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SUMMARY

In this work, I view incremental experiential learning in intelligent software

agents as progressive agent self-adaptation. When an agent produces an incorrect

behavior, then it may reflect on, and thus diagnose and repair, the reasoning and

knowledge that produced the incorrect behavior. In particular, I focus on the self-

diagnosis and self-repair of an agent’s domain knowledge. The implementation of

systems with the capability to self-diagnose and self-repair involves building both

reasoning processes capable of such learning and knowledge representations capable

of supporting those reasoning processes. The core issue my dissertation addresses

is: what kind of metaknowledge (knowledge about knowledge) may enable the agent

to diagnose faults in its domain knowledge? In providing a solution to this issue,

the central contribution of this research is a theory of the kind of metaknowledge

that enables a system to reason about and adapt its conceptual knowledge. For this

purpose, I propose a representation that explicitly encodes metaknowledge in the

form of procedures called Empirical Verification Procedures (EVPs). In the proposed

knowledge representation, an EVP is associated with each concept within the agent’s

domain knowledge. Each EVP explicitly semantically grounds the associated concept

in the agent’s perception, and can thus be used as a test to determine the validity of

knowledge of that concept during diagnosis.

I present the formal and empirical evaluation of a system, Augur, that makes

use of EVP metaknowledge to adapt its own domain knowledge in the context of a

particular subclass of classification problem that I call compositional classification, in

which the overall classification task can be broken into a hierarchically organized set

xii



of subtasks. I hypothesize that EVP metaknowledge will enable a system to auto-

matically adapt its knowledge in two ways: first, by adjusting the ways that inputs

are categorized by a concept, in accordance with semantics fixed by an associated

EVP; and second, by adjusting the semantics of concepts themselves when they fail

to contribute appropriately to system goals. The latter adaptation is realized by al-

tering the EVP associated with the concept in question. I further hypothesize that

the semantic grounding of domain concepts in perception through the use of EVPs

will increase the generalization power of a learner that operates over those concepts,

and thus make learning more efficient. Beyond the support of these hypotheses, I also

present results pertinent to the understanding of learning in compositional classifica-

tion settings using structured knowledge representations.
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CHAPTER I

INTRODUCTION

It is generally agreed in AI that the capability of metareasoning, reasoning about

reasoning, is essential for achieving human-level intelligence [10] [75] [74] [103]. A

canonical metareasoning architecture is depicted in Figure 1. Metareasoning systems

extend the basic agent view of a software system, where the program receives percepts

from and acts within an environment (called the object level in Figure 1), to include

a reflective layer that monitors the agent processing and exerts control over it, e.g.

by altering reasoning strategies being used at the object level if it becomes apparent

that progress is not being made. Past AI research has shown that metareasoning is

useful for control of reasoning [24] [104] [45] [44] [91], bounding of computations [48]

[95] [47], self-explanation [42] [41] [22] [21] [39], method selection [80] [90], impasse

resolution [63], revision of conclusions [27], revision of reasoning processes [108] [65]

[86] [9] [102] [104] [105] [22] [87] [85] [85] [38] [99] [59], refinement of indices [33] [80],

and guiding of reinforcement learning [121] [120] [122] [5] [99]. Cox [20] and Anderson

& Oates [4] provide a useful review of AI research on metareasoning.

AI research on metareasoning for agent self-adaptation has generally focused on

modifying the agent’s reasoning processes. The need for self-adaptation of course

arises because intelligent agents typically operate in dynamic task environments. It

is useful to make a few distinctions here. Firstly, adaptations to an agent can be

retrospective (i.e., when the agent fails to achieve a goal in its given environment, [9]

[109] [110] [102] [104] [105] [22] [75] [83] [87] [38] [99] [59] [65] [128]), or proactive (i.e.,

when the agent is asked to operate in a new task environment, e.g., [86], [87] [85]

[59]). Secondly, adaptations can be either to the deliberative element in the agent

1



Figure 1: Canonical metareasoning architecture, adapted from [19].

architecture [9] [128] [102] [104] [105] [22] [87] [85] [85] [38] [99] [59] [108] [65] [86], or

the reactive element [111], or both. Thirdly, adaptations to the deliberative element

may be modifications to its reasoning process (i.e., to its task structure, selection of

methods, or control of reasoning, e.g., [9] [108] [86]), or to its domain knowledge (i.e.,

the content, representation and organization of its knowledge, [65] [128] [80] [53] [54]

[55] [57] [56] [58]), or both.

A core and longstanding problem in self-adaptation is that of credit (or blame)

assignment [98] [75]. It is useful to distinguish between two kinds of credit assignment

problems: temporal and structural. In temporal credit assignment, given a sequence

of many actions by an agent that leads to a failure, the task is to identify the actions(s)

responsible for the failure. Reinforcement learning is one method for addressing

the temporal credit assignment problem [114]. In structural credit assignment, or

diagnosis, given an agent composed of many knowledge and reasoning elements that

fails to achieve a goal, the task is to identify the element(s) responsible for the failure.

Metareasoning for self-adaptation typically addresses the problem of structural credit

assignment [121] [122], though it can also be used to guide reinforcement learning [120]
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[5]. It is worth noting the close relationship between agent self-adaptation and agent

learning: the use of metareasoning for self-adaptation views learning as a deliberative,

knowledge-based process of self-diagnosis and self-repair.

As indicated above, existing AI research on metareasoning for self-adaption has

generally focused on modifying the agent’s reasoning processes. When required to

reason about and adapt its own reasoning process, an agent may in many cases ben-

efit from access to an explicit representation of that process (often called a model),

including some knowledge about what the various reasoning elements represented

in the model are meant to achieve. Knowing something about the desired results

of the execution of a reasoning element is important because this knowledge allows

the reasoner to identify unexpected behavior and thus likely malfunctions. Without

any notion of how a thing is meant to behave, there is no reasonable basis to make

judgements about its actual behavior. Notice that there is a predictive character to

the knowledge used by the agent for self-diagnosis – expectations associated with

reasoning elements will be either respected or violated in practice, forming the basis

for the agent’s self-diagnosis. When diagnosing problems in its reasoning process, an

agent may in some cases localize a fault to a primitive task that is directly imple-

mented by domain knowledge. In such a case, we would like the agent to be able to

reflect upon and correct the impugned knowledge. A concrete example of this type of

metareasoning scenario is given in the following subsection. In this dissertation, we

describe work on this important problem, enabling metareasoning agents to reflect

upon and modify the agent’s domain knowledge. The central question addressed by

this research is: what is the form of metaknowledge that will be useful to an agent in

reasoning over and adapting its own knowledge? The overarching hypothesis adopted

by this work is that, analogous to the predictive knowledge used in self-adaptation of

reasoning process, knowledge about domain knowledge (metaknowledge) should also

be specified in the form of verifiable predictions.

3



A major contribution of this work is in laying the groundwork for a theory of

metareasoning-based adaptation of domain knowledge through a refinement of this

general hypothesis. In refining the overarching hypothesis stated above, the next

question that arises is: how can one explicitly operationalize the verifiable predic-

tions implied by domain knowledge such that the agent that uses the knowledge

can automatically check the correctness of that domain knowledge? The answer we

propose is that each piece of an agent’s knowledge should have associated with it

procedures consisting of sequences of actions and observations in the environment

that can be used to test the veracity of an associated piece of domain knowledge.

We call these pieces of metaknowledge Empirical Verification Procedures (EVPs),

and hypothesize that they are a form of metaknowledge that will enable a system

to successfully extend self-diagnosis to include domain knowledge, as well as adapt

knowledge that is identified as faulty. An interesting conceptual implication of this

hypothesis is that domain knowledge with associated EVPs acquires its semantics

through grounding in perception, because that knowledge will be considered correct

only if it leads to accurate predictions about perception and modified to conform to

that ideal of correctness otherwise.

Fixing the semantics of concepts in perception with EVPs also constrains the

expressivity of those concepts, as they are free only to express knowledge consistent

with the perceptual expectations to which they are tied. For this reason, we expect

that concepts within an overall knowledge structure that are semantically “pinned”

with EVPs will be learned more quickly (in terms of the number of examples required

to learn the concept) than those that are not. Chapter 5 describes our empirical

evaluation of this hypothesis.

An additional, substantial benefit of explicitly encoding an agent’s conceptual

semantics in such a procedure is that the procedures themselves become first class

objects that can be operated upon. In this way, an agent can change the semantics of its

4



own concepts automatically if there is reason to believe that an altered concept would

better contribute to the solution of the overall classification problem. Experimental

results with such adaptations are described later, in Chapter 6. Given that an agent

has the capability to alter the sets of equivalence classes into which it abstracts

perceived scenarios, a question is immediately raised: upon what basis should an

agent decide to alter the semantics of one of its concepts? Or, to state the question

positively, what makes a particular abstraction useful? The answer given by this

research leads to a second, related but distinct hypothesis that we adopt with respect

to knowledge, that a concept’s value ultimately stems from its ability to support action

selection. In practice, this means that when an agent sees evidence that one of

its concepts is not adequately playing its role in terms of supporting the successful

achievement of the agent’s tasks, the agent should take steps to directly modify that

concept’s semantics by altering the associated EVP. We specifically hypothesize that

the incorporation of such mechanisms will make an agent more successful at achieving

its tasks when some of its concepts may have suboptimal semantics in terms of their

ability to support those tasks. This hypothesis is tested empirically in Chapter 6.

In order to test the hypotheses enumerated in the preceding paragraphs, we must

refine them still further within the context of a specific problem so that we arrive

at an implementable level of detail. Since classification is a ubiquitous task in AI

([43] [15]), we have chosen to consider the problem of using metaknowledge for re-

pairing classification knowledge when the classifier supplies an incorrect class label.

More specifically, we consider the subclass of classification problems that can be

decomposed into a hierarchical set of smaller classification problems; alternatively,

problems in which features describing the world are progressively aggregated and

abstracted into higher-level abstractions until a class label is produced at the root

node. This subclass of classification problems is recognized as capturing a common

pattern of classification (e.g., [37] [97]). In fact, this class of problems is so common

5



that Chandrasekaran ([13] [14]) identified it as a Generic Task. We will call this

classification task compositional classification, and the hierarchy of abstractions an

Abstraction Network. In particular, we consider the problem of retrospective adapta-

tion of the content of the intermediate abstractions in the Abstraction Network (and

not its structure) when the classifier makes an incorrect classification.

Compositional classification is a particularly interesting domain in which to test

the efficacy of EVP-based self-adaptation not only because it appears so commonly

within AI systems, but also because of the somewhat indirect relationship between

concepts within a classification hierarchy and the actions that are taken by an agent

in pursuit of its goals. A top-level classification, which is directly produced by a non-

compositional, monolithic classifier, and ultimately produced by any type of classifier,

is typically tightly integrated with action selection in a complete agent architecture.

Therefore, it is likely that process-level expectations about the action selected based

upon a top-level classification will serve to verify that classification. That is, the key

prediction an agent makes through such a classification is that a certain action will

have a desired consequence. In contrast, intermediate classifications within a hierar-

chy have one major purpose – to support the production of a correct top-level classifi-

cation (and ultimately, action selection). So, for these intermediate classifications, no

individual verification will take place in the course of the agent’s normal processing.

It is for this reason that EVPs are most pertinent within structured knowledge rep-

resentations. And indeed, the notion of deliberative self-diagnosis makes sense only

within such representations.

Refining our overall hypotheses in the context of compositional classification means

that intermediate abstractions in the Abstraction Network are chosen such that each

abstraction corresponds to a prediction about percepts in the world, metaknowledge

comes in the form of verification procedures (EVPs) associated with the abstractions,
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and metareasoning invokes the appropriate EVPs to perform structural credit assign-

ment and then adapt the abstractions. The EVPs explicitly encode the grounding

of intermediate abstractions in percepts from the environment, and will be modified

when the agent sees evidence that the associated abstraction fails to support ap-

propriate inference at the parent. This architecture for compositional classification

is depicted in Figure 2. To support empirical evaluation of our theory within the

domain of compositional classification, we have implemented a system, Augur, that

makes use of EVPs for self-adaptation of compositional classification knowledge. In

the remainder of this thesis we illustrate, formalize and evaluate the use of EVPs for

self-adaptation of domain knowledge in Abstraction Networks, and present empirical

results obtained by applying Augur in both synthetic and real domains.

These hypotheses, and the corresponding observation about the predictive nature

of the knowledge used to adapt reasoning processes, suggest an elaboration of the

canonical metareasoning architecture of Figure 1, depicted in Figure 3. In the view of

metareasoning taken in this work, the meta-level detects errors in processing and/or

knowledge at the object level based on violations of expectations expressed in terms

of the environment. Thus, the meta-level needs to observe not only the object level,

but also the ground level. Further, when problems are identified at the object level

by this monitoring, the meta-level may need to cause the system to take some ac-

tions in the environment in order to gather more information needed to resolve the

problems. For example, the meta-level may execute EVPs at intermediate nodes in a

classification hierarchy to determine which pieces of knowledge are responsible for an

observed top-level classification error. Finally, as shown in Figure 2, metaknowledge

used by the meta-level process may be directly distributed over the object level knowl-

edge structures rather than being strictly confined to separate representations of the

meta-level – here, EVPs are encoded as part of an agent’s hierarchical classification

knowledge.
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Figure 2: Hierarchical classification knowledge structure with Empirical Verification
Procedures grounding concepts in perception.
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Figure 3: Elaborated metareasoning architecture.

1.1 Problem Domain

The general problem area in which we test the effectiveness of EVPs in enabling

efficient diagnosis and adaptation of domain knowledge is classification. Here, we

will consider a general classification problem to be one that requires the prediction

of a class label, t, given some set of features (random variables), F , the values of

which carry at least some information about the probable value of the class label. A

problem instance is obtained by jointly sampling F ∪{t}, and providing the obtained

values of the variables in F to the classification system. The system is considered to

have correctly classified the example if it accurately produces the (hidden) sampled

value of t, and incorrect otherwise. Here we are concerned with classification learning,

where the classification system is not imbued a priori with complete knowledge of the

function from features to most probable classification labels, but must instead infer

this function from experience.

Given this description of the overarching classification problem, let us now step
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Figure 4: FreeCiv agent process model.

back and describe in detail a more specific class of learning problems, compositional

classification tasks, a subclass of which is used to test the hypotheses of this research.

We begin by providing an example of compositional classification.

1.1.1 Introductory Example

To make the problem concrete, we will present an example from the turn-based strat-

egy game called FreeCiv (www.freeciv.org). Figure 4 depicts an example of a partially

expanded process model for an agent that plays the game. This model is expressed in

a teleological modeling language, Task-Method Knowledge Language (TMKL) [86].

There is more description of TMKL in Chapter 8, but for the purposes of this discus-

sion it is sufficient to understand that Figure 4 can be understood as a task-subtask

decomposition of the game playing agent’s processing.

On each turn in a game of FreeCiv, the agent depicted in Figure 4 must select a

compound action that consists of setting various parameters and moving units such
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as military units and “worker” units, called settlers, that can improve terrain or

build new cities. Building new cities on the game map is a crucial action, as each city

produces resources on subsequent turns that can then be used by the player to further

advance their civilization. The quantity of resources produced by a city on each turn

is based on various factors, including the terrain and special resources surrounding the

city’s location on the map, and the skill with which the city’s operations are managed.

The agent modeled in Figure 4 handles decisions about moving units to build cities

in the subtask Select Build City Action. Consider what happens when meta-level

monitoring detects that the game playing agent has made some error, perhaps failing

in its overall goal of winning a game. At this point, a diagnostic procedure like

that implemented in the metareasoning system REM [86] is engaged, and the agent

reasons over its self-model of object level processing in order to localize the cause for

failure. In some situations, this process of self-diagnosis may lead to the identification

of some primitive task in the process model as a cause for failure. Primitive tasks

are those that are directly achievable by applying some knowledge and/or taking

some action in the world. Frequently, these primitive tasks may fundamentally be

compositional classification tasks. In this work, we consider the self-diagnosis and

self-repair problem that arises when the agent identifies a task such as the Select

Build City Action primitive task as the cause of a failure, and the agent must reflect

upon and correct its domain knowledge.

In the current example, when our agent selects the action for a unit that is to

build a city, a crucial decision is whether the location on the game map currently

occupied by the unit is suitable for the placement of the new city. We will judge

the quality of a potential city location based upon the quantity of resources that we

expect a city built in that location to produce over time. This decision is an example

of a compositional classification task. Figure 5 illustrates a knowledge hierarchy for

this task used by our FreeCiv game-playing agent.
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Figure 5: FreeCiv city production estimate classifier.
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1.1.2 Compositional Classification

We formally define compositional classification as follows.

Let t be a discrete random variable representing the class label. Let S = {s : s is

empirically determinable and h[t] > h[t|s]}, where h[x] denotes the entropy of x. S is

a set of discrete random variables that have nonzero mutual information with the class

label and are “empirically determinable.” Each member s of S represents a related set

of equivalence classes, where each value taken by s is a unique equivalence class. In

the case of FreeCiv, things like the future population growth of the potential city and

the amount of food provided by terrain squares around the city location constitute S.

If, as above in the description of the general classification problem, we call F the set

of features provided to the classification system before classification, we have F ⊆ S.

A task instance is generated by jointly sampling the variables in S ∪{t}. In FreeCiv,

the game engine handles this for us by randomly generating a game map and handling

game dynamics that govern the relationships among the variables in S. Empirical

determinability captures the notion of predictivity, indicating that each equivalence

class represents some verifiable statement about the world. In the simplest case,

empirical determinability means that the value taken by the variable in a given task

instance is directly observable. In general, some experiment (a branching sequence

of actions and observations) may need to be performed in order to observe the value

of some s ∈ S. The simple case can be seen as a trivial experiment consisting of

zero actions and a single observation. In FreeCiv, all of the values can be directly

observed, though some (those members of S not in F ) can be observed only after

classification has occurred.

Each experiment has some nonnegative cost. We denote by Cb(s) the cost of the

experiment required to determine s before predicting the class label. The task is

constrained by limited resources; only a fixed cost Rb may be incurred before the
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decision about the class label must be produced1. For this reason, the values of only

a proper subset of S will in general be known when the prediction must be produced.

Let K ⊆ S with
∑

k∈K Cb(k) ≤ Rb be the information available at the time that

classification must be performed. In the FreeCiv task, the resource constraint is time.

In order to be useful, the prediction of city resource production must be made before

the city is actually constructed and its resource production rate can be observed.

Thus, we cannot directly observe the proper values of non-leaf nodes at inference

time, but can obtain the true values later in order to learn.

Learning is required in part because the distributions P(s|K), s ∈ S∪{T}, K ⊆ S

are not assumed to be given, but must be inferred from experience. In this way, we

are able to relax the requirements on the knowledge engineer constructing the agent’s

knowledge; if knowledge about the distributions is available a priori, it is possible

to initialize the classification knowledge accordingly and decrease the demands on

learning. But, when this knowledge is not available, not complete, or not correct, we

require the system to learn the correct values.

After the predictive class label is produced and some time passes, the correct

class label is determined and some additional quantity of resources Ra is allotted to

the learner. These resources are then used to determine the values of other vari-

ables empirically before the next task instance is presented. The costs of performing

experiments before predicting the class label may not be the same as the costs of

performing experiments afterwards. For this reason, we denote by Ca(s) the cost

of performing experiment s after class label prediction. For some domains we may

have Ca = Cb, but this need not be true in general. In the subclass of compositional

classification problems addressed in this dissertation, there is a proper subset of S

1Actually, these costs and resources are better represented as vectors, as there may be multiple
dimensions of cost, where each dimension has its own constraint.
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that is always available before classification and the remainder of S is never avail-

able until after classification. This is a special case of the general domain, where

Rb = 0, Ra =
∑

s∈S∪{t}Ca(s) and there is some (proper) subset of S s.t. Cb(x) = 0

for all x in the subset. This characteristic is important because it makes the value

of information problem trivial. In this dissertation, we focus exclusively on problems

with this characteristic in order to avoid the need to incorporate strategies for de-

termining information value at this time. Generalization of the technique remains

open as a potential direction for future work. Because this subclass of compositional

classification problems is quite common, where the constraining costs are temporal

and either 0 or ∞ before classification2, this subset of problems is far from empty

and is interesting in its own right. However, it is worth identifying the more gen-

eral class of problems with arbitrary cost values on experiments because it is likely

that techniques proposed for the problem subclass considered here can be extended to

cover the general case by drawing from work on information value theory [49] [52] and

budgeted learning [68]. Information cost is also taken into account in active learning

[117], though the setting in active learning is different from that considered here (see

Section 8).

