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SUMMARY 

 

I look at knowledge networks emerging through individual collaboration within 

incumbent firms and I make an effort to identify individual roles that are driving a 

number of meaningful firm-level innovation-related outcomes. I document how certain 

individuals occupy such positions in their firms’ knowledge network that equip them with 

unique blends of human and social capital, thus making them consequential for the 

innovative performance of the system as a whole. Integrators are the actors with an 

extraordinarily large and dense network of different collaborators. Connectors are the 

individuals who collaborate with others across diverse knowledge areas and clusters. 

Isolates are actors who are productive while remaining relatively unconnected and 

independent. I find that relational stars (i.e. integrators and connectors) positively affect 

their organization’s quantity and quality of inventive output. On the other hand, I find 

that it is isolates and star inventors who positively affect inventive productivity. I find 

that individuals with extreme patterns of collaborative behavior (either local or distant) 

facilitate exploration and that productive isolates drive exploitation. In addition, I find 

that organizational ambidexterity can be attained by having individuals who can 

simultaneously explore and exploit or by increasing the connectedness between 

exploratory and exploitative activities. Finally, I find that knowledge boundary choices 

are also affected by internal organization and human resource attributes. 
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CHAPTER 1 

INTRODUCTION 

 

The conceptual foundations of this dissertation lie at the intersection of strategy, 

innovation, human capital, and organizational theory research. Two broad questions drive 

my inquiry: first, where does innovation come from, that is, where are the origins of new 

ideas, inventions, knowledge, and products? Second, what can firms do about it, that is, 

how can managers design the necessary organizational structures, incentive systems, and 

processes to effectively implement the innovation process? In particular, I attempt to 

address these questions by looking at the micro-level of analysis and by trying to 

understand how individual actions and interactions result in firm-level innovation-related 

outcomes. Therefore, a more focused set of research questions that guides this research 

relates to the challenge of identifying, organizing, and developing relevant human capital 

for innovation at the firm level of analysis. Addressing these questions inherently 

requires an interdisciplinary approach; in this work, I draw insights from different 

streams as diverse as organizational theory, innovation research, entrepreneurship, 

networks, knowledge-based view, learning, human capital, economics/sociology of 

science, and core strategy. In what follows in this chapter, I briefly outline the three main 

chapters of my dissertation, identify the common thread linking all of them, and highlight 

the main contributions.  

 In this dissertation, I look at knowledge networks emerging through individual 

collaboration within incumbent firms and I make an effort to identify individual roles that 

are driving a number of meaningful firm-level innovation-related outcomes. A large body 



 

 

2 

 

of innovation research has focused on the routines, capabilities, or competences that firms 

need to possess in order to be innovative. Research on the role of individuals as the 

microfoundations of these capabilities has been much more limited. Even when scholars 

examine the individual role, the focus has been almost exclusively on the highly 

productive individuals. However, innovation is a communal team-based endeavor, which 

depends on knowledge sharing, search, transfer, recombination, and reconfiguration. This 

simple observation suggests that individuals, who are responsible for implementing these 

knowledge processes, should possess relational capacities that go beyond simple 

productivity and that the sole focus on individual productivity may be incomplete. 

To address this gap, I examine the combination of productive and collaborative 

behavior of individuals. I document how certain individuals occupy such positions in 

their firms’ knowledge network that equip them with unique blends of human and social 

capital, thus making them consequential for the innovative performance of the system as 

a whole. First, I rely on a typology of critical individual roles. Integrators are the actors 

with an extraordinarily high number of different collaborators. Connectors are the 

individuals who collaborate with others across diverse knowledge areas and clusters. 

Isolates are actors who are very productive while remaining relatively unconnected and 

independent. The three individual types correspond to alternative knowledge generation 

paths: local knowledge recombination, distant recombination, and independent 

knowledge production. Second, I identify the overall structure of a firm’s knowledge 

network capturing important characteristics of the network like its size, cohesion, 

fragmentation, and certain important individual links. I then link the different individual 

roles and firm-level knowledge network micro-structures with a number of firm-level 
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innovation-related outcomes: in the three chapters of my dissertation, I examine the effect 

of individual types and network structures on their firms’ inventive output, learning 

capability, and capability to adapt to a changing technological paradigm. 

In the first chapter, I argue that certain individual types are critical drivers of the 

quantity, quality, and productivity of their firms’ inventive output; albeit for different 

reasons and with different effects. More specifically, I suggest that relational stars (i.e. 

integrators and connectors) positively affect the quantity and quality of their firm’s 

inventive output. Integrators source knowledge from many others and therefore, have the 

capacity for effective knowledge recombination characterized by significant variation and 

strong selection among potential recombinations. Connectors collaborate across 

knowledge areas and therefore, have the capacity for radical knowledge recombination 

and inventive trials. On the other hand, I suggest that it is isolates and star inventors who 

drive of the productivity of their firm’s output. Isolates remain independent from the 

network’s knowledge directions and independently generate new knowledge and 

therefore, supply the firm’s knowledge base with new knowledge stocks in an efficient 

manner (i.e. without having to incur the costs of collaboration and coordination). A 

similar line of logic applies to the extremely productive star inventors. Overall, in this 

chapter I establish the importance of different individual roles on direct inventive 

outcomes of their firms.  

In the second chapter, I explore the effect of these individual types on their firm’s 

capacity to learn and renew its knowledge base.   In particular, I develop a theory about 

the role of different role-sets of individuals in exploratory or exploitative learning and in 

addressing inherent trade-offs in the pursuit of organizational ambidexterity. I argue that 
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relational stars (i.e. integrators and connectors) drive exploratory output because of their 

capacity to recombine knowledge from many different sources while isolates are the ones 

driving exploitative output because of independently building knowledge in depth 

without any interpersonal knowledge recombination. I then turn to the question of how a 

firm attains both exploratory and exploitative output. I hypothesize that in order to be 

able to do both, a firm relies on individuals who can do both and alternatively on direct 

collaborative paths between individuals who are good at exploration and individuals who 

are good at exploitation. The underlying idea is that in order to do both, a firm should be 

good at selecting and transferring knowledge produced at exploratory activities to the 

existing knowledge base in order to be further recombined and incrementally improved. 

As a result, I highlight the role of certain individuals as the microfoundations of 

exploration and exploitation and challenge conventional wisdom around the need for 

organizational separation when it comes to the pursuit of organizational ambidexterity. In 

essence, this chapter takes the idea of different individuals contributing generally to 

inventive output a step further, showcasing how the various individual roles may be more 

important for certain learning outcomes. In addition, in this chapter I examine how the 

structure of the knowledge network affects the capacity of firms to concurrently generate 

radically new knowledge and incrementally new knowledge. 

In the third chapter, I build on this idea of internal networks, individuals, 

structures affecting a firm’s inventive output and I examine how the state of internal 

capabilities affects the effectiveness of external knowledge sourcing when it comes to 

adaptation to a changing technological paradigm. Under circumstances of disruptive 

technological change, incumbents have to develop new knowledge and they face a 
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sourcing choice; they will either develop it internally or externally source it (i.e. an R&D 

alliance).  More often than not, firms combine external and internal knowledge sourcing. 

In this chapter, the main objective is to understand how the structure of a firm’s internal 

knowledge network and the different individual types in it, alter the effectiveness of 

external knowledge sourcing efforts. I suggest that the structure of the internal network 

and the individuals in it can tell us something about the firm’s potential for future 

knowledge recombination and the state of internal coordination costs in the knowledge 

generation process. In turn, these two factors alter the effectiveness of external 

knowledge sourcing. External sourcing in the form of alliances and acquisitions can be 

costly. Therefore, I hypothesize that combining internal and external sourcing is less 

effective when the firm has the capabilities to generate new knowledge in the new 

paradigm internally or has an already high level of internal coordination costs, and vice 

versa.  

In this dissertation, the general setting is the global pharmaceutical industry. I 

follow a largely representative sample of incumbent firms for a period of 25 years. I rely 

on their patent portfolio to develop internal knowledge networks emerging through 

individual co-patenting events. I use the UCINET software to capture network metrics for 

individual inventors, identify the various individual types, and capture certain properties 

of the firm’s internal knowledge network. I add firm-level innovative activities (e.g. 

alliances, acquisitions, etc.) to control for other drivers of innovative outcomes and show 

the additional effect of individuals and knowledge structures.  

The major contribution of this dissertation is the development of ‘left-hand’ side 

explanatory variables that affect well-known firm-level inventive outcomes. I rely almost 
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exclusively on the knowledge-based view as my conceptual lens to explain the generation 

of new knowledge in firms. I then explain how certain individuals and network micro-

structures affect the performance of the process of new knowledge creation. As a result, I 

contribute to the emerging theme of ‘microfoundations’ research in strategic 

management, and I make an effort to show how certain individual types and knowledge 

network micro-structures can be viewed as the micro-level determinants of the 

performance of the firm as a whole. In the process, I make several contributions to other 

lines of research. I extend research on social networks by making the link between the 

micro and the macro. I show how node-level properties (individual level positions) 

translate into macro-level outcomes (the performance of the network as a whole). In 

addition, I extend research of human and social capital by showing how individual-level 

social capital becomes human capital for the firm. Further, I contribute to existing 

theories of organizational learning by uncovering some micro-origins of learning 

performance and by highlighting the individual role in firm-level ambidexterity. Finally, I 

extend research on governance choices for capability building by showing how firms can 

effectively combine external knowledge sourcing with internal capabilities for capability 

building in a new technological space.  
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CHAPTER 2 

 

STRUCTURAL MICROFOUNDATIONS OF INNOVATION: 

THE EFFECT OF RELATIONAL STARS ON INVENTIVE OUTPUT AND 

PRODUCTIVITY  

 

 

2.1. Introduction 

Since Schumpeter (1942) we have known that innovation is a vehicle of economic 

growth and a source of firm performance heterogeneity. Research on the antecedents of 

innovation has extensively focused on the innovative capabilities that firms need to 

develop in order to initiate or respond to frequent technological change. Organizational 

scholars have convincingly argued that innovative organizations are those with superior 

routines (Nelson & Winter, 1982), capabilities (Kogut & Zander, 1992), competences 

(Henderson & Cockburn, 1994), or dynamic capabilities (Teece, Pisano, & Shuen, 1997) 

of transforming existing knowledge into something new. The simple observation that 

knowledge is the key raw material for innovation (Nonaka, 1994) combined with the 

recognition of individual actions and interactions as the realistic locus of knowledge 

(Felin & Hesterly, 2007), directed attention to the role of individuals as the 

microfoundations of the necessary capabilities (Felin & Foss, 2005). Indeed, research 

indicates that the so-called ‘star knowledge workers’ or ‘star scientists’, bring several 

benefits to their organizations (Groysberg, Lee, & Nanda, 2008; Lacetera, Cockburn, & 

Henderson, 2004; Rothaermel & Hess, 2007; Zucker, Darby, & Brewer, 1998). As a 

result, there is a significant degree of consensus that productivity stars matter for 

organizational knowledge outcomes. However, we still have a gap in our understanding 

with respect to other individual roles and relational skills that are perhaps equally 
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important for the effective implementation of the knowledge production process.  

Evidence suggests that knowledge development is a communal team-based 

endeavor (Wuchty, Jones, & Uzzi, 2007). New knowledge comes from effective 

knowledge sharing (Hansen, 1999), search (Gavetti & Levinthal, 2000; Katila & Ahuja, 

2002), transfer (Tsai & Ghoshal, 1998), recombination (Galunic & Rodan, 1998), 

reconfiguration (Henderson & Cockburn, 1994), diffusion (Zollo & Winter, 2002), and 

renewal (O’Reilly & Tushman, 2007). Consequently, individuals should also possess the 

necessary social and collaborative skills to effectively implement these socially-intensive 

knowledge sub-processes. In this paper, we make an effort to identify these actors by 

looking for extreme patterns of individual collaborative behavior. Applying network 

thinking, we argue for the positive effect of two individual structural roles on the 

inventive output of their organizations. We refer to them as ‘relational stars’ to emphasize 

the social aspect of their skills, to depart from traditional ‘productivity stars’, and to 

highlight their nature as outliers in terms of collaborative behavior. More importantly, we 

extend our current understanding of the effect of productivity stars on the quantity of 

inventive output and provide our first contribution by highlighting the role of relational 

stars as the structural microfoundations of both the quantity and quality of their firm’s 

inventive output. In essence, we argue that these actors can exploit their patterns of 

collaborative behavior to not only identify more opportunities for knowledge 

recombination but also select the most promising ones leading to knowledge of higher 

quality. We also explain how the presence of such individuals in a firm’s network 

translates into firm-level knowledge outcomes by making every actor around them more 

effective in producing new knowledge.  
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In particular, we focus on two types of relational stars: integrators and connectors. 

Integrators are the actors who have a large dense network of collaborators and therefore 

have the capacity to integrate and recombine knowledge from many different sources. 

Connectors are the individuals whose collaborative behavior facilitates bridging of 

structural holes; they operate as the linking pins among internally distant and otherwise 

unconnected clusters of knowledge and therefore have the capacity to engage in high risk 

and radical trials of knowledge recombination. In addition, we identify a third important 

type of individuals whose behavior makes them the opposite of relational stars. We look 

at isolates, individuals who produce new knowledge while unconnected from their 

organization’s network and therefore have the capacity to infuse the knowledge base with 

diverse perspectives as they are the least affected from the organization’s knowledge 

directions. Conceptualizing invention as a search process of knowledge recombination 

(Fleming, 2001), the three types correspond to three alternative paths: local 

recombination, distant recombination, and independent knowledge production. We rely 

on both conceptual arguments and empirical techniques to justify the identification of 

these three distinct individual roles. Interestingly, all three individual roles become 

important for firm-level inventive output not because they are necessarily productive, as 

is the case for simple productivity stars, but mainly because their collaborative behavior 

facilitates effective recombinant search or generation of diverse new knowledge. It is 

important to note here that if these types of actors are defined relative to their peers in an 

organization’s internal network, then every organization would have its own share of 

relational stars. Instead, we define relational stars relative to their counterparts in every 

competing organization’s network looking for outliers in two important dimensions: 



 

 

10 

 

centrality and bridging behavior. 

This approach follows existing research on ‘star scientists’ where stars are the 

actors at the top of the productivity distribution of all scientists across firms. More 

importantly, this approach allows us to provide a second significant contribution. 

Research on networks has unveiled that an individual’s position in the internal network 

may affect that individual’s involvement in innovation (Obstfeld, 2005), creativity 

(Fleming, Mingo, & Chen, 07), and performance (Gargiulo, Ertug, & Galunic, 2009). In 

addition, the structure of the knowledge network may affect the overall network’s 

knowledge performance (Brown & Eisenhardt, 1997; Reagans & McEvily, 2003; 

Reagans & Zuckerman, 2001). Much less is known with respect to the effect of nodes in 

certain positions on the overall network’s performance. Authors of a recent review on 

network research suggest that micro-to-macro gap remains (Kilduff & Brass, 2010). With 

this study, we make an effort to document the mechanisms through which the mere 

presence of an individual position (that is, a certain pattern of individual collaborative 

behavior) may affect not only that individual’s performance but also the performance of 

the network as a whole.  

Finally, we provide another significant contribution to the emerging literature on 

individuals as the microfoundations of organizational capabilities. To do that, we explore 

for the impact of different individual roles on a number of meaningful knowledge 

outcomes: the quantity, quality, and productivity of firm-level inventive output. We find 

that although both types of relational stars positively affect their firm’s quantity and 

quality of inventive output, they do not have similar effects on inventive productivity. 

Instead, it is the isolated individuals and the traditional productivity stars that seem to 
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drive their organization’s knowledge productivity. As a result, we provide theory and 

evidence about the heterogeneous organizational knowledge benefits stemming from 

different individual roles.  

 

2.2. Theory and Hypotheses 

Organizational research on the antecedents of knowledge generation has been dominated 

by the notion of ‘routines’ (Nelson & Winter, 1982). The knowledge-based 

conceptualization of the firm as a social community guided by higher-order principles 

that are irreducible to individuals (Kogut & Zander, 1992) spurred significant research 

efforts linking capabilities directly to organizational knowledge outcomes (Henderson & 

Cockburn, 1994; Kogut & Zander, 1992; Teece et al., 1997; Zollo & Winter, 2002). 

However, early research in the knowledge-based paradigm emphasized the importance of 

accounting for individuals in order to clearly understand the formation of such 

organizational capabilities (Conner & Prahalad, 1996; Grant, 1996; Nonaka, 1994). The 

problem is that macro-level explanations that link capabilities with outcomes without 

considering individuals as their microfoundations open the door for alternative micro-

level explanations (Abell, Felin, & Foss, 2008). Theoretical support of individuals as the 

realistic locus of knowledge (Felin & Hesterly, 2007) channeled some research towards 

the role of human capital in driving organizational innovation. Evidence suggests that 

firms enjoy several benefits when they employ highly productive individuals with the 

capacity to generate scientific knowledge. The so-called ‘star scientists’ are instrumental 

for knowledge sensing (Lacetera et al., 2004), renewal (Zucker & Darby, 1997), 

knowledge capture (Zucker, Darby, & Armstrong, 2002), and adaptation to radical 
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discontinuities (Rothaermel & Hess, 2007). 

However, if we want to understand the role of individuals as drivers of firm-level 

knowledge outcomes and we only focus on individual productivity without considering 

the origins of that productivity, then our understanding of the phenomenon remains 

incomplete. A first gap exists because we neglect to take into consideration the fact that 

individual creativity has an apparent social side (Perry-Smith & Shalley, 2003). Early 

research on the emergence of industrial R&D suggested that an advantage of the 

industrial research laboratory was that “it could take several men, each lacking the 

necessary qualifications for successful independent research, and weld them into a 

productive team in which each member compensated for the others’ shortcomings” (Beer, 

1959: 71). Organizations have an advantage over individuals because they can internally 

develop intellectual capital based on social interactions among their members (Nahapiet 

& Ghoshal, 1998). Hence, apart from individual productivity there is a set of social and 

collaborative skills that is at least as important for new knowledge creation. This 

importance is even more pronounced in the innovation literature which suggests that 

innovation is an outcome of a socially intensive process of knowledge transformation. 

Individuals innovate by searching for potential knowledge recombinations between 

familiar and new components (Fleming, 2001). Socialization (Fleming, 2002) and 

intraorganizational persuasion and conflict (Gavetti & Levinthal, 2000) are important 

components of successful search outcomes. Firms need to integrate disparate pieces of 

knowledge (Henderson & Cockburn, 1994) and dynamically reconfigure their existing 

knowledge stocks as markets evolve (Galunic & Eisenhardt, 2001). Knowledge should be 

reused, recombined, and accumulated to result in innovation (Murray & O’Mahony, 
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2007). To effectively implement these processes, it follows that individuals should 

possess relational capacities to collaborate and form extensive knowledge networks. 

A second gap exists because we have limited theory and evidence to link 

individual positions in these networks with firm-level knowledge outcomes. The overall 

importance of these networks has not been neglected. For instance, there is research 

documenting the effect of an individual’s network position on a host of meaningful 

individual-level outcomes (Brass, 1984; Cross & Cummings, 2004; Ibarra, 1993; 

Morrison, 2002) and research supporting the effect of the network’s overall structure on 

network-level outcomes (Argyres and Silverman, 2004; Lazer  & Friedman, 2007; Tsai, 

2002; Yayavaram & Ahuja, 2008). However, although there is some evidence that actors 

in certain positions affect organizational outcomes (see Nerkar & Paruchuri, 2005), 

research on the role of individuals in these networks as drivers of network-level outcomes 

remains scarce. Authors of network reviews echo this statement by calling for more 

research addressing cross-level network phenomena (Brass, Galaskiewicz, Greve, & Tsai, 

2004; Ibarra, Kilduff, & Tsai, 2005).  

In this study, we make an effort to address these two gaps by introducing the 

concept of ‘relational stars’. Relational stars are actors with extreme patterns of 

collaborative behavior. Through their own collaborations combined with the 

collaborative behavior of their alters, relational stars end up occupying positions in their 

firms’ internal collaborative network that are highly consequential for the performance of 

the network as a whole.  In what follows, we link counts of relational stars with 

organizational outcomes. The behavioral pattern of a relational star has two components: 

what the individual can do with the network position which results from his/her 
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collaborative behavior and what the individual is (derived from the position) although the 

two are closely intertwined. It is also important to note that these collaborative patterns 

have certain origins beyond individual skills and abilities. Actors emerged in their 

positions because they were also appropriately motivated to collaborate and were 

provided with the opportunity to do so by their organization’s structures, incentives, or 

strategies. Disentangling these origins of network positions is beyond the scope of this 

paper. Here, we only focus on explaining why the presence of relational stars translates 

into firm-level inventive outcomes. As a result, we address the previously identified gaps 

by showing that collaborative skills matter at least as much as simple individual 

productivity and that individuals with extreme collaborative behavior affect not only their 

own performance but also the performance of the network as a whole.  

 

2.2.1. Integrators 

Integrators are the actors who have an extraordinarily large and dense network of 

collaborators. They are the glue that holds together dense inter-individual knowledge co-

creation clusters; normally, these actors occupy a highly central position in their firm’s 

internal network. The positive effect of such a central position on individual level 

outcomes has been widely documented. Centrality is associated with an individual’s 

promotions (Brass, 1984), exercise of power (Ibarra, 1993), supervisor ratings (Mehra, 

Kilduff, & Brass, 2001), socialization (Morrison, 2002), innovative performance (Cross 

& Cummings, 2004), involvement in innovation (Obstfeld, 2005), and performance 

bonus (Gargiulo et al., 2009). However, much less is known with respect to the role of 

such individuals on the performance of the network as a whole. Here, we link the 
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presence of integrators in an organization’s collaborative network with network-level 

knowledge outcomes. To do that, we define integrators as universal outliers; they are 

individuals whose collaborative behavior involves a number and density of alters which 

is large not relative to their peers in their organization’s network but relative to all 

individuals in all competing organizations. We argue that organizations employing such 

collaborative outliers enjoy an advantage in their inventive output. We choose the term 

‘integrators’ to illustrate their main knowledge function, that is, knowledge integration; 

the term has been previously used to describe actors who bring people together and fill 

structural holes (Xiao & Tsui, 2007). In addition, we prefer this term over central actors 

to emphasize the outlier status of these individuals. Integrators are not just central in their 

firm’s network; their number and density of collaborative ties puts them at the top of the 

distribution when compared with all individuals from all competing organizations.      

At the core, the main mechanism through which integrators affect network-level 

outcomes is their capacity to execute a highly effective micro-evolutionary process of 

knowledge recombination. First, integrators rely on significant variation: through the 

knowledge inflows embedded in their collaborative ties, integrators observe a large 

number of alters, understand who knows what (Borgatti & Cross, 2003), source 

knowledge from many actors, and therefore, have the capacity to identify more potential 

knowledge recombinations. Outliers have a disproportionate advantage in this respect 

because every additional tie has an exponential effect on the number of potential 

recombinations. This process of significant variation uniquely equips them to affect the 

overall quantity of their firm’s inventive output. In addition, integrators rely on a process 

of stronger selection: integrators have the capacity to familiarize themselves with many 
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potential recombinations and experiment with them in order to identify the most 

promising ones for realization. Stronger selection occurs either because informed 

integrators themselves make a better choice or because they rely on a large network of 

alters to make a more effective selection. In any case, this process makes them valuable 

for the overall quality of their firm’s inventive output. This view is consistent with 

evidence that knowledge of central actors is more likely to be found in their firm’s future 

technological capabilities (Nerkar & Paruchuri, 2005).   

In addition, the presence of integrators in a firm’s network makes every actor 

around them better at knowledge generation. Integrators use the knowledge outflows 

embedded in their ties to effectuate diffusion of a constantly updating knowledge base to 

initiate further cycles of knowledge refinement. Evidence suggests that integrators should 

be able to diffuse knowledge easier than others as they exert significant influence on their 

peers (Brass, 1984). That means that their alters are building on a knowledge base which 

includes more and better recombinations which in turn, results in them developing more 

and betters ones. Further, the presence of integrators creates some conditions that have 

been shown to be favorable when it comes to knowledge development. They operate as 

the glue that increases the network’s density and makes it promising for knowledge 

sharing. Centralized R&D structures have been shown to generate more impactful 

innovations (Argyres & Silverman, 2004) and cohesive structures positively affect 

individual motivations to share (Reagans & McEvily, 2003) or transfer knowledge 

(Reagans, Zuckerman, & McEvily, 2004). Overall, integrators have the capacity to 

integrate knowledge locally for more and high quality recombinations, diffuse the 

updated knowledge base, and create the conditions for further high quality invention to 
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occur.  

 

Hypothesis 1: The quantity and quality of a firm’s inventive output is a positive 

function of the number of integrators in its collaborative network. 

 

2.2.2. Connectors 

Connectors are the actors who collaborate with previously unconnected alters and 

recombine knowledge coming from distant clusters of knowledge. Consequently, their 

network position is one that spans internal structural holes and allows them access to 

diverse parts of their firm’s knowledge network. Extensive evidence suggests that 

individuals-brokers who span structural holes in a knowledge network are more likely to 

come up with better ideas (Burt, 2004), are more creative (Fleming et al., 2007), and can 

adapt better to changes in the task environment (Gargiulo & Benassi, 2000). We extend 

current understanding on the role of brokers by introducing the concept of connectors 

which includes a combination of brokering and access to distant parts of the knowledge 

network. This additional requirement is not trivial as it allows us to develop arguments 

for the positive effect of connectors on the performance of the network as a whole. While 

not necessarily productive or highly collaborative, connectors operate as the linking pins 

among otherwise unconnected and distant knowledge stocks. They are not only rich in 

structural holes; their spanning of such holes also allows them to access a large share of 

the broader collaborative network in which they are embedded.  In a sense, they are 

efficient knowledge brokers; their collaborative behavior bridges knowledge silos within 

their firm’s network. We define connectors as actors who span the highest number of 
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structural holes in the network and access the highest share of their network compared to 

brokers in all other competing organizations’ networks.  

