
EMERGING APPLICATIONS OF OR/MS:
EMERGENCY RESPONSE PLANNING AND

PRODUCTION PLANNING IN
SEMICONDUCTOR AND PRINTING INDUSTRY

A Thesis
Presented to

The Academic Faculty

by

Ali Ekici

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2009

EMERGING APPLICATIONS OF OR/MS:
EMERGENCY RESPONSE PLANNING AND

PRODUCTION PLANNING IN
SEMICONDUCTOR AND PRINTING INDUSTRY

Approved by:

Professor Pınar Keskinocak, Advisor
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Professor Nathaniel Hupert
Weill Medical College
Cornell University

Professor Özlem Ergun
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Professor Julie L. Swann
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Professor David Goldsman
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Date Approved: 11 August 2009

To My Parents,

Fatma and Musa Ekici.

iii

ACKNOWLEDGEMENTS

My sincere thanks belong to my advisor, Dr. Pınar Keskinocak, for her continuous

guidance, encouragement and financial support during this study. I would like to

express my special thanks to Dr. Özlem Ergun and Dr. Julie L. Swann for their

guidance and valuable insights in my studies. I thank Dr. David Goldsman and Dr.

Nathaniel Hupert for their time and effort in serving on my Ph.D. committee.

I thank my officemate Örsan Özener for his patience, insightful comments, and

valuable friendship. I also thank my friends, Serhan Duran, Murat Eröz, Burak Oğuz,

Burak Karacık, Aykağan Ak, Emrah Uyar, Ozan Gözbaşı, and Fatma Kılınç Karzan

for their friendship and support during my study. Finally, I would like to thank my

parents, my sister and my fiancee for their unconditional love and support during my

hard times.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

II MODELING INFLUENZA PANDEMIC, INTERVENTION STRATEGIES,
FOOD DISTRIBUTION AND WORKFORCE LOSS ESTIMATION . . 4

2.1 Introduction . 4

2.2 Literature Review . 7

2.3 Disease Spread Model, Results, and Validation 11

2.4 Intervention Policy: Voluntary Quarantine vs. School Closure . . . 15

2.5 Estimating the Food Need . 21

2.6 Facility Location Model and Solution Approaches for Food Distribution 22

2.6.1 Mixed Integer Linear Model 23

2.6.2 Heuristics for CMPH-FLP 26

2.6.3 Solution Approaches for Constructing the Food Distribution
Network . 27

2.7 Computational Results . 28

2.7.1 Performance of the Heuristics 29

2.7.2 Deterministic Approach vs. Dynamic Update Approach . . 31

2.7.3 Effect of Quarantine on Food Distribution Supply Chain . . 32

2.8 Effect of Influenza Pandemic on the Workforce Level 36

2.9 Conclusions and Future Directions 40

III OPTIMAL JOB SPLITTING ON A MULTI-SLOT MACHINE WITH AP-
PLICATIONS IN THE PRINTING INDUSTRY 43

v

3.1 Introduction . 43

3.2 Preliminaries . 46

3.3 Complexity and a Special Case . 50

3.4 Mathematical Models . 52

3.4.1 A Nonlinear Integer Formulation 53

3.4.2 Linear Integer Formulations 53

3.5 Heuristics for JSP . 58

3.5.1 Multi-Run Heuristic (MRH) 59

3.5.2 Balanced Cost Heuristic (BCH) 63

3.6 Preprocessing Ideas for Strengthening the Integer Formulation . . . 64

3.6.1 A Better Upper Bound on the Number of Runs 66

3.6.2 Setting Upper and Lower Bounds on the Lengths of the Runs 67

3.6.3 Setting Upper Bounds on the Number of Slots Assigned to a
Type . 69

3.7 Computational Results . 70

3.7.1 Evaluating the Performance of the Heuristics 71

3.7.2 Evaluating the Performance of the Preprocessing Steps . . . 77

3.8 Contributions and Extensions . 79

IV 1.5-DIMENSIONAL RECTANGLE PACKING PROBLEM AND APPLI-
CATIONS IN THE SEMICONDUCTOR INDUSTRY 80

4.1 Introduction . 80

4.2 Complexity, Lower Bound, and a Special Case 84

4.3 Integer Programming Formulation 87

4.4 Heuristics . 89

4.4.1 Level Algorithms for 2SPP and Applicability to RPP 89

4.4.2 Left Edge Algorithm (LEA) 92

4.4.3 Two New Heuristics . 92

4.4.4 Improving a Feasible Solution 96

4.5 Computational Results . 96

vi

4.6 Conclusions and Contributions . 103

V CONCLUSION . 104

APPENDIX A SUPPLEMENTARY MATERIALS FOR CHAPTER 2 . . 106

APPENDIX B VARIATIONS OF THE HEURISTICS PROPOSED FOR JOB
SPLITTING PROBLEM . 124

VITA . 140

vii

LIST OF TABLES

1 Influenza pandemic cases in history 5

2 Results of the disease spread model with no intervention policy 14

3 Summary of results under an 8-week voluntary quarantine with 50%
compliance . 19

4 Notation used in the formulation . 24

5 Comparison of 8-week quarantine with no intervention case 34

6 Effect of different withdrawal rates from work on the disease spread
for R0 = 1.8 . 37

7 Notation for JSP . 47

8 Comparison of the results with the ones in Teghem et al. [102] 72

9 Experiments on the real-world instances 73

10 Experiments on the randomly generated instances 76

11 Effect of preprocessing ideas . 78

12 Notation for RPP . 81

13 Type of the rectangles generated in 2SPP instances 97

14 The setting in the last 6 classes of 2SPP instances 97

15 Performance of the algorithms on 2SPP instances 99

16 The setting of the random instances 100

17 Performance of the algorithms on random instances 101

18 Performance of the algorithms on real-world instances 103

19 Literature review for influenza pandemic 107

20 Parameters for natural history of disease 108

21 Comparison of the proposed model with the ones in the literature . . 108

22 Calibrated parameters to achieve the age-specific clinical attack rates
for the 1957 pandemic . 113

23 Comparison of age-specific clinical attack rates 114

24 Reduction in the performance measures for an 8-week quarantine . . 114

25 Comparison of the quarantine results with the results in the literature 114

viii

26 Experiments to test the performance of the heuristics with CPU time
in seconds and gap compared to the best lower bound 121

27 Effect of different withdrawal rates from work on the disease spread
for R0 = 1.5 . 122

28 Effect of different withdrawal rates from work on the disease spread
for R0 = 2.1 . 122

ix

LIST OF FIGURES

1 Two main components of the disease spread model 12

2 Percentage of symptomatic or hospitalized individuals under no inter-
vention . 14

3 Comparison of the disease spread when the pandemic starts in a rural,
less populated county (Atkinson) versus a central, densely populated
county (Fulton). Darker shades indicate higher infection rates 16

4 Effect of timing and length of quarantine on the peak infectivity and
infection attack rate . 18

5 Number of meals needed daily for different alternatives 22

6 Effect of quarantine on the food requirement 33

7 Demand and number of open PODs over time under the no intervention
case . 35

8 Demand and number of open PODs over time under the 8-week quar-
antine . 35

9 Average number of open major facilities 35

10 Minimum, average and maximum duration of open PODs 36

11 Effect of withdrawal rate on the work absenteeism for R0 = 1.8 38

12 Effect of withdrawal rate and quarantine start time on the peak work
absenteeism for an 8-week quarantine for R0 = 1.8 39

13 Effect of school closure start time on the peak work absenteeism for
R0 = 1.8 . 40

14 Two different feasible production plans for Example 3.1 47

15 An example of RPP . 81

16 Reduction of RPP from 3P . 85

17 Equivalent placements . 88

18 Branch and bound tree . 89

19 Illustration of the waste calculation rules 94

20 Improvement after the placement . 96

21 Structure of the real world instances 102

x

22 Effect of timing of school closure on the peak infectivity and infection
attack rate for different R0 values . 115

23 Counties in the Metropolitan Atlanta Area by population 115

24 Effect of withdrawal rate on the work absenteeism for different R0 values122

25 Effect of withdrawal rate and quarantine start time on the peak work
absenteeism for R0 = 1.8 . 123

xi

SUMMARY

Operations Research and Management Science (OR/MS) techniques have been

widely used by decision-makers to address a wide range of problems in public, private

and nonprofit sectors. Although the usage of operations research techniques has

started with military applications during World War II, currently these techniques

are used in several contexts such as production planning, logistics management and

health care management.

In this thesis, we study three emerging applications of OR/MS, namely, (i) dis-

ease spread modeling, intervention strategies, and food supply chain management

during an influenza pandemic, (ii) the practical applications of production plan-

ning and scheduling in the commercial lithographic printing industry, and (iii) pack-

ing/placement problems in chip design in the semiconductor industry.

In the first part of the thesis, Chapter 2, we study an emergency response planning

problem motivated by discussions with the American Red Cross, which has taken on

a responsibility to feed people in case of an influenza pandemic. During an emergency

such as an influenza pandemic or a bioterror attack, regular distribution channels of

critical products and services including food and water may be disrupted, or some

of the infected individuals may not be able to go to grocery stores. We analyze

the geographical spread of the disease and develop solution approaches for designing

the food distribution supply chain network in case of an influenza pandemic. In

addition, we investigate the effect of voluntary quarantine on the disease spread and

food distribution supply chain network. Finally, we analyze the effect of influenza

pandemic on the workforce level.

xii

In Chapter 3, we study a real life scheduling/packing problem motivated by the

practices in the commercial lithographic printing industry which make up the largest

segment of the printing industry. We analyze the problem structure and develop effi-

cient algorithms to form cost effective production schedules. In addition, we propose

a new integer programming formulation, strengthen it by adding cuts and propose

several preprocessing steps to solve the problem optimally.

In Chapter 4, the last part of the thesis, motivated by the chip design problem

in the semiconductor industry, we study a rectangle packing/placement problem. We

discuss the hardness of the problem, explore the structural properties, and discuss a

special case which is polynomially solvable. Then, we develop an integer programming

formulation and propose efficient algorithms to find a “good” placement.

xiii

CHAPTER I

INTRODUCTION

The operations research techniques are first used by British researchers during World

War II on military problems including submarine warfare, strategic bombing and

radar deployment. After the war, these techniques were also applied to financial,

industrial, administrative and government problems. Currently, these quantitative

techniques help decision-makers in finding better solutions to problems in almost

every sector including industry, health, education and agriculture. In this thesis, we

apply simulation and integer programming techniques on three different industrial

and government problems.

The first application is an emergency response planning problem motivated by

discussions with the American Red Cross, which is charged with food distribution in

case of an influenza pandemic. Based on the recent incidents of avian flu (H5N1),

swine flu (H1N1), and influenza pandemic cases in history (1918, 1957 and 1968)

experts believe that a future influenza pandemic is inevitable and likely imminent.

During an emergency such as an influenza pandemic or a bioterror attack, regular

distribution channels of critical products and services including food and water may

be disrupted, or some of the infected individuals may not be able to go to grocery

stores. Evidence suggests that an efficient and rapid response will be crucial for

mitigating morbidity, mortality, and costs to society. Hence, preparing for a potential

influenza pandemic has received high priority from governments at all levels (local,

state, federal), non-governmental organizations (NGOs), and companies. We develop

a disease spread model to estimate the spread pattern of the disease geographically

and over time. In testing the disease spread model, we use detailed census-tract

1

level data from Georgia (the model can be adapted easily to other states or an entire

country). We employ the model to estimate the food need under various scenarios of

which households will be fed (e.g., based on income level, or the number of infected

people in an household). Then, we integrate the disease spread model with a facility

location and resource allocation network model for food distribution. Since only

the small instances of the embedded facility location problem can be handled by

commercial optimization software, we develop heuristics to find near-optimal solutions

for large instances. We run our integrated disease spread and facility location model

for the state of Georgia and present the estimated number of infections and the

number of meals needed in each census tract for a one year period along with a design

of the supply chain network. Furthermore, we analyze the impact of two intervention

strategies, namely, school closure and voluntary quarantine; our results indicate that

voluntary quarantine may be a better alternative due to being more effective and less

disruptive. Moreover, we investigate the impact of voluntary quarantine on the food

requirement and the food distribution network, and show that its effect on the food

distribution supply chain can be significant. Our results can help decision makers

prepare including how to allocate limited resources or respond dynamically. Finally,

we analyze the impact of influenza pandemic on the workforce level. Estimating the

workforce loss during an influenza pandemic is crucial since it may affect the supply

chains of goods and services and the response plans of the governments and NGOs.

The second application is motivated by the production planning and scheduling

challenges faced in the printing industry, which is one of the largest manufacturing in-

dustries in the United States with products ranging from newspapers, books, business

order forms, maps and packaging. We study a practical scheduling/packing problem,

called Job Splitting Problem(JSP), which is prevalent in the commercial lithographic

printing industry which makes up the largest segment of the printing industry. In

JSP, there are n types of items to be produced on an m-slot machine. A particular

2

assignment of the types to the slots is called a “run” configuration and requires a

setup cost. Once a run begins, the production continues according to that configura-

tion and the “length” of the run represents the quantity produced in each slot during

that run. For each unit of production in excess of demand, there is a waste cost.

The goal is to construct a production plan, i.e., a set of runs, such that the total

setup and waste cost is minimized. We show that the problem is strongly NP-hard

and discuss some special cases that can be solved in polynomial time. Moreover, we

develop efficient algorithms to prepare cost efficient production plans that balance

the setup and waste cost while satisfying the demand. In the current practice, form-

ing a “good” production plan takes hours, even days. Extensive tests on real-world

and randomly generated instances show that the proposed algorithms are easy to

implement and find near-optimal solutions within seconds. In addition to develop-

ing efficient algorithms for finding near-optimal solutions, we also propose a strong

linear integer formulation that can utilize special branching rules and strengthen it

by adding cuts. Finally, we propose several preprocessing procedures, which help in

solving the problem optimally in a reasonable amount of time.

In the third application, we study a rectangle packing/placement problem, namely

1.5-Dimensional Rectangle Packing Problem (RPP), which has applications in the

semiconductor industry. Motivated by the chip design problem, there are n rectan-

gles, and their positions along the x-axis are specified. Given their fixed horizontal

positions, we need to decide about the vertical positions of the rectangles to minimize

the total height of the resulting placement. We show that the problem is strongly

NP-hard, propose a method for finding a lower bound to the optimal solution, discuss

a special case which is polynomially solvable, and propose two heuristics. In addition,

we develop an integer programming formulation and propose ways to strengthen it.

Extensive numerical tests on randomly generated instances show that the heuristics

are both efficient and effective, finding near-optimal solutions within a few seconds.

3

CHAPTER II

MODELING INFLUENZA PANDEMIC, INTERVENTION

STRATEGIES, FOOD DISTRIBUTION AND

WORKFORCE LOSS ESTIMATION

2.1 Introduction

Many experts believe that an influenza pandemic has been imminent given the flu

cases that happened in the last few years (avian flu-H5N1 and swine flu-H1N1) and

the history of influenza pandemic [84]. Epidemiologists warn that the next influenza

pandemic could infect 33% of the population and kill millions [43]. The World Health

Organization (WHO) estimates that 2-7.4 million people might die worldwide [109].

Furthermore, the next influenza pandemic might cause a $71.3-165.5 billion economic

impact on the United States economy [82]. The U.S. Department of Health & Human

Services and the U.S. Department of Commerce estimate that in the next pandemic

20% of working adults may become ill, and there may be a 40% workforce loss during

the pandemic peak because of illness, fear of infection and the need to care for infected

family members or school-aged children.

Increased travel volumes favor the spread of infectious diseases [47], which makes

surveillance and planning activities more important. As a preparedness plan, WHO

strengthened its influenza surveillance and control system, and it is operating 110

laboratories in 83 countries all over the world [16]. Different from other influenza

pandemic cases in history, the recent cases of bird flu gave a clear warning and have

been eliminated by the monitoring and intervention efforts of WHO [109]. Recently,

the outbreak of H1N1 caused the WHO to increase the alert level to phase 6 (on its

six-point scale) (http://www.who.int, last accessed on June 12, 2009). This indicates

4

Table 1: Influenza pandemic cases in history
Past Cases Mortality Populations Affected

1918-19 (Spanish flu) (A/H1N1) 40-50 million (2.2-2.8%) Persons < 65 years

1957-58 (Asian flu) (A/H2N2) 2 million (0.069%) Infants, elderly

1968-69 (Hong Kong flu) (A/H3N2) 1 million (0.028%) Infants, elderly

that a pandemic is declared, although there may still be time to plan responses for

later waves.

The impact of influenza pandemic cases in history shows the extent of how gov-

ernments need to prepare response plans. There have been three cases of worldwide

influenza pandemic in the 20th century, namely, Spanish flu (1918), Asian flu (1957)

and Hong Kong flu (1968). There are different estimates about the number of deaths

during these three pandemic cases. The estimates due to Smith [97] are presented in

Table 1. The most severe one, Spanish flu, mainly affected people under 65, whereas

the other two pandemics affected infants and elderly persons.

According to WHO, fifty countries have developed pandemic preparedness plans

and most industrialized countries are stockpiling antiviral drugs [14]. Most prepara-

tion has focused on developing cell-culture vaccine manufacturing, stockpiling antivi-

rals and vaccines, and school-closing plans, but designing response supply chains is

also very important for meeting the various needs of the public during an influenza

pandemic. Some of the infected individuals may not be able to go to grocery store to

buy food, e.g., if they follow voluntary quarantine recommendations and stay home.

Logistics of delivering these basic supplies to infected or quarantined households is

an important operations research question [111].

In addition to governments, many non-governmental organizations (NGOs) have

worked on response plans for a potential influenza pandemic [57, 84]. For example,

the American Red Cross Metropolitan Atlanta Chapter (ARC-MAC) has worked on

determining ways to provide food to people who are infected and need to stay home

[2]. Ohio Department of Health and Ohio Food Industry Foundation [87] prepared

5

an influenza pandemic preparedness plan for groceries. Based on the lessons learned

from H1N1 experience [103], “Response plans must be adaptable and science-driven”.

Indeed, it is difficult for supply chains to respond effectively without considering the

disease spread geographically and over time.

In this chapter, we consider the problem of providing food to people who are not

able to obtain it due to illness in their household during the influenza pandemic.

First, we develop a disease spread model to estimate the spread of the disease geo-

graphically and over time and then construct a food distribution network based on

these estimates. We consider a capacitated multi-period hierarchical facility location

problem (CMPH-FLP) for food distribution. To the best of our knowledge, this is

the first study in the literature integrating a disease spread and a network design

model for planning purposes. We develop algorithms to create a supply chain net-

work that is dynamic and responsive to the changing need in the population, yet

still computationally-efficient so they can be used operationally. We also generate

insights about the network (how many facilities and how long to open) under differ-

ent scenarios. Our results show not only how to combine epidemiological dynamics

with operations research but also how network design can be performed for respon-

sive, multi-hierarchical supply chain design. The research not only offers advances in

scientific methods but is also immediately relevant for decision makers given the an-

ticipated continuation of the H1N1 epidemic. Furthermore, we compare the impacts

of school closure and voluntary quarantine, i.e., the individuals in the households with

an infected individual stay home voluntarily with some compliance rate limiting their

peer group and community interactions, on the disease spread and workforce level

under different start times and durations. Finally, we study the effect of voluntary

quarantine on the food distribution supply chain.

The remainder of the chapter is organized as follows. In Section 2.2, we present the

literature on the disease spread models and facility location problems. The disease

6

spread model we developed and the simulation results follow in Section 2.3. We

study the voluntary quarantine as an intervention policy and present the results

in Section 2.4. Moreover, we compare its impact to that of school closure. The

alternatives for food need estimation follow in Section 2.5. In Section 2.6, we provide

the facility location model, propose a greedy heuristic to solve it and present the

solution approaches proposed for food distribution. In Section 2.7, we provide the

results of computational experiments and report on the performance of the heuristics

proposed for food distribution logistics. We also provide insights about the impact of

voluntary quarantine on food distribution. In Section 2.8, we investigate the effect of

voluntary quarantine and school closure on the workforce level. Finally, we conclude

with future research directions regarding planning for an influenza pandemic.

2.2 Literature Review

There are two main streams of literature related to our research: (i) disease spread

models, and (ii) facility location and distribution models.

The disease spread models are developed to predict the spread patterns and the

effect of intervention strategies in populations with complex social and spatial struc-

tures and have been thoroughly researched for different infectious diseases such as

influenza, smallpox and SARS (see Ferguson et al. [34] for a review of spread models

for smallpox and Lipsitch et al. [74] for SARS).

There are four common ways to model the spread of an infectious disease in

a population: (i) using differential equations [12, 39], (ii) simulation (agent-based)

modeling [33, 42, 111], (iii) random graphs [14], and (iv) difference equations [47, 92].

In differential equation models, every individual is assumed to be in one of the dis-

ease stages, e.g., susceptible (S), infected (I), or recovered (R) in an S-I-R model, and

the cumulative number of people in each stage is used to define the instant changes. In

simulation models, the entire population is identified by individuals and social contact

7

networks, e.g., households and peer groups, and the spread of the disease is predicted

by discrete event simulation modeling. A comprehensive comparison of agent-based

and differential equation models is provided by Rahmandad and Sterman [89]. In

random graph models, random graphs are used to construct the contact network,

and the disease spread is predicted accordingly. In the models that use difference

equations, the entire time horizon is identified by a sequence of time intervals, and

the disease spread is predicted recursively. The spread in each time interval is defined

as a function of the spread in previous intervals. Another feature that distinguishes

disease spread models is the mixing assumption. In homogeneous mixing every indi-

vidual has the same chance to get infected, while in heterogenous mixing the chance

of getting infected for an individual depends on the number of contacts s/he makes

during the day, which varies from person to person. Thus, disease spread models with

a heterogenous mixing assumption capture more aspects of a real life setting, but as

expected they are more complex when compared to homogeneous models. The liter-

ature about the modeling of influenza pandemic and annual influenza is summarized

in Table 19 in Appendix A.1.

There are two performance measures commonly used to evaluate the effectiveness

of intervention policies, namely, peak infectivity and infection attack rate (IAR) [89].

Peak infectivity is the percentage of the infected (symptomatic or hospitalized) pop-

ulation at a given time, and IAR is the cumulative percentage of people who have

been infected (can be symptomatic or asymptomatic) during the course of the disease.

School or workplace closure and other social distancing measures such as travel re-

strictions and quarantining can reduce the peak infectivity but may not significantly

affect IAR [32, 42, 109]. For example, social distancing measures only delayed the

spread in the 1918 and 1957 pandemics [109, 110] but had little impact on IAR. Nev-

ertheless, delaying the spread and the peak is desirable for planning purposes, since

it provides more time for preparedness efforts, and a flattened spread (with a smaller

8

peak) decreases the probability of interruption of services and is less likely to result

in capacity bottlenecks in response activities.

To determine the location of the food distribution facilities and their opening/closing

decisions, we need to know the geographical spread. In addition, interventions can af-

fect some groups differently than others. Thus, we develop a simulation-based disease

spread model with heterogeneous mixing to predict the spread pattern of the disease

geographically and over time, and test the effectiveness of voluntary quarantine as

an intervention policy. Different from other papers in the literature, we consider the

case when interventions are active for a limited period of time. An influenza pan-

demic may last up to one year [32, 78, 111], and the papers in the literature assume

that voluntary quarantine remains active during the entire course of the disease. We

consider a limited time voluntary quarantine since prolonged quarantine times may

have a negative impact on the public morale or may be difficult to sustain for the full

outbreak (e.g., one year). Social distancing measures such as voluntary quarantine

isolate people or limit public gatherings, which are indicators of normal life and help

maintain public morale [24]. According to a survey [53] and empirical research [15]

based on the SARS experience in Toronto, people may develop emotional problems

during and after the quarantine. Thus, it is in the public officials’ interest to obtain

maximum benefit out of voluntary quarantine by keeping the disruption in people’s

normal lives at a minimum. When voluntary quarantine is encouraged (or promoted

via educational materials) for a limited time, the start time and the duration are

important decision variables, which have not been studied in the literature.

Given an estimate of the disease spread over time and geographically, we need to

determine the location of food distribution facilities and how to open and close them

over time. This is a capacitated multi-period hierarchical facility location problem

(CMPH-FLP) with two levels of facilities between supply and demand nodes; even a

a single period, single level facility location problem (FLP) is NP-hard in the general

9

case.

Capacitated and uncapacitated multi-period FLPs have been studied in the lit-

erature (e.g., Roy and Erlenkotter [91], Shulman [95]). Erlenkotter [29] provides a

comparison of solution approaches for the multi-period FLP. A popular solution ap-

proach for dynamic FLP is to generate the alternative solutions for the single period

problem and look for the best combination of these alternative solutions by dynamic

programming [6, 100].

Hormozi and Khumawala [62] propose an exact algorithm to solve an uncapaci-

tated dynamic FLP integrating mixed-integer and dynamic programming methods.

They reduce the size of the state space for the algorithm proposed by Sweeney and

Tatham [100]. Canel et al. [13] study a capacitated multi-commodity multi-period

hierarchical (two-echelon) FLP and develop a 2-stage solution method. First, they

use a branch and bound algorithm to generate a set of candidate solutions for each

period. Then, they use dynamic programming to find the optimal sequence of candi-

date solutions over the multi-period horizon. Their algorithm is effective when facility

opening and closing costs are high. Hinojosa et al. [55] also consider a capacitated

multi-commodity multi-period hierarchical FLP, and propose a Lagrangean relaxation

scheme with a heuristic algorithm for finding feasible solutions.

Our approach is to use a mixed integer linear program, which is different than

previous attempts [13, 62]. Since real world examples, including ours, of CMPH-FLP

are large (even single period instances can be hard to solve optimally), we develop

a heuristic to solve CMPH-FLP efficiently and effectively. Moreover, we create an

integrated solution approach that links the disease spread model and the facility

location model and allows for dynamic disease spread updates as the real epidemic

unfolds.

10

2.3 Disease Spread Model, Results, and Validation

We construct an agent-based continuous time stochastic model for influenza transmis-

sion. In the base model, we do not apply any intervention strategy. We investigate the

effect of voluntary quarantine (or social distancing) or school closure on the spread

of the virus in Section 2.4. In addition to food distribution planning, this model may

also be useful for other purposes such as estimating the region-based hospital capacity

needs for local governments. The disease spread model is composed of two parts: (i)

the progress of the disease within an infected individual, and (ii) the spread of the

disease among the members of the population.

In our model, an infected individual goes through the stages of the disease accord-

ing to the natural history for influenza pandemic in Wu et al. [111] (see Figure 1(a)).

The progress of the disease depends on the age of the individual [108]. Hence, we

divide the population into five age groups, namely, 0-5, 6-11, 12-18, 19-64, 65+. Each

individual is assumed to be in one of the following stages at a given time: suscepti-

ble (S), exposed (E), presymptomatic (IP), asymptomatic (IA), symptomatic (IS),

hospitalized (IH), recovered (R) or dead (D). pA is the probability of not developing

symptoms, pH is the probability of hospitalization for a symptomatic individual, and

pD is the probability that a hospitalized individual dies. We summarize the values of

the parameters for natural history of disease and the relevant references in Table 20

in Appendix A.2.

We model the spread of the disease among the members of the population via a

contact network. Given the importance of age, density, and geography in predicting

the disease spread [47], we construct a disease spread model that takes into account

population heterogeneities. For example, children are considered to play a major role

in the transmission of influenza [107] because they are assumed to be more susceptible

due to lower immunity and to have more daily contacts through schools and play

groups than adults have in workplaces.

11

��

����

��

����
����

��

� � 	
 �

	�

�	� 	�

(a) Natural history of disease for in-
fluenza

���������	
 ���������	�

���������	� ���������	

����������	�����

���������	

���������	�

(b) Example of a contact network

Figure 1: Two main components of the disease spread model

First, the entire population is divided into communities that correspond to neigh-

borhoods. The communities are linked to each other via peer groups, which account

for the inter-community spread of the disease, and may be determined by age. In

our model, we consider three levels of mixing: (i) community (day/night) (ii) peer

group (day) and (iii) household (night) (see Figure 1(b)). All the individuals mix

in the community during the day by visits to common areas such as grocery stores,

churches, etc. The children in the first three age groups (0-5, 6-11, 12-18) mix with

other children in kindergarten, elementary, and secondary schools. People in the age

group 19-64 are considered as working adults, and they mix in workplaces with other

adults. In the base model, we assume 50% of adults and 100% of children do not mix

in their peer groups when symptomatic [111]. In the H1N1 case, Centers for Disease

Control and Prevention (CDC) suggested that children with flu-like symptoms should

stay home, which is also consistent with our assumption [90]. The elderly are assumed

not to mix in peer groups. A susceptible individual may thus get an infection from

the other individuals in his/her household, peer group, or in the community with

different probabilities (contact rates) in each. We assume a constant import rate (1.5

infected individuals per day per 100,000 people) for each community, which represents

12

the infected people coming from outside the contact network [111].

A comparison of the most relevant models in the influenza pandemic literature

and our disease spread model is provided in Appendix A.3. To summarize, we develop

a detailed SEIR (Susceptible-Exposed-Infected-Recovered) disease spread model with

a spatial (geographical) component, age-based structure, heterogenous mixing, and

night/day differentiation.

Our disease spread model is generic and can be applied to any geographical area.

Given our collaborations with ARC-MAC, Georgia Department of Education, and

Georgia Department of Human Resources, we take the state of Georgia as the test

case and construct our model accordingly. There are 159 counties and 1615 census

tracts in the state of Georgia, and the total population is 9,071,756. We consider each

census tract as a single community and use census data [105] to form the households

and peer groups and to identify the sizes of the age groups.