Success at this learning task can be measured in terms of the final classification

accuracy achieved, the rate at which accuracy improves as examples are presented,

and the resources saved. Alternatively, resources saved during one instance could

be made available for use during subsequent instances. In this case, the resources

remaining at the end of the sequence contribute to the success measure. For the

subclass of problems we consider here, we consider resource conservation to be a less

important metric.

2Of course, there is also a class of problems where the constraints are temporal and take arbitrary
real values. For instance, this occurs when the experiments that must be performed to determine
values before classification are non-trivial, but there is some fixed time horizon in which a decision
must be made. Such problems once again require judgements about value of information, and thus
are not examined here.
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As a secondary consequence of the choice of compositional classification problems

as the problem setting in which to test the use of EVPs for adaptation of domain

knowledge, this research can be seen as having some impact on two simultaneous

problems within compositional classification. First is the problem of enhancing the

efficiency in terms of time and/or number of required examples of existing numerical

techniques used for compositional classification problems. Second is the problem

of making efficient knowledge-based techniques for compositional classification more

flexible by adding the capacity for automatic diagnosis and repair.

Another secondary contribution of this research is in presenting this particular

framing of the classification problem. This work takes a strongly agent-based view

of the classification learner – we view the learner as operating within a dynamic en-

vironment that supports a rich variety of percepts and actions. As this environment

evolves over time, the agent can interact with it to gather information relevant to

past decisions. This stands in contrast to a more classical view of the classification

problem, where interactions within the environment are narrow and fixed (often re-

stricted to only receiving the correct class label for a given example). Thus, learning

is both an introspective and extrospective process, where “extrospective” indicates

looking outside oneself, in contrast to introspective processes. Under this paradigm,

the agent examines and diagnoses its own knowledge in light of evidence gathered

from the environment – the environment to which that knowledge pertains. The fol-

lowing chapter describes both the representation used to capture this classification

knowledge, and the diagnostic procedures used to support its revision.

1.2 Results and Claims

• Empirical Verification Procedures allow a reflective process to successfully iden-

tify and correct faulty knowledge within a hierarchical classification structure.

(Chapter 4)
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• Empirical Verification Procedures associated with nodes in a classification hier-

archy impose a restriction bias on the hypotheses representable by that knowl-

edge structure, and therefore increase the generalization power of a learner that

makes use of the representation. (Chapter 5).

• Empirical Verification Procedures can be automatically adjusted when the con-

cepts they define are not successful in their functional roles. (Chapter 6)

There are also a number of secondary results that arise due to the choice of

compositional classification as a domain in which to test the use of EVPs for domain

knowledge adaptation:

• Formal and empirical demonstrations of the benefit of using structured knowl-

edge representations for classification. (Chapter 4)

• Empirical evidence that the performance of learners using hypothesis spaces

limited by hierarchical classification structures degrades gracefully as errors in

the structure of the hierarchy are introduced. (Section 4.3)

• A formal demonstration of the conditions under which a “causal backtracing”

diagnostic procedure is optimal. (Section 7.1)

• A description of a design space, comprising a set of parameters and constraints,

within which choices must be made when applying hierarchical classification to

a compositional classification problem. (Chapter 9)
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1.3 Dissertation Outline

The remainder of this dissertation is structured as follows:

2. Applying Reflection to Compositional Classification Knowledge: Pro-

vides a formal description of the key data structures and algorithms in this

work.

3. Experimental Design: Describes the set of experiments we have performed

with Augur.

4. Experimental Results: Presents technical details and analyzes the outcomes

of experiments described in Chapter 3.

5. Learning with Unspecified Concept Semantics: Describes empirical re-

sults with hierarchical classification learners that have fixed semantics at only

some internal nodes, rather than at all nodes as in most of the work described

here.

6. Automatic Concept Refinement: Describes the mechanisms implemented

to automatically refine concepts within a hierarchical classifier, and presents

experimental results.

7. Analysis of Compositional Classification: Details some results relevant to

hierarchical classification.

8. Related Research: Connects the research with relevant topics in Artificial

Intelligence and Machine Learning.

9. Conclusion: States the claims and contributions of the work, both technical

and conceptual.
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Together, these chapters form the basis for a theory of reflective adaptation of

domain knowledge and an instantiation of that theory within the problem setting of

compositional classification.

19



CHAPTER II

APPLYING REFLECTION TO COMPOSITIONAL

CLASSIFICATION KNOWLEDGE

In this chapter, the representational structures used to address the compositional clas-

sification problem and the reasoning processes that operate over those structures are

described formally. We will begin with the central structure in this work, the Empiri-

cal Verification Procedure, which we believe has applications for metareasoning-based

adaptation of domain knowledge beyond the scope of Abstraction Networks, and even

beyond compositional classification problems.

2.1 Empirical Verification Procedures

Definition 1 An Empirical Verification Procedure is a tuple 〈E,O,Cb, Ca〉 where O

is a set of output symbols (output space) and E is a possibly branching sequence of

actions in the environment and observations from the environment concluding with

the selection of an o ∈ O. Cb and Ca are the costs of procedure E before and after

classification, respectively.

We can now be more specific about what makes a set of equivalence classes empir-

ically determinable, a term used more informally in the description of compositional

classification in the prior chapter. Any output space O of an Empirical Verification

Procedure is an empirically determinable set of equivalence classes. So, viewed from

the other direction, a set of equivalence classes is empirically determinable if an Em-

pirical Verification Procedure can be defined with an output space equal to that set

of classes. Note that this definition is in terms of the actions and observations avail-

able to the agent that learns and reasons with the knowledge, making a commitment
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about the way that interaction with the environment is expected to justify and give

meaning to knowledge in this system.

2.1.1 Taxonomy of EVP Types and Related Adaptations

The formal definition of EVPs given above remains silent about the types of actions

and observations that constitute E. If one does not wish to operate upon E, but

simply execute it to verify the application of associated knowledge, this definition is

sufficient. As long as there is some way to execute the EVP and retrieve the result, the

kinds of operations performed are not terribly important from a learning perspective.

However, as noted in Chapter 1, one of the benefits of explicitly representing concep-

tual semantics is that those semantics can then themselves be operated upon directly

by the agent, and automatically adjusted. However, if we wish to encode procedures

for such operations, it becomes important to know more about the kinds of operations

that may be performed by EVPs, and how those procedures might be adjusted. This

section addresses these questions. Following is a taxonomy of operation types that

may be performed within an EVP. While this taxonomy is not necessarily exhaustive,

it is sufficient to cover all of the EVPs used in the work described in this dissertation,

and appears likely to be sufficient for a wide range of applications.

• Act and Continue: Take some action in the environment and continue to the

next operation in the EVP.

• Observe, Branch and Continue: Make some observation from the environ-

ment and conditionally branch based upon the percept’s value, continuing to

the next operation in the EVP along the selected branch.

• Emit Category: Return the value that would have properly predicted the

environmental situation measured by this EVP, and terminate.

• Fail: Abort and terminate, producing no value.
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All branches within EVPs based on these primitives will terminate with either

’Emit Category’ or ’Fail’ operations. A limited number of potentially useful ways to

modify EVPs composed of such building blocks suggest themselves:

• Alter EVP composition, e.g. insert an ’Act’ or an ’Observe/Branch’ along with

new children.

• Adjust the conditions tested within a branch, e.g. change a perceptual threshold

used to choose one branch over another.

• Alter the number of outputs of a branch, e.g. add a new branch choice, adjusting

branching conditions such that the new branch may sometimes be selected.

A particular sub-case of the third modification listed above, specifically increas-

ing the fanout of a branch that leads directly to ’Emit Category’ children, has been

implemented. Empirical results are discussed in Chapter 6. This modification was

of particular interest in this work because many of the EVPs used when experiment-

ing in the real domains, and all of the EVPs used in the synthetic domain, are of

a particular type which we call quantizing EVPs. These EVPs consist of a single

’Observe, Branch and Continue’ operation which leads directly to ’Emit Category’

children. Adding children to the ’Observe, Branch and Continue’ operation (and

making a corresponding adjustment to the branching conditions used by the oper-

ation) has the effect of altering the classification made by the node such that more

information about child values flows through the node – conversely, less information

is lost by the classification being made at the node. The consequences of adjusting

the information loss within nodes in an Abstraction Network are also discussed more

formally in Section 7.3.
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2.2 Abstraction Networks for Compositional Classification

We will now move to the definition of the hierarchical classification structures used for

compositional classification specifically. EVPs, described in the previous section, will

be used to semantically ground concepts within the Abstraction Networks, and will

become crucial in self-diagnosis when classification failures are detected. Informally,

we begin by establishing a node for each s ∈ S ∪ {t}. These nodes are connected

according to the given dependency structure, which we know will result in a hierarchy

based on the given assumptions. This structuring follows the pattern of structured

matching [12] [37]. A structure used for experimentation in the previously discussed

FreeCiv problem is depicted in Figure 5. Each node will handle the subproblem of

learning to predict the value of the variable with which it is associated given the

values of its children, which are the variables upon which the variable to be predicted

has direct (forward) dependency. Organizing the structure of the knowledge to be

learned in this fashion has the benefit of making full use of the dependency structure

knowledge to limit the hypothesis space while being certain not to eliminate any

hypothesis that could be correct, and also yields the proven efficiency benefits of

hierarchical classification [37].

A more formal definition follows.

Definition 2 Here, we will define a supervised classification learner as a tuple 〈I, O, F, U〉,

where I is a set of input strings (input space), O is a set of output symbols (output

space), F is a function from I to O, and U is a function from (i, o) : i ∈ I, o ∈ O

to the set of supervised classification learners that share the same input space I and

output space O. U is an update function that has the effect of changing F based upon

a training example.
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Figure 6: General Abstraction Network architecture with annotations from Defini-
tions 1 and 3.
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Definition 3 An Abstraction Network is recursively defined as follows. A tuple

〈∅, O, L, P, last input, last value〉 is an Abstraction Network, where O is a set of out-

put symbols, L is a supervised classification learner, and P is an Empirical Verifica-

tion Procedure. last input and last value are used to cache input and return values

at AN nodes in order to support the learning procedure (detailed below). A tuple

〈N,O,L, P, last input, last value〉 is an Abstraction Network, where N is a set of

Abstraction Networks. Let I be the set of strings formable by imposing a fixed order

on the members of N and choosing exactly one output symbol from each n ∈ N ac-

cording to this order. The supervised classification learner L has input space I and

output space O, and the Empirical Verification Procedure P has output space O.

Notice that this definition requires Abstraction Networks to be trees, rather than

some more general structure such as DAGs. Some of the algorithms used in this work

do not admit DAGs (e.g. the automatic concept refinement procedures of Chapter

6). It is possible that this work could be generalized to work over more general data

structures, but this is left as future research. Note also that each AN node con-

tains its own supervised classification learner. This means that both learned concept

identification knowledge and the learning algorithm can in principle be selected on a

per-node basis. That is, there is nothing in the definition of ANs that requires ho-

mogeneity in the learning algorithms used within nodes in an AN. However, we have

not performed experiments with mixed learner types. Figure 6 shows the general AN

architecture with annotations from Definitions 1 and 3.

When N is empty, L is trivial and has no use as the input space is empty. In

these cases (the leaves of the AN), the only way to make a value determination is

to invoke P . Because the subproblem considered in this dissertation is restricted to

cases where AN leaves are always determined empirically before classification, this

is not an issue. That is, in the current work, whenever N = ∅, P.Cb = 0. If the

technique is generalized, provisions will have to be made to deal with undetermined
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leaf values. Having described the AN representation, we next turn to reasoning

(performing predictive classification) using an AN.

2.3 Reasoning

In a given task instance, the values of the leaf nodes are fixed by observation. As

described above, in the problem settings considered here, obtaining the values of the

leaf nodes has zero cost, and no other values are available before classification. Each

node with fixed inputs then produces its prediction. This is repeated until the value

of the class label is predicted by the root of the hierarchy. This procedure will produce

the most likely class label based on the current state of knowledge.

The reasoning procedure over an arbitrary AN a is more formally described in Ta-

ble 1. All fields referenced using the “dot” notation use the names from the definitions

of the previous section.

2.4 Self-Diagnosis and Repair

At some time after classification, the true value of the class label is obtained by the

monitoring process. If the value produced by object-level reasoning was correct, no

further action is taken. If the value is found to be incorrect, a self-diagnosis and

repair procedure is followed. The specifics of this procedure are dependent upon the

characteristics of the learner types that are used within nodes and the classification

problem setting. For most of the empirical results detailed in this thesis, the following

procedure is used, beginning with the root of the hierarchy as the “current node” when

external feedback indicates that the top level value produced was incorrect:

1. The true value of each child of the current node is obtained by executing the

associated EVPs.

2. If the predictions of all children were correct, modify local knowledge at the

current node.
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Table 1: Reasoning procedure used to produce a predictive classification from an
Abstraction Network a.

/* Values from Definition 3:

* a.N - a set of ANs. The children of ‘a’.

* a.P - the EVP for ‘a’.

* a.last input - the last input sequence provided to ‘a’.

* a.last value - the last value produced by ‘a’.

* a.L - the learner associated with ‘a’.

*

* Values from Definition 2:

* L.F - the learner’s inference function.

*

* Subfunctions used:

* push back(String i, Value V ):
* Appends the value provided as the second argument

* to the string provided as the first.

*/

begin AN-reasoning(Abstraction Network a)
String i

/* If we are at a leaf, return the result of executing the local

* EVP, which for the domains considered here, is always possible

* at leaves. These values are the ‘‘inputs" to the AN inference

* process. */

if a.N = ∅, return a.P

/* Otherwise, build the input vector for the local learner

* and return the result of applying it. */

forall n ∈ a.N:

push back(i,AN-reasoning(n))
a.last input← i
a.last value← a.L.F (i)
return a.last value

end
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Table 2: Self-diagnosis and self-repair procedure used to correct knowledge stored
in an Abstraction Network a.

/* Values from Definition 3:

* a.P - the EVP for ‘a’.

* a.last value - the last value produced by ‘a’.

* a.N - a set of ANs. The children of ‘a’.

* a.L - the learner associated with ‘a’.

* a.last input - the last input sequence provided to ‘a’.

*

* Values from Definition 2:

* L.U - the learner’s update (learning) function.

*/

begin AN-learning(Abstraction Network a)
Bool flag ← true
if a.P () = a.last value, return true
forall n ∈ a.N

if AN-learning(n) = false, flag ← false
if !flag, return false
a.L← a.L.U((a.last input, a.P ()))
return false.

end

3. Otherwise, recursively repeat this procedure for each child node that was found

to have produced an incorrect prediction.

The procedure for self-repair and self-diagnosis, for an AN a, is more formally

described in Table 2, and illustrated in Figure 7 (note that last value and last input,

used in Table 2, are explained in Section 2.3 above).

Notice that this procedure has a base case when the leaves are reached, as their true

values were obtained before classification, and thus cannot be found to be incorrect

during learning. Also note that some optimizations to the procedure of Table 2 are

certainly possible; for instance, if the procedure finds that a given node’s children have

produced errors, the procedure could, after attempting to repair lower-level errors,
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Figure 7: An example outcome of the diagnostic procedure of Table 2. First, top
level feedback indicates a problem with the overall classification. Then, EVPs within
the hierarchy are progressively executed, resulting in the examination of various per-
cepts. Nodes marked with an “X” were found to have produced incorrect values after
EVP execution, while those with checkmarks were found to be correct. No EVPs
beyond those associated with nodes for which results are shown would be executed in
this case, as diagnosis has located a frontier of correct nodes. Local learning in this
case would occur at the node with a bold border, as it is the only incorrect node with
correct children.
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then check to see whether the higher level node would have produced the correct

value given correct inputs from the children. If not, the procedure could then learn

at that higher level node as well. However, the experiments run in this dissertation

do not make use of such conceivable optimizations.

Depending upon the relative weighting of resource preservation and learning speed

in the evaluation metric, this procedure may be suboptimal, because it implements

the policy of only obtaining information when it is certain that the information will

lead to learning (with the exception of the class label, which is always determined af-

ter prediction). It is likely to be a good policy when resource preservation is weighted

highly against learning speed, and a poor policy when the reverse is true. Some

tuning of the balance between obtaining the correct values of more nodes and pre-

serving resources could be a useful generalization of the technique. However, note

that this choice of policy will not prevent convergence. If we are to consider some

piece of knowledge stored within the hierarchy as incorrect, there must be at least

one situation occurring with nonzero probability where that knowledge will lead to an

incorrect overall result (we take this as the definition of incorrect knowledge). When

this situation arises, the incorrect knowledge will be identified by credit assignment,

and the knowledge will be modified.

2.4.1 Discussion

One point to notice here is that the specific procedure for the modification of local

knowledge is not specified. Any supervised classification learner that satisfies the

definition given in the Section 2.2 is acceptable. A closely related point is that the

representation of the knowledge, and thus the procedure for knowledge application

within each node, is similarly unspecified. This is quite intentional: any knowledge

representation/inference/learning technique can be used within each node. Heteroge-

nous sets of techniques could in principle be used within a single hierarchy. The
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specific technique or set of techniques that will perform best on a given problem

depends on the specifics of the subproblems – choosing learning techniques that ex-

ploit known characteristics of each subproblem will, of course, lead to the best overall

results. For instance, for some kinds of problems it may be that Bayesian learning

of probabilities is the most effective technique at all nodes. In this case, the over-

all learner is somewhat similar to a particular type of Bayes net, augmented with a

learning procedure that is sensitive to knowledge acquisition costs. See the discussion

on related research in Section 8 for a more thorough comparison with Bayes nets,

and Appendix B for an empirical comparison. In other cases, it may make sense

to use Artificial Neural Networks (ANNs) [94] within some or all nodes, in order to

introduce a different kind of inductive bias (based on smooth interpolation) for some

subproblems. Generally, the point is that because the characteristics of the depen-

dencies between members of S ∪{T} are not fixed over the entire domain of interest,

it does not make sense to fix a learning method for the subproblems in the absence

of knowledge, nor is it necessary to do so in order to specify a solution exploiting

domain characteristics that are given. Of course, when instantiating this technique

for a specific domain, these choices must be made.

It is important to note here that, based upon the choice of learner type(s) to be

used within an AN, other choices such as the diagnostic procedure to be followed

may be constrained. For example, some learner types such as ANNs depend upon

training examples being drawn from a stable distribution. The diagnostic procedure

discussed in this section cannot make such a guarantee. However, we have identified

at least one simple diagnostic procedure that can make this sort of guarantee: execute

all EVPs within an AN for each diagnostic episode, performing this operation even

when the top-level classification was found to be correct. This linked pair of choices,

learner type and diagnostic procedure, illustrates a tradeoff that must be considered

when a designer is instantiating an AN for a specific problem. Is it more important
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to use a learner type with a particular bias? Or to use a diagnostic procedure that

parsimoniously executes EVPs? The answer will depend upon the relative costs of

example acquisition and EVP execution within the domain addressed. We return to

the discussion of these issues in Section 7.1, which demonstrates the parsimony of

this section’s diagnostic technique under certain assumptions.