At the core, the main mechanism through which connectors affect network-level 

outcomes is their capacity to execute a process of knowledge recombination based on 

radical variation. Connectors use their ties’ knowledge inflows to access diverse, distant, 

and previously unconnected sources of knowledge. Therefore, they are more likely to 

identify potentially novel and high quality recombinations. Their capacity to collaborate 

across knowledge boundaries allows them access to heterogeneous knowledge stocks and 

engagement in high risk inventive trials. Uncovering links where none existed before 

allows them to further build on them to identity more and better possible recombinations 

and eventually positively affect both the quantity and quality of their firm’s inventive 

output.  

The presence of connectors also makes actors around them better at knowledge 

generation. Through their outflows, connectors diffuse new knowledge to distant clusters 

of knowledge for further quality recombinations. Their alters can rely on recently 

uncovered links to build on them and generate more recombinations. Further, these alters 

are not simply part of a dense local network of interactions but belong to a diverse set of 

knowledge clusters. Therefore, actors with diverse perspectives can simultaneously 

explore further knowledge recombinations of recently uncovered links. In addition, the 

presence of connectors in an organization’s collaborative network creates some 

conditions that are favorable for high quality invention. Connectors promote relaxed 

structures which facilitate improvisation (Brown & Eisenhardt, 1997), network 

heterogeneity which enables learning (Reagans & Zuckerman, 2001), network range 
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which supports knowledge transfer (Reagans & McEvily, 2003), and decrease the path 

length between any two actors in the network thus improving its overall performance 

(Cowan & Jonard, 2003).  

 

Hypothesis 2. The quantity and quality of a firm’s inventive output is a positive 

function of the number of connectors in its collaborative network. 

 

2.2.3. Isolates 

Isolates are the actors who belong to the firm but remain unconnected from the 

organizational knowledge network while being productive enough to be ‘at risk’ of 

connecting themselves to the network. They are individuals who produce knowledge 

independently and are the exact opposite of relational stars. Therefore, we shift attention 

to actors who may be important for their organization not because of their ties but despite 

the absence of such ties. 

There are reasons to believe that a firm could benefit from such isolates in terms of the 

quantity and quality of its inventive output. The process of knowledge recombination, 

especially within intraorganizational knowledge networks, can be viewed as a pursuit for 

local optima (Gavetti & Levinthal, 2000). Actors collaborate to generate improvements 

and this process can be self-sustaining and result in significant similarities of knowledge 

among the actors of the collaborative network as recombinations are communicated 

through diffusion. Therefore, internal collaborative networks are vulnerable to falling into 

competency traps (Levitt & March, 1988), a tendency to rely on inferior knowledge 

spaces when superior alternatives exist. As a result, these networks can greatly benefit 
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from individuals who can infuse some knowledge diversity into the system of knowledge 

recombination. Such actors should participate in the development of knowledge but be 

relatively unconnected from the rest of the network to avoid overembeddedness and the 

risk of social capital (Adler & Kwon, 2002). Isolates do exactly that: they remain 

unaffected by the network and have the capacity to provide the knowledge base with 

some much needed diversity. Knowledge provided by isolates enters the firm-wide 

recombinant process when their knowledge gets picked up by individuals who belong to 

the network and this is when the benefits of knowledge diversity are realized.  

However, a more obvious firm-level knowledge outcome that is clearly positively 

affected by the presence of isolates is the productivity of a firm’s inventive output, 

defined in the typical economic sense of outputs divided by inputs. Isolates are very 

efficient knowledge creators. Without having to collaborate with anyone else, and 

without having to incur the communication and coordination costs associated with 

collaboration, isolates have to capacity to create new knowledge independently. 

Therefore, organizations with isolates benefit both from the creation of new knowledge 

and diverse additions to their knowledge base at the lowest possible level of coordination 

costs. They receive output using with the minimum level of input. What really 

differentiates isolates from all other actors (including relational stars) is this unique 

ability to produce knowledge while unconnected from the network and therefore 

positively affect their organization’s productivity of inventive output. However, at the 

same time this discussion suggests that relational stars who rely on a large number of 

knowledge sources to recombine and generate new knowledge should be negatively 

related with the overall firm’s inventive productivity. This effect should be even more 
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pronounced for integrators who exist because of large and dense networks of 

collaboration.  

 

Hypothesis 3. The productivity of a firm’s inventive output is a positive function of the 

number of isolates in its collaborative network. 

Hypothesis 4. The productivity of a firm’s inventive output is a negative function of 

the number of integrators in its collaborative network. 

 

Before proceeding with our methods designed to test our hypotheses, we believe 

it is important to first conceptually justify why we chose to focus on these three 

individual roles and why they are also conceptually distinct. First of all, the literature on 

networks has extensively studied three critical aspects of an individual’s network 

position: centrality, brokerage, and isolation. Several studies have documented the 

positive effect on individual-level outcomes when individuals occupy such positions. 

Therefore, the first reason why the roles are three is prior work on networks. However, 

we also depart from prior work and choose different names and additional requirements 

(beyond simple centrality and brokerage) for our relational stars because we seek to 

understand their effect on firm-level knowledge outcomes. There is a clear conceptual 

reason why actors need to satisfy additional requirements in order to have firm-level 

outcomes. Integrators need both many ties and high density to have the hypothesized 

firm-level effects through a strong evolutionary cycle of recombination, constant 

diffusion, and favorable conditions for invention to occur. Similarly, connectors need 

both brokerage and reach to distant clusters to have the hypothesized firm-level effects 
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through novel variation, link among diverse clusters, and diffusion to distant knowledge 

silos. As it should be evident from the different theoretical mechanisms and prior work 

on networks the two types of relational stars are also conceptually distinct from each 

other.  

Finally, the three individual roles are also conceptually distinct from simple firm-

level average phenomena. First, our typology of relational stars relies on capturing 

outliers of two distributions. The critical difference is between looking at the extremes of 

a distribution (as in our case at the individual level) and looking at the mean (as it would 

be if one looks at firm-level averages). For example, one can observe a firm-wide 

network which on average is highly centralized and dense without having a single 

integrator-outlier. Similarly, one can observe a firm-wide knowledge network which is on 

average highly fragmented without identifying a single connector-outlier. Interestingly, 

identifying these outliers is important above and beyond average firm-level phenomena. 

That is because every additional tie at the individual level increases exponentially the 

potential for relational stars to execute effectively the processes of recombination, 

diffusion, etc. through which they have their main effects on firm-level knowledge 

outcomes. The number of isolates is obviously unrelated to any firm-level phenomenon. 

Admittedly, the number of integrators and connectors is affected by the overall size of the 

network. The most important challenge when it comes to documenting individual-to-firm 

level effects is to control for firm-level variables that affect both individuals and 

outcomes. This is why we follow an empirical design where we control for network size 

and other firm-level actions that have been already shown to affect inventive output at the 

firm level. 
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2.3. Methods 

To test the developed hypotheses, we followed a longitudinal research design in the 

global pharmaceutical industry. Firms in this industry are under constant pressure to 

continuously innovate. In addition, they had to face the emergence of biotechnology as a 

new paradigm in product development, a discontinuity that increased existing pressures 

to keep innovating in order to survive. To respond, pharmaceutical firms engaged in a 

wide array of alternative strategies to remain innovative; they took on alliances, 

acquisitions, heavy investment in internal research, and in human capital to build or 

maintain innovative capabilities (Rothaermel & Hess, 2007). Therefore, the 

pharmaceutical industry is an ideal setting for this paper to explore for the role of 

relational stars in driving inventive output above and beyond the mentioned innovation 

levers. Our observation period is from 1974 to 1998. Our sample consists of 106 

pharmaceutical firms that were active in the production of human in-vivo therapeutics 

and were founded before 1974. This sample is largely representative of the overall 

industry as it accounts for the vast majority of global sales of pharmaceutical products. 

We tracked these 106 firms forward until 1998. Horizontal mergers are a common 

incident in this industry; when a merger occurs we combine the data of the merging firms 

into one entity, we continue tracking it forward, and we create an indicator variable to 

capture a merged entity. 

We constructed the key dependent and independent variables relying on patents 

granted to these firms by the USPTO. Despite some problems, patents have been 

extensively used to measure a firm’s innovative activities (e.g. Ahuja, 2000; Henderson 

& Cockburn, 1994). In addition, the pharmaceutical industry is the industry which relies 
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the most on patents when it comes to intellectual property protection compared to all 

other manufacturing industries (Cohen, Nelson, & Walsh, 2000). We used the NBER 

patent data file (Hall, Jaffe, & Trajtenberg, 2001) to create a patent portfolio for each one 

of our firms from 1974 to 1998. We tracked all different names under which firms patent 

and collected patent data for their subsidiaries to make sure that we have each firm’s full 

patenting. From resulting patent portfolios, we kept information about dates of 

applications, citations received, claims made, inventors listed, and assigned technology 

classes. Many firms in our sample are dedicated pharmaceutical firms. However, there 

are also some diversified conglomerates that are also active in other industries. We argue 

that knowledge by inventors in unrelated industries has little to do with our knowledge-

based arguments. Hence, we sampled on the resulting patent portfolio for every firm and 

we relied on information from technology classes to keep only patents with a clear 

chemistry or biology component which are more likely to be related to the technologies 

underlying human therapeutics. 

 

2.3.1. Dependent Variables 

To measure the quantity of a firm’s inventive output, we used the annual count of patents 

granted to our sample firms. To measure the quality of a firm’s inventive output, we used 

the number of citations that a firm’s patents in year t received in subsequent years until 

2006. Note that although our sample period ends in 1998, we track citations until 2006. 

We relied on the application date for the patents because it is much closer to the actual 

time of invention than the granting date. Evidence suggests that citations received by a 

patent is a significant predictor of its market value (Hall, Jaffe, & Trajtenberg, 2005) and 
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has already been used to measure the usefulness of inventions (Yayavaram & Ahuja, 

2008). In addition, as a robustness check for the quality of a firm’s inventive output, we 

used the number of claims made by a firm’s patents to capture a different dimension of 

their quality. Claims are arguably a measure of a patent’s technical quality and have been 

used in prior research to measure the quality of a firm’s inventive activities (Singh, 

2008). Finally, to measure the productivity of a firm’s inventive output, we divided the 

annual count of patents granted to a firm by the number of inventors listed in those 

patents to create an outputs-to-inputs measure of inventive productivity. 

 

2.3.2. Intrafirm collaborative networks and independent variables 

To identify relational stars and create the independent variables for this paper, we 

developed intrafirm co-inventing networks for each firm from 1974 to 1998. We relied on 

the NBER database inventor file and assigned a unique ID to each individual inventor 

based on a combination of last, first, and middle name. When there was still a conflict, 

we expanded our matching criteria to include city and state of residence for each 

inventor. The resulting dataset was a file for each firm with unique inventors IDs 

assigned to each patent from 1974 to 1998. As a next step, we used UCINET 6 to develop 

intrafirm co-inventing networks. Nodes of our networks were individual inventors and 

ties were co-patenting events among them. Our main argument is that these ties involve 

knowledge flows and thus, we proceeded by characterizing knowledge through a tie 

which is older than five years as obsolete. Therefore, we developed the knowledge 

networks using a five-year rolling window and assigned the resulting values to the last 

year of each time window (e.g. 1992-1996 values to 1996, 93-97 values to 97, etc.). We 
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analyzed our network and kept a wide array of ego-network metrics to define the three 

types of relational stars. Then, we constructed three variables at the inventor level: 

 

Integrator. To closely follow our theory, integrators had to be inventors who are outliers 

in terms of their collaborative behavior (number of ties) combined with an ego-network 

characterized by high density or high reach. That is, in order for integrators to have the 

hypothesized effects we needed inventors with either a large dense network of 

collaborators or a large network of collaborators which reaches a large part of the overall 

network. This approach mirrors the two faces of centrality: individuals can be central 

because they possess ‘power’, that is, many alters who in turn, are connected to many 

others. Alternatively, individuals can be central because their many ties allow them to 

reach a wide part of the overall network. Therefore, to empirically capture integrators we 

followed two related approaches. First, we identified inventors with direct collaborative 

ties that are at the top decile of the distribution of ties of all inventors of all firms during 

the same five-year window. Then, among the resulting set of actors, we characterized as 

integrators the inventors at the top half of the density distribution with more than one 

patent during the time window (to exclude one-time inventors).  The indicator variable 

‘integrator-power’ captures integrators using this first approach. Second, to capture 

integrators we relied on the distribution of the ‘two-step reach’ metric from UCINET, 

which measures the percentage of the overall network that an individual accesses with 

his/her direct and indirect ties. The indicator variable ‘integrator-reach’ captures actors 

who are at the top of the two-step reach distribution of all inventors of all firms during 
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the same five-year window.
1
 

 

Connector. In the theoretical part of the paper, we emphasized that connectors are not 

only knowledge brokers in terms of spanning many structural holes, but they are also 

individuals who connect distant clusters of knowledge and have access to a large share of 

their firm’s collaborative network. Therefore, to capture connectors we relied on a 

combination of two network metrics. First, we selected inventors with an ego-network 

density that is at the bottom quartile of the density distribution among all inventors from 

all firms during the same five-year time window.  Hence, we sampled on inventors who 

span structural holes. Among them, the indicator variable ‘connector’ captures inventors 

whose two-step reach was at the top half of the reach distribution. Therefore, among the 

inventors who spanned structural holes, connectors are those whose ties allowed them to 

reach a sizeable share of the firm’s internal collaborative network thus excluding 

inventors who bridge structural holes but do so at the periphery of the network.
2
  

 

                                                           
1
 Obviously, there is no natural foundation to define integrators. The only guiding principle was to closely 

follow our theory. As a result, every empirical definition may seem unavoidably arbitrary. Therefore, we 

experimented with a number of alternative empirical definitions for integrators. We removed the density 

and more-that-one-patent requirements, and we used various cutoff points relying on both different 

percentiles and distributional metrics (means plus one, two, or three standard deviations). Our main results 

remained robust. We decided to report results based on percentiles rather than distributional metrics 

because in that way we managed to free our definition from extreme outliers and we were able to somehow 

control for the number of individuals characterized as relational stars. This is important because we didn’t 

want our results to be affected by the mere number of relational stars. Therefore, we made every effort to 

have similar numbers of integrators-power, integrators-reach, and connectors in each five-year time 

window. As a result, we chose the cutoff point for integrators- reach to capture a number of such actors as 

close as possible to the number of integrators-power.  
2
 We also experimented with a number of alternative empirical definitions for connectors using theory as 

our only guiding principle. Using the nbroker measure (measuring the extent of brokerage behavior) instead 

of density was essentially the same thing. In addition, before applying our subsequent cutoffs we first 

selected inventors with more than two ties; this is the minimum number of ties after which the measures of 

density and brokerage can be meaningfully defined. As in the case of integrators, we experimented with 

various percentile cutoffs and distributional cutoffs. Again, we chose to report percentile cutoffs to control 

the number of connectors as relational stars and have them as close as possible to the number of integrators. 

Our main results remained robust. 
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Isolate. Empirically defining isolates was a straightforward exercise. The indicator 

variable ‘isolate’ captures inventors with more than one patents in the same five-year 

time window (to exclude one-time inventors) while unconnected from the firm’s network 

(that is, zero ties). 
3
 

Using these indicator variables at the inventor level, we developed our independent 

variables at the firm level using counts of integrators-power, integrators-reach, 

connectors, and isolates, that each firm possesses in each year from 1974 to 1998 (again 

counts from time window 74-78 go to 1978, counts from 75-79 go to 79, etc.). It is 

important to note here that we also empirically confirmed the focus on these three types 

of individuals. We run a factor analysis at the individual level of analysis with the ego-

network metrics as the variables of interest. This analysis resulted in three main factors 

explaining the majority of variance: first, a factor which groups together low density and 

high brokering behavior corresponding to connectors; second, a factor which includes a 

large number of ties with high centrality corresponding to integrators-power; third, a 

factor which includes a large number of ties coupled with large two-step reach 

corresponding to integrators-reach. Isolates are simply the opposite of relational stars. 

 

2.3.3. Control Variables 

We included a series of control variables to rule out other factors that have been shown to 

affect a firm’s inventive output. First, we included the number of total alliances in our 

models to control for the effect of alliance activity on inventive output. We collected data 

on every firm’s alliance portfolio from the BioScan directory and the ReCap database, 

                                                           
3
 We also experimented with a number of alternative empirical definitions for isolates. We allowed 

inventors to have one, two, or three ties with the firm’s network to explore for the effect of relative 

isolation. Main results remained robust even for relative isolates. 
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data sources that are the arguably the most comprehensive of alliance activities. We also 

included the number of biotech-related acquisitions in our model to control for the effect 

of rapid talent infusion on inventive output. We relied on the SDC Platinum database for 

data on acquisitions. In addition, we controlled for the number of biotech patents and the 

ratio of biotech to all patents to capture the performance and focus of firms in the 

emerging biotechnology paradigm which may also affect their overall inventive output. 

To identify biotech patents, we relied on the definition of a biotech patent provided by the 

Patent Technology Monitoring Division (PTMD) of the U.S. PTO. Further, our 

longitudinal design allowed us to control for temporal effects by including year 

indicators. Finally, we used controls for merged entities (merged) as horizontal mergers 

are very common in the industry, for national origin (US and EU), and for the main 

industry of each firm’s activities as there are diversified firms in our sample with only 

some presence in human therapeutics (Pharma).  

More importantly, we included in our models the number of star inventors (stars) 

that each firm possesses. We followed prior research and defined stars based on their 

above average productivity. At the inventor level, a star is an indicator variable capturing 

inventors with patents that are three standard deviations above the mean number of 

patents of every other inventor in the same five-year time window. At the firm level, 

stars is a variable counting the number of star inventors for every five-year window. 

More importantly, we controlled for network size which is arguably one of the main 

drivers of the development of integrators, connectors, and isolates. The larger the 

network the more the opportunities for individuals to establish connections and become 

integrators or connectors and the greater the probability of finding more isolates. Hence, 
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by controlling for network size we run very conservative tests for our hypotheses as we 

were able to show that integrators, connectors, and isolates all affect inventive output 

beyond any effect of the overall network size. By including network size we also 

controlled for the size of each firm and we had a fine-grained measure of research 

investment in inventive activities. 

 

2.3.4. Estimation 

Our main dependent variables (patent counts, citations, claims) are all nonnegative 

overdispersed count variables. Therefore, we used the negative binomial estimation 

method which provides a better fit for the data than the restrictive Poisson.
4
 Both fixed- 

and random- effects specifications would allow us to control for any remaining 

unobserved heterogeneity (Greene, 2003). We run a Hausman test which suggested that 

there are no significant differences between the two estimation methods. Nevertheless, 

we chose to rely on a firm fixed-effects specification to conduct a conservative within-

firm analysis and control for firm-level unobservable factors. However, as a robustness 

check, we also used the random-effects specification and our results remained the same. 

In addition, every model was estimated with bootstrapped standard errors. To estimate 

inventive productivity, which is not a count variable, we relied on a firm fixed-effects 

least squares estimation with robust standard errors. Overall, the longitudinal nature of 

our empirical design, the definition of independent variables using 5-year rolling 

windows, combined with a rich set of control variables suggest that we did our best to 

                                                           
4
 We also used the countfit function in STATA, which compares the fit between different estimation 

methods and the data, and the results confirmed that negative binomial was a much better fit for our data 

than Poisson. 
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address any endogeneity concerns (Hamilton & Nickerson, 2003).
5
  

 

2.4. Results 

Table 2.1 (in the Appendix) depicts descriptive statistics and bivariate correlations for our 

variables. Correlations among our independent variables are below the recommended 

ceiling of 0.70. To further evaluate the threat of collinearity, we estimated the variance 

inflation factors (VIFs) for each coefficient, with the maximum estimated VIF being 

3.50, which is well below the recommended threshold of 10 (Cohen, Cohen, West, & 

Aiken, 2003). However, we observe that correlations among our types of relational stars, 

although below the recommended threshold, are still slightly elevated. This is the result 

of aggregation of roles at the firm level and does not reflect similarities at the individual 

level. To support this claim, we submit the correlation table at the individual level (Table 

2.2), which shows that for our 550,000 individual observations, correlations among our 

independent variables are very low showing that the three individual roles in a firm’s 

network are played by different individuals. A second observation that is worth noting 

from the bivariate correlations is the role of network size as a significant driver of 

relational stars. Hence, we are confident that by including it as a control variable we are 

able to account for a strong firm-level driver of our independent variables and establish 

their importance above and beyond any effect coming from the the number of inventors 

in any firm’s network. Also, limiting the sample to only large firms made no difference to 

our results.  

                                                           
5
 We run a number of alternative specifications with various estimation methods. First, we estimated our 

models using fixed-effects Poisson with bootstrapped standard errors. Second, we estimated our models 

using fixed-effects least squares with robust standard errors predicting the logarithm of our count 

dependent variables. Main results were the same; we report differences, if any, in the results section. 
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Table 2.2 

Descriptive Statistics - Correlation Matrix At the Individual Level 

 

    Mean S.D. 1 2 3 4 

1 Star 0.019 0.136 

    2 Integrator  - Power 0.039 0.192 0.06 

   3 Integrator - Reach 0.041 0.199 0.08 0.27 

  4 Connector 0.045 0.206 0.18 -0.01 0.10 

 5 Isolate 0.016 0.126 -0.01 -0.03 -0.03 -0.03 

Note: N = 550921 individual-level observations     

 

In Table 2.3, we provide descriptive statistics and more details about the four 

types of individual roles. There are two important observations from this table: first, 

unique inventors remain in the same role for three to four years on average and they 

generally play the role in consecutive years. This suggests that we are indeed looking at 

meaningful outliers; individuals do not stay long in their role and they do so only for 

consecutive years thus showing significant variance and change in our data. Second, we 

observe significant and expected differences in the network metrics associated with the 

different roles. Integrators have ego-networks of much higher density and reach than the 

ones of connectors. The two types of integrators show similar size and density but differ 

significantly in terms of their reach.  Connectors are, in fact, bringing different 

components together, especially when compared to integrators. Connectors are also the 

most productive among our individual roles and isolates are the least productive. This is 

additional evidence for the clear distinction between the types of individual roles. 

Tables 2.4-2.5 (in the Appendix) depict the regression results for the quantity and 

quality of inventive output. In both tables, we follow a similar structure in the 

presentation of results. Model 1 includes only control variables. Models 2-5 include each 

individual role separately. Model 6 shows the results when we include all individual roles 
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together. Both tables and all models show a stable pattern of results. Integrators-reach are 

positively and significantly associated with firm-level patent counts (p<0.01, Table 4 -

Models 3 and 6) and citations (p<0.01, Table 5 – Models 3 and 6), while integrators-

power have insignificant effects on both. This suggests support for our Hypothesis 1 with 

a caveat: although size and density of the ego-network are important, the only type of 

integrators that affects quantity and quality of firm-level inventive output is the type of 

individuals that combine size and density with reach. Connectors are positively and 

significantly associated with firm-level patent counts (p<0.01, Table 4 -Models 4 and 6) 

and citations (p<0.01, Table 5 – Models 4 and 6), thus providing strong support for our 

Hypothesis 2. Isolates have an insignificant effect on firm-level patent counts and a weak 

positive effect on citations (p<0.1, Table 5 – Model 6), thus providing some evidence for 

the positive effect of isolates only on the quality of inventive output.
6
  

 

Table 2.3 

Descriptive Statistics - Individual Roles - Mean Values 

 

  Integrator - Power Integrator - Reach Connector Isolate 

Observations 21232 22845 24525 8895 

Ties 13.60 12.27 11.73 0.00 

Ego-network density 65.76 72.54 32.57 0.00 

No. of components 1.14 1.19 2.10 0.00 

2-step reach 17.63 36.26 11.84 0.00 

Nbroker 0.17 0.14 0.34 0.00 

No. of patents 5.70 5.13 8.25 2.81 

Unique individuals 6012 5203 6537 2627 

Average years in role 3.53 4.39 3.75 3.39 

Percent consecutive years 91.11% 94.71% 90.03% 98.47% 
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 We also used the number of claims as an alternative measure of the quality of a firm’s inventive output. 

Isolates are positively and significantly associated with claims, thus providing additional and stronger 

evidence for their effect on the quality of output. The effects of the other three individual roles on claims 

are exactly the same as in counts and citations. 
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Table 2.6 (in the Appendix) depicts the results of some alternative model 

specifications. Models 1-3 predict the effects of individual roles on patent counts and 

Models 4-6 the same effects on citations. In Models 1 and 4 we explore the potential for 

non-linear effects of the roles on patents and citations, respectively. Results suggest that 

the positive effects of integrators-reach and connectors on patent counts and citations are 

not non-linear. There is some evidence of an inverted-U relationship between integrators-

power and citations (p<0.05, Model 4).  In Models 2 and 5, we include the dependent 

variable (counts in Model 2 and citations in Model 5) lagged as a right hand side variable 

to explore for the effects of roles on annual change in our dependent variables and show 

the robustness of our findings under these specifications. Our results remain unchanged. 

In Models 3 and 6, we add a control for R&D expenses; the number of observations 

declines considerably in these two models as we don’t have data about R&D expenses 

from all firm-years in our sample; our results again remain unchanged.
7
  

In Table 2.7 (in the Appendix), we report our results predicting the productivity of 

a firm’s inventive output. Model 1 includes only control variables. Models 2-5 include 

each individual role separately. Model 6 shows the results when we include all individual 

roles together. Isolates are positively and significantly associated with inventive 

productivity (p<0.01, Models 5-6), thus providing strong support for our Hypothesis 3. 

Integrators-power are negatively and significantly associated with inventive productivity 

                                                           
7
 We also used alternative estimation methods for our models. The results with Poisson estimation were 

exactly the same for all roles and patent counts. They were exactly the same for three of four roles and 

citations; the only difference was that the coefficients of integrators-reach were positive but insignificant. 

They were the same for all roles and claims (connectors were positive and insignificant for one of the 

specifications). The results with least squares estimation and the log of dependent variables were the same 

for all four individual roles and all three dependent variables, with the exception of the prevalence of 

inverted-U relationships instead of linear effects. Nevertheless, the negative binomial estimation method is 

by far the most appropriate fit with our data; therefore, results from other estimations should be carefully 

interpreted as simply robustness checks. 
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(p<0.01, Models 2 and 6), thus providing strong support for our Hypothesis 4. 

