the observation x is equal to
∣∣∣log fX(x|H1)

fX(x|H0)

∣∣∣. Given the reliabilities rA and rB, where

rA ≤ rB, let X (rA, rB) be the set of observations x whose reliabilities r ∈ [rA, rB).

Mathematically, we have

X (rA, rB) =

{
x : rA ≤

∣∣∣∣ log
fX(x|H1)

fX(x|H0)

∣∣∣∣ < rB

}
. (52)

4.3 Ordered Sequential Detection Using a Reliability-Based
Splitting Algorithm

In this section, we explain the details of the proposed scheme, which is a joint design of

a reliability-based splitting algorithm [44], an ordered-transmission strategy [13], and

an SPRT [80] to achieve ordered sequential detection in a random-access WSN. The

reliability-based splitting algorithm allows the FC to collect the local observations in

descending order of their reliabilities. As a result, the collection process will reach its

stopping condition early. Since the reliability-based splitting algorithm is a random-

access protocol, we apply a retransmission strategy to retrieve collided packets.

In the proposed scheme, the transmission channel that the sensor nodes will use to

send their observations to the FC (as explained in Section 4.2.2) is divided into frames
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Figure 16: The transmission channel of the proposed scheme is divided into frames.
Each frame consists of K time slots.

as shown in Fig. 16. Each frame consists of K time slots. At the beginning of each

frame, the FC will decide to either stop the collection process and, then, make a global

decision, or to continue the collection process with a new reliability threshold. If the

FC continues the collection process, the nodes will follow the channel access protocol

described in Section 4.3.1 to send their observations. The FC will decide whether to

continue or stop the collection process based on the stopping rule in Section 4.3.2.

4.3.1 Channel Access Protocol - Reliability-Based Splitting Algorithm
with Retransmissions

Assume that, at the beginning of the mth frame, that the FC decides to continue the

data collection process, and then selects a reliability threshold r̂m, where r̂m ≤ r̂m−1

and r̂0 =∞. An algorithm to find a suitable reliability threshold r̂m will be introduced

in Section 4.4.2. The reliability threshold r̂m is used as an admission control. Note

that, after each node obtains its observation, it will compute the observation reliability

as explained in Section 4.2.4. The nodes that have reliabilities r ≥ r̂m, and have not

yet successfully sent their data packets will attempt transmissions. These nodes will

randomly choose one of K time slots in the mth frame to send their packets. As

a result, the nodes that have successfully sent their packets to the FC will leave

the collection process. On the other hand, the nodes that have experienced packet

collisions will attempt retransmissions again in the next frame. Since we have . . . ≤

r̂m ≤ . . . ≤ r̂1 < ∞, the FC almost receives the data packets in descending order of

the observation reliabilities. Similar to many papers [92], [93], the reliability threshold

r̂m will be sent to the sensor nodes through an additional control channel.
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4.3.2 Stopping Rule - Sequential Probability Ratio Test

Assume that the (m−1)st frame contains of zS,m−1 successful time slots; equivalently,

the FC has successfully received zS,m−1 data packets. Let xzS,m−1
= (xm−1,1, xm−1,2, . . . ,

xm−1,zS,m−1
) be the corresponding observations in these packets. At the beginning of

the mth frame, the FC will update the value of the LLR as

Lm = Lm−1 +

zS,m−1∑
j=1

log
fX(xm−1,j|H1)

fX(xm−1,j|H0)
, (53)

where Lm−1 is the value of LLR at the beginning of the (m − 1)st frame, and the

summation in (53) is from the IID assumption on the observations in Section 4.2.3.

Thereafter, the FC will make a decision by following the SPRT rule: if Lm ≤ A,

the FC announces H0; if Lm ≥ B, the FC announces H1; and if A < Lm < B,

the FC selects a reliability threshold r̂m, and continues collecting the data packets

in the mth frame. The values of A and B are obtained from Wald’s approximations

[80]: A ≈ log
(

PMiss

1−PFA

)
and B ≈ log

(
1−PMiss

PFA

)
, where PMiss and PFA are the desired

probabilities of miss and false alarm, respectively. Assume that the FC terminates

the collection process at the beginning of the Mth frame. The collection time is equal

to K(M − 1) time slots, where M = min{m ≥ 1 : Lm /∈ (A,B)}. The value M is an

unknown random variable.

4.3.3 Lower Bound of the Average Collection Time

The following proposition provides a lower bound of the proposed scheme’s average

collection time (ACT).

Proposition 15. Let rN0 and rN1 be the observation reliability values such that

N

∫
x∈X (rN0

,∞)

fX(x|H0) log
fX(x|H1)

fX(x|H0)
dx ≈ A, (54)

N

∫
x∈X (rN1

,∞)

fX(x|H1) log
fX(x|H1)

fX(x|H0)
dx ≈ B. (55)
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Let N0 = N
∫
x∈X (rN0

,∞)
fX(x|H0) dx and N1 = N

∫
x∈X (rN1

,∞)
fX(x|H1) dx. A lower

bound of the proposed scheme’s ACT is

ACTLO, PS =
N0Pr(H0) +N1Pr(H1)(

1− 1
K

)K−1
. (56)

Proof. A lower bound of the proposed scheme’s ACT is obtained from the fact that the

lowest ACT of the proposed scheme occurs when the FC collects the smallest number

of observations such that Lm /∈ (A, B) with the optimal probability of successful

transmission per time slot. As a result, this lower bound is obtained from the ACT

of the oracle sequential detection divided by
(
1 − 1

K

)(K−1)
. In the oracle sequential

detection, the FC collects the observations in descending order of reliabilities. From

Wald’s identity, the average LLR given H0 of the oracle sequential detection can be

written as

E
{ N0∑

j=1

log
fX(xj|H1)

fX(xj|H0)

∣∣∣∣xj ∈ X (rN0 ,∞), H0

}
= E

{
N0

∣∣∣x ∈ X (rN0 ,∞), H0

}
E
{

log
fX(x|H1)

fX(x|H0)

∣∣∣∣x ∈ X (rN0 ,∞), H0

}
,

= N

∫
x∈X (rN0

,∞)

fX(x|H0) log
fX(x|H1)

fX(x|H0)
dx. (57)

Let rN0 be the observation value such that (57) is approximately equal to A. We

have N0 defined in the proposition is the average number of observations required to

obtain the average of LLR approximately equal to A when H0 happens. The average

number N1 can be derived in a similar way. Therefore, a lower bound of the oracle

sequential detection’ ACT is equal to N0Pr(H0) +N1Pr(H1), and, as a result, a lower

bound of the proposed scheme’s ACT can be shown as (56).

4.4 Adaptive Reliability Threshold

The performance of the proposed scheme – i.e., the collection time – depends on

the set of reliability thresholds used in the system. The set of optimal reliability

thresholds can be derived from a dynamic programming algorithm, which will map
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the system state to the optimal reliability threshold. However, since the system state

of the proposed scheme (shown in Section 4.4.1) consists of many variables which are

continuous or hidden, the computation of the optimal thresholds is highly compli-

cated. Therefore, we propose a simple but efficient algorithm to derive suboptimal

reliability thresholds instead. This algorithm, which is shown in Section 4.4.2, is

based on the one-step look-ahead (1-SLA) rule. It will be shown in Section 4.5 that

the collection time obtained by using the reliability thresholds from the 1-SLA rule

is very close to the proposed scheme’s optimal collection time.

4.4.1 System State and Evolution

In this section, we introduce the system state at the beginning of the mth frame, sm, of

the proposed scheme, and study its evolution when a reliability threshold r̂m is used.

This relationship will be used to derive the suboptimal reliability threshold based on

the 1-SLA rule in the next section. We define the system state at the beginning of

the mth frame as sm = (b̃m, Ym, γm, νm). The entries of sm are defined as follows: The

variable b̃m is an estimate of the number of backlogged nodes2 at the beginning of the

mth frame. Note that the number of backlogged nodes is partially observable. The

variable Ym is the total number of successful nodes3 up to the beginning of the mth

frame. Specifically, Ym =
∑m−1

i=1 zS,i. The variable γm is the reliability threshold used

in the previous frame, i.e., γm = r̂m−1. The variable νm is the posterior probability

that H0 happens given all previous successfully received observations. Note that, for

m = 1, we have b̃1 = 0, Y1 = 0, γ1 = ∞, and ν1 = ν. In the rest of the chapter,

for clarity, we will write a probability of random variables given the system state

and reliability threshold in the conditional form. This will also be applied to the

expectation.

2A backlogged node is the node who has attempted packet transmissions previously but experi-
enced collisions.

3A successful node is the node who has the successful transmission.
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At the beginning of the mth frame, assume that the system state is sm = (b̃m, Ym,

γm, νm), and the FC continues the collection process using the reliability threshold

r̂m. The system state evolution can be tracked as follows. In the mth frame, there will

be b̃m + nm nodes attempting transmissions, where nm is the number of new active

nodes4. Given the system state sm, the probability of nm new active nodes when the

reliability threshold r̂m is used can be expressed as

f(nm|sm, r̂m) = νm f(nm|s(0)
m , r̂m) + (1− νm) f(nm|s(1)

m , r̂m), (58)

for 0 ≤ nm ≤ N − b̃m − Ym, where s
(i)
m = (b̃m, Ym, γm, Hi), for i = 0, 1, and the

conditional probability of the number of new active nodes is equal to

f(nm|s(i)
m , r̂m) =

(
N − b̃m − Ym

nm

)
qnm(1− q)(N−b̃m−Ym−nm), (59)

where q =
∫
x∈X (r̂m,γm)

fX(x|Hi) dx and X (r̂m, γm) is defined in (52).

These b̃m + nm nodes will randomly choose one of K time slots to send their data

packets. Because of the random access scheme, a frame will consist of successful time

slots, idle time slots, and collision time slots. Let zS,m, zI,m, and zC,m be the numbers

of successful time slots, idle time slots, and collision time slots, respectively, in the

mth frame, where zS,m + zI,m + zC,m = K. Note that the number of successful nodes

(or packets) in this frame is also equal to zS,m. The joint probability that there are

zS,m successful time slots and zI,m idle time slots given the number of active nodes

b̃m + nm is equal to

f(zS,m, zI,m|b̃m + nm) = f(zI,m|zS,m, b̃m + nm) f(zS,m|b̃m + nm), (60)

for 0 ≤ zS,m + zI,m ≤ K, 0 ≤ zS,m ≤ min
(
K, b̃m + nm

)
, 0 ≤ zI,m ≤ K, and we

4A new active node is the node who will send its packet for the first time or, specifically, a node
who has reliability r ∈ [r̂m, γm), where, r̂m ≤ γm.
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have [31, p. 102 and p. 112]

f(zS,m|b̃m + nm) =
(−1)zS,mK!(b̃m + nm)!

zS,m!K(b̃m+nm)

min(K, b̃m+nm)∑
i≥zS,m

(−1)i(K − i)(b̃m+nm−i)

(i− zS,m)!(K − i)!(b̃m + nm − i)!
,

(61)

f(zI,m|zS,m, b̃m + nm) =

(
K − zS,m
zI,m

) zC,m∑
i=0

(−1)i
(
zC,m
i

)(
1− zI,m + i

K − zS,m

)(b̃m+nm)

, (62)

where zC,m = K − zS,m − zI,m. We use zC,m in (62) for brevity.

Assume that we have zS,m successful time slots and zI,m idle time slots during the

mth frame. Furthermore, let the vector xzS,m = (xm,1, xm,2, . . . , xm,zS,m) be the cor-

responding observations in the successfully received packets. At the beginning of the

(m+1)st frame, the FC will update the system state sm+1 = (b̃m+1, Ym+1, γm+1, νm+1)

as follows. The total number of successful nodes is Ym+1 = Ym + zS,m. The value

of γm+1 is equal to r̂m, by the definition. The posterior probability νm+1, which is

defined as Pr(H0|xzS,1 , . . . ,xzS,m), can be computed recursively as [9, p. 266]

νm+1 =
νmfX(xzS,m |H0)

νmfX(xzS,m |H0) + (1− νm)fX(xzS,m |H1)
, (63)

where fX(xzS,m |Hi) = fX(xm,1|Hi) · · · fX(xm,zS,m |Hi), for i = 0, 1, because of the IID

assumption in Section 4.2.3.

To compute an estimate of the number of backlogged nodes, b̃m+1, we have to

update the belief vector βm+1, which consists of βm+1(b), where b ∈ Bm+1 and Bm+1 ={
2zC,m, 2zC,m + 1, . . . , N − Ym − zS,m

}
, i.e., βm+1 =

(
βm+1(2zC,m), βm+1(2zC,m +

1), . . . , βm+1(N −Ym− zS,m)
)
. The support of b starts from 2zC,m because a collision

time slot is from at least two nodes sending their packets in this time slot. The value

βm+1(b) is the posterior probability that the number of backlogged nodes is equal

to b at the beginning of the (m + 1)st frame given the previous zi = (zS,i, zI,i), for

i = 1, . . . ,m. The value of βm+1(b) is computed sequentially as [28]

βm+1(b) =

∑
j∈Bm

Pr
(
bm+1 = b, zm = (zS,m, zI,m)|bm = j, Ym, γm, νm+1, r̂m

)
βm(j)∑

b∈Bm+1

∑
j∈Bm

Pr
(
bm+1 = b, zm = (zS,m, zI,m)|bm = j, Ym, γm, νm+1, r̂m

)
βm(j)

,

(64)
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where

Pr
(
bm+1 = b, zm = (zS,m, zI,m)|bm = j, Ym, γm, νm+1, r̂m

)
= Pr

(
nm + j − zS,m = b, zm = (zS,m, zI,m)|bm = j, Ym, γm, νm+1, r̂m

)
,

= f(zS,m, zI,m|b+ zS,m) Pr(nm = b+ zS,m − j|bm = j, Ym, γm, νm+1, r̂m). (65)

The probability (65) is derived from the evolution of the number of backlogged nodes:

bm+1 = bm+nm−zS,m. The probability Pr(nm = b+zS,m−j|bm = j, Ym, γm, νm+1, r̂m)

can be obtained from (58), where νm+1 is used instead of νm. Therefore, we can

estimate the number of backlogged nodes at the beginning of the (m+ 1)th frame as

b̃m+1 =
⌈∑

b∈Bm+1
b βm+1(b)

⌉
, where d·e is the ceiling function.

4.4.2 One-Step Look-Ahead Rule

In this section, we will find the reliability threshold r̂m by using a simple strategy

based on the 1-SLA rule. Assume that, at the beginning of the mth frame, where the

system state is sm, the FC decides to continue the collection process, i.e., Lm ∈ (A, B).

From the 1-SLA perspective, the FC will sequentially select the reliability threshold

r̂m that maximizes the expectation of the difference
∣∣Lm+1 − Lm

∣∣. Therefore, given

the system state sm, the reliability threshold r̂m can be obtained from

max
r̂m≤γm

E

{∣∣∣∣ zS,m∑
j=1

log
fX(xm,j|H1)

fX(xm,j|H0)

∣∣∣∣
∣∣∣∣∣sm, r̂m

}

= max
r̂m≤γm

[
(1− νm)E

{ zS,m∑
j=1

log
fX(xm,j|H1)

fX(xm,j|H0)

∣∣∣∣s(1)
m , r̂m

}

− νm E
{ zS,m∑

j=1

log
fX(xm,j|H1)

fX(xm,j|H0)

∣∣∣∣s(0)
m , r̂m

}]
. (66)

The expression in (66) is obtained from the fact that the conditional expectation

given H1 is positive, while the conditional expectation given H0 is negative.

By using the IID assumption on the observations in Section 4.2.3 and Wald’s
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identity, the expectations in (66) can be expressed as

E
{ zS,m∑

j=1

log
fX(xm,j|H1)

fX(xm,j|H0)

∣∣∣∣s(i)
m , r̂m

}
= E

{
zS,m

∣∣s(i)
m , r̂m

}
E
{

log
fX(x|H1)

fX(x|H0)

∣∣∣∣s(i)
m , r̂m

}
, (67)

for i = 0, 1. The first term is the expected number of successfully received obser-

vations, while the second term is related to the Kullback - Leibler (KL) divergence

given s
(i)
m and r̂m. For the first term in (67), we can show that

E
{
zS,m

∣∣s(i)
m , r̂m

}
= E

{
E{zS,m|nm}

∣∣∣s(i)
m , r̂m

}
= E

{(
b̃m + nm

)(
1− 1

K

)(b̃m+nm−1
)∣∣∣∣s(i)

m , r̂m

}
, (68)

where E
{

(·)
∣∣s(i)
m , r̂m

}
on the second line is the conditional expectation with respect

to nm, and the conditional probability p(nm|s(i)
m , r̂m) is shown in (59). The derivation

of E{zS,m|nm} =
(
b̃m + nm

)(
1− 1

K

)(b̃m+nm−1
)

can be found in Appendix B.