The details of the disease spread model are provided in Appendix A.4. An im-

portant parameter in the model is the basic reproductive number (R0), which is the

average number of secondary cases caused by an infectious individual [54] and de-

termines the infectivity of the virus. For example, R0 for the Spanish flu in 1918 is

estimated to be around 1.7-2.0 [33] or 2-3 [83]. On the other hand, R0 for the 1957 and

1968 pandemics are estimated to be around 1.5-1.7 [33] and 1.89 [92], respectively.

We ran the simulations for a range of R0 values to account for low (R0 = 1.5),

medium (R0 = 1.8) and high (R0 = 2.1) infectivity. Figure 2 shows the spread

of the disease over time among the population of Georgia for different R0 values.

Table 2 summarizes the simulation results as an average of 20 runs in the absence

of intervention policies. Peak infectivity and IAR (infection attack rate) are defined

above. Peak day is the time when the percentage of the infected population is at its

maximum. CAR (clinical attack rate) is the cumulative percentage of the people who

have been symptomatic, and death ratio is the percentage of the people who died

13

because of influenza during the course of the disease.

���

���

���

�����

�����

�����

�����

	����

�����

����

�����

�����

�����

�

�
�

�
�

�
�

�
�

	

�
�

	

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�

�
	
�

�
�
	

�

�

�
�
�

���
�
��
��

�	
�

�

Figure 2: Percentage of symptomatic or hospitalized individuals under no interven-
tion

Table 2: Results of the disease spread model with no intervention policy
R0 Peak Infectivity Peak Day CAR IAR Death Ratio

1.5 2.48% 70 32.50% 49.65% 0.57%

1.8 5.27% 50 44.20% 67.49% 0.80%

2.1 8.01% 40 51.27% 78.27% 0.93%

In planning for food (or other resource) distribution, the spread of the disease

over area and time is important since the time and the location of the food need

determines the location and opening/closing time of the facilities. Based on the result

of an unpaired t-test, there is not a significant difference in peak infectivity, peak day,

and IAR for different number of initial infections (1 vs. 30) for R0 = 1.5. However, for

R0 = 1.8 and 2.1, the disease peaks 1-2 days earlier if the number of initial infections

is 30. Figure 3 shows the spread of the disease for two different disease initializations

(seeds) over time and area for R0 = 1.8. The shades are on a logarithmic scale, and

darker shades represent higher number of infections in the relevant area. In the first

case, the infection starts from Atkinson county, which is a rural area in the southeast

part of Georgia. In the second case, the infection starts from Fulton county, which is

in the Metropolitan Atlanta Area. As the maps in Figure 3 show, the spread in the

Metropolitan Atlanta Area is not affected significantly by the location of the initial

14

seed; these areas are always highly infected around day 50. However, the spread in

the rural areas often depend on the location of the first infection.

As discussed before, our disease spread model parameters are in line with what

have been used in the literature by several authors. To further validate our model, we

calibrated the model parameters to obtain the age-specific clinical attack rates for the

1957 influenza pandemic reported by Chin et al. [17] (see Appendix A.5 for details).

We obtained similar age-specific clinical attack rates for an R0 value of 1.58, which is

also consistent with the estimated R0 value of 1.5-1.7 for 1957 pandemic [33]. Similar

calibration procedures have been used by others [32, 78, 88].

2.4 Intervention Policy: Voluntary Quarantine vs. School
Closure

In this section, we investigate the effect of a voluntary quarantine for several R0

values. In addition, we compare voluntary quarantine and school closure in terms

of their impacts on the disease spread. Since quarantined people interact with other

individuals in their households, the risk of getting infection within the households

is doubled for quarantined households, consistent with Ferguson et al. [33], Longini

et al. [78] and Wu et al. [111]. We assume 50% compliance, that is, individuals in the

quarantined households comply with the quarantine independently with probability

0.5. A household may be quarantined if an individual from that household develops

symptoms or the individual is hospitalized. Once a household is quarantined, if no

other individual in the quarantined household develops symptoms or is hospitalized

within a week, the quarantine is released. Otherwise, the quarantine is extended for

another week for that household. The quarantine is active for a limited period of

time (2-12 weeks).

Both the timing and the length of the quarantine are important in order to obtain

the maximum benefit. We are particularly interested in the impact of voluntary quar-

antine on peak infectivity, which relates to the maximum capacity for the resources

15

Day 30

Day 50

Day 70

Day 90

Seed
Atkinson
 Seed
Fulton

Day 10

Fulton

Atkinson

Figure 3: Comparison of the disease spread when the pandemic starts in a rural,
less populated county (Atkinson) versus a central, densely populated county (Fulton).
Darker shades indicate higher infection rates

16

that governments and NGOs may need to serve the needs of the public, and the

IAR, which relates to the total amount of resources during the course of the disease

[89]. Figure 4 shows the effect of the quarantine on the peak infectivity and IAR

for R0 = 1.8 as a function of the start time and length. From Figure 4(a), for a

2-week quarantine, the peak infectivity is lowest (3.40%) when the quarantine starts

at the beginning of the sixth week. On the other hand, for a 12-week quarantine,

the best start time in terms of peak infectivity is the beginning of the third week,

and in this case the peak infectivity is 1.79%. Even a 12-week quarantine has no

effect on the peak infectivity if the timing of the quarantine is not appropriate (e.g.,

week 7). From Figure 4(b), IAR is minimized at 59.71% if a 2-week quarantine is

implemented at the beginning of week 7. For a 12-week quarantine, IAR is lowest

(47.32%) if it is implemented at the beginning of week 5. In general, as the length of

the quarantine increases, the optimal start time (for minimizing the peak infectivity

or IAR) decreases. Note that the optimal start time of a quarantine is also related

to the timing of the peak of the disease, which depends on R0. As R0 increases it is

best to start a limited quarantine earlier to reduce peak infectivity.

During the course of the pandemic, estimating the disease spread parameters

accurately, and thus, determining the exact duration and start time of the quarantine

can be difficult. Therefore, voluntary quarantine can be announced a few weeks

before the estimated optimal timing which can be compensated by extending the

length of the quarantine. For example, for R0 = 1.8, if a 6-week voluntary quarantine

is started at the beginning of week 3 (instead of the beginning of week 5 to maximize

the reduction in peak infectivity), similar peak infectivity (2.08%) can be achieved

at the cost of a 3-week extension of the quarantine. However, delaying the start

of the quarantine beyond the optimal timing may have severe consequences. For the

previous example, if the quarantine is started 2 weeks late, the peak infectivity cannot

be lower than 4.28%. Finally, as the length of the quarantine increases, starting the

17

quarantine early is better than starting it late.

�����

�����

�����

�����

�����

�����

�����

�����

�����

� � � 	
 � � �� �� ��

�����������	
������
��������

�
��
��

��
��

�

�
���������������

�
���������������

	
���������������

�
���������������

��
���������������

��
���������������

(a) Peak infectivity

������

������

������

������

������

������

� � � � � 	
 �� �� ��

�����������	
������
��������

�
��
��

��
��

�

�
���������������

�
���������������

�
���������������

	
���������������

��
���������������

��
���������������

(b) Infection attack rate

Figure 4: Effect of timing and length of quarantine on the peak infectivity and
infection attack rate

Both the peak infectivity and IAR decrease as the length of the quarantine in-

creases, but there is a diminishing rate of return. The peak infectivity (in Figure

4(a)) in an 8-week quarantine is almost equal to that of a 12-week quarantine.

For different R0 values, Table 3 summarizes the results for an 8-week quarantine

(with the objective of minimizing the peak infectivity), which is the break point where

the diminishing rate of return is clearly observed for the peak infectivity. We observe

that for moderate to high R0 values, i.e, 1.8 and 2.1, an 8-week quarantine has about

the same impact on peak infectivity compared to a quarantine that is in effect during

the entire course of the disease. Imposing the quarantine during the entire course

of the disease versus for only 8 weeks versus no quarantine results in IARs of 42%,

56%, and 67.5%, respectively, for R0 = 1.8 and 58.5%, 63%, and 78%, respectively,

for R0 = 2.1. That is, for moderate to high R0 values, an 8-week quarantine captures

most of the benefits in reducing the peak infectivity and IAR. However, for R0 = 1.5,

there is a significant reduction in peak infectivity (from 0.80% to 0.30%) and IAR

(from 40.5% to 17.4%) if the quarantine is imposed during the entire course of the

disease instead of an 8-week time interval. Hence, for low R0 values (where the

epidemic curve is smoother with a smaller peak even under no intervention), a longer

18

quarantine can be more beneficial.

Table 3: Summary of results under an 8-week voluntary quarantine with 50% com-
pliance

R0 Quarantine Start Week Peak Infectivity Peak Day CAR IAR Death Ratio

1.5 7 0.80% 52 26.52% 40.46% 0.47%

1.8 4 1.86% 63 36.82% 56.14% 0.66%

2.1 3 3.97% 49 41.26% 62.87% 0.75%

In a voluntary quarantine, the reduction in the peak infectivity is high when com-

pared to the reduction in other performance measures. For R0 = 1.8, an 8-week

quarantine with optimal timing reduces the peak infectivity by 64.71%, CAR by

16.70%, IAR by 16.82% and the death ratio by 17.22%. Keeping infected individu-

als at home decreases their interactions with the others outside, but in the long run

susceptible individuals may have an interaction with other infected individuals in the

community after the quarantine is released. The reductions in the peak infectivity,

CAR, IAR and death ratio for different R0 values for an 8-week quarantine with the

optimal start time are provided in Appendix A.6. Depending on the start time and

the duration of the quarantine, we sometimes observe two peaks in prevalence. This

occurs because the disease spread slows down during the quarantine but speeds up

again after the quarantine is released. However, even in these cases, the highest of

the two peaks as well as the IAR are lower under quarantine versus no quarantine. In

addition, delaying the peak offers tremendous opportunities for better preparedness

and response (including the potential development of an appropriate flu vaccine).

Ferguson et al. [33], Longini et al. [78] and Wu et al. [111] also study voluntary

quarantine as an intervention policy. The comparison of the results is provided in

Appendix A.6. Different from our limited time assumption, all the other papers

assume that the quarantine is active during the entire course of the disease, which

may not be practical. Our results indicate that as R0 increases, an 8-week quarantine

(if started at the right time) is almost as effective as a quarantine that is imposed

during the entire course of the disease.

19

We also ran experiments with other compliance rates (25%, 75%, 100%). We

observe that as the compliance rate increases, peak infectivity and IAR decrease.

However, for high compliance rates, e.g., 75% and 100%, we may observe two peaks

depending on the R0 value and the duration of the quarantine. After a quarantine

with high compliance rate is released, if the virus is still active and no pharmaceutical

intervention is applied, the number of infections increases again resulting in a second

peak (the maximum of the two peaks is smaller than the peak in the no intervention

case). Therefore, higher compliance rates provide a good opportunity to decrease

peak infectivity and IAR significantly, and more importantly, they offer more time

for preparedness by delaying the (second) peak.

In addition to voluntary quarantine, school closing is another intervention policy

that has received much attention [14, 32, 33, 42]. Georgia Department of Education

prepared a report to assist school administrators in preparing influenza pandemic

plans [21] explaining local and state responsibilities, how to organize school activities,

and how to communicate with staff, parents, and community. Jones [66] explains

when and for how long to close the schools in case of an influenza pandemic. 4-week

closures are recommended in case of a pandemic similar to the one in 1957 and up to

12-week closures are recommended for a pandemic such as the one in 1918. Recently,

during the H1N1 epidemic, CDC considered school closures and suggested that the

schools with a confirmed case should be closed for 2 weeks [81], and 726 schools were

closed at the peak [90].

Based on the suggestions in Jones [66], we consider a 6-week school closure for

R0 = 1.5 and a 12-week school closure for R0 = 1.8 and 2.1. Our simulation results

indicate that school closure may not be as effective as voluntary quarantine. For

example, for R0 = 1.8, even a 2-week quarantine with optimal timing is as good

as a 12-week school closure with optimal timing in terms of reducing both peak

infectivity and IAR (see Appendix A.7 for the effect of the start time of school closure

20

on peak infectivity and IAR). The main reason is that while quarantine targets all

infected people, school closures do not affect adults. Thus, considering the additional

disruptions in services that could be caused by school closures [103] (if some parents

have to leave the workforce to stay home to take care of their children), voluntary

quarantine may be a better alternative as a social distancing measure.

2.5 Estimating the Food Need

In this section, we propose several alternatives to calculate the food need in case

of an influenza pandemic. In the state of Georgia, the ARC-MAC has taken on

a responsibility to feed people in case of an influenza pandemic, and our research

has been motivated by their planning. While the ARC-MAC focuses primarily on

Metropolitan Atlanta Area (see Figure 23 in Appendix A.8 for a Metropolitan Atlanta

Area map showing population densities), it is also leading the discussions with other

organizations on planning for food distribution at the state level.

In the remainder of the chapter, we consider R0 = 1.8 and design a food dis-

tribution supply chain network for an influenza pandemic. We estimate the food

need using the disease spread model assuming that an individual needs 3 meals a

day. There are several alternatives for calculating the food need depending on who to

feed: (i) serve the households with at least one infected (symptomatic or hospitalized)

individual (Figure 5(a)), (ii) serve the households that are below poverty level with at

least one infected individual (Figure 5(a)), (iii) serve the households with all adults

infected (Figure 5(b), under no intervention and 8-week quarantine starting at the

fourth week), (iv) serve the households that are below poverty level with all adults

infected, and (v) serve the quarantined households.

In Figure 5(a), the number of meals needed is high when compared to other

alternatives since all the households with an infected individual are served in this

case. In Figure 5(b), we observe two peaks for an 8-week quarantine. After the

21

����������	
�������

���

�

�

��

�

���

�

��

�

���

�

� �� �� �� �� �� �� �� �� �� �
� ��� ��� ��� ��� ��� ��� ��� ��� ���

���

�
��

��
	

��

��
��

(a) The households with an infected indi-
vidual are served

��������	���
��

��
�
��
��

�

������

������

������

������

�������

�������

�������

�������

� �� �� �� �� �� �� �� �� �� �� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���

�
��

��
	

��

��
��

(b) The households with all adults infected
are served under no intervention or an 8-
week quarantine policy

Figure 5: Number of meals needed daily for different alternatives

quarantine is released, there occurs another (lower) peak due to the increased number

of interactions in the community.

2.6 Facility Location Model and Solution Approaches for
Food Distribution

In this section, we explain CMPH-FLP and propose a mixed integer linear formula-

tion. Since CMPH-FLP is NP-hard, and even medium size instances of CMPH-FLP

cannot be handled using commercial solvers such as CPLEX 9.0, we propose an Add-

Drop Heuristic (ADH), which is a modification of add [71] and drop [20] heuristics

proposed for FLPs. An example of an add-drop heuristic can be found in Narula and

Ogbu [85] in the context of determining the location of health care centers and hos-

pitals. We develop new aspects to capture the hierarchical structure of the problem

and the changes in the demand in a multi-period setting. Furthermore, we propose

two solution approaches for designing and managing the food distribution network

during the influenza pandemic where the approaches implement the solution of the

CMPH-FLP heuristics in a static and dynamic fashion.

We model three tiers in the distribution network: supply points, major facilities

(where the food is processed and/or packed for easy pick-up by individuals), and

22

points-of-delivery (PODs) (e.g., schools, churches, community centers, businesses,

etc.). Individuals/households who are in need will get their food from the PODs

(which we assume can be run with minimum personal contact, e.g., individuals could

drive through and someone puts the food into the trunk). Other ways of distribution

can be determined for those without transportation. In our food distribution network,

each census tract is considered as a demand node, and the amount of demand is

determined by the number of individuals/households in need. The major facilities

and PODs can be opened or closed over time based on the estimates of demand across

area and time. In our formulation, we consider demand updates and closing/opening

decisions on a weekly basis.

The questions that need to be answered are: (i) Where to locate major facilities

and PODs? (ii) How to open/close these facilities over time, e.g., on a weekly basis

as the (anticipated) food need changes? (iii) How to allocate the food among the

major facilities and the PODs with the goal of minimizing the total cost of serving

the target population?

2.6.1 Mixed Integer Linear Model

We develop a mixed integer linear formulation for CMPH-FLP (Table 4 summarizes

the notation) assuming that the demand, i.e., the number of meals needed for each

week/period in the time horizon for each census tract, is known; we obtain demand

estimates by running the disease spread model. To the best of our knowledge, this

type of formulation has not been proposed for CMPH-FLP.

The objective in our model is to minimize the total cost (including the travel time

of individuals) while satisfying the demand. The definitions of the variables used in

23

Table 4: Notation used in the formulation
T : number of weeks (time horizon)

N1, N2, N3, N4 : sets of supply points, major facilities, PODs, and demand nodes

Si : amount of meals that can be supplied by supply point i for i ∈ N1

Fj : fixed cost incurred if facility j is open during a week for j ∈ N2 ∪N3

fj , gj : cost of opening and closing facility j for j ∈ N2 ∪N3

c1o, c2o : unit material (meal) handling cost at a major facility and POD, respectively

Cj : capacity of the facility j for j ∈ N2 ∪N3

Dkt : demand of demand node k in week t for k ∈ N4, t ∈ T

dij : distance (in miles) between node i and node j for i ∈ Nk, j ∈ Nk+1, k ∈ {1, 2, 3}
c1u : unit transportation cost from a supply point to a major facility per mile

c2u : unit transportation cost from a major facility to a POD per mile

cindividual : unit transportation cost from a POD to a demand node per mile

the formulation are as follows:

xijt = amount of food sent from node i to node j in week t

i ∈ Nk, j ∈ Nk+1, k ∈ {1, 2, 3}, t ∈ {1, . . . , T},

yjt =





1, if facility j is open during week t

0, otherwise
j ∈ N2 ∪N3, t ∈ {1, . . . , T},

wjt =





1, if facility j is opened at the beginning of week t

0, otherwise
j ∈ N2 ∪N3, t ∈ {1, . . . , T},

zjt =





1, if facility j is closed at the end of week t

0, otherwise
j ∈ N2 ∪N3, t ∈ {1, . . . , T}.

Using these variables, the objective function can be written as:

OF(x, y, w, z) =
T∑

t=1

∑
i∈N1

∑
j∈N2

(dijc
1
uxijt + c1

oxijt) +
T∑

t=1

∑
i∈N2

∑
j∈N3

(dijc
2
uxijt + c2

oxijt)

+
T∑

t=1

∑
j∈N3

∑
k∈N4

djkcindividualxjkt +
T∑

t=1

∑
j∈N2

(Fjyjt + fjwjt + gjzjt)

24

The mathematical formulation of CMPH-FLP is as follows:

Minimize OF(x, y, w, z) (1)

subject to
∑

j∈N2

xijt ≤ Si i ∈ N1, t ∈ {1, . . . , T}, (2)

∑
j∈N3

xjkt ≥ Dkt k ∈ N4, t ∈ {1, . . . , T}, (3)

∑
i∈Nk

xijt ≤ Cjyjt j ∈ Nk+1, k ∈ {1, 2}, t ∈ {1, . . . , T}, (4)

∑
i∈Nk

xijt =
∑

l∈Nk+2

xjlt j ∈ Nk+1, k ∈ {1, 2}, t ∈ {1, . . . , T}, (5)

wjt ≥ yjt − yjt−1 j ∈ N2 ∪N3, t ∈ {1, . . . , T}, (6)

zjt ≥ yjt − yjt+1 j ∈ N2 ∪N3, t ∈ {1, . . . , T}, (7)

yj0 = 0 j ∈ N2 ∪N3, (8)

yjT+1 = 0 j ∈ N2 ∪N3, (9)

yjt ∈ {0, 1} j ∈ N2 ∪N3, t ∈ {1, . . . , T}, (10)

wjt ∈ {0, 1} j ∈ N2 ∪N3, t ∈ {1, . . . , T}, (11)

zjt ∈ {0, 1} j ∈ N2 ∪N3, t ∈ {1, . . . , T}, (12)

xijt ≥ 0 i ∈ Nk, j ∈ Nk+1, k ∈ {1, 2, 3}, t ∈ {1, . . . , T}. (13)

In the above model, (1) is the objective function, which is the summation of total

transportation cost, handling cost, facility operating cost and facility opening/closing

cost. Constraints (2) and (3) are the supply constraints and demand constraints,

respectively. (4) represents the capacity constraints for each facility (either a major

facility or a POD). Constraints (5) are flow balance constraints. Constraints (6) and

(7) restrict service to open facilities. Constraints (8) and (9) set the initial and final

values. Finally, (10)-(13) are the integrality and sign restrictions.

Commercial optimization software such as CPLEX 9.0 can handle only small in-

stances of CMPH-FLP. To find (near-)optimal solutions for large instances, we develop

heuristic approaches.

25

2.6.2 Heuristics for CMPH-FLP

In this section, we explain ADH and a variant of it, namely, Hybrid Heuristic (HH).

The pseudocode for ADH is provided in Appendix A.9. The idea behind ADH is as

follows: In each period, to determine which PODs and major facilities to open, we

solve two single period FLPs. That is, for period t, first we solve a single period

version of CMPH-FLP assuming that the demand of node k is a weighted average of

future demands (with weights decreasing over time) as follows:

Dk,t+1 =
DkT

2T−t
+

T∑
j=t+1

Dkj

2j−t
(14)

The solution to this problem helps us predict the major facilities and PODs that

will be open in the future. Then, considering the estimated future decisions and

the decisions in the previous period, we solve a single period FLP with the demand

of demand node k as Dkt to determine which major facilities and PODs to open in

period t.

We give the general idea behind the subroutine for solving these two single period

problems. First, starting with one of the demand nodes randomly, we assign each

demand node to the nearest POD as long as there is enough unused capacity in the

POD. If the POD is full, the demand point is assigned to the nearest POD that

still has unused capacity. Then, for each POD, we calculate the savings achieved by

closing it and assigning its demand to other nearby PODs. Then, we close the POD

with the highest positive savings. Note that while calculating the savings achieved

by closing a certain POD or major facility, the PODs and major facilities that were

open in the previous period (period t− 1) have an advantage since the opening and

closing costs for these facilities are already incurred. We continue these steps until

there are no other PODs with positive savings. Next, assuming that the remaining

open PODs represent the demand nodes, we apply similar steps to determine which

26

major facilities to open.

To summarize, in ADH, we solve a single period version of CMPH-FLP for the

(weighted) average of the future demand estimates, and then, for the current period’s

demand using the subroutine explained above. In an alternative heuristic, namely,

Single Period Heuristic (SPH), we solve both of these two single period problems

optimally. SPH has larger run times but may find a solution with a lower cost. As

a third alternative, we combine ADH and SPH such that in each period, we solve

the first problem with the (weighted) average of future demand using the subroutine

explained above and solve the second problem with the current period’s demand

optimally. We call this the Hybrid Heuristic (HH), which reduces the solution time

required compared to SPH. In addition to ADH, SPH and HH, we consider a greedy

algorithm, called Myopic Heuristic (MH), which involves solving the single period

problem (using the subroutine in ADH) in each period without considering the future

and past decisions. We test ADH, SPH, HH and MH for a set of instances and

compare the solution times and the optimality gap of the solutions found by them in

Section 2.7.

2.6.3 Solution Approaches for Constructing the Food Distribution Net-
work

In this section, we discuss two solution approaches to the food distribution logistics

problem during an influenza pandemic. The first one is called the Deterministic

Approach (DET-A) where the food need is estimated using the disease spread model

and input to the CMPH-FLP, which is solved by the heuristics proposed in Section

2.6.2. The demand estimate may be the average of multiple simulation runs. In this

approach, the network is not updated over time with new disease spread estimates.

The advantage of this approach is its simplicity of implementation (i.e., the decisions

about when and where to open/close facilities are made at the beginning).

However, the decisions can be improved with more information about the spread

27

of the disease over time, which motivates the second approach, called the Dynamic

Update Approach (DYN-A). At the beginning of each week, we update our estimate on

the amount of food need by using the information about the up-to-date spread of the

disease. In this approach, we implement only the decisions for the current period and

then rerun the simulation in the next week for the remaining time horizon by providing

the status of the real-world spread as an input to the simulation. Decisions in the

next periods are then again determined by solving CMPH-FLP for the remainder

of the time horizon. This rolling horizon approach decreases the deviation of the

estimates from the real-world situation. To the best of our knowledge, we are the

first to propose and implement such a dynamic update algorithm in the context of

determining the location of distribution facilities during a large-scale disease spread.

2.7 Computational Results

In this section, we provide the results of the computational experiments. First, we test

the performance of the proposed heuristics to solve CMPH-FLP. Then, we compare

the performances of DET-A and DYN-A. Finally, we present the analysis about the

impact of voluntary quarantine on food distribution.

In the computational experiments, we consider the case of serving households

with all adults infected, but the approach is valid for alternative ways of calculating

the food need. We assume that we serve food to people when more than 0.5% of the

population is infected at a given time, and this corresponds to an 8-week time interval

(between weeks 5 and 12) for R0 = 1.8. Although the exact percentage is hard to

estimate, the assumption is reasonable because the NGOs and/or governments will

not construct a large food distribution network if the number of infections is under

some threshold value. Furthermore, in real life, the event of influenza pandemic may

be recognized some time after the occurrence of the first infection. For example,

Germann et al. [42] consider initiating the intervention strategies 7 (or 14) days after

28

the pandemic alert, and they assume that a pandemic alert is triggered when the

total number symptomatic individuals reaches 10,000.

2.7.1 Performance of the Heuristics

To evaluate the performance of the heuristics, we consider Gwinnett county, Fulton

county, and the Metropolitan Atlanta Area as the test cases. There are 71, 167, and

603 census tracts in Gwinnett county, Fulton county, and the Metropolitan Atlanta

Area, respectively. The number of periods is 8 (weeks) in the test instances, cor-

responding to the length of the time interval during which more than 0.5% of the

population is infected at a given time.

Based on the estimations provided by ARC-MAC, the capacity of a typical POD

is assumed to be around 10,000 meals per week. The total capacities of the major

facilities and supply points are equal to the total capacity of the PODs. The supply

points, major facilities and PODs are randomly assigned to the relevant areas. The

opening/closing/fixed operating costs of the PODs and the major facilities are pro-

portional to the square root of the capacity of the relevant facility since facility related

costs are usually represented by a concave function of capacity due to economies of

scale [31]. The opening, operating and closing costs of a major facility is 10 times

that of a POD of the same size since most of the food processing/packing operations

will be performed in major facilities. The opening cost is assumed to be two times

the closing cost and four times the fixed operating cost. The shipments from supply

points to major facilities and from major facilities to PODs will be in large amounts

and done by trucks. However, for the shipments from PODs to households, either an

individual from the household will drive to a POD or a small truck will distribute to

households. Based on this observation, the unit shipment costs from supply points

to major facilities (c1
u) and from major facilities to PODs (c2

u) are assumed to be

equal to each other and 50% of the unit shipment cost from PODs to demand nodes

29

(cindividual). Finally, we assume three different settings for the shipment costs, namely,

low, medium and high. In the “low” setting, the facility related costs dominate the

objective function, in the “medium” setting the shipment costs and facility related

costs are comparable, and in the “high” setting, the shipment costs dominate.

We compared the average performance of the heuristics for each of the three

shipment cost settings (low, medium, high). We used CPLEX 9.0 as the optimization

engine, and all computational experiments are carried out on a system with a 2.4 GHz

Xeon processor and 2 GB RAM. For finding the optimal solution, we set a time limit

of 8 hours for the small instances (Gwinnett and Fulton county) and 12 hours for

the Metropolitan Atlanta Area instances. We set a time limit of 0.5 hour and 1 hour

for each single period problem in SPH and HH, respectively, since two optimization

problems are solved in SPH in each period whereas only one optimization problem

is solved in HH in each period. The detailed results (CPU times and optimality

gaps with respect to the best lower bound) are presented in Appendix A.10. For

each parameter setting, we generated 10 different instances, and the results presented

are the average of these 10 instances. Since the optimality gaps are calculated with

respect to the best lower bound found by CPLEX 9.0 within time limits, they are

conservative estimates.

From the computational experiments, we see that CMPH-FLP becomes easier as

the shipment costs dominate the objective function, since almost all of the facilities

are open during the entire time horizon. One simply assigns each demand point to

the closest facility. We conclude that it is the number of major facilities that makes

CMPH-FLP harder (see third, fourth and fifth set of instances in Table 26, where

we increase the number of major facilities, PODs and supply points compared to the

second set of instances). This also shows that if the location of the major facilities can

be determined or fixed independently, the corresponding CMPH-FLP can be solved

more easily, and dynamically with the disease spread.

30

As the instances become larger, we observe that the best integer solution found at

the end of the time limit is significantly worse than the solutions found by the heuris-

tics. Even if we increase the time limit, CPLEX 9.0 cannot handle large instances

due to a memory problem.

The solutions found by SPH and HH are very close to each other, and the average

optimality gap is around 3%. However, the solution time of HH is around 30% that

of SPH. The solution times required for ADH and MH are negligible compared to

SPH and HH, but the average optimality gap is around 4.5% and 5.6%, respectively.

Hence, we propose using HH and ADH to solve CMPH-FLP. Furthermore, for very

large instances such as the entire state of Georgia, ADH is the best alternative since

in this case even the single period problem is difficult to handle using commercial

optimization software.

2.7.2 Deterministic Approach vs. Dynamic Update Approach

In this section, we compare the performances of DET-A and DYN-A as well as a

benchmark case, “Perfect Solution”, which is the solution obtained assuming that we

know the real-world spread ahead of time, which is impossible to know but provides a

comparison base for our solution approaches. Since large instances cannot be solved

optimally using CPLEX 9.0, we consider Gwinnett county as the test case with 5

major facilities, 36 PODs, and 10 supply points. We consider using both of the

heuristics (ADH and HH) as well as solving CMPH-FLP optimally to compare DET-

A and DYN-A.

