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SUMMARY

Wireless sensor networks (WSN) are an emerging technology with a wide range of

applications including environment monitoring, security and surveillance, health care,

smart homes, etc. Subject to severe resource constraints in wireless sensor networks,

in this research, we address the distributed estimation of unknown parameters by

studying the correlation among resource, distortion, and lifetime, which are three

major concerns for WSN applications.

The objective of the proposed research is to design efficient distributed estima-

tion algorithms for resource-constrained wireless sensor networks, where the major

challenge is the integrated design of local signal processing operations and strategies

for inter-sensor communication and networking so as to achieve a desirable tradeoff

among resource efficiency (bandwidth and energy), system performance (estimation

distortion and network lifetime), and implementation simplicity. More specifically, we

address the efficient distributed estimation from the following perspectives: (i) rate-

distortion perspective, where the objective is to study the rate-distortion bound for

the distributed estimation and to design practical and distributed algorithms suitable

for wireless sensor networks to approach the performance bound by optimally allocat-

ing the bit rate for each sensor, (ii) energy-distortion perspective, where the objective

is to study the energy-distortion bound for the distributed estimation and to design

practical and distributed algorithms suitable for wireless sensor networks to approach

the performance bound by optimally allocating the bit rate and transmission energy

for each sensor, and (iii) lifetime-distortion perspective, where the objective is to

maximize the network lifetime while meeting estimation distortion requirements by

xiii



jointly optimizing the source coding, source throughput and multi-hop routing. Also,

energy-efficient cluster-based distributed estimation is studied, where the objective is

to minimize the overall energy cost by appropriately dividing the sensor field into

multiple clusters with data aggregation at cluster heads.

xiv



CHAPTER I

INTRODUCTION

Recent advances in low-power micro-electro-mechanical system (MEMS) technology

and wireless communications have led to the emergence of a key technology, wireless

sensor networks (WSNs) [3]. A wireless sensor network consists of a large number

of sensors that can communicate with each other to achieve a specific task. Though

each sensor is characterized by low power constraint and limited computation and

communication capabilities, when suitably deployed in large scale, potentially pow-

erful networks can be constructed to accomplish various high-level tasks with sensor

collaboration [47], thus making wireless sensor networks a promising technology for

a wide range of applications.

Current and potential applications of wireless sensor networks include environment

monitoring, military sensing, traffic surveillance, health care, and smart homes [3,22,

25,28,29]. For example, distributed sensor networks can be deployed to monitor such

features of the natural environment as temperature, water flow, and the condition of

glaciers. They also can be used to detect, locate, and identify type and concentration

of polluting chemicals in water and air [67, 88, 100]. In the battlefield, networked

video, acoustic, or other types of sensors can be used to detect and track suspected

targets and coordinate the activities among several unmanned vehicles according to

the collected data from the field [35, 71]. In traffic surveillance, image sensors and

other types of sensors have been used at roadway intersections to monitor traffic con-

ditions or identify vehicles [36]. In the future, more intelligent sensors are expected to

be placed on vehicles to help reduce or avoid accidents. In health care and smart home

industries, by combining body-area sensors with environmental sensors embedded in

1



home surroundings, advanced multi-parametric health monitoring may be achieved

without compromising the convenience of the patients [34,45,84].

A common goal in most WSN applications is to reconstruct the underlying physical

phenomenon based on sensor measurements. The distributed estimation of unknown

parameters by a set of distributed sensor nodes and a fusion center has become an

important topic in signal processing research for wireless sensor networks [93, 96].

In distributed parameter estimation, sensor nodes collect real-valued data, locally

process the data, and send the resulting messages to the fusion center (FC), which

combines all the received messages to produce a final estimation of the unknown

parameter.

Estimation using a WSN requires not only local information processing but also

inter-sensor communication because sensors spread over a large geographical area.

This particular feature adds a wireless communication and networking component

to the problem that is absent from the traditional centralized estimation framework.

In fact, a major challenge in WSN research is the integrated design of local signal

processing operations and strategies for inter-sensor communication and networking

so as to achieve a desirable trade-off among resource efficiency, system performance,

and implementation simplicity. Designing distributed signal processing algorithms

differs from that of the traditional centralized framework in several important aspects:

• Obtaining the complete signal models for a large number of sensors may be

impractical, particularly in dynamic sensing environments. This prevents direct

application of optimum estimation algorithms and motivates the development

of distributed estimation strategies based on only partially known or unknown

data/noise models.

• Constraints on sensor cost, bandwidth, and energy budget dictate that low-

quality sensor observations may have to be aggressively quantized (e.g., down

to a few bits per observation per sensor). Furthermore, local compression at

2



a sensor node depends not only on the quality of sensor observation, but also

on the quality of the wireless communication channels between sensor nodes.

Thus, estimators must be developed based on severely quantized versions of

very noisy observations.

• Multi-hop transmission of locally processed data from sensor nodes to the fusion

center and data aggregation at intermediate nodes on the transmission path are

essential to save transmission energy and prolong the network lifetime.

In this dissertation, distributed estimation in resource-constrained wireless sensor

networks is addressed, where the main design goals are resource (bandwidth and

energy) efficiency, system performance (estimation distortion and network lifetime),

and implementation simplicity. More specifically, the distributed estimation problem

in wireless sensor networks is addressed from the following aspects:

• Rate-Distortion Perspective: The distributed estimation is addressed from the

rate-distortion point of view, where the objective is to minimize the estimation

distortion under a given bit rate constraint. Also the theoretical rate-distortion

bound of the distributed estimation is analyzed.

• Energy-Distortion Perspective: The distributed estimation is addressed from

the energy-distortion point of view, where the objective is to minimize the esti-

mation distortion under a given energy constraint. Furthermore, the theoretical

energy-distortion bound of the distributed estimation is analyzed.

• Lifetime-Distortion Perspective: Network lifetime is defined and optimized for

the distributed estimation with a given distortion requirement, which involves

the joint optimization of source coding, source throughput, and multi-hop rout-

ing.

• Cluster-Based Distributed Estimation: The whole sensor field is divided into

3



multiple clusters and data aggregation is applied at cluster heads. How to

optimally cluster the sensor networks is addressed to minimize the overall energy

consumption.

Specifically, this dissertation is organized as follows.

Chapter 2 first presents the general background of wireless sensor networks and

the distributed and collaborative signal processing framework in wireless sensor net-

works; then presents the specific background and state-of-the-art on centralized and

decentralized estimation problems and algorithms.

Chapter 3 and Chapter 4 address the resource-constrained distributed estima-

tion subject to severe resource constraints (bandwidth and energy) in wireless sensor

networks. In particular, Chapter 3 focuses on the rate-constrained distributed esti-

mation. First, a concept of the equivalent 1-bit MSE (mean square error) function is

introduced. Then, based on minimizing the equivalent 1-bit MSE function, a quasi-

optimal distributed estimation algorithm is developed and a theoretical rate-distortion

bound is presented. Chapter 4 focuses on the energy-constrained distributed estima-

tion. Generally speaking, the energy-constrained distributed estimation is a general-

ization of the rate-constrained distributed estimation since the energy consumption is

generally a function of the transmission bit rate. In this chapter, we first introduce a

concept of the equivalent unit-energy MSE function; then, a quasi-optimal distributed

estimation algorithm and a theoretical energy-distortion bound are developed by min-

imizing the equivalent unit-energy MSE function. In this chapter, several different

transmission and energy models and different network topologies such as single-hop

or multi-hop WSN are considered.

Chapter 5 addresses the lifetime-optimized distributed estimation. In this chapter,

we first define a concept of function-based network lifetime, which focuses on whether

the network as a whole can perform a given task rather than whether any individual

sensor in the network is dead. Then, to maximize the function-based network lifetime

4



under a given estimation distortion requirement, a nonlinear programming (NLP)

problem is formulated and solved, which involves a joint optimization of source coding,

source throughput, and multi-hop routing.

Chapter 6 studies the cluster-based distributed estimation, where the sensor net-

work is divided into several clusters, each cluster with a cluster head. To reduce the

energy consumption, data aggregation is introduced at the cluster heads. Then the

major objective is to study how to optimally divide the sensor networks into clus-

ters such that the overall energy consumption is minimized. In this chapter, two

algorithms are developed for fixed cluster head case and cluster head rotation case,

respectively.

Finally, the dissertation is concluded in Chapter 7 with a summary of contributions

and future research directions.
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CHAPTER II

BACKGROUND

2.1 Wireless Sensor Networks

A wireless sensor network consists of a large number of sensor nodes, each equipped

with three basic functional components: a sensing unit, a processing unit, and a

transceiver unit. The sensing unit collects information from the surrounding envi-

ronment; the processing unit performs some local information processing, such as

quantization and compression; and the transceiver unit transmits the locally pro-

cessed data to a fusion center where the information from different sensor nodes is

aggregated and fused to generate the final inference. Figure 1 shows an example of a

wireless sensor network for environment monitoring, where the sensors are scattered

in a sensor field to observe one or more environmental parameters such as tempera-

ture, light level, and soil moisture. Each sensor can route its data (locally processed

observations) via single-hop or multi-hop wireless channels to the fusion center / sink

node, which makes the final inference based on the received data. This sink node

communicates with the end user via public networks over satellite, wireless, or wired

links. Another example application of wireless sensor networks is wireless body area

networks (WBANs) [40] for health monitoring. A WBAN consists of multiple sensor

nodes, each capable of sampling, processing, and communicating one or more vital

signs (heart rate, blood pressure, oxygen saturation, activity) or environmental pa-

rameters (location, temperature, humidity, light). Typically, these sensors are placed

strategically on the human body as tiny patches or hidden in users clothes allow-

ing ubiquitous health monitoring in their native environment for extended periods of

time. A typical body sensor is tiny (about 20mm) and ultra-low power (about 10µA

6



in active mode and even less than 1µA in standby mode) [74]. These wireless sensor

networks are essentially different from the existing traditional sensor networks, where

expensive heavy sensors are laid in a field (such as ocean and desert).

Figure 1: An example of a wireless sensor network for environment monitoring.

While wireless sensor networks share many common features with existing wireless

ad hoc network concepts, there are a number of specific characteristics that make

wireless sensor networks different. These features can be summarized as follows:

• Large Network Size: A wireless sensor network has a large number (hundreds

or even thousands) of tiny, low-cost, and low-power nodes densely deployed in

a certain geographic area. This not only leads to the advantages of observation

redundancy, which may increase the monitoring precision and network robust-

ness, but also creates challenges to sensor collaboration and networking, which

requires scalable solutions.

• Self-Configurability : The large number of sensor nodes in a wireless sensor net-

work have little or no pre-established infrastructure, and their network topology
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can change dynamically because of nodes’ sleep, nodes’ failure, or nodes’ move.

Thus, similar to other ad hoc networks, wireless sensor networks are required to

have the capability of self-configuration. This includes, for example, sensor self-

localization, inter-node coordination, and adapting to node failure in a harsh

wireless environment.

• Stringent Energy Constraints : Sensor nodes are powered by small batteries that

are usually not rechargeable or irreplaceable, and thus energy in the network is

scarce and energy consumption is a primary design metric to be considered. To

prolong the lifetime of the network, the design of all sensor network operations

needs to be energy efficient. Energy limitations are, in fact, one of the major

differences between wireless sensor networks and other wireless networks, such

as wireless local area networks, where energy efficiency is of less concern.

• Application Specific: Because of the large number of conceivable combinations

of sensing, computing, and communication technology, many different sensor

network application scenarios become possible. It is unlikely that there will be

a “one-size-fits-all” solution for all types of sensor networks. Usually the low

cost and low energy supply require sensor networks to be optimally designed

according to a specific application scenario.

• Data Centric: The low cost and low energy supply will require, in many ap-

plication scenarios, redundant deployment of wireless sensor nodes. As a con-

sequence, the importance of any one particular node is considerably reduced

compared to traditional networks (such as wireless LAN or cellular phone sys-

tems). Instead, the data that is observed by these nodes is the focal point. This

results in a shift from node-centric architectures in classical networks toward

data-centric architectures in sensor networks.

8



• Simple and Easily Implementable: Because sensor nodes are small and battery-

powered with limited onboard processing and communication capabilities, sen-

sor network operations need to be simple. In some applications, sensor networks

also need to be deployed in real time. This requires simple and easily imple-

mented designs for sensor networks at all levels, including signal processing

algorithms, networking structure, and communication protocols.

To successfully deploy wireless sensor networks, novel and intelligent processing

and communication concepts need to be developed that fit the nature of these net-

works. Given the power constraints in sensors and the massive number of sensors,

one of the major objectives of sensor network research is to design energy-efficient de-

vices, protocols, and algorithms, i.e., low-cost sensors to collect information, efficient

networking protocols to transmit information among sensor nodes or from sensors

to a processing center, and distributed algorithms to process and abstract the core

information from the raw data collected by sensors. These three technology areas

are not isolated from each other because of the interdisciplinary nature of sensor net-

work design. This dissertation focuses on distributed signal processing in wireless

sensor networks, which involves a combined treatment of sensor data processing and

communication networks.

2.2 Distributed and Collaborative Signal Processing

Wireless sensor networks present a significant trade-off between power consumed by

processing versus communication. Compared with sensing and computation, commu-

nication is the most energy-consuming operation in wireless sensor networks; there-

fore, distributed signal processing at local sensors to reduce the data transmitted

among sensors or from sensors to a processing center is essential in saving energy [22].

On the other hand, information sharing and collaborative processing among sensors
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are also essential to achieve enough precision because the data from a single low-

cost sensor is too coarse to derive a reliable inference. Thus, a new paradigm -

distributed and collaborative signal processing - is necessary to efficiently coordinate

the large number of sensors in a network to achieve high-level information processing

tasks [2, 22,47,103,104].

Figure 2 shows a layered structure for distributed and collaborative signal pro-

cessing. The bottom layer is sensor scheduling and sensing layer, which is to decide

the sensor status and make the desired observations when the sensor is active. The

second lowest layers is local signal processing layer, which performs local data pro-

cessing, such as quantization. Multi-modality fusion also could be performed if there

are multiple sensor modules on the same sensor board. These two layers are per-

formed at local sensors in a distributed manner. Then, each sensor communicates

its locally processed data to other sensors or a processing center. The data commu-

nicated among sensors can be analog waveforms, digitized observations/decisions, or

locally derived data models. The upper two layers are collaborative signal process-

ing, including multi-sensor data fusion layer, which is to fuse the data received from

multiple sensors and extract the useful information, and application layer, which is

to make the final information inference for user applications.

The distributed and collaborative signal processing paradigm provides the founda-

tion for large and highly scalable sensor networks. It is widely adopted to achieve dif-

ferent information processing tasks, such as query dissemination [26], distributed data

compression [76,99], distributed estimation [5–9,32,39,46,48,50–58,63–65,69,70,73,

75,77,79,80,82,83,85,90–92,94,96–98], distributed detection [4,10,11,14–16,19,20,27,

30,37,59,60,62,72,86,89,95], localization [21,43,78], and tracking [33,49,61,103,104].

Distributed and collaborative signal processing and information fusion over a net-

work is an active area of research. Important technical issues include the degree of

information sharing between nodes and how nodes fuse the information received from
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Figure 2: Layered architecture for distributed and collaborative signal processing.

other nodes. Processing data from several sensors generally results in performance

improvement but also requires more communication resources (bandwidth and en-

ergy). Similarly, when communicating information at a lower level (e.g., raw data),

less information is lost, but more bandwidth and energy are required. Therefore, one

needs to consider the multiple trade-offs between system performance and resource

utilization. Other issues include how to meet latency and reliability requirements and

how to maximize sensor network operational lifetime.

In this dissertation, we will apply the distributed and collaborative signal pro-

cessing paradigm to study the distributed estimation problem. In the context of

distributed estimation, all the aforementioned technical issues, including system per-

formance and resource utilization trade-offs and network work lifetime, will be ad-

dressed. In the next section, we first review the background and state-of-the-art of

the centralized/decentralized estimation.
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2.3 Centralized versus Decentralized Estimation

Consider a dense sensor network that includes N distributed sensor nodes and a fusion

center to observe and estimate an unknown parameter θ, as shown in Figure 3. Each

sensor makes an observation, which is corrupted by additive noise and is described

by

xk = θ + nk, k = 1, · · · , N. (1)

We assume that the noises nk (k = 1, · · · , N) are zero mean, spatially uncorrelated

with probability density function (pdf) fk(x) and variance σ2
k. Then each sensor

k may perform a local processing on its observation xk and transmit its processed

message mk(xk) to the fusion center over a wireless channel, where the final estimation

is made based on all received messages from all sensors.

Figure 3: System diagram of centralized/decentralized estimation.

Note that the data model in Equation (1) bears a number of variations in different

applications. For example, by a suitable linear scaling, the above data model is

equivalent to the one where sensors observe θ with different attenuations, namely,

xk = hkθ +nk. Indeed, if we let x′k = xk/hk and n′k = nk/hk, then x′k = θ +n′k, which

is identical to that in Equation (1).

2.3.1 Centralized Estimation

If the fusion center has the knowledge of the sensor noises (pdf fk and/or variance

σ2
k) and the sensors can perfectly send their observations xk (k = 1, · · · , N) to the
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fusion center, the fusion center can estimate the parameter θ based on the observations

x := (x1, x2, · · · , xN) using two centralized estimators: maximum likelihood estimator

(MLE) and best linear unbiased estimator (BLUE) [44]. Their performance serves as

a performance benchmark for the decentralized estimation.

• MLE: If the noise distributions fk (k = 1, · · · , N) are available as prior infor-

mation, the centralized MLE of θ based on observations x is

θ̄ML = arg max
θ

f(x|θ) = arg max
θ

N∑

k=1

logfk(xk − θ). (2)

MLE, if unique, is asymptotically unbiased and attains the Cramer-Rao Lower

Bound (CRLB):
(∑N

k=1 J(θ; xk)
)−1

, where J(θ; xk) is the Fisher information of

θ in xk:

J(θ; xk) =

∫ (
∂fk(x− θ)

∂θ

)2
1

fk(x− θ)
dx =

∫
f ′k(x)2

fk(x)
dx. (3)

• BLUE: If the fusion center only has knowledge of the sensor noise variances σ2
k

(k = 1, · · · , N), a best linear unbiased estimator (BLUE) can be performed to

recover θ by combining xk with weights inversely proportional to σ2
k. This leads

to the following BLUE estimation of θ

θ̄BLUE =

(
N∑

k=1

1

σ2
k

)−1 N∑

k=1

xk

σ2
k

, (4)

and the estimation mean square error (MSE) of the BLUE estimator is

E
(∣∣θ̄BLUE − θ

∣∣2
)

=

(
N∑

k=1

1

σ2
k

)−1

. (5)

It is noted that the BLUE estimator does not depend on the noise pdf but on the

noise variance only, while the MLE estimator needs to know the underlying sensor

noise distributions. Unfortunately, characterizing the exact noise probability distri-

bution for a large number of sensors is impractical, especially for applications in a
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dynamic sensing environment. What is more realistic in these scenarios is to let each

sensor estimate its local signal-to-noise ratio (SNR), which can be accomplished by

simply measuring the received signal power in the presence and absence of the incom-

ing signal. Motivated by these considerations, we will focus on the BLUE estimator

and, therefore, take the MSE in Equation (5) as the major performance benchmark

for the decentralized estimation in wireless sensor networks.

2.3.2 Decentralized Estimation

Centralized estimation schemes (MLE and BLUE) require the sensors to send their

original real-valued observations xk (k = 1, · · · , N) to the fusion center perfectly.

Therefore, the communication links between sensors and the fusion center need to

have sufficient bandwidth. And the transmission energy cost is high. This makes it

impractical for implementation in wireless sensor networks, where resources (band-

width and energy) are severely constrained and the wireless channels between sensors

and the fusion center are noisy.

Instead of sending the original real-valued observations to the fusion center, lo-

cal processing (quantization and compression) at sensors is essential to reduce the

communication cost (bandwidth and energy). This is referred to as decentralized

estimation. It can be accomplished as follows. First, each sensor performs a local

quantization mk = Qk(xk), where Qk(xk) is a quantization function, and the quantiza-

tion message mk is then transmitted to the fusion center. Second, all the quantization

messages are combined at the fusion center to produce a final estimation of θ using a

real-valued fusion function f : θ̄ = f(m1,m2, · · · ,mN). The quality of an estimation

for θ is measured by the MSE criterion: E(|θ̄ − θ|2). The distributed estimation of

unknown deterministic parameters by a set of distributed sensor nodes and a fusion

center has become an important topic in signal processing research for wireless sensor

networks [96].
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The major issue of decentralized estimation in resource-constrained wireless sensor

networks is to co-design the local quantization function, the fusion function, and the

resource (bandwidth and energy) allocation strategy to achieve the optimal trade-off

between the resource efficiency and overall system performance.

In the context of distributed estimation, subject to the resource (bandwidth and

energy) limitation nature of wireless sensor networks, several bandwidth-constrained

distributed estimation algorithms [6,7,32,48,64,65,69,70,75,79,80] have been investi-

gated recently. The work of [32,48,75] addressed various design and implementation

issues to digitize the transmitted signal into one or several binary bits using the joint

distribution of sensors’ data. In [79] and [80], a class of maximum likelihood estima-

tors (MLE) was proposed to attain a variance that is close to the clairvoyant estimator

when the observations are quantized to one bit. The work of [7] and [6] addressed

the maximum likelihood estimation over noisy channel for bandwidth-constrained

sensor networks with or without knowing the sensing and channel noise parameters

at the fusion center. Without the knowledge of noise distribution, the work of [69]

and [70] proposed using a training sequence to aid the design of local data quantiza-

tion strategies, and the work of [64] and [65] proposed several universal (pdf-unaware)

decentralized estimation systems based on best linear unbiased estimation (BLUE)

rule for distributed parameter estimation in the presence of unknown, additive sensor

noise.

To explicitly address the energy constraint in wireless sensor networks, the minimal-

energy distributed estimation problem has also been recently considered in [5, 46,

91, 92, 94]. In [94] and [46], the total sensor transmission energy is minimized by

selecting the optimal quantization levels while meeting the target estimation MSE

requirements. On the contrary, the work of [5] minimizes the estimation MSE under

the given energy constraints. The work of [91, 92] addressed the energy-constrained

distributed estimation problem (under the BLUE fusion rule) by exploiting long-term
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noise variance statistics.

Although both bandwidth and energy constraints for distributed estimation in

wireless sensor networks have been widely investigated [5–7,32,46,48,64,65,69,70,75,

79,80,91,92,94], there is a lack of overall optimality analysis in the sense of resource-

distortion performance. In the first part of this dissertation, the resource-distortion

optimized distributed estimation under a total available resource constraint is studied,

where the available resource should be allocated among all sensors jointly and opti-

mally to optimize the estimation performance, and the optimal resource allocation

could be unequal because of the heterogeneous nature of sensor networks. In this re-

search, both the theoretical resource-distortion bound for distributed estimation and

the practical algorithms with close-to-optimal performance are developed.

In this dissertation, the distributed estimation is addressed not only from rate-

distortion perspective or energy-distortion perspective, but also from lifetime-distortion

perspective, which is a critical concern in the design of wireless sensor networks. The

network lifetime issue for distributed estimation application in wireless sensor net-

works has not yet been addressed explicitly in the literature. In this dissertation, we

define a new notion of function-based network lifetime, which focuses on whether the

network as a whole can perform a given task, and then address how to optimize the

function-based network lifetime for distributed estimation in single-hop and multi-

hop wireless sensor networks. In this research, cluster-based distributed estimation

is also studied, where data aggregation at the cluster head is introduced and opti-

mal clustering algorithms are developed to minimize the overall energy cost. In the

following several chapters, all the aforementioned research efforts and the resulting

findings will be described in detail.
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CHAPTER III

RATE-CONSTRAINED DISTRIBUTED ESTIMATION

In wireless sensor networks, compared with sensing and computation processes, com-

munication is the most energy consuming operation. Thus, reducing communications

between sensors and the fusion center is essential in saving energy. Also, the com-

munication capacity within wireless sensor networks is limited because the wireless

channel is shared across the whole network. Therefore, a total communication rate

constraint within a sensor network is necessary to avoid communication collisions that

waste energy. In this chapter, we study the rate-constrained distributed estimation

by imposing a total bit rate constraint for all sensors in the sensor network.