To again return to the comments at the end of the last chapter, where differences

between the agent-oriented view of classification learning adopted by this work and

the more classical view were highlighted, notice that in learning techniques based upon

the classical view, much of the knowledge engineering effort is implicitly represented

from the learning agent’s point of view, hidden, for example, in the construction of

the feature set. In contrast, this work calls for the explicit representation of the con-

nection between equivalence classes used by the classifier and raw perception. By

including an explicit representation of these abstractions, we both enhance the in-

spectability of the knowledge structures used for classification by effectively annotat-

ing intermediate nodes with semantics1, and also allow these abstractions themselves

to be directly operated upon during learning. In this vein, in addition to the content

learning procedure described above, where the knowledge contained at nodes within

the network is modified, we have also done some work on automatically tuning the

equivalence classes at nodes within the hierarchy. This translates to automatically

adjusting O, the set of output values, at nodes within the hierarchy, adjusting the

concepts represented by those nodes. Changing the set of output values at a node

hinges on the ability to adjust the node’s EVP, as noted above in Section 2.1, such

that newly added output values will be learned to apply to some set of situations,

or deleted output values will be learned to be obsolete. Finding the right level of

1This feature of the EVP-based metareasoning approach to classification learning is also likely
to have other benefits, such as facilitating portions of an AN structure trained on one top-level
problem to a different top-level problem. This potential benefit also stems from the fact that under
EVP-based learning, each portion of the AN trained has known semantics.
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information loss at nodes in the hierarchy is important because too much loss (i.e.

too few output values) will provide insufficient information to the parent node and

cause learning failure, while too little information loss decreases the generalization

power of the network for learning (see analysis in Section 7.3). At the limit, if there

is no information loss at any node in the network, the representation becomes equiv-

alent to a flat representation. Because too much information loss results in learning

failures, identifying these failures will help to identify locations at which information

loss should be decreased by increasing the available output values. Given this capa-

bility, we can start with very high information loss at each node and allow loss to

be decreased as breakdowns of the learning process are identified. Our experiments

using such a procedure are described in Chapter 6.
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CHAPTER III

EXPERIMENTAL DESIGN

In this chapter, we describe the set of experiments that we have performed with the

Augur system primarily in order to test the efficacy of EVPs in allowing an agent to

reflect upon and adapt its own domain-specific classification knowledge. Given that

we are working within the setting of compositional classification, many of these exper-

iments also provide results relevant to characteristics of compositional classification

and particularly the use of hierarchical classification knowledge structures to learn

within the problem setting. The usefulness of EVPs is supported by each of the ex-

periments, which demonstrate the generality of the usefulness of EVP metaknowledge

along several dimensions:

• Types of learners used within nodes: We have experimented with rote table-

based learners, k-Nearest Neighbor learners and Artificial Neural Networks op-

erating within AN nodes.

• Problem domain: We have experimented in the game FreeCiv, a Dow Jones

Industrial Average prediction problem, and a sports prediction problem as well

as a synthetic domain.

• Quality of knowledge engineering: We have systematically degraded the

quality of knowledge engineering in two ways, by removing individual nodes

from an AN hierarchy and by removing entire subtrees.

These experiments, taken together, demonstrate the effectiveness of EVP-based

reflection over and adaptation of metaknowledge under a variety of conditions within

the general domain of compositional classification. As such, they support the first
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major hypothesis put forth in Chapter 1, that Empirical Verification Procedures do

allow a reflective process to successfully identify and correct faulty knowledge within

a hierarchical classification structure. Further, they demonstrate some characteris-

tics of Abstraction Networks, or more generally, hierarchical classification knowledge

structures:

• Structured knowledge representations provide a substantial restriction bias on

a learner’s hypothesis space, increasing generalization power and thus requiring

fewer training examples to reach minimum error. This benefit is independent

of the learner type used within nodes in the classification hierarchy.

• The performance of learners using hypothesis spaces limited by hierarchical

classification structures degrades gracefully as errors in the structure of the hi-

erarchy are introduced.

We also wish to determine whether, beyond the hierarchical knowledge representa-

tion integral to ANs, there is also generalization power imparted by the use of EVPs.

EVPs essentially fix, or pin the semantics of nodes within an AN structure by defining

the appropriate values that should be produced in any situation. Intuitively, this kind

of semantic pinning should reduce the number of hypotheses that are expressible by

a knowledge representation, and as such, represent a restriction bias that increases

generalization power. We test this hypotheses in the experiments of Chapter 5, where

we compare the performance of ANs that have had EVPs removed from some of their

nodes with ANs that have EVPs at all nodes.

Another very key set of experiments, that we describe in Chapter 6, speaks directly

to another particular sense in which EVP metaknowledge is useful. In the experiments

of this section, the definition of some concepts in an AN learner do not, by design,

provide adequate information to their parents. However, we have implemented an
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automatic mechanism by which this deficiency may be detected through reflection,

and automatically corrected. These experiments demonstrate directly the power that

is gained by imbuing a system with explicit, first class knowledge of both the meaning

(via EVPs) and functional role (via AN structure) of its knowledge. Regardless of

the relative merits of other classification systems (which in many cases could likely

be integrated with both ANs and EVPs, or at least the latter), the capability to

automatically operate on concept semantics cannot be achieved without explicit, ac-

cessible representation of those semantics – and this is the core idea of the EVP.

This set of experiments provides evidence to support the second major hypothesis

proposed in Chapter 1, that Empirical Verification Procedures can be automatically

adjusted when the concepts they define are not successful in their functional roles.

As a secondary set of results, we also provide an empirical comparison of the

performance of Bayesian Networks (BNs) vs. that of Abstraction Networks under a

variety of conditions within the synthetic domain. These experiments are presented

in Appendix B. While these experiments have no bearing upon the claims made in

this dissertation, as EVP-based reflective learning could be used equally well within

the context of BNs as ANs, the results are somewhat interesting in their own right

and so are included for the sake of completeness. These experiments demonstrate

some advantage in terms of AN learning rate and computation time as problem size

increases. It is likely that these advantages are due to the fact that ANs pass less

information from node to node during inference (ANs commit, in effect, to the most

likely value at each node, while BNs pass a distribution over all values). It is clear

why this difference between ANs and classical BNs would lead to a difference in

computational effort during inference, and it seems likely that observed differences in

learning rate are similarly attributable. Thus, one could likely match the performance

of ANs in these experiments by using BNs that commit fully to the most likely value

at each node during inference (setting the probability of the most likely value to 1
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and all other values to 0). However, once again this experiment is quite peripheral to

the thesis here, as EVPs could equally well be used in BN learning.

3.1 Rote Learners

As noted above, we have integrated three types of learners with the Augur system,

and we have performed some experiments with each of them. While ANN and kNN

learners are well known (we describe relevant parameters in detail in Chapter 4), in

this section we define the table-based rote learners with which we also experiment.

These table-based rote learners are an instance of the supervised classification learners

of Definition 2. Essentially, these rote learners simply maintain a table mapping from

input combinations directly to output values. There is a bit more complexity in these

learners that stems from the desire to imbue them with some modicum of robustness

in the face of noise.

Definition 4 A rote learner is a tuple 〈I, T,O, F, U〉, solving a classification problem

that requires mapping a finite input space I onto a finite set of contiguous integers

O. T is a finite set of contiguous integers that is symmetric about zero, and we call

(|T | − 1)/2 the “learning threshold” of the rote learner. F is a function from I to O,

implemented as a composition of two functions, F1 and F2. F1 maps from I to O×T

and F2 maps from O × T to O. F2 is defined such that ∀t ∈ T, o ∈ O, (o, t)→ o.

Given an input example (i, o′), U returns a new rote learner 〈I, T,O, F ′, U ′〉 where

F ′ is a composition F2 ◦ F ′1. ∀x 6= i, F ′1(x) = F1(x). Let F1(i) = (o, t). Then, if

t+(o′−o) ∈ T , F ′1(i) = (o, t+(o′−o)). Otherwise, if t+(o′−o) < 0, F ′1(i) = (o−1, 0)

or if t+ (o′ − o) > 0, F ′1(i) = (o+ 1, 0). U ′ is an update to U to embed knowledge of

the new function F ′ such that the next update can proceed by the same logic.

Informally, the rote learner requires indication of a significant error (an (i, o′)

where o′ is quite different from F (i)) or demands some consistency in feedback before

making a change to the classification of a given input. The purpose of F1 is to record
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the amount of error seen so far with respect to a particular input sequence. The

purpose of F2, then, is simply to strip this error information away and return the

desired output value. At each update, the update function U checks whether the

error threshold has been exceeded by looking at the information recorded for the

appropriate input sequence by function F1, updating the output value only if the

threshold has been exceeded in either the positive or negative direction. Otherwise,

the error measure is updated but the output value for the input sequence is not. The

intent of this scheme is to avoid making changes due to noise in input examples. In

the synthetic domain, noise is not an issue, but becomes significant in the additional

domains reported on below. Table update learners as described here are only sensible

if there is some natural ordering of class labels; otherwise, taking the difference of

class labels is not meaningful. However, this limitation as well as the overall simplicity

of rote learners is not a necessary aspect of ANs in general. We have used these very

simple learners in order to demonstrate the power of the framework itself. In this

work, all rote learners in each experimental setting used a threshold of 5, except for

the comparison with Bayesian networks discussed in Chapter B.

Similar rote learners are discussed by Kohavi in [62]. These learners share the

same basic principle as those used in this work – memorize input examples. How-

ever, there are some key differences. First, Kohavi’s rote learners record all input

examples, returning the most common output label seen for training examples with

input features that match those of a query. In contrast, the rote learners described

here maintain no such history of examples, but rather record only the classification

label consistent with most recently seen examples. This difference could impact the

way that these two types of rote learners react in dynamic environments, though

either will eventually adapt to a changed environment. Second, Kohavi’s learners

also maintain a global “most common output class” that is returned when a query

does not match the input features of any observed training example. On the other
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hand, the learners described here would return a random initialization value when

confronted with an input example for which no relevant raining examples have been

seen. Though relatively minor, this added feature of Kohavi’s learners provides a

modicum of generalization power that the rote learners of this work lack. Finally,

and most importantly, Kohavi’s work described in [62] illustrates the generalization

power imparted on rote learners by a principled process of feature selection. His

learning system generalizes over training examples by selectively discarding features

that are found statistically irrelevant to the output class. The rote learners used in

this work are imbued with no such automatic feature selection procedure, and have

no generalization power of their own. All of the generalization power of ANs us-

ing rote learners comes from the hierarchical knowledge structure (demonstrated in

Chapter 4) and from the semantic pinning of nodes within the hierarchy via EVP

(demonstrated in Chapter 5).

In the next three chapters (4, 5 & 6) and Appendix B we describe technical details

of our experiments with the Augur system and analyze the results in detail.
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CHAPTER IV

EXPERIMENTAL RESULTS

In this chapter, we detail empirical results that have been obtained to test several

aspects of EVP-based self-diagnosis and learning. These experiments also demon-

strate some characteristics of Abstraction Networks. All of these experiments make

use of the Augur system’s AN implementation. Results are presented in a synthetic

problem, as well as in three non-synthetic instances of the compositional classifica-

tion problem. Results include tests with table-based rote learners, Artificial Neural

Networks (ANNs) [94] and k-Nearest Neighbor learners (kNNs) [28] working within

AN nodes. Beyond experiments that test the central hypothesis of this thesis, that

EVPs provide adequate metaknowledge for an agent to self-diagnose and repair faults

in its classification knowledge (Sections 4.1 & 4.2), we also describe experiments deal-

ing with the effects of faulty structural knowledge engineering on AN performance

(Section 4.3).

4.1 Synthetic Domain

In order to verify that EVP-based self-diagnosis does allow for correction of faulty

knowledge engineered content in an AN and to demonstrate some degree of generality

of ANs with respect to the learner types used within nodes, we have performed a set

of experiments in a synthetic domain. The environment in this domain consists of

a fixed Abstraction Network, over which no learning will occur, that represents the

correct, target content (and structure) for the problem. Given this fixed AN, we then

create a separate learner AN that will be initialized with incorrect knowledge content
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and expected to learn to functionally match1 the content of the target AN. This is

implemented by initializing the knowledge content of both the fixed and learner AN

nodes separately with pseudo-random values. The randomly-generated content of the

fixed AN forms the target knowledge for the learner AN. Because the work described

here is concerned only with repairing content and not structure, we do build the

learner AN with a correct structure that matches that of the fixed AN. Training

proceeds by repeating the following steps:

1. Generating a pseudo-random sequence of floating point numbers to serve as the

observations for the input nodes of the ANs.

2. Performing inference with the fixed AN, saving the values produced by all in-

termediate nodes as well as the root node.

3. Performing inference with the learner AN.

4. Performing EVP-based self-diagnosis and learning over the learner AN accord-

ing to either the procedure described in Section 2.4 for table-based rote learners

and kNN learners, or by executing all EVPs within the learner AN in the case

of ANN learners within nodes.

There is another small adjustment to this procedure in the case of ANN learners

within nodes, where we wish to use a batch-style training set/test set approach rather

than sampling training examples continuously, as this is more traditional for ANN

learning. This is described in more detail below in Subsection 4.1.2. In all cases in

the synthetic domain, EVPs within the inputs of both ANs are set up to quantize the

floating point observations. EVPs are not needed at non-leaf nodes in the fixed AN,

since no learning will occur. EVPs at non-leaf nodes in the learning AN are set up to

1By “functional matching”, we mean that we will only measure error based on whether the learner
AN is able to produce output values that match those of the fixed AN – we will not actually inspect
the contents of individual nodes.
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examine the saved output value from the corresponding node in the fixed AN. In the

first set of experiments we used simple table-based rote learners within each node.

4.1.1 Rote Learners

In this section, we describe results in the synthetic domain using rote learners (defined

in Section 3.1) within the nodes of an AN learner. Each rote learner used a threshold

value of 5. In the experiments in the synthetic domain, all of the structured ANs

take the form of binary trees (each non-leaf node has a fan in of two). Every node,

including the leaves and the root, chooses from among 3 possible output values in

this set of experiments. Thus, each table update learner used in structured learners

in the synthetic domain has 32 = 9 entries, while the flat learner has 3inputs entries.

This set of experiments using rote learners includes three problem sizes. The largest

has 16 inputs, with the binary structure yielding 8, 4 and 2 nodes at each subsequent

layer. The other two problems use 8 and 4 inputs, respectively.

In addition to verifying that EVP-based self-diagnosis allows for correction of

faulty AN content, we wished to empirically illustrate the benefit of using a structured

knowledge representation matching domain structure vs. using a “flat”, unstructured

representation. We also present formal results pertinent to this question in Section

7.3. Thus, in addition to the learner AN described above, we also trained a flat learner

in each problem setting for which we report results in the synthetic domain. These

flat learners are implemented as ANs where the input layer is connected directly to

the output node. Thus, in the flat learners used in these experiments, there is a

single rote learner that must learn the full mapping from inputs to output values

without the generalization enabled by a structured representation. Results in each

tested configuration are reported for both a structured AN learner and a flat learner.

We train and evaluate these learners in an on-line, incremental fashion, evaluating

the learners’ performance improvement during training by segmenting the sequence of
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examples into multi-example blocks and comparing overall error rate between blocks.

An error is counted whenever the learner’s output on a given example does not match

the output produced by the fixed AN. In this way, we are able to compare error rate

around the beginning of a training sequence with the error rate around the end of

that sequence. As noted in the previous section, this set of experiments uses the

non-exhaustive diagnostic procedure described in Section 2.4. This means that in

general, not all EVPs within the learner AN will be executed for a given example.

Under this procedure, diagnosis immediately returns without performing learning if

no error is detected at the AN root. In this domain, as in other domains, we first

expect the learner AN to produce a prediction, and then subsequently expect more

information to become available to allow the diagnostic procedure to be run (i.e. for

EVPs to be executable).

The results of these experiments for the three synthetic domain sizes are depicted

in Figures 8-10 in terms of per-block error rate. The results shown are an average of

100 independent runs in each setting, with separate random table initialization at the

beginning of each run. Randomly initializing the tables in the generator ANs means

randomly selecting an output value for each input combination. This process can lead

to complex functions being produced by each generator AN node. Each run in the

large problem setting consists of 10,000 generated examples, which we segment into

100 blocks of 100 examples for the purposes of visualization. In the medium-sized

problem setting, 100 blocks of 50 examples were used in each run. Finally, in the small

problem setting, each run consisted of 100 blocks of 10 examples each. These results

demonstrate the efficacy of EVP-based self-diagnosis in repairing faulty knowledge

engineered AN content, as well as the significant advantage of structured knowledge

that reflects domain structure vs. flat representations in terms of learning speed.

Of course, as problem size increases, the benefit of knowledge structure becomes

more apparent, as can be seen in these results. This benefit is due to the restriction
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Figure 8: Per-block error rates of AN-rote learners vs. unaugmented rote learners
for layer sizes 4, 2, 1.
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Figure 9: Per-block error rates of AN-rote learners vs. unaugmented rote learners
for Layer sizes 8, 4, 2, 1.
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Figure 10: Per-block error rates of AN-rote learners vs. unaugmented rote learners
for Layer sizes 16, 8, 4, 2, 1.
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bias imposed on the hypothesis space available to the learner by the hierarchical

knowledge structure and the semantic constraints encoded by EVPs. The nature of

this restriction bias is discussed more formally in Section 7.3, and the benefit due to

the semantic constraints afforded by EVPs is empirically demonstrated in Chapter 5.

4.1.2 Artificial Neural Networks

As indicated above, ANs do not commit to rote learners within nodes, but rather can

make use of a variety of supervised classification learning techniques within nodes. In

order to demonstrate the generality of ANs with respect to the classification learners

used within nodes, this section describes results obtained after integrating the AN

framework with artificial neural network (ANN) code provided by Tom Mitchell and

his students. This integration allows us to replace the rote learners used within AN

nodes in most of the experiments described here with ANNs. These results show,

as expected, that an AN-ANN system has significant advantages over an ANN-only

classifier.

We used a randomly generated set of synthetic learning problems to compare the

performance of AN-ANNs with unaugmented ANNs. As in the synthetic experiments

described previously, the environment consists of a fixed Abstraction Network, over

which no learning will occur, that represents the correct, target content (and struc-

ture) for the problem. Given this fixed AN, we then again create a separate learner

AN, with an ANN inside each node, that will be initialized with random knowledge

content and be expected to learn to functionally match the content of the target AN.

We also create a randomly initialized unaugmented ANN that will be used to learn

the same classification task. All ANNs, whether within the AN structure or oper-

ating in isolation, used the same backpropagation algorithm for learning. For these

experiments, learning rate was fixed at 0.3, momentum was fixed at 0.3, input layers

contain one node per input, output layers contain one node per possible output value,
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and hidden layers contain a number of nodes equal to 3 times the number of nodes

in the input layer. As before, because the work described here is concerned only

with repairing content and not structure, we build the AN-ANN learner with correct

structure that matches that of the fixed AN. Departing from the other experiments,

in these experiments we first generate training and test sets. For every example that

will be part of either the fixed training set or fixed test set, we generate a pseudo-

random sequence of floating point numbers to serve as input values. Next, we repeat

the following procedure, one repetition of which we call an epoch:

1. For each example in the training set:

(a) Perform inference with the fixed AN, saving the output values of all inter-

mediate nodes and the root.

(b) Train both the AN-ANN and the unaugmented ANN systems based on

the preceding substep’s inference over the fixed AN. In these experiments

we do not use the self-diagnosis procedure described in Section 2.4, but

instead execute every EVP in the learner AN for every training example,

and train the associated learner whether the value produced was correct or

incorrect. This procedure ensures a stable distribution of training examples

for ANNs within each AN node, while still depending crucially upon the

availability of EVPs at each AN node.

2. For each example in the test set:

(a) Perform inference with the fixed AN, noting the value produced at the

root.

(b) Perform inference with both the AN-ANN and unaugmented ANN systems,

and determine whether the top-level values produced match that produced
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by the fixed AN. If the value produced by a given learner does not match

that of the fixed AN, count an error for that learner.

As before, EVPs within the inputs of both ANs are set up to quantize the floating

point observations, and these quantized values also form the inputs to the unaug-

mented ANN. EVPs are not needed at non-leaf nodes in the fixed AN, since no

learning will occur. EVPs at non-leaf nodes in the learning AN are set up to exam-

ine the saved output value from the corresponding node in the fixed AN, while the

output value from the root of the fixed AN is all that is needed to train the unaug-

mented ANN. In these experiments we again use randomly-initialized table based rote

“learners” within each node in the fixed AN, to simply provide a randomized mapping

from inputs to outputs (that is, we simply use these as fixed tables, and not really

as learners). Results obtained in three representative experiments are depicted in

Figures 11-13. In these experiments, we again use ANs with a binary tree structure,

with varying layer sizes – either 8-4-2-1 or 16-8-4-2-1. We also varied the number of

choices that could be produced by each node, using either 3 or 4 values per node. For

the experiment shown in Figure 13, the training set contains 1,000 examples, while

the test set contains 10,000 examples. For the experiments shown in Figures 11 and

12, both the training and test sets contained 1,000 examples. In each case, we ran

the complete experiment 5 times (re-randomizing all learners and the fixed AN each

time, etc.), and Figures 11-13 depict the average error values in each epoch across

these runs.

