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SUMMARY

Past a few years witnessed the continuous growth of multi-party group commu-

nication applications such as multiplayer online games, online community based advertis-

ing, real-time conferencing, and instant messaging. The implementations of these appli-

cations usually involve the dissemination of text or multimedia contents among multiple

participants. Peer-to-Peer (P2P) overlay networks present a promising paradigm for har-

nessing widely distributed, loosely coupled, and inherently unreliable peers for supporting

distributed applications. Information dissemination in such an environment could be im-

plemented by organizing end-hosts into a spanning tree interconnected by IP unicast links

and using end-hosts to forward the communication payload along the edges of the spanning

tree. A key challenge in building information dissemination overlay network is the system

efficiency. We argue that any wide area information dissemination solution should ensure

that the end-to-end communication latency and efficiency in the overlay network be com-

parable to that of the IP multicast systems. Furthermore, an information dissemination

overlay network should provide a general and scalable communication substrate for various

distributed multi-party group communication applications.

In this dissertation research we study and address the unique challenges involved in

information sharing and dissemination for large-scale multi-party group communication ap-

plications. We focus on system architectures and various techniques for providing efficient

and scalable information dissemination services in distributed P2P environments. Our so-

lutions are developed by targeting at utilizing three representative P2P overlay networks: a

structured P2P network based on consistent hashing techniques, an unstructured Gnutella-

like P2P network, and a P2P service network where end-system nodes are organized based

on their geographical locations and geographical proximity. We have made three unique

contributions to the general field of large-scale information sharing and dissemination. First,

we propose a landmark-based peer clustering technique to grouping end-system nodes by

xii



their network proximity, and a communication management technique to address load bal-

ancing and reliability of group communication applications in structured P2P networks.

Second, we develop a utility-based P2P group communication service middleware, con-

sisting of a utility-based topology management protocol and a utility-aware P2P routing

protocol, for providing scalable and efficient group communication services in unstructured

P2P overlay networks of heterogeneous peers. Third, we propose a service network man-

agement protocol that is aware of the geographical location of end-system nodes and a set

of geo-proximity based routing and adaptation techniques, aiming at building decentral-

ized information dissemination service networks to support location-based applications and

services. Our experiments show that our solutions can offer significant improvements over

the existing approaches in term of communication efficiency, system scalability, and system

load balancing.

Although different overlay networks require different system designs for building scal-

able and efficient information dissemination services, we have employed two common design

philosophies: i) exploiting end-system heterogeneity and ii) utilizing proximity information

of end-system nodes to localize most of the communication traffic, and using randomized

shortcuts to accelerate long-distant communications. We have demonstrated our design

philosophies and the performance improvements in all three types of P2P overlay networks.

By assigning more workloads to more powerful peers, we can greatly increase the system

scalability and reduce the variation of workload distribution. By clustering end-system

nodes based on their IP-network proximity or their geographical proximity, and utilizing

randomized shortcuts, we can reduce the end-to-end communication latency, balance rout-

ing workloads against service request hot spots across the overlay network, and significantly

enhance the scalability and efficiency of distributed information dissemination and decen-

tralized multi-party group communication.
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CHAPTER I

INTRODUCTION

With rapid growth of wireless communication technology and increasing popularity of hand-

held devices, we witness the continuous escalation of multi-party group communication ap-

plications, such as multiplayer online games, online community based advertising, real-time

conferencing [4], and instant messaging [3]. The implementations of these applications usu-

ally involve the dissemination of text or multimedia contents among multiple participants.

The participants could serve as the receiver or sender of the contents. They could be static

or mobile nodes, using wired or wireless connections to access the network.

There is an increasing demand for effective mechanisms for low-cost, scalable, and effi-

cient information dissemination to a large number of end users. Several multi-party group

communication solutions have been proposed in the literature [4, 3, 6]. They are either cen-

tralized client-server systems or decentralized Peer-to-Peer (P2P) systems. However, none

of them, to our knowledge, has fully addressed all the technical challenges of large scale

group communication applications.

Most of existing centralized group communication systems achieve scalability through

computer cluster-based server farms [4, 3], which are exclusively owned by service providers

and require significant administrative investment. Subscribers usually have to pay a pre-

mium for the services [4] and are often limited to the service functions defined by the specific

service provider.

The success of Skype [6] has shown both the opportunity and the feasibility of using P2P

overlay network as an economical alternative service infrastructure for providing scalable

wide-area group communication services. In Skype, widely distributed personal comput-

ers are interconnected by an unstructured P2P overlay network. By exploiting the high

flexibility and low maintenance cost of such an open system architecture, Skype enables

value-added services like Internet-to-PSDN calls at a fraction of the price of traditional

1



telephony services. However, the overlay network in Skype is typically used only for service

lookup and control signaling. Under the multi-party conference settings, the voice com-

munication payloads are directly forwarded to and relayed by a single node through its

IP unicast links [13]. As a result, the maximum number of participants allowed in each

conference session is limited, e.g., less than 6 in Skype.

This dissertation is focused on research issues and challenges in efficient information

dissemination in wide area heterogeneous overlay networks, especially on information dis-

semination to large scale user groups. We first provide some background information on

information dissemination to large scale user groups, motivating group communication ap-

plications. Then we describe the properties of the heterogeneous overlay networks and

present the research challenges for building scalable and efficient information dissemination

applications using an overlay network of heterogeneous nodes.

1.1 Information Dissemination to Large Scale User Group

Compared to traditional point-to-point communication model, information dissemination

model for large scale user groups has three distinguishing characteristics.

• one or many information sources supply the information to be disseminated. The

number of information sources may be uncertain at the time when an application

instance is launched.

• a number of receivers act as the consumers of information in the user groups. De-

pending on the contents of the information disseminated and the properties of the

network connections those receivers have, they may have different quality of service

requirements and different tolerance to network delay or failures.

• a spanning tree that carries the communication payloads. Propagated information

may be replicated or processed in the spanning tree before they reach the receivers.

Traditional client/server architecture can be viewed as a special spanning tree of

height 1, in which information replication is at the root of the spanning tree. Such

an implementation requires tremendous processing power and network bandwidth at

2



the server side to support a large and possibly growing number of participants.

1.2 Example Applications

Due to the capability of reaching a large number of receivers, information dissemination

system supporting large scale user groups can be used to implement a wide spectrum of ap-

plications. Here we describe three application examples from different application domains:

i) End System Multicast

ii) Multi-participant Conferencing

iii) Location-based Publish/Subscribe System.

1.2.1 End System Multicast

End System Multicast could be used to implement applications that require one-to-many

communication. Examples of such application include online broadcast of text or multime-

dia information, which enables a large number of receivers to watch or listen to live shows,

contents deliver networks for updating web information, and software update services that

push new update patches to end users. Existing solutions includes SCRIBE [17], Scatter-

Cast [18], Navada [20], NICE [12], and Bayeus [67], just to name a few. They were proposed

to replace IP multicast [22, 23] systems that are not widely accepted and deployed today.

1.2.2 Multi-Participant Conference

This application scenario is more appealing to business users. It is the implementation of

many-to-many communication paradigm. Participants of the conference could hear or see

the other participants by receiving the audio or video contents of them, and make themselves

seen and heard by uploading their own audio and video signals. Existing solutions include

centralized ones like Google Talk [3] and Microsoft Livemeeting [4]. Decentralized solutions

include P2P VoIP systems such as Skype [6] and PeerCast [62], which we will present in

Chapter 3 of this dissertation.
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1.2.3 Mobile Location-based Publish/Subscribe System

With rapid advances in wireless and mobile communication technologies, there is a grow-

ing demand for providing efficient and scalable publisher-subscriber solutions for mobile

location based applications. An example subscription that could be supported by mobile

publish/subscribe applications is “please inform me of the traffic around Exit 89 on I-85 in

the next 30 minutes”. Sensors and other information monitors near the requested location

capture the events of interests (e.g., the traffic around Exit 89 on I-85 in this example).

Events once detected are delivered to all subscribers by matching the description or the con-

tent of the events to the subscription(s) submitted by the subscribers. Due to the nature of

end-user mobility, both information providers and receivers may constantly change their lo-

cations. Thus system-level facilities are required for efficiently routing, scalable processing,

and reliable and timely delivery of events in such a mobile publish/subscribe network.

1.3 Challenges and Issues

We have described three classes of group communication applications that use overlay net-

works as the communication and computing platforms to support large scale information

disseminations. Peer-to-Peer (P2P) networks demonstrate a promising paradigm for pro-

viding distributed interactive applications and distributed information sharing services by

harnessing widely distributed, loosely coupled, and inherently unreliable computer nodes

(peers) at the edge of the Internet. Two typed of P2P networks exist, i.e., structured P2P

networks and unstructured P2P networks.

• Structured P2P networks [45, 49, 64, 52] regulate the network topologies through

Distributed Hash Tables (DHT) and provide efficient inter-peer communication in a

bounded number of hops. Peers in the network are usually assigned with randomly

generated identifiers from a hashing key space. Objects in the network are assigned

with identifiers from the same key space, and are mapped onto corresponding peers.

By progressively mapping identifiers to the locally maintained routing information on

peers, searching messages are processed and forwarded in a deterministic manner.
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• In contrast, unstructured P2P networks represented by Gnutella [58] and Kazza [5]

have low maintenance cost against network dynamics such as peer joining, failure,

and departure. Peers in an unstructured P2P network are usually connected to one

another in an ad-hoc manner. Objects are stored locally on peers. Each peer usually

maintains only the local neighbor information. Searching in unstructured P2P network

is commonly implemented as a nondeterministic yet controlled flooding search.

1.3.1 Common Challenges

In this dissertation research we focus on addressing three challenges that are common to the

P2P overlay networks in the context of building efficient, scalable, and reliable information

dissemination applications. These challenges are described as follows:

• Efficiency There exists mismatching between the P2P overlay network topology and

the underlying physical network topology, which has been well studied in the liter-

ature [45, 49, 60]. In most generic P2P networks, the indexing techniques and the

routing schemes are completely independent and oblivious to the underlying network

structure. Hence, communication in these networks is likely to be very inefficient in

terms of the physical network route traversed by individual message. When P2P over-

lay networks are used as the communication platforms for information dissemination,

communication payloads may be sent multiple times over the same physical network

link. Such mismatching will impose high communication overheads such as redundant

network traffic and communication delay.

• Load Balance The second challenge is to maintain load balance among the hetero-

geneous peers. One of the main causes of load imbalance is the heterogeneity in the

resource availabilities at various nodes. Ideally the workload assigned to each peer

should be proportional to its capabilities. This would prevent nodes from becom-

ing bottlenecks, thereby improving the efficiency and dependability of the system.

Therefore, it is essential to augment the communication management schemes with

techniques that distribute the communication workload among nodes in the system

according to their resource availabilities.
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• Reliability End-system nodes are dynamic and are more prone to failures. It is widely

recognized that large-scale distributed systems like P2P network are confronted with

high turnover rate [50], with nodes entering and departing the system at arbitrary

points in time. Ensuring high communication service availabilities in such dynamic

systems is crucial for the success of large scale information dissemination.

We are interested in exploring scalable, efficient, and reliable system-level facilities and

methods for building large scale group communication services and disseminating informa-

tion using P2P overlay networks. We are interested in examining the common challenges to

both structured and unstructured P2P networks and the specific challenges posted by the

different design methods used in P2P topology formation and routing protocol designs. In

addition, we are interested in geographical location-based P2P networks − a type of spe-

cialized structured P2P networks. In these P2P overlay networks, the peer identifier space

is mapped to a geographical plane in which peers physically reside. Each peer is assigned

with a rectangular area of the geographical plane. Objects in the overlay are identified by

their geographical coordinates. Each object is mapped to a peer whose rectangular area

covers its geographical coordinate. Routing and searching in a location-based P2P network

is carried out in a deterministic manner by passing message from peer to peer. A routing

request is usually tagged with the coordinate of the target. At each routing step, a request

is forwarded from a peer to one of its neighbors that is the closest to the coordinate of the

target point.

Now we discuss the specific research challenges in each of these three types of P2P

networks.

1.3.2 Specific Challenge in Structured P2P Network

The peer identifiers in structured P2P overlay networks are usually generated using a hash-

ing function, following a random distribution. The efficiency and the deterministic manner

of routing in structured P2P overlay networks relies on the randomness of the identifier

space for guarantee. If we modify the distribution of identifier space to match it to the

topology of underlying physical networks, we may destroy the randomness of identifier
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space, and cause suboptimal routing performance. Thus an interesting challenge in this

type of overlay networks is to find a scheme that can preserve the randomness of identifier

space, and improve the routing efficiency by matching the topology of an overlay network

to the topology of its underlying IP network.

1.3.3 Specific Challenge in Unstructured P2P Network

Metrics such as network proximity and node capacity have been recognized in the literature

as critical parameters for optimizing P2P communication in wide area networks. Although

each of these metrics has been studied with one specific system optimization objective in

mind, to our best knowledge, very few research works have addressed the issue of combining

these metrics to achieve the multiple system optimization objectives demanded by large-

scale wide-area group communication applications. Important research questions include

how to combine the network proximity metric and node capacity metric to maximize the

efficiency of group communication applications while providing fast P2P lookup. In the

situations where these two metrics cannot be combined in a straightforward manner, how

can we utilize the benefits of one metric with the minimal downgrade of the benefits of the

other metric?

1.3.4 Specific Challenge in Mobile and Location-base Service Network

We identify two features that are critical yet not fully supported by current P2P solutions.

First, the P2P network should provide efficient support for location-based routing. Infor-

mation required by mobile users is usually tagged with their location information. Typical

queries like “where is the nearest gas station?” and “show me the three nearest available

parking lots” require the processing of online data by the location of end-users. To support

such services using P2P networks, current P2P routing protocols need to be extended so

that both queries and answers could be efficiently delivered over the unicast links among

peers.

Second, the location-based information is often not evenly distributed and usually ex-

hibits certain spatial and temporal clustering patterns. For example, during a sport event,

the parking lots around the stadium are usually full, whereas in other days with no sport
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events, those parking lots are sparsely used. To support location-based queries using a P2P

overlay network of heterogeneous end-systems, the P2P network should be able to handle

such hot spots and unbalanced workload distribution gracefully, minimizing the possible

service interruptions caused by sudden load peaks on some portion of the nodes in the

overlay.

1.4 Contribution of the Thesis

This dissertation research aims at developing system-level architectures and techniques to

support information dissemination to large scale user groups by using P2P overlays, in-

cluding structured and unstructured P2P overlays, and P2P overlays constructed using

geographical location information. The main contributions of this dissertation research can

be summarized into three parts:

1. We design and develop a self-configuring, efficient and reliable end-system multicast

system called Cascade. Three unique features distinguish Cascade from existing ap-

proaches to application-level multicast systems.

• First, with the aim of exploiting network proximity of end-system nodes for

efficient multicast subscription management and fast information dissemination,

we propose a novel Internet-landmark signature technique to cluster end system

nodes in the overlay network by their physical network proximity.

• Second, we propose a capacity aware overlay construction technique to balance

the multicast workload among heterogeneous end-system nodes.

• Third, we develop a dynamic passive replication scheme to provide reliable end

system multicast services in an inherently dynamic environment of unreliable

peers. We also present a set of experiments, showing the feasibility and the

effectiveness of the proposed mechanisms and techniques.

2. We propose and develop PeerCast, a utility-based P2P group communication mid-

dleware for providing scalable and efficient group communication services in an un-

structured P2P overlay network of heterogeneous peers. We observe that nodes with
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different capacities tend to have different preferences over the network proximity and

the node capacity metrics. Our main contribution is to carefully combine these two

metrics in our P2P overlay management and communication group management pro-

tocols. To our knowledge, PeerCast is the first P2P group communication system that

is built using a low-diameter unstructured P2P network, which follows a power-law

topology. Unique features of PeerCast include:

• A service announcement mechanism that selectively propagates the service infor-

mation to peers in the overlay network. By cutting out the paths that will not

likely be used in a group communication spanning tree, this mechanism reduces

the messaging network traffic by 27% to 56% compared to the popular advertising

scheme used in [18], without affecting the performance of group communication

applications.

• A fast service lookup mechanism that enables a participant to discover the ser-

vices of interest with fewer probing messages. Our service announcement mech-

anism pushes the group communication information closer to the participants,

such that they can locate the service of interest within their overlay network

neighborhood much faster, and using fewer searching messages.

• A communication group management mechanism that constructs efficient span-

ning trees for wide-area group communications. Our experiments indicate that in

most of the cases, the end-to-end communication latency between any two peers

in the spanning tree is within 3 times of the IP unicast latency. By matching the

communication workloads of each peer to its capability, we are able to reduce

the overloading in the overlay network by one to two orders of magnitudes.

3. We design and develop a scalable service network, called GeoGrid, for supporting

efficient location-based information dissemination applications. Our design exhibits

three unique features that distinguish it from existing solutions.

• First, GeoGrid design supports geographical location-based topology formation
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and P2P routing with effective load-balance and fault-tolerance as its design

objectives.

• Second, GeoGrid system can provide scalable and efficient routing services, by

adding randomized shortcuts that can greatly improve the routing efficiency. In

a GeoGrid system with N peers, we achieve an average O(logN) end-to-end

routing delay in terms of routing hops.

• Third but not the least, GeoGrid is equipped with a set of novel features that can

efficiently utilize the heterogeneous capacities of end-systems and dynamically

balance both the routing workload and information dissemination workload in

response to the dynamic workload distribution. Our experimental study demon-

strates that the GeoGrid can effectively reduce the workload imbalance by an

order of magnitude.

Although different overlay networks require different system designs for building scal-

able and efficient information dissemination services, the research works presented in this

dissertation share and employ three common design philosophies:

• exploiting end-system heterogeneity.

• utilizing proximity information of end-system nodes to localize the communication

traffic.

• using randomized shortcuts to accelerate long-distant communication.

In this thesis, we demonstrate our design philosophies and their impacts on the perfor-

mance improvements in all three types of P2P overlay networks. Concretely, by statically

and dynamically assigning more workloads to more powerful peers, we can greatly increase

the system scalability and reduce the variation of workload distribution. By clustering

end-system nodes based on their IP-network proximity or their geographical proximity, and

by utilizing randomized shortcuts, we can reduce the end-to-end communication latency,

balance peer workloads against service request hot spots across the overlay network, and
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significantly enhance the scalability and efficiency of distributed information dissemination

and decentralized multi-party group communication.

In summary, this is, to our knowledge, the first dissertation work that implements

the above three design principles in an unstructured P2P overlay network for large scale

group communication. It is also the first work proposed to incorporate the above three

design philosophies in a location-based P2P overlay network to support various information

dissemination applications.

1.5 Organization of the Thesis

The rest of this thesis is organized as a series of chapters, each one dedicated to a specific

topic within the context of structured P2P, unstructured P2P, and location-based P2P

overlay networks. In each of these chapters, background information and system models

are given before the core technical content is described. The specific contributions are

given in the introduction part of each chapter, whereas the related work in the literature

is reported at the end of each chapter. Concretely, this thesis is composed of the following

chapters.

Chapter 2 presents the Cascade end-system multicast system which is based on a struc-

tured P2P overlay. Three major components of the Cascade, namely the network proximity

based end-system clustering, the virtual-node based load-balancing scheme, and a dynamic

replication scheme are presented. Several experimental results are presented to study the

system and routing efficiency, load balance, and reliability of the Cascade system.

Chapter 3 presents the PeerCast group communication management system which is

based on an unstructured P2P overlay. Three major components of the PeerCast system,

namely a utility metric combining the evaluations on both network proximity and node ca-

pacity metrics, the bootstrapping and maintenance protocol for building unstructured P2P

network following power-law distribution, and an efficient service lookup and communica-

tion group management protocol are presented. Several experimental results are presented

to study the system and routing efficiency, and load balance of the PeerCast system.
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Chapter 4 presents the GeoGrid location-based service network. Three major compo-

nents of the GeoGrid system, namely a location-based overlay management protocol, a

randomized shortcuts management protocol for fast routing, and a dynamic service load

balance protocol are presented. Several experimental results are presented to study the

routing efficiency, and the system and routing load balance of the GeoGrid system.

Chapter 5 discusses some open issues and concludes the thesis.
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CHAPTER II

INFORMATION DISSEMINATION USING END SYSTEM

MULTICAST

2.1 Introduction

In this chapter, we study the problem of using End System Multicast (ESM) for large scale

information dissemination. In recent years end system multicasting (application-level mul-

ticasting) has emerged as a practical alternative to IP level multicasting for disseminating

information to large sets of receivers [12, 17, 18, 20, 35, 44, 67, 46]. However, supporting

end system multicast in a dynamic Internet-scale environment poses a number of challenges.

First, an ESM system usually replicates data on end-hosts and propagates them through

multi-hop IP unicast links. A critical challenge for ESM system design is to achieve high

efficiency and minimize multicast latency experienced by the end-hosts. Second, end-hosts

from a wide-area network tend to vary widely in terms of their computing capacities, access

network bandwidths, and willingness and ability to share their resources. Such heterogeneity

manifests itself as the variations in the amount of workloads the different nodes can handle.

Therefore, there is a need for an end system multicast protocol that can organize end-hosts

into efficient multicast overlays, and effectively balance multicast workloads on them. Third,

it is widely recognized that large-scale distributed systems like Peer-to-Peer(P2P) network

are confronted with high turnover rate [50], with nodes entering and departing the system

at arbitrary points in time. Ensuring high multicast service availabilities in such dynamic

systems is crucial for the success of end system multicast.

Research in this area has mostly focused on mitigating the first challenge [12, 17, 18, 20,

35, 44, 67, 46]. In contrast, the second and third challenges have received very little research

attention. We believe that these distinct challenges are in fact very related. Unfortunately,

none to our best knowledge has comprehensively addressed these problems. Further, even
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the schemes proposed to counter the efficiency challenge suffer from significant limitations.

In this chapter, we present Cascade – an efficient, self-configuring, and reliable end

system multicast service, which is built on top of an overlay network of loosely coupled and

possibly unreliable end-system nodes. Our ESM service can enable group communication

capabilities in generic P2P networks, thereby providing a platform for advanced applications

such as audio video conferencing, event and content distribution, and multi-user games.

Cascade uses a structured P2P network protocol to organize end-hosts into an overlay

network, and builds ESM applications using the P2P network as the communication sub-

strate. While a few existing systems addressed similar problems, our approach has three

unique features.

First, we develop a decentralized mechanism to effectively cluster end-hosts by their

physical network proximity in the Cascade P2P network. Our novel multicast group man-

agement protocol utilizes these clusters to build efficient multicast trees, so that latencies

and overheads of the multicast information dissemination are minimal. Second, we propose

a capacity-aware overlay construction technique to balance the multicast load among het-

erogeneous peers. This scheme can effectively distribute the workload among end-hosts. To

the best of our knowledge, Cascade is the first ESM system that takes end-system hetero-

geneity into account. Further, our scheme also encourages peers to share more resources

by according better services to the peers contributing more resources. Third, we develop a

dynamic passive replication scheme in order to provide reliable end system multicast service

in an environment of inherently unreliable peers. This chapter reports a set of experiments

that we have performed to evaluate the proposed techniques. The results indicate that the

Cascade system is highly efficient, and it exhibits very good load-balancing and reliability

characteristics.

2.2 Fundamental Concepts and Notations

In this section, we discuss the fundamental concepts of multicasting and formalize the end

system multicasting problem.

Definition 1 A Physical Network is a directed and connected graph Gphysical = (Vcore ∪
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Vend, Ecore ∪ Eend), where Gcore = (Vcore, Ecore) is a subgraph such that Ecore ⊆ Vcore ×
Vcore. Gend = (Vcore ∪ Vend, Eend), Eend ⊆ Vend × Vcore ∪ Vcore × Vend is another subgraph

satisfying the condition that ∀vendi
∈ Vend,∃vcorej ∈ Vcore such that (vendi

, vcorej) ∈ Eend ∧
(vcorej , vendi

) ∈ Eend.

By Definition 1, we model an ESM system as a connected, directed, and weighted graph

Gphysical. This graph consists of a core network Gcore and a set of end-hosts Vend. The core

network Gcore models the IP network and is a connected, directed, and weighted subgraph

of Gphysical. Gcore consists a set of nodes Vcore, which are connected by a set of links Ecore.

Vcore models network devices such as IP network routers. The end-hosts and their access

network links are represented by Gend, another subgraph of Gphysical. For each end-host

vend, there always exists an access network link eend that connects vend to at least one node

vcore in the IP network. Each edge e ∈ Ecore∪Eend is a directed edge and can be associated

with different properties, depending on the application built over the physical network. In

our case , we assign each edge e a weight we and a length le. We use we to model the IP

packet routing weight and use le to model the latency of link e.

A Route between two end-hosts v0 and vi is defined as a list of edges

((v0, v1), (v1, v2), · · · , (vi−1, vi)), where v0 ∈ Vend, vi ∈ Vend, ∀1≤j≤i−1 vj ∈ Vcore, (v0, v1) ∈
Eend, (vi−1, vi) ∈ Eend, and ∀1≤j≤i−2 (vj , vj+1) ∈ Ecore. The Route Weight of route

((v0, v1), (v1, v2), · · · , (vi−1, vi)) is the summation of the weight of each edge on this path,

i.e. Σi−1
j=0w(vj ,vj+1). And the Path Length of this route is equal to Σi−1

j=0l(vj ,vj+1). A route is

one of the passible pathes that IP network packets can travel between two end-hosts. The

Path Length is the accumulative latency of such a route.

