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SUMMARY

The study of routing problems has given rise to major developments in the fields

of Operations Research (OR). In particular, the Vehicle Routing Problem (VRP) has

motivated the development of many exact algorithms and heuristics. In the VRP, a

planner designs minimum-cost-delivery routes from a depot to a set of geographically

distributed customers, subject to capacity and business constraints. This problem

is an important component of distribution systems and, in practice, several variants

of the problem that exist are motivated by the diversity of operations rules and

constraints in real-life applications. The VRP generalizes the Traveling Salesman

Problem (TSP), so any of its variants present a computational challenge. We study a

stochastic variant of the VRP and the Inventory Routing Problem (IRP), a problem

that was initially studied as a variant of the VRP.

In Chapter 2, we study the Vehicle Routing Problem with Probabilistic Customers

(VRP-PC), a two-stage stochastic optimization problem that is a fundamental build-

ing block within the broad family of stochastic routing models. In the first stage, a

dispatcher determines a set of vehicle routes serving all potential customer locations,

before actual requests for service realize. In the second stage, vehicles are dispatched

after the subset of customers requiring service is observed; a customer not requiring

service is skipped from its planned route at execution. The objective is to minimize

the expected vehicle travel cost by assuming known customer realization probabili-

ties. We propose a column generation framework to solve the VRP-PC to a given

optimality tolerance. Specifically, we present two novel algorithms, one that under-

approximates a solution’s expected cost, and another that uses its exact expected

cost. Each algorithm is equipped with a route pricing mechanism that iteratively im-

proves the approximation precision of a route’s reduced cost; this produces fast route

insertions at the start of the algorithm and reaches termination conditions at the end
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of the execution. Compared to branch-and-cut algorithms for the VRP-PC using arc-

based formulations, our framework can more readily incorporate sequence-dependent

constraints such as customer time windows. We provide a priori and a posteriori per-

formance guarantees for these algorithms, and demonstrate their effectiveness via a

computational study on instances with realization probabilities for customers ranging

from 0.5 to 0.9.

In Chapter 3, we consider a variant of the Inventory Routing Problem (IRP),

the Continuous Time IRP (CIRP). In time dependent models, such as the CIRP,

the objective is to find the optimal times (continuous) at which activities occur and

resources are utilized. These models arise whenever a schedule of activities needs to

be constructed. A common approach consists of discretizing the planning time and

then restricting the decisions to those time points. However, this approach leads to

very large formulations that are intractable in practice. In the CIRP, a company

manages the inventory of its customers, resupplying a single product from a single

facility during a finite time horizon. The product is consumed at a constant rate

(product per unit of time) by each customer. The customers have local storage

capacity. The goal is to find the minimum cost delivery plan that ensures that none

of the customers run out of product during the planning period. We investigate time-

expanded network formulations that can form the basis of a Dynamic Discretization

Discovery (DDD) algorithm and demonstrate in an extensive computational study

that they, by themselves, produces provably high-quality, often optimal, solutions.

In Chapter 4, we study the Continuous Time IRP with Out-and-Back Routes

(CIRP-OB): a vehicle route starts at the depot, visits a single customer, and returns

to the depot. We develop the full DDD algorithm to solve the CIRP-OB by using

partially constructed time-expanded networks. This method iteratively discovers the

time points needed in the network to find optimal solutions. We test this method

on randomly generated instances with up to 30 customers, where provable optimal



solutions are found in most cases.



CHAPTER 1

INTRODUCTION AND BACKGROUND

The study of routing problems has given rise to major developments in the fields

of Operations Research (OR). In particular, the Vehicle Routing Problem (VRP),

which was introduced in [1] under the title “The Truck Dispatching Problem”, has

motivated the development of many exact algorithms and heuristics. In the VRP, a

planner designs minimum-cost-delivery routes from a depot to a set of geographically

distributed customers, subject to capacity and business constraints. This problem is

an important component of distribution systems, and, in practice, several variants

of the problem are motivated by the diversity of operations rules and constraints in

real-life applications.

The VRP generalizes the Traveling Salesman Problem (TSP) but is much more

difficult to solve in practice, so any of its variants present a computational challenge.

In the stochastic VRP, not all the information is provided in the beginning, but it is

revealed over time. Uncertainty may affect any of the input data. The most common

cases are stochastic customer requests, where a customer needs to be served with a

given probability; stochastic times, in which service time or travel times or both are

modeled by random variables; and, stochastic customer demands.

Another problem that was initially studied as a variant of the VPR is the Inven-

tory Routing Problem (IRP) [2]. The IRP integrates inventory management, vehicle

routing, and delivery-scheduling decisions. It is aimed at reducing logistics costs by

giving the replenishment decisions for products delivered to customers from one or

multiple facilities (supply points). It benefits both stakeholders, in that the vendors

can coordinate deliveries to customers while the buyers do not need to allocate efforts

to inventory control.
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There exists a vast literature on the VRP and on the IRP [3, 4, 5, 6]. Several

books and survey articles can be found about these problems.

This thesis consists of my work with Alejandro Toriello and Mathias Klapp during

the first year of my PhD program, and of my work with Natashia Boland and Martin

Savelsbergh during my second, third and fourth years. In these two lines of work, we

studied routing problems and exact algorithms, first for a stochastic variant of the

VRP, and then for a continuous time version of the IRP.

1.1 Vehicle Routing Problem with Probabilistic Customers (VRP-PC)

We study the VRP-PC, a variant of the VRP where the subset of customers requiring

service is random and follows a known probability distribution. As a recourse rule,

a customer that does not require service is skipped in its corresponding route, while

keeping the rest of the route’s sequence. The objective is to minimize the expected

cost of the delivery plan. This problem is in the class of a priori optimization problems.

Among the motivations to study these problems are that

• information may be not available far enough in advance to create optimal de-

livery plans for customers that require a visit;

• regularity of service can be beneficial for both the customers and the drivers:

the customers will be served at roughly the same time each day they require

service, and the drivers can become very familiar with their routes; and,

• starting from an a priori tour can be useful as a starting point for reoptimization.

For more details about a priori routing optimization, see [7].

A Branch-and-Price algorithm can be used to solve the VRP-PC. The column

generation methodology has been successfully applied to the VRP by numerous re-

searchers. Often the master problem is simply stated as a set partitioning problem

to which column generation is applied, where each element of the partition or column

2



is a route that serves a subset of customers. A direct application of this formulation

is not practical because the number of potential routes is exponentially large. The

algorithm starts with a subset of columns and additional columns are generated as

needed by a pricing subproblem. An integer solution is found by a Branch-and-Bound

algorithm.

1.2 Continuous Time Inventory Routing Problem (CIRP)

Time-dependent decision models are pervasive in applications since they occur when-

ever a schedule of activities needs to be constructed. Time-dependent decision models

seek to find the optimal times (continuous) at which activities occur and resources are

utilized. A common technique for modeling these kinds of problems is discretization.

Time discretization leads to formulations on a time-expanded network, in which a

node represents both a location and a time. However, a trade-off arises when time is

discretized. The granularity of the discretization impacts the solution quality (bet-

ter candidate solutions are identified), but a too fine discretization might produce a

huge formulation that is intractable in practice. Another option is to consider con-

tinuous variables to model time and linearize nonlinear terms, resulting in “big-M”

constraints. These kinds of formulations are more compact, but they are weak and

therefore difficult to solve in practice.

In [8], the authors propose a new algorithm for solving time-dependent models:

the Dynamic Discretization Discovery (DDD) algorithm. The algorithm produces

an optimal continuous time solution without explicitly modeling each time point

in time. This algorithm achieves the benefit of a fine discretization (high-quality

solution) without ever constructing a huge formulation. Starting with a partially

time-expanded network, the algorithm refines the time discretization, based on the

analysis of the solution obtained at each iteration. Since this solution is a relaxation

of the continuous time problem, an optimization problem is solved to check whether

3



the solution can be converted (or repaired) into a continuous time solution with the

same cost (so the solution is optimal). If not, then time points that can be added

to the network are identified to obtain a different solution in the next iteration. A

flowchart of this algorithm can be found in Figure 1.1.

Step 1: Find a Lower Bound (solve
partially time expanded network IP)

Step 2: Convert solution to a fea-
sible continuous time solution

Step 3: Add time points
to improve Lower Bound

Stop; solution
is optimal

Figure 1.1: Flowchart of DDD algorithm.

The DDD algorithm is initially used for the service network design problem, but

then it has been used for other problems such as time-dependent shortest path prob-

lems [9] and traveling salesman problems with time windows [10].

The variant we consider in this work is motivated by the IRP encountered by com-

panies in the liquid gas industry. These companies produce liquefied gases, e.g., liquid

oxygen, liquid nitrogen, or liquid argon, install tanks at their customers’ premises,

and guarantee minimum product availability at any time. Customers use (consume)

product at a certain rate (which can differ at different times of the day) often 24 hours

per day (e.g., liquid oxygen in hospitals.) Thus, the amount of product that can be

delivered to the tank changes at the same rate. The companies continuously monitor

product usage and tank inventory levels so that they can produce cost-effective de-

livery schedules that meet their service commitments (i.e., the guaranteed minimum

4



product availabilities). In practice, the companies tend to have customers that re-

quire multiple deliveries per day as well as customers that require as few as one or two

deliveries per week. As a consequence, the use of a continuous time variant of the IRP

is most appropriate in these settings in that it provides the most accurate represen-

tation of the system. Also relevant is the fact that the company contracts typically

specify that the customers own/purchase the product upon delivery, which means

that the companies do not have to consider product holding costs at the customer.

1.3 Overview

This thesis presents three additional chapters: chapters 2, 3 and 4. Each of them

is either an accepted, under review or working paper, so each of them can be read

independently.

In Chapter 2, we study the VRP-PC. We propose two novel algorithms to solve the

VRP-PC, one that approximates the expected cost of the solution and another that

uses the exact value. Each algorithm considers a pricing subproblem that identifies

routes that are needed in the problem and provides optimal condition guarantees at

the end of the execution. In addition, we provide a priori and a posteriori optimality

gaps of the solution, and carry out a computational study on instances with realization

probabilities ranging from 0.5 to 0.9.

In Chapter 3, we study the CIRP and investigate critical components of the DDD

algorithm. We demonstrate in an extensive computational study that these compo-

nents are sufficient to produce provable, high-quality, often optimal, solutions.

In Chapter 4, we consider a simpler version of the CIRP, the CIRP with out-and-

back routes (CIRP-OB). In this problem, a vehicle route starts at the depot, visits

a single customer, and returns to the depot. The DDD algorithm is fully developed

and implemented and finds optimal solutions for instances with up to 30 customers.