The same experimental setting explained in Section 2.7.1 is used in these experi-

ments. The benchmark case is generated by a single simulation of our disease spread

model. The demand estimates in DYN-A and DET-A are calculated by taking the

average of 5 simulation runs. According to the result of the experiments, if we use

HH and ADH, the solutions obtained by DYN-A are approximately 0.33% and 0.54%

31

better, respectively, when compared to DET-A in terms of total cost. In addition,

the total cost of the solutions obtained by DYN-A are within 4% of the “Perfect So-

lution”. Even if we solve CMPH-FLP optimally at each step of DYN-A and DET-A,

the benefit of using DYN-A is only 0.37%. This indicates that the performance of

DYN-A over DET-A is not affected by the algorithm used to solve CMPH-FLP.

The performance of DET-A is close to that of DYN-A since we assumed that we

know the parameters of the virus at the beginning of the horizon. If the parameters

can be estimated with reasonable accuracy, because of its simplicity to implement,

DET-A is a good alternative for designing the food distribution network. In the

case where the parameters cannot be estimated accurately, using DYN-A is a better

choice.

2.7.3 Effect of Quarantine on Food Distribution Supply Chain

In this section, we investigate the effect of a voluntary quarantine on food demand

and food distribution supply chain both in terms of total serving cost and the quality

of service, which is defined as the percentage of demand served within 10 miles.

Quality of service is important not only because of convenience to the public and

potential shortages in gas supply, but also because if the infected individuals drive a

long distance and make an additional stop, the infection could be introduced to other

areas.

A quarantine with optimal timing and length decreases the likelihood of capacity

bottlenecks and supply chain disruptions significantly. In the case of an 8-week quar-

antine, more than 0.5% of the population is infected between weeks 6 and 18, and the

reduction in the total demand is 26.70% when compared to the no intervention case.

Note that the reduction in IAR was 16.82% (see Section 2.4). On the other hand, the

reduction in the average demand (over time) is even higher (55%) since the demand

32

(and number of infections) is more spread over time (see Figure 6). A similar obser-

vation is made by Rahmandad and Sterman [89] after analyzing the effect of social

distancing on the disease spread, and they also mention the effect of peak infectivity

on health services infrastructure.

��������	�
�����

����������

	
������
����
�

�

�������

�������

�������

�������

�������

�������

�������

�������

�������

���������

� � � � � �� �� �� �� �� �� �� �� ��

���

Figure 6: Effect of quarantine on the food requirement

Next, we study the effect of a quarantine on the supply chain network using the

results of 10 different simulation runs with 200 PODs, 10 major facilities, and 20

supply points in the entire Metropolitan Atlanta Area (603 census tracts/demand

nodes). The supply points and PODs are randomly assigned, but the major facilities

are assigned to the most crowded census tracts of the 10 densely populated counties.

Note that at most one major facility is assigned to each county.

The cumulative effect of a quarantine on the supply chain network is presented

in Table 5. From Table 5, the reduction in total cost is higher when the shipment

costs or facility related costs dominate since the reduction in total demand is almost

fully reflected in the total cost in these settings. On the other hand, in the “medium”

shipment cost setting, since both shipment costs and facility related costs comprise

the total cost, the reduction in total demand is not fully reflected in the total cost.

Interestingly, from the third and fourth columns of Table 5, the quality of service

decreases as the shipment costs decrease. This occurs because lower shipment costs

increase the amount of demand served from a long distance. Additionally, we find that

33

Table 5: Comparison of 8-week quarantine with no intervention case
Shipment Cost Cost Reduction in an 8-Week Quarantine Demand Served within 10 Miles

Compared to No Intervention 8-Week Quarantine No Intervention

High 22.35% 99.79% 99.85%

Medium 18.74% 97.86% 99.66%

Low 25.97% 85.29% 94.99%

the quality of service is better under the no intervention case than under a quarantine

(assuming all of the facilities can indeed operate at the estimated capacities). Since

the average demand is lower under a quarantine, fewer facilities are operated in a

given period, and this decreases the percentage of the demand served within 10 miles.

We provide a detailed analysis for the “medium” shipment cost case below. The

demand and the number of open PODs over time under no intervention and the 8-

week quarantine case can be seen for 5 counties in Figure 7 and 8. Under an 8-week

quarantine policy, the number of open distribution centers is reduced by almost 50%

which is consistent with the reduction in average demand. Both under no interven-

tion and an 8-week quarantine, the number of open PODs start to increase earlier

than demand does. Because the opening/closing costs are incurred only once, when

the demand at a location is expected to increase, a nearby POD is opened earlier

to utilize the benefit of shipping. This is mainly due to comparable shipment and

facility operating costs. In the setting where the fixed operating cost dominates ship-

ment cost, the number of open facilities closely follows the demand curve. Finally,

proportional with the number of infections, most of the PODs are operated in densely

populated counties.

Figure 9 shows the average number of major facilities operated in each county. The

major facilities in DeKalb and Cobb counties are the ones that are operated during

almost the entire time horizon since they are among the most populated counties,

and they have a better combined location than other alternatives.

Figures 10(a) and 10(b) show the minimum, average, and maximum open dura-

tions of the PODs for each county. The minimum open duration of the facilities is

34

��������

���	
��

��
���

���
��

������

�

������

�������

�������

�������

�������

� � � � � �� �� ��

����

(a) Demand over time

��������

���	
��

��
���

���
��

������

�

�

��

��

��

��

��

� � � � � �� �� ��

����

(b) Number of open PODs over time

Figure 7: Demand and number of open PODs over time under the no intervention
case

��������

���	
��

��
���

���
��

������

�

������

������

������

������

������

������

������

������

������

� � � � �� �� �� �� �� �� �� �� ��

����

(a) Demand over time

��������

���	
��

��
���

���
��

������

�

�

�

�

�

��

��

� � � � �� �� �� �� �� �� �� �� ��

����

(b) Number of open PODs over time

Figure 8: Demand and number of open PODs over time under the 8-week quarantine

���

���

���

���

���

���

���

�	

�

�

���
��

��
���
��
�

��

�
�
�
��
��

��
�

��

��
	�
�
�

�

��

�

�	
�
�
�

��
���
�

�

�
�
��
�
��
���

��
�

��

	�!
���

"�
#�
!

��

$	
�
�
���

��%&�
��'��
���

Figure 9: Average number of open major facilities

35

higher in the quarantine case because of a smoother demand curve that lasts for a

longer time. In the no intervention case, some of the PODs are open when the demand

peaks, and then they are closed when the demand decreases. The variability in the

open duration of PODs is higher in the densely populated counties (Cobb, DeKalb,

Fulton and Gwinnett) because the demand curve in these counties has a higher peak,

increasing the number of opening/closing decisions.

����

����

����

����

����

�����

�����

�����

�	

�

�

���
��

��
���
��
�

��

�

�� ��

��

��
�

��

��
	�
�
�

�

��

�

�	
�
�
�

��
���
�

�

�
�
��
�
��
���

��
�

��

	�!
���

"�
#�
!

��

�
�
�
�
�

$
%�&	&

'(��
��

$���&	&

(a) Duration of PODs under no interven-
tion

����

����

����

����

����

�����

�����

�����

�	

�

�

���
��

��
���
��
�

��

�

�� ��

��

��
�

��

��
	�
�
�

�

��

�

�	
�
�
�

��
���
�

�

�
�
��
�
��
���

��
�

��

	�!
���

"�
#�
!

��

�
�
�
�
�

(b) Duration of PODs under an 8-week
quarantine

Figure 10: Minimum, average and maximum duration of open PODs

2.8 Effect of Influenza Pandemic on the Workforce Level

In this section, using the disease spread model, we analyze the impact of influenza

pandemic and intervention strategies, namely, voluntary quarantine and school closure

on the workforce.

The reduced active workforce level in critical services may result in secondary con-

sequences causing greater impact than the influenza pandemic itself [67]. Influenza

pandemic could result in as much as 33% workforce loss because of illness or the

need to take care of infected family members [64]. “If the refineries lose 30 percent

of their people, they have to shut down. Transport and delivery would be severely

handicapped during a pandemic both because of gas shortages and the loss of work-

force.” says Dr. Michael T. Osterholm, the director of the Center for Infectious

36

Disease Research and Policy at the University of Minnesota [56]. Gas shortages will

also trigger interruptions in services. Food and water supplies may be interrupted,

and individuals may also be unable to get to a grocery store.

In our analysis, we assume that work absenteeism occurs because of (i) illness,

(ii) the need to care for infected family members, (iii) quarantine, or (iv) the need to

take care of children in case of a school closure.

Under no intervention, work absenteeism may occur because of (i) and (ii). In

the base case, we assume that 50% of symptomatic adults withdraw from work and

stay home. First, we study the effect of different withdrawal rates from work on the

disease spread. In Table 6, we see the effect of different withdrawal rates for working

adults on the disease spread for R0 = 1.8 assuming that one of the adults stay home

if there is an infected children or elderly in the household. We observe that as the

withdrawal rate increases the peak infectivity and IAR reduces and the peak time is

delayed. Similar observation can be done for different R0 values (see Tables 27 and 28

in Appendix A.11). This is reasonable because increased withdrawal rates decrease

the number of interactions between the infected and susceptible individuals in the

work places.

Table 6: Effect of different withdrawal rates from work on the disease spread for
R0 = 1.8

Withdrawal Rate Peak Infectivity Peak Day IAR
25% 6.02% 48 70.79%
50% 5.00% 52 65.64%
75% 3.89% 57 58.77%
100% 2.80% 64 51.19%

Second, we analyze the impact of different withdrawal rates on the workforce

loss. In Figure 11, we see how the work absenteeism changes over time for different

withdrawal rates for R0 = 1.8 (see Appendix A.12 for other R0 values). From Figure

11, we observe that if the withdrawal rate is 50%, the peak work absenteeism is

around 4.5%, and the peak occurs around day 50. As the withdrawal rate increases

37

beyond 50%, the peak work absenteeism decreases. Higher withdrawal rates increase

the percentage of symptomatic working adults that withdraw from work, but this

also decreases the number of interactions in the work places.

���

���

���

����

�����

�����

�����

�����

�����

�����

�����

�����

	����

	����

�����

� �� �
 �� �� 	� �� �	 �� ��
� ��� ��
 ��� ��� ��� �	�

���

�
��
��
�	
�

�

Figure 11: Effect of withdrawal rate on the work absenteeism for R0 = 1.8

If the companies can manage their operations with conference calls instead of face-

to-face meeting with the employees, this can reduce the number of infections in their

workplaces and thus the work absenteeism. Even if telecommuting is not possible,

instead of forcing the infected employees to come to work for business continuity,

companies should consider sending them to home which may decrease the work ab-

senteeism and also the overall IAR in the population. Furthermore, this may decrease

the peak infectivity significantly, which is crucial for the load on the health services

infrastructure.

Next, we analyze the effect of quarantine on the work absenteeism. In voluntary

quarantine case, work absenteeism may occur because of (i), (ii) and (iii). Assuming

that an 8-week voluntary quarantine is implemented, the effect of start time of the

quarantine and the withdrawal rate on the peak work absenteeism for R0 = 1.8 can

be seen in Figure 12 (see Appendix A.13 for different length quarantines). Assuming

that the withdrawal rate is 50%, the peak work absenteeism is minimized at around

3.5% if the voluntary quarantine is started at the beginning of week 3. Note that

the peak work absenteeism is around 4.5% under no intervention case (see Figure

38

11). Similar to the observation in the no intervention case, if the withdrawal rate

increases, peak work absenteeism decreases.

���

���

���

����

�����

�����

�����

	����

����

������

������

������

�	����

� � � 	 �

�����������	
������
��������

�
��
��
��
��
�

Figure 12: Effect of withdrawal rate and quarantine start time on the peak work
absenteeism for an 8-week quarantine for R0 = 1.8

From Figure 12, if the quarantine is started later than the optimal timing, peak

work absenteeism can be higher compared to no intervention case, e.g., if an 8-week

voluntary quarantine is started at the beginning of week 7, assuming that the with-

drawal rate is 50%, the peak work absenteeism is around 11%. If the quarantine is

started late, the number of infected people in the population is already high which re-

sults in quarantining a large number of people increasing the work absenteeism. This

also supports the argument on starting the quarantine earlier than late (see Section

2.4).

Finally, we investigate the effect of school closures on the work absenteeism. Al-

though work absenteeism may also occur because of (i) and (ii), the main reason for

work absenteeism during school closures is (iv). In Figure 13, we see the effect of the

start time of a 12-week school closure on the peak work absenteeism for R0 = 1.8

assuming withdrawal rate for adults is 50%. We see that the peak work absenteeism

is around 18%. Work absenteeism remains around 18% while the schools are closed.

This is mainly because of the absenteeism of working adults who prefer staying home

to take care of their children during school closures. Sadique et al. [93] also analyze

39

the effect of school closures on the work absenteeism, and they make a similar obser-

vation. According to their results, around 16% work absenteeism occurs because of

school closures.

������

������

������

������

���	��

���
��

������

������

������

������

������

� � 	
 � �

�����������	
��������		
��
	����

�
��
��
��
��
�

Figure 13: Effect of school closure start time on the peak work absenteeism for
R0 = 1.8

Our results on school closures also support the disruptiveness of school closures

on the overall economy [90, 103]. This level of work absenteeism could result in

secondary consequences that may cause a greater impact on the economy than the

pandemic itself.

2.9 Conclusions and Future Directions

In this chapter, we construct a disease spread model with a spatial and an age-based

structure for influenza pandemic that is helpful for developing intervention strategies

and for preparedness planning. With the goal of designing a food distribution sup-

ply chain network during an influenza pandemic, we link the disease spread model

to a facility location and resource allocation model and propose two solution ap-

proaches, namely, Deterministic Approach and Dynamic Update Approach. In the

Deterministic Approach, the disease spread is estimated only at the beginning, and

the food distribution network is constructed according to this estimate. In the Dy-

namic Update Approach, the estimates on the disease spread as well as the food

distribution facility location and resource allocation decisions are updated over time.

40

Since the corresponding facility location problem (CMPH-FLP) is hard to solve for

large instances, we design efficient algorithms to find near-optimal solutions. Our

computational results indicate that the Hybrid Heuristic performs better when com-

pared to the Add-Drop Heuristic, but for very large instances that cannot be handled

by commercial optimization software, the Add-Drop Heuristic is the best alternative.

We envision that a combined demand diffusion and resource allocation approach such

as the one proposed in this paper could be useful in other applications, e.g., in the

marketing operations using a Bass diffusion model [7] for demand and optimization

to decide on the allocation of limited resources for distributing the products.

Models that predict the spread of the disease accurately help public health offi-

cials in developing efficient response plans ahead of time before the influenza pandemic

hits. Estimating the disease specific parameters is one of the key issues in develop-

ing efficient response plans. While models such as the Deterministic Approach using

estimates from earlier influenza pandemic cases can be used for advance planning pur-

poses, dynamic approaches such as Dynamic Update Approach that generate updated

estimates after the pandemic begins can be used to implement response plans.

We study voluntary quarantine as an intervention policy and find the best timing

and length of the quarantine for different R0 values. We conclude that an 8-week

quarantine is equivalent to a 12-week quarantine (or a quarantine that is in effect

during the entire course of the disease) in terms of reducing the peak infectivity for

high R0 values. For lower R0 values, an 8-week quarantine may still be a good choice

given the negative effect of prolonged quarantine times on public functions and morale,

and the diminishing rate of benefits from long quarantines on the peak infectivity and

infection attack rate (IAR). The optimal start time of a quarantine decreases both in

the duration of the quarantine and the R0 value. In addition to voluntary quarantine,

we study school closure as an alternative social distancing measure and find that it

may not be as effective as a voluntary quarantine. Since school closures can be more

41

disruptive on the overall services and the economy [90, 103], e.g., if some parents

have to leave the workforce to care for children who are out of school, we recommend

limited-time voluntary quarantine as an effective intervention policy to public health

officials.

Although the effect of a quarantine on IAR is limited, it can decrease the peak

infectivity significantly, which is crucial for the continuity of the supply chains of

goods and services. It can also reduce the probability of having capacity problems in

various industries during an influenza pandemic. For example, in the food distribution

supply network, the number of facilities operated decreases by almost half in the case

of a quarantine when compared to the no intervention case. This significant reduction

has several benefits including the reduced equipment and workforce requirements to

operate the food distribution facilities where the workforce at each point in time is

likely to be a scarce resource due to illness, fear of infection and the need to care for

infected family members. In addition to decreasing the peak infectivity, quarantine

delays the timing of the peak which is also important since a delayed peak offers more

time for preparedness efforts. These benefits would also apply to health services [89].

The results of our research have been incorporated into the manual of ARC-MAC on

food distribution planning during an influenza pandemic [3].

In this chapter, we analyzed the food distribution supply chain during an influenza

pandemic. Designing medicine/vaccine distribution supply chains and analyzing the

effect of influenza pandemic in terms of supply chain disruptions are two other im-

portant problems that need to be addressed to develop efficient response plans. In

our disease spread model, we did not assume any seasonal effects or viral evolution,

which may change the spread pattern of the virus and is the focus of parallel work

[70]. Another future direction is optimizing the intervention policies such as distri-

bution of vaccines and antivirals. This may decrease the number of infected people

as well as the amount of food needed.

42

CHAPTER III

OPTIMAL JOB SPLITTING ON A MULTI-SLOT

MACHINE WITH APPLICATIONS IN THE PRINTING

INDUSTRY

3.1 Introduction

In this chapter, we consider the Job Splitting Problem (JSP) which has applications in

the printing industry, one of the largest manufacturing industries in the United States

with products ranging from newspapers, magazines, books, brochures, labels, newslet-

ters, postcards, memo pads, business order forms, checks, maps, and packaging. JSP

and the methods we develop for its solution are especially applicable in commercial

lithographic printing establishments, which print a wide variety of products including

newspaper inserts, catalogs, pamphlets, and advertisements and make up the largest

segment of the printing industry, accounting for about 31% of employment and 39%

of total establishments [11].

In JSP, there are n types of items (e.g., business cards, labels, brochures, retail

advertisement coupons, etc.) with demands/orders d1, . . . , dn to be processed on a

machine (press) which has m slots. In each “run”, at most one type of item is assigned

to each slot and the machine continues to process that type in that slot until the end

of the run. A new run is initiated with a “setup” of cost cs, also referred to as mak-

eready, which determines the “pattern/configuration” for the type-slot assignments

in that run. A production plan consists of a set of runs, each determined by three

attributes: (i) type-slot assignment, (ii) quantity assigned to each slot, that is the

quantity that will not go to “waste”, and (iii) length, which is the largest quantity

assigned to (equivalently, the quantity produced in) any one slot in that run. Our

43

goal is to create a production plan to fulfill the demand so as to minimize the total

cost of setups and “waste”, which is the amount of production in excess of demand,

with a unit waste cost of cw. In JSP, waste occurs due to a mismatch in the order

quantities. Waste reduction has several benefits, including less spending in raw ma-

terial and disposal costs, better utilization of equipment and resources, and reduced

environmental pollution. Note that minimizing waste is equivalent to minimizing the

total length of all the runs in the production plan.

JSP is related to the well known one-dimensional Cutting Stock Problem (CSP)

[28, 44, 50], which is motivated by paper manufacturing. A paper machine produces

large reels (rolls) of paper. The process of cutting the reels into smaller rolls of paper

based on customer specified widths is called trimming. The reels are cut into rolls

according to patterns which are combinations of different roll widths (for a given

diameter) [69]. For example, a reel of width 200 can be cut into 4 rolls of width

40 and one roll of width 35, resulting in 5 inches (200 - 4× 40 - 35 = 5) of waste

(trim loss). Given a demand vector for rolls of different widths, the goal in CSP is to

generate a set of patterns for cutting the reels to satisfy the demand while minimizing

the waste, or equivalently, while minimizing the number of reels used.

Using different patterns to cut the reels requires a setup on the winder (the ma-

chine used to cut the reels) since the position of the knives between consecutive

patterns must be changed [69]. Winder setups may be time consuming and costly,

especially if they must be done manually. CSP with the secondary objective of min-

imizing the number of patterns used, while still minimizing the waste, is referred to

as the Pattern Minimization Problem (PMP) [80]. McDiarmid [80] shows that even

a special case of PMP, where any two rolls fit into a reel but none of the three, is

strongly NP-hard. Diegel et al. [25] identify necessary conditions in order to combine

two or more patterns that reduces the number of patterns starting with a given solu-

tion while Haessler [49] develops a sequential heuristic procedure for PMP. Yanasse

44

and Limeira [113] propose a hybrid procedure to reduce the number of patterns, and

Foerster and Wascher [38] develop the KOMBI heuristic, which allows for different

types of combinations to combine two or more patterns in order to reduce the number

of patterns. Umetani et al. [104] solve PMP with an upper bound on the number of

different patterns that can be used. Vanderbeck [106] develops an exact algorithm for

PMP based on a column generation idea, which is strengthened by Alves and Valerio

de Carvalho [1].

PMP and JSP seem related since both problems focus on reducing the waste and

the number of setups. However, there are significant differences. First, while the

orders have different widths in PMP, in JSP they all have essentially the same width

from a modeling perspective since we can assign one order per slot. For example,

consider a machine with 2 slots and two types of items with demands 50 and 75. If

slot 1 is configured to produce type 1 and slot 2 is configured to produce type 2, then

the waste occurs if the length of the run is more than 50. Hence, in JSP the waste

occurs due to a mismatch in the order quantities. By contrast, in PMP the waste

occurs due to potential mismatch in the widths of the ordered rolls. Second, while

the goal in PMP is to minimize the waste with a secondary objective of minimizing

the number of setups, in JSP the goal is to minimize the weighted sum of the waste

and setup costs. Hence, the objective in PMP corresponds to a special case of JSP

where the waste cost is significantly larger than the setup cost.

To the best of our knowledge, only a special case of JSP, where the number of slots

on the machine is 4, has been studied in the literature by Teghem et al. [102] in the

context of grouping and printing book covers while minimizing the total production

cost. In Teghem et al. [102], the plate used in the printing process can accommodate

up to four covers at a time. Hence, the number of slots (m) in JSP is set to 4. Teghem

et al. [102] develop a heuristic algorithm based on simulated annealing. Unfortunately,

they have not been able to obtain promising results (in terms of the solution quality

45

and solution time) when the number of types exceeds 5.

In this chapter, we propose two efficient (fast) and effective heuristics that are

capable of finding near-optimal solutions for large instances of JSP such as m = 30

slots and n = 2086 orders in less than a minute. In addition, we propose a new linear

integer programming formulation which is proved to be more efficient than the one

proposed by Teghem et al. [102]. We generate several cuts to strengthen the linear

integer formulation and develop preprocessing steps that help in solving the problem

optimally.

The remainder of the chapter is organized as follows. In Section 3.2, we give a

formal definition of the problem, provide an illustrative example and present some

observations about the structure of the problem. In Section 3.3, we prove that JSP

is strongly NP-hard and discuss a special case. In Section 3.4, we present three

different mathematical modeling approaches for JSP, namely, a nonlinear program

and two linear integer programs. In Section 3.5, we propose two heuristics and prove

that the first heuristic returns a 2-approximate solution. In Section 3.6, using the

results of the proposed heuristics, we develop preprocessing steps to improve the

solution time of the linear integer program. In Section 3.7, we present the results

of the computational experiments conducted on real-world and randomly generated

instances. Finally, we discuss extensions and future research directions.

3.2 Preliminaries

In this section, we provide an example to illustrate JSP and provide some basic

observations about the structure of the problem based on special cases. Our notation

is summarized in Table 7.

The following numerical example provides insights on the order-slot (or type-slot)

assignment, waste and “quantity assigned to a slot” concepts.

Example 3.1. Consider a machine with 5 slots and 4 types of items with demands

46

Table 7: Notation for JSP
N = {1, . . . , n} : Set of types
m : Number of slots on the machine
di : Demand for type i, i ∈ N

Lj : Length of (the largest quantity assigned to any one of the slots in) run j

cs : Setup cost for initiating a new run
cw : Cost per unit of excess production

d1 = 500, d2 = 400, d3 = 400, d4 = 150. We can initiate a run with type-slot assign-

ment [1 1 2 3 4] and length 400. This indicates that slots 1 and 2 are configured to

produce type 1, slot 3, slot 4 and slot 5 are configured to produce types 2, 3 and 4,

respectively. This single run is a feasible production plan with excess production in

slots 1, 2 and 5 (see Figure 14(a)) since the quantity assigned to these slots is less

than the length of the run. Another feasible production plan is the one with two runs

with type-slot assignments [1 1 1 1 1] and [2 2 3 3 4] and with lengths 100 and 200,

respectively (see Figure 14(b)). In this solution, 2 runs are made with only 50 units

of excess production. The objective in JSP is forming a production plan that takes

into account the trade-off between waste and setup costs.

1

2
 3

4

1

3
2
1
 4

Slot Number

5

� �

L

 1

=
4
0
0

 �

�

1
 1
 1
 1
1

Slot Number

2
 3
 4
2
 3

3
2
1
 4
 5

3
2
1
 4
 5

First run

Second run

�

L

 2
=

2
0
0

L

 1

=
1
0
0

(a) (b)

Figure 14: Two different feasible production plans for Example 3.1

Assuming that there are r runs in a production plan, the cost function can be

written as follows:

csr + cw(m
r∑

j=1

Lj −
∑
i∈N

di). (15)

In (15), the first term is the total setup cost of the runs and the second term is the

47

waste cost. We calculate the wasted quantity by subtracting the total demand from

the total production. Since the total demand is constant, minimizing (15) is equal to

minimizing

csr + cwm

r∑
j=1

Lj. (16)

Dividing (16) by cwm, we obtain the following simpler cost function

cr +
r∑

j=1

Lj. (17)

In (17), c is the scaled setup cost and it is defined as c := cs

cwm
. From now on, we

consider (17) as the objective function for JSP, which is the sum of the total setup

cost and the total length of all the runs. In the rest of the chapter, we use setup cost

to refer to the scaled setup cost.

The next two observations present upper and lower bounds on the number of runs

in an optimal solution to JSP.

Observation 3.1. The number of runs in a feasible solution is greater than or equal

to d n
m
e.

Observation 3.1 follows since we can satisfy the demand of at most m types in

each run. Teghem et al. [102] also make a similar observation for m = 4.

Note that when the setup cost is very high (c À 0), the setup cost dominates

the objective function and transforms JSP to a problem where the objective is to

find a solution with the smallest number of runs/setups. Hence, Observation 3.1 also

indicates that there exists an optimal solution to JSP with d n
m
e runs when c À 0.

Furthermore, when c À 0 and n ≤ m, the optimal solution has a single run. In

Section 3.3, we present a polynomial-time algorithm for finding the minimum waste

solution with a single run.

Next, we show that there is an optimal solution with at most n runs. Teghem

48

et al. [102] also mention a similar result. They claim that this is one of the extreme

solutions (the other being the solution with the minimum number of runs), and they

propose producing the same type in each slot of a run. In that case, the length of a

run is equal to ddi

m
e where i is the index of the type produced in that run. However,

this solution is not extreme (or optimal for c = 0) since the waste is not minimized

in this production plan. For example, consider a machine with 2 slots and 2 types of

items with demands d1 = 7, d2 = 9. Producing only one type in a run results in two

runs with type-slot assignments [1 1] and [2 2] and with lengths 4 and 5, respectively

and results in a total waste of 2. However, the extreme solution, which has minimum

(zero in this case) waste, is with two runs with type-slot assignments [1 2] and [2 2]

and with lengths 7 and 1, respectively. We prove this result by a constructive proof

which also illustrates a possible structure of the solution in this extreme case.

Observation 3.2. A minimum waste solution can be obtained in at most n runs,

i.e., there exists an optimal solution to JSP with at most n runs.

Proof. We know that the total length of the runs in a feasible solution is at least

d
P

i∈N di

m
e. Let L := d

P
i∈N di

m
e. We prove that the demand can be satisfied in at most

n runs with total length L, which is a minimum waste solution since L is a lower

bound on the total length of the runs.

We construct a solution by assigning the types to the slots from slot 1 with type 1

until either the quantity assigned to a slot reaches L or the demand of the current type

is satisfied. If the quantity assigned to a slot reaches L, then we continue assigning the

current type to the next slot. If the demand of a type is satisfied, we start assigning

another type to the current slot without producing any waste. We continue the above

process until all the types are assigned to m slots. The first run is determined by

the first type assigned to each slot. After the first run is initiated, when the type

assigned to a slot changes, a new run is initiated after changing the assigned type in

this slot. The types assigned to other slots remain same. There are n−1 places where

49

a new run is initiated. A new run is not initiated for the last type, type n, assigned

to slots as described above since the remaining items are counted as waste. Including

the first run, there are n runs. Thus, the total number of runs is n. More formally,

the structure of the runs can be defined as follows. Let ki
j be the index of the type

assigned to slot j in the ith order and di
j be the quantity of this type assigned to this

slot. Then, the type-slot assignment for the first run is [k1
1 k1

2 . . . k1
m] and the length

of this run is equal to minj∈{1,...,m}{d1
j | k1

j 6= n}. Let ei
jt be the total quantity of type

ki
j produced in slot j in the first t runs. Assuming that the type-slot assignment for

run t is [k
i1t
1 k

i2t
2 . . . k

imt
m], the length of this run is minj∈{1,...,m}{dijt

j − e
ijt
j,t−1 | k

ijt
j 6= n}.

The type-slot assignment for the next run, run t + 1, is [k
i1t+1

1 k
i2t+1

2 . . . k
imt+1
m] where

ijt+1 = ijt + 1 if j ∈ argminj∈{1,...,m}{dijt
j − e

ijt
j,t−1 | k

ijt
j 6= n} and ijt+1 = ijt , otherwise.