Connectors are not significant drivers of productivity and integrators-reach are negative 

and significant predictors only when included separately (p<0.05, Model 3). 

We also report some interesting results from our control variables. The size of the 

network is positively and significantly associated with quantity and quality of inventive 

output and negatively and significantly associated with productivity under all 

specifications and estimation methods. Interestingly, star inventors are negatively 

associated with the quantity and quality of inventive output. On the other hand, stars are 

strong positive drivers of productivity. This is an interesting pattern of results about the 

role of stars on different dimensions of inventive output. However, the results for stars 

should be interpreted with caution as we define them as star inventors and not as star 

scientists as existing literature does.  

 

2.5. Discussion 

In this study, we extended current research on the role of individuals as origins of 

organizational innovative outcomes. In particular, we developed a theory on some of 

invention’s structural individual microfoundations. We moved beyond existing research 

focus on individual productivity which may have obscured the importance of other 

critical individual skills for successful invention. Invention is increasingly a team-based 

endeavor (Wuchty et al., 2007) and is often an outcome of knowledge recombination 

from existing knowledge stocks (Fleming, 2001). Therefore, there is a set of collaborative 

and social skills that individuals need to possess to facilitate the invention process. To 

identify these individual roles more likely to drive inventive output, we applied social 
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network- and knowledge-based thinking to intraorganizational collaborative networks 

emerging through co-patenting individual efforts. Conceptualizing invention as a process 

of recombinant search, we argued for the critical role of three individual types: 

integrators, connectors, and isolates.  

Integrators are the individuals who have a large dense network of collaborative 

ties. Sourcing knowledge from many alters, integrators have the capacity to explore for a 

great number of alternative knowledge combinations and select the most promising 

among them. Connectors are the individuals whose collaborative ties span structural 

holes in their organization’s knowledge network and at the same time link unconnected 

and distant clusters of knowledge. Their broad view of the knowledge network allows 

them to experiment with novel and diverse knowledge recombinations. We used the term 

‘relational stars’ to describe integrators and connectors in order to emphasize the social 

nature of their individual capacities and depart from productivity stars. Isolates are 

individuals who remain unconnected from the collaborative network; they are 

independent producers of knowledge. Isolates are important because they can infuse the 

knowledge base with diversity as their knowledge remains unaffected by the 

organization’s knowledge directions and these benefits come at the lowest possible cost 

for the organization.  

There are three interesting aspects of our theory. First, we introduced the notion 

of relational stars and explained why, apart from simple individual productivity, 

individual relational capacities are at least as important for the effective implementation 

of the invention process. We described how certain individuals, who are outliers in terms 

of their collaborative behavior, end up occupying such network positions in their firm’s 
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network that make them consequential for the inventive performance of the firm as a 

whole. Second, we explained why and how the presence of relational stars translates into 

firm-level outcomes beyond individual-level outcomes. Third, we argued that different 

individual roles have heterogeneous effects on different dimensions of their firm’s output. 

While relational stars should drive the overall quantity and quality of output, isolates 

should be the ones positively affecting productivity.  

The results provided ample support to our theory. Relational stars were positively 

associated with both quantity and quality of inventive output. Interestingly, only one type 

of integrators – the ones combining size, density, and reach – was a positive driver of 

quantity and quality. We also found some weaker evidence about the positive impact of 

isolates on those inventive outcomes.  On the other hand, when it came to productivity of 

inventive output, relational stars had insignificant effects – which even turned negative in 

the case of some integrators. It was isolates and star inventors that were strongly 

positively associated with the productivity of their firm’s inventive output. Interestingly, 

we came up with these results based on a large-scale comprehensive longitudinal study, 

which allowed us to show the effects of individual roles above and beyond firm-level 

variables and actions that we already know affect invention. 

Our arguments and findings have several significant theoretical implications. We 

offer two important contributions to the emerging literature on individuals as the 

microfoundations of organizational capabilities (Felin & Foss, 2005). First, we were able 

to show that at least when it comes to invention, certain individuals exhibit patterns of 

collaborative behavior which make them really valuable as sources of organizational 

capabilities to generate more and high quality inventions. With our findings, we echo 
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early research on the promise of the industrial research laboratory to bring together 

“intuitive minds”, “experimenters”, and “observers” to result in successful inventions 

(Beer, 1959: 71), roles which arguably correspond to isolates, connectors, and integrators, 

respectively. More importantly, these individuals affected inventive outcomes without 

being necessarily extremely productive; instead, it was their collaborative behavior which 

provided them with opportunities for firm-level impact. Second, we moved beyond the 

one-size-fits-all conceptualization of important individuals on firm-level outcomes. We 

explained why and showed that different types of individuals affect different dimensions 

of their firm’s knowledge outcomes.  

Second, our study has important implications for research on intrafirm knowledge 

networks. Prior research has been able to document that position of individuals in these 

networks matters for their own individual outcomes and that the structure of the network 

affects network outcomes. Here, we showed how micro-level network phenomena can 

translate into macro-level network outcomes and how the presence of individual nodes in 

a network (relational stars) affects network level outcomes (inventive output of the 

organization). Two recent reviews in the topic suggested that such efforts are necessary 

(Brass et al. 2004; Ibarra et al., 2005). To do that, we theoretically and empirically 

defined our relational stars as outliers in some meaningful network metrics not relatively 

to their peers in the same network but relatively to all individuals in every competing 

organization’s network, we explained how their presence translates into firm-level 

outcomes, and we extended current thinking about the importance of centrality and 

brokering behavior.  

   As every study, this one has its own limitations. We relied on co-patenting to 
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build internal knowledge networks and instead of tracking knowledge flows, we assumed 

their presence in the co-patenting ties. However, this is likely a valid assumption; there is 

research supporting our claim that co-patenting involves significant knowledge flows 

(Singh, 2005). Moreover, there is a possibility that our relational stars may not be active 

in knowledge but are listed in patents because of their functional role (i.e. heads of labs). 

Although we are not able to completely rule this out, there is evidence that it is unlikely: 

the descriptive statistics on relational stars suggest that these are not extremely productive 

individuals (i.e. not simply listed in many patents). In addition, we remain indifferent to 

the origins of relational stars. Individuals may become relational stars because of their 

own ability (Lee, 2010), interfirm mobility, or alternatively, because of firm-specific 

structures or incentives. We make an assumption here that the three types have similar 

effects on outcomes. This may very well be a quite valid assumption; however, with our 

existing empirical design we are unable to disentangle them. This observation that 

relational stars can be an organizational product as well opens the door for interesting 

future research extensions. What can firms do to identify or internally develop them? 

Which are the origins of relational stars? These are individuals who had both the ability 

and opportunity to become relational stars. Therefore, future research can follow the 

‘opportunity’ path and identify contexts which create opportunities for internal 

development of relational stars by training (Hatch & Dyer, 2004), incentives (Kaplan & 

Henderson, 2005), alliances or acquisitions (Paruchuri, 2010; Paruchuri, Nerkar, & 

Hambrick, 2006), human resource practices (Adler, Goldoftas, & Levine, 1999), or 

corporate culture logics (Felin, Zenger, & Tomsik, 2009).  

We conclude with our study’s implications for managerial practice. Received 
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wisdom suggests that individual productivity is the most important skill for innovation 

and therefore managerial incentive structures are often built to maximize effort and 

productivity. Our study suggests that the sole focus on productivity, effort, and star 

knowledge workers may be misleading. First, innovation is a deeply social process of 

knowledge recombination and collaborative skills are required for effective execution. 

Second, star workers are in limited supply and therefore come with important caveats: 

they may appropriate all of the value they create, leave the organization and transfer their 

knowledge to competitors (Almeida & Kogut, 1999), and they are pretty visible to the 

market and therefore more likely to be hired away (Gardner, 2005). In addition, except 

for their ex ante identification, there is no other straightforward way for managers to 

internally build them. On the other hand, relational stars are free from these weaknesses. 

First, they are not in limited supply: relational stars can be identified ex ante or developed 

internally through encouragement of collaboration. Individuals whose performance 

depends on interactions with others cannot transfer easily their performance to other 

organizations (Groysberg et al., 2008). Individual collaboration generates spillovers 

(Oettl, 2011) and therefore firms can internalize these externalities and avoid full value 

appropriation by the individuals involved. In addition, they are less visible to the market 

because of their embedded nature in the organization’s knowledge networks that it 

becomes less likely for them to become the target of competition. More importantly, 

managers can design practices, incentives, structures, or reward schemes to internally 

develop relational stars. They can do that by incentivizing the right type of collaboration 

among employees and develop internally the skills of their intellectual capital resources 

which may remain untapped. 
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CHAPTER 2 APPENDIX 

 

Table 2.1 

Descriptive Statistics and Bivariate Correlation Matrix 

  Variable Mean S.D. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 Patent counts 46.73 67.70 

                  2 Patent citations 323.26 476.90 0.88 
                 3 Patent claims 523.10 767.36 0.94 0.89 

                4 Patent productivity 0.53 0.26 0.33 0.36 0.36 
               5 Firm merged 0.12 0.33 0.18 0.14 0.15 0.00 

              6 European firm 0.30 0.46 0.19 0.07 0.14 0.02 0.08 
             7 US firm 0.34 0.47 0.17 0.31 0.23 0.54 0.16 -0.47 

            8 Pharma firm 0.46 0.50 -0.24 -0.23 -0.24 -0.07 0.02 0.03 -0.06 
           9 Alliances 1.64 3.47 0.19 0.14 0.16 -0.03 0.27 0.02 0.13 0.06 

          10 Acquisitions 0.25 1.04 0.16 0.12 0.14 0.01 0.30 0.04 0.12 0.09 0.33 
         11 Biotech patents 18.30 26.66 0.68 0.57 0.62 0.21 0.36 0.14 0.18 0.05 0.41 0.35 

        12 Biotech focus 0.42 0.45 -0.15 -0.17 -0.15 -0.18 0.16 0.09 -0.14 0.36 0.15 0.13 0.17 
       13 Network size 237.38 292.67 0.87 0.74 0.79 0.08 0.26 0.20 0.06 -0.28 0.25 0.19 0.61 -0.13 

      14 Inventors annual 82.92 109.93 0.94 0.79 0.86 0.11 0.22 0.20 0.05 -0.24 0.25 0.18 0.67 -0.11 0.94 
     15 Stars 4.26 11.01 0.71 0.51 0.57 0.11 0.22 0.19 0.03 -0.12 0.26 0.18 0.60 -0.05 0.76 0.78 

    16 Integrators - Power 8.67 19.37 0.41 0.25 0.27 -0.19 0.14 0.12 -0.14 -0.03 0.18 0.12 0.42 0.06 0.56 0.58 0.69 
   17 Integrators - Reach 9.31 23.93 -0.14 -0.17 -0.15 -0.28 -0.05 -0.05 -0.17 0.14 0.00 -0.04 -0.03 0.20 -0.08 -0.06 0.03 0.43 

  18 Connectors 10.04 18.68 0.56 0.37 0.39 0.00 0.23 0.14 0.00 -0.10 0.28 0.16 0.53 -0.01 0.65 0.67 0.83 0.65 0.03 
 

19 Isolates 3.64 8.27 0.53 0.62 0.57 0.40 0.06 0.00 0.33 -0.21 0.00 0.02 0.18 -0.16 0.43 0.37 0.12 -0.06 -0.16 -0.02 

Note: N = 2371 firm-year observations     
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Table 2.4 

Results of Fixed-Effects Negative Binomial Regression Predicting Firm-Level Patent Counts (w/ Bootstrapped Errors) 
a,b

 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Constant 2.117 ** (0.373) 2.137 ** (0.341) 2.155 ** (0.334) 2.147 ** (0.356) 2.167 ** (0.378) 2.201 ** (0.333) 

Year Effects Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 
Merged -0.127 

 

(0.088) -0.125 † (0.073) -0.101 

 

(0.079) -0.111 

 

(0.078) -0.087 

 

(0.079) -0.053 

 

(0.070) 

EU -0.708 

 

(0.490) -0.707 † (0.371) -0.759 † (0.413) -0.627 

 

(0.404) -0.757 † (0.392) -0.722 * (0.366) 

US -0.022 

 

(0.433) -0.044 

 

(0.329) -0.028 

 

(0.351) -0.021 

 

(0.362) -0.121 

 

(0.381) -0.095 

 

(0.317) 

Pharma -0.027 

 

(0.275) -0.053 

 

(0.277) -0.007 

 

(0.223) -0.106 

 

(0.259) 0.003 

 

(0.261) -0.014 

 

(0.256) 

Alliances -0.002 

 

(0.004) -0.002 

 

(0.004) -0.002 

 

(0.004) -0.003 

 

(0.004) -0.002 

 

(0.005) -0.003 

 

(0.004) 

Acquisitions -0.023 

 

(0.016) -0.027 * (0.013) -0.021 

 

(0.013) -0.030 

 

(0.020) -0.029 † (0.016) -0.028 † (0.017) 

Biotech Patents 0.008 ** (0.002) 0.008 ** (0.001) 0.008 ** (0.002) 0.007 ** (0.001) 0.007 ** (0.002) 0.007 ** (0.002) 

Biotech Focus 0.081 

 

(0.066) 0.080 

 

(0.077) 0.073 

 

(0.066) 0.083 

 

(0.067) 0.089 † (0.053) 0.083 

 

(0.068) 

Network Size 0.001 * (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 0.001 * (0.000) 0.001 ** (0.000) 

Stars -0.008 

 

(0.008) -0.009 † (0.005) -0.010 † (0.005) -0.015 * (0.007) -0.007 

 

(0.007) -0.015 * (0.006) 

Integrators - Power       0.001   (0.002)                   -0.001   (0.002) 

Integrators- Reach 

      

0.005 ** (0.001) 

      

0.005 ** (0.001) 

Connectors 

         

0.007 ** (0.003) 

   

0.007 ** (0.002) 

Isolates                         0.013   (0.010) 0.012   (0.010) 

                   
Wald χ2  1998.43** 1944.74** 3611.88** 3241.37** 5824.5** 2763.06** 

Obs / Groups 2414/106 2414/106 2414/106 2414/106 2414/106 2414/106 

a One-tailed tests for hypothesized effects and two-tailed tests for control variables. Bootstrapped standard errors are in parentheses 

     b      †p < .10 

     *p < .05 

   **p < .01                                     
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Table 2.5 

Results of Fixed-Effects Negative Binomial Regression Predicting Firm-Level Patent Citations (w/ Bootstrapped Errors) 
a,b

 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Constant 0.743 ** (0.178) 0.750 ** (0.172) 0.732 ** (0.194) 0.763 ** (0.194) 0.765 ** (0.165) 0.763 ** (0.180) 

Year Effects Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 
Merged -0.047 

 

(0.088) -0.042 

 
(0.096) -0.021 

 

(0.094) -0.030 

 

(0.106) -0.011 

 

(0.099) 0.022 

 

(0.102) 

EU -0.345 

 

(0.274) -0.336 

 
(0.288) -0.339 † (0.189) -0.305 

 

(0.245) -0.363 

 

(0.261) -0.314 

 

(0.264) 

US 0.380 † (0.199) 0.386 * (0.192) 0.413 † (0.225) 0.373 † (0.222) 0.320 

 

(0.201) 0.348 

 

(0.214) 

Pharma -0.379 † (0.203) -0.400 * (0.181) -0.403 † (0.224) -0.395 † (0.204) -0.341 † (0.201) -0.369 † (0.201) 

Alliances -0.002 

 

(0.007) -0.002 

 
(0.007) -0.002 

 

(0.007) -0.003 

 

(0.006) -0.002 

 

(0.006) -0.004 

 

(0.005) 

Acquisitions -0.006 

 

(0.015) -0.012 

 
(0.015) -0.004 

 

(0.013) -0.014 

 

(0.018) -0.012 

 

(0.018) -0.014 

 

(0.017) 

Biotech Patents 0.008 ** (0.001) 0.008 ** (0.001) 0.009 ** (0.001) 0.008 ** (0.001) 0.008 ** (0.001) 0.008 ** (0.001) 

Biotech Focus 0.143 † (0.077) 0.142 * (0.071) 0.137 

 

(0.084) 0.144 * (0.066) 0.146 * (0.067) 0.142 * (0.068) 

Network Size 0.001 ** (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 

Stars -0.015 * (0.007) -0.017 * (0.008) -0.016 † (0.008) -0.024 ** (0.007) -0.013 

 

(0.008) -0.023 ** (0.006) 

Integrators - Power       0.002   (0.003)                   -0.001   (0.002) 

Integrators- Reach 

      

0.004 ** (0.001) 

      

0.004 ** (0.001) 

Connectors 

         

0.010 ** (0.003) 

   

0.010 ** (0.003) 

Isolates                         0.014   (0.011) 0.012 † (0.009) 

                   
Wald χ2  1676.56** 4211.54** 2923.4** 5189.79** 1811.97** 3325.13** 

Obs / Groups 2414/106 2414/106 2414/106 2414/106 2414/106 2414/106 

a One-tailed tests for hypothesized effects and two-tailed tests for control variables. Bootstrapped standard errors are in parentheses 

     b      †p < .10 

     *p < .05 

   **p < .01                                     
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Table 2.6 

Fixed-Effects Negative Binomial Regression Predicting Patent Counts and Citations (w/ Bootstrapped Errors) - Alternative Specifications 
a,b 

 

  Patent Counts Patent Citations 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Constant 2.543 ** (0.398) 2.281 ** (0.335) 3.549 ** (0.667) 1.063 ** (0.198) 0.829 ** (0.148) 1.172 ** (0.228) 

Year Effects Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 Merged -0.066 

 

(0.064) -0.041 

 

(0.086) 0.074 

 

(0.083) -0.018 

 

(0.081) 0.033 

 

(0.085) 0.101 

 

(0.112) 

EU -0.760 

 

(0.490) -0.749 † (0.389) -1.793 ** (0.666) -0.318 

 

(0.246) -0.301 

 

(0.273) -0.844 ** (0.278) 

US -0.127 

 

(0.416) -0.089 

 

(0.303) -1.136 † (0.655) 0.338 

 

(0.215) 0.341 † (0.206) -0.044 

 

(0.240) 

Pharma -0.016 

 

(0.292) -0.007 

 

(0.256) -0.337 

 

(0.278) -0.359 † (0.191) -0.385 * (0.173) -0.493 * (0.197) 

Alliances -0.001 

 

(0.003) -0.003 

 

(0.004) -0.003 

 

(0.004) -0.002 

 

(0.005) -0.002 

 

(0.005) -0.003 

 

(0.007) 

Acquisitions -0.033 † (0.018) -0.032 * (0.014) -0.027 

 

(0.017) -0.014 

 

(0.017) -0.013 

 

(0.015) -0.020 

 

(0.017) 

Biotech Patents 0.005 ** (0.001) 0.006 ** (0.001) 0.006 ** (0.002) 0.006 ** (0.001) 0.007 ** (0.001) 0.007 ** (0.001) 

Biotech Focus 0.094 † (0.054) 0.088 

 

(0.069) 0.055 

 

(0.060) 0.150 * (0.073) 0.149 * (0.071) 0.122 

 

(0.099) 

Lagged DV 

   
0.003 ** (0.001) 

      

0.000 ** (0.000) 

   R&D Expenses 

      

0.000 

 

(0.000) 

      

0.000 

 

(0.000) 

Network Size 0.001 ** (0.000) 0.001 † (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 0.001 ** (0.000) 

Stars -0.077 

 

(0.108) -0.016 ** (0.005) -0.014 † (0.008) -0.213 * (0.095) -0.020 ** (0.005) -0.021 ** (0.008) 

Stars Sq -0.003 

 

(0.036) 

      

0.005 

 

(0.020) 

      Integrators - Power 0.068   (0.068) 0.000   (0.001) -0.002   (0.002) 0.163 * (0.088) 0.000   (0.002) -0.001   (0.002) 

Integrators - Power Sq -0.013 

 

(0.013) 

      

-0.026 * (0.015) 

      Integrators - Reach 0.135 ** (0.055) 0.005 ** (0.001) 0.004 ** (0.002) 0.117 * (0.067) 0.004 ** (0.001) 0.003 † (0.002) 

Integrators - Reach Sq -0.009 

 

(0.011) 

      

-0.015 

 

(0.018) 

      Connectors 0.186 * (0.090) 0.007 ** (0.003) 0.007 ** (0.003) 0.228 ** (0.085) 0.009 ** (0.003) 0.011 ** (0.003) 

Connectors Sq -0.013 

 

(0.042) 

      

-0.013 

 

(0.041) 

      Isolates 0.331 ** (0.072) 0.010 

 

(0.010) 0.008 

 

(0.010) 0.354 ** (0.095) 0.010 

 

(0.009) 0.011 

 

(0.010) 

Isolates Sq -0.021   (0.018)             -0.022   (0.029)             

Wald χ2  14847.29** 6694.13** 11240.24** 13985.66** 8498.34** 3937.17** 

Obs / Groups 2414/106 2414/106 1570/103 2414/106 2414/106 1570/103 

a One-tailed tests for hypothesized effects and two-tailed tests for control variables. Bootstrapped standard errors are in parentheses 

     b      †p < .10 

     *p < .05 

   **p < .01                                     
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Table 2.7 

Results of Fixed-Effects Least Squares Regression Predicting Firm-Level Patent Productivity (w/ Robust Errors) 
a,b

 

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Constant 0.712 ** (0.029) 0.710 ** (0.029) 0.732 ** (0.194) 0.712 ** (0.029) 0.692 ** (0.030) 0.691 ** (0.030) 

Year Effects Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 

Incl. ** 

 
Merged -0.065 * (0.026) -0.066 * (0.026) -0.067 * (0.026) -0.065 * (0.026) -0.053 * (0.026) -0.055 * (0.025) 

EU (drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  
US (drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  
Pharma (drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  

(drop) 

  
Alliances -0.004 

 

(0.002) -0.003 

 

(0.002) -0.004 

 

(0.002) -0.004 

 

(0.002) -0.004 

 

(0.002) -0.004 

 

(0.002) 

Acquisitions -0.008 † (0.004) -0.006 

 

(0.004) -0.008 † (0.004) -0.008 † (0.004) -0.009 * (0.004) -0.008 † (0.004) 

Biotech Patents 0.002 ** (0.000) 0.002 ** (0.000) 0.002 ** (0.000) 0.002 ** (0.000) 0.002 ** (0.000) 0.002 ** (0.000) 

Biotech Focus -0.019 

 

(0.023) -0.018 

 

(0.022) -0.018 

 

(0.023) -0.019 

 

(0.023) -0.019 

 

(0.021) -0.018 

 

(0.021) 

Network Size 0.000 ** (0.000) 0.000 ** (0.000) 0.000 ** (0.000) 0.000 ** (0.000) 0.000 ** (0.000) 0.000 ** (0.000) 

Stars 0.003 ** (0.001) 0.005 ** (0.001) 0.004 ** (0.001) 0.003 ** (0.001) 0.003 ** (0.001) 0.005 ** (0.001) 

Integrators - Power       -0.002 ** (0.000)                   -0.002 ** (0.000) 

Integrators- Reach 

      

-0.001 * (0.000) 

      

0.000 

 

(0.000) 

Connectors 

         

0.000 

 

(0.001) 

   

0.000 

 

(0.001) 

Isolates                         0.007 ** (0.003) 0.007 ** (0.002) 

                   
F 8.64** 10.93** 8.6** 8.4** 8.61** 9.77** 

R2 0.13 0.20 0.15 0.13 0.28 0.35 

Obs / Groups 2344/106 2344/106 2344/106 2344/106 2344/106 2344/106 

a One-tailed tests for hypothesized effects and two-tailed tests for control variables. Robust standard errors are in parentheses 

     b      †p < .10 

     *p < .05 

   **p < .01                                     
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CHAPTER 3 

COORDINATING INTRAFIRM KNOWLEDGE NETWORKS FOR 

EXPLORATION, EXPLOITATION, AND AMBIDEXTERITY: A LOOK AT THE 

MICROFOUNDATIONS OF LEARNING  

3.1. Introduction 

One of the most enduring themes in innovation research is the critical role of 

organizational learning as an antecedent of organizational innovative output. More 

specifically, we know that if incumbent firms in high tech industries, in particular, want 

to remain innovative they have to continuously renew their knowledge base. Such 

renewal includes two components: discontinuous strategic transformations and 

incremental improvements of the knowledge base (Agarwal and Helfat, 2009). Scholars 

argue that incumbents’ renewal requires the development of capabilities (Kogut and 

Zander, 1992), competences (Henderson and Cockburn, 1994), or dynamic capabilities 

(Teece et al., 1997) in order to initiate or respond to frequent technological and market 

changes. In addition, we know that individuals, as the realistic locus of knowledge (Felin 

and Hesterly, 2007), are probably the meaningful microfoundations of the necessary 

capabilities (Felin and Foss, 2005). However, much less is known with respect to the 

importance of specific individual roles and micro-level coordinating mechanisms for the 

successful implementation of the two components of strategic renewal. In what follows, I 

make an effort to answer two related questions: first, who are the individual types that 

drive successful implementation of the two components of renewal? Second, what is the 

best way to coordinate individuals across the two seemingly inconsistent components to 
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maximize the capacity of the organization to effectively implement both components 

simultaneously?  

Technological change can take various forms and pose mixed challenges on 

incumbents. Scientific advances disrupt incumbents’ existing technological competences 

(Tushman and Anderson, 1986), novel recombinations alter the technological paradigm 

(Anderson and Tushman, 1990), and ever present slight changes in the existing 

technological trajectory require ‘normal’ technical progress (Dosi, 1982). To update their 

knowledge base, incumbents engage in exploratory learning, which stimulates 

development of radically new knowledge, or exploitative learning, which emphasizes 

incremental refinement of existing knowledge stocks (March, 1991). Individuals are the 

realistic agents of such learning. Existing research indicates that incumbents’ learning 

activities benefit from investments in individual expertise and productivity (Furukawa 

and Goto, 2006; Lacetera et al., 2004; Rothaermel and Hess, 2007; Zucker and Darby, 

1997). However, individual productivity as an all-encompassing concept is quite fuzzy. 