To compute the second term in (67), we need the conditional probability p(x|s(i)
m , r̂m),

which is quite complicated since a successfully received observation x in this frame

might be from a backlogged node or a new active node. To overcome this problem,

we apply the following assumption.

Assumption 3. The successfully received observations are from the new active nodes.

Specifically, we assume that x ∈ X (r̂m, γm). �

Note that, by using Assumption 3, we underestimate the second term in (67).

However, this gap will be decreased as the number of backlogged nodes decreases. As

a result, we have

E
{

log
fX(x|H1)

fX(x|H0)

∣∣∣∣s(i)
m , r̂m

}
= E

{
log

fX(x|H1)

fX(x|H0)

∣∣∣∣Hi, x ∈ X (r̂m, γm)

}
.

The conditional expectation E
{
·
∣∣Hi, x ∈ X (r̂m, γm)

}
is with respect to x, whose

conditional PDF is equal to fX(x|Hi)
/ ∫

x∈X (r̂m,γm)
fX(x|Hi) dx, for x ∈ X (r̂m, γm).

A summary of the proposed scheme’s procedures is shown in Algorithm 1:
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Algorithm 1 Proposed Scheme

1. m=1.

2. At the beginning of the mth frame, given the system state sm, find the reliability
threshold r̂m from the 1-SLA rule shown in (66).

3. Follow the channel access protocol described in Section 4.3.1.

4. At the end of the mth frame, given zS,m, zI,m and xzS,m , update the system
state to sm+1 as shown in Section 4.4.1 and the LLR value Lm+1 in (53).

5. Follow the stopping rule in Section 4.3.2: if Lm+1 /∈ (A, B), stop the collection
process and announce the corresponding Hi, for i = 0, 1; otherwise, set m =
m+ 1 and go to Step 2).

4.5 Numerical Results

We use the following shift-in-mean model to evaluate the average collection time of

the proposed scheme: H0 : x = η, and H1 : x = µ + η, where µ is a constant

and η is a Gaussian random variable with mean and variance equal to zero and σ2,

respectively. The prior probabilities Pr(H0) and Pr(H1) are set to 1
2
. The reliability

of the observation x is
∣∣∣log fX(x|H1)

fX(x|H0)

∣∣∣ = µ
σ2

∣∣x− µ
2

∣∣. Without loss of generality, in this

case, we define the reliability of the observation x as r =
∣∣x− µ

2

∣∣, i.e., we omit the

scaling factor. Therefore, we have X (r̂m, γm) =
(
µ
2
−γm, µ2 − r̂m

]
∪
[
µ
2

+ r̂m,
µ
2

+γm

)
.

Since the PDF fX(x|H1) is a shifted-version of the PDF fX(x|H0), and the PDF

fX(x|Hi) is symmetric about its mean, (66) is reduced to

max
r̂m≤γm

E

{
zS,m∑
j=1

log
fX(xm,j|H1)

fX(xm,j|H0)

∣∣∣∣s(1)
m , r̂m

}
,

where the expectation can be obtained from (67).

In Fig. 17, we compare the average collection times (ACTs) required by the pro-

posed scheme (K = 5), a conventional SPRT scheme, the oracle SPRT scheme, and

the proposed scheme’s lower bound for various σ2. The system is set up as follows:
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Figure 17: The average collection times of the proposed scheme, the conventional
SPRT scheme, the oracle scheme, and the proposed scheme’s lower bound for various
σ2. Other parameters are: N = 500, PFA = PMiss = 0.001, µ = 1, K = 5.

N = 500 nodes,5 PFA = PMiss = 0.001, and µ = 1. In the conventional SPRT scheme,

the local observations are sent to the FC in random order of the reliabilities, while,

in the oracle SPRT scheme, the local observations are sent to the FC in descending

order of the reliabilities. For both schemes, at the end of each time slot, the FC will

update the LLR upon the received observation and follow the SPRT rule. There are

no packet collisions in these two schemes. The lower bound of the proposed scheme’s

ACT (K = 5) is obtained from (56).

In Fig. 17, when we compare the ACTs between the proposed scheme and the

conventional SPRT scheme, the result shows that the proposed scheme significantly

outperforms the conventional SPRT scheme, even though the proposed scheme ex-

periences packet collisions. The improvement gap increases as we increase the noise

variance because the proposed scheme collects only the most reliable observations.

Recall that the proposed scheme uses the suboptimal reliability threshold derived

from (66). However, we can see that the ACT of the proposed scheme using even this

suboptimal reliability threshold is close to the lower-bound ACT that the proposed

5To avoid the situation where the LLR Lm in (53) is still between A and B even all nodes have
successfully sent their observations to the FC, we study the proposed scheme when N is large.
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Figure 18: The average collection times of the proposed scheme for K = 3, 5, 9.
Other parameters are: N = 500, PFA = PMiss = 0.001, µ = 1.

scheme can achieve. The oracle scheme’s ACT, shown as a reference, when perfect

scheduling allows the FC to collect the local observations in perfectly descending

order and without collisions or idle slots.

The variable K affects the proposed scheme’s ACT on three aspects. First, a

large K helps to estimate the current backlogged nodes b̃m more precisely. Second, a

large K helps to resolve collisions when the actual active nodes in the current frame

are larger than expected. Third, since the proposed scheme can stop the collection

process only at the end of a frame, a large K introduces additional time slots to the

proposed scheme’s ACT. A tradeoff among these aspects is shown in Fig. 18, where the

proposed scheme’s ACTs for K = 3, 5, 9 are compared. When the noise variance σ2 is

small, only a few observations are required to stop the collection process. Therefore,

for example, the proposed scheme with K = 3 gives the lowest ACT when σ2 = 1.

On the other hand, when the noise variance σ2 is large, a long collection process is

required to collect a large number of observations. There are a lot of chances that the

actual active nodes will be larger than expected. The proposed scheme with a larger

K will experience a lower effect of collisions than the proposed scheme with a smaller

K does. As a result, the proposed schemes with K = 5, 9 outperform the proposed

scheme with K = 3 when σ2 is large.
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Figure 19: The average collection times of the proposed scheme, the conventional
SPRT scheme, the oracle scheme for σ2 = 3, σ2 = 8, and various N . Other parameters
are: PFA = PMiss = 0.001, K = 5, µ = 1.

In Fig. 19, we plot the ACTs of the proposed scheme and the conventional SPRT

scheme versus N for σ2 = 3 and σ2 = 8. The other parameters are set up as follows:

PFA = PMiss = 0.001, K = 5 time slots, and µ = 1. The ACT of the oracle scheme

is also shown as a reference. Unlike the conventional SPRT scheme, the proposed

scheme has an advantage when N increases because more nodes will have highly

reliable observations. The improvement by increasing N is quite significant when σ2

is large.

4.6 Conclusion

We proposed an ordered sequential detection scheme for large, single-hop WSNs. Un-

der the considered scenarios, the numerical results showed that the proposed scheme

significantly outperforms the conventional SPRT scheme. Furthermore, even though

the proposed scheme uses a set of suboptimal reliability thresholds, the correspond-

ing ACT is just slightly higher than its lower-bound ACT. Since slotted ALOHA is

used as the transmission protocol, the proposed scheme experiences packet collisions.

In fact, these collisions might infer some useful information on which hypothesis is

happening. We will study how to exploit collisions to improve the proposed scheme’s
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performance in the next chapter. In addition, the framework of the proposed scheme

can be extended to other applications such as estimation and tracking. The proposed

scheme is also applicable to a WSN consisting of a small number of nodes; however,

a modification is needed to avoid the situation where the observations run out before

a decision is made. In this case, each sensor node should make and report a new

observation after a maximum collection time has expired.
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CHAPTER V

ADAPTIVE RELIABILITY-BASED SPLITTING

ALGORITHMS WITH COLLISION INFERENCE FOR

ORDERED SEQUENTIAL DETECTION

5.1 Introduction

An important application of wireless sensor networks (WSNs) is distributed detec-

tion [12, 79], where a fusion center (FC) collects the sensor nodes’ local observations

on the state of an event and processes them to make a global decision. Since it re-

quires, on average, a smaller number of observations than a fixed-sample-size strategy

does to achieve a level of confidence, a sequential probability ratio test (SPRT) [80]

has been studied extensively in distributed detection [77,95]. The average number of

observations required by an SPRT scheme can be further reduced by incorporating

an ordered-transmission strategy [13]. In such strategy, the FC collects the obser-

vations in descending order of their reliabilities, where the reliability of an observa-

tion is the magnitude of the log-likelihood ratio (LLR). To implement an ordered-

transmission strategy in the presence of a bandwidth constrained channel, such as a

single-transmission channel, a proper channel access protocol must be developed.

Random access protocols offer one way to achieve an ordered-transmission strategy

in a finite-bandwidth system [19,44,92,93]. An inherent property of these protocols is,

of course, transmission collisions. Generally, the collisions are treated as transmission

errors and a retransmission strategy is exploited to retrieve the collided packets.

Unfortunately, retransmissions consume both additional time and energy. On the

other hand, in detection, these collisions might provide information about the event

of interest.
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In this chapter, we design an ordered sequential detection algorithm in which the

FC is able to exploit the information in collisions to make a global decision. The

proposed scheme combines a reliability-based splitting algorithm [44], an ordered-

transmission strategy [13], and an SPRT [80]. The transmission channel’s time is

divided into frames – each frame consists of two subframes and each subframe con-

sists of K time slots. At the beginning of each frame, the FC will sequentially update

and announce a reliability threshold that is used as an admission control. The reli-

ability threshold will be lowered with successive frames such that the observations

with the highest reliabilities are collected first. Only the nodes that have observa-

tion reliabilities between the current reliability threshold and the previous reliability

threshold will attempt transmissions in the current frame, using a framed version of

slotted ALOHA. Nodes with a negative LLR will send their observations in the first

subframe, while the nodes with a positive LLR will send their observations in the

second subframe. These nodes will leave the collection process after sending their

observations to the FC; there are no retransmissions. By designing the proposed

scheme in this way, the FC is able to partially retrieve observations in the collided

packets. At the end of each frame, based on the successfully received observations and

these partially retrieved observations, the FC will decide whether to make a global

decision or to continue collecting more local observations. We derive a set of good

but suboptimal set of reliability thresholds for the sequence of frames and evaluate

the performance of the proposed scheme.

The remainder of this chapter is organized as follows. The system model is pro-

vided in Section 5.2. We describe the proposed scheme in Section 5.3, where an

algorithm to compute the reliability thresholds is derived in Section 5.4. The perfor-

mance of the proposed scheme is shown and compared to other related schemes in

Section 5.5. Finally, conclusions are given in Section 5.6.
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5.2 System Model

We consider a distributed detection system with the following assumptions.

5.2.1 Centralized Fusion System

There are N sensor nodes deployed in an area to monitor events. The FC will broad-

cast an inquiry about an event of interest to start the data collection process. Each

node will make an observation of this event, encapsulate it into a data packet, send it

to the FC via a single-hop wireless channel, and then leave the collection process after

it has transmitted its packet.1 Note that we assume that the packet length is long

enough that the effect of the observation’s quantization can be omitted. Furthermore,

we do not consider the effect of channel errors.

5.2.2 Transmission Channel

We assume that the sensor nodes share a transmission channel when sending their

data packets to the FC. The channel is divided into time slots, where the FC and

sensor nodes know when a time slot begins and ends (i.e., synchronous). A data

packet will be successfully sent to the FC in a time slot if it is the only packet

transmitted in that slot; otherwise the slot is idle or a collision occurs.2 At the end of

each transmission, the FC will send an acknowledgement packet to indicate whether

a data packet was sent successfully or has collided with others.3 The length of each

time slot is equal to the data packet length plus the acknowledgement packet length.

Therefore, the FC and the nodes are able to monitor the activity on the channel.

1Specifically, each node makes one observation on the event of interest.
2We assume that the collisions are solely from the transmissions of the nodes in the considered

network.
3Since there are no retransmissions in the proposed scheme, this is an option.
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5.2.3 Binary Hypothesis Testing Model

We assume that the noisy observation at a sensor node, x, is governed by the following

binary hypothesis model:

H0 : x ∼ fX(x|H0) and H1 : x ∼ fX(x|H1),

where fX(x|Hi) is the conditional probability density function (PDF) of x. The

observations are assumed to be independent and identically distributed (IID) given

Hi, for i = 0, 1. The prior probability that H0 happens, Pr(H0), is equal to ν.

5.2.4 Observation Reliability

In detection, the reliability of an observation x can be defined as the magnitude of

the log-likelihood ratio (LLR) of x. Therefore, the observation reliability r of the ob-

servation x is equal to
∣∣∣log fX(x|H1)

fX(x|H0)

∣∣∣. Given the reliabilities rA and rB, where rA ≤ rB,

let X (−)(rA, rB) be the set of observations x whose log fX(x|H1)
fX(x|H0)

∈ (−rB, −rA], and let

X (+)(rA, rB) be the set of observations x whose log fX(x|H1)
fX(x|H0)

∈ [rA, rB). Mathemati-

cally, we have

X (−)(rA, rB) =

{
x : −rB < log

fX(x|H1)

fX(x|H0)
≤ −rA

}
,

X (+)(rA, rB) =

{
x : rA ≤ log

fX(x|H1)

fX(x|H0)
< rB

}
.

(69)

5.3 Proposed Ordered Sequential Detection Algorithm

In this section, we explain the details of the proposed scheme, which combines a

reliability-based splitting algorithm [44], an ordered-transmission strategy [13], and

an SPRT [80] to achieve ordered sequential detection in a random-access WSN. The

reliability-based splitting algorithm allows the FC to collect the local observations

in descending order of their reliability. As a result, the collection process will reach

its stopping condition earlier. The proposed scheme divides the transmission channel

that the sensor nodes use to send their observations to the FC into frames, as shown
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Figure 20: The transmission channel of the proposed scheme is divided into frames.
Each frame is further divided into two subframes called the first and second subframes.
Each subframe consists of K time slots.

in Fig. 20. Each frame is further divided into two subframes, where each subframe

consists of K time slots. At the beginning of each frame, the FC will decide to either

stop the collection process and make a global decision, or to continue the collection

process with a new reliability threshold. If the FC continues the collection process,

the nodes will follow the channel access protocol described in Section 5.3.1 to send

their observations. The FC will decide whether to continue or stop the collection

process based on the stopping rule in Section 5.3.2. We will show in Section 5.3.1

that there is information in packet collisions as well as in successful transmissions. In

Section 5.3.2 we show how the FC can use the number of packet collisions in making

a global decision.

5.3.1 Channel Access Protocol - Reliability-Based Splitting Algorithm

Assume that, at the beginning of the mth frame, the FC decides to continue the data

collection process. It then selects a reliability threshold r̂m, where r̂m ≤ r̂m−1 and

r̂0 = ∞. An algorithm to find a suitable reliability threshold r̂m will be introduced

in Section 5.4.2.

The reliability threshold r̂m is used as an admission control. The nodes that have

the observations x ∈ X (−)(r̂m, r̂m−1) defined in (69) will send their packets in the first

subframe. Each of these nodes will randomly choose one of the K time slots to send

its packet, and leave the collection process afterward. On the other hand, the nodes

that have the observations x ∈ X (+)(r̂m, r̂m−1) defined in (69) will send their packets

in the second subframe. Each of these nodes will randomly choose one of the K time
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slots to send its packet, and leave the collection process afterward. Note that there

are no retransmissions. Similar to many papers [92], [93], the reliability threshold r̂m

will be sent to the sensor nodes through an additional control channel or at the end

of each frame.

According to the transmission protocol above, we can partially retrieve observa-

tions involved in collisions. Given a collision, we know that: a) there are at least

two packets sent in this time slot; b) if the collision is in a slot in the first subframe,

the collided packets will contain observations x ∈ X (−)(r̂m, r̂m−1); c) if the collision

is in a slot in the second subframe, the collided packets will contain observations

x ∈ X (+)(r̂m, r̂m−1). Therefore, we can make the following inference from a collision

time slot.