We model IP unicast paths as:

Definition 2 An IP Unicast Path between two end-hosts vi and vj is a route between

that two end-hosts with the minimum route weight. We denoted it as UPath<vi,vj> and

refer to the path length as its Unicast Latency.

We use an example to illustrate our network model. In Figure 1, Vcore = {R1, R2},
Vend = {A,B,C,D}, Ecore = {< R1, R2 >,< R2, R1 >} and Eend = {< A,R1 >,<
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Figure 1: End System Multicast Example

R1, A >,< B,R1 >,< R1, B >,< C,R2 >,< R2, C >,< D,R2 >,< R2,D >}. We

assume the edges between any pair of nodes are symmetric, and have equal weight and

length value, denoted by the number over each edge in the figure. The unicast path between

node A and D, UPathA,D, is ((A,R1), (R1, R2), (R2,D)), and the unicast latency of this

path is 22.

From so on, we will assume that the network links in our graph are symmetrical. Al-

though in many cases, network links may present different properties in different directions,

our result will still be valid without this assumption.

An IP multicast tree built over a physical network is an acyclic and connected subgraph

of Gphysical that connects all the end-hosts participate the multicast group. We define an

IP multicast tree as:

Definition 3 An IP Multicast Tree over graph Gphysical is a directed shortest distance

spanning tree in graph Gphysical, with the IP multicast source end-host vroot ∈ Vend as the

root, all the subscriber end-hosts Vsubscriber ⊆ Vend as the leaves of the tree, and nodes belong

to Vcore as the intermediate nodes in the tree. We denoted it as TIPM(Gphysical, vroot, Vsubscriber)

To measure the performance of ESM overlay networks against IP multicast systems, we

assume that the IP multicast systems have optimal multicast trees, i.e., the path between the

multicast root node and any receiver node is the same as the IP unicast path between them.
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The IP Multicast Delay LIP<root,end> between the IP multicast root vroot and an end-host

vend in tree TIPM(Gphysical, vroot, Vreceiver) is the unicast latency of path UPath<vroot,vend>.

For example, in Figure 1, the LIP<A,D> = 22.

An ESM overlay network can be conceptualized as a virtual network with all the message

forwarding and multicast group management functionalities being pushed to the end-hosts.

The link between any two adjacent end-hosts in an ESM overlay network is actually the

unicast path between them. We define a complete directed graph Goverlay = (V ′
end, E) based

on graph Gphysical, to model ESM overlay networks. We refer to this graph as an Overlay

Graph.

Definition 4 The Overlay Graph of a physical network Gphysical = (Vcore ∪ Vend, Ecore ∪
Eend) is a complete directed graph denoted by Goverlay = (V ′

end, E), where V ′
end = Vend and

E = V ′
end × V ′

end.

Each edge e(i, j) ∈ E of Goverlay represents the unicast path between end-hosts i and

j in the graph Gphysical, i.e., UPath<i,j>. We define the latency of edge e(i, j) as Le(i,j),

which is equal to the path length of the unicast path UPath<i,j> in graph Gphysical.

An ESM overlay network that delivers multicast payloads from a multicast root end-host

vroot to a set of subscriber Vsubscriber is a spanning tree over the overlay graph Goverlay . We

model it as:

Definition 5 An End System Multicast Tree over an Overlay Graph Goverlay is a di-

rected spanning tree defined over Goverlay, with the multicast source end-host vroot as the

root and all the subscribers Vsubscriber being connected in the tree. We denote such a tree as

TESM(Goverlay , vroot, Vsubscriber).

IP multicast is by nature more efficient than end system multicast. In IP multicast, IP

packets are replicated at routers within the physical network. Each multicast message is

injected into the physical network only once before it is delivered along the IP multicast tree

to the subscriber end-hosts. Whereas in the case of ESM overlay networks, messages of the

same contents are replicated on end-hosts and may be injected into the physical network

more than once.
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The ESM topology 2 of Figure 1 gives such an example. There will be duplicated data

packets traveling through links < A,R1 > and < R2, C > because the message replication

functions are now on end-hosts A and C. In the IP multicast case, the IP packets will be

replicated only at router R1 and R2.

The key concerns in designing an ESM protocol is its efficiency. For each set of subscriber

Vsubscriber, a multicast root vend, and its corresponding ESM overlay network Goverlay , we

define several performance metrics to measure the ESM tree TESM(Goverlay , vend, Vsubscriber)

against the IP multicast tree TIPM (Gphysical, vend, Vsubscriber). We say an ESM multicast

tree is equivalent to an IP multicast tree when they have the same multicast root end-host

and the same subscriber end-hosts, and are built over the same physical network.

• The End System Multicast Delay experienced by an end-host vend is the summation

of the unicast latency of edges between the root vroot and vend in the end system

multicast tree TESM (Goverlay, vend, Vreceiver).

• The Relative Delay Penalty of an ESM overlay network is the ratio between the average

end system multicast delay of all the subscribers in the ESM tree and the average IP

multicast delay of all the subscribers in the equivalent IP multicast tree.

We define link stress as a performance metrics to measure the amount of extra network

traffic caused by ESM overlay networks, and to compare it to the equivalent IP multicast

systems.

• The Link Stress is the ratio between the total number of IP packets imposed by

an ESM overlay network on the physical network links and the total number of IP

packets imposed by the equivalent IP multicast system, to deliver the same amount

of multicast information.

Using ESM topology 2 in Figure 1 as an example. The end system multicast delay of

path A to D is 24 and the IP multicast delay between A and D is 22.The relative delay

penalty is (22 + 2 + 24)/(22 + 22 + 2) = 48/46. On the other hand, the link stress is 7/5.
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2.3 Cascade System Overview

Cascade is an overlay network-based application level multicast system. However, its design

incorporates several techniques for alleviating the performance limitations arising out of the

mismatch between the overlay network and the underlying IP network. In this section we

briefly discuss the design architecture of the Cascade system.

The high-level design of the Cascade is similar to the SCRIBE [17]. Due to space

limitations, our discussion about the architectural design of Cascade is compact. However,

we highlight the key differences between the SCRIBE system and our design at appropriate

locations.

2.3.1 System Architecture

The various nodes in the Cascade system interact with one another in a peer-to-peer fashion.

An individual node can act both as a client and as a server for multicast requests. Henceforth

we refer to the nodes of the Cascade system as peers. Every peer participates in multicast

execution. Any peer can create a new multicast service of its own interest or subscribe to

an existing multicast service. Our design of the Cascade system does not require any peer

to have global knowledge of about other peers, or about all the multicast services that are

currently being offered. Further, the peers can enter and exit the system at arbitrary points

in time.

The peers in the Cascade system are organized as a structured P2P network, based on

the concept of distributed hash table (DHT). Each peer in our system is equipped with

a Cascade middleware, whose design is depicted in Figure 2. The Cascade middleware

is composed of two functional substrates: P2P Network Management and ESM Multicast

Management.

The P2P network management substrate is the lower tier of the Cascade middleware,

and it provides services for P2P network membership management, resource lookup, and

communication among end-hosts. For example, a peer invokes the services provided by this

layer to enter the network, or to communicate with another node in the network.

The ESM management substrate is responsible for ESM event handling, multicast group
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Figure 2: Cascade system architecture

membership management, multicast information delivery, and cache management. This

layer utilizes the services provided by the underlying network management layer and incor-

porates three protocols namely, multicast group membership management protocol, multicast

information dissemination protocol and multicast overlay maintenance protocol. The multi-

cast group membership management protocol provides mechanisms for the peers to create

new multicast service, subscribe to an existing multicast group, or exit from an existing mul-

ticast group. As we discuss later in this chapter, this protocol maps each multicast service

to an individual peer in the network, which acts as the proxy-source of the service. Further,

the protocol incrementally builds a multicast tree from subscribers of a multicast service.

The multicast group membership management protocol propagates the multicast payload

through this tree, so that it reaches all the subscribers. The multicast overlay maintenance

protocol handles the exit and failure of peers in a multicast tree by appropriately repairing

the tree.

In the Cascade system each multicast service has two unique m-bit identifiers associ-

ated with it, namely the service identifier and the group identifier. The service identifier,

represented as Sid, uniquely identifies the multicast service and would be used to publish

summary information about the multicast service. The group identifier gid will be used to

identify the group of peers subscribed to the service.

Each peer in the Cascade system is also assigned a set of m-bit identifiers, which we

henceforth call peer-identifiers (Peer-IDs, for short). As we will explain later, when a peer p

wants to start a new multicast service, it will use one of its peer-IDs as the group identifier
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of the new service. For ease of understanding, let us for now assume that each peer is

associated with a single identifier.

The Cascade system is based on a structured P2P architecture. Hence it does not require

any node to maintain global information about all the peers in the system at any point of

time, or about all the services being offered. Instead, each peer maintains information

about a carefully chosen subset of peers and multicast services currently available in the

Cascade system. This distributed information would be used by the peers to lookup other

peers, discover multicast services, subscribe to multicast services, and to build and maintain

multicast trees.

In order to better understand the protocols and mechanisms of the Cascade system,

we can conceptualize the peer identifiers, multicast service identifiers, and the multicast

group identifiers as points on a logical ring with range from 0 to (2m − 1). With this

conceptual model as the basis, we will first define a few terms, which will be used to explain

various aspects of the design architecture of the Cascade system. The distance between two

identifiers i, j, denoted as Dist(i, j), is the shortest distance between them on the identifier

circle, defined as Dist(i, j) = min(|i−j|, 2m−|i−j|). Identifier i is considered as numerically

closest to identifier j when there exists no other identifier with a shorter distance to j, i.e.

∀k �=jDist(k, j) ≥ Dist(i, j). A peer p′ with its peer identifier j is said to be an immediate

right neighbor to a peer p with its peer identifier i, denote by (p′, j) = IRN(p, i), if there

are no other peers have identifiers in the clockwise identifier segment from i to j on the

identifier circle. Analogously the peer p is called the immediate left neighbor of peer p′.

Each peer in the Cascade system is equipped with two data structures for maintaining

information about a specific set of other peers. Specifically, for each peer-ID that is owned

by a peer p, it maintains two types of information, namely a routing table and a neighbor

list. The routing information in these two data structures would be used to lookup a peer

or a service. The routing table is used to locate a peer that is more likely to answer the

lookup query, whereas a neighbor list is used to locate the peer that is numerically closest

to the identifier of the lookup query.

Routing Table: We denote the routing table associated with identifier i of peer p as
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RoutingTable(p, i). The routing table stores a set of peer identifiers (that satisfy a specific

condition discussed below) and their reference information (IP address and port) of the

peers that own those identifiers. The peer p can directly communicate to the peers that

own any of the identifiers in the routing table. The m-bit peer identifiers are represented

in the routing table in radix 2b, implying that each identifier will have 	m/b
 digits. The

routing table has 	m/b
 rows and 	m/b
 columns. The entries of the routing table satisfy

two rules:

1. Entries in the ith row (rows start from 0) of a table contain pairs with peer identifiers

sharing i leftmost digits with the associated identifier of the peer owning the routing

table.

2. An identifier in the jth column of the ith row of a routing table has j, as the ith digit

from the left (leftmost digit is indexed as 0).

As an example consider an 8-bit identifier space and let b = 2. Now each entry in the

routing table will have 4 digits. Figure 3 shows a possible routing table for a peer identifier

2103. Note that all the entries in the routing table obey the above stated rules.

 0 1 2 3 
0 0210  1302   3002  
1 2033  2213 2301 
2  21 13 2122 2132 
3 210 0 210 1 2102  

 

Figure 3: An example routing table for the peer identifier 2103

Neighbor List. In addition to routing table, the peers also maintain a list of neighboring

peer identifiers and their reference information. Specifically, for an identifier i, the peer p

owning i keeps track of r successor identifiers on the logical ring and r predecessor identifiers

on the logical ring. Again the peer p can communicate directly to any of the peers owning

the identifiers that are present in the neighbor list. For example, a possible neighbor list of

peer identifier 2103 would be [2101, 2102, 2103, 2113, 2120], when r is set to 2 (again only

the peer identifiers are shown here for simplicity).

The purpose of maintaining the above two routing information in the peers is to enable
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them to lookup the service identifiers or the group identifiers of any multicast service in the

system. Specifically, any peer in the system should be able to discover the peer identifier

that owns a given service identifier or a group identifier, and the reference information (the

IP address and the port) of that peer to which the peer identifier is assigned. Lookup is

the most fundamental operation in the Cascade system, through which peers can advertise

new multicast services or discover and subscribe to existing services. We now outline the

algorithm for the lookup operation when a peer p is attempting to lookup identifier i. The

lookup process is composed of three steps. In the first step the peer initiating the request

(peer p) selects an identifier from its set of peer identifiers (recall that peer may have multiple

identifiers) that is closest to i (in terms of the Dist function defined above). Let us denote

the closest peer identifier to be j. Now the peer p determines whether the identifier j owns

the service identifier j. This can be done by looking at neighbor list and routing tables of j

to see whether there is a peer closer to i. If j owns the identifier i, lookup terminates since

we have found the owner. If j does not own i, it means that there is at least one node either

in the neighbor list or routing table of j that is closer to i, in which case the algorithm

proceeds to the second step. In the second step the algorithm determines whether any of

the peer identifiers in the neighbor list of j own the identifier i (again this can be done by

checking the consecutive nodes in the neighbor list). If we find a peer identifier that owns

i, the algorithm terminates. Otherwise, the algorithm executes the third step, wherein we

select a peer identifier from j’s routing table that is closer to i than the peer identifier j.

Let this identifier be denoted as l. The lookup query containing i is now forwarded to the

peer which has l as one of its identifier. This peer on receiving the forwarded lookup request

performs the second and third steps, and the query might be forwarded to a third peer.

Eventually the algorithm terminates and the peer identifier owning i would be found. It

can be shown that in this algorithm the number of times a lookup is forwarded is at most

O(logN), where N is the total number of nodes in the system. We will illustrate the lookup

process with an example when we discuss the multicast mechanism in our system.

The Cascade system also includes algorithms to initialize the routing table and the

neighbor list when a peer joins the Cascade system, and to modify them appropriately
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when new nodes enter the system or existing peers exit the system. For the purpose of

brevity and succinct of presentation, we omit the discussions on these schemes. Details

about them can be found in the technical report version of this chapter [63].

2.3.2 Basic Multicasting in Cascade system

In Cascade, multicast service establishment and maintenance occurs through three distinct

operations.

Step 1: Publishing the Multicast Service: Multicast sources join the Cascade P2P

overlay as peers. As mentioned earlier, each multicast service is associated two identifiers,

namely, service identifier and group identifier. The service identifier will be used to advertise

and publish meta-information about the service, whereas the group identifier would be used

by peers to subscribe to and unsubscribe from the multicast service. A peer generates these

two identifiers for each multicast service for which it is a source. Suppose a peer p wants

to initiate a new multicast service S, it selects one of its unused peer identifiers and uses

it as the group identifier of the multicast service S. Contrastingly, the service identifier Sid

will be generated by replacing a potion of one of the peer identifiers of p with a number

obtained through a certification service.

After generating the two identifiers for the multicast service, the source will publish the

summary of the multicast service and its group identifier on another peer in the system.

The node which hosts the summary of the multicast service S is called S’s rendezvous node.

The rendezvous node is determined through the lookup protocol discussed above. The

source peer initiates a lookup query on Sid, which discovers the rendezvous peer in at most

O(logN) hops. The source node publishes the summary and the group identifier of the new

multicast service on the discovered rendezvous node. Any other node in the system can now

obtain summary and the group identifier of the multicast service by doing a similar lookup

on the service identifier of the multicast service, and contacting the respective rendezvous

node.
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Step 2: Multicast Tree-based Subscription Management: Now let us see how a

peer can subscribe to a multicast service that it is interested in. As described above a

peer can lookup the rendezvous node of any existing multicast service and obtain its group

identifier. Since the group identifier of a multicast service is always chosen from one of

the source peer’s identifiers, the lookup operation (described in Section 2.3) always maps

the group identifier to the source, irrespective of the scale or the dynamics of the network.

Hence, an arbitrary node in the system can locate the source node of a multicast service

given the service’s group identifier.

The newly subscribing node (denoted by p) issues a subscription request with the group

ID of the multicast service. This subscription request is treated exactly like a lookup

request on the group ID, and is forwarded towards the multicast source through a series of

intermediate peers, whose identifiers satisfy the progressive prefix matching criterion. At

each forward step, the peer receives the subscription request records the sender as its child

node in the multicast tree, before it forwards the subscription request another peer whose

peer-ID is closer to the group ID. However, the request may not always reach multicast

source. If one of the intermediate nodes has already subscribed to the multicast service

requested by p (i.e. the node is already in the multicast tree), the forwarding of the multicast

subscription request is terminated. If none of the intermediate nodes are in the multicast

tree, the request reaches the multicast source. All the peers handled the subscription

request compose a multicast path connecting p into the multicast tree. An example is given

by Figure 4. Peer 0201 tries to subscribe to a multicast service identified by a group ID

2123. The subscription request is forwarded in sequence by peer 2332, peer 2102, and peer

2121, and finally reaches peer 2122 who is the root of the multicast tree identified by group

ID 2123. The path 2122 −→ 2121 −→ 2102 −→ 2332 −→ 0201 will be used to deliver the

multicast contents to the subscriber peer 0201.

Conversely, the multicast tree is pruned when nodes unsubscribe from the respective

multicast service. A node p that wants to unsubscribe from a multicast service that it

is currently member of, intimates its parent in the corresponding multicast tree through

unsubscribe request. On receiving an unsubscribe request, the parent node, say q, removes
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Figure 4: An example of Cascade subscription process

the node from the multicast tree. Further, q also checks whether it has other children who

are subscribed to the same multicast service. If there are no other nodes that are receiving

the multicast service through q, and q itself is not subscribed to the multicast service, it

sends an unsubscribe message to its parent.

Step 3: Dissemination of Multicast Payload The source of a multicast service uses

the corresponding multicast tree for delivering the multicast data to all the subscribers. It

injects the data at the root of the multicast tree, which then gets disseminated through the

tree, replicated at each intermediate node, and reaches all the subscribers.

2.3.3 Limitations of the Basic End System Multicast

The above end system multicast scheme has three limitations that can hinder its perfor-

mance. These limitations have to be adequately addressed in order to ensure the scalability,

efficiency, and reliability of the Cascade system.

26



The first limitation arises from the mismatch between the P2P overlay network topol-

ogy and the underlying physical network topology, which has been well studied in prior

literature [45, 49, 60]. In most generic P2P networks, the indexing techniques and the

routing schemes are completely independent and oblivious to the underlying network struc-

ture. Hence, communication in these networks is likely to be very inefficient in terms of the

physical network route traversed by individual message.

Since the multicast tree construction in the Cascade system utilizes the lookup mech-

anism of the P2P network (see Section 2.3), the mismatch between overlay network and

the underlying physical network adversely affects the multicast performance. The overlay-

underlay mismatch manifests in the Cascade system in the following manner. The multicast

tree that is constructed at the logical level can be very inefficient in terms of the physical

network connections. Consider the multicast tree depicted in Figure 5. In this example,

six end-hosts located in three states participate an ESM overlay. Each of them is denoted

by the state acronym plus an index number. Node WA 1 serves as the multicast root and

all others are subscribers. Since the multicast tree is constructed without considering the

physical network, the multicast messages have to travel from WA 1 (located in Washington)

to GA 2 (located in Georgia) and then again traverse the link from GA 2 to WA 2. Thus,

the multicast messages have to traverse between the east coast and west coast twice and

three times along the east coast. This not only affects the multicasting latency, but also

increases the load on the underlying physical network. Instead, if the nodes were to be

organized in a tree as shown in Figure 6, the multicast would be significantly more efficient

as the multicast messages do not have to traverse to and fro between the nodes located at

the two coasts. However, because the ESM scheme is oblivious to the underlying physical

network, it cannot ensure efficiency of the resultant multicast tree.

The second shortcoming of the basic ESM mechanism is the load imbalance between

the participating nodes. One of the main causes of load imbalance is the heterogeneity

in the resource availabilities at various nodes. Ideally the load on each peer should be

proportional to its resource capabilities. This would avoid nodes becoming bottlenecks,

thereby improving the efficiency and dependability of the system. Therefore, it is essential
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to augment the basic ESM multicast scheme with techniques that distribute the multicast

load among the various nodes in the system in accordance with their resource availabilities.

The third limitation of the basic ESM multicast scheme is that its timeout and resubscription-

based mechanism to repair multicast trees that are damaged due to the failure/exit of peers

are often ineffective. This drawback becomes especially pronounced when the P2P net-

work is highly dynamic, which is the case in most P2P systems. Therefore, we need to

design mechanisms that can guarantee reliability of the Cascade system, even when the

P2P network exhibits considerable churn.

The remainder of this chapter is dedicated to design of effective and efficient mechanisms

to overcome each of the above limitations of the basic ESM scheme.

2.4 Network Aware Multicast Tree Construction

Our discussion in Section 2.3.3 highlighted the need and importance of taking the physical

network locations of the nodes into consideration while building multicast tree. However,

developing such multicast mechanisms poses two significant research challenges. The first

is to devise techniques for accurately estimating the relative locations of the nodes in the

physical network. Due to the decentralized and highly dynamic nature of Cascade network,

it is not possible to maintain a complete global view of the overlay network or the underlying
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network. The second major challenge is to incorporate the network position awareness into

the decentralized framework of the ESM multicast tree construction framework.

Prior works such as Pastry [49] and CAN [45] have explored various techniques for im-

proving the network awareness of P2P systems. In Pastry [49], peers probe the network

neighbors and carefully select entries to fill into their routing tables. A list of network neigh-

bors is setup along with the routing table to accelerate the routing. However, the Pastry

approach has two major problems. First, its assumption about the triangular inequality

properties in the IP network may not always hold. Second and more importantly, due to

“logarithmic routing deterioration ” [60], the benefits obtained by this scheme might be

extremely limited. The CAN system [45] tries to map a peer into the CAN identifier space

by its network coordinate information. This approach may introduce uneven identifier dis-

tribution in CAN hypercube space, thus resulting in some routing paths that are of poor

quality.

We now explain our approaches to address the above two challenges. In order to address

the challenge of estimating relative locations of the nodes, we use technique that is similar

to the concept of landmarks. Conceptually, Internet landmarks (landmarks, for short) [21,

2, 54] are a set of few key Internet hosts that serve as a frame of reference for determining

the relative position of any other node on the Internet. An arbitrary node measures the

round trip time to each of these landmarks, and uses these values to determine its relative

location in the physical network.

B1B2

B3

B4

Bn

E37F51DCA4689B023ED388719C2EE8

E37F51DCA4689B02 12A3F9B482E082

D <d1, d2, d3,...,dn>

D’ <d’1, d’2, d’3,...,d’n>

Figure 7: Using landmark to generate peer identifiers

Concretely, let us denote the landmark set as {B1, B2, B3, . . . , Bn}. When an end-host
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joins the network, it obtains the landmarks set through the bootstrapping service. An end-

host measures its distance to the given set of landmark points and records the results in a

vector D < d1, d2, d3, . . . , dn >, which we refer to as its Landmark Vector. The intuition

behind using landmark vectors is that the end-hosts that are close to one another will

have similar landmark vectors, as their probing packets are more likely to traverse similar

network routes to reach each landmark point.

Designing a completely decentralized multicast tree construction technique that seam-

lessly utilize the above information about relative locations of nodes is a more difficult chal-

lenge. Notice that the basic ESM multicast tree construction scheme is indeed completely

distributed and decentralized. We design two unique techniques to augment the basic ESM

mechanism so that the resultant multicast tree is sensitive to the relative locations of the

nodes thereby optimizing the communication costs.

First, we have designed a novel landmarks-signature technique to embed network po-

sitions information of each node into its identifier. Recall that the basic ESM scheme is

based upon the lookup scheme, which in turn is based upon the identifier distribution of

the nodes and the multicast service. By embedding network position information into the

node identifiers, we try to ensure that the generated multicast tree is efficient in terms of the

communications costs. The basic idea is to allocate identifiers such that the peers physically

closer would have numerically closer peer identifiers. The landmarks signature of a node is

based upon its landmarks vector. Specifically, we utilize the relative order of the elements of

a node’s landmark vector to capture the location of the node. We encode this relative order

of landmark vector elements into a binary string and call it as the landmark signature of a

peer. Therefore peers that are located in close network proximity tend to have numerically

similar landmarks signatures. Thus, by comparing the landmarks signature of two nodes

one can infer their proximity within the network. Figure 7 gives an example of how two

physically close end system nodes generate their landmark signatures and P2P identifiers.

One question that arises is: why not use the landmark signature of a peer as its iden-

tifier? Previous studies have shown the importance of preserving enough randomness of

the identifier distribution [60]. Hence, we see that the identifiers of nodes have to satisfy
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two conflicting requirements. On one hand they should encapsulate the node’s position

information and on the other it should also have enough randomness. In the Cascade we

balance these conflicting requirements as follows. Upon entering the network, a new peer

generates its identifiers using the normal identifier generation functions such as MD5 and

SHA-1. Further, it also measures its distance to various landmarks and generates its land-

marks signature. Now, it replaces a substring of the generated identifier with the landmark

signature at a certain offset. We call this offset as the splice offset. Its value is a system

parameter that could be tuned according to the overlay population. The modified identifiers

now contain information that can be used to identify the network location of the new peer,

while preserving randomness to some degree.