5



CHAPTER 2

BRANCH-AND-PRICE FOR ROUTING WITH PROBABILISTIC

CUSTOMERS

2.1 Introduction

The Vehicle Routing Problem (VRP) and its variants are widely studied within the

transportation and operations research communities, and used in a variety of appli-

cations in freight and urban transportation and logistics, as well as in other areas [11,

12, 13]. Stochastic VRPs are extensions of their deterministic counterparts where

some instance parameters are unknown while planning and/or executing a solution,

and decisions must account for this uncertainty. A priori VRPs are particular ver-

sions of stochastic VRPs modeled as two-stage stochastic optimization problems; see

[7] for a survey. In the first stage, some of the parameters are random variables and

the decision maker plans an initial solution. In the second stage, the planned solu-

tion is executed after the realization of the random parameters. Typically, a simple

recourse rule is used to modify the initial plan during its execution. A desired feature

in the first stage solution is to proactively account for parameter uncertainty and the

second-stage recourse.

We introduce a set partition model to study the a priori VRP with probabilistic

customers (VRP-PC). In the VRP-PC, the subset of customers requiring service is

random and follows a known probability model. In the first stage, the decision maker

plans a set of vehicle routes dispatched from the depot and visiting all potential

customer locations. Vehicles are dispatched in the second stage after observing the

subset of customers requiring service. The second-stage recourse rule modifies first-

stage routes by skipping locations without a service requirement, maintaining the
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established sequence of each route for the visited customers. The objective is to

minimize the expected vehicle travel cost, accounting for this recourse rule. The

VRP-PC extends the Probabilistic Traveling Salesman Problem P-TSP [14, 15], a

single-vehicle version of the problem. Our formulation is the first route-based model

for the VRP-PC, and contrasts with the arc-based VRP-PC formulation originally

proposed in [16].

2.1.1 Applications of VRP-PC

There are many applications of the VRP-PC. As an extension of the P-TSP, it may be

used in multi-vehicle and constrained problems related to the P-TSP. It is a natural

model when the set of customers requiring service is unknown in the planning stage,

but it is infeasible or impractical to optimize routes at execution, e.g., [17]; this might

happen when the decision maker does not have enough computational resources to

optimize routes in real time [18], or when maintaining the initial visit sequence is

desirable or required, i.e., because of gains in operational efficiency produced by

drivers executing the same plan every day, or because customers expect to meet the

same driver at roughly the same time when they require service.

Some application examples include technician routing and scheduling, and cash-in-

transit vehicle routing problems (CTVRP). In the technician routing and scheduling

problem there is a limited crew of technicians serving requests requiring specialized

tools and skills; such a problem arises in public services, telecommunication services

and equipment maintenance operations. In such settings, routes that maintain visit

sequences make it easier to meet technical requirements; see e.g., [19, 20, 21]. In

the CTVRP [22], vehicles are assumed to transport banknotes, coins and other items

of high value. Vehicle routes are therefore vulnerable to robberies, and a carefully

planned route is desirable to reduce security risks. A priori route planning main-

tains a daily routine and improves aspects of customer security, such as time window
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constraints and visit order.

A novel application involves using the VRP-PC as a building block to solve more

complex dynamic and stochastic VRPs; see e.g., [23, 24, 25]. In many dynamic set-

tings, the model can be leveraged to design heuristic dynamic policies by maintaining

and periodically updating a feasible route plan via a rollout procedure [26, 27, 28,

29]. For example, our particular motivation for studying the VRP-PC stems from ur-

ban distribution problems in same-day delivery [30, 31]. In such a setting, customer

delivery requests realize dynamically over the operating period as other previously

known orders are being prepared, loaded into vehicles and dispatched from a de-

pot to customer locations in vehicle routes. Therefore, an effective dispatch policy

requires adapting and reacting to newly revealed information and involves online re-

optimization of planned routing decisions. One type of high-quality heuristic policy

carries a plan serving a subset of known and pending delivery requests, along with a

set of potential customer locations (e.g., neighborhoods, city blocks) to account for

future expected routing costs. At the time of dispatch, each route in fact only visits a

location if an order realizes there before the vehicle route begins. An a priori solution

of this kind is not by itself necessarily desirable, as it could result in significant wasted

time for the vehicle if executed when many orders do not realize. Nevertheless, one

can “roll out” such an a priori solution, enforcing in the model that such a route only

includes already realized orders; the remainder of the plan is a proxy for the expected

duration, length and/or cost of subsequent “average” routes in an “average” day.

In some circumstances, same-day delivery systems may dynamically choose whether

to accept customer requests or not. Our model can be used to guide order acceptance

decisions while proactively considering potential future orders [32].
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2.1.2 Contribution

We introduce a set covering model for the VRP-PC and propose a novel exact ap-

proach for it, which is compatible with a wide variety of route-dependent constraints,

including useful sequence-dependent constraints, such as time windows and prece-

dence constraints. An exact algorithm for the P-TSP is proposed in [33], which is

a specialized implementation of the integer L-shape method [34]. This method for-

mulates the P-TSP as a two-stage integer linear program with edge-based variables,

and replaces the expected route cost in the objective by a variable θ ≥ 0. As integer

routes are found, the real expected cost of these solutions is evaluated to dynamically

generate “optimality cuts” on θ and correct its value.

The integer L-shape method operates on a formulation with edge variables. How-

ever, many practical sequence-dependent constraints are difficult to model with edge

variables, and often have weak relaxations. In same-day delivery problems, pertinent

examples of such constraints include delivery deadlines and order release times.

Therefore, to our knowledge the work on routing with probabilistic customers

considering hard sequence-dependent constraints has been restricted to heuristics;

see [35, 36]. Nonetheless, in deterministic problems, route-based formulations solved

via column generation and branch-and-price (B&P) are arguably more effective to

optimize routing models with such constraints (see e.g., [37]). We address this gap

in the literature and propose a B&P framework to solve the VRP-PC. In particular,

our contributions are:

1. We present two different and independent column generation algorithms, one

that underestimates a feasible solution’s cost and another that uses its exact

expected cost. Both algorithms use route generation subroutines that compute

estimates of a route’s reduced cost. The algorithms’ pricing problems iteratively

increase the precision of a route’s expected cost estimate, yielding fast route
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generation at the start while still reaching termination conditions at the end of

the execution.

2. We provide a priori and a posteriori performance guarantees for these algo-

rithms, which allow us to determine solution quality before and after a lower

bound on the optimal value is computed.

3. We implement a prototypical branch-and-price scheme for the VRP-PC and

conduct a computational study, concluding that both algorithms find good so-

lutions using only a few number of precision updates. The algorithm’s empirical

convergence takes few iterations, and depends on the customer realization prob-

abilities.

After closing this section with a literature review, the remainder of the article is

organized as follows. Section 2 reviews the B&P approach for the VRP and formulates

the VRP-PC. In Section 3 we present two column generation algorithms for the

VRP-PC, discuss incorporating them into B&P, and give convergence guarantees and

approximate optimality conditions. Section 4 presents a computational study on

modified Solomon instances [38], and Section 5 concludes.

2.1.3 Literature Review

A priori optimization is routinely applied in stochastic routing problems [39, 40, 41].

Different sets of uncertain parameters within VRPs are modeled through different

a priori optimization problems. For example, the VRP with stochastic travel times

(VRP-STT) refers to uncertainty in travel times between locations [42, 43] and the

VRP with stochastic demand (VRP-SD) [44, 17] refers to a VRP where the customer

demand is a random variable realized at the moment of service.

The a priori VRP with probabilistic customers (VRP-PC) is a stochastic VRP

where the subset of customers requiring service is random and follows a known proba-
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bility distribution. The seminal work in [14, 15] formally introduces the Probabilistic

Traveling Salesman (P-TSP) and develops a closed-form expression for a route’s ex-

pected cost in the case of homogeneous probabilities. [45] extends the P-TSP to

heterogeneous probability distributions, and additional results include [46, 17, 39,

40].

In [34], the authors present the integer L-shape method to exactly solve a priori

optimization problems; the algorithm gradually improves an estimate of the expected

cost via dynamic generation of cutting planes in an integer program. In [33], the

integer L-shape method is used to solve an edge-based formulation of the P-TSP.

This method is also implemented in [16] to design an exact algorithm for a VRP with

both probabilistic customers and stochastic demand.

Truncation approaches have been proposed by [47] for the P-TSP; they underesti-

mate the true cost by computing only some terms of the expected cost of a route. In

[48], the authors underestimate the true cost using an approximation function; this

function balances the amount of speedup for solving algorithms and the quality of the

approximation. Such approximation functions have been used to speed up heuristics

[49].

For deterministic routing, B&P approaches have been successfully applied to solve

many VRP variants to optimality, and readily handle sequence dependent constraints.

These approaches formulate the VRP as a set covering route-based formulation; see

e.g., [50, 51, 52] and references therein. Recently, B&P has been adapted to solve

the VRP-SD [53, 54, 55] and the VRP-STT [56, 57]. We are not aware of a B&P

scheme for the VRP-PC, and the technical hurdles needed to overcome probabilistic

customers in B&P are in several respects different from these previous works.

The route pricing problem within a VRP set partitioning formulation is the El-

ementary Shortest Path Problem with Resource Constraints (ESPPRC). Because of

the ESPPRC’s theoretical complexity and empirical difficulty, a relaxed version called
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the Shortest Path Problem with Resource Constraints (SPPRC) [37] is usually solved

instead; the SPPRC relaxes the elementary condition to allow visiting a customer

more than once. The SPPRC with k-cycle elimination [58] is an intermediate relax-

ation that only allows paths with cycles having at least k + 1 nodes.

2.2 Model Formulation and Preliminaries

The deterministic VRP is a starting point to study the more complex probabilistic

variant. We start by briefly describing a deterministic VRP set partitioning model

and its classic column generation framework, including a relaxation technique for its

route pricing subproblem; these concepts are widely studied in the VRP and column

generation literature, e.g., [37, 13]. Later, we introduce the VRP with probabilistic

customers and discuss how to fit the previous column generation framework in this

two-stage stochastic problem. We also show how chance constraints, a useful modeling

tool in stochastic optimization, can be incorporated in the model.

2.2.1 Deterministic VRP

The deterministic VRP entails designing a set of vehicle routes, each starting and

ending at a depot, that feasibly serve a set C = {1, ..., n} of customers at minimum

total travel cost. Each customer i ∈ C has demand di > 0 that must be served by

one route; that is, we do not allow split deliveries. We consider homogeneous vehicles

with capacity q ≥ maxi di, so that the total demand served on any route does not

exceed q. A vehicle can only perform one route, and we may have a limit on the total

number of routes. We also assume no fixed route setup costs, though these may be

included without substantially changing the model.

Define the set N := C ∪ {0, n + 1} of nodes having all customers plus 0 and

n + 1, both of which represent the depot. A vehicle route departs node 0, visits a

subset of customer nodes, and ends at node n+ 1. Traveling between any two nodes
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i, j ∈ N costs cij ≥ 0 and takes tij ≥ 0 time, and we assume both parameter sets

satisfy the triangle inequality. When i ∈ C, the value tij may include service time at

i, and we may also have a route duration limit T , with T ≥ tij for all arcs. For the

sake of exposition, we describe only vehicle capacity and route duration as limiting

resources, but other complex and sequence-dependent constraints, such as service

time-windows, order release dates and customer precedence constraints amenable to

column generation and B&P may be handled similarly. We only require that all

applicable constraint parameters are integers, possibly by re-scaling.

