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SUMMARY

This thesis deals with the estimation and control of jump stochastic systems as a

result of the novel proposition of a framework based on switching hidden modes to enhance

the treatment of uncertainty within the process control field. Uncertainty is typically man-

ifested as uncontrolled, exogenous disturbance signals affecting the input and/ or output

channels as well as parameters. In the area of disturbance modeling, the assumption of sta-

tionary, filtered white noise has been the norm. The description of non-stationary signals,

which are common in process industries, is limited to random walk-type signals. Under-

standably, the lack of sophistication in modeling has led to inadequacies along the control

front. This is typified by Model-based Predictive Control (MPC), the de facto advanced

process control solution. There, the common practice is to solve a rolling-horizon open-loop

optimal mathematical program by making deterministic assumptions about the future tra-

jectory of noise signals and uncertainty. Although the rolling-horizon mechanism imparts

some robustness against uncertainty, the general situation is that overall performance falls

short of closed-loop optimality. This lack of a systematic treatment of uncertainty is a

fundamental limitation of MPC.

This thesis begins with the realistic modeling of non-stationary disturbance signals typ-

ically witnessed in process industries. Such disturbances are characterized by probabilistic

switches between distinct regimes. To capture the effect of such multiple modes, a Hidden

Markov Model (HMM) framework is employed. The main disturbance patterns of concern

considered in this thesis include intermittent drifts and abrupt jumps. The main idea is

to superimpose a Markov chain, whose parameters govern the latent temporal regime tran-

sitions on top of a discrete-time equation that governs the underlying system dynamics

to generate a (concatenated) Markov Jump System (MJS). Several examples are given in

the thesis which demonstrate the usefulness of the HMM framework in the context of de-

scribing an array of disturbance patterns, providing integral action and the provision for
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model-based fault detection. The main contribution is practical in that with the adoption

of a more sophisticated disturbance model, and the consequential use of an existing state

estimator suited for MJS’s, superior tracking performance is possible. Enhanced closed-loop

control, without having to re-design the controller (which remains as MPC for this part of

the thesis), is the result.

Having dealt with the issue of modeling, the thesis then proceeds to the optimal control

of stochastic systems, including the aforementioned jump systems. The control framework

employed is Approximate Dynamic Programming (ADP) based on a “post-decision state”,

as opposed to the more common “pre-decision” state. ADP is a promising framework for

systematically and practically obtaining good closed-loop policies for multi-stage, stochastic

control problems. The main advantage of ADP over MPC is the former’s ability to account

for uncertainty in a systematic fashion. Furthermore, for ADP, the bulk of the computation

burden is shifted off-line (during a process termed Value Iteration (VI), via which “value-

functions” are computed). Online computations are oftentimes swifter, since the solution to

a single-stage optimization problem (as opposed to a multi-stage one, in the case of MPC)

is required. The contributions in this part of the thesis are multi-fold.

Most previous works on ADP, as applied in the context of process control, have focused

on solving deterministic problems. For stochastic control problems, the pre-decision ADP

formulation involves a computationally cumbersome optimization over an expected quantity

during on-line and off-line calculations. Through the use of the post-decision state, the

typically non-commutative optimization and expectation operations are interchanged to

yield an equivalent problem. The post-decision stage formulation also allows the efficient

use of off-the-shelf optimization solvers which form the cornerstone of MPC technology. A

further benefit is that off-line VI calculations may be run in parallel. This thesis extends

previous ADP methodologies (involving simulations to uncover relevant parts, over which VI

is performed, of the state-space and function approximation) to the post-decision analogue.

The proposed post-decision-state-based ADP approach is demonstrated on but not lim-

ited to the control of stochastic jump systems. Several examples are used to demonstrate the

xiv



algorithm and to highlight the inadequacy of MPC (and/ or other popular control method-

ologies) in providing good closed-loop control due to its ad-hoc treatment of uncertainty.

These examples include a dual control problem (of an integrator with an unknown gain) and

a case study highlighting the importance of considering the oftentimes over-looked interac-

tion between state-estimation and control. Another example is one of a constrained double

integrator, where MPC leads to frequent violations of the constraints due to unbounded

prediction errors. The last pertains to a bioreactor chemostat where the aim of maximizing

productivity whilst ensuring high conversion results in operations at the constraint bound-

ary. The proposed ADP solution is able to automatically “back-off” from the constraint

boundary in the face of disturbances.

The following peer-reviewed publications have resulted from this work:

• Wong, W. C. and J. H. Lee, “Realistic disturbance modeling using Hidden Markov

Models: applications in model-based process control,” Journal of Process Control,

accepted.

• Wong, W. C., H. S. Song, J. H. Lee, and D. Ramkrishna, “Hybrid cybernetic model-

based simulation of continuous production of lignocellulosic ethanol: rejecting abruptly

changing feed conditions,” Control Engineering Practice, under review

• Wong, W. C. and J. H. Lee, “A reinforcement learning-based Scheme for direct adap-

tive optimal control of linear stochastic systems,” Optimal Control Applications and

Methods, accepted

• Wong, W.C. and J. H. Lee, “Approximate dynamic programming for process control,”

International Symposium on Advanced Control of Chemical Processes 20091.

The first two publications are related to the disturbance modeling part of the thesis whereas

the last two are associated with the latter half.

1An extended version of this is under preparation for submission to a peer-reviewed journal
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CHAPTER I

INTRODUCTION

The appropriate treatment of uncertainty in the context of process control (and other simi-

lar multi-stage decision making) problems is of utmost importance. Indeed, the presence of

disturbances (a typical manifestation of uncertainty) is one of the primary reasons for adopt-

ing advanced control solutions [3] such as Linear Quadratic Gaussian controllers (LQG) and

Model Predictive Control (MPC). Although it is undeniable that the widespread adoption

of Advanced Process Control (APC) solutions has yielded much economic benefit [73] to

process industries, existing solutions do not address uncertainty adequately.

First and foremost, current approaches towards the modeling of disturbances (in either

the input and/ or output channels or that pertaining to parameter values) are still dom-

inated by the additive, stationary noise paradigm [82]. With regards to the subsequent

issue of control, MPC (the de-facto APC solution) is fundamentally limited in that it solves

a math program at every time instant, assuming that future disturbances and uncertain-

ties follow a pre-determined trajectory. The result is an open-loop optimal deterministic

formulation. This means that future feedback, this being generally beneficial for control

performance, is not considered in the formulation. Poor closed-loop performance is the

result. Furthermore, it is well known that MPC is oftentimes plagued by exorbitant on-line

computational requirements in the course of solving large-scale, non-convex mathematical

programs.

As such, the main objective of the thesis is first to explore and provide solutions for

superior disturbance modeling (see Section 1.1). The overall result is a Markov Jump

description of the system of concern which is better able to model commonly witnessed

disturbance signals.

Subsequent to this, the optimal control of (jump and non-jump) stochastic systems based

on the rigorous framework of Dynamic Programming (DP) (see Section 1.2) is explored.

1



Brief descriptions are given in the following sections.

1.1 Disturbance modeling

Understanding and modeling disturbances play a critical part in designing effective advanced

model-based control solutions. Existing linear, stationary disturbance models are oftentimes

limiting in the face of time-varying characteristics typically witnessed in process industries.

These include intermittent drifts, abrupt changes, temporary oscillations, outliers and the

likes. This work proposes a Hidden-Markov-Model-based framework to deal with such

situations that exhibit discrete, modal behavior. The usefulness of the proposed disturbance

framework - from modeling to ensuring the integral action under a wide variety of scenarios

- is demonstrated through several examples. The HMM framework is also applied to the

problem of fault detection and the production of second generation bio-ethanol subject

to highly varying feed conditions. Fermenting various sugars derived from lignocellulosic

biomass promises to be attractive for producing ethanol, an important alternative fuel.

Diversity of lignocellulosic biomass sources and pre-processing variations mean entering

sugars are expected to experience large, though infrequent, changes. Recent developments in

hybrid cybernetic modeling allow efficient in-silico studies. This enables studying sequential

linearization-based model predictive control for ensuring high productivity and conversion,

for a chemostat seeded with yeast capable of co-fermentation. An appropriate controlled

variable (conversion) and control formulation are ascertained.

1.2 Stochastic control via approximate dynamic programming based on
the post-decision state variable

Dynamic Programming (DP) [7] represents a unified framework for solving stochastic, multi-

stage control problems found in process industries and other application areas. Central to

DP is the cost-to-go function (which scores the desirability of any arbitrary state) which

can be theoretically obtained by solving (usually off-line) for the fixed point of Bellman’s

optimality equations [7]. Optimal control is achieved through the on-line solution of a single-

stage problem which reflects the tradeoff between immediate costs (manifested through a

single-stage term) and future costs (reflected by the value function of a candidate next

2



state).

Systems with large state and action spaces suffer from a ‘curse of dimensionality’, where

representing and obtaining the cost-to-go compactly and efficiently becomes highly non-

trivial. To circumvent this, the authors of [47, 48, 49, 44, 46] proposed an Approximate

Dynamic Programming (ADP) method for solving process control problems, which suffer

all the more from the said curse due to the presence of continuous state and action spaces.

The basic idea is to use carefully-designed simulations to uncover a control-relevant part

of the state space (which is finite-sized subset of the original state space) and employ an

appropriate function approximator for generalization. The focus there was mainly on the

control of deterministic, nonlinear systems. For stochastic systems, however, the off-line

and on-line computations involving Bellman’s equations require a minimization over the

sum of a single-stage cost and the expected value function of a candidate next state. Since

an analytical expression for the expectation is usually unknown, solving such a problem

may be cumbersome.

The second part of the thesis involves the systematic extension of the ADP framework

to stochastic systems. In doing so, it will be demonstrated that the introduction of an

intermediate ‘post-decision’ state [80, 71] allows the generally non-commutative min and

E operators to be interchanged. This means the off-line Bellman computations may be

executed as various single-stage deterministic optimizations running in parallel through the

use of off-the-shelf solvers. It is noted that the latter have been the cornerstone of MPC

technology.

1.3 Thesis outline

The thesis is organized as follows. Chapter 2 provides a brief background as well as a

literature review regarding commonly employed modeling and control strategies. Chapter

3 explores a Hidden Markov Model (HMM) framework for effectively describing commonly

witnessed disturbance patterns. The application of the proposed HMM framework to the

production of second generation lignocellulosic bioethanol, a major alternative fuel, is ex-

plored in Chapter 4. Work on fault detection in process systems using Hidden Markov

3



Disturbance Models is presented in Chapter 5. A post-decision-state-based Approximate

Dynamic Programming (ADP) framework is described in Chapter 6. Concluding remarks

summarizing the contributions and future research are given in the final Chapter (Chapter

7).

4



CHAPTER II

BACKGROUND

2.1 Disturbance modeling and system identification for stochastic sys-
tems

System identification plays a vital role in model-based control. For example, Model Predic-

tive Control (MPC) relies on an appropriate description of plant dynamics so that future

behavior may be predicted and optimized. Within this, disturbance modeling is crucial

for it accounts for the effect of unmeasured signals, parameter changes, as well as other

unmodeled phenomena (the residuals). Indeed, one of the main aims of control is to miti-

gate the impact of disturbances. Appropriate disturbance modeling leads to more accurate

predictions of key variables’ behavior, and consequently, superior control [3]. It can also al-

low for the better capturing of cross-correlations among the various output channels, which

is useful for soft-sensing and inferential control. Furthermore, offset-free control is often

imparted by appending integrating disturbance states [78, 65, 68] to the process model.

Eqs. (1)- (2) together form a general representation of a dynamical system. Here, xt ∈

R
nx is the system state at discrete-time index t, ut ∈ R

nu , a vector of manipulated variables,

ωt ∈ R
nx , additive state noise, vt ∈ R

ny , additive measurement noise, and yt ∈ R
ny , output

measurements. f(.), g(.) are models of the state transition and measurement dynamics

respectively.

xt+1 = f(xt, ut, θt+1) + ωt (1)

yt = g(xt, θt) + vt (2)

θt ∈ R
nθ is a vector of disturbance signals. The use of θ provides flexibility as it is sufficiently

general to represent a variety of possible disturbance patterns, which, for practical purposes,

is usually determined by the user. For example, the authors of [37], use θ as a fault

parameter vector to describe changes in process and disturbance parameters as well as

actuator and sensor problems. Common deterministic signals for θt include the pulse,
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step changes (e.g. in Dynamic Matrix Control [18]), ramps, and sinusoids [3]. Stochastic

processes lend themselves to an additional level of sophistication and generalization, given

the typically-assumed probabilistic nature of disturbances. Eq. (3) (see [45]) is capable of

modeling common stochastic signals (and indeed deterministic ones), through appropriate

choices of A ∈ R
nγ×nγ , B ∈ R

nγ×nϕ , C ∈ R
nθ×nγ , and the mathematical forms of ϕ ∈ R

nϕ

and e ∈ R
nθ .

γt+1 = Aγt + Bϕt+1

θt = Cγt + et (3)

In the stochastic processes literature, θt is commonly approximated as a stationary noise,

a white noise driven through a linear filter parameterized by A,B,C. Eq. (3) is extended

to allow for ‘random walk’-type behavior when A = B = C = I, et = 0, ∀t and ϕ is modeled

as a white noise. Such low frequency changes are commonly found in chemical process

industries [62, 63, 16].

2.2 Control of nonlinear stochastic systems

2.2.1 Model predictive control

Model predictive control (MPC) is a technique in which the current control action is ob-

tained by minimizing online, a cost criterion defined on a finite time interval. Nominal

deterministic trajectories of future disturbance signals and uncertainties are necessarily as-

sumed in order to obtain an optimization problem amenable to on-line solution via math

programming. The solution generates a control sequence from which the first element is

extracted and implemented. The procedure is repeated at the next time instant. Owing

to its ability to handle constrained, multi-variable control problems in an optimal manner,

MPC has become the de-facto advanced process control solution for the process industries

today. Consider a generic process model:

dx
dt = fc(x, u, d)

y = g(x) (4)
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where x ∈ R
nx refers to the system state, u, the input vector, y, an output vector and d a

disturbance signal. Since MPC is typically implemented digitally, a discrete-time equivalent

is given by:

xt+1 = fh(xt, ut, dt) (5)

where fh(xt, ut) denotes the terminal state vector obtained by integrating fc across a time

interval of duration h with the initial condition xt and ut and dt held constant across the

interval.

The on-line control action is calculated by solving the following open-loop optimal con-

trol problem at each sample time:

min
{νk}

m−1
k=0

{
p−1∑

k=0

φ(x̃k, νk) + φp(x̃p)

}
(6)

where p refers to the prediction horizon, m ≤ p, the control horizon (νm, νm+1, . . . , νp−1

are all constrained to be zero), φ a single-stage cost, and φp, the terminal stage cost.

x̃0 is initialized as xt (or xt|t if a state estimator is used). The relationship between x̃

and one time instant to the next is governed by fh. A deterministic trajectory (e.g. one

might assume that dk = 0 for the entire prediction horizon) of the disturbance vector is

necessarily assumed. The first element of the sequence {νt}m−1
t=0 is extracted and injected

into the plant. Evidently, the policy instructed by the MPC is implicitly given by the above

mentioned optimization problem.

MPC is by now, considered to be a mature technology owing to the plethora of research

and industrial experiences during the past three decades. Despite this, it has some funda-

mental limitations, which prevents it from being a panacea for all process control problems.

One well-known limitation is the potentially exorbitant on-line computation required for

solving a large-scale, and potentially non-convex math program that scales with the dimen-

sion of the state as well as the length of prediction horizon. Recent developments ([43]) have

made some headway in tackling this problem although nontrivial computational challenges

still exist.

The second limitation arises from the fact that the deterministic formulation adopted

by MPC is inherently incapable of addressing uncertainty in a closed-loop optimal fashion.
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Its open-loop optimal control formulation used to find the control moves at each sample

time means the fact that information about future uncertainty will be revealed, this being

generally beneficial for control performance, is not considered. Most of the past attempts

at ameliorating the impact of uncertainty has been reflected in robust MPCs formulations

based on the objective of minimizing the worst-case scenarios ([86]) at the expense of overly

conservative policies. Multi-scenario formulations ([43]) have also been developed but the

number of scenarios is limited and they do not give closed-loop optimal policies in gen-

eral. Stochastic programming based methodologies ([70]) allow for recourse actions at the

computational expense of enumerating an exponentially growing number of scenarios.

2.2.2 Dynamic programming

Consider the optimal control of the following discrete-time stochastic system:

xt+1 = f(xt, ut, ωt) (7)

where xt ∈ X ⊆ R
nx refers to the system state at discrete time index t, ut ∈ U ⊆ R

nu a

control or action vector, and ωt an exogenous, unmeasured, stochastic signal. x may contain

physically meaningful states as well as measured disturbances, and parameters subject to

uncertainty. f refers to the single-stage transition function. For problems where the system’s

dynamics are represented by ordinary differential equations, f is then the result of numerical

integration across a single sample-time, with vectors u and ω held constant. Throughout

this chapter, it is assumed that full state feedback is available. In the event that only output

feedback is available, x is interpreted as an information vector that contains the sufficient

statistics of the state estimate’s probability density function. Such lifting is possible as the

information vector is governed by another related set of equations (i.e., the filter dynamics).

Let µ ∈ Γ be a ‘state-feedback policy’ that maps the state vector to the action vector,

where Γ represents the set of all admissible (stationary) such policies. Jµ(x) will be used

to denote the ‘cost-to-go’ function, which is defined as the infinite horizon, discounted sum

of the stage-wise costs under the policy µ starting from an arbitrary state x:

Jµ(x) = E

[
∞∑

k=0

γkφ(xk, uk = µ(xk))|x0 = x

]
(8)
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where φ represents a pre-specified stage-wise cost (e.g. φ(x, u) := ||x||2Q + ||x||2R) and

γ ∈ [0, 1) is a discount factor. The goal then is to find the optimal (stationary) policy

µ∗ : X → U , that yields the minimum cost-to-go function as below:

Jµ∗
(x) = min

µ∈Γ
E

[
∞∑

k=0

γkφ(xt+k, ut+k = µ(xt+k))|xt = x

]

(9)

Jµ∗
: X → R

0+ is the optimal ‘cost-to-go’ function and is an indication of the attractiveness

of a given state in terms of future rewards. By definition, Jµ∗
(x) ≤ Jµ(x), ∀x and ∀µ ∈ Γ.

Based on the principle of optimality [7], one is able to re-write (9), thereby obtaining

Bellman’s optimality equations:

Jµ∗
(x) = min

u∈U

{
φ(x, u) + γE(ω|x)[J

µ∗
(f(x, u, ω))]

}

=
(
TJµ∗

)
(x) (10)

T above represents the single-pass DP operator represented by the minimization operation.

The optimal policy is implicitly obtained through the solution of the associated single-stage

optimization:

µ∗(x) = arg min
u∈U

{
φ(x, u) + γE(ω|x)[J

µ∗
(f(x, u, ω))]

}
(11)

In principle, the optimal control problem is solved once Jµ∗
is known. The repeated appli-

cation of T on an arbitrarily initialized cost-to-go leads to convergence and underpins the

idea behind Value Iteration (VI).

Jµ∗
(x) = TJµ∗

(x) = lim
i→∞

(T )iJµ(x), ∀µ, x (12)

VI’s computational requirements grow as O(|X |2|U|). Therefore for continuous states, as is

typical for process control, DP methods are computationally intractable. An exception is

LQG control, a method of designing feedback control laws for linear systems with additive

Gaussian noise processes that minimize a given quadratic cost functional. Due to the

aforementioned ‘Curse-of-Dimensionality’, approximate methods making judicious use of

simulations, discretization and function approximation have been explored. [35] contains
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comprehensive references on this topic. The adaptation of these ideas for the purpose of

chemical process control was explored in [47, 48, 44, 46]. Applications included data-based

nonlinear process control, dual control, and project scheduling.
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CHAPTER III

REALISITIC DISTURBANCE MODELING USING HIDDEN

MARKOV MODELS

3.1 Introduction

Eqs. (13)-(14) together form a general representation of a dynamical system. Here, xt ∈ R
nx

is the system state at discrete-time index t, ut ∈ R
nu , a vector of manipulated variables,

ωt ∈ R
nx , additive state noise, vt ∈ R

ny , additive measurement noise, and yt ∈ R
ny , output

measurements. f(.), g(.) are models of the state transition and measurement dynamics

respectively.

xt+1 = f(xt, ut, θt+1) + ωt (13)

yt = g(xt, θt) + vt (14)

θt ∈ R
nθ is a vector of disturbance signals. The use of θ provides flexibility as it is sufficiently

general to represent a variety of possible disturbance patterns, which, for practical purposes,

is usually determined by the user. For example, the authors of [37], use θ as a fault

parameter vector to describe changes in process and disturbance parameters as well as

actuator and sensor problems. Common deterministic signals for θt include the pulse,

step changes (e.g. in Dynamic Matrix Control [18]), ramps, and sinusoids [3]. Stochastic

processes lend themselves to an additional level of sophistication and generalization, given

the typically-assumed probabilistic nature of disturbances. Eq. (15) (see [45]) is capable of

modeling common stochastic signals (and indeed deterministic ones), through appropriate

choices of A ∈ R
nγ×nγ , B ∈ R

nγ×nϕ , C ∈ R
nθ×nγ , and the mathematical forms of ϕ ∈ R

nϕ

and e ∈ R
nθ .

γt+1 = Aγt + Bϕt+1

θt = Cγt + et (15)
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In the stochastic processes literature, θt is commonly approximated as a stationary noise,

a white noise driven through a linear filter parameterized by A,B,C. Eq. (15) is extended

to allow for ‘random walk’-type behavior when A = B = C = I, et = 0, ∀t and ϕ is modeled

as a white noise. Such low frequency changes are commonly found in chemical process

industries [62, 63, 16].

Though routinely adopted, the classical approach towards disturbance modeling is lim-

iting in the face of more complex disturbance patterns seen in real processes. Such behavior

includes intermittent drifts, abrupt jumps and temporary oscillations - all commonly wit-

nessed patterns in process industries. For the purpose of illustration, consider that depicted

in Figure 1(a), a time series of an entering disturbance signal (θ). It clearly exhibits dual-

regime behavior. Namely, there exists “quiet” periods of relatively small high frequency

process noise with occasional injections of intervals of random walk-like behavior. Another
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(a) White noise probabilistically in-
terspersed with integrated white
noise.
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(d) Abrupt shifts in mean values.

Figure 1: Realistic disturbance patterns modeled by proposed framework.

scenario, characterized by the existence of multiple regimes or modes, is shown in Figure
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1(b). Specifically, it reveals four regime permutations where input and/ or output dis-

turbances are dominant. For example, ‘low:low’ (regime 1) indicates that both input and

output disturbances enter as white noises. ‘low:high’ (regime 2) suggests that significant

non-stationary, random-walk type disturbances are entering the output channel whereas

input disturbances are relatively quiescent, and so on.

Other commonly seen disturbance signals include step changes of arbitrary duration and

magnitude, as depicted in Figure 1(c). A slight variation is depicted in Figure 1(d) where

the disturbance signal assumes, randomly, mean values/ biases from elements of a fixed set.

In either case, regime 2 (say) may correspond to the relatively rare jump event.

The provision of a generalized framework for the modeling of the aforementioned behav-

ior, revealing continuous and discrete1 or modal dynamics, is the focus of this work. Accord-

ingly, the use of Hidden Markov Models (HMMs) in providing a significant generalization of

the current model form for disturbance modeling is explored. Another contribution of this

chapter is to demonstrate that a wide range of existing model-based control formulations

can be easily adjusted to integrate the proposed HMM-based disturbance framework. Such

ease-of-use allows control practitioners to reap the benefits of realistic disturbance modeling

in an immediate and relevant way.

The details of how the generalization may be achieved via HMMs are given in Section

3.2. Comments on system identification and state estimation for systems perturbed by

disturbances modeled through HMMs are provided in Section 3.3. Three examples are

presented in Sections 3.4 - 3.5 to demonstrate the usefulness of the proposed framework in

a wide range of process control methods and applications. Section 3.4 shows that the HMM-

based disturbance model, used to impart integral action to Linear Model Predictive Control

(LMPC), is robust to a variety of stochastic disturbance scenarios. Section 3.5 demonstrates

the flexibility of the proposed framework by extending it outside stochastic disturbances, to

the detection and rejection of deterministic step changes. Section 3.6 concludes the chapter

and provides comments on outstanding issues.

1not to be confused with discrete-time dynamics
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3.2 Generalizations via a Hidden Markov Model framework

3.2.1 Hidden Markov Models

HMMs represent a useful class of statistical models where a latent state, taking values

from an alphabet J , {1, 2, . . . , J ∈ Z+}2 of cardinality J , transitions probabilistically

in a Markovian fashion3 from one sampling time to the next. Mathematically, a finite-

state Markov chain is a sequence of random variables (r0, r1, . . . , rt, . . .), where matrix Π =

(πij) = (pr(rt = j|rt−1 = i), i, j ∈ J ) :
∑J

j=1 πij = 1, ∀i ∈ J , governs the probabilistic

temporal transitions. The term ‘Hidden’ signifies that the actual regime label is usually not

known with complete certainty and must be inferred from available noisy measurements

of itself or other related states. In the simplest case, each latent state has a probability

distribution over a finite set of possible output symbols.