In the rate-constrained distributed estimation problem, data quantization/compression

at local sensors is needed to reduce communication requirements. The quantized

or compressed data is transmitted to the fusion center to generate the final esti-

mation. In fact, the design of discrete local message functions and the final esti-

mation function is a major topic in the research of wireless sensor networks. Re-

cently, several rate-constrained distributed estimation algorithms have been investi-

gated in [6,7,32,48,64,65,69,70,75,79,80]. Most of the past work on rate-constrained

distributed estimation is usually posed for a given number of sensors (one obser-

vation per sensor), but there is a lack of overall optimality analysis in the sense

of rate-distortion performance. Here, the fundamental issue is the rate-distortion

bound. More importantly, how do we achieve the performance bound in a simple and

distributed manner such that it is easy to implement for wireless sensor networks?
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In this chapter, rate-constrained distributed estimation is addressed from the rate-

distortion perspective [51,53]. To minimize the estimation distortion, the given num-

ber of available bits B has to be allocated jointly and optimally among all sensors.

Therefore, there exists an interesting trade-off between the number of active sen-

sors and the quantization precision of each active sensor. We address this optimal

trade-off and design the optimal distributed estimation mechanism by (i) selecting a

subset of sensors to observe the phenomenon and (ii) selecting the quantizer for each

active sensor to quantize the real-valued observations. Furthermore, the theoretical

rate-distortion bound for the distributed estimation is analyzed, which shows that

the proposed algorithm is close to optimal.

The rest of this chapter is organized as follows. Section 3.1 states the distributed

estimation problem under the total bit rate constraint. The quantization rule at lo-

cal sensors and the fusion rule at the fusion center are also described. Section 3.2

introduces a concept of the equivalent 1-bit MSE function. Based on this concept,

an optimal distributed estimation algorithm for homogeneous sensor networks and

a quasi-optimal distributed estimation algorithm for heterogeneous sensor networks

are developed in Section 3.3 and Section 3.4, respectively. Furthermore, a theoretical

lower bound of the estimation MSE under the total bit rate constraint is addressed

in Section 3.5. Section 3.6 shows some simulation results to demonstrate the perfor-

mance of the proposed algorithms. Section 3.7 summarizes this chapter. The proofs of

some theorems presented in this chapter are delegated to the appendix in Section 3.8.

3.1 System Model and Problem Statement

Consider a dense sensor network that includes N distributed sensors and each sensor

can observe, quantize, and transmit its observation to the fusion center, which will

estimate the parameter θ based on the received messages. Because of the total bit

rate constraint, there is a trade-off between the number of active sensors and the
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quantization bit rate at each active sensor, that is, only a subset of sensors will be

active at each task period. Without loss of generality, we assume that the first K

sensors are active. This can be accomplished as follows (Figure 4).

Figure 4: The distributed estimation system under the total bit rate constraint,
where K sensors are active and each active sensor performs a local quantization and
transmits its quantized message to the fusion center, which will estimate θ based on
all the received messages.

First, each sensor makes an observation on the unknown parameter θ. The obser-

vations are corrupted by additive noises and are described by

xk = θ + nk, k = 1, · · · , K. (6)

We assume that the noises nk (k = 1, · · · , K) are zero mean, spatially uncorrelated

with variances σ2
k, but otherwise unknown. Second, each active sensor performs a

local quantization mk = Qk(xk), where Qk(xk) is a quantization function, and the

quantized message mk is transmitted to the fusion center, where all the quantized

messages are combined to produce a final estimation of θ using a fusion function f :

θ̄K = f(m1,m2, · · · ,mK). The quality of an estimation for θ is measured by the

mean square error (MSE) criterion. So the primary goal is to perform the following
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optimization:

min E(θ̄K − θ)2,

s.t.
K∑

k=1

bk ≤ B, bk ∈ Z+, k = 1, · · · , K,
(7)

where B is the total bit rate constraint, K is the number of active sensors, and bk is

the quantization bit rate of the active sensor k.

If the fusion center has the knowledge of the sensor noise variances σ2
k (k =

1, · · · , K) and the sensors can perfectly send their observations xk (k = 1, · · · , K) to

the fusion center, the best linear unbiased estimator (BLUE) [44] for θ is

θ̄K =

(
K∑

k=1

1

σ2
k

)−1 K∑

k=1

xk

σ2
k

(8)

and the estimation MSE of the BLUE estimator is

E(θ̄K − θ)2 =

(
K∑

k=1

1

σ2
k

)−1

. (9)

But the BLUE scheme is impractical for wireless sensor networks because of the

high communication cost. Instead of sending the real-valued observations to the fusion

center directly, quantization at local sensors is essential to reduce the communication

cost (bandwidth and energy). In this work, we adopt a probabilistic quantization

scheme [94] and a quasi-BLUE estimation scheme. Based on that, the optimal trade-

off between the number of active sensors and the quantization bit rate of each active

sensor is addressed to achieve the optimal rate-distortion performance.

3.1.1 Probabilistic Quantization

Suppose the observed signal of each sensor is bounded to [−W,W ], that is, x = θ+n ∈
[−W,W ], where W is a known parameter decided by the sensor’s dynamic range, θ is

the unknown signal to be estimated, and n is the zero mean noise with variance σ2.

Regardless of the probability distribution of x, the probabilistic quantization with

b bits is summarized as follows: uniformly divide [−W,W ] into intervals of length

∆ = 2W/(2b − 1) and round x to the neighboring endpoints of these small intervals
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in a probabilistic manner. More specifically, suppose −W + i∆ ≤ x ≤ −W +(i+1)∆,

where 0 ≤ i ≤ 2b − 2; then x is quantized to m(x, b) according to

P {m(x, b) = −W + i∆} = 1− r,

P {m(x, b) = −W + (i + 1)∆} = r,
(10)

where r = (x + W − i∆)/∆ ∈ [1, 1].

The following lemma, which is proved in [94], shows that the quantized message

m(x, b) is an unbiased estimator of θ with a variance approaching σ2 at an exponential

rate as b increases.

Lemma 3.1 ( [94]). Let m(x, b) be a b-bit quantization of x ∈ [−W,W ] as defined

above; then, m(x, b) is an unbiased estimator of θ and

E
(|m(x, b)− θ|2) ≤ σ2 +

W 2

(2b − 1)2 = σ2 + δ2, for all b > 0, (11)

where δ2 = W 2/(2b − 1)2 denotes the upper bound of the quantization noise variance.

3.1.2 Quasi-BLUE Estimator

Suppose all the observations of K active sensors xk (k = 1, · · · , K) are quantized into

bk-bit discrete messages mk(xk, bk) with the above probabilistic quantization scheme.

Based on the quantized messages mk, the quasi-BLUE estimator at the fusion center

has the following form:

θ̄K =

(
K∑

k=1

1

σ2
k + δ2

k

)−1 K∑

k=1

mk

σ2
k + δ2

k

. (12)

Notice that θ̄K is an unbiased estimator of θ since every mk is unbiased. Moreover,

the estimation MSE of the quasi-BLUE estimator [94] is

E(θ̄K − θ)2 ≤
(

K∑

k=1

1

σ2
k + δ2

k

)−1

. (13)

21



3.1.3 Distributed Estimation under Rate Constraints

With the probabilistic quantization scheme and the quasi-BLUE fusion rule, instead

of the original problem in Equation (7), we turn to the following modified problem,

which minimizes the bound of the estimation MSE under the rate constraint, i.e.,

min




K∑
k=1

1

σ2
k +

W 2

(2bk − 1)2




−1

,

s.t.
K∑

k=1

bk ≤ B, bk ∈ Z+, k = 1, · · · , K,

(14)

where B is the total bit rate constraint, K is the number of active sensors, and bk is

the quantization bit rate of the active sensor k. Both K and bk (k = 1, · · · , K) are to

be optimized to minimize the estimation MSE. That is, adaptively select the subset

of active sensors and the bk-bit quantizer for each active sensor so that the estimation

MSE at the fusion center is minimized.

In the following sections, we address this problem for homogeneous and hetero-

geneous sensor networks, respectively. To facilitate the solution, we first define an

equivalent 1-bit MSE function.

3.2 Equivalent 1-bit MSE Function

As shown in Section 3.1.1, the b-bit quantized message from a sensor with observation

noise variance σ2 is an unbiased estimation of the parameter θ with the estimation

MSE D ≤ σ2 + W 2/(2b − 1)2. We denote the estimation MSE bound as

f(σ2, b) = σ2 +
W 2

(2b − 1)2
. (15)

Definition 3.1 (Equivalent 1-bit MSE function). For a sensor with b-bit quantization

and observation noise variance σ2, the equivalent 1-bit MSE function is defined as

g(σ2, b) = b · f(σ2, b) = b

(
σ2 +

W 2

(2b − 1)2

)
. (16)
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With this definition, the estimation MSE of the quasi-BLUE estimator in Equa-

tion (13) can be rewritten as

E(θ̄K − θ)2 ≤
(

K∑
k=1

1

σ2
k + δ2

k

)−1

=




1

f(σ2
1, b1)

+ · · ·+ 1

f(σ2
K , bK)︸ ︷︷ ︸

K




−1

=




1

g(σ2
1, b1)

+ · · ·+ 1

g(σ2
1, b1)︸ ︷︷ ︸

b1

+ · · ·+ 1

g(σ2
K , bK)

+ · · · 1

g(σ2
K , bK)︸ ︷︷ ︸

bK︸ ︷︷ ︸
b1+···+bK=B




−1

.

(17)

From the estimation MSE aspect, a b-bit quantization sensor with the estimation

MSE f(σ2, b) can be treated as b equivalent 1-bit quantization sensors, each with the

same estimation MSE g(σ2, b) defined as above. This is why the function g(σ2, b) is

called the equivalent 1-bit MSE function. Further, the rate-constrained distributed

estimation system with K sensors under the total bit rate constraint B can be treated

as a distributed estimation system with B equivalent 1-bit quantization sensors, where

B is a constant and K is a variable.

Based on the definition of the equivalent 1-bit MSE function g(σ2, b), it is easy to

show that it is convex over b, as in Proposition 3.1. Further, we define the optimal

equivalent 1-bit MSE function gopt(σ2) and the corresponding optimal quantization

bit rate bopt(σ2) for each sensor with observation noise variance σ2 as

bopt(σ2) = arg min
b∈Z+

g(σ2, b) = arg min
b∈Z+

[
b

(
σ2 +

W 2

(2b − 1)2

)]
,

gopt(σ2) = min
b∈Z+

g(σ2, b) = g(σ2, bopt(σ2)),

(18)

where the minimization in Equation (18) involves just a simple one-dimensional nu-

merical search over b ∈ Z+.

Proposition 3.1. The functions g(σ2, b), bopt(σ2) and gopt(σ2) have the following

properties:
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1. g(σ2, b) increases over σ2, i.e.,

g(σ2
i , b) < g(σ2

j , b), if σ2
i < σ2

j .

2. g(σ2, b) is convex over b (b > 0), i.e.,





g(σ2, b1) > g(σ2, b2) ≥ g(σ2, bopt(σ2)), if b1 < b2 ≤ bopt(σ2),

g(σ2, bopt(σ2)) ≤ g(σ2, b3) < g(σ2, b4), if bopt(σ2) ≤ b3 < b4.

3. gopt(σ2) increases over σ2, i.e.,

gopt(σ2
i ) < gopt(σ2

j ), if σ2
i < σ2

j .

Proof. Proposition 3.1 is easy to prove as follows:

1. g(σ2, b) increases over σ2 by definition.

2. g(σ2, b) is convex over b because ∂2g(σ2, b)/∂b2 > 0.

3. For the observation noise variances σ2
i and σ2

j , denote the corresponding optimal

quantization bit rates as bopt(σ2
i ) and bopt(σ2

j ); then

gopt(σ2
i ) = g(σ2

i , b
opt(σ2

i ))

≤ g(σ2
i , b

opt(σ2
j ))

< g(σ2
j , b

opt(σ2
j ))

= gopt(σ2
j ).

It is also easy to see that bopt depends on the signal-to-noise ratio (SNR), defined

as SNR = 10 log10(W
2/σ2). Figure 5 shows the optimal quantization bit rate bopt

under different SNRs. With the optimal quantization bit rate, the variance of the

quantized message is shown in Lemma 3.2 and Figure 6.

24



0 10 20 30 40
0

1

2

3

4

5

6

7

8

Signal to Noise Ratio (dB)

O
pt

im
al

 Q
ua

nt
iz

at
io

n 
B

it 
R

at
e 

(b
its

)

Figure 5: The optimal quantization bit rate versus signal-to-noise ratio (SNR).
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Lemma 3.2. f(σ2, b) is the estimation MSE bound function defined in Equation (15),

and bopt(σ2) is the optimal quantization bit rate defined in Equation (18); then

f(σ2, bopt(σ2)) < 2.2872σ2. (19)

Proof. See Appendix 3.8.1. The numerical relationship between f(σ2, bopt(σ2)) and

σ2 is shown in Figure 6, from which we can see that f(σ2, bopt(σ2))/σ2 is less than

2.2872 and is very close to 1 when the signal-to-noise ratio is high.

3.3 Distributed Estimation in Homogeneous Sensor Net-
works

In this section, we address the distributed estimation under the total bit rate con-

straint for homogeneous sensor networks, where every sensor has the same observation

noise variance, that is, σ2
k = σ2 (k = 1, · · · , N). In this special case, each active sen-

sor should quantize its observation with the same bit rate bk = b to minimize the

estimation MSE. As a result, the number of active sensors is B/b and the estimation

MSE function is simplified to

E(θ̄K − θ)2 ≤




K∑

k=1

1

σ2 +
W 2

(2bk − 1)2




−1

=

b

(
σ2 +

W 2

(2b − 1)2

)

B
. (20)

It is noted that the numerator of the optimization target function in Equation (20)

is just the equivalent 1-bit MSE function g(σ2, b) defined in Section 3.2. Hence, for

homogeneous sensor networks, the optimal distributed estimation under the total bit

rate constraint B can be treated in an alternative way, where there are B identi-

cal equivalent 1-bit quantization sensors; thus, minimizing the final estimation MSE

bound becomes minimizing the equivalent 1-bit MSE function. The method based

on the equivalent 1-bit MSE function is stated as follows:
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1. For each sensor, the optimal quantization bit rate is identical and obtained by

minimizing the corresponding equivalent 1-bit MSE function, i.e.,

bopt = arg min
b∈Z+

g(σ2, b) = arg min
b∈Z+

[
b

(
σ2 +

W 2

(2b − 1)2

)]
, (21)

where the minimization involves just a simple one-dimensional numerical search.

2. The total number of active sensors (Kopt) under the total bit rate constraint B

is

Kopt =

⌊
B

bopt

⌋
. (22)

It is obvious that the proposed method based on the equivalent 1-bit MSE function

is optimal if B/bopt is an integer, i.e., Kopt = B/bopt. For the case where B/bopt is

not an integer, there are br = B −Koptbopt < bopt bits remaining after the two steps

above; then, we allocate these remaining br bits to one more sensor. Though it is not

necessarily optimal, it is quasi-optimal because the estimation MSE bound is between

the optimal solutions under the total bit rate constraint Koptbopt and (Kopt + 1)bopt,

where Koptbopt < B < (Kopt + 1)bopt.

Remark 3.1. It is noted that the proposed method based on the equivalent 1-bit MSE

function can be implemented in a fully distributed manner. First, the optimal quanti-

zation bit rate bopt of each sensor can be obtained locally by minimizing its correspond-

ing equivalent 1-bit MSE function. Second, with the given total bit rate constraint B

and the optimal quantization bit rate of each sensor bopt, the number of active sen-

sors at each task period is Kopt = B/bopt (we assume B/bopt is integer here); then,

each sensor will be in the active mode with a probability of p = Kopt/N , where N is

the total number of sensors. Assume each sensor has a unique index i ∈ [0, N − 1].

We design a periodic scheduling for each sensor i as follows: sensor i is active when

t ∈ [kN + i, kN + i + Kopt](k ∈ Z); otherwise, it is in sleep mode. With the given

scheduling scheme, there are Kopt active sensors at any task period t and each sensor

27



will be active for Kopt task periods in any consecutive N task duration. Therefore,

the energy cost at each sensor node is even, and the network lifetime is maximized,

which is defined as the time for the first sensor node in the network to deplete.

3.4 Distributed Estimation in Heterogeneous Sensor Net-
works

In this section, we address the general distributed estimation under the total bit

rate constraint for heterogeneous sensor networks. Assuming the observation noise

variance for every sensor is σ2
k (k = 1, · · · , N), respectively. Without loss of generality,

we assume σ2
1 ≤ · · · ≤ σ2

N ; so, if K sensors are needed, we just simply choose the

first K sensors, which will minimize the estimation MSE. This scenario leads to the

general problem stated in Equation (14).

To find the optimal number of active sensors and the corresponding optimal quan-

tization bit rate for each active sensor that minimizes the estimation MSE bound at

the fusion center, we adopt the Lagrange multiplier method to solve the following

equivalent problem:

max
K∑

k=1

(
σ2

k +
W 2

(2bk − 1)2

)−1

,

s.t.
K∑

k=1

bk ≤ B, bk ∈ Z+, k = 1, · · · , K.

(23)

The Lagrangian G is given as

G(bk, λ) =
K∑

k=1

(
σ2

k +
W 2

(2bk − 1)2

)−1

+ λ

(
K∑

k=1

bk −B

)
, (24)

which leads to the following two optimization conditions:

∂

(
σ2

k +
W 2

(2bk − 1)2

)−1

∂bk

+ λ = 0, ∀k ∈ [1, K], and

K∑
k=1

bk = B.

(25)

Unfortunately, the optimal solution bk (k = 1, · · · , K) cannot be found in a closed-

form from Equation (25). Instead, we develop a quasi-optimal method to solve the
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problem, which is also based on the equivalent 1-bit MSE function. The procedure is

stated as follows:

1. For each sensor, its optimal quantization bit rate bopt
k (k = 1, · · · , N) is obtained

by minimizing its corresponding equivalent 1-bit MSE function, i.e.,

bopt
k = arg min

bk∈Z+

g(σ2
k, bk) = arg min

bk∈Z+

[
bk

(
σ2

k +
W 2

(2bk − 1)2

)]
, (26)

where the minimization involves just a simple one-dimensional numerical search.

2. Sort all the sensors by their observation noise variances from the smallest to

the largest and denote the total number of active sensors as Kopt. Then, kopt is

determined by the total bit rate constraint B as follows:

Kopt = max K s.t.
K∑

k=1

bopt
k ≤ B. (27)

In summary, the whole solution is that the Kopt sensors with the smallest observa-

tion noise variances are chosen to quantize and transmit their observations with the

quantization bit rate bopt
k (k = 1, · · · , Kopt). To implement the described algorithm

above, each sensor needs to decide (i) whether it should be active or not and (ii)

its quantization bit rate if it is active. Both tasks can be achieved in a distributed

manner as follows:

• As shown in Equation (27), the subset of active sensors is determined at the

fusion center based on the collected network information and the total bit rate

constraint B. Denote the maximum observation noise variance of all active

sensors as

σ2
th = σ2

Kopt . (28)

Then, the fusion center broadcasts the threshold σ2
th to all local sensors. Upon

receiving the threshold, each sensor compares the threshold with its own ob-

servation noise variance σ2
k. If σ2

k ≤ σ2
th, sensor k is active; otherwise, it is

inactive.
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• As shown in Equation (26), the optimal quantization bit rate bopt
k of sensor

k ∈ [1, N ] depends only on its own observation noise variance; thus, it can

be computed locally at each sensor without requiring information from other

sensors.

Next, we will analyze the estimation MSE bound of the proposed method in the

following theorem. To simplify the statement, we assume
∑Kopt

k=1 bopt
k = B in the

subsequent analysis.

Theorem 3.1. The estimation MSE of the proposed method based on the equivalent

1-bit MSE function under the total bit rate constraint B is

(
Kopt∑

k=1

1

σ2
k

)−1

< E(θ̄P − θ)2 < 2.2872

(
Kopt∑

k=1

1

σ2
k

)−1

, (29)

where θ̄P denotes the estimation of the parameter θ by the proposed method, and Kopt

is the optimal number of active sensors, obtained in Equation (27).

Proof. The left part of the theorem is obvious since
(∑Kopt

k=1 1/σ2
k

)−1

is the lower

bound of the estimation MSE of the BLUE estimator using Kopt active sensors. To

prove the right part of the theorem, by Lemma 3.2,

E(θ̄p − θ)2 =

(
Kopt∑
k=1

1

f(σ2
k, b

opt(σ2
k))

)−1

<

(
Kopt∑
k=1

1

2.2872σ2
k

)−1

= 2.2872

(
Kopt∑
k=1

1

σ2
k

)−1

.

(30)

This theorem gives the estimation MSE bound of the proposed method. It is shown

that the proposed method is quasi-optimal (up to a factor of 2.2872) compared with

the BLUE estimator using the same subset of active sensors.
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3.5 Rate-Distortion Bound Analysis

In the previous section, the performance bound of the proposed algorithm is analyzed.

Nevertheless, the remaining question is what performance can be achieved if the total

B bits are allocated to any number of sensors, say M sensors. More specifically, can

a lower bound of the estimation MSE less than D0 ≡
(∑Kopt

k=1 1/σ2
k

)−1

be achieved

using M sensors under the total bit rate constraint B? It is obvious that a lower

bound less than D0 cannot be achieved if M < Kopt sensors are used, regardless of

the quantization bit rate of each active sensor. It is also obvious that a lower bound
(∑M

k=1 1/σ2
k

)−1

(less than D0) can be achieved if M > Kopt sensors are used and

the quantization bit rate for each sensor is not limited. But under the total bit rate

constraint B, whether a lower bound less than D0 can be achieved if M > Kopt sensors

are used is a real question. To answer this question, we further analyze the lower

bound of the estimation MSE by any quasi-BLUE estimation system with M > Kopt

active sensors under the total bit rate constraint B in the following theorem.

Theorem 3.2. For any quasi-BLUE estimation system under the total bit rate con-

straint B, where there are M > Kopt active sensors with the quantization bit rate bk

for sensor k and
∑M

k=1 bk = B, the lower bound of the estimation MSE is

E(θ̄B − θ)2 >

(
Kopt∑

k=1

1

σ2
k

)−1

, (31)

where θ̄B denotes the estimation of the parameter θ under the total bit rate constraint

B, and Kopt is the optimal number of active sensors, obtained by the proposed algo-

rithm, as shown in Equation (27), such that
∑Kopt

k=1 bopt
k = B.

Proof. For any given estimation system as stated in the theorem, the basic idea to

prove its estimation MSE D1 >
(∑Kopt

k=1 1/σ2
k

)−1

is to construct another corresponding

quasi-BLUE estimation system such that its estimation MSE D2 is smaller than D1

but larger than
(∑Kopt

k=1 1/σ2
k

)−1

, i.e., D1 > D2 >
(∑Kopt

k=1 1/σ2
k

)−1

. The proof is
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based on the concept of the equivalent 1-bit MSE function. Refer to Appendix 3.8.2

for the details.

In conclusion, Theorem 3.1 shows that the estimation MSE bound of the proposed

method is
(∑Kopt

k=1 1/σ2
k

)−1

< E(θ̄p− θ)2 < 2.2872
(∑Kopt

k=1 1/σ2
k

)−1

, and Theorem 3.2

shows that
(∑Kopt

k=1 1/σ2
k

)−1

is the lower bound of the estimation MSE of any quasi-

BLUE estimator under the total bit rate constraint B, regardless of the number of

active sensors and the bit allocation among active sensors. Therefore, the proposed

algorithm gives a quasi-optimal trade-off between the number of active sensors and

the quantization bit rate of each sensor, and its estimation MSE is within a factor

2.2872 of the theoretical non-achievable lower bound.