Without digging into its components, we fail to understand several important aspects: 

how exactly did this productivity occur? Did the individual produce new knowledge by 

recombining proximate knowledge pieces, distant knowledge stocks, or by independently 

producing new knowledge?  

The exact process through which each individual reached a certain productivity 

level is critical in order to understand the importance of different individuals for the 

different types of learning. Evidence suggests that innovation is a communal team-based 

endeavor (Wuchty et al., 2007). Incumbents design structures, processes, and procedures 

to stimulate knowledge exchange (Tsai and Ghoshal, 1998), recombination (Henderson 
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and Clark, 1990), reconfiguration (Henderson and Cockburn, 1994), diffusion (Fleming, 

2002), and search (Gavetti and Levinthal, 2000). My main argument is that at the firm 

level exploratory learning occurs by expanding knowledge breadth and exploitative 

learning occurs by increasing knowledge depth. Consequently, individuals who 

recombine knowledge across local and distant knowledge clusters facilitate exploration 

and individuals who specialize and independently generate knowledge facilitate 

exploitation. Therefore, although all individual types may be productive, the exact way 

through which they are productive matters for organizational-level learning outcomes. To 

identify the corresponding individual types, I look at intrafirm knowledge networks 

emerging through individual collaboration for knowledge co-creation. I find that 

individuals with extreme collaborative behavior, either locally or distantly, drive 

exploratory output and productive but isolated individuals drive exploitative output. As a 

result, I identify the different role-sets of individuals required to support the different 

types of learning, and I contribute to an area where theory and evidence is scarce (Gupta 

et al., 2006). 

In addition, I make an effort to understand what is the best way to organize 

individuals across activities to maximize the capacity of the organization to do both, 

effectively. O’Reilly and Tushman (2007) argue that exploratory and exploitative 

activities require fundamentally different mindsets, routines, skills, and organizational 

designs. For this reason, scholars suggest that successful incumbents are those able to 

simultaneously satisfy adaptability and alignment objectives (Gibson and Birkinshaw, 

2004) and that the ability of an organization to achieve that critical balance is, in fact, a 

dynamic capability described by the concept of organizational ambidexterity (O’Reilly 
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and Tushman, 2007).  For the same reason, received wisdom suggests that organizations 

must separate these activities structurally (Tushman and O’Reilly, 1996), temporally 

(Brown and Eisenhardt, 1997), contextually (Gibson and Birkinshaw, 2004), or tactically 

(Adler et al., 1999). A major challenge in the process is the need to motivate production 

of radically new knowledge and integrate it into the incumbent’s existing knowledge base 

(Raisch et al., 2009). As a result, while separation solves the problem of fundamentally 

different mindsets, it creates the problem of effective selection and transfer of knowledge 

from one activity to the other. In this paper, I challenge conventional wisdom and I 

explain why complete separation may actually hamper the pursuit of ambidexterity. In 

addition, I explain why separation may not be necessary if one looks at the individual 

level of analysis. I find that an organization’s ambidextrous output relies on individuals 

who are good at both exploration and exploitation and that it is a positive function of the 

level of connectedness between individuals exploring for new knowledge and individuals 

exploiting existing knowledge.  As a result, I identify the role-set of individuals and the 

micro-level coordinating mechanisms which can facilitate successful implementation of 

the selection and transfer of discontinuous knowledge into the firm’s knowledge base, a 

micro-level analysis of the individual role in ambidexterity which has been overlooked 

(Raisch and Birkinshaw, 2008). 

Overall, the phenomenon of interest is the strategic renewal of knowledge bases 

for incumbents operating in dynamic environments, defined as the demand for 

incumbents to infuse their knowledge base with radically new knowledge while 

incrementally improving their existing knowledge stocks. I view incumbent learning as 

the mean to this end, with learning involving an evolutionary process of knowledge 
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recombination, selection, transfer, and application. These processes map well to the 

broader categories of exploratory, transformative, and exploitative learning. Finally, I 

rely on insights from network and knowledge-based theory to link individual role-sets 

and firm-level coordinating arrangements with the different stages of the learning 

process. I make an effort to answer a number of related questions: which individual roles 

are necessary for radical learning and which roles are important for incremental learning? 

More importantly, which individual-level coordination mechanisms are required to 

effectively link knowledge coming from exploration with existing internal workings and 

facilitate the organization’s pursuit of ambidexterity in times of technological change? 

Which of these coordinating mechanisms are more effective than others? In what follows, 

I provide background on the variables of interest from prior research, highlight gaps in 

our understanding, present the theoretical model of strategic renewal, and identify types 

of individuals critical for each stage of the learning process. 

 

3.2. Background and Gaps: Individuals, Networks, and Learning  

Technological paradigms are affected by advances that were exogenously-induced, 

endogenously accumulated (Dosi, 1988) or even randomly emerged (Rosenberg, 1990). 

Incumbents’ survival depends on renewal of their existing knowledge base with radically 

new knowledge (March, 1991). Here, I take stock of our current knowledge about the 

role of individuals, internal networks, and learning as drivers of this technological 

renewal process. 

Scholars in economics (Cohen, 1995) and management (Ahuja et al., 2008) are 

increasingly shifting attention to routines and capabilities as drivers of technological 



 

 

 

57 

 

trajectory renewal. Theoretical support of individuals as the realistic locus of knowledge 

channeled some research towards the role of human capital in incumbent innovation and 

renewal (Felin and Hesterly, 2007). Significant evidence supports the view that 

productive individuals with the capacity to generate scientific knowledge facilitate 

incumbent adaptation. ‘Star scientists’ are instrumental for knowledge sensing (Lacetera 

et al., 2004), knowledge in-flows (Furukawa and Goto, 2006), change in technological 

base (Zucker and Darby, 1997), knowledge capture (Zucker et al., 2002), and adaptation 

to radical discontinuities (Rothaermel and Hess, 2007).  However, while individual 

intuition is often the trigger of strategic renewal (Crossan et al., 1999), individual 

creativity has an apparent social side and is affected by the working environment 

(Amabile et al. 1996; Perry-Smith and Shalley, 2003). Organizations have an advantage 

because they can internally develop intellectual capital based on social interactions 

among their members (Nahapiet and Ghoshal, 1998). Early research on the emergence of 

the industrial research laboratory suggested that its advantage was that “it could take 

several men, each lacking the necessary qualifications for successful independent 

research, and weld them into a productive team in which each member compensated for 

the others’ shortcomings” (Beer, 1959: 71). Therefore, although we have a deep 

understanding of the benefits provided by individual knowledge productivity, there is a 

set of social and collaborative individual skills that have not received the necessary 

research attention. 

With respect to the role of internal networks in strategic renewal, scholars have 

recognized that the structure of internal knowledge networks significantly affects 

innovation outcomes. Centralized R&D structures generate more impactful innovations 
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(Argyres and Silverman, 2004) while more relaxed structures facilitate improvisation 

(Brown and Eisenhardt, 1997). Network heterogeneity enhances learning capabilities 

(Reagans and Zuckerman, 2001), while cohesive and extensive networks affect 

motivations and abilities for knowledge sharing (Reagans and McEvily, 2003). Efficient 

networks diffuse information and perform better in the short run but worse in the long-

run (Lazer and Friedman, 2007). In addition, social capital developed through 

interactions affects product innovations (Tsai and Ghoshal, 1998), and collective 

invention relies on networks combining dense interactions with bridging ties (Cowan and 

Jonard, 2003). Network structures seem to influence outcomes as broad as knowledge 

management, innovation, and performance (Borgatti and Foster, 2003). However, 

although there is evidence that knowledge of central actors shapes the firms’ 

technological capabilities (Nerkar and Paruchuri, 2005), research on the role of specific 

individuals in the internal networks is scarce. In addition, as the authors of a recent 

review conclude, another question which remains largely unanswered is “at different 

stages of the creative or innovative process, are different types of people or skills 

required…” (Gupta et al., 2006: 703).  

With respect to the role of learning in strategic renewal, research suggests that 

incumbents should structurally separate units responsible for exploration from units 

responsible for exploitation to address conflicting incentives and demands (Benner and 

Tushman, 2003; Gilbert, 2005). Alternatively, incumbents can temporally separate units 

responsible for these inconsistent processes (Brown and Eisenhardt, 1997). Incumbents 

may also design a context that allows individuals to independently decide whether they 

will address adaptability or alignment concerns (Gibson and Birkinshaw, 2004) or 
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combine these integrated contexts with tactical separation across time or units (Adler et 

al., 1999). Research at the individual level focuses on the responsibilities of senior or 

middle managers to maintain links between different units or design the context for the 

co-occurrence of continuity and change (Andriopoulos and Lewis, 2009; Taylor and 

Helfat, 2009). However, there still exists a significant gap with respect to the role of 

individuals other than managers in implementing those structures and the multi-level 

processes through which individuals and micro-level coordinating mechanisms may 

specifically affect ambidexterity at the organizational level (Raisch et al., 2009). 

In this article, I propose a model of strategic renewal for incumbents operating in 

dynamic environments to address these three gaps. First, I separate the renewal process 

into its components in terms of fundamental knowledge processes: knowledge 

recombination, selection, transfer, and application. Second, I apply insights from network 

theory in internal knowledge networks to identify those individuals who based on ideal 

combinations of ability, motivation, and opportunity end up occupying network positions 

which make them more effective than others to implement the fundamental knowledge 

processes. I refer to them as relational stars to emphasize the social and collaborative 

component of their skills and thus extend current thinking on the importance of ‘star 

scientists’. More importantly, I address existing gaps by identifying certain individual 

roles as more important than others in driving exploration, exploitation, and 

ambidexterity. 

3.3. Relational Stars and Strategic Renewal  

Before proceeding with hypotheses development about the role of individuals in firm-

level learning outcomes, I describe here the backbone of the conceptual model at the firm 
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level of analysis and I define some critical constructs. Imagine an incumbent’s internal 

environment. Individuals collaborate to build on the organization’s knowledge base and 

in the process, they form an extensive internal knowledge network. Nodes in this network 

are individuals participating in the knowledge co-production process (i.e. scientists, 

engineers, etc.). Ties reflect instances of direct collaboration with the purpose of 

knowledge co-creation. They can be viewed as strong ties (Hansen, 1999), which are 

necessary for effective knowledge transfer (Singh, 2005) or recombination (Galunic and 

Rodan, 1998), and play a dual role as they facilitate both inflows and outflows of 

knowledge (Borgatti and Foster, 2003).  

In this network, individuals are organized around their knowledge domains. 

Therefore, knowledge clusters emerge representing the various areas in the incumbent’s 

knowledge base. The boundaries of such areas are not determined by geographical, unit, 

divisional, or functional criteria; rather, they are defined by the nature of knowledge. 

Interactions within clusters are relatively dense to reflect intense collaboration among 

individuals working on the same field. Bridging ties across clusters are instances of 

collaboration across knowledge areas.  

Strategic renewal of an incumbent’s knowledge base includes the infusion of the 

knowledge base with radically new knowledge and the incremental improvement of 

existing knowledge stocks. Therefore, one component is the production of exploratory 

output, which consists of knowledge stocks radically different from existing ones. Such 

radically new knowledge may come from either distant or local recombination of existing 

knowledge stocks achieved by insight or pure luck (Rosenberg, 1990). Recombination 

may happen within or across knowledge clusters. The emphasis is on the quantity of new 
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combinations as the initiating process is so uncertain that any aspects of quality or value 

are largely unknown at this point. 

In the meantime, within knowledge clusters individuals perform the second 

component of strategic renewal, that is, the generation of exploitative output. This term 

refers to the normal technical process of incremental learning which results in 

incremental improvements of existing knowledge stocks. Again, the focus is on the 

quantity of such output. The quality or value of those improved knowledge pieces 

depends on environmental or firm factors that are not captured by my model (Kline and 

Rosenberg, 1986).  

Finally, I highlight here the importance of another critical process for successful 

renewal, a process that is generally neglected. Knowledge coming from exploratory 

output must find its way into the incumbent’s knowledge base. However, organizations 

cannot follow every potential knowledge trajectory proposed by exploratory output and 

the process of integration into the knowledge base is hardly automatic. The linking pins 

connecting exploratory output with the organization’s current knowledge base are the 

critical processes of knowledge selection and transfer. The former is the selection from 

the radically new knowledge stocks of the ones that fit with the organization’s strategy, 

assets, culture, or overall goals and the latter is the effective transfer of selected stocks to 

the clusters for integration with the existing knowledge base. 

The outcome of a full strategic renewal cycle is a new knowledge base which 

includes the selected radically new knowledge stocks produced by exploratory learning 

and the incrementally new knowledge stocks produced by exploitative learning. If the 
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two processes of selection and transfer are effectively implemented, then radically new 

knowledge will enter the incumbent’s knowledge base, and the incumbent will achieve 

ambidextrous output defined as the organization’s capacity to develop knowledge relying 

on radical and incremental learning. This output does not contain any performance 

implications. Instead, the result is a renewed knowledge base and a set of knowledge 

stocks, of which some were based on knowledge from exploratory learning. 

At this point, it is pertinent to highlight some of my theory’ underlying 

assumptions. In my model, exploration and exploitation compete for the same resources 

and thus are the ends of a continuum (Gupta et al., 2006), a conceptualization which is 

theoretically more plausible (Lavie et al., 2010). Therefore, in my model the learning 

activities are neither structurally nor temporally separated. If any separation occurs, it 

does not occur on the input side. New knowledge pieces are produced by individuals, and 

these pieces are then ex post characterized as either exploratory or exploitative output. I 

also assume that individuals have some level of freedom to choose their learning and 

collaborative behavior (Gibson and Birkinshaw, 2004). Therefore if any separation 

occurs it is only ‘tactical’ (Adler et al., 1999). Finally, no assumptions are made with 

respect to the nature of the knowledge flows (incremental vs. radical) through the ties.  

 

3.3.1. Network Positions as Individual Capacities 

Following the process of strong interpersonal collaboration, individuals end up occupying 

certain positions in the incumbent’s internal knowledge network. Network positions 

indicate a pattern of behavior (i.e. a role). For instance, a node with four ties is an 

individual having strong collaborative ties with four alters. These ties have three 
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components: structural, cognitive, and relational dimensions (Nahapiet and Ghoshal, 

1998). Therefore, a tie indicates that the interacting actors have access to each other’s 

knowledge and may use this information to exchange, diffuse, and combine knowledge 

stocks. In addition, a tie reflects the underlying presence of somewhat similar knowledge 

and shared communication codes. Finally, a tie implies interpersonal trust, shared norms, 

and motivation to share knowledge. As a result, an actor in a certain position has the 

capacity to utilize all the benefits stemming from the ties to implement the various 

fundamental knowledge processes that I described earlier. In the hypotheses that follow, I 

make links between networks positions and outcomes. In reality, the link is between the 

individual’s behavioral pattern, which includes an inherent individual capacity, and the 

behavior’s outcome.  

However, it is important to note that these patterns have a certain origin. Actors 

emerged in their positions because they had the corresponding skills, were appropriately 

motivated to engage in collaboration, and were provided with the opportunity to do so by 

the organization’s structures, incentives, or strategies. These origins are out of this 

paper’s scope and are briefly discussed in the discussion section. Here, it is important to 

emphasize that a network position is an organizational product as much as it is a product 

of individual skills and that actors in network positions have the capacity to alter the 

organization’s knowledge base by utilizing the structural, cognitive, and relational 

features of their ties.  

The logic behind the propositions is the following: for each stage of strategic 

renewal I identify the associated processes (recombination, selection, etc.) and detect the 

key actors with the capacity for maximum effectiveness for each process’s 
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implementation. Many individuals within the incumbent’s network recombine and select 

knowledge and will not be identified as key actors because here I am interested in the 

best individuals in every category. This is eventually the same approach as the one taken 

by scholars studying star scientists. They are looking for the positive effect of the most 

productive individuals and not just of some productive ones.  

 

3.3.2. Exploratory Output 

One source of radically new knowledge is a novel recombination of knowledge stocks 

achieved by insight or pure luck (Rosenberg, 1990). The overarching idea in this line of 

research is that individuals are more likely to come up with novel combinations when 

their networks span structural holes (Burt, 2004) among technologies (Fleming, 2002), 

disciplines (Henderson and Cockburn, 1994), social structures (Fleming et al., 2007), 

locations (Singh, 2008), or divisions (Kleinbaum and Tushman, 2007).  

Here, I focus on individuals with the ability to span internal knowledge 

boundaries and connect stocks from diverse internal knowledge bases. I remain 

indifferent as to whether these combinations require spanning of unit, divisional, or 

geographic boundaries. Therefore, I define connectors as actors who span structural holes 

(i.e. they are knowledge brokers) in the incumbent’s internal network and access the 

highest share of the network compared to brokers in all other competing organizations’ 

internal networks. With this term, I capture individuals who are the best in collaborating 

across knowledge domains and utilize a very large share of their organization’s 

knowledge base. While not necessarily productive or highly collaborative, connectors 

operate as the linking pins between otherwise unconnected and distant knowledge stocks. 
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They maintain strong collaborations with many internal actors, who are parts of diverse 

internal knowledge sub-networks, and connect knowledge pieces which would otherwise 

remain unconnected.  In a sense, they work across knowledge silos within their firm’s 

network. Importantly, I define connectors not only as knowledge brokers; their 

collaborative behavior also allows them to access a large share of their firm’s network. In 

addition, I emphasize here that connectors are outliers in terms of brokering behavior 

when compared with actors from all competing organizations.  

All these attributes are necessary for connectors to have an effect on exploratory 

output at the firm level. The first mechanism through which connectors can increase their 

organization’s exploratory output is through novel knowledge combinations of diverse 

knowledge stocks. In other words, their collaborative behavior makes them more likely 

than other actors to come up with further novel knowledge recombinations. It is 

important to note that the existence of connectors within incumbents’ networks does not 

necessarily translate into novel recombinations. The ties reflect knowledge co-creation 

between actors working in incremental and/or radical learning. Assuming though that 

such actors have an adequate level of freedom to pursue potential avenues for radical 

learning, connectors are more likely to exhibit entrepreneurial intuition (Crossan and 

Berdrow, 2003). Therefore, incumbents benefit from connectors because they have the 

capacity and increased opportunity to come up with a discontinuous novel recombination 

as they collaborate with actors working in diverse technologies. In addition to brokering 

behavior, connectors have access to a larger share of the firm’s network and therefore, 

can involve a larger part of the organization’s knowledge base to their recombinant 

efforts. 
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I shift now attention to explaining why the presence of connectors can more 

directly translate into firm-level outcomes by making other actors more likely to come up 

with exploratory new knowledge stocks. Through their behavior, connectors become 

familiar with who knows what across distant knowledge clusters. As a result, even if they 

are not equipped to create a new recombination, they can identify promising 

recombinations that can then be implemented by other actors. Moreover, using 

knowledge outflows embedded in their ties, connectors can more rapidly diffuse a 

constantly updating knowledge base to distant knowledge clusters. As a result, 

connectors develop new knowledge stocks that are then picked up faster by distant teams 

of collaboration which can simply build on the new knowledge pieces. I emphasize here 

that all these benefits stemming from connectors are even more pronounced for the 

outliers in the brokerage-share distribution. This is because every additional tie for any 

single individual results in an exponential increase in the number of future possible 

recombinations and in the share of the knowledge network that is informed about the 

updated knowledge base. For all these reasons, 

Hypothesis 1. Ceteris paribus, an incumbent’s exploratory output is a positive function of 

the number of connectors in its network. 

A second source of radically new knowledge is through local recombination of 

knowledge achieved by individuals who have an extraordinarily high number of 

collaborations and therefore, are able to identify promising novel knowledge 

combinations that result in knowledge stocks that are radically different from existing 

ones. I refer to them as integrators and define them as the individuals with the highest 

number of direct ties in their firm’s any single knowledge sub-network compared with 
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the ties of their counterparts in the industry’s other incumbent firms. Integrators can drive 

exploratory output not because of novel recombinations across knowledge silos as 

connectors do, but because of novel recombinations stemming from the fact that they 

have a very large number of collaborative ties. While connectors affected exploratory 

output using the type of their collaborative behavior (across knowledge clusters), 

integrators have a similar effect driven by the extent (ego-network size) of their 

collaborative behavior. Integrators often exist within a single knowledge area and 

maintain strong collaborations with actors in that same area, actors who are often 

connected with each other.  Normally, integrators occupy a central position in their firm’s 

network. Although we have extensive evidence for the link between an individual’s 

central position and that individual’s performance outcomes, we have a limited 

understanding of the role of such individuals for network-level outcomes. Similarly to 

connectors, integrators can affect their firm’s exploratory output in three different ways. 

First, integrators through knowledge inflows have the capacity to observe a large 

number of other actors, understand ‘who knows what’ (Borgatti and Cross, 2003), and 

follow the most promising local recombinations. Therefore, they are better equipped to 

identify novel recombinations themselves. Second, through knowledge outflows they 

have the capacity to effectuate diffusion of the updated knowledge base and initiate 

further cycles of knowledge exploration by a large number of immediate peers. Third, 

they can simply point to potential recombinations that can be implemented by others 

because of their extensive knowledge of different knowledge sources. Again, it is 

important to underline that integrators are defined as outliers when compared with actors 

across competing organizations. Outliers have an advantage in this respect because every 
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additional tie has an exponential effect on the number of potential recombinations. For all 

these reasons, I hypothesize that,  

Hypothesis 2. Ceteris paribus, an incumbent’s exploratory output is a positive function of 

the number of integrators in its network. 

It is useful to clarify here that the two types of relational stars (connectors and 

integrators) are not simply proxies for firm-level network structures. Essentially, the 

difference is between comparing means of a distribution and comparing variances. While 

firm-level structure variables capture the network’s average cohesion, individual level 

positional metrics capture the relevant outliers. For example, it is quite possible that a 

firm’s network is above average in terms of cohesion and connectedness without having a 

single integrator-outlier. It is also quite possible that two networks of similar 

connectedness include quite different numbers of outliers. I argue here that capturing the 

variance of the distribution and therefore, identifying the individuals-outliers is important 

and necessary to understand the phenomenon-outcome; as I mentioned earlier, these 

outliers enjoy disproportionate recombinant advantages as every additional tie results in 

an exponential increase in the number of potential recombinations.  

 

3.3.3. Exploitative Output 

Before proceeding with the discussion of how an incumbent utilizes the radically new 

knowledge coming from exploratory output, I first identify the individual actors 

important for the execution of the incumbent’s normal progress of incremental learning 

and exploitative output (Dosi, 1988). Incremental learning more likely happens within the 
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various knowledge sub-networks present in an incumbent’s internal network.  Focused 

individuals work within knowledge areas to generate improvements for the firm’s 

existing portfolio of knowledge. Exploitation is at opposite end of the learning continuum 

when compared to exploration. Therefore, the core idea is this: if exploration is driven by 

individuals with extreme patterns of collaborative behavior and extensive knowledge 

recombination, then we should expect that exploitation is driven by individuals who 

exhibit the opposite behavior, that is, individuals who produce new knowledge without 

sourcing and recombining knowledge from many sources. 

The process of incremental learning, especially within knowledge sub-networks, 

can be viewed as a pursuit for local optima (Gavetti and Levinthal, 2000). Local optima 

are more likely to be found by individuals concentrated on a narrow set of knowledge 

resources. Therefore, for exploitative output to occur, certain individuals should 

specialize in a narrow knowledge area and generate knowledge that expands in depth 

rather than in breadth. Such actors should remain relatively unconnected from the rest of 

the knowledge network to avoid overembeddedness and the ‘risk’ of social capital (Adler 

and Kwon, 2002). Actors remaining uncoupled from an organization’s network have 

been characterized as “isolates” (Tichy et al., 1979). Some of those individuals manage to 

be particularly productive despite (or even because of) their focus on a certain knowledge 

field and their lack of connectedness with the internal knowledge network. Building on 

this idea, I define here productive isolates as the actors who generate knowledge relevant 

for one or more knowledge clusters while remaining almost unconnected from the actors 

in those sub-networks. Therefore, to identify actors who should drive exploitation, I look 

beyond isolation at the individuals who can be productive while isolated. As a result, 
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such individuals can supply incrementally improved new knowledge stocks at a high rate. 

Productive isolates improve relatively familiar knowledge within certain knowledge areas 

usually though a process of individual specialization in narrow knowledge fields and 

without collaborating and recombining knowledge. In addition, such isolates produce 

knowledge but remain unaffected by the knowledge directions of the knowledge network 

thus having the capacity to provide it with additional insights and in-depth incrementally 

improved knowledge. As a result, they become significant drivers of their organization’s 

exploitative output. 

Hypothesis 3. Ceteris paribus, an incumbent’s exploitative output is a positive function of 

the number of productive isolates in its network.   

 

3.3.4. Ambidextrous Output 

Radically new knowledge should find its way to the existing knowledge base in order to 

result in the incumbent’s effective strategic renewal. The overall process is similar to 

what has been labeled as transformative learning (Lane et al., 2006) where the main 

objective is assimilation of valuable external knowledge. The difference is that in my 

model the radically new knowledge stocks that need to be assimilated may also be 

internally sourced. In any case, the organization has a certain number of dissimilar 

knowledge stocks from exploratory output that need to be integrated into its knowledge 

base. There are two main coordination challenges in the process of linking radically new 

with existing knowledge. First, the firm must select among the various new knowledge 

stocks the most promising pieces and the ones that are consistent with the organization’s 

strategic objectives. The incumbent is bounded by limited resource availability and 
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cannot follow every potential trajectory implied by newly acquired knowledge. The 

selection process is of critical importance for strategic renewal and it is not a task which 

happens automatically; rather, carefully designed mechanisms are necessary for its 

implementation (Brown and Eisenhardt, 1997; Fleming, 2002). Knowledge selection is 

hampered by the limited ability of actors other than the original source of the new 

knowledge to determine its potential or fit. In addition, successful selection is further 

obstructed by internal interpretative barriers; ambitious innovators generate new 

knowledge which is often faced with illegitimacy because of the presence of internal 

heterogeneous and often inconsistent ‘thought worlds’ (Dougherty, 1992; Dougherty and 

Hardy, 1996). Therefore, it is critical that the task of selection is assigned to actors as 

close as possible to the source of radically new knowledge. 