Hidden Markov Models have found widespread applications in science and engineering

since the 1960s. Speech recognition [74] is one such area. Each candidate word has an

HMM associated to it; word recognition consists of choosing the model that generates the

largest likelihood. Kim [38] applied an HMM on top of a state-space model for modeling

econometric time-series. There, the hidden states corresponded to different structural pe-

riods of the economy and determined the model parameters accordingly. In the field of

bioinformatics, DNA sequencing via HMM analysis is now ubiquitous. In process control,

Morales-Menendez et al. [61] modeled an industrial heat exchanger where different Markov-

ian states corresponded to different flow-rate regimes, each of which was represented by a

linear state-space approximation. Bar-Shalom and Li [4] describe the tracking of targets

whose motions switch between models along their trajectories via Markov jump systems.

3.2.2 Mixture-of-Gaussians and Markov jump linear systems

In the literature, the modeling of disturbances with modal behavior has typically been

achieved via a Mixture-of-Gaussians (MOG) formalism, which can be considered to be a

2The choice of using positive integers to denote all possible realizations of the latent state is made for
notational convenience and generality. Therefore, a set containing labels composed of strings, characters, or
other data types is also possible.

3
i.e., the transitions depend only upon the immediate past
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special case of HMMs. At each time instant, each latent state would occur with a certain

probability that is independent of past realizations, and would be realized from a particular

Gaussian distribution. Robertson and Lee [79], for instance, modeled abrupt changes in

such a manner albeit with an eventual focus on state estimation. For the purpose of data

rectification, Singhal and Seborg [88] used an MOG approach to model infrequent outliers

in measurement noise. By allowing for arbitrary probabilistic transitions among the hidden

states, the proposed HMM framework is more general than the MOG methodology.

Following the successes in other fields, a generalization of Eq. (15) is considered by

allowing the statistics of ϕ, e and potentially the parameters of A,B,C,D to vary according

to a hidden Markov chain. Namely, one obtains Eq. (16):

γt+1 = Art+1γt + Brt+1ϕt+1

θt = Crtγt + et

pr(rt = j|rt−1 = i) = πij (16)

The notation Art means that at time t, A may take values from J possible candidates

according to the realization of the hidden state, and so on. In addition to the system para-

meters, the probability distribution from which ϕt and et are sampled may vary according

to the realization of the hidden state rt.

In this chapter, ϕt is restricted to be a Gaussian variable, i.e., ϕt ∼ N (µϕ
rt , Q

ϕ
rt). A

similar restriction is imposed on et ∼ N (µe
rt
, Qe

rt
). This resulting framework is termed a

‘Markov Jump Linear System’ (MJLS) [17] and is of sufficient flexibility to describe the

scenarios mentioned earlier.

3.2.3 Disturbance modeling using HMMs

The form of Eq. (16) affords a great deal of flexibility in disturbance modeling. Whilst

the values assumed by (A,B,C, µ, Q) depict disturbance patterns within a given mode, the

dynamics of the hidden state r, governed by Π, provides an added degree of freedom for

describing a wide array of switching behavior.
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3.2.3.1 Intermittent drifts

For one-dimensional intermittent drifts (Figure 1(a)), one sets A = B = C = 1:

γt+1 = γt + ϕt+1

θt = γt + et

πij < 1

πij ≈ 1, if i = j

i, j ∈ {1 (‘white noise’), 2 (‘random walk’)} (17)

Here, ϕt and et are uncorrelated, zero-mean Gaussian signals with the covariances of Qϕ
rt

and Qe
rt

, respectively. When rt = 1 (i.e., the white noise disturbance regime), Qϕ
rt ≈ 0 and

Qe
rt
� 0. Random-walk type behavior occurs when the hidden state switches to rt = 2,

where Qϕ
rt � 0, and Qe

rt
≈ 0. Since it is common that there is low probability of switching

once the system enters a particular regime, a diagonally-dominant Π is employed. With

some abuse of notation, the dependency of the noise statistics on the hidden state is denoted

as such:

γt+1 = γt + ϕrt+1

θt = γt + ert (18)

One can certainly incorporate additional behavior (e.g., linear drifts) into the model by

introducing more hidden states and associating them with appropriate stochastic models to

those states. Multi-dimensional intermittent drifts (Figure 1(b)) can be described likewise

by adding additional dimensions to θ. Correlations between the different channels can be

introduced through the addition of an extra number of hidden states (see Section 3.4 for

details).

3.2.3.2 Abrupt step change, mean-shifts and outliers

Many systems suffer from infrequent but abrupt changes [101, 5]. By changing the transition

probability matrix described in Section 3.2.3.1 to have much higher weight on the first (say)

column, a signal typified by Figure 1(c) may be effectively modeled since self-transitions of
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the ‘jump’ state are assumed to be rare. Doing so enables the underlying Markov chain to

behave somewhat similarly to a MOG (as described in Section 3.2.2), thus demonstrating

the flexibility of the proposed HMM methodology.

By setting C = 0, assigning appropriate values to (µe
rt
, Qe

rt
) and assuming a diagonally

dominant Π, infrequent jumps between various mean levels (Figure 1(d)) is described. Out-

liers may be suitably modeled by assuming a proper form of Π, i.e., πij ≈ 1, ∀i for some

arbitrary column j.

3.2.3.3 Intermittent oscillations and other disturbance signals

Oscillations may be described as an appropriately modeled linear filter parameterized by

A,B,C (see [3]), driven by an external forcing function. Therefore, intermittent oscillations

come about by allowing the dynamics of the exogenous forcing function to change according

to r.

The use of multiple Markov chains and superposition affords additional flexibility in

terms of describing realistic disturbances patterns. Therefore, situations such as the ap-

pearance of intermittent drifts in addition to infrequent outliers are within the realm of the

proposed HMM framework.

3.3 System identification & state estimation of jump systems

Typically, model-based advanced process control solutions operate by applying a policy

(e.g. an open loop optimization in the context of Model Predictive Control) to on-line state

estimates, by virtue of the certainty equivalence principle. For this reason, a brief mention

of system identification of the overall system (Eq. (19) characterizes a general Markov Jump

System (MJS)) composed of a concatenation of Eqs. (13), (14), (16), as well as practical

considerations due to the difficulties associated with exact identification, is appropriate.
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This is followed by an explanation of the corresponding state estimation problem.



xt+1

γt+1


 = Frt+1

(


xt

γt


 , ut, ξrt+1

)

yt = Grt

(


xt

γt


 , nrt

)

pr(rt = j|rt−1 = i) = πij (19)

Here F is implicitly understood to include model structures and parameters from {f,Ar,Br,Cr}

and the hidden Markov chain. A similar remark is extended to G. Besides F and G, the

statistics of the noise ξ (a concatenation4 of (ω, ϕ, e)) and n (a concatenation of (v, e)) can

depend on r.

3.3.1 System identification & practical considerations

Identification of MJS’s, an area of interest in its own right, is particularly challenging due to

the influence of the unknown Markov states. For example, exact Expectation-Maximization

(EM) methods, typically used for parameter estimation in the context of Maximum Likeli-

hood Estimation (MLE), are computationally intractable due to the exponentially growing

number of Hidden state trajectories. Murphy [64], Pavlovic et al. [69] and Wong and Lee

[105] have employed approximate EM techniques to learn the parameters of Markov Jump

Linear systems (MJLS). Vidal et al. [103] proposed a method based on generalized Princi-

pal Component Analysis (PCA) for learning MJLS’s that are unperturbed by disturbances.

The author(s) of [100] focused solely on estimating the transition probability matrix (Π)

for Markov jump linear systems.

The case of system identification for nonlinear (jump) systems is still an open area

of research. This, as well as the difficulties associated with the identification of Markov

jump linear systems (such as convergence to a local optima on the likelihood landscape),

necessitates other practical considerations, as described next.

4Depending on the structure of the problem, such a concatenation may be an involved process. Nonethe-
less, this has been done to achieve notational convenience and uniformity.
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3.3.1.1 Practical considerations

For the purpose of this chapter, it is assumed that the system, noise and Markov parame-

ters are available, either through identification under strict control and/ or fundamental

knowledge.

In ascertaining the impact of the uncertainty vector θ ∈ R
nθ , one would need to de-

termine all disturbance scenarios of interest (for example one may suspect intermittent

drifts affecting the input channels, abrupt jumps in the output channels and so on). The

disturbance modeling would then proceed as mentioned before in Section 3.2.

Of special note is the fact that learning the exact value of the elements of Π is not

required. Indeed, examples have shown results to be robust towards the tuning of Π (see,

for example, Section 3.5.1.3).

Nonetheless, simple guiding rules may be derived from a straightforward application of

probability [90]. Specifically, the elements of Π may be approximated as such:

πii ≈ 1− 1

li

where li is the expected duration (in number of sample time units) spent in regime i until a

transition occurs. For instance, in the case of a system experiencing abrupt jumps (Section

3.2.3.2), the expected duration in the jump state may be expected to be at most a fraction

longer than a single sample time unit, as can be easily ascertained by a control practitioner

with sufficient process insights. If more rigorous methods for approximating Π are desired,

a Hidden Markov Model may be learnt and its transition probability matrix used in the

existing context. However, the output of this Hidden Markov Model needs to be redefined

to be the time-varying parameters (obtained through adaptive system identification) of the

plant, which is being subject to the pre-supposed disturbance patterns. Readers are referred

to [90] for a treatment on this issue.

3.3.2 State estimation

For the Markov jump systems this work is concerned with, the optimal filter involves an

exponentially growing number of linear filters due to the dependence of the noise statistics
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on rt. Without knowledge of the sequence (r0, r1, . . . , rt), the optimal filter needs to average

over all possible past trajectories, the number of which scales as J t, where J is the cardinality

of J , the set containing all possible realizations of r. On the other hand, if the trajectory

were known, the estimation problem specializes to a sequence of predictor-corrector steps,

the cornerstone of linear and non-linear filtering theory.

A popular sub-optimal filtering technique, the second order Generalized Pseudo-Bayesian

(GPBn) algorithm developed by [4] is employed throughout this chapter for the reasons

mentioned in [79] and [100]. In particular, GPB2 will be used. Details of the ‘Interacting

Multiple Model’ (IMM) algorithm [9, 34], an approach with similar performance as GPB2

but at the (lower) computational cost of GPB1 are omitted since the focus of this work is not

on state estimation for jump systems. More involved maximum likelihood-based methods

that are not considered in this chapter can be found in [55] and the references therein.

Define η as the concatenated state [x; γ], Rt
t−1 , (rt−1, rt) as a sequence of the two most

recent Markov-state realizations and Y t
0 , the measurement sequence (y0, . . . , yt). Note from

Eq. (19) that rt is assumed to affect xt and yt immediately.

Accordingly, let η̂t|t(Rt
t−1) denote the estimate of ηt that is conditioned on the two

most recent latent-state realizations, as well as Y t
0 . Similarly, the corresponding estimation

error covariance matrix is represented as Pt|t(Rt
t−1). The main idea is to have these quan-

tities with trajectories whose last two terms differ, be combined (via moment-matching)

into a single Gaussian, parameterized by {η̂t|t, Pt|t}5. A recursive scheme, characterized

by two phases: ‘branching’ (Eq. (20)) and ‘merging’ (Eqs. (21), (22)) are briefly out-

lined and illustrated in Figure 2. A simple numerical example can be found in Section

3.3.2.1. Starting with
{
η̂t−1|t−1(rt−1), Pt−1|t−1(rt−1)

}J

r=1
, updates are performed to obtain

{
η̂t|t(Rt

t−1), Pt|t(Rt
t−1)

}
through so-called ‘branching’ operations:

Branching:

{η̂t|t(Rt
t−1), Pt|t(Rt

t−1)} = filter
[
η̂t−1|t−1(rt−1), Pt−1|t−1(rt−1), yt

]
(20)

5In fact, the probability density function more closely resembles a mixture-of-Gaussians
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Figure 2: Schematic illustrating the GPB2 algorithm for a two-regime problem.

Here, each application of filter refers to prediction and measurement update steps, both

of which correspond to the state estimator of choice matched to the appropriate regime.

For brevity, the input term, u, has been omitted.

These J2 pairs of estimates and covariance matrices are then successively merged into

terms accounting for shorter sequences whereupon the quantities {η̂t|t(rt), Pt|t(rt)} are fi-

nally obtained. The latter serve to initialize the ‘branching’ operations at the next time

step. The following equations (Eqs. (21), (22)) represent the ‘merging’ phase:

Merging:

η̂t|t(rt) =
∑

rt−1∈J

η̂t|t(Rt
t−1)pr(rt−1|rt, Y t

0 )

Pt|t(rt) =
∑

rt−1∈J

[
{
η̂t|t(Rt

t−1)− η̂t|t(rt)
}
{·}′

+Pt|t(Rt
t−1)] · pr(rt−1|rt, Y t

0 )

pr(rt−1|rt, Y t
0 ) =

1

c1
· pr(yt|Rt

t−1, Y
t−1
0 )pr(rt|rt−1) · pr(rt−1|Y t−1

0 ) (21)

η̂t|t =
∑

rt∈J

η̂t|t(rt)pr(rt|Y t
0 )

Pt|t =
∑

rt∈J

[
{
η̂t|t(rt)− η̂t|t

}
{·}′ + Pt|t(rt)] · pr(rt|Y t

0 )

pr(rt|Y t
0 ) =

1

c2
·
∑

rt−1∈J

pr(yt|Rt
t−1, Y

t−1
0 )pr(rt|rt−1) · pr(rt−1|Y t−1

0 ) (22)

21



Here, c1 refers to a constant ensuring that pr(rt−1|rt, Y t
0 ) sums to unity. The first two lines

of Eq. (21) are a consequence of the property of the conditional expectation and variance

operators6. The third line comes directly from an application of Bayes’ rule (generating the

term pr(yt|Rt
t−1, Y

t−1
0 )) as well as the Markov property and the definition of conditional

probability (hence the terms pr(rt|rt−1), pr(rt−1|Y t−1
0 )). pr(yt|Rt

t−1, Y
t−1
0 ) is related to the

innovations term associated with the filter operation employed at the branching stage.

To obtain point estimates, a final merging step (Eq. (22)) is required, where c2 is

another normalizing constant. If required, a prediction and/ or filtered estimate of rt+1,

can be obtained viz:

r̂t+1|t = arg max
rt+1

{
pr(rt+1|Y t

0 ) ,
∑

rt

pr(rt+1|rt) · pr(rt|Y t
0 )

}

r̂t|t = arg max
rt

{
pr(rt|Y t

0 )
}

(23)

A more sophisticated technique that is not considered in this chapter, involves dynamic

programming [55] to compute the sequence with the highest probability.

3.3.2.1 Numerical Illustration of GPB2

Consider the following Markov jump linear system used for the purpose of simulation.

xt = xt−1 + ϕrt

yt = xt + vt

E[ϕr=1ϕ
′
r=1] = 10−3

E[ϕr=2ϕ
′
r=2] = 20

π11 = π22 = 0.99 (24)

During the simulations, measurement noise samples are generated using R , E[vtv
′
t] set

to 5. The latter quantity is available for estimator design. x0 is set to 110 and available

for estimator initialization. With this, regime 1 corresponds to a quiescent phase, and the

other regime, a mode with significant velocity (due to changes in ϕ).

6Consider two uni-dimensional random variables V1, V2. Then, EV1
[V1] = EV2

E(V1|V2)[V1|V2] =P
V2

E(V1|V2)[V1|V2] · pr(V2). Similarly, VarV1
[V1] = EV2

[Var(V1|V2)[V1|V2]] + VarV2
[E(V1|V2)[V1|V2]] =P

V2

ˆ
Var(V1|V2)[V1|V2] + (E(V1|V2)[V1|V2] − EV1

[V1])
2
˜
· pr(V2).
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For time-index (t− 1), given
{
x̂t−1|t−1(rt−1), Pt−1|t−1(rt−1)

}
, the following are the time

(Eq. (25)) and measurement update (Eq. (26)) steps utilized within the ‘branching’ phase

of the GPB2 methodology:

Branching:

x̂t|t−1(Rt
t−1) = x̂t−1|t−1(rt−1)

Pt|t−1(Rt
t−1) = Pt−1|t−1(rt−1) + E[ϕrtϕ

′
rt

] (25)

x̂t|t(Rt
t−1) = x̂t|t−1(Rt

t−1) +Kt(Rt
t−1)(yt − x̂t|t−1(Rt

t−1))

Kt(Rt
t−1) = Pt|t−1(Rt

t−1)(Pt|t−1(Rt
t−1) +R)−1

Pt|t(Rt
t−1) = (I −Kt(Rt

t−1))Pt|t−1(Rt
t−1) (26)

With the quantities
{
x̂t|t(Rt

t−1), Pt|t(Rt
t−1)

}
, merging is done via Eqs. (21), (22), such

that a point estimate is ultimately obtained:

Merging:

x̂t|t(rt) =
∑

rt−1

x̂t|t(Rt
t−1)pr(rt−1|rt, Y t

0 )

Pt|t(rt) =
∑

rt−1

[
{
x̂t|t(Rt

t−1)− x̂t|t(rt)
}
{·}′ + Pt|t(Rt

t−1)] · pr(rt−1|rt, Y t
0 )

x̂t|t =
∑

rt

x̂t|t(rt)pr(rt|Y t
0 )

Pt|t =
∑

rt

[
{
x̂t|t(rt)− x̂t|t

}
{·}′ + Pt|t(rt)] · pr(rt|Y t

0 )

State estimation results for a typical realization are depicted in Figure 3, where the esti-

mates corresponding to two different steady-state Kalman filters are presented for bench-

marking purposes. The first low-gain filter is tuned assuming a state noise variance of 10−3.

Conversely, the second high-gain filter assumes a state noise variance of 20. Since neither

steady-state filter works well across both regimes, significant tuning efforts are required if a

stationary Kalman filter is to be employed. Having established the means by which realistic

disturbances may be modeled using a HMM framework and the state estimation mechanism
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Figure 3: Comparing state estimators reacting to a regime change.

(for the eventual purpose of monitoring and control), the following sections examine the

usefulness of the proposed work in a variety of process control-relevant situations.

3.4 Example 1: HMM disturbance framework for offset-free linear model
predictive control

Supported by constraint-handling capabilities and a well-established body of theory, Lin-

ear Model Predictive Control (LMPC) is the preferred advanced process control method

employed in process industries. For offset-free control, augmentation with integrators is

common [65]:




xt+1

dt+1

pt+1




=




A Gd 0

0 I 0

0 0 I







xt

dt

pt




+




B

0

0



ut

yt =

(
C 0 Gp

)



xt

dt

pt




(27)

dt ∈ R
nd and pt ∈ R

np are interpreted as state/ input and output disturbances respectively.

Furthermore, nd+np ≤ ny and other constraints on Gd and Gp are required for detectability.

The most popular choice used in earlier versions of MPC (e.g., Dynamic Matrix Con-

trol [18]) is Gp = Iny , Gd = 0, which assumes that independent integrated white noise
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disturbance enters each output channel. Though popular, this choice can give poor per-

formance for systems with slow poles [87] and/ or integrating modes. Another choice is

Gp = 0, Gd = B, which assumes independent integrated white noise disturbance enters each

input channel.

Regardless, the aforementioned approaches may be limiting in the face of a wrong as-

sumption or switching patterns. Consider Figure 1(b), a time-series plot of disturbances

entering the input and output channels of an arbitrary dynamical system. This scenario can

be thought of as an approximation to the case where there exists significant intermittent

non-stationary disturbance patterns in each channel. Such behavior of switching patterns

is oftentimes neglected in disturbance modeling and controller design due to the lack of a

suitable framework. On the other hand, the failure to address this can be to the detriment

of the resulting closed-loop behavior, as will be demonstrated in Section 3.4.1.1.

In response to this, researchers have developed techniques to estimate in an on-line

fashion, noise parameters required by the Kalman filter. Nevertheless, this ‘design’ approach

[68] implicitly assumes that step disturbances enter either in the input or output channels

(Gd = B or Gp = I is typical). In addition, it could require that significant on-line data

be collected before the covariance estimates converge and the controller responds to a new

pattern.

In contrast, the proposed formulation will be shown to be robust to a wide variety

of disturbance scenarios. First, in order to ensure the detectability of the system in the

presence of both input and output disturbances (Gd = B,Gp = I), the differenced form

used by [72] is adopted. Incorporating the proposed HMM framework, it is assumed that

the dynamical system of concern evolves according to the following:

xt+1 = Axt +Bθd
t+1 +But

yt = Cxt + θp
t + vt (28)


θd

θp




t+1

=



θd

θp




t

+



ϕd

ϕp




rt+1

(29)

where as before, θd
t and θp

t are the input and output disturbances respectively. Eq. (29)
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is a specialization of Eq. (16). These integrators are driven by zero-mean, uncorrelated,

white Gaussian signals ϕd
r ∼ N (0, Qϕd

r ), and ϕp
r ∼ N (0, Qϕp

r ). vt ∼ N (0, R) is normally

distributed measurement noise.

Having established this, and provided that the original system of concern is detectable,

a detectable differenced formulation Eq. (30) that will be used by the receding-horizon

regulator as well as the (GPB2) state-estimator is:




∆xt+1

zt+1


=




A 0

CA I




︸ ︷︷ ︸
Ã




∆xt

zt


+



B

CB




︸ ︷︷ ︸
B̃

(
∆ut + ϕd

rt+1

)
+




0

ϕp
rt+1




= Ãηt + B̃∆ut + B̃ϕd
rt+1

+




0

I


ϕp

rt+1

︸ ︷︷ ︸
ξrt+1

yt =

(
0 I

)

︸ ︷︷ ︸
C̃




∆xt

zt


+ y∗ + vt (30)

Here, zt , (yt − vt − y∗), with y∗ denoting the desired output setpoint. Also, ∆ represents

a time-differencing operator. ξrt+1 , the covariance of which depends on the hidden state

r, represents the effective state noise. ϕd
rt+1

, and ϕp
rt+1 refer to zero-mean white Gaussian

signals that drive the input and output integrators, respectively. Since it is assumed that

ϕd
rt+1

, and ϕp
rt+1 are uncorrelated, then one has Eq. (31).

E[ξrt+1ξ
′
rt+1

] = B̃E[ϕd
rt+1

ϕd′

rt+1
]B̃′ +




0 0

0 E[ϕp
rt+1ϕ

p′
rt+1 ]


 (31)

The benefits of using the differenced formulation is that detectability is ensured under rather

mild conditions. This is favorable as compared to approaches based on Eq. (27), where

certain choices like Gd = B, and Gp = I [65] make the system undetectable. As mentioned

earlier, the GPB2 filter will be used for state estimation.
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3.4.1 Numerical example

3.4.1.1 System parameters

For simplicity, consider the triple (A = 0.9, B = 1, C = 1.5) parameterizing a nominal Single-

Input-Single-Output (SISO) system. Generally speaking, it is not certain in advance if input

or output disturbances will dominate. Furthermore, there may exist probabilistic switches

between regimes, as postulated in this work. To evaluate the performance of the proposed

controller under these possible situations, four simulation scenarios are considered. As par-

ticular instances of Eqs. (28), (29), these (and their simulation parameters) correspond

to

• I. Levels of input noise << levels of output noise. This can be thought of the case

where θd
t = 0, ∀t. E[ϕdϕd′] and E[ϕpϕp′] correspond to the ‘low:high’ regime as re-

ported in Table 1.

• II. Levels of input noise >> levels of output noise. Similarly, in this case, θp
t = 0, ∀t

and the noise statistics correspond to the ‘high:low’ regime.

• III. Levels of input noise are comparable to levels of output noise. Here, the noise

parameters are the same as those in ‘high:high’ regime of Table 1.

• IV. Relative levels of input and output noise switch in a probabilistic manner (see

Figure 1(b)). The transition probability matrix Π, used in the simulated studies, is

given in Eq. (32) and reflects the situation where either input or output (but not

both) disturbances dominate. In accordance with intuition, it can also be seen that

relative to regimes 2 and 3, the system tends to spend less time, on average, in the

‘high-high’ and ‘low-low’ regimes. For instance, the expected duration the system

spends in regime 1 or 4 is 1
1−0.8 = 5 time units whereas that spent in regime 2 or 3 is

1
1−0.97 ≈ 33 units. Furthermore, drastic ‘low-low’ to ‘high-high’ transitions (and vice

versa) are forbidden. The noise parameters used for simulation can be found in Table
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1.