3.6 Simulation Results

In this section, we present some simulation results for the proposed algorithms in

Section 3.3 and 3.4, respectively.

3.6.1 Homogeneous Sensor Networks

In this section, we simulate a homogeneous sensor network with N = 500 sensors.

Assume the range of the observation signal is [−1, 1], i.e., W = 1. Define the signal-

to-noise ratio (SNR) as

SNR = 10 log10(W
2/σ2) (32)

and generate different SNRs by changing the observation noise variance σ2. Assuming

the total bit rate constraint is B = 500 bits, Figure 7 shows the estimation MSE with

different quantization bit rates for the active sensors under different SNRs. Notice

that a different quantization bit rate for each sensor implies a different number of

active sensors to perform the estimation task because of the total bit rate constraint

B. For example, in the case of SNR = 20 dB, 125 active sensors with 4-bit quantized
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message per sensor will produce the minimum estimation MSE under the total bit

rate constraint B = 500, which is better than all the other possible cases, such as

500 sensors with 1-bit quantized message per sensor, 250 sensors with 2-bit quantized

message per sensor, 62 sensors with 8-bit quantized message per sensor and so on.

From the results shown in Figure 7, we also can see that for the low SNR case, such

as 0 dB, 1-bit quantization per sensor leads to the minimum estimation MSE. On

the contrary, for the high SNR case, multiple-bit quantization per sensor significantly

decreases the estimation MSE compared with only 1-bit quantization per sensor under

the same total bit rate constraint.
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Figure 7: The estimation MSE versus the quantization bit rate per sensor under
different signal-to-noise ratios (SNRs) and the total bit rate constraint B = 500 bits.

3.6.2 Heterogeneous Sensor Networks

In this section, we simulate a heterogeneous sensor network with N = 500 sensors.

Assume the range of the observation signal is still [−1, 1]. We assume the observation
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noise variances to be a Chi-squared distribution with one degree of freedom. The dis-

tribution of the signal-to-noise ratio of the simulated heterogeneous network is shown

in Figure 8(a). The optimal message length for each sensor can be computed by min-

imizing its corresponding equivalent 1-bit MSE function as shown in Section 3.2. The

distribution of the optimal message length of the simulated heterogeneous network is

shown in Figure 8(b). In the simulation, for any given total bit rate constraint, the

proposed estimation method is implemented to determine the number of active sen-

sors and the quantization bit rate for each active sensor to minimize the estimation

MSE. Figure 9 shows the percentage of the active sensors under different total bit

rate constraints.

To demonstrate the efficiency of the proposed method, we compare the proposed

method with two kinds of uniform schemes:

1. Uniform-I : For the given total bit rate constraint, the same subset of active

sensors as that used by the proposed method is used, but the quantization bit

rate is uniform among all active sensors.

2. Uniform-II : All the sensors in the simulated heterogeneous sensor network are

used and the quantization bit rate is uniform among all the sensors.

Figure 10 shows the estimation MSE by the proposed method, the Uniform-I

method and the Uniform-II method, and the theoretical lower bound of the estima-

tion MSE presented in Theorem 3.2 under the total bit rate constraint. From Fig-

ure 10, we can see that the proposed method outperforms the two uniform schemes.

Further, it also can be seen that the estimation MSE of the proposed method is close

to the theoretical non-achievable lower bound (about 1.1 times).

Note that both the proposed method and the Uniform-I method are based on

the same subset of active sensors, and the only difference is that the optimal bit rate

allocation is performed in the proposed method, while uniform bit rate allocation is
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Figure 8: (a) Distribution of the signal-to-noise ratio of the simulated heterogeneous
network; (b) Distribution of the optimal message length of the simulated heteroge-
neous network.

35



400 600 800 1000 1200 1400 1600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bit Budget (bits)

P
er

ce
nt

ag
e 

of
 A

ct
iv

e 
S

en
so

rs

Figure 9: Percentage of the active sensors under different total bit rate constraints.
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MSE.
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performed in the Uniform-I method. Because of the heterogeneity of the network, a

better estimation performance is obtained by the proposed method.

Next, we further show how the heterogeneity of the sensor network influences the

estimation performance. We define the normalized deviation of sensor noise variances

as

α =

√
V ar(σ2)

E(σ2)
, (33)

which will be used as a measure of the heterogeneity of the sensor network. Also

we define the reduction in the estimation MSE achieved by the proposed method

compared with the Uniform-I method as

β =
Du −Dp

Du

, (34)

where Du denotes the estimation MSE by the Uniform-I method, and Dp denotes

the estimation MSE by the proposed method. Figure 11 plots the estimation MSE

reduction of the proposed method compared with the Uniform-I method versus the

normalized deviation of sensor noise variances. From Figure 11, we conclude that

the amount of estimation MSE reduction of the proposed method becomes more

significant when the local sensor noise variances become more heterogeneous.

3.7 Summary

In this chapter, we considered the distributed estimation of a noise-corrupted deter-

ministic parameter under the total bit rate constraint in wireless sensor networks.

Because of the total bit rate constraint, a trade-off between the number of active

sensors and the quantization bit rate of each active sensor is addressed to minimize

the estimation MSE. To determine the optimal quantization bit rate of each sen-

sor, a concept of the equivalent 1-bit MSE function is introduced, based on which

an optimal rate-constrained distributed estimation algorithm for homogeneous sensor

networks and a quasi-optimal rate-constrained distributed estimation algorithm for

heterogeneous sensor networks are developed.
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Figure 11: The estimation MSE reduction in percentage of the proposed method
compared with the Uniform-I method under different normalized deviations of sensor
noise variances.

Furthermore, a theoretical analysis on the rate-distortion bound for the distributed

estimation is performed and a lower bound of the estimation MSE under any given

total bit rate constraint is formulated. It is shown that the proposed algorithm

is quasi-optimal within a factor 2.2872 of the theoretical lower bound. Simulation

results also show that the proposed algorithm can achieve a significant amount of

the estimation MSE reduction compared with several uniform schemes in which each

sensor quantizes its observation with the same number of bits.

In this chapter, the distributed estimation problem is addressed from the rate-

distortion point of view. By constraining the communication bit rate, the energy

consumption is limited; thus, the network lifetime of wireless sensor networks is pro-

longed. In the next chapter, we will study the distributed estimation from the energy-

distortion perspective to explicitly address the energy consumption and to maximize

the energy-distortion performance.
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3.8 Appendix

3.8.1 Proof of Lemma 3.2

To facilitate the subsequent analysis, we will relax the integer condition b ∈ Z+ in

Equation (18) to b ∈ R+, i.e.,

lopt(σ2) = arg min
b∈R+

g(σ2, b) = arg min
b∈R+

[
b

(
σ2 +

W 2

(2b − 1)2

)]
. (35)

Here, lopt(σ2) ∈ R+, while bopt(σ2) ∈ Z+ defined in Equation (18). It is obvious

that bopt(σ2) = blopt(σ2)c or dlopt(σ2)e since g(σ2, b) is convex over b as stated in

Proposition 3.1, where blopt(σ2)c denotes the maximum integer no more than lopt(σ2),

and dlopt(σ2)e denotes the minimum integer no less than lopt(σ2).

To solve lopt(σ2) from Equation (35), we need to solve ∂g(σ2, b)/∂b = 0, which

leads to the following equation:

(2lopt(σ2) − 1)3 − W 2

σ2
[2 ln 2 · lopt(σ2) · 2lopt(σ2) − 2lopt(σ2) + 1] = 0, (36)

so

W 2 = σ2 · (2lopt(σ2) − 1)3

2 ln 2 · lopt(σ2) · 2lopt(σ2) − 2lopt(σ2) + 1
. (37)

By solving Equation (18) with Equation (37), we get the following relationship be-

tween bopt(σ2) and lopt(σ2):

bopt(σ2) =





1, if 0 < lopt(σ2) < 1.41

2, if 1.41 ≤ lopt(σ2) < 2.44

3, if 2.44 ≤ lopt(σ2) < 3.45

others.

(38)

Based on the above results, now we turn to f(σ2, bopt(σ2)),

f(σ2, bopt(σ2)) = σ2 +
W 2

(2bopt(σ2) − 1)2

= σ2

[
1 +

(2lopt(σ2) − 1)3

2 ln 2 · lopt(σ2) · 2lopt(σ2) − 2lopt(σ2) + 1
· 1

(2bopt(σ2) − 1)2

]

= σ2

[
1 + y(lopt(σ2)) · 1

(2bopt(σ2) − 1)2

]
,

(39)
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where

y(lopt(σ2)) ≡ (2lopt(σ2) − 1)3

2 ln 2 · lopt(σ2) · 2lopt(σ2) − 2lopt(σ2) + 1
,

and it is easy to verify that y(lopt(σ2)) increases over lopt(σ2) > 0. Next, we discuss

four cases:

1. 0 < lopt(σ2) < 1.41

In this case, bopt(σ2) = 1 as shown in Equation (38), so

f(σ2, bopt(σ2)) = σ2

[
1 + y(lopt(σ2)) · 1

(2bopt(σ2) − 1)2

]

≤ σ2 [1 + y(lopt(σ2))]
(∗)
< 2.2872σ2,

(40)

where the step (∗) holds because y(lopt(σ2)) increases over lopt(σ2) and y(1.41) <

1.2872.

2. 1.41 ≤ lopt(σ2) < 2.44

In this case, bopt(σ2) = 2 as shown in Equation (38), so

f(σ2, bopt(σ2)) = σ2

[
1 + y(lopt(σ2)) · 1

(2bopt(σ2) − 1)2

]

≤ σ2

[
1 + y(lopt(σ2)) · 1

9

]

(∗)
< 1.6918σ2,

(41)

where the step (∗) holds because y(lopt(σ2)) increases over lopt(σ2) and y(2.44) <

6.2265.

3. 2.44 ≤ lopt(σ2) < 3.45

In this case, bopt(σ2) = 3 as shown in Equation (38), so

f(σ2, bopt(σ2)) = σ2

[
1 + y(lopt(σ2)) · 1

(2bopt(σ2) − 1)2

]

≤ σ2

[
1 + y(lopt(σ2)) · 1

49

]

(∗)
< 1.4717σ2,

(42)
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where the step (∗) holds because y(lopt(σ2)) increases over lopt(σ2) and y(3.45) <

23.115.

4. lopt(σ2) ≥ 3.45

From the definition of lopt(σ2) and bopt(σ2), it is obvious that bopt(σ2) > lopt(σ2)−
1, so

f(σ2, bopt(σ2)) = σ2

[
1 +

(2lopt(σ2) − 1)3

2 ln 2 · lopt(σ2) · 2lopt(σ2) − 2lopt(σ2) + 1
· 1

(2bopt(σ2) − 1)2

]

< σ2

[
1 +

(2lopt(σ2) − 1)3

2 ln 2 · lopt(σ2) · 2lopt(σ2) − 2lopt(σ2) + 1
· 1

(2lopt(σ2)−1 − 1)2

]

(∗)
≤ 2.1599σ2,

(43)

where the step (∗) holds because

z(lopt(σ2)) ≡ (2lopt(σ2) − 1)3

2 ln 2 · lopt(σ2) · 2lopt(σ2) − 2lopt(σ2) + 1
· 1

(2lopt(σ2)−1 − 1)2

decreases over lopt(σ2) and z(3.45) < 1.1599.

From above, for any given σ2, we get

f(σ2, bopt(σ2)) < 2.2872σ2. (44)

3.8.2 Proof of Theorem 3.2

We begin by introducing two definitions and two corresponding lemmas required by

the proof of this theorem.

Definition 3.2 (Pairwise Bit Rate Exchange). Assuming there are two sensors i and

j with the observation noise variances σ2
i ≤ σ2

j and the quantization bit rates bi < bj in

a sensor network with M sensors to estimate an unknown parameter, then exchange

the quantization bit rates of the two sensors, i.e., sensor i quantizes its observation

using b′i = bj bits and sensor j quantizes its observation using b′j = bi bits. We call

this operation as pairwise bit rate exchange.
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Lemma 3.3. Let D denote the estimation MSE bound before a pairwise bit rate

exchange operation and Dex denote the estimation MSE bound after the exchange

operation, then Dex ≤ D.

Proof. Let D = 1/D′, and Dex = 1/D′
ex, then

D′ =
M∑

k=1
k 6=i,j

1

σ2
k + δ2

k

+
1

σ2
i +

W 2

(2bi − 1)2

+
1

σ2
j +

W 2

(2bj − 1)2

,

D′
ex =

M∑
k=1
k 6=i,j

1

σ2
k + δ2

k

+
1

σ2
i +

W 2

(2bj − 1)2

+
1

σ2
j +

W 2

(2bi − 1)2

.

(45)

Let u = σ2
i , v = σ2

j , t = W 2/(2bi − 1)2 and s = W 2/(2bj − 1)2, then it can be easily

verified that D′ − D′
ex ≤ 0, thus, Dex ≤ D, by the following algebra fact: For fixed

positive numbers s, t, u, v with u ≤ v, then

1

u + s
+

1

v + t
≥ 1

u + t
+

1

v + s
, if t > s.

Definition 3.3 (Equivalent 1-bit Quantization Sensor Replacement). In a sensor

network with M sensors to estimate an unknown parameter, if there are two sensors

i ∈ [1, · · · , Kopt] and j ∈ [Kopt + 1, · · · , N ] with the observation noise variances

σ2
i ≤ σ2

j and the quantization bit rates bi ≥ bj, and bi < bopt
i (that is, bi + 1 ≤ bopt

i ),

then we replace an equivalent 1-bit quantization sensor corresponding to sensor j

by increasing the quantization bit rate of sensor i by 1, that is, sensor i quantizes

its observation using b′i = bi + 1 bits. We call this operation as equivalent 1-bit

quantization sensor replacement.

Lemma 3.4. Let D denote the estimation MSE bound before an equivalent 1-bit

quantization sensor replacement and Dre denote the estimation MSE bound after the

replacement, then Dre < D.
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Proof. Let D = 1/D′, and Dre = 1/D′
re, then

D′ =
M∑

k=1
k 6=i,j

bk

g(σ2
k, bk)

+
bi

g(σ2
i , bi)

+
bj

g(σ2
j , bj)

,

D′
re =

M∑
k=1
k 6=i,j

bk

g(σ2
k, bk)

+
bi + 1

g(σ2
i , bi + 1)

+
bj − 1

g(σ2
j , bj)

,

(46)

so

D′ −D′
re =

bi

g(σ2
i , bi)

− bi + 1

g(σ2
i , bi + 1)

+
1

g(σ2
j , bj)

=

(
bi

g(σ2
i , bi)

− bi

g(σ2
i , bi + 1)

)
+

(
1

g(σ2
j , bj)

− 1

g(σ2
i , bi + 1)

)

(∗)
< 0 + 0 = 0,

(47)

where the step (∗) holds because

1. bi < bi + 1 ≤ bopt
i , so from Proposition 3.1, we get

g(σ2
i , bi) > g(σ2

i , bi + 1). (48)

2. bj ≤ bi < bi + 1 ≤ bopt
i , and σ2

i ≤ σ2
j , so from Proposition 3.1, we get

g(σ2
j , bj) ≥ g(σ2

i , bj) ≥ g(σ2
i , bi) > g(σ2

i , bi + 1). (49)

So D′ < D′
re, and Dre < D.

Now, we begin to prove Theorem 3.2. First, it is noted that D0 =
(∑Kopt

k=1 1/σ2
k

)−1

is just the lower bound of the estimation MSE of BLUE estimator using Kopt sensors

with observation noise variances σ2
1, · · · , σ2

Kopt respectively. Next, we will show that

D0 is also the lower bound of the estimation MSE of any quasi-BLUE estimator using

M > Kopt sensors under the total bit rate constraint B, i.e.,
∑M

k=1 bk = B.

Assuming M sensors i1, · · · , iKopt , · · · , iM (i1 < · · · < iKopt < · · · < iM) are used,

and the corresponding observation noise variance are σ2
i1

< · · · < σ2
iKopt

< · · · < σ2
iM

,

respectively, it is obvious that ik ≥ k and σ2
ik
≥ σ2

k. The quantization bit rates are
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b1, · · · , bKopt , · · · , bM , respectively, and
∑M

k=1 bk = B. Let D1 denote the estimation

MSE bound under this condition (denoted as C1).

Step 1 : Considering replace the active sensor ik (k = 1, · · · ,M) in the condition

C1 by the sensor k (k = 1, · · · ,M), while the quantization bit rate doesn’t change.

That is to say, the first M sensors are active to observe and quantize their observations

using b1, · · · , bM bits, respectively. Let D2 denote the estimation MSE bound under

this condition (denoted as C2). Obviously, D2 ≤ D1, because

D2 =

(
M∑

k=1

1

σ2
k + δ2

k

)−1

≤
(

M∑

k=1

1

σ2
ik

+ δ2
k

)−1

= D1. (50)

Step 2 : Construct another sequence {b′k} (k = 1, · · · ,M) by exchanging the order

of the sequence {bk} (k = 1, · · · ,M) in the condition C2 to make that b′i ≥ b′j if

0 < i < j ≤ M , and let the sensor k (k = 1, · · · ,M) quantizes its observation

with b′k bits instead of bk bits. Let D3 denote the estimation MSE bound under this

condition (denoted as C3). It is obvious that the condition C3 can be implemented

from condition C2 by a serial of pairwise bit rate exchange operations defined in

Definition 3.2. Since each pairwise bit rate exchange operation will not increase the

estimation MSE bound as shown in Lemma 3.3, so D3 ≤ D2.

After the two steps above, we constructed a new scenario where the first M sensors

k (k = 1, · · · ,M) with the smallest observation noise variances σ2
1 ≤ · · · ≤ σ2

Kopt · · · ≤
σ2

M are used, and the quantization bit rates are b′1 ≥ · · · ≥ b′Kopt · · · ≥ b′M . To

simplify the notation, in the following we denote the quantization bit rates as bk

(k = 1, · · · ,M) and b1 ≥ · · · ≥ bKopt · · · ≥ bM .

Step 3 : Expressing the estimation MSE bound D3 with the concept of the equiv-

alent 1-bit MSE function g(σ2, b) as

D3 =

(
M∑

k=1

1

σ2
k + δ2

k

)−1

=

(
Kopt∑
k=1

bk

g(σ2
k, bk)

+
M∑

m=Kopt+1

bm

g(σ2
m, bm)

)−1

. (51)
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From the total bit rate constraint, we get

Kopt∑
k=1

bopt
k = B, and

M∑
k=1

bk =
Kopt∑
k=1

bk +
M∑

m=Kopt+1

bm = B,

(52)

so there must exist some bk < bopt
k (k = 1, · · · , Kopt) and

Kopt∑

k=1

I0(b
opt
k − bk) ≥

M∑

m=Kopt+1

bm, (53)

where I0 : R → R is an indicator function defined as follows

I0(u) =





0, u ≤ 0

u, u > 0
(54)

From Equation (52) and (53), we notice that there are
∑M

m=Kopt+1 bm equivalent 1-bit

quantization sensor corresponding to the sensors m (m = Kopt +1, · · · ,M), and they

all can be replaced by a serial of the equivalent 1-bit quantization sensor replacement

operations defined in Definition 3.3. After finishing the replacement operations, we get

a new condition where only sensors k (k = 1, · · · , Kopt) are used, and the quantization

bit rates are changed to b̄k (b̄k is not necessarily equal to bopt
k ), and the total bit rate

constraint is still satisfied, i.e.,
∑Kopt

k=1 b̄k = B. Let D4 denote the estimation MSE

bound of this condition (denoted as C4). Since every equivalent 1-bit quantization

sensor replacement operation will not increase the estimation MSE bound according

to Lemma 3.4, so D4 < D3. On the other hand, in the condition C4, only sensors

k (k = 1, · · · , Kopt) are used to quantize their observations with limited bit rates b̄k

(k = 1, · · · , Kopt), so it is obvious that D4 > D0 =
(∑Kopt

k=1 1/σ2
k

)−1

.

From all the steps above, we get

D1 ≥ D2 ≥ D3 > D4 >

(
Kopt∑

k=1

1

σ2
k

)−1

, (55)

which means that the estimation MSE by any quasi-BLUE estimation system with

M > Kopt sensors under the total bit rate constraint B is larger than D0 =
(∑Kopt

k=1 1/σ2
k

)−1

.
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CHAPTER IV

ENERGY-CONSTRAINED DISTRIBUTED ESTIMATION

Subject to the severe bandwidth and energy constraints in wireless sensor networks,

in Chapter 3, we addressed the distributed estimation from the rate-distortion per-

spective and studied the optimal distributed estimation algorithms under a total bit

rate constraints. To explicitly address the energy constraints in wireless sensor net-

works, we further study the energy-constrained distributed estimation in this chapter.

Generally, the transmission energy cost is a function of the transmission bit rate, thus

the energy-constrained distributed estimation can be treated as a generalization of

the rate-constrained distributed estimation. More specifically, the rate-constrained

distributed estimation is a special case of the energy-constrained distributed esti-

mation with a special energy cost function that is a constant linear function of the

transmission bit rate.

In energy-constrained wireless sensor networks, the energy-constrained distributed

estimation algorithms have been recently studied in [5,46,91,92,94]. In [94] and [46],

the total sensor transmission energy is minimized by selecting the optimal quantiza-

tion levels while meeting the target estimation MSE requirements. On the contrary,

the work of [5] is to minimize the estimation MSE under the given energy constraints.

The work of [91,92] addressed the energy-constrained distributed estimation problem

(under the BLUE fusion rule) by exploiting long-term noise variance statistics. How-

ever, there is a lack of overall optimality analysis in the sense of energy-distortion

performance.

In this chapter, we study the distributed estimation from the energy-distortion

46



perspective [52, 54]. Here the fundamental question is: what is the optimal energy-

distortion bound for the distributed estimation and how do we achieve the performance

bound in a distributed manner? More specifically, the problem we address is to mini-

mize the estimation MSE under a given total energy budget by optimally scheduling

the quantization bit rate and transmission energy for all sensors. Based on the to-

tal energy constraint for all sensors, there exists an interesting trade-off between the

number of active sensors and the energy consumed at each active sensor. We solve

this optimal trade-off and design the optimal distributed estimation algorithm by (i)

selecting a subset of active sensors to observe the phenomenon, and (ii) for each active

sensor, determining the quantizer and transmission energy to quantize its real-valued

observation and transmit the quantized message to the fusion center to perform the

final estimation. Furthermore, we analysis the energy-distortion performance bound

for the distributed estimation and show that the proposed algorithm is quasi-optimal

within a constant factor of the theoretical lower bound. The proposed algorithm is

easy to implement in a distributed manner and it adapts well to the dynamic sensor

environments, which both are desirable for wireless sensor network applications. It is

also worth noting that the proposed algorithm is applicable to both single-hop and

multi-hop wireless sensor networks.

The rest of this chapter is organized as follows. Section 4.1 describes the sys-

tem model and the distributed estimation problem under the total energy constraint.

Section 4.2 introduces a concept of equivalent unit-energy MSE function. Then in Sec-

tion 4.3 and Section 4.4, we develop an optimal distributed estimation algorithm for

homogeneous sensor networks and a quasi-optimal distributed estimation algorithm

for heterogeneous sensor networks, respectively. Also the upper bound of the estima-

tion MSE of the proposed algorithm and a theoretical lower bound of the estimation

MSE under the total energy constraint are addressed in Section 4.4. Furthermore,
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the proposed algorithm is extended to the multi-hop wireless sensor networks in Sec-

tion 4.5. Section 4.6 gives some simulation results that demonstrate the efficiency of

the proposed algorithms. Section 4.7 summarizes this chapter. The proofs of some

theorems presented in this chapter are delegated to the appendix in Section 4.8.