2.2.2 Column Generation and Branch-and-Price

To specify the column generation framework, define Rn as the set of all feasible

vehicles routes; each route r ∈ Rn corresponds to an elementary path of nodes in C

starting at 0, ending at n + 1 and satisfying any required constraint. Let cr be the

cost of route r and αir ∈ {0, 1} be the number of times i ∈ C is visited by r.

Define the binary variable yr, equal to 1 if route r is selected and 0 otherwise.

The VRP can then be formulated as a set partitioning integer linear problem, where

its linear relaxation is given by

min
y≥0

∑
r∈Rn

cryr (2.1a)

s.t.
∑
r∈Rn

αiryr = 1, i ∈ C. (2.1b)

The number of routes in Rn can be exponentially large as a function of n, making it

difficult to solve (2.1) explicitly with an LP solver. Instead, routes can be generated

dynamically using column generation. To solve the VRP set partition LP relaxation,

we use an algorithm with two main components. Initially, we solve model (2.1) only

considering a small subset R̃ ⊂ Rn of feasible routes. The optimal dual solution of

this restricted LP is then used to identify profitable columns in Rn \ R̃ via a pricing
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subproblem. We add these new columns to R̃, then execute a new run of the LP

solver. The procedure is repeated until no more profitable columns are found in

Rn \ R̃.

Let ρi for i ∈ C be the dual LP variable related to constraint (2.1b). The pricing

problem to generate routes based on the current restricted LP solution is

min
r∈Rn

{
cr −

∑
i∈C

αirρi

}
. (2.2)

A non-negative optimal value of (2.2) certifies optimality for the restricted version

of (2.1). Conversely, a negative value indicates the existence of a profitable route

r ∈ Rn \ R̃.

Problem (2.2) is known as the Elementary Shortest Path Problem with Resource

Constraints (ESPPRC), and it is strongly NP-hard [59]. The Shortest Path Problem

with Resource Constraints (SPPRC) is a relaxation of (2.2) that allows multiple visits

to a customer; this relaxed version can be solved by dynamic programming (DP) in

polynomial time as a function of n and the resources’ parameters. In the case of

vehicle capacity, the applicable parameter is vehicle capacity q; similarly, for time-

based constraints the corresponding parameter is the duration limit T . A relaxed

route r can have cycles, but cannot make more than n customer visits, and may

in fact be further constrained, since resources are increasingly consumed along any

path. We consider k-cycle elimination for the SPPRC (SPPRC-k) [58] to improve

relaxation quality; in this setting any path with cycles having fewer than k+ 1 nodes

is not allowed. Let Rk be the set of relaxed routes with k-cycle elimination, and

observe that since elementary paths exclude all cycles up to length n, this definition

is consistent with our use of Rn.

The SPPRC is defined over a network of partial route states G = (V,A). Each

state v ∈ V is specified by a tuple v = (Sv, dv, tv), where Sv is a sequence of visited
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locations in the partial route, dv is the vehicle capacity already used by the partial

route, and tv is the partial route’s end time. When the problem has other route

resources, these are tracked in a similar fashion. The ESPPRC carries the complete

node visiting sequence from the depot in Sv, while the SPPRC-k relaxation only

records the latest k visited nodes in the sequence. The transition cost between states

v and u is defined by c`(Sv),`(Su) − ρ`(Sv), where `(S) is the last node in sequence S.

The DP optimality equations for the SPPRC-k are

F ([0], 0, 0) = 0, (2.3a)

F (S, d, t) = min
(i,j)∈N2

{
F (S̄, d̄, t̄) + (cij − ρi) :

(i, j) = (`(S̄), `(S)), i 6= n+ 1, fij(d̄, t̄) ≤ (d, t)
}
, (2.3b)

where ρ0 = 0. The value of F (S, d, t) is the smallest possible reduced cost for a

partial route starting from the depot, ending with sequence S (where |S| ≤ k),

having consumed resources (d, t). The relaxed route with minimum reduced cost is

given by the minimum over all values F (S, q, T ) with `(S) = n+ 1. In the recursion,

S̄ is a sequence with |S̄| ≤ k that can be extended to S; that is, either |S̄| < k and

appending `(S) = j to it yields S, or |S̄| = k and S consists of deleting the first

element and appending j. The function fij is called a resource extension function [37]

and models resource consumption, i.e.,

fij(d, t) = (d+ dj, t+ tij).

The function can be defined more generally and include any other resource consumed

along a route. We consider the Bellman-Ford labelling algorithm to solve (2.3); the

number of states satisfies |V | = O(nkqT ), and therefore the running time of the

algorithm is O(nk+1qT ).
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The optimal values of (2.1) may be fractional; however, branching on the y vari-

ables is generally impossible (as the pricing problem cannot be readily updated) and

would lead to extremely unbalanced search trees. Instead, for VRP the typical B&P

scheme [37] branches on the implied arc variables xij that indicate whether any route

in the solution travels directly from i to j. Adjusting the pricing SPPRC-k model for

these branching decisions simply involves forcing or forbidding some actions at certain

states. In our implementation, we also initially branch on the number of routes in

the solution, as originally proposed in [51].

2.2.3 VRP with Probabilistic Customers

We now consider a VRP with probabilistic customers (VRP-PC), where an initial

solution covering all customers C is planned, but only a subset of customers will

actually require service. As a recourse rule, a customer that does not require service

is skipped in its corresponding route, while keeping the rest of the route’s sequence;

for many VRP constraints of interest (such as vehicle capacity and route duration),

this ensures that if the planned route is feasible when all customers are serviced, it

remains feasible for any realized subset of customers in the probabilistic context. We

assume a known, independent customer realization probability pi ∈ (0, 1] for each

i ∈ C and use p0 = pn+1 = 1. The objective is to minimize the expected vehicle travel

cost. The problem’s stochasticity only affects expected route costs, and therefore any

constraints are managed identically to the deterministic VRP.

For a route r ∈ Rn, let nr ≤ n be the number of planned customer visits, and let

r(i) ∈ N represent the i-th planned visit in r (with r(0) = 0, r(nr + 1) = n+ 1). The
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expected cost E(cr) of the route is

E(cr) =
nr∑
i=0

nr+1∑
j=i+1

(
pr(i)pr(j)

j−1∏
`=i+1

(1− pr(`))
)
cr(i),r(j)

=
nr∑
`=1

nr−`+1∑
i=0

(
pr(i)pr(i+`)

i+`−1∏
j=i+1

(1− pr(j))
)
cr(i),r(i+`) =:

nr∑
`=1

H`
r . (2.4)

This expected cost can be computed as a sum of nr nonnegative terms as in (2.4),

where each H`
r includes the expected costs corresponding to arcs that skip exactly

` − 1 customers. For example, the term H1
r = ∑

i≤nr pr(i)pr(i+1)cr(i),r(i+1) considers

all arcs between consecutive customers. The term H2
r includes all arcs that skip one

customer in the sequence, and so on. Since they are all non-negative, a summation

of any subset of the H`
r terms provides a lower bound for E(cr). In particular, this

includes the possible case in which all the customers in a route do no request service,

Hnr+1
r , and the cost of that realization is zero, Hnr+1

r = 0.

A set partitioning relaxation for the VRP-PC is

f(Rk) := min
y≥0

{∑
r∈Rk

E(cr)yr :
∑
r∈Rk

αiryr = 1, i ∈ C
}
. (2.5)

Compared to a deterministic VRP relaxation, the feasible region remains unaltered,

but the objective function considers each route’s expected cost. As in the determin-

istic case, we can relax the set of feasible routes from Rn to a larger set Rk that only

excludes k-cycles; we make the dependence on the set of feasible routes explicit and

use f(Rk) to denote the optimal value of this relaxation as a function of the consid-

ered route set. In this case, the definition of E(cr) can be extended to include routes

with repeated customer visits, by simply setting cr(i),r(j) = 0 when r(i) = r(j) and

keeping all other values the same. In other words, this definition treats repeated visits

to customer i in a route as independent copies of it, each of which requires service

independently with probability pi. As in the deterministic problem, such a defini-
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tion guarantees that routes with repeated visits never appear in an optimal integer

solution.

2.2.4 Chance Constraints

As stated, our model handles resource consumption deterministically. For example,

we construct routes that satisfy vehicle capacity even if every customer realizes. In our

motivating applications [30, 31] this is indeed necessary. Furthermore, if realization

probabilities are high, say pi ≥ 0.9 for all customers i, it may be desirable to guarantee

the route’s feasibility under any circumstance. Therefore, most of our exposition and

the instances in our computational study use this approach.

However, in other cases, guaranteeing route feasibility with absolute certainty may

result in overly conservative routes with significant amounts of wasted capacity. A

systematic approach to this issue involves replacing a deterministic constraint with

a chance constraint, which for example stipulates that the probability of realized

customers’ demand exceeding capacity should be small. By incorporating a chance

constraint, we keep the same two-stage planning method used in the deterministic

case, but we allow the planned routes to possibly violate resource capacity, as long

as the violation is unlikely. This technique has been explored before for the VRP-SD

[54]; we suggest one possible way to include it here.

Let Di be a random variable representing the realized demand at customer i; so Di

follows a scaled Bernoulli distribution with P(Di = di) = pi and P(Di = 0) = 1− pi.

For a planned route r, we could replace the deterministic vehicle capacity constraint∑
i≤nr dr(i) ≤ q with the chance constraint

P
(
nr∑
i=1

Dr(i) > q

)
≤ η,

for an appropriately chosen tolerance η > 0; for example, η = 0.1 means the vehicle’s
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capacity can satisfy realized demand with at least 90% probability.

The issue is how to model such a chance constraint so that it is amenable to

pricing via a recursion similar to (2.3). Applying a Chernoff bound, we obtain

P
(
nr∑
i=1

Dr(i) > q

)
≤ e−qτ

nr∏
i=1

E
[
eDr(i)τ

]
= e−qτ

nr∏
i=1

(
1− pr(i) + pr(i)e

dr(i)τ
)
, ∀ τ > 0,

where we use the fact that the Di’s are independent, and τ > 0 can be chosen based

on problem parameters. If the quantity on the right does not exceed the tolerance η,

we guarantee that the route is feasible for the chance constraint. In other words, the

route is feasible if for some τ > 0 we have

e−qτ
nr∏
i=1

(
1− pr(i) + pr(i)e

dr(i)τ
)
≤ η,

or equivalently,
1
τ

nr∑
i=1

ln
(
1− pr(i) + pr(i)e

dr(i)τ
)
≤ q + ln η

τ
.