The peer identifiers can be used to cluster peers based on their network proximities.

Suppose the splice offset is set to s digits. We can now envision the leading s digits before the

splice offset to randomly partition the identifier space into 2bs “buckets”. By controlling the

value of the splice offset, we uniformly scatter peers from the same network proximity into

those identifier “buckets”. Peers of similar network proximity are still clustered together

within each “bucket” by their landmark signatures. But they will not occupy a large

continuous P2P identifier segment. The advantage of this approach is that it reduces the

probability of the P2P network getting partitioned by the network domain level failure,

which would forces a large number of peers to depart at the same time. The peer clustering

improves the multicast performance as follows. As mentioned earlier, in our scheme the peers

that close to one another are assigned identifiers similar identifier prefixes. But due to splice

offset, these peers may be in different buckets. When a subscription request is forwarded

among a number of peers sharing the same prefix, there is much higher probability that

this request is forwarded among physical network neighbors. Thus, when we build the

multicast tree using the lookup method of Cascade P2P protocol, we effortlessly achieve

higher efficiency at the top portion of the multicast tree. This is because nodes located at

the top of the tree share longer identifier prefixes with the multicast root node.

While our landmark signature technique improves the efficiency of the top portion of

the resultant multicast tree, enhancing the efficiency of the bottom portion (portion near
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the leaves of the tree) requires additional mechanisms. Towards this end, we develop our

second technique called Neighbor Lookup. As suggested by its name, each peer initiating or

forwarding a subscription request will first query its P2P network neighbors to see if they are

already in the requested multicast tree. The closest neighbor in the multicast tree is chosen

as the “potential parent”. To avoid the looping of subscription request among neighbors,

a peer compares its distances to its potential parent and grandparent. The subscription

request will be forwarded to the closer one of them. The neighbor lookup is essentially a

local operation in Cascade, because P2P neighbors frequently exchange status information

to maintain the integrity of the P2P routing tables. Thus, a peer can learn the subscription

status of its P2P neighbors by only checking the local cache of their status.
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Figure 8: Improve Cascade ESM overlay with network proximity information

Figure 8 gives an example showing how the neighbor lookup technique works. Before

forwarding the subscription request to the next hop peer that satisfies the prefix matching,

peer Sk,1 first check if its neighbor has already joined the multicast group. It finds that

peer Sk−1,1 is in the multicast tree and chooses it as its potential parent. Note that instead

of forwarding its subscription request along the normal subscription path (denoted by the

dotted lines) Sk,1 directly subscribe to peer Sk−1,1. Similarly, peer Sn,1 subscribes to its

physical network neighbor Sn−1,1.

Our landmarks signature scheme ensures that a node present in a peer’s neighbor list is

also close to the peer in the physical network. Thus, in the multicast tree constructed using

neighbor lookup technique, end-hosts close to one another are grouped together. One peer
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in each group (the darker nodes in Figure 8) serves as the parent of other peers (the lighter

nodes in Figure 8), and forwards the multicast payloads to them. Because the unicast links

among network neighbors usually have higher bandwidth and lower latency, we improve

the efficiency of the multicast tree and reduce the number of IP packets sent through the

underlying network.

2.5 Load Balance in Cascade

We now describe our techniques for addressing the second major limitation of the basic ESM

scheme, namely, the load imbalance due to node heterogeneity. Measurement studies [50]

have conclusively shown that end-hosts exhibit noticeable heterogeneity in large-scale P2P

networks. For a distributed system in which end-hosts rely on one another to provide

services like end-system multicast, balancing workloads among heterogeneous end-hosts

is vital in utilizing the full system capacity and to provide efficient services. One way to

address the node heterogeneity problem is to place end-hosts in a P2P network into different

service layers depending upon their capabilities. A number of systems have adopted this

approach to achieve better performance. For example, KaZaA [5] and Gnutella v.0.6 [58]

have the notions of super node and ultra peer respectively. In the structured P2P network

proposed by Zhao et al. [65], these nodes are referred to as super nodes. Xu et al. [59]

organize the super nodes into a special layer of overlay called expressway, which is used

to accelerate the routing and to provide better services. Generally, the powerful nodes are

assigned with more workloads and serve as the “hubs” in the overlay network.

However, the above approach has one significant drawback. Because of the predeter-

mined hierarchical system architecture, such schemes introduce vulnerabilities into the over-

lay network. Usually, a supernode does not use lower level nodes to relay traffic to other

supernodes in the network. Rather, supernodes interact directly with one another. Mean-

while, supernodes are assumed to be stable and have enough resources such as computing

power and access network bandwidth to serve their duty. The supernodes might unex-

pectedly drop out of the network in an uncontrolled manner due to node failure, forceful

removal, or overloading. The overlay network would suffer considerably because it might be
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fragmented into a number of disconnected smaller network partitions. The system would

also be vulnerable when malicious nodes assume the role of supernodes and mislead other

overlay nodes into relying on them for services.

The Cascade system adopts an alternative approach. Our approach is based on the

concept of virtual nodes. A virtual node is a conceptual entity that encapsulates all the

functionality of an individual peer. In fact, each virtual node has its own identifier in the

Cascade system. An actual peer in the Cascade system is assigned one or more virtual

nodes based upon the resource availability at the peer. In other words, an actual peer in

our system hosts multiple identifiers and is responsible for performing the functionalities of

the corresponding virtual nodes. For example, a node with higher capabilities is assigned

larger number of virtual nodes, and vice versa. Thus, our scheme implicitly assigns more

workloads to the powerful nodes.

The Cascade system incorporates three load-balancing operations:

Generate Virtual Nodes. Each end-host joins the Cascade ESM overlay with a set of

identifiers generated with different random seeds. Each identifier represents a virtual node

that is allocated with a unit of resource. We assume that the amount of resources that an

end-host shares can be estimated by using functions like the one used in [31], or be specified

by the end user. Each virtual node maintains its own overlay state information like routing

table and neighbor list.

Subscribe with Virtual Nodes. An end-host subscribes to a multicast group by starting

the subscription process at one of its virtual nodes with an identifier numerically closest

to the service identifier gid. Statistically, a more powerful end-host should have higher

probability to own an identifier that is closer to any service identifier.

Virtual Nodes Promotion Our virtual node scheme assigns shorter multicast path

to more powerful end-hosts with higher probability. However, because we use network

proximity information to cluster end-hosts, and use randomly generated leading digits to

control the distribution of identifiers, there is still a nonzero probability of a weak end-host
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owning an identifier that is numerically close to the multicast root and thus be placed closer

to the root of the multicast tree. Hence, it has to serve a large number of subscribers and

it is likely to become a bottleneck.

One way to mitigate this problem would be to place only powerful nodes closer to the

multicast root. Towards achieving this objective, we design a technique called virtual node

promotion. In this technique, each node in the multicast tree periodically probes its child

nodes. It chooses the child that has the most available resources as its potential replacement.

Whenever a node detects that its potential replacement has more available resources than

itself, an up-call is triggered. It will inform its potential replacement to subscribe to its

parent, and inform its children to subscribe to the potential replacement. On receiving the

promotion notification, the potential replacement will inform its children to subscribe to its

current parent. The whole process is transparent to the end users.
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Figure 9: Bottleneck removal

Thus, end-hosts contributing more resources will be gradually “promoted” towards the

root of the ESM tree and they obtain better multicast service than other end-hosts. Figure 9

gives an example, illustrating how this technique works. In the ESM overlay composing

end-hosts {CA1, GA1, GA2, WA1, WA2}, WA2 probes its children CA1 and GA1. As WA2

detects that CA1 has more available resources than itself, it initiates the promotion of CA1

and switch its position to be a child of CA1.

2.5.1 Failure Resiliency in Cascade

Failure resiliency is the capability of a system to tolerant unintentional faults and non-

malicious failures. In the Cascade system, a failure is represented by the interruption in
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the multicast service to the nodes. It is typically caused by the exit of one or more peers

in the system. Node exits can be of two types. A node might properly depart from the

system, in which case, it voluntarily disconnects from the system. Here, the departing peer

notifies the other peers about its departure. In contrast, a failure is a disconnection of a

peer without notifying the system. This can happen due to a network problem, computer

crash, or improper program termination. Failures are assumed to be detectable (a fail-

stop assumption), and are captured by the Cascade P2P protocols neighbor list polling

mechanisms. Irrespective of how a node exits, the mechanisms in Cascade to handle the

node exit are similar.

One possible way to handle node exits would be to require the peers whose multicast

service has been disrupted to re-subscribe to their respective multicast service [17]. This is

in fact a fallback option in Cascade. However, this approach has a major drawback; each

node exit would trigger large-scale re-subscriptions, which imposes significant overheads on

the system.

The Cascade system incorporates a failure resilience mechanism that is based on the

principle of service replication.

2.5.2 Service Replication Scheme

Our service replication scheme involves two phases. The first phase is right after the ESM

group information is established on a peer. Replicas of the ESM group information are

installed on a selection of peers. After replicas are in place, the second phase keeps those

replicas in consistency as end-system nodes join or leave the ESM group.

j
i

replicate g

activate
replicated

service

parent (g, p, i)

.. .. ..

ReplicationList (g, p, i)
service replication
valid ESM path
broken ESM path
replication activation

Figure 10: Multicast Service Replication with rf = 4
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In our scheme, the group information on a peer p with identifier i is replicated on a set

of peers denoted as ReplicationList(g, p, i). We refer this set as the replication list of group

g on peer (p, i). The size of the replication list is rf , which is referred as the replication

factor and is a tunable system parameter. To localize the operations on the replication list,

we construct the replication list from the neighboring peers of node p. This implies that

rf ≤ 2 ∗ r.

For each ESM group g that a peer p is actively participating, peer p will forward the

replication list ReplicationList(g, p, i) to its parent peer parent(g, p, i) in group g. Once

p departs from group g, its parent peer parent(g, p, i) will use ReplicationList(g, p, i) to

identify another peer q with identifier j to take over the ESM multicast forwarding func-

tionalities of p. q will use the group information that p installed on it to carry out the ESM

forwarding for group g. We say that q is activated in this scenario. Once q is activated, it will

use its neighbor list NeighborList(q, j) to setup the new ReplicationList(g, q, j), and use

it to replace ReplicationList(g, p, i) on parent(g, p, i), which is equivalent to parent(g, q, j)

now.

2.5.3 Replica Management

We now explain the process of maintaining the replicas when end-systems join or leave the

Cascade system.

For the purpose of brevity, we assume that the replication factor rf is equal to 2r. In

case that rf is less than 2r, our arguments still hold with some minor modifications to the

description.

When a multicast group g is added to the multicast group list on a peer p with identifier

i, it is replicated to the peers in the ReplicationList(g, p, i). Cascade P2P protocol detects

the later peer entering and departure event fallen within NeighborList(p, i). Once such

an event happens, an upcall is triggered by the P2P management protocol, and the replica

management protocol will query the peers in NeighborList(p, i) and update the replication

list ReplicationList(g, p, i). We describe the reaction that a peer will take under different

scenarios.
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Peer Departure. The departure of a peer triggers the update of 2r neighbor lists. Once a

peer p with identifier i receives the upcall informing the departure of peer p′, it will perform

the following actions:

• For each group g that p is forwarding ESM payload, p adds p′′, which is added into

NeighborList(p, i) by the P2P management protocol, to the replication list

ReplicationList(g, p, i).

• For each group g that p is forwarding ESM payload, p removes the departing peer p′

from the replication list ReplicationList(g, p, i).

• For each group g that p is forwarding ESM payload, p removes the departing peer p′

from the replication list ReplicationList(g, p, i).

• For each group g that p is forwarding ESM payload, p removes the departing peer p′

from the replication list ReplicationList(g, p, i).

Peer Entrance. A peer’s entrance also triggers the update of 2r neighbor lists. Once a

peer p with identifier i receives the upcall informing the entrance of peer p′, it will perform

the following actions:

• For each group g that p is forwarding ESM payload, p adds p′, to the replication list

ReplicationList(g, p, i).

• For each group g that p is forwarding ESM payload, p removes peer p′′, which is

removed from NeighborList(p, i) due to the entrance of p′, from the replication list

ReplicationList(g, p, i).

• For each group g that p is forwarding ESM payload, p sends its group information to

p′ as replicas.

• For each group g that p is forwarding ESM payload, p sends the updated replication

list ReplicationList(g, p, i) to its parent peer parent(g, p, i) in multicast group g.
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Updating Replicas. As end-system nodes subscribe or unsubscribed from ESM groups,

their subscription or unsubscription requests will be propagated up in the ESM tree and

change the group information on some peers. Once the group information of group g is

changed on peer (p, i). p sends its group information to all the other peers in

ReplicationList(g, p, i).

2.5.4 Replica Selection Policy

As mentioned earlier, when a node p exits the Cascade network, its parents in the multicast

tree activates one of the nodes in p’s replication list and asks it to handle the forwarding

functionalities of p. Our choice of the peer to be activated depends upon two distinct factors,

namely peer load factor and replication distance factor. Intuitively, the peer load factor

measures the willingness of neighboring peer pr to accept one more multicast forwarding

workload considering its current load. The replication distance factor, on the other hand,

is a measure of the network proximity of the peer pr to the failed peer p. A utility function

called ReplicaSuitability combines these two factors into a single value. The parent of the

failed peer p in the replication list of p that has the highest ReplicaSuitability value and

activates it.

We define each of these factors as follows:

Let pf denotes a failed peer and pr denotes a replica holder of pf for multicast group g.

Peer load factor is denoted as PLF (pr). It is a measure of a peer prs willingness to

accept one more multicast forwarding workload considering its current load. It is defined

as follows:

PLF (pr) =

⎧⎪⎨
⎪⎩

1 if pr.load ≤ tresh ∗MAXLOAD

1− pr.load

MAXLOAD if pr.load > tresh ∗MAXLOAD
(1)

Replication distance factor is denoted as RDF (pf , pr). It is a measure of the network

proximity of the peer pr to the failed peer pf . RDF is defined as follows:
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RDF (pf , pr) =
1

pingtime(pf .IP, pr.IP )
(2)

Let UtilityF (pf , pr, g) denote the utility function, which returns a utility value for ac-

tivate the service replica of peer pf and group g on peer pr. It is calculated based on the

two measures given above:

UtilityF (pf , pr, g) = PLF (pr) + α ∗RDF (pf , pr)) (3)

Note that we give more importance to the peer load factor PLF . For instance, the

service replica on a peer that is very close to the failed peer will not be activated if the replica

holder is heavily loaded. α is used as a constant to adjust the importance of replication

distance factor with respect to peer load factor. For a lightly-loaded ESM overlay, we want

to have a larger value of α since the probability that peers get overloaded is lower, and a

more efficient ESM overlay is more desirable. In a heavily-loaded ESM environment, we

may want to have lower value of α, to guarantee the feasibility of the multicast plan first.

2.6 Experimental Results

We have designed a simulator that implements the mechanisms presented in this chapter.

We evaluate the Cascade system in three subjects using our simulator. We first study the

effects of landmark signature technique on clustering end-hosts. Then, we evaluate how the

efficiency of multicast overlay could be improved using the network proximity information.

Finally, we study the multicast workload distribution and system performance under the

load-balancing scheme.

We used the Transit-Stub model from the GT-ITM package [61] to generate a set of

network topologies. Each topology consists of 5150 routers. The link latencies are assigned

values using a uniform distribution on different ranges according to the type of the links:

Unif(15ms, 25ms) for intra-transit domain links, Unif(3ms, 7ms) for transit-stub domain

links, and Unif(1ms, 3ms) for intra-stub domain links. End-hosts are randomly attached to

the stub domain routers and organized into P2P networks following the Cascade P2P net-

work management protocol. Multicast group of various sizes are built over the P2P network
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following the multicast group management protocol, featured with different optimization

techniques.

We used the routing weights generated by the GT-ITM package to simulate the IP

unicast routing. IP multicast systems are simulated by merging the unicast routes into

shortest path trees.

2.6.1 Clustering by Network Proximity

This set of experiments examine the precision that landmark signature technique can achieve

in clustering end-hosts by their network proximity. The metrics we use is the percentage of

peers that have physical network neighbors in their local P2P neighbor lists. We simulate

the P2P networks with 1× 104 to 9× 104 peers, and set the neighbor list size parameter r

to be 8, 12, and 16. We choose 0 and 1 as the splice offset values.
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Figure 11: Clustering precision with splice offset = 0

Figure 11 and Figure 12 plots the experiment results. We observe three facts. First,

larger value of r increases the probability that peers find their physical network neighbors

in their local P2P neighbor list. Second, the landmark signature scheme can capture the

network proximity information with satisfactory precision. As many as 94% of all the peers

have one or more network neighbors in their local neighbor list, when r is set to 16. Third,

larger peer population increases the precision of clustering, because more peers from the

same network proximity join the Cascade ESM overlay.
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Figure 12: Clustering precision with splice offset = 1
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Figure 13: Clustering accuracy with splice offset = 0

The other metrics we used is the average number of physical network neighbors in each

peer’s P2P neighbor list. From Figure 13 and Figure 14, we first observe that the more

peers participate the P2P network, on average more entries in a peer’s P2P neighbor list are

its physical network neighbors. Secondly, the size of the neighbor list is another factor that

affects this number. As a peer’s neighbor list covers more peers, it observes more physical

network neighbors.
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Figure 14: Clustering accuracy with splice offset = 1

2.6.2 Efficiency Multicasting in Cascade ESM Overlay

Because the landmark signature technique biases the distribution of peer identifiers, one

of the concerns about using it is if it will incur any side-effects. In this section, we study

three different flavors of the Cascade ESM system: the one without the landmark signature

technique, which is equivalent to SCRIBE, the one with the landmark signature technique

only, and the one with both the landmark signature technique and the neighbor lookup

technique. We simulate a P2P network with 5×104 peers. The number of peers joining the

multicast group varies from 1× 104 to 4× 104. We set the value of neighbor list parameter

r to 8 and used 16 landmark points to minimize the clustering inaccuracy, so that we can

focus our efforts on comparing different schemes. We choose 0, 1, and 2 as the splice offset

values.

2.6.2.1 Delay Penalty

We first compare the message delivery latency of IP multicast and Cascade. ESM systems

have higher multicast message delivery latency than the equivalent IP multicast systems,

because of the multi-hop message replication and unicast forwarding. We evaluate such per-

formance penalty with metrics Relative delay penalty, which is defined as the ratio between

the average Cascade multicast delay and the average IP multicast delay.
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Figure 15: Relative delay penalty, using only landmark signature
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Figure 16: Relative delay penalty, using both landmark signature and neighbor lookup

The experiment results of Figure 15 and 16 show that, using the landmark signature

technique alone can reduce the relative delay penalty. The landmark signature technique

and our ESM management protocol put the network neighbors of multicast root node close

to it in the ESM tree. Thus, the multicast delay of those end-hosts that receives multicast

information through the network neighbors of root will have less delay penalty.

However, increasing the value of splice offset will offset the benefit of landmark signature

technique. The randomness identifier distribution in Cascade P2P network degrades to the

one similar to the random P2P network, when we increase the value of splice offset. The
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Figure 17: Max delay penalty, using only landmark signature
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Figure 18: Max delay penalty, using landmark signature and neighbor lookup

Cascade systems with larger splice offset value have relative delay penalty values close to

the ones of the basic Cascade systems.

Another observation is that the neighbor lookup technique has little influence on the

relative delay penalty. It is because the landmark signature technique clusters peers by their

network proximity. The nodes grouped by the neighbor lookup technique in the multicast

tree are physical network neighbors of one another. The multicast communications among

them are thus faster and add little to the overall multicast delay.
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2.6.2.2 Link Stress

To reach the same set of end-host subscribers, ESM systems always generate more IP

messages than the IP multicast systems. Link Stress is the ratio between the number of IP

messages generated by a ESM multicast tree and the number of IP messages generate by

the equivalent IP multicast tree. More efficient ESM systems have smaller link stress value.
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Figure 19: Link stress, using only landmark signature
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Figure 20: Link stress, using both landmark signature and neighbor lookup

The randomness of identifier distribution is violated by inserting landmark signature at

the very beginning of each peer identifier. The first hop of lookup requests is longer because
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the request initiator and the multicast root may not share the same identifier prefix, when

they are not physical network neighbors. On the other hand, the routing paths are less likely

to converge because they are more likely originated from different sub-networks, which are

now represented by identifier clusters on different segments of the identifier circle. Hence,

we observe that in Figure 19 and Figure 20, the serials with splice offset value 0 have much

higher link stress than other cases. When we introduce more randomness into the identifier

distribution by controlling the value of splice offset, we distribute peers from the same

network proximity into different segments on the P2P identifier circle. Thus, the link stress

drops close to the level of basic Cascade scheme, which is not optimized with the landmark

signature technique and the neighbor lookup technique.

When we use the neighbor lookup technique in our multicast overlay, more multicast

forwarding hops are confined among physical network neighbors. We thus reduce the number

of multicast forwarding paths traversing the inter-network links. This mechanism reduces

the link stress in comparison to the Cascade system without neighbor lookup scheme.

2.6.2.3 Node Stress

End-hosts in Cascade replicate and forward multicast messages, and handle housekeeping

jobs like maintaining the multicast group membership information. We use node stress

to evaluate the multicast workload on end-hosts. It is defined as the average number of

children that a non-leaf end-host handles in the Cascade multicast tree.

The way we generate landmark signature reduce the dimension of identifier space by a

factor of L!/2bL, where L is the number of landmark points. When we splice the landmark

signature at the very beginning of each identifier, we reduce the number of peers that share

the same identifier prefix with the multicast source. Subscription requests are then more

likely to be forwarded through fewer peers in the P2P network, and consequently incur

higher node stress. This explains why the Cascade ESM overlays with splice point 0 has

much higher node stress in Figure 21. When we increase the value of splice offset, we

reduce the node stress by increasing the randomness of identifier distribution. Thus, we

see in Figure 21 that peers with splice offset of value 1 or 2 have link stresses close to the
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Figure 21: Node stress, using only landmark signature
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Figure 22: Node stress, using landmark signature and neighbor lookup

ones of basic Cascade scheme. As the number of end-hosts in the multicast group increases,

in average a peer will handle more forwarding links, thus the average node stress increases

accordingly.

Using the neighbor lookup technique, a peer first trying to leverage its local network

neighbors for multicast services. The landmark signature technique renders high probability

that a peer can identify a network neighbor in its local P2P neighbor list. Therefore, we

observe in Figure 22 that Cascade ESM overlays equipped with both features have much

lower node stress in comparison to the original Cascade scheme. As the number of peers in
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the multicast group increases, the chance that a peer could subscribe to its local network

neighbors increases too. This explains why node stresses decrease when the number of peers

in the multicast group increases.

2.6.3 Balancing Load of Heterogeneous End-Hosts

To evaluate the effects of virtual node technique, we assign end-hosts in our simulation

with different capacities. To have a clear measurement of multicast load, we assume that

20% end-hosts possess 8 units of capacity, 30% end-hosts have 4 units of capacity, and the

rest 50% end-hosts own only single unit capacity. We are interested in the load distribution

among end-hosts with different capacities. Also, we are interested in the quality of multicast

services received by end-hosts donating different amount of resources. In Cascade, the

quality of multicast services is measured by the relative delay penalty of different end-host

groups.

We setup two types of ESM overlays. One set of them are built over P2P networks

with fixed peer number 5× 104 and various multicast group sizes, which model shared P2P

networks. Another set of ESM overlays are built over P2P networks of various size. This

model simulates exclusive P2P networks where only the provider or subscribers of the same

multicast service join the P2P network. We varies the number of end-hosts in the ESM

multicast overlay from 5 × 101 to 5 × 104. The node stress and the relative delay penalty

are recorded for each group of end-hosts with different capacities.

Figure 23 and Figure 24 plots the average node stress of ESM overlays optimized with

virtual node promotion technique. As shown in both figures, virtual node technique can

match the multicast workloads to end-hosts according to their capacities. In Figure 23,

where the multicast group members are chosen among shared P2P overlays, the node stresses

of different end-host groups present less significantly differences because fewer end-hosts are

heavily loaded. However, as recorded in Figure 24, when P2P overlay is heavily loaded, the

virtual node technique plays a vital role in balancing multicast workloads. Because the

basic Cascade protocol does not distinguish capacities of end-hosts, the randomness of the

peer identifier distribution causes a number of powerful end-hosts being placed down into
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Figure 23: Average node stress, r = 8, peer number = 50,000
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Figure 24: Average node stress, r = 8, peer number = multicast group size

the the ESM tree, whereas some less capable nodes are placed close to the root. The

node promotion technique we discussed in Section 2.5 solves this problem by promoting

more capable nodes towards the root node to handle more ESM workload, and moving the

potential bottleneck nodes deep down into the tree. As plotted in both Figure 23 and 24,

this feature effectively solves this problem.

