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SUMMARY 

Research Questions 

Societies frequently implement land use policies to regulate resource extraction (e.g. 

national parks or payments for environmental services) or to regulate development (e.g. 

zoning in urban areas or road building prohibitions).  However, two important policy 

questions remain unresolved.  First, how effective are land use regulations?  Second, how 

do land use regulations affect economic conditions?    

Three issues complicate the evaluation of the effects of land use policies: (1) overt 

bias may lead to incorrect estimates of a policy’s effects where policy implementation is 

nonrandom (selection on observables); (2) the policy may affect outcomes in neighboring 

unregulated lands (spatial spillovers); and (3) Unobservable differences between 

regulated and unregulated lands may lead to bias in the evaluation (hidden bias).  

Previous evaluations of land use policies fail to address these sources of bias 

simultaneously.   

In this dissertation, I develop an approach that jointly accounts for these 

complications.  I apply the approach to evaluate the effects of Costa Rica’s protected 

areas on land use and socioeconomic outcomes from 1960 to 2000.  Specifically, I 

address three questions: (1) What is the effect of protected areas on deforestation inside 

and outside protected areas? (2) What is the effect of protected areas on reforestation 

inside and outside protected areas? (3) What is the effect of protected areas on 

socioeconomic outcomes in communities around protected areas?   
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Methodology 

I use matching methods to identify unprotected lands that are similar to protected 

lands in terms of characteristics that jointly affect both the likelihood of protection and 

the land use or poverty outcomes.  Matching methods ensure that any remaining 

differences in outcomes between protected and unprotected lands can be attributed to the 

effect of protection policies.  In addition, I measure spillover effects by using the 

matching procedure to find suitable lands to compare with unprotected lands located near 

protected areas.   

 

Main Findings 

(1) Protection resulted in a relatively small amount of avoided deforestation (about 10% 

or less of the forest protected or between 46,929 ha and 106,889 ha);  

(2) Protection resulted in reforestation of about 20% (between 10,388 ha and 15,124 ha) 

of the non-forest areas that were protected; 

(3) Protection had little effect on land use outside protected areas, most likely because, 

as noted above, protected areas had only small effects on reducing deforestation or 

increasing reforestation.  

(4) There is little evidence that protected areas had harmful impacts on the livelihoods of 

local communities – on the contrary, I find that protection had small positive effects 

on socioeconomic outcomes.  
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(5) The evaluation methods traditionally used for evaluating protected areas are biased.  

In contrast to the results listed above, those conventional methods overestimated the 

amount of avoided deforestation from protection by a factor of three or more, and 

those methods erroneously implied that protection had negative impacts on the 

livelihoods of local communities. 

 

Policy Implications 

(1) Although global expenditures on protected areas are about $6.5 billion, little is known 

about the returns on these investments.  This study indicates that protected area 

effectiveness can be substantially weakened by targeting of protection towards lands 

that are not threatened with conversion in the absence of protection. 

(2) The results have significant implications for climate change policy debates on how 

(and if) developing countries should be allowed to generate greenhouse gas emissions 

credits for avoided deforestation.  Measuring avoided deforestation correctly is a key 

component in setting appropriate baselines for such an emissions credit program.  

Avoided deforestation is not directly observable and thus the act of protection 

generates the credits.  In such a system, there is a strong potential for actors to claim 

avoided deforestation where there is none. 

(3) Policymakers should give careful consideration to current proposals to compensate 

communities living in or around protected areas.  Such proposals assume that 
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protected areas are harmful for those communities, but my results suggest that 

protection may not have harmful effects on socioeconomic outcomes. 
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CHAPTER 1: MEASURING AVOIDED DEFORESTATION FROM 

PROTECTED AREAS 

 

Abstract 

Protected areas are the most widely used strategy for reducing deforestation.  However, 

previous efforts to estimate the effectiveness of protected areas have failed to achieve a 

basic precept of program evaluation: establishing the counterfactual.  To know the 

amount of deforestation that has been avoided, one must estimate the amount of 

deforestation that would have occurred in the absence of protection.  I demonstrate how 

matching estimators can be used to estimate how much deforestation would have 

occurred in and around protected areas.   

I apply these methods to estimate avoided deforestation from Costa Rica’s world 

renowned protected area system between 1960 and 1997.  Protection resulted in a 

relatively small amount of avoided deforestation (about 10% or less of the forest 

protected).  Furthermore, the methods traditionally used in conservation science 

overestimate the amount of avoided deforestation by a factor of three or more.  The 

reasons for this overestimation have implications for the use of protected areas in 

biodiversity conservation and climate change policies. 
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Introduction 

In the last decade, the need to subject programs designed to protect biodiversity to 

more rigorous assessments has become increasingly clear (see Ferraro and Pattanayak 

2006, and references therein).  The Policy Responses volume of the Millennium 

Ecosystem Assessment (2005) describes the immature state of knowledge about program 

effectiveness with its statement that:  “Few well-designed empirical analyses assess even 

the most common biodiversity conservation measures.” 

Protected area evaluations must:  (1) control  bias generated from the nonrandom 

nature of policy or program implementation; (2) detect and control for effects of 

protected areas on unprotected lands (spatial spillovers); and (3) assess the sensitivity of 

the results to hidden bias.  These characteristics are generally absent in the conservation 

science literature, leading to inconclusive findings about program effectiveness (Stern et 

al., 2001; Vanclay, 2001). In fact, most studies do not even include just two of the three 

characteristics. 

I implement an analysis that includes all three components in the context of the 

most popular policy for protecting biodiversity and ecosystem service flows: protected 

areas (Millennium Ecosystem Assessment, 2005).  Such areas also play a key role in the 

recent high-profile debate over whether developing nations should be allowed to generate 

greenhouse gas emission credits from “avoided deforestation.”  Proponents claim such 

credits offer a win-win opportunity:  (1) they create incentives for reducing deforestation, 

which is a leading source of greenhouse gas emissions from developing countries; and (2) 

they transfer wealth from high-income to low-income nations.  The most common policy 



 

 

 3

for reducing deforestation is the establishment of protected areas and other land use 

restrictions.   

However, setting appropriate baselines for an emission credit program is 

complicated because “avoided deforestation” is a counterfactual event that cannot be 

observed.  Analysts must construct the counterfactual – the deforestation that would have 

occurred if an area of forest were not protected – from observations or theory. 

I demonstrate how to construct a counterfactual and apply these methods to 

estimate avoided deforestation in Costa Rica between 1960 and 1997 as a result of 

establishing protected areas.  Costa Rica has one of the most widely lauded protected 

areas systems (Pfaff & Sanchez, 2004; Sanchez-Azofeifa, Daily, Pfaff, & Busch, 2003) 

and is a leader in the debate to have “avoided deforestation” credits recognized by the 

Kyoto Protocol.   Between 1960 and 1997, Costa Ricans cleared more than one million 

hectares of forest and protected about 900,000 hectares of forest.  I answer the question, 

“How much more forest would have been cleared in the absence of the protected areas?” 

I find that traditional methods used in the conservation science literature 

overestimate protection’s effectiveness by a factor of three or more: only 10% or less of 

the forest area protected between 1960 and 1997 can be classified as avoided 

deforestation.  The results are robust to alternative specifications and measures, as well as 

to unobservable confounders that affect both protection and deforestation. 

In the next section, I review the relevant literature and explain in more detail the 

major methodological issues in the evaluation of protected areas.  Then, I describe the 

methods, data, and results before concluding. 
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Previous Research 

Determinants of Protected Area Location 

Anecdotes and formal analyses thus suggest that, for political and economic 

reasons, governments may establish protected areas on lands that are not likely to be 

cleared in the absence of protection.  According to the Millennium Ecosystem 

Assessment (2005, p. 130), “many protected areas were specifically chosen because they 

were not suitable for human use.”  Empirical studies from various countries support this 

assertion (Green & Sussman, 1990; Hunter & Yonzon, 1993; Pauchard & Villarroel, 

2002; Pressey, 1995).  Similarly in Costa Rica, empirical studies have found that 

protected areas are located largely in areas unsuitable for agriculture (Cornell, 2000; 

Helmer, 2000; Powell, Barborak, & Mario Rodriguez, 2000; Sanchez-Azofeifa et al., 

2003).  Others have argued that protected areas were preferentially established in areas 

where there was the least political opposition (Brandon, Redford, & Sanderson, 1998; 

Evans, 1999).  

 

Estimated Effects of Protected Areas on Deforestation 

In a review of 49 protected area assessments, Naughton-Treves et al. (2005) find 

that 13 examine deforestation only in the protected areas. Of the 36 that compare 

deforestation inside and outside protected areas, 32 find lower deforestation rates inside 

protected areas.  For example, Bruner et al. (2001) find that expert-reported land clearing 

rates were lower inside protected areas than within a 10-km surrounding belt. Such 

assessments would be valid if protection was randomly assigned across the landscape and 
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spatial spillovers were absent.  But protection is definitively a non-random process.  The 

few assessments that formally control for other covariates known to affect deforestation 

either use a small set of covariates (Cornell, 2000; Mas, 2005), which can exacerbate the 

bias in avoided deforestation estimates (Heckman, Ichimura, & Todd, 1997), or a highly 

parametric, regression-based approach (Chomitz & Gray, 1996; Cornell, 2000; Cropper, 

Puri, & Griffiths, 2001; Deininger & Minten, 2002; Mas, 2005), which is prone to 

specification bias.  Moreover, no analysis has tested the sensitivity of results to hidden 

bias that may not have been removed by conditioning on observable covariates (see 

Methods), nor has any addressed the potential confounding caused by spatial spillovers 

(see next section). 

 

Spatial Complexity in Evaluating Protected Areas 

Spatial interactions, such as spillovers or spatially correlated errors, are common in 

land use models (Anselin, 2002).  Rosero-Bixby and Palloni (1998) find spatial 

dependence in deforestation across landscapes in Costa Rica.  Similar findings have been 

made in deforestation studies in Cameroon (Mertens & Lambin, 2000) and Honduras 

(Munroe, Southworth, & Tucker, 2002).  

Two types of spatial dependence can occur in land cover change: (1) land use in one 

area affects the likelihood of land cover change in neighboring areas (spatial lag); and (2) 

Spatially correlated unobservable characteristics that influence land use (spatial error).   

A specific type of spatial lag that is relevant for this study is a spillover from 

regulatory protection onto unregulated lands (other common terms for spillovers are 
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“slippage”, “leakage”, “displacement”, and “enhancement”).  Several theoretical models 

and empirical studies have shown that land use regulations can affect land use on 

unregulated lands (Armsworth, 2006; Berck & Bentley, 1997; Murray, McCarl, & Lee, 

2002; Quigley & Swoboda, 2004; Wu, 2000).  Spillovers can be negative: displacement 

of agricultural pressures, exploitation to meet the demands of protected area tourists, or 

preemptive clearing by landowners near protected areas to prevent future government 

expropriation for protected areas.  Spillovers can also be positive: the establishment of 

private reserves near protected areas (Langholz, Lassoie, & Schelhas, 2000) or the failure 

to develop local market infrastructure, slowing the exploitation of forested lands in the 

surrounding areas.  Note that I focus on local “neighborhood” spillovers rather than more 

distant spillover effects in other regions or sectors of the economy.  The latter are most 

appropriately studied in a computable general equilibrium model. 

Local spillover effects can bias estimates of avoided deforestation in two ways.  

First, using the surrounding unprotected lands as controls could bias estimates of the 

effect of protection (Stern et al., 2001; Vanclay, 2001), unless spillover effects are 

stripped from the estimated counterfactuals.  Second, the evaluation must incorporate the 

effect of protection on land use outcomes outside protected areas in the estimate of the 

net effect of protection.  

If both spatial lag and spatial error correlation exist, the evaluation is pulled in 

two opposing directions.  The presence of spatial lag calls for selecting controls that are 

not neighbors of protected lands.  However, spatial error correlation implies unobserved 

characteristics (e.g. weather patterns, socioeconomic conditions) that determine the 
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likelihood of deforestation are similar on neighboring lands. Thus the presence of spatial 

error correlation calls for selecting controls that are neighbors of treated units. 

 

Methods 

Matching Methods 

In evaluation, we want to estimate the Average Treatment Effect on the Treated 

(ATT), which is the about of avoided deforestation from protected areas.  If protection 

were allocated randomly across land units, then one could do what most studies have 

done: simply compare deforestation in protected and unprotected lands, because the 

expected forest cover change in the absence of protection is identical for protected and 

unprotected lands.  However, because decisions to protect land are determined by 

observable characteristics, protected and unprotected lands differ in characteristics that 

may also affect forest cover change after protection. 

Matching methods provide one way to assess the effect of protection when 

protection is influenced by observable characteristics and the analyst wishes to make as 

few parametric assumptions as possible about the underlying structural model that relates 

protection to deforestation.  Matching works by, ex post, identifying a comparison group 

that is “very similar” to the treatment group with only one key difference: the comparison 

group did not participate in the program of interest (Imbens, 2004; P. R. Rosenbaum & 

Rubin, 1983; Rubin, 1980).  Matching mimics random assignment through the ex post 

construction of a control group.  If the researcher can select observable characteristics so 

that any two land units with the same value for these characteristics will display 
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homogenous responses to the treatment, then the treatment effect can be measured 

without bias. 

Measuring the ATT without bias requires that, given a vector of covariates, the 

non-treated outcomes are what the treated outcomes would have been had they not been 

treated (i.e., protection is independent of forest cover change for “similar” land units).  

This “conditional independence assumption” requires that selection into treatment occurs 

only on observable characteristics.  Hence an unbiased estimator requires that the 

analysis includes all of the determinants that jointly affect both selection into protection 

and deforestation. Arguably one can satisfy this requirement in the case of protected areas 

because the land units themselves exert no idiosyncratic influence. Thus the problem is 

only one of eligibility and not one of self-selection.1

Based on recent studies, I estimate the ATT using three matching estimators 

(Abadie & Imbens, 2006a; Frolich, 2004):  (1) nearest-neighbor covariate matching 

estimator with an inverse variance weighting matrix to account for the difference in scale 

of the covariates; (2) nearest-neighbor covariate matching estimator with Mahalanobis 

weighting; and (3) kernel (Gaussian) propensity score matching estimator.2

 
1 Mathematically, the assumption implies ]|)0([]0,|)0([]1,|)0([ XYETXYETXYE ====  and 

]|)1([]0,|)1([]1,|)1([ XYETXYETXYE ==== , where is the deforestation when land plot i is 
protected (Y = 1 if plot is deforested),  is the deforestation when land plot i is unprotected, T is 
treatment (T=1 if protected), and X is the set of pretreatment characteristics on which units are matched.   
For identification purposes, I also need one other assumption:  

)1(iY
)0(iY

cxXTPc −<==< 1)|1(  for c > 0.  If all 
land units with a given vector of covariates were protected, there would be no observations on similar 
unprotected land units. 
2 With the exception of the kernel matching which was done in Stata v.9 (Leuven & Sianesi, 2003), 
matching was done in R (Sekhon, 2007).  I also used a nearest-neighbor propensity score matching 
estimator, but given the results from this estimators were similar to those presented in Table 2, I do not 
present these results. 
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The nearest-neighbor matching is with replacement and I resolve the mean-

variance tradeoff in the match quality by using two nearest neighbors; the counterfactual 

outcome is the average among these two.3  Based on recent work that demonstrates that 

bootstrapping standard errors is invalid with non-smooth, nearest-neighbor estimators 

(Abadie & Imbens, 2006b), I use Abadie and Imbens’ variance formula (2006a).  For the 

kernel matching estimator, I use a bandwidth of 0.06 and I bootstrap the standard errors 

(999 replications). 