Note that as τ → ∞, this constraint recovers the deterministic counterpart. By

defining a new “capacity” q̂ := q + (ln η)/τ and new “demands” d̂i := (1/τ) ln
(
1 −

pr(i) + pr(i)e
dr(i)τ

)
, we can incorporate the chance constraint into the pricing recursion

(2.3).

As an example, suppose a planned route has ten customers, each customer i with

di = 2 and pi = 0.5. Choosing τ = 1, this gives a probabilistic “demand” parameter

of d̂i ≈ 1.43. To be feasible in the deterministic version of the vehicle capacity

constraint, we would require a capacity of 20. If we use η = 0.1, we obtain via the

bound that capacity can be as low as 10 · d̂i − ln 0.1 ≈ 16.64 and the route would

remain feasible for the chance constraint. This is still an approximation; we can verify

by direct calculation that even with a capacity of 14 the route would still be feasible

for the chance constraint.
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2.3 Column Generation for VRP-PC

We next study how to price columns for the VRP-PC by approximating a route’s

expected reduced cost. Later, we provide two solution algorithms based on the VRP-

PC column generation model introduced in Section 2.2.2.

The pricing problem for the VRP-PC master problem in (2.5) with k-cycle elimi-

nation considers the expected cost of each relaxed route r ∈ Rk and is defined by

min
r∈Rk

{
E(cr)−

∑
i∈C

αirρi

}
, (2.6)

where the ρi are again dual multipliers. Even though we relax the route set to Rk,

the expected cost formula (2.4) depends on the entire customer visit sequence and

increases the subproblem’s difficulty. To deal with this additional difficulty, we further

relax the expected cost expression and only consider the first k terms,

Ek(cr) :=
k∑
`=1

H`
r ,

where we include arcs that skip up to k − 1 customers in the sequence. Ek(cr) is a

valid lower bound for E(cr) for k ∈ {1, . . . , nr}, as we show here.

Proposition 1. For any route r ∈ R1 and k ∈ {1, . . . , nr}, the k-term approximation

of the expected cost E(cr) is monotone non-decreasing in k, i.e., Ek(cr) ≤ Ek+1(cr).

Moreover, if c̄r is the deterministic cost of visiting all customers in r, Enr(cr) =

E(cr) ≤ c̄r.

Proof. Ek+1(cr) − Ek(cr) = Hk+1
r ≥ 0, so this approximation is monotone non-

decreasing. The exact expected cost considers all non-negative terms H`
r and is

thus an upper bound to Ek(cr). Finally, the deterministic cost is no smaller than

the expected value because under the triangle inequality, the cost of each possible

realization is always less than or equal to the cost of visiting all customers.
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In the following sections, we provide two algorithms that exploit this lower bound

Ek(cr) on the expected cost of a route r.

2.3.1 Updating Cost Algorithm

In our first algorithm, which we call the Updating Cost Algorithm (UCA), we obtain

a lower bound for the optimal reduced cost of the relaxed master problem (2.5) by

approximately solving subproblem (2.6) using a non-elementary path relaxation with

k-cycle elimination (SPPRC-k), and replacing the exact expected cost E(cr) with the

approximation Ek(cr). When solving the SPPRC-k, we can adapt the DP recursion

(2.3) to include expected arc costs corresponding to arcs that skip at most k − 1

customers, thus allowing us to optimize with respect to Ek(cr).

We first address how well Ek approximates the true expected cost. Let p̂ :=

maxi∈C pi, p̌ := mini∈C pi, and let

ĉ := max
{

max
i,j∈C

cij,max
i∈C

{
max{c0i, ci,n+1}/pi

}}
.

This last quantity represents the most expensive arc cost in the graph, where we

weigh arcs incident to the depot more heavily.

Lemma 1. Let y ≥ 0 satisfy ∑r∈R1 α
i
ryr = 1 for each i ∈ C, and let k ∈ {1, . . . , n}.

Then

∑
r∈R1

yrE
k(cr) ≤

∑
r∈R1

yrE(cr) ≤
∑
r∈R1

yrE
k(cr) + δk,

where

δk := ĉp̂2
n∑

`=k+1
(n− `+ 2)(1− p̌)`−1. (2.7)

Although we state the result in terms of the largest route set R1, the same guar-
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antee applies to any smaller set Rk by taking yr = 0 for r 6∈ Rk.

Proof. The first inequality is a consequence of Proposition 1. To prove the second,

we first note that for any route r ∈ R1,

E(cr)− Ek(cr) =
nr∑

`=k+1
H`
r ≤ ĉp̂2

nr∑
`=k+1

(nr − `+ 2)(1− p̌)`−1.

Summing over the yr values, we obtain

∑
r∈R1

yr(E(cr)− Ek(cr)) ≤ ĉp̂2 ∑
r∈R1

yr
nr∑

`=k+1
(nr − `+ 2)(1− p̌)`−1

≤ ĉp̂2
n∑

`=k+1
(1− p̌)`−1 ∑

r∈R1

yr(nr − `+ 2) ≤ δk,

where the last inequality follows from ∑
r nryr = ∑

r

∑
i α

i
ryr = n and ∑r yr ≥ 1.

This result allows us to gauge how closely we approximate our problem’s true

optimal cost if we use the approximate route cost Ek instead.

Theorem 2. Suppose we replace E with Ek in (2.5), optimize with respect to this

objective, and obtain solution yk. Then

∑
r∈Rk

ykrE
k(cr) ≤ f(Rk) ≤

∑
r∈Rk

ykrE(cr) ≤
∑
r∈Rk

ykrE
k(cr) + δk.

The analogous guarantee holds for the integral case: Suppose R∗ is an optimal set

of routes for the VRP-PC, and suppose R̄k is an optimal set with respect to the

approximate objective Ek. Then

∑
r∈R̄k

Ek(cr) ≤
∑
r∈R∗

E(cr) ≤
∑
r∈R̄k

E(cr) ≤
∑
r∈R̄k

Ek(cr) + δk.

Proof. The first inequality is a consequence of Lemma 1 and yk’s optimality with

respect to Ek. The second follows from yk’s feasibility for (2.5), and the last from
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Lemma 1. The same argument can be repeated for the second set of inequalities,

restricting the analysis to integer y solutions.

The theorem implies that if we approximately optimize (2.5) over routes Rk with

objective Ek, we have the a priori guarantee that the solution we obtain will be within

an additive gap of δk from f(Rk). Similarly, if we embed this approximate optimiza-

tion within a B&P algorithm, we are guaranteed to obtain an integer solution within

δk of the optimal expected cost. In addition, after carrying out the optimization, we

can calculate a tighter a posteriori gap by taking the difference of the solution’s true

expected cost with E, minus its approximate expected cost as measured by Ek.

Corollary 3. To achieve any desired additive optimality gap ε ≥ 0 in (2.5) (and in

the integral problem via B&P), it suffices to choose k = O(log(n/ε)).

Proof. By definition of δk, we have

δk ≤ ĉp̂2n
n∑

`=k+1
(1− p̌)`−1 ≤ ĉp̂2n(1− p̌)k

p̌
.

Therefore, to guarantee δk ≤ ε, it suffices for k to satisfy

(1− p̌)−k ≥ ĉp̂2n

εp̌
⇐⇒ k ln

(
1

1− p̌

)
≥ ln

(
ĉp̂2n

εp̌

)
.

Although this last result shows a logarithmic dependence on n, in practice we find

that the δk values decrease quite rapidly, so that a small k suffices to provide a very

tight gap. Table 2.1 provides an example of δk/ĉ values for n = 50 as a function

of k and a uniform customer probability. Our computational results detailed in the

next section verify this convergence and also explore the a posteriori gap in empirical

terms.
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Table 2.1: Sample δk/ĉ values as a function of k and p = p̌ = p̂, for n = 50.

p\k 1 2 3 4 5
0.5 12.25 6.00 2.9375 1.4375 0.703125
0.7 10.41 3.06 0.8991 0.26406 0.077517
0.9 4.49 0.44 0.0431 0.00422 0.000413

1 input: integers K0 ≤ K, initial set of routes R̃ and

associated approximate costs EK0(cr) for all r ∈ R̃;

2 set k ← K0;

3 while k ≤ K do

4 solve restricted master problem using routes R̃

and costs Ek;

5 solve pricing subproblem as SPPRC-k, obtain new

route r;

6 if Ek(cr)−
∑
i∈C α

i
rρi < 0 then

7 include new column in master problem,

R̃← R̃ ∪ {r};

8 else

9 k ← k + 1;

10 recompute approximate expected costs as

Ek(cr) for r ∈ R̃;

11 end

12 end
Algorithm 1: Column generation algorithm UCA.

Algorithm (1) details our implementation of this approximate optimization. In-

stead of starting from the desired approximation precision, the algorithm solves the

column generation algorithm sequentially, with increasing precision at every step of

the outer loop. Intuitively, we expect pricing subproblems with small k to be easy,
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and thus to quickly find useful columns in the first steps; for larger values of k, we

then obtain a few remaining columns that marginally improve the expected cost. Be-

cause the algorithm updates the cost approximation as it progresses, we name it the

Updating Cost Algorithm (UCA).

UCA takes as argument an initial set of feasible routes R̃ and two positive integers

K0 ≤ K; K0 is the initial value for each route’s expected cost approximation and K

is the final value used in the approximation for column generation. In each step k ∈

{K0, . . . , K}, the algorithm searches for routes r ∈ Rk, approximating r’s expected

cost using Ek(cr). If the resulting route r has negative reduced cost, we include it in

the set R̃ for the master problem; otherwise, we increase k and recompute the cost

of the routes considered in the master using Ek.

UCA begins by generating routes in RK0 , meaning some of these routes may in

fact have cycles shorter than or equal to K. Therefore, we cannot claim that the

algorithm optimizes the LP relaxation (2.5) over RK . We can, however, make a

weaker assertion.

Proposition 4. The value returned by UCA with parameter K is a lower bound for

f(RK).

Proof. In its final iteration (k = K), the algorithm ensures that every route in RK has

non-negative reduced cost with respect to EK . However, the algorithm can generate

routes in its previous iterations, some of which could have cycles of length K or

shorter. So UCA produces a solution that is optimal for a superset of RK , where the

inclusion may be strict.

Finally, we verify that employing UCA within a B&P framework preserves the

gap guarantee.

Corollary 5. Using UCA within a B&P algorithm yields an integer solution with

expected cost within an additive gap δK of optimal.
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Proof. The proof follows from Theorem 2 and Proposition 4 by noting that if UCA

returns an integer solution, this solution must be optimal with respect to EK .

We finish this subsection by noting that although UCA has both an a priori and

an a posteriori guarantee, it cannot guarantee a solution with lower expected cost

than the solution implied by the deterministic VRP on the same instance. Therefore,

in practice we warm start the algorithm with the deterministic solution, which also

helps us fathom nodes in the search tree.