Assumption 4 (Collision Inference). We can approximate the observations in the

collision time slots as follows. Assume that there are z
(−)
C,m collision time slots in the

first subframe, and z
(+)
C,m collision time slots in the second subframe. There will be

(at least) 2z
(−)
C,m packets collided at the first subframe, and 2z

(+)
C,m packets collided at

the second subframe. Let x̃zC,m be the vector of the retrieved observations from the

collided packets in the mth frame. We have

x̃zC,m = ( x̃(−)
m , . . . , x̃(−)

m ,︸ ︷︷ ︸
2z

(−)
C,m

x̃(+)
m , . . . , x̃(+)

m︸ ︷︷ ︸
2z

(+)
C,m

), (70)

where x̃
(−)
m is the least reliable observation in X (−)(r̂m, r̂m−1), while x̃

(+)
m is the least re-

liable observation in X (+)(r̂m, r̂m−1). Equivalently, x̃
(−)
m is the value of x ∈ X (−)(r̂m, r̂m−1)

such that log fX(x|H1)
fX(x|H0)

= −r̂m. If there are many values satisfying this condition,

we just choose one. Similarly, x̃
(+)
m is the value of x ∈ X (+)(r̂m, r̂m−1) such that

log fX(x|H1)
fX(x|H0)

= r̂m. �
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5.3.2 Stopping Rule - Sequential Probability Ratio Test

Assume that the (m − 1)st frame consists of z
(−)
S,m−1 successful time slots in the first

subframe, z
(+)
S,m−1 successful time slots in the second subframe, z

(−)
C,m−1 collision time

slots in the first subframe, and z
(+)
C,m−1 collision time slots in the second subframe.

Let the observation vector xzS,m−1
consist of the corresponding observations in the

successful time slots. Therefore, we have xzS,m−1
as

(
x

(−)
m−1,1, . . . , x

(−)

m−1,z
(−)
S,m−1

, x
(+)
m−1,1, . . . , x

(+)

m−1,z
(+)
S,m−1

)
, (71)

where x
(−)
m−1,j is the observation in a successful time slot in the first subframe and

x
(+)
m−1,j is the observation in a successful time slot in the second subframe. Further-

more, let the observation vector x̃zC,m−1
be the retrieved observations defined in (70)

from the collision time slots. At the beginning of the mth frame, the FC will update

the value of the LLR as

Lm = Υ(Lm−1,xzS,m−1
, x̃zC,m−1

)

= Lm−1 +

z
(−)
S,m−1∑
j=1

log
fX(x

(−)
m−1,j|H1)

fX(x
(−)
m−1,j|H0)

+

z
(+)
S,m−1∑
j=1

log
fX(x

(+)
m−1,j|H1)

fX(x
(+)
m−1,j|H0)

+ 2r̂m

(
z

(+)
C,m−1 − z

(−)
C,m−1

)
, (72)

where Lm−1 is the value of LLR at the beginning of the (m − 1)st frame, and the

summation in (72) is from the IID assumption on the observations in Section 5.2.3.

The last term is obtained from the LLR of the retrieved observations x̃zC,m−1
:

2z
(−)
C,m−1∑
j=1

log
fX(x̃

(−)
m−1,j|H1)

fX(x̃
(−)
m−1,j|H0)

+

2z
(+)
C,m−1∑
j=1

log
fX(x̃

(+)
m−1,j|H1)

fX(x̃
(+)
m−1,j|H0)

.

From Assumption 4, where, for all j, log
fX(x̃

(−)
m−1,j |H1)

fX(x̃
(−)
m−1,j |H0)

= −r̂m and log
fX(x̃

(+)
m−1,j |H1)

fX(x̃
(+)
m−1,j |H0)

=

r̂m, we have the last term in (72).

Thereafter, the FC will make a decision from the following SPRT rule: if Lm ≤ A,

the FC announces H0; if Lm ≥ B, the FC announces H1; and if A < Lm < B,
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the FC selects a reliability threshold r̂m, and continues collecting the data packets

in the mth frame. The values of A and B are obtained from Wald’s approximation

[80]: A ≈ log
(

PMiss

1−PFA

)
and B ≈ log

(
1−PMiss

PFA

)
, where PMiss and PFA are the desired

probabilities of miss detection and false alarm, respectively. Assume that the FC

terminates the collection process at the beginning of the Mth frame. The collection

time is equal to 2K(M − 1) time slots, where M = min
{
m ≥ 1 : Lm /∈ (A,B)

}
. The

value M is an unknown random variable.

5.4 Adaptive Reliability Threshold

The performance of the proposed scheme - i.e., the collection time - depends on the

set of reliability thresholds used in the system. The set of optimal reliability thresh-

olds can be derived from the dynamic programming algorithm, which will map the

system state to the optimal reliability threshold. However, since the system state of

the proposed scheme (shown in Section 5.4.1) consists of many variables that are con-

tinuous or hidden, the computation of the optimal thresholds is highly complicated.

Therefore, we propose a simple but efficient algorithm to derive suboptimal reliabil-

ity thresholds instead. This algorithm, which is shown in Section 5.4.2, is based on

the one-step look-ahead (1-SLA) rule. It will be shown in Section 5.5 that the pro-

posed scheme using these suboptimal reliability thresholds significantly outperforms

a conventional SPRT scheme.

5.4.1 System State and Evolution

In this section, we introduce the system state at the beginning of the mth frame,

sm, of the proposed scheme, and study its evolution when a reliability threshold r̂m

is used. This relationship will be used to derive the suboptimal reliability threshold

based on the 1-SLA rule in the next section. We define the system state at the

beginning of the mth frame as sm = (Ñm, γm, νm). The entries in sm are defined as

follows. The variable Ñm is an estimate of the residual number of nodes that do not
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attempt transmissions yet. The variable γm is equal to the reliability threshold used

in the previous frame, i.e., r̂m−1. The variable νm is the posterior probability that H0

happens given all previous successfully received observations xzS,j and all previous

retrieved observations x̃zC,j , for j = 1, . . . ,m − 1. Note that, for m = 1, we have

Ñ1 = N , γ1 = ∞, and ν1 = ν. In the rest of the chapter, for clarity, we will write

a probability of random variables given the system state and reliability threshold in

the conditional form. This will also be applied to the expectation.

At the beginning of the mth frame, assume that the system state is sm = (Ñm, γm,

νm), and the FC continues the collection process with the reliability threshold r̂m. The

system state evolution can be tracked as follows. Let n
(−)
m be the number of nodes that

have the observations x ∈ X (−)(r̂m, γm) and n
(+)
m be the number of nodes that have

the observations x ∈ X (+)(r̂m, γm). There will be n
(−)
m nodes attempting transmissions

in the first subframe and n
(+)
m attempting transmissions in the second subframe with

the joint probability

f
(
n(−)
m , n(+)

m |sm, r̂m
)

= νm f
(
n(−)
m , n(+)

m |s(0)
m , r̂m

)
+(1−νm) f

(
n(−)
m , n(+)

m |s(1)
m , r̂m

)
, (73)

where 0 ≤ n
(−)
m ≤ Ñm, 0 ≤ n

(+)
m ≤ Ñm, 0 ≤ n

(−)
m +n

(+)
m ≤ Ñm, and s

(i)
m = (Ñm, γm, Hi)

for i = 0, 1. The joint probability f
(
n

(−)
m , n

(+)
m |s(i)

m , r̂m
)

can be expressed as

f
(
n(−)
m , n(+)

m |s(i)
m , r̂m

)
= f

(
n(−)
m |Ñm − n(+)

m , γm, Hi, r̂m
)
f
(
n(+)
m |s(i)

m , r̂m
)
, (74)

where f
(
n

(−)
m |Ñm − n

(+)
m , γm, Hi, r̂m

)
=
(Ñm−n(+)

m

n
(−)
m

)
qn

(−)
m (1 − q)Ñm−n

(+)
m −n(−)

m and q =∫
x∈X (−)(r̂m,γm)

fX(x|Hi) dx, for i = 0, 1, while f
(
n

(+)
m |s(i)

m , r̂m
)

=
( Ñm
n

(+)
m

)
qn

(+)
m (1−q)Ñm−n(+)

m

and q =
∫
x∈X (+)(r̂m,γm)

fX(x|Hi) dx.

Assume that there are n
(−)
m nodes attempting transmissions in the first subframe.

Each of these nodes will randomly choose one of the K time slots to send their packets.

As a result, the first subframe will consist of successful time slots, idle time slots, and

collision time slots. Let z
(−)
S,m, z

(−)
I,m, and z

(−)
C,m be the numbers of successful time slots,

idle time slots, and collision time slots, respectively, where z
(−)
S,m + z

(−)
I,m + z

(−)
C,m = K.
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Note that the number of successful nodes (or packets) in this frame is also equal to

z
(−)
S,m. The joint probability that there are z

(−)
S,m successful time slots and z

(−)
I,m idle time

slots given the number of active nodes n
(−)
m is equal to

f
(
z

(−)
S,m, z

(−)
I,m|n(−)

m

)
= f

(
z

(−)
I,m|z

(−)
S,m, n

(−)
m

)
f
(
z

(−)
S,m|n(−)

m

)
, (75)

for 0 ≤ z
(−)
S,m+z

(−)
I,m ≤ K, 0 ≤ z

(−)
S,m ≤ min

(
K, n

(−)
m

)
, 0 ≤ zI,m ≤ K, and we have [31, p.

102 and p. 112]

f
(
z

(−)
S,m|n(−)

m

)
=

(−1)z
(−)
S,mK!n

(−)
m !

z
(−)
S,m!K(b̃m+nm)

min(K,n
(−)
m )∑

i≥z(−)
S,m

(−1)i
(
K − i

)(n(−)
m −i

)
(
i− z(−)

S,m

)
!
(
K − i

)
!
(
n

(−)
m − i

)
!
, (76)

f
(
z

(−)
I,m|z

(−)
S,m, n

(−)
m

)
=

(
K − z(−)

S,m

z
(−)
I,m

) z
(−)
C,m∑
i=0

(−1)i
(
z

(−)
C,m

i

)(
1−

z
(−)
I,m + i

K − z(−)
S,m

)n(−)
m

, (77)

where z
(−)
C,m = K − z

(−)
S,m − z

(−)
I,m. We use z

(−)
C,m in (77) for brevity. Similarly, given

that there are n
(+)
m nodes attempting transmission in the second subframe, we can

derive the joint probability p
(
z

(+)
S,m, z

(+)
I,m|n

(+)
m

)
in the same manner, where z

(+)
S,m, z

(+)
I,m,

and z
(+)
C,m are the numbers of successful time slots, idle time slots, and collision time

slots, respectively, and z
(+)
S,m + z

(+)
I,m + z

(+)
C,m = K.

At the end of the mth frame, assume that the FC has observed that there are z
(−)
S,m

successful time slots and z
(−)
I,m idle time slots in the first subframe, and z

(+)
S,m successful

time slots and z
(+)
I,m idle time slots in the second subframe. The corresponding success-

fully received observations are xzS,m defined in (71), and the corresponding retrieved

observations are x̃zC,m defined in (70). The FC can update the system state at the

beginning of the (m+1)st frame, sm+1 = (Ñm+1, γm+1, νm+1), as follows. The value of

γm+1 is equal to r̂m by its definition. The posterior probability νm+1, which is defined

as Pr
(
H0|xzS,1 , x̃zC,1 , . . . ,xzS,m , x̃zC,m

)
, can be computed recursively as [9, p. 266]

νm+1 =
νmfX(xzS,m , x̃zC,m |H0)

νmfX(xzS,m , x̃zC,m |H0) + (1− νm)fX(xzS,m , x̃zC,m |H1)
, (78)
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where, fX(xzS,m , x̃zC,m |Hi), for i = 0, 1, is

fX(xzS,m , x̃zC,m |Hi) =fX(x
(−)
m,1|Hi) · · · fX(x

(−)

m,z
(−)
S,m

|Hi)fX(x
(+)
m,1|Hi) · · · fX(x

(+)

m,z
(+)
S,m

|Hi)×(
fX(x̃(−)

m |Hi)
)2z

(−)
C,m
(
fX(x̃(+)

m |Hi)
)2z

(+)
C,m

,

from the IID assumption on the observations in Section 5.2.3.

The FC estimates the residual number of nodes from

Ñm+1 = Ñm − nint
(
E
{
n(−)
m |Ñm, γm, νm+1, z

(−)
m , r̂m

})
− nint

(
E
{
n(+)
m |Ñm, γm, νm+1, z

(+)
m , r̂m

})
, (79)

where nint(·) is the nearest-integer function or round function, z
(−)
m =

(
z

(−)
S,m, z

(−)
I,m

)
,

and z
(+)
m =

(
z

(+)
S,m, z

(+)
I,m

)
. The posterior probability of n

(−)
m can be expressed as

f
(
n(−)
m |Ñm, γm, νm+1, z

(−)
m , r̂m

)
=

f
(
z

(−)
S,m, z

(−)
I,m, n

(−)
m |Ñm, γm, νm+1, r̂m

)∑Ňm

n
(−)
m ≥ z(−)

S,m+2z
(−)
C,m

f
(
z

(−)
S,m, z

(−)
I,m, n

(−)
m |Ñm, γm, νm+1, r̂m

) , (80)

where

f
(
z

(−)
S,m, z

(−)
I,m, n

(−)
m |Ñm, γm, νm+1, r̂m

)
= f

(
z

(−)
S,m, z

(−)
I,m|n(−)

m

)
f
(
n(−)
m |Ñm, γm, νm+1, r̂m

)
,

f
(
n(−)
m |Ñm, γm, νm+1, r̂m

)
=

Ñm−n(−)
m∑

n
(+)
m =0

f
(
n(−)
m , n(+)

m |Ñm, γm, νm+1, r̂m
)
,

f
(
z

(−)
S,m, z

(−)
I,m|n

(−)
m

)
can be obtained from (75), and f

(
n

(−)
m , n

(+)
m |Ñm, γm, νm+1, r̂m

)
can

be obtained from (73) with using νm+1 instead of νm. The posterior probability of

n
(+)
m , f

(
n

(+)
m |Ñm, γm, νm+1, z

(+)
m , r̂m

)
, can be obtained in a similar way.

5.4.2 One-Step Look-Ahead Rule

In this section, we find the reliability threshold r̂m by using a simple strategy based on

the 1-SLA rule. Assume that, at the beginning of the mth frame, where the system

state is sm, the FC decides to continue the collection process; i.e., Lm ∈ (A, B).
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From the 1-SLA perspective, the FC will sequentially select the reliability threshold

r̂m that maximizes the expectation of the difference
∣∣Lm+1 − Lm

∣∣. Therefore, given

the system state sm, the reliability threshold r̂m can be obtained from

max
r̂m≤γm

E

{∣∣∣∣Υ(Lm,xzS,m , x̃zC,m)− Lm
∣∣∣∣
∣∣∣∣∣sm, r̂m

}
=

max
r̂m≤γm

[
(1− νm)E

{
Υ(Lm,xzS,m , x̃zC,m)− Lm

∣∣∣∣s(1)
m , r̂m

}

− νm E
{

Υ(Lm,xzS,m , x̃zC,m)− Lm
∣∣∣∣s(0)
m , r̂m

}]
, (81)

where the function Υ(·) is defined in (72). The expression in (81) is obtained from

the fact that the conditional expectation given H1 is positive, while the conditional

expectation given H0 is negative.

By substituting (72) into (81), using the IID assumption of the observations, and

applying Wald’s identity, we can express the expectation E
{

Υ(Lm,xzS,m , x̃zC,m) −

Lm

∣∣∣∣s(i)
m , r̂m

}
as

E
{
z

(−)
S,m

∣∣s(i)
m , r̂m

}
E
{

log
fX(x|H1)

fX(x|H0)

∣∣∣∣Hi, x ∈ X (−)(r̂m, γm)

}
+ E

{
z

(+)
S,m

∣∣s(i)
m , r̂m

}
E
{

log
fX(x|H1)

fX(x|H0)

∣∣∣∣Hi, x ∈ X (+)(r̂m, γm)

}
+ 2r̂m

[
E
{
z

(+)
C,m

∣∣s(i)
m , r̂m

}
− E

{
z

(−)
C,m

∣∣s(i)
m , r̂m

}]
. (82)

The conditional expectation E
{
·
∣∣Hi, x ∈ X (−)(r̂m, γm)

}
is with respect to x, whose

conditional PDF is equal to fX(x|Hi)
/ ∫

x∈X (−)(r̂m,γm)
fX(x|Hi) dx, for x ∈ X (−)(r̂m, γm).