In the covariate matching estimators, I use Abadie and Imbens’ (2006a) post-

matching bias-correction procedure that asymptotically removes the conditional bias term 

in finite samples As an additional form of quality control, I implement caliper matching 

in the context of the bias-adjusted, nearest-neighbor Mahalanobis matching estimator 

(Smith & Todd, 2001).  The calipers are defined as 0.5 standard deviations of each 

matching covariate.  For the propensity score estimator, I enforce a common support 

restriction.  I conduct balancing tests for all the matching estimators.  The balancing tests 

compare the means of the matching covariates for matched and control groups using a t-

test. 

 

Testing for Sensitivity to Hidden Bias 

Although I take great care to ensure that the conditional independence assumption 

is satisfied, non-experimental analyses are always susceptible to hidden biases.  To 

 
3 Given the large sample size, I do not need to use more than two neighbors as is often done in other 
nearest-neighbor matching analyses (Abadie & Imbens, 2006a; McIntosh, 2007).  I varied the number of 
neighbors from one to ten and the ATT estimate changes very little. 
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determine how strongly an unmeasured confounding variable must affect selection into 

the treatment to undermine the conclusions, I use the bounds recommended by 

Rosenbaum (2002) (see also Diprete and Gangl (2004)).  Although there are other 

sensitivity tests available (Ichino, Mealli, & Nannicini, 2006), Rosenbaum’s bounds are 

relatively free of parametric assumptions and provide a single, easily interpretable 

measure of the way in which unobservable covariates could affect the analysis. 

If the probability of unit j being selected into the treatment is jπ , the odds are 

then
j

j

π
π
−1

.   The log odds can be modeled as a generalized function of a vector of 

controls  and a linear unobserved term, so jx jj
j

j ux γκ
π

π
+=

−
)()

1
log( , where  is an 

unobserved covariate scaled so that 

ju

10 ≤≤ ju .  Take a set of paired observations where 

one of each pair was treated and one was not, and identical observable covariates within 

pairs.  In a randomized experiment or in a study free of bias, 0=γ .  Thus under the null 

hypothesis of no treatment effect, the probability that the treated outcome is higher equals 

0.5.   The possibility that  is correlated with the outcome implies that the mean 

difference between treated and control units may contain bias. 

ju

The odds ratio between unit j which receives the treatment and the matched 

control outcome k is:   )}(exp{
)1(
)1(

kj
jk

kj uu −=
−

−
γ

ππ
ππ

.  Because of the bounds on , a 

given value of 

ju

γ constrains the degree to which the difference between selection 

probabilities can be a result of hidden bias.  Defining , setting γe=Γ 0=γ  and 1=Γ  
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implies that no hidden bias exists, and hence is equivalent to the usual regression 

assumptions.  Increasing values of Γ imply an increasingly important role for 

unobservables in the selection decision. The differences in outcomes between the 

treatment and control are calculated and ranked.  I contrast outcomes using matched plots 

from the kernel propensity score matching estimator.  A Wilcoxon’s signed rank statistic 

is then used to compare the sums of the ranks of the pairs in which the treatment was 

higher than the control.  This statistic was calculated using Stata code ‘rbounds’ (Gangl, 

2004). 

The intuitive interpretation of the statistic for different levels of  is that matched 

plots may differ in their odds of being protected by a factor of 

Γ

Γ  as a result of hidden 

bias.  The higher the level of Γ  to which the difference remains significantly different 

from zero, the stronger the relationship is between treatment and differences in 

deforestation.  Note that the assumed unobserved covariate is a strong confounder: one 

that not only affects selection but also determines whether deforestation is more likely for 

the treatment units or their matched controls. 

 

Study Site and Data 

Study Site 

Costa Rica has a current population of 4.45 million and a land area of 51,100 sq 

km.  Costa Rica has experienced high rates of deforestation since the beginning of the 

20th century, driven mainly by the expansion of cattle grazing and coffee and banana 
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production.  During the 1960s and 1970s, the country had one of the top five 

deforestation rates in the world (FAO, 1990).  Since the mid-1960s, the government has 

established more than 150 protected areas. 

 

Data 

I test the effect of protection on the amount of deforestation that occurred between 

1960 and 1997.  In the treatment group, I include national parks, biological reserves, 

forest reserves, protected zones, and wildlife reserves.  I exclude lands controlled by 

indigenous people, because they are subject to a different legal and land use regime.  For 

similar reasons, I exclude a small number of government designated wetlands.   

Protected areas are established over time and thus in the matching process, I want 

to ensure that the time-varying covariate data (see Table 1.1 below) are reasonable 

approximations to the time period in which a protected area was established.4  Thus I 

break the analysis up into two cohorts: protected areas established before 1980 and 

between 1985 and 1997.  I do not believe the data permit an estimation of the effect of 

protection between 1980 and 1984 without further assumptions, but I include these years 

in robustness checks of the results. 

I restrict the first treatment cohort to the 42 protected areas established before 

1980 for two reasons.  First, this restriction allows more than fifteen years for a treatment 

effect to be observed.  Second, a relatively large number of protected areas were 

 
4 For example, for the 1960 to 1980 treatment, I obtain socio-economic data from the 1973 census data, 
which may be a reasonable proxy for conditions during the 1960s and 1970s, but not necessarily for later 
years.   
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established in the late 1960s and the 1970s, but few in the early 1980s.  In the Results 

section, I present results that allow matches with any unprotected plot, results that 

exclude plots protected after 1980, and results that adjust post-1980 protected plots for 

the treatment effects of post-1985 protection. 

Forest cover across the country is measured from a combination of aerial 

photographs acquired between 1955 and 1960 (called the 1960 dataset) and from 1997 

Landsat Thematic Mapper satellite images (Landsat data also exist for 1986 and 2000).  

GIS data layers for forest cover, protected areas, and locations of major cities were 

provided by the Earth Observation Systems Laboratory of the University of Alberta, 

Canada.  Other GIS data layers include a map of land use capacity based on soil, climate, 

and topography from the Instituto Tecnologico de Costa Rica (ITCR, 2004), and 

socioeconomic data from the Instituto Nacional de Estadistica y Censos (INEC).  GIS 

layers for transportation roads, railroads, and the river transportation network were 

digitized by Margaret Buck Holland from hard copy maps of 1969 and a 1991 road layer 

(map source: Instituto Geográfico Nacional (IGN) of the Ministerio Obras Publicas y 

Transporte (MOPT) of Costa Rica). 

I draw a random sample of 20,000 land plots that were forested in 1960.  Each 

plot has an area of 3 hectares.  This unit is the minimum mappable unit, or pixel, and thus 

the outcome variable is binary: a plot is either forested or deforested (forested = 80%+ 

canopy cover).  The total forest cover in Costa Rica in 1960 is 30,357 sq km.  Therefore, 
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the dataset includes approximately one plot per 1.5 sq km of forest cover5.  In addition to 

units from indigenous reserves and wetlands, I exclude the following units from the 

sample: 804 plots that were located in areas where GIS specialists suspected that 

incorrect forest cover classification may have occurred; 879 plots that were located in 

areas covered with clouds or shadows in Landsat images; and fifty-nine plots that did not 

align well with district areas because of errors in GIS programming. 

The final dataset comprises 15,283 land plots.  These plots include 2711 protected 

plots from thirty-three protected areas6.  Nine protected areas established before 1980 are 

not represented in the sample: five are islands that are not covered by the 1960 forest 

cover layer, and four are small protected areas that were not captured by the random 

sampling process because they are small.7

  In the matching analysis, I am interested in controlling for factors that jointly 

affect land use and the likelihood that a plot is selected for protection.  Based on 

anecdotes of the history of Costa Rica’s protected areas, as well as the literature on 

tropical deforestation (especially the review of Kaimowitz and Angelsen (1998)), I select 

variables that capture accessibility of the plot (distance to forest edges, distance to roads 

 
5 To check the accuracy of the random sampling process, I confirmed that there were no significant 
differences between the sample of land plots and the population (entire land area) in terms of important 
characteristics (forest cover change, protected status, type of protection, and proportion under each land 
capacity class).  
6 The following pre-1980 protected areas are represented in the sample.  Biological Reserves: Alberto 
Manuel Brenes and Hitoy Cerere; Forest Reserves: Cordillera Volcanica Central, Golfo Dulce, Grecia, Los 
Santos, Rio Macho, and Taboga; Monumento Nacional: Guayabo; National Parks: Barra Honda, Braulio 
Carrillo, Cahuita, Chirripo, Corcovado, Juan Castro Blanco, Palo Verde, Rincon De La Vieja, Santa Rosa, 
Tortuguero, Volcan Iraza, Volcan Poas, Volcan Tenorio, and Volcan Turrialba; Protected Zones: Arenal-
Monterverde, Caraigres, Cerro Atenas, Cerros de Escazu, Ceros de la Carpintera, El Rodeo, Miravalles, Rio 
Grande, and Tenorio; Wildlife Refuge: Corredor Fronterizo. 
 
7 Two are small forest reserves, Pacuare-Matina and Zona de Energencia Volcan Arenal, one is the smallest 
national park, Manuel Antonio, and the last is a small protected zone around Rio Tiribi. 
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and slope) and land use opportunities (a function of the plot’s production potential and 

distance to roads and major markets).  See Table 1.1 for summary statistics.  The core set 

of covariates are as follows:  

• Distance to roads: Roads make forests more accessible to deforestation agents, and 

ease the transportation of agricultural produce or logs from cleared land (Helmer, 

2000; Sader & Joyce, 1988; Veldkamp, Weitz, Staritsky, & Huising, 1992).  I 

measure the distance from each plot to a road in 1969 (to a road in 1991 for the 

1985-1997 analysis). 

• Distance to the forest edge:  Proximity to forest edges increases accessibility and 

the likelihood of deforestation (Chaves-Esquivel & Rosero-Bixby, 2001; Rosero-

Bixby & Palloni, 1998).  I measure the distance between a land plot and the nearest 

cleared plot from the 1960 forest cover map (from the 1986 map for the 1985-1997 

analysis). 

• Land use capacity: Mild slopes, fertile soils, and humid life zones make land more 

productive for agriculture and therefore make deforestation more likely (Chaves-

Esquivel & Rosero-Bixby, 2001; Rosero-Bixby & Palloni, 1998; Sader & Joyce, 

1988; Sanchez-Azofeifa & Harriss, 2001; Veldkamp et al., 1992).  I use Costa 

Rica’s land use capacity classes, which are determined by slope, soil 

characteristics, life zones, risk of flooding, dry period, fog, and wind influences. 

• Distance to nearest major city: Proximity to agricultural markets is a key 

explanatory variable in deforestation (Barbier & Burgess, 2001; Kaimowitz & 
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Angelsen, 1998). Therefore, following Pfaff and Sanchez (2004), I include a 

measure of distance to one of three major cities, Limon, Puntarenas, and San Jose.  

 

In Kaimowitz and Angelsen’s (1998) review of deforestation studies, the core set of 

covariates are consistently found to affect deforestation.  The causal effects of other 

covariates like population density and other socioeconomic characteristics (e.g., poverty, 

education) are less agreed upon.  Nevertheless, I define an extended set of covariates that 

includes the core set plus the following: 

• Distance to railroads and river transportation network.  In addition to the measure of 

distance to roads, I also create a data layer that measures the distance from each plot 

to a railroad (1969) or a river that is part of the river transportation network (1969). 

Railways and rivers may have affected accessibility of forests for deforestation and 

the ease of transportation of forest products. 

• District-level population density: Harrison (1991) finds strong correlations in Costa 

Rica between the population density in a canton and the level of deforestation, and 

this correlation has been confirmed in other studies for smaller land areas in Costa 

Rica (Chaves-Esquivel & Rosero-Bixby, 2001; Rosero-Bixby & Palloni, 1998). As 

with all of the measures below, I measure population density at district-level 

(distrito)8 from the 1973 census (a mid-point in the main period of protection 

activity). 

 
8 Geographic boundaries for the 437 districts in 2000 are defined in a GIS data layer. The number of 
districts increased between 1973 and 2000 because some districts were split up to form smaller districts. I 
use information collected by the FAO on district splits over time (Cavatassi, Davis, & Lipper, 2004) to re-
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• District-level proportion of immigrants:  Harrison (1991) and Rosero-Bixby and 

Palloni (1998) find correlations between the percentage of immigrants and the level 

of deforestation.  

• District-level proportion of adults educated beyond the secondary level:  Education 

increases residents’ opportunities for off-farm employment, which can reduce 

deforestation pressure (Mulley & Unruh, 2004). 

• District-level proportion of households using fuel-wood for cooking:  Fuel-wood use 

is a proxy for the use of forest resources by district residents, which would affect 

deforestation. 

• Size (area) of district:  District area is negatively correlated with administrative 

capacity and economic growth, which might influence deforestation and protected 

area placement. 

 

To confirm that these variables also affect the designation of protected areas, I 

model the selection process directly using the data.  I use a probit model that regresses a 

binary variable for protection on the core and extended sets of covariates.   The most 

influential variables are land-use capacity classes.  Holding other relevant factors 

constant, less productive plots are more likely to be selected for protection.   In addition, 

less accessible plots (plots farther from forest clearings and roads) are more likely to be 

 
aggregate new districts to their 1973 parent districts. In a few cases, a new district is created from more 
than one parent district, in which case I re-aggregate the new district and all parent districts into one unit. 
The final dataset therefore has 398 “districts”. 
 
 



 

 

 18

protected, as are plots in larger districts with lower population densities, a greater 

proportion of immigrants, and a greater proportion of educated citizens. 