Clearly, it appears that AN-ANNs have a distinct advantage in error decrease per

example and in the final error achieved. Based on these results, it does appear, as

expected, that the advantage of adding AN structure to an ANN-based solution to a

classification problem grows as problem complexity increases.
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Figure 11: % Per-epoch error rates (% error) of AN-ANN vs. unaugmented ANNs
for layer sizes 8-4-2-1, 3 choices per node.
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Figure 12: % Per-epoch error rates (% error) of AN-ANN vs. unaugmented ANNs
for layer sizes 8-4-2-1, 4 choices per node.
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Figure 13: % Per-epoch error rates (% error) of AN-ANN vs. unaugmented ANNs
for layer sizes 16-8-4-2-1, 3 choices per node.
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Figure 14: Per-block error rates of AN-kNN vs. unaugmented kNNs for layer sizes
4-2-1, 4 choices per node.
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Figure 15: Per-block error rates of AN-kNN vs. unaugmented kNNs for layer sizes
4-2-1, 8 choices per node.
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Figure 16: Per-block error rates of AN-kNN vs. unaugmented kNNs for layer sizes
16-8-4-2-1, 4 choices per node.
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4.1.3 k-Nearest Neighbor Learners

We also integrated ANs with kNN learners. As with the two previously integrated

learner types, we performed experiments in a synthetic domain to gauge performance

of kNN learners working in conjunction with the AN framework to unstructured

(flat) kNN learners working on the same tasks. The experimental conditions for these

experiments match those used for table-based rote learners. The ’k’ parameter in

these tests was set to 1. Results for problems of varying complexity are summarized

in Figures 14-16, and are similar to those demonstrated for the two other learner

types. As in past experiments, the difference between learners structured with the AN

framework and unstructured learners increases with problem complexity, as expected.

4.2 Other Domains

4.2.1 FreeCiv City Location

In this section, the use of Abstraction Networks for the city resource production

prediction problem first described in Chapter 1 is given in detail. Results of this

experimentation are also given.

4.2.1.1 AN Representation

For the FreeCiv city resource production prediction task described at the beginning of

Section 1.1, we use the structured matcher depicted in Figure 5, producing predictive

classifications of map locations in a sequence of games. Within each node, we use a

simple rote learner, defined in Section 3.1, with a threshold of 5.

4.2.1.2 Procedure

We have experimentally compared an AN-based learner using the network depicted

in Figure 5 to a flat table-based rote learner. The goals of this experiment were to

(1) determine the effectiveness of EVP-based metareasoning in increasing robustness
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in the face of faulty knowledge engineering and (2) to empirically illustrate the ef-

fect of hierarchicalization on learning speed outside of the synthetic domains already

discussed. The effect of hierarchicalization on inference complexity is already well

understood and is known to make inference significantly more manageable [37]. The

flat learner consists of a single rote learner (rote learners are defined above) with

an input formed from the outputs at all leaf nodes in the AN from Figure 5 and

yielding the same output set as this AN. This output set contains three values, cor-

responding to poor, moderate and good resource production. These values indicate

predictions about the resource production expected from a city built on a considered

map location. Specifically, the values correspond to an expected degree and direc-

tion of deviation from a logarithmic baseline resource production function that was

manually tuned to reflect roughly average city resource production. Each of the inter-

mediate nodes in the AN has an output set consisting of 5 values in this experiment.

The Empirical Verification Procedures are quantizing EVPs, described in Section 2.1,

in that they simply check values in the game, such as the population growth of a city,

and discretize the value into one of the 5 available output categories. The discretiza-

tion functions were manually tuned in this experiment. The content of all involved

table-based rote learners (those constituting the AN and the single one used for the

flat learner) was initialized to zeros, which was known to be incorrect in some cases

for each of the learners. All table-based rote learners used a learning threshold of

5. Because we expect resource production from cities built on various kinds of map

locations to potentially differ qualitatively as games progress, we trained 3 AN-based

learners and 3 flat rote learners, with one of each learning to make predictions about

resource production in the early, middle or late stages of the game. Results reported

are cumulative across all three learners of the appropriate type.

As in the non-batch experiments in the synthetic domain, here we train and eval-

uate the learners in an on-line, incremental fashion. Again, we evaluate prediction
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improvement during training by segmenting the sequence of examples into multi-

example blocks, and comparing overall error rate between blocks. In this way, we are

able to compare error rate around the beginning of a training sequence with the error

rate around the end of that sequence.

Each turn of each game played is treated as a separate example. This means that

an error is potentially counted on each turn of each game by producing a prediction

based on the current state of knowledge, finishing the turn, perceiving the outcome

of the turn, and then determining whether the value produced correctly reflects the

resource production actually experienced on that turn. If the value is incorrect, an

error is counted. Though as the game progresses, additional information becomes

available, predictions are always made using only information available at the begin-

ning of the game. Note that this error counting procedure contrasts with another

possibility; producing a value only at the beginning of each game, and counting er-

rors on each turn of the game based on this value, while continuing to learn on each

turn. If the classification knowledge encoded by this FreeCiv domain AN were being

used by a larger agent to actually play a game (e.g. the agent depicted in Figure 4),

a classification produced by the structure would only be useful when the agent was

deciding whether to place a city in a given location, and not after the city had already

been placed. However, while the alternative of classifying only at the beginning of the

game, before the city is built, more closely matches the intended use of the learned

knowledge within a larger agent, we chose to instead allow a value to be produced on

each turn in order to reflect the evolving state of knowledge as closely as possible in

the error count. A negative consequence of this choice is that some overfitting within

games may be reflected in the error count. However, a decrease in error rate between

the first and last block in a sequence can be seen as evidence of true learning (vs.

overfitting), since any advantage due to overfitting will be as pronounced in the first

block of games as in the last.
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In each trial, a sequence of games is run, and learning and evaluation occurs on-

line as described above. The AN-based learner is trained on sequences of 175 games,

while the flat rote learner is allowed to train on sequences of 525 games. We trained

the flat rote learner on sequences three times longer than those provided to the AN

learner to determine whether the flat rote learner’s performance would approach that

of the AN learner over a longer training sequence. As described above, we segment

these sequences of games into multi-game blocks for the purpose of evaluation; the

block size used is 7 games. Each game played used a (potentially) different randomly

generated map, with no opponents. The agent always builds a city on the first

occupied square, after making an estimate of the square’s quality. Building in the first

randomly generated occupied square ensures that the learners will have opportunities

to acquire knowledge in a variety of states. In order to compensate for variation

due to randomness in starting position and game evolution, results are averaged over

multiple independent trial sequences. Each result for the AN learner is an average

of 60 independent trials. Each result for the flat rote learner is an average over 25

independent trials; each trial is time consuming, as each trial for the flat rote learner

is three times as long as for the AN-learner, and it did not seem likely that further

trials with the flat rote learner would offer significantly more information.

To compare the speed with which learning occurs in the two agents, we ran two

separate sets of trials. The first set of trials was run in an environment where no

city improvements were constructed in the area surrounding the city. The second set

of trials did allow for the construction of city improvements, but had an identical

environment in all other ways. For each set of environmental conditions, we measure

the quality of learning by comparing the average number of errors counted in the first

block of the sequences to the number of errors counted in the last block. In the case

of the flat table learner, we make two comparisons. The first compares error in the

first block to the block containing the 175th game, illustrating decrease in error over

59



Table 3: Average percent decrease (or increase, shown in parentheses) in error for
decomposition-based learning implementation from block 1 to 7, and for the flat table
learner from block 1 to blocks 7 and 21.

AN learner Flat Table Learner
7th block 7th block 21st block

Without city 24% (4%) 1%
improvements

With city 29% 7% 10%
improvements

the same sequence length provided to the AN learner. We also compare error in the

first block to error in the last block of the flat table learner’s sequences, to determine

whether the flat table learner’s improvement will approach that of the AN learner

over sequences three times as long. We perform this evaluation separately for each of

the two environmental setups.

4.2.1.3 Results

The results of the experiment are summarized in Table 3 and are shown in detail for

the AN learners across each block of games in Figure 17. The AN-based learner is able

to produce a greater improvement in error rate in each case, as compared to the flat

table learner, both after the same number of games and after the flat table learner has

played three times as many games. For the two scenarios, the average improvement in

error rate is 26.5% for the AN-based learners, compared to only 1.5% after the same

number of training examples for the flat learner. The decrease in error across a typical

sequence was not strictly monotonic, but did exhibit progressive decrease rather than

wild fluctuation. Even after three times as many games had been played by the flat

table learner, the decrease in error rate is significantly less than that achieved using

ANs after only seven blocks. In one case, it appears that learning has not yielded an

advantage in error rate in the flat table learner even after 525 games. Examining the

complete set of results for intervening blocks does mitigate this impression to some
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Figure 17: Average error rates by block in each FreeCiv trial.

extent, as an overall downward trend is observed, with some fluctuations. However,

given that, for the flat learner, the fluctuations can be of greater magnitude than

the decrease in error, the learning that has been achieved after this number of games

does not appear significant. Based on the significant difference in observed learning

rate, these trials provide evidence that the composite structure of ANs allow learning

to occur more quickly in a large state space than is possible with a flat knowledge

representation. Because the AN-based learners are able to improve their performance

over time, it also appears that again, as in the synthetic experiments, EVP-based

self-diagnosis and learning is effective in repairing content deficiencies in hierarchical

classification knowledge.
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Figure 18: DJIA Abstraction Network

4.2.2 Dow Jones Industrial Average Prediction

To demonstrate that neither the learning task nor the learning method is restricted to

the FreeCiv game, we will also describe results in a different domain in the economic

arena. In this domain, we are interested in classifying the current economic status

as described by various economic indicators (see Figure 18) into one of two classes:

the Dow Jones Industrial Average (DJIA) will rise next month or DJIA will fall

next month (these class labels form T ). We chose the indicators and set up the

structure shown in Figure 18 based on some studies of economic indicators [1][127][2].

S contains the values of these selected economic indicators. Some of the values can

be obtained before classification; these values come from the current or past months.

However, some of these variables represent future values that cannot be observed at

classification time, but must be inferred along with the class label. The same special

conditions regarding experimentation cost that were described for FreeCiv also hold

here. All leaves in Figure 18 can be observed before classification, while the remainder

are future values at classification time, available only in retrospect.

We used data from Jan 1960 - Nov 2005, yielding a total of 497 training examples.
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Figure 19: Average error rates by block in each DJIA trial.

As in FreeCiv, in these experiments rote learners were used within each node in the

network. We manually tuned the number of output classes available to each node,

based on observations of learning behavior. Again, each entry in each rote learner

was initialized to zero. We observed a 23.4% decrease in error, comparing blocks

consisting of the first 213 and the last 213 examples. The error rates for blocks sized

71 examples are depicted in Figure 19, which also includes data for a flat learner.

This experiment helps to show that there is some more general applicability of EVP-

based AN learning beyond the FreeCiv problem in the context of which it was initially

tested.
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Figure 20: AN structure used in NFL prediction problem.

4.2.3 Football Prediction

We have applied EVP-based AN learning with both rote table learners and kNN

learners to the problem of predicting the outcome (final score) of an NFL game. The

AN learner depicted in Figure 20 was used in these experiments.

We used data for all games played in the 2006-2007 and 2007-2008 NFL seasons to

train and test the learners, with the same online training/testing based strategy used

in previous experiments. The results reported here are based on 50 separate random

learning trials, each using exactly the same data but with randomized initialization

of the learners’ knowledge.

Results for these experiments are shown in Figure 21. Learner types shown include

AN-kNN, AN-Rote and flat kNN. Flat rote learners could not be used because the

memory requirements of the table were too large. It is interesting to note that the

AN-Rote learner essentially fails to learn. It is likely that this is because of the size

(input dimension) of the learning problem. Even with the additional bias afforded by

the AN knowledge structure and the associated EVPs, it appears that this problem

(or at least, this framing of this problem) is complex enough, and examples limited
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Figure 21: Per-block error vs. block number for various learner types.
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enough, to require some inductive bias within the learners at individual nodes. Thus,

this set of experiments demonstrates the importance of selecting intra-node learners

with appropriate characteristics (e.g. bias) for a given application of ANs. After an

initial lag, the AN-kNN learner matches or exceeds the performance of the flat kNN

learner. This may be because, as a result of the non-exhaustive diagnostic procedure

of Table 2, learning at the higher levels of the AN hierarchy depends on learning at

the lower levels. But it may also reflect the fact that flat kNN learning is very fast.

Indeed, it is often very difficult to improve upon kNN. The fact that AN-kNN beats

flat kNN demonstrates the power of the abstraction hierarchy.

Further, the basic claim that knowledge repair is supported by EVP-based diag-

nosis and repair is supported by the decrease in error rate observed for the AN-kNN

learner. However, it is unfortunately not clear that this domain, or either of the oth-

ers, has so far provided a decisive and spectacular display of the advantages of AN

technology in terms of reaching an extremely low final error rate. However, experi-

ments in these domains have demonstrated the effectiveness of EVP-based diagnosis

in allowing a metareasoning system to successfully repair knowledge stored in classifi-

cation hierarchies and reduce error. Of course, in this case and in the cases of FreeCiv

and DJIA prediction, it is highly likely that flaws in the knowledge engineering (KE)

or gaps in available input features are responsible for failure to reach a lower final

error. This issue is addressed more directly by work on faulty KE, which provides

some evidence of the benefit of using ANs to structure classification learning even if

KE is faulty. This work is discussed in the following section.

4.3 Effects of Degraded Knowledge Engineering

We have performed two sets of experiments in the synthetic domain of Section 4.1

dealing with the performance of AN learners when knowledge engineering is imperfect.
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In all of these experiments, a binary AN hierarchy was used, with level sizes 16-8-

4-2-1. We allowed each node in the hierarchy to produce 4 output values. Each

non-leaf node contained a kNN learner with a k-value of 1. The results shown in

this section are an average of 20 randomized trials, each consisting of sequences of

randomly selected examples split into blocks of 100 for graphing purposes. In the

first of these experiments, specific nodes are ablated from within the learner AN,

connecting the child nodes of the removed node to the parent node of the removed

node. In these experiments, no input information is lost through the node removals

(inputs are never ablated), but we expect the hypothesis space restriction imposed

by the AN structure to be diminished, and thus the efficiency of learning to decrease.

This expectation is indeed borne out by the experiments, summarized in Figure 22.

In these experiments, we still reach or approach zero error, as expected because the

correct hypothesis is never eliminated from those expressible by an AN through this

kind of ablation. However, the learning rate is negatively impacted as the restriction

bias imposed by the AN is reduced. The keys for the graphs in this section refer

to the location of nodes ablated by level. We consider leaf nodes to be level 0, the

direct parents of leaf nodes to be level 1, etc. This notation is possible because of

the balanced binary structure used in these experiments. An interesting note about

these results is that, when ablating a single node, it appears to make no significant

difference at which level of the hierarchy the node is removed. This suggests that

impact on overall hypothesis space size is not dependent upon a concept’s level of

abstraction. We will return to this discussion in Section 7.3, where hypothesis space

size is related to the information lost at nodes in an AN.

In the second set of experiments, whole subtrees beneath a selected node (or

nodes) are pruned from the learner AN. This kind of ablation actually has the effect

of increasing the restriction bias of the AN, as all hypotheses dependent upon the

inputs beneath the ablated node are no longer expressible at all. This kind of removal
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Figure 22: Results of ablating (groups of) individual nodes from an AN learner.
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is equivalent to forcing complete information loss at the root of the ablated subtree.

The problem here is that the restriction bias is likely to have now excluded the correct

hypothesis, as inputs that may be needed for discrimination between two states could

have been removed. These induced deficiencies are much more severe than those

of the first set of experiments. As expected, the ability of the learner to correctly

match the target function are more severely hampered, as illustrated in Figure 23.

However, the final error reached is still below that of an unaugmented kNN learner

after 1000 training examples – illustrating that, if any reliable structural information

is available about a domain, there is substantial benefit to its exploitation if few

training examples are available. Of course, over time the unaugmented kNN learner

would reach zero error in this synthetic domain, once it has seen and memorized by

rote each problem instance. However, in practical terms this situation would not

arise. If it is known that some inputs are or may be pertinent, one can always feed

them directly into the root node of an AN hierarchy even if intervening structure is

not known. But it is interesting to note that in some sense, a designer is better off

knowing about only a subset of the inputs relevant to a classification problem and

having some good knowledge about an intervening abstraction structure than having

full knowledge of the relevant inputs but no knowledge of the structure. While the

latter scenario allows the designer to produce a learner that theoretically can express

the correct hypothesis and thus would eventually reach zero error, in practical terms

for large problems it will not be possible to gather enough training examples to get

there. On the other hand while in the former scenario zero error will never be reached,

some level of useful generalization can be made after relatively few input examples.

In the trial where we ablated two non-sibling level 2 nodes, we have literally removed

half of the problem inputs and still get a better error rate after 1000 examples have

been seen!

The key finding in these experiments is that as knowledge engineering quality
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Figure 23: Results of ablating (groups of) subtrees from an AN learner.
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degrades, there is a corresponding gradual degradation in the benefit obtained from

using AN structure. Of course, here we have tested only two kinds of incorrectness

in knowledge engineering. One could imagine many other kinds of errors, such as

wiring nodes into the wrong location in an AN. In this case, one would expect the

AN to learn to ignore information that is not pertinent to a particular classification.

This would slow learning but should not impact final error beyond the effect of not

having the information available in the correct location. Thus, the effect of such an

error could be expected to be similar to that of ablating the subtree beneath the

miswired node. In any case, it is not the intent of this thesis to experiment with, or

even identify an exhaustive taxonomy of conceivable errors in knowledge engineering.

However, this section does provide some sense of the kinds of degradation in learning

rate (when intermediate abstractions are missed but all needed inputs are intact) and

final error levels (when needed inputs are not present) that one can expect under

two kinds of faulty knowledge engineering that seem likely to occur in practice when

designing classification hierarchies.
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CHAPTER V

LEARNING WITH UNSPECIFIED CONCEPT

SEMANTICS

In the experiments described in this chapter, we again train ANs with perfectly de-

signed structure within the synthetic domain described in Section 4.1. In these ex-

periments, we sometimes remove the EVPs from some of the AN nodes, and train

by executing standard error backpropagation [94] over those sections of the structure

from which EVPs have been removed. We will refer to these ANs with some EVPs

removed as hybrid learners, as they combine standard backpropagation with EVP-

based diagnosis. The goal of these experiments is to demonstrate that the power of

the semantic pinning of nodes provided by EVPs is substantial. That is, the general-

ization power of ANs is not solely due to the hierarchical structuring of the knowledge,

but also derives in part from this semantic pinning.

5.1 Experimental Setup

In these experiments, we always used ANNs within all AN nodes. We also eliminate

the quantization of outputs at nodes that do not have EVPs. This is necessary to

cause those nodes to produce differentiable functions such that backpropagation can

be used to push error back from ancestors into those nodes. We always used learner

and generator ANs of four levels with binary tree structures (level sizes 8-4-2-1). In

each case, we allow 3 values to be produced by each node in the hierarchy, including

the root. We also trained a flat learner on the same problem, for the sake of providing

a baseline for comparison. We have run experiments with one EVP, removed at the

layer immediately above the leaves; two EVPs, removed at peer nodes within the layer
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immediately above the leaves; and three EVPs, removed in the form of a connected

subtree rooted in the layer immediately beneath the root, thus also involving two peer

nodes in the layer immediately above the leaves. For each of these learner setups, we

experimented with various training set sizes – 60, 125, 250, 500 and 1000 examples.

We always used a test set consisting of 1000 examples. In each case, the goal was to

train until the error rate ceased to decrease, or until there was evidence of overfitting.

Results reported here are the average of 5 independent trials, where learner knowledge

and the training/test sets were re-randomized in each trial, in the same manner as in

the experiments described in Section 4.1.2.

5.2 Results and Discussion

The results of the runs in a representative subset of these experimental setups are

depicted in Figures 24-32 below, and the results of all runs are summarized in Figure

33.