4.1 System Model and Problem Statement

Consider a dense sensor network that includes N distributed sensors, denoted as

{1, · · · , N}. Each sensor can observe, quantize and transmit its observation to the

fusion center, which will estimate the unknown parameter θ based on the received

messages. Since the total energy allowed to be used by all sensors is limited, there

exists a trade-off between the number of active sensors and the energy used by each

active sensor, that is to say, only a subset of the sensors will be active at each task

period. Assume there are K active sensors and denote the subset of active sensors as

SK = {i1, · · · , iK} (ik ∈ [1, N ] for k = 1, · · · , K), the distributed estimation system

can be described as follows (Figure 12).

Figure 12: The distributed estimation system under the total energy constraint,
where the subset of active sensors are SK = {i1, · · · , iK} and each active sensor
k ∈ SK performs a local quantization and transmits its quantization message to the
fusion center, which will estimate θ based on all the received messages.

First, each active sensor k ∈ SK makes an observation on the unknown parameter
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θ, which is corrupted by additive noise and is described by

xk = θ + nk, k ∈ SK . (56)

We assume that the observation noises of all sensors nk (k = 1, · · · , N) are zero mean,

spatially uncorrelated with variance σ2
k, otherwise unknown. Second, each active

sensor k performs a local quantization mk = Qk(xk), where Qk(xk) is a quantization

function, and the quantization message mk is then transmitted to the fusion center,

where all the quantization messages are combined to produce a final estimation of θ

using a fusion function. The quality of an estimation for θ is measured by the mean

square error (MSE) criterion.

4.1.1 Quantization and Estimation Rules

Similar to that used in Section 3.1, the probabilistic quantization scheme is used at

local sensors and the quasi-BLUE estimation scheme is adopted at the fusion center.

As shown in Section 3.1.1, let m(x, b) be a b-bit probabilistic quantization of bounded

observation signal x ∈ [−W,W ] with noise variance σ2; then m(x, b) is an unbiased

estimation of θ with a variance

E
(|m(x, b)− θ|2) ≤ σ2 +

W 2

(2b − 1)2 = σ2 + δ2, (57)

where δ2 = W 2/(2b − 1)2 for any b > 0 denotes the upper bound of the quantization

noise variance.

Now suppose all the observations xk (k ∈ SK) of the K active sensors are quantized

into bk-bit discrete messages mk(xk, bk) respectively with the probabilistic quantiza-

tion scheme. Based on the quantized messages mk, the quasi-BLUE estimator at the

fusion center has the following form:

θ̄ =

( ∑

k∈SK

1

σ2
k + δ2

k

)−1 ∑

k∈SK

mk

σ2
k + δ2

k

, (58)
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Notice that θ̄ is an unbiased estimator of θ since every mk is unbiased. Moreover, the

estimation MSE of the quasi-BLUE estimator is

E(θ̄ − θ)2 ≤
( ∑

k∈SK

1

σ2
k + δ2

k

)−1

. (59)

4.1.2 Energy Model

To transmit a b-bit message from a sensor to the fusion center, the transmission energy

cost P is generally a function of the transmission bit rate b and the transmission

distance. Assume that each sensor sends a message to the fusion center using a

separate channel, which can be achieved by using a multiple access technique such

as TDMA or FDMA; and the channel between the sensor k and the fusion center

experiences a path loss proportional to ak = dα
k , where dk is the transmission distance

and α is the pass loss exponent.

Let’s look at several different transmission models: (1) binary transmission model,

and (2) uncoded quadrature amplitude modulation (QAM) model, and (3) coded

quadrature amplitude modulation model. To reliably transmit bk-bit message from

the sensor k to the fusion center, the transmission energy cost for the binary trans-

mission model, where each bit will be transmitted separately, is

PBIN(bk) = c1 · ak · bk, (60)

where c1 is a system constant. To minimizes the transmission bandwidth and trans-

mission delay, the bk bits can be transmitted simultaneously using M-ary quadrature

amplitude modulation (MQAM) with constellation size 2bk , then the transmission

energy cost [23, 24] is given by

PQAM(bk) = c2 · ak · (2bk − 1), (61)

where c2 is a system constant defined the same as in [23, 24]. Furthermore, with

embedded error correction codes, coded MQAM can reduce the transmission energy
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cost by a constant factor Gc [23, 24], i.e.,

PCQAM(bk) = c3 · ak · (2bk − 1), (62)

where c3 = c2/Gc is a system constant defined the same as in [23,24]. Thereafter, we

call the system constant c the transceiver characteristic parameter. It is noted that,

compared with the binary transmission scheme, the MQAM schemes also minimize

the circuit energy consumption since it minimizes the number of transmissions by

transmitting the whole bk-bit message as a single symbol.

4.1.3 Distributed Estimation under Energy Constraint

With the probabilistic quantization scheme and the quasi-BLUE fusion rule, the pri-

mary goal of the energy-constrained distributed estimation is to minimize the upper

bound of the estimation MSE under the energy constraint, i.e.,

min




∑
k∈SK

1

σ2
k +

W 2

(2bk − 1)2




−1

,

s.t.
∑

k∈SK

Pk ≤ Pc,

Pk > 0, bk > 0, k ∈ SK ,

(63)

where SK is the subset of K active sensors, bk and Pk are the quantization bit rate and

transmission energy of the active sensor k ∈ SK , and Pc is the total energy allowed

to be used by all active sensors.

It is obvious that the solution to the energy-constrained distributed estimation

problem stated in Equation (63) depends on the energy model used. For a special

energy model, where the energy cost P is assumed to be a constant linear function

of the transmission bit rate b, i.e., P = c · b, the energy-constrained distributed

problems is retrogressed to the rate-constrained distributed estimation problem in

Section 3.1.3. In this chapter, we will consider the energy-constrained distributed

estimation problem with the QAM-based models. It is worth noting that the similar
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methodology proposed in this chapter can be extended to solve the energy-constrained

distributed estimation with different energy models.

Using the uncoded/coded MQAM models, the original problem in Equation (63)

turns to the following problem:

min




∑
k∈SK

1

σ2
k +

W 2

(2bk − 1)2




−1

,

s.t.
∑

k∈SK

Pk ≤ Pc,

Pk = ckak(2
bk − 1), k ∈ SK ,

bk > 0, k ∈ SK ,

(64)

where all the variables are defined as before. In practice, the quantization bit rate

bk must be integer, i.e., bk ∈ Z. To facilitate the subsequent analysis, we will relax

the integer condition bk ∈ Z to bk ∈ R. Later, we will discuss how to constraint the

quantization bit rate to integer numbers.

It can be verified that the optimal solution for the energy-constrained distributed

estimation problem in Equation (64) cannot be found in a closed form. In the following

sections, we will address this problem for homogeneous and heterogeneous sensor

networks, respectively. To facilitate the solution, we first define an equivalent unit-

energy MSE function in the next section.

4.2 Equivalent Unit-Energy MSE Function

As shown in Section 4.1, the b-bit quantization message from a sensor with observa-

tion noise variance σ2 is an unbiased estimation of the parameter θ. We denote the

estimation MSE bound as

f(σ2, b) := σ2 +
W 2

(2b − 1)2
. (65)

Definition 4.1 (Equivalent Unit-Energy MSE function). For a sensor with observa-

tion noise variance σ2, quantization bit rate b, transmission path loss a, transceiver
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parameter c, and transmission energy cost P (b, a, c), the equivalent unit-energy MSE

function is defined as

g(σ2, b, a, c) := P (b, a, c) · f(σ2, b). (66)

With this definition, the estimation MSE of the quasi-BLUE estimator, shown in

Equation (59), can be rewritten as

E(θ̄ − θ)2 ≤
(

∑
k∈SK

1

f(σ2
k, bk)

)−1

=

(
∑

k∈SK

Pk

g(σ2
k, bk, ak, ck)

)−1

. (67)

From the estimation MSE aspect, a sensor with transmission energy P and estimation

MSE f(σ2, b) can be treated as P equivalent unit-energy sensors, each with the same

estimation MSE g(σ2, b, a, c) defined as above. That is why the function g(σ2, b, a, c)

is called equivalent unit-energy MSE function. Further, the energy-constrained dis-

tributed estimation system under the total energy constraint Pc can be treated as

another equivalent distributed estimation system with Pc equivalent unit-energy sen-

sors.

With the uncoded/coded MQAM models, the equivalent unit-energy MSE func-

tion defined in Equation (66) is

g(σ2, b, a, c) = P (b, a, c) · f(σ2, b) = ca(2b − 1)

(
σ2 +

W 2

(2b − 1)2

)
. (68)

As shown in Proposition 4.1, g(σ2, b, a, c) is convex over b. We further define the

optimal unit-energy MSE function gopt(σ2, a, c), and the corresponding optimal quan-

tization bit rate bopt(σ2, a, c) and optimal transmission energy P opt(σ2, a, c) for each

sensor with observation noise variance σ2, transmission path loss a, and transceiver

parameter c as follows:

bopt(σ2, a, c) = arg min
b∈R+

g(σ2, b, a, c) = arg min
b∈R+

[
ca(2b − 1)

(
σ2 +

W 2

(2b − 1)2

)]
,

gopt(σ2, a, c) = min
b∈R+

g(σ2, b, a, c) = g(σ2, bopt(σ2, a, c), a, c),

P opt(σ2, a, c) = ca(2bopt(σ2,a,c) − 1).

(69)
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Proposition 4.1. The equivalent unit-energy MSE function g(σ2, b, a, c), the opti-

mal unit-energy MSE function gopt(σ2, a, c), the optimal quantization bit rate func-

tion bopt(σ2, a, c), the optimal transmission energy function P opt(σ2, a, c) and the MSE

function f(σ2, b) defined before have the following properties:

1. g(σ2, b, a, c) is convex over b ∈ R+.

2. gopt(σ2, a, c) is achieved when the optimal quantization bit rate bopt(σ2, a, c) is

used and the optimal transmission energy P opt(σ2, a, c) is allocated, where

bopt(σ2, a, c) = log2

(
1 +

W

σ

)
,

gopt(σ2, a, c) = 2caσW,

P opt(σ2, a, c) =
caW

σ
.

(70)

3. The estimation MSE f(σ2, b) with the optimal quantization bit rate bopt(σ2, a, c)

and transmission energy P opt(σ2, a, c) is

f(σ2, bopt(σ2, a, c)) = 2σ2. (71)

The proposition 4.1 is easy to prove as follows: the convexity of g(σ2, b, a, c) over

b can be proved by checking ∂2g(σ2, b, a, c)/∂2b > 0 for any b > 0; then bopt(σ2, a, c)

can be obtained by solving ∂g(σ2, b, a, c)/∂b = 0, and gopt(σ2, a, c), P opt(σ2, a, c) and

f(σ2, bopt(σ2, a, c)) can be obtained according to the definitions in Equations (65, 68,

69).

It is noted that the optimal transmission energy function P opt(σ2, a, c) depends not

only on the signal-to-noise ratio but also on the transmission path loss and transceiver

parameter, but the optimal quantization bit rate function bopt(σ2, a, c) depends on

only the signal-to-noise ratio, as shown in Equation (70).
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4.3 Distributed Estimation in Homogeneous Sensor Net-
works

In homogeneous sensor networks, the noise variances for all sensors are identical, that

is σ2
k = σ2 (k = 1, · · · , N). We assume equal distances from all sensors to the fusion

center; thus the transmission path loss is the same for all sensors too, i.e., dk = d and

ak = a (k = 1, · · · , N). Also, assume that the transceiver parameters are the same for

all sensors, i.e., ck = c (k = 1, · · · , N). Therefore, the equivalent unit-energy MSE

function is the same for all sensors. For this homogeneous sensor network model,

all active sensor should quantize its observation with the same bit rate bk = b and

transmit its quantized message with same energy Pk = P to minimize the estimation

MSE, so the number of active sensors is K = Pc/P , and the estimation MSE function

shown in Equation (67) is simplified to

E(θ̄ − θ)2 ≤
(

K∑
k=1

1

f(σ2, b)

)−1

=
P · f(σ2, b)

Pc

=
g(σ2, b, a, c)

Pc

. (72)

It is noted that the numerator of the optimized target function in Equation (72)

is just the equivalent unit-energy MSE function. Hence, for homogeneous sensor

networks, the optimal distributed estimation under the total energy constraint Pc

can be treated in an alternative way, where there are Pc identical equivalent unit-

energy sensors, thus minimizing the final estimation MSE becomes minimizing the

equivalent unit-energy MSE function. The method based on the unit-energy MSE

function is stated as follows:

1. For all sensors, the optimal quantization bit rate bopt and transmission energy

P opt are the same and obtained by minimizing the corresponding equivalent

unit-energy MSE function, as shown in Proposition 4.1:

bopt = log2

(
1 +

W

σ

)
,

P opt =
caW

σ
.

(73)
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2. The total number of active sensors Kopt under the total energy constraint Pc is

Kopt =

⌊
Pc

P opt

⌋
. (74)

It is obvious that the proposed method based on the equivalent unit-energy MSE

function is optimal if Pc/P
opt is an integer, otherwise, it is quasi-optimal.

Remark 4.1. It is noted that the proposed method based on equivalent unit-energy

MSE function can be implemented in a fully distributed manner. First, the optimal

quantization bit rate bopt and optimal transmission energy P opt of each sensor can be

obtained locally by minimizing its corresponding equivalent unit-energy MSE function.

Second, the subset of active sensors is chosen in a round-robin manner such that there

are Kopt = Pc/P
opt (we assume Pc/P

opt is integer here) active sensors at any task

period and each sensor will be active for Kopt task periods in any consecutive N task

duration. Therefore, the energy cost at each sensor node is even, and the network

lifetime is maximized, which is defined as the time for the first sensor node in the

network to deplete.

4.4 Distributed Estimation in Heterogeneous Sensor Net-
works

In heterogeneous sensor networks, the observation noise variance for sensor k is σ2
k

(k = 1, · · · , N), respectively. Assume the distance from sensor k to the fusion center is

dk; thus the transmission path loss is ak = dα
k . And assume the transceiver parameter

of sensor k is ck. This scenario leads to the general problem stated in Equation (64).

The goal is to find the optimal number of active sensors and the corresponding optimal

quantization bit rate and transmission energy allocation for each active sensor to

minimize the estimation MSE bound at the fusion center.

Unfortunately, it can be verified that the optimal solution cannot be found in a

closed form. Instead, we develop a quasi-optimal method to solve this problem, which
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is also based on the equivalent unit-energy MSE function. The procedure is stated as

follows:

1. For each sensor k ∈ [1, N ], determine its optimal quantization bit rate bopt
k ,

optimal transmission energy P opt
k and optimal unit-energy MSE function gopt

k as

shown in Proposition 4.1:

bopt
k = log2

(
1 +

W

σk

)
,

gopt
k = 2ckakσkW,

P opt
k =

ckakW

σk

.

(75)

2. Let Sk (k ∈ [1, N ]) denote the subset of all sensors consisting of the first k

sensors with the minimum optimal unit-energy MSE function, then




S1 ⊂ S2 ⊂ · · · ⊂ SN = {1, · · · , N} ,

gopt
i ≤ gopt

j , if i ∈ Sk and j ∈ Sc
k,

(76)

where Sc
k denotes the complemental subset of Sk. Then the optimal number of

active sensors Kopt under the total energy constraint Pc is determined by

Kopt = max k s.t.
∑
i∈Sk

P opt
i ≤ Pc, (77)

that is to say, the subset of active sensors is SKopt .

In summary, the whole solution is that all sensors in the subset SKopt , i.e., the first

Kopt sensors with the smallest optimal unit-energy MSE function, are active to quan-

tize their observations with quantization bit rate bopt
k and transmit their quantized

messages to the fusion center with transmission energy P opt
k (k ∈ SKopt).

To implement the described algorithm above, each sensor needs to decide (i)

whether it should be active or not, i.e., whether it belongs to SKopt , and (ii) its

quantization bit rate and transmission energy if it will be active. Both tasks can be

achieved in a distributed manner as follows:
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• As shown in Equations (76, 77), the subset of active sensors SKopt is determined

at the fusion center based on the collected network information and the total

energy constraint Pc. Denote the maximum optimal unit-energy MSE function

of all the active sensors in the subset SKopt as

gopt
th = arg max

k∈SKopt

gopt
k . (78)

Then the fusion center broadcasts the threshold gopt
th to all local sensors. Upon

receiving the threshold, each sensor compares the threshold with its own optimal

unit-energy MSE function gopt
k . If gopt

k ≤ gopt
th , then sensor k is active; otherwise,

it is inactive.

• As shown in Equation (75), the optimal quantization bit rate bopt
k of sensor

k ∈ [1, N ] depends only on its own signal-to-noise ratio, and the optimal trans-

mission energy P opt
k and the optimal unit-energy MSE function gopt

k of sensor

k depend only on its own optimal quantization bit rate bopt
k , transmission path

loss ak and transceiver parameter ck. Therefore, all of bopt
k , P opt

k , and gopt
k can

be computed locally at each sensor without requiring information from other

sensors.

Remark 4.2. As shown above, the total energy constraint Pc is to determine the

subset of active sensors according to Equations (76, 77). It is interesting to see that

if the total energy constraint Pc is changed, we only need to wake up several more

sleep sensors (energy constraint increased) or send several active sensors to sleep

(energy constraint decreased), but don’t need to change the quantization bit rate and

transmission energy allocation of each active sensor. So, the proposed method adapts

well to the situations when the total energy constraints need to be changed frequently to

achieve various estimation MSE performances, which is the case for dynamic sensor

environments.
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Next, we will analyze the estimation MSE bound of the proposed method, which is

stated in the following theorem. To simplify the statements, we assume
∑

k∈SKopt
P opt

k =

Pc in the subsequent analysis.

Theorem 4.1. The estimation MSE of the proposed method based on the equivalent

unit-energy MSE function under the total energy constraint Pc is


 ∑

k∈SKopt

1

σ2
k



−1

< E(θ̄p − θ)2 ≤ 2


 ∑

k∈SKopt

1

σ2
k



−1

, (79)

where θ̄p denotes the estimation of the parameter θ by the proposed method, and SKopt

is the optimal subset of active sensors, obtained in Equations (76, 77).

Proof. The left part of the theorem is obvious since
(∑

k∈SKopt
1/σ2

k

)−1

is the lower

bound of the estimation MSE of the BLUE estimator using the subset SKopt of sensors

without energy constraint. To prove the right part of the theorem, by Proposition 4.1,

we have

E(θ̄p − θ)2 ≤
(

∑
k∈SKopt

1

f(σ2
k, b

opt(σ2
k, ak, ck))

)−1

=

(
∑

k∈SKopt

1

2σ2
k

)−1

= 2

(
∑

k∈SKopt

1

σ2
k

)−1

.

(80)

This theorem gives the lower and upper bounds of the estimation MSE of the

proposed method. It is shown that the proposed method is quasi-optimal (up to a

factor of 2) when compared with the BLUE estimator using the same subset of active

sensors without energy constraint.

As shown above, the performance bound of the proposed algorithm is analyzed.

Nevertheless, the remaining question is that what is the optimal energy-distortion

bound for distributed estimation, i.e., what is the minimal estimation MSE that be
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achieved if the total energy Pc is allocated to any subset of sensors. To answer this

question, Theorem 4.2 states the lower bound of the estimation MSE by any quasi-

BLUE estimation system with any subset of sensors under the total energy constraint

Pc. Surprisingly, under the same total energy constraint Pc, the lower bound of the

estimation MSE by any quasi-BLUE estimation system with any subset S of sensors

is same as the lower bound of the estimation MSE of the BLUE estimator using the

subset SKopt of sensors obtained by the proposed algorithm in Equations (76, 77).

Theorem 4.2. Assume any subset of sensors S =
{
i1, · · · , ik, · · · , i|S|

}
are used,

where ik ∈ [1, N ] and |S| denotes the cardinality of the set S, i.e., the total number

of sensors in the set S. The energy allocated to each active sensor k ∈ S is Pk, such

that
∑

k∈S Pk = Pc. Then the lower bound of the estimation MSE is

E(θ̄c − θ)2 >


 ∑

k∈SKopt

1

σ2
k



−1

, (81)

where θ̄c denotes the estimation of the parameter θ by the subset of active sensors S

under the given total energy constraint Pc, and SKopt is the optimal subset of active

sensors, obtained by the proposed algorithm as shown in Equations (76, 77) such that

∑
k∈SKopt

P opt
k = Pc.

Proof. For any given estimation system as stated in the Theorem, the basic idea to

prove its estimation MSE D1 >
(∑

k∈SKopt
(1/σ2

k)
)−1

is to construct another corre-

sponding quasi-BLUE estimation system such that its estimation MSE D2 is smaller

than D1 but larger than
(∑

k∈SKopt
(1/σ2

k)
)−1

, i.e., D1 > D2 >
(∑

k∈SKopt
(1/σ2

k)
)−1

.

The proof is based on the concept of equivalent unit-energy MSE function. Refer to

Appendix 4.8 for the details. It is worth noting that the similar technique used to

prove this theorem also can be used to prove the Theorem 3.2.
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In conclusion, Theorem 4.1 shows that the bound of estimation MSE of the pro-

posed method is
(∑

k∈SKopt
1/σ2

k

)−1

< E(θ̄p − θ)2 ≤ 2
(∑

k∈SKopt
1/σ2

k

)−1

, and The-

orem 4.2 shows that
(∑

k∈SKopt
1/σ2

k

)−1

is the lower bound of the estimation MSE

of any quasi-BLUE estimator under the total energy constraint Pc, regardless of the

subset of active sensors and the energy allocation among the active sensors. There-

fore, the proposed algorithm gives a quasi-optimal trade-off between the number of

active sensors and the energy allocation at each active sensor, and its estimation MSE

is within a factor 2 of the theoretical non-achievable lower bound.

Remark 4.3. As we mentioned before, in all the prior analysis, we assume the quan-

tization bit rate can be real-valued number. But in practice, the quantization bit rate

must be integer. Denote the optimal integer quantization bit rate as b̄opt(σ2, a, c) ∈ Z+,

the corresponding optimal transmission energy as P̄ opt(σ2, a, c) and optimal equivalent

unit-energy MSE function as ḡopt(σ2, a, c) for a sensor with observation noise variance

σ2, transmission path loss a, and transceiver parameter c, thus,

b̄opt(σ2, a, c) = arg min
b∈Z+

g(σ2, b, a, c) = arg min
b∈Z+

[
ca(2b − 1)

(
σ2 +

W 2

(2b − 1)2

)]
,

ḡopt(σ2, a, c) = g(σ2, b̄opt(σ2, a, c), a, c),

P̄ opt(σ2, a, c) = ca(2b̄opt(σ2,a,c) − 1).

(82)

Different from bopt(σ2, a, c), b̄opt(σ2, a, c) can not be written in a closed form; however,

it can be easily solved since the minimization in Equation (82) involves just a simple

one-dimensional numerical search. So, in practice, the proposed distributed estimation

algorithms above can be easily implemented by using b̄opt(σ2, a, c), P̄ opt(σ2, a, c) and

ḡopt(σ2, a, c) instead of bopt(σ2, a, c), P opt(σ2, a, c) and gopt(σ2, a, c).