Π =




0.800 0.100 0.100 0.000

0.010 0.970 0.010 0.010

0.010 0.010 0.970 0.010

0.000 0.100 0.100 0.800




(32)

Table 1: Noise parameters used in simulation studies

Regime Qϕd

r Qϕp

r

Input Noise: Output Noise r ∈ {1, 2, 3, 4}
‘Low:Low’ r = 1 10−10 10−10

‘Low:High’ r = 2 10−10 50
‘High:Low’ r = 3 10 10−10

‘High:High’ r = 4 10 50

For simplicity, all simulations were run with negligible measurement noise, that is R ≈ 0.

3.4.1.2 Parameters Used for Controller/ Estimator Design

In order to investigate the effect of disturbance model vs. plant simulation mismatch, four

model-predictive controller/ estimator pairs were constructed, all based on the proposed

differenced model form of Eq. (30). These differ only in the estimators employed. Namely,

these controller/ estimators assume:

• I. Output disturbance only. In this case, E[ξξ′] can be computed using data from

Table 1 corresponding to r = 2, and Eq. (31). As noted by [66], the resulting steady-

state Kalman gain is

[
0 I

]
parameterizing an open-loop observer for ∆x and a

deadbeat observer for z.

• II. Input disturbance only. Similarly one uses r = 3 data from Table 1, for computing

E[ξξ′]. A deadbeat observer is obtained in this case.

• III.Output and input disturbances. Here, one uses r = 4 data from Table 1, for

computing E[ξξ′].
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• IV. Switching behavior. For this case, a GPB2 estimator with Π given in Eq. (32), is

employed.

Although the velocity form is employed, controllers / estimators I, II and III can be regarded

as special cases of Eq. (27), and as such are considered as standard MPC formulations for

imparting the integral action. For all the (simulation scenario-controller) pairs considered,

the objective function, with y∗ = 0 is as follows (Eq. (33)):

min
1

N

N∑

t=0

[
z′tzt + 0 ·∆u′t∆ut

]
N→∞

(33)

Constraints have been removed for clarity of exposition and the absence of a penalty on

excessive actuator movement in the objective function results in a deadbeat controller (Eq.

(34)):

∆ut = −
(

0.90 0.67

)



∆̂x

ẑ




t|t

(34)

3.4.1.3 Results & Discussion

For each simulation scenario I-IV, 500 realizations, each of duration 500 sample time units,

were run. Furthermore, for each realization of each simulation scenario, a controller cou-

pled with a time-varying Kalman filter assuming perfect knowledge of the true simulation

regime was tested. Although this assumption is impractical, such a controller is tested

for benchmarking purposes. For example, in scenario IV corresponding to switching dis-

turbances, such a time-varying Kalman filter would have had access to the actual Markov

regime. As mentioned in Section 3.3.2, such ideality is in contrast to the GPB2 estimator,

which estimates the regime sequence based on on-line measurements and relies on moment

matching to bound the computational cost. The performance index P7 is the average

ratio of squared-tracking error for each controller to that corresponding to the benchmark-

ing controller/ estimator. Closed-loop results are reported in Table 2. Figure 4 contains

7P , 1
S

SX

s=1

 PT

t=1 y2
tPT

t=1 (yb)
2
t

!
; yb refers to the output corresponding to the benchmark
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Table 2: Mean of normalized squared error over 500 realizations
Controller/ Estimator

Simulation Output Input Output&Input GPB2
Scenario (yo) (yi) (yoi) (yGPB2)

Output (I) 1.00 1.62 1.21 1.03
Input (II) 5.15 1.00 1.33 1.02
Output&Input (III) 1.84 1.24 1.00 1.05
Switching (IV) 3.21 1.52 1.22 1.08

benchmarked plots of y (for a typical realization) corresponding to various combinations of

controller/ estimator schemes and simulation scenarios. As can be seen from Table 2 and
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(b) Input disturbance.
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(c) Output and input disturbance.
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(d) Switching disturbances.

Figure 4: Benchmarked output plots for various combinations of employed controller/
estimator schemes and simulation scenarios.

Figs. 4(a), 4(b), 4(c) and 4(d), the proposed model predictive controller designed based

on the GPB2 estimator of the HMM model yields the best performance amongst all the

controller/ estimators other than that which coincides with the actual simulation scenario.

This suggests that the proposed formulation is generally more robust than the standard
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controllers employed. Due to the relatively large time constant of the system (A = 0.9),

the output estimator/ regulator (yo) expectedly [87] gives the poorest performance for the

scenarios it has not been designed for.

Furthermore, using a formulation that includes both input and output disturbances often

means using an observer gain that ‘averages’ the input and output disturbance effects. How

this translates to final closed-loop performance is not clear. Using the time-varying GPB2

estimator results in a dynamic observer gain that is a function of on-line measurements.

Despite the mismatch in terms of Π, the control performance is still acceptable.

In the next section, the proposed HMM framework, although designed to handle stochas-

tic disturbance signals, is shown to be flexible enough to handle deterministic disturbance

scenarios.

3.5 Example 2: Rejecting & detecting deterministic step changes

Deterministic step changes constitute a simple but important class of disturbance signals.

In this section, it will be demonstrated that using the proposed noise model results in

superior closed loop performance as compared to the popular Integrated White Noise (IWN)

assumption, for the purpose of rejecting such perturbations.

Consider the following simulation where a persistent step change of constant magnitude

κ, is introduced to the output channel at (an arbitrarily selected) time t∗.

xt+1 = Axt +But

yt = Cxt + θp
t + vt

θp
t =





0, t < t∗

κ, t ≥ t∗
(35)

In order to model this behavior within the context of the HMM framework, Eqs. (28), (29),

and (30) are adjusted by ignoring parts related to θd. Then, Π is set such that the hidden

Markov chain spends the majority of its time in regime 1 and transitions to regime 2 are

swiftly followed by switches back to the 1st mode. The variance of ϕp
rt for regime 1 is set

approximately to the nil matrix, whereas the (non-zero) elements of the covariance matrix

for regime 2 may be interpreted as user-defined tuning parameters. These assumptions
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suggest a disturbance model that anticipates infrequent jumps (see Figure 1(c)) and is

considered a close approximation to an abrupt step change of constant magnitude. In

particular, the following disturbance model is obtained:



∆xt+1

zt+1


 = Ãηt + B̃∆ut +




0

I


ϕp

rt+1

yt = C̃




∆xt

zt


+ y∗ + vt

π11 = π21 >> π12 = π22

E[ϕp
r=1ϕ

p
r=1] = diag(q1,1, . . . , q1,ny), q1,l << 1, 1 ≤ l ≤ ny

E[ϕp
r=2ϕ

p
r=2] = diag(q2,1, . . . , q2,ny), q2,l >> 1, 1 ≤ l ≤ ny

E[vv
′
] = diag(r1, . . . , rny)

(36)

The definitions of Ã, B̃, C̃, z and y∗ are found in Section 3.4. The estimator corresponding

to the HMM model of (Eq. (36) ) is expected to be able to detect the jump events in

the plant (Eq. (35)), thereby allowing the regulator to reject the step changes without

over-reacting to measurement noises.

3.5.1 Comparing closed-loop performance: different disturbance models

As an illustration, consider a SISO system with A = 0.9, and B = 1, C = 3. For the

simulations, T , the length of each run, is set to 200 time steps, κ to 20, t∗ to 175, and the

variance of the measurement noise, R to 5. Like the previous example, the (unconstrained)

control objective is the minimization of the following infinite-horizon sum, with a set-point

at the origin:

min

{
∞∑

t=0

z′tzt + 0.1∆u′t∆ut

}
(37)

The matrix parameterizing the resulting linear quadratic regulator is obtained by solving a

discrete-time Riccati equation so that one gets Eq. (38)

∆ut = −
(

0.89 0.32

)



∆̂x

ẑ




t|t

(38)
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3.5.1.1 Output channel Integrated-White-Noise-type disturbance model

IWN disturbance models are commonly employed in process industries. In this context,

a disturbance model that assumes IWN on the output channel serves as an appropriate

yardstick for comparing closed-loop performance.

The resulting IWN process and disturbance model is represented by adjusting Eq. (36)

to remove its dependence on the Markov state, r. Since the plant state x is unperturbed, the

resulting (steady-state) Kalman gain (K) has the structure: K = [0, f ]′, where f ∈ [0, 1).

f depends on the relative ratio of Qiwn , E[ϕϕ′] to R , E[vv′]. As may be expected,

f approaches 0, signifying the absence of output feedback, when either Qiwn is extremely

small or the measurement noise covariance exceedingly large, that is, as Qiwn/R → 0.

Conversely, f → 1 as Qiwn/R→∞.

Generally speaking, Qiwn
8 is a tuning parameter that indicative of a signal-to-noise

tradeoff. Since this is difficult to ascertain a-priori, two natural candidates are:

Qiwn,1 = 0.013⇔ f1 = 0.05 (39)

Qiwn,2 = 90.25⇔ f2 = 0.95 (40)

For benchmarking purposes, f ∗ = 0.5 corresponds to a well-tuned IWN disturbance model.

For ease of references, the state estimators corresponding to these candidates are denoted

as IWN1, IWN2 and IWN∗ respectively.

3.5.1.2 HMM disturbance model: parameters employed

Eq. (36) is specialized as such. Both rows of Π are set to [0.999, 0.001]. Furthermore,

Qϕ
rt=1 , E[ϕr=1ϕ

′
r=1], and Qϕ

rt=2 , E[ϕr=2ϕ
′
r=2] are set according to Eq. (39) and Eq. (40)

respectively.

3.5.1.3 Results & discussion

Closed loop results corresponding to 100 experiments, each of duration T = 200 are shown

in Table 3. The second column corresponds to the unattainable case where full state feed-

back is available. Over the course of the closed-loop experiments, it is observed that the

8R is assumed to be known
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Table 3: Tracking error corresponding to various disturbance models, in response to the
introduction of a step disturbance at t = t∗ = 175. The operator, < · >, denotes sample
average over 100 realizations.
Tracking error Full state Proposed IWN∗ IWN1 IWN2

for different feedback HMM model (tuned) (low gain) (high gain)
time phases〈[∑t∗−1

t=0 z′tzt
]0.5〉

0.0 4.7 16.8 4.5 27.1〈[∑T
t=t∗ z

′
tzt
]0.5〉

20.0 20.5 24.3 61.7 23.0〈[∑T
t=0 z

′
tzt
]0.5〉

20.0 21.1 29.5 61.8 35.6

proposed framework, giving an increase of less than 6% in the error when compared to

the (idealistically assumed) full feedback case, yields better performance than a well-tuned

IWN-based estimator, and indeed either IWN1 or IWN2. Being insensitive to output noise

signals, the controller based on the low-gain IWN estimator generally performs well before

the introduction of the step (first row of Table 3) but not immediately after as it is quite

sluggish (Figure 5(a)) in rejecting the step disturbance. The reverse is true for high-gain

IWN estimators (see second row of Table 3 and Figure 5(b)) which are comparatively more

sensitive to the noise in the feedback signal. A well-tuned IWN estimator, though striking a

nice compromise between these two extremes, is nonetheless outperformed significantly by

the proposed method, as can be seen from row three of Table 3 and Figure 5(c). The GPB2

estimator that results from the HMM framework is able to detect the absence/ presence of

a step change, thereby serving effectively as a time-varying filter. The average, time-varying

GPB2 gain mapping yt to [∆̂xt|t, ẑt|t]
′ in the measurement update step may be represented

by:
∑

rt,rt−1

p(rt|Y t
0 )p(rt−1|rt, Y t

0 )Kt(Rt
t−1)

where Kt(Rt
t−1) is the observer gain generated within the GPB2 framework (see Section

3.3.2). Figure 6 shows the trajectory of the only non-trivial, i.e., (2,1), element of the

averaged GPB2 gain responding effectively to the output disturbance.

It is noted that tuning the GPB2 estimator is relatively easier than an IWN-based

estimator. For handling infrequent steps, π11 and π12 need only to be close to unity.

Furthermore, the values of Qϕ
rt for r = 1 and r = 2 are easily set by selecting variances
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Figure 5: Comparing closed loop performance of various controller/ estimator pairs: plots
of ||zt||1 vs. time for a typical stochastic realization.
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Table 4: Re-running experiments in Table 3 with a de-tuned GPB2 estimator.
Tracking error Full state HMM model IWN∗

feedback (detuned) (tuned)〈[∑T
t=0 z

′
tzt
]0.5〉

20.0 24.0 29.5

that correspond to low and high values of f in the IWN case. To examine robustness,

the experiments were repeated with π11 = π12 = 0.90. From Table 4, it is seen that the

proposed model still outperforms a well-tuned IWN estimator.

3.6 Conclusions, limitations & future work

The main contribution of this work is in proposing a Hidden Markov Model framework gen-

eral enough to describe a large number of realistic but hitherto unquantifiable disturbance

scenarios as well as forms of disturbances used in the standard control literature. Examples,

ranging from offset-free control in the presence of intermittent input and output distur-

bances to rejecting deterministic disturbances to control in the presence of highly-varying

feed conditions, were used to demonstrate the applicability and relevance of the proposed

disturbance model within the framework of popular model-based control solutions.

Admittedly, optimal control policies exist for certain classes of MJS’s [17] but are ex-

pected to be too limiting or difficult to implement for the purpose of process control. In-

stead, the authors believe that the benefits of an HMM-based disturbance framework are

most immediately reaped by incorporating them within existing control methodologies (such

as MPC). This is particularly true when one considers that the significant performance im-

provement can be achieved at relatively small cost of computation (mostly that associated

with the state estimation).

Development of systematic model development / identification methods and more robust

control algorithms for Markovian Jump Systems is the focus of our future research.
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CHAPTER IV

HYBRID CYBERNETIC MODEL-BASED SIMULATION OF

CONTINUOUS PRODUCTION OF LIGNOCELLULOSIC ETHANOL:

REJECTING ABRUPTLY CHANGING FEED CONDITIONS

4.1 Introduction

Feed conditions, representing the most immediate avenue via which a plant’s performance

is affected, are crucial [20]. Issues pertaining to consistency and availability of feed plague

a wide spectrum of industries. The pulp and paper, petroleum, fiberglass manufacturing

and alternative-fuels industries are such examples. Although details vary from industry to

industry, key factors exist that make dealing with feed conditions a strategic priority. From

a production standpoint, it is highly desirable to mitigate the impact of highly-varying feed

conditions via feedback and/ or feed-forward control, especially for situations where little

can be done with regards to the incoming variability. A typical scenario is a downstream

unit that is fed by an upstream one, for which the reaction chemistry is poorly understood/

controlled. An interesting and important case in point is ethanol production, the leading

substitute for fossil fuels.

Interest in ethanol has grown substantially over the past several decades. As reported

by [28] and the references therein, ethanol has already been introduced on a large scale

in Brazil, the United States as well as several European countries. Consequently, its role

in helping countries attain the goals laid out in long-term, sustainable energy initiatives

cannot be overemphasized [102].

At present, (bio)ethanol is predominantly produced from starches (from corn crops)

or sugar sources (such as sugar cane). Due to competing agricultural needs for the same

resources, such as arable land, as well as the negative downstream greenhouse effects of pur-

suing such ‘first-generation’ ethanol solutions, attention has turned to ‘second-generation’

bioethanol. In particular, producing ethanol from lignocellulosic biomass sources has been
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deemed to be the most promising alternative for several reasons. First, lignocellulosic bio-

mass comes predominantly from low cost [26, 57], readily-available and otherwise-discarded

agricultural and industrial wastes (such as corn stovers, and wood residues (wood chips, soft

woods)). Second, these raw materials do not present a conflict between food and energy

production. Furthermore, biomass, being a carbon-neutral source, is environmentally more

benign [52].

Converting lignocellulose to ethanol necessitates pre-treatment and then hydrolysis

through enzymatic or chemical means (see Figure 4.1). This de-polymerization phase gen-

erates six-carbon hexose sugars (e.g., glucose) and five-carbon pentose sugars (such as the

comparatively abundant xylose) to be fed to a fermentor (seeded with genetically modified

yeast capable of utilizing both substrates), before further post-processing steps are carried

out1. Although further research and development in all these steps is required (e.g., organ-

A continuous mode
fermentor

Distillation
&

post-processing

De-
polymerization
(via enzymatic

hydrolysis)

Pre-
treatment

Glucose (GLC)/
Xylose (XYL)

feedCorn
stover

Residues

Soft
wood

Lignocellulose

GLC

XYL

Figure 7: Continuous mode ethanol production (adapted from [57]). Input glucose (GLC)
and xylose (XYL) concentrations may experience severe fluctuations due to the diversity of
raw materials and/ or changes in intermediate processing steps.

isms capable of more effectively and efficiently converting both (typically preferred) hexoses

and pentoses need to be engineered [107]) before lignocellulosic ethanol production is em-

braced ubiquitously, it is noted that industrial efforts at the plant scale are underway [28].

Furthermore, xylose-fermenting strains of yeast are now reaching levels of performance that

approach economically feasible lignocellulosic ethanol production [29]. As such, large scale

production of lignocellulosic ethanol will very likely materialize in the near future.

1Simultaneous Saccharification and Fermentation (SSF) is not considered in this work.
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In anticipation of this, this chapter explores (albeit necessarily through in-silico exper-

iments) means of systematically describing and mitigating, through feedback control, the

negative impact of highly-varying feed (i.e., glucose and xylose) signals (to the chemostat).

The objective is to ensure high throughput whilst respecting, due to economics, high conver-

sion requirements. Given the expectedly differing sources of potential feed sources (which

renders lignocellulosic ethanol production attractive in the first place), and the lack of matu-

rity (though not viability) of pre-treatment and hydrolysis technologies, cost-effective mass

production of lignocellulosic ethanol may be greatly facilitated by such a control system.

In this work, ‘highly-varying feed conditions’ are distinguished from the typical (but

oftentimes inadequate) description of variations as white noise or filtered white noise. The

archetypal example considered, as an approximation to reality, is the case where glucose and

xylose compositions jump abruptly between several distinct levels in a probabilistic fashion,

as shown in Figure 8. For example, glucose and xylose concentration levels, initially in

the ‘high’ regime, with levels fluctuating about a mean of 80 g/L and 40 g/L respectively,

may switch probabilistically (depicted to occur at time = 300 hrs) to the ‘low’ regime (see

Table 5 for the feed conditions postulated in this work). Another random switch occurs

at a later time, so that the system transitions to the ‘mid’ regime. In general, the feed

signal remains as an unmeasured disturbance. Estimating this signal is complicated by the

presence of the abrupt jumps. Classical disturbance models [53], although widely used in
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Figure 8: Postulated highly varying feed conditions (manifested in entering glucose and
xylose concentrations).

process industries, are incapable of simultaneously describing the discrete (due to the regime
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Table 5: Entering mean feed concentration for various regimes
xGLC,in (g/L) xXY L,in(g/L)

1 (High) 80 40
2 (Mid) 60 30
3 (Low) 40 20

jumps associated with feed changes) and continuous dynamics. This is to the detriment of

subsequent closed-loop performance. Employing a ‘Hidden Markov Model’ (HMM) capable

of describing such postulated disturbance signals, as recently proposed by [106], to be used

within the context of state estimation and closed-loop control, represent an effective way

around this issue.

The main contributions are:

1. Taking advantage of a recently developed Hybrid Cybernetic Model (HCM) that can

effectively describe glucose and xylose co-fermentation for a modified strain of yeast

[42] that shows promise for industrial application [29].

2. Investigating the applicability of an appropriate control algorithm (namely, successive

linearization-based Model Predictive Control (slMPC [45]), a computationally attrac-

tive alternative to non-linear Model Predictive Control), on the aforesaid HCM model,

which includes non-differentiable elements. Doing so successfully mitigates the impact

of abruptly changing feed conditions.

3. The selection of an appropriate controlled variable and the attendant optimal control

formulation, in the context of slMPC, for the maximization of productivity, subject

to conversion requirements. Specifically, the use of conversion as an effective and

convenient controlled variable-proxy is established.

4. Demonstrating that the proposed HMM approach results in superior closed-loop per-

formance as compared to employing typical integrated white noise-type descriptions

of disturbances.

Section 4.2 gives details of the proposed HMM disturbance model. Since complete state

feedback as well as knowledge of the underlying regime trajectory is absent, the general
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state estimation strategy is described in Section 4.2.2. Highlights of the high-fidelity hybrid

cybernetic chemostat model are presented in Section 4.3. slMPC, the control strategy of

choice is briefly presented in general terms in Section 4.4. Due requirements on both produc-

tivity and conversion despite having only one degree-of-freedom for control, the selection

of an appropriate controlled-variable is explored in Section 4.5. The effectiveness of the

proposed HMM disturbance model is demonstrated in Section 4.6. The article concludes in

Section 4.7.

4.2 Modeling abruptly changing feed disturbances via HMMs

For the purpose of control, changes in biomass sources and/ or variations in pre-treatment

and hydrolysis steps are modeled as probabilistic switches in the concentrations of the

glucose and xylose streams entering the chemostat. The Hidden Markov Model (HMM)

framework, proposed by [106] for the purpose of modeling the effects of such jump dynamics

on general dynamical systems, will be employed.

Indeed, HMMs have found widespread applications in science and engineering - ranging

from speech recognition [74] to econometrics [38] - since the 1960s. The main idea is the

introduction of a discrete set of latent states, each of which affects the behavior of the

dynamical system of concern in a unique way. Specifically, a finite-state Markov chain

whose realization at discrete time index t, denoted by rt ∈ J , {1, 2, . . . , J}, J ∈ Z
+, is

assumed to govern the dynamics of the disturbance. The term ‘Hidden’ indicates that rt is

not known with probability one and must be inferred from available measurements.

The Markovian jumps2 are dictated by a transition probability matrix:

Π =
(
pr(rt = j|rt−1 = i) , pij

)

such that the each row of Π sums to one. All Markov chains under consideration are ergodic.

For simplicity, the Markov chain is assumed to be at steady state, satisfying π = Π′π, where

π is a column vector containing the unconditional probabilities of each regime. In other

words, π gives the initial probability distribution of r. With this, it is postulated that the

2i.e., the transition probabilities depend only on the immediate past.
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dynamical system of concern (that is, the chemostat) evolves as follows: 3:

xt+1 = f~(xt, ut, θt) , xt +

∫ (t+1)~

t~
f(xt, ut, θt)

yt = g(xt) + vt (41)

θt+1 = Art+1θt + ωrt+1

pr(rt = j|rt−1 = i) = πij (42)

Here x ∈ R
nx is the continuous system state, u ∈ R

nu , the manipulated input(s), and

v, zero-mean, white Gaussian measurement noise with covariance Rv. Functions f and g

capture the continuous-time state-transition and measurement dynamics (of the chemostat)

respectively; details are given in Section 4.3. θ is a stochastic, disturbance signal referring

to the concentrations of the entering glucose and xylose feeds. In particular, the dynamics

of θ are governed by Eq. (42). Having matrix A as well as the statistics of (the zero-mean,

Guassian signal) ω vary according to an underlying Markov chain affords a great deal of

flexibility [106] to describe realistic disturbance patterns, including that depicted in Figure

8. The notation Art+1 signifies that between time interval [t~, (t+1)~], with ~ denoting the

sampling interval, A may take values from J possible candidates according to the realization

of the latent state. With some abuse of notation, the dependence of the statistics of ω on

r is denoted by ωr, per Eq. (42).

For digital controller design, signals (u, θ) are oftentimes assumed to be constant between

sampling instants. Consequently, f~(·) yields xt+1, the state vector at the next sampling

instant, through numerical integration of f with initial conditions xt and values of (u, θ)

constant over one sample interval, ~.

Eq. (42) will be specialized depending on the amount of information available for process

control and decision making. For example, intimate process knowledge may afford practi-

tioners much insight into the possible mean (though not actual) values of entering glucose

and xylose concentrations. In this case, each Markov state may correspond to a specific set

of mean values for the glucose and xylose concentrations.

3For ease of exposition, discrete-time systems are considered.

42



Section 4.2.1, the focus of this work, treats the more general case where abrupt jumps

(in concentration) of unknown magnitudes need to be described and accounted for, within

the HMM framework.

4.2.1 Disturbance modeling via HMMs: unknown mean values of feed concen-
trations

In the (general) case where the mean values are not known, a slight modification to the

notion of the hidden state is required. In particular, the first regime (say) corresponds to

a relatively quiescent state, where the concentration of the entering feed hovers around a

certain mean level. Regime 2 corresponds to the much rarer event of a large jump to a

different mean level. These notions are reflected in Eq. (43).

θt+1 = θt + ωrt+1

E(ωrt+1=1ω
′
rt+1=1) ≈ 0

E(ωrt+1=2ω
′
rt+1=2) >> 1

π11 = π21 ≈ 1 (43)

Here, ω is a zero-mean white Gaussian noise signal whose second moment surges whenever a

jump occurs. The second regime lasts only briefly, as reflected by the fact that π11 = π21 ≈ 1.

Due to the infrequent nature of such jumps, θ tends to track its previous value as the system

returns to the quiescent phase.