The length of this run is minj∈{1,...,m}{dijt+1

j − e
ijt+1

jt | k
ijt+1

j 6= n}.

When c = 0, JSP’s objective turns into finding a solution with the smallest waste.

Observation 3.2 shows that we can find a minimum waste solution with at most n

runs. Hence, there exists an optimal solution to JSP with n runs when c = 0 and this

solution can be found in polynomial time with the algorithm described in the proof

of Observation 3.2. This result is summarized in the following corollary.

Corollary 3.1. When c = 0, there exists an optimal solution for JSP with n runs

and this solution can be found in polynomial time.

In the light of Observations 3.1 and 3.2, we consider models and solutions with at

least d n
m
e and at most n runs in the remainder of the paper.

3.3 Complexity and a Special Case

In this section, we show that JSP is strongly NP-hard and discuss a special case (in

addition to those discussed in the previous section) that is solvable in polynomial

time.

50

Theorem 3.1. JSP is strongly NP-hard.

Proof. McDiarmid [80] shows that a special case of PMP, where any two types fit

into a reel but none of the three do, is strongly NP-hard. McDiarmid [80] considers

this case since it is the simplest case of PMP that is not trivial. In this setting, the

minimum number of reels is d
P

i∈N d′i
2

e where d′i is the demand of type i. However,

finding a solution with the minimum number of distinct patterns among the minimum

number of reel solutions is NP-hard. This special case of PMP corresponds to a special

case of JSP where the number of slots is 2, 0 < c ¿ 1
m

, and di = d′i.

Next, we study a special case of JSP that provides the motivation behind the

Multi-Run Heuristic in Section 3.5.1. In this special case, c À 0 and the number

of types is not greater than the number of slots, that is, n ≤ m. Since the setup

cost is very high, the optimal solution has a single run. We call the special case of

finding the minimum waste solution with a single run (when n ≤ m) the Single Run

Problem. Although JSP is strongly NP-hard, we prove that the Single Run Problem

can be solved in polynomial time by the Single Run Algorithm in Algorithm 1. Let

yi denote the number of slots assigned to type i.

Algorithm 1 Single Run Algorithm.

1: Set yi = 1 for all i ∈ N .
2: Check whether

∑
i∈N yi < m. If yes, go to Step 3. Otherwise, go to Step 4.

3: Calculate ddi

yi
e for all i. Let j ∈ argmaxi∈N{ddi

yi
e}. Increase yj by 1. Go to Step

2.
4: Assign the types to the slots based on yi’s. For type i, assign a quantity of ddi

yi
e−1

to yiddi

yi
e − di slots and assign a quantity of ddi

yi
e to the remaining yi − yiddi

yi
e+ di

slots.

Theorem 3.2. The Single Run Algorithm solves the Single Run Problem in poly-

nomial time (O(m log n)), where the solution has a single run with length L =

maxi∈N{ddi

yi
e}.

51

Proof. First, we show the run time complexity of the algorithm. In each iteration, the

number of slots assigned increases by one. Thus, the algorithm terminates in O(m)

iterations. The first iteration takes O(n log n) time due to the sorting of the n items.

In the remaining iterations, sorting can be updated by moving the item with a newly

assigned slot down the list, which can be done in O(log n) time using a binary search

tree. Thus, the overall complexity of the algorithm is O(m log n).

Next, we show that the algorithm terminates with the minimum waste solution.

By contradiction, assume that the solution found by the Single Run Algorithm does

not have minimum waste. Then, there exists an assignment of slots (y′1, ..., y
′
n) to

types such that the length of the run, say L′, is less than L. Since n ≤ m,
∑

i∈N y′i =

∑
i∈N yi = m. Let I := {i : ddi

yi
e ≤ L′} and J := {j : ddj

yj
e > L′}. J is nonempty

because of the assumption that the solution found by the Single Run Algorithm does

not have minimum waste. Moreover, I is nonempty since
∑

i∈N y′i =
∑

i∈N yi = m.

Obviously,
∑

i∈I y′i <
∑

i∈I yi, otherwise, there exists j ∈ J such that yj ≥ y′j which

means ddj

yj
e ≤ L′. However, this contradicts with the definition of J .

∑
i∈I y′i <

∑
i∈I yi implies that there exists k ∈ I such that yk > y′k. This means L′ ≥ ddk

y′k
e ≥

ddk

yk
e. In addition, L′ ≥ d dk

yk−1
e since yk − 1 ≥ y′k.

Let h ∈ J . Then, ddh

yh
e > L′ ≥ d dk

yk−1
e. In this case, at the iteration of the

algorithm where the number of slots assigned to type k is increased from yk − 1 to

yk, yk − 1 slots are assigned to type i and ŷh slots are assigned to type h for some ŷh

where ŷh ≤ yh. At this iteration, ddh

ŷh
e > d dk

yk−1
e which contradicts with the second

step of the algorithm. This extra slot should not be assigned to type k.

3.4 Mathematical Models

In this section, we present mathematical models for JSP, namely, a nonlinear inte-

ger formulation (Section 3.4.1), which is compact and intuitive but difficult to solve

for large instances, and two linear integer formulations (Section 3.4.2), which are

52

computationally more efficient.

3.4.1 A Nonlinear Integer Formulation

JSP can be easily formulated as a nonlinear integer program [102] with the following

decision variables:

rj =





1, if run j is initiated

0, otherwise
j ∈ {1, . . . , n},

zij = number of slots assigned to type i in run j i ∈ N, j ∈ {1, . . . , n},
Lj = length of run j j ∈ {1, . . . , n}.

The nonlinear formulation is as follows:

NIP: Minimize c
n∑

j=1

rj +
n∑

j=1

Lj (18)

subject to
∑

i∈N

zij ≤ mrj j ∈ {1, . . . , n}, (19)

n∑
j=1

Ljzij ≥ di i ∈ N, (20)

zij ≥ 0 and integer i ∈ N, j ∈ {1, . . . , n}, (21)

Lj ≥ 0 and integer j ∈ {1, . . . , n}, (22)

rj ∈ {0, 1} j ∈ {1, . . . , n}. (23)

Constraints (19) ensure that at most m slots are assigned in a run. Constraints

(20) ensure that the demand is satisfied. Constraints (21), (22) and (23) represent

integrality restrictions.

Unfortunately, even the continuous relaxation of this formulation, where the bi-

nary and integer variables are replaced by continuous variables, is not convex and is

very difficult to solve.

3.4.2 Linear Integer Formulations

In this section, we present two linear integer formulations for JSP. The first linear

integer formulation, which is intuitive and also proposed by Teghem et al. [102],

leads to a high number of nodes in a branch and bound scheme (due to symmetry)

53

since the subproblems solved at each node of the branch and bound tree have multiple

optimal solutions with the same objective function value. With the goal of eliminating

such inefficiencies, we propose a second formulation, add simple cuts to strengthen

the formulation and utilize special branching rules to improve the solution time. In

addition to rj and Lj as defined in Section 3.4.1, the variables zijk and pijk ,which

are defined below, are used in the first formulation.

zijk =





1, if slot k of run j is assigned to type i

0, otherwise
i ∈ N, j ∈ {1, . . . , n}, k ∈ {1, . . . , m},

pijk = quantity of type i assigned to slot k of run j i ∈ N, j ∈ {1, . . . , n}, k ∈ {1, . . . , m}.

The first formulation is as follows:

IP1: Minimize c
n∑

j=1

rj +
n∑

j=1

Lj (24)

subject to
n∑

j=1

m∑
k=1

pijk = di i ∈ N, (25)

∑
i∈N

zijk ≤ rj j ∈ {1, . . . , n}, k ∈ {1, . . . ,m}, (26)

pijk ≤ Lj i ∈ N, j ∈ {1, . . . , n}, k ∈ {1, . . . , m}, (27)

pijk ≤ dizijk i ∈ N, j ∈ {1, . . . , n}, k ∈ {1, . . . , m}, (28)

pijk ≥ 0 and integer i ∈ N, j ∈ {1, . . . , n}, k ∈ {1, . . . , m}, (29)

Lj ≥ 0 and integer j ∈ {1, . . . , n}, (30)

zijk ∈ {0, 1} i ∈ N, j ∈ {1, . . . , n}, k ∈ {1, . . . , m}, (31)

rj ∈ {0, 1} j ∈ {1, . . . , n}. (32)

Constraints (25) ensure that the demand of each type is satisfied. The restriction

that a slot can be assigned to at most one type is represented by (26). The quantity

assigned to a slot cannot exceed the length of the run, which is guaranteed by (27).

Constraints (28) ensure that the quantity assigned to a slot is zero for a given type

if that slot is not assigned to that type. Constraints (29)-(32) are the integrality

restrictions.

In practice, while the number of slots assigned to a type in a given run is important,

the exact location of these slots does not matter. However, in this formulation we

54

can have multiple solutions with the same number but different positions of slots,

all having the same objective function value. The existence of multiple optima at

each LP relaxation causes unnecessary branching in the branch and bound tree. To

illustrate, consider a simple example where m = 3, n = 5, and (d1, d2, d3, d4, d5) =

(100, 100, 100, 600, 600). The optimal solution of the LP relaxation has two runs and

zero waste with run lengths 400 and 100. This solution can be represented by many

different assignments of variable values. For example:

z121 = z222 = z323 = z411 = z512 = 1, z413 = z513 = 0.5;

z121 = z222 = z323 = z412 = z513 = 1, z411 = z511 = 0.5;

z121 = z222 = z323 = z411 = z513 = 1, z412 = z512 = 0.5.

We propose a second formulation that does not include such symmetric solutions

and allows us to utilize special branching strategies to improve the solution time.

The definitions of the variables rj and Lj remain unchanged from Section 3.4.1. The

additional variables are:

xijk =





1, if k slots of run j are assigned to type i

0, otherwise
i ∈ N, j ∈ {1, . . . , n}, k ∈ {0, 1, . . . ,m},

qijk = quantity of type i assigned to slots in run j if k slots of run j are assigned to type i

i ∈ N, j ∈ {1, . . . , n}, k ∈ {0, 1, . . . ,m}.

55

The second formulation is:

IP2: Minimize c
n∑

j=1

rj +
n∑

j=1

Lj (33)

subject to
n∑

j=1

m∑
k=0

qijk = di i ∈ N, (34)

∑
i∈N

m∑
k=0

kxijk ≤ mrj j ∈ {1, . . . , n}, (35)

qijk ≤ kLj i ∈ N, j ∈ {1, . . . , n}, k ∈ {0, 1, . . . , m}, (36)

qijk ≤ dixijk i ∈ N, j ∈ {1, . . . , n}, k ∈ {0, 1, . . . , m}, (37)
m∑

k=0

xijk = 1 i ∈ N, j ∈ {1, . . . , n}, (38)

qijk ≥ 0 and integer i ∈ N, j ∈ {1, . . . , n}, k ∈ {0, 1, . . . , m}, (39)

Lj ≥ 0 and integer j ∈ {1, . . . , n}, (40)

xijk ∈ {0, 1} i ∈ N, j ∈ {1, . . . , n}, k ∈ {0, 1, . . . , m}, (41)

rj ∈ {0, 1} j ∈ {1, . . . , n}. (42)

Constraints (34) guarantee that the demand of each type is satisfied. Constraints

(35) ensure that at most m slots are assigned to the types in each run. If k slots are

assigned to type i in run j, then the quantity of type i assigned to slots in this run

cannot be greater than kLj, which is guaranteed by constraints (36). If the number

of slots assigned to a type is k in a run, then only the corresponding quantity variable

(qijk) can be nonzero for that type, which is ensured by constraints (37). Constraints

(38) determine the number of slots assigned to a type in a run. Similar to the first

formulation, constraints (39)-(42) are the integrality restrictions.

Remark 3.1. The integrality of the variables qijk and Lj affects the optimal objective

value by at most n − 1. That is, if we solve (IP2) after relaxing the integrality

constraints of Lj and qijk and round the optimal objective value of this relaxation

up, we obtain a lower bound on the optimal integer solution. We can obtain a feasible

integer solution by rounding the values of the variables as follows. We round Lj’s up.

For the variables qijk, first we round all of them up and then decrease some of them by

1 so that constraints (34) are satisfied. That is, let q∗ijk’s denote the optimal solution

56

if we relax the integrality constraints of qijk and Lj. Then, if
∑n

j=1

∑m
k=0dq∗ijke = di+ε

for some nonnegative integer ε, decrease ε of dq∗ijke’s by 1. After these rounding steps,

we obtain a feasible integer solution. Rounding Lj’s up increases the optimal objective

value found for the relaxation by less than n. Thus, the feasible integer solution we

obtain is greater than the optimal integer solution by at most n− 1. This is negligible

when compared to the magnitude of the demand of the types in real-world instances.

Thus, in the rest of the paper, we assume that qijk’s and Lj’s are continuous variables.

Note that the symmetry problem that appears in (IP1) is eliminated by changing

the definition of zijk’s which are replaced by xijk’s in (IP2). While solving (IP2) by a

branch and bound algorithm, we can use special branching rules on xijk’s as proposed

by Nemhauser and Wolsey [86]. Instead of single variable branching, the following

branching scheme can be used. Suppose x∗ijk’s are the optimal values of xijk’s at some

node of the branch and bound tree. Let
∑m

k=0 kx∗ijk = x∗ for type i in run j for some

x∗. Let k′ = bx∗c. Then, the new scheme is to branch into two nodes: one with

∑k′
k=0 xijk = 1 and the other with

∑m
k=k′+1 xijk = 1.

Next, we present two cuts that strengthen (IP2). In fact, they are valid for both

(IP1) and (IP2). The first cut is:

Lj ≥ Lj+1 j ∈ {1, . . . , n− 1}. (43)

In both formulations, runs can be in any order. That is, suppose that we find a

feasible solution for the LP relaxation at some node of the branch and bound tree,

and the lengths of the runs in this solution are 100, 50 and 20. Then, we have 3!

equivalent solutions that give the same objective value: L1 = 100, L2 = 50, L3 = 20;

L1 = 100, L2 = 20, L3 = 50; L1 = 50, L2 = 100, L3 = 20; L1 = 50, L2 = 20, L3 = 100;

L1 = 20, L2 = 50, L3 = 100; L1 = 20, L2 = 100, L3 = 50. This causes unnecessary

branching in the branch and bound tree. To avoid this symmetry problem, we add

57

constraints (43) to sort the runs in the nonincreasing order of their lengths.

The second cut we propose is as follows:

∑
i∈N

m∑

k=1

qijk ≤ mLj j ∈ {1, . . . , n}. (44)

Quantity assigned to all slots in run j can be at most mLj. However, in the following

example, we see that the optimal solution of the LP relaxation can violate this. Con-

sider a simple instance where m = 2, n = 3, and (d1, d2, d3) = (100, 200, 200). The

optimal solution of the LP relaxation has two runs and zero waste with the follow-

ing nonzero variables: L1 = 100, L2 = 50, x111 = 1, x211 = 0.5, x311 = 0.5, x210 =

0.5, x310 = 0.5, x222 = 0.5, x322 = 0.5, x220 = 0.5, x320 = 0.5, q111 = 100, q211 =

100, q311 = 100, q222 = 100, q322 = 100. In this solution, the total quantity assigned

to slots in the first run is 300 whereas it can be at most 200. Similarly, the total

quantity assigned is 200 in the second run whereas it can be at most 100. Constraints

(44) eliminate such solutions.

Thus, from now on we concentrate on (IP2) with the additional constraints (43)

and (44). We denote this formulation by (IP2′).

Although we add some cutting planes to the basic formulation, we still cannot

solve some of the smallest real-world instances where m = 20 and n = 54. However,

the formulations are useful in providing us with lower bounds on the optimal solution

and evaluating the performance of the heuristics. Hence, we focus our attention to two

areas: (1) constructing “good” heuristics for JSP (Section 3.5), and (2) strengthening

(IP2′) and improving the lower bound (Section 3.6).

3.5 Heuristics for JSP

In this section, we propose two heuristics for JSP, namely, the Multi-Run Heuristic

(MRH) and the Balanced Cost Heuristic (BCH). MRH, which is based on the idea of

the Single Run Algorithm discussed in Section 3.3, finds a 2-approximate solution to

58

JSP. BCH is inspired by the Part-Period Balancing, which is a lot-sizing algorithm

proposed by DeMatteis and Mendoza [23].

Before running the heuristics, we first process all the instances by applying an

initial heuristic step. We check whether there are m types with equal demand, say d:

if yes, then we produce these m types in a single run of length d (with zero waste) and

take them out of the demand set. We repeat this preprocessing step as many times

as possible, and then we apply the two heuristics to the remaining set of types. Our

experimental results indicate that both of the heuristics (and their variations) run in

seconds and neither of the variations dominate in terms of solution quality. Hence,

our approach is to apply both heuristics (including their variations) and take the best

solution. Here, we present the basic versions of the heuristics, and we discuss their

variations in Appendix B.

3.5.1 Multi-Run Heuristic (MRH)

In this section, we describe the basic algorithm for MRH. In general, we do not know

how many runs there are in an optimal solution, but we have upper and lower bounds

on the number of runs as provided in Section 3.2. In the Multi-Run Heuristic, the

idea is to solve the Single Run Problem with mr slots for all r ∈ {d n
m
e, . . . , n} and

then choose the solution with the best objective function value. Given the number of

runs, say r′, cr′ + d
Pn

i=1 di

m
e is a lower bound on the optimal objective function value.

Thus, for r = r′, the objective function value of the solution found using MRH is

at least cr′ + d
Pn

i=1 di

m
e. One way to terminate MRH early is to check if this value is

greater than the cost of the best solution found so far. If this is the case, we know

that for r values where r ≥ r′, MRH will not be able to find a better solution. The

pseudocode for the Multi-Run Heuristic (MRH) is presented in Algorithm 2. The

solution obtained when MRH is terminated has index runs and min total cost.

Next, we prove that MRH finds a 2-approximate solution to JSP.

59

Algorithm 2 Multi-Run Heuristic.

1: Set min = cn + d
Pn

i=1 di

m
e and index = 0.

2: for r = d n
m
e to n do

3: Suppose that we have a Single Run Problem with mr slots and n(≤ mr)
types. Apply the Single Run Algorithm to this problem. Assign the quantity
of types to slots as explained in Section 3.3.

4: Sort the slots in a nondecreasing order according to the quantity assigned to
them.

5: for j = 1 to r do
6: Assign the slots m(j − 1) + 1, . . . ,mj to the jth run.
7: end for
8: The length of run j in this solution is the quantity assigned to slot m(j−1)+1.

Calculate the total cost using (17) and let current be the total cost.
9: if min > current then

10: min = current and index = r.
11: end if
12: if min ≤ c(r + 1) + d

Pn
i=1 di

m
e then

13: Exit the for loop.
14: end if
15: end for

Theorem 3.3. The Multi-Run Heuristic returns a 2-approximate solution to JSP.

Proof. In MRH, we apply the Single Run Algorithm for all r ∈ {d n
m
e, . . . , n}. We

claim that setting r = d2n
m
e returns a 2-approximate solution. The total cost has two

components, namely, setup cost and total length of the runs. We prove that when

r = d2n
m
e both the total setup cost and the total length of the runs are less than or

equal to two times the total setup cost and the total length of of the runs in the

optimal solution, respectively.

The minimum number of runs in an optimal solution is d n
m
e. Since d2n

m
e ≤ 2d n

m
e,

the total setup cost of the solution found by MRH (for r = d2n
m
e) is less than or equal

to two times that of the optimal solution.

The total length of the runs,
∑n

j=1 Lj, is at least d
P

i∈N di

m
e. ∑n

j=1 Lj ≥ d
P

i∈N di

m
e

implies that total quantity produced, m
∑n

j=1 Lj, is greater than or equal to
∑

i∈N di.

We next prove that the total quantity produced in the solution found by MRH (for

r = d2n
m
e) is not greater than 2

∑
i∈N di. This completes the proof.

60

In MRH, after applying the Single Run Algorithm, we sort the slots in a nonin-

creasing order of quantity of items assigned to them. Let s1 be the quantity assigned

to the first slot. The total length of the runs will be less than or equal to rs1 since

the length of the first run is s1 and the runs are ordered in a nonincreasing order of

their lengths. The total quantity produced in this solution is less than or equal to

mrs1. We show that mrs1 is less than or equal to 2
∑n

i=1 di.

Let N1 be the set of the types that are assigned only one slot after applying MRH

and let N2 be the set of remaining types. Let |N1| = n1 and |N2| = n2. Then,

n = n1 + n2. Let yi be the number of slots assigned to type i for i ∈ N2. Then,

s1 ≥ ddi

yi
e and s1 ≤ d di

yi−1
e for all i ∈ N2. Suppose that we assign one less slot to the

types in N2. There are two cases that have to be considered:

1. s1 < d di

yi−1
e: In this case, the quantity assigned to all yi − 1 slots is at least s1.

2. s1 = d di

yi−1
e: Quantity assigned to some of these yi − 1 slots (at most yi − 2 of

them) can be s1 − 1.

As a result, we have n2 slots with at least an assigned quantity of s1. Consider the

remaining yi− 2 slots assigned to type i, which are possibly assigned s1− 1 quantity.

There are mr−2n2−n1 such slots. Now, consider the types that are assigned only one

slot and add the quantity assigned to these slots to n1 of mr−2n2−n1 slots. Then, we

have n(= n1+n2) slots with an assigned quantity of at least s1 and mr−2n slots with

an assigned quantity of at least s1−1. We know that (mr−2n)(s1−1)+ns1 ≤
∑

i∈N di

and mr ≥ 2n. Then,
∑

i∈N di ≥ (mr − 2n)(s1 − 1) + ns1 ≥ mrs1

2
for s1 ≥ 2. This

concludes the proof except for the special case where s1 = 1.

Suppose that s1 = 1. There are two cases:

1.
∑

i∈N di > md n
m
e: In this case, MRH applied to r = d2n

m
e gives a 2-approximate

solution since more than half of the slots are assigned only 1 unit. (There are

61

md2n
m
e slots and the total demand is greater than md n

m
e which means more than

half of the slots are assigned 1 unit.)

2.
∑

i∈N di ≤ md n
m
e: The problem is trivial. Let n = km + n′ where 0 < n′ ≤ m.

Then,
∑

i∈N di ≤ (k + 1)m. This means we can solve the problem optimally

in k + 1 runs with run length 1 for each run. Moreover, applying MRH for

r = k + 1 also returns this solution.

While applying the two heuristics (MRH and BCH) to JSP, our approach is to use

both of the heuristics and their variations and take the best solution among them.

Thus, our approach also gives a 2-approximate solution to JSP.

Although we prove that MRH is a 2-approximate algorithm, the worst-case ex-

ample we found so far has a 1.5-approximate solution.

Example 3.2. Consider a machine with m(À 0) slots and m types with demands

d1 = . . . = dm−2 = ε, dm−1 = mM + ε and dm = 2mM + ε where M À ε. Let c = 3M
4

.

The optimal solution is with two runs and with lengths 3M and ε. In the first run,

one third of the slots are assigned to type m− 1 and the remaining slots are assigned

to type m and its length is 3M . For the second run, the type-slot assignment is [1

2 . . . m] and its length is ε. The total cost is equal to 9M
2

+ ε. However, the best

solution found by MRH has 3 runs with lengths 6mM+3ε
4m+3

, 6mM+3ε
4m+3

and 3mM+3ε
2m+3

. The

type-slot assignments for these 3 runs are [m . . . m], [m . . . m m− 1 . . . m− 1] and

[1 2 . . . m − 1 m − 1]. In the second run, m
3

+ 1 of the slots are assigned to type m

and the remaining are assigned to type m − 1. Total cost of this solution is equal to

9M
4

+2(6mM+3ε
4m+3

)+ 3mM+3ε
2m+3

≈ 27M
4

which is a 1.5-approximation to the optimal solution

for big m values.

In the above example, the variability in the demand is high which forces MRH

to do more runs in order to create balanced type-slot assignments that decrease the

62

waste. On the other hand, the high setup cost prevents MRH from doing more

runs. The variability in the demand and the high setup cost negatively impact the

performance of MRH.

3.5.2 Balanced Cost Heuristic (BCH)

This heuristic is inspired by a lot-sizing heuristic, namely the Part-Period Balancing

proposed by DeMatteis and Mendoza [23], which tries to balance the order cost and

the inventory holding cost in a production setting. Using a similar idea, in the

Balanced Cost Heuristic (BCH), we try to find a solution that balances the setup

cost and the waste cost.

First, we give an overall idea about BCH and then present the pseudocode. In

BCH, we construct only one run at each iteration of the algorithm. After constructing

the run, we update the remaining demand and continue to the next iteration until all

the demand is satisfied. Suppose that there are more than m types in JSP. We sort

them in a nonincreasing order according to their demands. Without loss of generality,

we assume that d1 ≥ . . . ≥ dn. We assign a single slot to the types 1, 2, . . . , m − 1

and m. We consider the demand of these m types as a potential length for the

current run considered in BCH. Starting from i = m, we calculate the waste cost as

1
m

∑m
j=i(di − dm) if the length of the run is set to di for all i ∈ {1, . . . , m}. For each

i ∈ {1, . . . , m}, we compare this cost to the setup cost c to decide whether to set the

run length to this value or not. The pseudocode for BCH is presented in Algorithm

3.

After the termination of the algorithm, the totalcost is the objective function

value of the solution. This is the basic version of the Balanced Cost Heuristic (BCH).

Since the running time of the algorithm for a single c value is less than a second, we

propose the following variants which may lead to better solutions:

(BCH-v1): Run the algorithm for different c values and choose the one which

63

gives the best solution in terms of the original c value.

(BCH-random): When comparing the waste cost and the setup cost, we generate

a random number z ∈ [0, 1] using the uniform distribution. If z is less than the

ratio of the waste cost to the total cost (waste cost + setup cost), we fix this run.

Otherwise, we continue the for loop until the generated z value is less than the ratio

of the waste cost to the total cost. Apply the algorithm several times (with a new

random seed, leading to different z values) for the original c value or for a different

c value and choose the solution which has the minimum total cost in terms of the

original c value.

Similar to MRH, we also propose variations to BCH, which are presented in Ap-

pendix B. The variations of BCH are also valid for BCH-v1 and BCH-random. In

the computational experiments, we apply all these different strategies and take the

best solution among the ones found.

3.6 Preprocessing Ideas for Strengthening the Integer For-
mulation

In this section, using the solutions found by the heuristics and some other observa-

tions, we further strengthen the integer formulation (IP2′). Particularly, we try to

(i) improve the upper bound on the number of runs, (ii) tighten the upper and lower

bounds on the length of the runs, and (iii) limit the number of slots that can be

assigned to a certain type in a given run.

In (IP2′), the number of types, the number of runs and the number of slots that

can be assigned to a type determine the number of variables and constraints. Thus,

if we reduce the upper bound on the number of runs (currently n) and the number

of slots that can be assigned to a type in a run (currently m for all the types), the

size of the linear integer program reduces. Hence, we focus on obtaining better upper

bounds on the number of runs and the number of slots that can be assigned to a

type. The resulting stronger formulation allows us to solve several of the real-world

64

Algorithm 3 Balanced Cost Heuristic.

1: Set totalcost = 0.
2: if n ≥ m then
3: Sort the types according to their demand in a nonincreasing order, d1 ≥ d2 ≥

. . . ≥ dn.
4: Choose the first m types (d1, . . . , dm) and assign one slot to each without any

splitting. That is, the quantity assigned to slot i is equal to di.
5: else
6: Apply the Single Run Algorithm.
7: Determine the quantities assigned to each slot and sort the slots in a nonin-

creasing order according to the quantities assigned to them.
8: end if
9: Let sk denote quantity assigned to slot k for k ∈ {1, . . . , m}.

10: for i = m to 1 do
11: Calculate waste cost as 1

m

∑m
j=1(si −min(sj, si)).

12: if 1
m

∑m
j=1(si −min(sj, si)) > c then

13: Exit the for loop and set the length of this run to si+1. The assignment of
the slots to types is same as it is done at the beginning.

14: end if
15: end for
16: Fix this run and update the demand for each type by subtracting the quantity

that is produced in this run.
17: Update the totalcost by adding c + si+1. If all the demand is satisfied, terminate

the algorithm. Otherwise, go to Step 2.

65

instances optimally.

3.6.1 A Better Upper Bound on the Number of Runs

In the formulations provided in Section 3.4.2, the number of runs is a variable, which

we vary between 1 and n. Recall from Section 3.2 that n is an upper bound and d n
m
e

is a lower bound on the optimal number of runs. Unfortunately, in practice n turns

out to be a very loose upper bound. Luckily, the best solution found by the heuristics

provides us with a much tighter upper bound on the optimal number of runs, even

an exact value in some cases.

Observation 3.3. Let BEST denote the best solution found by the heuristics. Then,

bBEST − d
P

i∈N di

m
e

c
c (45)

is an upper bound on the number of runs in the optimal solution.

We know that the total length of the runs in a feasible solution is at least d
P

i∈N di

m
e.

Thus, if the total setup cost of a feasible solution is greater than BEST − d
P

i∈N di

m
e,

the total cost of this solution is greater than BEST . Furthermore, since the unit

setup cost is c, (45) gives an upper bound on the number of runs.

Using a tighter upper bound on the number of runs can significantly reduce the

size of the formulation. For example, in one of the real-world instances where n = 54,

m = 20 and c = 1300, after applying the heuristics and using Observation 3.3, we

find that the upper bound on the number of runs is only 3 (instead of 54). In this

instance, it turns out that the lower bound is also 3, hence, we conclude that the

optimal solution has three runs.