2.3.2 Fixed Cost Algorithm

The motivation for UCA and the use of the cost approximation Ek is the difficulty

of the exact pricing problem (2.6). However, once we generate a particular route

r, we can efficiently check its exact expected cost and thus its exact reduced cost.

This motivates a second algorithm to approximately solve (2.5) and the VRP-PC, in

which we include routes in the restricted master problem with their exact expected

costs; because this second algorithm always keeps routes’ true expected cost (instead

of updating an approximation), we call it the Fixed Cost Algorithm (FCA).

Algorithm 2 details FCA. We again use two parameters K0 ≤ K and increase

the precision of the pricing problem and the expected cost approximation Ek for

k ∈ {K0, . . . , K}; however, in this case we only add routes if their exact reduced cost

(measured with the exact expected cost) is negative. This has the benefit of including

columns in the master with their exact objective value, but the disadvantage that we

may have an inconclusive pricing outcome, where a route with negative approximate

reduced cost in fact has non-negative reduced cost. Such an inconclusive outcome

triggers an increase in the pricing precision until we reach K, at which point the

algorithm terminates.
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1 input: integers K0 ≤ K, initial set of routes R̃ with

expected costs E;

2 set k ← K0;

3 while k ≤ K do

4 solve restricted master problem with routes R̃ and

costs E;

5 solve pricing subproblem as SPPRC-k with

approximate cost Ek, obtain new route r;

6 if Ek(cr)−
∑
i∈C α

i
rρi ≥ 0 then

7 terminate;

8 else if E(cr)−
∑
i∈C α

i
rρi < 0 then

9 include new column in master problem,

R̃← R̃ ∪ {r};

10 else

11 k ← k + 1;

12 end

13 end
Algorithm 2: Column generation algorithm FCA.

Theorem 6. The non-basic routes in the solution produced by algorithm FCA have

reduced cost bounded below by −δK.

Proof. If the algorithm terminates because the minimum approximate reduced cost

is non-negative, the current solution is optimal. Therefore, assume the algorithm

terminates because the final route r̃ priced by the algorithm has an inconclusive

reduced cost. That is,

EK(cr̃)−
∑
i∈C

αir̃ρi < 0 ≤ E(cr̃)−
∑
i∈C

αir̃ρi,
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where ρ is an optimal dual solution of the restricted master solved with the current

route set R̃. This implies for any route r ∈ RK that

∑
i∈C

αirρi−E(cr) ≤
∑
i∈C

αirρi−EK(cr) ≤
∑
i∈C

αir̃ρi−EK(cr̃) ≤ E(cr̃)−EK(cr̃) =
nr̃−1∑
`=K+1

H`
r̃ ≤ δK ,

where the second inequality follows because r̃ is the route produced by the approxi-

mate pricing problem.

Like UCA, this algorithm has an a priori gap guarantee.

Corollary 7. Suppose K0 = K and let y∗ be optimal for (2.5) with respect to RK.

The solution produced by FCA has objective value no greater than

∑
r∈RK

y∗r(E(cr) + δK) = f(RK) + δK
∑
r∈RK

y∗r .

As with UCA, a similar guarantee applies when K0 < K, except the set of routes

we optimize over may be larger than RK , as it contains any routes with smaller cycles

that the algorithm included in earlier iterations.

Corollary 8. Using FCA within a B&P algorithm yields an integer solution with

expected cost within an additive gap δKn of optimal. The factor of n can be substituted

by any known tighter bound on the number of routes used by an optimal solution.

Proof. The gap given in Corollary 7 depends on an optimal solution of the LP; in

B&P, this solution would vary by node, so we can only claim an overall gap that is

guaranteed no smaller than the gap at any node. Since we may assume ∑ yr ≤ n

without loss of optimality, the result follows. If we have an upper bound on ∑ yr that

is tighter than n, the same argument applies with this bound.

Corollary 9. To achieve any desired additive optimality gap ε ≥ 0 for the VRP-PC

via FCA within B&P, it suffices to take K = O(log(n/ε)).

Proof. The proof is identical to Corollary 3, except we start with δKn ≤ ε.
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2.4 Computational Study

In this section, we test both of our algorithms implementing a proof of concept for

the VRP-PC, including a particular hard sequence-dependent constraint. We also

study the empirical convergence of the expected cost approximation for UCA and

FCA, the algorithms’ running times, and how their performance is affected by model

parameters.

2.4.1 Instances

We test our algorithms on VRP-PC instances based on the Solomon instances of the

VRP with time windows (VRPTW) [38]. When customers may or may not be present,

it might not be practical to establish hard time window constraints, as in the VRPTW.

Nonetheless, we carry out our experiments with these instances for two reasons: First,

time windows are a type of route- or sequence-dependent constraint that is difficult to

capture with arc-based formulations, where the corresponding relaxations are known

to be weak. Second, the Solomon instance family is a generally accepted benchmark

widely used by researchers to test VRP algorithms.

The Solomon instances have 100 customers each and are divided into three cat-

egories: C (clustered), R (uniformly distributed) and RC (mix of R and C). Using

5 instances each from type C (C101 to C105) and from R (R101 to R105), we cre-

ate VRP-PC instances with 15, 25 and 40 customers. Instances with a given num-

ber of customers have a different sequence of customers with respect to the original

Solomon instance. For example, we create two 40-customer instances from each origi-

nal Solomon instance, one considering customers 1 to 40 and another with customers

41 to 80. Because our largest instances have 40 customers, we reduce the vehicle

capacity from 200 to 80. All instances have the original depot location.

With this procedure, we respectively obtain 60, 40 and 20 “base” deterministic
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VRPTW instances with 15, 25 and 40 customers. We then tested our B&P imple-

mentation on each of these deterministic instances, eliminating two 25-customer and

four 40-customer instances we could not solve to optimality within a 6-hour time

limit; this reduction allows us to compare our VRP-PC results against the corre-

sponding deterministic solution, and also lets us focus more on the difficulty increase

brought on by the problem’s probabilistic nature, rather than on the challenges it

inherits from the VRPTW. After this elimination, each remaining base deterministic

instance generates three VRP-PC instances, each with a different uniform customer

probability p ∈ {0.5, 0.7, 0.9}, yielding a total of 342 instances.

2.4.2 Experiments

We tested both algorithms, UCA and FCA, on each instance with K0 = 1 and

K ∈ {1, . . . , 5}, applying a 6-hour time limit. In total, this involves 1, 710 runs of

each algorithm on the different instances. We ran the experiments in the Georgia

Tech ISyE computing cluster, which uses HTCondor to manage its jobs, on an Intel

Xeon E5-2603 (1.80GHz) machine with up to 10Gb of RAM, and using CPLEX

12.4 as LP solver. As a reference, when we run our B&P implementation on the

original deterministic instances with 100 customers, we can solve several instances to

optimality (of both type C and R) in a few minutes. This gives further indication that

the main computational challenge we face stems from the optimization of expected

route cost, and also suggests, as expected, that optimizing the VRP-PC is significantly

more difficult than its deterministic counterpart.

In our first set of results, shown in Table 2.2, we report the average maximum

value of K our B&P algorithms were able to solve to optimality and within a 5% and

10% relative gap. (The gap measured here is between the best integer solution and

best bound found by the B&P tree.) For example, for instances with 15 customers

and probability 0.5, the average largest K value for which our UCA B&P algorithm
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can report a 0% relative gap within the time limit is 4.45. The corresponding average

for FCA is 4.52.
Table 2.2: Average largest K solved by each algorithm within a certain relative gap.

n p UCA FCA Total Runs
0% 5% 10% 0% 5% 10%

15
0.5 4.45 4.83 4.95 4.52 4.88 4.95

9000.7 4.67 4.9 4.97 4.78 4.83 4.98
0.9 4.87 4.9 5 4.87 4.93 5

25
0.5 3.37 4.08 4.68 3.55 4.29 4.71

5700.7 3.45 4.11 4.74 3.58 4.16 4.76
0.9 3.71 4.11 4.58 3.68 4.37 4.71

40
0.5 2.5 3.19 4.38 3 3.94 4.19

2400.7 2.38 3.69 4.25 2.62 3.88 4.25
0.9 2.62 4.38 4.5 2.56 4.19 4.44

From the table we see the clear impact the number of customers n has on the

parameterK we can use when running the algorithms to optimality. For 15 customers,

K can be 4 or 5; for 25 customers, K can be about 3 or 4; and for 40 customers K

can be 3 and sometimes 2. Similarly, the customer realization probability p affects

this average K; as we might expect, the larger the probability, the larger K can be,

though there are some exceptions. The choice of K has two separate consequences.

First, it helps determine the a priori and a posteriori additive gap guarantees of

solution quality we get from UCA and FCA, since they depend on the number of

terms we consider in the expected value approximation EK . Second, it impacts the

problem’s difficulty through the pricing problem, which is solved as an SPPRC-K.

In Figure 2.1 we depict the average UCA a priori and a posteriori gap guarantees

as a function of K for the three different customer probabilities p ∈ {0.5, 0.7, 0.9}.

For each value of K and p, we include in the average only those instances we were

able to solve to optimality in the B&P algorithm. We report these gaps as relative

distances to the optimal solution; the gaps decay quite significantly for higher K

values, so we present them in natural logarithmic scale (i.e., as powers of e). For

example, for p = 0.5 and K = 3 the average a priori gap is roughly 1/e ≈ 37%,
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meaning we can guarantee before running the algorithm that the expected cost of the

solution returned by UCA is at worst roughly a third costlier than the optimum, on

average.
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Figure 2.1: Average a priori and a posteriori guarantees by probability.

These results indicate how quickly both guarantees converge to zero as we increase

K. For any probability, K = 4 or K = 5 more than suffice for either algorithm to

return a solution with expected cost very close to optimal. Furthermore, for K ≥ 3

the difference between a priori and a posteriori gaps is already within 10%-20% or

less, with the a priori guarantee at worst being about 30% from optimal.

Figure 2.2 shows the convergence between the UCA and FCA solutions’ expected

cost and UCA’s bound in an absolute scale, as a function of the algorithm parameter

K, plotted by customer realization probability. The averages here include only those

instances for which we were able to run the B&P algorithm to optimality for all values

of K, in order to make the comparison using a fixed set of instances. The figure plots

32



the average of the the UCA optimal value measured with approximation EK , which is

a lower bound on the optimal expected cost; it also plots the UCA and FCA solutions’

exact expected cost, UCA + Post and FCA. We observe that the bound provided by

UCA converges very fast to the optimum, especially when the customer realization

probability is high. Moreover, the expected cost of either algorithm’s solution is quite

close to the optimum, even for K = 1.
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Figure 2.2: Convergence of UCA lower bound and solutions’ expected cost, by
probability.