For both disturbance models, state estimation using the concatenation of Eqs. (41)-(43)

is necessary for any feedback control strategy to work, by virtue of the certainty equivalence

principle. As such, state estimation for these thus termed ‘Markov jump systems’, will be

briefly discussed in the following section.
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4.2.2 State estimation for systems with Markovian jump parameters

Concatenating Eqs. (41) and (42), one gets:



xt+1

θt+1


 = Frt+1

(


xt

θt


 , ut, ωrt+1

)

yt = G
(


xt

θt



)

+ vt

pr(rt = j|rt−1 = i) = πij (44)

Here F is implicitly understood to include model structures and parameters from {f~,Ar}

and the hidden Markov chain. The statistics of the noise term ω, can also depend on

r. That is to say, at during time interval [t~, (t + 1)~], ω is sampled from a Gaussian

distribution whose parameters vary according to r: ωt+1 ∼ N (0, Rω
rt+1

). G(·), subsuming

g(·) is the (concatenated) state-to-output map and v ∼ N (0, Rv), is as before, zero-mean,

white Gaussian measurement noise.

For the Markov jump systems this chapter is concerned with, the optimal filter involves

an exponentially growing number of linear filters due to the dependence of the noise sta-

tistics on r. Without knowledge of the sequence (r1, r2, . . . , rt), the optimal filter needs to

average over all possible past trajectories, the number of which scales as J t, where J is the

cardinality of J , the set containing all possible realizations of r. Therefore, a popular sub-

optimal filtering technique, the n-th order Generalized Pseudo-Bayesian (GPBn) algorithm

developed by [4] is employed throughout this chapter. For simplicity, the case of n = 2 is

expanded upon in the following paragraphs.

Define η as the concatenated state [x′, θ′]′, Rt+1
t , (rt, rt+1) as a sequence of the two

most recent Markov-state realizations and Y t
0 , the measurement sequence (y0, . . . , yt). Ac-

cordingly, let ηt+1|t+1(Rt+1
t ) denote the estimate of ηt+1 that accounts for the two most

recent Markov-state realizations; the corresponding estimation error covariance matrix is

represented as Pt+1|t+1(Rt+1
t ).

If the exact trajectory were known, a time-varying filter would suffice. Since this is not

so, a single filter is associated with each possible sequence of changes (of finite length 2).
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As a result, the quantities {ηt+1|t+1(Rt+1
t ), Pt+1|t+1(Rt+1

t )}, obtained from an application

of the Extended Kalman Filter (EKF), initialized with {ηt|t(rt), Pt|t(rt)}, differ in terms of

the trajectories considered. The main idea behind GPB2 is to linearly combine these (using

a priori and a posteriori knowledge) to form {ηt+1|t+1(rt+1), Pt+1|t+1(rt+1)} and finally,

a single Gaussian, parameterized by {ηt+1|t+1, Pt+1|t+1}. Details of a recursive scheme,

characterized by two phases: ‘branching’ and ‘merging’ have been outlined in the previous

chapter (see Chapter 3.3.2).

4.3 A hybrid cybernetic model-based description of the continuous fer-
mentor

Even for organisms much simpler than yeast, metabolic modeling, having to account for

numerous reactions and cellular regulatory mechanisms, is a complicated undertaking. Var-

ious tractable frameworks have been proposed to alleviate this problem. Specifically, the

development of cybernetic models by Ramkrishna and his co-workers has been successful

in terms of efficient and high-fidelity modeling of bioreactors [77] for the purpose of process

optimization and process control-relevant simulations [25, 36].

Overlaying sets of ‘cybernetic’ variables on top of (typically-employed) Monod-type ki-

netics enables the resultant model to account for metabolic regulatory activities. These

cybernetic variables, used to modulate the (effective) metabolic fluxes and enzymatic pro-

duction rates, reflect the fact that micro-organisms allocate resources optimally in order

to promote cellular well-being [76]. Cybernetic models with increasing degrees of sophisti-

cation with regards to the strategic behavior of the micro-organism of concern have been

developed [40, 75, 109, 108].

Recently, [92] developed a version of Hybrid Cybernetic Models (HCMs) (first intro-

duced by [39]) appropriate for large-scale metabolic networks. In particular, the method

was applied to an engineered strain of Saccharomyces yeast (1400(pLNH33)) capable of

co-fermenting glucose and xylose, the main fermentable sugars resulting from the pre-

processing of lignocellulosic biomass. This strain was first engineered through the intro-

duction of genetic material from Pichia stipitis and Saccharomyces cerevisiae, to impart

the ability of xylose-utilization into the host strain, Saccharomyces yeast 1400 [42].
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Recent literature has noted the promise of transformed versions of Saccharomyces yeast

1400 (in particular, transformant 1400(pLHN32) with a cofermentation effectiveness similar

to that of 1400(pLHN33) [31]), for industrial-scale lignocellulosic ethanol production. As

such, the HCM model for 1400(pLNH33), suitably adjusted for continuous-mode ethanol

production, will be presented and expanded upon in the following sub-section and used for

numerical simulations in the sequel.

4.3.1 Overview of a hybrid cybernetic chemostat model seeded with Saccha-
romyces yeast 1400(pLNH33)

The large number of (intra-and-extra-cellular) reactions, representative of a complex metabolic

network, such as that of Saccharomyces yeast 1400(pLNH33) necessitates the concept of

Elementary Flux Modes (EFMs) [85]. Approximately speaking, the EFMs span the steady-

state flux (i.e., reaction rate) distributions of any biochemical network and form a set of

nondecomposable [84] pathways consisting of a minimal set of reactions that function at

steady state. In the context of this article, the EFMs are derived from the stoichiometric

matrix corresponding to the intra-celluar reactions, coincident with the assumption that

the latter are at (pseudo)-steady state.

Due to the large number (201) of EFMs within the 1400(pLNH33) network, [92] em-

ployed a two-step EFM-reduction technique (termed ‘yield analysis’) to reduce the number

significantly to three representative clusters of ‘active EFMS’: i) glucose uptake (4 EFMs),

ii) xylose uptake (3 EFMs) and iii) simultaneous glucose and xylose uptake (5 EFMs).

Each of these biologically meaningful active modes, determined from a priori knowledge

and experimental data, converts a source of carbon to either biomass or energy.

With this, the continuous-time ordinary differential equations for the chemostat are

given by Eqs. (45)-(46):

dx̃

dt
= [Sx̃Z] · diag([ν̃1, . . . , ν̃12]) · r̃·xBIOM +D(x̃in − x̃) (45)

Here, x̃ ∈ R
9×1 is the concentration vector of extra-cellular species:

x̃ , [xGLC , xXY L, xACTx, xBIOM , xCO2 , xETH , xGOLx, xMAINT , xXOLx]′
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Table 6: Description of subscripts used in Eq. (45)
Metabolite abbreviation Description

GLC glucose
XYL xylose
ACTx acetate (external)
BIOM biomass
CO2 carbon dioxide
ETH ethanol
GOLx glycerol (external)
MAINT excess energy (consumed for maintenance)
XOLx xylitol (external)

The definitions of the subscripts are given in Table 6; focus is given to the first, second,

fourth and sixth elements. These represent glucose, xylose, ethanol and biomass concen-

tration levels (in milli-molarity (10−3× mole/L) or (g/L) 4) respectively. The term Sx̃Z

represents the product of the extra-celluar stoichiometric matrix (Sx̃) and the concatena-

tion of the twelve active elementary flux modes (Z). r̃ ∈ R
12×1 constitutes the flux vector.

Each reaction r̃i, (dependent on Monod-type kinetics and enzymatic concentrations (xE))

corresponds to a unique EFM and is modulated by an accompanying cybernetic variable

ν̃i ∈ [0, 1], lying in the unit interval. It reflects a relative ‘return-rate’ of investing cellular

resources on the ith EFM. In this case, ν̃i is a direct function of the extent of the carbon

uptake rate and may be interpreted as the effectiveness of the ith EFM in utilizing the

(respective) sugar feeds (for the purpose of energy or biomass production). D (1/h) refers

to the dilution rate and x̃in is the concentration of the extra-celluar species in the entering

feed stream. In general, the feed stream is assumed to contain only glucose and xylose and

will be free of other metabolites such as acetate, xylitol, etc. The specific forms of r̃ and

ν̃, and values of the kinetic parameters to be employed during the simulation are contained

in Appendix A. Each EFM is assumed to be catalyzed by an enzyme. The equations for

enzymatic synthesis are represented by Eq. (46).

dxE

dt
= α+ diag([ũ1, . . . , ũ12]) · r̃E − diag([β1, . . . , β12]) · xE − µ·IxE (46)

4Per convention, feed and ethanol concentrations are generally presented in the text and figures with
units of (g/L) in this work. All simulations, with the exception of biomass (g/L), are however, run on a
milli-molarity basis. Units conversion, by multiplication with molecular weight or its inverse, is therefore
necessary where appropriate.
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Here, xE ∈ R
12×1 refers to the concentration of enzymes. The terms on the right hand

side of Eq. (46) represent constitutive synthesis, inducible synthesis, death and dilution (by

growth) rates respectively. Vector r̃E represents the rates of enzymatic synthesis, which are

regulated by another set of cybernetic variables, ũ ∈ [0, 1]. The mathematical definitions of

(ũ, ν̃) are as such:

ũi =
ri∑

j max {rj , 0}
, i = 1, 2, . . . , 12 (47)

ν̃i =
ri

maxj {rj}
, i = 1, 2, . . . , 12 (48)

Here, ri, i = 1, 2, . . . , 12, refers to the time-varying return-on-investment (i.e., energy or

biomass production, the definitions of which are given in Table 7) corresponding to each

of the twelve elementary flux modes. ri, i = 1, ] . . . , 12 are essentially scaled versions of r̃i.

Note that the cybernetic variables (ũ, ν̃) are not differentiable, posing an additional level of

complexity when linearizing ordinary differential equations (Eqs. (45)-(46)) for the design

of the EKF and linearization-based controller (Section 4.4).

µ refers to the specific growth rate (of biomass) and is given by: µ , 1
xBIOM

dxBIOM

dt .

Together, Eqs. (45)-(46) define the continuous-time differential equations governing the

chemostat (that is, f in Eq. (41)). The system’s (continuous) state vector is therefore

defined as: x , [x̃′, x′E ]′ ∈ R
21×1, with the assumption that the chemostat is at a constant

volume of 1 (L).

Table 7: Rate-of-investment for each elementary flux mode.
Return Definition

on investment

ri 6r̃i, i = 1, 2, 3
ri 5r̃i, i = 4, 5, 6, 7
r8 26r̃8
r9 26r̃9
r10 60.4r̃10
r11 7.88r̃11
r12 6.06r̃12
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4.4 Control strategy: successive linearization-based Model Predictive
Control (slMPC)

Model Predictive Control (MPC) is a popular advanced process control solution used in

process industries. The main idea is to solve, at each sample time, an open-loop optimization

problem minimizing the deviation of the predicted plant trajectory (over a horizon of p steps)

from the desired one. This yields a finite sequence of controller actions. The first action is

implemented, one unit-sample of time elapses and the process repeats in a rolling-horizon

fashion.

The hybrid cybernetic models employed are highly non-linear due to the cybernetic

regulation variables, as well as the Monod-type kinetics. Coupled with the existence of

multiple feed conditions, controllers based on one linear model are not expected to perform

well. A full nonlinear MPC implementation is difficult to solve reliably in a reasonable

period of time due to the large number of model equations and generally long prediction

horizon required. As such, an MPC scheme based on successive linearization is preferred.

In particular, slMPC [45] is a computationally attractive alternative to a full nonlinear

MPC implementation. The key lies in successively obtaining a linear approximation to the

nonlinear plant, and employing it for the purpose of multi-step ahead prediction and control.

Given appropriately chosen constraints (i.e., linear equality and inequality ones only), the

resulting open-loop optimization problem is a Quadratic Program (QP), one for which exist

efficient optimization solvers based on interior point, active-set and/ or conjugate gradient

methods [11]. The steps in implementing the slMPC algorithm are summarized below.

• At each sample time t, obtain state and disturbance estimates {xt|t, θt|t} using the

appropriate chemostat and disturbance model. These are used to estimate the values

of the flux distribution, r̃t|t, the rate-of-return vector, rt|t (see Table 7) and the ap-

proximate analytical forms of (ũ, ν̃), (see Eqs. (49)-(50)), to be used for linearization.

ũt|t =
rt|t,i∑
l∈L rt|t,l

, where L , {l : rt|t,l ≥ 0} (49)

ν̃t|t,i =
rt|t,i

rt|t,i∗
, where i∗ = arg max

j
{rt|t,j} (50)

Note that the original functional forms of the cybernetic variables are non-differentiable.
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• Then, with the approximate analytical forms of the cybernetic variables, linearize the

model equations around the state and disturbance estimate and previous control move

(ηt|t , [x′t|t, θ
′
t|t]

′, ut−1).

• Obtain the p-step-ahead model predictions for the controlled variable(s) of interest,

yc
t+j|t, j = 0, 1, . . . , p, for a given choice of m(≤ p) manipulated variables. In general,

yc
t may be a function of xt and ut. See Section 4.4.1 for details.

• Using the model predictions, formulate and solve a quadratic program with meaningful

constraints. Section 4.4.2. Implement the control move ut whilst discarding the others

and repeat the process.

4.4.1 p-step ahead prediction

At each sampling time, the continuous time model is linearized and discretized yielding the

multi-step ahead predictor, Eqs. (51)- (52). A detailed derivation is deferred to [45].

xt+i|t = fi~(xt|t, ut−1, θt|t) + [
i−1∑

j=0

(Asl
t )jBsl

t | . . . |Bsl
t ]∆U t+i−1

t , i = 1, ..., p

(51)

yc
t+i|t = gc(xt|t, ut−1) + Csl

t (xt+i|t − xt|t), +[Dsl
t | . . . |Dsl

t ]∆U t+i−1
t , i = 0, 1, . . . , p

(52)

Here, ∆U t+i−1
t , [∆ut, . . . ,∆ut+i−1]

′, is a vector of future control moves. m (≤ p) denotes

the control horizon, beyond which it is assumed that the controller action is constant. That

is, ∆ut+m = . . . = ∆ut+p−1 , 0. In Eq. (51), the first term is from integrating the nonlinear

model directly whereas the second term is an approximation based on the linearized model.

Future predictions of the controlled variable, yc
t+i|t, i = 1, 2, . . . , p, in Eq. (52), is based on

a Taylor-series approximation about (xt|t, ut−1).

Asl
t is obtained through differentiation of the most probable realization of F (i.e., Frt|t−1

is determined by applying Eq. (23)) with respect to x and evaluating the derivative at

(ηt|t, ut−1). Note that the linearization is around the previous input, ut−1. B
sl
t is obtained in

a similar fashion. Matrices (Csl
t , D

sl
t ) are obtained by differentiating gc(·), the function that

maps the state variables to the controlled variable(s), with respect to x and u respectively.
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The use of linear approximations for the last terms of Eqs. (51)-(52) circumvents the

need to solve a nonlinear optimization problem in determining the control action ut. Implicit

in Eqs. (51)-(52) is the assumption that the (infrequently switching) Markov state and

matrices (Asl
t , B

sl
t , C

sl
t ) remain constant throughout the prediction horizon.

4.4.2 Control move implementation

A sequence of optimal moves that minimizes the expected future error are computed based

on Eq. (52). The desired prediction equation can be written as:

Yc
t = S1 + S2∆U t+m−1

t (53)

where Yt , [yc
t|t, y

c
t+1|t, . . . , y

c
t+p|t]

′ is the vector of future predictions of the Controlled Vari-

able (c.v.). S1 is the vector of predicted future c.v.’s assuming the controller action stays

at ut−1:

S1 =




gc(xt|t, ut−1)

gc(xt|t, ut−1)− Csl
t xt|t

gc(xt|t, ut−1)− Csl
t xt|t

...

gc(xt|t, ut−1)− Csl
t xt|t




+




0

Csl
t f~(xt|t, ut−1, θt|t)

Csl
t f2~(xt|t, ut−1, θt|t)

...

Csl
t fp~(xt|t, ut−1, θt|t)




S2, a compensatory term, is given by:

S2 =




Dsl
t 0 . . . 0

Csl
t B

sl
t +Dsl

t Dsl
t . . . 0

Csl
t (Asl

t B
sl
t +Bsl

t ) +Dsl
t Csl

t B
sl
t +Dsl

t . . . 0

...
...

. . .
...

Csl
t

p−1∑

i=0

(Asl
t )iBsl

t +Dsl
t . . . . . . Csl

t

p−m∑

i=0

(Asl
t )iBsl

t +Dsl
t




The following quadratic minimization is solved to obtain the desired sequence of control

moves within the horizon.

min
∆Ut+m−1

t

||Yc
t − Y∗

t ||2ΛY + ||∆U t+m−1
t ||2ΛU

Φ·∆U t+m−1
t ≤ φ

Σ·∆U t+m−1
t = σ (54)
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Y∗
t is a vector denoting the desired c.v. trajectory; ΛY ,ΛU , are quantities that induce 2-

norms, reflecting the tradeoff between set point tracking and excessive actuator movement.

Eq. 54 represents a quadratic program that can be solved efficiently (by MATLAB’sTM

quadprog function, for instance).

4.5 Selection of an appropriate controlled variable: simulation studies

As mentioned, a key quantity is ethanol productivity (defined in Eq. (55)), obtained from

the product of dilution rate (D) and the concentration of ethanol (the desired product) in

the outlet stream. It is expected that dilution rate (D) is the only manipulated variable.

Since increasing D has the effect of monotonically (and strictly) decreasing the product

concentration, a unique maximal value for productivity must exist for each set of feed

conditions at equilibrium, as shown in Figure 9(a) [91].

However, economics typically dictate a sufficiently high conversion rate (of 95%, say, or

greater). This implies that the maximal allowable productivity will occur at values of D

corresponding to the lowest tolerable conversion5 (defined in Eq. (56)).

Pt = xETH,t·ut (g/L.h) (55)

Xt = 1− xGLC,t + xXY L,t

xGLC,in,t + xXY L,in,t
(56)

These insights are depicted in Figure 9 revealing the steady-state profiles that correspond to

the various feed conditions. For example, when the system switches from regime 1 (80/40)

to regime 2 (60/30), due to the conversion constraints (of 95% or greater), the maximal

attainable productivity will likewise shift from 1.4761 to a lower value of 1.2336 (g/L/h).

Given that there is only one degree of freedom to meet the dual (and conflicting) require-

ments of high productivity and conversion, a systematic study with regards to the choice

of a suitable controlled variable is needed, which is the focus of the following sub-sections.

4.5.1 Productivity as the CV

The most direct choice of productivity, P, as the controlled variable, with a hard constraint

on the conversion typically results in infeasibility in the response to changes in entering

5where concentrations are reported in (g/L)
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Figure 9: Steady state productivity and conversion profiles for various entering glucose/
xylose (g/L) concentrations. The faint (red) lines correspond to the 95% conversion limit.
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feed conditions. Consider a feed switch at t = 5 (h), from initial regime 1 to regime 3 (see

Table 5), as depicted in Figure 10(a). Such a sudden shit from a regime with a higher feed

concentration to one with lower concentration will cause the denominator in Eq. (56) to

decrease and the conversion, X , to likewise drop temporarily below the 95% threshold.

In order to compensate for this decline in a manner such that the 95% bound is not

violated during subsequent steps, the (non-negative) dilution rate needs to be decreased (see

Figure 9(d)). However, even with the most drastic of reductions, as shown in Figure 10(d),

it still takes approximately two hours for sugars-conversion to re-enter appropriate bounds.

Figure 10(b) reveals the effect of decreasing the flow rate to zero in order to increase the

conversion. These observations suggest that any control algorithm with the productivity

as the controlled variable of choice as well as the imposition of hard constraints on the

conversion will most likely run into infeasibility issues.
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Figure 10: Plots of productivity, conversion and dilution rate in response to a sudden
decrease (from regime 1 (80/40) to regime 3 (60/30)) in feed conditions at t = 5. Note the
constraint violation despite decreasing dilution rate to 0 (1/h).
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4.5.2 Investigating the incorporation of a soft constraint on conversion

In light of the previous discussion, constraint-violations are inevitable. As such, a soft con-

straint on the conversion, reflecting a trade-off between the desire to have high productivity

and imposing a penalty on excessively low levels of conversion, may be imposed. Specifically,

consider the following specialization of Eq. (54)

min

p∑

i=0

QP

(
Pt+i|t − Psp

t

)2
+

p∑

i=1

QX

(
ε2t+i|t

)
+

m−1∑

i′=0

R(∆Dt+i′)
2 (57)

0 ≤ εt+i|t, i = 0, 1, . . . , p (58)

Xt+i|t ≥ Xmin − εt+i|t, i = 0, 1, . . . , p (59)

0 ≤ Dt+i, i = 0, 1, . . . , (m− 1) (60)

The lower bound (Eq. (60)) ensures physically meaningful control actions. P sp and

Xmin , 95% refer to the (potentially time-varying) targets for productivity and conversion

respectively. Since Dt+i = Dt−1 +
∑t

i=0 ∆Dt+i, Eq. (60) can be easily re-written as a linear

inequality constraint involving the previous control action and ∆Dt+i, i = 0, . . . , (m− 1).

Intuitively, allowing Psp to change with the underlying regime (see Figure 9(b)) whilst

imposing appropriate weights on QP and QX would give good closed-loop performance.

However, due to difficulties in determining the actual regime the system is in, and a lack

of intimate knowledge on steady-state profiles (as represented in Figure 9), adjusting the

set-point according to the feed condition may not be practicable. In this case, the following

assignments are made

Psp = 1.4761 (g/L/h)

Xmin = 0.95

Psp represents the highest possible productivity across all three regimes. However, for

regimes 2 and 3, attaining this setpoint is only possible at the expense of lower (but eco-

nomically unacceptable) conversions. In this case, an appropriate choice of QP and QX

needs to be enforced, although one may expect a larger weight needs to be imposed on the

conversion than on the productivity, especially when the system transitions to regime 3.
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In order to test the above idea, the following study is made. For simplicity, complete

state feedback is assumed to be present and the entering feed signals are also measured. R

is set to a negligible value. Figure 11 shows the steady-state values of the productivity and

conversion for various ratios of QX to QP in response to a change in feed conditions from

regime 1 to 3. The latter represents the most severe change that may occur. It is noted that
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Figure 11: Investigating closed loop performance as a function of penalty weights in
response to a shift in feed conditions from regime 1 to regime 3.

given the requirement of a fixed set-point, a very high value of QX
QP

(about 104) is required

if the conversion requirements are to be satisfied (at 95%).

4.5.3 Conversion as the controlled variable of choice

In view of Figure 11, and for the given control requirements, a convenient proxy for the

productivity is the conversion, X . The reasons are as follows:

1. A single set-point (of 95%) is sufficient.

2. For relatively high conversion levels, operating at the lowest acceptable conversion

(for any feed regime) corresponds to maximal productivity.

3. There exists a one-to-one (inversely proportional) mapping between dilution rate and

conversion. In the case of productivity, due to the existence of a unique maximum,

a given productivity may be achieved at a low dilution rate (or high conversion) or

at high dilution rate (or low conversion). Such non-linearity may present control

difficulties especially in the event of plant-model mismatch.
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Subsequently, gc (see Eq. (52)), the state-to-c.v. map is given by Eq. (56). The quadratic

control objective, to be used in the remaining discussions, is summarized by Eqs. (61)-(62):

min
∆Dt+m−1

t

p∑

i=1

QX

(
Xt+i|t − 0.95

)2
+

m−1∑

i′=0

R (∆Dt+i′)
2 (61)

0 ≤ Dt+i, i = 0, 1, . . . , (m− 1) (62)

4.6 Rejecting unmeasured feed disturbances

Previous sections have established a systematic framework for disturbance modeling (Sec-

tion 4.2.1 - 4.2.1), a computationally feasible Model Predictive Control algorithm (Section

4.4), and a state estimation algorithm (suitable for the overall, concatenated Markov jump

system) to be used in conjunction with the aforesaid control strategy (Section 4.2.2). Also,

the conversion has been ascertained to be a suitable and convenient controlled variable

(Section 4.5.3).

In this section, the effectiveness of slMPC for rejecting unmeasured, entering feed dis-

turbances that exhibit abrupt but significant changes is explored by means of numerical

experiments. The only manipulated variable is the entering feed flow rate, or equivalently,

the dilution rate (D) since the volume of the chemostat is assumed to be constant (at a nom-

inal value of 1 (L)). As postulated in Section 4.1, entering glucose and xylose concentrations

(xGLC,in, xXY L,in) switch between regimes at randomly selected times, albeit infrequently.

A representative scenario is described as such:



xGLC,in

xXY L,in




t

=





A1 + ωt, t ∈ [0, 100)

A3 + ωt, t ∈ [100, 200)

A2 + ωt, t ∈ [200, 300)

(63)

where Ai refers to the mean entering feed concentration (in (g/L)) for regime i (see Table

5). The choice of mean dwelling time regime is 100 (h), well beyond the settling time of

the system. This selection is therefore consistent with the assumption of infrequent jumps.