 

Table 1.1. Descriptive Statistics 
 
Name Description Mean Standard 

Dev. 
Range 

Deforestation 1960-
1997 

Coded 1 if forest was cleared 
between 1960 and 1997, 0 otherwise 

.374 .484 0 – 1 

Deforestation 1960-
1986 

Coded 1 if forest was cleared 
between 1960 and 1986, 0 otherwise 

.369 .483 0 – 1 

Deforestation 1986-
1997 

Coded 1 if forest was cleared 
between 1986 and 1997, 0 otherwise 
(units under forest in 1986 only) 

.084 .277 0 – 1 

Protection before 
1980  

Coded 1 if plot is in a protected area 
created before 1980, 0 otherwise 

.171 .377 0 – 1 

Protection 1980-
1984 

Coded 1 if plot is in a protected area 
created between 1980 and 1984, 0 
otherwise 

.085 .278 0 – 1 

Protection 1985-
1996 

Coded 1 if plot is in a protected area 
created between 1985 and 1996, 0 
otherwise 

.061 .240 0 – 1 

Distance to edge of 
forest 1960 

Distance to closest clearing in 1960, 
measured in km 

2.550 2.616 7.7 x 10-5 
– 17.675  

Distance to edge of 
forest 1986 

Distance to closest clearing in 1986, 
measured in km (units under forest 
in 1986 only) 

11.515 1.293 .042 – 
12.358 

Distance to road 
1969 

Distance to nearest road in 1969, 
measured in km 

18.260 12.935 0.004 – 
63.641 

Distance to railroads 
and river 
transportation 1969 

Distance to nearest railroad or river 
transportation in 1969, measured in 
km 

28.367 21.623 0.001 – 
103.70 

Distance to local 
road 1991 

Distance to nearest local road in 
1991, measured in km 

5.026 5.354 4.8 x 10-4  
– 38.719 

Distance to national 
road 1991 

Distance to nearest national road in 
1991, measured in km 

7.381 7.084 2.3 x 10-4  
– 38.527 

Distance to major 
city  

Distance to closest major city 
(Limon, Puntarenas, or San Jose), 
measured in km 

78.346 38.778 4.595 – 
212.277 

Land use capacity 
classes: 

Dummy variables coded 1 if plot is 
inside a land class or classes, and 0 
otherwise. 

   

Class I Agricultural Production – annual .001 .026 0 – 1 
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Table 1.1. Descriptive Statistics 
 
Name Description Mean Standard 

Dev. 
Range 

crops 
Class II Suitable for agricultural production 

requiring special land and crop 
management practices such as water 
conservation, fertilization, irrigation, 
etc. 

.033 .179 0 – 1 

Class III Suitable for agricultural production 
requiring special land and crop 
management practices such as water 
conservation, fertilization, irrigation, 
etc. 

.088 .283 0 – 1 

Class IV Moderately suitable for agricultural 
production; permanent or semi-
permanent crops such as fruit trees, 
sugar cane, coffee, ornamental 
plants, etc. 

.125 .330 0 – 1 

Class V Strong limitations for agriculture; 
forestry or pastureland 

.016 .127 0 – 1 

Class VI Strong limiting factors on 
agricultural production; land is only 
suitable for forest plantations or 
natural forest management 

.169 .375 0 – 1 

Class VII Strong limiting factors on 
agricultural production; land is only 
suitable for forest plantations or 
natural forest management 

.151 .358 0 – 1 

Class VIII Land is suitable only for watershed 
protection 

.031 .173 0 – 1 

Class IX Land is suitable only for protection .385 .487 0 – 1 
District area  Area of district in which land plot is 

located, measured in square km 
834.000 710.000 2.161 – 

2410.000 
Population density  Population density of district in 

which land plot is located, measured 
as number of people per square km 
(1973) 

15.638 53.906 .886 – 
3671.928 

Percentage of 
immigrants  

Number of people born outside their 
canton of residence (1973) 

.458 .221 .014 – 
.913  

Percentage of adults 
with secondary-
level education  

Percentage of adults with secundaria 
or universitaria level education 
(1973) 

.055 .051 .007 – 
.335  

Fuel-wood use  Percentage of households using fuel-
wood for cooking (1973) 

.740 .254 .088 – 
.994 
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Results 

 Selection on Observables 

I begin by ignoring spatial interactions and addressing only the bias due to 

selection on observables.  Recall that avoided deforestation is the difference between the 

change in forest cover (Y=1 if deforested) from 1960 to 1997 on protected plots and the 

change in forest cover in the same period on matched unprotected plots.  Table 1.2 

presents the treatment effect estimates using the matching estimators, as well as more 

traditional estimation methods in the conservation science literature.  The results in Table 

1.2 are based on the core set of covariates (see previous section).  Note that negative 

treatment effects indicate that protection results in less deforestation than there would 

have been otherwise; i.e., avoided deforestation.   

The first column of results places no constraints on the set of unprotected plots 

from which I can choose matches for the protected plots.  In Naughton-Treves et al.’s 

(2005) review of 20 published studies that analyze 49 protected areas, 27% of the 

analyses examine change in land cover only in the protected area to infer the protected 

area’s effectiveness.  Such studies implicitly assume that the counterfactual is 100% 

deforestation.  The first row in Table 1.2 replicates this type of analysis.  This grossly 

naïve treatment effect estimate suggests that 89% of the plots protected before 1980 

would have been deforested by 1997 in the absence of protection. 
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Table 1.2. Effect of Protection on Deforestation: Core Covariate Set 
 
 1 2 3A 3B 
Treatment group Protected pre-

1980  
Protected 
1985-1996  

Pre-1980 
protected  

Pre-1980 protected  

Control group Unprotected 
pre-1980  

Never 
protected  

Never 
protected 

Unprotected pre-
1980, with 
adjustment for post-
1980 protection  

Outcome in treatment 
group only  

-0.888 -0.968 -0.888 -0.888 

Difference in Means† -0.355 
 

-0.112 -0.438 
 

-0.419 

Difference in Means: 
controls within 10km 
of protected area [N 
available controls] 

-0.326 
[4507] 

-0.097 
[2130] 

-.0375 
[3866] 

-0.359 
[4201] 

DIM: controls within 
10km of PA, include 
plots deforested pre-
protection 
{N treated} 
 [N available controls] 

-0.453 
{1996} 
[5480] 
 

-0.380 
{290} 
[3164] 
 

-0.497 
{1996} 
[4956] 
 

-0.475 
{1996} 
[5314] 
 

Baseline Reference 
Estimate 

-0.392 -0.261 -0.392 -0.392 

Covariate matching – 
Inverse variance‡

-0.045* 
(0.024) 

-0.067 
(0.018) 

-0.113 
(0.031) 

-0.110  
(0.028) 

Covariate Matching – 
Mahalanobis  

-0.049** 
(0.023) 

-0.061 
(0.018) 

-0.111 
(0.029) 

-0.115 
(0.027) 

Covariate Matching – 
Mahalanobis with 
calipers◘
[N outside calipers] 

-0.056 
(0.016) 
[237] 

-0.061 
(0.016) 
[43] 

-0.124 
(0.019) 
[411] 

-0.129 
(0.018) 
[320] 

Propensity score 
matching – Kernel 
[N off common 
support] 

-0.048 
(0.009) 
[0] 

-0.075 
(0.011) 
[0] 

-0.134 
(0.014) 
[117] 

-0.123 
(0.012) 
[74] 

N treated 
(N available controls) 

2711 
(12572) 

557 
(4724) 

2711 
(10371) 

2711 
(11078) 

* Significant at 10%; ** Significant at 5%; All other coefficients significant at 1% 
†  A Chi-squared test is used to evaluate the difference in means between protected and 
unprotected units.  
‡ Standard errors for matching estimates are in parenthesis under estimate. 
◘ Calipers restrict matches to units within 0.5 standard deviations of each covariate 
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The second row replicates the kind of analysis completed by the remaining 

protected area evaluations reviewed by Naughton-Treves et al.: deforestation on 

protected units is compared to deforestation on unprotected units, without controlling for 

any other covariates.  This naïve treatment effect estimate implies that 36% of the 

protected plots would have been deforested by 1997 had they not been protected before 

1980.  

Some of the traditional “inside-outside” analyses, such as Bruner et al. (2001) 

restrict the control group to a 10-km unprotected zone around each protected area.  The 

third row replicates this type of analysis and generates a slightly smaller treatment effect: 

33% of protected plots would have been deforested had they not been protected.  Note 

that some analyses of this type do not, as we did, exclude lands deforested before 

protection.  Such “post-protection-only” analyses suffer from even more bias because (1) 

deforestation may take place before protection is implemented and (2) protection is much 

less likely to be assigned to deforested plots.  However, such analyses can be found in the 

published literature (e.g., Bruner et al. (2001)).  As indicated in the fourth row of Table 

1.2, this type of analysis implies that 45% of protected plots would have been deforested 

had they not been protected.  

The fifth row represents a treatment effect derived from a baseline reference, 

which is the most commonly suggested way of measuring avoided deforestation in 

climate change negotiations.  This method first regresses deforestation in a period on 

observable characteristics.   The estimated equation is then used to predict in the next 

period the expected deforestation probability for each forested parcel.  The difference 
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between the predicted and the actual deforestation rates for an area is the estimated 

avoided deforestation.  Thus, for this analysis, I draw a new random sample of 20,000 

pixels (with and without forest cover) and estimate a probit equation of deforestation for 

the period before 1960 using the core covariate set.  Because I have no digitized 

observations of forest cover prior to 1960, I make the assumption that all of the pixels 

were previously forested at some point in the past.  Avoided deforestation is estimated to 

be 39% of the protected areas protected before 1980. 

The sixth through ninth rows present the treatment effect estimates from the 

matching estimators.  All imply that about 5% of protected plots would have been 

deforested by 1997 in the absence of protection, but not all are significant at the 1% level.  

These dramatically different estimates imply that the traditional methods used to evaluate 

protected area effectiveness do not fully remove the sources of bias. 

Note that although matching substantially improved the covariate balance 

between treated and control plots, some imbalance remains:  protected plots are slightly 

farther from the forest frontier and from transportation infrastructure than their matched 

counterparts.  Given these two covariates are negatively correlated with deforestation, the 

matching estimates may still be biased away from zero (i.e., they are too large).  

Moreover, protection occurred over time between 1960 and 1980, but I only observe 

forest cover in 1960.  At any point in time, deforested parcels are much less likely to be 

protected than forested parcels, and thus the matches may be imperfect in another way 

that biases the treatment effects away from zero. 
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To put Table 1.2’s estimates into perspective, consider that 483,000 ha of forest 

were protected between 1960 and 1980.  Thus the first row estimate implies that in 1997, 

429,000 ha of this protected forest still had forest cover because of protection.  The 

second, third and fourth row estimates imply 158,000 to 189,000 ha of avoided 

deforestation. The matching estimators imply only 22,000 to 27,000 ha of avoided 

deforestation.   

One could reasonably argue, however, that land plots protected between 1980 and 

1997 are not valid counterfactuals if protection after 1980 had a protective effect.  In the 

second column of Table 1.2, I present estimates that corroborate this argument. Based on 

the matching estimators, 6 - 7% of the protected forested plots between 1985 and 1997 

would have been deforested by 1997 had they not been protected. Note that the 

differences among the matching and traditional estimates are not as dramatic as in the 

first column.  The smaller differences, combined with the knowledge that deforestation 

rates were low across the nation between 1986 and 1997, suggest better targeting of 

protected areas post-1985 in terms of deforestation threats. 

Given that post-1980 protection led to avoided deforestation, I replicate, in the 

third column of Table 1.2, the estimates of avoided deforestation for pre-1980 protection 

after excluding from the sample all plots that were protected after 1980.  Note that post-

1980 protected areas are typically located near the pre-1980 protected areas.  Therefore, 

the sample I obtain after excluding post-1980 protected plots is similar to a sample that 

would be obtained after some form of “spatial sampling” to exclude counterfactuals that 

are located near protected lands (see Mertens and Lambin (2000); Munroe et al. (2002)). 
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The treatment effects in the third column are larger than the estimates in the first 

column, but the matching estimators still generate avoided deforestation estimates that 

are much smaller than those generated by traditional methods.  The matching estimators 

imply avoided deforestation estimates of 44,000 to 65,000 ha.  The larger treatment effect 

under the post-1980 exclusion is consistent with two interpretations: (1) protection after 

1980 had a protective effect and thus using post-1980 protected plots as counterfactuals 

for pre-1980 protection biases the treatment effect toward zero; or (2) plot characteristics 

are spatially correlated and thus the quality of the matches declines when post-1980 plots 

are excluded from the sample. 

To explore the second interpretation, I examine the covariate balance between 

matched control and treated units in the analyses of the first and third columns.   In the 

third column’s analysis, balance is slightly worse for covariates that favor protection for 

protected units, but not substantially so.  As a robustness check, and to demonstrate how 

one might address a situation in which balancing becomes substantially worse with 

spatial sampling, I propose an alternative approach that directly adjusts the sample to 

incorporate the treatment effects from post-1985 protection9. 

I estimate that post-1985 protection led to avoided deforestation of 6.5% (average 

of matching estimates in the second column).  In the sample, this percentage corresponds 

 
9 In the sample, 557 plots were protected between 1985 and 1997.  These plots are located in the following 
protected areas established between 1985 and 1997.  Biological Reserves: Cerro las Vueltas and Lomas de 
Barbudal; Forest Reserve: Rio Pacuare; National Parks: Arenal, Guanacaste, and Piedras Blancas; 
Protected Zones: Acuiferos Guacimo y Pococi, Cuenca del Rio Banano, Cuenca del Rio Siquirres, Cuenca 
Rio Abangares, Cuenca Rio Tuis, Montes de Oro, Nosara, Peninsula de Nicoya, Rio Toro, Tivives, and 
Tortuguero; Wildlife Refuges: Aguabuena, Bahia Junquillal, Barra del Colorado, Bosque Alegre, Bosque 
Nacional Diria, Camaronal, Fernando Castro Cervantes, Gandoca-Manzanillo, Golfito, Hacienda Copano, 
La Marta, Limoncito, Mata Redonda, Penas Blancas, and Rancho La Merced. 
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to 36 plots.  I thus randomly select thirty-six plots that were protected between 1986 and 

1997, and were not deforested within that period, and I change their status from “forest” 

to “deforested” in 1997.  I then estimate the treatment effect of pre-1980 protection, 

maintaining the control units that were protected between 1985 and 1996.  The results 

from this adjusted analysis are presented in the fourth column of Table 1.2 and are similar 

to those in the third column. 