Similarly, the conditional expectation E
{
·
∣∣Hi, x ∈ X (+)(r̂m, γm)

}
is defined in a sim-

ilar way. Furthermore, we can show that

E
{
z

(−)
S,m

∣∣s(i)
m , r̂m

}
= E

{
E
{
z

(−)
S,m

∣∣n(−)
m

}∣∣∣s(i)
m , r̂m

}
= E

{
n(−)
m

(
1− 1

K

)(n
(−)
m −1)∣∣∣s(i)

m , r̂m

}
,

E
{
z

(−)
I,m

∣∣s(i)
m , r̂m

}
= E

{
E
{
z

(−)
I,m

∣∣n(−)
m

}∣∣∣s(i)
m , r̂m

}
= E

{
K
(

1− 1

K

)n(−)
m
∣∣∣s(i)
m , r̂m

}
,

where the the conditional expectation E
{
·
∣∣s(i)
m , r̂m

}
on the right hand side is with
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respect to n
(−)
m . The conditional probability f

(
n

(−)
m

∣∣s(i)
m , r̂m

)
is

f
(
n(−)
m

∣∣s(i)
m , r̂m

)
=

Ňm−n(−)
m∑

n
(+)
m =0

f
(
n(−)
m , n(+)

m

∣∣s(i)
m , r̂m

)
,

where f
(
n

(−)
m , n

(+)
m

∣∣s(i)
m , r̂m

)
is shown in (74). The derivations of E

{
z

(−)
S,m

∣∣n(−)
m

}
=

n
(−)
m

(
1 − 1

K

)(n
(−)
m −1)

and E
{
z

(−)
I,m

∣∣n(−)
m

}
= K

(
1 − 1

K

)n(−)
m are shown in Appendix B.

In addition, we have E
{
z

(−)
C,m

∣∣s(i)
m , r̂m

}
= K −E

{
z

(−)
S,m

∣∣s(i)
m , r̂m

}
−E

{
z

(−)
I,m

∣∣s(i)
m , r̂m

}
. The

conditional expectations E
{
z

(+)
S,m

∣∣s(i)
m , r̂m

}
and E

{
z

(+)
C,m

∣∣s(i)
m , r̂m

}
can be derived in the

same way.

A summary of the proposed scheme’s procedures is shown in Algorithm 2.

Algorithm 2 Proposed Scheme

1. m=1.

2. At the beginning of the mth frame, given the system state sm, find the reliability
threshold r̂m from the 1-SLA rule shown in (81).

3. Follow the channel access protocol described in Section 5.3.1.

4. At the end of the mth frame, given z
(−)
m , z

(+)
m , xzS,m , and x̃zC,m , update the

system state to sm+1 as shown in Section 5.4.1, and the LLR value Lm+1 as
shown in (72).

5. Follow the stopping rule in Section 5.3.2: if Lm+1 /∈ (A, B), stop the collection
process and announce the corresponding Hi, for i = 0, 1; otherwise, set m =
m+ 1 and go to Step 2).

5.5 Numerical Results

We use the following shift-in-mean model to evaluate the average collection time of

the proposed scheme: H0 : x = η, and H1 : x = µ + η, where µ is a constant,

and η is a Gaussian random variable with mean and variance equal to zero and σ2,

respectively. The prior probabilities Pr(H0) and Pr(H1) are set to 1
2
. The reliabil-

ity of the observation x is
∣∣∣log fX(x|H1)

fX(x|H0)

∣∣∣ = µ
σ2

∣∣x− µ
2

∣∣. Without loss of generality,
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in this case, we define the reliability of the observation x as r =
∣∣x− µ

2

∣∣; i.e., we

omit the scaling factor. Therefore, we have X (−)(r̂m, γm) =
(
µ
2
− γm, µ2 − r̂m

]
and

X (+)(r̂m, γm) =
[
µ
2

+ r̂m,
µ
2

+ γm
)
. Since the PDF fX(x|H1) is a shifted-version of

the PDF fX(x|H0), and the PDF fX(x|Hi) is symmetric about its mean, (81) is re-

duced to max
r̂m≤γm

E
{

Υ(Lm,xzS,m , x̃zC,m) − Lm
∣∣∣s(1)
m , r̂m

}
, where the expectation can be

obtained from (82).

In Fig. 21, we compare the average collection times (ACTs) required by the pro-

posed scheme, a conventional SPRT scheme, and an oracle SPRT scheme for various

values of σ2. The other parameters’ values are shown in the figure’s caption. In the

conventional SPRT scheme, the local observations are sent to the FC in random order

and without collisions, while, in the oracle SPRT scheme, the local observations are

sent to the FC in descending order of the reliabilities. For both schemes, at the end of

each time slot, the FC will update the LLR upon the received observation and follow

the SPRT rule. There are no packet collisions in these two schemes. The result shows

that the proposed scheme significantly outperforms the conventional SPRT scheme,

even though the proposed scheme experiences packet collisions. The improvement

gap increases as we increase the noise variance since the proposed scheme collects

only the most reliable observations. Note that the proposed scheme uses the subop-

timal reliability threshold derived from (81). The oracle scheme’s ACT, shown as a

reference, occurs when perfect scheduling allows the FC to collect the local observa-

tions in perfectly descending order and without collisions or idle slots. The ACT of

the proposed scheme is approximately two times higher than the ACT of the oracle

scheme.

In Fig. 22, we show the average probability of successful transmission per time

slot, P̄S,i, and the average probability of collision per time slot, P̄C,i, for the ith

subframe, where i = 1, 2, when the hypothesis H1 happens. The correct observations

will be sent in the second subframe. We see that, since the proposed scheme can
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Figure 21: The average collection times of the conventional SPRT scheme, the
proposed SPRT scheme, and the oracle scheme for various σ2. The other parameters
are N = 1000, PFA = PMiss = 0.0001, K = 3, µ = 1.

retrieve two observations from a collision (from Assumption 4), the algorithm (81)

prefers to choose the reliability thresholds that induce high collision rates in the second

subframe. Note that, in this case, the resulting probabilities in the first subframe (P̄S,1

and P̄C,1) are by products that (81) is true. Recall that the retrieved observations

are set to the lowest reliable observation in that frame (Assumption 4). Therefore, if

we select a reliability threshold to obtain a higher number of collisions (i.e., a higher

number of retrieved observations), we inevitably obtain a lower retrieved observation

value. This tradeoff is also seen in Fig. 22, where the proposed scheme chooses the

reliability thresholds to obtain lower P̄C,2 as the variance σ2 increases. Note that,

given the same γm and N , we have to adjust the reliability threshold r̂m in a high

variance case lower than that in a low variance case to obtain the same probability

of collision in the second subframe.

In Fig. 23, we plot the ACTs of the proposed scheme and the oracle scheme versus

N for σ2 = 3 and σ2 = 8. The other parameters’ values are shown in the figure’s

caption. Since the ACT of the conventional SPRT scheme is independent of N , we

have its ACTs equal to 57.16 and 150.67 time slots for σ2 = 3 and σ2 = 8, respectively,

for all N . The proposed scheme and the oracle scheme have an advantage when N

increases because more nodes will have highly reliable observations. The proposed

102



1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Variance, σ2

P
ro
b
a
b
il
it
y

(p
er

T
im

e
S
lo
t)

 

 

P̄S,1

P̄C,1

P̄S,2

P̄C,2

Figure 22: The average probabilities of successful transmission (P̄S,i) and collision
(P̄C,i) per time slot for the ith subframe, where i = 1, 2, given the hypothesis H1.
The other parameters are N = 1000, PFA = PMiss = 0.0001, K = 3, µ = 1.
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Figure 23: The average collection times (ACTs) of the proposed scheme and the
oracle scheme for σ2 = 3, σ2 = 8, and various N . The other parameters are PFA =
PMiss = 0.001, K = 3, µ = 1. The ACTs of the conventional SPRT scheme for σ2 = 3
and σ2 = 8 are 57.16 time slots and 150.67 time slots, respectively.

scheme’s improvement for increasing N is quite significant when σ2 is large.

5.6 Conclusion

We proposed an ordered sequential detection scheme in which the FC is able to

partially retrieve observations from collided packets. The FC will use both successfully

received observations and these partially retrieved observations to decide whether to

make a global decision or to continue collecting more local observations. As a result,

under the considered scenarios, the proposed scheme requires as little as one-third of

the conventional SPRT scheme’s average collection time to achieve the same level of
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confidence.
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CHAPTER VI

THE USE OF RELIABILITY-BASED SPLITTING

ALGORITHMS TO IMPROVE DISTRIBUTED

ESTIMATION IN WSNS

6.1 Introduction

A wireless sensor network (WSN) performing distributed estimation consists of a

number of small, inexpensive, and sensor-equipped nodes dispersed over a geographic

area to estimate parameters of interest. These local estimates, which are quantized

versions of noisy observations, are collected over a wireless channel by a fusion center

(FC) that fuses them to produce a reliable global estimate.

Distributed estimation schemes have been studied extensively [91]. A popular ap-

proach is the best linear unbiased estimator (BLUE) [88], where the global parameter

estimate is obtained by a weighted sum of the local estimates, and the weights can

be computed from the local noise variances. Under resource constraints, e.g., power

and number of bits, [47,86,88] have formulated optimization problems to find optimal

allocation strategies that are functions of the local noise variances. However, these

papers only considered the schemes in parallel access channels, where transmission

scheduling and collisions are not considered.

For a collision channel, since the FC does not know the nodes’ observation reliabil-

ities in advance, a collision-free transmission scheduling cannot be properly managed

without additional information exchanges among the nodes and the FC. Using a ran-

dom access protocol, such as slotted ALOHA, in distributed detection/estimation

is an alternative strategy that suffers packet loss from collisions. By applying the
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Figure 24: Time on the channel is divided into super-frames, where each super-
frame has a length of T bits. A super-frame consists of M frames and each frame has
Km time slots with length Bm bits.

multiuser-diversity/opportunistic principle, threshold-based slotted ALOHA proto-

cols that maximize the performance of distributed detection/estimation have been

derived in [38,44].

In this chapter, we consider distributed estimation in a large, single-hop WSN that

uses a collision channel for transmission and is subject to a fixed deadline for making

a global estimate. The sensor nodes monitor a scalar and deterministic parameter θ

of a source in the network, quantize their observations, and send the estimates to the

FC through a reliable (bit-error-free) link. The FC is allocated a collection time of T

bits to gather the nodes’ estimates, which are assumed to be ready at the beginning

of the collection time and not updated during T . Since the network consists of a

large number of nodes and has a time-delay constraint, the allocated collection time

is generally not long enough to collect the estimates from all nodes.

To improve the performance of distributed estimation under the conditions above,

we apply a reliability-based splitting algorithm [44]. Similar to [47,86–88], we assume

that each node knows its instantaneous noise variance, σ2.

Proposed distributed estimation: We divide T bits into M frames, where each

frame consists of Km time slots of length Bm bits (Fig. 24). The scheme performs

the following steps.

1) Reliability-based splitting strategy: Given a set of reliability thresholds σ̂2 =

[σ̂2
1, . . . , σ̂

2
M ], where σ̂2

0 < σ̂2
1 < . . . < σ̂2

M < ∞, only nodes with instantaneous noise

variances σ2 ∈ [σ̂2
m−1, σ̂

2
m), where m = 1, . . ., M , will transmit their local estimates

in the mth frame. Therefore, the FC receives the local estimates almost in ascending
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order of the observation noise variance.

2) Sensor processing: If a node’s noise variance σ̂2 is such that σ2 ∈ [σ̂2
m−1, σ̂

2
m),

then it quantizes the observation by using a scalar uniform quantization, whose step

size is W
2Bm

, where W is the considered range of the observation. Thereafter, the node

schedules the transmission of this estimate (binary message) of length Bm within the

mth frame.

3) Channel access protocol: Since the identities of nodes whose σ2 ∈ [σ̂2
m−1, σ̂

2
m)

are not known by the FC, slotted ALOHA is used as a channel access protocol. When

the mth frame arrives, each node with σ2 ∈ [σ̂2
m−1, σ̂

2
m) independently and randomly

chooses one of the Km slots to send its estimate.

4) Fusion center processing: The FC makes a global estimate by using a BLUE

based on the received local estimates.

The performance of the proposed scheme is a function of the thresholds σ̂2
m, the

number of bits Bm, and the number of time slots Km. We formulate time-constrained

optimization problems to find the optimal values of these parameters.

The chapter is organized as follows. Section 6.2 derives the mathematical ex-

pressions and performance measure of the proposed schemes. Methods to find the

optimal parameter values are explained in Section 6.3. To remedy the effect of packet

collisions, we introduce a modified frame structure in Section 6.4. In Section 6.5, we

show the optimal parameter values and study the effects of these parameters on the

proposed schemes. Conclusions are provided in Section 6.6.

6.2 System Model and Performance Measure

We assume that there are N nodes in the network. The local observation of the nth

node is xn = θ + vn, where vn is an additive and independent noise with variance

σ2
n. Following the model introduced in [86–88], we define the noise variance as: σ2

n =

σ̂2
0+κhn, where σ̂2

0 is a network-wide background noise variance, κ is a scaling variable,
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and hn is an independent and identical random variable characterizing the noise

variance distribution in the network. Note that, in [86–88], hn is modeled as a Chi-

square random variable with degree 1 and κ is a function of a distance. Therefore,

σ2
n is an independent and identical distributed random variable with the probability

density function (PDF) fσ2(σ2).

The observation xn with σ2
n ∈ [σ̂2

m−1, σ̂
2
m), is quantized to a binary message whose

length is equal to Bm. Assume a scalar uniform quantizer is used. The estimate

(quantized observation) x̃n can be modeled as: x̃n = θ + vn + wn, where wn is

quantization noise, which can be approximated as a uniform random variable with

zero mean and variance equal to W 2

22Bm [33], and W is the considered range of xn.

The thresholds σ̂2 are also used to control nodes’ channel access. Only the nodes

with the noise variance σ2 ∈ [σ̂2
m−1, σ̂

2
m) are allowed to send their estimates during

the mth frame. Since we have σ̂2
0 < σ̂2

1 < . . . < σ̂2
M , the estimates are sent to

the FC approximately in order from lowest to highest noise variances. The number

of nodes attempting transmission in the mth frame, nm, is a random variable with

mean n̄m = N
∫ σ̂2

m

σ̂2
m−1

fσ2(σ2) dσ2. Since the identities and the number of nodes that

will attempt transmissions in the mth frame is unknown in advance, a slotted ALOHA

protocol is used. Each node active in the mth frame will independently and randomly

select one of the Km slots to send its estimate.

At the end of the collection time T , the FC makes a global estimate θ̂, which

is obtained by using a BLUE. Note that we assume a worst-case scenario, where all

transmitted messages within a frame are assigned the highest noise variance associated

with that frame, i.e., σ̂2
m. Let yi,m be the ith successfully received estimate in the mth

frame, and sm, which is a random variable, be the number of successfully received

estimates in the mth frame. Given s1, . . ., sM , the global estimate θ̂ and its variance
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var
(
θ̂
)

are

θ̂ =

(
M∑
m=1

sm

σ̂2
m + W 2

22Bm

)−1 M∑
m=1

∑sm
i=1 yi,m

σ̂2
m + W 2

22Bm

, var
(
θ̂
)

=

(
M∑
m=1

sm

σ̂2
m + W 2

22Bm

)−1

.

The variance var
(
θ̂
)

is a function of the random variables s1, . . ., sM . Since a closed

form of E
{
var
(
θ̂
)}

has not been found, where E{·} is the expectation operator, we

consider its lower bound instead. By applying Jensen’s inequality and the fact that

the function x−1 is a convex function for x > 0, we obtain E
{
var
(
θ̂
)}
≥ 1
/
Īθ, where

Īθ =
M∑
m=1

E{sm}
σ̂2
m + W 2

22Bm

. (83)

Since E
{
var
(
θ̂
)}

is inversely proportional to Īθ, then, we use Īθ as the performance

measure. Note that if vn and wn are Gaussian noise, Īθ is the expectation of the

Fisher information.

The expression for Īθ can be obtained as follows. From (83), E{sm} = Enm{Esm{sm|nm}}

and sm is a random variable with the conditional probability [31, p. 112]:

f(sm|nm) =
(−1)smKm!nm!

sm!Knm
m

K̃m∑
i≥sm

(−1)i(Km − i)nm−i
(i− sm)!(Km − i)!(nm − i)!