Noise vector E(ωω′) is set to diag([1.8, 1.5]) (g2/L2) for all three regimes

The measured variables are assumed to be the concentrations of glucose, xylose and

the desired product, ethanol: [xGLC , xXY L, xETH ]. The state to observation vector map is
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therefore given by Eq. (64):

yo
t =




1 0 0 0 0 0 0 . . . 0

0 1 0 0 0 0 0 . . . 0

0 0 0 0 0 1 0 . . . 0



xt + vt (64)

For all simulations, the covariance of the measurement noise (R , E(vv ′)) is set to diag([0.018, 0.75, 2.3])

(g2/L2) and made available to all controller/ estimator schemes, to be described as follows.

4.6.1 Various disturbance models: comparing closed-loop performance

The rejection of these unmeasured, abruptly changing feed conditions, is facilitated through

a disturbance model. An appropriate choice (of the latter) allows a state-estimator to be

built so that the disturbance signals may be accurately reconstructed, thereby facilitating

feedback control through slMPC.

As such, two candidate disturbance models are studied for the purpose of describing the

disturbance patterns delineated in the opening paragraphs of this Section. In all cases, the

regime that the system is in is not known. The following models are considered:

• Eq. (65) is the commonly employed, non-switching, Integrated White Noise (IWN)

description (of the entering feed signal).

θt+1 = θt + ωt+1 (65)

Here, ω is a zero-mean, white Gaussian noise signal with a time-invariant second

moment, E(ωω′). In general, how this parameter may be tuned is not clear. Small

values of E(ωω′) relative to Rv, the measurement noise covariance, typically lead to

sluggish responses to output feedback, whereas the reverse situation results in over-

sensitivity to measurement noise. These two disturbance models are referred to as

IWN(lo) and IWN(hi), respectively, with the following covariance matrices:

E(ωω′)IWN,lo = diag([1.8× 10−5, 1.5× 10−5]) (g2/L2)

E(ωω′)IWN,hi = diag([18, 15]) (g2/L2)

These values represent two extreme choices.
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• Eq. (43) represents switching disturbances with unknown mean values (i.e., an HMM-

based disturbance model). Here, the following transition probability matrix and

(regime-dependent) noise covariance matrices are used:

Π =




0.99 0.01

0.99 0.01




E(ωr=1ω
′
r=1) = diag([1.8× 10−5, 1.5× 10−5]) (g2/L2)

E(ωr=2ω
′
r=2) = diag([18, 15]) (g2/L2)

As mentioned in Section 4.2, r = 1 corresponds to the quiescent phase, whereas

r = 2, indicates the occurrence of a rare jump event. It is noted that E(ωrω
′
r) have

been chosen to correspond to the two extreme cases for the IWN-model.

The (HMM-based) disturbance model (HMM) necessitate the use of a GPB2 state estimator

(Section 4.2.2), whereas a (non-switching) extended Kalman filter suffices for the first case.

In all simulations, the penalty on excessive actuator movement, R, is set to a negligible

value of 0.1% that of QX . Figure 12 and Figure 13 are characteristic of a typical stochastic

realization, with the initial regime 1 switching to regime 3 and finally to regime 2.

From Figs. 12(c), 13(c) and Figs. 12(d), 13(d) , it can be observed that, in tracking the

unmeasured feed signal (only the glucose profile is shown), disturbance model IWN(lo) suf-

fers from low sensitivity to output feedback, whereas, model IWN(hi), from over-sensitivity

to measurement noise. State estimation resulting from the proposed HMM-based distur-

bance model indicates appropriate switching between insensitivity to measurement noise

(during the quiescent phase) and sensitivity to large feed jumps. The reason is that the

GPB2 estimator corresponding to this HMM framework serves effectively as a time-varying

filter. It is noted that tuning the GPB2 estimator (for the HMM case) is relatively easier

than doing so for an IWN-based estimator [106]. For handling infrequent, abrupt steps, π11

and π12 need only to be close to unity. Furthermore, the values of E(ωrω
′
r) for r = 1 and

r = 2 are easily set by selecting variances that of low and high values.

Looking at the productivity profiles, it is noted that IWN(lo) generated the lowest

productivity levels due to the excessive sluggishness of the state estimator. This is also
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reflected in the levels of conversion larger than 95% for the IWN(lo) case. Conversion

profiles for IWN(hi) and the proposed HMM case are similar, since noise that directly enters

the feed channel is incorporated into the conversion computations (Eq. (56)). Nevertheless,

productivity profiles can be thought of as the most critical benchmark. Although the mean

productivity profile for IWN(hi) is similar to that of the proposed HMM approach, the

former suffers from a larger variance, to the detriment of effective, predictable production.

It is noted that for each feed regime, the controller is able to bring the system to the

appropriate productivity values (Figure 9).
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Figure 12: State profiles corresponding to various disturbance models: Proposed HMM
method vs. IWN(lo)

4.7 Conclusions

In order for ethanol to play a greater role as an alternative source of energy, control strate-

gies accounting for highly varying but abruptly changing feed conditions (as considered in
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Figure 13: State profiles corresponding to various disturbance models: Proposed HMM
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this article) are needed. This work studies the applicability of slMPC in the context of a

chemostat bioreactor (seeded with yeast capable of co-fermentation) for producing ethanol.

The development of a special version of hybrid cybernetic models enables accurate in-silico

experiments to be conducted. Also, the use of HMM-based disturbance models enables a

more effective state estimation strategy with consequent benefits on closed-loop control.

The conversion, rather than the productivity, turns out to be the most effective choice of

c.v.

Future work calls for the development and application of cybernetic models for other

promising yeast strains [29], with the inclusion of temperature and ionic effects.
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CHAPTER V

FAULT DETECTION IN PROCESS SYSTEMS USING HIDDEN

MARKOV DISTURBANCE MODELS

5.1 Introduction

Tracking the closed-loop performance and health of process systems, although intuitively

important, is oftentimes overlooked during the design of control solutions. Maintenance,

required to mitigate the effects of system faults, typically necessitates expert personnel not

found within normal plant situations ([37]). For this reason, multiple process monitoring al-

gorithms have been developed so that such faults may be automatically detected, diagnosed

and eventually removed.

Process monitoring methods may be further classified as i) data-driven ii) analytical and/

or iii) knowledge-based ([13]). The first involves statistical treatment of large quantities

of process data and are typified by data-mining and machine learning techniques (such

as principal and independent component analysis), statistical control charts and so on.

Knowledge-based methods employ qualitative reasoning and are oftentimes rules-based with

a strong logic underpinning. A thorough overview of all three classes is presented by [13]

and the references therein.

This work, relying on dynamical models of the process for fault detection, is a partic-

ular type of analytical approach. Consequently, a necessary standing assumption is the

availability of a mathematical model derived from first principles or otherwise. Given the

wide-spread popularity of model-based control (such as Model Predictive Control), the con-

troller’s model can be readily ported over for the purpose of fault-detection. A model

structure, such as in Eqs. (66), (67), is therefore relevant in subsequent developments.

xt = f(xt−1, θt−1, ut−1, ωt)

yt = g(xt, θt, vt) (66)
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γt = Atγt−1 + Btϕt

θt = Ctγt + et (67)

Here, xt ∈ R
nx represents the state at discrete time index t, ut ∈ R

nu , the control input,

and yt ∈ R
ny , a noise-corrupted measurement signal. θt ∈ R

nθ represents a fault vector

with potentially time-varying dynamics governed by matrices (At,Bt,Ct) and noise vectors

(ϕt, et)
1. ωt and vt are process and measurement noise signals respectively. f(·), which may

represent an integration of the continuous-time model over a unit sample-time, is the state

transition map. Similarly, g(·) represents the state-to-output map.

Faults are typically manifested ([37]) as i) process parameter changes, and/ or ii) dis-

turbance parameter changes, as well as iii) actuator and sensor problems – all captured by

θ. Depending on circumstances, these may be sudden jumps (e.g. due to an abrupt intro-

duction of significant sensor bias), or slow drifts or random walk-type changes (e.g. as a

result of catalyst fouling) or even a mixture of both (Figure 14). Such failure modes, which

cannot be directly observed, and need to be estimated, are conveniently incorporated into

the fault model Eq. (67) by adding the notion of latent states (denoted by r), each of which

modifies the fault model (see Eq. (67)) differently. This work explores the use of a Hidden
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Figure 14: Possible disturbance signals (θ).

Markov chain, used previously to model realistic disturbances in the context of process

control ([105]), to describe the temporal, probabilistic transitions between the latent states.

1In practice, the user would model θ according to disturbance scenarios of interest.
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Furthermore, this work can be interpreted as a generalization of the popular approach of

assuming statistical independence, from one time period to the next, between hidden states.

For example, at each time step t, [104] and [37] allowed the statistics of ϕt and et to be de-

scribed by a Mixture-Of-Gaussians (MOG)2. This captures the situation where faults that

do occur happen infrequently but with significantly larger magnitudes. Persistent faults like

drifts, which are easily described by the proposed Hidden Markov Model (HMM) approach,

are captured in the MOG context by introducing additional states or non-linearities in the

model.

The main contribution is to show that the aforementioned faults (abrupt jumps/ biases

and drifts) can be better modeled and detected by the proposed method. Another novel

application is in the context of detecting valve stiction, where it is demonstrated that the

output of the valve (which is not normally measured) can be effectively tracked using the

same proposed framework.

Section 5.2 provides the details behind an HMM, its subsequent use for fault detection

and relevance to prior work. Section 5.3 demonstrates the effectiveness of the proposed

method in the context of a heat exchanger. Section 5.4 explores the valve stiction issue

before concluding remarks regarding future research are presented in Section 5.5.

5.2 Fault modeling using Hidden Markov Models

HMMs represent a useful class of statistical models where a latent state, taking values

from an alphabet J ∈ {1, 2, . . . , J ∈ Z
+} of cardinality J , transitions probabilistically in

a Markovian3 fashion from one sampling time to the next. Mathematically, a finite-state

Markov chain is a sequence of random variables (r0, r1, ..., rt, ...), where the transition prob-

ability matrix Π = (πij) = (pr(rt = j|rt−1 = i), i, j ∈ J) :
∑J

j=1 πij = 1, ∀i ∈ J , governs the

probabilistic temporal transitions. The term ‘Hidden’ signifies that the actual regime label

is usually not known with complete certainty and must be inferred from available noisy

measurements of itself or other related states. In the simplest case, each latent state has a

2
i.e., at each time step, a member from a set of Gaussians, from which the noise signal is to be sampled,

is selected with some time-invariant probability.
3transitions depend only upon the immediate past.
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probability distribution over a finite set of possible output symbols. All Markov chains un-

der consideration are ergodic. For simplicity, the Markov chain is assumed to be at steady

state, satisfying π = Π′π, where π is a column vector containing the unconditional and

initial probabilities of each regime. HMMs have found widespread applications in science

and engineering - ranging from speech recognition ([74]) to bioinformatics and diverse fields

such as econometrics.

HMMs and their generalizations have been used in fault detection, with significant

differences to our proposed approach. [90], for example, did not consider an explicit fault

model (i.e., Eq. (67)). Instead, the process parameters are continuously estimated (in batch

mode) and treated as output of an underlying Markov chain. This necessitates linking the

process parameter vector to fault modes, which is not always possible. A recursive maximum

a posteriori filter is then used for fault-mode detection. [33] suggested a similar (see Section

5.2.1) HMM approach to sensor problem diagnosis but limited considerations to faults in

the output channels and input signals taking values from a finite, discrete set. [1] learned

an HMM corresponding to each operating condition and, unlike the approach proposed in

this work, does not make use of the process model. There, fault detection is achieved by

a classification scheme that chooses the HMM that maximizes the probability of a given

sequence of observations.

5.2.1 Proposed fault model: intermittent drifts & abrupt jumps

Following the successes in other fields, a generalization of Eq. (67) is considered by allow-

ing the statistics of (ϕt, et) (and potentially the fault model parameters (A,B,C)) to vary

according to a hidden Markov chain.

Intermittent Drifts. In the case of one-dimensional intermittent drifts (Figure (14a)),
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one has:

γt+1 = γt + ϕrt+1

θt = γt + et

rt ∈ 1, 2

π11 ≈ 1, π11 < 1

π22 ≈ 1, π22 < 1 (68)

Here, ϕrt and et are uncorrelated, zero-mean Gaussian signals with covariances (that may

depend on rt) of Qϕ
rt and Qe

t . The abuse of notation on the subscript of ϕ emphasizes the

dependence of the covariance of the noise signal on the underlying Markov chain. When

rt = 1 (i.e.,, the white-noise regime), Qϕ
rt=1 ≈ 0. Random-walk type behavior occurs when

the hidden state switches to rt = 2, where Qϕ
rt=2 >> 0; Qe

t is invariant to the hidden regime

and of appropriate magnitude. Since it is common that there is low probability of switching

once the system enters a particular regime, a diagonally-dominant Π is employed.

Abrupt Jumps. In the case of modeling abrupt jumps, Eq. (68) is adjusted such that

π11 = π12 = p ≈ 1, p < 1, so that Π = [p, 1 − p; p, 1 − p]. This ensures that the jump

state (the second one, in this case) is infrequently accessed and when it is, a significant

step-change occurs.

In this latter case, since it is assumed that the Markov chain is at steady state, this

form of the transition matrix implies that the probability of entering a particular regime is

independent of the current mode. It is thus clear that the HMM framework subsumes an

MOG description.

Fault detection and diagnosis is performed via state estimation (in particular to track

θ) without the knowledge of the latent state trajectory. Hence, a brief mention of state

estimation, based on a model resulting from the concatenation of Eq. (66), and Eq. (67) is

necessary.
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5.2.2 Fault detection via state estimation of jump Markov systems

Equations (66) and (67) can be merged to yield:



xt+1

γt+1


 = Frt+1

(


xt

γt


 , ut, ξrt+1

)

yt = Grt

(


xt

γt


 , nrt

)

pr(rt = j|rt−1 = i) = πij (69)

Here, F is implicitly understood to include model structures and parameters from {f,A,B,C}

and the hidden Markov chain. A similar remark is extended to G. Besides F and G, the

statistics of the noise ξ (a concatenation of (ω, ϕ, e)) and n (a concatenation of (v, e)) can

depend on r. The system represented by Eq. (69) is also termed a Markov jump system.

Without knowledge of the sequence (r0, . . . , rt), the optimal filter involves averaging over

an exponentially growing number of linear filters. The number of filters scales as J t, where

J is the cardinality of the set containing all possible realizations of r.

The following paragraphs outline the Generalized Pseudo Bayesian estimation algorithm

of order 2 (GPB2), a popular sub-optimal method, developed by [4]. The main idea to

have trajectories whose last 2 terms differ be merged (via moment-matching) into a single

68



Gaussian. Using the law of total probability and Bayes’ Rule, it can be shown that:

xt+1|t+1 =
∑

rt+1

p(rt+1|t+ 1)xt+1|(t+1,rt+1)

xt+1|(t+1,rt+1) ,
∑

rt

xt+1|(t+1,rt+1,rt)p(rt|rt+1, t+ 1)

Pt+1|t+1 =
∑

rt+1

{(xt+1|t+1 − xt+1|(t+1,rt+1))(·)′

+Pt+1|t+1,rt+1
}p(rt+1|t+ 1)

Pt+1|t+1,rt+1
=

∑

rt

{(xt+1|t+1,rt+1
− xt+1|(t+1,rt+1,rt))(·)′

+Pt+1|t+1,rt+1,rt
}p(rt|rt+1, t+ 1)

p(rt|rt+1, t+ 1) =
1

c1
p(yt+1|t, rt+1, rt)p(rt|rt)p(rt|t)

p(rt+1|t+ 1) =
1

c2

∑

rt

p(yt+1|t, rt+1, rt)p(rt+1|rt)p(rt|t)

The term p(yt+1|t, rt+1, rt) refers to the probability density of the corresponding one-step

ahead output prediction. xt+1|(t+1,rt+1) refers to the estimate of xt+1 given output mea-

surements {y0, . . . , yt+1} and a certain realization of rt+1; Pt+1|(t+1,rt+1) denotes the corre-

sponding error covariance matrix. The pair (xt+1|(t+1,rt+1,rt), Pt+1|(t+1,rt+1,rt)) are similarly

defined. It is noted that starting from (xt|(t,rt), Pt|(t,rt)), a single application of the time and

measurement update steps of the (extended) Kalman filter yields these latter quantities. c1

and c2 are normalizing constants such that the merging probabilities p(rt|rt+1, t + 1) and

p(rt+1|, t+ 1) sum to unity.

5.2.3 A-posteriori regime estimation

If required, a prediction and/ or filtered estimate of the hidden regime can be obtained viz:

r̂t+1|t = arg max
rt+1

{
p(rt+1|t) ,

∑

rt

pr(rt+1|rt) · pr(rt|t)
}

r̂t|t = arg max
rt

{p(rt|t)} (70)
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5.3 Example 1: Fault tracking in a shell & tube heat exchanger

In this example, the usefulness of the proposed method in detecting faults is studied in the

context of a shell and tube heat exchanger Eq. (71) also considered by [37]. In particular,

we contrast the proposed HMM approach against an MOG method ([37]) in modeling the

latent states that govern the fault signals (see Section 5.3.1 for simulation details). The

main difference is that the latter framework assumes that each latent state occurs with a

(time-invariant) probability that is independent of the previous realization. The governing

non-linear ordinary differential equations used for simulation but not estimator design, are:

dTc

dt
=

qc
Vc

(Tci − Tc) +
αc

Vc
(Th − Tc)

dTh

dt
=

qh
Vh

(Thi − Th)− αh

Vh
(Th − Tc)

y =




Tc

Th


+ µv + v (71)

Here, the measured state variables are the temperatures of the hot and cold streams re-

spectively: [Tc;Th]. [Tci;Thi] are the temperatures of the incoming cold and hot streams

respectively. [αc;αh] are system parameters reflecting the heat transfer coefficient, heat

transfer area, density, specific heat capacity of the cold and hot streams respectively. Sim-

ilarly, [qh; qc] are the flow rates of the hot and cold streams and represent the degrees

of freedom available to a controller. [Vc;Vh] are the volumes of the cold and hot sides.

Steady-state values are reported in Table 8. v refers to zero-mean measurement noise of

covariance R , E[vv′]. µv is nominally a null vector but might be subject to changes due

to disturbances.

5.3.1 Simulation conditions

Although a variety of fault types may be considered (e.g. those affecting the various input

and output channels and/ or changes in parameters (αc, αh), as discussed in Section 5.1),

for clarity of exposition, only two different fault types are assumed. Furthermore, these

affect only the cold side. Given initially quiescent conditions (see Table 8), one considers:

1. An abrupt step that is normally distributed with zero mean [L/min] and variance qhi
u
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[L2/min2] affecting the input channel on the cold side (qc) at some unknown time tu.

This may be thought of as a sudden bias developing in the input channel:

qct = qct−1 + ϕu
t · δ(t, tu), ϕu

t ∼ N (0, qhi
u ) (72)

δ(·, ·) is the Dirac delta function. qhi
u has a value of 2 in the following experiments.

2. A sudden drift (see Figure 14a) affecting the sensor relaying Tc (i.e., y1) measurements

between an unknown time span: T , [ty,1, ty,2]. Namely, one has:

µv,1t = µv,1t−1 + ϕy
t (73)

where E[ϕtϕ
′
t] = qhi

y = 0.5 if t ∈ T and E[ϕtϕ
′
t] = qlo

y = 10−10 ≈ 0, for other time

periods. µv,2 remains at the origin for all time.

The above non-linear model is not available for state estimation. Instead, a version lin-

earized about the nominal operating conditions is available. With a sampling time of 0.5

min, A = [0.91, 0.03; 0.03, 0.91], B = [-0.12, 0.002; -0.002, 0.12], C = diag([1, 1]). Measure-

ment covariance, R, is set to diag([0.5, 0.5]) and known. Since estimation is the focus of

this example, the system is run in the absence of feedback control.

Table 8: Nominal steady state operating conditions
Variable Value Units

q∗c = q∗h 10 L/min
T ∗

ci 25 oC
T ∗

hi 100 oC
T ∗

c 43.75 oC
T ∗

h 81.25 oC
α∗

c 5 m3/min
α∗

h 5 m3/min
V ∗

c = V ∗
h 75 L
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5.3.2 Proposed HMM method to handle abrupt jumps & intermittent drifts

The following Markov jump linear model, a specialization of Eq. (69), is employed:

xt+1 = Axt +But + bθu
t + ωt+1

θu
t+1 = θu

t + ϕu
rt+1

θy
t+1 = θy

t + ϕy
rt+1

yt = Cxt + θy
t + vt (74)

where xt, the state variable at discrete time index t are deviations from [T ∗
c ;T ∗

h ]. Similarly,

the vector ut ∈ R
2 represents deviations from [q∗c ; q

∗
h]. b represents the first column of matrix

B, consistent with the fact that disturbances enter the qc channel. [θu; θy] are input and

output disturbance state variables respectively. Both θu and θy are modeled as integrators

but distinguished by the effects of the hidden Markov regime on the second moments of

ϕu and ϕy. Consistent with the assumption of an abrupt jump, the covariance of ϕu is

assumed to be large with a small probability, and vice versa. θy is naturally modeled as an

intermittent drift (see Eq. (68)). Details are given in the following paragraphs.

A four-regime Markov chain is considered. These regimes represent the following sce-

narios:

1. No disturbance in input channel, No disturbance in output channel (‘LO-LO’)

2. No disturbance in input channel, Drifting disturbance in output channel (‘LO-HI’)

3. Abrupt disturbance in input channel, No disturbance in output channel (‘HI-LO’)

4. Abrupt disturbance in input channel, Drifting disturbance in output channel (‘HI-HI’)

Accordingly, a simple method for determining the values of the transition probability

matrix (Π) is proposed. Per the earlier discussion (Section 5.2.1), two (sub) transition prob-

ability matrices are appropriate for the input (Πu) and output channels (Πy) respectively,

the first state being the ‘normal’ regime in both cases.

Πu =




0.99 0.01

0.99 0.01


 ; Πy =




0.99 0.01

0.01 0.99


 (75)
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An overall transition probability matrix (Π) accounting for the four scenarios can be ob-

tained by assuming statistical independence between the input and output channels. For

example in computing π23, one has transitions between the ‘normal’ to ‘abnormal’ state for

the input channel and the opposite transitions for the output channels so that

π23 = πu
21π

y
12 (76)

The overall Π4 is:



0.98 0.01 0.01 0.01

0.01 0.98 0.01 0.01

0.98 0.01 0.01 0.01

0.01 0.98 0.01 0.01




In accordance to the noise statistics of the possible fault scenarios, the covariance of the

overall noise vector ξt , [ωt, ϕ
u
t , ϕ

y
t ] for the 4 regimes are:

1. ‘LO-LO’: E[ξtξ
′
t] = diag([10−10, 10−10, 10−10, qlo

y ])

2. ‘LO-HI’: E[ξtξ
′
t] = diag([10−10, 10−10, 10−10, qhi

y ]

3. ‘HI-LO’: E[ξtξ
′
t] = diag([10−10, 10−10, qhi

u , q
lo
y ]

4. ‘HI-HI’: E[ξtξ
′
t] = diag([10−10, 10−10, qhi

u , q
hi
y ]

Process noise ω is negligible compared to θu and will be assumed to be absent for simplicity.

5.3.3 Alternative MOG description

If one were to be restricted to an MOG description of the latent regime, then an additional

state (θβ) is required:

xt+1 = Axt +But + bθu
t + ωt+1

θu
t+1 = θu

t + ϕu
t+1

θβ
t+1 = θβ

t + ϕβ
t+1

θy
t+1 = θy

t + θβ
t

yt = Cxt + θy
t + vt (77)

4the rows do not sum to unity due to rounding errors
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Similar to Eq. (74), θu refers to the input channel disturbance and is modeled as an abrupt

jump. However, the output disturbance (θy) is now modeled as a double integrator (driven

by θβ). θβ itself may be interpreted as a velocity term and is driven by ϕβ which is set

to have a small covariance (10−10) with large probability and a large covariance (of qhi
y )

with small probability. This captures the (rare) event of a velocity change when the output

disturbance transitions from the white-noise regime to the random-walk mode and vice

versa (see Figure 14(a)). In this case, the sub transition matrices for the input and output

channels are:

Πu = Πy =




0.99 0.01

0.99 0.01




The overall transition matrix may be obtained as before, per Eq. (76). The covariance of

the overall noise vector ξt , [ωt, ϕ
u
t , ϕ

β , ϕy
t ] for the 4 regimes are:

1. E[ξtξ
′
t] = diag([10−10, 10−10, 10−10, qlo

y , 10−10])

2. E[ξtξ
′
t] = diag([10−10, 10−10, 10−10, qhi

y , 10−10]

3. E[ξtξ
′
t] = diag([10−10, 10−10, qhi

u , q
lo
y , 10−10]

4. E[ξtξ
′
t] = diag([10−10, 10−10, qhi

u , q
hi
y , 10−10]

5.3.4 Example 1: Results

Table 9 presents a summary (average over 100 realizations) of the state-estimation error

for both the input and output channel. A typical realization is depicted in Figure 15.