The key result illustrated in Figures 24 through 32 is that in all cases, ANs that are

missing EVPs from one or more nodes fail to reach a final error as low as the complete

ANs. In general, this final error is higher (worse) when more EVPs are removed, and

when the training set size is smaller. A progressive degeneration in learning ability as

more EVPs are removed is apparent as a general trend, as demonstrated by Figure 33,

which summarizes the results of all experiments run with hybrid ANs, showing the

average final error rate for each experimental setup. It can also be seen from Figure 33

that larger training sets generally lead to lower final errors for each learner type, as one

might expect. This main result demonstrates that part of the generalization power

of ANs comes from the semantic pinning of nodes within the AN by the associated

EVPs.

Somewhat surprisingly, in Figure 32, we see that in this case, the AN with 3

EVPs removed has failed to achieve a lower final error rate than the flat learner!
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Figure 24: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 60 examples, where the hybrid learner is missing one EVP.
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Figure 25: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 250 examples, where the hybrid learner is missing one EVP.
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Figure 26: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 1000 examples, where the hybrid learner is missing one EVP.
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Figure 27: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 60 examples, where the hybrid learner is missing two EVPs.

77



Figure 28: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 250 examples, where the hybrid learner is missing two EVPs.
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Figure 29: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 1000 examples, where the hybrid learner is missing two EVPs.
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Figure 30: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 60 examples, where the hybrid learner is missing three EVPs.
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Figure 31: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 250 examples, where the hybrid learner is missing three EVPs.
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Figure 32: Training epoch vs. error rate for flat, AN and hybrid-AN learners with
a training set size of 1000 examples, where the hybrid learner is missing three EVPs.
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This is likely due to the susceptibility of large EVP-less regions (which are effectively

deep ANNs) to local minima. There are techniques that specifically address this

problem, such as KBANN [118], which initializes a deep network based upon prior

knowledge, or the work of LeCun et al. [66] in which components in a structure are

pretrained before end-to-end training is applied. However, in both cases the semantics

of intermediate portions of the knowledge structure are enforced before end-to-end

training, even if this enforcement is relaxed after initialization/pretraining. Thus,

even though the requirement for enforced semantics at internal nodes is weaker in

these other techniques than when using a AN structure with complete EVP coverage,

there is still some reliance upon internal semantics to produce an initialization of the

structure to be trained. The benefit of such techniques is that the problem of local

minima in deep structure can be ameliorated to some extent by the initialization. ANs

make even stronger use of these explicit internal node semantics, and, as evidenced by

the very low final errors achieved by “complete” ANs in each of the experiments in this

section, show a strong resistance to local minima. If the degradation in performance

to a level worse than that of the flat learner in the experiment of Figure 32 is due to

a problem with local minima for the hybrid learner, it is possible that after a very

large number of repetitions, the average-case performance of the hybrid learner may

exceed that of the flat learner.

An interesting secondary point to be noted is that, in each case, more epochs

are required for the ANs with EVPs removed to reach their lowest error rate. This

computational savings is another benefit of using EVPs wherever possible within a

hierarchical classification learner, and is further evidence that the semantic pinning of

nodes via EVPs is providing a restriction bias beyond that offered by the hierarchical

structuring of knowledge alone.

Examining Figure 33, it is clear that the degradation in final error rate is much

more pronounced in the AN that has had three EVPs ablated. It is likely that this is
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because a connected subtree of three nodes had their EVPs removed, creating a more

substantial region within the AN that lacked semantic pinning. A large, connected

region that lacks EVPs is likely to be very susceptible to local minima. In addition,

these deep networks have more inputs than each member of the set of AN nodes

they are replacing. Because the input dimension is higher, these deep networks will

require more training examples to learn the target concept than the AN nodes they

replace. It is also possible, though it seems unlikely, that the specific placement of

nodes with removed EVPs may have an impact upon performance. For instance,

perhaps removing the EVP from a single node in the layer immediately beneath the

root node in these 4-layer binary ANs would have a more or less substantial impact

than removing the EVP from a node immediately above the leaves. The experiments

reported here do not speak to this issue. However, it does appear that removing

EVPs from progressively larger connected subtrees within the AN will have the most

catastrophic impact on final error rate.

84



Figure 33: Training set size vs. best achieved error rate for flat, AN and hybrid-AN
learners.
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CHAPTER VI

AUTOMATIC CONCEPT REFINEMENT

Most of the experimental results described in the preceding chapter have been focused

on verifying the usefulness of metaknowledge in the form of EVPs for diagnosing and

adapting knowledge used for classification when the knowledge leads to errors. In this

chapter, we focus on another major benefit of the explicit representation of the se-

mantics of an agent’s concepts through EVPs: the capability to automatically adjust

those semantics when it is deemed advantageous to do so. Of course, this shifts the

bias provided by an AN structure from a restriction bias to a preference bias. But, be-

cause the learning method employed always first tries to correct faulty classifications

by adjusting knowledge stored within nodes to match existing concept definitions (as

expressed by associated EVPs), we still realize the benefits of knowledge structure

in increasing per-example generalization. The benefit of including the concept re-

finement procedure described in this section is that the AN representation becomes

less sensitive to a particular kind of error in knowledge engineering, a misspecified

quantizing EVP. While in principle automatic EVP adjustment should be possible for

many kinds of EVPs, the method implemented in the Augur system, with which all of

the experiments of this section are performed, works only with quantizing EVPs. The

next section describes a procedure implemented within Augur for automatic adjust-

ment of the constitution of equivalence classes represented within the AN structures

used in this dissertation. Here, changing the constitution of an equivalence class

means altering the set of circumstances under which an EVP associated with a node

will return a particular value. This changes the concept being learned at the node
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such that situations encountered by the classifier will be equated differently with re-

spect to the concept in question. This is particularly important when rote learners

are employed in the nodes, as they are most sensitive to the quantization of their

inputs. The subsequent section describes experimental results obtained by using this

procedure in the synthetic domain.

6.1 Concept Refinement Mechanism

The task here is to detect that the agent is failing to learn given the fixed AN knowl-

edge structure in use, and then automatically adjust an appropriate EVP within that

structure to modify the semantics of the associated concept such that the failure is

corrected. Given this task, the first requirement is that the agent have some way to

monitor itself and detect learning failures that may require adjustment of one of its

concept definitions. In this work, we require the agent to monitor the examples that

are passed to each node in the network. If a sufficient level of inconsistency is detected

in the examples passed to some node, we decrease the information loss at one of the

child nodes. We use the following measure for inconsistency Φ at a particular node,

for a particular input assignment I:

Φ (I) =
f (I, O∗ (I))∑
O

f (I, O)
(1)

Where O∗ (I) is the most common output value for input assignment I seen in all

examples passed to the node, and f (I, O) is the number of times that example (I, O)

has been passed to the node. Thus, the denominator in Equation 1 is counting the

total number of examples for input assignment I that have been passed to the node,

and overall we are measuring the ratio, for a given input assignment at a given node

in the AN, of the frequency with which the most common output assignment is seen

relative to all the examples provided for that input assignment. Each time a new

example (I, O) is passed to a node, we update Φ (I) for that node, and determine
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whether the value has fallen below a threshold value. If there were no noise in the

input examples, the threshold value could be set to 1, as any inconsistent input would

be a sign of problems in the AN representation. However, in noisy domains it may be

preferable to choose inconsistency thresholds < 1 to avoid spurious concept refinement

due to noise.

The decision to refine a child concept based upon this inconsistency metric at a

node is based upon the observation that learning failure manifesting as the receipt

of inconsistent examples at an AN node (if not due to noise) is due to insufficiently

discriminatory information coming into that node. That is, there are two situations

between which a node is being asked to discriminate, but for which it is being given

identical information – clearly an impossible task. This could be due to incorrect

network structure, a problem for which this dissertation does not propose a solution,

or due to a child node not passing along enough information about the world state.

Given this state of affairs, when a node’s inconsistency measure drops below the

threshold, the agent will evaluate the following measure φ of average inconsistency

along a particular slice of the input space for each child c ∈ N (N is the set of

children of a particular AN node, see Definition 3) of the node in question, in order

to determine which one should have its concept semantics adjusted:

φc (I) =

∑
i1

. . .
∑
ic−1

∑
ic+1

. . .
∑
in

Φ (〈i1, . . . , ic−1, I [c] , ic+1 . . . , in〉)∑
i1

. . .
∑
ic−1

∑
ic+1

. . .
∑
in

1
(2)

Where I [c] is the value coming from child c in input assignment I. This measure

computes the average inconsistency value over all input assignments for which child

c provides value I [c]. After computing this value for each c ∈ N , we can determine:

arg max
c∈N

φc (I) (3)

We then choose a random child from the set represented by Expression 3 as the
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candidate for concept refinement. As this procedure makes an educated guess as

to which children are the most likely to require concept refinement (and then a pure

guess as to which of those to refine), there is no guarantee that the proper child will be

chosen in every case. However, if the wrong child of a failing node is chosen, failure will

occur again and we will have a chance to increase the output range at another node.

This procedure may lead to some spurious increases in output value ranges, which

will have a negative impact on generalization and learning speed. However, the goal

of concept refinement in this scenario is to prevent the exclusion of correct hypotheses

while allowing the use of a strong restriction bias. The problem of choosing the wrong

child to split could potentially be alleviated by adjusting the threshold value during

the course of training. Early in training, the value could be set to zero, preventing any

concept refinement. After some number of examples have been seen, it is increasingly

likely that estimates of the relative inconsistency along various slices of the input

space (φc) will be accurate, and the threshold could be raised to allow some concept

refinement to occur.

Table 4 summarizes the procedure described in this section. The procedure AN-

inconsistency-check described in Table 4 is invoked every time the learner’s update

function (L.U , from Definition 2) is called. That is, the inclusion of this concept

refinement procedure adds a call to the AN-learning procedure of Table 2 as shown in

Table 5. The next section says more about how the subroutine increase quantization

of Table 4 is implemented in Augur, and describes the experiments run in the synthetic

domain.

6.1.1 Empirical Evaluation of Concept Refinement

All of the EVPs dealt with in the experiments described here are pure quantizing

EVPs, as described in Section 2.1, that perform a single branch based upon an ob-

served value and then emit a category. For this type of EVP, modification in these
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Table 4: Top-level reasoning used to maintain the inconsistency measure at the root
of an AN hierarchy when the root is being trained on an example and to select and
adjust a child node if necessary.

/* Values from Definition 3:

* a.N - a set of ANs. The children of ‘a’.

* a.P - the EVP for ‘a’.

* a.L - the learner associated with ‘a’.

*

* Added notation:

* a.Φ(I) - the value of Φ(I) as in Equation 1

* at the root node of ‘a’.

* a.I[O] - the number of times that output O
* has been seen in a training example at the

* root of a for input I.
* Threshold - a global, user-defined threshold

* defining the level of inconsistency tolerated.

* 0 < Threshold ≤ 1.
*

* Subfunctions used:

* increase quantization(EVP P, Learner L, Value V ):
* adapts the EVP provided as the first

* argument such that situations that would

* previously have been grouped into the

* equivalence class designated by the third

* argument are now grouped into two distinct

* equivalence classes, and adjusts the supervised

* classification learner provided by the second

* argument to be prepared to handle the newly

* introduced equivalence class as a potential

* input value.

*/

begin AN-inconsistancy-check(Abstraction Network a, Example (I, O))
a.I[O]← a.I[O] + 1
if a.Φ (I) > Threshold

n← arg max
c∈a.N

φc (I)

increase quantization(n.P, a.L, I)
end
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Table 5: Self-diagnosis and self-repair procedure used to correct knowledge stored
in an Abstraction Network a, modified to include the call to the concept refinement
code of Table 4.

/* Values from Definition 3:

* a.P - the EVP for ‘a’.

* a.last value - the last value produced by ‘a’.

* a.N - a set of ANs. The children of ‘a’.

* a.L - the learner associated with ‘a’.

* a.last input - the last input sequence provided to ‘a’.

*

* Values from Definition 2:

* L.U - the learner’s update (learning) function.

*/

begin AN-learning(Abstraction Network a)
Bool flag ← true
if a.P () = a.last value, return true
forall n ∈ a.N

if AN-learning(n) = false, flag ← false
if !flag, return false
a.L← a.L.U((a.last input, a.P ()))
AN-inconsistency-check(a, (a.last input, a.P ()))
return false.

end
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circumstances involves splitting one of the branches into two, essentially creating a

new “bin” for quantization. Specifically, we split the branch associated with the out-

put value that indexed the learning failure location at the parent, I [c]. The procedure

used in these experiments splits the branch in question by continuing to use the ex-

isting branch for half of the values that would previously have caused it to be taken,

and using a newly introduced branch for the other half of the values. The newly

introduced branch, of course, results in the emission of a new category, not present

on any other branch in the EVP. For this reason, a learner-type-dependent opera-

tion may be required to prepare the learner at the node with an adjusted EVP to

receive examples with an input entry along the adjusted dimension equal to the new

value. In the case of table-based rote learners, which were used in these experiments,

this means adding a new (multi-dimensional) row of entries along the dimension cor-

responding to the adjusted child that will learn the appropriate outputs for inputs

containing the newly added equivalence class. These steps are the procedure im-

plemented by the subroutine increase quantization of Table 4. If the middle of the

current range is not the best point at which to split the branch, we rely on further

splits to eventually choose the right decision point. In fact, when branching on real-

valued observations, it is unlikely that the correct decision point will ever be found.

For this reason, working with an inconsistency threshold of 1 is inadvisable even in a

noiseless domain. Choosing some value less than 1 will allow for some stray examples

that may be due to a slightly misplaced decision point in a child’s EVP. As with the

possibility of selecting the wrong child, choosing the wrong decision point between

the branch undergoing split and the newly introduced branch will decrease learning

speed, but will not result in the exclusion of the correct hypothesis. After adjusting

the EVP at the child node to refine the set of equivalence classes of which its concept

consists, continuing learning will cause the node to begin to emit the newly added

branch value, providing finer-grained information to the parent node. Through this
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procedure, we have automatically adjusted the concept represented at a node in the

EVP based upon a failure of that concept to adequately address its functional role

(supporting a correct prediction at the parent node) within the AN.

We have evaluated the bin splitting procedure described above in the synthetic

domain of Section 4.1. In these experiments, table-based rote learners were used

within all nodes. In these experiments, after constructing the fixed and learner ANs,

we added an additional branch, and thus new concept category, to one or more random

nodes within the fixed AN. Based on the EVP construction within the learner AN,

this change will result in two categories produced by the changed node within the

fixed AN being perceived as within a single category by the learner AN. Thus, to

perfectly match the overall target concept, the learner AN needs to refine one or

more of its concepts1. Figures 34 and 35 depict the results of learning with ANs

that do and do not incorporate the concept refinement procedure when one and two

EVPs in the fixed AN have undergone branch splitting, respectively. Results shown

are from an average of 20 randomized trials. In these experiments, the inconsistency

threshold value was set to 0.3.

These results clearly show the effectiveness of the concept refinement procedure.

When it is not enabled, the learner AN fails to reach zero final error, as the correct

hypothesis cannot be represented. When it is enabled, concept refinement is correctly

triggered, allowing the learner to find the correct (zero error) hypothesis. In this clean

synthetic domain, the learner is observed to make only and precisely the required con-

cept adjustment in each case, as apparently evidenced by the smooth tracking of the

non-concept refining learner’s error rate by the concept refining learner until the non-

refining learner approaches its limit. In real world domains, there is likely to be more

1There is a degenerate case where the random initialization of the fixed AN happens by chance
to make no discriminations between situations captured by the split category. Performing a number
of re-randomized repetitions reduces the impact, if any, of these degenerate cases.
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Figure 34: Error rate vs. block number with one overly coarse concept.
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Figure 35: Error rate vs. block number with two overly coarse concepts.
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negative impact on the learning rate of an agent that makes use of the concept refine-

ment procedure, as in general there will be spurious refinements triggered. However,

the final error rate of a concept refining learner is still expected to be less than or

equal to that of a non-refining learner, with learning rate still substantially better

than that of an unstructured learner.
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CHAPTER VII

ANALYSIS OF HIERARCHICAL CLASSIFICATION

In this chapter we describe results with respect to optimality of the non-exhaustive

diagnostic procedure described in Section 2.4, notes on the convergence properties of

AN learning, and some work on counting the number of hypotheses expressible in an

AN classification hierarchy through the use of partition lattices. These results speak

to the particulars of the problem setting and knowledge structures in the context

of which we chose to test our theories, rather than directly to the core idea of this

work, the use of EVP metaknowledge for reflection and self-repair. However, we

include them here as they represent a secondary contribution arising from the research

described in this document.

7.1 Optimality of Non-Exhaustive Diagnostic Procedure

The structural credit assignment technique described in Section 2.4 is optimal with

respect to maximizing expected decrease in diagnostic search space entropy with each

probe, under assumptions outlined below. Here, the diagnostic search space consists

of all possible error conditions that lead to an error observed at the root of the AN,

under the following provisions:

• A value produced at a node is wrong only if it is objectively wrong (wrong

according to the associated EVP) and either is the root of the hierarchy, in which

objective incorrectness is sufficient, or is also subjectively wrong (recursively,

leads to the production of an erroneous value at the parent, and thus eventually

the root). In the language of diagnosis, this amounts to ignoring compensating

faults. This view of error arises from our functional stance towards knowledge;
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since knowledge in an AN exists to serve a purpose, it is incorrect only if it fails

to serve that purpose.

• Without loss of generality, we assume that each node produces values in a way

that is actually dependent on the values of all of its child nodes.

• The learner types used within nodes are such that they are amenable to the use

of a non-exhaustive diagnostic procedure. It is not clear how to precisely de-

fine the characteristics that are required, though it is known that some learner

types (ANNs) do not behave well under the non-exhaustive diagnostic proce-

dure, while others (rote learners and kNNs) do not have problems. A potential

issue is that many learner types require that training examples be drawn from

a stationary distribution in order to guarantee convergence. A non-exhaustive

diagnostic procedure does not in general provide a stationary distribution of

training examples. The distribution of examples at a particular node in a hi-

erarchy being trained according to such a procedure is dependent upon the

correctness of knowledge at nodes around it in the hierarchy, and thus as train-

ing occurs, the distribution may change.

As an aside, note that the final assumption listed above encapsulates an important

point about the interaction between the “causal backtracing” style of diagnosis com-

monly used in knowledge-based AI (here applied to self-diagnosis) [105] and statistical

machine learning techniques, where the requirements of underlying implementation

choices can preclude the application of seemingly intelligent optimizations at a higher

level. In any case, some learner types (such as our table-based rote learners) do

not require that examples be drawn from a consistent distribution. Thus, the di-

agnostic procedure that one wishes to use becomes a design consideration that the

implementer of an AN must bear in mind when selecting the learner types to be used

within nodes. If the cost of EVP execution is particularly high within a domain,
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it may be worthwhile to use learners such as rote learners that are not sensitive to

example distribution, allowing the use of a parsimonious, non-exhaustive diagnostic

procedure. The precise characterization of the requisite characteristics of learners that

will work with the non-exhaustive diagnostic procedure of Table 2 is left as future

work.

Because of the first assumption listed above, the diagnostic search space for a

given failure consists of all possible connected subtrees that include the root. A given

element in the diagnostic space accurately identifies the cause of error for a given

failure situation if it is the maximal such set for which all nodes in the set produced

incorrect values during the related inference. Here, a failure situation is any situation

in which the diagnostic procedure is invoked due to observed failure – in this work,

this occurs whenever an error is noted at the root of the classification hierarchy.

The set represents the nodes that produced erroneous values during the failure, and

learning within nodes will occur at the lower fringe of the set, as per the credit

assignment and learning procedure described earlier. Note that this diagnostic search

space is distinct from the hypothesis space searched by the EVP-based self-diagnosis

and learning procedure applied to a sequence of examples; this search space is not

concerned with any specific knowledge stored at the nodes, but only with explaining

the fault location(s) that led to a particular failure instance.