Table 2.3 presents the geometric mean of relative gaps across instances of three

solutions: the UCA solution (with exact expected cost), the FCA solution, and the

expected cost of the deterministic VRPTW solution that ignores probabilities and

minimizes the cost as if all customers will require visits. The gaps are calculated with

respect to the best possible lower bound computed by UCA for any value of K, where

we include all instances we could solve for that K; this means the number of instances

included in an average may vary by value of K. We show results for p = 0.7, with
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similar tables for p ∈ {0.5, 0.9} in the Appendix, and separate results by instance

type (C and R); recall that instances of type C have clustered customer locations,

while type-R instances have uniformly distributed customer locations.

Table 2.3: Average relative gap of solution expected cost for UCA, FCA and deter-
ministic problem, for realization probability 0.7.

Customers Steps (K) Type C Type R
UCA Exact

Best LB
FCA

Best LB
Deter

Best LB
UCA Exact

Best LB
FCA

Best LB
Deter

Best LB

15

0 1.55% 1.45%

1.59 %

0.44% 0.53%

0.88 %
1 0.49% 0.53% 0.39% 0.55%
2 0.25% 0.27% 0.41% 0.42%
3 0.25% 0.25% 0.41% 0.41%
4 0.25% 0.25% 0.41% 0.41%

25

0 2.32% 2.55%

3.29 %

0.86% 1.09%

1.62 %
1 2.83% 3.01% 1.15% 1.39%
2 2.97% 2.89% 1.09% 1.11%
3 2.57% 2.52% 0.97% 0.97%
4 2.04% 2.04% 1.01% 1.06%

40

0 3.93% 3.93%

4.58 %

1.41% 1.41%

1.41 %
1 4.58% 4.58% 1.11% 1.28%
2 4.58% 4.58% 1.06% 1.13%
3 4.58% 4.58% 0.07% 0.07%
4 3.93% 3.93% 0.07% 0.07%

In all cases, the expected cost of solutions produced by UCA and FCA are within

5% of optimal on average, often much closer, and both are consistently better than the

solution given by the deterministic instance. Either algorithm can produce the better

solution on a particular instance; we detect no clear pattern of one producing better

solutions than the other, but overall UCA has a slight advantage. Unsurprisingly, the

number of customers n impacts the solutions’ gap, with bigger instances having larger

gaps. More interestingly, the instance type significantly affects the solutions’ quality,

with gaps for type R on average much tighter than for type C. Unlike the results

summarized in Figure 2.2, here we do not always see a monotonically decreasing gap

as K increases, but this is a result of including different sets of instances for different

values of K; in general, for a given instance we tend to see better solutions with larger
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K.

To further explore the benefit of optimizing with respect to expected costs, Fig-

ure 2.3 plots the percentage of instances where UCA and FCA obtain solutions with

lower expected cost than the solution of the deterministic VRPTW. For example,

when the customer realization probability is 0.5 and K ≥ 4, both UCA and FCA

produce better solutions in about 60% of the tested instances. The plots also empha-

size that the realization probability affects this improvement percentage; for larger

probabilities, it is harder for the algorithms to improve on the deterministic solution,

presumably because this solution is already close to optimal. In particular, when the

probability is 0.9, we only find a better solution roughly one quarter of the time, and

this improvement occurs already with K ≥ 2. In general, we also observe that UCA

is slightly better than FCA at improving over the deterministic solution.
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Figure 2.3: Percentage of instances where UCA and FCA improve on the determin-
istic solution.

Finally, even when the difference in expected cost between the deterministic so-

lution and our algorithms’ solutions is not large, the structure of the corresponding
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solutions changes drastically, and may have operational implications, as discussed

next in Section 2.4.3.

In Table 2.4 we present the average number of B&B nodes and the average number

of routes generated per node for the UCA and FCA algorithms over instances with

15 customers, since those instances are solved closer to optimality. Both algorithms

generate a similar magnitude of B&B nodes, but the FCA algorithm shows a more

clear increasing trend as p decreases. The average number of routes generated by

node is slightly smaller for FCA and for R type instances. Also, for C type instances,

this number decreases as the customer realization probability increases.

Table 2.4: Average number of B&B nodes and routes generated by UCA and FCA
algorithms in instances with 15 customers.

Probability
UCA FCA

Type C Type R Type C Type R
Nodes B&P Avg Routes Nodes B&P Avg Routes Nodes B&P Avg Routes Nodes B&P Avg Routes

0.5 2793.87 71.83 2843.65 42.86 3000.13 53.23 4797.33 38.38
0.7 3580.88 64.19 2356.56 46.79 2434.08 48.74 2678.5 40.09
0.9 2106.52 58.23 2323.48 49.95 1020.77 45.49 1265.13 40.82

2.4.3 Empirical Insights

In Figure 2.4, we plot the UCA solution and a deterministic solution assuming all

customers will realize for an instance of type R with n = 15 and p = 0.5. The expected

cost of the solution to the deterministic problem is 314.19, and it is plotted on the

left. The expected cost of the UCA solution with K = 5 is 304.27, and it is plotted on

the right. The difference in expected cost is only about 3%, yet the solutions are very

different. Specifically, both solutions use 5 planned routes, but without repeating any,

and the UCA solution’s planned routes appear inefficient when viewed as deterministic

routes; in particular, they include several crossings that the deterministic solution

avoids. The results for this instance highlight the potentially counter-intuitive nature

of probabilistic routing, where we may plan routes that appear inefficient, but whose

expected cost is in fact lower than routes that appear cheaper.

We next plot the deterministic and UCA (K = 3) solutions for a type-C instance
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Figure 2.4: Deterministic (left) and UCA (right, K = 5) solutions for sample
instance (type R) with n = 15 and p = 0.5.

with 40 customers (Figure 2.5). We observe that some routes are identical in both

solutions, while others differ. As in the previous example, routes do not frequently

cross for the deterministic solution, while they often do for UCA. Intuitively, the

marginal deterministic cost increase generated by routes that cross more frequently is

significantly less than the expected cost savings generated by probabilistic customers

when they are skipped. Take for example route “c”: Its deterministic solution covers

two clusters of two and three customers, respectively. The stochastic solution instead

covers a cluster of four customers and an isolated customer; if this customer does not

show up, the cost of this route decreases significantly, and it is much more likely that

one customer is not present, as opposed to the likelihood of two not being present

simultaneously. A similar argument can be made for route “f”.

2.5 Conclusions

We have studied the VRP-PC, a broad class of routing problems with probabilistic

customers, and proposed a new column generation and B&P framework, including

two different algorithms, UCA and FCA. Both circumvent the difficulty of exactly

pricing routes by using an approximate expected cost that under-estimates the true
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Figure 2.5: Deterministic (left) and UCA (right, K = 3) solutions for sample
instance (type C) with n = 40 and p = 0.5.

expected cost. UCA optimizes with respect to the approximate expected cost, and

thus provides an a posteriori lower bound to the optimal expected cost, in addition

to giving a solution. FCA uses exact expected costs but may halt when some routes

still have small negative reduced cost. Both algorithms have approximate optimality

guarantees in the form of a priori additive gaps that depend on the precision of the

expected cost approximation.

Our computational results suggest the a posteriori gap provided by UCA is much

tighter than the theoretical a priori gap indicates. Furthermore, both gaps decrease

quite rapidly as we increase the precision of the expected cost approximation in

UCA or FCA; in our instances, an approximation with five steps (K = 5) or fewer

suffices to get a negligible gap. However, the problem’s difficulty is determined also

by the number of customers and their realization probability; in particular, when the

probabilities are large we can close the gap quickly. More generally, our results also

suggest that UCA and FCA produce very good solutions, no more than 5% from

optimal and usually much better. Both algorithms improve upon the solution of the
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deterministic instance in many cases, although the improvement is not always large

in terms of relative gap. However, even in these cases the structure of the resulting

solution may change significantly.

Our results motivate several questions for future research. One option is to in-

corporate cutting planes into our B&P framework with UCA or FCA, which may

allow us to increase the size and/or difficulty of instances we can optimize. Another

possibility in this vein would be to use different relaxations of the ESPPRC, such as

the ng-path relaxations introduced in recent years [60]; however, it is not immediately

clear how our analysis or gap guarantees would extend here. Another improvement

to our B&P method would be to include a dual stabilization technique; approaches

like the stabilization primal-dual and trust region methods [61] could speed up com-

putation times. An interesting question relates to combining our approach with ap-

proaches that optimize other related stochastic routing models. In particular, the use

of chance constraints for resource consumption [54] is an interesting area with much

potential for future work. Another idea would be to include a recourse action when

a key resource is depleted, as in [16]; in this article each customer demand quantity

is random and the vehicle is forced to pay a replenishment trip to the depot when it

runs out of capacity. The challenge of such an approach would be to include such a

recourse action cost within a pricing subproblem. More generally, the broad topic of

column generation in probabilistic and a priori optimization offers many challenging

questions for the research community.
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CHAPTER 3

THE CONTINUOUS TIME INVENTORY ROUTING PROBLEM

3.1 Introduction

The Inventory Routing Problem (IRP) integrates inventory management, vehicle

routing, and delivery scheduling decisions. The IRP arises in the context of Vendor

Managed Inventory (VMI), in which a supplier makes the replenishment decisions

for products delivered to its customers. The variant of interest in this chapter was

introduced in the seminal chapter by [2]. Critical characteristics of this variant are

that only transportation costs are considered and that the system evolves in contin-

uous time. That is, the amount of product that can be delivered at a customer at a

particular point in time depends on the storage capacity and inventory at that point

in time (which depends on the initial inventory, the product usage rate and the time

elapsed since the start of the planning period, and the amount of product delivered

since the start of the planning period). As a consequence, delivery times have to be

scheduled carefully and vehicle travel times have to be accounted for accurately. This

contrasts with the majority of the variants of the IRP considered in the literature,

where the planning horizon is partitioned into periods and it is assumed that delivery

routes take place at the start of the period, product consumption takes places at the

end of the period, and that both happen instantaneously. For more comprehensive

introductions to and discussions of the IRP, see [62] and [5].

The variant considered in this chapter (and by [2]) is motivated by the IRP encoun-

tered by companies in the liquid gas industry, e.g., Air Liquide (www.airliquide.

com), Air Products (www.airproducts.com), and Praxair (www.praxair.com). These

companies produce liquefied gases, e.g., liquid oxygen, liquid nitrogen, or liquid ar-
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gon, and install tanks at their customers’ premises and guarantee minimum product

availability at any time, Customers use (consume) product at a certain rate (which

can differ at different times of the day) often 24 hours per day (e.g., liquid oxygen in

hospitals.) Thus, the amount of product that can be delivered to the tank changes at

the same rate. The companies continuously monitor product usage and tank inven-

tory levels so that they can produce cost-effective delivery schedules that meet their

service commitments (i.e., the guaranteed minimum product availabilities). In prac-

tice, the companies tend to have customers that require multiple deliveries per day as

well as customers that require only one or two deliveries per week. As a consequence,

the use of a continuous time variant of the IRP is most appropriate in these settings,

i.e., provides the most accurate representation of the system. Also relevant is the fact

that the company contracts typically specify that the customers own/purchase the

product upon delivery, which means that the companies do not have to consider prod-

uct holding costs at the customer. This variant of the IRP has attracted attention

in the past, e.g., [4], [63], and [64, 65], and, more recently, was considered interesting

and challenging enough to form the ROADEF/EURO 2016 Challenge (for more in-

formation, see www.roadef.org/challenge/2016/en/sujet.php) with real-life data

provided by Air Liquide.