Table 9: 2-norm of state-estimation error (Average of 100 realizations)
Channel Proposed MOG approach

see Eq. (74) see Eq. (77)

Input 11.4 12.9
Output 13.3 19.7

Due to the similarities in modeling the abrupt jump in the output channel, it can be seen

from Figure 15(a) and the first line of Table 9 that the performance of the state estimator

corresponding to both approaches yield similar performances. However, the MOG approach
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Figure 15: Tracking θu and θy. Comparing the proposed HMM vs. MOG approaches.
Legend: solid line - actual fault signal; Dots (·) - HMM; Crosses (x) - MOG
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fares significantly worse than the proposed HMM approach in tracking the fault signal

(which is an intermittent drift) corresponding to the output channel (see Figure 15(b) and

the second row of Table 9).

5.4 Example 2: Valve stiction

Valve stiction is a common problem in control valves, the latter being widely used in process

industries ([15]). Due to the effects of friction, the output (ux) of the control valve does not

track its input (uc) (i.e., the control signal prescribed by the controller) instantaneously.

Instead, ux has been observed to demonstrate a delayed and sluggish response to uc, where

the valve ‘sticks’ to its current position if changes in the control signal (and/ or the absolute

magnitude itself) are insufficiently large to overcome friction effects. This is usually to the

detriment of closed-loop performance.

It is assumed that the plant is linear and therefore parameterized by matrices (A,B,C),

where A is the state-transition map, B, the input-to-state map and C, the state-to-output

map. Technical definitions, first-principles and empirical models of stiction can be found

in the articles by [15, 14] and the references therein. For simplicity, an efficient single-

parameter model employed by [94] and [93] for stiction detection is used for simulations in

the sequel:

ux
t =





ux
t−1, if |uc

t − ux
t−1| ≤ d

uc
t , otherwise

(78)

where d represents the valve stiction band. The larger the value of d, the more severe the

stiction problem.

The detection, diagnosis and compensation-for valve stiction has received much attention

in academia and industry. Based on Eq. (78), [94] proposed a suitable model for detecting

stiction:

ux
t = δ̃t · ux

t−1 + (1− δ̃t) · uc
t

where δ̃t is a binary (0/1) mode parameter occurring with a certain (i.i.d) probability.

For the same purpose of stiction detection and estimating the typically unmeasured
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ux
t , we allow δ̃t to have statistics governed by an underlying Markov chain so that obser-

vations reflecting persistent ‘stickiness’ can be more effectively modeled. Also, instead of

identifying the segmentation sequence {δ̃1, . . . , δ̃t} that maximizes the posterior quantity

pr(δ̃1, . . . , δ̃t|y1, . . . , yt) through dynamic programming, we propose a novel Markov jump

linear description that is consistent with Eq. (78) to be used by a GPB2 state-estimator:




xt

ux
t−1


 =




A Bx
rt−1

0 δ̃rt−1







xt−1

ux
t−2


+




Bc
rt−1

1− δ̃rt−1


uc

t−1

yt =

(
C 0

)



xt

ux
t−1


+ vt (79)

When r = 1, stiction is absent, δ̃ = 0, Bx = 0, Bc = B. Conversely, when r = 2, stiction is

present, δ̃ = 1, Bx = B, Bc = 0.

5.4.1 Simulation studies: mixing tank

For simulation studies, we consider a simple isothermal mixing-tank (of cross-sectional area

A) with an outlet stream whose flow-rate is controlled by a valve (with resistance R):

dm

dt
=

1

A(q1 + q2 −
m

R ) (80)

The controlled (and also measured) variable is the liquid level (m). The flow-rate of the

first stream, q1, is a measured disturbance whereas that of the other stream (q2) represents

the manipulated variable. A PI controller (with gain Kc, and integral time constant τI) is

given by:

uc
t = uc

t−1 +Kc[et − et−1 +
h

τI
et], et , l − yt

Here l is the set-point, nominally calibrated to a value of 6. For ease, A, R, Kc, τI and the

measured disturbance signal q1, are all set to nominal values of 1. A relatively large value for

the stiction band is employed: d = 0.5. A sampling time of h = 0.05 is employed, resulting

in the following parametrization to be used by the state estimator: A = 0.951, B = 0.0488

and C = 1. Measurement noise is set to have a known covariance of R , E[vtv
′
t] = 10−4.
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To reflect the high degree of stiction, the transition probability matrix Π is:




0.01 0.99

0.01 0.99




5.4.2 Results: estimating valve output & detecting valve stiction

Tracking results for a typical closed-loop realization are shown in Figure 16. The existence

of the cycles in uc and ux (Figure 16(a)) is due to the presence of integral action as well

as the valve stiction phenomenon. From Figure 16(a), it can be seen that the proposed

methodology is able to estimate ux. Observing the (a-posteriori) probability (see Eq. (70)

and Figure 16(b)) of the first mode (or equivalently the second) via reveals the time instances

where a switch occurs (by means of the probability peaks). Doing so represents an effective

way for detecting stiction.
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Figure 16: Tracking unmeasured valve output in mixing-tank example.

5.5 Conclusions & future work

The main contribution of this work is to show that the common faults (abrupt jumps/ biases

and drifts) can be better modeled and detected by the proposed HMM-based method. An-

other novel application is in the context of detecting valve stiction, where it is demonstrated

that the output of the valve (which is not normally measured) can be effectively estimated.

Future work involves extending the problem to large scale systems (e.g. a network of unit

operations) of industrial interest.
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CHAPTER VI

CONTROLLING JUMP STOCHASTIC SYSTEMS VIA

POST-DECISION-STATE-BASED APPROXIMATE DYNAMIC

PROGRAMMING

6.1 Introduction

Classical Advanced Process Control (APC) methods do not handle uncertainty in a sys-

tematic, closed-loop optimal fashion. This is typified by the approach adopted by Model

Predictive Control (MPC), the defacto APC solution. MPC is now considered to be a

mature technology owing to the plethora of research and industrial experiences during the

past three decades. It is a technique in which the current control action is obtained by

minimizing online, a cost criterion defined on a finite time interval. Nominal, deterministic

trajectories of future disturbance signals and uncertainties are necessarily assumed in order

to obtain an optimization problem amenable to on-line solution via math programming.

The solution generates a control sequence from which the first element is extracted and

implemented. The procedure is repeated at the next time instant. MPC’s ability to handle

constrained, multi-variable control problems in an open-loop optimal manner is responsible

for its popularity.

MPC’s open-loop optimal control formulation used to find the control moves at each

sample time means the fact that information about future uncertainty will be revealed, this

being generally beneficial for control performance, is not considered. A-priori, deterministic

assumptions about future uncertainty results in poor or unpredictable performance in a

number of situations. For example, the authors of [81] have demonstrated that the optimal

stationary point for the minimal energy control of an inverted pendulum subject to zero-

mean stochastic forcings is not the inverted, upright position, as one might conclude in the

deterministic case.

It is often cited that the optimal operating point of a unit operation lies close to/ on
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the constraint boundaries [51, 2]. Since noise is not accounted for explicitly, MPC tends

to place the system trajectory next to a constraint boundary [81]. As a result, excursions

into the infeasible region occur in the event of disturbances. Adjustments to the set-point

so as to back-off [56, 54] from the constraint boundaries are therefore common. Another

noteworthy scenario is the case of unstable systems, such as those with integrators driven

by white noise. It is noted that the latter are particularly common in chemical processes.

In the case of open-loop control (e.g., in MPC), it can be easily demonstrated that the

variance of the prediction error is unbounded with prediction horizon length.

Yet another situation where uncertainty has a vital role to play is that of dual control

[21, 22, 23, 24]. In the context of dual control, control actions significantly affect the

propagation of future uncertainty. In this case, the control action serves the antagonistic

functions of probing the system to obtain information regarding unknown system parameters

and set-point tracking. Deterministic formulations do not achieve such “active learning”.

In a similar fashion, due consideration needs to be given to the interplay between control

and state estimation [32]. The latter is oftentimes necessary when full state feedback is

unavailable. Although a state estimator (such as the Extended Kalman Filter) generally

returns a distribution, most control solutions employ only a point estimate. The implicit

assumption of the manipulated variable not affecting the quality of the state estimates

might result in poor closed-loop performance. Similar to the dual control case, the optimal

policy involves probing so as to reduce the error covariance. The authors of [32] proposed a

modification of the optimization criterion used in MPC for the control of nonlinear systems,

where separation does not usually hold.

Most of the past attempts at ameliorating the impact of uncertainty have been reflected

in robust MPCs formulations based on the objective of minimizing the worst-case scenarios

[86] at the expense of overly conservative policies and the assumption that the disturbance

signals be bounded. Multi-scenario formulations [43] have also been developed but the

number of scenarios is limited and they do not give closed-loop optimal policies in gen-

eral. Stochastic programming based methodologies [70] allow for recourse actions at the

computational expense of enumerating an exponentially growing number of scenarios.
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6.1.1 Dynamic programming for solving multi-stage stochastic control prob-
lems

In light of the above, Dynamic Programming (DP) [7] represents a unified framework for

solving multi-stage, stochastic control problems. Underlying DP is the “cost-to-go” function

that maps a state to a real value that quantifies the state’s desirability. Intuitively, at any

state (x), the optimal policy would endeavor to minimize the amount of effort in bringing the

system to a next state that is as desirable as possible. It is noted that DP involves solving a

single-stage problem online as compared to MPC which involves in computationally exorbi-

tant multi-stage optimizations. Unfortunately, traditional DP suffers from a computational

“curse of dimensionality”, the idea being that obtaining the value function for every single

state of the (potentially continuous) state space involves computational requirements that

scale exponentially with the size of the problem. To circumvent this, an approach called

approximate dynamic programming (ADP), a technique that urfaced from the research on

reinforcement learning in the Artificial Intelligence (AI) community [95, 8]), has been suc-

cessfully used. The main ideas revolve around the intelligent sampling of the state space

through simulations and an appropriately designed function approximator. ADP involves

iterative off-line computations to yield the cost-to-go; these values are then used on-line

for control. Both off-line and on-line calculations involve single-stage optimizations. The

authors of [47, 48, 44, 46, 49, 50] have specialized ADP methods for solving process control

problems. However, the focus has primarily been on deterministic control problems. A

reason is that when applied to stochastic control problems, the on-line and off-line opti-

mizations within the DP/ ADP framework involve a minimization (or maximization) over

an expected value, the computation of which is generally cumbersome.

In this work, ADP based on an intermediate post-decision state variable, first introduced

by [80] and employed extensively by [71] in solving operations research problems, is used to

allow for more computationally effective strategies. The main benefit from the introduction

of the post-decision state allows the generally non-commutative optimization (e.g. min)

and expectation (E) operators to be interchanged. The main advantage is that the off-line

ADP computations may then be run in parallel using off-the-shelf solvers. It is noted that
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the latter have been the cornerstone of MPC technology.

The rest of the chapter is organized as follows. Section 6.2 presents the idea of Dynamic

programming based on the post-and-pre decision state variables. Section 6.3 outlines the

proposed Approximate DP framework based on the post-decision state. A more thorough

explanation of the proposed ADP framework as applied to stochastic jump systems is then

given in Section 6.4. Examples highlighting the importance of accounting for uncertainty

systematically, in the context of general stochastic systems, are shown in Section 6.5.

6.2 Pre and post-decision-state-based dynamic programming

Consider the optimal control of the following discrete-time stochastic system:

xt+1 = f(xt, ut, ωt) (81)

where xt ∈ X ⊆ R
nx refers to the system state at discrete time index t, ut ∈ U ⊆ R

nu a

control or action vector, and ωt an exogenous, unmeasured, stochastic signal. x may contain

physically meaningful states as well as measured disturbances, and parameters subject to

uncertainty. f refers to the single-stage transition function. For problems where the system’s

dynamics are represented by ordinary differential equations, f is then the result of numerical

integration across a single sample-time, with vectors u and ω held constant. Throughout

this chapter, it is assumed that full state feedback is available. In the event that only output

feedback is available, x is interpreted as an information vector that contains the sufficient

statistics of the state estimate’s probability density function. Such lifting is possible as the

information vector is governed by another related set of equations (i.e., the filter dynamics).

Let µ ∈ Γ be a ‘state-feedback policy’ that maps the state vector to the action vector,

where Γ represents the set of all admissible (stationary) such policies. Jµ(x) will be used

to denote the ‘cost-to-go’ function, which is defined as the infinite horizon, discounted sum

of the stage-wise costs under the policy µ starting from an arbitrary state x:

Jµ(x) = E

[
∞∑

k=0

γkφ(xk, uk = µ(xk))|x0 = x

]
(82)

where φ represents a pre-specified stage-wise cost (e.g. φ(x, u) := ||x||2Q + ||x||2R) and

γ ∈ [0, 1) is a discount factor. The goal then is to find the optimal (stationary) policy
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µ∗ : X → U , that yields the minimum cost-to-go function as below:

Jµ∗
(x) = min

µ∈Γ
E

[
∞∑

k=0

γkφ(xt+k, ut+k = µ(xt+k))|xt = x

]

(83)

Jµ∗
: X → R

0+ is the optimal ‘cost-to-go’ function and is an indication of the attractiveness

of a given state in terms of future rewards. By definition, Jµ∗
(x) ≤ Jµ(x), ∀x and ∀µ ∈ Γ.

Based on the principle of optimality [7], one is able to re-write Eq. (83), thereby

obtaining Bellman’s optimality equations:

Jµ∗
(x) = min

u∈U

{
φ(x, u) + γE(ω|x)[J

µ∗
(f(x, u, ω))]

}

=
(
TJµ∗

)
(x) (84)

T above represents the single-pass DP operator represented by the minimization operation.

The optimal policy is implicitly obtained through the solution of the associated single-stage

optimization:

µ∗(x) = arg min
u∈U

{
φ(x, u) + γE(ω|x)[J

µ∗
(f(x, u, ω))]

}
(85)

In principle, the optimal control problem is solved once Jµ∗
is known. The repeated appli-

cation of T on an arbitrarily initialized cost-to-go leads to convergence and underpins the

idea behind Value Iteration (VI).

Jµ∗
(x) = TJµ∗

(x) = lim
i→∞

(T )iJµ(x), ∀µ, x (86)

Note that Eqs. (84)-(85) involve a computationally cumbersome minimization over an

expected quantity whose probability distribution function is generally unknown. The post-

decision state, xp ∈ X p ⊆ R
nx , is introduced to alleviate this problem. xp refers to the

system state immediately after the control vector is introduced to the system but before the

uncertainty is realized. As a result, f may be decomposed into the following sub-transitions:

xp
t = f1(xt, ut) (87)

xt+1 = f2(x
p
t , ωt) (88)
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where the composition of f1 and f2 is equivalent, in effect, to f , in Eq. (81). Note that f1

describes a deterministic transition between the pre-decision state variable (x) and xp. f2

involves the transition due to uncertainty after the control action is implemented. Conse-

quently, the value function of xp, Jµ,p(xp), may be expressed in terms of the value function

of x, as such:

Jµ,p(xp
t ) = E(ω|xp

t ) [Jµ(xt+1)] , ∀µ (89)

By considering the optimal policy µ∗, and substituting Eq. (84) into Eq. (89), the min and

E operators are interchanged, yielding:

Jµ∗,p(xp
t ) = E(ω|xp

t )

[
min

ut+1∈U

{
φ(xt+1, ut+1) + γJµ∗,p(xp

t+1)
}]

(90)

The single-stage on-line optimization is also streamlined:

µ∗(x) = arg min
u∈U

{
φ(x, u) + γJµ∗,p(f1(x, u))

}
(91)

The post-decision analogue for the cost-to-go value function of an arbitrary policy is also

readily written:

Jµ,p(xp
t ) = E(ω|xp

t )

[
φ(xt+1, µ(xt+1)) + γJµ,p(xp

t+1)
]

(92)

As with the situation with the pre-decision state, the optimal control problem is solved once

Jµ∗,p is known. The post-decision state DP operator, T p, may be similarly defined so that

VI (based on xp ) converges to Jµ∗,p, as such:

Jµ∗,p(xp) = T pJµ∗,p(xp) = lim
i→∞

(T p)iJµ,p(xp), ∀µ, xp (93)

Convergence (see Eq. (86) and Eq. (93)) to a unique point is guaranteed due to the

fact that both T and T p are γ-contraction maps (see Section 6.3.1). The introduction

of the post-decision state allows the generally non-commutative min and E operators to

be interchanged. Eq. (90), used off-line during value iteration, consists of an independent

collection of deterministic optimization problems, which may be run in parallel using off-the

shelf solvers.
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In process control problems, due to the continuous nature of the state and action spaces

which must be discretized, numerical solutions become quickly bottle-necked as the problem

dimensions grow. In fact, the growth would be exponential as the number of discretized

points grows with the dimension as such. Hence, a naive application of VI in this case

is computationally prohibitive and the ‘curse-of-dimensionality’ is even more apparent in

continuous problems. For problems with continuous state and action space, one needs to

resort to approximations that involve an intelligent state-sampling/ discretization scheme

and/ or an efficient representation of the cost-to-go [44, 71]. We specialize discussions to

the case involving the post-decision state (xp) in the following section.

6.3 Approximate dynamic programming based on the post-decision state

Value iteration can work with only finite state space. For systems with continuous state

and action space, one must then work with discretized state space, either through gridding,

or preferably, sampling. It is often the case that only a small portion of X , X p and U will

ever be visited under optimal and/ or high-quality sub-optimal policies. Let us denote the

subset of the pre-decision and post-decision state spaces that are ‘relevant’, i.e., visited with

non-trivial probability under the optimal control, as X ∗
REL and X ∗,p

REL respectively. Such

sets would be continuous but much smaller-sized than X and X p in general. The key notion

is that if one could identify X ∗
REL and X ∗,p

REL or a parsimonious superset of them, one can

sample the sets with sufficient density to perform the dynamic programming at significantly

reduced computation. Of course, the difficulty is that it is not easy to obtain such a set

ahead of time without knowing the optimal controller itself.

We expand the ADP approach proposed by the authors of [47, 44, 98] for the purpose

of process control applications to a post-decision-state based Approximate Dynamic Pro-

gramming scheme. The main idea is to employ carefully designed simulation schemes for

the sampling of the state space and function approximation (for the purpose of cost-to-go

interpolation) to this end. We have the following off-line computations:

1. Identify a finite-sized, ‘relevant’ pre-decision state-space, Xsam ⊂ X and its corre-

sponding post-decision counterpart, Xp
sam. Note that each (x, xp) tuple are related
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through Eq. (87), where xp is defined to be the state variable obtained immediately af-

ter an action is taken but before the realization of any uncertainties. Also, the number

of elements in Xsam and Xp
sam are equal, that is, |Xsam| = |Xp

sam| = N . Identification

of these finite sets is achieved, for instance, by simulating all possible combinations

of an initial sub-optimal policy, µ[0], and operating conditions. The latter are defined

as all starting states of interest (for servo problems) as well as potential values of

measured disturbance values. Dithering may also be introduced for the purpose of

exploration.

2. Assign a cost-to-go for all elements of Xp
sam. The initial, finite-sized ‘cost-to-go’ table,

denoted by T p
[0] ,

{
xp, Ĵµ∗,p

[0] (xp)
∣∣xp ∈ Xp

sam}, is thus obtained. The symbol (̂·) is

used to emphasize the approximate nature of the cost-to-go sequence, even in the

limit of the iterative process. Exact initialization is not critical per se since the fixed

point derived from the following step is unique. In the sequel, initialization proceeds

as follows:

Ĵµ∗,p
[0] (xp) = E(ω|xp)[Ĵ

µ∗

[0] (f2(x
p, ω))] (94)

where Ĵµ∗

[0] (x) = E[
∑∞

k=0 γ
tφ(xk, µ[0](xk))

∣∣x0 = x]. For practical implementation, an

exact computation of the infinite sum may be approximated by a summation up to

a finite length (t̃) that corresponds to γ t̃ ≤ τ , where τ is a sufficiently small number.

When there are a number of candidate initial, sub-optimal policies, the most promising

one may be used for initialization of the value function.

3. Obtain converged cost-to-go values for Xp
sam through VI, yielding the sequence of

value tables {T p
[0], T

p
[1], . . .}. Since the VI requires the evaluation of the cost-to-go

function for post-decision states (xp) not necessarily in Xp
sam, a well-designed function

approximator is needed to interpolate among the stored values (see discussion in

Section 6.3.1). A certain choice of function approximator ensures that each pass of

the iteration is a contraction-map with a unique fixed point (see Section 6.3.1). In
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other words, each step of the modified VI involves:

Ĵµ∗,p
[i+1](x

p) =
(
T pF (Ĵµ∗,p

[i] )
)

(xp), ∀xp ∈ Xp
sam (95)

Here F (Ĵµ∗,p
[i] ) denotes the cost-to-go function approximator based on the stored val-

ues from T[i]. Termination occurs when ‖Ĵµ∗,p
[i+1] − Ĵ

µ∗,p
[i] ‖∞ is less than a pre-defined

tolerance. Alternatively, the relative measure ‖ 1

Ĵµ∗,p

[i]

(Ĵµ∗,p
[i+1] − Ĵ

µ∗,p
[i] )‖∞ may be used

for cases where the cost-to-go values are large.

4. Return to step 1, since the relevant domain of the state-space may not be properly

ascertained a-priori. If this is the case, an initial policy for the next round of value

iteration would be that instructed by the current cost-to-go table. Otherwise, use the

converged values for online control.

Figure 17 is a schematic of the proposed algorithm.

Online ctrl.

Figure 17: Proposed ADP algorithm based on the post-decision state.

The authors of [60] used an approximate policy iteration scheme where Jµ,p(xp), ∀xp ∈

X p is assumed to be linear in a set of basis functions (known or otherwise assumed to be

orthogonal polynomials of sufficiently large degree). The coefficients are learnt through

a least-squares procedure once the system of interest is allowed to evolve according to the

current policy, which is similar to step (1) where relevant states are collected. The limitation

is that suitable basis functions are difficult to ascertain in general.
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6.3.1 Function approximation & stable learning

The need for function approximation for the purpose of generalization has been discussed.

Given a training set (that is, an existing value table, where the VI index will be dropped

in this sub-section for notational compactness) T p , {xp(i), Ĵµ∗,p(xp(i))}Ni=1, composed

of a finite number (N) of input (xp(i) ∈ Xp
sam) and target values (Ĵµ∗,p(xi)), a function

approximator, F , whose domain is X p, maps an arbitrary query point xp
q ∈ X p to (a subset

of) the real line.

The dominant and natural choice for function approximators has typically involved

parametric global approximators such as neural networks or the use of basis functions such

as high order orthogonal polynomials or Fourier series [99, 41]. While this approach has

met with some success in certain applications (e.g. in Backgammon [96], it is not immune

from divergent behavior [47, 44] when employed in the context of ADP. In certain cases, the

off-line iteration would fail to converge, with the cost-to-go approximation showing non-

monotonic behavior or instability with respect to iterations. The author(s) of [97] were

the first to attribute the failure with function approximation to an ‘over-estimation’ effect.

[83] demonstrated that sub-optimality can be severe when a global approximator with a

linear combination of basis functions is employed. The author(s) of [10] provide insightful

illustrations showing the failure of popular function approximators during off-line learning.

There are considerably fewer papers that address function approximation schemes for

problems with continuous state and action spaces [60], [46]. The problem of linear quadratic

regulation, for which the value function is known to be quadratic in structure, is a noted

exception [12]. The authors of [67] proposed a kernel-based approach for problems with

continuous states but finite actions and demonstrate convergence to the optimal cost-to-go

value function with an increasing number of samples and decreasing kernel bandwidth under

a model-free scheme. The authors of [60] proposed a provably convergent approximate policy

iteration under the assumption of known basis functions and other technical conditions.

Stable learning during the off-linear value iteration step of the proposed ADP strategy

is highly desirable as it can be frustrating to run a large number of iterations only to have

the result “blow up” all of sudden due to some complicated coupling between the function
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approximation error and value iteration. To have provable convergence of the approximate

value iteration (not necessarily to the optimal value function, however), one needs to use a

function approximator with a certain property called “non-expansion” . The author of [27]

discussed the viability of using such a class of function approximators. With such a choice,

the overall operator composed of value-iteration and then function approximation results

can be shown to be a contraction map therefore ensuring convergence.

Definition A γ-contraction mapping m (with respect to the infinity norm) defined on a

normed vector space (mapping elements from this space, V, to itself) is defined as such:

∀v1, v2 ∈ V, ‖m(v1)−m(v2)‖∞ ≤ γ‖v1 − v2‖∞, γ ∈ [0, 1)

where v1, v2 are arbitrarily chosen elements of V.

Definition When γ = 1, m : V → V is termed a non-expansion [27].