The task for our diagnostic procedure is to identify the hypothesis within the

diagnostic search space that accurately explains the error being diagnosed. This

will be achieved by executing the EVPs associated with some of the nodes within

the AN, effectively probing those nodes. Because we anticipate that there will be

some cost associated with EVP execution (which throughout this work we assume to

be uniform), we would like to select the single correct diagnosis using as few EVP

executions as possible. To achieve this, we will at each step select an EVP execution

that reduces the number of viable hypotheses remaining in the search space by the
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maximum amount possible. Because we wish to select a single correct diagnosis,

and not achieve the weaker condition of obtaining some degree of belief about the

diagnosis, prior probabilistic beliefs about the relative likelihoods of the diagnoses are

not significant in guiding probes each of which can only rule out (and not directly

confirm) some diagnoses – to leave only one viable diagnosis, we must rule out all

other diagnoses, no matter how improbable we may consider them a priori. For this

reason we can, without loss of generality, treat the diagnoses within the space as

being equiprobable for the purpose of our entropy-based analysis in this section. This

analysis could alternatively be done without using the notation of entropy, by instead

referring to the cardinality of the set of viable hypotheses after each probe. This

quantity, in fact, is what we are measuring with the diagnostic search space entropy

given our use of a uniform prior over diagnoses.

Let us define D to be a random variable that indicates which of the diagnoses

within the diagnostic hypothesis space is correct for a given failure instance. We

will also define a random variable Ni for each node ni in the AN that is the subject

of diagnosis. Each Ni indicates whether the value produced by the associated node

was correct for the failure instance being diagnosed. Finally, define H (D) to be the

entropy of the diagnostic search space. Given these definitions, we can write the

expected entropy remaining in the diagnostic search space after probing some node

ni as H (D|Ni) · P (Ni) + H (D|¬Ni) · P (¬Ni). (As described above, we treat the

diagnoses as having a uniform prior for the purpose of this analysis). If we probe

ni and it is found to have produced a good value, the remaining entropy is written

H (D|Ni), or if it is found to have produced a bad value, H (D|¬Ni). We will use

H+
ni

as a shorthand notation for the former quantity and H−ni
for the latter, as the

diagnostic search space in question is unambiguous.

Lemma 1 For any pair of unprobed nodes ni, nj in an AN such that ni is a (possibly

indirect) ancestor of nj:
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1. H+
nj
≥ H+

ni

2. H−nj
≥ H+

ni

3. 2 ·H+
ni

+H−ni
≤ H+

nj
+H−nj

To see that (1) & (2) are correct, notice that if nj is probed and found to have

produced a correct value, all hypotheses consistent with this observation are consistent

with either result of probing ni; that is, the set of consistent hypotheses remaining

viable if nj is probed and found to have produced a correct value is a superset of

the hypotheses consistent with ni having been found to be correct. Likewise for nj

being found incorrect. This is because, given the way the hypothesis space is defined,

if ni produced a correct value we do not care whether nj produced a correct value.

So, if we probe at ni first, we may not need to probe nj, whereas if we probe nj

first, we will still need to probe ni, for any outcome at nj. Probing at nj will only

allow us to rule out a subset of the hypotheses consistent with ni being incorrect,

and none of those consistent with ni being correct. The intuition behind this proof

lies here. Since we do not know whether node nj’s status is important until we probe

node ni, it is more fruitful to probe at ni first. This is true regardless of whether

we believe that nj is more likely to be incorrect than ni, because even if nj is found

to be incorrect, the system must then probe at ni anyway, to see whether the result

at nj is even significant. (3) is a related inequality, and is based on the observation

that if nj is a direct descendant of ni, the hypotheses consistent with nj being correct

are those hypotheses consistent with ni being correct, plus some fraction of those

consistent with ni being incorrect. Likewise for nj being incorrect. Since there is no

diagnosis consistent with neither nj being correct nor nj being incorrect, and there

is no diagnosis consistent with ni being incorrect, nj being correct and nj being

incorrect, we arrive at a variant of (3) with an equality rather than an inequality

for cases where nj is a direct descendant of ni. Now notice that if nj is an indirect

101



descendant of ni, the sets of consistent hypotheses contributing to H+
nj

and H−nj
will

not only be supersets of those contributing to H+
ni

, but will also include some of those

contributing to H−ni
that are consistent with correct values having been produced by

some nodes on the path from nj to ni. This leaves us with (3) as presented above,

since the RHS may exceed the LHS due to this duplication.

Theorem 1 For any two unprobed nodes ni and nj within an AN, where ni is a

(potentially indirect) ancestor of nj, the expected remaining entropy in the diagnostic

search space is less at ni, making ni a more desirable probe point.

To prove Theorem 1, let us assume that nj constitutes a better next probe point

than ni, on the basis of expected remaining entropy in the diagnostic search space.

Then H+
nj
·P (Nj) +H−nj

·P (¬Nj) < H+
ni
·P (Ni) +H−ni

·P (¬Ni). Substituting using

our lemma and simplifying yields P (Ni) > 1, a contradiction.

Moving from this result to our non-exhaustive self-diagnosis procedure is straight-

forward; it is preferable to probe nodes with ancestors that have been probed (and

found incorrect, of course). Further, the order of probing among such nodes is ar-

bitrary since the probing of any node with this characteristic cannot remove the

characteristic from any other node, and no such nodes can remain when a diagnosis

is uniquely selected.

7.2 Convergence of AN Learning

Past work on hierarchical classification, in particular tree-structured bias (TSB) [97][115]

and structured matching [37], makes it clear that hierarchical knowledge structures

can effectively represent classification knowledge if structurally correct. Here we typ-

ically assume that the structure of the knowledge representation has been correctly

engineered by a human designer, except in the experiments that specifically test

learning degradation when knowledge engineering is flawed (Section 4.3). Even in
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these scenarios, empirical evidence supports the benefits of using structured knowl-

edge representations for learning. Tadepalli and Russell [115] prove that learning over

classification hierarchies is tractable. In this section, we provide some notes on the

convergence properties of ANs under various assumptions.

7.2.1 Full EVP Evaluation vs. Causal Backtracing

To understand convergence characteristics under the two diagnostic techniques used

in this work, full EVP evaluation and the causal backtracing style (Section 2.4), it is

useful to consider the sequence of examples induced at an arbitrary (non-leaf) node

within the AN learner.

When full EVP evaluation is used, every EVP within the AN is executed for every

learning example. Examples are then constructed at each node by using the results

of child node EVP execution to form the correct input feature vector, and the result

of local EVP execution to form the correct output class for the example. In such a

case, assuming that the environmental dynamics are stable and that EVPs are fixed

(we deal with mutable EVPs in Subsection 7.2.2), the sequence of examples induced

at each node within the AN is drawn from a stable distribution – the fixed EVPs

are sampling from a stable distribution provided by the environment. Under full

EVP execution diagnosis, there is no difference in the sequence of examples seen by

a supervised learner assigned to a particular classification subproblem within an AN

and the sequence of examples that would be seen by a standalone learner working

on the same problem in isolation. Thus, if the characteristics of the environment are

assumed to be such that the learners used within AN nodes will converge after some

number of examples, we can be equally confident that all learners within the AN will

have converged once the requirements of the neediest learner have been met. If the

learners used within AN nodes are sufficiently expressive and the AN structure has

been engineered correctly, we know that the AN as a whole can represent the correct
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hypothesis for the overarching classification problem, as discussed at the beginning

of this section. Based on these observations, it seems reasonable to expect that ANs

will have reasonable, tractable convergence properties under these conditions, though

we do not develop explicit PAC bounds for an AN classifier as a whole.

When the causal backtracing style of diagnosis described in detail in Section 2.4

is used instead, convergence can no longer be assured for a subclass of supervised

learner types. This is true because (1) nodes are only provided examples for which

they have been found to make an error, and (2) the effective distribution from which

examples are drawn is not stable. Of course, point (2) is related to point (1). As

nodes within an AN begin to successfully classify some examples, the distribution of

examples seen by those nodes and neighboring nodes will shift. When learners (such as

ANNs) sensitive to the distribution of training examples are used within an AN, this

characteristic of causal backtracing diagnosis can lead to oscillatory non-convergence.

Of course, there are learner types (such as rote learners) that are not sensitive to

input example distribution. Other factors, such as substantial noise in the results of

EVP execution, may still cause some problems within a network that uses pure causal

backtracing diagnosis. However, when appropriate learner types are used, empirical

results suggest that good results can be achieved with causal backtracing diagnosis.

For this reason, it is our recommendation to try learning with causal backtracing if

EVP execution cost is high, using full EVP execution as a fallback. Further, if EVP

execution cost is both high and nonuniform, one would likely wish to go beyond basic

causal backtracing, also considering a value of information analysis. However, in this

thesis we do not deal with non-uniform EVP costs though we do acknowledge the

potential importance of the issue.
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7.2.2 Mutable EVPs

The preceding subsection considered only cases in which EVPs within the AN learner

are fixed for the duration of learning. Here, we address the situation that arises when

the method of Chapter 6 (or another method for automatic EVP adjustment) is used

to allow EVPs to be altered during learning. The only method for EVP adjustment

that we have implemented involves making quantization changes. However, here we

are considering a broader set of possible EVP modifications. We do explicitly intend

that these modifications result in an alteration of the semantics of the associated node,

as these semantics are fixed by the node’s EVP. When EVPs may be modified by the

learner, the classification subproblems assigned to nodes within the AN may change

during learning. Changes arising from the method of Chapter 6 are incremental

rather than radical, and thus much of the knowledge already acquired at the affected

node is likely to remain valid. However, this need not be true in general. Because

of the substantial setback in learning that can occur when subproblems are altered,

particularly at a late stage of learning, we recommend that the conditions for initiation

of automatic EVP adjustment be fairly stringent, i.e. EVPs are changed only when

there is substantial evidence that the concept represented is inadequate. As long as

it can be guaranteed that automatic EVP refinement will cease at some point in the

learning process, the qualitative comments from the preceding subsection will still

hold.

7.3 Restriction Bias from Hierarchical Representations

In this section, we provide some mathematical basis for understanding and beginning

to quantify the restriction bias that is imposed upon a classification learner by a

fixed hierarchical knowledge structure. This type of analysis has its roots in the VC

dimension measure [123] of the expressivity of a hypothesis space. In VC dimension

analysis, one determines the expressivity of a hypothesis space to be used by a learner
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in order to understand the capacity of a learner to overfit, as well as the generalization

power afforded by the representation (these characteristics are inversely related). In

this section, we provide an analytical direction by which one may understand the ex-

pressivity and thus generalization power of hypothesis spaces induced by hierarchical

knowledge representations.

First, note that a classification (of discrete objects) is a particular assignment

of labels to a partition of a set containing those objects (this set is also sometimes

referred to as the instance space). For a classifier with no restriction bias that classifies

n objects into x categories, we have xn hypotheses that can be expressed. Letting

S(n, k) represent the (n, k)th Stirling number of the second kind, and (x)n the nth

falling factorial of x, the hypotheses can be counted by Expression 4 for n, x ≥ 01:

n∑
k=0

S (n, k) (x)k (4)

A term in the sum of Expression 4 counts the number of ways that n items can

be partitioned into k sets (S(n, k)), and multiplies this by the number of ways to

uniquely assign x labels to the k sets ((x)k). This computation can be visualized

through a partition lattice. Figure 36 illustrates a lattice relevant when classifying

four items.

In the case that our learner is assigning four items to two categories, Expression

4 expands (and then simplifies) to:

1Though it may seem slightly strange that this expression states that there is one way to classify
zero items into zero categories, this result is in keeping with the assertion of Sterling numbers that
there is one way to partition zero items into zero sets. In practice, this border condition is unlikely
to be of import.
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Figure 36: Partition lattice for four items.
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S(4, 0)(2)0 + S(4, 1)(2)1 + S(4, 2)(2)2 + S(4, 3)(2)3 + S(4, 4)(2)4 =

0 · 1 + 1 · 2 + 7 · 2 + 6 · 0 + 1 · 0 =

16

As expected, the result is 24, all possible hypotheses when four items are to be

placed into two categories. Each nonzero Stirling number of the second kind in the

expression above corresponds to a row in the partition lattice of Figure 36. For in-

stance, the second row from the bottom in Figure 36 contains seven items as there are

seven ways to partition four items into two sets. Because there are only two classes

that can be emitted, we effectively disallow the selection of partitions from the two

lowest rows in the partition lattice. It is this process that forces information loss of

varying degrees within a classifier. If we were allowed to place four items into four

distinct categories, no information loss would be forced by the classification – the

classification process is reversible under some allowed classification functions. As we

restrict our classifier to progressively coarser categorizations by limiting the number

of output classes, we lose more and more information. The progressive process of

information loss at nodes within a classification hierarchy is the basis of the imposed

restriction bias. This method of counting the size of the hypothesis space in terms

of Sterling numbers of the second kind and visualization in terms of partition lat-

tices is overly complex when dealing with straightforward classifiers, but will become

valuable as we now turn to the restriction bias imposed by hierarchical knowledge

representations.

Let us now consider a classifier that makes use of a very simple structured knowl-

edge representation, depicted in Figure 37.

This classifier has three inputs, each taking two possible values. The first and

second stage sub-classifiers are each able to emit two class labels. Notice that the
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Figure 37: A simple classification hierarchy with 3 inputs, each taking 2 values.
The first and second stage sub-classifiers are each able to emit 2 class labels.

labeling of partitions is only important in the final stage. The number of overall

hypotheses expressible by the structured classifier of Figure 37 is not doubled because

we can reverse the class labels on otherwise equivalent partitions coming from the

stage 1 classifier. Only the final partitioning of the 23 = 8 input values and the label

assignments onto those partitions is significant in determining the total number of

expressible hypotheses. The first stage partitions four values into at most two sets

(partitions including three or four sets are excluded as they cannot be uniquely labeled

at the stage 1 output). In considering the number of hypotheses expressible by the

classifier at large, we need only concern ourselves with the most granular partitions

that can be produced by a given sub-classifier. This is because further conflations

can always be handled by (and will be counted at) the root classifier. At subordinate

nodes, we are only concerned, in effect, with the partitions that are excluded by the

node. Following this logic, the most granular partitions that can be produced by the

first stage, as shown in the corresponding row of the lattice in Figure 36, are:

14/23, 1/234, 124/3, 13/24, 123/4, 134/2, 12/34
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Now consider what happens when the partitions defined by the stage 1 classifier

are combined with the additional raw input that feeds into the stage 2 classifier. In

essence, each of the four original items classified at stage 1 multiplies into two items,

as we form the Cartesian product of the stage 1 inputs with the additional input

values. The key here is that the partitioning decisions made at stage 1 will apply

(separately) to the new sets of items created when adding the new, raw input at

stage 2. This is most easily illustrated by example. Let us refer to the four items

created by pairing the first of the raw input’s values with the four original items as

1,2,3,4; and the four items created by pairing the second of the raw input’s values

with the four original items as 5,6,7,8. Then, the most granular partitions that can

be created by the second stage classifier are:

14/23/58/67, 1/234/5/678, 124/3/568/7, 13/24/57/68, 123/4/567/8, 134/2/578/6,

12/34/56/78

Further, the only partitions that can possibly be created by the second stage clas-

sifier are those listed above and further coarsenings of those listed above. Thus, with

the addition of a binary input, we have moved from a partition lattice for four items

into a partition lattice for eight items. Our possible starting points within this eight

item partition lattice are the nodes corresponding to the partitions enumerated above.

If we imagine the arcs within the partition lattice to be directed, in every case from

more granular nodes towards less granular nodes, then the set of nodes reachable in

the eight item partition lattice from these starting nodes is the number of partitions

that can be produced by the stage 2 classifier. To count the number of hypotheses

expressible by the classifier of Figure 37, we need to count the number of nodes reach-

able at each level l (numbering from the topmost, coarsest partition, and beginning

with 1) and multiply by (2)l. In Appendix A, we provide an enumerative solution to

this small example problem, demonstrating that there are 88 hypotheses expressible
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by the classifier of Figure 37. This stands in contrast to the 28 = 256 hypotheses

expressible by an unstructured learner with three binary inputs and a binary output

and with no alternative restriction bias. Thus, even the simple knowledge structure of

Figure 37 has led to the exclusion of 256−88 = 168 hypotheses, or a 65.6% reduction

in hypothesis space size.

To quantify, or even provide bounds on the hypotheses expressible by a hierar-

chical classifier in general, this analysis will need to be substantially expanded and

generalized. For instance, how do we generate the possible starting nodes within a

higher level partition lattice when we combine not a sub-classifier and a raw input,

but the outputs of two sub-classifiers? The problem rapidly becomes more complex.

This generalization is left as future work, as hierarchical classification itself is not the

focus taken by this dissertation. However, this line of reasoning may be useful in the

eventual quantification of the restriction bias imposed by hierarchical classification

knowledge structures.

111



CHAPTER VIII

RELATED RESEARCH

Beyond the classifiers which we have integrated directly with the Augur system (kNNs

[28] and ANNs [94]), there are several lines of research that are relevant to the AN

representation and algorithms that we use to address the compositional classification

problem chosen as a test domain for EVP theory. The following section compares

and contrasts ANs with these other lines of research – though of course, the use of

EVPs, and the power they bring in terms of automatic concept adjustment, are the

main novelties of this research, and EVPs are intended to have applicability beyond

compositional classification. Subsequent sections in this chapter compare this work

with other, more generally related lines of research in metareasoning and concept

refinement.

8.1 Learning With Structured Representations

There is a myriad of work on learning that makes use of structured representations.

In this section, we highlight and discuss some research that is particularly pertinent

to the techniques we have developed in this work. For the purposes of comparison,

we will situate each technique discussed in this section along two axes of variation –

first, the degree to which the technique exploits prior knowledge of decompositional

hierarchical structure, and second, the degree to which the technique exploits semantic

pinning (alternatively, the degree of supervision) of nodes within the hierarchy. ANs

make strong use of both kinds of background knowledge, so this is an interesting basis

for comparison of techniques. Notice that these axes are not orthogonal – it is not

possible to semantically pin the components of decomposition within a hierarchy that

does not exist! The next subsection covers those structured learning techniques that
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Table 6: A partial taxonomy of structured classification techniques.

fit well within the taxonomy suggested by these axes, and the following subsection

covers those that do not fit as neatly.

8.1.1 Classification Learners using Decomposition

In this subsection, we discuss classification learners that use structured representa-

tions to decompose the overall problem into a set of sub-classification problems. Table

6 summarizes where these learning methods fit into the space defined by the two axes

described at the head of this section.

Work on tree-structured bias (TSB) [97][115] is the most closely related to ANs and

the problem domain of compositional classification used to test EVP-based learning.

In systems that make use of tree structured bias, a concept hierarchy like those

represented by ANs is used to limit the hypothesis space that must be searched by a

learner. So, like ANs, there is a strong exploitation of tree structure under TSB. One

of the contributions of experimentation with Augur is the application of the general

idea of tree-structured bias in new settings, including the use of ML techniques that
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have not been combined with tree-structured bias in the past and application to non-

synthetic problems. This research also moves beyond past work on TSB in several

other directions, studying, for example, the effects of faulty knowledge structures on

learning and expanding on theoretical results. More significantly, there are several

fundamental differences between ANs and past work on tree-structured bias. First,

TSB has dealt only with binary classifications at all nodes in the hierarchy, while ANs

can deal with multivalue classifications. As noted above, the primary distinction is

that TSB research does not have the concept of EVPs. Though this is true of all of

the techniques discussed in this section, there are some comparisons worth drawing

here. In lieu of EVPs, TSB learners instead rely on carefully constructed queries

to the environment to learn the functions at internal nodes. This procedure can be

construed as requiring a very specific kind of empirical verifiability for internal nodes

– thus forcing a particular (and rather complex) form on the EVPs that a designer

would write if applying TSB procedures within the AN framework. In particular,

an EVP for an internal node in a hierarchical classifier can be written such that

it makes a series of TSB-style queries to the environment to determine the correct

value of the associated node during learning. Tadepalli and Russell [115] show how

to simulate an oracle function at internal nodes in a TSB hierarchy using the queries

their work requires. This procedure is exactly what would be placed within an EVP.