The second challenge is the rapid transfer of selected new knowledge throughout 

the organization to initiate the combination process which will eventually result in the 

transformation of the knowledge into innovations. This is not an automatic process either; 

it is very difficult to effectively transfer knowledge to individuals who are distant from 

the original point of knowledge entry (Cohen and Levinthal, 1990), mainly because 

transfer of complex knowledge requires very strong ties (Hansen, 1999). Scientific ideas 

and technological knowledge have very conflicting selection logics (Gittelman and 

Kogut, 2003) and novel recombinations appear to be very difficult to diffuse (Fleming et 

al., 2007). These two characteristics make it even harder to transfer and transform new 

knowledge into marketable output. Therefore, it is necessary for any new knowledge 

stock to travel the minimum possible distance within the organization until it is integrated 

into the existing knowledge base. 
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It follows from the previous discussion that radically new knowledge stocks from 

exploratory output should be tested for selection by actors as close as possible to the 

original source of generated knowledge and that selected knowledge should be then 

diffused through the shortest path available. Otherwise, lack of full understanding of the 

new piece of knowledge will undermine both the assessment of its potential for selection 

and its effective transfer. Therefore, ideally an incumbent should rely on the same 

individual who produced the knowledge to make a judgment about its potential value and 

in turn, diffuse it using the shortest path.  

Fortunately, individuals have a characteristic that makes them a special resource: 

individuals are pretty flexible. Unlike other resources that can be deployed only towards 

one type of activity at a time, individuals may be able to be good at both exploration and 

exploitation. As a result, structural separation between exploratory and exploitative 

activities may not be necessary at the individual level of analysis. This is actually 

possible as I earlier conceptualized the internal environment as one which provides 

freedom to individuals to make their own decisions between radical and incremental 

learning. Evidence suggests that such environments exist in real organizations (Adler et 

al., 1999; Gibson and Birkinshaw, 2004). In addition, that would require individuals with 

capacities to both generate radically new knowledge and incrementally improve existing 

knowledge. Extensive evidence suggests that such individuals also exist: there are 

individuals who contribute to both science and innovation (Gittelman and Kogut, 2003), 

authors-inventors who bridge the boundaries between the scientific and the technological 

domain (Breschi and Catalini, 2010), industrial scientists with revealed preference to both 

publish and patent (Sauermann and Cohen, 2008), and workers contributing to both 
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routine and non-routine tasks (Adler et al., 1999). 

Building on this logic, there seem to be two different ‘qualities’ that individuals 

can possess. The first implies the capacity to generate radically new knowledge towards 

exploration and the second implies the capacity to incrementally improve knowledge 

towards exploitative output. Therefore, I define ambidextrous individuals as the 

individuals with the ability to possess both types of ‘qualities’. These individuals can 

generate radical knowledge, assess its potential and fit with the incumbent’s strategic 

objectives (they fully understand it as they are the original source), select the relevant 

knowledge to be integrated into the existing knowledge base, and transfer it both 

effectively (without loss of information) and rapidly (through the shortest available path). 

In essence, these individuals participate in both exploration and exploitation. Hence, 

incumbents possessing such individuals are in the ideal position to achieve unobstructed 

implementation of the selection – transfer process. Ambidextrous individuals facilitate 

the incumbent’s efforts to infuse the existing knowledge base with knowledge coming 

from exploration. Therefore, the outcome is an updated knowledge base consisting of 

radically new plus existing knowledge stocks, i.e. a more balanced ambidextrous output. 

Hypothesis 4. Ceteris paribus, an incumbent’s ambidextrous output is a positive function 

of the number of individuals in its network who excel at both exploration and 

exploitation. 

Alternatively, effective selection and transfer of generated discontinuous knowledge can 

also happen with the presence of strong collaborative ties between actors with the 

‘quality’ to explore and actors with the ‘quality’ to exploit. Such ties would reflect a level 
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of connectedness between the source of the radical knowledge and the individuals 

responsible for its rapid attachment to the incumbent’s existing knowledge base. 

Research suggests that links between the unit of radical learning and the unit of its 

application are critical for the incumbent’s effort to align adaptability with efficiency and 

achieve ambidexterity (Hill and Rothaermel, 2003; Jansen et al., 2009; Raisch et al., 

2009). In terms of selection, the process remains largely unaffected compared to the 

presence of an ambidextrous individual, because it still involves the origins of the 

discontinuous knowledge in the selection decision. Understanding of the knowledge 

components and informed selection is likely to take place. However, in terms of transfer 

effectiveness this approach entails at least one additional step of knowledge transfer. 

Therefore, some loss of information is expected and the transfer is at least sub-optimal. 

On the other hand, because of the fact that ambidextrous individuals may be quite rare, 

we should still expect ties between actors of complementary ‘qualities’ to strongly benefit 

the incumbent’s selection-transfer process and subsequently result in successful renewal 

of the knowledge base. When exploration stars work together with exploitation stars, 

selection and transfer of radically new knowledge into the knowledge refinement process 

becomes easier and results in a new balanced knowledge base. 

Hypothesis 5. Ceteris paribus, an incumbent’s ambidextrous output is a positive function 

of the level of connectedness between actors responsible for exploration and actors 

responsible for exploitation.  
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Figure 3.1. The proposed model of strategic renewal. 

 

Figure 1 summarizes my conceptual model. Area A is a random snapshot of an 

incumbent firm’s internal knowledge network for illustration purposes. Area B is a 

snapshot of the process of generating exploratory output, where connectors and 

integrators explore through distant and local knowledge recombination. Their position in 

the internal network reflects their role. Area D is a snapshot of the process of generating 

exploitative output. Productive isolates within knowledge clusters specialize and remain 

unconnected thus building on existing knowledge paths and generating exploitative 

output. Finally, Area C depicts the process of linking knowledge coming from 
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exploratory output into the incumbent’s existing knowledge base. If selection and transfer 

occur effectively, then a balanced ambidextrous output will be positive affected. 

Effective selection and transfer, in turn, may happen if the incumbent possesses either 

individuals who excel at both exploration and exploitation or a certain level of 

connectedness between individuals exploring and individuals exploiting. 

 

3.4. Methods 

To test the developed hypotheses, I followed a longitudinal research design in the global 

pharmaceutical industry. Pharmaceutical firms have followed a number of alternative 

strategies to remain innovative; they took on alliances, acquisitions, heavy investment in 

internal research, and in human capital to build or maintain innovative capabilities 

(Rothaermel and Hess, 2007). Therefore, the pharmaceutical industry is an ideal setting 

for this paper to explore for the role of relational stars in driving learning above and 

beyond the mentioned innovation levers. My observation period is from 1974 to 1998. 

My sample consists of 106 pharmaceutical firms that were active in the production of 

human in-vivo therapeutics and were founded before 1974. This sample is largely 

representative of the overall industry as it accounts for the vast majority of global sales of 

pharmaceutical products. I tracked these 106 firms forward until 1998.  

I constructed the key dependent and independent variables relying on patents 

granted to these firms by the USPTO. The pharmaceutical industry is the industry which 

relies most on patents when it comes to intellectual property protection compared to all 

other manufacturing industries (Cohen, Nelson, Walsh, 2000). I used the NBER patent 

data file (Hall, Jaffe, and Trajtenberg, 2001) to create a full patent portfolio for each one 
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of my firms from 1974 to 1998. Many firms in my sample are dedicated pharmaceutical 

firms. However, there are many diversified conglomerates that are also active in other 

industries. I argue that knowledge possessed by inventors in unrelated industries has little 

to do with my knowledge-based arguments. Therefore, I sampled on the resulting patent 

portfolio for every firm and I relied on information from technology classes to keep only 

patents that are assigned to classes with a clear chemistry or biology component and thus 

are more likely to be related to the technologies underlying human therapeutics. 

 

3.4.1. Dependent Variables 

Exploratory Output. The dependent variable for hypotheses H1 and H2 is exploratory 

output. I made an effort to capture a pharmaceutical firm’s exploratory output as 

accurately as possible by relying on three alternative fine-grained measures, which I 

report as Exploration_1, Exploration_2, and Exploration_3, respectively in the result 

tables. First, I capture exploratory output by counting the number of the firm’s patents in 

any single year that have zero self-citations. The idea is that if a new patent does not cite 

knowledge already held by the organization, it is reasonably new to be characterized as 

exploration. Second, I make my criteria much stricter and I keep only patents that have 

zero self-citations but at the same time are at the top of the originality distribution and 

cite a very small number of other patents in general. The originality measure has been 

developed by Hall et al. to capture patents that rely on novel combinations of 

technological fields and are therefore, original. In addition, I employed the number of 

citations to all other patents (not only self-citations) to argue that patents with only a few 

citations must be more novel than others. In this way, I also captured knowledge stocks 
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that are new to the industry as a whole and not only to the firm. In the third measure of 

exploratory output, I relax the citation criterion and define exploratory output as the 

patents that have zero self-citations and are above average in terms of originality. In this 

way, I capture knowledge stocks that not only new to the firm but also rely on a novel 

and original recombination of previously-help knowledge stocks. 

Exploitative Output. The dependent variable for hypothesis H3 is exploitative output. 

Again, to be as accurate as possible, I measured exploitative output using three different 

measures that are the mirror images of the ones used for exploratory output. 

Exploitation_1 includes patents that contain only self-citations. In other words, these new 

knowledge stocks build exclusively on knowledge already held by the organization and 

therefore, are just incremental improvements of existing knowledge stocks. 

Exploitation_2 includes patents that contain only self-citations and are at the same time 

below average in terms of originality. Exploitation_3 captures patents that have some 

self-citations (not exclusively though) and are again below average in terms of 

originality. The idea is that when a new patent has a number of self-citations and is not 

very original, it is reasonable to assume that it constitutes new knowledge that is an 

incremental improvement over existing knowledge stocks of the firm.  

Middle Output. What I eventually do for every firm’s patent portfolio, is that I build a 

continuum from exploration to exploitation and every patent falls at different points of 

the continuum based on the patent’s self-citations, all backward citations, and originality. 

Then, I characterize as exploratory output the patents that are close to the exploration end 

of the continuum and as exploitative output the patents that are close to the exploitation 

end of the continuum. This process essentially leaves a number of patents in the middle; 
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although I have not hypothesized any effects of relational stars on these middle-level 

outcomes, I still include them in the analysis to uncover some interesting patterns in the 

results.  

Ambidextrous Output. The dependent variable for hypotheses H4 and H5 is ambidextrous 

output. I capture this by taking the product between exploratory output and exploitative 

output. I report the results for ambidextrous output as the product between Exploration_3 

and Exploitation_3 as these are the two measures on which I have the highest confidence 

because they are neither too lenient nor too strict and still include a meaningful number 

of patents to make the analysis possible. However, results for the other two measures of 

ambidexterity remain robust. 

 

3.4.2. Intrafirm collaborative networks and independent variables 

To identify relational stars, isolates, ambidextrous individuals, and connectedness 

between exploration and exploitation, I developed intrafirm co-inventing networks for 

each firm from 1974 to 1998. First, I relied on the NBER database inventor file to find all 

the individual inventors listed in each firm’s patent portfolio. I assigned a unique ID to 

each individual inventor based on a combination of last name, first name, and middle 

name. When there was still a conflict, I used information on city and state of residence to 

separate inventors. Second, I used UCINET 6 to develop intrafirm collaboration networks 

based on co-patenting events. Nodes of the networks were individual inventors and ties 

were co-patenting events. Third, I developed the knowledge networks using a five-year 

rolling window (e.g. 1982-1986 values to 1986, 83-87 values to 87, etc.). The idea there 

is that knowledge flows occurring through a tie that is older than five years becomes 



 

 

 

80 

 

obsolete and therefore, needs to be excluded. As a result, to build networks and define 

individual positions in a firm’s knowledge network in year t, I used information on 

patenting events that occurred in years t, t-1, t-2, t-3, and t-4. Finally, I analyzed the 

resulting networks and kept information related to each individual inventor’s ego-

network (i.e. size, density, brokerage, etc.) to define the individual roles. I also kept 

information about the number of patents associated with each individual in the same five-

year time window. Then, I developed three variables at the inventor level: 

Integrator. This is an indicator variable with a value one if the inventor’ direct 

collaborative ties are two standard deviations more than the mean number of direct ties of 

all inventors of all firms during the same 5-year window and the inventor has more than 

two patents in the same period (to avoid one-time inventors that contribute little to their 

firm). Therefore, I captured inventors with a great number of alters as collaborators.  

Connector. In the theoretical part of the paper, I emphasized that connectors are not only 

knowledge brokers in terms of spanning many structural holes, but they are also 

individuals who connect distant clusters of knowledge and therefore have access to a 

large share of their firm’s collaborative network. Therefore, to capture connectors I relied 

on a combination of two network metrics. First, I selected inventors with more than two 

patents and more than the mean number of collaborative ties in the firm’s network. In this 

way, I retained only inventors who were not one-time inventors and who had enough ties 

to have a meaningful connecting impact. Second, I kept inventors whose ego-network 

density was low (less than one third). Hence, I sampled on inventors who span structural 

holes; this cutoff point suggests that existing ties among a connector’s alters were less 

than one third of all potential ties among them. Third, among the remaining inventors, I 
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characterized as connectors those whose two-step reach in the network was higher than 

the mean. Therefore, among the inventors who spanned structural holes, I selected those 

whose ties allowed them to reach a larger share of the firm’s internal collaborative 

network. The two step reach measure captures the percentage of the network’s nodes that 

a node has access to through its direct and indirect ties. Hence, I combined density with 

reach in order to identify inventors who span structural holes and at the same time have 

access to a broader share of the network. 

Productive Isolate. This is an indicator variable with a value one if the inventor has 

patents that are three standard deviations above the mean number of patents of all 

inventors with fewer than three collaborative ties during the same five-year window. I 

chose to accept this low level of connections for isolates to support my claim that they 

have an opportunity to somehow affect the knowledge directions of their organization. 

However, having two or fewer ties still makes these inventors relatively isolated from 

their firm’s network. At the same time, isolates are the most productive inventors among 

those with a small number of collaborative ties.  

Using these indicator variables at the inventor level, I developed the independent 

variables at the firm level using counts of integrators, connectors, and productive isolates 

that each firm possesses in each year from 1974 to 1998 to test hypotheses H1-H3 (again 

counts from time window 74-78 go to 1978, counts from 75-79 go to 79, etc.). 

For hypotheses H4 and H5, I first identified inventors who were really good at 

exploration and inventors who were really good at exploitation. I characterized as 

exploration stars the top 10% of inventors in terms of exploratory output (their name was 
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associated with exploration patents as measured using the three alternative measures of 

exploration), and I defined as exploitation stars the top 10% of inventors in terms of 

exploitative output within the same five-year time window among all individuals from all 

firms. Then, in order to test H4, I captured ambidextrous individuals as the inventors who 

were at the same time exploration and exploitation stars within the same five-year time 

window.  

For H5, I used two alternative measures. First, I counted the number of ties 

between exploration and exploitation stars to measure the mere number of pathways from 

exploration to exploitation through collaboration between the relevant inventors. Second, 

I divided this count by the number of potential ties (defined as the product of exploration 

stars times exploitation stars). This resulted in the creation of a connectedness score 

between exploration and exploitation for each firm for each five-year time window, a 

score which was independent from the mere number of exploration and exploitation stars 

in its network and captured only how connected are the firm’s exploratory and 

exploitative activities.  

 

3.4.3. Control Variables 

I included a series of control variables to control for other factors that have shown to 

affect a firm’s exploratory or exploitative output. First, in every model I included the 

dependent variable lagged as a right hand side variable to make a very conservative test 

of my hypotheses, address any remaining endogeneity concerns, and possibly control for 

a specification bias. For hypotheses H1-H2, I controlled for merged firms (merged), EU 
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or US firms, and dedicated pharmaceuticals (pharma). I also controlled for innovative 

performance (totalpatents), exploration alliances, and acquisitions.  I included in my 

models the number of star inventors (stars) that each firm possesses. I followed prior 

research and defined stars based on their well above average productivity. More 

importantly, I controlled for the number of inventors in the firm’s network (inventors) 

which is arguably one of the main drivers of the development of integrators, connectors, 

and isolates. Hence, by controlling for network size I was able to run very conservative 

tests for my hypotheses as I was able to show that integrators, connectors, and isolates all 

affect output above and beyond any effect of the overall network size. By including 

network size which is the number of inventors in every five-year window, I also 

controlled for the size of each firm and I had a fine-grained measure of research 

investment in inventive activities. For H3, I controlled for exploitation alliances instead 

of exploration alliances. In addition to the previously mentioned controls, for H4 and H5 

I also included a series of controls that capture every firm’s exploratory and exploitative 

capacity (both stars and output). As a result, I am able to show that my results regarding 

the effect of micro-level coordinating mechanisms on ambidextrous output hold above 

and beyond any effect coming from the respective levels and capacities for exploratory 

and exploitative output independently. 

 

3.4.4. Estimation 

Dependent variables (exploratory, exploitative, ambidextrous outputs) are all nonnegative 

overdispersed count variables. Therefore, I used negative binomial estimation with 

bootstrapped standard errors. I chose the fixed-effects version to control for remaining 
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unobserved interfirm heterogeneity. Overall, I included the dependent variable lagged as 

a control, and I constructed the independent variables using 5-year rolling windows. 

Therefore, along with the rich set of control variables I believe that I did my best to 

address any remaining endogeneity concerns (Hamilton and Nickerson, 2003).  

 

3.5. Results 

Table 3.1 depicts descriptive statistics and bivariate correlations for the variables at the 

firm level. All directions of correlations appear as expected. Some correlations between 

individual roles are slightly elevated. Therefore, I also submit the correlation table at the 

individual level (Table 3.2) to provide further insights on the data. For the 457,859 

individual-level observations, correlations among the key independent variables are very 

close to zero showing that the different individual types capture strongly different 

individual roles in a firm’s network. The only correlation that is elevated is the one 

between stars and ambidextrous stars (0.51). This is not particularly surprising 

considering the fact that ambidextrous stars need to have many associated patents 

assigned to their name in order to have both many exploration and exploitation patents. 

Table 3.2 Descriptive Statistics – Correlation Matrix at the Individual Level

 

Mean S.D. 1 2 3 4

1 Star 0.018 0.135

2 Integrator 0.012 0.107 -0.01

3 Connector 0.010 0.101 -0.01 -0.01

4 Isolate 0.009 0.096 0.04 -0.01 -0.01

5 Ambidextrous Star 0.030 0.170 0.51 0.12 0.07 0.07

Table 2

Descriptive Statistics - Correlation Matrix At the Individual Level

Note: N = 457859 individual-level observations
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Table 3.3 Descriptive Statistics – Individual Roles

 

Table 3.3 depicts further descriptive statistics on the different individual roles. 

There are several observations from this table that are worth mentioning. First, it is useful 

to compare integrators and connectors. Integrators have more than double the number of 

ties, much higher ego-network density, and broader reach when compared to connectors. 

Connectors are indeed collaborating across clusters as indicated by the higher number of 

different components that they link and have a higher brokerage metric. Both types of 

relational stars show similar levels of productivity but nevertheless, their productivity is 

much lower than the one of star inventors. This is evidence against the idea that perhaps 

integrators and connectors occupy their network position because they are simply listed 

in many patents. Instead, it seems that it is their collaborative behavior, i.e. not their 

productivity, that makes them a special resource. Second, isolates have, as expected, very 

low levels of collaboration, reach, and brokerage and are as productive as the relational 

stars. Third, ambidextrous stars exhibit collaborative behavior that would put them 

between integrators and connectors but have slightly higher productivity levels. Finally, 

Star Integrators Connector Isolate Ambidextrous Star

Observations 8462 5331 4679 4257 14070

Ties 17.48 22.10 10.60 1.45 13.69

Ego-network density 34.42 39.59 26.23 53.39 39.20

No. of components 1.96 1.53 2.61 1.10 1.86

2-step reach 12.45 26.16 12.53 1.62 10.51

Nbroker 0.33 0.30 0.37 0.16 0.30

No. of patents 23.25 8.18 7.06 8.53 12.30

Unique inventors 1962 1690 1827 1565 3436

Average years in role 4.31 3.27 2.56 2.72 4.09

Percent consecutive years 96.60% 92.10% 90.80% 95.50% 96.50%

Table 3

Descriptive Statistics - Individual Roles - Mean Values
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the last three rows of the table provide additional important information. Individuals 

occupy their respective roles for 3-4 years on average and the vast majority of 

observations is on consecutive years. Therefore, individuals reach outlier status for a few 

years only (i.e. there are no stable outliers throughout the years) and when they do once, 

they generally don’t get it back after losing it.  

Table 3.4 depicts the results predicting exploratory output. Models 1, 2, and 3 

present the results for the three different measures of exploratory output. I find strong 

support for the role of connectors (H1). Connectors are positive and significant drivers of 

exploratory output in all models (p<.05 - Models 2-3, p<.01 – Model 1). I also find strong 

support for the role of integrators (H2). Integrators are positive and significant drivers of 

exploratory output in all models (p<.01 – Models 1-3). On the other hand, isolates are 

significant drivers only for one measure of exploratory output (p<.05 – Model 3). 

Interestingly, star inventors appear significantly negative drivers of exploratory output in 

all three models. 

Table 3.5 depicts the results predicting exploitative output. Models 1, 2, and 3 

present the results for the three different measures of exploitative output. I find strong 

support for the role of productive isolates (H3). Productive isolates are positive and 

statistically significant drivers of exploitative output for all three different measures of 

such output (p<.05 - Models 1,3; p<.1 – Model 2). On the other hand, integrators and 

connectors have no significant effects on exploitation.  
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Table 3.4 Exploratory Output

 

Table 3.6  (in the Appendix) presents the results predicting middle output: output 

that is neither exploratory not exploitative but rather falls in the middle of the learning 

continuum. I find that connectors are also significant predictors of middle output for all 

three different measures, integrators are significant predictors for two of them, and 

isolates only for one of them. 

Overall, Tables 3.4-3.6 provide strong support for hypotheses H1-H3 and suggest 

a very interesting pattern of results: in general, integrators and connectors appear to drive 

exploration and isolates appear to positively affect exploitation. As patterns of individual 

Table 4 - Results of Fixed- Effects Negative Binomial Predicting Exploratory Output w/ Bootstrapped Std. Errors

Year Effects Incl. Incl. Incl.

DV Lagged 0.002 0.001 *** 0.013 0.003 *** 0.001 0.002

Merged -0.041 0.073 0.093 0.079 -0.057 0.073

EU -0.707 0.665 -0.403 0.844 -0.747 0.669

US 0.473 0.578 -0.720 0.795 0.342 0.621

Pharma -0.042 0.392 -0.191 0.624 -0.448 0.633

Total Patents 0.007 0.001 *** 0.006 0.001 *** 0.007 0.001 ***

Exploration Alliances 0.003 0.010 0.006 0.014 0.001 0.009

Acquisitions -0.021 0.020 -0.031 0.023 * -0.028 0.018 *

Inventors -4.6E-04 3.3E-04 * 0.000 0.000 -2.8E-04 2.2E-04

Stars -0.010 0.005 ** -0.011 0.006 ** -0.012 0.005 **

Integrators 0.012 0.003 *** 0.014 0.003 *** 0.011 0.003 ***

Connectors 0.013 0.005 *** 0.017 0.010 ** 0.018 0.009 **

Isolates 0.004 0.006 0.009 0.008 0.009 0.005 **

Note: *p<0.1, **p<.05, ***p<.01

N = 1961 / Groups = 104

Model 3

Exploration_3:                             

No Self & Original

Model 1

Exploration_1:                               

No Self Citations

N = 2115 / Groups = 105

Model 2

Exploration_2: No Self & 

Original & Citations

N = 2103 / Groups = 103
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behavior move from extreme collaboration to relative isolation, so do their effects on 

exploratory, on middle, and finally, on exploitative output.  

Table 3.5 Exploitative Output

 

Table 3.7 (in the Appendix) depicts results on the micro-level coordinating 

mechanisms predicting ambidextrous output. In Models 1-3, I include the three 

alternative coordination mechanisms one by one. In Model 5, I include the squared terms 

of the three coordination mechanisms to test for non-linear effects and I include all three 

coordination mechanisms together. In Model 4, I exclude some independent variables 

that are highly correlated with some independent variables. I find strong support for 

Year Effects Incl. Incl. Incl.

DV Lagged -0.001 0.007 0.009 0.005 ** 0.000 0.001

Merged -0.131 0.129 -0.103 0.099 -0.056 0.089

EU 0.221 2.322 0.161 0.408 -0.032 0.693

US 0.388 0.770 0.457 0.572 0.051 0.622

Pharma -0.360 0.480 -0.430 0.415 -0.561 0.523

Total Patents 0.006 0.001 *** 0.006 0.001 *** 0.006 0.001 ***

Exploitation Alliances 0.007 0.016 0.004 0.019 0.007 0.013

Acquisitions -0.023 0.036 -0.029 0.035 -0.024 0.027

Inventors -3.1E-04 3.6E-04 -6.4E-04 3.3E-04 ** -2.3E-04 2.7E-04

Stars 0.002 0.005 0.002 0.004 -0.003 0.004

Integrators -0.001 0.006 0.001 0.006 0.003 0.004

Connectors 0.004 0.010 0.006 0.010 0.007 0.009

Isolates 0.012 0.006 ** 0.009 0.006 * 0.008 0.005 **

Note: *p<0.1, **p<.05, ***p<.01

N = 1856 / Groups = 97 N = 2015 / Groups = 98 N = 1949 / Groups = 102

Table 5 - Results of Fixed- Effects Negative Binomial Predicting Exploitative Output w/ Bootstrapped Std. Errors

Model 1 Model 2 Model 3

Exploitation_1:                               

All Self Citations

Exploitation_2:                         

All Self & No Original

Exploitation_3:                             

Some Self & No Original
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hypotheses H4 and H5. In all models, the inventors who are at the same time exploration 

and exploitation stars (E-E stars) have a strong positive and significant effect on 

ambidextrous output (p<.01 - Models 1,4,5). Models 4-5 suggest that this effect may in 

fact be better described as an inverted-U relationship. In addition, in all models the 

connectedness score has again a strong positive and significant effect on ambidextrous 

output (p<.05 – Model 3; p<.01 – Models 4-5). Models 4-5 suggest that this effect may 

also be an inverted-U relationship. Somewhat surprisingly, I find a strong negative and 

probably linear effect of the number of ties between exploration and exploitation stars on 

ambidextrous output. I can speculate at this point that a high number of such ties 

indicates extreme separation between the two activity types which seems to be harmful 

for ambidexterity. Instead, as implied by the connectedness results, if the organization 

manages to have some level of connectedness between the two activities it reaps benefits 

of ambidextrous performance. 