Solving instances of any variant of the IRP is challenging [66]. Integer program-

ming techniques have been used for the “period” variants, e.g., branch-and-cut [67,

68] and branch-and-cut-and-price [67, 69]. The most advanced and successful of these

can now solve instances with up to 50 customers and up to 5 vehicles. For the “con-

tinuous time” variant, no optimization algorithms exist, to the best of our knowledge,

but lower bounding techniques have been developed in [70].

As we shall find in this study, modeling inventory in continuous time and accu-

rately modeling vehicle travel times makes for a particularly challenging IRP. Indeed,

optimization problems over continuous time, in general, have been found to be difficult
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to solve to optimality. Compact models that use continuous variables to model time

have weak linear programming (LP) relaxations. Their solution with current integer

programming solver technology is limited to only small instances. Extended formu-

lations, with binary variables indexed by time, have much stronger relaxations, but

(tend to) have a huge number of variables. Such formulations rely on a discretiza-

tion of time, which introduces approximation. Recently, [8] introduced a dynamic

discretization discovery algorithm for solving the continuous time service network de-

sign problem, which uses extended integer programming formulations. The key to the

approach is that it discovers exactly which times are needed to obtain an optimal,

continuous-time solution, in an efficient way, by solving a sequence of (small) integer

programs. The integer programs are constructed as a function of a subset of times,

with variables indexed by times in the subset. They are carefully designed to be

tractable in practice, and to yield a lower bound (it is a cost minimization problem)

on the optimal continuous-time value. Once the right (very small) subset of times

is discovered, the resulting integer programming model yields the continuous-time

optimal value.

In this chapter, we explore and demonstrate the potential of dynamic discretiza-

tion discovery algorithms for the continuous time variant of the IRP, CIRP. The aim

of our research is twofold. First, we want to develop an optimization algorithm for

this important variant of the IRP, and by doing so hope to stimulate others to take up

this challenge as well. Second, we want to demonstrate that dynamic discretization

discovery algorithms can be developed and useful for problems other than service

network design, and by doing so, again, hope to stimulate others to start using and

advancing this approach.

Our contributions in this chapter are both theoretical and algorithmic. We

• investigate the problem of minimizing the number of vehicles needed to obtain

a feasible delivery plan, showing that it is strongly NP-hard, but that in the
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case of a single customer, it can be solved in pseudo-polynomial time,

• develop a mixed integer programming model for the CIRP over a given, uniform,

discretization of time,

• prove that if the data for an instance is rational, then it has an optimal solution

in which all delivery times at customers are rational, which yields, as a con-

sequence, that the mixed integer programming model can, in theory, provide

optimal solutions to the CIRP, by taking the discretization corresponding to

these rationals,

• adapt the mixed integer program to yield lower bounds on the optimal CIRP

value, which can be achieved in practice by using a sufficiently coarse discretiza-

tion,

• propose model enhancements that strengthen both the resulting lower bound

and the mixed integer programming formulation itself,

• develop two alternative approaches to finding feasible solutions, one using an

adaptation of the mixed integer program and the other based on repairing so-

lutions to the lower bound model, and

• carry out a computational study to assess the performance of these ideas, in

practice.

Our study shows that with only a partial implementation of a dynamic discretization

discovery algorithm, we have been able to optimally solve instances with up to 15

customers and have been able to obtain provably high-quality solutions for many

others. Even though these results are notable, they also point to areas for further

research and improvement.

The remainder of the chapter is organized as follows. In Section 3.2, we formally

introduce the continuous time inventory routing problem and some of the character-
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istics that distinguish it from period-based inventory routing problems. In Section

3.3, we highlight the challenges associated with determining the minimum number

of vehicles required to produced a feasible delivery plan. In Section 3.4, we provide

a mixed integer programming formulation for the continuous time inventory routing

problem over a given discretization. In Section 3.5, we discuss how the mixed integer

programming formulation can be modified to produce a lower bound on the cost of

an optimal delivery plan. In Section 3.6, we outline two approaches for construct-

ing feasible delivery plans. In Section 3.7, we present and discuss the results of an

extensive computational study. Finally, in Section 3.8, we describe the next steps to-

wards a full-scale dynamic discretization discovery algorithm for the continuous time

inventory routing problem.

3.2 The Continuous Time Inventory Routing Problem

We consider a vendor managed resupply environment in which a company manages

the inventory of its customers, resupplying a single product from a single facility.

Each customer i in the set N = {1, . . . , n} of customers has local storage capacity

Ci > 0, uses product at a constant rate ûi > 0, and has initial inventory I0
i > 0 at the

start of the planning period. Note that a customer uses product at a given rate, i.e.,

a customer consumes a certain amount of product per unit of time. The planning

horizon is H > 0. The company employs a fleet of m homogeneous vehicles, each

with capacity Q > 0, to deliver product to its customers. A delivery route has to

start and end at the company’s facility and has to be completed before the end of

the planning horizon. Unlike many inventory routing problem settings, here vehicle

routes are not restricted to start and end in a single time period. Indeed, the setting

we study here is based on continuous time, not subdivided into periods. Travel times

τ̂ij > 0 and travel costs cij ≥ 0 between every pair of locations i and j, i 6= j, for

i, j ∈ N0 = {0, 1, . . . , n}, where 0 denotes the location of the company’s facility,
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are known. Travel times are assumed to satisfy the triangle inequality. There is no

inventory holding cost.

We allow a vehicle to wait at a customer location and to make multiple deliveries

while at the customer’s premises. This may be beneficial as it allows delivery of more

than the customer’s storage capacity without the need for an intervening trip to the

depot. (We provide an illustration of this point later.) In practice, a customer may

have sufficient space for several vehicles to wait at their premises, but usually at most

one vehicle can deliver product at a time. Although the time needed for a vehicle

to deliver product may depend on the quantity to be delivered, there is usually a

substantial overhead time needed to engage and disengage the delivery equipment.

Thus the delivery time can be reasonably well approximated by a constant (possibly

customer-dependent) length of time. This situation can be modeled by the use of

two locations for each customer, one for parking and one for making a delivery at

the customer, with the latter constrained to allow at most one vehicle at a time.

However, given the complexity of the ideas we wish to discuss in this chapter, we

make the simplifying assumption that all locations have the single-vehicle constraint:

we assume that it is not possible for multiple vehicles to visit the same customer

at the same time. We further assume that product delivery at a customer site is

instantaneous. It is not difficult to extend the ideas we present here to account for

multiple vehicles waiting at a customer and constant delivery time. We also assume

that there is no cost for waiting. (In the liquid gas industry, drivers are salaried

employees, so their time, for the purpose of this model, can be considered a sunk

cost.) Finally, we can assume, without loss of generality, that customers are served

by a finite set of deliveries, occurring at a finite number of time points during the

planning period.

Vehicles are assumed to be at the company’s facility at the start of the planning

period and have to be back at the company’s facility at the end of the planning period.
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However, vehicles can make multiple trips during the planning period. We assume

that the loading of a vehicle at the company facility is instantaneous.

We assume that the company does not incur any holding cost for product, either

at the company facility or at any of the customer sites. We also assume that the

company facility always has sufficient product to supply customers; it does not have

either production or storage capacity constraints.

The goal is to find a minimum cost delivery plan that ensures that none of the

customers runs out of product during the planning period. A delivery plan specifies

a set of vehicle itineraries, each of which consists of a sequence of trips/routes that

start and end at the company facility within the time horizon, to be performed by

a single vehicle. Each route specifies a departure time from the facility, a sequence

of customer deliveries, and, for each, the delivery time and quantity delivered to the

customer at that time. We refer to this problem as the Continuous Time Inventory

Routing Problem (CIRP).

We start by presenting some observations about optimal solutions to instances of

the CIRP.

• There exist instances of the CIRP in which it is beneficial to visit a customer

more than once on a delivery route. Consider, for example, an instance with

two customers, storage capacities Ci = 2 for i = 1, 2, usage rates ûi = 1 for

i = 1, 2, initial inventories I0
1 = 1 and I0

2 = 2, a single vehicle with capacity

Q = 5, travel times and costs τ̂01 = c01 = τ̂12 = c12 = 1 and τ̂02 = c02 = 2,

and a time horizon H = 4. The optimal solution has a single route, of cost 4,

visiting Customer 1 at time 1, delivering 2 units of product, visiting Customer

2 at time 2, delivering 2 units of product, and visiting Customer 1 again at time

3, delivering 1 unit of product; see Figure 3.1. This must be optimal, since any

feasible solution must visit Customer 2 at least once, at a cost of 4.
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Figure 3.1: Instance for which it is optimal to visit a customer more than once on
a route.

• A similar example, with only the single customer, Customer 1, illustrates that

an optimal solution may require the vehicle to wait at the customer to make

multiple deliveries. With the same parameter values as above, but without

Customer 2, any optimal solution is a single route, visiting Customer 1 at time

1 to deliver some product, for example, 2 units, and then waiting, for example,

until time 2, to deliver the 1 unit remaining of the total 3 units required; see

Figure 3.2.
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Figure 3.2: Instance for which it is optimal to waiting at a customer and make
multiple deliveries.

• There exist instances of the CIRP in which all parameters are integer valued

(i.e., capacities, usage rates, initial inventories, and travel times), but for which

there exists no optimal solution that delivers product at customers only at

integer times. Consider, for example, an instance with two customers, having
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storage capacities C1 = 7, C2 = 5, usage rates ûi = 2, i = 1, 2, and initial

inventories I0
1 = 3, I0

2 = 5. There is a single vehicle with capacity Q = 12. The

travel times and costs are identical and symmetric: τ̂01 = c01 = τ̂12 = c12 =

τ̂02 = c02 = 1. The time horizon is H = 5. The optimal solution has a single

route of cost 3, visiting Customer 1 at time 1.5, delivering 7 units of product,

and visiting Customer 2 at time 2.5, delivering 5 units; see Figure 3.3. This

solution is optimal because any feasible solution must visit each customer at

least once, and the cheapest way to do this is with a single route. There cannot

be an optimal solution in which the deliveries take place only at integer times,

since Customer 1 must have a delivery on or before time 1.5, when it runs out of

product, and at time 1, Customer 1 only has capacity for 6 units of product. If

the remaining 1 unit it requires is to be delivered without incurring extra cost,

the vehicle must wait at Customer 1 until time 2 to deliver this unit, at which

time it is too late to reach Customer 2 by time 2.5, when Customer 2 runs out

of product. Thus the solution with delivery to Customer 1 and time 1.5 and

Customer 2 and time 2.5 is the unique optimal solution.
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Figure 3.3: Instance with integer data for which the optimal solution has non-integer
delivery times.