Hence, like ANs, TSB exploits semantic pinning at all nodes within the hierarchy,

though this pinning is more implicitly expressed by the structure of the hierarchy in

conjunction with the queries assumed available and the procedure for their use. In

the work described here, we take the stance that, in general, a broader set of queries

to the environment may be possible. If this is the case, it will be more efficient to

make use of the observations that most directly allow us to determine the value of an

internal node when learning. In fact, the motivating example given by Tadepalli and

Russell [115], concerning a credit-card domain, appears clearly to have a strong kind of
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direct empirical verifiability at internal nodes that could be exploited by an AN using

very simple EVPs. Thus, past work on TSB can be seen as a specialization of the

techniques described in this paper, where only a particular kind of query is supported

by the learning environment. Note also that the requirement that any example can

be obtained from the environment by the learner is a rather strong assumption which

may not hold in domains where only limited training samples are available. ANs do

not require this assumption to hold. AN research also moves beyond TSB by allowing

the construction of hybrid learners, where semantic pinning is employed only at some

subset of nodes within the classification hierarchy.

Layered learning [130] makes use of decomposition hierarchies to address large

learning problems. In layered learning, each component’s learner is trained in a

tailored environment specific to the component. Our AN technique is more akin

to what is called “coevolution” of components in work on layered learning, where

multiple learners in the decomposition hierarchy are trained simultaneously in the

actual target domain. However, in layered learning, genetic algorithms are used for

training. This means that the structural credit assignment problem is addressed

through trial and error, which will not provide the type of scalability characteristics

we expect to achieve with a systematic approach to credit assignment. An additional

distinction is that ANs focus on progressive abstraction, limiting the number of inputs

to each component and ensuring a learning problem of manageable dimensionality

at each component. In contrast, layered learning focuses on temporal abstraction,

where components responsible for selection of abstract actions are not necessarily

shielded from the need to consider many raw state features. And ANs also allow

the use of arbitrary (in principle, heterogeneous) learners within each component.

Layered learning makes use of both strong hierarchical knowledge and strong semantic

knowledge at each node.

Like the basic form of layered learning, Shapiro’s structured induction [100] makes
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use of a hierarchical knowledge structure for classification, and trains each element

individually from the bottom up. Shapiro’s technique is specifically tailored to aid

with the process of information extraction from an expert in building an expert sys-

tem. This work goes beyond Shapiro’s by proposing methods to automatically adjust

node semantics, performing end-to-end training of the hierarchies, admitting multi-

ple types of supervised classification learners within nodes, and implementing mixed

hierarchies, where the semantics of only a subset of nodes are known. Shapiro also de-

scribes a mechanism by which a knowledge hierarchy may produce a human-readable

explanation of its reasoning. The work described in this thesis does not incorpo-

rate such a mechanism, but in principle such a feature could be added. Like layered

learning, both strong hierarchical knowledge and strong semantic pinning are used in

structured induction.

Knowledge-based ANNs [118] and Explanation-based NNs [78] both apply back-

ground knowledge in order to speed up learning in supervised classification problems.

In KBANN learning, neural network structure and initialization are informed by back-

ground knowledge in the form of Horn clauses. Then, the network is trained using a

standard method such as backpropagation. That is, credit assignment during learn-

ing is based on structural and numerical properties of the knowledge representation.

In contrast, credit assignment over ANs is based on fixed semantic properties of the

structural elements. These semantic properties are explicitly encoded as Empirical

Verification Procedures that ground the knowledge contained within a structural el-

ement in terms of falsifiable predictions about the environment. Also notice that

the result of learning is different. With ANs, the structural elements of knowledge

retain known, explicitly specified meanings. With KBANN, there is no guarantee

that structural elements of the neural network that results from training will have

any particular or identifiable meaning. So both the considered hypothesis spaces and
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the nature of the search through those spaces is different in KBANN vs. AN learn-

ing. Beyond the restriction bias of requiring fixed semantics for intermediate nodes,

there are also other advantages such as the potential for transfer of partial networks

to new problems and inspectability of knowledge. KBANN does exploit structural

background knowledge, as well as semantic background knowledge for the purposes

of initialization. However, there is no semantic pinning maintained at nodes within a

KBANN hierarchy during training.

In EBNN, a neural network is trained via the TangentProp algorithm. Tangent-

Prop works as backpropagation, however it is augmented with knowledge about the

desired derivatives of the output function with respect to changes in the input values.

EBNN finds the derivatives used as input to TangentProp on a per-example basis

using provided background knowledge. This background knowledge is in the form of

an approximate representation of the target function by a set of neural networks. The

representation used for the domain theory is similar to an AN with ANNs at each

node, but EBNN does not deal with learning over this representation, but rather

learns while treating this information as fixed background knowledge. As in the dis-

cussion about KBANN above, notice that AN learning differs from EBNN in both

representation and in the procedure for credit assignment. EBNN learning results

in a trained neural network, where intermediate nodes are not guaranteed to have

any identifiable interpretation. In contrast, the AN representation always maintains

known, explicitly represented interpretations for all intermediate nodes. In a related

point, TangentProp credit assignment distributes blame across network weights based

on structural characteristics of the network, rather than based on analysis of fixed

node interpretations as is the case in AN learning. EBNN makes use of both struc-

tural and semantic background knowledge, though its use of semantic knowledge at

nodes within the classification structure is better described as influence than pinning

– preference bias vs. restriction.
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Hierarchical Mixture of Experts (HME) learning [60] trains multiple experts (learn-

ers) to solve the same problem and then combines their outputs via a series of gates

in order to produce a result. By training both the experts and gates, the HME is

able to learn complex decision boundaries. However, an identifiable interpretation of

the purposes of the experts and gates is not guaranteed by the training algorithm.

This differs from the AN technique, where a single learner addresses each learning

task within a network and an analytical credit assignment algorithm that respects

assigned node semantics is used. HME learning uses neither background knowledge

of the structure of a problem decomposition, nor the capacity for direct supervision

of subproblems.

Bayesian Networks (BNs) [88] represent joint probability distributions efficiently

by making use of conditional independence relationships among features. On the

other hand, Abstraction Networks capture progressive aggregation and abstraction

into equivalence classes, culminating in abstraction into a desired classification. This

distinction has practical implications for the methods that operate on Abstraction

Networks. First, the credit assignment procedure for ANs differs from learning in

Bayes nets. During AN learning, Empirical Verification Procedures must be invoked

to determine whether a particular abstraction (intermediate equivalence classification)

was accurate. When learning over a Bayes net, this is never required as the represented

variables are expected to be directly observable, or are estimated (e.g. using EM).

The fact that there is a level of abstraction between concepts represented at nodes

in an AN and features directly observable in the environment is also a source of

power for ANs. Next, because this level of abstraction is via an explicitly represented

mechanism (the Empirical Verification Procedure), this abstraction can be directly

operated upon by learning. This means that the number of distinctions made by

a given AN node can be adjusted, increasing or decreasing the level of distinction

made by a particular set of equivalence classes. Also, the specific division of actual
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world states into these equivalence classes can be directly operated upon, potentially

changing the constitution of equivalence classes. Because Bayes nets do not deal with

features in terms of such explicitly represented abstractions, this type of operation

is not possible when learning over Bayes nets. Of course, one could manually tune

the equivalence classes used at various nodes within a Bayes net (presumably because

the human designer is able to understand the abstraction mechanism at work even

though it is not explicitly encoded). However, we are speaking here of the automatic

adjustment of these equivalence classes by the learner. Of course, it is also quite

possible that one could apply EVPs to Bayes nets. This would imbue Bayes nets

with an explicit representation of their features’ abstraction from raw perception,

and the automation of equivalence class tuning should also be possible for Bayes

nets if this were done. We also provide some empirical comparisons between ANs

and BNs in Appendix B, along with additional comments. Bayes nets in their basic

form make full use of both structural background information (though they require

a less rigid form on this structural information than do hierarchical classifiers) and

supervision at individual nodes. Although individual BN nodes are supervised, they

do not have an explicitly specified layer of abstraction sitting between raw state and

values represented at nodes. This is what EVPs provide in this work. However, many

variants of BNs have been produced that relax these assumptions.

8.1.2 Other Structured Learners

In this subsection, we discuss learning methods related to ANs that do make use of

structure, but do not fit neatly within the taxonomy used within the last section. In

each discussion, we do note the relationship of the technique to the taxonomy.

Work on structured matching [37] [12] also focuses on classification hierarchies

that progressively aggregate and abstract from raw state features, culminating with

the production of a desired top-level classification. Structured matching, unlike all of

119



the other techniques discussed in this section, is not a learning method, but rather

a static knowledge representation (and associated inference mechanism) used in ex-

pert systems. However, it is worth mentioning here as it underscores the power and

widespread use of hierarchical classification methods within the knowledge-based AI

community. This work demonstrates computational characteristics of representing

classification knowledge hierarchically, including the cost of drawing inferences with

knowledge represented in such a fashion, and formalizes a type of classification fre-

quently used in AI systems. Chandrasekaran [43] [15] differentiated bottom-up struc-

tured matching with top-down taxonomic classification. He viewed both of them as

Generic Tasks because of their ubiquity in AI [14] [13]. However, structured matching

dealt only with knowledge engineered classification hierarchies, and did not consider

learning. As there is no learning, it is not really sensible to situate structured match-

ing along our hierarchy/semantic pinning axes. As a fixed knowledge representation,

structured matching has maximum bias on any conceivable axis.

Explanation-based learning (EBL) [76] is a knowledge-based approach to reasoning

and learning in which classification (but not necessarily prediction) is also important.

However, as noted by Russell and Norvig [96], given a training example EBL “does

not actually learn anything factually new from the instance. The agent could have

derived the example from what it already knew, though that might have required an

unreasonable amount of computation.” The point here is that after learning, a system

employing EBL is not capable of correctly solving any more problems than it was able

to solve directly using provided background knowledge, although the computational

expense may have been considerable. EBL instead makes the system more efficient at

solving the kinds of problems that are input as examples by reencoding background

knowledge appropriately. EBL produces processing templates that can be used to

solve future problems similar to input examples more efficiently. That is, the task

here is speedup learning. This is not the same task solved by AN learning. The state of

120



knowledge after processing an example is different from the state of knowledge before

processing an example. It is not simply a transformation in the form of knowledge. To

see this notice that the set of examples consistent with a given AN are not the same as

the set of examples consistent with an AN after modification through learning. Thus,

the task in EVP-based learning is expanding the set of solvable problems. EBL does

exploit both structural and semantic domain knowledge, but in a way that differs

substantially from a hierarchical classification system such as ANs/Augur.

One view of a secondary contribution of this work is the development of a method

for scalable classification learning through use of domain knowledge. Work on hierar-

chical RL [26] has a similar goal, but in a different problem setting and with the use

of a different kind of domain knowledge. In hierarchical RL, or partial programming

[69], procedural knowledge in the form of a hierarchy of temporally abstract actions

is used, and action selection (which can of course be seen as a particular kind of clas-

sification) is the goal. This type of background knowledge is well-suited for an RL

problem setting. In the scenario addressed in this work, knowledge about equivalence

classes relevant to classification is more directly useful. In hierarchical RL, different

senses of hierarchy are at play, and different techniques make different assumptions

about background knowledge that is available. In some cases, the hierarchy of ac-

tions possible at each level is fixed, though this is not always the case. There is also

a procedural hierarchy defined by the policy, which is the target of learning. Actions

at each level have semantics that are defined by the associated reward functions.

Stacked Generalization [134] is a method that allows classification learners (called

“generalizers” in this work) to be combined via a meta-level learner that learns to

guess an answer based on the guesses returned from all the base-level learners. This

work differs from AN learning in that each of the base level generalizers is trained

over the same learning problem – each attempting to learn the same target function.

In contrast, ANs break a learning problem into distinct subproblems, each of which is
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handled by a node in the network. Though there is structure in stacked generalization,

the notion of problem decomposition does not exist here, and so our comparison of

the degree of structural and semantic background knowledge used is not particularly

applicable to this technique.

8.2 Metareasoning and Metaknowledge

EVP-based learning takes a reasoned, deliberative approach to learning, where an

agent reflects upon itself and decides to effect changes in order to correct errors. ANs

encode both object-level knowledge (the sum of the classification knowledge stored

within the supervised learners within nodes) as well as metaknowledge (the EVPs

that fix the semantics of the object-level knowledge). The process of reflecting upon

one’s own reasoning and altering or guiding that reasoning in a deliberative way is

referred to as metareasoning, as discussed at length in Chapter 1.

The Meta-AQUA system [22] is an example of a system that selects among various

available reasoning strategies (and also among potential learning goals, an example of

goal-driven learning discussed in Section 8.3). In this system, it is specifically learning

techniques that are chosen among, according to properties of the techniques and of

the situation currently faced by the agent.

In some ways work on active learning [71] [117] can be viewed as metareasoning,

and there is a relationship with EVP-based learning. In both this work and in active

learning, the learner must make reasoned decisions about when it is worth obtaining

a class label (which in this work includes class labels at intermediate nodes in the

hierarchy). So in the most general sense, the research described in this thesis is a

kind of active learning. The major difference, of course, is that we deal in this work

with hierarchical classification, which active learning generally does not. Also, the

concept of EVPs, which explicitly encode the connection between equivalence classes

in the hierarchy with raw percepts, are not present in active learning. Finally, much
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(though not all) work on active learning deals with a problem setting known as pool-

based learning, where there is a pool of unlabeled examples for the learner to select

from in choosing the next example it will receive. In this work we have generally

made a different assumption, that potential examples come in sequence. However, it

seems probable that AN learning could be adapted to the pool-based setting. It is

likely that techniques for query selection suggested by active learning may be useful

for selecting queries for nodes in AN hierarchies in such settings. However, in hi-

erarchical classification learning we would not only wish to consider local measures

such as variance in example classification at a given node, but also the impact of

that local uncertainty on the overall classification (the value produced at the root of

the hierarchy). These extensions may constitute an interesting future direction for

AN-based hierarchical classification learning.

8.2.1 Model-Based Self-Adaptation

EVP-based learning takes a particular view of the learning process, specifically that

learning can be viewed as self-adaptation through a process of self-diagnosis and self-

repair. The general diagnosis (credit assignment) problem has been characterized as

a core problem in learning [75]. Samuel [98] first identified the problem in his work

on checkers playing programs. The causal backtracing diagnostic technique described

in Section 2.4 is inspired by classic AI techniques in which probe points (here, EVP

executions) are systematically chosen to decrease the size of the diagnostic hypothesis

space based upon evidence gathered so far. A good overview of AI diagnosis is given by

Stefik [105]. Self-diagnosis is central to this work, motivating the semantic grounding

of knowledge via falsifiable predictions about perception, which we encode in the form

of Empirical Verification Procedures.
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The process of self-diagnosis has frequently been facilitated by the use of self-

models, explicit representations of self that can be operated over by a reasoning pro-

cess in attempting to identify causes for (or localize) failures, as well as when decid-

ing upon and implementing adaptations. For instance, Williams’ work on immobots

[132] imbues systems viewed as immobile robots with the ability to self-regulate and

self-repair by making physical configuration changes when problems are detected.

Self-models are used both to detect problems and to make decisions about how to

avoid or correct them. Problem detection depends upon knowledge within the model

that describes normal, expected operation. This knowledge can be seen as predictive,

in that it describes expected experience when subsystems are operating as desired.

However, though they reason over self-models, immobots cannot be seen as metar-

easoning in the true sense, as the models represent the physical configuration of the

system and not its reasoning processes.

The REM [86] and Autognostic [110] systems also make use of self-models with

predictive information about a system’s intended functioning. These systems truly do

engage in metareasoning, as the models that they use are not models of physical sys-

tems but rather of (portions of) their own reasoning processes. Both of these systems

have the capability to recognize failures of reasoning and intervene either through

configuration changes or hard modifications in order to correct errors. Once again,

failure detection and localization is made possible through the inclusion of predic-

tive information within the self-models. REM is also capable of proactive adaptation

if provided a description of a new problem domain, through the use of the same

self-model used for retrospective (failure-driven) adaptation.

REM in particular uses models coded in a language called Task-Method-Knowledge

Language (TMKL) (see also Section 1.1.1). TMKL models of software systems are

expressed in terms of tasks, methods, and knowledge. A task describes user intent in

terms of a computational goal producing a specific result. Tasks encode functional
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information – the production of the intended result is the function of a computation.

It is for this reason that the models specified in TMKL are teleological – the purpose

of computational units is explicitly represented. A method is a unit of computation

that produces a result in a specified manner. The knowledge portion of the model

describes the different concepts and relations that tasks and methods in the model

can use and affect as well as logical axioms and other inferencing information involv-

ing those concepts and relations. TMKL has been shown to be more expressive than

Hierarchical Task Networks (HTNs) [31], as TMKL enables explicit representation of

subgoals and multiple plans for achieving a goal. Hoang, Lee-Urban and Munoz-Avila

[46] designed a game-playing agent in both TMKL and HTN and noted that TMKL

provided control structures and other features beyond those available in HTN, and

that TMKL provides strictly more expressive power than HTNs. Figure 4 displays

only the tasks (rectangles) and methods (rounded rectangles) of the FreeCiv playing

agent.

EVP-based learning is not metareasoning in the true sense, as it involves rea-

soning about domain knowledge rather than about reasoning itself. However, the

notion that diagnosis is facilitated by the use of explicitly represented models (here,

metaknowledge, as EVPs encode knowledge about knowledge) that contain predic-

tive information is at the heart of the EVP method. These notions of deliberative

self-diagnosis are also important in some of the techniques for concept refinement

discussed in the next section.

8.3 Learning What to Learn: Refining Concept Semantics

Like the research discussed in the previous section, work on goal-driven learning [92]

[64] [22] takes a strongly deliberative approach to learning. In goal-driven learning,

a system dynamically determines which concepts are currently important to the sys-

tem so that it may focus resources on particular learning tasks within a practically
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unbounded set of potential learning tasks in a rich environment. This process may

also be one of diagnosis, though in goal-driven systems the learning goal selection

process may be more proactive than retrospective. Goal-driven learning recognizes

that knowledge does not gain value in a vacuum, but rather derives its value from its

ability to contribute to the system’s larger goals. In this sense, EVP-based learning

can be seen as a kind of goal-driven learning, as decisions to alter concept semantics

(Chapter 6) are made based upon each concept’s observed ability to contribute to

overarching goals. While goal-driven learning does not necessarily directly alter the

semantics of concepts that the agent considers learning, the idea of knowledge having

value in a goal context is an important one in EVP-based learning.

Work on Probabilistic Concept Hierarchies [32][50] makes use of knowledge repre-

sentations centered around the generation of progressively more abstract equivalence

classes, as do ANs. Probabilistic Concept Hierarchies, however, are used for unsuper-

vised concept learning. This stands in contrast to our approach, where the usefulness

of a particular concept is evaluated in terms of a specific higher level goal of the agent.

In our work, this translates to the existence of a well-defined top-level target concept

(classification) that is to be learned. Thus, relevance of information and usefulness

of specific equivalence classes can be defined directly in terms of the target concept.

In unsupervised learning, the goal can be thought of as forming equivalence classes

that explain the data. Thus, in unsupervised learning, equivalence classes are valued

based on how well they summarize available data. On the other hand, when learning

a target top-level concept, the usefulness of an equivalence class is based on its ability

to discard information irrelevant to the target concept.

Work on Predictive State Representations (PSRs) [67] [102] outlines rationale for

using state representations that directly encode predictions about future events. In

a general way, the notion that knowledge should have a predictive interpretation is
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central to this work as well, as noted in the previous section. The requirement for em-

pirical determinability is a requirement that knowledge make a verifiable prediction.

In work on learning PSRs [131] [135], the system can be seen as defining concepts

relevant to action selection, as the predictive representations of state are constructed

on-line. However, the tasks addressed with PSRs vs. EVP-based learning are sub-

stantially different. While PSRs are used to build state representations based upon

predicted action/observation sequences, ANs are used to encode and learn hierarchi-

cal classification knowledge. For this reason, work on PSRs has not focused on the

problems of self-diagnosis, self-repair and bias in inductive learning that are central

to this work.

The information bottleneck method [116] provides a means by which one may

find an optimal compression of a signal that maintains a given amount of information

about another random variable. Classification is a perspective on compression, and

the generalization power afforded by the AN hierarchical representation is due to

lossy compression at each node within the hierarchy – thus, each node is performing

a form of information bottlenecking, though the method used is not the same as that

of Tishby, Pereira and Bialek. When EVP adjustment is triggered during EVP-based

AN learning, we are dynamically adjusting (in this work, increasing) the amount of

information we require to be passed through the associated AN node. Thus, the

learning procedure with EVP adjustment is progressively estimating the appropriate

degree of information loss at each node within the classification hierarchy.