 

3.6. Discussion 

I developed herein an evolutionary model of strategic renewal for incumbent firms 

operating in technologically dynamic environments. I conceptualized incumbents as large 

complex organizations with an existing knowledge base which includes a large portfolio 

of known knowledge areas. Within incumbents, individuals are organized around their 

knowledge domains and collaborate with each other to co-create knowledge. Radically 

new knowledge (i.e. exploratory output) presents opportunities for incumbents to renew 

their knowledge base. Instances of exploratory output trigger a cycle of strategic renewal 

defined here as the deliberate effort to develop radically new knowledge aimed at 



 

 

 

90 

 

updating the incumbent’s existing knowledge base. I looked at the internal workings of 

the renewal process and identified three distinct stages: first, the development of radically 

new knowledge stocks; second, the selection of strategically consistent and promising 

discontinuous knowledge stocks that require integration and the transfer of selected 

stocks to the firm’s knowledge network; third, the incremental improvement of existing 

knowledge stocks. These three distinct stages correspond to three broad learning 

categories: exploratory, transformative, and exploitative learning. Relying on this 

evolutionary process of renewal, I applied insights from network and learning theory to 

identify the individuals, who based on their positions in the firm’s internal knowledge 

network, have the capacity to implement the process and facilitate rapid renewal.  

In particular, I emphasized the role of connectors, who bridge internal knowledge 

silos, and the role of integrators, who collaborate with many others internally, in 

facilitating exploration through distant and local knowledge recombinations, respectively. 

In addition, I underlined the necessity for productive isolates, who develop independent 

deep knowledge, when it comes to incremental improvement and exploitation. Finally, I 

emphasized the significance of two alternative micro-level coordinating mechanisms that 

can facilitate the pursuit of organizational ambidexterity. Organizations reap strong 

benefits of ambidexterity when they possess individuals who have the capacity to 

simultaneously explore for and exploit knowledge or when they retain a certain level of 

connectedness between their exploratory and exploitative activities. 

As a result, I make several contributions to the literature. First, I develop a theory 

on some of organizational learning’s individual microfoundations. The current research 

focus on individual productivity may have obscured the importance of other individual 
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skills. Innovation is increasingly a team-based endeavor (Wuchty et al, 2007) and firms 

have structures, processes, and incentives to facilitate knowledge transfer and 

combination. Therefore, a set of collaborative skills as the ones outlined above are 

necessary for individuals in incumbent firms to implement the learning process. This 

view provides a potential explanation for recent findings that non-star scientists fully 

mediate the effect of stars on innovative outcomes (Rothaermel and Hess, 2007) and calls 

for a reexamination of the available incentive structures at firms which are focused 

almost exclusively on performance (Lazear, 1999).  

Second, I underlined the importance of different individual skill-sets at various 

stages of learning (Crossan et al., 1999) and their role as drivers of radical vs. incremental 

learning (Gupta et al., 2006). While connectors and integrators are important for 

exploration, productive isolates are necessary for exploitation.  

Third, I highlighted the role of individual skill-sets in promoting the balance 

between adaptability and efficiency by selecting and transferring discontinuous 

knowledge stocks that deserve internalization. I conceptualized an incumbent’s internal 

environment as a context where individuals have the freedom to judge whether they will 

devote their time to radical or incremental learning (Gibson and Birkinshaw, 2004). 

Building on this logic, I argued for the significance of ambidextrous individuals in 

making the transition from change to continuity as seamless as possible. Prior research 

has focused on the senior management challenges in this process (Andriopoulos and 

Lewis, 2009; Smith and Tushman, 2005; Taylor and Helfat, 2009). Instead, here I 

underlined the role of knowledge-generating individuals (scientists or engineers) on the 

renewal of the incumbent’s knowledge base. In particular, I argued that ambidexterity can 
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result from two individual level mechanisms: first, the possession of actors who can 

simultaneously explore and exploit; second, a level of connectedness between actors 

exploring and actors exploiting.  

Finally, the proposed model has implications for research in social capital, 

networks, and change. Social capital is developed through a number of different social 

relations (Adler and Kwon, 2002). Here, I relied on knowledge co-creation, which is a 

strong form of social capital, to develop a theory of how social capital can create human 

capital (Coleman, 1988). Individuals develop, through their collaborations, skills and 

abilities that are necessary for driving innovation-related organizational outcomes. In 

addition, I illustrated how micro-level network phenomena can translate into macro-level 

outcomes (Brass et al., 2004). Interactions within a firm’s internal knowledge network 

result in the emergence of actors in certain network positions that are highly 

consequential for the performance of the organization as a whole. 

 

3.6.1. Implications and Future Research 

A very promising avenue for future research would be to study the origins of these 

relational stars. In the proposed model, I linked role-sets of relational stars with 

fundamental knowledge processes that result in the incumbent’s strategic renewal. The 

defining characteristic for each role was the pattern of its collaborative behavior within 

the incumbent’s knowledge network. Several important questions remain open: Where do 

these relational stars come from? What can managers do to get them? Star scientists seem 

to be driven by pure individual intellect and are a resource of given and limited supply. 

Therefore, incumbents can either identify them before becoming stars (Makadok, 2001) 
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or just try to hire them away from competition (Gardner, 2005). On the other hand, 

relational stars can be an organizational product. What can incumbents do to internally 

develop relational stars? 

The proposed model has implications for the broader literature on exploration and 

exploitation. I described here collaborative behavior by individuals which largely 

resembles search behavior at the firm-level across domains (Lavie and Rosenkopf, 2006). 

In addition, the model may also explain why some firms fail to benefit from the 

exploration experience (Hoang and Rothaermel, 2010) or why larger firms depend less on 

external knowledge for their innovations (Rothaermel and Deeds, 2004). Future research 

may explore how an individual level view of knowledge search may inform or benefit 

from insights developed in this broader literature. 

 

3.6.2. Implications for Practice 

Finally, the proposed view of strategic renewal has significant implications for managers 

of large incumbent firms in technologically dynamic environments. Received wisdom 

suggests that individual productivity is the main relevant skill for innovation and 

therefore incentive structures are built to maximize effort (Gibbons, 1998; Lazear, 1999). 

The theory developed here suggests that the sole focus on the significance of ‘star 

scientists’ may be misleading for two reasons: first, innovation is a communal endeavor 

and thus collaborative skills are certainly required for effective execution (Wuchty et al., 

2007); second, star scientists are in limited supply and therefore they may be able to 

appropriate all of the value they create, leave the organization and transfer their 

knowledge to competitors (Almeida and Kogut, 1999), or hired away by competitors 
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(Gardner, 2005). As a result, star scientists can only be selected from a given pool and 

there is no straightforward way for managers to internally build them. On the other hand, 

relational stars, or actors whose performance depends on their interactions within the 

organization, can be an organizational product (Groysberg et al., 2008). Therefore, 

managers can design practices, incentives, structures, or strategic actions to internally 

develop individuals who address targeted learning shortcomings of their organization and 

benefit from a set of social and collaborative individual skills that are necessary for the 

effective implementation of the various stages of organizational learning. 
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CHAPTER 3 APPENDIX 

Table 3.1 Correlation Table and Descriptive Statistics 

 

 

 

Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1. Ambidexterity 346.50 1056.77 1.00

2. Exploration_1 28.05 38.04 0.85 1.00

3. Exploration_2 5.00 7.84 0.79 0.88 1.00

4. Exploration_3 10.72 14.93 0.87 0.97 0.89 1.00

5. Exploitation_1 4.97 8.72 0.80 0.81 0.82 0.80 1.00

6. Exploitation_2 4.58 8.03 0.80 0.81 0.83 0.81 0.99 1.00

7. Exploitation_3 11.16 17.84 0.88 0.85 0.78 0.85 0.91 0.90 1.00

8. Total Patents 48.42 68.74 0.89 0.96 0.83 0.95 0.86 0.85 0.94 1.00

9. Merged 0.09 0.28 0.16 0.15 0.14 0.17 0.11 0.10 0.20 0.18 1.00

10. EU 0.30 0.46 0.18 0.24 0.22 0.21 0.12 0.13 0.13 0.18 0.03 1.00

11. US 0.34 0.47 0.06 0.10 0.07 0.14 0.19 0.18 0.21 0.18 0.16 -0.47 1.00

12. Pharma 0.46 0.50 -0.17 -0.26 -0.12 -0.25 -0.14 -0.13 -0.19 -0.26 0.01 0.03 -0.06 1.00

13. Exploration Alliances 0.62 1.43 0.21 0.21 0.21 0.23 0.18 0.18 0.24 0.22 0.24 0.01 0.11 0.02 1.00

14. Exploitation Alliances 0.30 0.93 0.05 0.06 0.08 0.07 0.08 0.08 0.10 0.07 0.14 -0.03 0.08 0.09 0.51 1.00

15. All Alliances 1.40 3.05 0.15 0.16 0.18 0.18 0.16 0.16 0.20 0.18 0.23 -0.02 0.13 0.06 0.87 0.74 1.00

16. Acquisitions 0.20 0.92 0.19 0.16 0.18 0.18 0.16 0.16 0.21 0.18 0.27 0.01 0.12 0.07 0.37 0.17 0.32 1.00

17. Inventors 222.63 274.81 0.81 0.87 0.70 0.87 0.70 0.70 0.85 0.92 0.18 0.18 0.06 -0.30 0.23 0.08 0.19 0.17 1.00

18. Stars 3.98 10.21 0.79 0.69 0.66 0.69 0.69 0.70 0.77 0.74 0.16 0.18 0.02 -0.13 0.21 0.09 0.19 0.17 0.74 1.00

19. Integrators 2.49 7.70 0.47 0.41 0.40 0.40 0.33 0.34 0.40 0.40 0.02 0.16 -0.17 -0.05 0.08 0.03 0.06 0.04 0.49 0.64 1.00

20. Connectors 2.19 4.18 0.43 0.43 0.43 0.41 0.41 0.42 0.46 0.43 0.10 0.09 0.02 -0.09 0.13 0.07 0.13 0.08 0.48 0.64 0.53 1.00

21. Isolates 1.99 3.88 0.47 0.57 0.46 0.58 0.58 0.56 0.64 0.66 0.12 0.07 0.30 -0.16 0.15 0.05 0.12 0.14 0.57 0.34 0.00 0.05 1.00

22. Exploration Stars 23.59 35.27 0.83 0.87 0.80 0.87 0.75 0.75 0.82 0.87 0.16 0.24 0.01 -0.20 0.23 0.08 0.19 0.16 0.90 0.86 0.63 0.59 0.46 1.00

23. Exploitation Stars 24.60 41.99 0.84 0.78 0.72 0.78 0.77 0.77 0.90 0.86 0.20 0.17 0.09 -0.17 0.27 0.12 0.24 0.22 0.89 0.90 0.58 0.60 0.50 0.90 1.00

24. E-E Stars 6.61 14.81 0.80 0.74 0.73 0.74 0.74 0.75 0.80 0.77 0.14 0.22 0.01 -0.12 0.20 0.08 0.18 0.15 0.77 0.95 0.65 0.65 0.36 0.92 0.92 1.00

25. E-E Ties 7.74 20.31 0.64 0.60 0.54 0.59 0.50 0.51 0.60 0.61 0.10 0.21 -0.07 -0.11 0.17 0.05 0.12 0.12 0.68 0.77 0.75 0.55 0.24 0.78 0.76 0.76 1.00

26. E-E Connectedness 0.02 0.10 -0.06 -0.09 -0.07 -0.09 -0.08 -0.07 -0.08 -0.09 -0.05 -0.05 -0.08 0.05 -0.02 -0.02 -0.03 -0.02 -0.08 -0.04 0.12 -0.04 -0.08 -0.05 -0.06 -0.03 0.12

N = 2138 observations

Table 1 - Correlation Table
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Table 3.6 Middle Output 

Year Effects Incl. Incl. Incl.

DV Lagged 0.001 0.003 0.000 0.000 0.001 0.000 *

Merged -0.060 0.081 -0.071 0.054 * -0.084 0.067

EU -0.147 0.642 -0.651 0.505 * -0.639 0.640

US 0.409 0.514 0.577 0.495 0.477 0.521

Pharma -0.249 0.399 -0.205 0.458 -0.147 0.414

Total Patents 0.006 0.001 *** 0.007 0.001 *** 0.007 0.001 ***

All Alliances -0.002 0.004 0.004 0.003 0.002 0.004

Acquisitions -0.013 0.029 -0.013 0.019 -0.018 0.018

Inventors 6.6E-06 2.8E-04 -3.2E-04 2.5E-04 * -2.5E-04 3.1E-04

Stars -0.006 0.003 ** -0.008 0.005 ** -0.009 0.006 *

Integrators 0.003 0.004 0.008 0.002 *** 0.006 0.003 ***

Connectors 0.013 0.008 ** 0.013 0.004 *** 0.014 0.005 ***

Isolates 0.007 0.004 ** 0.005 0.007 0.006 0.006

Note: *p<0.1, **p<.05, ***p<.01

N = 1925 / Groups = 100 N = 2115 / Groups = 105 N = 2115 / Groups = 105

Table 6 - Results of Fixed- Effects Negative Binomial Predicting Middle Output w/ Bootstrapped Std. Errors

Model 1 Model 2 Model 3

Middle_1:                               

All Self Citations

Middle_2:                             

All Self & No Original

Middle_3:                             

Some Self & No Original
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Table 3.7 Ambidextrous Output 

 

Table 7 - Results of Fixed- Effects Negative Binomial Predicting Ambidextrous Output w/ Bootstrapped Std. Errors

Year Effects Incl Incl Incl Incl Incl

DV Lagged -1.1E-05 4.7E-05 -1.6E-05 4.8E-05 -2.1E-05 4.8E-05 1.9E-05 4.4E-05 1.8E-05 4.3E-05

Merged -0.086 0.061 * -0.088 0.061 * -0.082 0.061 * -0.086 0.060 * -0.070 0.061

EU 0.151 0.112 * 0.158 0.111 * 0.168 0.111 * 0.103 0.112 0.099 0.113

US 0.730 0.100 *** 0.728 0.100 *** 0.742 0.100 *** 0.708 0.100 *** 0.713 0.100 ***

Pharma -0.459 0.088 *** -0.440 0.088 *** -0.464 0.088 *** -0.413 0.089 *** -0.422 0.090 ***

Total Patents 0.010 0.000 *** 0.010 0.000 *** 0.010 0.000 *** 0.010 0.000 *** 0.010 0.000 ***

All Alliances -0.001 0.005 -0.002 0.005 0.000 0.005 0.001 0.005 0.001 0.005

Acquisitions -0.067 0.019 *** -0.072 0.019 *** -0.068 0.019 *** -0.045 0.017 *** -0.049 0.018 ***

Inventors -3.9E-04 2.0E-04 ** -4.2E-04 2.0E-04 ** -3.3E-04 1.9E-04 ** -5.5E-04 2.1E-04 ***

Stars -0.017 0.003 *** -0.009 0.002 *** -0.012 0.002 *** -4.2E-04 1.6E-04 *** -0.006 0.003 **

Integrators 0.007 0.003 ** 0.010 0.003 *** 0.008 0.003 ** 0.011 0.003 *** 0.009 0.003 ***

Connectors 0.016 0.004 *** 0.019 0.004 *** 0.020 0.004 *** 0.023 0.004 *** 0.021 0.004 ***

Isolates 0.015 0.003 *** 0.017 0.004 *** 0.015 0.003 *** 0.018 0.003 *** 0.018 0.003 ***

Exploration 0.004 0.003 0.004 0.003 0.004 0.003 0.002 0.003 0.003 0.003

Exploitation -0.002 0.003 -0.002 0.003 -0.001 0.003 -0.001 0.003 -0.002 0.003

ER Stars 0.003 0.001 ** 0.005 0.001 *** 0.004 0.001 *** 0.002 0.002 *

ET Stars 0.001 0.001 0.002 0.001 0.000 0.001 0.001 0.001

E-E Stars 0.007 0.003 *** 0.022 0.004 *** 0.021 0.004 ***

E-E Stars Squared -1.4E-04 1.8E-05 *** -1.2E-04 2.1E-05 ***

E-E Ties -0.003 0.001 *** -0.003 0.002 * -0.004 0.002 **

E-E Ties Squared -6.0E-06 1.1E-05 -2.7E-06 1.1E-05

E-E Connectedness 0.517 0.271 ** 2.145 0.633 *** 2.163 0.638 ***

E-E Conn Squared -2.369 0.935 *** -2.315 0.935 ***

Model 1 Model 2 Model 3

Note: *p<0.1, **p<.05, ***p<.01

N = 1927 / Groups = 101 N = 1927 / Groups = 101 N = 1927 / Groups = 101

Model 4 Model 5

N = 1927 / Groups = 101N = 1927 / Groups = 101
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CHAPTER 4 

ORGANIZING FOR CAPABILITY BUILDING: INTERNAL KNOWLEDGE 

NETWORKS, RECOMBINATIVE POTENTIAL, COORDINATION COSTS, 

AND THE EFFECTIVENESS OF EXTERNAL KNOWLEDGE SOURCING  

 

4.1. Introduction 

Competence-destroying technological change poses significant challenges on an 

industry’s incumbent firms to innovate quickly and adapt to a new technological 

paradigm (Tushman and Anderson, 1986). To respond, incumbents invest in internal 

capability development (Tripsas, 1997), human capital (Zucker and Darby, 1997), 

strategic alliances (Rothaermel, 2001), acquisitions of new entrants (Higgins and 

Rodriguez, 2006), or in combinations of those strategies (Rothaermel and Hess, 2007). 

There is a significant degree of consensus in the strategy literature that successful 

renewal depends on incumbents developing skills in both internal knowledge 

development and external knowledge sourcing (Helfat et al., 2007). The merits of each 

sourcing mode have been widely documented. Yet, we have a limited understanding 

about the conditions that favor one sourcing mode over others. Capron and Mitchell 

(2009) echo this statement when arguing that a firm’s selection capability, defined as the 

ability to select among modes of sourcing, is an underemphasized form of capability. 

Further, Nickerson and Zenger (2004: 1) suggest that ‘the key knowledge-based question 

the manager faces is not how to organize to exploit already developed knowledge or 

capability, but rather how to organize to efficiently generate knowledge and capability’. 

In this study, we aim to contribute to this line of work and examine how the effectiveness 
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of external knowledge sourcing depends on the state of a firm’s internal capabilities in 

developing knowledge in a new technological paradigm.  

Two theories have been applied to explain and predict those knowledge boundary 

choices. On one hand, transaction cost (TC) theory suggests that firms choose by 

comparing the cost between different modes, cost that is largely driven by asset 

specificity and the potential for opportunism (Williamson, 1975; 1985). On the other 

hand, the capabilities-based (CB) view suggests that firms choose based on comparative 

capability considerations, which depend on the complementarity between target-

knowledge and the existing knowledge base (Kogut and Zander, 1992). Despite their 

dominance in the knowledge boundary discussion, both theories have been criticized for 

various shortcomings. Scholars have argued that TC thinking overlooks the internal 

functioning of organizations (Gibbons, 1999), neglects the social aspect of knowledge 

production (Foss, 1999), and underestimates the production costs involved in qualitative 

coordination (Langlois and Foss, 1999). On the other hand, scholars conclude that the CB 

logic, though seemingly more suitable to the question of knowledge sourcing boundaries, 

is still weak as a theory of economic organization because it suffers from a lack of 

agreement on the microfoundations of capabilities (Felin and Foss, 2005), fails to explain 

how transaction costs and capabilities co-evolve to determine boundaries (Jacobides and 

Winter, 2005), and is unable to explain why certain boundary choices persist even after 

the development of internal capabilities (Argyres and Zenger, 2011). To resolve 

empirical puzzles and theoretical challenges, scholars identified potential value in an 

effort to integrate the two competing perspectives and examine capabilities, costs, and 
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boundary choices as intertwined in a dynamic manner (Foss, 1999, Madhok, 2002, 

Jacobides and Winter, 2005). 

In this study, we integrate insights from both theoretical perspectives to predict the 

effectiveness of external knowledge sourcing strategies for incumbent firms trying to 

develop knowledge in a new technological paradigm. We rely on the knowledge 

produced in these firms to capture the state of their internal capabilities. In particular, we 

track the emergent internal inter-personal network of knowledge generation to capture 

internal functioning, knowledge production costs, and emphasize the socially-intensive 

process of knowledge generation. Our core argument is that external knowledge sourcing 

strategies (i.e. alliances or acquisitions) to build new capabilities are less effective for 

firms which already possess high potential for internal knowledge recombination or high 

coordination costs in their knowledge generation process. To proxy for these two 

dimensions of a firm’s state of internal capabilities, we look at the micro-structure of 

their knowledge network and the presence of critical individual roles; more specifically, 

we focus on structures and individuals which have been shown to represent high 

recombinative potential or coordination costs. Therefore, we explicitly look at the 

microfoundations of internal capabilities and we argue that differences across firms in 

these microfoundations are another driver of the effectiveness of external knowledge 

sourcing choices. In addition, we examine the phenomenon using a large multi-firm 

longitudinal sample, we continuously update the internal knowledge network to address 

the co-evolution of capabilities and knowledge sourcing choices, and we explain why 

certain choices persist even after the development of internal capabilities. Overall, we 

take an atomistic knowledge-based view and argue that it is the state of internal 
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capabilities that dictates the effectiveness of external knowledge sourcing for incumbents 

trying to adapt to a changing knowledge paradigm.  

To be sure, this question of complementarity between internal and external 

knowledge sourcing has received some attention in the literature. Research has 

documented that the degree of complementarity depends on intellectual property 

considerations and the basicness of the R&D base (Cassiman and Veugelers, 2006), the 

firms’ absorptive capacity (Cohen and Levinthal, 1990), interactions across levels of 

analysis (Rothaermel and Hess, 2007), capability differences across vertical value chain 

segments (Jacobides, 2008), or the type of experience in different learning stages (Hoang 

and Rothaermel, 2010). The idea that it is differences in internal capabilities that 

essentially drive boundary choices has also been documented before (Jacobides and Hitt, 

2005; Jacobides and Winter, 2005). The novelty in our study results from the application 

of social network theory to develop a fine-grained picture of the state of a firm’s internal 

capabilities, capture potential for knowledge recombination and coordination costs, and 

document the role of the structure of a firm’s internal knowledge network as a driver of 

the effectiveness of that firm’s external knowledge sourcing choices.  

To overshadow our conclusions, we argue that selecting the most efficient way to 

develop new knowledge is a highly consequential strategic capability. Although external 

sourcing using alliances or acquisitions has well-documented independent benefits for 

new knowledge generation, we argue here that it is not as efficient when combined with a 

healthy state of internal capabilities. We test our theoretical framework in the global 

pharmaceutical industry: we track the innovative activities of 106 incumbent firms, in 

their effort to adapt to the biotechnology paradigm, for a period of 25 years (1974-1998). 
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We rely on these firms’ patenting portfolios and individuals inventors to build internal 

networks of biotech knowledge generation. We apply network theory to extract 

information from these networks about the firms’ knowledge recombinative potential, 

coordination costs, and possession of critical individual roles. We predict their capacity to 

develop biotech knowledge by combining external knowledge sourcing with various 

states of internal capabilities. We show that alliances and acquisitions are less effective as 

modes of knowledge generation when the focal firm has an internal knowledge network 

with recombinative potential or high coordination costs and when the focal firm already 

has inventors who exhibit the capacity for effective future knowledge recombination. In 

addition, we uncover interesting differences in these interactions between alliances and 

acquisitions thus confirming the heterogeneity in the nature of knowledge generation 

between these two sourcing modes. We discuss implications of our work for the theories 

on boundary choices for knowledge generation. Finally, we highlight managerial 

implications about the effectiveness of combining knowledge sourcing modes for 

capability development and adaptation. 

 

4.2 Theory and Hypotheses 

One of the most enduring themes in strategy research is the mandate for incumbent 

firms to undertake capability sourcing strategies either internally or externally in the face 

of an environmental discontinuity (Agarwal and Helfat, 2009). A capability to execute 

both modes effectively is necessary especially in today’s science-based business 

environment (Pisano, 2010). For example, internal development of knowledge is 

important either because firms are better at coordinating generation of new knowledge 
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(Grant, 1996) or because they need a certain level of internal understanding to evaluate 

external knowledge opportunities (Cohen and Levinthal, 1990), among other reasons. 

External knowledge sourcing is important to prevent obsolescence and encourage 

acquisition of knowledge that is largely dissimilar to the firm’s existing knowledge base 

(Rosenkopf and Nerkar, 2001), among other reasons.  