Since g(σ2, b, a, c) is convex over b as shown in Proposition 4.1, b̄opt(σ2, a, c) =

bbopt(σ2, a, c)c or dbopt(σ2, a, c)e, where bbopt(σ2, a, c)c denotes the maximum integer no

more than bopt(σ2, a, c), and dbopt(σ2, a, c)e denotes the minimum integer no less than

bopt(σ2, a, c). Figure 13 shows the optimal real-valued quantization bit rate bopt(σ2, a, c)
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Figure 13: Optimal real-valued and integer quantization bit rates verse SNR.
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Figure 14: Value of (f(σ2, b)/σ2) using the optimal real-valued and integer quanti-
zation bit rates verse SNR.
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and the optimal integer quantization bit rate b̄opt(σ2, a, c) verse different signal-to-

noise ratios (SNR) defined as SNR = 10 log10(W
2/σ2). Further, Figure 14 shows

the ratio of the estimation MSE f(σ2, b) to σ2 using real-valued quantization bit rate

b = bopt(σ2, a, c) with transmission energy P = P opt(σ2, a, c), or integer quantization

bit rate b = b̄opt(σ2, a, c) with transmission energy P = P̄ opt(σ2, a, c). From Figure 14,

we can see that the upper bound of the estimation MSE is twice of the observation

noise variance when the optimal real-valued quantization bit rate is used, as it is

proved in Proposition 4.1, and the upper bound of the estimation MSE is within a

small factor (up to 4) of the observation noise variance when the integer constraint

is imposed on the optimal quantization bit rate. It is also worth noting that, when

the optimal integer quantization bit rate is used, the theoretical lower bound shown in

Theorem 4.2 is still valid and it can be proved in the same way.

4.5 Extension to Multi-Hop Sensor Networks

In the previous section, we focus on the single-hop sensor network case. In this

section, we extend the proposed algorithms to the multi-hop sensor network case.

In the single-hop networks, each sensor locally processes its observation and then

transmits the processed message to the fusion center directly. As shown in Equa-

tions (60, 61, 62), the transmission energy function Ps is as follows:

Ps = cdαp(b), (83)

where c is the transceiver parameter of the sensor node, d is the transmission distance,

α is the transmission path loss exponent (2 ≤ α ≤ 4), and p(b) is a function of

the transmission bit rate b. Denote the single-hop transmission energy factor for

the sensor k to the fusion center as Cs(k) = ckd
α
k . Since the energy cost function

is proportional to dα, it could save more energy to transmit the messages through

multiple relay paths with short distance for each relay instead of a single path with

a long distance.
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In the multi-hop networks, each sensor locally processes its observation and then

transmits its processed message to the fusion center along a multi-hop routing path.

Assume in the multi-hop routing path, the processed message from sensor k0 is sequen-

tially relayed by sensor k1, k2, · · · , kn to the fusion center, then the total transmission

energy cost is

Pm =
n∑

i=0

(cidi
α)p(b), (84)

where ci (i = 0, · · · , n) is the transceiver parameter of the sensor ki, di (i = 0, · · · , n−
1) is the transmission distance from the sensor ki to the sensor ki+1, and dn is the

transmission distance from the sensor kn to the fusion center. Denote Cm(k) =

∑n
i=0(cidi

α) as the multi-hop transmission energy factor for the sensor k to the fusion

center. The multi-hop routing tree can be established using any routing algorithms.

To minimize the transmission energy cost from each sensor to the fusion center in

Equation (84), the shortest path tree routing is desirable.

With the multi-hop routing, the energy-constrained distributed estimation prob-

lem in Equation (63) turns to the following problem:

min




∑
k∈SK

1

σ2
k +

W 2

(2bk − 1)2




−1

,

s.t.
∑

k∈SK

Pm(k) ≤ Pc,

Pm(k) = Cm(k)(2bk − 1), k ∈ SK ,

bk > 0, k ∈ SK ,

(85)

where, all the variables are defined as before. Compared the problem for the single-

hop network case stated in Equation (64) with the problem for the multi-hop network

case stated in Equation (85), they are equivalent with the variable replacement from

Cs(k) = ckd
α
k in Equation (64) to Cm(k) in Equation (85). Since both Cs(k) and

Cm(k) are constants for the given network and the given multi-hop routing tree, the

same algorithms proposed in Section 4.2, 4.3, and 4.4 are applicable to the general
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multi-hop network case.

4.6 Simulation Results

In this section, we present some simulation results for the proposed algorithms in

Section 4.3 and 4.4, respectively. In all the simulations, we assume the transceiver

parameters are the same for all sensors, i.e., ck = c, and the quantization bit rates to

be integer number as discussed in Remark 4.3. All the final results are obtained by

repeating the experiments for 10000 times and averaging the corresponding results.

4.6.1 Homogeneous Sensor Networks

In this section, we simulate a homogeneous sensor network with N = 500 sensors,

where the noise variances of all sensors are the same and the distances from all

sensors to the fusion center are also the same. Without loss of generality, we assume

the range of the observation signal is [−1, 1], i.e., W = 1, and the distance from

each sensor to the fusion center is d = 1. Define the signal-to-noise ratio (SNR) as

SNR = 10 log10(W
2/σ2) and generate different SNR by changing the observation

noise variance σ2. Define the normalized energy as P ′ = P/c = a(2b − 1), where c is

the transceiver parameter, a is the transmission path loss, and b is the quantization

bit rate.

Assuming the normalized total energy constraint is P ′
c = 500, Figure 15 shows

the estimation MSE with different quantization bit rates for the active sensors under

different SNR, where different quantization bit rates, amounting to different energy

allocation, imply different total number of active sensors to perform the estimation

task because of the total energy constraint. Explicitly, for the given total normalized

energy constraint P ′
c = 500, we can have 500 active sensors with 1-bit quantization

message for each sensor, or 167 active sensors with 2-bit quantization message for

each sensor, or 71 active sensors with 3-bit quantization message for each sensor, or 33

active sensors with 4-bit quantization massage for each sensor and so on. For example,
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for the case of SNR = 20 dB, totally 71 active sensors out of all 500 sensors with 3-bit

quantization message per sensor will produce the minimum estimation MSE among

all the possible energy allocation strategies as shown in Figure 15. From Figure 15,

we also can see that there exists an optimal quantization bit rate for any given SNR

under the total energy constraint, and that too small or too big quantization bit rate

will sacrifice the estimation MSE performance significantly. More specifically, 1-bit

quantization per sensor will lead to the minimum estimation MSE for low SNR cases,

such as 0 dB, while for high SNR cases, multiple-bit quantization per sensor will

significantly decrease the estimation MSE compared to only 1-bit quantization per

sensor under the same total energy constraint.
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Figure 15: The estimation MSE versus the quantization bit rate per sensor and
signal-to-noise ratios (SNR) under the total energy constraint.
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4.6.2 Heterogeneous Sensor Networks with Equal Distances

In this section, we simulate a heterogeneous sensor network with N = 500 sensors,

where the noise variance of each sensor is different, which is assumed to be a Chi-

squared distribution with one degree of freedom, while the distance from each sensor

to the fusion center is the same. Same as before, we assume the range of the ob-

servation signal is [−1, 1] and the distance from each sensor to the fusion center is

d = 1.

For any given total energy constraint, the proposed estimation method in Sec-

tion 4.4 is implemented to determine the subset of active sensors and the energy

allocation at each active sensor to minimize the estimation MSE. To demonstrate

the efficiency of the proposed method, we compare the proposed method with two

uniform schemes:

1. Uniform-I : For the given total energy constraint, the same subset of active

sensors as that used by the proposed method is used, but the energy is uniformly

allocated among all the active sensors.

2. Uniform-II : all sensors in the simulated heterogeneous sensor network are used

and the energy is uniformly allocated among all sensors.

Figure 16 shows the estimation MSE by the proposed method, the Uniform-I

method, and the Uniform-II method, and the theoretical lower bound of the esti-

mation MSE presented in Theorem 4.2 under the total energy constraint. From Fig-

ure 16, we can see that the proposed method outperforms the two uniform schemes.

Further, it also can be seen that the estimation MSE of the proposed method is within

a factor 2 of the theoretical non-achievable lower bound.

Note that both the proposed method and the Uniform-I method are based on

the same subset of active sensors, and the only difference is that the optimal energy

allocation is performed in the proposed method, while uniform energy allocation is
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Figure 16: The estimation MSE by the proposed method, Uniform-I method, and
Uniform-II method, and the theoretical non-achievable lower bound of the estimation
MSE for heterogeneous sensor networks with equal distances.

performed in the Uniform-I method. Because of the heterogeneity of the network,

a better estimation performance is obtained using the proposed method. Define the

normalized deviation of sensor noise variances as

α =

√
V ar(σ2)

E(σ2)
, (86)

which will be used as a measure of the heterogeneity of sensor networks. And define

the reduction in the estimation MSE achieved by the proposed method in comparison

with the Uniform-I method as

β =
Du −Dp

Du

, (87)

where Du denotes the estimation MSE by the Uniform-I method, and Dp denotes

the estimation MSE by the proposed method. Figure 17 plots the estimation MSE

reduction of the proposed method compared with the Uniform-I method versus the
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normalized deviations of sensor noise variances. From Figure 17, we conclude that,

when compared with the Uniform-I method, the amount of estimation MSE reduction

of the proposed method becomes more significant when the local sensor noise variances

become more heterogeneous.
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Figure 17: The estimation MSE reduction in percentage of the proposed method
compared with the Uniform-I method under different normalized deviations of sensor
noise variances.

4.6.3 Multi-Hop Heterogeneous Sensor Networks

In this part of the simulation, we relax the assumption in Section 4.6.2 that the

distance from each sensor to the fusion center is the same. We assume that all sensors

are independently and uniformly distributed in a rectangular region of [0, 20, 0, 20],

and the fusion center is located at the central point of the region, i.e., (0, 0). Same with

in Section 4.6.2, we simulate a heterogeneous sensor network with N = 500 sensors,
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where the noise variances of all sensors are different and are assumed to be a Chi-

squared distribution with one degree of freedom. In this simulation, both the single-

hop transmission scheme and the multi-hop transmission scheme are considered. For

the multi-hop transmission, the shortest path routing tree is established as shown in

Figure 18.
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Figure 18: An example of a wireless sensor network with a multi-hop routing tree.
The fusion center is denoted by the circle in the center. There are 500 sensors,
each denoted by a dot. The shortest path from each sensor to the fusion center is
established and shown in solid lines.

For the single-hop transmission case, the proposed method in Section 4.4 is imple-

mented and compared with two uniform schemes: Uniform-I and Uniform-II method

defined as before. Furthermore, the proposed method for the multi-hop transmission

case in Section 4.5 is also implemented. Figure 19 shows the estimation MSE by

the proposed method, the Uniform-I method, and the Uniform-II method with the

single-hop transmission scheme, and the estimation MSE by the proposed method
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Figure 19: The estimation MSE by the proposed method, Uniform-I method, and
Uniform-II method with the single-hop transmission scheme, and the estimation MSE
by the proposed method with the multi-hop transmission scheme, and the theoretical
non-achievable lower bound of the estimation MSE with the multi-hop transmission
scheme for a randomly deployed heterogeneous sensor network.

with the multi-hop transmission scheme. From Figure 19, we can see that the pro-

posed method outperforms the two uniform schemes and the estimation MSE is signif-

icantly reduced by the multi-hop transmission scheme compared with the single-hop

transmission scheme under the same total transmission energy. Furthermore, the the-

oretical lower bound of the estimation MSE with the multi-hop transmission scheme

under the total transmission energy is also shown in Figure 19, and it is shown that

the estimation MSE of the proposed method is within a factor 2 of the theoretical

non-achievable lower bound. Comparing the results in Figure 19 and Figure 16, it can

be seen that the proposed method obtains more gain for the heterogeneous networks

with random distances than for the heterogeneous networks with equal distances, es-

pecially when the total energy constraint is more stringent, since there exists more
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randomness in the networks.

4.7 Summary

In this chapter, we considered the distributed parameter estimation in energy-constrained

wireless sensor networks from the energy-distortion perspective. For a given con-

straint on the allowable total energy to be used by all sensors at each estimation

cycle, we studied the optimal trade-off between the subset of active sensors and the

energy used by each active sensor to minimize the estimation MSE. To facilitate the

solution, a concept of equivalent unit-energy MSE function was introduced. Then,

an optimal distributed estimation algorithm for homogeneous sensor networks and

a quasi-optimal distributed estimation algorithm for heterogeneous sensor networks,

which are both based on the equivalent unit-energy MSE function, were developed.

Furthermore, the lower and upper bounds of the estimation MSE of the proposed

algorithm were discussed and a theoretical energy-distortion bound for the distributed

estimation was proved. It is shown that the proposed algorithm is quasi-optimal

within a factor 2 of the theoretical lower bound. Simulation results also show that

a significant reduction in estimation MSE is achieved by the proposed algorithm

compared with other uniform methods.

In Chapter 3 and this chapter, the distributed estimation is addressed from the

resource-distortion perspective, where the major goal is to minimize the estimation

MSE under a given total resource (bandwidth or energy) constraint for a single esti-

mation cycle. From the application point of view, not only the estimation distortion

in each estimation cycle but also the longevity of the whole network needs to be op-

timized. In the next chapter, we will address the network lifetime optimization for

the distributed estimation in the resource-limited wireless sensor networks.
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4.8 Appendix: Proof of Theorem 4.2

Assume a subset of sensors Sξ =
{

i1, · · · , ik, · · · , i|Sξ|
}

(ik ∈ [1, N ]) are used, and

the quantization bit rate of each active sensor k ∈ Sξ is bξ
k and the corresponding

transmission energy allocated is P ξ
k , such that

∑
k∈Sξ

P ξ
k = Pc. Denote this estima-

tion system as Cξ, the estimation of θ as θ̄ξ, and its estimation MSE as Dξ, so the

objective is to show that Dξ = E(θ̄ξ − θ)2 >
(∑

k∈SKopt
1/σ2

k

)−1

, where SKopt is the

optimal subset of active sensors, obtained by the proposed algorithm as shown in

Equations (76, 77) such that
∑

k∈SKopt
P opt

k = Pc. The basic idea to prove this state-

ment is to construct another quasi-BLUE estimation system, denoted as Cη, with

estimation MSE Dη such that Dξ ≥ Dη >
(∑

k∈SKopt
1/σ2

k

)−1

. The estimation sys-

tem Cη is constructed as follows: only the sensors in SKopt are used, i.e., the subset

of active sensors is Sη = SKopt , the quantization bit rate of each active sensor sen-

sor k ∈ Sη is bη
k, and the corresponding transmission energy allocated is P η

k . More

specifically,

bη
k =





max(bξ
k, b

opt
k ), if k ∈ SKopt ∩ Sξ,

bopt
k , if k ∈ SKopt\Sξ,

0, otherwise,

(88)

thus

P η
k =





max(P ξ
k , P opt

k ), if k ∈ SKopt ∩ Sξ,

P opt
k , if k ∈ SKopt\Sξ,

0, otherwise,

(89)

where, k ∈ SKopt\Sξ means that k ∈ SKopt but k /∈ Sξ. It is noted that (SKopt ∩ Sξ)∪
(SKopt\Sξ) = SKopt .

(1) Show that Dη >
(∑

k∈SKopt
1/σ2

k

)−1

.

Since in the constructed estimation system Cη, only the sensors in the subset

SKopt are active and limited quantization bit rate bη
k and limited transmission energy

P η
k are used for each sensor k ∈ SKopt , and D0 =

(∑
k∈SKopt

1/σ2
k

)−1

is the lower
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bound of the estimation MSE of BLUE estimator using the subset of sensors SKopt

without quantization bit rate and transmission energy constraints, so Dη > D0 =
(∑

k∈SKopt
1/σ2

k

)−1

.

(2) Show that Dη ≤ Dξ.

Divide Sξ into three disjoint subset Sξ1, Sξ2 and Sξ3 as follows:

Sξ1 = {k : bξ
k ≥ bopt

k , and k ∈ SKopt ∩ Sξ},
Sξ2 = {k : bξ

k < bopt
k , and k ∈ SKopt ∩ Sξ},

Sξ3 = Sξ\SKopt .

(90)

Similarly, divide Sη into three disjoint subset Sη1, Sη2 and Sη3 as follows:

Sη1 = {k : bξ
k ≥ bopt

k , and k ∈ SKopt ∩ Sξ},
Sη2 = {k : bξ

k < bopt
k , and k ∈ SKopt ∩ Sξ},

Sη3 = SKopt\Sξ.

(91)

Proposition 4.2. According to the definitions of SKopt, Sξ, Sη bη
k, and P η

k in Equa-

tions (77, 88, 89, 90, 91), it is easy to see that:

1. Sξ1 ∪ Sξ2 ∪ Sξ3 = Sξ and Sη1 ∪ Sη2 ∪ Sη3 = Sη = SKopt,

2. Sη1 = Sξ1, bη
k = bξ

k ≥ bopt
k and P η

k = P ξ
k ≥ P opt

k for any k ∈ Sη1,

3. Sη2 = Sξ2, bη
k = bopt

k > bξ
k and P η

k = P opt
k > P ξ

k for any k ∈ Sη2,

4. bη
k = bopt

k and P η
k = P opt

k for any k ∈ Sη3,

5. Sη2 ⊆ SKopt, Sη3 ⊆ SKopt, and Sξ3 ⊆ Sc
Kopt, thus for any i ∈ Sη2 ∪ Sη3 and j ∈

Sξ3, g(σ2
i , b

η
i , ai, ci) = gopt

i ≤ gopt
j ≤ g(σ2

j , b
ξ
j , aj, cj) according to Equation (76).

Let g1 = max
i∈Sη2∪Sη3

g(σ2
i , b

η
i , ai, ci) and g2 = min

j∈Sξ3

g(σ2
j , b

ξ
j , aj, cj), then g1 ≤ g2.

Let Dξ = 1/D′
ξ, and Dη = 1/D′

η. Expressing D′
ξ and D′

η with the concept of the

equivalent unit-energy MSE functions as follows:

D′
ξ =

∑
k∈Sξ1∪Sξ2∪Sξ3

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

D′
η =

∑
k∈Sη1∪Sη2∪Sη3

P η
k

g(σ2
k, b

η
k, ak, ck)

(92)
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according to Proposition 4.2, then

D′
η −D′

ξ =

(
∑

k∈Sη1

P η
k

g(σ2
k, b

η
k, ak, ck)

− ∑
k∈Sξ1

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

)
+

(
∑

k∈Sη2

P η
k

g(σ2
k, b

η
k, ak, ck)

− ∑
k∈Sξ2

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

)
+

(
∑

k∈Sη3

P η
k

g(σ2
k, b

η
k, ak, ck)

− ∑
k∈Sξ3

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

)

=

(
∑

k∈Sη2

P opt
k

g(σ2
k, b

opt
k , ak, ck)

− ∑
k∈Sξ2

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

)
+

(
∑

k∈Sη3

P opt
k

g(σ2
k, b

opt
k , ak, ck)

− ∑
k∈Sξ3

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

)

=

(
∑

k∈Sη2

P ξ
k

g(σ2
k, b

opt
k , ak, ck)

− ∑
k∈Sξ2

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

)

+
∑

k∈Sη2

P opt
k − P ξ

k

g(σ2
k, b

opt
k , ak, ck)

+
∑

k∈Sη3

P opt
k

g(σ2
k, b

opt
k , ak, ck)

− ∑
k∈Sξ3

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

≥ ∑
k∈Sη2

P opt
k − P ξ

k

g(σ2
k, b

opt
k , ak, ck)

+
∑

k∈Sη3

P opt
k

g(σ2
k, b

opt
k , ak, ck)

− ∑
k∈Sξ3

P ξ
k

g(σ2
k, b

ξ
k, ak, ck)

≥
(

∑
k∈Sη2

(P opt
k − P ξ

k ) +
∑

k∈Sη3

P opt
k

)
1

g1

−
(

∑
k∈Sξ3

P ξ
k

)
1

g2

,

≥
(

∑
k∈Sη2∪Sη3

P opt
k − ∑

k∈Sξ2∪Sξ3

P ξ
k

)
1

g1

.

(93)

From the total energy constraint, we have

∑

k∈Sξ1∪Sξ2∪Sξ3

P ξ
k =

∑

k∈Sη1∪Sη2∪Sη3

P opt
k = Pc (94)

Since Sη1 = Sξ1 and P ξ
k ≥ P opt

k for any k ∈ Sξ1 as shown in Proposition 4.2, then

∑

k∈Sξ2∪Sξ3

P ξ
k ≤

∑

k∈Sη2∪Sη3

P opt
k , (95)

thus

D′
η −D′

ξ ≥
(

∑
k∈Sη2∪Sη3

P opt
k − ∑

k∈Sξ2∪Sξ3

P ξ
k

)
1

g1

≥ 0, (96)

75



therefore,

Dξ ≥ Dη. (97)

From (1) and (2) above, we get

Dξ ≥ Dη >


 ∑

k∈SKopt

1

σ2
k



−1

, (98)

thus the theorem is proved.
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CHAPTER V

NETWORK LIFETIME OPTIMIZATION FOR

DISTRIBUTED ESTIMATION

Distortion is one of the major system performance measurements for the distributed

estimation in wireless sensor networks. To minimize the estimation distortion while

meeting the resource (bandwidth and energy) limitation of wireless sensor networks,

the rate-constrained distributed estimation algorithms [6,7,32,48,53,64,65,69,70,75,

79,80] and the energy-constrained distributed estimation algorithms [5,46,52,91,92,94]

have been widely investigated. However, all these algorithms are not necessarily

optimal in the sense of network lifetime.

Network lifetime is another major system performance measurement in wireless

sensor networks and it is also widely addressed in the literature [12, 13, 17, 18, 31, 38,

41, 42, 66, 68, 81, 87, 101, 102]. However, the network lifetime issue for the distributed

estimation applications in wireless sensor networks has not yet been addressed explic-

itly. Furthermore, it is desirable to address both the estimation distortion and the

network lifetime jointly, thus it involves not only the local information processing but

also inter-sensor communication and networking.

In this chapter, we study the lifetime-distortion issue for the estimation applica-

tions in wireless sensor networks, where the lifetime is defined as the estimation task

cycles successfully accomplished until the network can not perform the task with a

given distortion requirement any more. In resource-limited wireless sensor networks,

both local quantization and multi-hop transmission are essential to save transmission

energy and thus prolong the network lifetime. To maximize the network lifetime for

the estimation application, three factors are needed to be optimized together: (i)
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source coding, i.e., quantization level of each observation, (ii) source throughput, i.e.

total number of observations or total information bits generated by each sensor, and

(iii) multi-hop routing path to transmit the observations from all sensors to the fusion

center.

The rest of the chapter is organized as follows. Section 5.1 introduces the system

model of the distributed estimation in multi-hop wireless sensor networks. Section 5.2

introduces a new notion of network lifetime, called function-based network lifetime,

and formulates its upper bound. Section 5.3 addresses the network lifetime maxi-

mization for the single-hop wireless sensor networks, where the optimal source coding

based on the equivalent unit-resource MSE function is developed. Section 5.4 for-

mulates the network lifetime bound maximization problem for the multi-hop wireless

sensor networks as a nonlinear programming (NLP) problem, and then decouples the

original problem into two sub-problems, i.e., (i) source coding optimization, and (ii)

joint source throughput and multi-hop routing optimization, without compromising

the optimality. These two problems are addressed in Section 5.4.3 and section 5.5, re-

spectively. Section 5.6 gives some simulation results that demonstrate the efficiency of

the proposed algorithms. Finally, conclusions are given in Section 5.7. The proofs of

some theorems presented in this chapter are delegated to the appendix in Section 5.8.

5.1 System Model and Preliminaries

Consider a dense sensor network including N distributed sensor nodes and a fusion

center, denoted as node N +1, to observe and estimate an unknown parameter θ. An

example network is shown in Figure 20.

First, each sensor k can make observations on the unknown parameter θ. The

observations are corrupted by additive noise and described by

xk = θ + nk, k = 1, · · · , N. (99)

We assume that the observation noises of all sensors nk (k = 1, · · · , N) are zero mean,
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Figure 20: An example of a wireless sensor network with N distributed sensor nodes.
Each sensor can observe the phenomenon, quantize and transmit its observation to
the fusion center (FC) via multi-hop wireless channel, and the fusion center makes the
final estimation based on all the received messages. In directed solid lines, a chosen
multi-hop routing path is shown, where the data from a sensor can be relayed by
multiple sensors, meanwhile a sensor can relay data for multiple sensors.

spatially uncorrelated with variance σ2
k, while the noise at each sensor is assumed to

be temporally i.i.d distributed, otherwise unknown.