Ivanov and Blumberg’s work on clustering under reward [51] also takes the view

that concepts have value based upon their ability to support action selection. In this

work, clusters (concepts) are learned over perceptual input based upon their ability

to enable the expression of a good action selection policy. Of course, the resulting

concepts may not have the same human-identifiable semantics available when using

EVP-based learning. Also, once again the problem setting and technical approach is
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substantially different from that in EVP-based learning. However, the general insight

that knowledge derives value from the support of action selection is also important

here. McCallum, in his work on utile distinctions [72] makes a similar observation.

In this work, a system learns to represent state with varying amounts of history. The

amount of history kept for a particular state is selected based upon the system’s need

to distinguish states in which different actions are preferred (the learned state space

is used in support of reinforcement learning). Both of these lines of research share

with this thesis the view that knowledge ultimately derives value from its capacity to

support action selection.
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CHAPTER IX

CONCLUSION

9.1 Summary

The work described in this dissertation has produced a number of technical contribu-

tions and gives rise to several claims which are supported through empirical and/or

formal means. Before turning to a more detailed discussion of these claims and the

broader implications of the work, we begin by summarizing these things.

Technical contributions:

• A theory of a type of metaknowledge that is useful for reflection upon and adap-

tation of domain knowledge, Empirical Verification Procedures. (Dissertation

as a whole).

• A design, including algorithms and data structures, for the application of Em-

pirical Verification Procedures within the context of compositional classification

problems. (Chapter 2).

• A set of formal results illustrating various aspects of learning in compositional

classification problems. (Chapter 7).

• An implementation, realized in the Augur system, of an EVP-based learning

system applicable to compositional classification problems.

Claims:

• Empirical Verification Procedures allow a meta-level process to diagnose and

repair faults in compositional classification knowledge stored within an Ab-

straction Network. (Chapter 4). The effectiveness of EVPs in this regard is
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neither specific to the learner type used within the AN (Section 4.1) nor to a

particular compositional classification problem instance (Section 4.2). This ef-

fectiveness also stands in the face of hierarchies built with suboptimal knowledge

engineering. (Section 4.3).

• Empirical Verification Procedures associated with nodes in a classification hier-

archy impose a restriction bias on the hypotheses representable by that knowl-

edge structure, and therefore increase the speed and accuracy of learning when

this bias is correct. (Chapters 4-5).

• When Empirical Verification Procedures are not available for some of the nodes

within an Abstraction Network, training is slower and more difficult than when

using an AN with EVPs at all nodes. However, “incomplete” ANs in which a

significant fraction of nodes lack EVPs still learn more rapidly than unstructured

learners. Thus, ANs should be employed even in cases where EVPs are not

available at all nodes. (Chapter 5).

• Concepts with semantics explicitly expressed through the use of Empirical Ver-

ification Procedures can be successfully automatically adjusted when they are

inappropriately defined with respect to fulfilling their functional role in a sys-

tem, at least when the EVPs are quantizing EVPs, which were the type adjusted

in the experiments described in Chapter 6.

• Hierarchical classification knowledge structures introduce substantial restriction

bias to a learner’s hypothesis space, allowing more generalization to occur and

thus a larger decrease in error rate per example. (Sections 4.1 & 7.3).

• The performance of learners using hierarchical classification knowledge struc-

tures degrades gracefully when they are built with structural errors. (Section

4.3).
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• When applicable to the learner type used within nodes in an Abstraction Net-

work and when the cost of EVP execution relative to example acquisition cost

is high, a causal backtracing style of diagnosis is desirable when errors must

be both subjective (propagated forward in the decision structure) and objective

(wrong according to perceptual predictions). (Section 7.1).

9.2 Compositional Classification

Before turning to the central contributions of this dissertation, we will begin by dis-

cussing in more detail a few secondary contributions that arise due to the evaluation

of the central hypothesis within the context of compositional classification. These

results provide additional understanding of the compositional classification problem

and the hierarchical knowledge representations (ANs) used to solve such problems.

One of these contributions is the quantification of the hypothesis space reduction

afforded by hierarchical classification knowledge representations, as well as empirical

illustrations of the learning speed increase afforded by this structural restriction bias

(Section 7.3 and Chapter 4). By connecting the hypotheses expressible using clas-

sification hierarchies with a well-studied mathematical construct, partition lattices,

a path for developing a deeper understanding of the properties of these knowledge

structures is laid.

We also present a demonstration of the optimality of the causal backtracing style

of diagnosis (Table 2), along with a discussion of when the technique may lead to

convergence problems – specifically, when learners within the classification hierarchy

require that examples be drawn from a stable distribution. In fact, based upon the

experiments and analyses described here, a design space emerges, describing the pa-

rameters that must be selected when applying hierarchical knowledge representations

to learning in compositional classification problems, summarized in Table 7.

Table 7 shows when one is likely to prefer (or require) complete execution of all
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Table 7: Design space for Abstraction Networks.

Cost of EVP Execution Relative to Examples
High Low

Learner Requires Yes Full EVP Exec. Full EVP Exec.
Stable Distribution? No Causal Backtracing EVP Exec. Full EVP Exec.

EVPs within an Abstraction Network, based upon whether the learner type chosen

requires that examples be drawn from a stable distribution, as well as whether EVP

execution cost has a relatively low or high priority relative to the cost of obtaining

examples. EVP vs. example cost is relevant because causal backtracing diagnosis

is parsimonious with respect to EVP execution (Section 7.1) at the cost of possibly

not performing learning at all nodes where it may be possible for each example.

These relative costs will be dictated by the domain. The choice of learner type

will also be tied to problem specifics, based upon the type of inductive bias that is

most appropriate for the various sub-classification problems induced by the knowledge

hierarchy.

We have also presented empirical results of the impact of degraded knowledge

engineering on the effectiveness of learning using an Abstraction Network (Section

4.3). These experiments show a graceful degradation of the performance of an AN-

based learner as increasingly severe deficits in knowledge engineering are introduced.

When no input information is lost, this degradation takes the form of decreased

learning speed due to a reduced restriction bias. When input information is lost, the

final error rate reached is also higher. However, the general finding is that use of

structural information is substantially beneficial even if it is significantly incomplete.

9.3 Empirical Verification Procedures

The central claim that we make in this dissertation is that explicit semantic ground-

ing of domain knowledge in perception makes it possible to self-diagnose and repair
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errors within that domain knowledge. Further, we claim that this semantic ground-

ing in perception constrains the expressivity of the concepts that form the domain

knowledge. These constraints form a restriction bias when learning over knowledge

structures containing the concepts, and thus increase generalization from training ex-

amples. The experiments of Chapters 4 & 5 and the formal analysis of Section 7.2

support this claim. The experiments demonstrate the general usefulness of Empirical

Verification Procedures that ground knowledge in perception across problem instances

and learner types within compositional classification, and the gains in learning effi-

ciency that can be attributed to the use of EVPs within hierarchical classification

structures. From a broader perspective, the theme of this dissertation can be seen as

making the following statement about knowledge:

Knowledge has meaning because it entails predictions about per-

ceptions.

Because of this stance, the work described here can be seen as implementing a corre-

spondence theory of truth. The value of this stance from a purely pragmatic perspec-

tive is that a system with correspondence-based justifications of its knowledge is able

to automatically update and refine that knowledge in order to increase its accuracy –

where accuracy is judged by the ability of the knowledge to entail accurate inferences

about the environment. As this is the metric by which we typically choose to judge

the correctness of a system’s knowledge, it is natural to embed this criterion in the

mechanism of knowledge acquisition. Because the Empirical Verification Procedures

that encode the grounding of knowledge in perception are pieces of knowledge about

knowledge, they are properly termed metaknowledge. This work contributes to the

field of metareasoning by providing a representation that allows reflection to move

beyond self-diagnosis of faults in an agent’s process to include faults in an agent’s

knowledge.
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As mentioned above, fixing the semantics of concepts in perception by using EVPs

constrains the expressivity of those concepts, as they are free only to express knowl-

edge consistent with the perceptual expectations to which they are tied. Chapter 5

describes a set of experiments in which we remove the EVPs from some of the nodes

within an Abstraction Network before training. The consistent result of these abla-

tions is that learning performance in terms of generalization per example is decreased.

These experiments demonstrate the restriction bias imposed by EVPs themselves,

beyond the effects of knowledge structure. Because of this restriction bias, concepts

within an overall knowledge structure that are semantically “pinned” by EVPs are

learned more quickly (in terms of the number of examples required to learn the con-

cept) than those that are not. This finding demonstrates that, from the perspective

of learning efficiency, it is preferable to ground concepts directly in perception when

possible, rather than solely through connection to other concepts.

An additional benefit of explicitly representing the semantic grounding of knowl-

edge in perception is that this semantic grounding itself becomes a first class object

that can be automatically operated upon by the agent. These ideas are described

and their usefulness empirically supported in Chapter 6. Given that an agent has

the capability to alter the sets of equivalence classes into which it abstracts perceived

scenarios, a question is immediately raised: upon what basis should an agent decide

to alter the semantics of one of its concepts? Or, to state the question positively,

what makes a particular abstraction useful? The answer given by this research leads

to another statement that this work makes about knowledge:

A concept’s value ultimately stems from its ability to support

action selection.

In this dissertation, the ultimate ability to support action selection translates to

support of the production of a correct top-level classification. The target concept of

this top-level classification is fixed, in this work, by some external force that asserts
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its meaningfulness. Consider the possible motives of the external force, though these

motives are not explicit in the work described here. In each of the three non-synthetic

domains discussed here, the ultimate goal must be action selection – in FreeCiv, one

wishes to build a city in a desirable location; in DJIA prediction, one wishes to invest

wisely; and in sports prediction one wishes to place a winning bet. If a concept does

not in some way contribute to the production of behavior, it is not clear that there

is a basis to consider that concept useful in any practical sense. If one does nothing

(and cannot intend to do anything) with an inference, what can the value of that

inference be? Thus, as the constitution of an equivalence class is justified based on

grounding in predictions about perceptions (enforcing a given meaning), the meaning

of an equivalence class is itself ultimately justified based on predictions about relative

action outcomes. In the implementation discussed in this thesis, when the first kind

of justification is violated, we change knowledge stored within a node in the AN to

alter the constitution of an equivalence class. When the second kind of justification is

violated (a parent node of a node in question is not properly supported in its function

by its children), we alter the node’s EVP in order to alter the intended meaning of

the set of equivalence classes produced by the node.

This view of meaning and the value of knowledge leads directly to a particular view

of error within classification hierarchies, where we see the need to alter knowledge at

a node only if it is both objectively incorrect, based upon violation of the perceptual

predictions it entails (EVP violation) and subjectively incorrect, based recursively

upon the existence of an error at the parent node. That is, the knowledge in question

must both contradict perception and fail to fulfill its functional role in the overall

structure in which it exists. This view of error, then, leads to the “causal backtracing”

style of diagnosis described in Section 2.4. This thesis also formally demonstrates the

optimality of this diagnostic procedure under a set of assumptions in Section 7.1, and

presents constraints on the applicability of the procedure – specifically, that learners
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used within AN nodes must not depend upon training examples being drawn from a

stable distribution if this type of diagnostic procedure is to be used. This limitation

means that we must sometimes adhere to a strictly objective view of error in our

diagnostic procedure, in order to serve the technical needs of learner types operating

within a classification hierarchy. If the subjective + objective view of error is seen as

more desirable, this will have bearing upon the types of supervised learning methods

that a designer opts to use within a knowledge structure.

Seen from the broadest perspective, a contribution of this dissertation is one of

perspective and problem framing. In particular, this research views learning agents as

fully situated, gaining information through rich interaction with the environment. In

the context of classification learning, this means that we do not anticipate a narrow,

fixed interaction with the environment where some set of training examples is pushed

through a mailslot to an agent that sits in the corner of a windowless room learning

to make predictions. Rather, we expect that an agent learning to make classifica-

tions is doing so in the interest of action selection, and is actively engaged with the

environment about which it is attempting to learn. This means that, when failure is

encountered, the agent can, over time, actively attempt to gather information about

the causes of the failure in a manner reasoned out through reflection. In some prob-

lem settings this view may be inappropriate, if all that is truly available for learning

is some set of examples. However, if the learning agent is able to interact more fully

with its environment, the learning problem can be made much easier. Though some

research such as goal-driven learning [92] and active learning [71] [117] does take a

more situated approach to learning, this work goes further by imbuing the agent with

an understanding of the meaning of its own knowledge in terms of observation and

action.

136



APPENDIX A

COMPUTATION OF EXPRESSIBLE HYPOTHESES IN A

SIMPLE HIERARCHY

This appendix details the manual computation of the number of hypotheses express-

ible by the hierarchical classifier of Figure 37. We begin from the allowable starting

partitions from the stage 1 classifier:

14/23/58/67, 1/234/5/678, 124/3/568/7, 13/24/57/68, 123/4/567/8, 134/2/578/6,

12/34/56/78

Because only two class labels will be applied at the output of the stage 2 (top-

level) classifier, we know that we only need to compute partitions consisting of two

sets, and also count the single partition consisting of one set. We also know that

there are seven unique ways to partition four items into two sets:

14/23, 1/234, 124/3, 13/24, 123/4, 134/2, 12/34

So, for each of our starting points (each of which consists of four sets), we now

enumerate the results of making each of these 7 partitioning choices:

• 14/23/58/67

– 1467/2358

– 14/235678

– 123467/58

– 1458/2367
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– 123458/67

– 145678/23

– 1234/5678

• 1/234/5/678

– 1678/2345

– 1/2345678

– 1234678/5

– 15/234678

– 12345/678

– 15678/234

– 1234/5678

• 124/3/568/7

– 1247/3568

– 124/35678

– 12347/568

– 124568/37

– 1234568/7

– 1245678/3

– 1234/5678

• 13/24/57/68

– 1368/2457
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– 13/245678

– 123468/57

– 1357/2468

– 123457/68

– 135678/24

– 1234/5678

• 123/4/567/8

– 1238/4567

– 123/45678

– 12348/567

– 123567/48

– 1234567/8

– 1235678/4

– 1234/5678

• 134/2/578/6

– 1346/2578

– 134/25678

– 12346/578

– 134578/26

– 1234578/6

– 1345678/2

– 1234/5678
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• 12/34/56/78

– 1278/3456

– 12/345678

– 123478/56

– 1256/3478

– 123456/78

– 125678/34

– 1234/5678

There is only one point of overlap, the partition 1234/5678, which occurs as a result

of applying the partitioning choice 12/34 at each of the 7 starting points within the

8 item lattice. This gives us:

6 unique partitions from each of 7 possible start points = 42 partitions +

1 repeated partition (1234/5678) = 43 partitions of size 2

1 partition of size 1 (12345678)

So, expressible hypotheses: 43(2)2 + 1(2)1 = 88

Without structure: 28 = 256 expressible hypotheses.

For a savings of 256 − 88 = 168 excluded hypotheses, a 65.6% reduction

in hypothesis space size.
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APPENDIX B

EMPIRICAL COMPARISON WITH BAYES NETS

In this appendix, we describe an empirical comparison between the performance of

Bayesian Networks (BNs) and ANs. While these experiments have no bearing upon

the claims made in this dissertation, as EVP-based reflective learning could be used

equally well within the context of BNs as ANs, the results are somewhat interesting

in their own right and so are included here for the sake of completeness.

We used a randomly generated set of synthetic learning problems (see Section

4.1) to compare the performance of ANs with Bayesian Networks (BNs). The envi-

ronment consists of a fixed abstraction network, over which no learning will occur,

that represents the correct, target content (and structure) for the problem. Given

this fixed AN, we then create a separate “learner” AN that will be initialized with

random knowledge content and expected to learn to functionally match the content of

the target AN. We also create a BN with identical structure and initialize the CPTs

randomly. We used the Bayes Net Toolbox (BNT) implementation of BNs, learning

with sequential parameter updating from complete data. Note that this means that

the BN examines the true value of every feature when learning from each example,

while the AN learner in general does not do so. This experiment did use the causal

backtracing style of diagnosis described in Section 2.4, and thus the AN learner did

not examine the proper value of each node for each training example. Because the

work described here is concerned only with repairing content and not structure, we do

build the learners with correct structure that matches that of the fixed AN. Training

proceeds by (1) generating a pseudo-random sequence of floating point numbers to

serve as the observations for the input nodes of the ANs, (2) performing inference
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Figure 38: Error per block (Y-axis) vs. block number (X-axis) for network layer
sizes 10-5-2-1, 6 values per node, 100 examples per block, averaged over 15 random
repeats.

with the fixed AN, saving the values produced by all intermediate nodes as well as the

root node, (3) performing inference with the AN and BN learners and (4) performing

EVP-based self-diagnosis and learning over the AN and BN learners according to

the procedures described above. EVPs within the inputs of both ANs are set up to

quantize the floating point observations. EVPs are not needed at non-leaf nodes in

the fixed AN, since no learning will occur. EVPs at non-leaf nodes in the learning

AN are set up to examine the saved output value from the corresponding node in the

fixed AN, while the output values from all nodes in the fixed AN are composed into a
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Figure 39: Error per block (Y-axis) vs. block number (X-axis) for network layer
sizes 20-10-5-2-1, 6 values per node, 100 examples per block, averaged over 15 random
repeats.

complete feature vector for use by the BN learner. In these experiments we once again

use simple rote learners within each node in the learner AN. Results obtained when

inputs were drawn from a non-uniform distribution are depicted in Figures 38-40.

These results indicate that ANs offer competitive learning per example as problem

size increases in at least some learning scenarios, even though fewer feature values are

examined per example. For instance, in the scenario depicted in Figure 39, the AN

learner examined an average of 6.98 feature values per example, while the BN learner

examined all 8 non-leaf values for each example. If the resource cost of obtaining
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Figure 40: Error per block (Y-axis) vs. block number (X-axis) for network layer sizes
32-16-8-4-2-1, 6 values per node, 100 examples per block, averaged over 15 random
repeats.

feature values from the environment is significant, this property of ANs translates

to resource (e.g. time) savings. However, the AN still gave comparable to better

performance in terms of error rate decrease per example. In particular, it is interesting

to note that the performance of the AN learner approaches and finally surpasses that

of the BN learner as problem size increases from Figure 38 through Figure 40. The

initial flat stage for the AN learner, most noticeable in the second two scenarios, is

likely due to the need to progressively learn at each of the layers in the AN before an

overall decrease in errors is realized.
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Figure 41: # of layers in binary tree vs time with 5 values possible at each node,
10 blocks of 10 examples.

The time cost of online learning and inference in ANs vs BNs as a function of

network size is show in Figure 41. Here, time is shown on the Y-axis, and network

size is shown on the X-axis. The X-axis values are the number of layers in the network

trained, and each network is a binary tree (thus, for example, a 3-layer tree in this

experiment will have 7 nodes).

Empirically, it appears that the cost of online learning and inference for BNs is

increasing more rapidly than that of ANs as a function of network size, though it is not

clear to what extent this difference is due to implementation specifics. An additional

note here is that probing of actual variable values was done once, and the results

provided to both the AN and BN learners (though only results requested by the AN

self-diagnosis procedure would actually be passed to the AN). This means that the

time cost of the additional probes required for the BN learner is not reflected in the

data presented in this section. If the procedures for obtaining variable values have

non-negligible cost, the time used by BNs will in practice be even more significantly
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above that used by an AN. Of course, BNs are more general than ANs, but it does

appear that there is some advantage in problems where ANs are applicable. It is

likely that these advantages are due to the fact that ANs pass less information from

node to node during inference (ANs commit, in effect, to the most likely value at each

node, while BNs pass a distribution over all values). It is clear why this difference

between ANs and classical BNs would lead to a difference in computational effort

during inference, and it seems likely that observed differences in learning rate are

similarly attributable. Thus, one could likely match the performance of ANs in these

experiments by using BNs that commit fully to the most likely value at each node

during inference (setting the probability of the most likely value to 1 and all other

values to 0). However, once again this experiment is quite peripheral to the thesis

here, as EVPs could equally well be used in BN learning, providing advantages such

as automatic concept refinement within the context of BN learning.
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