Let LB(= d n
m
e) be the lower bound and UB be the upper bound on the number

of runs. By solving the problem for a given number of runs, say r, for all r ∈
{LB, . . . , UB}, we can find the optimal solution. For the rest of the discussion, we

66

assume that we have fixed the number of runs to some r ∈ {LB, . . . , UB} and the

runs are ordered in a nonincreasing order of their lengths, L1 ≥ . . . ≥ Lr. Then, by

solving (IP2′) with a fixed number of r runs we try to find a better solution than

the one found by the heuristics in r runs. In order to do this, we only have to check

if the optimal objective value of this problem, where the number of runs is set to

r, is smaller than BEST . This problem can be infeasible for some r values where

r ∈ {LB, . . . , UB}, which implies that for those r values there is no better solution.

3.6.2 Setting Upper and Lower Bounds on the Lengths of the Runs

In this section, we try to improve the lower and upper bounds on the lengths of the

runs which are 0 and dmax(:= maxi∈N{di}) currently.

We start with some notation. Let LLB
j and LUB

j be the lower bound and upper

bound on the length of run j. Initially, each run has a minimum length of 1, that

is, LLB
j = 1 for all j ≤ r. Without loss of generality, we assume that d1 ≥ . . . ≥ dn.

We first state some observations which form the building blocks of the preprocessing

steps.

Observation 3.4. If there is a better solution than the one obtained by the heuristics,

the total length of the runs in this solution is less than or equal to bBEST − crc.

Let LUB
total be the upper bound on the total length of the runs. Then, LUB

total =

bBEST − crc.

Observation 3.5. LUB
j = bLUB

total

j
c for all j ≤ r.

Since the runs are ordered in a nonincreasing order of their lengths, L1 ≥ . . . ≥ Lj

for any j ≤ r. This implies that LUB
total ≥

∑r
i=1 Li ≥

∑j
i=1 Li ≥

∑j
i=1 Lj, which proves

the observation.

Observation 3.6. For j ≤ d n
m
e, Lj should satisfy the following inequality:

67

n∑

i=n−m(j−1)+1

d di

Lj

e ≤ m(r − j + 1). (46)

If a type, say type i, is not produced in any of the first j − 1 runs, the number of

slots that are assigned to that type is at least d di

Lj
e since the lengths of the runs after

the jth run are not greater than that of run j. Until the jth run, demand of at most

m(j − 1) types can be satisfied. There are still at least n −m(j − 1) types that are

not produced in any of the first j− 1 runs. The total number of slots that have to be

assigned to these types is at least
∑n

i=n−m(j−1)+1d di

Lj
e since the demand of the types

are in a nonincreasing order, d1 ≥ . . . ≥ dn. Before we initiate the jth run, we have

m(r− j + 1) slots left in total. Then, Observation 3.6 follows. The minimum of such

Lj values gives a lower bound on the length of jth run, and it can be found by a line

search algorithm on line segment [1, LUB
j].

Since LLB
j ’s are the lower bounds on the length of the runs, ExtraLength, defined

as ExtraLength := LUB
total −

∑r
j=1 LLB

j , is the flexible portion of the total length that

can be assigned to any run.

Observation 3.7. The upper bounds on the run lengths are updated using the fol-

lowing subroutine in Algorithm 4.

Algorithm 4 Subroutine for updating the upper bounds on the run lengths.

1: LUB
1 = min{LLB

1 + ExtraLength, LUB
1 }.

2: for j = 2 to r do
3: sum = ExtraLength.
4: for h = j to 1 do
5: sum = sum + LLB

h .
6: if b sum

j−h+1
c ≤ LLB

h−1 then

7: LUB
j = min{b sum

j−h+1
c, LUB

j }.
8: Exit the inner for loop.
9: end if

10: end for
11: end for

68

The following discussion provides an overall idea about the subroutine. The max-

imum length of run j is LLB
j +ExtraLength. However, we can obtain a tighter upper

bound on the length of run j since the runs are in a nonincreasing order of their

lengths. We know that the length of run k for k < j has to be greater than or equal

to that of run j. Thus, if LLB
j−1 < LLB

j +ExtraLength, then we can calculate a tighter

upper bound for run j as bLLB
j−1+LLB

j +ExtraLength

2
c.

3.6.3 Setting Upper Bounds on the Number of Slots Assigned to a Type

In the current formulation, the upper bound on the number of slots that can be

assigned to a type in a run is m and we define m + 1 slot variables (xijk) for each

type i for each run j. In this section, we improve this upper bound for each type.

Improvement of this upper bound will decrease the number of variables and thus size

of the problem.

Let maxij be the maximum number of slots that can be assigned to type i in run

j. Similar to ExtraLength defined previously, let ExtraSlots be the number of slots

that we are flexible in assigning to the types and Slotsi be the minimum number of

slots that have to be assigned to type i. The following observation summarizes the

preprocessing idea.

Observation 3.8. Slotsi = d di

LUB
1
e and ExtraSlots = mr −∑

i∈N Slotsi. Then,

maxij = min{ExtraSlots + Slotsi, d di

LLB
j

e,m}. (47)

Since the runs are in a nonincreasing order of their lengths, the minimum number

of slots that have to be assigned to type i is d di

LUB
1
e. Then, mr −∑

i∈N Slotsi gives

the number of slots that we are flexible in assigning to the types. Observation 3.8

follows since it is not reasonable to assign more than d di

LLB
j
e slots to type i in run j.

To summarize, lower bounds on the run lengths are updated using Observation

3.6. Upper bounds are calculated using Observations 3.5 and 3.7. The maximum

69

number of slots that can be assigned to a type in a certain run is calculated using

Observation 3.8.

Using the above information, we strengthen the formulation (IP2′) by adding

valid cuts on the run lengths and possibly reducing the number of variables. The

strengthened formulation after these preprocessing steps is:

IP3: Minimize cr +
r∑

j=1

Lj (48)

subject to
r∑

j=1

maxij∑
k=0

qijk = di i ∈ N, (49)

∑
i∈N

maxij∑
k=0

kxijk ≤ m j ∈ {1, . . . , r}, (50)

qijk ≤ kLj i ∈ N, j ∈ {1, . . . , r}, k ∈ {0, 1, . . . ,maxij}, (51)

qijk ≤ dixijk i ∈ N, j ∈ {1, . . . , r}, k ∈ {0, 1, . . . ,maxij}, (52)
maxij∑
k=0

xijk = 1 i ∈ N, j ∈ {1, . . . , r}, (53)

Lj ≥ Lj+1 j ∈ {1, . . . , r − 1}, (54)

∑
i∈N

maxij∑
k=1

qijk ≤ mLj j ∈ {1, . . . , r}, (55)

r∑
j=1

Lj ≤ LUB
total (56)

Lj ≥ LLB
j j ∈ {1, . . . , r}, (57)

Lj ≤ LUB
j j ∈ {1, . . . , r}, (58)

xijk ∈ {0, 1} i ∈ N, j ∈ {1, . . . , r}, k ∈ {0, 1, . . . ,maxij}, (59)

qijk ≥ 0 i ∈ N, j ∈ {1, . . . , r}, k ∈ {0, 1, . . . ,maxij}, (60)

Lj ≥ 0 j ∈ {1, . . . , r}. (61)

Constraints (56)-(58) are the new constraints that are added after the prepro-

cessing steps. In addition, the set where the slot index k is chosen from is updated

according to the new maxij values.

3.7 Computational Results

In this section, we test the performance of MRH and BCH on three sets of problem

instances. We also conduct experiments to assess the impact of the preprocessing

70

steps presented in Section 3.6.

3.7.1 Evaluating the Performance of the Heuristics

We test the performance of our proposed heuristics in the following three sets of

problem instances:

1. T: The instances solved by Teghem et al. [102], where m = 4 (i.e., there are 4

slots), cs = 18, 676 and cw = 3.36. The demand structure in these 4 instances

is as follows:

• T1 : n = 3, d1 = 16, 000, d2 = 9, 000, d3 = 4, 500,

• T2 : n = 4, d1 = 20, 000, d2 = 18, 000, d3 = 15, 000, d4 = 8, 500,

• T3 : n = 5, d1 = 13, 500, d2 = 114, 500, d3 = 103, 500, d4 = 94, 500,

d5 = 84, 500,

• T4 : n = 8, d1 = 15, 000, d2 = 12, 000, d3 = 10, 000, d4 = 8, 000, d5 =

5, 000, d6 = d7 = d8 = 3, 000.

2. RW: Real-world instances provided to us by one of the 75 largest printing

companies in North America.

3. Random: Randomly generated instances.

In the following discussion and tables, “Best” represents the best result obtained

by MRH and BCH, “Optimal” represents the optimal objective value found by solving

the integer programming formulation.

In Table 8, we compare the results on the set of instances in Teghem et al. [102],

where the best solution found by the authors is under the column “Teghem et al.

[102]”. Columns “Best/Teghem et al. [102]” and “Best/Optimal” present the ratio of

best result found by the heuristics to the result found by Teghem et al. [102] and to

the optimal objective value, respectively. It is seen in Table 8 that the combination

71

of MRH and BCH performed 7.8% better on average when compared to the method

proposed by Teghem et al. [102]. In addition, the solutions found by our approach

are optimal in 3 of 4 instances. Teghem et al. [102] do not present detailed results

on the solution times but state that they are between 10 and 100 minutes. However,

our heuristics find “good” solutions in less than a second. Furthermore, since these

instances are small, we find the optimal solutions in less than 5 seconds using the

strengthened linear integer formulation.

Table 8: Comparison of the results with the ones in Teghem et al. [102]
Instance Best Teghem et al. [102] Optimal Best/Teghem et al. [102] Best/Optimal

T1 138,152 136,472 136,472 1.0123 1.0123

T2 247,916 247,916 247,916 1.0000 1.0000

T3 1,447,068 1,855,872 1,447,068 0.7797 1.0000

T4 264,348 294,980 264,348 0.8962 1.0000

0.9220 1.0031

Next, we test the performance of our heuristics on real-world instances. In Table

9, column “(m,n)” represents the structure of the instance, where m is the number

of slots on the machine and n is the number of types (orders). Columns “MRH” and

“BCH” are the best results obtained by applying MRH and BCH (including their

variations), respectively. Column “LB” is the best lower bound obtained for that

instance. Column “Best/LB” represents the ratio of the best result found to the

lower bound.

For some of the instances, LB is the optimal solution, which we find either by

showing that the optimal number of runs is 1 and applying the Single Run Algorithm

or by applying the preprocessing ideas and then solving the linear integer formula-

tion. 14 out of 32 instances are solved optimally. On these instances, Observation 3

helped in finding the optimal number of runs because of the relatively high setup cost.

Finding the optimal number of runs reduced the problem size significantly, and we

were able to solve these instances by using the linear integer formulation (IP3). For

the other instances, LB is found by solving the relaxed version of the linear integer

72

Table 9: Experiments on the real-world instances
Instance (m,n) MRH BCH Best LB Best/LB

RW1 (72,85) 18,600 17,400 17,400 17,137 1.0153

RW2 (20,54) 10,500 10,600 10,500 10,500(Optimal) 1.0000

RW3 (20,54) 10,800 10,800 10,800 10,420 1.0365

RW4 (32,353) 51,900 51,200 51,200 48,161 1.0631

RW5 (56,29) 6,700 6,700 6,700 6,700(Optimal) 1.0000

RW6 (36,26) 3,200 3,200 3,200 3,200(Optimal) 1.0000

RW7 (48,45) 5,382 5,400 5,382 5,367(Optimal) 1.0028

RW8 (30,34) 6,029 6,029 6,029 6,029(Optimal) 1.0000

RW9 (42,218) 22,467 22,467 22,467 21,039 1.0679

RW10 (54,58) 4,350 4,600 4,350 4,258 1.0216

RW11 (25,100) 3,100 3,100 3,100 3,100(Optimal) 1.0000

RW12 (65,62) 20,700 20,100 20,100 18,570 1.0824

RW13 (50,19) 3,050 3,050 3,050 3,050(Optimal) 1.0000

RW14 (64,52) 3,300 3,300 3,300 3,300(Optimal) 1.0000

RW15 (72,46) 5,000 5,000 5,000 4,970 1.0060

RW16 (72,199) 41,892 40,000 40,000 37,232 1.0743

RW17 (90,203) 12,760 12,700 12,700 11,888 1.0683

RW18 (54,22) 2,300 2,300 2,300 2,300(Optimal) 1.0000

RW19 (20,51) 7,900 7,900 7,900 7,900(Optimal) 1.0000

RW20 (54,39) 4,625 4,600 4,600 4,600(Optimal) 1.0000

RW21 (48,186) 12,200 12,200 12,200 12,200(Optimal) 1.0000

RW22 (80,10) 3,800 3,800 3,800 3,800(Optimal) 1.0000

RW23 (24,730) 109,900 108,600 108,600 106,634 1.0184

RW24 (54,223) 20,500 20,800 20,500 19,093 1.0737

RW25 (72,198) 31,700 31,500 31,500 28,871 1.0911

RW26 (52,447) 26,267 26,600 26,267 24,524 1.0711

RW27 (25,48) 5,100 5,100 5,100 5,100(Optimal) 1.0000

RW28 (54,678) 77,667 76,200 76,200 72,919 1.0450

RW29 (30,994) 149,500 148,500 148,500 144,467 1.0279

RW30 (43,390) 130,900 127,900 127,900 123,070 1.0392

RW31 (109,25) 10,500 10,500 10,500 10,440 1.0057

RW32 (30,2086) 315,600 314,400 314,400 307,867 1.0212

1.0261

73

formulation. In some of these instances, we were able to tighten the lower bound by

narrowing the range for the number of runs in the optimal solution. For example, in

an instance where the lower and upper bounds on the optimal number of runs are 3

and 6, respectively, we show that the best solution found in 3 runs is worse than the

one found by the heuristics.

Table 9 shows that the average optimality gap of our results is only 2.6%. Note

that since we compare the heuristic solution to a lower bound on the optimal solution,

the results represent a conservative estimate of the heuristics’ performance. In 13 out

of the 14 instances for which we were able to determine the optimal solution, the

heuristics also found the optimal solution and in the instance we were not able to find

the optimal solution, the optimality gap was 0.28%.

In general, BCH performed slightly better than MRH. As we explain in Section

3.5, we have three different application strategies for BCH. The first one is the deter-

ministic one where we apply the algorithm for different c values and take the best that

gives the lowest cost in terms of the original c value. The other two are randomized

strategies. All of these increase the number of trials we can do for BCH. In the com-

putational tests, we have run BCH for 1,000 different c values for the deterministic

strategy. In the first randomized strategy, we run the algorithm for 1,000 different

random number streams using the original c value. For the second randomized strat-

egy, we run the heuristic for 10,000 different random number streams with a different

c value each time. Our intuition is that BCH performs slightly better than MRH

since the number of trials increases the probability of finding a better solution.

In addition to the close-to-optimal performance of our heuristics, one of our main

contributions is the reduced solution times. In the current practice, constructing a

production plan takes hours, even days for large instances such as (m,n) = (30, 2086).

The company which provided us the real-world instances uses an enumeration type

of algorithm which finds a “good” solution in hours. Since the number of alternatives

74

considered in an enumeration type algorithm is exponential, the solution times are

long. The heuristics we propose are easy to implement and generate high quality

production plans in less than a minute even for large instances.

Next, we test the heuristics on randomly generated instances to analyze their

performance on different problem settings. In JSP, the number of slots, the number

of types, the demand structure and the (scaled) setup cost are the parameters that

determine the setting of the instance. We generate random instances and conduct a

factorial experiment to see the effect of these parameters on the performance of the

heuristics.

Considering the real-world instances, we propose two different settings for the

number of slots. In the “Low” setting, the number of slots is generated uniformly

between 20 and 60 and for the “High” setting, it is generated uniformly between 80

and 120. In JSP, the ratio of number of types to the number of slots may affect

the solution. The instances with same ratio of number of types to the number of

slots with other parameters being same have similar solutions. Thus, the effect of the

number of types on the performance of the heuristics is tested taking into account

the n
m

ratio. We generate the number of types uniformly between 0 and 6m (where

m is the number of slots generated) to represent the “Low” n
m

ratio and between 8m

and 12m to represent the “High” n
m

ratio.

In addition to the number of types, the variability in the demand may affect the

performance of the heuristics. To evaluate the effect of the demand variability, we

propose two different settings while generating the random instances. We generate

the demand for n types uniformly between 100 and 10,000 (as multiples of 100) for

the “Varied” setting and between 5,000 and 6,000 (also as multiples of 100) for the

“Less Varied” setting.

Finally, the last parameter that changes the structure of the solution is the (scaled)

setup cost. To see how the heuristics behave under different setup costs, we consider

75

three different settings for c: (i) c = 100 (Low), (ii) c = 1, 000 (Comparable), and

(iii) c = 10, 000 (High). In c = 10, 000 case, the setup cost is high, thus minimizing

the number of setups becomes the first goal. When c = 1, 000, the setup cost is still

dominating but minimizing waste is also crucial. In the last case (c = 100), waste

cost and setup cost are comparable but the minimizing waste dominates the setup

cost considerations. For smaller values of c (such as c = 10 or 1), the focus is on

minimizing the waste. In those cases, the solution of the problem is obvious and

the heuristics find solutions with less than 0.5% optimality gap. Hence, we do not

include these settings in the experiments. As a result, we have 24 different settings.

We generate 10 instances for each of these settings.

The results are presented in Table 10. The columns “Slots”, “Types/Slots”, “De-

mand” and “Setup Cost” represent the number of slots, number of types, demand

and setup cost setting for the randomly generated instances as explained above. The

row “Avg. Gap” represents the average optimality gap of the solutions (obtained

by the heuristics) of all randomly generated instances for which the corresponding

parameter is set to the value mentioned in the column title. Similarly, the row “Std.

Dev.” represents the standard deviation of the optimality gap of all these instances.

Table 10: Experiments on the randomly generated instances
Slots Types/Slots Demand Setup Cost

Low High Low High Varied Less Varied Low Comparable High

Avg. Gap 2.274% 2.330% 2.847% 1.758% 3.831% 0.774% 1.730% 3.821% 1.356%

Std. Dev. 2.361% 2.504% 2.712% 1.974% 2.485% 0.982% 1.063% 3.250% 1.605%

As seen in Table 10, the number of slots does not affect the solution quality.

However, when n
m

ratio decreases, the quality of the solutions found deteriorate. This

is because when n
m

ratio increases, forming solutions with less waste is more likely. In

addition, the variability in the demand results in bad performance of the heuristics

which is quite intuitive. As the setup cost and the waste cost become comparable,

the heuristics seem to perform slightly worse. The average gap is higher when the

76

setup cost is comparable to the waste cost. It seems that the instances where the

setup cost and waste cost are comparable are challenging because of the difficulty

in determining the trade-off between setup and waste costs. The heuristics perform

worse not only because these are challenging instances but also we are not able to

solve these instances to optimality. We can only improve the lower bound on the

number of runs in some of these randomly generated instances.

As the result of the experiments suggest, the setting where n
m

ratio is low, the

demand is varied and the setup cost is comparable to the waste cost is the most

challenging one. The average optimality gap of the solutions found by the heuristics

under this setting is 7.52%. In addition, we analyze the performance of the heuristics

on randomly generated instances where the demand structure is a mixture of “Varied”

and “Less Varied” setting. That is, a subset of the types have a “Less Varied” demand

structure, and the remaining types have a “Varied” structure. The average optimality

gap of the solutions found by the heuristics under this setting is lower (7.06%) when

compared to the most challenging setting described above. This is also a conservative

estimate since we use lower bound on the optimal solution to calculate the optimality

gaps.

3.7.2 Evaluating the Performance of the Preprocessing Steps

In order to solve the problem optimally, we proposed several preprocessing ideas in

Section 3.6. They are based on: (i) improving the upper bound on the number of runs,

(ii) setting upper and lower bounds on the run lengths, and (iii) finding the maximum

number of slots that can be assigned to a certain type in a certain run which, possibly,

decreases the number of variables. To measure the effect of these preprocessing ideas,

we conducted experiments on the real-world and randomly generated instances that

we were able to solve optimally.

The preprocessing ideas are most effective when the setup cost dominates the

77

waste cost. As it is seen in Table 11, there are 112 such instances out of 272. In

the other instances, the preprocessing ideas help in improving the lower bound on

the optimal objective value. Without improving the upper bound on the number of

runs, we cannot even find a feasible solution to the LP relaxation in most of these

112 instances after several hours. Out of the 112 instances, we were able to solve 42

instances optimally. 28 out of these 42 instances are solved after improving the upper

bound on the number of runs. In these 28 instances, the optimal solution is easily

computed since either it is a Single Run Problem that can be solved in polynomial

time using the Single Run Algorithm or each type can be assigned to only one slot,

which makes the problem trivial. Thus, we have not included these in the following

experiments. However, the above results show that improving the upper bound on

the number of runs is effective.

Table 11: Effect of preprocessing ideas
Total number of instances (random + real-world) 272

Number of instances with dominating setup cost 112

Number of instances solved optimally after preprocessing step (i) 28

Number of instances solved optimally after preprocessing steps (i)-(ii) 40

Number of instances solved optimally after preprocessing steps (i)-(ii)-(iii) 42

As a result, there are 14 instances that we consider in testing the effect of the other

two preprocessing ideas. After setting upper and lower bounds on the run lengths

(using Observations 3.4 - 3.7), we are able to solve 12 of these instances. Utilizing

Observation 3.8 in Section 3.6.3, we are able to further improve all the solution times

and solve the remaining two instances as well. Adding the result of Observation

3.8 resulted in a factor of 38 improvement in solution times on average except one

instance. Utilizing Observation 3.8 reduced the solution time of this instance by a

factor of 1,000 which is an outlier. This shows that both preprocessing ideas (setting

upper and lower bounds on the run lengths and restricting the number of slots that

can be assigned to a certain type in a certain run) strengthen the linear integer

78

formulation. The preprocessing ideas work for all r values but they performed better

when the number of extra slots, mr − n, is small. This corresponds to the instances

where minimizing the number of setups has a higher priority.

In addition, we proposed a different branching scheme other than the usual single

variable branching, which is efficient for the set of constraints such as
∑m

k=0 xijk = 1.

For the instances we manage to solve optimally, we test how this branching scheme

improves the solution time. Using this branching scheme reduced the solution times

by a factor of 6 on average. Furthermore, the proposed branching scheme enabled us

to solve four more instances optimally that the usual single variable branching rule

was not able to solve.

3.8 Contributions and Extensions

In this chapter, we introduced a scheduling problem motivated by the printing indus-

try. In current practice, forming a “good” production plan takes hours even days. We

developed two heuristics which are easy to implement and find comparably “good”

solutions in seconds. Furthermore, although we show that the problem is strongly

NP-hard, we were able to obtain good lower bounds by developing a strong linear in-

teger formulation that can utilize special branching rules and strengthen it by adding

cuts. Finally, we developed several preprocessing procedures based on the results of

the heuristics, which helped in solving 14 of the 32 real world instances to optimality.

The research discussed in this chapter can be extended to problems with two or

more machines with different number of slots. Under such a setting, one can assume

different setup costs on each machine and try to find a solution with minimum total

cost. Alternatively, assuming different setup times, one can minimize the maximum

completion time, which will require identifying a balanced assignment of the types to

the machines.

79

CHAPTER IV

1.5-DIMENSIONAL RECTANGLE PACKING PROBLEM

AND APPLICATIONS IN THE SEMICONDUCTOR

INDUSTRY

4.1 Introduction

Very Large Scale Integration (VLSI) layout has been a fertile ground for new and

interesting problems [94, 98]. A challenging subproblem is routing : connecting ter-

minals of each net in the circuit such that the electrical current can flow from the

voltage/current sources to their destinations with as little path delay as possible. An-

other concern for routing is to reduce the resource consumed in each such route to

reduce the chip congestion and the total area of the chip. Total area minimization

has several benefits including less spending in (i) raw material and disposal costs

and (ii) production costs. The material used to produce chips has production defects

which may result in a defective product if used in the production. The minimization

of the area used decreases the size of the material used, and thus, the probability of

producing a defective chip.

In this chapter, we introduce and study the 1.5-Dimensional Rectangle Packing

Problem (RPP) which has been used widely as the basis for the channel routing

problem, with its special case single-sided channel routing, which is a subproblem

of the general VLSI routing problem [101]. In RPP, there are n rectangles with

prespecified horizontal locations. Let lj and rj denote the positions of the left and

right edges, respectively, and hj denote the height of rectangle j, j = 1, . . . , n. The

width of rectangle j is denoted by wj = rj− lj. Given their fixed horizontal positions,

the objective is to find a non-overlapping placement (or packing) of the rectangles

80

Table 12: Notation for RPP
R = {1, . . . , n} : Set of rectangles
lj : Horizontal position of the left edge of rectangle j, j ∈ R

rj : Horizontal position of the right edge of rectangle j, j ∈ R

hj : Height of rectangle j, j ∈ R

wj (= rj − lj) : Width of rectangle j, j ∈ R

Y : Total height of the placement
I (⊂ R×R) : Set of pairs of rectangles that intersect horizontally

(I = {(i, j) | i, j ∈ R, i < j, lj < ri ≤ rj or li < rj ≤ ri})

so that the total height is minimized. More formally, in a given placement of the

rectangles, let yj denote the position of the top edge of rectangle j along the y-axis.

Our goal is to create a placement of the rectangles so that maxj yj is minimized.

Figure 15 shows an instance of RPP and a feasible placement for the rectangles. The

notation that we use throughout the paper is summarized in Table 12.

���

�� ��

��

���

Figure 15: An example of RPP

The most common variant of the single-sided channel routing problem can be

shown to be equivalent to a special case of RPP, where all the wires are of uniform

width, i.e., rectangles of identical height. This problem has been treated extensively

in both scientific literature and industrial use and is solved fairly successfully using

the Left Edge Algorithm (LEA) [52]. However, the “uniformity” simplification turns

into a severe limiting factor as circuit performance increases and chip complexity

81

scales up with every new generation of processing technologies driven by the Moore’s

Law. For example, various wires need to be increased in width to reduce resistance

and meet path timing constraints which determine how fast a chip’s clock can switch.

Further, in order to address the increasing complexity of the problem where n is

typically very large in VLSI chips, bundling has been employed by microprocessor

design companies like Intel, IBM and Motorola. Bundling refers to combining similar

wires together into a bus. In a bus, many wires are placed together as a single but very

tall rectangle. When 32-, 64-, or 128-bit buses are routed together, the complexity

of the problem can be reduced by up to two orders of magnitude. This is not only a

huge saving in runtime, but it also helps increase the level of abstraction and helps

the chip designer make faster and better decisions to plan and then route the chip.

On the other hand, the bundling of wires into buses causes the rectangles in RPP to

be non-uniform which turns the problem to a hard one.

A problem related to RPP is the Two-Dimensional Strip Packing Problem (2SPP)

introduced by Baker et al. [5]. In 2SPP, there is a strip of width W and a set

S = {1, . . . , n} of rectangles with specified width (wj) and height (hj). The objective

is to find a non-overlapping placement of the rectangles to the strip so that the

height/length of the placement is minimized. In general, the rectangles can be placed

arbitrarily to the strip, but in the literature the focus is on orthogonal placements such

that the sides of the rectangles are parallel to the strip edges. Dowsland and Dowsland

[27] and Lodi et al. [75] provide an extensive survey of various two-dimensional packing

problems including 2SPP.

2SPP is motivated by the applications in several industries including wood, glass,

textile, steel, plastic, paper and canvas [8, 10, 30, 58, 68, 75, 114]. In these appli-

cations, a set of rectangular items are cut from a single strip of material. Finding a

minimum height placement is equal to minimizing the trim loss which reduces the

waste or equivalently increases material utilization.

82

2SPP is NP-hard in the strong sense since it is a generalization of the well-known

one-dimensional bin packing problem which is strongly NP-hard [40]. Several approx-

imation algorithms are proposed for 2SPP [4, 5, 19, 96]. Most of the approximation

algorithms place the rectangles into levels. Starting with the bottom of the strip, the

subsequent levels are determined by the tallest rectangle placed in the current level.

The approximation algorithm with the best absolute performance ratio is proposed

by Steinberg [99] and has a worst-case ratio of 2. Recently, Kenyon and Remila [68]

propose an asymptotic fully polynomial approximation scheme for 2SPP based on a

new linear programming relaxation. In addition to approximation algorithms, several

meta-heuristic algorithms are proposed for 2SPP. Hopper and Turton [61] provides a

review of the meta-heuristic algorithms. An empirical investigation of meta-heuristic

and heuristic algorithms is given by Hopper and Turton [60].

Martello et al. [79] propose a new relaxation which produces better lower bounds,

and they use this in a branch-and-bound algorithm to solve 2SPP optimally. Recently,

Bekrar et al. [9] develop three exact algorithms, namely, a branch-and-bound method,

a dichotomous algorithm and a branch-and-price method.

RPP is a variant of 2SPP where the rectangles have fixed horizontal positions.

Thus, the algorithms that consider moving the rectangles along the x-axis do not

work for RPP. We develop algorithms that take into account the horizontal position

restriction. The remainder of the paper is organized as follows. In Section 4.2, we

prove that RPP is strongly NP-hard and discuss a special case which is polynomially

solvable. In addition, we propose a method for finding a lower bound to the problem.

In Section 4.3, we present an integer programming formulation for RPP. In Section

4.4, we discuss the applicability of the readily available heuristics and propose two new

heuristics. In Section 4.5, we present the results of the computational experiments

conducted on randomly generated instances. Finally, we conclude with contributions

and extensions.

83

4.2 Complexity, Lower Bound, and a Special Case

In this section, we show that RPP is strongly NP-hard. Then, we propose a method

to find a lower bound on the optimal solution. Finally, we discuss a special case which

can be solved in polynomial time.

Theorem 4.1. RPP is strongly NP-hard.