,

for 0 ≤ sm ≤ K̃m, where K̃m = min(Km, nm). As shown in Appendix A, Esm{sm|nm} =

nm
(
1− 1

Km

)nm−1
. Then, Enm{Esm{sm|nm}} ' n̄me

− n̄m
Km , and

Īθ(σ̂
2,B,K) '

M∑
m=1

n̄me
− n̄m
Km

σ̂2
m + W 2

22Bm

, (84)

where σ̂2 = [σ̂2
1, . . . , σ̂

2
M ], B = [B1, . . . , BM ], and K = [K1, . . . , KM ].

6.3 Optimal Parameter Values

In this section, we formulate a time-constrained optimization to find the optimal

parameter values. We consider two approaches, which are distinguished by how we

model the parameters B and K: deterministic variables and random variables. For

the first approach, we are finding integers B∗ and K∗, and, then, the optimization
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problem based on this approach is a mixed integer nonlinear program. On the other

hand, for the second approach, since B and K are random variables, we are seeking

the joint probability mass function (PMF) q∗ maximizing EB,K

{
Īθ(σ̂

2,B,K)
}

, where

q∗ = [q∗1, . . . ,q
∗
M ], q∗m = [q∗bm,km ], and q∗bm,km is the probability that, at the mth frame,

Bm = bm and Km = km, for integers bm, km ≥ 1. As a result, the optimization

problem based on this approach is a mixed linear-nonlinear program. The details and

algorithms to find σ̂2∗, B∗, K∗, and q∗ of these approaches are shown in the following

subsections.

6.3.1 Deterministic Approach

In this approach, the parameters B and K are modeled as integers. A time-constrained

optimization problem to find the optimal σ̂2∗, B∗, and K∗ can be expressed as

P1 : max
σ̂2

max
B,K

Īθ(σ̂
2,B,K)

s. t.
M∑
m=1

BmKm ≤ T, Bm ≥ 1, Km ≥ 1,∀m;

σ̂2
0 < σ̂2

1 < . . . < σ̂2
M .

The first constraint is from the allocated collection time. Finding the optimal solu-

tions of these problems analytically is difficult. Therefore, we derive an algorithm to

find efficient solutions instead. The algorithm consists of two steps. First, given σ̂2,

we find the optimal B∗ and K∗. Second, we update σ̂2 and re-compute B∗ and K∗.

The algorithm iterates until a convergence criterion is met. It can be illustrated as

follows.

Given σ̂2, we define a function:

Īθ,D(σ̂2) = max
B,K

{
Īθ(σ̂

2,B,K)
∣∣∣ M∑
m=1

BmKm ≤ T, Bm ≥ 1, Km ≥ 1,∀m,
}
. (85)

Instead of solving Primal Problem (85), we find the solutions B∗ and K∗ by using the

dual decomposition method [8, p. 502], [59], which reduces computational complex-

ity significantly. The Lagrange function of Problem (85), considering only the time

110



constraint, can be expressed as L(σ̂2,B,K, λ) =
∑M

m=1 Lm + λT , where

Lm =
n̄me

− n̄m
Km

σ̂2
m + W 2

22Bm

− λBmKm,

λ is the dual variable. Note that Lm is a function of σ̂2
m−1, σ̂2

m, Bm, Km, and λ. As

a result, the dual function is

D(σ̂2, λ) = max
B,K

{
L(σ̂2,B,K, λ)

∣∣Bm ≥ 1, Km ≥ 1,∀m
}
.

The dual function can be decomposed into the following M separable problems, for

m = 1, . . . ,M :

Dm(σ̂2
m−1, σ̂

2
m, λ) = max

Bm,Km

{
Lm
∣∣Bm ≥ 1, Km ≥ 1

}
. (86)

The values B∗m and K∗m from (86) can be found by a direct search method with a

reasonable computational complexity.

The dual of Problem (85) is

D1 : min
λ

D(σ̂2, λ) s. t. λ ≥ 0.

There are many methods to find λ∗, e.g., the subgradient method [8, 14, 59, 85].

However, in this work, λ∗ can be obtained simply as shown in Algorithm 3, where

0 < δ < 1. With updated dual variable λ(l+1), B∗ and K∗ will be recomputed. As

l increases, λ(l) decreases, while
∑M

m=1B
(l)∗
m K

(l)∗
m increases. Therefore, convergence

typically occurs very quickly.

Algorithm 3 Finding B∗ and K∗ for given σ̂2.

1. Set l = 1 and λ(1) = λ(initial).

2. For m = 1, . . . ,M , obtain B
(l)∗
m and K

(l)∗
m from (86).

3. If T−∑M
m=1B

(l)∗
m K

(l)∗
m ≤ ε, stop, and announce λ∗ = λ(l), B∗ = B(l)∗, K∗ = K(l)∗

; otherwise, set l = l + 1, λ(l) = δλ(l−1), and go to Step 2).
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Algorithm 4 Finding σ̂2∗.

1. Set i = 1. Randomly select σ̂2(1)
. Find Īθ,D(σ̂2(1)

), where, given σ̂2(1)
, B∗ and

K∗ are found from Algorithm 3.

2. Set i = i+ 1.

3. Update σ̂2(i)
from the following procedures:

(a) Set m = 0.

(b) Set m = m+ 1.

(c) σ̂2(i)

m = arg max
σ̂2∈(σ̂2(i)

m−1, σ̂
2(i−1)
m+1 ]

Īθ,D(σ̂2(i)
m ), where

σ̂2(i)
m = [σ̂2(i)

1 , . . . , σ̂2(i)

m−1, σ̂
2, σ̂2(i−1)

m+1 , . . . , σ̂
2(i−1)

M ],

and, given σ̂2(i)
m , B∗ and K∗ are obtained from Algorithm 3.

(d) Set σ̂2(i,m)
= [σ̂2(i)

1 , . . . , σ̂2(i)

m , σ̂2(i−1)

m+1 , . . . , σ̂
2(i−1)

M ].

(e) Repeat b) – d) until m = M . Set σ̂2(i)
= σ̂2(i,M)

.

4. Compute Īθ,D(σ̂2(i)
).

5. If Īθ,D(σ̂2(i)
)− Īθ,D(σ̂2(i−1)

) ≤ ε, stop, and announce σ̂2∗ = σ̂2(i)
; otherwise, go

to Step 2).
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In general, solving a dual problem gives an upper bound of the original solution.

However, from [85, Proposition 10.2], if we obtain λ∗ > 0 and
∑M

m=1B
∗
mK

∗
m = T ,

there is no duality gap. As observed in the numerical results shown in Section 6.5,

we achieve these conditions in most cases.

The next step is to find σ̂2∗ maximizing Īθ,D(σ̂2). However, the optimal thresholds

of Īθ,D(σ̂2) are difficult to find analytically. Similar to [78], we derive an algorithm to

find efficient solutions σ̂2∗ based on a Greedy principle, where we iteratively find σ̂2∗
m

maximizing Īθ,D(σ̂2) when fixing the rest of the thresholds. This algorithm is shown

in Algorithm 4.

The following conditions can be used to verify whether σ̂2∗ from Algorithm 4 are

candidates for the optimal values.

Proposition 16. For given K, necessary conditions for the optimal reliability thresh-

olds σ̂2∗ = [σ̂2∗
1 , . . . , σ̂

2∗
M ] are n̄m ≤ Km, for all m.

Proof. At the mth frame, we consider n̄me
− n̄m
Km

/(
σ̂2
m+ W 2

22Bm

)
for given σ̂2∗

m−1, Bm, and

Km. Let σ̂2◦
m be the threshold that n̄m = Km. Note that σ̂2◦

m depends on σ̂2∗
m−1. The

term n̄me
− n̄m
Km is an nondecreasing function on σ̂2

m for σ̂2
m ≤ σ̂2◦

m ; otherwise, it is a

decreasing function on σ̂2
m. The term 1

/
(σ̂2

m + W 2

22Bm ) is a decreasing function on σ̂2
m.

Therefore, the proposition is obtained by induction.

The thresholds σ̂2◦ = [σ̂2◦
1 , . . . , σ̂

2◦
M ] in the proof above are called the maximum

throughput thresholds [44], because, by using σ̂2◦, n̄m is equal to Km for all m. How-

ever, similar to [44], the thresholds, σ̂2◦, that maximize the channel efficiency, are

not always optimal as shown in Section 6.5.

Since Īθ,D(σ̂2) is a nonlinear (possibly, nonconcave) function of σ̂2, there is no

guarantee that the thresholds σ̂2∗ found from Algorithm 4 are globally optimal. How-

ever, since the initial thresholds σ̂2(1)
are randomly chosen, we are likely to find the
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globally optimal thresholds when repeating the algorithm several times. In our nu-

merical results, we have always obtained the same solutions.

6.3.2 Randomized Approach

In this approach, we model the parameters B and K as random variables. Therefore,

we are seeking σ̂2∗ and q∗ maximizing EB,K

{
Īθ(σ̂

2,B,K)
}

. A time-constrained

optimization problem can be formulated as

P2 : max
σ̂2

max
q

EB,K

{
Īθ(σ̂

2,B,K)
}

s. t.
M∑
m=1

EBm,Km
{
BmKm

}
= T ;

∞∑
bm=1

∞∑
km=1

qbm,km = 1, ∀m;

0 ≤ qbm,km ≤ 1,∀bm, km; σ̂2
0 < σ̂2

1 < . . . < σ̂2
M .

Similar steps explained in Section 6.3.1 are applied to find the solutions of Prob-

lem P2. Given σ̂2, we define

Īθ,R(σ̂2) = max
q

{
EB,K

{
Īθ(σ̂

2,B,K)
}∣∣∣∣ M∑

m=1

EB,K

{
BmKm

}
= T,

∞∑
bm=1

∞∑
km=1

qbm,km = 1, 0 ≤ qbm,km ≤ 1, ∀bm, km
}
. (87)

The optimal q∗ for (87) can now be found by a linear program. As a result, since the

member in q are probability measures, in general, we have at most two elements in

qm, for all m, that are nonzero. Therefore, the randomized strategy might provide a

deterministic solution. This suggests that, in terms of computational complexity, we

might use the randomized strategy to approximate the integer solution.

Thereafter, we apply Algorithm 4, in which Īθ,R(σ̂2) is used instead of Īθ,D(σ̂2),

to find efficient solutions σ̂2∗. The prior discussions about the solutions σ̂2∗ hold

here as well.
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6.4 Modified Frame Structure

By using the frame structure shown in Fig. 24, when a collision happens, entire

transmitted packets are lost. To remedy this collision effect, we have modified the

frame structure by decoupling the contention period from the estimates’ transmissions

as shown in Fig. 25, which is inspired by IEEE 802.15.3 and 802.15.4 frame structures.

The modified frame structure is divided into three parts: contention access period

(CAP), Beacon, and channel time allocation period (CTAP). In the mth frame, the

CAP consists of Km minislots with the length α bits, and the CTAP consists of Jm

time slots with the length Bm bits. The Beacon period has a length equal to βmJm,

where the length of βm will be indicated below. The nodes with σ2 ∈ [σ̂2
m−1, σ̂

2
m) will

do the following channel access procedures at the mth frame.

1) CAP: Each active node independently and randomly chooses one of the Km

minislots to send its reservation. A reservation is successful if exactly one node sends

a reservation in the minislot.

2) Beacon: This duration is exploited by the FC to schedule zm nodes whose

reservations are successfully received. The variable zm is a random variable whose

conditional PMF f(zm|nm) is identical to f(sm|nm) in Section 6.2. A simple schedule

can be set up as follows. The Beacon period consists of Jm minislots with length

equal to βm bits. Let Dj be the decimal number of the binary message in the jth

minislot. All competing nodes listen to the Beacon period. The decimal number Dj

in the jth minislot indicates which minislot in CAP has been successfully reserved.

As a result, the node that transmitted the reservation at the Djth minislot in CAP

is assigned the jth time slot in CTAP. A suitable length of βm is dlog2Kme. Since

CTAP consists of a pre-designed Jm time slots, the following situations can happen:

zm < Jm, zm = Jm, and zm > Jm. If zm < Jm, the remaining Jm − zm time slots

are unused. On the other hand, if zm > Jm, the FC will randomly assign the time

slots to only Jm nodes from the total zm successful reservations, while the others are
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Figure 25: We modify the frame structure to reduce the effects of collisions.

neglected.

3) CTAP: The scheduled nodes, sm = min(zm, Jm), will transmit their estimates

at their assigned time slots.

The proposed scheme using the modified frame structure is a function of σ̂2, B,

J, and K, where J = [J1, . . . , JM ]. Similar to Section 6.2, the performance can be

measured by Īθ shown in (83), where E{sm} = E{min(zm, Jm)}. Since there is no

closed form for E{min(zm, Jm)}, to facilitate in finding the optimal parameters, we

will use an upper bound of E{min(zm, Jm)}, i.e., min(E{zm}, Jm), instead. As a

result, we have an upper bound of Īθ: Ī
U
θ ≥ Īθ, where

ĪUθ (σ̂2,B,J,K) =
M∑
m=1

min
(
n̄me

− n̄m
Km , Jm

)
σ̂2
m + W 2

22Bm

. (88)

We find σ̂2∗, B∗, J∗, and K∗ maximizing ĪUθ (σ̂2,B,J,K) from the following time-

constrained optimization problems. For the deterministic approach, we have

P3 : max
σ̂2

max
B,J,K

ĪUθ (σ̂2,B,J,K)

s. t.
M∑
m=1

[
αKm + (βm +Bm)Jm

]
≤ T ;

Bm ≥ 1, Jm ≥ 1, Km ≥ 1,∀m; σ̂2
0 < σ̂2

1 < . . . < σ̂2
M .
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For the randomized approach, we have

P4 : max
σ̂2

max
q

EB,J,K

{
ĪUθ (σ̂2,B,J,K)

}
s. t.

M∑
m=1

EBm,Jm,Km
{
αKm + (βm +Bm)Jm

}
= T ;

∞∑
bm=1

∞∑
jm=1

∞∑
km=1

qbm,jm,km = 1, ∀m;

0 ≤ qbm,jm,km ≤ 1, ∀bm, jm, km; σ̂2
0 < σ̂2

1 < . . . < σ̂2
M ,

where q = [q1, . . . ,qM ], qm = [qbm,jm,km ], and qbm,jm,km is the probability that Bm =

bm, Jm = jm, and Km = km, for integers bm, jm, km ≥ 1. The solutions of Problems P3

and P4 can be found by the steps explained in Sections 6.3.1 and 6.3.2, respectively.

6.5 Numerical Results and Discussions

6.5.1 Optimal Parameter Values

In this section, we provide numerical results for the optimal parameters σ̂2∗, B∗,

J∗, and K∗ obtained from the deterministic and randomized approaches explained in

Section 6.3. The optimal parameter values according to both frame structures are

shown in Table 6, where Original Proposed Scheme and Modified Proposed Scheme

mean the proposed schemes using the frame structures shown in Fig. 24 and Fig. 25,

respectively. The other variables are set up as shown in the table’s caption. Note that

s̄m = E{sm} and p̄s,m = s̄m
n̄m

are the expected number of successfully received estimates

and the probability of successfully received estimates at the FC, respectively. We

see that the optimal parameter values obtained from these two approaches are only

slightly different. As mentioned in Section 6.3.2, the randomized approach might

return two sets of the optimal parameter values. In the context of computational

complexity, the randomized approach has a much smaller computation time because

it is based on linear programming.

As shown in Table 6, we notice that B∗1 ≥ . . . ≥ B∗4 and p̄s,1 ≥ . . . ≥ p̄s,4. These
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Figure 26: We verify that the estimate variances and their lower bounds (used in
finding σ̂2∗, B∗, J∗, and K∗) are acceptably close.

results suggest that the number of quantization levels and the probability of successful

transmission depend on the reliabilities (noise variances) of the observations. An

observation with a lower noise variance must be quantized with finer quantization and

transmitted with a higher probability of successful transmission than an observation

with a higher noise variance. A high probability of successful transmission in the

proposed schemes can be achieved by allocating adequate K∗m time slots larger than

n̄m. As a result, similar to [44], the optimal thresholds σ̂2∗
for the proposed schemes

do not always maximize the channel throughput. In the mth frame, since only a

minislot with length α bits is wasted when a collision occurs, the modified proposed

scheme allocates more minislots in the mth CAP period than the original proposed

scheme allocates the number of time slots in the mth frame.

6.5.2 Variances of the Proposed Schemes’ Estimates

Recall that we use Īθ defined in (83) as the objective function to find σ̂2∗, B∗, J∗,

and K∗. We confirm the validity of our approximations by comparing the global

estimate’s variance E{var(θ̂)} and the lower bound 1/Īθ in Fig. 26, where the following
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Table 6: Optimal parameters: σ̂2∗, B∗, J∗ and K∗ when M = 4, N = 150, T = 200
bits, α = 1 bit, W = 20, σ2

n = 0.25 + hn, hn ∼ χ2(3).
Note †: K∗4 = 10 and K∗4 = 11 with probabilities 0.67 and 0.33. ‡: (K∗4 , J4∗) = (8, 3)
and (K∗4 , J4∗) = (13, 4) with probabilities 0.63 and 0.36.