I also calculated treatment effects using the extended covariate set.   The 

treatment effects from the matching estimators are similar to results in Table 1.2 and are 

thus not reported in a table.  The covariate matching estimator estimates range from -

0.044 to 0.146, and the kernel matching estimates range from -0.096 to -0.205.  The latter 

matches, however, show much worse balance than in the covariate matching on 

coefficients that bias the treatment effect up in absolute value (i.e., land use capacity, 

distance to transportation infrastructure). 

 

 Spatial Interactions and Matching Estimators 

As noted in an earlier discussion, land use regulations may generate spillovers 

into untreated land plots in the neighborhoods around protected areas.  Highly parametric, 

traditional spatial econometric models (e.g., a probit with spatial lag) risk a specification 

bias when controlling for such spillovers.  Moreover, generating a transparent estimate of 

the average spillover effect is not easily done through interpretation of the spatial lagged 

coefficient.  I therefore use matching estimators to test for spatial spillovers. 
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To begin, I define the treatment group as unprotected plots that are within two 

kilometers of the boundary of protected areas created before 1980, and I define the 

control group as unprotected plots that are more than two kilometers away from the 

protected areas.  A negative treatment effect implies a positive spillover: a positive 

spillover occurs when plots near protected areas experience less deforestation.   

For the analysis of spatial spillovers from pre-1980 protected areas, I attempt to 

avoid estimation bias due to spillovers from post-1980 protected areas by estimating 

spatial spillovers from 1960 to 1986 instead of 1960-1997 as was used to estimate the 

direct effects of protection.  For the latter analysis, I am able to identify and exclude 

control units that could have been affected by post-1980 protection (columns 3 and 4 of 

Table 1.2).  However, for the spillover analysis, I have no way of defining the extent of 

potential spillovers from post-1980 protection.  Therefore, I use the earliest available 

measure of deforestation after 1980 (1986) as the outcome for this analysis. 

The estimates of spatial spillover effects are presented in Table 1.3. In the first 

column, I test for spatial spillover effects of protection on deforestation between 1960 

and 1986.  The estimates from the traditional methods in the first two rows indicate 

positive spillover effects, but the matching estimates are ambiguous.  With the exception 

of the kernel estimate, the matching estimates imply that plots within 2-km of protected 

areas established before 1980 experienced about 4% less deforestation than plots more 

than 2-km away from protected areas.  Only the kernel estimate is sizeable and 

significant at the 1% level.  However, the covariate balancing using this estimator is 

worse on variables that would bias the estimate away from zero.  
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In the second column, I test for spillover effects on deforestation between 1986 

and 1997, defining treatment as location within 2-km of protected areas created between 

1985 and 1996.  I find no evidence of substantial spillover effects with either traditional 

methods or the matching methods.  For both time periods, I also test for spillovers in 

subsequent intervals (2-4 km, 4-6 km, 6-8 km) and I do not find treatment effects that are 

significantly different from zero at the 1% level.   
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Table 1.3. Spatial Spillover Effect of Protection on Deforestation  
 
Outcome Deforestation 1986 Deforestation 1997 
Treatment group Unprotected units 

within 2-km of pre-
1980 Protected Areas  

Unprotected units 
within 2-km of 1985-
1996 Protected Areas  

Control group Unprotected units 
more than 2-km away 
from Pre-1980 
Protected Areas  

Unprotected units 
more than 2-km away 
from 1985-1996 
Protected Areas  

Outcome for treated units only  -0.628 -0.879 
Difference in Means† -0.168 -0.026┴

Covariate matching – Inverse 
variance‡

-0.039┴

(0.022) 
0.001┴

(0.023) 
Covariate Matching – Mahalanobis  -0.043┴

(0.022) 
0.001┴

(0.022) 
Covariate Matching – Mahalanobis 
with calipers◘
[N outside calipers] 

-0.045** 
(0.020) 
[53] 

0.0005┴ 

(0.020) 
[30] 

Propensity score matching – Kernel 
[N off common support] 

-0.116 
(0.016) 
[4] 

-0.028* 
(0.017) 
[0] 

N treated 
(N available controls) 

1060 
(9849) 

430 
(4294) 

┴ Not significant at 10%; * Significant at 10%; ** Significant at 5%; All other coefficients significant at 1%
† A Chi-squared test is used to evaluate the difference in means between protected and unprotected units.  
‡ Standard errors for matching estimates are in parenthesis under estimate. 
◘ Calipers restrict matches to units within 0.5 standard deviations of each covariate 
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The results suggest that spatial spillovers from protected areas are either absent or 

positive but small.  Given that I estimated small treatment effects of protected areas, the 

lack of evidence for negative spillover effects from protection is not surprising.  The 

selection models and balancing tests suggest that there would be low deforestation 

pressure on protected lands, implying that protection would lead to little or no 

displacement of deforestation pressure onto neighboring unprotected lands.  

Because I do not detect substantial spillover effects on deforestation on neighboring 

unprotected lands arising from the establishment of protected areas between 1960 and 

1996, I conclude that the estimates in Table 1.2 reflects the full effect of protected areas 

both within and outside protected areas.  Had I found evidence of such spillovers, I would 

resort to the spatial sampling and sample adjustment methods used in the previous section 

to control for post-1980 treatment effects in the pre-1980 estimates.   

Thus the best estimate of avoided deforestation between 1960 and 1997 within and 

outside protected areas established before 1980 is between 5% and 15% of the area 

protected.  These values correspond to avoided deforestation between 24,167 ha and 

72,501 ha.  I can also provide an estimate of avoided deforestation from protected areas 

established post-1980.  Between 1980 and 1984, 244,168 ha of forest were placed under 

protection (based on 1986 forest map), and another 175,906 ha of forest were protected 

between 1985 and 1996.  Using the matching methods, I estimate that the treatment effect 

for protected areas established between 1985 and 1996 is between 6% and 7%, which 

corresponds to avoided deforestation between 10,554 ha and 12,313 ha.  If I assume that 

the  treatment effect of protection between 1980 and 1984 lies somewhere between the 
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estimates for pre-1980 and post-1985 protection, then an estimate of avoided 

deforestation for 1980-1984 would lie within the range of 14,465 ha to 16,875 ha.  

Therefore, the best estimate of avoided deforestation between 1960 and 1997 from all 

protected areas is between 49,186 ha and 111,356 ha.  

  

Sensitivity to Hidden Bias 

I follow Rosenbaum (2002) to determine how strongly an unmeasured 

confounding variable must affect selection into the treatment to undermine the 

conclusions.  Recall that the assumed unobserved covariate is a strong confounder: one 

that not only affects selection but also determines whether deforestation is more likely for 

the treatment or the matched control units.  

The first column in Table 1.4 indicates that the estimated negative treatment 

effect of protection, using the core covariates, remains significantly negative even in the 

presence of moderate unobserved bias.  The results imply that if an unobserved covariate 

caused the odds ratio of protection to differ between protected and unprotected plots by a 

factor of as much as 3, the 99% confidence interval would still exclude zero.   The second 

column indicates that the estimated treatment effect, using the extended covariate set, is 

also robust to unobserved hidden bias.  If I were to exclude from the sample plots 

protected after 1980, I obtain similar qualitative conclusions.  The third column indicates 

that the estimated treatment effect of protection between 1985 and 1996 is robust to 

substantial unobserved hidden bias. 
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I can use the same methods to examine the degree to which unobserved bias 

causes us to underestimate the effect of protection (in absolute value).  I construct 99% 

confidence intervals for the estimate under varying degrees of unobserved bias.  Even if 

an unobserved covariate causes the odds ratio of protection to differ between protected 

and unprotected plots by a factor of 4, the 99% confidence interval would still exclude 

the naïve treatment effect estimates from the first three rows of Table 1.2. The upper 

bound of the interval is -0.230. 

Thus the conclusions are robust to hidden bias: (1) protection led to avoided 

deforestation, but (2) the level of avoided deforestation is much less than what empirical 

methods commonly used in the conservation science literature would estimate.  

 

Table 1.4.  Rosenbaum critical p-values for treatment effects.  Test of the null of 
zero effect. 
 

   Protected area treatment effect 

 Γ 
 

Protection pre-1980: Core
covariate set 

Protection 
pre-1980: Extended

covariate set 

Protection 1985-1996

1 <0.001   <0.001   <0.001   
1.5 <0.001 <0.001   <0.001   
2 <0.001 <0.001   <0.001   

2.5 <0.001 <0.001   <0.001   
3 <0.001 <0.001   <0.001   

3.5 0.075 0.044 <0.001   
4 0.844 0.766 <0.001   
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Other Robustness Checks 

I conduct additional robustness checks to examine the sensitivity of the treatment 

estimates to the composition of the sample, the matching specifications, and I am able to 

confirm that the estimated treatment effects are robust.   I experiment with various 

sample compositions and matching specifications (see list below). The matching 

estimates of avoided deforestation from pre-1980 protection always lie between 5% and 

22% (core and extended covariate sets).  This range is similar to the range of estimates 

from the main analysis in Table 1.2.  

 Moreover, the matching estimates are always smaller than their corresponding 

estimates obtained using the traditional estimation methods.  Therefore, the robustness 

checks support the qualitative conclusion that the traditional methods consistently over-

estimate the avoided deforestation from Costa Rican protected areas. The robustness 

checks are described briefly below. 

• Maintaining indigenous reserves and wetlands:  I estimate treatment effects without 

excluding indigenous reserves and wetlands from the sample; 

• Excluding protected areas established in 1985 from 1986-1997 analysis:  I estimate 

the treatment effects of protection on deforestation between 1986 and 1997, using 

protection between 1986 and 1996 as the treatment instead of protection between 

1985 and 1996; 
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• Maintaining protected areas established between 1980 and 198410 without 

adjustment:  In the main analysis, I excluded 1980-1984 protected areas because I 

believed that 1960 forest data were too old for matching these parcels. Here, I include 

them and estimate the effects of pre-1984 protection on deforestation between 1960 

and 1997. 

• Maintaining protected areas established between 1980 and 1984 with adjustment:  I 

repeat the robustness check above with one modification.  I assume that 1980-1984 

protected areas and 1985-1996 protected areas have similar treatment effects.  Then, 

based on the estimated treatment effect of protected areas created between 1985 and 

1996, I adjust the deforestation outcome in 1997 for units that were protected between 

1980 and 1984.  The adjustment procedure is similar to the one described in the 

Results section for plots protected between 1985 and 1996.  

• Varying the number of nearest neighbors:  I vary the number of nearest neighbors 

that are matched with treatment plots from 1 to 10. 

• Varying the kernel bandwidth:  I estimate kernel-based propensity score matching 

with kernel bandwidths 0.01 and 0.11. 

• Matching without bias-correction:  I compare the matching estimates to matching 

estimates without Abadie and Imbens’ (2006a) post-matching, bias correction. 

 
10 In the sample, 1,545 plots were protected between 1980 and 1984.  The following protected areas 
established between 1980 and 1984 are represented in the sample.  National Parks: Barbilla, Carara, and 
Parque Internacional la Amistad; Protected Zones: Cerro Narra, Cerros de Turrubares, El Chayote, La 
Selva, Las Tablas, and Rio Navarro y Rio Sombrero; Wildlife Refuge: Cano Negro.  
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• Matching with alternative measures of land use capacities: I replace the land-use 

capacity categories with measures of slope and Holdridge (1967) life-zones, as used 

in other deforestation studies in Costa Rica. 

 

I also estimate the ATT at the larger unit of distritos (administrative districts), in 

which the outcome variable is the area of forest in 1960 that was deforested by 1997.  

Treatment is defined as 5% or more of the district under protection before 1980.  The 

matching covariates, measured at the district level, are: area of forest in 1960, district 

area, road density in 1969, density of railroad and river transportation network in 1969, 

average distance from major cities, percentage of district in each land use capacity class, 

population density, percentage of population with secondary education, percentage of 

population that are immigrants, percentage of population that uses firewood.  I obtain a 

wider range of avoided deforestation estimates at this coarser scale compared to the 

results from the pixel-level analysis.  Some of the matching estimates suggest that there 

was no significant avoided deforestation from protection while others detect some 

avoided deforestation.  If I assume that the covariate matching estimator using calipers is 

the highest quality estimate, then the district-level avoided deforestation estimates are 

similar to those generated at the pixel-level (e.g., about 25,000 ha with the core covariate 

set). 
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Conclusion 

Empirical assessments of the role protected areas play in land use patterns are 

central to policies related to ecosystem protection and the provision of ecosystem 

services.  Protected areas are the most widely used policy tool for biodiversity protection.  

In addition, protected areas play a key role in current climate change policy debates.  

Measuring avoided deforestation in the absence of formal protection is difficult because 

avoided deforestation is a counterfactual event.  Moreover, the potential for positive and 

negative spillovers onto unprotected ecosystems further complicates the evaluation of 

protected area effectiveness. 

I find that only about ten percent or less of the Costa Rican forest protected 

between 1960 and 1997 would have been deforested in the absence of protection:  

between 49,000 ha and 111,000 ha.  Our analysis also suggests that, on average, spillover 

effects are small and can be ignored (if they exist, they appear to be positive; i.e., 

protection may lead to small amounts of avoided deforestation in neighborhoods near 

protected areas). 

The limited effectiveness of protected areas in changing land use patterns in Costa 

Rica stems from administrative targeting of protection towards forests for which private 

agents had few incentives to deforest.  In other words, the Costa Rican government chose 

to protect lands that were generally low in economic and political cost.  This pattern 

highlights an important complication in proposals to allow nations to generate avoided 

deforestation credits: asymmetric information between the suppliers and the certification 

agents.  Avoided deforestation is an unobservable event and a nation may have better 
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information than outsiders about where deforestation is will likely take place.  A cap-and-

trade system that allows nations to set their own caps provides strategic incentives for 

nations to take advantage of this private information when setting their caps.  Regardless 

of the source of emissions, such incentives are a problem in any system that allows each 

nation to set its own cap (e.g., a nation may be aware that its industrial base is declining 

because of broader economic conditions).  However, the private information about 

deforestation risk is arguably better than the information about future economic 

conditions that will affect a nation’s other sources of greenhouse gas emissions.11

Although poor targeting clearly contributed to the low levels of avoided 

deforestation from protection, there are other potential contributors. Costa Rican 

policymakers in the 1960s and 1970s may have expected deforestation pressures to 

continue unabated into the 1980s and 1990s.  They may have thus decided to protect 

lands that were inexpensive to protect in the 1960s and 1970s (i.e., low pressure) in order 

to create a bulwark against deforestation pressures after 1980.  However, structural 

readjustment in the mid-1980s lead to a cessation of agricultural subsidies, which, when 

combined with growth of the manufacturing and service sectors, greatly reduced 

deforestation pressures (De Camino, O., Arias, & Perez, 2000). 