Proof. The proof follows by a reduction from the 3-Partition (3P) problem. An

instance of 3P is defined as follows:

Instance: A set of integers A = {a1, . . . , a3m} and a bound b ∈ Z+ such that

b/4 ≤ ai ≤ b/2 and
∑

j aj = mb.

Question: Can A be partitioned into m disjoint sets A1, . . . , Am such that for

1 ≤ i ≤ m,
∑

aj∈Ai
aj = b?

Answering this question is NP-complete in the strong sense [40]. We prove that the

decision version of RPP is strongly NP-complete by creating an instance of RPP with

7m − 2 rectangles from an instance of 3P. Rectangle j (∈ {1, . . . , 2m − 2}) has lj =

(j−1)b, hj = b, rj = (2m−1)b for odd j and rj = 2mb for even j. Rectangle 2m−1 has

l2m−1 = (2m− 2)b, r2m−1 = (2m + 1)b and h2m−1 = b. Rectangle 2m has l2m = 2mb,

r2m = (2m+1)b and h2m = (2m−1)b. Rectangle j (= 2m+ i for i ∈ {1, . . . , 2m−2})
has lj = (i − 1)b, rj = ib and hj = (2m − i)b. Finally, the remaining 3m rectangles

have lj = (2m− 1)b, rj = 2mb and hj = ai for j = 4m− 2 + i for i ∈ {1, . . . , 3m}.
We want to show that there exists a solution to this instance of RPP with total

height ≤ 2mb if and only if there exists a solution to 3P. First note that the total

height of any placement is at least 2mb because rectangles 1 and 2m + 1 (similarly,

rectangles 2m−1 and 2m) intersect horizontally. We make the following observations

about a solution with total height 2mb for this instance of RPP.

1. Rectangles 1 and 2m+1 (similarly, rectangles 2m−1 and 2m) must be adjacent

vertically. Hence, rectangle 1 must be either at the top, or at the bottom of the

84

placement. Without loss of generality, let us assume that rectangle 1 is at the

bottom. Then, rectangle 2m − 1 must be at the top (see Figure 16(a)) since

it intersects with rectangle 1 horizontally. Hence, there is only one possible

placement for rectangles 1, 2m− 1, 2m and 2m + 1 in a placement with height

≤ 2mb (assuming rectangle 1 is at the bottom).

�
�
�
�

�

����

�
�

(a)

�
�
�
�

�

�

����

�
�
�
�

�
�

(b)

�
�
�
�

�

�

�

����

����

�
�
�
�

�
�

�
�
�
�

�

�
�
�
�

����

�����
�
�
�

�
�
�
�

�
�
�
�

�		�		�

�		�		�

(c)

Figure 16: Reduction of RPP from 3P

2. Since rectangles 1, 2 and 2m + 2 intersect horizontally and have total height

2mb, they must be placed adjacent to each other. Since rectangles 2 and 2m−1

intersect, the only possible placement for rectangle 2 is just above rectangle 1,

and rectangle 2m + 2 must be placed just above rectangle 2 (see Figure 16(b)).

3. By induction, let us assume that rectangles 1, . . . , k−1 and 2m+1, . . . , 2m+k−1,

for some k ≤ 2m−2 must be placed as in Figure 16(c) . Since rectangles 1, . . . , k

and 2m+k intersect horizontally and have total height 2mb, they must be placed

adjacent to each other. Since rectangles k and 2m−1 intersect, the only possible

placement for rectangle k is just above rectangle k − 1, and rectangle 2m + k

must be placed just above rectangle k. Hence, the placement shown in Figure

16(c) (or its vertical mirror image) is the only possible placement for rectangles

1, . . . , 4m− 2 in a placement with total height ≤ 2mb.

4. To keep the height of the placement at 2mb, rectangles 4m−1, . . . , 7m−2 must

85

be placed into the m free areas (see shaded areas in Figure 16(c)) of height b

each. But this is possible only if there is a solution to 3P.

From these observations, it follows that a solution with total height ≤ 2mb to this

instance of RPP exists if and only if a solution to 3P exists.

Next, we show that a lower bound can be calculated in polynomial time by solving

the maximum weight clique problem on an interval graph. This lower bound is used to

evaluate the performance of the heuristics (see Section 4.5). A graph G = (V, E) is an

interval graph if there exists a set {Iv | v ∈ V } of real intervals such that Iu ∩ Iv 6= ∅
if and only if (u, v) ∈ E [26]. Interval graphs are perfect [26], i.e., χ(G) = ω(G).

The chromatic number, χ(G), is the minimum number of colors required to color the

vertices of the graph such that any two adjacent vertices have different color. The

clique number, ω(G), is the size of the largest clique in G. A clique C in G is a

subgraph where all the vertices of C intersect pairwise.

From an instance of RPP, we create an interval graph GRPP = (V,E) as follows.

For each rectangle j, we create a vertex vj(∈ V) with weight hj. If two rectangles,

say i and j, intersect horizontally, we connect vi and vj by an edge (vi, vj) ∈ E.

Any clique C in GRPP corresponds to a set of rectangles which pairwise intersect

horizontally. Hence, the total weight of the vertices in a (maximum weight) clique is

a lower bound on the total height of a feasible (optimal) placement of the rectangles.

Note that the maximum weight clique can be computed in polynomial time since

GRPP is an interval (and thus perfect) graph [48].

Proposition 4.1. The weight of the maximum weight clique in GRPP = (V, E) is a

lower bound to RPP.

Next, we discuss a special case of RPP where all the rectangles have the same

height, i.e., hj = h for all j ∈ R for some h ∈ R+. Assume that we color the vertices

of GRPP using χ(GRPP) colors. Let Vi be the set of vertices colored with color i.

86

The vertices in Vi form an independent set, i.e., the rectangles corresponding to these

vertices do not intersect horizontally. Hence, χ(GRPP)h is an upper bound on the

optimal solution of the corresponding RPP. In Proposition 4.1, we showed that the

weight of the maximum weight clique (χ(GRPP)h) is a lower bound on the optimal

solution. Thus, if all the rectangles in RPP have equal height (h), the total height

of the optimal solution is χ(GRPP)h. Since the coloring of the interval graphs can

be done in polynomial time using the Left Edge Algorithm (LEA) [52], the optimal

solution of RPP with equal heights can be found in polynomial time. The details of

LEA is explained in Section 4.4.

Proposition 4.2. If all the rectangles have equal height, say h, then RPP can

be solved in polynomial time using LEA, and the height of the optimal solution is

χ(GRPP)h.

4.3 Integer Programming Formulation

In this section, we present an integer programming formulation for RPP and propose

ways to strengthen it. RPP can be formulated as an integer program using the

following variables:

yj = y − coordinate of the top of rectangle j j ∈ R,

Y = total height of the placement,

xij =





1, if rectangle j is above rectangle i, i.e., yj > yi

0, otherwise
(i, j) ∈ I.

87

The integer formulation is as follows:

IP: Minimize Y (62)

subject to yi + Mxij ≥ yj + hi (i, j) ∈ I (63)

yj + M(1− xij) ≥ yi + hj (i, j) ∈ I (64)

Y ≥ yj j ∈ R (65)

yj ≥ hj j ∈ R (66)

xij ∈ {0, 1} (i, j) ∈ I (67)

Constraints (63) and (64) compute the upper y-coordinates of the rectangles in

the placement. The total height of the placement is calculated by constraints (65).

Constraints (66) set the lower bounds on the y-coordinate of each rectangle. Finally,

constraints (67) are the binary restrictions. In this formulation, M is a sufficiently

large number, which can be chosen as M =
∑

j∈R hj. Note that M can be improved

by using the results of the heuristics.

For any feasible placement of the rectangles, there is an equivalent upside down

placement. Figure 17 shows two placements of the rectangles, which are essentially

the same.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 17: Equivalent placements

Integer programming formulation treats these two placements as different place-

ments which results in unnecessary branching in the branch and bound tree. After

the first branching in the branch and bound tree, there will be two branches which are

88

essentially same (see Branch 1 and Branch 2 in Figure 18). To avoid this symmetry

problem, we fix one of the xij (and the corresponding xji) variables to 1 (and 0).

This can be done randomly, or after the LP relaxation at the root node is solved, the

variable xij with |xij − 1
2
| being the minimum can be selected.

����������	
�

����
�����

���������

��� ���
��� ���

�������� ��������

Figure 18: Branch and bound tree

Next, we propose a valid cut to strengthen (IP):

xij + xjk + xki ≤ 2 for any triple (i, j, k) such that (i, j), (j, k), (i, k) ∈ I. (68)

Note that (depending on the value of M) xij = xjk = xki = 3
4

can be a feasible

solution for (IP), but (68) eliminates this feasible solution since 3
4

+ 3
4

+ 3
4
≥ 2.

4.4 Heuristics

In this section, we discuss LEA and the heuristics proposed for the 2SPP and their

applicability to RPP. Finally, we propose two new heuristics for RPP.

4.4.1 Level Algorithms for 2SPP and Applicability to RPP

The most popular algorithms for 2SPP are the level algorithms where the rectangles

are placed from left to right into rows forming levels [19, 76]. In each level, no

rectangle is placed on top of another rectangle. Before placing the rectangles, they

are sorted according to a nondecreasing order of their heights. The next rectangle

in the list is either placed into an already created level or a new level is created for

89

it. Assuming that Pl is the set of rectangles placed into level l, the height of the

level, Hl, is determined by the height of the tallest rectangle placed into this level:

Hl = maxi∈Pl
hi. There can be several strategies used for placing the rectangles to the

levels. The three most common ones are as follows:

• Next-Fit Decreasing Height (NFDH): Each rectangle is placed left justified into

the current level if it fits. If the current level cannot accommodate the rectangle,

a new level is created and the rectangle is placed left justified into this level.

• First-Fit Decreasing Height (FFDH): Each rectangle is placed left justified into

the lowest level where it fits. If no level can accommodate the rectangle, a new

level is created and the rectangle is placed left justified into this level.

• Best-Fit Decreasing Height (BFDH): Each rectangle is placed into the level

where the unused horizontal space is minimum after the rectangle is placed. If

no level can accommodate the rectangle, a new level is created and the rectangle

is placed left justified into this level.

BFDH cannot be applied to RPP since the rectangles cannot move horizontally.

However, in Section 4.4.3.1, we propose a new algorithm based on redefining unused

space in the definition of BFDH. In RPP, when the rectangles are ordered according to

their heights and placed according to NFDH or FFDH, FFDH performs better than

NFDH since the placement of a rectangle in FFDH cannot be higher than NFDH

which results in a better (if not the same) solution. Therefore, we consider FFDH

algorithm and propose a variation of it, which we call the Baseline Algorithm (BA).

The steps of BA are explained in Algorithm 5. BA terminates when all the rectangles

are placed into a level. The height of the placement is the total height of the levels.

Note that an important step in BA is selecting the next rectangle to be placed (Step

6 in Algorithm 5).

90

Algorithm 5 Baseline Algorithm.

1: Let S be the set of unplaced rectangles. Set S = R.
2: Start with the first level: l = 1.
3: Let Pl be the set of rectangles placed to level l. Set Pl = ∅.
4: Sl = {j | j ∈ S and (j, i) /∈ I and (i, j) /∈ I for all i ∈ Pl}
5: if Sl 6= ∅ then
6: Select a rectangle, say rectangle j, to be placed into level l from Sl and place it

into level l. Update Pl, Pl = Pl∪{j}, and Sl, Sl = {k | k ∈ Sl−{j} and (j, k) /∈
I and (k, j) /∈ I}.

7: Go to Step 5.
8: else
9: Calculate the height of level l: Hl = maxi∈Pl

hi and update S, S = S − Pl.
10: if S 6= ∅ then
11: Move to next level: l = l + 1 and go to Step 3.
12: else
13: Terminate the algorithm.
14: end if
15: end if

In addition to level algorithms discussed above for 2SPP, a non-level algorithm

called Bottom-Left (BL) is widely studied in the literature [59, 65]. In BL, after order-

ing the rectangles according to some rule, they are placed left justified to the lowest

possible position. A very popular implementation is applying BL to the rectangles

for 4 different ordering rules (height, width, perimeter, area) and returning the best

solution [59]. Based on the implementation strategy of BL proposed by Hopper [59],

we consider the following four selection rules at Step 6 of BA. Among the rectangles in

Sl, select the rectangle with maximum (i) height (hj), (ii) width (wj), (iii) perimeter

(2(hj + wj)), and (iv) area (hjwj).

As an implementation strategy, we run BA with these four selection rules and

choose the best solution. We call this algorithm the Deterministic Baseline Algorithm

(BA-Det). In addition to BA-Det, we also consider a randomized version of this

algorithm (BA-Ran). In BA-Ran, after assigning a weight to all of the rectangles,

among the rectangles in Sl, we make a random selection based on the weights; the

larger the weight of the rectangle, the higher the chance of being selected. Similar to

91

the four selection rules discussed above, we consider four different weight structures.

Note that every time we implement this randomized version, we most likely obtain

a different solution because of different random number streams. We implement the

randomized version for a number of different random number streams for each of the

four different weight rules and take the best solution.

4.4.2 Left Edge Algorithm (LEA)

Next, we discuss LEA which forms the basis for several channel routing algorithms

[52] and and its applicability to RPP. Assuming that there is a set of horizontal

segments (intervals) with left (lj) and right (rj) end points, LEA places these segments

into levels so that no two intersecting segments are placed into the same level. The

objective is to minimize the number of levels. LEA finds an optimal solution in

polynomial time. LEA is summarized in Algorithm 6.

Algorithm 6 Left Edge Algorithm.

1: Sort the intervals according to a nondecreasing order of their left end points.
2: Place the intervals to the possible lowest level where there is not an interval

intersecting with this interval.

We modify LEA for RPP by placing the next rectangle to the lowest possible

position. Note that the resulting solution may not have a level structure since the

rectangle is placed to the lowest position.

4.4.3 Two New Heuristics

The heuristics discussed in Sections 4.4.1 and 4.4.2 are the modifications of the heuris-

tics proposed for similar problems in the literature. In this section, we propose two

new heuristics for RPP, namely, Baseline Waste Algorithm (BWA) and Knapsack Fill

Algorithm (KFA).

92

4.4.3.1 Baseline Waste Algorithm

We propose a modification of BA, called Baseline Waste Algorithm (BWA). Remem-

ber that BFDH for 2SPP considers the unused horizontal space at each level for the

rectangle to be placed next and places this rectangle into the level in which the un-

used space is minimized. In BWA, we redefine the unused horizontal space and call

it “waste”. In BWA, the next rectangle to be placed into the current level is selected

based on this waste. The pseudocode for BWA is provided in Algorithm 7.

Algorithm 7 Baseline Waste Algorithm.

1: Let S be the set of unplaced rectangles. Set S = R.
2: Start with the first level: l = 1.
3: Let Pl be the set of rectangles placed to level l. Set Pl = ∅.
4: Select a rectangle from S, say j.
5: Place rectangle j into level l, and update Pl, Pl = Pl ∪ {j}.
6: Calculate the height of level l: Hl = hj.
7: Sl = {k | k ∈ S, hk ≤ Hl and (i, k) /∈ I and (k, i) /∈ I for all i ∈ Pl}
8: if Sl 6= ∅ then
9: Select a rectangle, say rectangle j, to be placed into level l from Sl and place it

into level l. Update Pl, Pl = Pl∪{j}, and Sl, Sl = {k | k ∈ Sl−{j} and (j, k) /∈
I and (k, j) /∈ I}.

10: Go to Step 8.
11: else
12: Update S, S = S − Pl.
13: if S 6= ∅ then
14: Move to next level: l = l + 1 and go to Step 3.
15: else
16: Terminate the algorithm.
17: end if
18: end if

In BWA, there are two important steps: Steps 4 and 9. In Step 4, we randomly

select a rectangle from S, whereas in Step 9, we calculate the “waste” for each rect-

angle and place the one with minimum waste. We propose four alternatives for waste

calculation which are illustrated in Figure 19, where Ai denotes the size of the relevant

shaded area for i = 1, 2, 3, and Hl denotes the height of relevant level.

Assuming that we are considering rectangle i for placement we calculate the

93

�
�

�
�

�
�

�
�

�
�

Figure 19: Illustration of the waste calculation rules

waste as follows: among the already placed rectangles into the current level, Pl,

let rectangle k be the closest one (in terms of horizontal space) to rectangle i, i.e.,

k ∈ argminj∈Pl
(min{|lj − ri|, |li − rj|}). Then, the four alternatives for waste calcu-

lation are: (i) A1, (ii) A1 + A2, (iii) A3, and (iv) A1 + A2 + A3. In Step 9, we select

the rectangle with the minimum waste. Note that in Step 4, we randomly select the

initial rectangle. Similar to BA-Ran, we can run BWA several times for different

random number streams to improve the best solution.

4.4.3.2 Knapsack Fill Algorithm

We develop an algorithm which uses the maximum weight independent set which can

be found in polynomial time (O(nlogn)) on interval graphs [63]. Finding the maxi-

mum weight independent set can be considered as solving a version of the knapsack

problem with side constraints. Therefore, we call this algorithm Knapsack Fill Algo-

rithm (KFA). The pseudocode for KFA is provided in Algorithm 8. In KFA, the main

idea is to find the maximum weight independent set, say T , on GRPP and place the

rectangles in T to the current level, say l. After determining the height of the current

level, Hl = maxj∈T hj, we find the maximum weight independent set, say T ′, among

the unplaced rectangles such that the height of the current level, Hl, is not exceeded

if the rectangles in T ′ are placed on top of the previously placed rectangles. After

placing the rectangles in T ′, we repeat the same procedure until no more rectangles

94

can be placed into the current level without exceeding the level height, Hl. Then, the

next level is created.

Algorithm 8 Knapsack Fill Algorithm.

1: Let S be the set of unplaced rectangles. Set S = R.
2: Start with the first level: l = 1.
3: Let Pl be the set of rectangles placed to level l. Set Pl = ∅.
4: Find the maximum weight independent set, MWIS(l), in S and place the rect-

angles in MWIS(l) into level l. Update Pl, Pl = Pl ∪MWIS(l) and update S,
S = S −MWIS(l).

5: Calculate the height of level l as follows: Hl = maxi∈Pl
hi.

6: Let Sl ∈ S be the set of rectangles, that can be placed on top of the already
placed rectangles in Pl without exceeding the height of level l.

7: while Sl 6= ∅ do
8: Find the maximum weight independent set, MWIS(l), in Sl and place the

rectangles in MWIS(l) into the current level.
9: Update Pl, Pl = Pl ∪MWIS(l) and update S, S = S −MWIS(l).

10: Update Sl.
11: end while
12: if S 6= ∅ then
13: Set l = l + 1 and go to Step 3.
14: else
15: Terminate the algorithm.
16: end if

The total height of the levels gives the height of the solution found by the algo-

rithm. This is the basic version of the algorithm which we call Deterministic Knapsack

Fill Algorithm (KFA-Det). Similar to the idea in BWA, we can randomly choose an

initial rectangle to place to the current level. This is called the Randomized Knapsack

Fill Algorithm (KFA-Ran) where Step 4 of Algorithm 8 is replaced by the following

step:

4 : Select a rectangle, say j, from S and place it into level l and update Pl,

Pl = Pl ∪ {j} and S, S = S − {j} .

In this randomized version, we can try different random number streams to pos-

sibly improve the solution. An important part of KFA-Det and KFA-Ran is defining

the weight of the intervals (rectangles). Similar to BA, we consider four alternatives

95

for defining the weight (Wi) of a rectangle: (i) height (Wi = hi), (ii) width (Wi = wi),

(iii) perimeter (Wi = hi + wi), and (iv) area (Wi = hiwi).

4.4.4 Improving a Feasible Solution

In this section, we propose an improvement step for any feasible solution, including

the solutions obtained by the above algorithms. After all the rectangles are placed,

we consider “pushing down” the rectangles which may decrease the height of the

placement. We illustrate this improvement step by an example. In Figure 20, on the

left, we see the placement of the rectangles after applying the BA with selection rule

height. However, if we consider pushing down the rectangles until they touch to a

previously placed rectangle, the height of the placement can be improved.

�

�

�

�
�

�

�

�

�

�

�

�

Figure 20: Improvement after the placement

4.5 Computational Results

In this section, we present the computational results based on three set of instances.

1. 2SPP: These instances are generated from the instances of 2SPP that are widely

tested in the literature [77].

2. Random: Randomly generated instances.

3. RW: Real-world instances generated based on the structure of the real world

problems in the semiconductor industry.

96

The integer programming formulation proposed in Section 4.3 can solve only small

instances with 20 rectangles. Since the lower bound proposed in Section 4.2 is better

than the lower bound found by the integer program, in this section we compare the

solution found by the heuristics to the lower bound proposed in Section 4.2.

The 2SPP instances discussed in Lodi et al. [77] can be categorized into 10 classes.

In the first 4 classes, the width of the strip (W) is 100. Assuming that H = 100, the

width (wj) and the height (hj) of the rectangles are generated as integers based on

the types in Table 13. We use U [a, b] to denote the uniform distribution with support

[a, b].

Table 13: Type of the rectangles generated in 2SPP instances
Type 1 Type 2 Type 3 Type 4

wj U [2
3
W, W] U [1, 1

2
W] U [1

2
W, W] U [1, 1

2
W]

hj U [1, 1
2
H] U [2

3
H, H] U [1

2
H, H] U [1, 1

2
H]

The rectangles in Class k (k ∈ {1, 2, 3, 4}) are generated from Type k with 0.7

probability and from one of the remaining types with probability 0.1. In the last 6

classes, the strip width (W) and the rectangle sizes are generated as explained in

Table 14.

Table 14: The setting in the last 6 classes of 2SPP instances
Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

W 10 30 40 100 100 300

wj , hj U [1, 10] U [1, 10] U [1, 35] U [1, 35] U [1, 100] U [1, 100]

For each class, 5 different settings ({100, 200, 300, 400, 500}) are considered for the

number of rectangles. After generating the 2SPP instances, the horizontal locations

of the rectangles are uniformly generated on the strip. For each class and number of

rectangle setting, we generated 10 instances. In testing the performance of the heuris-

tics, the randomized heuristics are run for 1000 times. The results are summarized in

Table 15. The numbers in each column of Table 15 are the ratio of the best solution

obtained by the corresponding heuristic to the lower bound (found by the maximum

97

weight clique on GRPP), and the numbers are the average of the 10 instances.

In Table 15, we see that proposed heuristics (BWA, KFA) perform better than the

modifications of the existing heuristics in the literature. The average optimality gaps

of the solutions found by BWA, KFA-Det and KFA-Ran are 2.24%, 1.93% and 1.72%,

respectively. On the other hand, the average optimality gaps of the solutions found

by LEA, BA-Det and BA-Ran are 5.33%, 3.29% and 6.50%, respectively. Among the

modifications of the existing heuristics in the literature, BA-Det performs better.

As the number of rectangles increase, BA-Det and KFA-Det perform better than

their randomized versions (BA-Ran and KFA-Ran). This is mainly due to large

number of different placement combinations as the number of the rectangles increase.

BA-Det and KFA-Det find a “good” placement of the rectangles by matching them

based on their sizes. However, BA-Ran and KFA-Ran tries different combinations to

find a better placement, and as the problem size (number of rectangles) increases, the

number of different combinations increase which makes finding a “good” placement

by random trials harder. From this computational study, we understand that despite

the slightly worse performance of KFA-Det on small 2SPP instances, it can be a

better alternative due to better performance on the large instances. Furthermore,

the performance of the heuristics is relatively worse on the instances from Classes 8

and 10.

In addition to these 2SPP instances, we generate random instances to analyze the

effect of the variability in the height and width of the rectangles on the performance

of the proposed heuristics. Assuming that the width (W) of the strip and H is 100,

the random instances are generated as explained in Table 16.

For each class, five different settings are considered for the number of rectangles:

{100, 200, 300, 400, 500}. The horizontal locations of the rectangles are uniformly

generated on the strip. Similar to 2SPP instances, 10 instances are generated for each

class and number of rectangles setting. The results of the computational experiments

98

Table 15: Performance of the algorithms on 2SPP instances
Number of Rectangles Class LEA BA - Det BA - Ran BWA KFA - Det KFA - Ran

100 1 1.0249 1.0105 1.0038 1.0061 1.0075 1.0028

2 1.1026 1.0382 1.0281 1.0170 1.0328 1.0226

3 1.0169 1.0029 1.0010 1.0019 1.0040 1.0011

4 1.0716 1.0430 1.0475 1.0281 1.0218 1.0154

5 1.0169 1.0072 1.0084 1.0022 1.0058 1.0013

6 1.0696 1.0594 1.0572 1.0236 1.0294 1.0119

7 1.0509 1.0187 1.0180 1.0109 1.0080 1.0063

8 1.1262 1.0860 1.0907 1.0492 1.0509 1.0315

9 1.0544 1.0124 1.0085 1.0066 1.0160 1.0034

10 1.1442 1.0748 1.0645 1.0406 1.0481 1.0202

200 1 1.0278 1.0060 1.0046 1.0041 1.0045 1.0024

2 1.0758 1.0381 1.0489 1.0177 1.0286 1.0267

3 1.0175 1.0016 1.0016 1.0011 1.0019 1.0006

4 1.0809 1.0383 1.0752 1.0372 1.0207 1.0277

5 1.0114 1.0028 1.0166 1.0013 1.0032 1.0004

6 1.0449 1.0509 1.0937 1.0178 1.0218 1.0125

7 1.0500 1.0244 1.0395 1.0158 1.0173 1.0140

8 1.0998 1.0735 1.1153 1.0542 1.0484 1.0444

9 1.0331 1.0102 1.0176 1.0071 1.0071 1.0046

10 1.1178 1.0983 1.1370 1.0674 1.0560 1.0348

300 1 1.0234 1.0085 1.0109 1.0061 1.0062 1.0041

2 1.0619 1.0266 1.0533 1.0192 1.0241 1.0242

3 1.0225 1.0038 1.0053 1.0029 1.0041 1.0023

4 1.0637 1.0355 1.0842 1.0347 1.0199 1.0240

5 1.0021 1.0027 1.0179 1.0012 1.0028 1.0006

6 1.0268 1.0449 1.1214 1.0229 1.0185 1.0159

7 1.0379 1.0115 1.0369 1.0097 1.0067 1.0076

8 1.0990 1.0821 1.1656 1.0624 1.0368 1.0552

9 1.0363 1.0106 1.0285 1.0110 1.0086 1.0087

10 1.1198 1.0966 1.1771 1.0716 1.0499 1.0416

400 1 1.0309 1.0085 1.0165 1.0080 1.0070 1.0055

2 1.0530 1.0317 1.0684 1.0183 1.0240 1.0275

3 1.0150 1.0031 1.0061 1.0027 1.0028 1.0024

4 1.0746 1.0358 1.0989 1.0399 1.0211 1.0307

5 1.0036 1.0028 1.0283 1.0014 1.0024 1.0006

6 1.0338 1.0457 1.1432 1.0214 1.0164 1.0147

7 1.0262 1.0125 1.0422 1.0092 1.0081 1.0092

8 1.0939 1.0705 1.1862 1.0580 1.0385 1.0536

9 1.0435 1.0147 1.0398 1.0140 1.0119 1.0137

10 1.1097 1.0964 1.1908 1.0704 1.0530 1.0495

500 1 1.0231 1.0081 1.0185 1.0069 1.0052 1.0054

2 1.0554 1.0307 1.0692 1.0171 1.0254 1.0266

3 1.0135 1.0028 1.0057 1.0026 1.0035 1.0023

4 1.0576 1.0220 1.0878 1.0279 1.0137 1.0217

5 1.0023 1.0030 1.0295 1.0021 1.0012 1.0007

6 1.0207 1.0430 1.1591 1.0224 1.0151 1.0157

7 1.0313 1.0143 1.0523 1.0122 1.0079 1.0114

8 1.0826 1.0723 1.1819 1.0511 1.0339 1.0471

9 1.0422 1.0153 1.0447 1.0145 1.0092 1.0134

10 1.1220 1.0903 1.2016 1.0701 1.0532 1.0404

Average 1.0533 1.0329 1.0650 1.0224 1.0193 1.0172

99

Table 16: The setting of the random instances
Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

wj U [1, W] U [1, 1
2
W] U [1, 1

4
W] U [1, 1

8
W] U [1, W] U [1, 1

2
W] U [1, 1

4
W] U [1, 1

8
W]

hj U [1, H] U [1, H] U [1, H] U [1, H] U [2
5
H, 3

5
H] U [2

5
H, 3

5
H] U [2

5
H, 3

5
H] U [2

5
H, 3

5
H]

are summarized in Table 17. Similar to Table 15, the numbers in each column are the

ratio of the best solution obtained by the corresponding heuristic to the lower bound.

Table 17 shows the effect of number of trials (10, 100 and 1000) on the performance

of BWA and KFA-Ran. When the number of trials decreases, the quality of the

solutions found by BWA and KFA-Ran deteriorates. When the instances become

larger, running the randomized algorithms can be prohibitive because of the run

times. For example, for 500 rectangle instances running 1000 trials for BWA and

KFA-Ran takes around 45 and 85 CPU seconds. However, KFA-Det runs in less

than a second and the solution found by KFA-Det is slightly worse than the solutions

found by BWA and KFA-Ran after 1000 trials. Therefore, if the problem size is

very large or a near-optimal solution is required in seconds KFA-Det can be a better

alternative. We see that when the variability in the height of the rectangles increases,

the performance of the heuristics deteriorates. As the height of the rectangles become

close to each other, it is easier to find a match between the rectangles so that the total

height of the placement is minimized. This argument is also supported by LEA which

solves the special case where the heights of the rectangles are same in polynomial time.

Furthermore, we see that BWA performs better when the variability in the height of

the rectangles decreases (see Classes R5-R8 in Table 17). Finally, if the variability in

the width of the rectangles is very small (see Classes R4 and R8) or very large (see

Classes R1 and R5), the heuristics perform better.