One of the questions that has received significant attention is how firms choose their 

knowledge boundaries for new capability development. Scholars have examined the 

relative explanatory power of transaction cost and knowledge-based theories in predicting 

make-or-buy decisions (Poppo and Zenger, 1998). We know that firms may favor 

external sourcing because of a preference for outsiders’ knowledge (Menon and Pfeffer, 

2003), internal social comparison costs (Nickerson and Zenger, 2004), or availability of 

knowledge suppliers and an intense competitive environment (White, 2000). Firms may 

choose external sourcing because of dyadic considerations like knowledge fit (Baum, 

Cowan, and Jonard, 2010), status similarity (Chung, Singh, and Lee, 2010), or mutual 

trust through fairness (Arino and Ring, 2010) with potential partners. Firms may also rely 

on external sourcing because of their prominent position in interfirm networks (Gulati, 

1999; Yang, Lin, and Lin, 2010). Alternatively, more atomistic explanations like the 

depth of the firm’s internal knowledge base have also been documented as drivers of the 

internal vs. external sourcing choice (Zhang and Baden-Fuller, 2010). Finally, there is 

also research that attempts to explain the preference for certain external sourcing modes 

over others (e.g. alliances vs. acquisitions) (Hagedoorn and Duysters, 2002; 

Vanhaverbeke, Duysters, and Noorderhaven, 2002).  
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In parallel, several insightful studies have addressed the question of implementation, 

that is, how can firms effectively use different external sourcing modes to build new 

capabilities. For example, research has shown how firms can maximize the effectiveness 

of alliances by altering their intra-alliance value appropriation (Adegbesan and Higgins, 

2011), their scope (Oxley and Sampson, 2004), or their learning objectives (Rothaermel 

and Deeds, 2004). In addition, others have documented how firms can increase the 

benefits of acquisitions by increasing the size of the acquired knowledge base (Ahuja and 

Katila, 2001), by acquiring information about the targets’ R&D activities prior to the 

acquisition (Higgins and Rodriguez, 2006), by relying on complementary knowledge 

(Makri, Hitt, and Lane, 2010), or by altering the level of post-acquisition integration 

(Puranam, Singh, and Chaudhuri, 2009). Finally, we know how firms can make 

contracting more effective through repeated exchange and learning (Mayer and Argyres, 

2004; Argyres, Bercovitz, and Mayer, 2007). Overall, research has resulted in an 

understanding of the factors that drive knowledge boundary choices and of the levers that 

can increase the effectiveness of various knowledge sourcing initiatives. 

However, there is mounting evidence that firms increasingly rely on a combination of 

internal and external sourcing (Parmigiani, 2007). Beyond understanding how firms 

choose their knowledge boundaries and examining ways to increase the effectiveness of 

independent knowledge sourcing strategies, we also need to investigate the conditions 

that make certain sourcing modes more appropriate than others when combined with the 

firm’s existing stock of capabilities. Recently, Capron and Mitchell (2009) echo this 

statement and they argue that a firm’s ability to select the right mode of capability 

sourcing under different circumstances is a capability that remains underemphasized. 
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This is where our study aims to provide a contribution. We rely on an atomistic 

knowledge-based conceptualization of the firm and its knowledge-sourcing choices. We 

observe that firms, following internal knowledge development or previous external 

knowledge sourcing choices, find themselves endowed with a certain level of internal 

capabilities for knowledge generation. We argue that it is the state of these internal 

capabilities that dictates the effectiveness of alternative external knowledge sourcing 

modes. Importantly, by choosing this atomistic view, we do not reject the importance of 

the aforementioned dyadic or network views; instead, we believe that the atomistic view 

suits our objective, which is to emphasize the selection issue: when firms possess certain 

internal capabilities, simply selecting external knowledge sourcing may be more or less 

appropriate for new capability building.  

Essentially, we attempt to address the question of organizational design for capability 

building (Madhok, 2002). Differences in capabilities determine boundaries (Jacobides 

and Hitt, 2005) and boundary choices in turn, affect the capability building process 

(Jacobides and Winter, 2005). There is evidence that this co-evolution of boundaries and 

capabilities when firms choose their vertical scope affects their prospects for capability 

building (Jacobides and Billinger, 2006). Here, we focus on a similar interaction between 

capabilities and knowledge sourcing choices when firms choose their knowledge scope. 

We track a firm’s constantly updating internal knowledge base and we argue that the 

effectiveness of external knowledge sourcing depends on attributes of that firm’s 

knowledge base: more specifically, the firm’s capacity for internal knowledge 

recombinative potential and the associated coordination costs. We suggest that external 

sourcing is less effective when the firm has internally the capacity for future knowledge 
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recombination and/or when the firm’s knowledge generation process is characterized by a 

high level of coordination costs. This is similar to what Williamson (1991) described as 

first-order economizing, that is, efficiently organizing for effective adaptation.  

Arguably, this is also related to the question of complementarity between internal and 

external capability sourcing. Despite a lack of emphasis on this problem, we do have 

evidence about factors that affect the degree of complementarity: the basicness of R&D 

and intellectual property considerations (Cassiman and Veugelers, 2006), careful 

orchestration of innovation strategies across levels of analysis (Rothaermel and Hess, 

2007), or across structural and functional domains (Lavie and Rosenkopf, 2006). In 

addition, there are also two insightful studies that are much closer to our paper in that the 

authors explicitly examine the effectiveness of external knowledge sourcing under 

various internal organization conditions. Nickerson and Zenger (2004) argue that is the 

problem type (e.g. its level of decomposability) that dictates the efficiency of alternative 

knowledge sourcing strategies. Capron and Mitchell show that the effectiveness of 

external renewal modes in building new capabilities depends on the size of the capability 

gap between current and needed capabilities and on the level of internal constraints that 

arise for the internal social context. In this study, we highlight the importance of two 

additional internal attributes: the firm’s potential for future knowledge recombination in 

the new knowledge area and the coordination costs associated with its internal knowledge 

generation process. More importantly, our specific contribution is the application of 

social network techniques to capture recombinative potential and coordination costs and 

in turn, show how these two factors drive the effectiveness of external knowledge 

sourcing strategies.  
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There is evidence that one of the first strategies of incumbent firms faced with a 

technological discontinuity is to heavily invest in internal capability development to 

generate knowledge and innovate in the emerging paradigm (Argyres and Liebeskind, 

2002). There is also evidence that knowledge generation has increasingly become a 

communal team-based endeavor (Wuchty, Jones, and Uzzi, 2007). Incumbents design 

structures internally to stimulate knowledge recombination and reconfiguration 

(Henderson and Clark, 1990; Henderson and Cockburn, 1994). In other words, as 

incumbents make an effort to adapt to a changing technological environment and as a 

result of their internal or external sourcing investments, individuals within incumbents 

collaborate to develop new knowledge. At the firm level, this activity of interpersonal 

collaboration results in extensive knowledge networks with the objective of new 

knowledge generation. The nodes of these networks are individuals participating in 

knowledge production and ties between individuals reflect direct collaboration with the 

objective of knowledge co-creation. Research suggests that collaborative ties can be 

viewed as strong ties (Hansen, 1999) that are necessary for potential knowledge 

recombination (Galunic and Rodan, 1998). We examine the structure of these knowledge 

networks to capture the firm’s recombinative potential and level of coordination costs. 

First, a network’s structure is important for the network’s overall knowledge 

performance. A relaxed structure facilitates improvisation (Brown and Eisenhardt, 1997), 

a cohesive structure positively affects individuals’ capacity to transfer knowledge 

(Reagans, Zuckerman, and McEvily, 2004), network heterogeneity drives learning 

(Reagans and Zuckerman, 2001), and network range supports knowledge transfer 

(Reagans and McEvily, 2003). A network which is nearly decomposable, i.e. 
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characterized by cohesive clusters linked with cross-cluster ties, is the most effective for 

generation of useful new knowledge (Yayavaram and Ahuja, 2008). Finally, efficiently 

structured networks perform better in the short run while effectively structured networks 

are more appropriate for long run performance (Lazer and Friedman, 2007). 

Here, we build on this line of work and examine structural attributes of an incumbent 

firm’s knowledge network, attributes which can be linked with the firm’s potential for 

future knowledge recombination. We conceptualize the process of new knowledge 

production as a structural knowledge-based process of recombination of existing 

knowledge stocks (Fleming, 2001). In particular, we focus on two dimensions: the degree 

of the network’s clustering and its average path length. A highly clustered network 

indicates a structure that is abundant with cohesive micro-clusters of knowledge 

production which have been shown to facilitate future knowledge recombination. 

Average path length captures the average distance between any two actors in the network. 

Longer paths indicate a network that is largely heterogeneous, has extensive range, and 

relies on significant breadth of knowledge stocks. Taken together, we argue that if a firm 

has an internal knowledge network with high clustering and average path length then that 

firm has significant potential for internal future knowledge recombination and in turn, 

makes external sourcing strategies less effective for new capability building. External 

sourcing results in infusion of new knowledge (e.g. alliances) or new knowledge-

producing talent (e.g. acquisitions). However, a firm cannot follow every possible 

knowledge trajectory suggested by its internal development process and external 

sourcing. Therefore, we posit that if a firm has internally the potential for new knowledge 

then external sourcing strategies will be less effective for new knowledge development. 
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Hypothesis 1: Under circumstances of a radical technological discontinuity, external 

knowledge sourcing strategies (i.e. alliances or acquisitions) are less effective for 

incumbent firms’ new knowledge development when combined with an internal 

knowledge network that has high knowledge recombinative potential (i.e. high clustering 

and/or high average path length). 

 

While the structure of the knowledge network has been previously used to predict its 

knowledge generation performance, it has not been relied upon to capture the level of 

internal coordination costs. In fact, scholars argue that the importance of coordination 

costs associated with internal knowledge production has generally been neglected by the 

theories of boundary choice (Langlois and Foss, 1999). Yet, Argyres and Silverman 

(2004) find that if a firm has a centralized R&D structure then it generates more 

impactful innovations through a reduction in internal coordination costs. In addition, 

Rawley (2010) documents how increases in internal coordination costs constrain 

economies of scope. We build on these insights and argue that if an incumbent firm 

produces knowledge in an emerging knowledge area with already high internal 

coordination costs, then external knowledge sourcing strategies are likely to be less 

effective for new capability building, because they would simply add to the coordination 

burden. To capture these coordination costs, we rely on two dimensions of the firm’s 

internal knowledge network: the overall density of collaboration and the average number 

of collaborative ties required for a new knowledge stock. The network’s overall density is 

the ratio of total collaborative ties to the number of individuals participating in the 

knowledge production process. Elevated density suggests that the organization faces a 
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significant coordination burden as there are more ties on average for every knowledge-

generating individual. The average number of ties per new knowledge stock, similarly, 

suggests elevated coordination costs as every new knowledge stock requires a higher, on 

average, level of interpersonal collaboration.  

 

Hypothesis 2: Under circumstances of a radical technological discontinuity, external 

knowledge sourcing strategies (i.e. alliances or acquisitions) are less effective for 

incumbent firms’ new knowledge development when combined with an internal 

knowledge network that has high coordination costs (i.e. high density and/or average 

collaborative ties per new knowledge stock). 

 

We now shift our focus away from the structure of the overall firm-level knowledge 

network to identifying specific individuals roles in the network that would indicate the 

presence of internal recombinative potential. We make an effort to identify individuals, 

who based on their extreme collaborative behavior, have the potential for effective future 

knowledge recombination. In essence, we try to identify individuals-outliers in three 

meaningful dimensions of collaborative behavior and argue that firms possessing these 

individuals have better prospects for internal knowledge recombination and therefore, 

will benefit less from external knowledge sourcing. The shift from average firm-level 

network structure serves two objectives: a theoretical and a practical one. On one hand, 

by looking at individuals we examine the realistic locus of knowledge generation which 

is at the individual level of analysis (Felin and Hesterly, 2007). Therefore, we uncover 

the microfoundations of a firm’s internal capabilities not only by looking at firm-level 

network micro-structures but also by searching deeper for specific individual attributes. 
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On the other hand, the practical aspect of this endeavor relates to additional insights that 

can be gained by looking at individuals and goes beyond firm-level averages. This is 

essentially the difference between looking at a distribution’s mean and its variance. Firm-

level network averages correspond to the mean level of recombinative potential and 

coordination costs. Capturing individual outliers allows us to go beyond that and examine 

the variance of these two distributions. It suffices to think that for an individual every 

new additional tie results in an exponential increase in the number of potential 

recombinations that can be identified by that specific individual. We focus on three types 

of such important individual roles. 

First, we look at individuals who drive the formation of clustering; we call them 

integrators to reflect their function of effectively integrating different knowledge stocks. 

Integrators are the actors who have an extraordinarily large and dense network of 

collaborators relative to their peers in every other competing organization. Integrators 

operate as the glue that holds together the dense clusters of interpersonal collaboration. 

We argue that the presence of integrators in a firm’s knowledge network reflects solid 

potential for future knowledge recombination achieved at high levels of coordination 

costs. Through their many collaborative ties, integrators source knowledge from multiple 

sources and therefore have the capacity for identifying promising potential 

recombinations. In addition, they have a broad picture of who knows what and can 

highlight promising avenues for recombination that can then be attained by their alters. 

This view is consistent with evidence that knowledge from central actors in a firm’s 

network is more likely to be found in the firm’s future knowledge capabilities (Nerkar 

and Paruchuri, 2005). 
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Second, we look at individuals who drive distant knowledge recombination; we call 

them connectors to emphasize their capacity to connect disparate pieces of knowledge in 

order to create something new. Connectors are the actors who, through their collaborative 

behavior, span internal structural holes, link previously unconnected knowledge stocks, 

and access diverse and distant clusters of knowledge. We also argue that the presence of 

connectors in a firm’s knowledge network suggests strong potential for future knowledge 

recombination and high coordination costs. Connectors engage in novel knowledge 

recombinations which arguably open up unexplored avenues for further knowledge 

recombination which can be done by them or others in the firm’s network. While not 

necessarily extremely collaborative, connectors do indicate high coordination costs as 

they link dissimilar stocks of knowledge that may belong to different thought worlds. 

This view is also consistent with existing evidence showing that individuals who span 

structural holes develop better ideas (Burt, 2004), are more creative (Fleming, Mingo, 

and Chen, 2007), and perhaps more importantly for our purpose, adapt better to changes 

in their task environment (Gargiulo and Benassi, 2000).  

The third type of individual actors that we focus on is the role played by isolates. 

Isolates are actors who while producing new knowledge for the firm, remain unconnected 

from the firm’s knowledge network. In other words, these individuals produce knowledge 

independently without any collaborative ties. Apparently, isolates are not in a position 

that would allow them to recombine of knowledge stocks sourced from their alters. 

However, their presence in a firm’s knowledge network does suggest the potential for 

future knowledge recombination, albeit with minimum coordination costs. Isolates 

represent sources of new knowledge, as they are somewhat productive, that remain 
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unconnected from the network. Therefore, they reflect the possession of a source of 

knowledge generation which could potentially enter the firm’s recombinatory process at 

any future point time and result in the creation of further avenues for knowledge 

recombination. As a result, these individuals-outliers in terms of a lack of collaborative 

behavior also indicate strong recombinative potential for their firm. Taken together, the 

three types of individuals capture firm-level internal resources with solid potential for 

further knowledge recombination achieved mostly at high coordination costs thus 

negatively affecting the effectiveness of external knowledge sourcing strategies. 

 

Hypothesis 3: Under circumstances of a radical technological discontinuity, external 

knowledge sourcing strategies (i.e. alliances or acquisitions) are less effective for 

incumbent firms’ new knowledge development when combined with an internal 

knowledge network that is rich in individuals with extreme patterns of collaborative 

behavior, patterns which indicate their capacity to provide their firms with high 

recombinative potential and/or coordination costs (i.e. integrators, connectors, and 

isolates). 

 

4.3. Methods 

We test the developed hypotheses in the global pharmaceutical industry. The industry 

experienced a radical competence-destroying technological discontinuity with the 

emergence of biotechnology. Large incumbent pharmaceutical firms faced tremendous 

pressures to adapt to the new technological paradigm because their upstream research 

capabilities were inconsistent with the new technology. Pharmaceutical incumbents 
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invested in internal research, in human capital, in exploitation alliances to exploit their 

existing complementary assets, in exploration alliances to build additional technological 

capabilities, and in acquisitions of smaller biotechnology firms (Pisano, 2006). Therefore, 

we submit that this industry is an ideal setting to test our hypotheses about the interaction 

between external sourcing and internal capabilities. Following investment in internal 

development and/or external knowledge sourcing, pharmaceutical incumbents firms were 

able to slowly build internal capabilities in generating biotech-related knowledge and 

adapt to the technological discontinuity. We track this process of internal development to 

capture the state of internal capabilities in the emerging paradigm and examine the 

effectiveness of various external knowledge sourcing strategies.  

Our initial sample consisted of 106 incumbent pharmaceutical firms worldwide, a 

sample which is representative of the global pharmaceutical industry. We characterize 

those firms as incumbents as they were active in the pharmaceutical industry focusing on 

human therapeutics prior to the emergence of biotechnology. We collected annual data 

for the sourcing strategies of those firms beginning in 1974 until the end of 1998. The 

year 1974 closely approximates the beginning of industry research in biotechnology, one 

year after the invention of a technique to recombine DNA developed by Cohen and Boyer 

in 1973. Several firms from our sample did not develop a significant presence in 

biotechnology and therefore, their biotech patents were not enough to generate 

meaningful internal knowledge networks. We excluded these firms from our analysis and 

thus our final sample consists of 96 pharmaceutical incumbents. Horizontal mergers are a 

common incident in this industry; when a merger occurs we combine the data of the 

merging firms into one entity, we continue tracking it forward, and we create an indicator 
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variable to capture a merged entity. 

We constructed the key dependent and independent variables relying on patents 

granted to these firms by the USPTO. Despite some problems, patents have been 

extensively used to measure a firm’s innovative activities (e.g. Ahuja, 2000; Henderson 

& Cockburn, 1994). In addition, the pharmaceutical industry is the industry which relies 

the most on patents when it comes to intellectual property protection compared to all 

other manufacturing industries (Cohen, Nelson, & Walsh, 2000). We used the NBER 

patent data file (Hall, Jaffe, & Trajtenberg, 2001) to create a patent portfolio for each one 

of our firms from 1974 to 1998. We tracked all different names under which firms patent 

and collected patent data for their subsidiaries to make sure that we have each firm’s full 

patenting activity. 

 

4.3.1. Dependent variable 

To capture the successful development of knowledge capabilities in the emerging 

biotech paradigm by pharmaceutical incumbents, we relied on the annual count of 

biotech patents assigned to the firms in our sample. To define which of the patents in an 

incumbent’s patent portfolio are biotech patents, we relied on the definition of a biotech 

patent provided by the Patent Technology Monitoring Division (PTMD) of the U.S. PTO. 

The Division provides a list of technology classes and sub-classes that capture new 

knowledge stocks with a strong biotech component. To confirm the validity of this 

approach, we examined the patent portfolios of dedicated biotechnology firms and the 

technology classes to which their patents are assigned and we found that indeed, our 

approach of categorizing biotech patents was robust. Finally, to make sure that our 
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measure is as close as possible to the actual date of knowledge generation, we 

constructed our measure of annual biotech patent counts based on the application date of 

the patent instead of the grant date.  

 

4.3.2. Intrafirm Knowledge Networks in Biotechnology 

To capture the state of internal capabilities of incumbent firms in the biotechnology 

paradigm and develop our independent variables, we developed intrafirm co-inventing 

networks for each incumbent firm from 1974 to 1998 based only on their biotech patents. 

Hence, we were able to proxy the level of internal collaboration and capability 

development in biotechnology by looking at the emerging intrafirm co-inventing 

networks developing in the context of the new technological paradigm. We identified 

unique individual inventors on these biotechnology patents using the NBER database 

inventor file based on a combination of last name, first name, and middle name after 

fixing the spelling mistakes which existed in the database (Hall et al. 2001). When there 

was still a conflict, we expanded our matching criteria to include city and state of 

residence for each inventor. The resulting dataset is a file for every firm with unique 

inventor IDs associated with patents from 1974 to 1998.  

We used UCINET 6 to create the co-inventing networks. The nodes of the network 

are individual inventors and a tie between inventors represents a co-patenting event. We 

considered knowledge through a tie that is older than five years as out-of-date and thus 

we developed networks for every firm using a 5-year rolling window and assigned the 

resulting values to the last year of every time window (82-86 values to 1986, 83-87 

values to 1987, etc.). We analyzed the networks and kept several network metrics either 
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at the firm-network level (density, average path length, etc.) or at individual-node level 

(e.g. ego-network attributes) to construct the following independent variables for our 

study. 

 

4.3.3. Independent variables 

We used the results of our network analysis to capture two main attributes of an 

incumbent firm’s state of internal biotech capabilities: recombinatory potential and 

coordination costs. We measured these two attributes both at the firm level and at the 

individual level of analysis and used several variables for each one. 

First, at the firm-network level of analysis we measured coordination costs using two 

different metrics: average ties per biotech patent and network density. Our objective was 

to capture the coordination burden of the firm as it develops new biotech knowledge 

internally. Average ties per biotech patent is one aspect of the coordination burden as it 

reflects the average intensity of collaboration used to generate a biotech patent. Using the 

previously mentioned five-year rolling window procedure, in order to come up with our 

variable for year t, we divided the total number of collaborative ties used to develop 

biotech patents from year t-4 to year t by the number of biotech patents produced in year 

t. Network density is a second aspect of the coordination burden as it reflects the average 

intensity of collaboration per inventor. To construct the density variable, we divided the 

same total number of collaborative ties by the total number of inventors participating in 

the knowledge production process during the same five-year window (i.e. the size of the 

network).   
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Second, again at the firm level of analysis, we measured the firm-network’s 

recombinatory potential using two other network metrics: average path length and degree 

of clustering. Average path length is the average distance (steps through ties) between 

any two inventors in the firm’s knowledge network. The higher this average length, the 

broader is the firm’s knowledge network base and therefore, the higher is the potential for 

further knowledge recombination. Clustering is the degree to which the firm’s network is 

organized around multiple local neighborhoods of dense interpersonal collaboration, 

where arguably knowledge recombination is more likely to occur since those clusters are 

more likely to be characterized by increased motivation to share knowledge, transfer 

knowledge transfer, and knowledge of who knows what.  

Third, at the individual level of analysis, we first identified the individuals, who are 

universal collaborative outliers in three meaningful distributions, and therefore, play the 

roles of integrators, connectors, and isolates. First, we identified inventors with direct 

collaborative ties that are at the top decile of the distribution of ties of all inventors of all 

firms during the same five-year window. Then, among the resulting set of actors, we 

characterized as integrators the inventors at the top half of the density distribution with 

more than one patent during the time window (to exclude one-time inventors).  

Therefore, integrators are the actors who are outliers in terms of the size and density of 

their ego-network and therefore, have the capacity for solid local knowledge 

recombination. At the same time, integrators face high coordination costs in their 

recombinatory efforts and are arguably relatively more firm-specific than other actors 

because they rely on a bigger group of collaborators to generate new biotech knowledge. 
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To capture connectors, we relied on a combination of two network metrics. First, we 

selected inventors with an ego-network density that is at the bottom quartile of the 

density distribution among all inventors from all firms during the same five-year time 

window.  Hence, we sampled on inventors who span structural holes. Among them, we 

selected inventors whose two-step reach was at the top half of the reach distribution. 

Therefore, among the inventors who spanned structural holes, connectors are those 

whose ties allowed them to reach a sizeable share of the firm’s internal collaborative 

network thus excluding inventors who bridge structural holes but do so at the periphery 

of the network. As a result, connectors are outliers in terms of cluster-bridging behavior, 

thus being in a position to engage in strong distant knowledge recombination. At the 

same time, connectors face a high level of coordination costs because they link dissimilar 

knowledge stocks and collaborate across heterogeneous thought-worlds.  

Empirically defining isolates was a relatively more straightforward exercise. We 

selected inventors with more than one patent in the same five-year time window (to 

exclude one-time inventors) while unconnected from the firm’s network (that is, zero 

ties). Isolates reflect a high level of recombinatory potential obviously not because of 

their own recombinatory efforts; instead, they reflect the presence of knowledge-

producing talent that has yet to be included in the overall firm’s process of knowledge 

recombination. Using these variables at the inventor level, we developed variables at the 

firm level using counts of integrators, connectors, and isolates, that each firm possesses 

in each year from 1974 to 1998 (again counts from time window 74-78 go to 1978, 

counts from 75-79 go to 79, etc.). 
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Next, we collected information about the external knowledge sourcing strategies that 

were undertaken by the pharmaceutical incumbents in our sample. We focused on two 

such external capability sourcing modes: knowledge-oriented alliances with sources of 

biotech knowledge (i.e. exploration alliances) and biotech-related acquisitions. First, we 

collected data on the alliance history for every firm in our sample from the BioScan 

directory and the ReCap database, databases that have been successfully used in prior 

research on alliances and are considered to be the most comprehensive sources for 

alliance activities. Then, we selected all the alliances that incumbent firms in our sample 

entered with various sources of biotechnology knowledge (smaller entrants, universities, 

and other institutions). Following a common procedure in prior research (Koza & Lewin 

1998, Rothaermel & Deeds 2004; Lavie & Rosenkopf 2006) we coded grant, research, 

and R&D alliances as exploration alliances because the focus of these alliances is the 

enhancement of upstream research and basic science capabilities. To ensure correct 

coding, we used multiple research assistants who coded independently the alliances in 

our sample and the inter-rater reliability was 98%, well above the recommended 70% 

(Cohen et al. 2003). The resulting variable is an annual count of the total number of such 

exploration alliances entered by an incumbent firm in our sample. Further, we relied on 

the SDC Platinum database for data on acquisitions and we collected information about 

the annual number of biotech-related acquisitions made by incumbent firms in our 

sample. Finally, to construct the independent variables and test our hypotheses, we 

calculated interactions between the two types of external knowledge sourcing and the 

three sets of internal capability attributes we mentioned earlier. Before entering them into 

interactions, we standardized all variables. 
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4.3.4. Control variables 

We control for the effect of the firm’s overall innovative performance by including as a 

right-hand side variable the flow of its overall patents (including biotech patents). We 

also control for the firm’s relative focus on the generation of biotech knowledge by 

including a biotech focus ratio, the number of biotech patents divided by total patents. 