One should also remember that this analysis is retrospective.  The future role of 

Costa Rica’s protected areas in affecting land use may be different from the past (but 

 
11 The potential for asymmetric information to reduce additionality is even higher in proposals to allow 
avoided deforestation credits to be sold in offset arrangements, where polluters in a capped system are 
allowed to trade with polluters in an uncapped system.  Here it is the act of protection that generates the 
credits and thus the incentives to claim avoided deforestation where none exists is even stronger. 
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such a difference would require a fundamental change in the historical deforestation 

processes).  Moreover, protected areas are designated for reasons other than preventing 

deforestation.  For example, forests may be protected to generate opportunities for 

tourism, to restrict hunting, to protect rural livelihoods associated with low-level 

extractive activities, or to raise environmental awareness among citizens and firms.  Thus 

one should not necessarily infer that Costa Rica’s protected area network has generated 

few benefits simply because the gains in terms of avoided deforestation were smaller than 

previously estimated.  
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CHAPTER 2: MEASURING REFORESTATION FROM PROTECTED AREAS 

 

Abstract 

Protected areas have long been the principal means for achieving biodiversity 

conservation goals.  Although their main aim is to protect existing biodiversity, the 

restoration of biodiversity through reforestation is also increasingly becoming an 

important conservation goal.  However, very few assessments of protected areas focus on 

reforestation as a measure of protected area effectiveness.  Measuring reforestation (or 

other outcomes) from protective measures is complicated because reforestation is a 

counterfactual event.  By ignoring the nonrandomized nature of protected area 

establishment and the spatial spillovers that can result from their establishment, past 

empirical estimates of reforestation fail to properly estimate the counterfactual vegetation 

cover.   

I demonstrate how matching estimators can be used to estimate reforestation in 

and around protected areas.  I apply the methods to estimate reforestation from Costa 

Rica’s world renowned protected area system between 1960 and 1997.  Protection 

resulted in the reforestation of about 20% of the non-forest areas that were protected.  

Furthermore, the methods traditionally used in conservation science overestimate the 

amount of reforestation.  
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Introduction 

The protection of existing biodiversity has long been the primary goal of 

conservation policies.  However, given the significant loss of global biodiversity in recent 

decades, the restoration of damaged ecosystems is increasingly becoming as important as 

the protection of existing biodiversity (Young, 2000).  Therefore, while the protection of 

existing forests is the primary goal of protected areas, reforestation of cleared forests is 

another important measure of the effectiveness of protected areas.  Reforestation may 

lead to the recovery of near-extinct species.  Reforestation also increases carbon 

sequestration and, by so doing, reduces greenhouse gas emissions (Silver, Ostertag, & 

Lugo, 2000).  Restored forests can also reduce pressure on primary forests, which tend to 

possess higher biodiversity value, by providing alternatives for loggers and other forest 

users.  In this Chapter, I measure the effects of protected areas on reforestation.   

Reforestation is rarely used as an indicator of protected area effectiveness.  In 

most assessments of protected areas, deforestation is the outcome measure (Naughton-

Treves et al., 2005).  However, in some protected area studies a measure of reforestation 

is implicit, because most studies do not differentiate between gross deforestation, which 

is the amount of forest that is cleared over time, and net deforestation, which is the 

amount of forest cleared less reforestation.  A few researchers have focused explicitly on 

reforestation rates as a measure of protected area effectiveness (Helmer, 2000; 

Triantakonstantis, Kollias, & Kalivas, 2006).  Helmer (2000) compares reforestation 

inside and outside Costa Rica’s protected areas, and finds more reforestation in protected 

areas than on unprotected lands.  Helmer uses spatial sampling to minimize spatial 
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autocorrelation, but does not correct for selection bias or spatial interactions between 

protected and unprotected areas.  Measuring reforestation from protective measures is 

complicated because reforestation is a counterfactual event.  By ignoring the 

nonrandomized nature of protected area establishment and the spatial spillovers that can 

result from their establishment, past empirical estimates of reforestation fail to properly 

estimate the counterfactual vegetation cover.   

I apply the methodology developed in Chapter 1 to construct suitable 

counterfactuals and to estimate reforestation in Costa Rica between 1960 and 1997 as a 

result of establishing protected areas.  Some lands in Costa Rica were deforested before 

they were placed under protected area status.  This may have been driven in part by 

preemptive clearing, where landowners cleared trees on their lands to prevent their land 

being placed under protection.  It is also possible that some significant forest clearing 

occurred even after legislation had been passed to establish a protected area, if 

enforcement of the restrictions was delayed.  Therefore, the rate of reforestation since 

protected area establishment provides an additional measure of the effectiveness of Costa 

Rican protected areas.  This analysis, in combination with the estimates of avoided 

deforestation in Chapter 1, provides a broad picture of the effects of protected areas on 

land cover change in Costa Rica. 

 

Data 

GIS data layers for forest cover, protected areas, and locations of major cities 

were provided by the Earth Observation Systems Laboratory of the University of Alberta, 
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Canada.  Other GIS data layers include a map of land use capacity based on exogenous 

factors (soil, climate, topography) from the Instituto Tecnologico de Costa Rica (ITCR, 

2004), and socioeconomic data from the Instituto Nacional de Estadistica y Censos 

(INEC).  GIS layers for transportation roads, railroads, and the river transportation 

network were digitized by Margaret Buck Holland from hard copy maps of 1969 and a 

1991 road layer (map source: Instituto Geográfico Nacional (IGN) of the Ministerio 

Obras Publicas y Transporte (MOPT) of Costa Rica). 

I select a random sample of 20,000 land plots that were not covered by forest in 

1960.  Each plot has an area of 3 hectares.  This unit is the minimum mappable unit, or 

pixel, and thus the outcome variable is binary: a plot is either not forested or reforested 

(reforested = 80%+ canopy cover).  Thus the dependent variable is a categorical outcome 

that determines whether a land plot has been reforested by 1997 or not.  All aspects of the 

analysis, including rules for excluding plots, are otherwise the same as those used in the 

avoided deforestation analysis (Chapter 1). The final dataset comprises 15,913 land plots.  

By 1986, 3,325 of these plots had been reforested, and by 1997, 3,238 plots were 

reforested.  The total number of plots placed under protection before 1980 is 820, of 

which 393 were reforested by 1986 and 406 were reforested by 1997.  Detailed statistics 

on the characteristics of the sample are provided in Table 2.1. 

The matching covariates are the same as those used described in Chapter 1. The 

core set of covariates are distance to roads, distance to closest forest edge, land use 

capacity class, and distance to nearest major city.  The extended set of covariates adds the 

following: distance to railroads and river transportation network, district-level population 
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density, district-level proportion of immigrants, district-level proportion of adults 

educated beyond the “secundaria” level, district-level proportion of households using 

fuel-wood, and area of district.  Detailed descriptions of the matching covariates are 

provided in Chapter 1.   

I use the same set of matching covariates as in Chapter 1 because the factors that 

determine deforestation rates are likely to be the same factors that determine reforestation 

rates.  Indeed, researchers who use net deforestation as a dependent variable make this 

assumption, because net deforestation includes reforestation.  Helmer (2000) found that 

in Costa Rica, many of the drivers of deforestation, such as soil fertility, distance to 

roads, slope, and elevation, are also important determinants of reforestation rates. 

 

 

Table 2.1.  Descriptive Statistics 
 
Name  Description Mean Standard 

Dev. 
Range 

Reforestation 1960-
1997 

Coded 1 if plot was reforested 
between 1960 and 1997, 0 otherwise 

0.210 0.407 0 – 1 

Reforestation 1960-
1986 

Coded 1 if plot was reforested 
between 1960 and 1986, 0 otherwise 

0.216 0.412 0 – 1 

Reforestation 1986-
1997 

Coded 1 if plot was reforested 
between 1986 and 1997, 0 otherwise 
(non-forested plots in 1986 only) 

0.050 0.218 0 – 1 

Protection before 
1980  

Coded 1 if plot is in a protected area 
created before 1980, 0 otherwise 

0.053 0.224 0 – 1 

Protection 1980-
1984 

Coded 1 if plot is in a protected area 
created between 1980 and 1984, 0 
otherwise 

0.002 0.049 0 – 1 

Protection 1985-
1996 

Coded 1 if plot is in a protected area 
created between 1985 and 1996, 0 
otherwise 

0.045 0.207 0 – 1 

Distance to forest 
1960 

Distance to closest forest in 1960, 
measured in km 

1.307 1.387 3.5 x 10-5 
– 10.235 
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Table 2.1.  Descriptive Statistics 
 
Name  Description Mean Standard 

Dev. 
Range 

Distance to forest 
1986 

Distance to closest forest in 1986, 
measured in km (units under forest in 
1986 only) 

0.885 1.178 4.3 x 10-5 
– 10.235 

Distance to road 
1969 

Distance to nearest road in 1969, 
measured in km 

9.654 10.514 2.6 x 10-4 
– 64.536 

Distance to railroads 
and river 
transportation 1969 

Distance to nearest railroad or river 
transportation in 1969, measured in 
km 

32.641 23.511 3.0 x 10-4 
– 103.996 

Distance to national 
road 1991 

Distance to nearest national road in 
1991, measured in km 

2.437 3.409 0.144 – 
42.988 

Distance to major 
city  

Distance to closest major city (Limon, 
Puntarenas, or San Jose), measured in 
km 

65.460 39.166 0.439 – 
216.993 

Land use capacity 
classes: 

Dummy variables coded 1 if plot is 
inside a land class or classes, and 0 
otherwise. 

   

Class I Agricultural Production – annual 
crops 

0.008    0.089 0 – 1 

Class II Suitable for agricultural production 
requiring special land and crop 
management practices such as water 
conservation, fertilization, irrigation, 
etc. 

0.152    0.359 0 – 1 

Class III Suitable for agricultural production 
requiring special land and crop 
management practices such as water 
conservation, fertilization, irrigation, 
etc. 

0.160    0.366 0 – 1 

Class IV Moderately suitable for agricultural 
production; permanent or semi-
permanent crops such as fruit trees, 
sugar cane, coffee, ornamental plants, 
etc. 

0.229      0.420 0 – 1 

Class V Strong limitations for agriculture; 
forestry or pastureland 

0.014    0.118 0 – 1 

Class VI Strong limiting factors on agricultural 
production; land is only suitable for 
forest plantations or natural forest 
management 

0.127    0.333 0 – 1 

Class VII Strong limiting factors on agricultural 
production; land is only suitable for 
forest plantations or natural forest 

0.160    0.367 0 – 1 



 

 

 45

Table 2.1.  Descriptive Statistics 
 
Name  Description Mean Standard 

Dev. 
Range 

management 
Class VIII Land is suitable only for watershed 

protection 
0.053    0.223 0 – 1 

Class IX Land is suitable only for protection 0.088    0.283 0 – 1 
District area  Area of district in which land plot is 

located, measured in square km 
402.266  445.681    0.548 – 

2408.735 
Population density  Population density of district in which 

land plot is located, measured as 
number of people per square km 
(1973) 

70.635    399.518     0.253 –   
11963.43 

Percentage of 
immigrants  

Number of people born outside their 
canton of residence (1973) 

0.358    0.224    0.014 –   
0.913 

Percentage of adults 
with secondary-level 
education  

Percentage of adults with secundaria 
or universitaria level education (1973) 

0.068    0.057    0.007 -   
0.498 

Fuel-wood use  Percentage of households using fuel-
wood for cooking (1973) 

0.745    0.227    0.004 -        
1 

 

Analysis and Results 

 I use matching methods (see detailed explanation of methods in Chapter 1) to find 

valid counterfactuals for protected units, thereby ensuring that any differences in 

reforestation rates can be attributed to protection status.  I estimate the effect of 

protection on reforestation inside and outside of protected areas.   

Results are presented in Tables 2.2 and 2.3.  The treatment effect estimates from 

matching with the core covariates range from 0.189 to 0.229 for pre-1980 protection (i.e., 

19% - 23% of additional reforestation)12.  This corresponds to between 6,961 ha and 

8,592 ha of land reforested between 1960 and 1997 as a result of protection before 1980.  
                                                 
12 The matching estimates with the extended covariate set range from .179 to .284, and as with the 
estimates in Table 2, the matching estimates are smaller than the estimates with the traditional empirical 
methods. 



 

 

 46

                                                

I apply the Rosenbaum (2002) test for sensitivity to hidden bias13, and find that these 

estimates for pre-1980 protection are robust to unobserved hidden bias (first two columns 

in Table 2.4).  I also test for the effect of post-1985 protection and obtain matching 

estimates range from 0.05 to 0.087, or between 3,222 ha and 5,606 ha of additional 

reforestation.  However, when I test for sensitivity to hidden bias I find that these 

estimates for post-1985 protection are not robust to unobserved hidden bias (Table 2.4, 

column 3).   

If I assume that the treatment effect of protection between 1980 and 1984 lies 

somewhere between the estimates for pre-1980 and post-1985 protection, then an 

estimate of reforestation from protection for 1980-1984 would lie within the range of 205 

ha to 926 ha.  I detected no spatial spillovers of reforestation onto neighboring 

unprotected lands as a result of protection (Table 2.3).   

Therefore, ignoring any potential hidden bias, the best estimate of reforestation 

between 1960 and 1997 from all protected areas is between 10,388 ha and 15,124 ha.  In 

the presence of hidden bias that might affect the estimates for post-1980 protection, the 

best estimates would be limited to a range of 6,961 ha to 8,592 ha of reforestation from 

all protected areas. 