From Banach’s fixed-point theorem, it can be easily shown that the iterated sequence

{v,m(v),m2(v), . . .} converges to a unique fixed point. As explained earlier, the proposed

ADP method starts with initial estimates Ĵµ∗,p
[0] (xp), ∀xp ∈ Xp

sam. This is followed by func-

tion approximation (recall that this mapping is denoted by F ), and an application of the

DP operator, T p to yield Ĵµ∗,p
[1] (xp), ∀xp ∈ Xp

sam. The process is repeated again. A suffi-

cient condition for convergence is to demonstrate that the overall operator T p composed

with function approximator F is a also contraction map. This, in turn, holds true if F is a

non-expansion map.

Proposition 6.3.1 T pF is a γ-contraction map if F is non-expansive.

Proof Given arbitrary vectors Ĵµ∗,p
1 , Ĵµ∗,p

2 ∈ R
N , both of which correspond to the same

Xp
sam,

‖T pF (Ĵµ∗,p
1 )− T pF (Ĵµ∗,p

2 )‖∞ ≤ γ||F (Ĵµ∗,p
1 )− F (Ĵµ∗,p

2 )||∞ (96)

≤ γ||Ĵµ∗,p
1 − Ĵµ∗,p

2 ||∞ (97)
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The first line is true since T p is a γ-contraction map defined on the space of value functions.

The second inequality follows if one employs a function approximator with a non-expansion

property. A more complete proof is given in Appendix B.

Function approximators that employ averaging, as defined below, can be shown to pos-

sesses a non-expansion property.

Definition F is an averager if every fitted valued is the weighted average of target values,

potentially with the addition of a bias term. Specifically,

F (Ĵµ∗,p)(xp
q) = β0

(
xp

q , {xp(j)}Nj=1

)
+

N∑

i=1

βi

(
xp

q , {xp(j)}Nj=1

)
Ĵµ∗,p(xp(i)) (98)

Here, {βi}Ni=0 ≥ 0, and
N∑

i=1

βi ≤ 1. Note that the weights β are allowed to depend on the

query point (xp
q) and input values ({xp(i)}Ni=1) but not the target values. That such an

averager is a non-expansion (i.e. Eq. (97) is true) is easily demonstrated. Again, consider

arbitrary vectors Ĵµ∗,p
1 , Ĵµ∗,p

2 ∈ R
N , both of which correspond to the same Xp

sam. Taking

an arbitrary query point, xp
q , the following may be written:

∣∣∣F
(
Ĵµ∗,p

1

)
(xp

q)− F
(
Ĵµ∗,p

2

)
(xp

q)
∣∣∣ =

∣∣∣∣∣
N∑

i=1

βi(x
p
q , {xp(j)}Nj=1)

(
Ĵµ∗,p

1 (xp(i))− Ĵµ∗,p
2 (xp(i))

)∣∣∣∣∣

≤
∣∣∣∣∣

N∑

i=1

βi(x
p
q , {xp(j)}Nj=1)

∥∥∥Ĵµ∗,p
1 − Ĵµ∗,p

2

∥∥∥
∞

∣∣∣∣∣

≤
∥∥∥Ĵµ∗,p

1 − Ĵµ∗,p
2

∥∥∥
∞

(99)

The first line is true by definition. The second is true since all the weights (βi) are non-

negative and the third is true since the weights (excluding the bias term) sum up to less

than unity. Since Eq. (99) is true for arbitrary xp
q , one immediately concludes that:

∥∥∥F
(
Ĵµ∗,p

1

)
− F

(
Ĵµ∗,p

2

)∥∥∥
∞
≤

∥∥∥Ĵµ∗,p
1 − Ĵµ∗,p

2

∥∥∥
∞

(100)

6.3.2 Kernel regression

In order to use off-the-shelf optimization solvers, a preferred choice of F is one that is

differentiable. Nadaraya-Watson Kernel regression [30] represents a popular class of smooth
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averagers used to approximate the conditional expectation of any random variable in a

non-parametric manner. Consider approximating the conditional expectation of a random

variable J ∈ R given the independent variable (x ∈ R
n). Through simple probability, one

has:

E [J |x] =

∫

dJ
J p(x,J)

p(x) (101)

Using Kernel Density Estimation (KDE)1, a popular non-parametric smooth density esti-

mator, one may approximate p(x) as such:

p̂(x) =
1

N

N∑

i=1

K
(
‖x−x(i)‖2

σ

)
(102)

where x is an arbitrary query point and {x(i)}Ni=1, a training set. K(·) is a Kernel function

that decays exponentially with the squared distance between a query point and a particular

point in the training set. A popular choice of K(·) is the Gaussian Kernel (with a diagonal

covariance matrix Σn×n := diag(σ2, . . . , σ2)). It is used in the sequel and is given by:

K
(
‖x−x(i)‖2

σ

)
=

1

(2πσ2)0.5n
exp

(
−0.5σ−2‖x− x(i)‖22

)

The KDE is essentially composed of a mixture of N Gaussians, each of which is centered at a

particular training point, x(i). The bandwidth parameter, σ, controls the trade-off between

bias and variance errors and may be ascertained through cross-validation [30]. With this,

the function approximator for Ĵµ∗,p is given by:

F
(
Ĵµ∗,p

)
(xp

q) =

1
P

j=1 K

„

‖xp
q−xp(j)‖2

σ

« .
N∑

i=1

K
(
‖xp

q−xp(i)‖2

σ

)
Ĵµ∗,p(xp(i)) (103)

From Eq. (103), it is immediately apparent that the value function of an query point is given

by the weighted average of value functions of neighboring points, with a larger contribution

ascribed to closer neighbors. Another interpretation of Nadaraya-Watson kernel regression

is that it gives a local constant fit to the data [30]. Small values of σ imply that the values

of a relatively fewer number of neighbors (of the query point) are used in the averaging

1also known as the Parzen window method
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process for function approximation, and vice versa. It is noted that previous process control-

relevant ADP work [46] based on the pre-decision state, used a k-Nearest Neighbor (k-NN)

approach for function approximation. Whilst that yields a local, non-expansive averager, it

also corresponds to one that is non-smooth.

6.3.3 Cautious learning: preventing over-extrapolations

It has been demonstrated [89, 46] that simply using a local averager (that is, with β0 = 0),

though guaranteeing convergence, does not necessarily give a converged function leading to a

stable closed-loop behavior. This is because function approximation error can be significant,

particularly when the training data is insufficient. Safeguards against ‘over-extrapolation’

during value iteration are often needed for the successful implementation of ADP schemes

using local, non-expansive averagers, as has been shown in [46]. For a query point located in

regions with little data present, distance-weighted averaging may fail to provide meaningful

generalizations of the cost-to-go. As suggested by [46], the prevention of taking such a

query point may be achieved by including in the cost-to-go term β0 ≥ 0, a penalty that is

imposed whenever the minimization step encounters a query point (xp
q) located in a region

with data sparsity [46]:

β0(x
p
q) = A.U

(
1

p̂(xq) − ρ
)
·
(

1
p̂(xq)−ρ

ρ

)2

(104)

Here, ρ is a data-sparsity (defined as the inverse of data-density) threshold, A a scaling

parameter, and U , the step function that returns a zero value whenever its argument is

non-positive and unity, otherwise (that is, when there is inadequate data density). p̂(xq)

is a measure of data density as ascertained by fitting a Kernel density estimator over the

independent variables of the training set.

Using the tuning rules suggested in [46], ρ is given a value as such:

ρ ,

[ 1

N

N∑

i=1

K (1)
]

= K (1)−1 (105)

In other words, the threshold data density is that density obtained by assuming that an

arbitrary query point is 1 standard deviation (σ) away from every other point in the training

set. σ is obtained through cross-validating the initial value table obtained, T p
[0]. A is assigned
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a value such that the penalty term corresponds to 10 times the maximum estimate of the

initial value function (that is, Ĵµ∗,p
max := 10‖Ĵµ∗,p

[0] ‖∞) when a query point is assumed to be 3

standard deviations away from any other point in the training set. Namely, one gets:

A , 1

(K(3)−1−K(1)−1)
2 Ĵ

µ∗,p
max (106)

To ensure boundedness of β0, a maximum value is imposed on the penalty term:

β0

(
xp

q

)
← min

(
β0

(
xp

q

)
, Ĵµ∗,p

max

)
(107)

The bias term is non-smooth due to the presence of the step function in Eq. (104) and the

upperbound on β0 (Eq. (107)). To circumvent this, the following computations are per-

formed whenever a query point is encountered and its local data density, p̂(xp
q), calculated:

p̂1(x
p
q) ← m̃ax

(
p̂(xp

q),K (3)
)

(108)

p̂2(x
p
q) ← m̃in

(
p̂1(x

p
q),K (1)

)
(109)

m̃ax(a, b) , b+a
2 +

√
(b−a)2+δ

2 (110)

m̃in(a, b) , a+ b−a
2 −

√
(b−a)2+δ

2 (111)

where m̃ax and m̃in are smooth approximations of the max and min operators respectively

(see Eqs. (110)-(111)), and δ is a small positive real number (set to 0.1% for the rest of

this chapter). The effect of Eqs. (108)-(109) is to constrain the data density (at any query

point) to the interval [K (3) ,K (1)]. Whenever the data density exceeds the upper bound of

this said interval, it is assigned a value of K(1), such that no penalty is assigned. Whenever

the data density goes below the lower bound of the said interval, it is assigned a value of

K(3), such that the maximum penalty is given.

With this, the function approximator has the following form:

F
(
Ĵµ∗,p

)
(xp

q) =

A
( 1

p̂2(xp
q)

−ρ

ρ

)2
+

1
P

j=1 K

„

‖xp
q−xp(j)‖2

σ

« .
N∑

i=1

K
(
‖xp

q−xp(i)‖2

σ

)
Ĵµ∗,p(xp(i))

with A given by Eq. (106), and ρ by Eq. (105).
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6.4 Post-decision-state-based Bellman equations for jump stochastic
systems

Bellman’s optimality equations may be specialized for the control of jump stochastic sys-

tems. Consider the following discrete time equations governing the probabilistic temporal

transition of a general Markov jump system:

xc
t+1 = f(xc

t , rt, ut, ωt) (112)

pr(rt+1 = j|rt = i) = pij (113)

where rt refers to a discrete state whose dynamics are governed by a transition probability

matrix (see Eq. (113)). xc
t refers to the continuous state at time index t, with the superscript

serving to emphasize the difference from (the discrete) rt. Note that this emphasis will be

dropped outside of this Section, for the sake of notational compactness. Eqs. (112)-(113)

describe the transition between the pre-decision states, defined in Eq. (114), between time

instances.

xt , (xc
t , rt) (114)

As before, f may be decomposed into the following sub-transitions:

rp
t = rt (115)

xc,p
t = f1(x

c
t , rt, ut) (116)

xc
t+1 = f2(x

c,p
t , rp

t , ωt) (117)

Eq. (115) is true since the effect of the control action does not impact the probabilistic

transition of the Markov state. From Eqs. (116)-(117), it is clear that the post-decision

state may be defined as such:

xp
t , (xc,p

t , rp
t ) (118)

with the definitions of the continuous and discrete post-decision state variables given in

Eqs. (115)-(116).
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With this, Bellman’s equation used during off-line VI for the purpose of controlling

Markov jump stochastic systems are given as:

Jµ∗,p(xc,p
t , rp

t ) = E(xt+1|x
p
t )

[
min
ut+1

{
φ(xc

t+1, rt+1, ut+1) + γJµ∗,p(xp
t+1)

}]

= E(rt+1|rt)E(xt+1|x
p
t ,rt+1)

[
min
ut+1

{
φ(xc

t+1, rt+1, ut+1) + γJµ∗,p(xp
t+1)

}]

=
∑

pr(rt+1|rt)E(xt+1|x
p
t ,rt+1)

[
min
ut+1

{
φ(xc

t+1, rt+1, ut+1) + γJµ∗,p(xp
t+1)

}]

(119)

The first line follows from Eq. (90) and the second from the property of the joint expectation

of two random variables. Namely, for random variables v1, v2, E[v1, v2] = Ev1E(v2|v1)[v2|v1].

Since the transition probability matrix is assumed to be known, only the inner expectation

on the third line requires sampling from the distribution of ωr. Furthermore, we have a

(post-decision) value table for each of the discrete Markov states.

For online control, we have the following:

µ∗(xc, r) = min
u

{
φ(xc, r, u) + γJµ∗,p((f1(x

c, r, u), r))
}

We demonstrate the above on the control of a constrained Markov Jump Linear System

in the next subsection . For unconstrained Markov Jump Linear Systems, it is well known

that the optimal policy is given by linear mappings (one for each Markov state), where the

solution is obtained through coupled Riccati equations [17].

6.4.1 Example 1: Control of a constrained Markov Jump Linear System

Here, we consider the control of a constrained Markov Jump Linear System given by Eq.

(120).

xc
t+1 = 0.9xc

t + ut + ωrt

E[ωr=1ω
′
r=1] = 0.01; E[ωr=2ω

′
r=2] = 1

pii = 0.9, i ∈ 1, 2 (120)

where t refers to the discrete-time index, xc
t ∈ R, the state variable, and ut ∈ R, the

manipulated variable. For each regime, the noise term ω, is distributed as a white, zero-

mean, Gaussian random variable. It is noted that the covariance of the ω depends on the
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realization of the Markov state, which is known (either through direct state feedback or

provided by a state-estimator) at each time instant. r = 1 corresponds to a a regime with a

small covariance and r = 2, a regime with large covariance for the noise term. The control

objective is to regulate the system at the origin with the following constraint:

xc
t ≥ 0.7

We compare the performance of Linear Model Predictive Control (LMPC) (with prediction

and control horizon set to a sufficiently long duration of p = 10 time units) against the

proposed ADP approach based on the post-decision state variable. Since ω is an unbounded

disturbance signal, a soft constraint approach is employed. Namely, for LMPC, we solve at

each sample time:

min
{νk}

p
k=0

p∑

k=0

‖x̃c
k+1‖22 + 0.1‖νk‖22 + 500||εk||22 (121)

where x̃c
0 is initialized as xc

t , and εk, k = 0, 1, . . . , p are non-negative auxiliary decision vari-

ables representing the least amount of slack required to make the LMPC problem feasible.

That is, x̃c + k+ εk ≥ 0.7. For the proposed ADP approach, we set the discount factor to a

value of 0.98 (which is close to unity) and modify the stage-wise cost to penalize deviations

from the state constraints. Namely, the stage-wise cost used during VI and on-line control

is given by:

φ(xc
t , rt, ut) = ‖xt‖22 + 0.1‖ut‖22 + 500 max

(
0, 0.7− xt

)2

To construct Xp
sam, we employed the aforementioned LMPC controller and conducted

closed-loop simulations for the regulation problem with 20 different realizations of the noise

signal. To increase the number of training points, we paired each post-decision continu-

ous state (xc,p) to each possible realization of the Markov state. A total of 450 training

points were obtained, whose cost-to-go values were initialized by computing the cost for

LMPC over a sufficiently long horizon of 120. For the purpose of function approximation,

we employed kernel regression (for each of the Markov states) with the bandwidth set to

0.075 for value tables corresponding to both Markov states. To avoid over-extrapolation,
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we set A = 103 and ρ = 0.95. Value iteration converged within 30 iterations with a relative

termination termination set to
∣∣∣
∣∣∣
Ĵµ∗,p

[i+1]
−Ĵµ∗,p

[i]

Ĵµ∗,p

[i]

∣∣∣
∣∣∣
∞
≤ 0.1 for each Markov state.

Results for a typical realization is shown in Figure 18, where the Markov state has

switched from r = 1 to r = 2 at t = 50. It is evident that LMPC suffers from constraint

violation due to its open-loop optimal formulation whereas ADP provides automatic backing

off for both regimes.
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Figure 18: Comparing post-decision state based ADP vs. LMPC. The Markov state
switched from r = 1 to r = 2 midway through the simulation.

6.5 Control of Stochastic Systems: other examples

The proposed ADP approach is not limited to jump systems. Here, we demonstrate the

proposed post-decision-state-based ADP algorithm on a variety of stochastic optimal con-

trol problems (without jumps) for which popular control solutions (such as MPC) yield

unsatisfactory performance due to a poor treatment of the impact of uncertainty.

6.5.1 Example 2: Interaction between state estimation and control

Most of the work on MPC has assumed full state feedback or readily available point state

estimates, the latter being the likelier scenario. The implicit assumption of the separation

principle between controller and estimator design, whilst accurate for linear systems, does
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not necessarily hold for nonlinear ones. In the general case, one would expect the quality of

the state estimate to significantly affect the control action and vice versa. In other words,

for non-linear stochastic control problems, there exists significant interactions between state

estimation and control such that popular open-loop optimal control formulations (such as

MPC) might give poor performance. In this example, the proposed ADP approach is

applied to a system which is weakly unobservable at the reference state. The same problem

was studied by the authors of [32] who modified the optimization problem within MPC to

account of the quality of the state estimates.

Consider the following dynamical system:

xt+1 = xt + 0.1xtut + ut + ωt (122)

yt = x3
t + vt (123)

where xt ∈ R
nx refers to the system state at discrete time index t, ut ∈ R

nu , the manip-

ulated variable, and yt ∈ R
ny , the observed variable. ωt (the state excitation noise) and

vt (the measurement noise) are uncorrelated, zero-mean, white Gaussian noise signals with

covariance Q = 0.01 and R = 0.1 respectively. Since full state feedback is assumed to be

unavailable, state estimation is performed via an Extended Kalman Filter (EKF). The time

and measurement update equations are given by Eq. (124) and Eq. (125) respectively.

xt|t−1 = xt−1|t−1 + 0.1xt−1|t−1ut−1 + ut−1

Pt|t−1 = (1 + 0.1ut−1)
2Pt−1|t−1 +Q (124)

Rεt|t−1
= (3x2

t|t−1)
2Pt|t−1 +R

Kt = Pt|t−1(3x
2
t|t−1)R−1

εt|t−1

xt|t = xt|t−1 +Kt(yt − x3
t|t−1)

Pt|t = Pt|t−1 −Kt(3x
2
t|t−1)Pt|t−1 (125)

The control objective is to bring the system from an arbitrary initial state to the origin,

whilst minimizing actuator movement. The performance of MPC is compared against the

proposed ADP approach. For MPC, the following open-loop optimization math program is
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solved at each time instant t:

min
{νk}

p
k=0

p∑

k=0

{
2x̃2

k

}
+ 10x̃2

p+1 (126)

where x̃0 is initialized at xt|t, the prediction horizon (p) is set to 9, and the relationship

between x̃k+1 and x̃k governed by Eq. (122), with ω assumed to be at its mean value of

zero across the prediction horizon. It is noted that increasing prediction horizon length has

little effect on altering closed-loop performance.

For the proposed ADP approach, the discount factor, γ, is set to 0.98 to ensure the

convergence of VI. The pre-decision hyper-state at time t, contains the same information

as the pair (xt|t, Pt|t). That is to say, It = (xt|t, Pt|t)
′. With this, the stage-wise cost used

within the context of ADP is given by:

φ(It, ut) = E(·|It)

[
2x2

t

]

= 2x2
t|t + 2Pt|t

From Eq. (124), it is natural to define the post-decision state as the quantities obtained

immediately after the time-update step. That is, Ip
t , (xt+1|t, Pt+1|t). Transitions between

the post-to-pre decision state occur through a realization of the innovations term, whose

covariance is given by Rεt+1|t
.

To construct Xp
sam, the aforementioned NMPC controller (with a prediction horizon

of 9) was used to conduct closed-loop experiments (each lasting 50 time units) to bring

the system from 15 different pre-decision initial states, the set of which is (-10,-8,-6,-4,-

2,0,2,4,6,8,10,13,15,17,20), to the origin. For each initial state, we considered 5 different

but representative trajectories of ω and v. A total of 250 training points were obtained.

The initial post-decision state value functions were approximated by computing the cost

corresponding to running the NMPC controller over a horizon of 120 time steps. For the

purpose of function approximation, a bandwidth (σ) of 0.10 (obtained through leave-one-

out cross validation on the initial post-decision state value table, T p
[0]) was used. To avoid

over-extrapolation, A was selected to be 8.7311 and ρ set to 0.1036. A termination criterion

of ‖Ĵµ∗,p
[i+1] − Ĵ

µ∗,p
[i] ‖∞ ≤ 0.10 was enforced.
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6.5.1.1 Closed-loop performance.

As seen from Figure 19, VI converged within 50 iterations, with the major changes in the

value function occurring within the first 5 iterations. Results from a typical realization
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100
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200
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300

‖J
µ
∗
,p

[i
+

1
]
−
J
µ
∗
,p

[i
]
‖ ∞

No. of iterations

Figure 19: Interaction between estimation & control: plot of learning error vs. VI itera-
tions.

comparing the performance of the proposed ADP and NMPC controllers in bringing the

system from an initial state of x = 82 to the origin are given in Figs. 20 - 22. It is noted that

with NMPC, the system is brought to the origin quickly. However, once the state estimates

get to zero, there is a loss of observability (see Eqs. (124)-(125) and note the exponential

increase in prediction error as shown in Figure 22(b)). Consequently, the control action

remains, at the zero, thereby accounting for the uncontrolled drift-like behavior observed

in the state (see Figure 20(b)).

For the proposed ADP controller, the system is perturbed whenever the actual state

drifts a significant distance away (as reflected in the increase in prediction error, shown in

Figure 22(a)) from the reference state. Periodic perturbations can be seen in Figure 21(a).

Similar observations have been made by the authors of [32]. Closed-loop performance results

for 100 stochastic realizations are given in Table 10, where Ê refers to an empirical average

(over 100 realizations).

2This choice is representative. It is noted that similar results are obtained with other initial states.
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(a) Post-decision-state-based ADP algorithm.
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Figure 20: Interaction between estimation & control: x vs. t for a typical realization
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(a) Post-decision-state-based ADP algorithm.
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(b) NMPC.

Figure 21: Interaction between estimation & control: u vs. t for a typical realization
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(a) Post-decision-state-based ADP algo-
rithm.
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(b) NMPC.

Figure 22: Interaction between estimation & control: Pt|t vs. t for a typical realization.

101



Table 10: Interaction between estimation & control: performance over 100 realizations
Score ADP NMPC

Ê

[
50∑

t=0

2x2
t

]
120.67 295.48

6.5.2 Example 3: Dual control of an integrator with an unknown step change
in gain

Controlling systems with unknown parameter values means that the optimal controller is

faced with the dual, conflicting goals of i) keeping the system as close to the set-point as

possible based on current knowledge and ii) exploration by injecting probing signals (which

invariably detracts the system from short-term performance) so as to reduce uncertainty

regarding the parameter values. Dual control theory was developed by Fel’dbaum [21, 22,

23, 24] who showed that the optimal solution can be found by dynamic programming. This,

however, is often impractical. In this section, we demonstrate the proposed post-decision-

state based-ADP approach in solving the dual control problem of an integrator with an

unknown gain. The same problem was considered by [49] using a similar ADP approach

based on the pre-decision state variable.

The integrator dynamics propagate according to Eqs. (127) and (128)

yt = yt−1 + btut−1 + et (127)

bt = bt−1 + ωt

where yt ∈ R is the controlled variable of interest at discrete time index t, ut, the manipu-

lated variable and et zero-mean, white Gaussian noise with covariance R. b is an unknown,

time-varying gain described by Eq. (128), where ωt is zero-mean, white Gaussian noise with

covariance Q. A Kalman filter is employed to estimate the unknown parameter b for this
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linear system. The governing filter equations are as follows:

Rεt|t−1
= R+ u2

t−1Pt|t−1

Kt = Pt|t−1ut−1R−1
εt|t−1

yt|t−1 = yt−1 + ut−1bt|t−1

bt+1|t = bt|t−1 +Kt(yt − yt|t−1)

Pt+1|t = Pt|t−1 +Q−KtRεt|t−1
K ′

t (128)

Here, Rεt|t−1
is the innovations covariance matrix at time t. Kt refers to the Kalman

filter gain, yt|t−1, the one-step ahead prediction of the output, bt+1|t, the one-step ahead

prediction of bt, and Pt+1|t, the corresponding error covariance matrix. It is evident that

the input signal ut−1 at time t−1 affects the quality of the prediction error of bt+1|t through

Rεt|t−1
. With this, the post-decision (Eq. (129)) and pre-decision (Eq. (130)) information

states are:

Ip
t−1 , [ut−1, yt−1, bt|t−1, Pt|t−1]

′ (129)

It , [ut−1, yt, bt+1|t, Pt+1|t]
′ (130)

From Eq. (130), it is seen that Ip
t−1 contains all the information given by the sequences

{y0, y1, . . . , yt−1} and {u0, u1, . . . , ut−1}. The transition from Ip
t−1 to It occurs stochastically

by adding a realization of the innovations (obtained by sampling the innovations covariance)

to yt|t−1 and the application of Eq. (128).