Original Proposed Scheme
Deterministic Approach Randomized Approach

m 1 2 3 4 1 2 3 4
σ̂2∗

m 0.39 0.53 0.70 0.92 0.40 0.55 0.73 0.97
B∗m 7 7 7 6 7 7 6 6
K∗m 5 7 8 10 5 7 9 (10, 11)†

n̄m 2.05 3.43 5.00 7.65 2.18 3.73 5.71 8.12
s̄m 1.36 2.10 2.68 3.56 1.41 2.19 3.03 (3.61, 3.88)
p̄s,m 0.66 0.61 0.54 0.47 0.65 0.59 0.53 (0.44, 0.48)

Modified Proposed Scheme
Deterministic Approach Randomized Approach

m 1 2 3 4 1 2 3 4
σ̂2∗

m 0.41 0.63 0.89 1.08 0.41 0.62 0.80 1.00
B∗m 8 7 7 6 8 7 7 7
K∗m 11 15 16 8 11 16 16 (8, 13)‡

J∗m 2 4 5 3 2 4 4 (3, 4)‡

n̄m 2.51 5.93 8.55 6.80 2.49 5.68 5.77 6.79
s̄m 2.00 4.00 5.01 2.91 1.99 3.98 4.02 (2.91, 4.03)
p̄s,m 0.80 0.67 0.59 0.43 0.80 0.70 0.70 (0.43, 0.59)

notation is used in the figure and the subsequent numerical results: var(θ̂)∗1 and

var(θ̂)∗2 are E{var(θ̂)} (with using σ̂2∗, B∗, J∗, and K∗ found by the randomized

approach) of the original and modified proposed schemes (shown in Section 6.2 and

6.4, respectively); Ī∗θ,1 and ĪU∗θ,2 denote Īθ(σ̂
2∗,B∗,K∗) in (84), and ĪUθ (σ̂2∗,B∗,J∗,K∗)

in (88), respectively. As shown in Fig. 26, the lower bound 1/Ī∗θ,1 and var(θ̂)∗1 fit very

well. On the other hand, there is an acceptable gap between the lower bound 1/ĪU∗θ,2

and var(θ̂)∗2, which is reasonable since ĪU∗θ,2 is an upper bound of Īθ in (83).

The effects of the number of frames, M , the range of observations, W , the length,

α, of a minislot, and the number of nodes, N , on the estimate variances var(θ̂)∗1 and

var(θ̂)∗2 are demonstrated in Fig. 27. Note that σ̂2∗, B∗, J∗, and K∗ are obtained from

the randomized approach. The effect of M is shown in Fig. 27(a). Since the global

estimate is computed from a weighted sum of the received local estimates, increas-

ing M results in more suitable weight values. However, for the modified proposed

scheme, because of the overhead CAP and Beacon (exploited in remedying the effect
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Figure 27: We show the effects of M , W , α, and N on var(θ̂)∗1, the error variance
for the original proposed scheme, and var(θ̂)∗2, the error variance for the modified
proposed scheme, when the noise variance’s model is σ2

n = 0.25+hn, where hn ∼ χ2(3).

of collisions), there exists an M∗ minimizing var(θ̂)∗2. We also notice that the original

proposed scheme outperforms the modified proposed schemes when W is small. This

effect of W is studied in Fig. 27(b). It shows that the original proposed scheme is

suitable for small W . On the other hand, the modified proposed scheme is suitable

for large W . It The reason can be explained as follows. Since the original proposed
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scheme suffers from whole packet loss when a collision happens, it reluctantly allo-

cates B∗m, which is shorter than the modified proposed scheme’s B∗m (see Table 6, as

an example).

The effect of α is shown in Fig. 27(c). Note that α has no effect on the original

proposed scheme. In the modified proposed scheme, we partially remedy the effect

of packet loss by allowing the nodes to compete for channel access only during the

CAP, which consists of minislots of length α bits. Increasing α lowers the time left

for the transmission of estimates in CTAP, which shortens B∗m, and thus lowers the

accuracy of the global estimate. As shown, the length α is a criterion to choose which

proposed scheme should be used.

The effect ofN is shown in Fig. 27(d). The proposed schemes exploit the reliability-

based splitting algorithm, which is based on multi-user diversity. Increasing N helps

improve the performance of the schemes since more nodes experience more reli-

able observations (lower noise variances). However, with a limited collection time,

the improvement rate is negligible after a particular N . In addition, we show a

lower bound of the estimate variances of a TDMA-based scheme, var{θ̂}L∗TDMA =(⌊
T
B∗

⌋
Eσ2

{
1

σ2+W 2/22B∗
})−1

, where B∗ minimizes this term, in Fig. 27(d). Since the

TDMA-based scheme perfectly schedules the nodes’ transmissions, there are no colli-

sions happening. However, for a large number of nodes, a limited collection time, and

no advanced knowledge of individual nodes’ reliabilities, the TDMA-based scheme

has to schedule the nodes’ transmissions blindly. Comparing the performances of the

proposed schemes and the TDMA-based scheme explicitly shows a tradeoff between

two collection strategies: blind collection with a perfect transmission schedule and

reliability-ordered collection with collisions. As shown in Fig. 27(d), the proposed

schemes outperform the TDMA-based scheme for large N .
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6.6 Conclusion

We proposed distributed estimation schemes incorporating a reliability-based split-

ting algorithm into slotted ALOHA for WSNs whose FC uses a BLUE and must

collect the local estimates within a limited time. We formulated the time-constrained

optimization problems and derived two numerical methods to find the optimal pa-

rameter values. In addition, a modified frame structure is introduced. The numerical

results showed: the interesting characteristics of the optimal parameter values; the

effects of these parameters on the proposed schemes; and the comparisons between

the proposed schemes.
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CHAPTER VII

CONCLUSION

7.1 Summary of Contributions

We have proposed reliability-based splitting algorithms for a large, shared-channel,

single-hop WSN performing distributed detection and estimation when the network’s

FC is not able to collect local decisions/observations/estimates from all sensor nodes.

We summarize the contributions of this dissertation as follows.

• We applied the reliability-based splitting algorithm to a time-constrained dis-

tributed detection scheme. Since no closed-forms have been found, we derived

approximations of the DEP, efficacy, and ARE of the proposed scheme. We,

then used these approximations to:

(a) find the optimal parameter values (reliability thresholds and weights),

(b) show when the proposed scheme can achieve any desired efficacy (asymp-

totic performance) by increasing N for a fixed T ,

(c) find the range of T over which the proposed scheme asymptotically out-

performs the TDMA-based scheme.

In addition, we showed that the reliability thresholds that maximize the channel

throughput (which we call the maximum-throughput thresholds) are not always

optimal. However, the numerical results showed that the maximum-throughput

thresholds are optimal in many cases. When the maximum-throughput thresh-

olds are not optimal, they yield slightly lower performance than the optimal

thresholds do.
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• We derived collision-aware fusion rules for a time-constrained distributed detec-

tion using the reliability-based splitting algorithm. The FC computes a global

decision using both the successfully received local decisions, the number of suc-

cessful time slots, and the number of collision time slots. At the present time,

this is the first work introducing the use of collisions in distributed detection in

the collision-channel model.

• We proposed an ordered sequential detection approach that is based on the

reliability-based splitting algorithm. The reliability thresholds are dynamically

adjusted based on the numbers of successful transmissions and collisions (or

idle time slots). We provided an algorithm based on the one-step look-ahead

rule to compute suboptimal but efficient reliability thresholds. In addition, we

also considered an order sequential detection approach that is aware of packet

collisions.

• We applied the reliability-based splitting algorithm to a time-constrained dis-

tributed estimation scheme whose FC uses a BLUE to compute a global es-

timate. The performance of the proposed scheme depends on the number of

bits in an estimate, the number of time slots in a frame, and the reliability

thresholds. We provided algorithms to find these parameter values. However,

the algorithms might return locally optimal values. In addition, we proposed

a modified frame structure to improve the performance of this distributed esti-

mation approach.

7.2 Future Research Extensions

The work on this dissertation is focused on a cross-layer design between random access

and distributed detection/estimation applications. It has opened up many possible

research extensions, including:
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• Physical layer: In this work, we studied the proposed schemes in a pessimistic

channel model; namely, one in which collided packets are lost. If, however, the

FC is still able to decode the local decisions inside the collided packets up to a

certain signal-to-interference ratio, as is the case in multipacket reception [76],

the performances of the proposed schemes would be improved, but different

sets of optimal thresholds would be required. In addition, the knowledge of the

fading-channel’s statistics will lead to a different fusion rule.

• Other distributed detection/estimation strategies: The reliability-based splitting

algorithm has enabled the use of the ordered-transmission strategy [13] in finite-

bandwidth distributed detection and estimation. It is interesting to apply the

reliability-based splitting algorithm to other distributed detection and estima-

tion applications incorporating the ordered-transmission strategy – including,

for example, repeated significance tests [34,35] and sequential estimation [11,34].

• CSMA: Since a short packet length (equal to a time slot) is assumed, we used

slotted ALOHA as the channel access protocol. If we consider an application

with a large number of events/parameters, which may result in long packet

lengths, using a CSMA protocol will definitely improve the performance of all

of the distributed detection/estimation applications we have considered.
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APPENDIX A

POWER ALLOCATION FOR DISTRIBUTED

DETECTION IN A MULTIPLE-RING CLUSTER

In addition to the distributed detection and estimation schemes proposed in Chapter 2

to 6, we also studied transmission power allocation in distributed detection. The

details are presented as follows.

A.1 Introduction

In distributed detection, a number of battery-powered sensor nodes are dispersed

over or move around a geographic area to detect events. The local decisions made by

these nodes are collected over wireless channels by a Fusion Center (FC) to produce a

reliable global decision [12,79]. Traditionally, each node will transmit its decision with

the same power regardless of local decision quality and channel gains, so each node’s

contribution to the final Detection Error Probability (DEP) can vary significantly.

This uniform Power Allocation (PA) strategy is inefficient; significant power might

be spent on transmitting very low quality local decisions over poor channels. We

propose intelligent PA strategies to overcome this problem.

The problem of PA has been studied extensively in distributed detection/estimation

[26,84,88,89,98]. By formulating and solving optimization problems, the optimal PA

is found in the form of a water-filling solution [26,84,88,89] that depends on the ob-

servation noise and channel quality at the nodes. Some PA strategies for distributed

detection have been proposed. In [98], distributed detection with binary local deci-

sions was considered. A weighted water-filling algorithm was proposed to maximize

the sum of the J-divergence of all received signals at the FC. The PA for distributed
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detection with amplify-and-forward nodes was examined in [84], and an analytical

expression for the optimal power was derived. Both [98] and [84] assumed that all

nodes’ instantaneous observation quality and channel gains are known at the FC.

In this appendix, we consider the PA for distributed detection in a Wireless Sensor

Network (WSN) when observation and channel statistics are known. We assume

that nodes in the WSN form a single-hop, multiple-ring cluster with the FC at the

center. The effect of node-FC distances is included and modeled as path loss. The

nodes observe an event and make initial binary local decisions which are transmitted

through parallel fading channels. A global decision is made at the FC from a weighted

sum of the hard decisions of the received signals. We formulate optimization problems

to find a PA that maximizes the total expected Deflection Coefficient (DC) of the

received signals [62]. By using the Karush-Kuhn-Tucker (KKT) conditions, we obtain

two explicit expressions, (93) and (96), for the optimal power under two different

constraints: a total power constraint and a per-ring power constraint. Furthermore,

whether a node will transmit its local decision depends on the product of the local

decision quality and the channel gain, as shown in (94) and (97).

The proposed PA strategies perform two steps: censoring [65] and amplifying.

First, only the nodes with observation and channel Signal-to-Noise Ratios (SNRs)

exceeding the requisite thresholds are allowed to send their local decisions (censor-

ing step). Second, these nodes will transmit with the proposed transmission power

(amplifying step) to combat the channel inhospitality. As a result, the local decisions

received at the FC according to the proposed PA are more reliable than those from

the uniform PA.

The appendix is organized as follows. Section A.2 illustrates the system model

and formulates the DEP. The proposed PA strategies are explained and derived in

Section A.3. In Section A.4, the DEP comparisons between the uniform PA and

the proposed PA are shown for various parameters. Finally, conclusions are given in
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Section A.5.

A.2 Assumptions and System Model

We consider a binary hypothesis testing problem in a circular monitoring area where

N sensor nodes are uniformly deployed with a density δ; see Fig. 28. These N nodes

form an R-ring cluster with a FC at the center. We define the rth ring as the circular

area between the radii (r − 1)d and rd, where r = 1, 2, . . . , R and d is an arbitrary

distance. Then, the number of nodes within the rth ring, Nr, is equal to δπ(2r−1)d2.

Note that d = 1 is used in Section A.4.

The nth node in the rth ring has the following observation xn,r under two hy-

potheses; H0 : xn,r = vn,r and H1 : xn,r =
√
ξn,r+vn,r, where the noise vn,r is modeled

as an Independent Identically Distributed (IID) Gaussian random variable with zero

mean and unit variance and ξn,r is the observation SNR modeled as an IID random

variable with the Probability Density Function (PDF) fξ(ξn,r). Then, the observa-

tions {xn,r} are homogeneous and independent. We assume, for simplicity only, that

P (H0) = P (H1) = 0.5.

The system model is shown in Fig. 29. A binary decision un,r is made from

the optimum decision rule given ξn,r, where un,r = 1 if xn,r ≥
√
ξn,r
/

2; otherwise,
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Figure 29: System model.

un,r = −1. Then, the conditional Probability Mass Functions (PMFs) of un,r are

P (un,r = 1|H1, ξn,r) = P (un,r = −1|H0, ξn,r) = Φ
(√

ξn,r
/

2
)
,

P (un,r = 1|H0, ξn,r) = P (un,r = −1|H1, ξn,r) = Φ
(
−
√
ξn,r
/

2
)
,

where Φ(·) is the Gaussian Cumulative Distribution Function.

The local decision un,r is amplified with gain
√
αn,r and, then, transmitted through

fading and Gaussian additive parallel access channels. The received baseband signal

at the FC, yn,r, can be expressed as: yn,r = un,r
√
αn,rγn,r +wn,r, where the noise wn,r

is an IID Gaussian random variable with zero mean and unit variance and the channel

SNR γn,r is an independent random variable from fading effects. We assume that,

within the rth ring, γn,r is an IID random variable with the PDF fγr(γn,r) with mean

γ̄r. Furthermore, according to a simple path-loss model, we have γ̄r = Gγ̄1

(
0.5
r−0.5

)a
,

where G is an equipment gain, a is the attenuation index, and r − 0.5 is used as the

average distance from the FC for the rth ring. Note that G = 1 and a = 2 is used in

Section A.4. Then, yn,r is IID within the same ring and also independent among the

rings. The conditional PDFs of yn,r are written as the following Gaussian mixture

PDFs, for i = 0 or 1,

fyr(yn,r|Hi, ξn,r, γn,r) =
∑
un,r

fyr(yn,r|un,r, γn,r)P (un,r|Hi, ξn,r),

where fyr(yn,r|un,r, γn,r) ∼ N
(
un,r
√
αn,rγn,r, 1

)
.
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As shown in the next section, the proposed PA strategies have the thresholds ξ̂

and γ̂r such that only the nodes whose ξn,r > ξ̂ and γn,r > γ̂r will transmit their local

decisions to the FC. As a result, the number of active nodes in the rth ring, NA,r, is

less than or equal to Nr and the FC receives NA,r local decisions from the rth ring.

In comparison, for the uniform PA, ξ̂ = 0, γ̂r = 0, and NA,r = Nr.

At the FC, the received signals {yn,r} are decoded into binary bits {bn,r}, where

bn,r = sgn(yn,r) ∈ {+1,−1} and the operator sgn(·) is the sign function. The condi-

tional probabilities of bn,r are

P (bn,r = 1|H1, ξn,r, γn,r) = P (bn,r = −1|H0, ξn,r, γn,r)

=
∑

u∈{1,−1}

Φ
(
u
√
αr,nγn,r

)
Φ
(
u
√
ξn,r
/

2
)
,

and, P (bn,r = 1|H0, ξn,r, γn,r) = P (bn,r = −1|H1, ξn,r, γn,r) = 1−P (bn,r = 1|H1, ξn,r, γn,r).