Prior experience in external sourcing is also likely to have an effect on both future 

knowledge sourcing choices and current internal capabilities, so we also control for the 

firm’s experience with exploration alliances and biotech-related acquisitions by 

including the running stock of such previous external sourcing activities. To control for 

other aspects of the firm’s existing knowledge-producing resources, we include the 

number of total inventors and the number of star inventors. The number of total inventors 

captures at the same time each five-year network’s size, which is arguably one of the 

main drivers for the presence of the various individual roles. Star inventors counts 

inventors with patents that are three standard deviations above the mean number of 

patents of every other inventor in the same five-year time window. In addition, we 

control for the firm’s geographic origin (EU, US). Finally, we include indicator variables 

that control for firms that were a result of an horizontal merger (merged firm) and firms 

that are dedicated pharmaceutical firms, that is, not diversified conglomerates (Pharma).  

 

4.3.5. Estimation 

Our dependent variable is a nonnegative count variable with overdispersion and 

therefore, we used negative binomial models. Both fixed- and random- effects 

specifications would allow us to control for any remaining unobserved heterogeneity. We 
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conducted a Hausman test which suggested that there are no significant differences 

between the two estimation methods. Nevertheless, we chose to rely on a firm fixed-

effects specification to conduct a conservative within-firm analysis and control for firm-

level unobservable factors. However, as a robustness check, we also used the random-

effects specification and our results remained robust. 

 

4.4. Results 

Table 4.1 (in the Appendix) depicts descriptive statistics and bivariate correlations for 

our variables. Correlations among our independent variables are below the recommended 

ceiling of 0.70. To further evaluate the threat of collinearity, we estimated the variance 

inflation factors (VIFs) for each coefficient, with the maximum estimated VIF being 

1.64, which is well below the recommended threshold of 10 (Cohen et al., 2003). Table 

4.2 (in the Appendix) depicts the results of our fixed-effect negative binomial regression 

predicting the number of incumbent firm-level biotech patents. In Model 1, we only 

included control variables. In Model 2, we added the interactions between external 

knowledge sourcing and firm-level network variables. In Model 3, we instead added only 

the interactions between external knowledge sourcing and individual-level capability 

variables. In Model 4, we included all the interactions together. We discuss below the 

results from Model 4 which is the all-inclusive one. 

External knowledge sourcing is generally effective for capability building as both 

exploration alliances and acquisitions are positive drivers of biotech patent output (p<0.1 

and p<0.01, respectively). The two variables capturing the level of internal coordination 

costs (i.e. average ties per patent and network density) are negatively and significantly 
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related to biotech patent output (p<0.001). This is evidence of the coordination burden in 

the process of knowledge generation in an emerging technological paradigm. The first 

proxy of a firm’s internal recombinatory potential (average path length) is as expected 

positively and significantly associated with biotech patent output (p<0.01). This result 

suggests that the breadth of a firm’s knowledge base facilitates new knowledge 

generation. On the other hand, the second proxy for recombinatory potential (clustering) 

shows a surprising negative and significant effect on output (p<0.001). This result 

suggests that increased clustering may indicate a knowledge base that is overly focused 

on a few knowledge areas and therefore suffers from possible competence traps. Finally, 

the three types of individual roles (integrators, connectors, and isolates) are, as expected, 

positively and significantly related to biotech patent output (p<0.05, p<0.01, p<0.05, 

respectively).  

We now shift attention to the corresponding interaction effects to test our hypotheses 

about the effectiveness of external knowledge sourcing under different internal capability 

circumstances. We find partial support for our Hypothesis 1 regarding the negative 

moderation effect of internal recombinatory potential. Exploration alliances are less 

effective when combined with high internal average path length (p<0.01) and clustering 

(p<0.05). On the other hand, acquisitions appear to be more effective when combined 

with high internal average path length (p<0.01). We also find partial support for our 

Hypothesis 2 regarding the negative moderation effect of internal coordination costs. 

Exploration alliances are less effective when combined with a high level of average ties 

per patent (p<0.1) and the same holds for acquisitions (p<0.1, Model 2). On the other 

hand, acquisitions appear to be more effective when combined with a dense internal 
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network (p<0.01). Finally, we find support for Hypothesis 3 regarding the negative 

moderation effect of the three individual roles. Exploration alliances are less effective 

when combined with an internal network rich in connectors (p<0.01), while acquisitions 

are less effective when combined with a network rich in integrators (p<0.05) or isolates 

(p<0.05). 

Overall, the pattern of results suggests a view which is generally consistent with our 

theory. However, the results also point to an interesting observation: the interaction 

between internal and external sourcing differs between exploration alliances and 

acquisitions. This is not too surprising; exploration alliances have relatively longer-term 

effects resulting from new knowledge infusion. On the other hand, acquisitions have 

shorter-term effects resulting from new knowledge-producing talent infusion. If viewed 

in this way, the results suggest an additional interpretation: the long-term positive 

knowledge effects of exploration alliances are generally reduced when combined with 

high internal recombinatory potential and coordination costs. On the other hand, the 

short-term talent infusion benefits of acquisitions are even more pronounced when the 

firm’s network needs talent infusion to broaden its knowledge base and escape 

competence traps (i.e. high network density) or when the firm’s network has the 

necessary breadth to absorb the infusion of talent (i.e. high average path length). 

Nevertheless, the benefits of acquisitions are reduced when the firm’s network is already 

rich in high-potential in recombination individuals (integrators) or in productive, yet 

untapped, talent (isolates).  
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Figure 4.1. Exploration Alliances and Coordination Costs 

 

 

Figure 4.2. Exploration Alliances and Average Path Length 
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Figure 4.3. Exploration Alliances and Clustering 

 

 

 

Figure 4.4. Exploration Alliances and Connectors 

 



 

 

 

135 

 

To provide a more intuitive and clear understanding of these results and uncover 

additional insights, we display graphically the statistically significant interaction results 

in Figures 4.1-4.8. Figures 4.1-4.4 are about exploration alliances. We see that 

exploration alliances are much more effective when coupled with a network that has low 

recombinatory potential or low coordination costs. Interestingly, the effect from 

exploration alliances turns negative when coupled with an internal network that has 

strong recombinatory potential (Figures 4.2-4.3). Figures 4.5-4.8 are about acquisitions. 

We see that acquisitions are much more effective when coupled with a dense or a broad 

internal network which needs or can absorb talent infusion (Figures 4.5-4.6). In addition, 

although acquisitions are indeed less effective when the firm has individuals with 

recombinatory potential or untapped talent, the effects are small in magnitude (Figures 

4.7-4.8). This finding can be explained by the fact that acquisitions, relative to individual 

roles, have much stronger positive effects on biotech patent output. The strongest and 

most interesting result from the figures on acquisitions is the one on the interaction 

between acquisitions and network density: there is a strong substitution effect between 

the two, in that the effect from acquisitions turns negative for networks of low density 

(Figure 4.5).  
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Figure 4.5 Acquisitions and Network Density 

 

 

Figure 4.6. Acquisitions and Average Path Length 
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Figure 4.7. Acquisitions and Integrators 

 

 

 

Figure 4.8. Acquisitions and Isolates 
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4.5. Discussion 

Incumbent firms in high tech industries are often faced with competence-destroying 

technological change. In their effort to adapt and develop capabilities in a new knowledge 

area, they have several options available to them: internal capability development and a 

wide array of alternative external knowledge sourcing strategies. In this study, we made 

an effort to address a critical question: how effective is external knowledge sourcing 

under different circumstances? In particular, we developed a theory suggesting that the 

effectiveness of external sourcing partly depends on the state of internal capabilities 

which incumbents develop as they slowly generate knowledge related to the emerging 

technological paradigm. More specifically, we argued that if incumbents already possess 

a strong potential for internal knowledge recombination or a high level of coordination 

costs in the internal knowledge generation process, then external sourcing will be less 

effective in delivering the necessary capability building. This argument was developed 

based on a simple idea: if incumbents can do capability building internally then any 

external source will simply expand potential knowledge trajectories, thus substituting for 

knowledge paths suggested by internal development. Similarly, if incumbents already 

generate knowledge internally and face high coordination costs then any external source 

will add to the coordination burden and have compensating knowledge producing effects. 

We applied social network theory to the emerging internal knowledge network of 

incumbents adapting to a technological discontinuity in order to capture their 

recombinatory potential and level of coordination costs. 

We tested our theoretical framework in the global pharmaceutical industry. 

Pharmaceutical incumbents were forced to adapt to a changing paradigm with the 
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emergence of biotechnology. To do so, they followed a wide array of capability sourcing 

strategies, which included internal development, exploration alliances with sources of 

biotech knowledge, and outright acquisitions of biotech targets. The results provided 

general support for our theoretical framework. Exploration alliances were indeed less 

effective as capability building mechanisms when incumbents had internally the potential 

for knowledge recombination and already faced high coordination costs. Acquisitions 

were also less effective when coupled with internal human capital characterized by high 

recombinatory potential or a high level of internal untapped knowledge-producing talent. 

However, the results also uncovered an interesting divergence between alliances and 

acquisitions as capability building mechanisms. Instead of losing their effectiveness as 

suggested by our framework, acquisitions are even more effective when the firm’s 

network needs talent infusion to broaden its knowledge base and escape competence traps 

or when the firm’s network has the necessary breadth to absorb the infusion of talent. 

This result likely points to a difference in the nature of capability building: while 

exploration alliances may have long-term knowledge infusion benefits, acquisitions are 

more likely to result in shorter-term infusion of knowledge-producing human capital. 

This study makes two primary contributions. First, we contribute to the literature on 

the degree of complementarity between external and internal innovation strategies. We 

move beyond predicting why or when incumbents will choose one or the other. We also 

move beyond the implementation problem, that is, understanding what can incumbents 

do to make either one of them more effective, independently. We recognize that 

incumbent firms are more likely to engage in concurrent sourcing when faced with a 

radical technological discontinuity and that their ability to select the right sourcing mode 
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is a critical skill that remains underemphasized in the literature. Therefore, we shed light 

on the selection problem: we make an effort to explain why and show that choosing an 

external knowledge sourcing strategy may be more or less effective contingent upon the 

state of the firm’s internal capabilities; namely, its recombinatory potential and 

coordination costs. As a result, we suggest that the degree of complementarity between 

internal and external capability sourcing also depends on two attributes of the firm’s 

internal capabilities that have been previously neglected.  

The second major contribution of this study is the application of social network 

theory to conceptually and empirically capture the two capability attributes. The two 

dominant theories of knowledge boundary choice have been criticized for 

underemphasizing the importance of knowledge production costs and an inability to 

identify the microfoundations of internal capabilities. Here, we partly address these 

shortcomings. As incumbent firms slowly develop capabilities in an emerging paradigm, 

internal knowledge networks of interpersonal collaboration emerge. Analyzing these 

networks can shed some light on the state of internal capabilities. In particular, by 

analyzing firm-level knowledge network micro-structures we showed how certain 

network metrics (e.g. network density, average ties per knowledge stock, average path 

length, and clustering) can capture the firm’s potential for knowledge recombination and 

internal coordination costs. In addition, we went a step further and we showed how 

applying network concepts at the individual level of analysis (e.g. ego-network size, 

density, structural holes, reach, etc.) can also uncover deeper microfoundations of 

capabilities existing at the individual level of analysis and provide additional insights 

beyond firm-level averages. 
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As any study, this one is not without limitations. First, we rely only on alliances and 

acquisitions as external knowledge sourcing modes. Although these two modes are 

indeed major levers for capability development, they are not the only ones available to 

incumbents. Second, we overemphasized the knowledge-sourcing component embedded 

in these innovation strategies. However, alliances and acquisitions cover many more 

strategic objectives than simply knowledge sourcing. We made an effort to solve this 

problem by focusing only on exploration alliances, which have a much stronger 

knowledge orientation, with sources of biotech knowledge and acquisitions by 

pharmaceutical incumbents that directly involved biotech firms. Still, even these modes 

do not simply occur for knowledge development. Nevertheless, we submit that they do 

consist of strong knowledge flows and therefore, our arguments of knowledge 

substitution should still hold. Third, we relied on co-patenting events to develop intrafirm 

knowledge networks. Although patenting is really prevalent in this industry, there are 

many more sources of internal network formation that our study neglects. Finally, we 

relied on interpersonal collaboration and the structure of the network to proxy for 

recombinative potential and coordination costs. Future research can uncover additional 

ways of capturing these attributes and capture other sources of internal production costs 

like internal social frictions (Capron and Mitchell, 2009) or social envy and comparison 

costs (Nickerson and Zenger, 2004). 

We conclude with the implications of this study for managers. First, we provide 

managers with an additional way of evaluating the state of their firm’s internal 

capabilities using social network concepts. Second, we offer theory and evidence on the 

important role of the firm’s internal recombinative potential and coordination costs when 
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it comes to evaluating the effectiveness of external knowledge sourcing strategies. 

Perhaps more importantly, we show that although external sourcing strategies are 

generally effective as knowledge-building mechanisms, they are less effective when 

coupled with an internal capability to generate knowledge or with high internal 

coordination costs. In this study, we did not have any measures for the costs of external 

knowledge sourcing modes. However, it is widely documented that both alliances (e.g. 

knowledge misappropriation, choosing the right partner) and acquisitions (e.g. 

overpayment, post-acquisition integration) come with a number of challenges for 

managers of incumbent firms. Therefore, it is critical to know that if an external sourcing 

mode is chosen for its knowledge benefits and is evaluated vis-à-vis its costs, then its 

benefits may be overstated when coupled with a solid state of internal knowledge 

recombination capabilities or high coordination costs. 
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CHAPTER 4 APPENDIX 

Table 4.1. Descriptive Statistics 

 

Mean SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 Biotech patents 24.75 28.97

2 Merged firm 0.15 0.36 0.36

3 EU 0.30 0.46 0.17 0.09

4 US 0.34 0.47 0.22 0.17 -0.47

5 Pharma 0.49 0.50 0.01 0.00 -0.02 -0.06

6 Overall innovative performance 82.92 105.40 0.56 0.09 0.22 0.19 -0.35

7 Biotech focus 0.50 0.46 0.10 0.14 0.04 -0.12 0.30 -0.34

8 Exploration alliance experience 7.37 11.78 0.49 0.42 -0.04 0.19 -0.02 0.16 0.14

9 Acquisition experience 2.06 6.99 0.36 0.36 -0.02 0.20 0.08 0.11 0.10 0.67

10 Network size 140.72 132.53 0.80 0.42 0.21 0.06 0.00 0.43 0.12 0.65 0.45

11 Star inventors 2.93 7.13 0.59 0.34 0.15 0.06 0.01 0.34 0.07 0.43 0.30 0.58

12 Exploration alliances 0.90 1.81 0.41 0.29 0.02 0.16 0.00 0.15 0.10 0.67 0.42 0.47 0.35

13 Acquisitions 0.33 1.20 0.34 0.30 0.03 0.14 0.07 0.11 0.10 0.48 0.74 0.38 0.23 0.38

14 Average ties per patent 9.55 14.86 0.07 0.04 0.01 -0.19 -0.05 -0.02 0.06 0.13 0.08 0.24 0.18 0.07 0.06

15 Network density 0.06 0.07 -0.38 -0.20 -0.04 -0.23 0.07 -0.30 0.05 -0.25 -0.15 -0.41 -0.18 -0.19 -0.13 0.08

16 Average path length 2.55 1.21 0.56 0.27 0.07 0.03 0.01 0.26 0.14 0.45 0.34 0.64 0.36 0.32 0.26 0.17 -0.32

17 Clustering 0.85 0.09 -0.25 0.00 -0.02 -0.31 -0.01 -0.22 0.02 0.01 -0.05 -0.11 -0.14 -0.03 -0.04 0.03 0.20 -0.30

18 Integrators 5.28 11.44 0.31 0.14 0.11 -0.14 0.00 0.13 0.08 0.24 0.18 0.48 0.46 0.14 0.10 0.46 -0.05 0.29 -0.04

19 Connectors 5.23 7.31 0.41 0.23 0.12 -0.09 -0.05 0.21 0.12 0.35 0.23 0.50 0.55 0.23 0.17 0.24 -0.18 0.54 -0.19 0.45

20 Isolates 1.99 6.04 0.30 0.07 0.02 0.22 0.11 0.15 0.06 0.24 0.12 0.33 0.12 0.20 0.09 -0.06 -0.20 -0.03 0.04 -0.07 -0.10

Table 1.  Descriptive statistics and correlation matrix

N = 1751 observations
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Table 4.2.  Fixed-Effects Negative Binomial Regression Predicting Number of Biotech Patents   

Variable Model 1 Model 2 Model 3 Model 4 

Constant 

 
Incl. 

  
Incl. 

  
Incl. 

  
Incl. 

 
Year Effects 

 
Incl. 

  
Incl. 

  
Incl. 

  
Incl. 

 
Merged firm 

 
0.056 * 

 
0.056 * 

 
0.079 ** 

 
0.072 ** 

  
(0.037) 

  
(0.036) 

  
(0.037) 

  
(0.037) 

 
EU - 1.304 *** - 1.317 *** - 1.402 *** - 1.351 *** 

  
(0.208) 

  
(0.207) 

  
(0.216) 

  
(0.212) 

 
US - 1.146 *** - 1.048 *** - 1.197 *** - 1.097 *** 

  
(0.206) 

  
(0.207) 

  
(0.215) 

  
(0.212) 

 
Pharma - 0.010 

  
0.050 

 

- 0.030 

  
0.023 

 

  
(0.130) 

  
(0.133) 

  
(0.131) 

  
(0.134) 

 
Overall innovative performance 0.003 *** 

 
0.003 *** 

 
0.003 *** 

 
0.003 *** 

  
(0.000) 

  
(0.000) 

  
(0.000) 

  
(0.000) 

 
Biotech focus 

 
0.269 *** 

 
0.290 *** 

 
0.275 *** 

 
0.293 *** 

  
(0.020) 

  
(0.021) 

  
(0.021) 

  
(0.021) 

 
Exploration alliance experience 0.003 ** 

 
0.006 *** 

 
0.004 ** 

 
0.006 *** 

  
(0.002) 

  
(0.002) 

  
(0.002) 

  
(0.002) 

 
Acquisition experience - 0.013 *** - 0.012 *** - 0.014 *** - 0.013 *** 

  
(0.003) 

  
(0.002) 

  
(0.003) 

  
(0.003) 

 
Network size 

 
0.001 *** 

 
0.002 *** 

 
0.002 *** 

 
0.002 *** 

  
(0.000) 

  
(0.000) 

  
(0.000) 

  
(0.000) 

 
Star inventors 

 
0.003 * 

 
0.003 * 

 
0.004 ** 

 
0.003 * 

  
(0.002) 

  
(0.002) 

  
(0.002) 

  
(0.002) 

 
Exploration alliances - 0.006 

  
0.024 * 

 
0.007 

  
0.025 * 

  
(0.006) 

  
(0.019) 

  
(0.006) 

  
(0.019) 

 
Acquisitions - 0.008 

  
0.212 *** 

 
0.016 * 

 
0.207 *** 

  
(0.009) 

  
(0.049) 

  
(0.011) 

  
(0.050) 

 
Average ties per patent - 0.099 *** - 0.099 *** - 0.116 *** - 0.110 *** 

  
(0.020) 

  
(0.019) 

  
(0.020) 

  
(0.020) 

 
Network density - 0.591 *** - 0.536 *** - 0.592 *** - 0.536 *** 

  
(0.071) 

  
(0.068) 

  
(0.070) 

  
(0.069) 

 
Average path length 

 
0.131 *** 

 
0.127 *** 

 
0.114 *** 

 
0.120 *** 

  
(0.013) 

  
(0.014) 

  
(0.014) 

  
(0.014) 

 
Clustering - 0.024 ** - 0.032 ** - 0.022 * - 0.029 ** 

  
(0.014) 

  
(0.015) 

  
(0.014) 

  
(0.015) 

 
Integrators 

 
0.020 * 

 
0.025 ** 

 
0.035 *** 

 
0.027 ** 

  
(0.013) 

  
(0.013) 

  
(0.013) 

  
(0.013) 

 
Connectors 

 
0.035 *** 

 
0.031 *** 

 
0.051 *** 

 
0.046 *** 

  
(0.012) 

  
(0.012) 

  
(0.013) 

  
(0.013) 

 
Isolates 

 
0.022 ** 

 
0.010 

  
0.038 *** 

 
0.029 ** 

  
(0.010) 

  
(0.011) 

  
(0.016) 

  
(0.015) 
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Table 4.2 continued 
 

 

Exploration alliances X 

   

- 0.027 *** 

   

- 0.022 * 

Average ties per patent 

    
(0.010) 

     
(0.014) 

 
Exploration alliances X 

    
0.014 

    

- 0.006 

 
Network density 

    
(0.058) 

     
(0.061) 

 
Exploration alliances X 

   

- 0.036 *** 

   

- 0.036 *** 

Average path length 

    
(0.009) 

     
(0.009) 

 
Exploration alliances X 

   

- 0.031 ** 

   

- 0.032 ** 

Clustering 

    
(0.016) 

     
(0.018) 

 
Exploration alliances X 

       
0.003 

  
0.010 

 
Integrators 

       
(0.007) 

  
(0.008) 

 
Exploration alliances X 

      

- 0.021 *** - 0.017 *** 

Connectors 

       
(0.006) 

  
(0.006) 

 
Exploration alliances X 

      

- 0.004 

 

- 0.004 

 
Isolates 

       
(0.003) 

  
(0.004) 

 
Acquisitions X 

   

- 0.016 ** 

   

- 0.005 

 
Average ties per patent 

    
(0.007) 

     
(0.011) 

 
Acquisitions X 

    
0.446 *** 

    
0.409 *** 

Network density 

    
(0.097) 

     
(0.101) 

 
Acquisitions X 

    
0.022 *** 

    
0.020 *** 

Average path length 

    
(0.008) 

     
(0.008) 

 
Acquisitions X 

    
0.013 

     
0.017 

 
Clustering 

    
(0.019) 

     
(0.022) 

 
Acquisitions X 

      

- 0.012 *** - 0.008 ** 

Integrators 

       
(0.004) 

  
(0.005) 

 
Acquisitions X 

       
0.004 

  
0.002 

 
Connectors 

       
(0.005) 

  
(0.006) 

 
Acquisitions X 

      

- 0.014 *** - 0.009 ** 

Isolates 

       
(0.005) 

  
(0.005)   

No. of observations / groups 1751 / 96   1751 / 96   1751 / 96   1751 / 96 

Chi square 

 
2583.41 

 
2778.88 

 
2652.74 

 
2792.98 

Δ chi square       195.47***   69.33***   209.57*** 

Notes: * p < 0.1; ** p < 0.05; *** p < 0.01; standard errors in parentheses 
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CHAPTER 5 

CONCLUSION 

 

In this dissertation, I have attempted to highlight the important role of certain individuals 

as drivers of firm-level innovative outcomes. However, in contrast to extensive existing 

work that focuses on the highly productive (i.e. star) knowledge workers of an 

organization, I examine the importance of another set of individuals: actors who using 

their productive and collaborative behavior end up occupying a position in their firm’s 

network that makes them consequential for a number of innovation-related outcomes. 

They do so not because of their productivity but because of their critical network position 

and the capacity for knowledge recombination that results from their collaborative 

behavior. I rely on the knowledge base view as the conceptual lens to explain how new 

knowledge is generated within organizations. I use network theory and findings from 

innovation research to identify individuals and firm-level network structures that drive a 

number of innovation-related firm-level outcomes. As a result, the main contribution of 

this dissertation is to highlight a number of relatively neglected factors at the micro level 

of analysis which can improve relevant firm-level performance variables: the capacity of 

an organization to generate new knowledge, the capacity of an organization to generate 

radically new knowledge while incrementally improving existing knowledge stocks, and 

the capacity of an organization to choose the appropriate knowledge sourcing 

mechanisms when dealing with adaptation to a changing technological paradigm. 

 In more detail, in the first chapter I show that relational stars are positively 

associated with their firm’s quantity and quality of inventive output. Relational stars 

include integrators and connectors. Integrators source knowledge from many different 

actors because they have extensive collaborative networks and connectors source 

dissimilar stocks of knowledge because they collaborate across knowledge clusters and 

span structural holes in their firms’ knowledge networks. On the other hand, I show that 

it is the isolated knowledge producers and the star knowledge workers who are positively 

associated with the productivity of their firm’s inventive output. I argue that this effect is 
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because of their capacity to generate knowledge without having to incur the costs of 

coordination and collaboration. 

 In the second chapter, I show that relational stars are positively associated with 

their organization’s capacity to generate radically new knowledge stocks, knowledge that 

is quite different from the existing knowledge base (i.e. exploratory output). In addition, 

isolated actors are quite good at incrementally improving existing knowledge (i.e. 

exploitative output). More importantly, I find that organizations which want to be able to 

do both effectively (i.e. ambidextrous output) should focus on the certain group of 

individuals who are good at both exploration and exploitation and on retaining a certain 

level of connectedness between their exploratory and exploitative activities.  

In their third chapter, I show that the effectiveness of external knowledge 

sourcing mechanisms that firms use to adapt to a changing technological paradigm 

depends on the current state of internal capabilities and in particular, on the capacity of 

the firm’s network to recombine knowledge in the future and on the level of coordination 

costs currently in the network. To proxy for these two factors, I also rely on relational 

stars and firm-level network structures. I find that external knowledge sourcing is less 

effective when combined with an internal network that is capable of knowledge 

recombination or already has a high level of coordination costs.  

Overall, I attempt to discover the type of individuals that are positive drivers of a 

firm’s performance in generating new knowledge, learning different types of knowledge, 

and adapting to a changing knowledge space. I find that the simple focus on highly 

productive knowledge workers may be incomplete. Innovation is a team-based endeavor 

which relies on knowledge sharing, transfer, recombination, and reconfiguration of 

existing knowledge stocks. Individuals with the relational capacity to effectively 

implement these processes are at least as important as star knowledge workers for the 

performance of the system as a whole. The same holds for the overall structure of a 

firm’s knowledge network. Both of these factors are variables that are at least partly 

under the control of the management team and therefore, I provide here a set of ideas 
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directed at managers on how to identify individuals and design knowledge structures 

internally to make their organizations more innovative.    