Subject to severe bandwidth and energy limitations, each sensor is prevented from

transmitting real-valued (analogy) data to the fusion center, that is, a local quantiza-

tion mk = Qk(xk) is performed before transmission, where Qk(xk) is a quantization

function, and only the quantization message mk is transmitted to the fusion center

via multi-hop wireless channel. Similar with that used in Section 3.1 and Section 4.1,

the probabilistic quantization scheme is used at local sensors. As shown in Sec-

tion 3.1.1, let m(x, b) be a b-bit probabilistic quantization of bounded observation

signal x ∈ [−W,W ] with noise variance σ2; then m(x, b) is an unbiased estimation of

θ with a variance

E
(|m(x, b)− θ|2) ≤ σ2 +

W 2

(2b − 1)2 := π2(σ2, b), (100)
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where W 2/(2b − 1)2 for b > 0 denotes the upper bound of the quantization noise

variance.

Assume there are K received observations (m1, m2, · · · , mK) at the fusion center,

then the fusion center produces a final estimation of θ by combining all the available

observations using a fusion function f : θ̄ = f(m1,m2, · · · ,mK). Similar with that

used in Section 3.1 and Section 4.1, the quasi-BLUE estimation scheme is adopted

at the fusion center. Suppose all the observations of the K active sensors xk(k =

1, · · · , K) are quantized into bk-bits discrete messages mk(xk, bk) respectively with

the probabilistic quantization scheme. Based on the quantized messages mk, the

quasi-BLUE estimator at the fusion center has the following form:

θ̄ =

(
K∑

k=1

1

π2
k(σ

2
k, bk)

)−1 K∑

k=1

mk

π2
k(σ

2
k, bk)

. (101)

Notice that θ̄ is an unbiased estimation of θ because every mk is unbiased. Moreover,

the estimation MSE of the quasi-BLUE estimator is

E(θ̄ − θ)2 ≤
(

K∑

k=1

1

π2
k(σ

2
k, bk)

)−1

. (102)

For the given estimation system, the major goal of this chapter is to study the

optimal estimation scheme to maximize the network lifetime. In the next section, we

first introduce a novel definition of network lifetime, called function-based network

lifetime; then we give a upper-bound on the function-based network lifetime for a

given sensor networks with limited-energy supply.

5.2 Network Lifetime for Estimation

Network lifetime is a critical concern in the design of wireless sensor networks. In this

section, we first define the network lifetime and then formulate the network lifetime

maximization problem.
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5.2.1 Function-based Network Lifetime

In the literature, many different lifetime definitions are used, such as duration of

time until the first sensor failure due to battery depletion [17], fraction of surviving

nodes in a network [81, 101], mean expiration time [87], etc. However, these notions

of network lifetime mainly focus on the time until the first node or a fraction of

nodes deplete even though the remaining network may be still functional from the

application perspective. In this research, we introduce a notion of function-based

network lifetime, which focuses on whether the network can perform a given task

instead of whether any individual sensor is dead.

Definition 5.1 (Function-based Network Lifetime). For the estimation application,

the network is considered functional if it can produce an estimation satisfying a given

distortion requirement Dr; otherwise it is nonfunctional. The network lifetime L is

defined as the estimation task cycles accomplished before the network becomes non-

functional, where each time when the sensor network makes an estimation is denoted

as an estimation task cycle.

5.2.2 Upper-Bound on Function-based Network Lifetime

At different estimation cycles, the parameter θ is assumed to be unrelated, and the

estimation at each cycle is performed independently using only the observations made

by all sensors in the given estimation cycle. Based on the system model in Section 5.1,

assume a sensor network with N sensors, each with observation noise variance σ2
k

(k = 1, · · · , N). To satisfy the given estimation distortion requirement Dr at each es-

timation cycle, a subset of sensors is required to observe the parameter θ and transmit

their quantized measurements to the fusion center to make the final estimation.

Proposition 5.1. Assume sensor k (k = 1, · · · , N) make a total of Mk measure-

ments and quantize its measurements using probabilistic quantization scheme to bk,i

(i = 1, · · · ,Mk) bits, respectively, before it depletes. Then the function-based network
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lifetime L for the estimation application is bounded as follows:

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)
, (103)

where N , σ2
k, Mk, bk,i, and Dr are defined as above, and π2

k(σ
2
k, bk,i) as defined in

Equation (100).

Proof. See Appendix 5.8.1.

It is noted that the upper bound shown in Proposition 5.1 could be closely ap-

proached by appropriately scheduling the subset of active sensors in each estimation

cycle such that the actual estimation MSE obtained is equal to or slightly smaller

than Dr.

Based on the estimation system model and the definition of function-based net-

work lifetime, in the following sections, we will study how to maximize the upper-

bound of the function-based network lifetime in Equation (103) under the energy

resource constraint of each sensor. In the next section, we first study a special case –

single-hop wireless sensor networks.

5.3 Single-Hop Wireless Sensor Networks

In the single-hop wireless sensor networks, each sensor transmits its observations to

the fusion center directly, so all energy of each sensor can be used to transmit its own

data instead of relaying other sensors’ data. Then the network lifetime optimization

problem under the energy resource constraint of each sensor can be cast as follows:

max Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)
,

s.t.
Mk∑
i=1

ek(bk,i) ≤ Pk, ∀k ∈ [1, N ],

(104)

where Pk is the total energy resource of sensor k, ek(bk,i) is the transmission energy

cost for sensor k to transmit a bk,i-bit quantization message to the fusion center, and

Mk ≥ 0 and bk,i ≥ 0 defined as before are variables to be optimized.
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5.3.1 Equivalent Unit-Resource MSE Function

To facilitate the solution to Equation (104), we first introduce a concept of the equiv-

alent unit-resource MSE function.

Definition 5.2 (Equivalent Unit-Resource MSE Function). For a quantized message

from a sensor with observation noise variance σ2 and quantization bit rate b, the

estimation variance is π2(σ2, b) := σ2+W 2/(2b − 1)2 as shown in Section 5.1. Denote

the resource cost by this message is r(b). Then, the equivalent unit-resource MSE

function is defined as

g(σ2, b) := r(b) · π2(σ2, b) = r(b) ·
(

σ2 +
W 2

(2b − 1)2

)
. (105)

Based on this definition, from the estimation MSE aspect, a sensor with quanti-

zation bit rate b, resource cost r(b) and estimation MSE π2(σ2, b), can be treated as

r(b) equivalent unit-resource sensors, each with the same estimation MSE g(σ2, b).

That is why g(σ2, b) is called equivalent unit-resource MSE function. It is worth

noting that this definition is quite generic, where the resource can be bandwidth,

energy, etc. When the bandwidth resource is considered, i.e., r(b) = b, the equiv-

alent unit-resource MSE function is the same as the equivalent 1-bit MSE function

defined in Section 3.2. When the energy resource is considered, i.e., r(b) = e(b), the

equivalent unit-resource MSE function is the same as the equivalent unit-energy MSE

function defined in Section 4.2. So the equivalent unit-resource MSE function is a

generalization of the equivalent 1-bit MSE function and the equivalent unit-energy

MSE function.

Let r(b) in Equation (105) be the transmission energy cost e(b). We consider

two different transmission models: (1) the binary transmission model and (2) the

quadrature amplitude modulation (QAM) based transmission model. Assume the

transmission distance from sensor k to the fusion center is dk, and the channel power

attenuation factor is ak = dα
k , where α is the path loss exponent. Then, as shown in

83



Section 4.1.2, the transmission energy cost for the binary transmission model is

e1(bk) = c1 · ak · bk, (106)

where c1 is a system constant. The transmission energy cost for the QAM-based

model [23,24] is

e2(bk) = c2 · ak · (2bk − 1), (107)

where c2 is a system constant. For both transmission models above, it can be shown

that the corresponding equivalent unit-resource MSE functions g(σ2, b) defined in

Equation (105) are convex over b.

Based on the convexity of g(σ2, b), we further define the optimal unit-resource

MSE function gopt(σ2), and the corresponding optimal quantization bit rate bopt(σ2)

and optimal transmission energy eopt(σ2) as follows:

bopt(σ2) = arg min
b∈Z+

g(σ2, b),

gopt(σ2) = min
b∈Z+

g(σ2, b) = g(σ2, bopt(σ2)),

eopt(σ2) = e(bopt(σ2)).

(108)

It is noted that the minimization in Equation (108) involves just a simple one-

dimensional numerical search over b ∈ Z+.

5.3.2 Network Lifetime Maximization for Single-Hop WSNs

Based on the concept of the equivalent unit-energy MSE function, the upper bound

of the function-based network lifetime in Proposition 5.1 can be maximized as in the

following Theorem.

Theorem 5.1. The bound of function-based network lifetime for estimation is

L ≤ Dr

(
N∑

k=1

Pk

gopt
k (σ2

k)

)
= Dr

(
N∑

k=1

Pk

eopt
k (σ2

k) · π2
k(σ

2
k, b

opt
k (σ2

k))

)
, (109)

where N , σ2
k, Mk, bk,i, and Dr are defined as before, and gopt

k (σ2
k), bopt

k (σ2
k) and eopt

k (σ2
k)

are the optimal unit-resource MSE function, optimal quantization bit rate, and optimal

transmission energy per observation, of sensor k, respectively.
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Proof. Assume sensor k makes Mk measurements, each with quantization bit rate bk,i

and transmission energy cost ek(bk,i), before the sensor depletes, i.e.,
∑Mk

i=1 ek(bk,i) ≤
Pk. Then as shown in Equation (103), the network lifetime bound is

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)
. (110)

According to the definition of g(σ2, b) and gopt(σ2) and the energy constraints in

Equation (104),

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)

= Dr

(
N∑

k=1

Mk∑
i=1

ek(bk,i)

gk(σ2
k, bk,i)

)

≤ Dr

(
N∑

k=1

Mk∑
i=1

ek(bk,i)

gopt
k (σ2

k)

)

≤ Dr

(
N∑

k=1

Pk

gopt
k (σ2

k)

)

(111)

thus the theorem is proved.

Note that the equality in Equation (111) is achieved when each sensor node adopts

optimal quantization bit rate bopt(σ2) and optimal transmission energy eopt(σ2) to

quantize and transmit its observations. As shown before, the optimal quantization

bit rate bopt(σ2) and optimal transmission energy eopt(σ2) of each sensor can be eas-

ily obtained by minimizing its equivalent unit-resource MSE function, which only

depends on its own observation noise variance and transmission system parameters;

therefore, this optimization can be done in a completely distributed manner.

5.4 Multi-Hop Wireless Sensor Networks

In the energy-limited wireless sensor networks, multi-hop transmission is essential to

save transmission energy and thus prolong the network lifetime. In this section, we will

address the network lifetime optimization problem for the general multi-hop wireless

sensor networks, where the data is transmitted from each sensor to the fusion center

through multi-hop channels. In this section, only the binary transmission model is

used.
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5.4.1 Nonlinear Programming (NLP) Formulation

Model the wireless sensor network as a directed graph G(V, E), where V is the set

consisting of all the N sensor nodes and the fusion center (node N + 1), i.e., V =

[1, N + 1], E is the set of directed links in the network. An edge (i, j) ∈ E iff

di,j ≤ R, where di,j is the distance between node i and node j, and R is the maximum

transmission range. The link cost to transmit a unit bit information from node i

to node j, denoted as Ci,j, depends on the distance di,j between them based on the

energy model in Equation (106) as follows,

Ci,j =





cdα
i,j, if di,j ≤ R

+∞, otherwise

(112)

where c and α are defined as before.

Assume each sensor has a limited energy supply Pk (k = 1, · · · , N). During the

lifetime of the network, assume sensor k make a total of Mk measurements and quan-

tize its measurements to bk,i (i = 1, · · · ,Mk) bits, respectively. Denote the source

throughput of sensor node k, i.e., the total amount of data in bits generated at sensor

node k as Sk, and the amount of data in bits transmitted from sensor node i to sensor

node j as fi,j. According to network lifetime bound shown in Equation (103), the net-

work lifetime maximization problem can be formulated as a nonlinear programming

(NLP) problem as follows:

maximize Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)
(113)

subject to
N∑

i=1,i6=k

fi,k + Sk =
N+1∑

j=1,j 6=k

fk,j, ∀k ∈ [1, N ] (114)

N+1∑

j=1,j 6=k

fk,jCk,j 6 Pk, ∀k ∈ [1, N ] (115)

Sk =

Mk∑
i=1

bk,i, ∀k ∈ [1, N ] (116)
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where

Sk ≥ 0, ∀k ∈ [1, N ]

Mk ≥ 0, ∀k ∈ [1, N ]

bk,i ≥ 0, ∀k ∈ [1, N ], i ∈ [1,Mk]

fi,j ≥ 0, ∀i ∈ [1, N ], j ∈ [1, N + 1]

(117)

where Equation (114) and Equation (115) represent two constraints of the optimiza-

tion problem:

1. flow conservation: the amount of data transmitted by a sensor node is equal to

the sum of the amount of data received by the sensor node and the amount of

data generated by the sensor node itself.

2. energy constraint : the amount of data transmitted by a sensor node is limited

by the energy supply of the sensor node.

It is noted that the problem given above is a nonlinear programming problem

since the objective function in Equation (113) nonlinearly depends on the variables

bk,i.

5.4.2 Separation of Source Coding with Multi-Hop Routing

To maximize the objective function in Equation (113), there are three factors needed

to be optimized together: (i) source coding at each sensor, i.e., quantization level bk,i

for each observation i of each sensor k, (ii) source throughput of each sensor, i.e., the

total number of observations Mk and the total amount of data in bits Sk generated

at each sensor k, and (iii) multi-hop routing, i.e., the feasible network flow {fi,j :

i, j ∈ [1, N + 1]} satisfying both the flow conservation constraint in Equation (114)

and energy constraint in Equation (115). Fortunately, the source coding optimization

can be decoupled from the source throughput and multi-hop routing optimization as

shown in Proposition 5.2.
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Proposition 5.2. For the nonlinear programming model stated in Equations (113,

114, 115, 116), given the source throughput {Sk, k ∈ [1, N ]}, the source coding opti-

mization can be decoupled from multi-hop routing optimization.

Proof. As shown in Equation (113), the objective function is

Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)
,

which only depends on the source throughput Sk =
∑Mk

i=1 bk,i, (k ∈ [1, N ]) and source

coding scheme, but does not depend on how the source data is transmitted to the

fusion center. On the other hand, the flow conservation in Equation (114) and the

energy constraint in Equation (115) only depends on the source throughput Sk, but

does not depend on the source coding. Thus, given the source throughput Sk of each

sensor k, the source coding optimization is independent from the multi-hop routing

optimization.

According to the separation principle of source coding optimization with multi-

hop routing optimization, we can solve the original optimization problem stated in

Equations (113, 114, 115, 116) in two steps without loss of optimality: (i) optimiz-

ing the source coding for given source throughput, and (ii) optimizing the source

throughput and multi-hop routing jointly, based on the optimal source coding. In the

next two sections, we will address these two sub-problems, respectively.

5.4.3 Source Coding Optimization and Network Lifetime Bound

In this section, we optimize the source coding for a given source throughput Sk of each

sensor k ∈ [1, N ], i.e., find the optimal quantization level bk,i for each observation i of

each sensor k to maximize the network lifetime bound. Mathematically, the problem

is formulated as follows:

max Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)

s.t.
Mk∑
i=1

bk,i = Sk, ∀k ∈ [1, N ],

(118)
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where Mk ≥ 0 and bk,i ≥ 0 defined as before are variables to be optimized.

Compared the problem in Equation (118) with that in Equation (104), it is easy

to see that the problem in Equation (118) is a special case of the problem in Equa-

tion (104) with e(b) = b and Pk = Sk. So the source coding method based on the

equivalent unit-resource MSE function in Section 5.3 can be used. Here the resource

is the transmission bit rate, i.e., r(b) = b, and the equivalent unit-resource MSE

function is retrogressed to the equivalent 1-bit MSE function.

First, the equivalent 1-bit MSE function is defined as

g(σ2, b) := b · π2(σ2, b) = b ·
(

σ2 +
W 2

(2b − 1)2

)
. (119)

Since g(σ2, b) is convex over b > 0, we further define the optimal 1-bit MSE function

gopt(σ2) and the corresponding optimal quantization bit rate bopt(σ2) as follows:

bopt(σ2) = arg min
b∈Z+

g(σ2, b),

gopt(σ2) = min
b∈Z+

g(σ2, b) = g(σ2, bopt(σ2)),

(120)

where the minimization involves just a simple one-dimensional numerical search. As

shown in Proposition 3.1, the optimal 1-bit MSE function gopt(σ2) increases over the

observation noise variance σ2.

Based on the definitions above, the network lifetime bound for estimation can

be reformulated as a linear function of the source throughput Sk (k = 1, · · · , N) as

shown in Theorem 5.2.

Theorem 5.2. Given the source throughput Sk of all sensor nodes k ∈ [1, N ] and the

estimation distortion requirement Dr, the bound of function-based network lifetime

for estimation is

L ≤ Dr

(
N∑

k=1

Sk

gopt
k (σ2

k)

)
, (121)

where gopt
k (σ2

k) is the optimal 1-bit MSE function of sensor node k.
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Proof. Assume sensor k ∈ [1, N ] makes a total of Mk measurements, each with quan-

tization bit rate bk,i, respectively, such that
∑Mk

i=1 bk,i ≤ Sk. Then as shown in Equa-

tion (103), the network lifetime bound is

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)
. (122)

According to the definition of g(σ2, b) and gopt(σ2) in Equation (119, 120) and the

source throughput constraints in Equation (118),

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)

= Dr

(
N∑

k=1

Mk∑
i=1

bk,i

gk(σ2
k, bk,i)

)

≤ Dr

(
N∑

k=1

Mk∑
i=1

bk,i

gopt
k (σ2

k)

)

≤ Dr

(
N∑

k=1

Sk

gopt
k (σ2

k)

)

(123)

thus the theorem is proved.

Note that the equality in Equation (123) is achieved when each sensor node adopts

optimal source coding, i.e., optimal quantization bit rate bopt(σ2) to quantize its

observations. As shown before, the optimal quantization bit rate bopt(σ2) of each

sensor can be easily obtained by minimizing its equivalent 1-bit MSE function, which

only depends on its own observation noise variance, therefore, this optimization can

be done in a distributed manner. It is also worth noting that the optimal source

coding is independent from the source throughput, while the source throughput at

each sensor determines the total number of observations the sensor makes.

5.5 Joint Optimization of Source Throughput and Multi-
Hop Routing

As shown in Equation (121) in Theorem 5.2, the network lifetime bound depends on

the source throughput Sk for all sensors k ∈ [1, N ], which are unknown variables to

be optimized. In multi-hop wireless sensor networks, each sensor not only transmits
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the data generated by itself, but also relays the data for other sensors. Since the total

amount of data each sensor can transmit and relay is limited by the energy supply

of the sensor node, the source throughput of each sensor and the multi-hop routing

path from each sensor to the sink node need to be optimized together.

5.5.1 Linear Programming (LP) Formulation

As shown in Theorem 5.2, the nonlinear objective function in Equation (113) can be

reformulated as a linear function of the source throughput Sk (k ∈ [1, N ]) by the op-

timal source coding, then the original network lifetime bound maximization problem

for multi-hop wireless sensor networks shown in Section 5.4.1 can be reformulated as

a linear programming (LP) problem as follows:

maximize Dr

(
N∑

k=1

Sk

gopt
k (σ2

k)

)
(124)

subject to
N∑

i=1,i6=k

fi,k + Sk =
N+1∑

j=1,j 6=k

fk,j, ∀k ∈ [1, N ] (125)

N+1∑

j=1,j 6=k

fk,jCk,j 6 Pk, ∀k ∈ [1, N ] (126)

where

Sk ≥ 0, ∀k ∈ [1, N ]

fi,j ≥ 0, ∀i ∈ [1, N ], j ∈ [1, N + 1]
(127)

and all variables are defined as before.

In summary, the network lifetime bound maximization for estimation can be for-

mulated as a linear programming problem as shown in Equation (124, 125, 126),

which can be easily solved using any LP solver, such as [1] used in our simulations.

The linear programming problem in Equation (124, 125, 126) can be understood

as a weighted data gathering problem since the objective function in Equation (124)

is the weighted sum of the amount of data generated at all sensors, where the weight
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of the data from sensor k (k = 1, · · · , N) is the inverse of its corresponding optimal

1-bit MSE function gopt
k (σ2

k) as shown in Equation (124). As shown in Proposition 3.1,

gopt(σ2) increases over σ2, so the weight decreases over σ2, that is, it is more desirable

to get data from the sensor nodes with small observation noise. It is also noted that if

some sensors in the networks can act only as a relay, i.e., no observation capabilities,

the linear programming model above still works by simply setting the weights of the

data from the relay-only sensors as 0.

5.5.2 Character-based Routing

Though the multi-hop routing path for the weighted data gathering problem can be

easily obtained by solving the associated linear programming problem using any LP

solver, it is interesting to note that, in the optimal multi-hop routing structure for

this problem, a sensor node only relays data generated by sensor nodes with higher

importance, i.e., bigger weight, as shown in Theorem 5.3. That is to say, the optimal

routing is based on the character (fidelity and importance) of the sensor nodes, thus it

is called character-based routing. Character-based routing is a new notion for routing

and it is different from the traditional distance-based routing, such as shortest path

tree, where a sensor node closer to the sink node relays information for sensor nodes

farther away from the sink node.

Theorem 5.3. The optimal routing structure for the weighted data gathering problem

shown in Equations (124, 125, 126) is character-based routing, where a sensor node

only relays data generated by sensor nodes with higher importance, i.e., bigger weight.

More specifically, in the optimal flow and routing solution, let η be a sub flow with

data volume S, generated at sensor i0 and relayed by sensors i1, · · · , iT sequentially

to the fusion center, i.e.,

Sη
i0

= fη
i0,i1

= f η
i1,i2

= · · · = f η
iT−1,iT

= f η
iT ,N+1 = S, (128)
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then,

σ2
i0
≤ σ2

it , ∀t ∈ [1, T ]. (129)

Proof. See Appendix 5.8.2.

5.5.3 Special Case: Homogeneous Networks

In homogeneous wireless sensor networks, where each sensor has the same observation

noise variance, i.e., σ2
k = σ2 (k = 1, · · · , N), single-hop routing path, i.e., all sensors

transmit their observations to the fusion center directly, can maximize the weighted

data gathering as shown in Proposition 5.3. Furthermore, the network lifetime bound

for estimation can be easily quantified as shown in Proposition 5.4.

Proposition 5.3. In a homogeneous network with N sensors and observation noise

variance σ2, single-hop routing can maximize the weighted data gathering as in Equa-

tions (124, 125, 126).

Proof. See Appendix 5.8.3.

Proposition 5.4. In a homogeneous network with N sensors and observation noise

variance σ2, denote the energy supply of sensor k (k = 1, · · · , N) as Pk, then the

network lifetime bound for estimation is

L ≤ Dr

(
N∑

k=1

Pk

Ck,N+1 · gopt(σ2)

)
, (130)

where Dr is the estimation distortion requirement, and Ck,N+1 defined as in Equa-

tion (112) denotes the energy cost for sensor k to transmit 1-bit message to the fusion

center directly.

Proof. As shown in Proposition 5.3, single-hop routing can maximize weighted data

gathering, thus the network lifetime bound for estimation. In single-hop wireless sen-

sor network, each sensor transmits all its measurements to the fusion center directly,
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and no energy is used to relay other sensors’ data, thus the maximum source through-

put of each sensor node is easily obtained as Sk = Pk/Ck,N+1. Therefore, according

to Theorem 5.2, the network lifetime bound for estimation in a homogeneous network

is L ≤ Dr

(
N∑

k=1

Pk

Ck,N+1 · gopt(σ2)

)
.