We propose an improvement step in Section 4.4. Based on the random instances,

this step improves the solution of BA-Det, BA-Ran, BWA, KFA-Det and KFA-Ran

by 1.16%, 7.13%, 3.39%, 2.37%, 2.29%.

100

Table 17: Performance of the algorithms on random instances
Number of Rectangles Class BWA KFA - Det KFA - Ran

1000 100 10 1000 100 10

100 R1 1.0103 1.0149 1.0265 1.0155 1.0075 1.0130 1.0249

R2 1.0424 1.0591 1.0862 1.0427 1.0319 1.0540 1.0723

R3 1.0299 1.0442 1.0763 1.0484 1.0197 1.0381 1.0594

R4 1.0048 1.0259 1.0583 1.0375 1.0077 1.0222 1.0530

R5 1.0055 1.0095 1.0161 1.0187 1.0078 1.0131 1.0180

R6 1.0158 1.0238 1.0372 1.0432 1.0295 1.0391 1.0581

R7 1.0136 1.0270 1.0340 1.0485 1.0131 1.0304 1.0542

R8 1.0002 1.0016 1.0207 1.0212 1.0001 1.0038 1.0225

200 R1 1.0090 1.0125 1.0167 1.0093 1.0064 1.0090 1.0144

R2 1.0473 1.0547 1.0696 1.0371 1.0445 1.0580 1.0705

R3 1.0685 1.0864 1.1109 1.0623 1.0481 1.0612 1.0897

R4 1.0340 1.0510 1.0766 1.0539 1.0182 1.0341 1.0535

R5 1.0051 1.0078 1.0133 1.0165 1.0102 1.0130 1.0183

R6 1.0158 1.0210 1.0269 1.0330 1.0276 1.0364 1.0423

R7 1.0244 1.0313 1.0457 1.0436 1.0277 1.0354 1.0611

R8 1.0106 1.0172 1.0333 1.0407 1.0101 1.0230 1.0320

300 R1 1.0154 1.0175 1.0242 1.0123 1.0130 1.0160 1.0225

R2 1.0465 1.0540 1.0669 1.0293 1.0480 1.0538 1.0612

R3 1.0536 1.0682 1.0873 1.0473 1.0402 1.0492 1.0666

R4 1.0557 1.0752 1.0914 1.0497 1.0341 1.0461 1.0691

R5 1.0070 1.0087 1.0131 1.0168 1.0121 1.0142 1.0184

R6 1.0139 1.0196 1.0274 1.0326 1.0278 1.0318 1.0431

R7 1.0234 1.0310 1.0429 1.0367 1.0262 1.0327 1.0478

R8 1.0163 1.0235 1.0461 1.0298 1.0141 1.0214 1.0446

400 R1 1.0121 1.0148 1.0169 1.0116 1.0117 1.0134 1.0188

R2 1.0461 1.0495 1.0594 1.0276 1.0470 1.0530 1.0595

R3 1.0774 1.0867 1.1015 1.0529 1.0582 1.0694 1.0828

R4 1.0419 1.0575 1.0722 1.0365 1.0260 1.0369 1.0593

R5 1.0059 1.0084 1.0109 1.0165 1.0119 1.0135 1.0178

R6 1.0138 1.0174 1.0232 1.0278 1.0271 1.0323 1.0373

R7 1.0172 1.0239 1.0319 1.0294 1.0201 1.0276 1.0339

R8 1.0117 1.0182 1.0247 1.0369 1.0106 1.0155 1.0247

500 R1 1.0112 1.0141 1.0157 1.0095 1.0114 1.0128 1.0162

R2 1.0381 1.0442 1.0486 1.0271 1.0431 1.0479 1.0558

R3 1.0636 1.0760 1.0882 1.0475 1.0501 1.0592 1.0707

R4 1.0526 1.0636 1.0812 1.0458 1.0299 1.0422 1.0564

R5 1.0049 1.0060 1.0085 1.0140 1.0094 1.0100 1.0135

R6 1.0163 1.0207 1.0256 1.0287 1.0337 1.0390 1.0442

R7 1.0263 1.0341 1.0440 1.0380 1.0300 1.0378 1.0487

R8 1.0124 1.0181 1.0299 1.0261 1.0123 1.0185 1.0261

Average 1.0255 1.0335 1.0457 1.0326 1.0240 1.0320 1.0446

101

Finally, based on personal communication with the semiconductor companies,

the following instances are generated to imitate the real-world instances. In these

instances, the width of the strip is 1024. The height (hj) of the rectangles can be 1,

4, 8, 16, 32, 64, and the width (wj) of the rectangles can be 1, 4, 8, 16, 32, 64, 128,

256, 512 and 1024. The height and the width of the rectangles are generated based on

the probability mass functions provided in Figures 21(a) and 21(b). In the real-world

instances, the rectangles are densely placed in the middle of the strip. Therefore, the

horizontal locations are generated using a probability function as illustrated in Figure

21(c). Three different settings are considered for the number of rectangles: 10, 100,

1000.

�����������	
��
��

�
����
��
��

�
���	��
�

����

����

����

����

����

����

����

����

����

����

� � � �	 �� 	�

�
����

(a) Distribution of the height
of the rectangles

�����������	
��
��

�����
��
��

�
���	��
�

����

����

����

����

����

����

� � � �� 	� �� ��� ��� ��� ����

�����

(b) Distribution of the width of
the rectangles

���������	
��������

��
���
�������	�

� �

(c) Distribution of the horizon-
tal locations of the rectangles

Figure 21: Structure of the real world instances

Based on 100 instances for each setting, the average ratios of the solutions found

to the best lower bound are summarized in Table 18. The average optimality gap of

the solutions obtained by KFA-Ran is around 1.0% on real-world instances. Similar

102

to previous results, as the number of rectangles increases, the performances of the

randomized heuristics (BA-Ran, BWA, KFA-Ran) deteriorate.

Table 18: Performance of the algorithms on real-world instances
Number of Rectangles LEA BA - Det BA - Ran BWA KFA - Det KFA - Ran

10 1.0302 1.0032 1.0000 1.0000 1.0071 1.0000

100 1.1115 1.0549 1.0185 1.0190 1.0565 1.0026

1000 1.0698 1.0403 1.1546 1.0354 1.0126 1.0127

For small instances, KFA-Ran is a better alternative because the random trials

increase the probability of finding a better solution. However, as the size of the

instance increases, KFA-Det performs better than KFA-Ran. The higher number of

different placement combinations makes it hard to find a “good” solution by random

trials. In addition, the increased run times of KFA-Ran and BWA make them less

preferable over KFA-Det.

4.6 Conclusions and Contributions

In this chapter, we introduce a rectangle packing problem motivated by the practice

in the semiconductor industry. We propose an integer programming formulation and

discuss ways to improve it. We study the complexity of the problem, propose a lower

bound and discuss a special case that can be solved in polynomial time. Since the

problem is strongly NP-hard, we develop heuristics which are efficient and effective.

Although we generate valid cuts to improve the integer program, generating all

the cuts at the beginning is not very efficient because of the number of cuts. A future

direction is developing a branch-and-cut algorithm to effectively utilize these cuts.

Another interesting problem is the one with vertical and/or horizontal interval

constraints. In this problem, the rectangles can be placed into certain vertical and/or

horizontal intervals. In this version of the problem, the feasibility of the problem

is crucial. Depending on the instance, it may not be feasible. Therefore, finding a

feasible solution is an important problem.

103

CHAPTER V

CONCLUSION

In this thesis, we studied three applications of OR/MS using integer programming and

simulation tools. In the Chapter 2, we studied food distribution logistics during an in-

fluenza pandemic. We developed an agent-based disease spread model and integrated

it with a facility location model for designing the food distribution network. Since

the corresponding facility location problem is hard to solve for large instances, we

designed efficient algorithms to find near-optimal solutions. Furthermore, we inves-

tigated the effect of timing and length of non-pharmaceutical intervention strategies,

namely, voluntary quarantine and school closure, on the disease spread and food dis-

tribution supply chain. A voluntary quarantine with appropriate timing and length

can reduce the infections at the peak as well as the likelihood of capacity bottlenecks

and supply chain disruptions significantly and may have a greater positive impact

when compared to school closure. In addition, we analyzed the changes on the work

absenteeism during an influenza pandemic. Our results have implications for gov-

ernments, non-governmental organizations and private industry preparing response

plans for an influenza pandemic.

In Chapter 3, we introduced a scheduling problem motivated by the challenges

in the commercial lithographic printing industry. We studied the complexity of the

problem and discussed some special cases that are polynomially solvable. Motivated

by these special cases and the heuristics in the lot-sizing literature, we developed

efficient and effective heuristics that find near-optimal solutions within seconds. We

also proved that one of the heuristics returns a 2-approximate solution. Furthermore,

we proposed an integer programming formulation that can utilize special branching

104

rules and strengthened it by preprocessing ideas and valid cuts.

In Chapter 4, we studied a variation of the two-dimensional strip packing problem

which is motivated by the chip design problem in the semiconductor industry. We

showed that the problem is NP-hard, and after exploiting the problem structure,

we proposed a lower bound which can be used to evaluate the performance of the

heuristics. We discussed the applicability of the heuristics that are proposed for

similar problems in the literature, and proposed new heuristics using the maximum

weight independent set on interval graphs. Computational experiments on randomly

generated instances show that the new heuristics are more effective than the readily

available heuristics for similar problems.

105

APPENDIX A

SUPPLEMENTARY MATERIALS FOR CHAPTER 2

106

A.1 Literature Review About Modeling Influenza Pandemic
and Annual Influenza

Table 19: Literature review for influenza pandemic
Spread Model Reference Main Goal

Random Graphs Glass et al. [45] Study targeted social distancing as an intervention policy
(Heterogeneous mixing) within a local community

Carrat et al. [14] Study intervention strategies such as vaccination,
neuraminidase inhibitors, quarantine and closure of
schools or workplaces

Difference Equations Rvachev and Longini [92] Forecast the global spread of Hong Kong flu based on
(Homogeneous mixing) estimated parameters from Hong Kong

Grais et al. [47] Study the effect of current international airline traffic by
simulating the 1968 pandemic with the current volume
of airline traffic for 52 global cities

Flahault et al. [37] Study the impact of intervention strategies such as
vaccination, isolation, antiviral usage and air traffic
reduction on the global spread using the model
developed by Rvachev and Longini [92]

Larson [72] Investigate social distancing as an intervention strategy

Differential Equations Flahault et al. [36] Simulate the spread of influenza for 9 cities in Europe
(Homogeneous mixing) considering only the regular air traffic

Ferguson et al. [35] Investigate neuraminidase inhibitor therapy on
drug-resistant annual influenza

Chowell et al. [18] Evaluate hypothetical public health measures during the
1918 influenza pandemic in Geneva, Switzerland

Glasser et al. [46] Study targeted vaccination strategies for annual influenza
Wu et al. [112] Study geography-based allocation of vaccines

Simulation Longini et al. [78] Study intervention strategies such as vaccination, antiviral
(Heterogeneous mixing) usage and quarantine for rural Southeast Asia

Patel et al. [88] Find optimal vaccine usage to minimize the number of
illnesses given limited quantities of vaccine

Ferguson et al. [32] Evaluate targeted antiviral usage for Thailand
Wu et al. [111] Investigate household-based interventions such as

quarantine, contact tracing, antiviral usage and isolation
for Hong Kong

Germann et al. [42] Study intervention policies such as travel restrictions,
vaccine and antiviral usage for the US

Ferguson et al. [33] Study intervention strategies such as vaccine and
antiviral usage, isolation, quarantine, school or workplace
closure, travel restrictions for Great Britain and the US

Das et al. [22] Study the impact of an influenza pandemic from several
perspectives such as infected, dead, healthcare cost and
lost wages

Lee et al. [73] Investigate the spread pattern of the influenza pandemic
in Norfolk, VA via a detailed social network model and
city level details such as climate, geography and economy

Halloran et al. [51] Study intervention strategies such as antiviral treatment,
quarantine, school closure, community and workplace
social distancing for Chicago

107

A.2 Natural Disease History Parameters

Table 20: Parameters for natural history of disease
Parameter Value References

pA 0.4 for working adults (19-64) and Ferguson et al. [35], Wu et al. [111],

0.25 for others Germann et al. [42], Longini et al. [78]

pH 0.18 for children between 0 and 5, Longini et al. [78], Wu et al. [111]

0.12 for elderly (65+) and 0.06 for others

pD 0.344 for elderly and children between 0 and 5 Carrat et al. [14], Wu et al. [111]

and 0.172 for others

Duration of E + IP Weibull distribution with mean 1.48 Ferguson et al. [32], Wu et al. [111]

days (including an offset of 0.5 days)

and standard deviation 0.47

Duration of IP 0.5 days Ferguson et al. [32], Wu et al. [111]

Duration of IS Exponential distribution with mean 2.7313 days Wu et al. [111]

Duration of IA Exponential distribution with mean 1.63878 days Wu et al. [111]

Duration of IH Exponential distribution with mean 14 days Ferguson et al. [32], Wu et al. [111]

A.3 Comparison of Our Disease Spread Model and the Mod-
els in the Literature

Table 21: Comparison of the proposed model with the ones in the literature
Reference Natural History Spatial Component Age-Based Night/Day Differentiation

Wu et al. [111] Detailed SEIR No No No

Ferguson et al. [33],

Ferguson et al. [32],

Patel et al. [88], SEIR Yes Yes No

Longini et al. [78]

Germann et al. [42] SEIR Yes Yes Yes

Our Model Detailed SEIR Yes Yes Yes

A.4 Details of Disease Spread Model

In this section, we explain the details of the disease spread model. In the contact

network, workplace sizes are generated using a Poisson distribution with mean 20,

and the maximum workplace size is assumed to be 1000 (similar to Germann et al.

[42]). The working adults mix with other working adults depending on the tract-

to-tract worker flow data [105]. The average peer group sizes are 14, 20 and 30 for

kindergarten, elementary schools and secondary schools, respectively [41].

108

At the beginning of the simulation, every individual is assumed to be susceptible.

We introduce an initial number (30) of infected individuals randomly to the com-

munity to represent the entrance of the virus to the population. The length of the

simulation is 365 days, which is sufficient to capture the disease spread.

Different disease settings are defined by the coefficient of transmission (β), the

relative hazards of an infected individual at presmpytomatic and asymptomatic stages

(hP and hA) to symptomatic stage and relative hazards in peer groups and community

to households (hG and hC) [111]. As the base case, we take the hazard of an individual

at the symptomatic stage, hS, and the hazard in households, hH , as 1. We make age-

based adjustments to the calculation of these parameters. Let rXY be the average

number of people infected in Y by an individual who is at stage X where Y is the

household (H), peer group (G) or the community (C) and X is the presymptomatic

(P), asymptomatic (A) or symptomatic (S) stage. The rXY values are calculated as

follows.

rPH =
7∑

n=1
pn(n− 1)(1− φP (hP β

2n))

rAH = pA

7∑
n=1

pn(n− 1)φP (hP β
2n)(1− φA(hAβ

2n))

rSH = (1− pA)
7∑

n=1
pn(n− 1)φP (hP β

2n)(1− φS(β
2n))

rPG = (q1n1 + q2n2 + q3n3 + q4n4 + q5n5)(1− φP (hP hGβ
2))

rAG = pA(q1n1 + q2n2 + q3n3 + q4n4 + q5n5)φP (hP hGβ
2)(1− φA(hAhGβ

2))

rSG = (1− pA)((q1n1 + q2n2 + q3n3)φP (hP hGβ
2)(1− φS(0)) + (q4n4 + q5n5)φP (hP hGβ

2)(1− φS(hGβ
4)))

rPC = N(1− φP (hP hCβ
N))

rAC = pANφP (hP hCβ
N)(1− φA(hAhCβ

N))

rSC = (1− pA)NφP (hP hCβ
N)(1− φS(hCβ

N))

The proportion of the population in age group i for i ∈ {1, 2, 3, 4, 5} is qi, and

pA is the probability that a presymptomatic individual does not develop symptoms.

Using the probability of developing symptoms in Table 20, pA is calculated as follows:

pA = 0.25q1 + 0.25q2 + 0.25q3 + 0.40q4 + 0.25q5.

109

ni is the average size of peer groups for age group i. In our model, the maximum

household size is 7 [105]. pn is the probability that an individual lives in a household

size of n, and N is the total number of people in the considered area. φP (h) is

the probability that an infection does not occur between two individuals during the

presymptomatic phase for a constant hazard of infection h. φA(h) and φS(h) are

the similar probabilities of no infection during the asymptomatic and symptomatic

phases for constant hazard of infection h. In addition, φX(h) is defined as follows:

φX(h) = E(e−hDX) =
∞∫
0

e−htfX(t)dt,

where the duration (DX) of disease stage X for X ∈ {P,A, S} is defined by probability

density function fX for which values are given in Table 20. The rXY values are used

to calculate the following five disease parameters.

R0 =
∑

X∈{P,A,S}

∑
Y ∈{H,G,C}

rXY

θ =

P
X∈{P,A}

P
Y ∈{H,G,C}

rXY

R0

ω =

P
Y ∈{H,G,C}

rAY +pArPY

R0

γ =

P
X∈{P,A,S}

P
Y ∈{G,C}

rXY

R0

δ =

P
X∈{P,A,S}

rXCP
X∈{P,A,S}

P
Y ∈{G,C}

rXY

R0 is defined in the main text. θ is the proportion of transmission that occurs at either

presymptomatic or asymptomatic stage. ω is the proportion of infections generated

by individuals who are never symptomatic. γ is the proportion of transmission that

110

occurs outside the households. δ is the proportion of transmission outside the home

that occurs in the community.

After setting these five parameters, the coefficient of transmission (β) and the

relative hazards (hP , hA, hG, hC) can be calculated. We assume that θ is 0.3 and ω

is 0.15 [111], 70% of the infections occur outside the household, and half of these

infections occur within the peer groups. These estimates are consistent with the

estimates in Ferguson et al. [33].

In the disease spread model, we simulate the time of next infection and choose

the individual that will be infected. The following infection time is generated by

calculating the “instantaneous force of infection” for each individual [111] using the

parameters (β, hP , hA, hG, hC), which are discussed above. We have adjusted the cal-

culation of force of infection for our age-based model using the age-based parameters

(see below for the calculation of the force of infection). After the infected individual

is selected, the disease progresses according to the natural history with the assumed

transition times and probabilities for the influenza.

In our model, we assume that the relative infectivity of the children (0-18) com-

pared to adults (19+) is 1.5 and the relative susceptibility of the children compared to

adults is 1.15 [14]. The relative infectivity values are adjusted from the corresponding

probability of transmission values between children and adults proposed by Carrat

et al. [14]. The susceptibility and infectivity parameters are normalized so that the

expected susceptibility of an individual is 1.0, and the expected infectivity of an indi-

vidual is 1.0, hP and hA for symptomatic, presymptomatic and asymptomatic cases,

respectively.

Using these parameters, the force of infection experienced by the ith individual

111

during the day (λD
i) and during the night (λN

i) are calculated as follows:

λD
i = Si

N∑
j=1

(δG
ijmjεjhGβ + δC

ij
mjhCβ

Ni
),

λN
i = Si

N∑
j=1

(δH
ij

mjβ

nHA
i

+ δC
ij

mjhCβ

Ni
).

In the above equations, Si is the relative susceptibility of the individual and

Si =





SC , if individual i is a child

SA, otherwise.

Let qA be the proportion of adults in our population, then SC and SA can be calculated

using the following equations.

(1− qA)SC + qASA = 1.0

SC = 1.15SA

Ni is the number of individuals in the ith individual’s community, and nHA
i is the

active household size of this individual where dead and hospitalized individuals are

not counted. δH
ij , δ

G
ij and δC

ij are the indicator functions defined for households, peer

groups and the community, respectively.

δY
ij =





1, if individuals i and j are in the same Y

0, otherwise
Y ∈ {H, G, C}.

εj is the indicator variable showing whether the jth individual withdraws from work

or school.

εj =





0, with probability 1.0 if individual j is a symptomatic child

0, with probability 0.5 if individual j is a symptomatic adult

1, otherwise

112

Finally, mj (the infectivity of individual j) is defined as follows:

mj =





IC
X , if j is a child at stage X

IA
X , if j is an adult at stage X

0, otherwise,

where IC
X and IA

X are the infectivity of an infected child and an infected adult at stage

X (for X ∈ {P, A, S}), respectively. The values of these infectivity parameters are

calculated as follows by using the expected relative hazard of an individual.

(1− qA)IC
X + qAIA

X =





hP , if X = P

hA, if X = A

1.0, if X = S

IC
X = 1.5IA

X

A.5 Model Validation

Table 22: Calibrated parameters to achieve the age-specific clinical attack rates for
the 1957 pandemic

Parameter Calibrated Original

Work place sizes 30 20

pA for elderly 0.5 0.25

Proportion of community infections in total 0.2 0.5
number of outside home infections (θ)

0-5 1.8 1.15
Susceptibility of children 6-11 1.7 1.15

12-18 1.6 1.15

113

Table 23: Comparison of age-specific clinical attack rates
Age Group Our Model 1957 Pandemic

1 (0-5) 32.62% 32.17%

2 (6-11) 35.18% 35.02%

3 (12-18) 39.08% 38.44%

4 (19-64) 22.07% 22.24%

5 (65+) 10.45% 10.00%

Total 24.72% 24.72%

A.6 Voluntary Quarantine Results

Table 24: Reduction in the performance measures for an 8-week quarantine
R0 Peak Infectivity CAR IAR Death Ratio

1.5 67.74% 18.40% 18.51% 18.22%

1.8 64.71% 16.70% 16.82% 17.22%

2.1 50.44% 19.52% 19.68% 19.68%

Table 25: Comparison of the quarantine results with the results in the literature
Quarantine Decrease in Decrease in

Reference R0 Start - End Compliance Rate Peak Infectivity IAR

Longini et al. [78] 1.4-1.7 Day 14 - Day 365 70% Not reported 99%

Ferguson et al. [33] 1.7-2.0 Day 1 - Day 365 50% 25-26% 14.7-18.5%

Wu et al. [111] 1.8 Day 1 - Day 365 50% 70% 33%

Our model 1.8 Day 21 - Day 77 50% 64.71% 16.82%

114

A.7 School Closure Results

�����

�����

�����

�����

�����

�����

	����

����

�����

�����

� � � � � 	
 � � ��

�����������	
����		
��
	����

�
��
��
��
��
�

���

���

���

(a) Peak infectivity

������

������

������

������

������

������

������

������

������

������

	
 � � � � � � � 	�

�����������	
����		
��
	����

�
��
��
��
��
�

	��

	��

�	

(b) Infection attack rate

Figure 22: Effect of timing of school closure on the peak infectivity and infection
attack rate for different R0 values

A.8 Map of Metropolitan Atlanta Area

���������	
��

��	��

���������

�������

�

Figure 23: Counties in the Metropolitan Atlanta Area by population

115

A.9 Add-Drop Heuristic (ADH)

1: for t = 1 to T do

2: for k = 1, 2 do

3: Let POPOD and POMF be the set of open PODs and major facilities in

period t − 1, respectively. Let FOPOD and FOMF be the set of PODs and

major facilities that are planned to be open in the future.

4: if k==1 then

5: Dkt = DkT

2T−t +
T∑

j=t+1

Dkj

2j−t

6: FOPOD = FOMF = ∅
7: end if

8: for i ∈ N2 do

9: Set the total serving cost to zero : TotalServingCostMFi = 0.

10: Calculate the cost of serving a unit of demand : UnitServingCostMFi =

c1
u mins∈N1dsi.

11: end for

12: for j ∈ N3 do

13: Set the total serving cost to zero : TotalServingCostPODj = 0.

14: Calculate the cost of serving a unit of demand : UnitServingCostPODj =

mini∈POMF (c2
udij + UnitServingCostMFi).

15: end for

16: Assign all the demand to the closest POD as the capacity permits.

17: COPOD : Set of PODs that have been assigned a demand.

18: PODkj : Demand amount of demand node k assigned to POD j for all

k ∈ N4, j ∈ N3.

19: Update the total serving cost of each POD that has a demand assigned to it :

TotalServingCostPODj = Fj+
∑

k∈N4

PODkj(djkcindividual+UnitServingCostPODj)

20: repeat

116

21: for j ∈ COPOD do

22: if j ∈ POPOD
⋃

FOPOD then

23: CostSavingPODj = TotalServingCostPODj

24: else

25: CostSavingPODj = TotalServingCostPODj + fj + gj

26: end if

27: end for

28: for j ∈ COPOD do

29: repeat

30: Find the closest POD, say j′, with an assigned demand.

31: Assign the demand of POD j to POD j′ as the capacity permits. Let

PODj′
kj be the demand of demand node k that has been reassigned to

POD j′ instead of POD j.

32: Update the cost saving : CostSavingPODj = CostSavingPODj −
∑

k∈N4

PODj′
kj(djkcindividual + UnitServingCostPODj′)

33: until All the demand of POD j can be assigned to other open PODs

34: if All the demand of POD j cannot be assigned to other open PODs

then

35: Set CostSavingPODj = 0.

36: end if

37: end for

38: Determine the POD to be closed :

PODToBeClosed = argmaxj∈COPODCostSavingPODj

MaxCostSaving = maxj∈COPODCostSavingPODj.

39: if MaxCostSaving > 0 then

40: Close POD PODToBeClosed and assign its demand to the PODs de-

termined while calculating the cost saving.

117

41: Update set of open PODs (COPOD).

42: end if

43: until MaxCostSaving ≤ 0

44: if k==1 then

45: FOPOD = COPOD

46: end if

47: Let DPOD
j denote the amount of demand assigned to POD j for all j ∈

COPOD.

48: Assign all the demand of the PODs to the major facilities as the capacity

permits.

49: COMF : Set of major facilities that have been assigned a demand.

50: MFji : Demand amount of POD j assigned to major facility i for all i ∈
N2, j ∈ COPOD.

51: Update the total serving cost of each major facility that has a demand as-

signed to it :

TotalServingCostMFi = Fi +
∑

j∈COPOD

MFji(dijc
2
u +UnitServingCostMFi)

52: repeat

53: for i ∈ COMF do

54: if i ∈ POMF
⋃

FOMF then

55: CostSavingMFi = TotalServingCostMFi

56: else

57: CostSavingMFi = TotalServingCostMFi + fi + gi

58: end if

59: end for

60: for i ∈ COMF do

61: repeat

62: Find the closest major facility, say i′, with an assigned demand.

118

63: Assign the demand of major facility i to POD i′ as the capacity per-

mits. Let MF i′
ji be the demand of POD j that has been reassigned to

POD i′ instead of POD i.

64: Update the cost saving :

CostSavingMFi = CostSavingMFi

− ∑
j∈COPOD

MF i′
ji(dijc

2
u + UnitServingCostMFi′)

65: until All the demand of major facility i can be assigned to other open

major facilities

66: if All the demand of major facility i cannot be assigned to other open

major facilities then

67: Set CostSavingMFi = 0.

68: end if

69: end for

70: Determine the major facility to be closed :

MFToBeClosed = argmaxi∈COMF CostSavingMFi

MaxCostSaving = maxi∈COMF CostSavingMFi.

71: if MaxCostSaving > 0 then

72: Close major facility MFToBeClosed and assign its demand to the major

facilities determined while calculating the cost saving.

73: Update set of open major facilities (COMF).

74: end if

75: until MaxCostSaving ≤ 0

76: if k==1 then

77: FOMF = COMF

78: end if

79: end for

80: COMF and COPOD are the set of major facilities and PODs that will be open

119

in period t.