One of the unique features of Cascade is that the end-hosts that contribute more re-

sources will be placed closer to the multicast root peer. This feature not only assigns more
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Figure 25: Relative delay penalty, r = 8, peer number = 50,000
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Figure 26: Relative delay penalty, r = 8, peer number = multicast group size

multicast workloads to more capable peers, it also awards them with better multicast ser-

vices in term of lower relative delay penalty. We records the relative delay penalties of

end-hosts with different level of capacities in Figure 25 and Figure 26. We can see that the

more capable peers always have lower delay penalty.
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2.6.4 Reliability

2.6.4.1 Failure Resilience

One of the situations that is rather crucial for the Cascade system is the case where the

peers are continuously leaving the system without any peers entering; or the peer entrance

rate is much lower than the peer departure rate such that the number of peers in the system

decreases rapidly.
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Figure 27: Unrecoverable failure, rf = 1
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Figure 28: Unrecoverable failure, rf = 2

To observe the worst case, we setup our simulation with 4 ∗ 104 peers, among which
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Figure 29: Unrecoverable failure, rf = 3

2 ∗ 104 peers participate the ESM overlay. Each peer departs the system by failing after

certain amount of time. The time each peer stays in the system is taken as exponentially

distributed random variable with mean st, which indicate the service time of a peer in

the overlay. It is clear that unrecoverable failure of peers will trigger the re-subscription

process and cause the service interruption to its downstream peers. However, we want to

observe the behavior of our replication scheme with different rf values and see how the

ESM service in Cascade can be recovered with replica activation, instead of the expensive

re-subscription.

The graphs in Figures 27, 28, and 29 plot the total number of unrecoverable failures

that have occurred during the whole simulation for different mean service times (st), re-

covery times (Δtr), and replication factors (rf ). These graphs show that the number of

unrecoverable failures is smaller when the replication factor is larger, the recovery time is

smaller, and the mean service time is longer. Note that our simulation represents a worst

scenario that every peer leaves by failure and no peer enters into the system. However, with

a replication factor of 3, the number of unrecoverable failure is negligible.

These experiments show that, although the cost of replication maintenance grows with

the increasing replication factor, the dynamic replication provided by Cascade is able to

achieve reasonable reliability with moderate values of the replication factor.
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2.6.4.2 Service Recovering Overhead

We measure the overhead of service recovering by the total number of messages exchanged

to restore the interrupted service. A unrecoverable failure of a peer causes its downstream

peers to re-subscribe, trying to restore the interrupted multicast services by themselves.

On the other hand, if a peer’s service replica is activated when it fails, only one message is

used to report the failure and one fast activation message is involved to activate the service

replica.
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Figure 30: Number of service recovering messages under replication scheme, rf = 1
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We observe the number of messages exchanged under the same experiment configurations

of Figure 27. We count the total number of messages generated for both replica activation

and service re-subscription. The results in Figure 30 conforms to the curves of Figure 27.

When the number of unrecoverable failure increases, more messages are generated for the

re-subscription requests. However, as plotted in Figure 31, most of the messages are for

the replica activation, since most of the interrupted services are restored by the replica

activation.

To evaluate the effect of the replication scheme on reducing the service recovery over-

head, we compared the number of messages incurred by the replication scheme to the

number of messages generated when there is no service replication. We measures multicast

groups with 1 ∗ 104 ∼ 4 ∗ 104 peers built over P2P network with 5 ∗ 104 and 8 ∗ 104 peers.

The replication scheme is setup with rf = 1 and the peer service times follow exponen-

tial distribution with mean 20 minutes. The experiment results are plotted in Figure 32.

The overhead of service recovering increases almost linearly, as the number of peers in the

multicast group and the P2P network increases. However, we observe that when the ser-

vice replication scheme is used, much fewer messages are generated. With the overhead of

maintaining ONE service replica, we reduce the messaging overhead by 62.3% to 73.8%.
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2.7 Related Work

End-system multicast has received considerable research attention in the past few years.

Chawathe [18] and Chu et al [20] propose a two-step protocol to build multicast trees. For

example, the Narada [20] first generates a mesh network among all members and then uses

distance vector to generate the multicast tree. However, because of their high maintenance

overhead, such schemes are only suitable for small networks. The Overcast protocol [35]

presents a distributed strategy to organize a set of proxies (Overcast nodes) into a distri-

bution tree, with the multicast source as the root. It uses end-to-end measurements to

optimize bandwidth among the root and group members. This scheme is in some ways sim-

ilar to the Yoid scheme [26]. The Cascade system differs from these schemes in that we used

completely distributed protocols to construct and maintain the ESM overlay. The efficiency

of the Cascade ESM overlay is achieved by leveraging the network proximity information

provided by the landmarks signature scheme.

Cascade is similar to ESM protocols like NICE [12], CAN-multicast [46], Bayeux [67],

and SCRIBE [17], which use implicit approaches to create ESM overlays. In those systems,

a control topology is built by using either the on-shelf P2P protocols like [45, 49, 64] or

specially designed protocol like [12].

Nevertheless, those on-shelf P2P protocols used by these works are not specially de-

signed to support ESM. Thus, there is still a large room for performance improvement. The

Content Addressable Network (CAN) [45] organizes nodes in a d-dimensional Cartesian

space, and it uses landmark technique to partition the Cartesian space into various sized

bins. However, as Xu et al. [60] demonstrate the overlay structure is constrained by the

underlying network topology in topology-aware CAN [47], and the technique used by CAN

may destroy the randomness of the nodes distribution, thereby inducing high maintenance

costs. The Pastry [49] system exploits topology information in overlay routing using ge-

ographic layout, proximity routing, and proximity neighbor selection. It assumes triangle

inequality in the network topology and using expanding-ring search to choose the physically

closest node at node joining. Scribe [17] is an ESM protocol built on top of Pastry. Our ex-

periments show that our basic Cascade system yields similar performance as that of Scribe.
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However, due to logarithmical deterioration of routing [60], the stretch of Scribe’s multicast

forwarding link increases exponentially from the subscriber to the multicast source. On

the other hand, the randomness of node identifier distribution of Pastry prevents the usage

of optimization techniques such as neighbor lookup of Cascade, which helps Cascade to

achieve better utilization of network resources. In Bayeux [67] system the joining request

to an existing multicast tree is forwarded to the root node, from where a reverse message

is routed back to the new member using the Tapestry [64] P2P protocol. The nodes on

this routing path will record the new member’s identity and include it into the multicast

forwarding path. Similar to NICE [12] system, such a scheme can overload the root node

and cause service interruption when the ESM overlay is heavily loaded.

The approach taken by Cascade differs from these existing researches in two aspects.

First, the efficiency of Cascade ESM overlay is the result of the synergy of optimization

techniques at different system levels. We use the landmark signature technique to improve

the routing efficiency at the P2P network level, whereas the neighbor lookup technique

optimizes the multicast overlay at the ESM overlay level. Second, Cascade presents a

scalable solution for end-system multicast in a heterogeneous environment by using the

virtual node scheme. In short, the techniques proposed in this chapter are unique and they

comprehensively address the important challenges in end system multicasting.
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CHAPTER III

INFORMATION DISSEMINATION USING PEER TO

PEER GROUP COMMUNICATION

3.1 Introduction

In this chapter, we study the problem of implement large scale information dissemination

by using a peer-to-peer group communication system. With the rapid advances of wireless

communication technology and the increasing popularity of hand-held devices, we witness

the continuous escalation of multi-party group communication applications, such as mul-

tiplayer online games, online community based advertising, real-time conferencing [4], and

instant messaging [3]. The implementations of these applications usually involve the ex-

changes of text or multimedia contents among multiple participants. A large number of

existing group communication systems achieve scalability through computer cluster-based

server farms [4, 3], which are exclusively owned by service providers and require signifi-

cant administrative investment. Subscribers usually have to pay a premium for scaling the

services [4] and are often limited to the features defined by a specific service provider.

Peer-to-Peer (P2P) networks demonstrate a promising paradigm for providing open and

distributed information sharing services by harnessing widely distributed, loosely coupled,

and inherently unreliable computer nodes (peers) at the edge of the Internet. The success of

Skype [6] has shown both the opportunity and the feasibility of utilizing P2P networks as an

economical alternative infrastructure for providing wide-area group communication services.

In Skype, widely distributed personal computers are interconnected by an unstructured

P2P overlay network. By utilizing the high flexibility and low maintenance cost of such

an open system architecture, Skype enables value-added services like Internet-to-PSTN

(Public Switched Telephone Network) calls at a fraction of the price of traditional telephony

services. However, the overlay networks in Skype are typically used only for service lookup
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and control signaling. Under the multi-party conference settings, the voice communication

payloads are directly forwarded to and relayed by a single node through its IP unicast

links [13]. As a result, the maximum number of participants allowed in each conference

session is limited. The first release of Skype only enables group communication among less

than 6 participants [13].

An immediate question to ask is whether a P2P overlay network can be optimized to

provide scalable and efficient wide area group communication services. Two types of P2P

networks have been extensively studied. Structured P2P networks [45, 49] regulate the

network topologies through Distributed Hash Tables (DHT) and provide efficient inter-

peer communication in a bounded number of hops. There have been a number of group

communication systems built over DHT-based structured P2P networks [17, 46]. However,

it is widely recognized that the overhead of maintaining DHT-based structured topologies

is significant in a highly dynamic environment and it may cause considerable performance

degradation [19]. In contrast, because of their simplicity, Gnutella-like [58] unstructured

P2P networks have low maintenance cost against network dynamics, such as peer joining,

failure, and departure. Surprisingly, there are currently only limited implementation and

deployment of group communication applications over such P2P overlay networks. None,

including Skype, to our knowledge, has proposed a scalable group communication protocol

for supporting a large number of participants over an unstructured P2P network. The

common concern about unstructured overlay networks is their non-deterministic nature in

service lookup and their inefficient utilization of the underlying IP network resources.

The design of Peercast attempts to address the following three questions. First, how

can we translate wide-area group communication application requirements, such as com-

munication efficiency, load balancing, and system scalability, into the metrics that we can

use at the overlay network management layer, and how can we incorporate them into the

P2P group communication middleware design such that group communication applications

could obtain optimal or near optimal performance? Second, the unstructured P2P overlay

networks are randomly constructed. Their tolerance to transient network states is rooted

in the fact that they use no global control mechanism to regulate resource distribution and
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the network topology. How can we design an overlay network management protocol in such

a way that an unstructured P2P overlay network could obtain the features critical to the

performance of group communication applications without losing its randomness? Third

but not the least, searching or service lookup in Gnutella-like unstructured P2P networks

is known to be non-deterministic and network bandwidth-intensive. It may take longer

time to locate a service, and a P2P lookup request may generate huge amount of network

traffics due to the broadcast nature of the lookup protocol. A number of optimizations

have been proposed [19, 5] to improve the lookup efficiency of unstructured P2P networks.

However, few of them are designed for scaling wide-area group communication services. An

important research challenge in Peercast design is how can we develop an efficient service

lookup mechanism that is effective for both control signaling and communication group

management?

In this chapter, we present Peercast, a scalable and efficient P2P group communication

middleware system based on an unstructured P2P overlay network. In our system, the P2P

network serves not only as a signaling overlay, it also carries group communication payloads

through distributed spanning trees composed of the unicast links interconnecting multiple

participants. Our system has three distinct features.

First, we present a generic utility function for optimizing unstructured P2P network

topology and underlying P2P search protocol. Our utility function combines the network

proximity and the node capacity metrics for measuring and evaluating the utility of nodes

in terms of group communication efficiency and system scalability. We show that different

optimization mechanisms can use this generic utility function for peer selection in construct-

ing P2P overlay networks and in building efficient and scalable spanning trees to support

group communication applications.

Second, we present a utility-based P2P overlay network management protocol, which

uses the proposed generic utility function in constructing unstructured and low-diameter

P2P overlay networks. This protocol generates overlay networks that can match structured

P2P networks with their high scalability and communication efficiency, while keeping the

low maintenance overhead of unstructured P2P networks. A unique feature of this protocol
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is that it can balance the per-peer workloads according to the node capacity of each peer, in

order to avoid performance degradation and avoid introducing bottlenecks into the system.

The third unique characteristic of the Peercast design is its distributed algorithm for

constructing spanning trees that interconnect the participants of the group communication

applications. This algorithm is the core of the Peercast wide-area group communication

middleware. It enables P2P networks to carry group communication payloads through

the unicast links interconnecting participants. In summary, the Peercast communication

middleware system offers the following three basic group communication services:

• A service announcement mechanism that selectively propagates the service informa-

tion to peers in the overlay network. By cutting out the paths that will not likely be

used in group communication spanning tree, this mechanism reduces the messaging

network traffic by 27% to 56% compared to the popular advertisement scheme used

in [18], without affecting the performance of group communication applications.

• A fast service lookup mechanism that enables a participant to discover the services of

interest with fewer probing messages. Our service announcement mechanism pushes

the group communication information closer to the participants, such that they can

locate the service of interest within their overlay network neighborhood much faster,

and generate less searching traffic.

• A communication group management mechanism that constructs efficient spanning

trees for wide-area group communications. Our experiments indicate that in most of

the cases, the end-to-end communication latency between any two peers in the span-

ning tree is within 3 times of the IP unicast latency. By matching the communication

workloads of each peer to its node capacity, we are able to reduce the overloading in

the overlay network by one to two orders of magnitudes.
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3.2 The Utility Function: Combining Node Capacity and
Network Proximity

Protocols for constructing overlay networks and organizing wide-area communication groups

are typically designed to address two problems, i.e., how should peers choose and maintain

their neighbors in the overlay, and how should the connections in the overlay be utilized

for group communication applications. Interestingly, we observe that the solutions to both

problems address the same design issue - given a list of peers, say L, what are the metric(s)

that a peer should use to choose a subset of them to connect to.

In Peercast, we address this problem by defining a utility function that assigns different

preferences (rankings) to each peer in the list L. For any given peer i, this function is

a weighted combination of two utility metrics: the first metric is for evaluating network

proximity, which measures the relative distance between peer i and every other peer in L,

and the second metric is for evaluating the node capacity of each peer in L. These two

utility metrics are then combined based on the utility preference of peer i, as well as the

desired performance properties of the whole overlay.

In order to reach large number of participants or service subscribers, communication pay-

loads in group communication systems have to be relayed within the P2P overlay through

spanning trees composed of peers and unicast IP network links, due to the limited access

network bandwidth and the limited processing power of each peer. Hence, the properties of

the unicast links interconnecting peers in the P2P overlay largely decide the performance

and the efficiency of the group communication system. By measuring and utilizing network

proximity information, we can optimize both the construction of randomly generated over-

lay networks and the management of multi-party communication groups in terms of unicast

link efficiency. Similarly, it is known that any mismatching between the packet-forwarding

workloads and the capacity of peers may introduce bottlenecks in the communication over-

lay and block the forwarded communication payloads. By measuring and utilizing node

capacity information, we can gain better control over the communication workload distri-

bution, in terms of how to utilize the connections in the overlay to provide efficient group

communication services.
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Concretely, when peer i evaluates a list of peers L to choose a subset of peers, we assume

that two types of information are available for each peer j ∈ L: the node capacity Cj , and

the relative distance between peer i and peer j, denoted by D(i, j). We use the accessible

network bandwidth to gauge the node capacity of each peer j, because the performance

of a peer in a distributed environment like P2P networks is largely decided by its access

network bandwidth available for forwarding communication payloads. It can be specified

by end users as how many 64Kbps connections a peer is willing to support, or be estimated

using network probing techniques. We use their network coordinates to estimate the relative

distance between peer j and peer i. Network coordinates can be measured using mechanisms

such as Vivaldi [21] and GNP [2]. For any pair of peers, their network coordinates can be

used to estimate the physical network distance between them with satisfying precision.

We define two utility-based preference metrics based on network proximity and node

capacity, respectively.

Given a list of peers L, we define the Distance Preference of peer i to peer j ∈ L as the

probability that peer i chooses peer j out of L, based on the network coordinate distance

between them. The closer peer j is to peer i, the more likely it is chosen. This utility

metric will be used to incorporate the network proximity information into the construction

of Peercast overlay networks and communication spanning trees. Its definition is given in

Formula 4.

PDi(L, j) =
1

di(L,j) − α∑
k∈L

1
di(L,k) − α

(4)

where α ∈ (−∞, 1) is a tunable parameter that indicates i’s preference for closer peers.

The smaller the value of α is, the less preference gives to close peers. We choose α < 1 so

that there is nonzero preference on each j ∈ L. The function di(L, j) gives the normalized

distance estimation of D(i, j), which is the network coordinate distance between peer i and

peer j. We define di(L, j) over the list L as follows:

di(L, j) =
D(i, j)

MAXk∈LD(i, k)
(5)

After normalization, we have 0 < di(L, j) ≤ 1.

63



Similarly, we define the Capacity Preference based utility metric of peer i with respect

to peer j as the probability that peer i chooses peer j out of L based on the node capacity

of peer j. The more resources peer j has, the higher is the probability that peer j could be

used to serve more other peers. We will use the value of this utility metric to implement

the preferential attachment mechanism for constructing a low-diameter power-law overlay

network. It is defined as in Formula 6.

PCi(L, j) =
Cj − β∑

k∈L Cj − β
(6)

where β ∈ (−∞, 1) plays a similar role as α does in Formula 4. Cj is the node capacity of

each peer j.

When peer i considers selecting peer j, peer i should base its choice on its own available

resources, or capacity. If peer i possesses more computing power, more access network

bandwidth, and more available memory and storage space, we would like to use it as a

forwarding hub in the overlay network and applications. For such a peer, it should be

connected to those peers that have similar resources and play similar roles in the overlay

network, and become a member of the “core” of the overlay network. On the contrary, if

the resources of peer i are limited, it should not be placed into the “core” of the overlay

network and should avoid playing roles that can easily exhaust its resources. A better choice

for such a peer might be connecting to peers that are physically close to it and using them

to access the overlay network.

To implement this rationale, we define the Selection Preference of peer i to peer j ∈ L

as a utility function of capacity preference and distance preference:

Pi(L, j) = γ · PCi(L, j) + (1− γ) · PDi(L, j) (7)

where 0 ≤ γ ≤ 1.

Choosing different values for parameters α, β, and γ gives us the flexibility to fine-tune

the selection algorithm for different application scenarios. For an overlay network supporting

applications that are sensitive to network proximity, we should set a higher value for α and
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a lower value for γ, such that peers will choose more physical network neighbors. On the

contrary, for an overlay network that emphasizes more on load balancing, a higher value for

β and a higher value for γ should be more preferable.

The values of parameter α, β, and γ can be mathematically derived by using techniques

like the one used in [14], if only we know the exact number of peers and the exact power-law

distribution parameters. However, in a distributed environment like P2P networks where

global statistical mechanisms are expensive to implement, it is unlikely that such information

would be available. In our system, we use the functions defined on the capacity information

of each peer to approximate the values of those parameters. We use Resource Level ri

to reflect the node capacity of peer i. It is defined as the proportion of peers that have

less capacity than peer i in the overlay network, and 0 ≤ ri ≤ 1. Specifically, we set the

preferential parameters as α = 1−ri, β = ri, and γ = r
−ln(ri)
i . Such a configuration exactly

reflects our design rationale: the capacity of a peer should be used to decide the properties of

its connections in the overlay network. More powerful peers should be connected to other

peers that are equally powerful and should care less for the distance to their neighbors,

whereas peers with limited resources should be connect to peers that are closer to them and

avoid being overloaded.

The general utility function for selection preference can then be represented as:

Pi(L, j) = r
− ln(ri)
i · Cj − ri∑

k∈L Cj − ri
+ (1− r

− ln(ri)
i ) ·

1
di(L,j) − (1− ri)∑

k∈L
1

di(L,k) − (1− ri)
(8)

Note that we use the list L as a sample of the peers in the overlay and estimate ri as the

fraction of peers in L that have less or equal capacity as peer i, because no global capacity

ranking information is available.

To evaluate the effectiveness of the selection preference metric, we simulate the selecting

process of three peers, using a set of synthetic data. We assign each of them with different

resource level value. The one with ri = 0.05 represents a peer with low capacity. Similarly,

the one with ri = 0.5 simulates a peer with medium capacity, and the one with ri = 0.95

represents a powerful peer. For each of them, we generated a list of 1× 103 peers, each of
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which is assigned a capacity value that follows a zipf distribution with parameter 2.0. We

assume that the distance between each candidate peer and the peer evaluating them follows

a uniform distribution Unif(0ms, 400ms).

Figure 33 ∼ Figure 38 plot the simulation results, which exactly reflex our design ra-

tionale. For a weaker peer that has ri = 0.05, its selection preference to other peers are

dominantly decided by its distance to them, as plotted in Figure 33 and Figure 34. On the

contrary, the selection preference of a powerful peer is largely decided by the node capacity

of peers in the candidate set L, as shown in Figure 37 and Figure 38. For the peer that has

medium amount of resources, it equally prefers powerful and nearby peers.
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Figure 33: Selection preference of low capacity peer vs. distance to other peers

3.3 Utility-aware Overlay Bootstrapping

Research works in natural systems [55] and man-made environments [50, 48] discovered

that the topologies of those systems usually follow a power-law distribution. In a power-

law graph, the total number of pairs of nodes, P (h), within h hops, is proportional to the

number of hops to the power of a constant �, P (h) ∝ h�, where h � δ, and δ denotes the

diameter of the graph. The graph can grow while maintaining a low network diameter, i.e.,

the average shortest path between two peers in term of number of hops.
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Figure 34: Selection preference of low capacity peer vs. capacity of other peers

0 50 100 150 200 250 300 350 400

10
−3

10
−2

10
−1

10
0

Preference distribution v.s. distance distribution, r
i
 = 0.50

Distance (ms)

P
re

fe
re

nc
e

preferences for top 20% powerful candidates
preferences for 80% less powerful candidates

Figure 35: Selection preference of medium capacity peer vs. distance to other peers

It has been observed in [48] that the node degree of Gnutella network follows a power-

law distribution. However, it is a widely accepted argument [56, 19] that Gnutella P2P

networks suffer from large network diameters and searching operations in such networks

are expensive. A node needs to either increase the radius of the search scope, or to accept

the fact that the query may locate fewer popular objects. Interestedly, we find such believe

contradict with the properties of the power-law networks, which should be scale free, as

defined in [24].

In the Peercast system, we use a distributed utility-aware algorithm to construct an
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Figure 36: Selection preference of medium capacity peer vs. capacity of other peers
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Figure 37: Selection preference of high capacity peer vs. distance to other peers

unstructured power-law network. Powerful peers are inserted into the same P2P overlay

that other peers participate, rather than being explicitly put into a different routing layer.

When a peer joins the overlay, it gathers the information of a number of existing peers

as its neighbor candidates. The new peer calculates the probability of connecting to each

candidate by using the utility function defined in Formula 8 of Section 3.2. Different weights

are put on candidate peers, depending on the capacity of the new peer.
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Figure 38: Selection preference of high capacity peer vs. capacity of other peers

3.3.1 Topology Construction Algorithm

Our protocol extends the current version of the Gnutella protocol [58]. A peer in our overlay

is uniquely identified by a tuple of four attributes:

< IP address, port number, coordinate, capacity >

where coordinate represents its network coordinate, and capacity is its capacity.

Preferential attachment has been widely used in centralized network topology generators

to generate power-law networks. Algorithms like [14, 42] add links between nodes with

probability in direct proportion to the incident link degrees of the nodes. To build a power-

law network for wide-area group communication applications, each node needs two types

of information to decide its neighbors in the overlay network. First, it needs the degree

information of the other nodes to preferentially connect it to those highly connected ones.

Second, it needs the network proximity information to connect itself to a set of physical

network neighbors and a few randomly selected ones as its routing “shortcuts”. However, in

a distributed environment like P2P networks, neither kinds of information can be explicitly

obtained.

In Peercast, a joining peer i obtains a list of existing peers by contacting a host cache

server or using its local cache, which contains its P2P network neighbors carried from the
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last session of activities. The host cache server is an extension of Gnucleus [57], which

caches the information of a list of peers that are currently active in the P2P network. The

joining peer i attaches its 4-tuple identification to the query request sent to the host cache

server. Upon receiving a query request from peer i, the host cache sorts its cached entries

in an ascending order by their network coordinate distances to peer i. From the top of

this sorted list, the host cache selects a list of peers BDi. They are returned to pere i

together with a list of randomly selected peers BRi. We set |BRi| = |BDi| and use Bi to

denote BRi
⋃

BDi. We let 5 ≤ |Bi| ≤ 8. This is also the default setting used by Gnutella

systems [58].

Starting from the subset Bi of bootstrapping peers received upon its entry, Peer i sends

a probing message Mprob to each peer k ∈ Bi:

Mprob =def 〈 source = i, type = prob, TTL = 0, hops = 0 〉

Each peer k that receives this probing message sends back a responding message Mprob resp,

which is augmented with a list of its P2P network neighbors Nk.

Mprob resp =def 〈 source = k, type = prob resp, TTL = 0, hops = 0〉

Peer i assembles all the neighbor information contained in the probing replies and com-

piles them into a candidate list LCi. For each unique peer j ∈ LCi, peer i calculates two

types of information: (1) The occurrence frequency of peer j, which records the number of

appearances of peer j in LCi, denoted as fi(j). As LCi serves as a sampling of the peers in

the network, fi(j) is the sample of the degree information of each peer j. (2) The estima-

tion of the physical network distance between peer i and peer j, denoted by di(LCi, j), as

defined in Formula 5 of Section 3.2.