5.6 Simulation Results

In homogeneous sensor networks, the network lifetime bound for estimation is maxi-

mized by single-hop routing and optimal source coding as shown in Proposition 5.4,

while in heterogeneous sensor networks, the network lifetime bound for estimation

is maximized by optimal source coding and optimal multi-hop routing jointly. To

demonstrate the performances of the optimal coding scheme in Section 5.4.3 and the

optimal multi-hop routing in Section 5.5, we simulate a homogeneous sensor network

and a heterogeneous sensor network, respectively.

5.6.1 Homogeneous Sensor Networks

In this section, we simulate a homogeneous sensor network with N = 500 sensors,

where the noise variance σ2
k, the initial energy Pk, and the distances to the fusion cen-

ter dk for all sensors are the same. Without loss of generality, we assume dk = 1, the

normalized initial energy Pk/c = 10000, the range of the observation signal is [−1, 1],

i.e., W = 1, and path loss exponent α = 2 (free space). Define the signal-to-noise

ratio (SNR) as SNR = 10 log10(W
2/σ2) and generate different SNR by changing the

observation noise variance σ2. In order to demonstrate the efficiency of the proposed

method, we compare the proposed algorithm with a heuristic method, where each

sensor uses the same amount of energy to achieve the distortion requirement at each

estimation task period, thus all the sensors will deplete at the same time.

Denote the estimation MSE of the clairvoyant estimator as D0 =
(∑N

k=1(1/σ
2
k)

)−1

and define the normalized estimation MSE requirement as Dn = Dr/D0. Figure 21(a)

and Figure 21(b) show the ratio of network lifetime bound by the proposed algorithm
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Figure 21: Ratio of network lifetime bound for homogeneous sensor networks under
different SNRs and normalized estimation MSE requirements: (a) binary model, (b)
QAM model.
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to that by the heuristic method under different SNRs and different normalized es-

timation MSE requirements using the binary and QAM based transmission models,

respectively. From Figure 21(a) and Figure 21(b), we can see that a significant gain

on network lifetime is achieved by the proposed algorithm compared with heuristic

method for both energy models, and the gain for binary model is larger than the

gain for QAM model. Also the gain increases with normalized estimation MSE re-

quirement increasing, which is because that the energy is less optimally used by the

heuristic method when the normalized estimation MSE requirement increases.

5.6.2 Heterogeneous Sensor Networks

In this section, we simulate a heterogeneous sensor network with N sensors, where

the observation noise variance of each sensor is assumed to be

σ2
k = β + γzk, k = 1, · · · , N, (131)

where β models the network-wide noise variance threshold, γ controls the underlying

variation from sensor to sensor, and zk ∼ χ2
1 is a Chi-Square distributed random

variable with one degree of freedom. It is noted that the network is homogeneous

for the special case of γ = 0. In the experiments, we assume β = 0.01 and γ =

0.00, 0.05, 0.10, 0.15, or 0.20. Assume all sensors are independently and uniformly

distributed in a rectangular region of [−5, 5,−5, 5], and the fusion center is located

at the central point of the region, i.e., (0, 0). And the initial energy is still assumed

to be the same for all sensors. Assume the estimation MSE requirement is Dr = 5D0

and the binary transmission model is used.

For a given network setting, the optimal source coding and optimal multi-hop

routing solutions are determined to maximize the network lifetime bound for estima-

tion. To demonstrate the efficiency of the proposed algorithms, we compare it with

two heuristic methods:

1. Heuristic-I : single-hop routing with uniform energy scheduling for each sensor.
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2. Heuristic-II : single-hop routing with optimal source coding and energy schedul-

ing.

Figure 22(a) and Figure 22(b) show the ratio of network lifetime bound achieved

by the proposed algorithm to that by the Heuristic-I and Heuristic-II methods under

different total number of sensors and different sensor noise variation parameters γ,

respectively, where all the simulation results are obtained by repeating the experi-

ments for 2000 times and averaging the individual results. From Figure 22(a) and

Figure 22(b), we can see that the proposed algorithms improve the network lifetime

bound significantly compared with both Heuristic-I and Heuristic-II methods, and

the gain becomes more significant when the sensor network becomes denser or the

observation noise variances become more diverse, i.e., γ becomes bigger. It is also

worth noting that the similar conclusions can be drawn for different estimation MSE

requirements Dr except that the actual value in Figure 22(a) will be even bigger with

bigger Dr as we have shown in Figure 21(a).

It is noted that both the optimal method and the Heuristic-II method use optimal

source coding, and the only difference is that optimal multi-hop routing is used by the

optimal solution, while single-hop routing is used by the Heuristic-II method. From

Figure 22(b), we see that the Heuristic-II method is also optimal when γ = 0.00,

which confirms our conclusion in Proposition 5.3 that single-hop routing can maximize

the network lifetime bound for homogeneous networks. From Figure 22(b), we also can

see that optimal multi-hop routing improves the network lifetime bound significantly

compared with single-hop routing for heterogeneous networks. Furthermore, the gain

is more significant when the network is denser since there are more opportunities

for multi-hop routing. Also the gain is more significant when the observation noise

variances are more diverse since the optimal multi-hop routing is character-based as

shown in Section 5.5.2.

To further demonstrate the character-based routing, Figure 23(a) and Figure 23(b)
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Figure 22: Ratio of network lifetime bound by the proposed algorithm to that by two
heuristic methods under different total number of sensors and different sensor noise
variation parameters (γ = 0.00, 0.05, 0.10, 0.15, 0.20): (a) compared with Heuristic-I,
(b) compared with Heuristic-II.
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show two example heterogeneous sensor networks with N = 10 sensor nodes, where

each circle denotes a sensor node. There are two numbers in the brackets around

each sensor node, where the first one denotes its index and the second one denotes

its observation noise variance. In these two networks, the sensor locations are the

same, while the observation noise variances are different. From Figure 23(a) and

Figure 23(b), we can see that the optimal routing completely changed due to the

different observation noise variances, and the sensors only relay information generated

at other sensors with smaller observation noise variance, such as in Figure 23(a),

sensor 8 relays information from sensor 3, while in Figure 23(b), sensor 3 relays

information from sensor 8 even though sensor 3 is farther away from the fusion center

than sensor 8. The intuitive explanation is that sensor 8 has a very small observation

noise variance, then it is desirable to gather as much data as possible from sensor 8,

thus sensor 8 should transmit its data to its nearest neighbor (sensor 3) if possible

to save transmission energy and improve source throughput. It is also noted that in

Figure 23(b), sensor 7 relays some information from sensor 3 even though sensor 7 has

smaller observation noises than sensor 3 because the relayed information is originally

generated at sensor 8 other than sensor 3.

5.7 Summary

In this chapter, we consider the distributed estimation in energy-limited wireless

sensor networks from the lifetime-distortion perspective, which is rarely addressed in

the literature. From the application aspect, we are interested in the estimation task

cycles the network can accomplish before the network becomes nonfunctional other

than whether any individual sensor node is dead, thus we introduce a concept of

function-based network lifetime. Based on this concept, it is shown that the network

lifetime bound maximization for the distributed estimation can be formulated as a

nonlinear programming (NLP) problem, where there are three factors needed to be
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Figure 23: The optimal multi-hop routing path for two example heterogeneous
sensor networks with same sensor locations but different observation noise variances.
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optimized together: (i) source coding at each sensor, (ii) source throughput of each

sensor, and (iii) multi-hop routing. We further show that the source coding can

be optimized independently from the source throughput and multi-hop routing, and

the optimal source coding is achieved by maximizing the equivalent unit-resource

MSE function. Then based on the optimal source coding, the nonlinear programming

(NLP) problem of network lifetime bound maximization can be reformulated as a

linear programming (LP) problem, which can be easily solved by any LP solver.

On the other hand, the linear programming formulation for the network lifetime

bound maximization problem can be understood as a weighted data gathering prob-

lem, where the objective is to maximize the weighted sum of the amount of data

generated at all sensors. The weight of each sensor is inversely proportional to its

observation noise variance, which is meaningful since the data from sensors with small

noise variance is more useful. Furthermore, we find out that the optimal routing solu-

tion is character-based routing, where a sensor node only relays data from sensor nodes

with smaller observation noise variance. Different from the traditional distance-based

routing, where the routing path is selected based on the distance to the destination,

character-based routing explicitly takes into account the heterogeneous nature of the

information in wireless sensor networks.

It is worth to point out that the concepts of function-based network lifetime

and character-based routing concepts proposed in this research are promising to be

generalized to a wide range of applications other than the distributed estimation in

wireless sensor networks.

5.8 Appendix

5.8.1 Proof of Proposition 5.1

Assume a sensor network with N sensors, each with observation noise variance σ2
k.

Assume sensor k (k = 1, · · · , N) can make totally Mk measurements and quantize
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its measurements using probabilistic quantization scheme to bk,i (i = 1, · · · ,Mk) bits,

respectively, before it depletes. To satisfy the given estimation distortion requirement

Dr, at each estimation cycle, a subset of sensors are required to observe the parameter

θ and transmit their quantized measurements to the fusion center to make the final

estimation.

Assume the network lifetime for this network is L. At each estimation cycle

l ∈ [1, L], denote the subset of observations each sensor k makes and sends to the

fusion center is Ok,l . Then for any sensor k ∈ [1, N ], we have

Ok,i ∩Ok,j = ∅, ∀i, j ∈ [1, L], and i 6= j,
L⋃

l=1

Ok,l ⊆ {1, · · · ,Mk},
(132)

and for any estimation cycle l ∈ [1, L], we have




N∑

k=1

∑
i∈Ok,l

1

π2
k(σ

2
k, bk,i)



−1

≤ Dr. (133)

So,
L∑

l=1

N∑

k=1

∑
i∈Ok,l

1

π2
k(σ

2
k, bk,i)

≥ L

Dr

, (134)

i.e.,
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

≥ L

Dr

, (135)

therefore,

L ≤ Dr

(
N∑

k=1

Mk∑
i=1

1

π2
k(σ

2
k, bk,i)

)
. (136)

5.8.2 Proof of Theorem 5.3

The theorem is proved by contradiction. Assume a sensor im (m ∈ [1, T ]) on the

routing path of the sub flow η has a smaller observation noise variance than the

source node i0, i.e.,

σ2
im < σ2

i0
, (137)
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then, remove the sub flow η and add a new sub flow ξ with the same data volume,

which is generated at sensor node im and transmitted to the fusion center through

sensor nodes im+1, · · · , iT sequentially, i.e.,

Sη
i0

= f η
i0,i1

= fη
i1,i2

= · · · = fη
iT−1,iT

= fη
iT ,N+1 = 0,

Sξ
im

= f ξ
im,im+1

= · · · = f ξ
iT−1,iT

= f ξ
iT ,N+1 = S.

(138)

First, we need to show that the new flow is feasible, that is to say, it satisfies the

flow conservation and energy constraints as shown in Equation (125, 126). It is easy

to show as follows:

1. By removing the sub flow η and adding the new sub flow ξ, the flow conservation

at sensor node i0 is satisfied since both the data generated at this node and

the outcoming flow from this node are reduced by the same amount; the flow

conservation at sensor node i1, · · · , im−1 are satisfied since both the incoming

flow and outcoming flow are reduced by the same amount; the flow conservation

at sensor node im is satisfied since the data generated at this node increases and

the incoming flow decreases by the same amount and the outcoming flow is not

changed; and the flow conservation at the sensor nodes im+1, · · · , iK are also

satisfied since both the incoming flow and outcoming flow are not changed.

Also, the flow conservation is satisfied for all other sensor nodes since the data

generated, incoming flow and outcoming flow are not changed at all.

2. By removing the sub flow η and adding the new sub flow ξ, the energy cost

at the sensor nodes i0, · · · , im−1 is reduced since the data transmitted by these

sensor nodes are reduced, and the energy cost at the sensor nodes im, · · · , iK is

not changed since the data volume transmitted by these sensor nodes are not

changed even though the data content is changed. The energy cost for all other

nodes is not changed since the data transmitted by these nodes are not changed

at all.
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Next, assume the total data volume generated at each sensor k is Sk and denote

φ0 and φ1 as the objective function divided by Dr before or after removing the sub

flow η and adding the new sub flow ξ, i.e.,

φ0 =
N∑

k=1

Sk

gopt
k (σ2

k)
,

φ1 =
N∑

k=1,k 6=i0,im

Sk

gopt
k (σ2

k)
+

Si0 − S

gopt
i0

(σ2
i0
)

+
Sim + S

gopt
im

(σ2
im

)
,

(139)

then,

φ1 − φ0 =
S

gopt
im

(σ2
im

)
− S

gopt
i0

(σ2
i0
)

> 0 (140)

because gopt
im

(σ2
im) < gopt

i0
(σ2

i0
) when σ2

im < σ2
i0

as shown in Proposition 3.1. It means

that the objective function in Equation (124) is increased by removing the sub flow η

and adding the new sub flow ξ, which contradicts with the optimality of the original

flow and routing solution. So the assumption made in Equation (137) does not hold,

therefore, the Theorem is proved.

5.8.3 Proof of Proposition 5.3

This proposition is proved by contradiction. In the optimal flow and routing solution

for the weighted data gathering problem in homogeneous wireless sensor networks,

assume there is a multi-hop sub flow η with data volume S, generated at sensor i0

and transmitted to the fusion center through sensors i1, · · · , iT sequentially, i.e.,

Sη
i0

= fη
i0,i1

= f η
i1,i2

= · · · = f η
iT−1,iT

= f η
iT ,N+1 = S (141)

then, remove this multi-hop sub flow η and add a serial of single-hop sub flow

ξ0, · · · , ξT as follows:

Sξt

it
= f ξt

it,N+1 =
Cit,it+1

Cit,N+1

· S, ∀t ∈ [0, T − 1]

SξT
iT

= f ξT

iT ,N+1 = S.

(142)

Similar with the proof for Theorem 5.3, it is easy to show that both the flow

conservation and energy constraints as shown in Equations (125, 126) are satisfied by

removing the sub flow η and adding the new sub flows ξ0, · · · , ξT .
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Next, assume the total data volume generated at each sensor k is Sk and denote

φ0 and φ1 as the objective function divided by Dr before or after removing the sub

flow η and adding the new sub flows ξ0, · · · , ξT , i.e.,

φ0 =
1

gopt(σ2)

N∑
k=1

Sk,

φ1 =
1

gopt(σ2)

(
N∑

k=1,k 6=i0,iT

Sk + (Si0 − S) + (SiT + S)

)
+

1

gopt(σ2)

T−1∑
t=0

Cit,it+1

Cit,N+1

· S,

(143)

then,

φ1 − φ0 =
1

gopt(σ2)

T−1∑
t=0

Cit,it+1

Cit,N+1

· S ≥ 0, (144)

where, the equality holds only when the fusion center is not in the transmission

range of all sensors i0, · · · , iT−1, i.e., Cit,N+1 = ∞ for all t ∈ [0, T − 1], otherwise,

φ1 − φ0 > 0. It means that for homogeneous networks with unlimited transmission

range for each sensor, single-hop routing can gather greater amount of data than

multi-hop routing, while for homogeneous networks with limited transmission range

for each sensor, single-hop routing can gather no less amount of data than multi-hop

routing.

105



CHAPTER VI

CLUSTER-BASED DISTRIBUTED ESTIMATION

In wireless sensor networks, one way to reduce energy consumption is to process the

data locally, such as data compression at the local sensors. Many rate-constrained

distributed estimation algorithms [6, 7, 32, 48, 53, 64, 65, 69, 70, 75, 79, 80] and energy-

constrained distributed estimation algorithms [5,46,52,91,92,94] have been proposed

along this line. In these schemes, denoted as parallel scheme thereafter, each sensor

transmits its measurements using few bits to the fusion center directly. Another way

to reduce energy consumption is to aggregate data at the intermediate sensor nodes,

i.e., the intermediate sensor nodes make a local estimation by combining their own ob-

servations and the received messages from other sensor nodes and only send the local

estimation to the fusion center (FC). In [39, 90], the progressive estimation schemes

are proposed, where a sensor performs estimation based on its own measurement and

the intermediate estimation from its immediate upstream sensors and then transmits

its estimation to its immediate downstream sensor.

In this chapter, we study the distributed estimation in clustered sensor networks

as shown in Figure 24, where the whole sensor field is divided into several clusters,

each with a cluster head (CH). All the cluster members send their observations to

the cluster head. Then, the cluster head makes a local estimation based on its own

observation and the received messages from its cluster members. The cluster head

then quantizes its local estimation and sends it to the fusion center. Finally, the

fusion center makes the final estimation based on its received quantization messages.

In cluster-based distributed estimation, because of the intermediate data aggre-

gation at the cluster heads, the communication between sensor nodes and the fusion
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Figure 24: System diagram of cluster-based distributed estimation in wireless sensor
networks, where each dashed circle denotes one cluster and each cluster has a cluster
head (CH).

center is decreased; thus, the overall energy consumption is reduced. In clustered

sensor networks, the energy cost includes two parts: intra-cluster energy cost, i.e.,

energy cost for communication between the cluster members and the cluster heads,

and inter-cluster energy cost, i.e., energy cost for communication between the cluster

heads and the fusion center. With a small number of large clusters, the intra-cluster

energy cost is high, but the inter-cluster energy cost is low, while with a large num-

ber of small clusters, the intra-cluster energy cost is low, but the inter-cluster energy

cost is high. So there exists an optimal trade-off between the cluster size and the

number of clusters to minimize the overall energy consumption. Optimally clustering

the sensor networks for cluster-based distributed estimation is the major objective of

this research.

Furthermore, the cluster head inside each cluster can be fixed or can be rotated

among all the cluster members. A fixed cluster head, if appropriately chosen, can

reduce the overall energy consumption, while cluster head rotation can balance the
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energy consumption among all sensors. For these two cases, the optimal cluster

structures could be different to minimize the overall energy consumption.

The rest of the paper is organized as follows. Section 6.1 describes a cluster-based

estimation scheme, and analyzes its potential to save energy and the major challenge

to maximize the energy saving. Section 6.2 discusses a special case – ring network,

where the optimal clustering can be analytically obtained. Then the optimal cluster-

ing for general sensor networks are addressed in Section 6.3, and the simulation results

for the proposed algorithms are presented in Section 6.4. Finally, the conclusion is

given in Section 6.5.

6.1 Cluster-based Distributed Estimation

In the cluster-based distributed estimation scheme, as shown in Figure 24, the whole

sensor field is divided into several clusters, all the cluster members send their original

observations (with fine quantization1) to the cluster head, then the cluster head makes

a local estimation, quantizes its local estimation and sends it to the fusion center,

which makes the final estimation. Next, we first introduce a cluster-based estima-

tion scheme and show its potential advantage compared with the parallel estimation

scheme. Then, we will highlight the major challenges in designing cluster-based esti-

mation method, i.e., optimally determining the trade-off between the cluster size and

the number of clusters to minimize the overall energy cost.

6.1.1 Cluster-based Estimation Scheme

Consider a dense sensor network that includes N sensors, each sensor makes an ob-

servation on the unknown parameter θ. The observations are corrupted by additive

noises and are described by

xk = θ + nk, k = 1, · · · , N. (145)

1Here, fine quantization means the quantization bit rate is high enough such that the quantization
error is neglectable compared with the observation noise.
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We assume that the noises nk (k = 1, · · · , N) are zero mean, spatially uncorrelated

with variance σ2
k, but otherwise unknown. There are K clusters, each consists of

Ni(i = 1, · · · , K) sensors such that
∑K

i=1 Ni = N , one of which is the cluster head.

The cluster head can be fixed or rotated among all sensors in the same cluster. Then

the cluster-based estimation method can be described as follows. First, in each cluster

i, all cluster members send their original observations with fine quantization to the

cluster head; then, the cluster head produces a local estimation θ̄i using the BLUE

estimator as follows:

θ̄i =

(
Ni∑

k=1

1

σ2
ik

)−1 Ni∑

k=1

xik

σ2
ik

, (146)

where, θ̄i denotes the local estimation of the i-th cluster, while xik and σ2
ik

denote the

observation and the observation noise variance of the k-th sensor in the i-th cluster,

respectively. And denote the variance of the local estimation θ̄i as σ2
i , then

σ2
i = E(θ̄i − θ)2 =

(
Ni∑

k=1

1

σ2
ik

)−1

. (147)

Second, the cluster head of each cluster i quantizes its local estimation θ̄i using bi-

bit probabilistic quantization in Section 3.1.1; then, the variance of the quantization

message mi is

E(mi − θ)2 ≤
(

Ni∑

k=1

1

σ2
ik

)−1

+
W 2

(2bi − 1)2 = σ2
i + δ2

i , (148)

where σ2
i is the equivalent observation noise variance, while δ2

i is the upper bound

of the quantization noise variance. Then the cluster head transmits its quantization

message to the fusion center, which makes the final estimation using quasi-BLUE

estimator in Section 3.1.2 based on all the received quantization messages from all

cluster heads as follows:

θ̄ =

(
K∑

i=1

1

σ2
i + δ2

i

)−1 K∑
i=1

mi

σ2
i + δ2

i

, (149)
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and the final estimation MSE at the fusion center is

E(θ̄ − θ)2 ≤
(

K∑
i=1

1

σ2
i + δ2

i

)−1

. (150)

In short, the cluster-based estimation method combines the BLUE estimator in

each cluster and the quasi-BLUE estimator at the fusion center. Based on the above

procedure, the following Lemma, which is easy to prove, shows that the cluster-based

scheme is promising to reduce the communication requirements and to save energy.

Lemma 6.1. Assume there are n sensors with observation noise variance σ2 to es-

timation an unknown deterministic parameter θ. If the parallel estimation scheme is

used, each sensor quantizes its observation with b-bit, and the fusion center performs

the quasi-BLUE estimation based on the n quantization messages; then, the final

estimation variance bound is fp(σ
2, b) = (1/n)

(
σ2 + W 2/(2b − 1)2

)
. For the cluster-

based estimation scheme, assuming that these n sensors construct a cluster, all the

cluster members send their original observations to the cluster head; then, the cluster

head makes a local estimation using BLUE estimator and the variance of the local es-

timation is σ2/n. Then the cluster head quantizes the local estimation with k bits and

sends the k-bit quantization message to the fusion center, which makes the final esti-

mation; thus, the final estimation variance bound is fc(σ
2, k) = σ2/n+W 2/(2k − 1)2.

Comparing the cluster-based estimation scheme with the parallel estimation scheme:

• If k = nb, then for b ≥ 1 and n ≥ 1,

fp(σ
2, b) =

1

n

(
σ2 +

W 2

(2b − 1)2

)
≥ σ2

n
+

W 2

(2nb − 1)2 = fc(σ
2, nb). (151)

• fc(σ
2, k) ≤ fp(σ

2, b), if only k ≥ log2 n + b. It is obvious that k ¿ nb when n is

large. Specially, if b = 1, then k ≥ log2 (n + 1) and k ¿ n.

In Lemma 6.1, the first conclusion implies that with the same communication rate

between the fusion center and the local sensors, the cluster-based scheme will lead
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to better estimation MSE performance than the parallel scheme, while the second

conclusion means that much less communication rate between the fusion center and

the local sensors is required for the cluster-based estimation scheme than the parallel

estimation scheme to gain the same estimation MSE performance.

6.1.2 Optimal Trade-off between Cluster Size and Number of Clusters

From Section 6.1.1, we see that for the same estimation MSE performance, the com-

munication rate between the fusion center and the local sensors will be greatly reduced

by cluster-based estimation scheme compared with the parallel estimation scheme.

Thus, the communication energy will be greatly saved when we do not consider the

energy cost for the intra-cluster communication between the cluster head and the

cluster members. If energy cost for the intra-cluster communication is also taken into

account, the total energy cost for the cluster-based estimation method is

Ctotal = Cintra + Cinter, (152)

where Cintra denotes the communication energy cost within the clusters, and Cinter

denotes the communication energy cost from the cluster heads to the fusion center.