Since yn,r is independent and homogeneous within the same ring, the average condi-

tional probability of bn,r for the rth ring is

P (bn,r = 1|H1) = P (bn,r = −1|H0)

=
∑

u∈{1,−1}

Eξ̂,γ̂rξ,γr

{
Φ
(
u
√
αr,nγn,r

)
Φ
(
u
√
ξn,r
/

2
)}

, (89)

where Eξ̂,γ̂rξ,γr
{·} = Eξ,γr

{
·
∣∣ξ > ξ̂, γr > γ̂r

}
.1 Similarly, P (bn,r = 1|H0) = P (bn,r =

−1|H1) = 1 − P (bn,r = 1|H1). In other words, (89) is the average probability of

detection P̄D,r of the received local decisions from the rth ring at the FC. Then, bn,r

is a Bernoulli random variable with the success probability P̄D,r.

The test statistic z at the FC is constructed from a weighted sum of {bn,r}, i.e.,

z =
∑R

r=1Wr

∑Nr
n=1 bn,r, where Wr is a weight for bn,r from the rth ring. The optimal

weight W ∗
r can be obtained via the Log-Likelihood Ratio (LLR): W ∗

r = log
P̄D,r

1−P̄D,r
.

The DEP of the global decision PE is P (H1)P (z < 0|H1) + P (H0)P (z ≥ 0|H0) and

1The notation Es,t{ · | · } is the conditional expectation operator with respect to the random
variables s and t.
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can be computed from

PE =
∑

∑R
r=1Wrnr<τ

R∏
r=1

(
NA,r

nr

)
P̄ nr
D,r

(
1− P̄D,r

)NA,r−nr , (90)

where τ =
∑R
r=1WrNA,r

2
, and nr is the number of bn,r = 1.

A.3 Proposed Power Allocation with Known Observation
and Channel Statistics

Since the analysis is based on knowing statistics, i.e., PDFs, we declare the following

changes on the variables. According to the homogeneous assumptions on the obser-

vation SNR for all nodes and the channel SNR for all nodes in the same ring, we will

use ξ, γr, and yr instead of ξn,r, γn,r, and yn,r, respectively, from now on.

We are interested in finding a PA that improves the DEP PE shown in (90),

which can be formulated as an optimization problem. However, using the DEP as

the objective function leads to a complicated and intractable solution. Instead, other

functions related to the DEP have been used as criteria in performance analysis; e.g.,

divergence [98], error exponent [68], and DC [74].

In this paper, we will use the DC of the received signal yr,

Dyr =

(
E {yr|H1, ξ, γr} − E {yr|H0, ξ, γr}

)2

Var {yr|H0, ξ, γr}
,

as a function that αr maximizes, where

Dyr =
4
[
2Φ
(√

ξ
/

2
)
− 1
]2
γrαr

1 + 4Φ
(√

ξ
/

2
) [

1− Φ
(√

ξ
/

2
)]
γrαr

, (91)

which is a measure of the FC’s ability to differentiate the two hypotheses based on

the analog signals, yr, received from nodes in the rth ring. The underlying idea is

that higher Dyr increases P̄D,r and, thus, helps improve the DEP. Note that Dyr in

(91) is a direct function of αr, while αr in (90) appears only in argument of Φ as

shown in (89). The effect of this fact will be discussed below and can be observed in

Section A.4.
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Since the statistics are given, we are working under long-term average conditions.

Let {α∗r} be the proposed PA strategies which are applied to all nodes in the rth

ring. They are found by maximizing the total sum of the Eξ,γr {Dyr} of all received

signals at the FC. Furthermore, two different constraints are considered: a total power

constraint and a per-ring power constraint.

First, we formulate the optimization problem with the long-term, total power

constraint as follows:

max
{αr}

R∑
r=1

NrEξ,γr {Dyr} (92)

s. t.
R∑
r=1

NrEξ,γr {αr} ≤ PT and αr ≥ 0, ∀r,

where PT is the total power, and Eξ,γr{·} is a joint expectation with respect to ξ

and γr. Since (92) is a convex optimization problem, the optimal power α∗r can be

found by applying the KKT conditions and in the form of a water-filling solution.

The results are summarized in the theorem below. Because of the space limitation,

we omit the proof but techniques similar to those used in [26, 84, 88, 89] are applied.

Note that in Theorem 1, the optimal power α∗ is independent of r.

Theorem 1. Consider an R-ring WSN cluster monitoring an event as modeled in

Section A.2. Let ξ and γ be the observation SNR and channel SNR, respectively, at a

node. The optimal power α∗, which is the strategy used by all nodes, for the problem

(92) is

α∗ =
1

4Φ
(√

ξ
2

) [
1− Φ

(√
ξ

2

)]
γ

2
[
2Φ
(√

ξ
2

)
− 1
]√

γ
√
λ

− 1

 , (93)

if ξ > ξ̂ and γ > γ̂; α∗ = 0, otherwise. The Lagrange multiplier λ is computed from

√
λ =

∑R
r=1NrI(ξ̂,γ̂)

ξ,γr

{
[2Φ(

√
ξ/2)−1]

2Φ(
√
ξ/2)[1−Φ(

√
ξ/2)]√γr

}
PT +

∑R
r=1 NrI(ξ̂,γ̂)

ξ,γr

{
1

4Φ(
√
ξ/2)[1−Φ(

√
ξ/2)]γr

} ,
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I(ξ̂,γ̂)
ξ,γr
{·} is defined for every function H(ξ, γr) as

I(ξ̂,γ̂)
ξ,γr
{H(ξ, γr)} =

∫ ∞
ξ̂

∫ ∞
γ̂

H(ξ, γr)fξ(ξ)fγr(γr) dξdγr.

The thresholds ξ̂ and γ̂ are found from the following equality:

2

[
2Φ

(√
ξ̂
/

2

)
− 1

]√
γ̂ =
√
λ. (94)

From Theorem 1, a node will compare its measured ξ and γ to the thresholds ξ̂

and γ̂ to decide whether its local decision is worth transmitting (censoring). When

ξ > ξ̂ and γ > γ̂, the optimal power α∗ is spent transmitting the local decision

(amplifying). Note that the criterion used to find the thresholds is a product of the

local decision quality
[
2Φ
(√

ξ
/

2
)
− 1
]

and the channel gain
√
γ.

However, two immediate difficulties arise. First, under a high observation SNR, a

very large λ (i.e., large ξ̂ and γ̂) is obtained. Then, there are only a few active nodes

and they use very high transmission power. This results in lowering the DEP (which

will be shown in Section 2.6) and inappropriately consuming nodes’ power. Imposing

a sensor power constraint can alleviate this difficulty.

Second, since the nodes close to the FC suffer little path loss, under the homo-

geneous observation SNR, these nodes will be frequently active and their power will

be depleted faster than the nodes farther away from the FC. This power-depletion

fairness can be solved by imposing a per-ring power constraint. The corresponding

optimization problem can be formulated as

max
{αr}

R∑
r=1

NrEξ,γr {Dyr}

s. t. NrEξ,γr {αr} ≤ Pr and αr ≥ 0, ∀r, (95)

where Pr is the total power for the rth ring. Similarly, since (95) is a convex opti-

mization problem, the solution α∗r can be found by using the KKT conditions and

summarized as follows.
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Theorem 2. Consider an R-ring WSN cluster monitoring an event as modeled in

Section A.2. Let ξ and γr be the observation SNR and channel SNR, respectively, at

a node in the rth ring. The optimal power α∗r, which is the strategy applied to the

nodes in the rth ring, for the problem (95) is

α∗r =
1

4Φ
(√

ξ
2

) [
1− Φ

(√
ξ

2

)]
γr

2
[
2Φ
(√

ξ
2

)
− 1
]√

γr
√
λr

− 1

 , (96)

if ξ > ξ̂ and γr > γ̂r; α
∗
r = 0, otherwise. The Lagrange multiplier λr is computed

from

√
λr =

NrI(ξ̂,γ̂)
ξ,γr

{ [
2Φ(
√
ξ/2)−1

]
2Φ(
√
ξ/2)
[

1−Φ(
√
ξ/2)
]√

γr

}
Pr +NrI(ξ̂,γ̂)

ξ,γr

{
1

4Φ(
√
ξ/2)
[

1−Φ(
√
ξ/2)
]
γr

} .
The thresholds ξ̂ and γ̂r are found from the following equality:

2

[
2Φ

(√
ξ̂
/

2

)
− 1

]√
γ̂r =

√
λr. (97)

A.4 Numerical Results and Discussions

This section illustrates the DEP improvement according to the proposed PA (93)

and (96) by comparison with the uniform PA. The DEP is computed from (90). We

assume that the observation SNR is homogeneous to all nodes and deterministic; i.e.,

a constant. The channel is suffering from Rayleigh fading and, then, the PDF of the

channel SNR of the nodes in the rth ring is fγr(γr) = 1
γ̄r
eγr/γ̄r . Note that the unit dB

of the power is with respect to the channel noise variance.

First we consider a single-ring cluster and study the effect of ξ, γ̄ = γ̄1, and N on

the DEPs. Note that (93) and (96) are equivalent for this case since R = 1. When

the proposed PA is used, because of the censoring property, not all nodes are active.

We have found that the number of active nodes is proportional to γ̄ and inversely

proportional to ξ. When the channel is good, low power will be spent per node, which

results in a large number of active nodes. On the other hand, when the observations

135



are good (i.e., good local decisions), only a few nodes are active and a large amount

of power (per node) will be spent to combat the channel adversity.

We compare the DEPs obtained by using the proposed PA and the uniform PA in

Figs. 30 and 31. In Fig. 30, the impacts of ξ and γ̄ on the DEPs are presented. Com-

pared to the DEPs from the uniform PA, significant DEP improvement is obtained

by using the proposed PA and is higher for better γ̄. Interestingly, the proposed

PA gives a deteriorated DEP when ξ = 16 dB. The reason is that, in this case, the

proposed PA activates only a few nodes. This is a side effect of optimizing the DC

instead of the DEP, as mentioned in Section A.3.

The impact ofN on the DEPs is considered in Fig. 31. The DEPs from the uniform

PA slightly improve when N increases. Because of a fixed total power, increasing N

lowers the quality of the received local decisions at the FC due to spending lower

uniform power per node. As seen, there exist points such that increasing N does not

improve the DEPs for the uniform PA anymore. In comparison, for the proposed PA,

increasing N results in more nodes experiencing good observation and channel SNRs.

We see that the DEPs from the proposed PA have significantly lower saturation

points.

Second, we show the DEPs of an R-ring cluster with a uniform node density for

two cases: fixed number of nodes and fixed node density. In each case, the DEPs

obtained from the uniform PA (U), the proposed PA under the total power constraint

(P-TP), and the proposed PA under the per-ring power constraint (P-RP) (each with

both the uniform weights {Wr = 1} and the optimal weights {W ∗
r }) are compared.

Fig. 32(a) shows the DEPs when a fixed number of nodes, N = 150, is deployed while

R increases. For an R-ring cluster, we have Nr = (2r−1)
R2 N and the per-ring power

Pr = Nr
N
PT in (95). Increasing R is equivalent to increasing the observed area, and,

then, more nodes are suffering inferior channel SNRs from larger path loss. Both

proposed PA strategies (P-RP and P-TP) yield better DEPs than the uniform PA
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Figure 30: The DEP PE versus the mean of the channel SNR γ̄ when R = 1, PT = 5
dB, N = 100. ξ is the observation SNR, U is the uniform PA, and P is the proposed
PA with the total power constraint. Since R = 1, the two proposed PA strategies are
equivalent.
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Figure 31: The DEP PE versus the number of nodes N when R = 1, PT = 5 dB,
and ξ = 5 dB. ξ is the observation SNR, γ̄ is the mean of the channel SNR, U is the
uniform PA, and P is the proposed PA with the total power constraint. Since R = 1,
the two proposed PA strategies are equivalent.

does, since the proposed PA strategies will allow only the nodes with good observation

and channel SNRs to be active and sharing the pooled power (PT or Pr). As a result,

the FC receives only good local decisions with small channel errors.

Fig. 32(b) shows the DEPs for a fixed node density, i.e., Nr = 10(2r − 1), and

Pr = NrPS, where PS is the power spent per node for the uniform PA. The number of
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nodes and PT (for P-TP) uniformly increase as R increases. Unlike the fixed number

of nodes, increasing R provides more nodes and thus greater total power. Since

the pooled power PT and Pr are spent intelligently on sending good local decisions

through good channels, the DEPs from the proposed strategies (P-RP, P-TP) yield

large DEP improvements when compared with the DEPs from the uniform PA. For

the uniform PA, since the received local decisions from the nodes in a large r (far

from the FC) are susceptible to channel error, its DEPs slowly improve as R increases

unless the optimal weights {W ∗
r } are used.

A.5 Conclusion

We have proposed two PA strategies for distributed detection in an R-ring cluster

for homogeneous event observation, where the effects of fading, path loss, and obser-

vation error are also included. In the proposed strategies, two steps, censoring and

amplifying, are performed; the nodes with observation and channel SNRs larger than

the requisite thresholds send the local decisions with the proposed power. By using

the power intelligently, the proposed PA strategies provide significantly better DEPs

over the uniform PA under the considered parameters.
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(a) For a fixed number of nodes, 150, when γ̄1 = 10 dB, ξ = 5 dB,
and PT = 5 dB.
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(b) For a fixed node density (N1 = 10, N2 = 30, N3 = 50, and
N4 = 70) when γ̄1 = 10 dB, ξ = 5 dB, and PS = −5 dB.

Figure 32: The DEP PE versus the number of rings (R). {Wr} are the wights. {W ∗
r }

are the optimal weights. U is the uniform PA. P-RP and P-TP are the proposed PAs
with the per-ring power constraint and with the total power constraint, respectively.
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APPENDIX B

EXPECTED NUMBERS OF SUCCESSFUL TIME SLOTS

AND IDLE TIME SLOTS

Let us define the following variables:

• n is the number of nodes attempting transmissions in a frame,

• K is the number of time slots in a frame,

• zS is the number of successful time slots, 0 ≤ zS ≤ min(K, n),

• zI is the number of idle time slots, 0 ≤ zI ≤ K.

B.1 Expected Number of Successful Time Slots

From [31, p. 112], the conditional PMF of zS given n is

f(zS|n) =
(−1)zSK!n!

zS!Kn

K̃∑
i≥zS

(−1)i(K − i)n−i
(i− zS)!(K − i)!(n− i)! ,

where K̃ = min(K, n). The conditional expectation of zS, E{zS|n} can be written as

E{zS|n} =
K̃∑

zS=1

K!n!

(zS − 1)!Kn

K̃−zS∑
i=0

(−1)i(K − i− zS)n−i−zS

i!(K − i− zS)!(n− i− zS)!
.

We can rewrite E{zS|n} as E{zS|n} =
∑K̃

c=1 Ac, where

Ac =
∑

zS+i=c

[
K!n!

(zS − 1)!Kn

][
(−1)i(K − c)n−c
i!(K − c)!(n− c)!

]
,

=
K!n!(K − c)n−c

Kn(K − c)!(n− c)!
∑

zS+i=c

(−1)i

(zS − 1)!i!
,
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for 1 ≤ zS ≤ K̃ and 0 ≤ i ≤ K̃ − zS. For 2 ≤ c ≤ K̃, we have

∑
zS+i=c

(−1)i

(zS − 1)!i!
=

1

(c− 1)!

c−1∑
i=0

(−1)i(c− 1)!

(c− 1− i)!i! = 0.

E{zS|n} = A1 =
K!n!(K − 1)n−1

Kn(K − 1)!(n− 1)!
= n

(
1− 1

K

)n−1

.

B.2 Expected Number of Idle Time Slots

From [31, p. 102], the conditional PMF of zI given n is

f(zI |n) =

(
K

zI

)K−zI∑
i=0

(−1)i
(
K − zI

i

)(
1− zI + i

K

)n
.

The conditional expectation of zS, E{zI |n} can be written as

E
{
zI
∣∣n} =

K∑
zI=1

zI

(
K

zI

)K−zI∑
i=0

(−1)i
(
K − zI

i

)(
1− zI + i

K

)n
,

=
K∑
c=1

K!

(K − c)!
(

1− c

K

)n ∑
zI+i=c

(−1)i

(zI − 1)!i!
.