Based on its own node capacity, peer i selects a number of peers from the list LCi and

adds them into its neighbor list Ni, with probability defined by Formula 9. Note here that

we use fi(j) to substitute the node capacity information Cj and use LCi to replace the

candidate list L of Formula 8. Based on Formula 4 and 6, as well as the settings of α, β, γ

discussed in Section 3.2, The selection preference based utility function can be represented

as follows:
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Pi(LCi, j) = r
− ln(ri)
i · fi(j) − ri∑

k∈LCi
fi(j)− ri

+

(1− r
− ln(ri)
i ) ·

1
di(LCi,j)

− (1− ri)∑
k∈LCi

1
di(LCi,k) − (1− ri)

(9)

The value of resource level ri of peer i can be obtained in two different ways. The

first approach is to use some statistical information like the one presented in Saroiu, et

al. [50], which gives the bandwidth distribution for a Gnutella P2P network. The second

approach is the one we actually adopted. In this approach, the resource level ri of peer i

is approximated by counting the proportion of peers in candidate list LCi that have equal

or less capacity than peer i. Such approximation helps avoid the reliance on the statistical

information, which may be outdated as the network technologies evolve.

After peer i sets up its outgoing edges (forwarding connections), it will start to setup

the incoming edges to itself (back links or backward connections of peer i). This task is

performed by sending a backward connection request to each peer k ∈ Ni in the following

format.

Mback req =def 〈source = i, type = back req, TTL = 0, hops = 0〉

The request is augmented with the capacity information Ci of peer i and its network

coordinates.

Peer k calculates the probability of setting up a back link to peer i by evaluating the

capacity and distance information of peer i against its existing neighbors. The evaluation

formulation takes three rankings as inputs and returns a value as the probability that

peer k should consider peer i as its neighbor. Specifically, those three rankings are: the

capacity ranking rck(Nk) of peer k amongst its neighbors Nk, which is defined as rck(Nk) =

|{j|j∈Nk,Cj≤Ck}|
|Nk| ; the capacity ranking rci(Nk) of peer i amongst the neighbor of peer k, which

is defined as rci(Nk) = |{j|j∈Nk,Cj≤Ci}|
|Nk| ; the distance ranking rdi(Nk) of peer i amongst Nk,

which is defined as rdi(Nk) = |{j|j∈Nk,D(j,k)≥D(i,k)}|
|Nk| , where D(i, k) denotes the network

coordinate distance between peer i and peer k. The probability with which peer k accepts

the back connection request is defined as follows:
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PBk(Nk, i) = rck(Nk)2 · rci(Nk) + (1− rck(Nk)2) · rdi(Nk)

Such a design reflects the same rationale we followed in devising the peer selection

mechanism, i.e., powerful peers are easier to be accepted by other powerful peers as their

neighbors, and weaker ones are good candidates only when they are close enough. Peer

k generates a random number following uniform distribution Unif(0, 1). If this number

is smaller than PBK(NK , i), peer i is accepted by peer k as a new neighbor, and a back

connection acknowledgement is sent back. If this number is larger than PBK(NK , i), only

with probability pb, a backward connection from peer k to peer i will be set up. The value

of pb controls the ratio between the number of outgoing links and the number of incoming

links of each peer. In our implementation, we set it with a value 0.5.

Parameter σ maps the average workload for handling one out-going link to the unit of

capacity, its value is decided by the specific applications supported by the overlay network.

For applications such as media streaming that heavily consume network bandwidth, σ tends

to have a larger value. While for systems that support only text message exchanging, σ will

be given a higher value.

In our implementation, we set the value of parameter a to u2.65, where u is a random

number following uniform distribution Unif(0, 1). This value is chosen experimentally to

give a smaller number of initial neighbors to powerful peers in the overlay network. One

reason to do so is to prevent malicious peers from manipulating the topology of a P2P

overlay by specifying exaggerated capacities. Also, if we expect that more powerful peers

may join the overlay network later, it is important that portion of the capacity of each

power peer should be reserved to accommodate the later connections to them.

3.3.2 Neighborhood Link Maintenance

Our overlay construction algorithm builds unstructured power-law P2P overlay by guiding

each new peer to select its neighbors based on the Peercast utility-aware peer selection

mechanism. Once the overlay is constructed, peers will behave like the ones in a normal

unstructured P2P network. The simplicity of the Peercast unstructured overlay network
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leaves us enough design space to accommodate various optimization techniques like the ones

used in [19, 56].

In our system, we use an epoch-based scheme to maintain the structure of the P2P over-

lay. For any peer i in the P2P overlay, it exchanges heartbeat messages with its neighbors

at a certain frequency. With each heartbeat message peer i sends to a neighbor k, it at-

taches its own quadruplet identity (recall the definition in Section 3.3.1). Once a neighbor k

receives such a query, it will send back a confirmation message, together with its identity. A

departure notification or the consistent timeout in receiving the confirmation message from

a neighbor peer k indicates its failure. Peer i will include k into a failure neighbor list LFi.

Peer i may accept back-connection requests from other peers. For each back-connection

link, peer i will include the adjacent peer of this link into a back-connected neighbor list

LBi.

At a certain interval defined by an epoch ΔT , peer i tries to repair its neighbor list by

establishing links to a number of peers that are currently not its neighbors. The number

of these new peers is defined as MAX(0, |LFΔT
i | − |LBΔT

i |), where LFΔT
i and LBΔT

i

are respectively the failure neighbor list and the back-connected neighbor list gathered in

epoch ΔT . New peers are chosen in a similar manner as we use in bootstrapping. The only

difference is that we use the neighbor list Ni of peer i to replace Bi, and exclude peers in

Ni and LFΔT
i from the candidate list LCΔT

i . Both LFΔT
i and LBΔT

i are refreshed at the

end of each epoch ΔT , and the same maintenance process will continue until peer i leaves

the overlay network.

The length of epoch ΔT is dynamically adjusted at each peer, so that the overall overlay

network could adapt agilely to network dynamics such as peer joining, departure, and

failure. The size of the list LFi and the size of LBi indicate the magnitude of change of the

neighborhood of peer i. However, we need to estimate how fast such change happens, so

that we can compensate the loss of its out-going (forwarding) links and incoming links (back

links) fast enough such that the services around peer i will not be affected. Specifically,

given a series of epochs · · ·ΔTj−1, ΔTj, ΔTj+1 · · · , we have the following relationship

among the length of consecutive epoches,
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ΔTj+1 = (1− ξ) |LF
ΔTj−1
i |

|LF
ΔTj
i |

ΔTj + ξ ΔTj−1

In Peercast, we set the value of ξ to 0.75 so that the overlay could adjust fast enough

to the network dynamics, while avoiding the possible oscillation caused by the fast change

of epoch length.

3.4 Communication Group Management Mechanisms

A key component of wide-area group communication applications is the spanning tree that

carries the communication payloads. Traditional client/server architecture can be viewed

as a special spanning tree of height 1. Such an implementation requires tremendous pro-

cessing power and network bandwidth at the server side to support a large and possibly

growing number of participants. To support wide-area group communication with P2P

overlay networks, we design a distributed utility-aware mechanism. For each communica-

tion group, this communication group management mechanism builds a spanning tree that

connects all the participant peers with selectively chosen links from the overlay, based on

the performance requirements of specific group communication applications.

If we model the P2P overlay as a directed graph G < V, E >, where V represents all

the peers and E represents all the links in the overlay, the spanning tree TP < P, ES >

could be defined as a connected, acyclic sub-graph of G, where the participant set P ⊆ V

and links set ES ⊆ E. The objective of the communication group management mechanisms

is to build and maintain the spanning tree TP for each communication group based on the

performance requirements of specific group communication applications.

3.4.1 Constructing a Distributed Spanning Tree

Numerous application level multicast or end-system multicast systems have been proposed

to solve a similar problem. The spanning tree is called “multicast tree” in those systems.

Communication information is usually injected from a single source into the spanning tree

and relayed to the other nodes (usually called subscribers) that are the leaves of the multicast

tree.

Three categories of systems have been proposed. The first approach is to construct

74



the tree directly and is represented by NICE [12], Overcast [35], and Yoid [26]. In these

systems, subscribers explicitly choose their parents in the spanning tree from the list of

candidate peers. Due to the specialization of those protocols, we observe very limited

implementation of those systems. The second approach, which is adopted by systems like

Narada [20] and Scattercast [18], is to construct the spanning tree in two-steps. A well-

connected mesh network is constructed first. And a shortest path spanning tree is created

using well-known distributed algorithms in the second step. These systems usually use

extensive message exchanging to maintain the quality of the mesh network, which is critical

to the performance of the multicast tree. Consequently, the scalability of these systems

is limited. The third approach is represented by systems like CAN-multicast [46] and

SCRIBE [17]. These systems replaced the mesh network in the second approach with

structured P2P networks like CAN [45] and Pastry [49]. The multicast tree is constructed

using the deterministic routing interfaces of these P2P networks. Because the P2P network

topology is more regulated in these systems, it is much easier to incorporate utility-based

information such as network proximity [59, 49, 63] into the overlay network, and thus

create more opportunities for optimizing the performance of the multicast group. As we

discussed in Section 3.1, DHT-based structured P2P networks are less tolerant to transient

peer population and may cause degraded system performance of the applications built upon

them.

Our system takes a different approach from the existing ones. Instead of a mesh network

or a structured P2P network, we use a Gnutella-like unstructured P2P system to organize

participants into an overlay, on which we construct the group communication spanning trees.

Leveraging the properties of our unstructured P2P overlay and using selective message

forwarding, our communication group management mechanisms can construct a spanning

tree with fewer messages, compared to [18]. Our experiments (see Section 3.5) show that

the performances of the result spanning trees are comparable to those built using the other

three approaches. Moreover, the Gnutella-like unstructured nature of our system makes it

easier to develop and easier to adapt to applications such as online conferencing, multimedia

stream multicast, or content delivery.
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3.4.2 Building the Communication Group

The objective of our communication group construction algorithm is to select the edges

or the links in the P2P overlay to form the spanning tree that connects all the group

participants. The implementation of communication group construction algorithms usu-

ally includes the implementation of two functions. First, participants should be aware of

the existence of the communication group to which they will join. Second, a newly-joined

participant should be able to setup a connection to the existing nodes in the chosen com-

munication group for sending and receiving the communication payloads.

In the literature of end-system multicast, especially in the systems adopting two-step

approaches that we discussed earlier, the first task is solved by appointing a node as the

rendezvous point or the multicast source, and publishing its information at a well-known

location such as a bulletin board system. The other participants will use the identity of

this node as the keyword to establish the multicast path, usually by leveraging the search

interface provided by the P2P overlay network.

We have identified two schemes for implementing the second function. The first scheme

is similar to the DVMRP [22] IP-multicast protocol. Instead of using the IP level network

devices such as routers to implement the polling and pruning processes of multicast group

management, we use overlay networks and peers. This scheme is adopted by the Scattercast

system [18], in which the source node solely advertises route information, and each peer in

the P2P overlay forwards this advertisement, and quietly builds the local routing table

entries. To remove loops and to avoid the problem of counting-to-infinity, the full path

information is embedded into the forwarded advertisement messages. For the purpose of

comparison, we refer to this scheme as Non-Selective Service Announcement (NSSA) scheme

in the rest of this chapter.

The second scheme is adopted by systems like SCRIBE [17]. The multicast source is

mapped to a well-known node serving as the rendezvous point. Subscribers use the identifier

of the rendezvous point as the keyword in their subscribing requests. The P2P overlay

treats subscription requests in the same manner as the routing requests. The regulated

system topology and deterministic routing algorithms decide the series of peers that the
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subscription request will be forwarded along on the overlay, before the request is received

by the rendezvous point or an existing participant in the multicast group. The reverse of

this path will be used for forwarding multicast payloads down from the multicast source.

Two properties of our system prevent us from directly reusing those schemes. First, the

nature of group communication applications is different from end-system multicast systems.

In end-system multicast systems, communication payloads are forwarded in one direction

only in most of the cases, down from the multicast source, while in group communication

systems, each participant may serve as both the source and the sink of the communication

payloads. Second, the unstructured nature of our P2P overlay determines that it can not

directly use the reverse searching path as the communication path. Because of the random

nature of the overlay topology, searching has to be carried out either by flooding the request

or through random walks. The former approach usually causes too many subscription

requests being flooded across the overlay, and the latter one may generate search paths that

are too long to be used as the forwarding path of communication payloads.

In our system, we proposed a scheme that combines the advantages of these two schemes

and avoids their disadvantages. We call our scheme Selective Service Announcement (SSA)

scheme. In this scheme, the spanning tree for a communication group is established in three

steps.

Step 1: Choosing Rendezvous Point First, a peer in the P2P overlay is chosen as the

rendezvous point. Unlike the rendezvous point in SCRIBE [17], to which all the multicast

payloads are first forwarded, our rendezvous point serves as the source of the group adver-

tisement messages and will behave as a normal node in the communication spanning tree.

There are several ways to choose such a rendezvous point. It can be setup as a dedicated

server donated by a service provider who injects contents into the communication group.

Second, for groups that are setup for applications like online conferences, the first partici-

pant can initiate a random walk search to locate such a node. The search terminates when

it locates a peer that has enough access network bandwidth and computational power to

handle the traffic and workloads as a rendezvous point.
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Algorithm 1 Selective Service Announcement
1: procedure InitiateAdvertising(Service s) *used by the rendezvous point*
2: SNrp ← φ
3: for m← 1, Rrp do
4: rand← Unif(0, 1), j ← 1, sum← 0
5: repeat
6: sum← sum + Prp(Nrp, j)
7: j = j + 1
8: until rand ≤ sum
9: SNrp = SNrp ∪ {Nrp[j]}

10: end for
11: for all k ∈ SNrp do
12: call k.advertise(rp, s)
13: end for
14: end procedure
15: procedure Advertise(Peer source, Service s) *defined for each peer k*
16: if receivedAdvertising.hasKey(s) then
17: drop this message
18: else
19: receivedAdvertising.add(s)
20: parent[s]← source
21: end if
22: SNk ← φ
23: for m← 1, Rk do
24: rand← Unif(0, 1), j ← 1, sum← 0
25: repeat
26: sum← sum + Pk(Nk, j)
27: j = j + 1
28: until rand ≤ sum
29: SNk = SNk ∪ {Nk[j]}
30: end for
31: for all i ∈ SNk do
32: call i.advertise(k, s)
33: end for
34: end procedure
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Step 2: Advertising The second phase is for the rendezvous point to advertise the group

information to the potential participants of the communication group. We realize that the

flooding scheme used in DVMRP [22] and Scattercast [18] will incur redundant messages in

the overlay network, especially when the peer population is large and the communication

group is relatively small.

Under our SSA scheme, each peer that receives the advertisement message will only select

a few of its neighbors to forward the SSA message, rather than flooding the message to all its

neighbors. By filtering out the neighbors that will not likely be used in the communication

spanning tree, we can reduce the number of messages by as much as 65%, compared to the

NSSA scheme. We provide the pseudo-code of our selective service announcement algorithm

in Algorithm 1.

In this algorithm, rendezvous point rp first calls its local method initiateAdvertising

to start the SSA process. The parameter Rrp denotes the ranking of the rendezvous point,

and is defined as the number of neighbors of rp that have more capacity than rp. The

utility function Prp(Nrp, j) is defined as Formula 8, and will help rp choose the peers either

have similar capacities as rp or are physically close to rp, depending on the capacity of rp.

Those peers will be the ones more useful to rp and will likely be included in the spanning

tree.

Upon receiving an SSA message, peer k performs two tasks as shown in method advertise

of Algorithm 1 to forward the advertisement message. First, peer k uses a local hashing

table receivedAdvertising to check and record if it has already received the same message

from any other neighbors. The message will be dropped if it is a duplicated one. Otherwise,

the same mechanism we used to initiate the service announcement process on rp will be

used to select neighbors of peer k for further propagating the SSA messages.

Step 3: Subscribe Subscription activities are initiated when a peer i decides to join a

communication group. Two scenarios need to be considered. First, if the potential service

subscriber (peer i) has already received and routed the service advertisement, peer i is

already on the message forwarding path of this communication group. All it need to do
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is to start the subscription process by sending the joining message in the reverse direction

of incoming SSA message, which is implemented by invoking a call to the subscribeTo

method of its parent. Second, if the subscriber has never received or forwarded the SSA

message before, a search method provided by the P2P overlay is triggered to look up the

neighborhood of peer i for a peer who might have received the SSA message of service s.

The search method is implemented as a ripple search in standard Gnutella P2P network,

with initial TTL (Time to Live) value set to 2. Because our SSA mechanism already pushes

the service information close enough to each potential subscriber, a peer can find a nearby

neighbor that has received the SSA message with high probability. Our experiment reports

that the average success rate of two-hop subscription search is as high as 100%.

Due to the space restriction, we have to skip the topics such as system reliability and

security. Please note that we design Peercast as an open platform to integrate security

mechanisms like Event Guards [51] and reliability mechanisms like [63]. When replication

scheme like [63] is used, our utility-aware peer selection mechanism can identify service

replica holders that are either closer in terms of network distance or have higher capacities.

Our system does not exclude the architecture of “supernode” or multi-layer overlay

networks. Instead, our scheme can be used to construct the higher layer of overlay that

interconnects supernodes. Normal peers can simplify their bootstrapping process by con-

necting only to supernodes. Our utility-aware peer selection mechanism can help peers to

identify the supernodes that are close to them, such that the communication between a

normal peer and its supernode could be more efficient.

3.5 Experimental Evaluation

We have implemented a discrete event simulation system to evaluate Peercast. This system

is an extended Java version of p-sim [40] system. We used the Transit-Stub graph model

from the GT-ITM topology generator [61] to simulate the underlying IP networks. Peers are

randomly attached to the stub domain routers and organized into overlay networks using

the algorithm presented in Section 3.3. The capacity of peers is based on the distribution

gathered in [50], as shown in Table 1. We use the algorithm of [2] to assign network
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Table 1: Capacity distribution of peers

Capacity level Percentage of peers
1x 20%
10x 45%
100x 30%
1000x 4.9%
10000x 0.1%

coordinate to each peer. Each experiment is repeated over 10 IP network topologies. Each

IP network supports 10 overlays, and each overlay network has provided services for 10

communication groups.

3.5.1 Power-law Overlay and Network Proximity

We first simulated the construction of P2P overlay networks. Peers join with intervals fol-

lowing an exponential distribution Expo(1s). They choose their overlay network neighbors

using the utility-aware algorithm described in Section 3.3. Figure 39 plots the log-log degree

distribution of a Peercast overlay network of 5 × 103 peers. It presents a clear power-law

distribution. similar to Figure 40, which plots the degree distribution of a power-law net-

work generated using the centralized PLOD algorithm [42]. It is interesting to note that

our algorithm cut out the long tails compared to the topology shown in Figure 40. This is

because our bootstrapping algorithm and back connection scheme are utility-aware and to

some extent are conservative in taking on new peers to replace existing ones. This property

results in a lower value of network clustering coefficient compared to the random power-

law overlay. Nevertheless, as we will demonstrate in the rest of this section, such kind of

overlay topologies can help reduce the messaging overhead without any detriments to the

performance of both the overlay and the applications supported by the overlay.

As we discussed in Section 3.1, wide-area group communication applications demand

that the topology of overlay network conform to the IP network topology. We compared

the overlay networks constructed using our algorithm with the ones randomly generated

using centralized PLOD algorithm [42]. For each type of overlay, we simulated the joining

processes of 1 × 103 peers. Figure 41 plots the ones in the Peercast overlay network, and
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Figure 42 plots the average distance of each peer to its neighbors in the randomly generated

power-law network. It is obvious that in the Peercast overlay network, peers are connected

to one another by much shorter unicast links. We observe a few long ones though, which

belong to the powerful peers that care less of network proximity in selecting their neighbors.

They use those long links to connect to other powerful peers and serve as the forwarding

backbone of the overlay network.
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Figure 39: Log-log degree distribution of Peercast overlay network with 5000 peers
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Figure 40: Log-log degree distribution of random power-law overlay network, 5000 peers,
α = 1.8
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Figure 41: Average distance to neighbors of Peercast overlay network with 1000 peers
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Figure 42: Average distance to neighbors of a random power-law overlay network with 1000
peers

3.5.2 Service Lookup and Subscription Message Overhead

In most unstructured P2P overlay networks, P2P lookup is implemented using either scoped

flooding (broadcast) mechanisms or random walk mechanisms. Flooding-based searches

are usually expensive because they require the processing of a large number of messages.

In contrast, random walk based searches generate fewer messages but may cause longer

query delay. Caching and routing index techniques have been proposed to alleviate this
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inefficiency by increasing the availability of the information distributed over the nodes

in the overlay and reducing the number of lookup messages. However, those solutions

usually assume the knowledge of applications at the overlay network layer and ignore the

network proximity properties, which is critical to the performance of group communication

applications. In the Peercast design, we have proposed a selective service announcement

(SSA) mechanism to improve the messaging efficiency. Compared to the existing systems,

our scheme considers both network proximity and capacity of peers when choosing candidate

neighbors for propagating and processing service messages.
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Figure 43: Number of messages generated by service lookup schemes

To evaluate the effectiveness and efficiency of the SSA scheme, we simulated the service

announcement processes in a number of overlay networks generated using both the Peer-

cast distributed algorithm and the PLOD algorithm. In each overlay network, we randomly

select 10 peers as rendezvous points and use each of them to initiate the selective service an-

nouncement (SSA) process and non-selective service announcement (NSSA) process (recall

Section 3.4).

We first record the fraction of peers that have received the service announcement. When

those peers start their subscription process, they can avoid the service searching process be-

cause they already know to which neighbor they should forward their subscription requests.

Next, we simulate the subscription process of those peers that are not covered by the SSA
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Figure 44: Success rate of service lookup in Peercast overlay networks and random power-
law overlay networks using selective service announcement
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Figure 45: Latency of service lookup in Peercast overlay networks and random power-law
overlay networks using selective service announcement

messages. They use a ripple flooding search scheme to locate the service of interest, and

set the TTL (Time to Live) value of their search messages to 2. We record the success rate

of service lookup under both SSA and NSSA schemes in both Peercast overlay and random

power-law overlay. Also, we record the total number of messages generated by SSA and

NSSA schemes respectively.

Figure 43 shows that the SSA scheme helps reducing the total number of messages

generated in both Peercast and random power-law overlay networks. By limiting the number
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of messages sent to those neighbors that will not likely be a part of the group communication

spanning tree, the total amount of messages of SSA scheme is reduced to 63% to 70% of the

NSSA scheme in Peercast overlay network, and 35% to 44% in random power-law overlay.

We notice that the number of subscription messages of SSA scheme in random power-law

overlays is almost negligible. It is because Peercast overlays have a lower cluster coefficient

value than the random power-law topologies generated using PLOD. The SSA messages

reach fewer peers. On the other hand, it also shows that the SSA scheme performs better

in networks with higher connectivity value.

Figure 44 shows two interesting observations. First, fewer peers in Peercast receive the

SSA messages compared to random power-law topology. Second, all subscribers can locate

their services with 100% success rate using the subscription message with TTL = 2. This

is because by taking into consideration both network proximity and node capacity, the

Peercast overlay network provides more candidates of higher utility value, which meet the

utility-aware selection criteria when using the SSA scheme. Hence, we notice that the SSA

scheme generates more service announcement messages in Peercast than in random power-

law overlay networks. However, the peers chosen by our utility-aware selection mechanisms

are the ones that are more suitable to the group communication spanning trees and are

actually contributing to the success of subscription with a small TTL value.

Now we show how the utility-aware distributed algorithms help reducing the response

time of subscription request by taking into account of network proximity in both overlay

construction and the SSA forwarding selection. Figure 45 shows that the subscription

response time in Peercast overlay network is reduced by 74% to 84%, compared to that in

random power-law overlay networks. This property can benefit newly joined peers, since

they could subscribe to group communication services much faster in Peercast system than

in the random power-law overlay networks.

3.5.3 Improvement of Application Performance

We use an end-system multicast system as an example of group communication. End-

system multicast has been proposed as an alternative for IP multicast services, due to the
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lack of wide acceptance and deployment of IP multicast in the Internet today. In this

approach, peers form overlay networks and implement multicast functionality. Multicast

data are replicated on peers and propagated over unicast edges of the overlay networks.

Compared to IP multicast, end-system multicast systems are less efficient because they

may send packets of the same data contents multiple times over the same IP network link.

Moreover, the workload distribution among heterogeneous peers affects the overall system

performance.

We simulated P2P overlay networks consisting of 1×103 to 3.2×104 peers. P2P overlay

networks are constructed using both Peercast mechanisms and PLOD algorithm. We used

the routing weights generated by the GT-ITM package to simulate the IP unicast routing.

IP multicast systems are simulated by merging the unicast routes into shortest path trees.

We use both SSA and NSSA for service announcement and subscription management.