 
13 See Chapter 1 for a description of the method. 



 

 

 47

Table 2.2.  Effect of Protection on Reforestation 
 
 1 2 3 
Treatment group Protected pre-

1980 
Protected 1985-
199614

Protected pre-
1980 

Control group Unprotected 
pre-1980 

Never protected Never protected 

Outcome in protected areas 
only  

0.495 0.125 0.495 

Difference in Means† 0.307 
(0.018) 

0.081 
(0.016) 

0.319 
(0.018) 

Covariate matching – 
Inverse variance 

0.189 
(0.032) 

0.050 
(0.016) 

0.228 
(0.033) 

Covariate Matching – 
Mahalanobis  

0.189 
(0.032) 

0.050 
(0.016) 

0.216 
(0.033) 

Covariate Matching – 
Mahalanobis with calipers 
[N outside calipers] 

0.203 
(0.031) 
[69] 

0.050 
(0.016) 
[0] 

0.229 
(0.030) 
[93] 

Propensity score matching 
– Kernel 
[N off common support] 

0.206 
(0.020) 
[0] 

0.087†

(0.074) 
[368] 

0.234 
(0.020) 
[0] 

N treated 
(N available controls) 

820 
(15093) 

425 
(11937) 

820 
(14598) 

* Significant at 10%; ** Significant at 5%; All other coefficients significant at 1% 
†  A Chi-squared test is used to evaluate the difference in means between protected and unprotected units.  
‡ Standard errors for matching estimates are in parenthesis under estimate. 
◘ Calipers restrict matches to units within 0.5 standard deviations of each covariate 
 

                                                 
14 I obtained this treated group by selecting a random sample of 1000 pixels in protected areas established 
between 1985 and 1996 (the final size of the group is 425 because I exclude pixels located in indigenous 
reserves, wetlands, clouds or problems areas, and pixels reforested by 1986). 
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Table 2.3.  Spatial Spillover Effect of Protection on Reforestation 
 
 1 2 
Outcome Reforestation 1986 Reforestation 1997 
Treatment group Unprotected units 

within 2-km of pre-
1980 Protected Areas  

Unprotected units 
within 2-km of 1985-
1996 Protected 
Areas15  

Control group Unprotected units 
more than 2-km away 
from Pre-1980 
Protected Areas  

Unprotected units 
more than 2-km away 
from 1985-1996 
Protected Areas  

Outcome for treated units only  0.228 0.051 
Difference in Means† 0.041 

(0.013) 
0.008†

(0.009) 
Covariate matching – Inverse 
variance 

0.016†

(0.018) 
0.002†

(0.009) 
Covariate Matching – Mahalanobis  0.013†

(0.018) 
0.002†

(0.009) 
Covariate Matching – Mahalanobis 
with calipers 
[N outside calipers] 

0.009†

(0.017) 
[53] 

0.002†

(0.009) 
[2] 

Propensity score matching – Kernel 
[N off common support] 

0.016†

(0.013) 
[3] 

0.008†

(0.009) 
[0] 

N treated 
(N available controls) 

1093 
(13858) 

704 
(11166) 

* Significant at 10%; ** Significant at 5%; All other coefficients significant at 1% 
†  A Chi-squared test is used to evaluate the difference in means between protected and unprotected units.  
‡ Standard errors for matching estimates are in parenthesis under estimate. 
◘ Calipers restrict matches to units within 0.5 standard deviations of each covariate 

 

 
 
 
 

                                                 
15 I obtained this treated group by selecting a random sample of 1000 pixels located within 2 km of 
protected areas established between 1985 and 1996 (the final size of the group is 704 because I exclude 
pixels located in indigenous reserves, wetlands, clouds or problems areas, and pixels reforested by 1986). 
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Table 2.4.  Rosenbaum critical p-values for treatment effects.  Test of the null of 
zero effect. 
 

   Protected area treatment effect 

 Γ 

 

 

 

 

 

Protection pre-1980: Core
covariate set 

Protection 
pre-1980: Extended

covariate set 

Protection 1985-1996

1 <0.001   <0.001   0.997 
1.5 <0.001 <0.001   1 
2 <0.001 <0.001   1 

2.5 0.047 0.044   1 
3 0.619 0.604   1 

3.5 0.975 0.973 1 
4 1 1 1 
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 CHAPTER 3: EVALUATING THE EFFECTS OF PROTECTED AREAS ON 

SOCIOECONOMIC OUTCOMES 

 

Abstract 

The potential impact of protected areas on the livelihoods of local communities is 

currently one of the most important (and controversial) issues among practitioners in the 

fields of biodiversity conservation and poverty alleviation.  Although there is widespread 

concern about the potentially harmful consequences of establishing protected areas, 

obtaining empirical measures of the socioeconomic impacts on local communities has 

proven difficult because of the difficulty in establishing the counterfactual.   

I demonstrate how matching methods can be used to establish such a 

counterfactual, and I use this approach to measure the effects of Costa Rican protected 

areas established before 1980 on four key socioeconomic indicators in 2000 – 

employment, access to electricity, access to telephones, and access to computers.  I 

estimate the effects of protected areas on socioeconomic outcomes within protected 

census segments as well as within unprotected segments that are located close to 

protected areas.  I find no evidence that protected areas had harmful impacts on the 

livelihoods of local communities.  On the contrary, I find that protection had small 

positive effects on socioeconomic outcomes. 
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Introduction 

One of the most important policy questions in the fields of biodiversity 

conservation and poverty alleviation is the impact of protected areas on the livelihoods of 

communities living in or around protected areas.  By many measures, protected areas are 

the most widely used tool for in situ conservation of biodiversity (Millennium Ecosystem 

Assessment, 2005).  Most conservationists consider the establishment of protected areas 

to be a key strategy for global preservation of biodiversity (Brandon et al., 1998; 

Terborgh & Van Shaik, 1997).  However, several researchers have called for a more 

careful consideration of the socioeconomic costs of establishing protected areas, arguing 

that protected areas should not be established if they reduce the social welfare of local 

communities (Cernea, 2006).  This view is reflected in the World Parks Congress (2004) 

declaration, which states, “many costs of protected areas are borne locally – particularly 

by poor communities” (World Parks Congress, 2004).  

Although this issue has important policy implications (e.g., some proposals have 

been made for compensating local communities after the establishment of protected 

areas), a key unresolved question is, “do protected areas have negative impacts on the 

livelihoods of people living in or near protected areas?”   This question has not been 

addressed empirically (Schmidt-Soltau & Brockington, 2004; Wilkie et al., 2006), 

although there has been some theoretical research on this issue (Robalino, 2007).  

According to Wilkie et al. (2006), two of the complications that make an empirical 

assessment difficult are the lack of baseline data on economic indicators prior to 

protected area establishment, and the lack of valid counterfactuals for people affected by 



 

 

 52

protected area establishment.   Margaret Buck Holland (2006, personal communication) 

and Wilkie et al. (2006) are addressing some of these challenges in ongoing research.   

I apply the methods described in Chapter 1 to measure the effects of protected 

areas on social welfare in Costa Rica.  I use matching methods to identify suitable 

counterfactuals for protected census segments in order to control for the overt bias from 

nonrandom placement of protection.  I match segments affected by protection with 

unprotected segments based on relevant pre-protection variables that affect the likelihood 

of protection as well as differences in socioeconomic outcomes.  I also estimate the 

spatial spillover effects of nearby protection on unprotected census segments, and I assess 

the sensitivity of the results to various changes in the sample or matching specification.  

In the next section, I review the background literature on this issue, after which I describe 

the data, methods, results, and sensitivity analysis before I conclude. 

 

Background 

A key challenge of modern society is to balance social welfare and environmental 

conservation (Sanderson & Redford 2003; Adams et al. 2004).  One view of economic 

development and the environment is based on the Kuznets curve.  Simon Kuznets’s 

(1955) original theory posits that as societies develop, inequality will continue to grow to 

a critical point, after which inequality declines.  Early economists cited an 

“environmental Kuznets curve” to argue that as societies develop, environmental 

degradation will grow worse up to a critical point, after which it starts to reduce as more 

resources are devoted to solving environmental problems that arise from economic 
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growth.  Although this view has been criticized for leading to irreversible environmental 

failures in developing countries (Sanderson & Redford, 2003), the theory holds for 

removable pollution or other reversible environmental problems.   

An alternative view of environment and development, called Sustainable 

Development, emerged late in the 20th century (Adams, 2001).  Sustainable development 

is the integration of economic development, environmental conservation, and social 

equity.  However, in practice, applying sustainable development principles to protected 

areas and other conservation programs has not yielded the expected benefits in terms of 

social welfare and the protection of biodiversity.  

The debate over the effects of protected areas on social welfare has its roots in the 

debate described above (economic development versus environmental conservation).  

The earliest protected areas focused on restricting all access to forests (Colchester, 2004).  

However, since the 1980s conservation groups have sought to apply the principles of 

sustainable development to the management of protected areas, and to reduce the adverse 

effects of protected areas on local forest users.  The most common examples of these 

efforts are Integrated Conservation and Development Projects (ICDPs), which seek to 

reduce the strain of protected areas on local forest users.  However, like other sustainable 

development programs, ICDPs seem to have failed to achieve their goals of improving 

social welfare while protecting the environment (Wunder, 2001).   

According to Sanderson and Redford (2003), the difficulties in implementing 

“sustainable development” have led to a renewed focus among development 

practitioners, seeking to improve social welfare without sufficient regard for 
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environmental consequences.  Among conservationists, the failure of “sustainable 

development” has led to calls for a return to protection of biodiversity as a goal in itself 

(Brandon et al., 1998; MacKinnon, 1997; Terborgh & Van Shaik, 1997; Van Shaik & 

Kramer, 1997), including the establishment of strict protected areas that restrict access to 

forests.  However, social advocates argue that restricting access to forests reduces the 

welfare of local people (Cernea, 2006; Colchester, 2004).  In general, the current debates 

lack empirical evidence on the effects of protected areas on social welfare (Schmidt-

Soltau & Brockington, 2004; Wilkie et al., 2006).  

 

Data 

I obtain data on socioeconomic variables from the Instituto Nacional de 

Estadistica y Censos (INEC).  Geographically referenced data are available at the district 

level for 1973, 1986, and 2000, and at the census segment level for 2000.  The Earth 

Observation Systems Laboratory of the University of Alberta, Canada, provided the GIS 

data layers for forest cover, protected areas, and the locations of major cities.  Other GIS 

data layers include a map of land use capacity based on exogenous factors (soil, climate, 

topography) from the Instituto Tecnologico de Costa Rica (ITCR, 2004).  GIS layers for 

transportation roads, railroads, and the river transportation network were digitized by 

Margaret Buck Holland from hard copy maps of 1969 and a 1991 road layer (map source: 

Instituto Geográfico Nacional (IGN) of the Ministerio Obras Publicas y Transporte 

(MOPT) of Costa Rica). 
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I develop a dataset of the census segments surveyed in 200016 by overlaying the 

GIS data layers for these segments with the GIS data layers for biophysical and 

infrastructure variables.  Although there are 17,261 census segments in the GIS map, the 

final dataset consists of 17,254 segments, because I exclude 12 segments for which there 

are no census data17.  On average, a segment consists of 60 households and 220 people.  

The census segments have a mean area of 3-km2, and the area of a segment varies from 

0.001-km2 in urban areas to more than 700-km2 in less populated rural areas.  Descriptive 

statistics for the segments in the sample are presented in Table 3.1. 

I measure socioeconomic outcomes using three variables that have been used in 

the literature as poverty indicators for Costa Rica (Cavatassi et al., 2004; ITCR, 2004; 

Rosero-Bixby & Palloni, 1998; World Bank, 1997, 2000), and I include a fourth outcome 

measuring access to computers.  The outcomes are: 

• Employment: the percentage of employed adults (age 15 and older); 

• Access to electricity: As a measure of infrastructure service provision and income, 

I measure the percentage of households with electricity;  

• Access to telephones: the percentage of households with telephones; 

• Access to computers: the percentage of households with computers. 

 
16 Note that 2000 is the only year for which census segment boundaries are available in GIS.  I originally 
intended to use segment-level socioeconomic variables from 1973 as matching covariates.  However, there 
are no 1973 census data at the same geographic scale as the census segments which were surveyed in 2000, 
because the 1973 segments were split up over time to create the smaller segments in 2000.  In addition, GIS 
maps of census boundaries are only available for 2000.  Hard copy maps of earlier census segment 
boundaries exist, but extensive digitization would be required to create GIS layers for these segments (more 
than 4000 segments in 1973).   I have attempted to digitize the census boundaries from earlier years, but 
these GIS layers are not yet available due to delays in digitizing.  
17 The excluded segments may not have been surveyed because there are no residents within those 
segments.  Some of the excluded segments represent protected areas or wetlands or are located within 
protected areas or wetlands. 
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In testing for the effect of protection on these outcomes, I match segments based 

on variables that jointly affect the socioeconomic outcomes in the segment and the 

likelihood that the land within a segment is protected.  I seek variables that capture the 

expected benefits and costs of protecting the land from the perspective of Costa Rican 

officials (in terms of amount of forest protected, land use opportunities that would be 

forgone if the land were protected, and accessibility).  These variables also affect 

socioeconomic outcomes because they affect agricultural production, market access, and 

infrastructure service provision.  Based on anecdotes of the history of Costa Rica’s 

protected areas and the literature on variables affecting land use decisions (especially the 

review of Kaimowitz and Angelsen (1998) I define the following core set of covariates: 

• Segment area: Smaller segments are more densely populated and thus less likely 

to be placed under protection. 

• Forest area:  I include a measure of the area of the segment under forest in 1960, 

which is the earliest measure of forest cover prior to the establishment of 

protected areas.  Forest area is likely to be highly correlated with the likelihood of 

protected area location.  It is also likely to affect socioeconomic outcomes.  For 

instance, segments with more forest cover may offer more opportunities for 

exploiting forest products. 

• “Road-less volume”:  Road-less volume is a metric developed by Watts et al. 

(2007) to measure accessibility to transportation infrastructure.  Road-less volume 

provides a better way of capturing this effect than measures such as road density 
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or the distance from each segment to the nearest road, because such measures 

only reflect accessibility at the larger segment scale.   In contrast, road-less 

volume measures the accessibility of each plot of land and aggregates this 

measure to the segment level.  Furthermore, road-less volume simultaneously 

measures the extent to which roads have penetrated a segment as well as the 

extent to which roads have penetrated adjacent segments.  First, I calculate the 

road-less volume for each square of length 100m across the country (road-less 

volume = distance from center of the square to nearest road * area of the square).  

I then add the road-less volumes for all squares within a segment to obtain the 

total road-less volume for the segment.  Road-less volume may have opposing 

effects on the likelihood of protection.  On the one hand, remote lands may be 

considered less threatened by deforestation and therefore may be more likely 

candidates for protection.  Thus, segments with larger road-less volumes may be 

more likely to be protected.  On the other hand, protected areas that are created 

for ecotourism may be located near roads to make those parks more accessible, 

implying that segments with smaller road-less volumes would be protected.  

Road-less volume also affects socioeconomic outcomes by affecting access to 

forest, agricultural lands, and markets. 

• Land use capacity:  To capture the land use opportunities in each segment, I use 

Costa Rica’s land use capacity classes, which are determined by slope, soil 

characteristics, life-zones, risk of flooding, dry period, fog, and wind influences.  I 

measure the total area under each land use capacity class for each segment.  
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Productive lands are less likely to be placed under production, and higher 

agricultural productivity may lead to better social welfare.  