81: end for

120

A.10 Performance of the Heuristics

Table 26: Experiments to test the performance of the heuristics with CPU time in
seconds and gap compared to the best lower bound

Shipment Cost

Instance Algorithm Low Medium High

CPU GAP CPU GAP CPU GAP

71 Demand Nodes MH 0.4 4.73% 0.4 3.61% 0.4 4.18%

36 Distribution Centers ADH 0.5 3.84% 0.5 3.23% 0.5 3.20%

5 Major Facilities SPH 26.1 1.50% 10.5 1.87% 6.5 1.43%

10 Supply Points HH 6.6 1.83% 4.4 1.48% 3.1 1.58%

Best Integer Solution 15301.9 0.00% 389.8 0.00% 79.8 0.00%

167 Demand Nodes MH 0.9 5.17% 1.0 3.87% 1.0 2.38%

36 Distribution Centers ADH 1.4 5.28% 1.4 1.80% 1.4 0.88%

5 Major Facilities SPH 78.8 3.47% 27.8 1.16% 14.1 0.34%

10 Supply Points HH 19.2 4.40% 9.8 1.20% 6.0 0.34%

Best Integer Solution 24406.2 1.76% 429.5 0.00% 83.5 0.00%

167 Demand Nodes MH 0.9 12.91% 0.9 4.85% 1.0 3.43%

36 Distribution Centers ADH 1.4 11.58% 1.4 2.51% 1.4 2.76%

10 Major Facilities SPH 140.7 8.98% 36.4 1.32% 23.9 1.03%

10 Supply Points HH 27.1 8.55% 12.7 1.58% 8.2 1.06%

Best Integer Solution 28290.4 7.15% 3807.3 0.00% 719.5 0.00%

167 Demand Nodes MH 1.0 7.17% 1.0 3.05% 1.0 2.20%

41 Distribution Centers ADH 1.5 7.45% 1.5 1.83% 1.5 1.30%

5 Major Facilities SPH 113.7 7.45% 37.4 1.00% 17.3 0.52%

10 Supply Points HH 23.6 7.92% 11.5 1.19% 7.2 0.47%

Best Integer Solution 28767.0 3.97% 1240.8 0.00% 116.5 0.00%

167 Demand Nodes MH 0.9 6.76% 1.0 3.42% 1.0 2.58%

36 Distribution Centers ADH 1.4 6.50% 1.4 1.36% 1.4 1.34%

5 Major Facilities SPH 85.4 5.24% 27.3 1.26% 13.6 0.50%

15 Supply Points HH 18.6 5.40% 9.2 0.94% 6.7 0.50%

Best Integer Solution 21893.1 3.14% 785.5 0.00% 119.0 0.00%

167 Demand Nodes MH 1.6 14.77% 1.6 6.61% 1.7 3.46%

72 Distribution Centers ADH 2.6 14.31% 2.4 4.26% 2.4 2.11%

10 Major Facilities SPH 1116.7 9.22% 440.2 3.02% 116.8 1.31%

20 Supply Points HH 77.4 10.97% 42.0 3.16% 23.8 1.23%

Best Integer Solution 28853.4 10.70% 28852.9 2.25% 26014.5 0.20%

603 Demand Nodes MH 17.0 14.12% 16.7 5.35% 18.3 3.41%

151 Distribution Centers ADH 24.2 13.11% 24.8 3.54% 23.5 2.27%

10 Major Facilities SPH 21611.4 9.75% 17360.4 3.17% 12976.9 1.69%

20 Supply Points HH 8475.1 10.44% 3817.1 2.80% 3845.1 1.73%

Best Integer Solution 43251.7 45.44% 32755.3 2.33% 14423.8 1.38%

121

A.11 Effect of Withdrawal Rate on the Disease Spread

Table 27: Effect of different withdrawal rates from work on the disease spread for
R0 = 1.5

Withdrawal Rate Peak Infectivity Peak Day IAR

25% 3.14% 66 54.94%
50% 2.27% 74 47.14%
75% 1.44% 86 37.99%
100% 0.78% 95 28.90%

Table 28: Effect of different withdrawal rates from work on the disease spread for
R0 = 2.1

Withdrawal Rate Peak Infectivity Peak Day IAR

25% 8.63% 39 80.40%
50% 7.64% 42 77.05%
75% 6.39% 45 71.88%
100% 5.08% 49 65.47%

A.12 Effect of Withdrawal Rate on the Work Absenteeism

���

���

���

����
�����

�����

�����

�����

�����

�����

� �� �� 	
 �� �� �� �� ��
 ��� �	� ��� ��� ��
 ��� ��� ��� �
�

���

�
��
��
�	
�

�

(a) R0 = 1.5

���

���
���

����

�����

�����

�����

�����

	����

�����

����

�����

�����

� � �� �� �� �
 	� �� ��
	 �� �� �� �� �� ��

���

�
��
��
�	
�

�

(b) R0 = 2.1

Figure 24: Effect of withdrawal rate on the work absenteeism for different R0 values

122

A.13 Effect of Quarantine on the Work Absenteeism

���

���

���

����

�����

�����

�����

	����

����

������

������

������

�	����

� � � 	 �

�����������	
������
��������

�
��
��
��
��
�

(a) 4-week quarantine

���

���

���

����

�����

�����

�����

	����

����

������

������

������

�	����

� � � 	 �

�����������	
������
��������

�
��
��
��
��
�

(b) 12-week quarantine

Figure 25: Effect of withdrawal rate and quarantine start time on the peak work
absenteeism for R0 = 1.8

123

APPENDIX B

VARIATIONS OF THE HEURISTICS PROPOSED FOR

JOB SPLITTING PROBLEM

B.1 Variations of MRH

1. MRH1 : This is the basic heuristic as explained in Section 3.5.1.

2. MRH2 : While applying MRH1, consider the longest run (L1) and the number

of slots assigned to each type, say yi, in that run. Assign yi slots to type i and

update its demand by subtracting min{yiL1, d
′
i} from its demand (where d′i is

the updated demand) and fix this run. Update the remaining demand for all

the types. Iteratively apply MRH2 to the updated demand by reducing the

number of runs, r, by 1 until all the demands are satisfied.

3. MRH3 : While applying MRH1, consider the longest run (L1). First assign the

types with demand equal to L1, if such a type exists, to a slot in this run. Then,

go to (a).

(a) Consider the type with the largest demand, say l. Then, assign a slot to

type l and update its demand by subtracting min{d′l, L1}. Then, consid-

ering the updated demand return to (a). Continue this until all the slots

of this run are assigned to a type.

Fix this largest run and apply MRH3 to the updated demand with one less run.

4. MRH4 : This is a variation of MRH3. While applying MRH3, after fixing the

longest run, check whether it is possible to extend this run. Check the remaining

demand of the types assigned to a slot in this largest run. Divide each of these

124

remaining quantities by yi (the number of the slots assigned to type i in this

run) and calculate the minimum among these, say e1. Then, update the length

of this largest run to L1 + e1 and update the remaining quantities of the types

that are assigned to a slot in this run.

5. MRH5 : In MRH4, to increase the possibility of extending the run, first assign

the types with demand greater than L1, not the ones equal to L1 as it is done

in MRH3 and MRH4.

6. MRH6 : In MRH3, first consider the types that are already assigned to the

largest run in the heuristic. Assign L1 units of demand from these types to

the slots as long as the slots are filled. That is, if the remaining demand is

less than L1 for a type, do not assign it to this run. Then, for the remaining

slots, consider the remaining updated demand. Start from the type with the

largest demand, say i. Assign it to a slot and update its demand by subtracting

min{L1, d
′
i} where d′i is the updated demand. Continue until all the slots of this

run are assigned.

7. MRH7 : While applying MRH6, if the number of remaining types at any step

becomes larger than the number of remaining slots (remaining runs times m),

then directly produce the remaining demand without any splitting. (This will

guarantee that the number of runs at the beginning, r, will be equal to the one

found at the end.)

8. MRH8 : In MRH7, first start by assigning the types with demand greater than

L1, not the ones equal to L1. Then, if necessary, consider the ones with demand

less than or equal to L1.

B.2 Variations of BCH

1. BCH1: This is the basic heuristic as explained in Section 3.5.2.

125

2. BCH2: In BCH1, after fixing a run, if there are types with remaining demand

larger than the quantity assigned to a slot in this run, change the assignment of

this slot to the type with a larger demand to minimize the waste. In addition,

for the case where m > n if the cost of producing the remaining types, if any, in

a single run is greater than the cost of satisfying their demands in the previous

run, if possible, then produce them in this last run without making an extra

run.

3. BCH3: In BCH2, after the slots that are assigned less quantity are replaced

with the larger ones, try to increase the length with no extra waste. That is,

after the replacement step, there is a new assignment of the types to slots. Do

the quantity assignment to slots as it is done in MRH1 (Assign ddi

yi
e or ddi

yi
e− 1

to a slot that is assigned to type i where yi is the number of slots in this run

that are assigned to type i). Then, if the smallest quantity assigned to a slot

is larger than the length that has been set at the beginning, let this smallest

amount be the length of this run. Otherwise, leave the length same as set at the

beginning. (This will, possibly, increase the length of the run without increasing

the waste).

4. BCH4: Similar to BCH3 with one exception. Apply the replacement idea in

BCH2 to the single run case (n < m), as well.

5. BCH5: In BCH4, try to increase the length of the single run instance after

the replacement step. That is, apply the idea in BCH3 also to the single run

instance.

6. BCH6: In BCH5, after the replacement step, the assignment of the slots changes.

Do the quantity assignments to slots as it is done in MRH1. Order the slots

according to the nonincreasing order of quantities assigned to them and apply

the basic idea in BCH1 again to find the final length of this run.

126

REFERENCES

[1] Alves, C. and Valerio de Carvalho, J. M., “A branch-and-price-and-cut

algorithm for the pattern minimization problem,” RAIRO - Operations Research,

vol. 42, pp. 435–453, 2008.

[2] American Red Cross Metropolitan Atlanta Chapter, “Pandemic in-

fluenza preparedness and response plan (draft).” 2006.

[3] American Red Cross Metropolitan Atlanta Chapter, “Food planning

for pandemic flu project plan (draft).” 2008.

[4] Baker, B. S., Brown, D. J., and Katseff, H. B., “A 5/4 algorithm for two

dimensional packing,” Journal of Algorithms, vol. 2, pp. 348–368, 1981.

[5] Baker, B. S., Jr., E. G. C., and Rivest, R. L., “Orthogonal packing in two

dimensions,” SIAM Journal on Computing, vol. 9, pp. 846–855, 1980.

[6] Ballou, R. H., “Dynamic warehouse location analysis,” Journal of Marketing

Research, vol. 5, pp. 271–276, 1968.

[7] Bass, F. M., “A new product growth model for consumer durables,” Manage-

ment Science, vol. 15, pp. 215–227, 1969.

[8] Beasley, J. E., “An exact two-dimensional non-guillotine cutting tree search

procedure,” Operations Research, vol. 33, no. 1, pp. 49–64, 1985.

[9] Bekrar, A., Kacem, I., and Chu, C., “A comparative study of exact algo-

rithms for the two dimensional strip packing problem,” Journal of Industrial and

Systems Engineering, vol. 1, no. 2, pp. 151–170, 2007.

127

[10] Bettinelli, A., Ceselli, A., and Righini, G., “A branch-and-price algo-

rithm for the two-dimensional level strip packing problem,” 4OR: A Quarterly

Journal of Operations Research, vol. 6, pp. 361–374, 2008.

[11] Bureau of Labor Statistics, U.S. Department of Labor, Career Guide

to Industries, 2006-07 Edition, Printing. 2006.

[12] Cahill, E., Crandall, R., Rude, L., and Sullivan, A., “Space-time in-

fluenza model with demographic, mobility, and vaccine parameters,” in Proceed-

ings of the 5th Annual Hawaii International Conference on Statistics, Mathe-

matics, and Related Fields, 2005.

[13] Canel, C., Khumawala, B. M., Law, J., and Loh, A., “An algorithm

for the capacitated, multi-commodity multi-period facility location problem,”

Computers and Operations Research, vol. 28, pp. 411–427, 2001.

[14] Carrat, F., Luong, J., Lao, H., Sall, A., Lajaunie, C., and Wacker-

nagel, H., “A “small-world-like” model for comparing interventions aimed at

preventing and controlling influenza pandemics,” BMC Medicine, vol. 4, no. 26,

2006.

[15] Cava, M. A., Fay, K. E., Beanlands, H. J., McCay, E. A., and Wignall,

R., “The experience of quarantine for individuals affected by SARS in Toronto,”

Public Health Nursing, vol. 22, no. 5, pp. 398–406, 2005.

[16] Center for Disease Control and Prevention, “National influenza pan-

demic plan.” 2005.

[17] Chin, T. D. Y., Foley, J. F., Doto, I. L., Gravelle, C. R., and Weston,

J., “Morbidity and mortality characteristics of Asian strain influenza,” Public

Health Reports, vol. 75, pp. 149–158, 1960.

128

[18] Chowell, G., Ammon, C. E., Hengartner, N. W., and Hyman, J. M.,

“Transmission dynamics of the great influenza pandemic of 1918 in Geneva,

Switzerland: Assessing the effects of hypothetical interventions,” Journal of The-

oretical Biology, vol. 241, pp. 193–204, 2006.

[19] Coffman, E. G., Jr., Garey, M. R., Johnson, D. S., and Tarjan, R. E.,

“Performance bounds for level-oriented two-dimensional packing algorithms,”

SIAM Journal on Computing, vol. 9, pp. 801–826, 1980.

[20] Cooper, L., “Heuristic methods for location-allocation problems,” SIAM Re-

view, vol. 6, pp. 37–53, 1964.

[21] Cox, K., “Pandemic influenza planning: Guidelines and information for Georgia

public school districts,” Technical Report, Georgia Department of Education,

2008.

[22] Das, T. K., Savachkin, A. A., and Zhu, Y., “A large-scale simulation model

of pandemic influenza outbreaks for development of dynamic mitigation strate-

gies,” IIE Transactions, vol. 40, pp. 893–905, 2008.

[23] DeMatteis, J. J. and Mendoza, A. G., “An economic lot-sizing technique,”

IBM Systems Journal, vol. 7, no. 1, pp. 30–36, 1968.

[24] Department of Health, Social Services and Public Safety, “North-

ern Ireland contingency plan for health response for an influenza pandemic.”

2008.

[25] Diegel, A., Montocchio, E., Waiters, E., Schaikwyk, S., and Naidoo,

S., “Setup minimising conditions in the trim loss problem,” European Journal

of Operational Research, vol. 95, pp. 631–640, 1996.

[26] Diestel, R., Graph Theory. Springer-Verlag, New York, 2000.

129

[27] Dowsland, K. A. and Dowsland, W. B., “Packing problems,” European

Journal of Operational Research, vol. 56, pp. 2–14, 1992.

[28] Dyckhoff, H., “A typology of cutting and packing problems,” European Jour-

nal of Operational Research, vol. 44, pp. 145–159, 1990.

[29] Erlenkotter, D., “A comparative study of approaches to dynamic location

problems,” European Journal of Operational Research, vol. 6, pp. 133–143, 1981.

[30] Farley, A. A., “The cutting stock problem in the canvas industry,” European

Journal of Operational Research, vol. 44, pp. 239–246, 1990.

[31] Feldman, E., Lehrer, F. A., and Ray, T. L., “Warehouse location under

continuous economies of scale,” Management Science, vol. 12, no. 9, pp. 670–684,

1966.

[32] Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C.,

Riley, S., Meeyai, A., Iamsirithaworn, S., and Burke, D. S., “Strate-

gies for containing an emerging influenza pandemic in Southeast Asia,” Nature,

vol. 437, pp. 209–214, 2005.

[33] Ferguson, N. M., Cummings, D. A. T., Fraser, C., Cajka, J. C., Coo-

ley, P. C., and Burke, D. S., “Strategies for mitigating an influenza pan-

demic,” Nature, vol. 442, pp. 448–452, 2006.

[34] Ferguson, N. M., Keeling, M. J., Edmunds, W. J., Gani, R., Grenfell,

B. T., Anderson, R. M., and Leach, S., “Planning for smallpox outbreaks,”

Nature, vol. 425, pp. 681–685, 2003.

130

[35] Ferguson, N. M., Mallett, S., Jackson, H., Roberts, N., and Ward,

P., “A population-dynamic model for evaluating the potential spread of drug-

resistant influenza virus infections during community-based use of antivirals,”

Journal of Antimicrobial Chemotherapy, vol. 51, pp. 977–990, 2003.

[36] Flahault, A., Deguen, S., and Valleron, A. J., “A mathematical model

for the European spread of influenza,” European Journal of Epidemiology, vol. 10,

pp. 471–474, 1994.

[37] Flahault, A., Vergu, E., Coudeville, L., and Grais, R. F., “Strategies

for containing a global influenza pandemic,” Vaccine, vol. 24, pp. 6751–6755,

2006.

[38] Foerster, H. and Wascher, G., “Pattern reduction in one-dimensional cut-

ting stock problems,” International Journal of Production Research, vol. 38,

no. 7, pp. 1657–1676, 2000.

[39] Fraser, C., Riley, S., Anderson, R. M., and Ferguson, N. M., “Fac-

tors that make an infectious disease outbreak controllable,” Proceedings of the

National Academy of Sciences, vol. 101, no. 16, pp. 6146–6151, 2004.

[40] Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide

to the Theory of NP-completeness. W. H. Freeman, San Fransisco, 1979.

[41] Georgia Accrediting Commission, http://www.coe.uga.edu/gac/standards.html,

last accessed on January 15, 2008.

[42] Germann, T. C., Kadau, K., Longini, I. M., and Macken, C. A., “Mit-

igation strategies for pandemic influenza in the United States,” Proceedings of

the National Academy of Sciences, vol. 103, no. 15, pp. 5935–5940, 2006.

131

[43] Gibbs, W. W. and Soares, C., “Preparing for a pandemic,” Scientific Amer-

ican, vol. 293, no. 5, pp. 44–54, 2005.

[44] Gilmore, P. C. and Gomory, R. E., “A linear programming approach to the

cutting stock problem,” Operations Research, vol. 9, pp. 849–859, 1961.

[45] Glass, R. J., Glass, L. M., Beyeler, W. E., and Min, H. J., “Targeted

social distancing design for pandemic influenza,” Emerging Infectious Diseases,

vol. 12, no. 11, pp. 1671–1681, 2006.

[46] Glasser, J., Taneri, D., Thompson, W., Chuang, J., Wu, J., Tull, P.,

and Alexander, J., “Evaluation of targeted influenza vaccination strategies

via population modeling,” preprint, 2007.

[47] Grais, R. F., Ellis, J. H., and Glass, G. E., “Assessing the impact of airline

travel on the geographic spread of pandemic influenza,” European Journal of

Epidemiology, vol. 18, no. 11, pp. 1065–1072, 2003.

[48] Grotschel, M., Lovasz, L., and Schrijver, A., “Polynomial algorithms for

perfect graphs,” Annals of Discrete Mathematics, vol. 21, pp. 325–356, 1984.

[49] Haessler, R. W., “Controlling cutting pattern changes in one-dimensional

trim problems,” Operations Research, vol. 23, no. 3, pp. 483–493, 1975.

[50] Haessler, R. W. and Sweeney, P. E., “Cutting stock problems procedures,”

European Journal of Operational Research, vol. 54, pp. 141–150, 1991.

[51] Halloran, M. E. and et al., “Modeling targeted layered containment of an

influenza pandemic in the United States,” Proceedings of the National Academy

of Sciences, vol. 105, no. 12, pp. 4639–4644, 2008.

132

[52] Hashimoto, A. and Stevens, J., “Wire routing by optimizing channel as-

signment within large apertures,” Proceedings of Design Automation Conference,

pp. 155–169, 1971.

[53] Hawryluck, L., Gold, W. L., Robinson, S., Pogorski, S., Galea, S.,

and Styra, R., “SARS control and psychological effects of quarantine, Toronto,

Canada,” Emerging Infectious Diseases, vol. 10, no. 7, pp. 1206–1212, 2004.

[54] Heesterbeek, J. A. P., “A brief history of R0 and a recipe for its calculation,”

Acta Biotheoretica, vol. 50, pp. 189–204, 2002.

[55] Hinojosa, Y., Puerto, J., and Fernández, F. R., “A multiperiod two-

echelon multicommodity capacitated plant location problem,” European Journal

of Operational Research, vol. 123, pp. 271–291, 2000.

[56] Hoffbuhr, J., “Utilities prepare for potential pandemic,” American Water

Works Association Journal, vol. 98, no. 6, pp. 48–60, 2006.

[57] Holmes, E. C., Taubenberger, J. K., and Grenfell, B. T., “Heading off

an influenza pandemic,” Science, vol. 309, p. 989, 2005.

[58] Hopper, E. and Turton, B., “A genetic algorithm for a 2D industrial packing

problem,” Computers and Industrial Engineering, vol. 37, pp. 375–378, 1999.

[59] Hopper, E., Two-Dimensional Packing Utilising Evolutionary Algorithms and

other Meta-Heuristic Methods. PhD thesis, Cardiff University, UK, 2000.

[60] Hopper, E. and Turton, B. C. H., “An empirical investigation of meta-

heuristic and heuristic algorithms for a 2D packing problem,” European Journal

of Operational Research, vol. 128, pp. 34–57, 2001.

133

[61] Hopper, E. and Turton, B. C. H., “A review of the application of meta-

heuristic algorithms to 2D strip packing problems,” Artificial Intelligence Review,

vol. 16, pp. 257–300, 2001.

[62] Hormozi, A. M. and Khumawala, B. M., “An improved algorithm for solving

a multiperiod facility location problem,” IIE Transactions, vol. 28, pp. 105–114,

1996.

[63] Hsiao, J. J., Tang, C. Y., and Chang, R. S., “An efficient algorithm for

finding a maximum weight 2-independent set on interval graphs,” Information

Processing Letters, vol. 43, pp. 229–235, 1992.

[64] http://www.fox11az.com/news/topstories/stories/arizona-20090117-flu-

pandemic-prepared.4a61884.html, last accessed on June 17, 2009.

[65] Jakobs, S., “On genetic algorithms for the packing of polygons,” European

Journal of Operational Research, vol. 88, pp. 165–181, 1996.

[66] Jones, D. L., “Coordinated local planning for pandemic influenza.” PanFlu

Seminar District 8-2 - May 10, 2007.

[67] Kass, N. E., Otto, J., O’Brien, D., Minson, M., “Ethics and severe pan-

demic influenza: Maintaining essential functions through a fair and considered

response,” Biosecurity and Bioterrorism, vol. 6, no. 3, pp. 227–236, 2008.

[68] Kenyon, C. and Remila, E., “A near-optimal solution to a two-dimensional

cutting stock problem,” Mathematics of Operations Research, vol. 25, pp. 645–

656, 2000.

[69] Keskinocak, P., Wu, F., Goodwin, R., Murthy, S., Akkiraju, R., Ku-

maran, S., and Derebail, A., “Scheduling solutions for the paper industry,”

Operations Research, vol. 50, no. 2, pp. 249–259, 2002.

134

[70] Keskinocak, P., Shi, P., Swann, J., Lee, B., “Seasonality and viral muta-

tion in an influenza pandemic,” working paper, 2009.

[71] Kuehn, A. A. and Hamburger, M., “A heuristic program for locating ware-

houses,” Management Science, vol. 9, pp. 643–666, 1963.

[72] Larson, R. C., “Simple models of influenza progression within a heterogeneous

population,” Operations Research, vol. 55, no. 3, pp. 399–412, 2007.

[73] Lee, B. Y., Bedford, V. L., Roberts, M. S., and Carley, K. M., “Virtual

epidemic in a virtual city: Simulating the spread of influenza in a US metropoli-

tan area,” Translational Research, vol. 151, no. 6, pp. 275–287, 2008.

[74] Lipsitch, M. and et al., “Transmission dynamics and control of severe acute

respiratory syndrome,” Science, vol. 300, pp. 1966–1970, 2003.

[75] Lodi, A., Martello, S., and Monaci, M., “Two-dimensional packing prob-

lems: A survey,” European Journal of Operational Research, vol. 141, pp. 241–

252, 2002.

[76] Lodi, A., Martello, S., and Vigo, D., “Recent advances on two-dimensional

bin packing problems,” Discrete Applied Mathematics, vol. 123, pp. 373–390,

2002.

[77] Lodi, A., Martello, S., and Vigo, D., “Models and bounds for two-

dimensional level packing problems,” Journal of Combinatorial Optimization,

vol. 8, pp. 363–379, 2004.

[78] Longini, I. M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul,

W., Cummings, D. A. T., and Halloran, M. E., “Containing pandemic

influenza at the source,” Science, vol. 309, pp. 1083–1087, 2005.

135

[79] Martello, S., Monaci, M., and Vigo, D., “An exact approach to the strip-

packing problem,” INFORMS Journal on Computing, vol. 15, no. 3, pp. 310–319,

2003.

[80] McDiarmid, C., “Pattern minimisation in cutting stock problems,” Discrete

Applied Mathematics, vol. 98, pp. 121–130, 1999.

[81] MedHeadlines, http://medheadlines.com/2009/05/04/cdc-rethinking-school-

closings-for-swine-flu, last accessed on June 15, 2009.

[82] Meltzer, M. I., Cox, N. J., and Fukuda, K., “The economic impact of

pandemic influenza in the United States: Priorities for intervention,” Emerging

Infectious Diseases, vol. 5, pp. 659–671, 1999.

[83] Mills, C. E., Robins, J. M., and Lipsitch, M., “Transmissibility of 1918

pandemic influenza,” Nature, vol. 432, pp. 904–906, 2004.

[84] Morse, S. S., Garwin, R. L., and Olsiewski, P. J., “Next flu pandemic:

What to do until the vaccine arrives?,” Science, vol. 314, p. 929, 2006.

[85] Narula, S. C. and Ogbu, U. I., “An hierarchal location-allocation problem,”

Omega, vol. 7, no. 2, pp. 137–143, 1979.

[86] Nemhauser, G. L. and Wolsey, L. A., Integer and Combinatorial Optimiza-

tion. Wiley-Interscience Series in Discrete Mathematics and Optimization, John

Wiley and Sons, New York, 1999.

[87] Ohio Department of Health and Ohio Food Industry Foundation,

“Pandemic influenza preparedness guide for retail food establishments.” 2006.

[88] Patel, R., Longini, I. M., and Halloran, M. E., “Finding optimal vac-

cination strategies for pandemic influenza using genetic algorithms,” Journal of

Theoretical Biology, vol. 234, pp. 201–212, 2005.

136

[89] Rahmandad, H. and Sterman, J., “Heterogeneity and network structure in

the dynamics of diffusion: Comparing agent-based and differential equation mod-

els,” Management Science, vol. 54, no. 10, pp. 998–1014, 2008.

[90] Robelen, E. W., “Swine flu disruption has school officials looking for lessons,”

Education Week, 2009.

[91] Roy, T. J. V. and Erlenkotter, D., “A dual-based procedure for dynamic

facility location,” Management Science, vol. 28, no. 10, pp. 1091–1105, 1982.

[92] Rvachev, L. and Longini, I. M., “A mathematical model for the global spread

of influenza,” Mathematical Biosciences, vol. 75, pp. 3–22, 1985.

[93] Sadique, M. Z., Adams, E. J., and Edmunds, W. J., “Estimating the costs

of school closure for mitigating an influenza pandemic,” BMC Public Health,

vol. 8, no. 135, 2008.

[94] Schrijver, A., Lovasz, L., Korte, B., Promel, H. L., and Graham,

R. L., Paths, Flows, and VLSI-Layout. Springer-Verlag New York, Inc., New

Jersey, 1990.

[95] Shulman, A., “An algorithm for solving dynamic capacitated plant location,”

Operations Research, vol. 39, no. 3, pp. 423–436, 1991.

[96] Sleator, D., “A 2.5 times optimal algorithm for packing in two dimensions,”

Information Processing Letters, vol. 10, no. 1, pp. 37–40, 1980.

[97] Smith, D. J., “Predictability and preparedness in influenza control,” Science,

vol. 312, pp. 392–394, 2006.

[98] Spinks, B. and Motorola, Inc., Introduction to Integrated Circuit Layout.

Prentice-Hall, New Jersey, 1985.

137

[99] Steinberg, A., “A strip-packing algorithm with absolute performance bound

2,” SIAM Journal on Computing, vol. 26, no. 2, pp. 401–409, 1997.

[100] Sweeney, D. J. and Tatham, R. L., “An improved long run model for

multiple warehouse location,” Management Science, vol. 22, no. 7, pp. 748–758,

1976.

[101] Szymanski, T. G., “Dogleg channel routing is NP-complete,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 4,

no. 1, pp. 31–41, 1985.

[102] Teghem, J., Pirlot, M., and Antoniadis, C., “Embedding of linear pro-

gramming in a simulated annealing algorithm for solving a mixed integer pro-

duction planning problem,” Journal of Computational and Applied Mathematics,

vol. 64, pp. 91–102, 1995.

[103] Trust for America’s Health, “Pandemic flu preparedness: Lessons from

the frontlines.” 2009.

[104] Umetani, S., Yagiura, M., and Ibaraki, T., “One-dimensional cutting

stock problem to minimize the number of different patterns,” European Journal

of Operational Research, vol. 146, pp. 388–402, 2003.

[105] U.S. Census Data, www.census.gov/main/www/cen2000.html, last accessed

on January 15, 2008.

[106] Vanderbeck, F., “Exact algorithm for minimising the number of setups in

the one-dimensinonal cutting stock problem,” Operations Research, vol. 48, no. 6,

pp. 915–926, 2000.

[107] Viboud, C., Boelle, P., Cauchemez, S., Lavenu, A., Valleron, A.,

138

Flahault, A., and Carrat, F., “Risk factors of influenza transmission in

households,” British Journal of General Practice, vol. 54, pp. 684–689, 2004.

[108] Wallinga, J., Teunis, P., and Kretzschmar, M., “Using data on social

contacts to estimate age-specific transmission parameters for respiratory-spread

infectious agents,” American Journal of Epidemiology, vol. 164, no. 10, pp. 936–

944, 2006.

[109] World Health Organization, “Avian influenza: Assessing the pandemic

threat.” 2005.

[110] World Health Organization Writing Group, “Nonpharmaceutical in-

terventions for pandemic influenza, national and community measures,” Emerg-

ing Infectious Diseases, vol. 12, no. 1, pp. 88–94, 2006.

[111] Wu, J. T., Riley, S., Fraser, C., and Leung, G. M., “Reducing the

impact of the next influenza pandemic using household-based public health in-

terventions,” PLoS Medicine, vol. 3, no. 9, pp. 1532–1540, 2006.

[112] Wu, J. T., Riley, S., and Leung, G. M., “Spatial considerations for the al-

location of pre-pandemic influenza vaccination in the United States,” Proceedings

of the Royal Society B, vol. 274, pp. 2811–2817, 2007.

[113] Yanasse, H. H. and Limeira, M. S., “A hybrid heuristic to reduce the num-

ber of different patterns in cutting stock problems,” Computers and Operations

Research, vol. 33, pp. 2744–2756, 2006.

[114] Zhang, D., Liu, Y., Chen, S., and Xie, X., “A meta-heuristic algorithm

for the strip rectangular packing problem,” Lecture Notes in Computer Science,

vol. 3612, pp. 1235–1241, 2005.

139

VITA

Ali Ekici was born in Kırşehir, Turkey. He received Bachelor of Science degrees

in Industrial Engineering and Mathematics from Middle East Technical University in

2003. After graduation, he started pursuing his Ph.D. in the H. Milton Stewart School

of Industrial and Systems Engineering at the Georgia Institute of Technology. He

received a Master of Science degree in Operations Research from Georgia Institute of

Technology in 2006. His research experience and interests are in the field of emergency

response logistics, network design/expansion, dynamic routing, decentralized decision

making and industry applications of scheduling/packing.

140