We measured Relative Delay Penalty and Link Stress, two popular metrics that are

usually used to evaluate the efficiency of end-system multicast systems. Relative delay

penalty is defined as the ratio between the average end-system multicast delay and the

average IP multicast delay. Link stress is defined as the ratio between the number of

IP messages generated by an end-system multicast tree and the number of IP messages

generated by an IP multicast tree interconnecting the same set of subscribers.
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Figure 46: Delay penalty of group communication applications
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Figure 47: Link stress of group communication applications

1000 2,000 4,000 8,000 16,000 32,000
0

1

2

3

4

5

6

7

8

9

10

Number of nodes in overlay

N
od

e 
S

tr
es

s

Peercast + SSA
Peercast + NSSA
Random power−law overlay + SSA
Random power−law overlay + NSSA

Figure 48: Node stress of group communication applications

From Figure 46 and Figure 47, we can see that end-system multicast systems show great

performance improvement in both metrics when they are implemented over Peercast overlay

networks: the delay penalty is around 1.5, close to the theoretical lower bound of 1 and the

link stress is about 2/3 of the ones over random power-law topologies. We attribute such

improvements to the fact that Peercast overlay networks successfully incorporate network

proximity information into the overlay topology. Multicast payloads are forwarded along

much shorter paths (recall the result in Figure 41 and Figure 42), and thus generate fewer

IP packets in the underlying IP network.

88



1000 2,000 4,000 8,000 16,000 32,000
10

−3

10
−2

10
−1

10
0

10
1

Number of nodes in overlay

O
ve

rlo
ad

in
g 

In
de

x

Peercast + SSA
Peercast + NSSA
Random power−law overlay + SSA
Random power−law overlay + NSSA

Figure 49: Overload index

It is interesting to note that the impact of the SSA scheme on application performance

is almost negligible in Peercast overlay networks, whereas the impact in random power-law

networks is significant. We attribute this performance enhancement to the fact that Peercast

overlay networks are aware of the network proximity of peers, and thus the peers chosen

by the SSA scheme are most likely be the ones that are actually used in the information

dissemination spanning tree.

3.5.4 Improvement of Load Balancing in Group Communication Systems

We compared the impacts of different schemes on load distribution of group communication

applications in our simulation. We use a metric Node Stress to record the average multicast

workloads on peers. It is defined as the average number of children that a non-leaf peer

handles in the end-system multicast tree. To measure the load distribution in the overlay

network, we define a metric called Overload Index. It measures the mismatching between

the node capacity and the communication workload. Specifically, we define it as the product

of the fraction of peers overloaded and the average workloads that exceed the capacities of

those peers.

Figure 48 shows that our utility-aware selection mechanism can improve the load dis-

tribution in both random power-law overlay and Peercast overlay. Because the Peercast

system considers node capacities in both overlay layer and application layer, it delivers
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much better scalability in term of node stress. When the system is scaled to accommodate

more subscribers, the node stress in Peercast is almost constant. We also notice that SSA

scheme can effectively reduce overloading in overlay networks. By considering node capac-

ity of candidates in the choosing next hop for forwarding service announcement messages,

the SSA scheme reduces the overloading in the random power-law overlay by one order of

magnitude, and one to two orders of magnitude in Peercast overlay. Combining the SSA

with Peercast utility-aware overlay bootstrapping scheme delivers even better performance

as we expected. The overloading is reduced by two to three orders of magnitude compared

to random power-law network. We also notice in Figure 49 that the line of Peercast overlay

using NSSA and the line of random power-law overlay using SSA crossed when the over-

lay size is around 1.6 × 104. This phenomenon is what we expected, and indicates that

optimization at the overlay level is better than at the application level for larger overlay

networks.

3.6 Related Works

Many distributed group communication systems rely on the services of overlay networks for

operation [12, 17, 20]. The properties of overlay networks, e.g., communication efficiency,

system scalability, and fault resilience, largely decide the performance of those systems.

Usually, end-hosts in the communication groups use the unicast links of overlay networks

to exchange application and management messages. A communication message may have

to traverse the IP network from one end to another multiple times to reach its destination.

This is particularly true when group communication peers are widely distributed across

the Internet and the overlay topology does not conform well to the underlying IP network

topology. Furthermore, nodes in a wide-area network tend to have different computing

capacity, different network bandwidth, and different levels of commitment in terms of what

and when to share their resources. Such heterogeneity is typically reflected in the different

workload amounts they can handle, and the different levels of quality of service that they can

provide. Last but not the least, it is widely recognized that wide-area distributed systems

like P2P networks are confronted with high turnover rate [50] of dynamic participants.
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For example, in both KaZaA and Gnutella, half of the peers participating in the system

will be replaced by new peers within one hour. It is critical for the overlay networks used

by group communication applications to provide persistent and uncompromised services in

such dynamic environments.

Efforts on improving the performance of unstructured P2P networks have proposed

mechanisms to optimize the system performance at the application level with the goal of

scalable query processing capability. For example, Gia [19] considers only node heterogene-

ity information in constructing unstructured P2P networks and in processing P2P queries.

Featured with a document index replication technique and a specialized random walk search-

ing algorithm, Gia can improve the system capacity in serving file-sharing applications.

A number of P2P systems have been proposed to construct overlay networks with power-

law degree distribution because of its scale-free property. Phenix [56] generates power-

law topologies of unstructured P2P networks using a distributed version of preferential

attachment mechanism. Pandurangan, et al. [43] assume a stochastic arrival and departure

pattern of peers. They trace the status of peers and coordinate the connections among them

with a central server, which limits the system scalability and reliability. In contrast, our

system uses only a lightweight bootstrap server, which caches only the partial knowledge of

the P2P network and is involved only when a peer joins the overlay network.

However, none of these works has considered combining node capacity and network

proximity metrics in constructing overlay networks and the effects such a combination may

have on the overlay network performance. We claim that the performance gain through a

careful combination of node capacity and network proximity metrics can be significant for

wide-area group communication applications.

Another approach to improving P2P networks is to utilize the ranking of different peers

in terms of their node capacity and organize them into different overlay service layers.

For unstructured P2P networks, KaZaA [5] uses the notion of “supernode” and Gnutella

v.0.6 [58] uses a similar notion of “ultrapeer”. In structured P2P network, such peers

are referred to as “supernodes” and are organized into another layer of overlay called an

“expressway” [59] to accelerate the routing services. Generally, those powerful peers are
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assigned with heavier workloads and serve as the “forwarding hubs” in the overlay network.

Ordinary peers are explicitly connected to them. Such predetermined hierarchical structure

introduces a number of system vulnerabilities. First, supernodes are assumed to be stable

and possess enough resources. When they are attacked or overloaded, the overlay network

might be fragmented if normal peers rely solely on a few supernodes for services. Second, to

efficiently route the requests from normal peers, each supernode keeps the state information

of the normal peers served by it. However, such state information is usually closely tied to

the application, and it is hard to design a supernode overlay layer that can serve as a generic

middleware to support different services. Finally, such a system would be vulnerable when

malicious peers assume the role of supernodes and trick other peers into relying on them

for services.

Adaptation mechanisms have been studied in a few pieces of work [11, 66]. Through suc-

cessive and periodical refinements of the initial spanning tree for application layer multicast

or data streaming services, the tree is incrementally transformed to a more cost-effective

one. Our Peercast system can provide complementary features for those systems. They

can use our protocols to construct well-regulated spanning trees out of a large number of

subscribers as the starting point for future refinements. Our protocol can help reduce the

number of adaptations by ensuring the initial efficiency of the spanning trees, and reduce

the service interruptions caused by the topology transformation on the spanning trees.

Research works such as RON [10] have been designed to build generic overlays inde-

pendent of the applications built on top of them. Optimization techniques such as [19]

can be used to improve the performance of the overlay networks at the application level.

The Peercast development differs from those works in a number of ways. First, our system

distinguishes the distance of peers and construct overlay networks that incorporate network

proximity information. Second, our algorithm builds “scale-free” power-law topologies and

assigns peers with different peer connections according to their capacity.

Compared to DHT-based structured P2P systems [49, 45, 52] and their optimizations [59,

65], our system is more resilient to network dynamic and is easier to implement. Our algo-

rithm is fully distributed and based on only local information. It makes no assumptions on
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the underlying IP network and the knowledge of the peer activity pattern.
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CHAPTER IV

INFORMATION DISSEMINATION USING GEOGRID: A

GEOGRAPHICAL SERVICE NETWORK

4.1 Introduction

In this chapter, we study the problem of disseminating geographical information using Ge-

oGrid, a decentralized service network. The rapid growth of wireless communication tech-

nologies enables the information dissemination to hand-held devices, which are increasingly

gaining popularity. A substantial number of them have multimedia capabilities. Features

such as email and text messaging are wildly available on a variety of person electronic

devices. Currently available applications include video and audio streaming, event notifica-

tion, wireless instant messaging, GPS navigation service, and location-based advertisement,

just name a few. Such applications are expected to serve end users’ requests like “Send me

the traffic camera images taken at 10th and I-75/85 in the next 30 minutes”, “Tell me

the locations of three gas stations within 5 minutes driving and offering #87 gasoline at a

price lower than $2.85 per gallon”, “Is there any vacant parking space around the Georgia

Dome?”, and “Are there any of my friends in Buckhead right now?”.

The problem we are trying to solve in this chapter is how to build a generic and ef-

ficient P2P service network to support such applications. Our solution is based on a few

basic assumptions. First, we assume that there exist information sources that can provide

the geographical contents requested by the end users. In the examples given above, such

information sources could be the traffic monitoring cameras, the owners of gas stations and

parking lots, and the people who are willing to share their current location information.

Second, we assume that the people ask for information from our service network can be

from outside of the network or be inside the network. By “inside of” the network, we mean

that they can join the network as peers and handle queries of other users. By “outside
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of” the network, we mean that they can be just the consumers of the information, without

sharing any of their resources. Our third assumption is about the network nodes in the

service network. To simplify our design, we assume that they are not mobile. Compared

to mobile devices, desktop computers usually have more access network bandwidth, more

stable connections, and more storage space. The latest survey [1] shows that more than

60% of American families have at least one personal computer, and more than 54% of

American families have Internet accesses. Furthermore, advances in wireless communica-

tion technologies have enabled the point-to-point TCP/IP communication between mobile

devices and fix nodes. Peer-to-Peer (P2P) network technologies show a promising paradigm

for harnessing distributed resources for information processing and dissemination. It is a

nature extension to P2P overlay networks to use the abundant processing power and storage

capacities of end-systems to process and cache information for mobile devices.

Specifically, our system is designed to address three outstanding challenges. First, how

should we design a scalable network topology such that end nodes tagged with geographi-

cal information can be effectively organized into an efficient service network? How can we

design such a system that end-to-end communication between any two end-system nodes is

bounded? Second, how should we design the object management protocol of the service net-

work such that the objects tagged with geographical information can be efficiently managed

by the service network? How should we design the query routing protocol of the service

network such that the information consumption requests like object queries and informa-

tion subscriptions can be handled efficiently? Third, the location-based information usually

shows certain spatial and temporal clustering patterns. For example, the highway system

in a metropolitan area is usually heavily loaded during the rush hours. In the morning,

the highways leading in town are usually crowded, while the out-town routes are heavily

loaded in the afternoon. During a sport event, the parking lots around the stadium are

usually full, whereas in the most days of the week, those parking lots are sparsely used.

To support queries on those information using heterogeneous end-systems, the service net-

work should be able to handle such workload imbalance gracefully, minimizing the possible

service interruption and information losing.
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Several categories of solutions have been proposed to support the applications we de-

scribed earlier. The first approach relies on centralized servers to store, process, and dis-

seminate geographical information. Usually, servers are the bottleneck of the system and

usually have the problem of scalability. Tremendous efforts like [30] are needed to shed

the workload off the server. However, relying on central server or server farms implies that

service providers have the total control over the service features available to the end-users.

Service subscribers have to pay a premium to the service providers for using their services.

Without the supports from the open source community, the deployments of new applications

and features are controlled by the service providers. Because of the profitability pressure,

they are less motivated to provide services that have relatively small subscriber population.

The second approach uses unstructured Peer-to-Peer (P2P) network. Examples include

Rebeca [41], Siena [16], and the PeerCast system that we present in Chapter 3. Because

of the lack of structure information in the P2P network, end user queries and subscription

requests are usually handled in a flooding manner. Semantic information of applications is

usually used to control the flooding of the queries or the subscription requests. Deprived

of the application semantic information, the messaging overhead in those systems will be

considerably more expensive. Compared to these systems, GeoGrid is designed to support

generic geographical information dissemination and sharing, and consequentially can not

use their solutions. The third approach is using structured P2P network like P-Grid [7],

Chord [52], Pastry [49], and Tapestry [64] to support these applications. Solutions pro-

posed include end-system multicast systems like SCRIBE [17] and Buyeux [67]. Because

the identifier space of these P2P network are of one dimension, mapping mechanisms like

the space curve filling techniques used in [60] and [28] are required to map the objects from

multi-dimensional space to the one-dimensional P2P identifier space for efficient processing.

While the queries on one object can be handled deterministically and efficiently in those

systems, multi-dimensional range queries like “Tell me the locations of three gas stations

within 5 minutes driving and offering #87 gasoline at a price lower than $2.85 per gallon”

may not be handled elegantly in those systems. The reason is that the space curve filling

96



technique may not be able to preserve the geographical proximity of objects in the one-

dimensional P2P identifier space. Extra efforts are required to preserve such information

and will complicate the system design.

In this chapter, we propose GeoGrid, a service network management system that enables

geographical information dissemination among wired and wireless end-users. Our proposed

solution includes three parts that distinguish it from existing systems. First, we propose

a mechanism to organize end-systems into a generic service network. The 2-dimensional

geographical location of users and their mobile devices are used to organize end-systems

and regulate the overlay topology, which is directly mapped into a 2-dimensional identi-

fier space. By implementing the communication interfaces exported by the service network,

various applications require requiring geographical information dissemination services could

be supported. Second, we propose a dynamic load balancing scheme for GeoGrid service

network. Through local adjustment on end-system node distribution, this scheme dynami-

cally adjusts distribution of information storage, processing, and dissemination workloads,

alleviates overloading in the service network, and improves application quality of service.

Third but not the least, we design a set of mechanisms for improving messaging routing ef-

ficiency and routing workload balance. Messages in the GeoGrid service network are routed

based on the geographical location of participant peers and the contents of the disseminated

information. By exploiting the geographical proximity of peers and distribution of events,

we can significantly reduce the communication overhead in terms of the total number of

messages generated and the total amount of network bandwidth consumed. Utilizing the

randomized routing shortcuts, our service network can achieve routing latency of O(logN),

which measures the average number of hops a message is forwarded to answer a routing

request.

In the rest part of this chapter, we first describe the basic GeoGrid design in Section 4.2

and give a few application examples in Section 4.3. Section 4.4 presents the load-balancing

mechanisms of GeoGrid and Section 4.5 presents the enhanced routing scheme. We present

the experimental results in Section 4.6. Discussions on related works are in Section 4.7.
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4.2 Basic GeoGrid System Design

In general, a GeoGrid system is a P2P network interconnecting end-system nodes tagged

with geographical information. An end user uses this service network by connecting her

mobile devices to one of the nodes in the network, usually through wireless or wired net-

work connection. Each node runs the GeoGrid communication middleware and serves as

the proxy of end users. Depending on the applications implemented over the GeoGrid

middleware, a proxy can submit queries, process data, and cache query results and event

notifications on behave of end users. A proxy can be a personal computer or a server run-

ning by a service provider, as long as it can communicate with the other GeoGrid nodes

and transfer data onto the mobile devices of the end users that it represents.

4.2.1 System Components

A GeoGrid P2P network can be visualized as a plane in a 2-dimensional space. Such a

plane usually represents a geographical area, which could be a metropolitan area, a state, a

country, or a continent. A GeoGrid plane is usually partitioned into a set of regions, each

of which represents a rectangular area in the geographical plane. A region r is denoted

as a tuple of 4 attributes: <x, y, width, height>, where (x, y) represents the longitude

and the latitude coordinate of the southwest corner of r, and (width, height) represents

the dimension of the region. Two regions are neighbors when their intersection is a line

segment. We say that a point (x, y) is covered by a region r when the following relationship

is satisfied:

(r.x < o.x ≤ r.x + r.width) ∧ (r.y < o.y ≤ r.y + r.height) (10)

A node p is identified by a tuple of 5 attributes: <x, y, IP , port, properties>. (x, y)

represents the geographical coordinate of node p. (IP, port) is the IP address and port

number that this node uses to execute GeoGrid middleware. And properties represent

application specific information such as capacity, which quantifies the amount of resources

that node p is willing to dedicate for serving other nodes. For different applications, capacity

of a node may have different meanings. It may represent the available storage space for

98



file sharing services, and may represent the available uploading network bandwidth for

multimedia streaming applications. In GeoGrid, we use it to represent the available network

bandwidth of a node. We consider network bandwidth as the bottleneck that limits the

performance of an end system because the advances in computer hardware technologies

have alleviated the limitation on the storage and computing capacities of end-systems.

An object o in the GeoGrid is represented by a triplet <x, y, content>. Depending

on the applications supported by the GeoGrid, the content of an object may have different

semantics and values. It could be the availability of a parking lots, the gasoline prices offered

by a gas station, or a piece of for-rent advertisement. We say that an object o belongs to a

region r when its coordinate is covered by r. In the basic design of GeoGrid, all the objects

belong to a region is stored on a node that owns this region. This node will handle all

the operations on these objects. Examples include posting of new objects, removing of old

ones, and querying and updating on existing ones. The semantic of object management is

defined by the applications supported by the GeoGrid.

4.2.2 Routing in GeoGrid

The basic GeoGrid system implements one simple operation: given a routing request iden-

tified by a coordinate (x, y), a GeoGrid will return the information of the node that owns

the region that covers the coordinate. The routing request is forwarded from its initiator

within the 2-dimensional space of GeoGrid. At each step, the owner node of a region handles

the request by forwarding it to another that is the closest to (x, y) among its immediate

neighbors. The forwarding terminates when the request reaches the region that covers (x,

y). Figure 50 visualizes a GeoGrid system with 15 nodes. A routing request is initiated by

region 13 for a point covered by region 5. The requested is forwarded through region 10,

11, 6, and 7.

Routing between a pair of randomly chosen regions is of overhead O(2
√

N) in terms of

number of routing hops. To see how such an overhead is estimated, let first assume that

all N regions are of uniform size and are distributed uniformly in the 2-dimensional space.

On average, along each edge of the geographical plane, there are
√

N regions. At each step,
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a routing message will be forwarded either along the latitude or the longitude direction.

In each direction, it will pass on average
√

N regions. Thus, the total number of routing

hops for a request is of O(2
√

N) hops. When the region sizes are not uniform or the region

distribution is not uniform, the average routing overhead may be higher than O(2
√

N).

4.2.3 Bootstrapping Process of GeoGrid

To enable geographical routing, each node in GeoGrid maintains a neighbor list, which

contains a list of nodes that own its neighbor regions. The basic GeoGrid bootstrapping

and maintenance process is designed to maintain the integrity of the neighbor list of each

node.

The basic bootstrapping process of a node p includes three steps. First, Node p obtains

its geographical coordinate by using services like GeoLIM [33] of GPS (Global Positioning

System). Second, Node p obtains a list of existing nodes in the GeoGrid service network

through a bootstrapping server or from a local host cache carried from its last session of

activity. In the third step, Node p initiates a joining request by contacting an entry node

randomly selected from this list. The joining request is routed to the region that covers the

coordinate of the new node, in a manner similar to the routing of a query request. The new

node p splits this region with the current owner node of the region by copying its neighbor

list. Node p will purge the neighbor list entries pointing to regions that are not adjacent to

its region. The splitting of a region is in latitude and longitude directions alternately. The

node whose region is split notifies the peers in its neighbor list of the joining of the new

node. Node departure is handled by having the owner of one of the neighboring regions to

take over the region owned by the departing node.

4.2.4 Discussion

We have two sets of messages exchanged in a GeoGrid. One set of messages are for the man-

agement of GeoGrid service network, and includes messages for splitting and merging region,

heart-beat, request routing, load-balancing, routing table maintenance, and randomization

of routing entries. The syntax of these messages is defined by the GeoGrid middleware, and

the exchanging of these messages is transparent to the applications running over GeoGrid
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Figure 51: Nearest neighbor query using GeoGrid service network

service network. The other set of messages are for applications supported by GeoGrid mid-

dleware. Whereas the applications are free to define the syntax of these messages, we require

the messages routed using GeoGrid middleware to supply the geographical coordinates of

their destination points. GeoGrid middleware handles only the routing of these messages

and leaves the handling of application-specific objects and messages to the implementation

of these applications, in order to keep the design of GeoGrid as generic as possible.

101



In the next section, we will first show how the basic GeoGrid system is capable of pro-

viding generic routing and searching functions for geographical information dissemination.

Nevertheless, there are a few aspects of the basic GeoGrid system that we can improve for

providing better services to the applications supported by GeoGrid. The first aspect is the

lack of a load balance control mechanism in basic GeoGrid system. The size and location

distribution of regions is decided by the joining timing sequence and the location of nodes in

the GeoGrid network. When the system demonstrates non-uniform distributions in terms

of node locations, node capacities, and workload assignment, we need an effective load bal-

ancing scheme . In Section 4.4, we propose a set of local adjustment scheme for dynamically

adjusting distribution of workload and alleviating overloading in the overlay. The second

aspect of basic GeoGrid system that we can improve is for the routing in GeoGrid. The

number of forwarding hops per routing is of O(2
√

N). Messages in the GeoGrid network

are routed based on the geographical location of participant peers and the contents of the

disseminated information. By exploiting the geographical proximity of peers and distribu-

tion of events, we can significantly reduce the total number of messages generated and the

total amount of network bandwidth consumed. Utilizing the randomized routing shortcuts,

our service network can achieve routing latency of O(logN), the average number of hops

a message is forwarded to answer a routing request. In Section 4.5, we will introduce this

shortcut technique.

4.3 Application Examples

Using the routing interface exported by the GeoGrid middleware, a spectrum of applications

can be implemented. Although implementations of these applications are not the focus of

this chapter, we use a few of them as examples to demonstrate the flexibility of GeoGrid in

supporting applications that require geographical information.

Publisher/Subscriber System Such a system could be used to handle requests like

“please inform me of the traffic around Exit 89 on I-85 in the next 30 minutes”. Studies
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represented by Siena [16, 15] focus their efforts on the processing of advertising, subscrip-

tion, and publication messages. It will not be a trivial task to support location-based event

processing and routing in those systems because the overlay networks used by them are not

aware of the geographical information, and those systems will have to periodically broadcast

service announcement messages to inform the subscribers of the existences and locations of

publishers and services. In GeoGrid, end users submit their interest on events as subscrip-

tion requests. Each subscription request q is identified by a rectangular geographical area

< x, y, width, height > in which the user intends to query objects or events. A subscrip-

tion request could be handled in two steps, in each of them the messages are forwarded

in a deterministic manner. First, the request is routed toward the region that covers the

center of the request, which is a point with coordinate (x + width/2, y + height/2 ). In the

example given by Figure 50, we use the gray rectangular to represent the area covered by

a subscription request. Its center is covered by region 5. Correspondingly, the subscription

request is forwarded first to the node that owns region 5. From there, the owner node of

region 5 exams its neighbors to see if any of them intersect with the subscription request

area and forwards the request to them. In our example, region 2 and region 3 will receive

the subscription request.

The reverse routing path of a subscription request will be used for disseminating events

to the subscriber. Each event in GeoGrid is tagged with the coordinate of the location

at which the event is captured. An event is routed first to the proxy node that owns the

region covering its location. From there, the information is forwarded to all its subscribers,

filtered on the path according to the evaluating criteria defined by the subscription requests.

In our example, once the owner node of region 2 is notified by an external source of the

traffic condition in its region, it will evaluate all the subscriptions it received. Suppose this

event happens in the area covered by the gray subscription rectangular. Region 2 will first

forward this event to region 5, who covers the center of this subscription request. From

there, the event is routed back to the subscriber node and is cached there for the end users

to retrieve.

103



Nearest Neighbor Query Such applications are used to answer location-based queries

like “tell me the addresses of three gas stations within five miles offering #87 gasoline at a

price lower than $2.86 per gallon”. Typical solutions [30] use central servers that store all

the object information from a certain area. A GeoGrid system can answer such queries in

a distributed manner. Information like locations of gas stations and the prices of gasoline

can be stored in the GeoGrid P2P network, indexed by their geographical locations. An

end user submits a nearest neighbor query tagged with her own location. The request is

routed to the node that owns the region where the user is in. If this node has enough

information to answer the query, it will forward the result back to the proxy node of the

user. Otherwise, depending on the radius of the query, this node may forward the query

request to a number of its neighbors.

Figure 51 gives such an example. An end user at location q is asking for the nearest

neighbors. If the radius of the request is less than the length of line segment qe, the owner

node of 6 can answer this query. If the radius of query exceeds the coverage of region 6,

like qc does, the request will be forwarded to neighbor regions such as region 2 and region

7. If the end user does not specify any radius of the query, the proxy node will evaluate

this query in a multi-step heuristic manner. Starting with the max radius covered by the

region owned by the proxy node, the query is augmented with stepwise increasing radius

until sufficient results are returned. In our example, node 6 increases the radius of a generic

query request following the sequence of qe, qc, qd, qa, qb and so on, until the query is fully

answered or a messaging upper limit has been reaches.