• Distance to nearest major city: Following Pfaff and Sanchez (2004), I measure 

the distance from the centroid of the segment to one of three major cities, Limon, 

Puntarenas, and San Jose.  Segments closer to the capital, San Jose, and other 

major cities may be seen as less remote and therefore less likely to attract 

protection.  On the other hand, protected area restrictions may be easier to enforce 

in areas closer to major cities, making those areas more likely candidates for 

protection.  The farther a segment is from a major city, the lower the expected 

socioeconomic outcomes. 

 

 In addition to the main analysis, I conduct a sensitivity analysis to determine 

whether the results change when we define an alternative set of matching covariates.  For 

that analysis, I define an extended set of covariates that adds the following covariates to 

the core set of matching covariates.  The effects of these variables on land use decisions 

(and therefore protected area placement and social welfare) are less agreed upon in the 

literature. 

• Distance to railroads and river transportation network.  As an additional measure of 

remoteness, I measure the distance from the centroid of each segment to a railroad in 

1969 or a river that was part of the river transportation network in 1969. 
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• District-level18 population density: Harrison (1991) finds strong correlations in Costa 

Rica between the population density in a canton and the level of deforestation, and 

this correlation has been confirmed in other studies for smaller land areas in Costa 

Rica (Chaves-Esquivel & Rosero-Bixby, 2001; Rosero-Bixby & Palloni, 1998). 

Therefore, I include this variable as a measure of the likelihood of protection.  As 

with all of the measures below, I measure population density at district-level 

(distrito)19 from the 1973 census (a mid-point in the main period of protection 

activity). 

• District-level proportion of immigrants:  Harrison (1991) and Rosero-Bixby and 

Palloni (1998) find correlations between the percentage of immigrants and land use.  

• District-level proportion of adults educated beyond the secondary level:  Education 

increases residents’ opportunities for off-farm employment, which can reduce 

deforestation pressure (Mulley & Unruh, 2004). 

• District-level proportion of households using fuel-wood for cooking:  Fuel-wood use 

is a proxy for the use of forest resources by district residents, which would affect 

deforestation. 
 

18 As noted in a previous footnote, I originally intended to use segment-level socioeconomic variables from 
1973 as matching covariates.  However, there are no 1973 census data at the same geographic scale as the 
census segments which were surveyed in 2000, because the 1973 segments were split up over time to create 
the smaller segments in 2000.  In addition, GIS maps of census boundaries are only available for 2000.  
Hard copy maps of earlier census segment boundaries exist, but extensive digitization would be required to 
create GIS layers for these segments (more than 4000 segments in 1973).    
19 Geographic boundaries for the 437 districts in 2000 are defined in a GIS data layer. The number of 
districts increased between 1973 and 2000 because some districts were split up to form smaller districts. 
We use information collected by the FAO on district splits over time (Cavatassi et al., 2004) to re-aggregate 
new districts to their 1973 parent districts. In a few cases, a new district is created from more than one 
parent district, in which case we re-aggregate the new district and all parent districts into one unit. The final 
dataset therefore has 398 “districts”.
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• Size (area) of district:  District area is negatively correlated with administrative 

capacity and economic growth, which might influence deforestation and protected 

area placement. 

 

I test the effects of these variables on the likelihood of protection by modeling the 

selection decision using a probit regression of the binary treatment variable20 on the set 

of covariates.  When I exclude segment area from the model, area of forest has the largest 

effect on the likelihood of protection.  Segments with more forest area in 1960 are 

significantly more likely to be protected, holding other factors (except segment area) 

constant.  When I control for segment area, the coefficient on forest area becomes much 

smaller and less significant and the sign changes to negative.  This implies that part of the 

effect of forest area on the likelihood of protection is driven by the size of the segment 

itself.  Also, segments with less productive lands, segments that are farther from major 

cities, and segments with larger areas, are all more likely to be protected.  On the other 

hand, all else being equal, segments with larger road-less volume are less likely to be 

protected.  However, when I exclude area of segment and area of forest from the 

selection equation, segments with larger road-less volume are more likely to be protected.  

These effects of road-less volume on protected area placement imply that (1) large forests 

in large segments that have not been penetrated by roads are more likely to be protected, 

but (2) holding the forest and segment areas constant, lands are also more likely to be 

protected if they are easily accessible (to tourists, for example).  When I test the selection 

 
20 I obtain a binary treatment variable as follows: Treatment=1 if more than 20 percent of the protected area 
is protected and Treatment=0 otherwise.  Further details are provided in the Methods and Results sections. 
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model on the extended set of covariates, I find that segments that are farther from 

railways and rivers are more likely to be protected, as are segments in districts with lower 

population densities and a larger proportion of households using fuel-wood. 

 

 

Table 3.1.  Descriptive statistics 
 
Variable Description Mean Standard 

Deviation 
Range 

Core Matching covariates 
Area Total land area covered by the 

segment in km2
2.947     12.600    0.001 – 

736              
Forest area Total forest area in the segment in 

1960 in km2
1.732    11.229      0 – 

708.707       
Road-less 
volume (km3) 

Calculated as the product of area and 
distance to nearest road (1969) for 
every square of length 100m within 
the segment, and summed for all 
squares in the segment  

43.117    344.621       0 – 
25433.470   

Distance to 
major city  

Distance from centroid of the segment 
to closest major city (Limon, 
Puntarenas, or San Jose), measured in 
km 

37.045    37.757    0.041 – 
206.950       

Land use 
capacity classes 
I, II, and III 

Area under the land classes I, II, and 
III, measured in km2

Class I: Agricultural Production – 
annual crops;  
Class II: Suitable for agricultural 
production requiring special land and 
crop management practices such as 
water conservation, fertilization, 
irrigation, etc.; Class III: Suitable for 
agricultural production requiring 
special land and crop management 
practices such as water conservation, 
fertilization, irrigation, etc. 

0.623  2.250        0 – 49.300 

Land use 
capacity class IV 

Area under the land class IV, 
measured in km2 

Class IV: Moderately suitable for 

0.503      2.401           0 – 
108.000      
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Table 3.1.  Descriptive statistics 
 
Variable Description Mean Standard 

Deviation 
Range 

agricultural production; permanent or 
semi-permanent crops such as fruit 
trees, sugar cane, coffee, ornamental 
plants, etc. 

Land use 
capacity classes 
V, VI, and VII 

Area under the land classes V, VI, and 
VII, measured in km2

Class V: Strong limitations for 
agriculture; forestry or pastureland  
Class VI: Strong limiting factors on 
agricultural production; land is only 
suitable for forest plantations or 
natural forest management  
Class VII: Strong limiting factors on 
agricultural production; land is only 
suitable for forest plantations or 
natural forest management 

0.950      4.147           0 – 
124.000       

Land use 
capacity classes 
VIII and IX 
(reference group) 

Area under the land classes VIII and 
IX, measured in km2

Class VIII: Land is suitable only for 
watershed protection  
Class IX: Land is suitable only for 
protection 

0.845  10.500         0 – 
734.000       

Other matching covariates 
Distance to 
forest  

Distance from the centroid of the 
segment to the closest forest in 1960, 
measured in km 

2.198     2.048           0 – 9.045     

Distance to 
railroads and 
river 
transportation  

Distance from the centroid of the 
segment to the nearest railroad or river 
transportation in 1969 in km 

37.352    18.723    0.001 – 
104.070       

District-level 
fuel-wood use 
(1973) 

Proportion of households using fuel-
wood for cooking in 1973 in the 
district within which the segment is 
located 

0.470  0.317   0.001 – 1     

District-level 
immigrants 
(1973) 

Proportion of residents born outside 
their canton of residence in 1973 in 
the district within which the segment 
is located 

0.377  0.201    0.014 – 
0.913          

District-level 
education (1973) 

Proportion of adults with secundaria 
or universitaria level education in 
1973 in the district within which the 

0.143     0.111   0.007 – 
0.619           
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Table 3.1.  Descriptive statistics 
 
Variable Description Mean Standard 

Deviation 
Range 

segment is located 
District area 
(1973) 

Area of the district (1973) within 
which the segment is located, 
measured in km2

246.162    454.936   0.548 – 
2408.735     

District-level 
population 
density (1973) 

Population density in 1973 of the 
district within which the segment is 
located, measured in number of people 
per km2

1190.537  2314.777     0.253 –
11963.430   

Socioeconomic outcomes 
Employment Percentage of employed residents 

between the ages of 15 and 70 years 
0.499 0.097   0 – 1            

Access to 
electricity 

Percentage of households in the 
segment with electricity 

0.946     0.166      0 – 1            

Access to 
telephones 

Percentage of households in the 
segment with telephones 

0.497    0.325           0 –1             

Access to 
computers 

Percentage of households in the 
segment with computers 

0.129  0.160      0 – 1            

Protection 
Proportion of 
segment 
protected before 
1980 

Proportion of the segment area that 
was protected before 1980 

0.015   0.100         0 – 1            

Proportion of 
segment 
protected after 
1980 

Proportion of the segment area that 
was protected after 1980 

0.010     0.082           0 – 1            

Proportion of 
buffer protected 
before 1980 
 

Proportion of the land within 10-km of 
the segment protected before 1980 

0.065   0.084      0 – 0.937     

Proportion of 
buffer protected 
after1980 
 

Proportion of the land within 10-km of 
the segment protected after 1980 

0.017 0.054        0 – 0.854     
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Methods 

 I test for the effects of protection before 1980 within a segment on the 

socioeconomic outcomes in 2000 for individuals and households within that segment.  I 

define a binary treatment variable by categorizing segments as “protected” if at least 20 

percent of the area in the segment was protected before 1980.  I chose this somewhat 

conservative threshold of 20 percent to ensure that the proportion of the segment that is 

protected is sizeable enough for any effects of protection to be detected in the analysis, 

while at the same time, ensuring that the treatment group is a representative sample of all 

segments that received some protection.  With this threshold, the treatment group 

includes 404 segments, which represents more than 65 percent of all segments with any 

protection21.  I also exclude 423 segments that received protection after 1980.  To further 

reduce bias from using unsuitable counterfactuals, I exclude all segments with any 

protection at all before 1980 from the set of controls (that is, I exclude controls with more 

than 0 percent but less than 20 percent of their land area protected from the analysis).  I 

use the core set of covariates for the analysis.  A summary of the analysis using the 

extended set of covariates is presented in the Sensitivity Analysis section. 

I use matching methods (see detailed explanation of matching methods in Chapter 

1) to find valid counterfactuals for the protected segments.  I estimate treatment effects 

using four matching estimators: (1) nearest-neighbor covariate matching estimator with 

Mahalanobis weighting and calipers of 1 standard deviation for each covariate; (2) A 

 
21 I test the sensitivity of this restriction by using other thresholds of the proportion of segment protected to 
define the treatment group.  The results are presented in the Sensitivity Analysis section. 
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covariate matching estimator with weights generated from a search using a genetic 

matching algorithm (Sekhon, 2007); (3) nearest-neighbor covariate matching estimator 

with inverse variance weighting and exact matching on a dummy variable coded 1 if the 

segment had forest cover in 1960 and 0 otherwise; and (4) kernel (Gaussian) propensity 

score matching estimator with common support enforced.  Since the socioeconomic 

dependent variables are proportions, the homoskedasticity assumption may be violated, 

and therefore I estimate robust standard errors for the covariate matching estimators.  For 

the propensity score matching estimator, I bootstrap the standard errors with 999 

replications. 

I also tried covariate matching estimators without the caliper restriction (inverse 

variance weighting and Mahalanobis weighting).  However, when I conduct balancing 

tests for the matching estimators (comparing means of matching covariates for matched 

and control groups using a t-test), I find that there is severe imbalance on key matching 

covariates for these covariate matching estimators without calipers.  For example, after 

matching, the mean forest area in 1960 for the protected segments is about 10-km2 more 

than the mean forest area in 1960 for their matched unprotected segments (about 100 

percent more forest cover in the protected segments) when I use covariate matching 

without calipers.  With calipers, the difference is only 1-km2.  Therefore, I estimate the 

treatment effects with the covariate matching with calipers, thus ensuring that the 

protected segments and their matched controls are reasonably similar in terms of the 

matching covariates.   
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Results 

 The treatment effect estimates are presented in Table 3.2.  A positive treatment 

effect indicates that protection improves the socioeconomic outcome, while a negative 

treatment effect indicates that protection makes the socioeconomic outcome worse.     

Before using matching methods, I estimate the effects of protection using two 

traditional estimation methods – tests for differences in means and Ordinary Least 

Squares (OLS) regressions – so that I can compare these estimates with the matching 

estimates.  In the first row of Table 3.2 I present estimates from t-tests of the difference in 

means between the treated and control groups.  With the exception of unemployment, 

these naïve estimates all indicate that socioeconomic outcomes are worse in the treatment 

group compared with the controls.  The second row of estimates in Table 3.2 is from OLS 

regressions of the outcomes on the treatment dummy variable and the matching 

covariates.  These OLS estimates also indicate that, holding other factors constant, 

protection has negative impacts on all the socioeconomic outcomes, except employment.   

The matching estimates, however, imply radically different effects of protection 

on the socioeconomic outcomes: 

Employment:  The matching estimates imply that protection increases employment by 1 

or 2 percentage points, but none of these matching estimates is significantly different 

from zero.  Thus, I conclude that there is no significant difference between protected and 

unprotected segments in terms of employment.     

Electricity:  The covariate matching estimates indicate that protection improves access to 

electricity by 5 or 6 percentage points.  These estimates imply that about 768 to 921 
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households22 had access to electricity because they were located in protected segments.  

The kernel matching estimate indicates that protection reduces access to electricity by 

about 14 percentage points.  However, the balancing test results indicate that there is 

severe imbalance between the protected and unprotected segments when I use this 

propensity score matching estimator, and the imbalance is generally in directions that 

would make it appear that protection has a negative effect on the socioeconomic 

outcomes.  For example, with kernel matching, the matched protected segments have 

more than 7 times more forest cover in 1960 and more than 6 times more road-less 

volume than their unprotected matches.  In contrast, for the covariate matching using the 

genetic algorithm, the protected segments have less than 1.5 times more forest area and 

road-less volume than their unprotected matches.  Therefore, based on the covariate 

matching estimates I maintain the conclusion that protection improved access to 

electricity by 5 or 6 percentage points. 

Telephones:  The covariate matching estimates are all positive but insignificant, 

indicating that protection has little effect on access to telephones, or at most, a small 

positive effect.  Again, the kernel estimate, which has very poor balance on the matching 

covariates, indicates that protection has a negative effect of about 26 percentage points. 

Computers:  I find little effect of protection on this outcome.  None of the covariate 

matching estimates is greater in magnitude than 1 percentage point or significantly 

different from zero.  Here too, the kernel matching estimate indicates a negative effect of 

 
22 I obtain this estimate by multiplying the total number of households in the matched protected segments 
by the treatment effect estimate.   
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about 9 percentage points, but as noted above, this estimator has very poor balance on the 

key covariates. 