The control objective is to find the optimal policy, µ∗ ∈ Γ, that yields the following

minimum variance cost criterion:

lim
T→∞

E(·|It)

[
1

T

T∑

k=0

y2
t+1+k

]
(131)

In this case, the single-stage cost may be written as:

φ(It, ut) , E(·|It)

[
y2

t+1

]

= y2
t+1|t +Rεt+1|t

(132)
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Well-known sub-optimal policies [3] include the one-step ahead certainty equivalence (Eq.

(133)) and cautious controllers (Eq. (134)).

uCE
t = − yt

bt+1|t
(133)

ucaut
t = −

yt · bt+1|t

b2t+1|t + Pt+1|t
(134)

It is well-known that the Certainty Equivalence (CE) controller, which ignores the prediction

error covariance in solving Eq. (131), is prone to a bursting phenomenon. On the other

hand the cautious controller, derived by solving Eq. (131) with T set to 1, is prone to

“turning-off” whenever the error covariance gets exceedingly large. In this example, Q and

R are set to values of 0 and 1 respectively. In a fashion similar to [50], we consider the

simple case where b may jump from an initial value of 0.5 to anywhere between ±15 at a

random time. For simplicity, it is assumed that the timing of the jump is known to the

controller, meaning that the error covariance of the estimator is reset to a relatively high

value of 200 when the jump in b occurs. The initial parameter value is assumed to be known

exactly (that is, P1|0 = 0).

The corresponding post-decision-state Bellman’s equations, with γ set to 0.98 (so as to

ensure convergence of Value Iteration) are given by replacing xp
t in Eqs. (90)-(91) with

Ip
t and understanding that the E refers to a conditional expectation. To initialize the

post-decision-state-based ADP algorithm, closed-loop simulations were performed using the

CE and cautious controllers with and without dithering. The additive dither signals are

uniformly distributed between the interval [−0.1, 0.1]. Jumps in the parameter b, during

the middle of a simulation run (of duration 50 time steps) from an initial value of 0.5

to b ∈ [±2,±4,±6,±8,±10,±12,±15] were simulated. 3 different realizations of e were

simulated. A total of 3480 data points were obtained in populating Xp
sam, all of which had

their post-decision value functions initialized via employing the CE controller set to run

for 120 step times. In designing the function approximator, no penalty is ascribed to the

first dimension of Ip so that exploration is not excessively prohibited during VI and online

control. The parameters for the function approximator are set as such: A = 2, σ = 0.15

and ρ = 0.1.
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Figure 23: Dual control: a typical realization. b jumps from an initial value of 0.5 to 15
at t = 3
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Figure 23 shows the results of a typical realization where b jumps to a value of 15 at

t = 3. As in [50], the simulations are such that the measurement noise is kept to zero until

t = 15, whereafter e behaves like a white, Gaussian disturbance signal with zero mean and

covariance R = 1. As can be seen in Figure 23(b), the proposed post-decision state ADP

algorithm injects probing signals early on when P̂t|t−1 increases due to the jump in b. Such

an early injection of a probing signal actively reduces the uncertainty associated with b̂t|t−1

(as can be seen in Figures 23(c)-23(d). In contrast, the CE controller exhibits “bursting”

at t = 15. On the other hand, the cautious controller is “turned-off” for most part of the

simulation and as such, there is a significant delay in terms of reducing the uncertainty

associated with b̂t|t−1.

Table 113 shows that the ADP controller yields superior closed-loop performance.

Table 11: Dual control of integrator with an unknown gain: mean performance over 100
realizations

Score ADP CE Cautious

Ê

[
40∑

t=0

y2
t

]
49.2 1497 65.5

6.5.3 Example 4: Constrained linear stochastic system- double integrator prob-
lem

We consider the following constrained double integrator problem studied by [6] in the con-

text of MPC for stochastic systems:

xt+1 = Axt +But + Υwt (135)

where matrix A = [1 0; 1 1]4, B = [1; 0], Υ = [1; 0] and ωt is zero-mean, white Gaussian noise

with its second moment, E[ωtω
′
t] = 0.2, ∀t. The control objective is to bring the system

from an arbitrary initial state ([0; 14] in the following simulations) to the origin whilst

minimizing actuator movement. The second dimension of the state vector is constrained

to be non-negative (x2 ≥ 0), as in the input vector ut ∈ [−0.5, 0.5]. In this example, full

3bE refers to an empirical average
4in Matlab notation
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state-feedback is assumed.

We compare the performance of a Linear Model Predictive Controller (LMPC) (with

prediction and control (p) horizon set to a sufficiently long duration of 15 time steps) against

the proposed ADP approach based on the post-decision state variable. The post-decision

state is defined as the quantity obtained after an action is taken but before the uncertainty

is realized. That is, xp
t , Axt + But. Since ω is an unbounded signal, we employ a soft-

constraint approach for both LMPC (to avoid running into infeasibility issues) and the

proposed ADP strategy. As is typically done, LMPC is implemented assuming ω remains

at its nominal value of 0 over the prediction horizon. Namely, for LMPC, we solve at each

time step, t:

min
{νk}

p
k=0

p∑

k=0

0.7‖x̃k+1‖22 + 0.33‖νk‖22 + 100||εk||22 (136)

where x̃0 is initialized as xt, and εk, k = 0, 1, ..., p ≥ 0 are non-negative auxiliary decision

variables representing the least amount of slack required to make the LMPC problem fea-

sible. That is, [0 1] x̃k + εk ≥ 0. These inequalities are easily incorporated into the math

program defined by Eq. (136). The relationship between x̃k+1 and (x̃k, νk) is given by Eq.

(135), with the noise term assumed to be zero throughout the entire prediction horizon.

Also, the input vector is constrained to satisfy the aforementioned bounds of ±0.5.

For the proposed ADP approach, we set the discount factor to a value close to unity,

that is, γ = 0.98 and modify the stage wise cost to penalize deviations from the state

constraints. Namely, the stage-wise cost used during VI is given by:

φ(xt, ut) , 0.70‖xt‖22 + 0.33‖ut‖22 + 100 max
(
0,−[0, 1]xt

)2

Hard constraints on u are imposed during the off-line value iteration process and on-line

implementation of the ADP-based controller.

To construct Xp
sam, we used the aforementioned LMPC controller and conducted closed-

loop experiments bringing the system from 40 different initial pre-decision states to the ori-

gin. Note that the initial state used for on-line testing is excluded from these 40 initial states.

Namely, we consider all permutations of the sets {−2, 0,−1, 1, 2} and {−4,−2, 0, 2, 4, 6, 8, 10}
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to create various values for the first and second dimension of the initial state respectively.

Consequently, a total of 3500 training points, whose initial cost-to-go values were initialized

by computing the cost for LMPC over a sufficiently long horizon (of 120), was obtained as

a result of the initialization scheme. For the purpose of function approximation, we em-

ployed kernel regression with the bandwidth, σ, set to 0.10. To avoid over-extrapolation,

we selected A = 2.6× 103, and ρ = 0.1036. Value-iteration converged within 50 iterations,

where the relative error termination criterion is set to
∣∣∣
∣∣∣
Ĵµ∗,p

[i+1]
−Ĵµ∗,p

[i]

Ĵµ∗,p

[i]

∣∣∣
∣∣∣
∞
≤ 0.1.

Results from 500 stochastic realizations presented as follows. As can be seen from Table

12, the proposed ADP controller has an average5 finite horizon score an order of magnitude

lower than a deterministic approach typified by LMPC. In particular, LMPC suffers from

excessively high variance in terms of closed-loop performance. A look at the time series plots

of the second dimension of x for both methods (see Figure 24) reveals that LMPC results in

significant constraint violation. On the other hand, the majority of the realizations based

on the ADP approach do not violate the lower bound constraint.

Table 12: Double integrator example: comparing closed-loop performance
Score ADP LMPC

Ê

[
30∑

t=0

φ(xt, ut)

]
1600 10000

6.5.4 Example 5: Constrained chemostat - maximizing productivity subject
to conversion constraints

Consider the governing equations of an archetypal chemostat.

ẋ1 = x1
µmaxx2

κ+x2
− x1u

ẋ2 = u[x2f − x2]− µmax

Y
x1x2
κ+x2

where x = [x1;x2] ∈ R
2 is the state vector composed of the instantaneous concentration

of the product (x1) and substrate (x2) respectively. 0 ≤ u ∈ R, the dilution rate, is the

non-negative manipulated variable. x2f refers to the instantaneous concentration of the

5bE is based on sample averaging
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Figure 24: Double integrator example: x2 vs. t for 500 realizations. Lower bound for x2

is 0.

substrate feed. The maximum specific growth rate µmax is set to 1, the yield coefficient to

1 and κ to 0.02. For the following simulations, the sampling rate is set to 0.5. This yields

the following discrete-time equations:

xt+1 = fh(xt, ut, x2f,t) (137)

where fh refers to the integration of the aforementioned ordinary differential equations

over one sample-time unit with initial conditions set to xt, and the control input and feed

concentration of the substrate held constant over the said period of numerical integration.

For the purpose of simulation, we assume that the feed concentration (x2f ) fluctuates

around a mean value of 1, and is perturbed by zero-mean, white Gaussian noise (ω):

x2f,t = 1 + ωt, E[ωtω
′
t] = 10−3 (138)

It is desirable to maximize the productivity of the product, Pt , x1,tut, whilst ensuring

that the conversion of the substrate, ψx2 , 1− x2
x2f

, does not go lower than a relatively high

value of 95%. Such an economically motivated constraint is common in several key process

industries, such as bioethanol production. There is a tradeoff between productivity and con-

version, as reflected in the steady state profiles depicted in Figure 25. Productivity increases

with dilution rate and then decreases as the system approaches washout. Conversion, on

the other hand, is a decreasing function of space-velocity or equivalently the dilution rate.
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Maximum productivity (P∗ = 0.7543) occurs at a dilution rate that corresponds to conver-

sion levels significantly below the required 95% threshold. We compare the performance of
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Figure 25: Steady state profiles

Non-linear MPC (NMPC) against the proposed ADP strategy, assuming full feedback (of

the state and instantaneous feed concentration) is available. Instead of full-fledged NMPC,

we employ successive-linearization based MPC (slMPC), a computationally efficient alter-

native proposed by [45]. For this example, we have found the closed-loop performance of

slMPC to be similar to that of NMPC. For slMPC, we employed a prediction and control

horizon, p, of 10 sample units. The following math program is solved at each time instant:

min
{νk}

p
k=0

p∑

k=0

(
||P̃k+1 − P∗||22 + 100||εk||22

)
(139)

where the math program is initialized with x̃0 = xt, the relationship between x̃k+1 and

x̃k is governed by Eq. (137), and the corresponding productivity and conversion given by

P̃k , x̃kνk and ψ̃k , 1 − x̃2,k

x2,t respectively. Note that the slMPC controller assumes that

the feed conditions remain at its current value throughout the prediction horizon. ε ≥ 0,

is a non-negative variable representing the least amount of slack required for conversion

to be greater than 95%. That is, εk + ψ̃x2,k ≥ 0.95. The idea is to regulate the system

at an equilibrium point that corresponds to the largest possible value of the dilution rate

without exceeding the conversion bound so that productivity is maximized. The dynamics

of the system are assumed to be governed by matrices obtained through linearization of

the governing ordinary differential equations about the current state and past input vector.
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This results in a convex quadratic program.

Concatenating Eqs. (137)-(138), we have the following combined dynamics:



xt+1

x2f,t+1


 =




fh(xt, ut, x2f,t)

1


+




0

ωt


 (140)

Consequently, the pre-decision (It) and post-decision states (Ip
t ) may be defined as follows:

It ,




xt

x2f,t


 , Ip

t ,




xt+1

1




(141)

For the proposed ADP approach, γ is set to 0.98 and the stage-wise cost defined as such:

φ(It, ut) , ||Pt −P∗||22 + 100 max(0, 0.95− ψx2,t)
2. To determine Xp

sam, we used an slMPC

controller (with horizon length of 10 time units) and conducted closed-loop experiments

regulating the system at an initial state corresponding to a conversion of 0.95. A total of

300 training points was obtained from the initialization scheme. We used kernel regression

for function approximation with the bandwidth, σ, set to 0.15, A to 1.93 and ρ to 0.087, in

order to prevent over-extrapolation.

Results from a typical realization are depicted in Figure 26. It is apparent that the ADP-

based approach, compared to slMPC, results in minimal constraint violation at the expense

of slightly lower productivity. It is noted that the steady-state productivity corresponding

to 95% conversion is 0.68.

6.6 Conclusions

In this chapter, it has been argued that, for process control problems, the post-decision-

state formulation offers the ability to use deterministic math programming solvers to be

utilized, both off-line and on-line and therefore may be more convenient than the more

conventional pre-decision-state formulation. In addition, the use of function approximators

with nonexpansion properties offer stable learning. Robustness against over-extrapolation

can be achieved through the use of a tailor-made penalty function. Key examples are used to

highlight the importance of treating uncertainty in a systematic fashion and to demonstrate

the proposed algorithm.
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Figure 26: Constrained non-linear chemostat example: closed-loop performance of a typ-
ical realization. ADP: solid line (-); slMPC: dotted line(..); lower bound on conversion:
dash-dot (-.)
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CHAPTER VII

CONTRIBUTIONS & FUTURE RESEARCH

7.1 Summary of contributions

This thesis tackles the issue of uncertainty in the context of process control. Disturbance

modeling and the optimal control of jump (and non-jump) stochastic systems constitute

the major thrust of the work. The main contributions are listed in the following sections.

7.1.1 Disturbance modeling

• Realistic disturbance modeling using a Hidden Markov Model (HMM) framework: see

Chapter 3. The overall result is a more sophisticated model used by an existing state

estimator for jump systems. At the expense of slightly higher computational costs (due

to the state estimator), the proposed HMM disturbance model provides better tracking

compared to a state estimator based on the commonly employed (in process control)

integrated white noise disturbance model. Better tracking performance translates to

superior closed loop performance without any redesign of the controller, through the

typical assumption of separation and certainty equivalence. As a result, this provides

a tool that can be readily adopted by process control practitioners.

• Application of the said HMM framework (see Chapter 3) for providing flexibility in

imparting integral action under a wide number of scenarios. Typical off-set free control

algorithms suffer from poor transient performance when there is significant mismatch

between where the disturbance enters and where it is assumed to enter.

• Demonstrating the flexibility of the HMM framework in rejecting deterministic step

changes. See Chapter 3.

• Application of the said HMM framework for in-silico experiments for second gener-

ation bio-ethanol production, an important element of sustainable energy initiatives.

Specifically, the HMM framework is used to describe highly-varying feed conditions
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which occur as a result of the multitude of feedstock used. The HMM framework is

shown to provide superior performance to the typical random-walk description of the

disturbance patterns. See Chapter 4.

• Applying the HMM framework for the purpose of fault detection. This is a general-

ization of the commonly used Mixture of Gaussians assumption. Novel application of

the HMM framework to the problem of valve stiction. See Chapter 5.

7.1.2 Post-decision-state-based approximate dynamic programming

• Extending current ADP framework based on the pre-decision state variable to the

post-decision state variable. Numerical advantages allow for the use of popular off-

the-shelf solvers and the parallelization of Value Iteration. See Chapter 6.

• Demonstration of the need for the systematic treatment of uncertainty through a wide

array of control problems. See examples section in Chapter 6.

7.2 Future work

• System identification of jump systems, a difficult problem in itself, will be tackled in

the future.

• Application of the HMM framework for the fault-detection and diagnosis in large-scale

systems.

• Application of the HMM framework for blood glucose control in type-1 diabetics. The

integrated-white noise assumption is common in the blood glucose control literature

[58, 59]. As explained throughout the first part of the thesis, this oftentimes requires

tedious tuning of the observer/ Kalman filter. However, experimental data [19] sug-

gests that blood sugar levels exhibit multi-regime behavior. Specifically, before a meal,

blood sugar levels fluctuate like white-noise, whereas during a meal, blood sugar levels

exhibit ramp-like behavior. This may potentially be modeled via the proposed HMM

framework used in the first part of this thesis.
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• The non-parametric function approximation approach used in the ADP work is com-

putationally intensive compared to methods which assume basis functions and then

use (recursive) least squares to regress the coefficients [60]. However, choosing good

basis functions, is a difficult task in general. The combination of both methods may

be employed in the context of Policy Iteration where the latter approach is first used

to model, in broad-strokes, the cost-to-go function. The residuals may then be fit-

ted using the proposed non-parametric methods. Policy iteration is then employed

to ensure convergence. This is followed up by policy improvement, completing one

iteration of Policy Iteration.
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APPENDIX A

DETAILS FOR HYBRID CYBERNETIC MODEL-BASED

SIMULATION OF CONTINUOUS PRODUCTION OF

LIGNOCELLULOSIC ETHANOL

A.1 Suboptimal state estimation via GPB2: time and measurement
update steps

Details steps comprising the filter operator (Section 4.2.2) are given as such:

Time Update:

ηt+1|t(Rt+1
t ) = Frt+1(ηt|t(rt), ut)

Pt+1|t(Rt+1
t ) = Ao

tPt|t(rt−1)A
o
t
′ + Γo

tR
ξ
rt

Γo
t
′

yt+1|t(Rt+1
t ) = G(ηt+1|t(Rt

t−1))

Rε(Rt+1
t ) = CoPt+1|t(Rt+1

t )Co′ +Rv (142)

The innovations (i.e. one-step ahead output prediction) covariance matrix is given by Rε(·).

Here, the triplet (Ao
t ,Γ

o
t , C

o
t ) (which depends on both rt and rt+1) reflects the successive-

linearization assumption underpining the Extended Kalman Filter (EKF), where


Ao

t Γo
t

0 I


 = exp


h ·



Ão

t Γ̃o
t

0 I





 (143)

Ão
t =

∂Frt+1

∂x

∣∣∣
ηt|t(rt),ut

(144)

Γ̃o
t =

∂Frt+1

∂d

∣∣∣
ηt|t(rt),ut

(145)

Co =
∂G
∂x

(146)

Measurement Update:

ηt+1|t+1(Rt+1
t ) = ηt+1|t(Rt+1

t ) + Lt+1(Rt+1
t ) · (yt+1 − yt+1|t(Rt+1

t ))

Lt+1(Rt+1
t ) = Pt+1|t(Rt+1

t )Co′[Rε(Rt+1
t )]−1

Pt+1|t+1(Rt+1
t ) = [I − Lt+1]·Pt+1|t(Rt+1

t ) (147)
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A.2 Details of the hybrid cybernetic model

For convenience, the equations governing the dynamics of the chemostat (Eqs. (45)-(46))

are reproduced:

dx̃

dt
= [Sx̃Z] · diag([ν̃1, . . . , ν̃12]) · r̃·xBIOM +D(x̃in − x̃)

dxE

dt
= α+ diag([ũ1, . . . , ũ12]) · r̃E − diag([β1, . . . , β12]) · xE − µ·IxE

The various terms and parameter values, adapted from [92], will be defined and provided

in this section.

A.2.1 Abbreviations

x̃ is defined as concentrations of various metabolites:

[xGLC , xXY L, xACTx, xBIOM , xCO2 , xETH , xGOLx, xMAINT , xXOLx]′. Table 6 provides the

explanation of these abbreviations.

A.2.2 Fluxes and enzyme synthesis reaction rates

The definition of vector r̃ and r̃E , with Monod-type kinetics, and values of associated

parameters are given by Eqs. (148)-(149) and Table 13.

r̃i =





kmax
i

xGLC

KG+xGLC

1
1+xETH/KI,G

xE,i

xmax
E,i

, i = 1, . . . , 3

kmax
i

xXY L

KX+xXY L

1
1+xETH/KI,X

xE,i

xmax
E,i

, i = 4, . . . , 7

kmax
i

xGLC

KG+xGLC

1
1+xETH/KI,G

xXY L

KX+xXY L

1
1+xETH/KI,X

xE,i

xmax
E,i

, i = 8, . . . , 12
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r̃E,i =





kE,i
xGLC

KG+xGLC

1
1+xETH/KI,G

, i = 1, . . . , 3

kE,i
xXY L

KX+xXY L

1
1+xETH/KI,X

, i = 4, . . . , 7

kE,i
xGLC

KG+xGLC

1
1+xETH/KI,G

xXY L

KX+xXY L

1
1+xETH/KI,X

, i = 8, . . . , 12

(149)

Here, Elementary Flux Modes (EFMs) 1-3 belong to the glucose cluster, 4-7, the xylose

cluster and the remaining ones (8-12) to the glucose/ xylose cluster.

Sx̃Z, the product of the extra-celluar stoichiometric matrix and the vertical concatena-

tion of the twelve EFMs , is the following 9 (equalling the number of extra-celluar species)
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by 12 (corresponding to the number of effective elementary flux modes) matrix:




−1 −1 −1 0 0 0 0 −1 −1 −1 −1 −1

0 0 0 −1 −1 −1 −1 −4 −4 −10.9 −0.375 −0.0123

0 0 0 0 0 0 0 2 0 9.28 0.188 0.147

0 0.03956 0.0247 0 0 0.031 0.0072 0 0 0.418 0 0.0215

2 1.64 1.40 1.83 1 1.546 1.16 2 9.33 15.8 1.59 1.30

2 1.31 1.20 1.58 0.75 1.039 0.849 0 8.33 3.78 0.844 1.04

0 0 0.374 0 0 0 0.609 0 0 0 1.41 0.478

2 0 0 1.58 0.75 0 0 2 8.33 0 0 0

0 0 0 0 0.5 0 0 4 0 0 0 0




Table 13: Kinetic parameters for Eqs. (148)-(149).
EFM kmax

i xmax
E,i (kE,i, αi, βi) KG/KX KI,G/KI,X

(mM/h) (mM) (1/h) (mM) (mM)

EFM1 173 5.5 (1, 0.1, 0.2) KG = 3.14 KI,G = 410
EFM2 28.6 0.83 (1, 0.1, 0.2) KG = 3.14 KI,G = 410
EFM3 32.1 1.11 (1, 0.1, 0.2) KG = 3.14 KI,G = 410
EFM4 21.0 5.5 (1, 0.1, 0.2) KX = 22.7 KI,X = 224
EFM5 18.8 5.5 (1, 0.1, 0.2) KX = 22.7 KI,X = 224
EFM6 11.9 1.92 (1, 0.1, 0.2) KX = 22.7 KI,X = 224
EFM7 14.3 3.62 (1, 0.1, 0.2) KX = 22.7 KI,X = 224
EFM8 0.978 5.5 (1, 0.1, 0.2) -
EFM9 2.53 5.5 (1, 0.1, 0.2) -
EFM10 0.912 1.89 (1, 0.1, 0.2) -
EFM11 1.02 5.5 (1, 0.1, 0.2) -
EFM12 0.045 5.47 (1, 0.1, 0.2) -
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APPENDIX B

PROOF: CONVERGENCE OF POST-DECISION-STATE-BASED VI

USING LOCAL FUNCTION APPROXIMATORS

We first note that the following property holds for arbitrary functions g, h : A → R:

|min
a
g(a)−min

a
h(a)| ≤ max

a
|g(a)− h(a)|

Then,

∣∣∣Ĵµ∗,p
[i+1](x

p)− Ĵµ∗,p
[i] (xp)

∣∣∣ =
∣∣∣E(w|xp)

[
min

u

{
φ(f2(x

p, w), u) + γF
(
Ĵµ∗,p

[i]

)
(f1(f2(x

p, w), u)
}]

− E(w|xp)

[
min

u

{
φ(f2(x

p, w), u) + γF
(
Ĵµ∗,p

[i−1]

)
(f1(f2(x

p, w), u)
}]∣∣∣

=
∣∣∣E(w|xp)

[
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u

{
φ(f2(x

p, w), u) + γF
(
Ĵµ∗,p

[i]

)
(f1(f2(x

p, w), u)
}
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u

{
φ(f2(x

p, w), u) + γF
(
Ĵµ∗,p

[i−1]

)
(f1(f2(x

p, w), u)
}]∣∣∣

≤ γ
∣∣∣E(w|xp)

[
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u
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(
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[i]

)
(f1(f2(x

p, w), u)− F
(
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p, w), u)
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≤ γ
∣∣∣E(w|xp)

[
||F
(
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− F

(
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= γ||F
(
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)
− F

(
Ĵµ∗,p
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This implies that

‖Ĵµ∗,p
[i+1] − Ĵ

µ∗,p
[i] ‖∞ ≤ γ‖F

(
Ĵµ∗,p

[i]

)
− F

(
Ĵµ∗,p

[i−1]

)
‖∞

Since the function approximator is a local, non-expansive averager, it can also be shown

that:

‖F
(
Ĵµ∗,p

[i]

)
− F

(
Ĵµ∗,p

[i−1]

)
‖∞ ≤ ‖Ĵµ∗,p

[i] − Ĵµ∗,p
[i−1]‖∞ (150)

Putting the above together,

‖Ĵµ∗,p
[i+1] − Ĵ

µ∗,p
[i] ‖∞ ≤ γ

i‖Ĵµ∗,p
[1] − Ĵ

µ∗,p
[0] ‖∞ (151)

As γ ∈ [0, 1), we have uniform convergence (due to convergence in sup-norm).
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