Application Layer Multicast Application layer multicast systems [12, 11, 17, 20] have

been proposed as the practical replacement of the IP multicast systems [22, 23]. In applica-

tion layer multicast systems, the unicast links of end-system nodes are used to connect them

into a spanning tree and to carry multicast payloads. Location-based versions of application

layer multicast systems can be used to serve request like “send me the snapshots taken by

the monitoring cameras at the intersection of I-85 and I-285 in the next 50 minutes”, and

“send me the live video of July 4th parade on the Peachtree street”.

104



GeoGrid system can serve such applications in a similar manner as it serves the pub-

lisher/subscriber applications. A multicast subscription request is tagged with the location

information of the multicast source. Nodes in GeoGrid forward the subscription requests

toward the multicast source in a similar manner as they handle GeoGrid P2P routing re-

quests. The forwarding of a subscription request terminates when the request reaches a

node that is already a member of the spanning tree, or when it arrives at the multicast

source. All the nodes on the forwarding path of a subscription request form a multicast

path that connects the subscriber node into the spanning tree. When new information is

available, it will be disseminated along the multicast tree towards all the subscribers. We

multiplex the example given by Figure 50 to illustrate how such a system works. A node in

region 13 wants to receive the multicast information from the source node that owns region

5. It will initiate a subscription request that will be forwarded towards region 5. Applica-

tion multicast contents will be forwarded to the subscribers through nodes that own region

7, 6, 11, and region 10 in sequence. Please note that the proxy node in region 13 can cache

and convert the multicast video stream for mobile end-users, even though the wireless link

of their mobile devices may be intermittent or their screen resolutions may not match the

resolution of the video stream.

4.4 Dynamic Load Balancing in GeoGrid

In a real system, we can not expect that all the objects and events handled by GeoGrid

to follow a geographically uniform distribution. The nature of location-based information

dissemination implies that some hot spots may exist at different times and at different

locations in the service network. The traffic monitoring application gives such an example.

In a metropolitan area, the traffic congestions are likely to be in the downtown area in the

morning. In the afternoon, the traffic congestions are likely to be on the road segments and

intersections leading to out of town. When end users use a service network like GeoGrid

to trace the traffic data for minimizing their travel time, network traffics, and information

processing workloads will follow a similar distribution pattern in the service network. Due

to the heterogeneous nature of end-system nodes, some of them may be overloaded and
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become the system bottlenecks.

The problem of load balance in GeoGrid can be formalized as a multi-objective op-

timization problem. Suppose we are given a rectangular geographical plane S, which is

defined as a region <X, Y, W, H >. We can define a continuous function 	(x, y), X ≤ x ≤
X + W, Y ≤ y ≤ Y + H to approximate the workload distribution of this region.

Given a region r <xr, yr, wr, hr>, its workload can be calculated as:

∫ xr+wr

xr

∫ yr+hr

yr

	(x, y)dxdy

Suppose region r is owned by a node p with capacity cp, the loading on this node can

be measured with a metric workload index, which is defined as:

∫ xr+wr

xr

∫ yr+hr

yr
	(x, y)dxdy

cp

Given a set of regions R defined on S, a set of nodes P , and a node-region mapping

function A : R→ P , we define the mean of workload index MWI(S,R,P,A) as:

MWI(S,R,P,A) =

∑
r∈R

R xr+wr
xr

R yr+hr
yr

�(x,y)dxdy

cp

| R |

where p = A(r);

and define the standard deviation of workload index SWI(S,R,P,A) as :

SWI(S,R,P,A) =

√√√√ 1
| R |

∑
r∈R

(

∫ xr+wr

xr

∫ yr+hr

yr
	(x, y)dxdy

cp
−MWI(S,R,P,A))2

where p = A(r).

The problem of load balancing in GeoGrid can be formalized into a two-objective opti-

mization problem:
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min MWI(S,R,P,A) and SWI(S,R,P,A)

s.t. MWI(S,R,P,A) =

∑
r∈R

R xr+wr
xr

R yr+hr
yr

�(x,y)dxdy

cp

| R |

SWI(S,R,P,A) =

√√√√ 1
| R |

∑
r∈R

(

∫ xr+wr

xr

∫ yr+hr

yr
	(x, y)dxdy

cp
−MWI(S,R,P,A))2

This problem is hard to solve even when the global knowledge of node capacity distri-

bution and workload distribution is given, because the standard deviation can hardly be

mapped into a linear function. In a distributed environment like GeoGrid, global knowledge

regarding node and workload distribution can hardly be obtained. To ensure the quality of

service in GeoGrid, we propose a heuristic load balance scheme that can dynamically adjust

the workload distribution. Such a scheme is composed of a number of techniques. Dual

Peer technique improves the overall system reliability and generally maps the region sizes

to the capacities of region owner nodes. Load Adaptation techniques include a number of

adaptation mechanisms that can dynamically adjust the node-to-region assignment among

regions in geographical vicinity.

To help us understand the design issues of GeoGrid, we develop a visualization tool.

We use this tool to study the performance of different load balance mechanism of GeoGrid.

To better illustrate the difference among different load balance mechanisms, we synthesize

a simplified unbalanced workload distribution. In a geographical plane defined as <X, Y,

W, H >, the workload distribution function is defined as 	(x, y) = x−X
X . The capacity of

the owner node of each region is printed in the upper left corner of it.

We use Workload Index to measure the workload of a region.

4.4.1 Dual Peer

We expect that the majority of nodes in a GeoGrid network are end systems owned by end-

users. Like in the P2P networks used for file sharing, the continuity of service in a GeoGrid

network is greatly affected by the dynamic member node population. Measurement studies

like [50] reveal that peers in Gnutella networks have high turn-over rates. Half of them are

replaced by new ones in an hour.
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Figure 52: Region size and load distribution of GeoGrid, using random bootstrapping
algorithm

For a service network like GeoGrid that relies on end system nodes for storage of objects

and forwarding messages, such network dynamic could cause loss of information, service

interruption, and extra communication and computation overhead for restoring the services.

Passive replication techniques have been studied in the literature to accommodate such

system dynamics [63, 29, 9, 32] . By replicating critical information on selectively chosen

backup nodes, the loss of information and service interruptions can be considerably reduced.
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Information and services can be directly recovered from those replication, in the case of node

failure. Our experimental and analytical studies of Chapter 2 show that, by keeping even a

single service replication, the fault resilience of the service network can be greatly improved.

We incorporate a similar idea in GeoGrid based on the results of Chapter 2.

Instead of using a single node to manage the objects and to handle requests in a geo-

graphical region, we allow two nodes to share its ownership and to store the information

published in it. The node with more capacity serves as the primary owner node, and han-

dles all the requests and stores information in the way described in Section 4.2. The other

node, what we call the secondary owner node, will serve as the backup of the primary node,

holding the replication of objects and application-specific data copied from the primary

node.

The basic GeoGrid needs to be modified to support the dual peer mechanism. Con-

cretely, the following three aspects of the system design are modified.

Node Join The first three steps a new node p follows to join a GeoGrid network featured

with dual peer mechanisms will be the same as the basic GeoGrid, i.e., i) the new node p

obtains its geographical coordinate, ii) p uses a bootstrapping service to randomly choose

an existing node as its entry point, iii) p uses the routing interface of GeoGrid to locate the

region r that covers its geographical coordinate. After the new node obtains the information

of the primary owner r.primary of region r, it will not directly split r with the existing

primary or secondary node. Instead, it will probe the neighbor regions r.neighbors of r, and

will choose from r.neighbor∪ r a region that is not full and the owner of which has the least

available capacity. If all the regions in r.neighbor ∪ r are full, p will choose and split the

region whose primary node has the least available capacity. Between the two new regions

generated by the splitting, node p will join the one whose owner has less available capacity.

When node p joins a region that is half full, it will compare its capacity with the capacity

of the existing owner, and will take over the role as the primary owner if the current owner

has less capacity than it. The switching of primary and secondary ownerships will happen

after the new node finishes copying all the objects and status information from the existing
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owner. The service interruption and loss of information caused by handover will have little

impact on the continuity of the services.

Node Departure If a region is full, i.e., has two owner nodes, the departure of the

secondary owner will cause no change to the GeoGrid system other than triggering the

primary node to mark this region as “half full”. The departure of the primary owner will

cause the activation of the secondary owner. The new owner will inform the neighbor

regions of the change and ask them to update the routing information of their primary and

secondary owners.

Failure Recover The primary and secondary nodes of a region periodically synchronize

their status information and exchange heartbeat messages at a higher frequency then among

the primary nodes of different regions. The failure of a node will leave its region with one

or no owner. If a region is full and its primary owner node fails, the secondary owner node

will take over its role, activate all the backup information, and notify the neighbors and

other nodes of such a change. If the failing node is the last owner of a region, the repairing

process of the basic GeoGrid network will be triggered. Otherwise, the region will be left

half-full and will be filled by a node joining later or the load balancing adaptation scheme

that we will discuss later in this section.

The dual peer feature gives GeoGrid three advantages.

First, it improves the fault resilience of the GeoGrid service network. In our basic design,

if a node fails, the objects held by it will have to be republished by the information provider

nodes. For applications like end system multicast and publisher/subscriber systems, the

application status information are usually stored on each node as soft-state information.

The failure of a node is usually detected by the timeout of soft states pointed to this node.

The lost application status information is usually restored by repeating the subscription

or service announcement process. Dual peer technique can help avoid the extra processing

time as well as the delay caused by the failure of nodes. When a secondary owner takes over

the role of the failed primary owner, there is no need to reinsert or restore the application

status and object information, and there will be less service interruption caused by the
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failure of the primary node.

The second advantage of dual peer technique is that it reduces the number of region

split operations that may causes service interruption in the basic GeoGrid systems. A new

node will always try first to join a half full candidate region. No matter it takes over the

role as the primary owner or as the secondary owner of a originally half full region, it

will not force the split of a region and thus only need to copy the object information and

application status information from the existing owner. When a new node has to split an

existing region that is originally full, it will only need to copy half of the information from

one of its existing owners. Before the new node finishes the copying, the original primary

and secondary owner nodes can serve as the primary owners of the two new regions. After

finishing the copying, the new node will then start taking the role as a primary owner or a

secondary owner, depending on its capacity and the capacity of the current owner nodes.

The third advantage of dual peer technique is in improving the system load balance. A

new node probes existing neighbors of the region that covers its coordinate, and joins or

splits the region with the weakest primary node. Such a process will leave the regions owned

by powerful nodes split fewer times and will reduce the size of the regions owned by weaker

nodes. Figure 53 is the visualization of a GeoGrid service network of 500 nodes. Comparing

it to Figure 52, we have two observations. First, there are fewer regions and the sizes of

them are distributed in less uniform manner, conforming to the capacity distribution of

owner nodes. More powerful nodes now own bigger regions. Second, the selective joining

process of duel peer technique renders fewer heavily loaded regions, although a few still

exist.

Dual peer technique can be further improved in two aspects.

First, we can use a pool of nodes to replace the single secondary node. The basic

GeoGrid design and one featured with dual peer technique will add all the end system

nodes in a geographical area into GeoGrid service network either as a primary owner or

secondary owner. When a geographical region has a dense end-user population, each region

may be too small to make the application-level communication efficient. For example, in a

downtown area of one square mile, is likely that there are thousands of end-users. Each of
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Figure 53: Region size and load distribution in the GeoGrid featured with the dual peer
technique

their nodes will handle a region of only hundreds of square yards. The routing among those

regions is more expensive because more routing hops are involved. Furthermore, processing

of area-based queries will involve much more nodes than necessary. By posing a lower

bound on the region size, we can reduce the total number of regions in a small geographical

area. When a node tries to split a region that has reached this size lower bound, it will

join the secondary pool of that region, if it is weaker than the current primary owner
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node. Otherwise, it will take the role as the primary owner of the region and put the

current primary owner into the secondary owner pool. The secondary pool will be used in

a way similar to the original secondary peer. Besides taking the role of secondary peer, the

secondary pool is more helpful on the load balancing of GeoGrid. When a GeoGrid service

network is system-wide overloaded, the mechanism that we will present in Section 4.4.2 will

be of limited help. In such case, we can reduce the value of region size lower bound, and

promote more nodes in the secondary pool to join the GeoGrid service network. By trading

the routing efficiency with more processing power, we will reduce the average workload

handled by each active owner node in the GeoGrid service network.

The second technique we use is to randomize the geographical coordinate of a joining

node in a high density area. Concretely, each node will add randomly generated delta

(Δx, Δy) to its geographical coordinate (x, y) when joining a GeoGrid service overlay. The

new coordinate (x+Δx, y+Δy) will determine the region that the new node will join or

split. By doing so, we can spread nodes from a dense region more evenly, and improve the

load balance in GeoGrid service network.

4.4.2 Dynamic Work Load Adaptation

The GeoGrid visualized in Figure 53 still has a few heavily loaded regions, even though

their number is smaller than that of Figure 52. Those overloaded regions all have relatively

weaker primary owner nodes. Dual peer technique can balance workload distribution by

selectively assigning new nodes to the most heavily loaded regions in the neighborhood of

the new nodes. However, when the nodes in a region are all weak ones, the effects of dual

peer scheme will be less significant.

To further improve the system load balance of GeoGrid service networks, we develop a

set of adaptation mechanisms. The basic idea behind those adaptation mechanisms is to

break the geographical association between an owner peer and the region it owns, and dy-

namically adjust the node assignments in a geographical vicinity according to the workload

distribution.

Figure 54 illustrates eight adaptation mechanisms we use in GeoGrid. Each of them
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Figure 54: Load balance adaptation mechanisms of GeoGrid

describes an adaptation scenario. The capacities of the primary and secondary owners are

printed in the upper left corner of each region.

Before we explain the load balance mechanisms, we first define the condition that triggers

the load balance adaptation. In a GeoGrid network, each node periodically exchanges

workload statistic information with its neighbors. A node starts its load balance adaptation

process only when its workload index is higher than
√

2 times of the lowest one among its

neighbors. By doing so, we can avoid the load balance adaptation process being repeatedly

triggered within a geographical area in a certain time window.

Once the load balance adaptation condition is satisfied, one of the following eight mecha-

nisms will be used to adjust the owner node assignments. Algorithm 2 provides the guideline

that nodes in GeoGrid follow to conduct those adaptations. The basic rules are:

• local adaptations have less operation overhead than remote adaptations, and thus

have higher priority.

• switching or moving secondary peers has less operation overhead than switching or

moving primary peers.

• splitting and merging are expensive operations and are thus assigned with the lowest

priority.
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Steal Secondary Owner This adaptation is used when the overloaded region is not full.

Using this adaptation, the overloaded primary owner node compares the workload index

of all the neighbor regions. It tries to select a neighbor region whose secondary owner is

more powerful than it, and has the lowest workload index among all the regions satisfying

the first condition. Once such a region is located, its secondary owner is “stolen” to be

the primary owner of the overloaded region. An example is given in Figure 54(a). The

region in gray shade has a primary owner with capacity 1. It steals the secondary owner

of a neighbor region, which has capacity 10, to replace its position as the primary owner.

After the adaptation, the primary node of the originally overloaded region now has more

capacity to handle the workload assigned to it.

Switch Primary Owners This adaptation can be initiated by a region that is either

half-full or full. Figure 54(b) gives an example. A smaller region has a primary owner

that is more powerful than one of its neighbor regions, which is bigger and has a weaker

primary owner. By switching the primary owners of these two regions, the bigger region

now has more processing power while the smaller one has less. The assignment of processing

capacities now matches the sizes of both regions better.

Merge with a Neighbor This adaptation is used when a region p and one of its neighbor

region n can be merged, and the merged region has lower workload index than the average

workload index of p and n. An example is given by Figure 54(c).

Split a Region As illustrated in Figure 54(d), if the primary and secondary owner of

an overloaded region have the same capacity, splitting this region can assign half of the

workload to each of them and can reduce the workload index of the original primary owner

by half. The two half-full regions are left to be filled by the other adaptation mechanisms

or be filled by nodes that join the network later.

Switch Primary and Secondary Owners When an overloaded region is full, its pri-

mary owner can switch its position with a secondary owner of a neighbor region, if that
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Algorithm 2 Load balance adaptation
1: procedure LoadBalanceAdaptation *defined for each node p*
2: if needAdapation()==true then
3: if isNotFull() then
4: if (n=searchSecondary())!= null then
5: stealSecondaryFrom(n)
6: return
7: end if
8: if (n=searchPrimaryToSwitch())!= null then
9: switchPrimary(n)

10: return
11: end if
12: if (n=searchRemoteSecondary())!= null then
13: stealSecondaryFrom(n)
14: return
15: end if
16: if (n=searchRemotePrimary())!= null then
17: switchPrimary(n)
18: return
19: end if
20: if (n=searchMergibleNeighbor())!= null then
21: merge(n)
22: return
23: end if
24: else *this region is full*
25: if (n=searchSecondary())!= null then
26: switchPrimarySecondary(n)
27: return
28: end if
29: if (n=searchPrimaryToSwitch())!= null then
30: switchPrimary(n)
31: return
32: end if
33: if (n=searchRemoteSecondary())!= null then
34: switchPrimarySecondary(n)
35: return
36: end if
37: if (n=searchRemotePrimary())!= null then
38: switchPrimary(n)
39: return
40: end if
41: if primary.capacity() == secondary.capacity() then
42: n = split()
43: n.join()
44: return
45: end if
46: end if
47: end if
48: end procedure
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secondary owner has more capacity. An example of such adaptation is given by Figure 54(e).

Steal Remote Secondary Owner There is non-zero probability that a region and all its

neighbors are all overloaded. Local adaptations through switching or stealing owner nodes

from neighbor regions may not improve the distribution of workload. In such a case, we

consider using nodes that are not direct neighbors of the overloaded region for adaptation.

However, a new problem stands out. How can an overloaded node discover a remote node

for adaptation? In our system design, we have considered two approaches. The first one is

by flooding query messages to the neighbors, like in a Gnutella P2P network. The drawback

of this approach is that a large number of redundant messages will be generated. Some of

them are sent to nodes that are already overloaded and will further increase their workloads.

The second approach, which is the one we adopt in GeoGrid, is based on a guided search.

At each step of the search, the query message is forwarded from a node to its least loaded

neighbor. The search terminates when the stop condition is satisfied or the Time to Live

(TTL) of the query runs out. The initial value of TTL is set to 5. If a search fails, the TTL

of the next search will be increased by 1. A success search resets the value of the initial

TTL of next search to 5.

The adaptation illustrated by Figure 54(f) is based on such a search. The stop condition

is that the search reaches a region whose secondary owner has more capacity than the

primary owner of the overloaded region and is less loaded. Assume a remote secondary

owner is discovered. The primary owner of the overloaded region will steal this remote

secondary owner, and will resign to be the secondary owner.

Switch Primary with Remote Secondary Owner This adaptation is for a full region

and is also based on a search for discovering a remote secondary owner that is stronger than

the primary owner of the overloaded region. The overloaded primary owner will switch its

position with the discovered remote secondary owner, as shown in Figure 54(g).

Switch Primary with Remote Primary Owner This adaptation is for a full region

and is also based on a search for discovering a candidate remote primary owner that is
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stronger than the primary owner of the overloaded region. The overloaded primary owner

will switch its position with the discovered remote primary owner, as shown in Figure 54(h).

Please note that each time a node launches its adaptation process, it will begin with

the least expensive operation. Expensive ones like switching primary owner with remote

primary owner are used only when all the other adaptations fail.

Figure 55: Region size and load distribution in the GeoGrid featured with both dual peer
and load balancing adaptation techniques

Figure 55 visualizes a GeoGrid network adapted from the one presented by Figure 53.
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We can see that all the overloaded nodes are replaced with stronger ones, and the max,

average, and standard deviation of workload index are all significantly lower than the ones

of GeoGrid featured with only dual peer technique.

4.5 Location-Based Routing in GeoGrid

In a GeoGrid network of N regions, the average number of routing hops between two

randomly selected regions is O(2
√

N). For a GeoGrid network with a large number of

nodes, such routing performance is less desirable than the O(logN) ones of Chord [52] and

Pastry [49]. The less efficient routing performance brings two performance issues to our

attention. The first one is the long delay of communication. Secondly, the more hops a

message is forwarded through, more nodes in the GeoGrid service network will be involved in

processing and forwarding the message. Consequently, more routing workload will be placed

onto the GeoGrid network and less capacity will be available for processing application-

related messages and objects.

Furthermore, when choosing a neighbor to forwarding a routing request, the only criteria

used in basic GeoGrid design is the distance to the destination point. Although the dual

peer and dynamic load balance adaptation techniques we presented in Section 4.4 can help

balance the workload distribution in GeoGrid, the unbalanced routing workload distribution

is still an outstanding issue.

To solve this problem, we propose a randomized shortcut technique that can improve

both the routing efficiency and routing workload balance in GeoGrid.

L 1

L 4

L 3

L 21
9

10 13 2 6

3 5

4 7 8

11 14 12 15

Figure 56: Binary tree representation of GeoGrid and routing
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4.5.1 Accelerate Routing with Shortcuts

In the basic GeoGrid design, a routing message is always forwarded from one region to one

of its neighbors that is the closest to the destination point. Although this mechanism is

deterministic and intuitional correct, some hops in the routing path are redundant. We can

think of each region in a GeoGrid service network as a leaf of a binary “partition tree”. The

internal vertices represent regions that have been split. The children of a tree vertex are

the two regions into which it was split. Although this partition tree is not maintained in

GeoGrid system and is totally conceptual, it can help us analyze the routing performance

of GeoGrid service networks. Figure 56 presents the partition tree of the GeoGrid network

given by Figure 50. The dashed arrow lines represent the message routing path from region

13 to region 5. We find that although region 10 is the closest to region 5 among all the

neighbors of region 13, using this hop to send a message into region 13 does not help reducing

the search space, because region 10 and region 13 are siblings in the same subtree of the

partition tree.

4.5.1.1 Structure of Shortcut List

One of the key techniques for reducing routing hops is by trading status information for

efficiency. Chord achieves O(log2N) routing efficiency because forwarding a routing message

according to the finger table entries of each node can reduce the search space by half at

each forwarding step. In Pastry, the search space is reduced to 1
2d of the previous because

each node of Pastry maintains even more routing information than Chord.

Inspired by this observation, we design a technique call Routing Shortcut. As implied

by its name, the main idea is to add more routing information to each node, such that these

routing entries can be used as the shortcuts in forwarding routing requests.

The shortcuts of a node p is organized in to a list Lp < s1, s2, s3, . . . >. Shortcut

si points to a node in a geographical partition of 1/2i the size of the geographical plane.

There are no overlapping among the partitions pointed to by the shortcuts of p. When

shortcuts of each GeoGrid node are setup in such a structured manner, each time when

a node forwards a routing request, the shortcut it uses can effectively reduce the routing
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search space by half.

The length of the shortcut list Lp of a node p is decided by the relative size of region r

owned by p. When region r is 1/2m of the size of the geographical plane, the length of the

shortcut list Lp is m. By doing so, the whole geographical plane is covered by the shortcuts

of p, since we have the following equation:

m∑
i=1

1
2i

+
1

2m
= 1

Based on this analysis, we can estimate the average length of the shortcut list maintained

by each node. In a GeoGrid service network of N nodes, the size of a region is 1
N of the

geographical plane, assuming a uniform region size distribution. Thus the length of the

shortcut list maintained by each node is O(log2N).

One challenging issue we need to address is to choose the proper geographical partitions

covered by each shortcut of each node. In GeoGrid, we exploit the structure of the con-

ceptual binary partition tree for setting up shortcut list. We first define the partitioning

subtrees of a region r owned by node p. Concretely, the partitioning subtrees of a region

r are a list of subtrees of the binary partition tree that contain region r. We denote them

as < R1, R2, . . . >, where Ri is the subtree at depth i in the conceptual binary partition

tree of the geographical region. We define the shortcut subtrees as a list of subtrees of the

binary partition tree, and denote them by < L1, L2, . . . >. Li is a subtree of the binary

partition tree and is the sibling of Ri at depth i.

Use region 7 in Figure 56 as an example. It maintains shortcut links pointing to nodes

in shortcut subtrees L1, L2, L3 and L4. Each of those subtrees covers a geographical

region that is the half the size of the region at the higher level. Figure 57 illustrates the

geographical regions covers by those subtrees. For each subtree, one shortcut is maintained

on the owner node of region 7.

Using these shortcuts, owner node of region 7 can route messages to the other regions

with less hops. For example, when it routes a message destined to region 10, it can use one

of its shortcuts to first send the request into regions covered by subtree L1, and effectively
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reduces the search space by half. The node that receives this request will also use its

shortcuts and neighbor list to further forward the request. In the whole routing process,

the search space is reduced by half at each routing step.

4.5.1.2 Selection of Shortcuts

The standing out issue is how a node can obtain the information of shortcut entries in a

distributed manner. It can be done in two different ways.

In the first approach, a node starts setting up shortcuts until it fully joins the GeoGrid

service network. The setup can be done by sending out a number of routing requests. Each

request is tagged with a random coordinate covered by one of its shortcut subtrees. The

request is routed using the basic routing scheme of GeoGrid. The nodes that own the regions

covering those coordinates send their information back to the new node. The information

of those nodes will be stored in the shortcut list of the new node. Although this approach

is straightforward, it requires extra probing messages to setup the shortcuts.