 Thus, the matching results indicate that, as a result of protected areas established 

before 1980, access to electricity in protected census segments was higher than in 

unprotected segments by 5 or 6 percentage points (between 768 and 921 households) by 

the year 2000, and I conclude that this protection had little effect or small positive effects 

on employment, access to telephones and access to computers in 2000. 
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Table 3.2. Estimates of the effect of protection on socioeconomic outcomes.   
 

 1 3 4 5 
Outcome (proportions) Employed 

adults 
Households 
with 
electricity 

Households 
with 
telephone 

Households 
with 
computer 

Difference in Means† 0.012 
(<0.001) 

 -0.168 
(<0.001) 

-0.290 
(<0.001) 

-0.099 
(<0.001) 

OLS 0.019 
(<0.001) 

-0.059 
(<0.001) 

-0.124 
(<0.001) 

-0.053 
(<0.001) 

Covariate Matching – 
Mahalanobis with 
calipers 
[N outside calipers] 

0.015 
(0.045) 
[119] 
 

0.054 
(<0.001) 
[120] 
 

0.017 
(0.185) 
[120] 
 

0.001 
(0.866) 
[120] 
 

Covariate Matching – 
Genetic algorithm 

0.011 
(0.367) 

0.058 
(0.009) 

0.004 
(0.835) 

-0.007 
(0.311) 

Covariate matching – 
exact matching on 
presence of forest in 
1960 

0.018 
(0.072) 

0.064 
(0.001) 

0.006 
(0.699) 

-0.004 
(0.449) 

Propensity score 
matching – Kernel 
[N off common 
support] 

0.011 
(>0.200) 
[9] 

-0.141 
(<0.001) 
 [9] 

-0.259 
(<0.001) 
[9] 

-0.090 
(<0.001) 
 [9] 

N treated 
(N available controls) 

403 
(16534) 

404 
(16539) 

404 
(16539) 

404 
(16539) 

†  A t-test is used to evaluate the difference in means between treated and control segments.  
‡ p-values for matching estimates are in parenthesis under estimate. 
◘ Calipers restrict matches to units within 1 standard deviation of each covariate.   
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Sensitivity Analysis 

Spillover Effects of Protection onto Neighboring Unprotected Segments 

I estimate the spillover effects of protection on socioeconomic outcomes within 

neighboring unprotected segments.  In this analysis, I define the treatment group as 

segments with more than 20 percent of their 10-km buffer protected before 1980.  I take a 

number of precautions to ensure that I reduce potential bias in the estimation of local 

spillover effects.  First, I exclude all segments that have received protection before or 

after 1980 (1119 segments).  Second, to reduce the potential bias due to the impact of 

spillovers among the controls, I exclude segments whose buffers received more than 10% 

protection before 198023.  Third, to reduce the potential bias from spillover effects of 

protection after 1980, I exclude 490 segments whose 10-km buffers received more than 

10% protection after 1980.   

There are 12,332 segments which were not covered by any forest in 1960.  

However, if a forest is located close to these non-forest segments, this factor may 

determine whether a protected area is located near to these non-forest segments.  In other 

words, even though the segment itself has zero forest area, its proximity to a forest may 

affect the likelihood of being in the treatment group for this analysis.  Therefore, I 

include the distance to forest 1960 to the set of matching covariates.  This covariate is 

measured as the distance from the centroid of each segment to the nearest forest in 1960.  

To confirm that this covariate is indeed relevant, I estimate a Probit selection model for 

 
23 Unlike the first analysis, I do not exclude segments below the 10 percent threshold because this 
restriction would exclude more than 80 percent of the potential controls (12,375 segments). 
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this treatment.  Segments that are closer to forests are more likely to be included in the 

treatment group.  All the other variables are significant, except area of segment, which I 

therefore exclude from the set of matching covariates for this analysis. 

 The estimates of spillover effects of protected areas on socioeconomic outcomes 

in neighboring unprotected segments are presented in Table 3.3.  All the matching 

estimates are negative, except two estimates for computer access, which are both smaller 

in magnitude than 1 percentage point and not significantly different from zero.  The 

results imply that protection has small positive effects on socioeconomic outcomes in 

these neighboring unprotected segments.  Therefore, any potential bias in the matching 

estimates in Table 3.2 due to the spillover effects I detect in Table 3.3 would not overturn 

the qualitative conclusions.  If I corrected for these spillover effects, I would still find that 

protection has zero or beneficial effects on the socioeconomic outcomes within the 

protected segments. 

To test this conclusion, I repeat the analysis in Table 3.2, but exclude all control 

segments whose buffers held more than 10 percent protection before 1980 (819 

segments).  I find that the conclusions, based on the results in Table 3.2, are robust to this 

additional restriction on the selection of control segments.  The results, presented in 

Table 3.4, show that the matching estimates are similar to the estimates in Table 3.2. 
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Table 3.3. Estimates of the spillover effect of protection on socioeconomic outcomes.  
Treatment: at least 20 percent of 10-km buffer of segment protected before 1980 
 

 1 3 4 5 
Outcome 
(proportion) 

Unemployed 
adults 

Households 
lacking 
electricity 

Households 
lacking 
telephone 

Households 
lacking 
computer 

Difference in 
Means†

0.029 
(<0.001) 

0.019 
(0.001) 

0.003 
(0.800) 

-0.011 
(0.076) 

OLS 0.027 
(<0.001) 

0.008 
(0.063) 

0.024 
(0.006) 

0.010 
(0.047) 

Covariate 
Matching – 
Mahalanobis with 
calipers 
[N outside calipers] 

0.011 
(0.017) 
[13] 

0.003 
(0.367) 
[13] 

0.030 
(0.009) 
[13] 

-0.004 
(0.643) 
[13] 

Covariate 
Matching – Genetic 
algorithm 

0.015 
(0.001) 

0.007 
(0.191) 

0.041 
(<0.001) 

0.023 
(0.003) 

Propensity score 
matching – Kernel 
[N off common 
support] 

0.030 
(<0.001) 
[0] 

0.018 
(<0.001) 
[0] 

0.017 
(<0.100) 
[0] 

-0.002 
(>0.100) 
[0] 

N treated 
(N available 
controls) 

796 
(11877) 

796 
 (11885) 

796 
 (11885) 

796 
 (11885) 

†  A t-test is used to evaluate the difference in means between treated and control segments.  
‡ p-values for matching estimates are in parenthesis under estimate. 
◘ Calipers restrict matches to units within 1 standard deviation of each covariate.   
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Table 3.4: Controlling for spillover effects 
 

(Exclude control 
segments with more 
than 10% of 10-km 
buffer protected before 
1980)  

1 3 4 5 

Outcome (proportions) Employed 
adults 

Households 
with 
electricity 

Households 
with 
telephone 

Households 
with 
computer 

Difference in Means† 0.022 
(<0.001) 

 -0.162 
(<0.001) 

-0.268 
(<0.001) 

-0.097 
(<0.001) 

OLS 0.024 
(<0.001) 

-0.062 
(<0.001) 

-0.130 
(<0.001) 

-0.059 
(<0.001) 

Covariate Matching – 
Mahalanobis with 
calipers 
[N outside calipers] 

0.016 
(0.018) 
[112] 

0.064 
(0.001) 
[113] 

0.010 
(0.497) 
[113] 

-0.002 
(0.695) 
[113] 

Covariate Matching – 
Genetic algorithm 

0.012 
(0.336) 

0.056 
(0.013) 

0.009 
(0.638) 

0.002 
(0.810) 

Covariate matching – 
exact matching on 
presence of forest in 1960 

0.018 
(0.072) 

0.064 
(0.001) 

0.006 
(0.699) 

-0.004 
(0.449) 

Propensity score 
matching – Kernel 
[N off common support] 

0.022 
(<0.001) 
 [9] 

-0.139 
(<0.001) 
 [9] 

-0.237 
(<0.001) 
[9] 

-0.086 
(<0.001) 
 [9] 

N treated 
(N available controls) 

403 
(12371) 

404 
(1) 

404 
(16539) 

404 
(16539) 

†  A t-test is used to evaluate the difference in means between treated and control segments.  
‡ p-values for matching estimates are in parenthesis under estimate. 
◘ Calipers restrict matches to units within 1 standard deviation of each covariate.   
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Sensitivity to Selection of Matching Covariates 

I repeat the analysis in Table 3.2, using the extended set of covariates described in 

the Data section, and the qualitative conclusions remain unchanged.  Here too, there are 

some differences between the results with traditional estimation methods and the 

matching estimates.  For example, the OLS estimate for access to electricity is -0.057 and 

significant at 1 percent, implying that protection causes harmful outcomes in access to 

electricity.  On the other hand, the covariate matching estimates for access to electricity 

are 0.081 (p=) with Mahalanobis matching with calipers and 0.043 (p=0.088) with 

genetic algorithm matching.  The covariate matching estimates for the other outcomes are 

either positive and significant or not significantly different from zero at 1%. 

 

Sensitivity to Treatment Threshold Specification 

 In the main analysis, I consider segments to be “protected” if at least 20 percent of 

the area in the segment was protected before 1980.  With this threshold, the treatment 

group includes more than 65 percent of all segments with any protection.  To test the 

sensitivity of the results to the level of the threshold for selecting the treatment group, I 

repeat the analysis with less restrictive thresholds.  I define treatment groups comprising 

segments with at least 10 percent protected (this results in a treatment group made up of 

about 71 percent of all segments with some protection) and at least 1 percent protected 

(this results in a treatment group of about 88 percent of all segments with some 

protection).   
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The qualitative conclusions do not change when I conduct this analysis.  The 

covariate matching estimates for employment remain are positive, less than 1 percentage 

point, and not significantly different from zero, the estimates for electricity are positive 

and larger in magnitude than the estimates in Table 3.2 (the largest estimate indicates that 

protection increases access to electricity by about 10 percentage points), the estimates for 

telephone access lie between zero and 4 percentage points, and the estimates for effects 

on computer access are less than 1 percentage point and no significantly different from 

zero.  I also use alternative thresholds of 15 percent and 10 percent for the spillover 

analysis.24    The spillover effect estimates are 0.02 or 0.03 for employment, 0.01 or less 

for electricity, between 0.06 and 0.09 for telephone access, and 0.02 or less for computer 

access.    None of the spillover matching estimates is negative and significantly different 

from zero.  

Therefore, based on the sensitivity analysis, I maintain the findings from Table 

3.2 and conclude that the matching estimates do not indicate any harmful effects of 

protection on the socioeconomic outcomes.  I find that if protection had any effects on 

socioeconomic outcomes, these effects are small and beneficial. 

 

Conclusion 

The question I seek to address in this paper is, “what is the effect of protected 

areas on social welfare?”  The answer to this question has important implications for 

 
24 I do not use a threshold less than 10 percent for the spillover analysis because this would drastically limit 
the number of available controls.  At 1 percent, nearly 60 percent of the entire sample would be included in 
the treated group. 
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conservation policy and the development of poverty alleviation policies and programs.  

However, an empirical answer to this question has not been forthcoming because of the 

complications involved in establishing a counterfactual for protected areas.  I address this 

issue by using matching methods to establish counterfactuals for census segments with 

protected areas, and matching these protected segments with similar unprotected 

segments based on pre-protection characteristics that affect the likelihood of protection as 

well as socioeconomic outcomes.  I use the methods to measure the effects of protection 

on socioeconomic outcomes in protected segments.  I also measure the spillover effects 

of protection on socioeconomic outcomes in unprotected segments that are located close 

to protected areas.   

The results indicate that protected areas do not reduce social welfare.  On the 

contrary, I find that protected areas may have small positive effects on some 

socioeconomic outcomes.  For example, I find that protecting at least 20 percent of a 

census segment before 1980 increased the percentage of households with electricity by 

about 5 or 6 percentage points or more within the segment by the year 2000.  In the 

sample used for this study, this finding implies that more than 700 additional households 

had access to electricity because of the establishment of protected areas.  I do not find 

significant effects of protected areas on employment, access to telephones, or access to 

computers within protected segments.  I find that protection has small positive spillover 

effects on socioeconomic outcomes within unprotected segments located close to 

protected areas.  These beneficial spillover effects imply that the estimates of the direct 
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effects of protection on protected segments may only be a lower bound of the entire 

positive effect of protection on protected segments.   

However, note that in this study, I measure average effects at the census level, and 

so I am unable to detect any effects of protection on socioeconomic outcomes at smaller 

scales (e.g. household level).  Protected areas may have some adverse effects on 

subgroups of the community, and these effects may not be observable at the census tract 

level.  For example, if protected areas cause shifts in economic activities from agriculture 

to ecotourism, as seems to be the case in Costa Rica, farmers may be adversely affected 

while the tourism industry experiences growth.  Theoretical models indicate that the 

establishment of protected areas leads to higher land rents and lower agricultural wages, 

which can lead to changes in income distribution (Robalino, 2007).  Distributional 

consequences such as these are not addressed in an analysis at the census segment level.  

Furthermore, after protected areas are established, displaced residents and subgroups of 

the community who are adversely affected may relocate to census segments that are 

farther away from protected areas.  The effects of protection on these people would not 

be detected in this study.   

In spite of these limitations, this analysis of the socioeconomic effects of 

protected areas is the most rigorous attempt to date – previous assessments of these 

effects have been based on findings that communities living in or near protected areas 

tend to be poorer than other communities.  However, as I show in this study, once 

suitable counterfactuals have been identified to compare with communities living in or 
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near protected areas, the average effect of protected areas on socioeconomic outcomes is 

zero or slightly positive. 

 How do protected areas lead to beneficial socioeconomic outcomes?  There are a 

few possible explanations for these findings.  First, protection may lead to the growth of 

an ecotourism industry that creates better economic opportunities for communities living 

in or near protected areas.  Second, since tourism is Costa Rica’s main source of foreign 

exchange, the establishment of a protected area may have led to an increase in 

government provision of infrastructure services (e.g. electricity, telephones) near the 

protected area to promote ecotourism.  Third, some conservation programs25 have sought 

to reduce the deforestation pressure on protected areas by investing in communities living 

in or near protected areas (e.g. by promoting income-generating activities that do not 

degrade forests).  Although there is little evidence that such projects reduced the pressure 

on forests, these results suggest that such interventions may have improved the 

livelihoods of local communities.   

 
25 For example, a project called the Amistad Conservation and Development Initiative (AMISCONDE), 
worked with local farmers around protected areas to improve agricultural practices from 1991-1997.  This 
project was implemented by Conservation International and various partners.  
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