We assume that the energy consumption to transmit b-bit message is C = b · βdγ,

where β is a constant factor, d is the transmission distance, and γ is the path loss

exponent (2 ≤ γ ≤ 4). Therefore, the fundamental challenge in the cluster-based

estimation method is to determine the optimal trade-off between the inter-cluster

communication and the intra-cluster communication to minimize the total energy

cost. In other words, we need to determine the optimal cluster sizes and the number

of clusters. This trade-off will depend on the network topology, network density, the

distance between local sensors and the fusion center as well as the local quantization

bit rate for each sensor.

Before we address this optimal trade-off problem for the general sensor network

case, in the next section, we first discuss this trade-off for a special network topology –
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ring network, which not only shows the gain of the cluster-based estimation scheme in

saving energy compared with the parallel estimation scheme, but also provides some

insight to construct the optimal clusters for general network topology to minimize

the total energy cost.

6.2 Case Study: Ring Network

Consider a special network topology, ring network, as shown in Figure 25, where all

sensor nodes, say m sensors, are uniformly located on a circle whose center is the

fusion center. The circle’s radius is r and the angle between any two adjacent nodes

is α radians, i.e, mα = 2π. In this topology, the distance between each sensor node

to the fusion center is the same, which will simplify the analysis and formulation of

the optimal clustering.

Figure 25: Illustration of a ring network where there are seven clusters with four
sensors in each cluster.

It is obvious that for this special network topology each cluster should have the

same number of sensors, say n sensors. Further, assume each sensor sends one bit to
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the fusion center in the parallel estimation scheme, then in the cluster-based scheme,

each cluster head should send log2 (n + 1) bits to the fusion center to achieve the same

estimation performance according to Lemma 6.1. Assuming the path loss exponent

parameter to be γ = 2, the total energy cost of the parallel estimation method is

given as Cp = m · βr2. For the cluster-based method, the energy cost of intra-cluster

communication and inter-cluster communication can be easily formulated as follows:

Cintra ≤ m

12
(n2 + 2)(rα)2 · b0β,

Cinter =
m

n
log2 (n + 1) · βr2,

(153)

where b0 denotes the bit rate of each cluster member sending to the cluster head. In

our simulation, we assume b0 = 16. Then the total energy cost of the cluster-based

scheme is Ctotal = Cintra + Cinter. By appropriately choosing the cluster size n, we

can minimize the total energy cost Cc. For a uniform ring network with totally 200

sensor nodes, Figure 26 shows the ratio of the energy cost using the cluster-based

estimation scheme to that using the parallel estimation scheme under various cluster

sizes. It can be observed that there exists an optimal cluster size to minimize the

energy cost. Figure 27 shows the energy cost ratio of the cluster-based estimation

scheme with optimal cluster size compared with the parallel estimation scheme. It

is noted that with the cluster-based estimation scheme, more energy will be saved

when the network gets denser and the saving energy will be up to 80% when there

are 1000 sensors in the ring network. Figure 28 shows the optimal cluster radius,

which is defined as the largest distance between the cluster members and the cluster

head, verse the radius of the ring network. It implies that the optimal radius of the

cluster is proportional to the distance between the sensors and the fusion center, that

is, the optimal cluster radius is not equal and it is bigger in the region far away from

the fusion center.
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Figure 26: Simulation results of cluster-based estimation scheme for a ring network:
Energy cost ratio vs. the number of sensors in each cluster for a ring network with
200 sensor nodes.

6.3 Clustering for General Networks

From the special case study in Section 6.2, we show that the cluster-based estimation

scheme will lead to significant energy saving. In this section, we consider how to

optimally cluster a sensor network with arbitrary sensor distribution, i.e, all the

sensors are arbitrarily distributed in the observation field, to minimize the total energy

cost of the cluster-based estimation scheme.

From the discussion before, we can get the following hints to design the optimal

clustering scheme:

• From Lemma 6.1, we can see that the inter-communication cost will reduce

when the cluster becomes bigger. On the contrary, the intra-communication

will increase. So there exists a trade-off between the cluster size and the number

of clusters to minimize the total cost.
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Figure 27: Simulation results of cluster-based estimation scheme for a ring network:
Energy cost ratio vs. the total number of sensors.
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Figure 28: Simulation results of cluster-based estimation scheme for a ring network:
Optimal cluster radius vs. the radius of the ring network.
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• The optimal cluster size depends on the the distances between the sensors and

the fusion center, the network density, and the network topology. From the

case study of the ring network, we conclude that the optimal clustering is non-

uniform, specifically, the optimal cluster radius is bigger in the region farther

away from the fusion center.

6.3.1 Clustering with Fixed Cluster Head

In this section, we consider partitioning a wireless sensor network into clusters, each

one with a fixed cluster head (CH) and some ordinary sensors as its members. We

model the cluster-based sensor networks with fixed cluster head for each cluster as

a directed graph G. The corresponding directed graph G (called cluster graph) as

shown in Figure 24 is constructed such that each sensor node is a vertex in the graph

and an directed edge u → v is drawn if vertex u is a member of the cluster whose

cluster head is vertex v. Furthermore, we model the intra-cluster communication

energy cost from the cluster member u to the cluster head v as the edge weight of

the edge u → v, and the inter-cluster communication energy cost from the cluster

head v to the fusion center as the point weight of the cluster head v. Thus the total

communication cost of each cluster consists of all the edge weights in the cluster and

the point weight of the cluster head. Then clustering the sensor network to minimize

the total energy cost can be modelled as constructing the corresponding directed

graph G with smallest total weight which consists of the edge weights of all edges

between the cluster members and its cluster head and the point weights of all the

cluster heads.

Intuitively, sensor u will not join a cluster whose cluster head is sensor v such that

the intra-cluster communication energy cost from sensor u to sensor v is even larger

than the energy cost that sensor u directly communicates with the fusion center. That
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is, sensor node u can be connected to sensor node v only if

Cu→v

Cu→FC

=
b0 · βdγ

u→v

bq · βdγ
u→FC

< rth, (154)

where β and γ are defined as before, rth is a threshold parameter, Cu→v denotes the

energy cost of sensor u sends its original observation (with b0-bit fine quantization)

to sensor v and du→v denotes the corresponding transmission distance, while Cu→FC

denotes the energy cost of sensor u sends its quantized observation (with bq-bit) to the

fusion center directly and du→FC denotes the corresponding transmission distance.

Then we construct a directed graph G′ that includes all the possible edges which

satisfy Equation (154). It is noted that an edge v → u may not exist even though

an edge u → v exists in the graph G′, thus the graph G′ is a directed graph. It is

also noted that in the graph G′, each sensor u may be connected to many different

sensors, and many different sensors may be connected to sensor u at the same time,

that means any sensor u can be as a cluster head, and all the sensors connected to

sensor u can be as its cluster members.

Next, based on the graph G′, we choose the appropriate sensor nodes as the cluster

head and choose their corresponding cluster members with Algorithm 1, which is a

greedy algorithm. The basic idea is to repeat identifying the cluster (cluster head and

its corresponding cluster members) which leads to the most average energy saving

compared with the parallel scheme from the uncovered subgraph of G′ until all the

sensors are covered.

6.3.2 Clustering with Cluster Head Rotation

In Section 6.3.1, we considered clustering the sensor networks with fixed cluster head

for each cluster, as we will show in the Section 6.4, the total energy cost is greatly

reduced compared with the parallel scheme. But the cluster head will consume its

energy much quickly since the cluster head is fixed and will communicate with the

fusion center directly. Therefore, cluster head rotation among all the members in the
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Algorithm 1 Clustering with Fixed Cluster Head
1: Input: directed graph G′ generated from the given network.
2: Output: clustering result for the given network.
3: Initialize all vertices in the graph G′ as uncovered.
4: while (there are vertices uncovered in the graph G′) do
5: for all (uncovered vertices v in the graph G′) do
6: Assume v as the cluster head, then the set of its cluster members S(v), the number of

sensors in the cluster N(v), the communication rate from the cluster head v to the fusion
center bc(v), the intra-cluster communication energy cost between the cluster members and
the cluster head Cintra(v), the inter-cluster communication energy cost from the cluster
head v to the fusion center Cinter(v), the total energy cost of this cluster Ccluster(v), the
total energy cost of all the sensor nodes in this cluster using the parallel estimation scheme
Cparallel(v), the total and average energy saving of the cluster-based scheme compared with
the parallel scheme Csave(v) and Cs ave are computed as follows:

S(v) : includes all the uncovered vertices connected to v

N(v) =
∑

u∈S(v)

1

bc(v) = log2 N(v) + bq

Cintra(v) =
∑

u∈S(v)
u6=v

b0 · βdγ
u→v

Cinter(v) = bc(v) · βdγ
v→FC

Ccluster(v) = Cintra(v) + Cinter(v)

Cparallel(v) =
∑

u∈S(v)

bq · βdγ
u→FC

Csave(v) = Cparallel(v)− Ccluster(v)

Cs ave(v) =
Csave(v)

N(v)

(155)

7: end for
8: Choose the sensor v′ such that the average energy saving is maximized, i.e.,

v′ = max
v

Cs ave(v). (156)

9: Let v′ be the cluster head, and all the uncovered sensors u connected to it as its cluster
members. Label all the sensor nodes in this cluster as covered.

10: end while
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cluster is essential to even the energy consumption within the cluster.

Since Algorithm 1 does not take the cluster head rotation into account, it is not

necessarily optimal when the cluster head rotation is actually adopted. In this section,

we design another clustering algorithm which explicitly take the cluster head rotation

into account and minimize the total energy cost. Similarly, we still model the cluster-

based sensor networks with cluster head rotation as a graph, but it is a undirected

graph here instead of a directed graph. The corresponding undirected graph G (called

cluster graph) is constructed such that each sensor node is a vertex in the graph and

an undirected edge (u, v) is drawn if vertex u and vertex v belong to the same cluster.

So all the sensors in the same cluster are connected with each other, that is, a cluster

is a fully connected subgraph of G.

To obtain the cluster graph G, we first construct a undirected graph G′ that

includes all the possible edges. An edge (u, v) to connect sensor node u and sensor

node v exists, i.e., sensor u and v can be in the same cluster only if they are close

enough such that

Cu→v + Cv→u

Cu→FC + Cv→FC

=
b0 · βdγ

u→v + b0 · βdγ
v→u

bq · βdγ
u→FC + bq · βdγ

v→FC

< rth (157)

where β and γ are defined as before, rth is a threshold parameter, Cu→v denotes the

energy cost of sensor u sends its original observation (with b0-bit fine quantization)

to sensor node v and du→v denotes the corresponding transmission distance, while

Cu→FC denotes the energy cost of sensor u sends its quantized observation (with bq-

bit) to the fusion center directly and du→FC denotes the corresponding transmission

distance.

Next, we partition the network into clusters based on the graph G′, i.e, partition

the graph G′ into fully connected subgraphs, each subgraph is a cluster, to minimize

the total energy cost. Algorithm 2 is developed for this task. This algorithm consists

of two major steps, that is, repeat generating the fully connected subgraphs stemming

from each uncovered vertex v with a greedy criterion, and identifying the cluster which
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Algorithm 2 Clustering with Cluster Head Rotation
1: Input: undirected graph G′ generated from the given network.
2: Output: clustering result for the given network.
3: Initialize all vertices in the graph G′ as uncovered and denote the set of all the uncovered vertices

as Suc;
4: while (Suc 6= ∅) do
5: for all (vertices v ∈ Suc) do
6: Initialize the cluster stemming from v is S(v) = {v};
7: S̄(v) = Suc\S(v);
8: while (there are vertices in S̄(v) connected to all the vertices in S(v)) do
9: for all (vertices u in S̄(v) connected to all the vertices in S(v)) do

10: Compute the intra-communication energy cost between sensor u and all the sensors
in S(v) as follows:

Cu→S(v) =
∑

x∈S(v)

b0 · βdγ
u→x (158)

11: end for
12: Find the vertex u′ which minimizes Cu→S(v), i.e.,

u′ = min
u

Cu→S(v). (159)

13: Update the cluster S(v) as follows:

S(v) = S(v) ∪ u′

S̄(v) = Suc\S(v)
(160)

14: end while
15: Then for the possible cluster S(v) stemming from vertex v, the number of member sensors

N(v), the communication rate from the cluster head v to the fusion center bc(v), the intra-
cluster communication energy cost and the communication energy cost from the cluster
head to the fusion center Cintra(v) and Cinter(v) assuming each sensor in the same cluster
as the cluster head equally, the total energy cost of this cluster Ccluster(v), the total energy
cost of all the sensor nodes of this cluster using the parallel estimation scheme Cparallel(v),
the total and average energy saving of the cluster-based scheme compared with the parallel
scheme Csave(v) and Cs ave are computed as follows:

N(v) =
∑

u∈S(v)

1

bc(v) = log2 N(v) + bq

Cintra(v) =
1

N(v)

∑

u∈S(v)

∑

x∈S(v)
x 6=u

b0 · dγ
x→u

Cinter(v) =
1

N(v)

∑

u∈S(v)

bc(v) · dγ
u→FC

Ccluster(v) = Cintra(v) + Cinter(v)

Cparallel(v) =
∑

u∈S(v)

bq · dγ
u→FC

Csave(v) = Cparallel(v)− Ccluster(v)

Cs ave(v) =
Csave(v)

N(v)

(161)

16: end for
17: Choose the cluster stemming from the sensor v′ to maximize the average energy saving, i.e.,

v′ = max
v

Cs ave(v).

18: Label all the sensor nodes in this cluster as covered and let Suc = Suc\S(v′).
19: end while
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leads to the most average energy saving compared with the parallel scheme until all

the sensors are covered.

6.4 Simulation Results

In this section, we present some simulation results for the proposed algorithms in

Section 6.3. We simulate a sensor network, where N sensors are uniformly distributed

in a rectangular region with dimension 100× 100 and the fusion center is located at

the central point, i.e., (50, 50).

In order to demonstrate the efficiency of the proposed clustering algorithms, we

compare them with k-mean clustering method. With k-mean clustering method,

we cluster the given sensor field into different numbers of clusters to determine the

optimal cluster number and the corresponding cluster structure which minimizes the

total energy cost of the cluster-based estimation scheme. Then if the cluster head is

fixed, we appropriately assign the cluster head for each cluster to minimize the total

energy cost, otherwise the cluster head is rotated. Here, we first show the performance

of k-mean clustering scheme for the cluster-based estimation problem. Figure 29(a)

shows the ratio of energy cost of the cluster-based estimation scheme using k-mean

clustering method with different number of clusters to the energy cost of the parallel

estimation scheme, where the simulated network consists of a total of 200 sensors.

It can be seen that there is an optimal number of clusters to minimize the energy

cost. Figure 29(b) shows the energy cost ratio of the cluster-based estimation scheme

using optimal number of clusters versus the total number of sensors in the network.

In both Figures 29(a) and 29(b), two cases are shown: (i) the cluster head (CH) is

fixed; and (ii) the cluster head is rotated among all the sensors in the cluster.

Next, we compare the proposed algorithms with k-mean clustering method. For

the fixed cluster head case, Figure 30 shows the energy cost ratio of the cluster-based
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Figure 29: Performance of k-mean clustering method: (a) Energy cost vs. the
number of clusters for a sensor field with 200 sensor nodes; (b) Energy cost vs. the
total number of sensors.
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estimation scheme using k-mean clustering method and the proposed clustering Al-

gorithm 1 to the parallel estimation scheme. It is shown that the energy cost is

reduced by cluster-based estimation scheme when compared with the parallel estima-

tion scheme, furthermore more energy is saved with the proposed Algorithm 1 when

compared with the k-mean clustering method. It is also shown that more energy is

saved when the network gets denser.

100 200 300 400 500 600 700
40

50

60

70

80

90

100

Number of Sensor Nodes

R
at

io
 o

f E
ne

rg
y 

C
os

t (
%

)

 

 

Algorithm 1
k−mean

Figure 30: Performances of the proposed Algorithm 1 and k-mean clustering method
for the fixed cluster head case.

If the cluster head is rotated among all sensors in the same cluster, we compare the

proposed Algorithm 2 with the proposed Algorithm 1 and k-mean clustering method.

Figure 31 shows the energy cost ratio of the cluster-based estimation scheme using

three different clustering methods to the parallel estimation scheme. It is shown

that energy cost is reduced by cluster-based estimation scheme when compared with

the parallel estimation scheme. And compared with the k-mean clustering method,

the proposed Algorithm 1 and Algorithm 2 will save more energy. Furthermore,

Algorithm 2 saves a little more energy than Algorithm 1 as we expected since it takes
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the cluster head rotation into account explicitly while Algorithm 1 does not.
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Figure 31: Performances of the proposed Algorithm 2, Algorithm 1 and k-mean
clustering method for cluster head rotation case.

In addition, Figure 32 gives an example output of the proposed Algorithm 1 where

the total number of sensors is 300 and the fusion center is located at the origin point.

From Figure 32, we can see that the radius of the clusters are nonequal, specifically,

the clusters far away from the fusion center usually consist of many sensor nodes,

while the clusters very close to the fusion center may include only one sensor node,

i.e., the sensor node will communicate with the fusion center directly.

6.5 Summary

In this chapter, we consider the cluster-based distributed estimation in wireless sensor

networks to save energy. First, a hybrid cluster-based estimator is introduced and its

potential to save energy is shown. To maximize the energy saving, optimally clustering

the sensor networks is essential. We first study a simple network – ring network, and

then discuss how to optimally cluster the general sensor networks to minimize the total
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Figure 32: An example clustering result by Algorithm 1.

energy cost. It is shown that the clustering depends on the the network topology,

network density and the sensor node distribution and that the optimal cluster size is

nonequal, specifically, the clusters farther away from the fusion center have a larger

size. Simulation results show that significant energy saving is achieved by the cluster-

based estimation scheme and the proposed clustering algorithms compared with the

parallel estimation scheme and the k-mean clustering methods.
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CHAPTER VII

CONCLUSIONS

In this chapter, the dissertation is concluded with a summary of contributions and

future research directions.

7.1 Summary of Contributions

In this dissertation, we have investigated the distributed estimation in resource-

constrained wireless sensor networks, where the major challenge is the integrated

design of local signal processing operations and strategies for inter-sensor communi-

cation and networking so as to achieve a desirable trade-off among resource efficiency

(bandwidth and energy), system performance (estimation distortion and network life-

time), and implementation simplicity. More specifically, the efficient distributed es-

timation has been addressed in this dissertation from the following perspectives: (i)

resource-distortion perspective, where the objective is to minimize the estimation

distortion under resource constraints, and (ii) lifetime-distortion perspectives, where

the objective is to maximize the network lifetime while meeting estimation distortion

requirements, and (iii) cluster-based distributed estimation, where the objective is to

minimize the overall energy cost by clustering the sensor field appropriately with data

aggregation at cluster heads.

7.1.1 Resource-Constrained Distributed Estimation

Subject to severe resource (bandwidth and energy) constraints in wireless sensor net-

works, we addressed the resource-constrained distributed estimation, which includes
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rate-constrained distributed estimation and energy-constrained distributed estima-

tion. The available resource should be allocated among all sensors jointly and op-

timally to optimize the estimation performance. To address the optimal trade-off

between the resource efficiency and the estimation distortion, we first introduced a

concept of equivalent unit-resource MSE function, where the resource could be band-

width or energy. Then, based on minimizing the equivalent unit-resource MSE func-

tion at local sensors, quasi-optimal distributed estimation algorithms were developed,

which suggested an optimal trade-off between the number of active sensors and the re-

source allocation for each active sensor. The proposed algorithms also suggested that

each active sensor compresses its observation into a small number of bits determined

only by its local signal-to-noise ratio (SNR), so it is easy to implement in a distributed

manner. Furthermore, a theoretical lower bound on the estimation distortion under

resource constraints was developed and it is shown that the estimation MSE of the

proposed algorithms is within a small factor of the theoretical lower bound. It is

worthy noting that the developed algorithm in this dissertation provides a generic

framework to address different types of resource constraints (bandwidth and energy)

under different estimation system models and transmission models.

7.1.2 Network Lifetime Optimization

Network lifetime other than distortion is another major system performance measure-

ment and a critical design concern in wireless sensor networks. In this dissertation,

we addressed the network lifetime optimized distributed estimation. First, a new

notion of function-based network lifetime is introduced, which focuses on whether the

network as a whole can perform a given task rather than whether any individual sen-

sor in the network is dead. Then, we studied to optimize the function-based network

lifetime while meeting estimation distortion requirements. The problems involves not

127



only the local information processing but also inter-sensor communication and net-

working and it was formulated as a nonlinear programming (NLP) problem of joint

optimization of source coding, source throughput, and multi-hop routing. We fur-

ther showed that the source coding can be optimized independently from the source

throughput and multi-hop routing, and the optimal source coding is achieved by max-

imizing the equivalent unit-resource MSE function. Then based on the optimal source

coding, the nonlinear programming (NLP) problem of network lifetime bound max-

imization was reformulated as a linear programming (LP) problem. Furthermore,

the optimal routing for the formulated linear programming problem was shown to

be character-based routing, where a sensor node only relays data from sensor nodes

with smaller observation noise variance. Different from the traditional distance-based

routing, where the routing path is selected based on the distance to the destination,

character-based routing explicitly takes into account the heterogeneous nature of the

information in wireless sensor networks.

7.1.3 Cluster-Based Distributed Estimation

In wireless sensor networks, one way to reduce energy consumption is to process the

data locally, such as data compression at the local sensors. Another way to reduce

energy consumption is to aggregate data at the intermediate sensor nodes, i.e., the in-

termediate sensor nodes make a local estimation by combining their own observations

and the received messages from other sensor nodes and only send the local estimation

to the fusion center (FC). Following this line, in this dissertation, cluster-based dis-

tributed estimation was also studied, where the sensor network is divided into several

clusters, each cluster with a cluster head, and data aggregation is introduced at the

cluster head. In this context, two clustering algorithms for fixed or rotated cluster

head cases were developed to divide the general sensor networks optimally such that

the total energy cost is minimized. It was shown that the clustering depends on the
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the network topology, network density and the sensor node distribution and that the

optimal cluster size is nonequal, specifically, the clusters farther away from the fusion

center have a larger size.

7.2 Future Research Directions

The work presented in this dissertation can be extended in the following directions:

• The resource-constrained distributed estimation discussed in Chapter 3 and

Chapter 4 are based on the assumption that information is from a single source

and sensor observations are conditionally independent. In the case of one-

dimensional or two-dimensional field source estimation, extra work needs to be

done to extend the current system frameworks and algorithms to the higher-

dimensional case. More specifically, node cooperation is desirable to explore the

source structures such as sensor data correlation. The wireless channel fading

and interference also need to be taken into account in the future system design.

• In Chapter 5, we introduced the new notions of function-based network lifetime

and character-based routing. Designing a completely distributed implementa-

tion for the character-based multi-hop routing to achieve the maximum network

lifetime bound and some distributed heuristic algorithms to achieve the close-

to-optimal performance are interesting directions for the future work. Also,

further generalization of the new concepts of function-based network lifetime

and character-based routing to a broader range of wireless sensor network ap-

plications is another interesting future direction. In the study on cluster-based

distributed estimation in Chapter 6, a fixed and simple data aggregation model

is assumed. It is desirable to introduce more sophisticated data aggregation

algorithms into the overall optimization loop.

• In this dissertation, we addressed the efficient distributed estimation in wireless
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sensor networks with a set of distributed sensor nodes and a fusion center by

studying the correlation among resource, distortion, and lifetime, which are

three major concerns for wireless sensor networks. Extending this study to ad

hoc wireless sensor networks without a fusion center is an interesting future

direction. Furthermore, a similar research perspective and methodology could

apply to other distributed signal processing applications in both central and

ad hoc wireless sensor networks, such as distributed detection, localization and

tracking.

• Throughout the research conducted in this dissertation, we have fixed the sens-

ing model for all sensors. Another research direction would be to examine

adaptive sensing where the sensing components on sensors can be adjusted.

Moreover, the possibility of selective and intelligent sensing can lead to sig-

nificant energy savings by an integrated design of the sensing, sampling, and

compression stages, where compressive sampling plays an important role and

would significantly reduce the dimensionality of the data to be sensed.
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