In GeoGrid, we adopt the second approach, which does not require such a probing

process. Concretely, a new node uses the same process as in Section 4.2 to join a GeoGrid

overlay. If it assumes the role of the primary owner of a region, it must have split an existing

region and copied all the routing information from the owner of that region. Such routing

information includes the shortcut information and the neighbor list. In our basic GeoGrid

design, when a region is split, its owner node will discard the routing information of those

regions who are no longer its direct neighbors. In our design with shortcuts, we add such

routing information into the shortcut list, instead of discarding it. The split history of a

region records its path sinking from the top of the binary partition tree to the bottom leaf.

Those routing information recorded by the shortcut list are the ones inherited from the

existing nodes, and record the neighbors of partition subtrees at different depth. They are

exactly the shortcuts that we are looking for.

4.5.1.3 Utilization and Maintenance of Shortcuts

The routing process using shortcuts is similar to the one we discussed in Section 4.2. The

only change we make is to replace the neighbor list with the super set of neighbor list and
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shortcuts. When a node evaluates the candidate nodes for forwarding a routing request,

it will consider the entries in both neighbor list and shortcut list, and will choose the one

closest to the destination point to forward the request.

Maintenance of shortcuts is similar to the maintenance of neighbor list. Heart beat

messages are used to detect failures, though in a lower frequency. When a node detects a

failed shortcut, it will initiate a routing request tagged with the coordinate of the shortcut

node. The message will be forwarded to the node who takes over the region left by the

failed shortcut node. And that new owner node will be used to replace the failed shortcut.
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Figure 57: Geographical regions corresponding to the shortcuts

4.5.2 Randomizing Adaptation of Shortcuts

The way we setup shortcuts in GeoGrid can reduce the messaging overhead for setting up

shortcuts. However, there is a potential problem with this approach. In the split history of

a node, the shortcuts pointing to the shortcut subtrees of lower depth value are the ones

recorded originally when the total population of the GeoGrid service network is small. As

more nodes join and later depart the GeoGrid service network, such setup may cause a

severe performance problem. The shortcuts of a node are inherited from the owner with

whom it splits a region, and later are passed on to other nodes that split its region. As more

nodes join the network, a lot of them may share the same shortcut links pointing to those

nodes that have been in the GeoGrid service network for a while. When those shortcuts are

used to accelerate routings in a GeoGrid service network, nodes with longer lifetime may be

used more by other nodes for routing. If those “senior” nodes do not have enough capacity
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and is overloaded, the shortcuts pointed to them will be of no use, and a lot of nodes in

the GeoGrid service network may have to resort to the basic routing scheme for message

forwarding.

To address this issue, we propose a technique to randomize the shortcuts such that nodes

with more capacities are more likely be used as shortcuts and the distribution of shortcuts

are also randomized. Concretely, our solution includes two parts.

First, we propose a shortcut selection algorithm. Each node running GeoGrid mid-

dleware will periodically use this algorithm to choose a shortcut from its shortcut list for

adaptation. For a node p with shortcut list Lp, p calculates its geographical distance d(p, si)

to each shortcut entry si ∈ Lp. A shortcut sk is chosen with probability d(p,sk)P
si∈Lp

d(p,si)
. Node

p will make a random decision on whether a chosen shortcut neighbor node s should be

replaced. The capacity of s is compared to the product of the capacity of p and a uniform

random number Unif(0, 1). Concretely, if s.capacity ≤ Unif(0,1) × p.capacity, s will be

replaced. Such a design tends to keep the shortcut neighbors that have more capacity, and

replace the weaker ones with higher probability.

The second component of our solution is an algorithm for replacing the selected shortcut.

We want to put the node capacity into consideration when we replace shortcuts. Intuitively,

a node with more capacity should handle more routing workload. Concretely, each selected

shortcut is replaced by a randomly selected node in the same shortcut subtree. The re-

placement shortcut is chosen by a selective random walk. The random walk starts from the

node chosen to be replaced. If this node is no longer in the GeoGrid network, its coordinate

will be used to locate the new owner node who takes over its region. The random walk

is tagged with the information of the node p that initiates the shortcut replacement algo-

rithm. At each step of the random walk, a node n receives the random walk query message

from a node n′. It will first generate a random number Unif(0,1) and compare n.capacity

to Unif(0, 1) × n′.capacity. The random walk stops when n is a local optimal, i.e., it has

more capacity than n′. If the stop condition is not satisfied, node n will select one of its

direct neighbors for the next hop of random walk query. A neighbor node nk is chosen

with probability nk.capacityP
ni∈n.neighbors ni.capacity . By doing so, the random walk is directed to and
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Table 2: Capacity distribution of peers

Capacity level Percentage of peers
1x 20%
10x 45%
100x 30%
1000x 4.9%
10000x 0.1%

terminates on the nodes with more capacity.

4.6 Experimental Results

We evaluate GeoGrid system by simulating a geographical region of 64 miles × 64 miles.

The population of end users in this region ranges from 1 × 103 to 1.6 × 104. For each

population setting, we simulated 100 randomly generated GeoGrid service network. Each

end user connects into the GeoGrid service network through a dedicated proxy node. The

capacities of those proxies follow a skewed distribution borrowed from a measurement study

of Gnutella P2P network [50].

4.6.1 Routing Efficiency

We first study the routing performance of GeoGrid system. As we discussed in Section 4.5,

the average number of routing hops in a basic GeoGrid system with N nodes is of O(2
√

N).

We add shortcuts to each nodes and expect to lower this number to O(logN) and also to

reduce the average routing workload on each node.

We simulate the routing in three types of GeoGrid systems, i.e., the basic GeoGrid

system, the GeoGrid system with shortcuts added, and the GeoGrid system with shortcuts

that have been randomly adapted. For a GeoGrid system with N nodes, we simulate the

processing of 2N routing requests. Each routing request is between a pair of randomly

chosen nodes. We record the number of hops each routing request is forwarded through,

and the number of forwarding handled by each node.

Figure 58 plots the average hops a routing request is forwarded through. We have two

observations. First, shortcuts can effectively reduce the average number of routing hops from
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O(2
√

N) to O(logN). This improvement makes the GeoGrid with shortcuts more scalable

in handling routing requests. Secondly, the side effects of random adaptation on shortcuts

are negligible. The bars in Figure 58 plot the magnified average hops of routing in two

GeoGrid systems with shortcuts. The extra routing delay caused by shortcut randomization

is between 2.18% and 4.97%.

Figure 59 plots the standard deviation of hops a routing request is forwarded through. It

demonstrates similar patterns as Figure 58. Such similarity indicates that GeoGrid systems

with shortcuts have more stable routing performance. And the side effects of randomizing

shortcuts is more noticeable but still within an acceptable range.
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Figure 58: GeoGrid with shortcuts achieves O(logN) hops per request routing
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Figure 59: GeoGrid with shortcuts and adaptation has more stable routing performance
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Figure 60: GeoGrid with shortcuts generates less routing workloads. Randomizing the
shortcuts helps further reduce the routing workload index
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Figure 61: GeoGrid with shortcuts and adaptation distributes the routing workload more
evenly among heterogeneous nodes

4.6.2 Balance Routing Workload

To measure the routing workload distribution, we record the accumulative number of routing

requests handled by each node. We use a metric Routing Workload Index to measure the

workload distribution. For a node p with capacity c, its routing workload index is defined

as the accumulative routing requests forwarded by each unit capacity of p.

Figure 60 plots the average routing workload index of different GeoGrid systems. We

observe similar patterns as in Figure 58 and Figure 59. Shortcuts can effectively reduce the

routing workload in the system because each routing request is forwarded through fewer

hops and consequently requires less resource for handling. An interesting observation is
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that the randomizing of shortcuts helps to utilize the heterogeneous node capacity more

efficiently. The adaptation random walks make more shortcut entries pointing to more

capable nodes and thus make them handle more routing requests in average. The result

is that routing workload index of GeoGrid with adaptive shortcuts is around 17.13% to

21.18% lower than the GeoGrid with non-adaptive shortcuts.

While the average routing workload index is related with the total number of routing

requests initiated in the GeoGrid overlay, we believe that the standard deviation of routing

workload index is a better metric for measuring the routing workload distribution. Fig-

ure 61 plots the standard deviation of routing workload index of different GeoGrid systems.

The effects of randomizing shortcuts are significant. This mechanism helps to reduce the

standard deviation of routing workload index by 46.51% to 59.66%. The interpretation of

such reduction is that routing workloads are more evenly distribution through randomizing

the shortcuts.

4.6.3 Effects of Adaptation on Balancing Routing Workload

To further understand the effects of randomizing adaptation of shortcuts on both rout-

ing efficiency and routing workload distribution, we design a simulation on a randomly

generated GeoGrid system with 8 × 103 nodes. This network is featured with shortcuts,

but we disable the randomizing adaptation until the network is stable. Before we turn on

the randomizing adaptation of shortcuts, we measure the routing performance and routing

workload distribution by simulating 1.6 × 104 random routings. We simulated 40 rounds

of adaptations. In each routing of adaptation, each peer randomizes one of its shortcuts.

After each round of adaptation, we repeat the same set of routing experiments and record

the routing performance and routing workload distribution. Figure 62 presents the changes

on standard deviation of routing workload index. Figure 63 plots the series of change on

average routing workload index. Figure 64 records the changes of average routing hops

per request. Figure 65 records the changes of the standard deviation of routing hops per

request.

The results of this experiment confirm our observation in Section 4.6.1 and Section 4.6.2.
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The randomizing adaptation of shortcuts can help distribute the routing workload more

evenly while cause negligible side effects on the routing efficiency.
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Figure 62: Reduce standard deviation of routing workload index using adaptation
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Figure 63: Reduce the average routing workload index using adaptation

4.6.4 Routing Performance under Clustered Geographical Node Distribution

In real world applications, it is unrealistic to expect nodes in GeoGrid to be uniformly dis-

tributed. We want to know if the routing performance of GeoGrid will degrade under uneven

node distribution. We repeat the set of routing experiments on geographical planes with

“skewed” end-node distribution. Figure 66 visualizes the node distribution we use. Nodes

is a geographical plane are clustered in both latitude and longitude directions. Figure 67,

68, 69, and 70 plot the experimental results.
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Figure 64: Minor impact of adaptation on the average number of routing hops
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Figure 65: Minor impact of adaptation on the standard deviation of routing hops

Distribution in longitude direction

Distribution in latitude direction

Figure 66: Skewed node distribution for evaluating routing performance of GeoGrid

We can see that GeoGrid system with shortcuts can still deliver stable routing perfor-

mances. Adaptation of shortcuts moderately increases the average and standard deviation
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Figure 67: Minor impact of node distribution on the average number of routing hops
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Figure 68: Minor impact of node distribution on the standard deviation of routing hops
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Figure 69: Minor impact of node distribution on the average routing workload index

of routing delay, but tremendously improves the routing load balance.
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Figure 70: Minor impact of node distribution on the standard deviation of routing workload
index

4.6.5 Balance Region Workload

We design a set of experiments to evaluate the effects of dual peer and load balance adapta-

tion techniques we proposed in Section 4.4. We simulate the uneven workload distribution

in the geographical area by creating a number of hot spots and randomly moving them in

the simulated plane. Each hot spot is a circular area with a random initial radius between

0.1 and 10 miles. The cell at the center of a hot spot has the highest normalized workload

1 and the ones on its border have workload 0. The workloads of cells covered by the hot

spot is decided by a formula 1 − d/r, where d is the distance of a cell to the center of the

hot spot and r is the radius of the hot spot. We choose circular hot spots because this

choice agrees with the nature of location-based applications. To illustrate this point, let us

use the queries on parking lots information as an example. Usually during a sport event

like Super bowl, parking lots close to the stadium are usually fully loaded. More people

will be interested in finding a parking space that is closer to the stadium. As we move

from the stadium to the parking lots in the neighborhood, fewer people will be interested in

querying them because parking there means longer walking to the stadium. Consequently,

as the sport event creates a hot spot of queries in that area, more queries will be forwarded

towards the center of the hot spot, and fewer will be forwarded to the nearby regions.

The whole simulation time line is divided into a number of eras. At the end of each

era, we force each hot spot to migrate along a randomly chosen direction and at a random
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Figure 71: Standard deviation of workload index
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Figure 72: Mean of workload index

step size uniformly chosen from range (0, 2r). We simulated three types of GeoGrid system:

basic GeoGrid system, the one featured with dual peer technique, and the one with both

dual peer and load balance adaptation turned on. We measure the max, mean, and standard

deviation of workload index of each GeoGrid flavor. Each simulation is repeated 100 times

on different node population.

As we observe in Figure 71 and Figure 72, both dual peer and adaptation techniques

can effectively improve the load balancing in GeoGrid systems. The GeoGrid system with

both features can constantly beat the basic GeoGrid system by one order of magnitude in

both metrics. While dual peer technique itself can improve the workload distribution, the

load balance adaptation can further improve the system performance.

The max of workload index demonstrate a similar patter as Figure 71 and Figure 72.
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Figure 73: The max of workload index of the GeoGrid systems

We notice that when the node population is large, basic GeoGrid and the GeoGrid system

featured only dual peer technique has similar max workload index. It is because we forces

an upper bound u on the number of splits allowed for a region in both GeoGrid systems.

A region split operation fails when the region to be split has already been split u times.

The rollback of failed split will make the new node to split a randomly chosen neighbor

region. When the total number of nodes is large, such a mechanism will generate similar

system topologies for basic GeoGrid systems and the ones with dual peers. Thus, the max

workload index tends to share similar values when the GeoGrid service network has a large

number of nodes.

4.6.6 Impact of Adaptation on Region Workload

Both dual peer and load balance adaptation techniques can improve the workload distribu-

tion of GeoGrid systems. We want to know how fast load balance adaptation can improve

the workload distribution. Will the adaptation converge? To answer this question, we de-

sign a simulation to evaluate the effects of load balance adaptation on GeoGrid systems.

We simulate GeoGrid systems with 2× 103 peers. The service network is setup first using

only dual peer technique. When hot spots appear, we turn on the load balance adaptation

features of each node. The max, mean, and standard deviation of workload index of all

the nodes are recorded at the end of each round of adaptation. We simulated a “sunny”

adaptation scenario in which the hot spots are static and never change their size or location.
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The “rainy” scenario is simulated by constantly moving the hot spots at a pace far faster

than the pace of adaptation. Concretely, hot spots move 4 to 10 steps before a round of

adaptation ends.
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Figure 74: Convergence of the mean workload index in adaptation, plotted by round of
adaptation
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Figure 75: Convergence of the standard deviation of workload index in adaptation, plotted
by round of adaptation

Figure 74, Figure 75, and 76 plot the experiment results. The dashed line represents

the measured results of the “rainy” scenario while the solid line represents the result of

the “sunny” scenario. Under both setups, the workload distribution of GeoGrid system

converges in the first a few rounds of adaptations. After that, the whole system is stable

enough to accommodate the constant moving hot spots without being overloaded. The

dotted line represents the performance of a GeoGrid system with no load balance adaptation
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Figure 76: Convergence of the max workload index in adaptation, plotted by round of
adaptation

mechanism under “rainy” scenario. Compared to the number of GeoGrid system featured

with load balance adaptation mechanisms, we can see that the adaptation greatly improved

the system load balance.
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Figure 77: Number of load balance adaptations in each round

In the next set of experiment, we record the value of load balance metric at the end of

each adaptation. Figure 77 plots the accumulative percentage of load balance adaptations

conducted before the end of each round of adaptation. We can see that under “rainy”

scenario, more adaptations are needed. It is because the constantly moving hot spots

created new overloaded regions when they move into a set of new locations. The number if

adaptations conducted in each round decreases, no matter in “rainy” or “sunny” scenarios.

This trend shows that the node-region assignment of GeoGrid system converges.
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Figure 78: Convergence of the mean workload index in adaptation, plotted by number of
adaptation
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Figure 79: Convergence of the standard deviation of workload index in adaptation, plotted
by number of adaptation

Figure 78, Figure 79, and Figure 80 plot the recorded load balance measurement results.

While the lines of “sunny” scenario converge quickly, the ones of adaptation under “rainy”

scenario converges slower than in the figures plotted by the total number of adaptations.

In the middle, there are a few surges on the dashed lines, which are caused by the hot

spots that move to new locations in between of the first a few adaptation rounds. After a

few rounds of adaptations, the whole system converges and the migrating of hot spots is

handled more gracefully by GeoGrid systems.
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Figure 80: Convergence of the max workload index in adaptation, plotted by number of
adaptation

4.7 Related Works

A number of research works have been proposed to use a network of caches or an overlay

network of end-systems to serve location based applications or mobile users [25, 34]. None

of them studied the problem of optimizing the topology of the service network. As our

experimental studies suggest, significant improvement on message forwarding efficiency and

load balance can be achieved through using the mechanisms proposed in this chapter. Our

research work is orthogonal to those works and can be used to improve their performance.

Our solution for improving routing efficiency in GeoGrid network is inspired by the work

of Expressway [59] and ECAN [60] system. They proposed similar idea of using shortcuts

to accelerate routing in multi-dimensional identifier space. Our system is different from

their work in the way we improve the routing workload balance. They considered only

the network distance as the metric in building expressway. Their solution can deliver end-

to-end routing latency comparable to that of unicast links. However, their solutions did

not put node heterogeneity into consideration. In a heterogeneous environment like P2P

network, such a design may leads to uneven distribution of workload. Our solution is based

on selective random walks. By recruiting more power nodes for processing and forwarding

messages, our mechanism can significantly improve the routing load balance.

Research study on CAN network like [45, 53] have proposed a number of solutions for

load balance in multidimensional P2P networks. Their solutions are focused on modifying
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the bootstrapping process of CAN to smartly choose regions to split. Those solutions may

be able to improve the load balance of a network of with more static workload distribu-

tion. However, service networks that have dynamically migrating hot spots like GeoGrid,

more flexible and responsive load balance mechanisms are needed to improve the system

workload distribution. The mechanisms proposed in Section 4.4 can help achieving this

goal by dynamically adjust the node distribution to accommodate the changes in workload

distribution.

In the database literature, a number of research works have been proposed for im-

proving the workload balance of distributed databases. The basic solution is to map the

multidimensional data space into entities of one-dimension space, and dynamically adjusts

the item distribution among distributed databases [28, 27]. Whereas such solutions are

more suitable for processing range queries in one-dimensional space, they need tremendous

modification to support generic location-based applications as GeoGrid could.

Research works like Rebeca [41] and [36] are focused on efficient location-based query

processing. Their solutions are based either on centralized services or distributed grid, and

did not address the issue of load balance and query routing. GeoGrid is designed as a

generic service network, and thus can support the techniques proposed in [41, 36] and add

important features like load balance to those solutions.

Other types of networks that can support geographical information dissemination and

sharing include Ad-hoc networks [39, 38], Sensor networks [8], and vehicular networks [37].

They usually use multi-hop wireless connections to implement IP unicast features among

mobile or fixed nodes, and lack the fixed infrastructures like the GeoGrid service network

we present in this chapter. Therefore, information dissemination in these networks has to

rely on the unreliable wireless connections, and usually by exploiting the broadcast nature

of wireless network links. Because of the limits on the range of wireless signal, it is hard

to establish long distance shortcuts like the ones used in GeoGrid. Thus, the end-to-end

routing in those networks are less efficient. Furthermore, the physical location and the

range of wireless signal determine the location that a node can take in those networks.

Dynamic load balance techniques proposed in Section 4.4 can hardly be implemented in
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those systems.
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CHAPTER V

CONCLUSION AND FUTURE WORK

With the rapid advances of wireless communication technology and the increasing popularity

of hand-held devices, we witness the continuous escalation of multi-party group communica-

tion applications. The implementations of these applications usually involve the exchanges

of text or multimedia contents among multiple participants. Traditional client/server ar-

chitecture can hardly solve the problem because the server side become the bottleneck as

the whole system scales, and the end users have to rely on the server for the features they

ask for. Future information dissemination applications call for a generic, flexible, efficient,

and reliable platform for implementation.

5.1 Conclusion

This thesis aims at developing system-level architectures and techniques to support infor-

mation dissemination to large scale user groups by using structured P2P overlays, unstruc-

tured P2P overlays, and P2P overlays constructed using geographical location information.

Although different overlay networks require different system designs for building scalable

and efficient information dissemination services, we have employed three common design

philosophies: i) exploiting end-system heterogeneity. ii) utilizing proximity information of

end-system nodes to localize the communication traffic. iii) using randomized shortcuts to

accelerate message routing.

We have demonstrated our design philosophies and the performance improvements in

all three types of P2P overlay networks. By statically and dynamically assigning more

workloads to more powerful peers, we can greatly increase the system scalability and reduce

the variation of workload distribution. By clustering end-system nodes by their IP-network

proximity or their geographical proximity, and utilizing randomized shortcuts, we can reduce

the end-to-end communication latency, balance peer workloads against service request hot
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spots across the overlay network, and significantly enhance the scalability and efficiency

of large scale distributed information dissemination and decentralized multi-party group

communication.

Our contribution can be summarized by the implementation P2P overlay platforms as

following.

Structured P2P Overlay Network Designing and implementing an efficient and reli-

able End System Multicast (ESM) service on top of highly dynamic overlay networks poses

several research challenges. In this chapter, we have presented Cascade, an efficient and

self-configurable end system multicast system. Our approach has three unique features

compared to existing approaches to application-level multicast systems.

• First, we use the landmark signature technique to cluster end-hosts in the Cascade

ESM overlay network, aiming at exploiting the network proximity of end-hosts for

efficient multicast information dissemination across wide area networks.

• Second, we propose a capacity-aware overlay construction technique based on the

concept of virtual node to balance the multicast workload among heterogeneous end-

hosts.

• Third, we develop a dynamic passive replication scheme to provide reliable ESM

services in an environment of inherently unreliable peers. An analytical model is

presented to discuss its fault tolerance properties.

We evaluate Cascade using simulations of large scale networks. The experimental results

indicate that Cascade can provide efficient and scalable multicast services over large-scale

network of heterogeneous end-system nodes, with reasonable link stress and good load

balance.

Unstructured P2P Overlay Network We have described Peercast, a wide-area group

communication system, focusing on the design and evaluation of the utility-based dis-

tributed algorithms for managing the overlay topology and constructing the information
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dissemination spanning trees. This chapter makes three unique contributions.

• First, we identify network proximity and node capacity as two utility metrics and

show that a careful combination of these two metrics can have significant impact on

the efficiency and scalability of wide-area group communications.

• Second, we introduce a utility-aware P2P overlay management protocol in the boot-

strapping process.

• Third but not the least, we describe the design of a utility-aware wide-area group

communication management protocol that is capable of dynamically combining net-

work proximity and node capacity to deliver considerably improved performance for

wide-area group communications.

Our initial experimental results show that Peercast can improve the scalability of wide-

area group communications by one to two orders of magnitude.

Location-based Service Network In this chapter, we presented GeoGrid system, a

system that organizes end-systems into a P2P network of proxies for mobile users. GeoGrid

system is unique in the following aspects:

• It is featured with the management and routing mechanisms optimized for handling

location-based information dissemination and sharing.

• Its dynamic load balance scheme can distribute the information processing and dis-

semination workloads according to the geographical distribution and capacity of end-

systems.

• The GeoGrid system is free from the control of service providers. End users and

open source community can leverage the generic communication interfaces provided

by the GeoGrid system to support various applications and to provide location-based

services.

• Furthermore, GeoGrid can also be used to manage the server farms of service providers

and provide geographical information services.
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5.2 Future Work

We have addressed the design issues of scalability, reliability, and efficiency in our study of

information dissemination to large scale user groups. However, we have left a number of

research topics for our future studies, even though those topics are interesting complemen-

tary of the works presented in this thesis. We record them below, as a memorandum of

directions for our future researches.

Security We design our system as an open platform on which security mechanisms like

Event Guards [51] could be implemented. Such solutions usually improve the system se-

curity by adding cryptographical mechanisms, which will consequentially increase the com-

munication and computation overhead in the system. Our proposed solutions increase the

system efficiency of message passing, and will help reduce the performance degradation

caused by those security mechanisms.

Trust Management It will be an interesting topic to consider trust management in our

systems. Because of the highly dynamic nature of P2P network nodes, the information

dissemination services will not be stable if it relies on those nodes with high turn over rates

for services. Although our service replication mechanisms of Chapter 2 can increase the

availability of information dissemination services, handover and buffer delay on end system

nodes will still have negative impacts on the application quality of services. If we could

incorporate trust management mechanisms into the overlay networks, and mapping the

availability of individual nodes to their trustworthiness, we can improve the over-all system

availability by putting more information dissemination workloads on more reliable nodes

that have more stable network connections.

Hybrid Topology Our system does not exclude the architecture of “supernode” or multi-

layer P2P networks. Instead, our scheme can be used to construct the higher layer overlay

that interconnects supernodes. Normal peers can simplify their bootstrapping process by

connecting only to supernodes. Our utility-aware peer selection mechanism of Chapter 3 can

help peers to identify the supernodes that are close to them, such that the communication
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between a leave peer and its supernode can be minimized.
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