We can show that
∑

zI+i=c
(−1)i

(zI−1)!i!
is 1 for c = 1, and 0 for 2 ≤ c ≤ K as follows:

∑
zI+i=c

(−1)i

(zI − 1)!i!
=

c∑
zI−1

(−1)(c−zI)

(zI − 1)!(c− zI)!
,

=
c−1∑
zI=0

(−1)(c−zI−1)

zI !(c− 1− zI)!
=

(−1)(c−1)

(c− 1)!

c−1∑
zI=0

(−1)zI
(
c− 1

zI

)
,

where the series in the last term is equal to 1 for c = 1, and 0 for 2 ≤ c ≤ K.

Therefore, we have E
{
zI
∣∣n} = K

(
1− 1

K

)n
.
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APPENDIX C

OPTIMAL FUSION RULE

Let am, bm, and cm be the numbers of dk,m = 1, dk,m = −1, and dk,m = 0, respectively,

where cm = Km − am − bm. From Bayes’ rule, we have

log
f
(
a1, b1, . . . , aM , bM |H1

)
f
(
a1, b1, . . . , aM , bM |H0

) H1

≷
H0

log
Pr(H0)

Pr(H1)
. (98)

The conditional probability f
(
a1, b1, . . . , aM , bM |Hi

)
is

∑
· · ·
∑

n1+...+nM+1=N

M∏
m=1

f(am, bm|nm, Hi)f(n1, . . . , nM). (99)

By substituting (2), (5) and (99) into (98), and after some mathematical manipula-

tion, we obtain

log


∑ · · ·∑

n1+...+nM+1=N

∏M
m=1 p

am+bm
s,m

(
1− ps,m

)cm
f(n)∑ · · ·∑

n1+...+nM+1=N

∏M
m=1 p

am+bm
s,m

(
1− ps,m

)cm
f(n)


+

M∑
m=1

(
am − bm

)
log
(1− pe,m

pe,m

) H1

≷
H0

log
Pr(H0)

Pr(H1)
. (100)

The first term in (100) is zero since f(n) does not depend on Hi. As a result, the

optimal fusion rule is a weighted sum of am and bm.

142



APPENDIX D

APPROXIMATION OF THE DEP

D.1 Approximation of the DEP PE(W, r̂,n)

We will find an approximation of the DEP PE(W, r̂,n), which can be done by using

Gaussian approximations for (2) and (4). By using the Demoivre-Laplace theorem

[61], (2) can be approximated as

f(n) ≈
M∏
m=1

1√
2πσm

e
− (nm−µm)2

2σ2
m , (101)

where µm = N∆Fm(θ) = n̄m and σ2
m = N∆Fm(θ)

(
1 − ∆Fm(θ)

)
. Note that, since

T < N , the independence among {nm} are reasonable.

For (4), the Demoivre-Laplace theorem is not applicable because strong correla-

tions exist between am and bm. Therefore, we approximate (4) by a conditional joint

Gaussian PDF N
(
µm,i,Cm,i

)
, where

µm,i =

E{am|nm, Hi}

E{bm|nm, Hi}

 ,

Cm,i =

 Var{am|nm, Hi} Cov{am, bm|nm, Hi}

Cov{am, bm|nm, Hi} Var{bm|nm, Hi}

 ,
where Var{·} and Cov{·} denote the variance and covariance, respectively, of the

random variable inside. From (4), we have the mean E{am|nm, Hi} = Kmps,mpm|i, the

mean E{bm|nm, Hi} = Kmps,m(1−pm|i), the variance Var{am|nm, Hi} = Kmps,mpm|i(1−

ps,mpm|i), the variance Var{bm|nm, Hi} = Kmps,m(1 − pm|i)
[
1− ps,m(1− pm|i)

]
, and

the covariance Cov{am, bm|nm, Hi} = −Kmp
2
s,m(1− pm|i)pm|i.

Consequently, for given nm and Hi, am − bm can be approximated as a Gaussian

random variable with the meanKmps,m(2pm|i−1) and varianceKmps,m
[
1− ps,m(2pm|i − 1)2

]
.
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Since, for given {nm} and Hi, the random variables {am − bm} are independent, the

FC’s test statistic zps is approximated as a Gaussian random variable, whose PDF is

fZ(zps|n, Hi)
approx∼ N

(
µi, σ

2
i

)
, (102)

where µz,i =
∑M

m=1WmKmps,m(2pm|i−1) and σ2
z,i =

∑M
m=1W

2
mKmps,m

[
1− ps,m(2pm|i − 1)2

]
.

By using (102), an approximation of the DEP PE(W, r̂,n) can be expressed as

P̃E(W, r̂,n) = Φ

(
−
√
µ2
z,1

σ2
z,1

)
.

Note that examples of using Gaussian approximation in distributed detection are [2]

and [58].

D.2 Approximation of the DEP PE(W, r̂)

We will find an approximation of the DEP PE(W, r̂). For convenience, we use

Am(nm) = WmKmps,m(1− 2pe,m),

Bm(nm) = W 2
mKmps,m

[
1− ps,m(1− 2pe,m)2

]
.

Recall thatKm and ps,m are functions of nm: Km = min(K,nm) and ps,m = nm
K

(
1− nm

K

)nm−1
.

From Craig’s formula [25], Q(x) = 1
π

∫ π/2
0

e
− x2

2 sin2 φ dφ, we rewrite

P̃E(W, r̂,n) =
1

π

∫ π/2

0

e
− 1

2 sin2 φ

[∑M
m=1 Am(nm)]

2

∑M
m=1 Bm(nm) dφ. (103)

From the approximation of the joint PDF of {nm} in (101), an approximation of the

DEP PE(W, r̂ can be written as

P̃E(W, r̂) = En

{
P̃E|n

}
= EnM

{
· · ·En1

{
P̃E(W, r̂,n)

}
· · ·
}
.

Applying Gauss-Hermite quadrature integration,
∫∞
−∞ g(x)e−x

2
dx =

∑J
j=1Cjg(xj),

where J is the number of sample points, {xj} are the roots of Hermite polynomial,

and {Cj} are the associated weights, (103), and (101), we can show that

En1

{
P̃E(W, r̂,n)

}
=

1

π

∫ π/2

0

1√
π

J1∑
j1=1

Cj1e
− 1

2sin2φ

[A1(
√

2σ1xj1
+µ1)+

∑M
m=2 Am(nm)]

2

B1(
√

2σ1xj1
+µ1)+

∑M
m=2 Bm(nm) dφ
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Repeating these steps, we have

P̃E(W, r̂) =
1

π

(
1√
π

)M ∫ π/2

0

J1∑
j1=1

· · ·
JM∑
jM=1

Cj1 · · ·CjM e
− 1

2sin2φ

[∑M
m=1 Am(

√
2σmxjm+µm)]

2

∑M
m=1 Bm(

√
2σmxjm+µm) dφ.

Let Jm = 1, for all m. We have Cjm =
√
π and xjm = 0, for all m. Therefore,

P̃E(W, r̂) =
1

π

∫ π/2

0

e
− 1

2sin2φ

[∑M
m=1 Am(µm)]

2

∑M
m=1 Bm(µm) dφ.

Note that µm = n̄m. By using Craig’s formula, we can rewrite P̃E(W, r̂) as shown in

Proposition 1.
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APPENDIX E

OPTIMAL WEIGHTS

The weights {W ∗
m} that minimize P̃E(W, r̂) are equivalent to those that maximize[∑M

m=1WmK̄mp̄s,m(1− 2pe,m)
]2

∑M
m=1W

2
mK̄mp̄s,m [1− p̄s,m(1− 2pe,m)2]

, (104)

which is the deflection coefficient of zps defined as (E{zps|H1}−E{zps|H0})2

Var{zps|H0} , when the

approximation of the PDF of zps is used. Taking the partial derivative of (104) with

respect to Wm and setting it to zero, after some mathematical manipulation, we can

find the optimal weights {W ∗
m} from the following equalities, for m = 1, . . . ,M ,

W ∗
m

[1− p̄s,m(1− 2pe,m)2]

(1− 2pe,m)
=

∑M
i=1 (W ∗

i )2 p̄s,iK̄i [1− p̄s,i(1− 2pe,i)
2][∑M

i=1 W
∗
i p̄s,iK̄i(1− 2pe,i)

] . (105)

We can show that the equalities in (105) hold for all m when the weights W ∗
m =

(1−2pe,m)

[1−p̄s,m(1−2pe,m)2]
are plugged in.

146



APPENDIX F

EFFECT OF THE RELIABILITY THRESHOLDS

The threshold r̂m, for m = 1, . . . , M − 1, affects both the variables K̄m, p̄s,m, pe,m

for the mth frame and the variables K̄m+1, p̄s,m+1, pe,m+1 for the (m + 1)th frame.

We elucidate the impacts of the thresholds {r̂m} on P̃E(W∗, r̂) in the following two

remarks.

Remark 2. Consider the mth frame, for m = 1, . . ., M . For a given r̂m−1, let

r̂†[r̂m−1] (i.e., depending on r̂m−1), where r̂†[r̂m−1] < r̂m−1, be the threshold such that∫ θ
2
−r̂†[r̂m−1]

θ
2
−r̂m−1

fX(x) dx+

∫ θ
2

+r̂m−1

θ
2

+r̂†[r̂m−1]

fX(x) dx =
K

N
.

The threshold r̂m affects P̃E(W∗, r̂) through K̄m, p̄s,m, and pe,m, which can be explained

as follows.

1) Increasing r̂m (from 0 towards r̂m−1) at first gives a constant K̄m = K. In-

creasing r̂m beyond r̂†[r̂m−1] lowers K̄m = n̄m = N∆Fm(θ).

2) Increasing r̂m (from 0 towards r̂m−1) at first also increases p̄s,m, which reaches

its peak
(
1− 1

K

)K−1
at r̂†[r̂m−1]. Increasing r̂m beyond r̂†m[r̂m−1] lowers p̄s,m.

3) Increasing r̂m (from 0 towards r̂m−1) lowers pe,m.

Remark 3. Similarly, consider the (m + 1)th frame, for m = 1, . . ., M − 1. For

a given r̂m+1, let r̂o[r̂m+1] (i.e., depending on r̂m+1), where r̂o[r̂m+1] > r̂m+1, be the

threshold such that∫ θ
2
−r̂m+1

θ
2
−r̂o[r̂m+1]

fX(x) dx+

∫ θ
2

+r̂o[r̂m+1]

θ
2

+r̂m+1

fX(x) dx =
K

N
.

The threshold r̂m affects P̃E(W∗, r̂) through K̄m+1, p̄s,m+1, and pe,m+1, which can be

explained as follows.
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1) Increasing r̂m (from r̂m+1) at first increases K̄m+1 = n̄m+1 = N∆Fm+1(θ).

Increasing r̂m beyond r̂o[r̂m+1] gives a constant K̄m+1 = K.

2) Increasing r̂m (from r̂m+1) at first also increases p̄s,m+1, which reaches its peak(
1− 1

K

)K−1
at r̂o[r̂m+1]. Increasing r̂m beyond r̂o[r̂m+1] lowers p̄s,m+1.

3) Increasing r̂m (from r̂m+1) lowers pe,m+1.

In Remark 2 (respectively, Remark 3), varying r̂m affects the tradeoff between the

throughput K̄mp̄s,m (respectively, K̄m+1p̄s,m+1) and the average probability of local

decision error pe,m (respectively, pe,m+1) in the mth frame (respectively, (m + 1)th

frame). Using the remarks above, we derive the feasible regions for {r̂∗m} as follows.

The proof can be shown by induction. Given the optimal threshold r̂∗m−1, where

r̂∗0 =∞, we consider the term K̄m
p̄s,m(1−2pe,m)2

[1−p̄s,m(1−2pe,m)2]
in (8). Let r̂†[r̂∗m−1] be the threshold

such that ∫ θ
2
−r̂†[r̂∗m−1]

θ
2
−r̂∗m−1

fX(x) dx+

∫ θ
2

+r̂∗m−1

θ
2

+r̂†[r̂∗m−1]

fX(x) dx =
K

N
. (106)

From Remark 2, fixing r̂m−1 = r̂∗m−1, K̄mp̄s,m and (1−2pe,m)2

[1−p̄s,m(1−2pe,m)2]
are increasing

functions for 0 ≤ r̂m < r̂†[r̂∗m−1], i.e., decreasing r̂m towards 0 lowers the value of

K̄m
p̄s,m(1−2pe,m)2

[1−p̄s,m(1−2pe,m)2]
. Therefore, the optimal threshold r̂∗m must be larger than or equal

to r̂†[r̂∗m−1]. As a result, we obtain the condition (9).
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APPENDIX G

DERIVATION OF ARE

Substituting (24) and (25) into (23) and using the following relations: θ = γ√
N

,

T
N

= Ť , T
K

= M , and nm
N

= ňm, we have

ARE(W∗, r̂, ň) = lim
N→∞

4

M

p̄e(1− p̄e)
(1− 2p̄e)2

M∑
m=1

K̆m
ps,m(1− 2pe,m)2

[1− ps,m(1− 2pe,m)2]
, (107)

where pe,m and p̄e are defined in (3) and Lemma 4, respectively. Now the pe,m and

p̄e are functions of N because of θ = γ√
N

, while K̆m and ps,m, which are shown in the

proof of Lemma 2, are independent of N . The limit limN→∞ in (107) results in an

indeterminate form, 0
0
, since p̄e = 1

2
and pe,m = 1

2
as N →∞.

To find (107), L´Hôpital’s rule is applied. For convenience, the following notations

are used: A = p̄e(1 − p̄e), Bm = (1−2pe,m)2

1−p̄s,m(1−2pe,m)2 , and C = (1 − 2p̄e)
2. Therefore, we

have

ARE(W∗, r̂, ň) =
4

M
lim
N→∞

(
∂
∂N
A
)∑M

m=1 K̆mps,mBm

∂
∂N
C

+
4

M
lim
N→∞

A
∑M

m=1 K̆mps,m
(
∂
∂N
Bm

)
∂
∂N
C

. (108)

Note that A = 1
4
, Bm = 0, and C = 0 as N → ∞. The derivatives of A, Bm, and C

are: ∂
∂N
A = − γ

4
√
N3

(1 − 2pc)c,
∂
∂N
Bm = γ√

N3
(1 − 2pc)bm, and ∂

∂N
C = γ√

N3
(1 − 2pc)c,

where

bm =

(
1− 2pe,m

)(
f(−)f

′
(+) − f(+)f

′
(−)

)[
1− ps,m(1− 2pe,m)2

]2(
f(−) + f(+)

)2 , c =
(
1− 2p̄e

)
fX

( γ

2
√
N

)
,

f(−) = fX

( γ

2
√
N
− r̂m

)
, f(+) = fX

( γ

2
√
N

+ r̂m

)
,

f ′(−) = f ′X

( γ

2
√
N
− r̂m

)
, f ′(+) = f ′X

( γ

2
√
N

+ r̂m

)
.
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Note that bm = 0 and c = 0 as N → ∞ (because of p̄e and pe,m). As a result, since

the first term on the right hand side of (108) is equal to zero, we have

ARE(W∗, r̂, ň) =
4

M
lim
N→∞

A
∑M

m=1 K̆mps,mbm
c

, (109)

which is again in an indeterminate form, 0
0
.

To find (109), L´Hôpital’s rule is applied. Therefore, we have

ARE(W∗, r̂, ň) =
4

M
lim
N→∞

(
∂
∂N
A
)∑M

m=1 K̆mps,mbm
∂
∂N
c

+
4

M
lim
N→∞

A
∑M

m=1 K̆mps,m
(
∂
∂N
bm
)

∂
∂N
c

. (110)

The derivatives of bm and c can be show as follows.

∂

∂N
bm =

γ

2
√
N3

(1− 2pc)
(
f(−)f

′
(+) − f(+)f

′
(−)

)2[
1− ps,m(1− 2pe,m)2

]2(
f(−) + f(+)

)4 +
γ

4
√
N3

[
Don’t-Care

]
, (111)

∂

∂N
c =

γ

4
√
N3

{
2(1− 2pc)

[
fX(

γ

2
√
N

)
]2 − (1− 2p̄e)f

′
X

( γ

2
√
N

)}
. (112)

As N → ∞, we have: the first term of (110) and the term “Don’t-Care” are zeros,

p̄e = 1
2
, pe,m = 1

2
, fX( γ

2
√
N

) = fX(0), f ′X( γ

2
√
N

) = f ′X(0),

f(−) = f(+) = fX(r̂m), f ′(−) = −f ′(+) = f ′X(r̂m). (113)

After substituting (111), (112), and (113) into (110) and some mathematical manip-

ulation, we obtain (26).
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