The last example illustrates the challenge in using discretization to approach the

CIRP. An approximation in which vehicle departure and delivery times are restricted
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to integers would yield an optimal solution costing twice that of the true, continuous

time optimal solution. Even an approximation with a discretization into periods of

length 0.2, needing 15 time periods, still yields a factor of two error in the optimal

value. To obtain the optimal continuous time solution in this case one may either

use 6 periods of length 0.5, or 30 periods of length 0.1. This observation highlights

another challenge: clearly the quality of the approximation from discretization is not

monotonically improving in the granularity of the discretization.

3.3 Minimizing the number of vehicles

Considering the minimum number of vehicles required to produce a feasible delivery

plan also reveals the complexity of the CIRP, as shown in the next two propositions.

Proposition 10. The problem of finding the minimum number of vehicles required

to produce a feasible delivery plan for a CIRP instance is strongly NP-hard.

Proof. We show this with a reduction from the bin packing problem (BPP). Consider

a BPP instance with a set of items {1, . . . , n}, each with size ai for i = 1, . . . , n, and

a set of bins {1, . . . ,m}, each with capacity V . Without loss of generality, we may

assume 2 ≤ ai ≤ V and integer for i = 1, . . . , n.

Let the corresponding CIRP instance have time horizon H = V and a fleet of

homogeneous vehicles with capacity Q = n. For each item i ∈ {1, . . . , n} in the

BPP instance, there is a corresponding customer i ∈ N in the CIRP instance. The

travel time τ̂0i from the depot to customer i is 1
2ai for i ∈ N . The travel time τ̂ij

from customer i to customer j is τ̂ij = τ̂i0 + τ̂0j for i, j ∈ N, i 6= j. Furthermore, for

each customer i ∈ N , let the storage capacity be Ci = H, the initial inventory be

I0
i = H − 1, and the usage rate be ui = 1. Note that this implies that all customers

have to be visited at least once.

Let m∗ be the minimum number of vehicles required to produce a feasible delivery

plan for the CIRP instance. Let Sk ⊆ N be the set of customers visited by the kth
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vehicle, k = 1, ...,m∗. For each k = 1, . . . ,m∗, let the items corresponding to the

customers in Sk be assigned to Bin k. Because the total travel time for kth vehicle

is ∑i∈Sk 2τ̂0i = ∑
i∈Sk ai ≤ H = V , this assignment is feasible. Thus, there exists a

solution to the bin packing problem with m∗ bins. Conversely, let m∗ be the number

of bins in an optimal solution to the BPP instance and let Sk be the items assigned to

Bin k for k = 1, . . . ,m∗. The corresponding CIRP solution in which the customers in

Sk are visited by vehicle k is feasible (note that by the definition of the travel times,

the order in which customers are visited is immaterial).

It is not unexpected that finding the minimum number of vehicles required to

produce a feasible delivery plan for a CIRP instance is NP-hard, but that finding

the minimum number of vehicles required to produce a feasible delivery plan for a

single-customer CIRP instance is also non-trivial may come as a surprise. Below,

we provide a pseudo-polynomial time algorithm for finding the minimum number

of vehicles required to produce a feasible delivery plan for a single-customer CIRP

instance. It is still an open question whether a polynomial time algorithm exist,

although we conjecture that it does.

In the remainder of this section, we use τ to denote the travel time from the depot

to the (single) customer, u to denote the usage rate of the customer, and I to denote

the initial inventory of the customer. If there is no limit on the number of vehicles

available, then the problem has a feasible solution if and only if C ≥ I ≥ τu and

either I ≥ Hu or H ≥ 2τ .

Lemma 2. If a single-customer CIRP instance has a feasible solution in which m

vehicles make a total of n visits to the customer, then there is a feasible solution in

which the vehicles make the trips in round-robin fashion, so Vehicle 1 makes trips

1,m + 1, 2m + 1, . . . , Vehicle 2 makes trips 2,m + 2, 2m + 2, . . . , etc. In general,

Vehicle k makes the (rm+ k)th trip for r = 0, 1, 2, . . . b(n− k)/mc.
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Proof. Since there is only a single customer, all the trips are the same, depot-

customer-depot, constituting a single visit to the customer, so we only have to assign

the m vehicles to the n trips in the feasible solution. Furthermore, the vehicles are

homogeneous, so any vehicle may be assigned to a trip without changing the quantity

delivered on the trip, nor the time needed to complete it. (All vehicles require time

τ to get to the customer and time τ to return from it.) Second, recall that no more

than one vehicle can visit the customer at the same time, so no trip will arrive at the

customer until after the preceding trip has departed, and trips are completely ordered

in time.

Starting with the first trip in the solution, we may thus, without loss of generality,

assign it to the first vehicle. Then we assign the second trip to the second vehicle,

and so on. The first vehicle returns to the depot before the second vehicle returns

(the second vehicle arrives at the customer only after the first vehicle finishes its

delivery), the second vehicle returns to the depot before the third one, etc. Once we

have assigned the first m trips, we consider a second trip for each vehicle, starting

with the first vehicle. Since this vehicle was the first vehicle to return to the depot, it

must be available for the (m+ 1)th trip. Then, if needed, we assign a third trip, and

so on until we have assigned all trips to vehicles. (We refer to this process as “round-

robin”). Thus, any feasible solution always has an ordered sequence of vehicles (from

1 to m) and each of them has a “similar” number of trips to perform. If m divides

evenly into n, every vehicle performs exactly n/m trips; otherwise, n mod m vehicles

perform dn/me trips and the remainder perform bn/mc trips.

Lemma 3. Whether or not there is a feasible solution to a single-customer CIRP

instance in which m vehicles make a total of n visits to the customer can be determined

by solving a linear program.

Proof. We can use the following linear program to determine whether a feasible solu-

tion with m vehicles making a total of n visits exists. By Lemma 2, we may assume
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that the vehicles make the visits in round-robin fashion: we let m̄ = n mod m and

let `v = b n
m
c+ 1 if v ≤ m̄ and `v = b n

m
c if v > m̄, so that `v denotes the last visit for

vehicle v (v = 1, . . . ,m). Furthermore, let

• t−vk be the arrival time of the kth visit of vehicle v,

• t+vk be the departure time of the kth visit of vehicle v,

• qvk be the quantity delivered during the kth visit by vehicle v,

• I−vk be the inventory at the arrival time of the kth visit of vehicle v,

• I+
vk be the inventory at the departure time of the kth visit of vehicle v, and

• ζ models the minimum time between visits by different vehicles at any customer.

Then the following linear program achieves our goal:

max ζ

t−11 ≥ τ (3.1a)

t+m̄,`m̄ ≤ H − τ (3.1b)

t−vk ≥ t+v−1,k + ζ v = 2, . . . ,m, k = 1, . . . , `v (3.1c)

t−1k ≥ t+m,k−1 + ζ k = 2, . . . , `1 (3.1d)

t−vk ≥ t+v,k−1 + 2τ v = 1, . . . ,m, k = 2, . . . , `v (3.1e)

t+vk ≥ t−vk + max{I−vk + qvk − C, 0}
u

v = 1, . . . ,m, k = 1, . . . , `v (3.1f)

I+
vk = I−vk + qvk − (t+vk − t−vk)u v = 1, . . . ,m, k = 1, . . . , `v (3.1g)

I−vk = I+
v−1,k + (t−vk − t+v−1,k)u v = 1, . . . ,m, k = 1, . . . , `v (3.1h)

I−1k = I+
m,k−1 + (t−1k − t+m,k−1)u k = 2, . . . , `1 (3.1i)∑

v,k

qvk ≥ Hu− I (3.1j)

I−vk ≥ 0 v = 1, . . . ,m, k = 1, . . . , `v. (3.1k)
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Constraint (3.1a) ensures that the vehicle making the first delivery can reach the

customer before the start of the first delivery. Constraint (3.1b) ensures that the

vehicle making the last delivery can return to the depot after completing the last

delivery. Constraints (3.1c) and (3.1d) ensure that deliveries do not overlap, i.e.,

that the start of a delivery (which coincides with the arrival of a vehicle) does not

happen until the preceding delivery has ended (which coincides with the departure

of a vehicle). Constraints (3.1e) ensure the consecutive deliveries by the same vehicle

properly account for the travel time to and from the depot. Constraints (3.1f) ensure

that a vehicle does not depart from the customer until it was possible to transfer

the entire delivery quantity into the customer’s local storage. (These can easily be

linearized.) Constraints (3.1g) are the inventory balance constraints associated with

deliveries and account for any usage that may occur during a delivery (if the delivery

is not instantaneous). Constraints (3.1h) and (3.1i) are the inventory balance con-

straints associated with the periods between consecutive deliveries. Constraints (3.1j)

and (3.1k) ensure that the customer never runs out of product during the planning

horizon. If the optimal objective value is positive, then there is a feasible solution, in

which the requirement that no more than one vehicle is visiting a customer at a time

is guaranteed by the objective; otherwise there can be no feasible solution.

Proposition 11. Determining the minimum number of vehicles required to produce a

feasible solution to a single-customer CIRP instance can be done in pseudo-polynomial

time.

Proof. Observe that the number of deliveries required at the customer is at least

d(Hu− I)/Qe, which implies that at most m = d(Hu− I)/Qe vehicles are needed (each

vehicle making a single delivery). Observe too that a vehicle can make at most bH/2τc

deliveries, which implies that at least m = dd(Hu− I)/Qe/bH/2τce vehicles are needed.

These observations show that we can enumerate the possible combinations of number

of vehicles m (i.e., m ≤ m ≤ m) and number of deliveries n (i.e., m ≤ n ≤ mbH/2τc
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for a given number of vehicles m). For each combination, Lemma 3 shows that we

can determine whether a feasible delivery schedule exists, by solving an LP with

O(n) constraints and variables. This is pseudo-polynomial because the number of

visits, n, depends polynomially on the planning horizon H (and thus is exponential

in log(H)).

Conjecture 1. Determining the minimum number of vehicles required to produce a

feasible solution to a single-customer CIRP instance can be done in polynomial time.

3.4 Optimal delivery plans

As mentioned in the introduction, we will use partially time-expanded network for-

mulations to solve the CIRP. An implicit underlying assumption is that there exists

a discretization of time such that an optimal solution to a time-expanded network

formulation using this discretization results in a continuous time optimal solution. In

Section 3.6, we prove that when the parameters of an instance are rational numbers,

an optimal solution involving only rational numbers exists, which in turn implies that

such a discretization exists. Therefore, consider a time discretization sufficiently fine

that all time-based parameters (time horizon and travel times) are integer and so

are all the times at which deliveries to and departures from a customer are made in

an optimal solution. Specifically, suppose such a discretization is obtained by taking

time intervals of length ∆ > 0 so that H = T∆ for some positive integer T and the

discretization has T periods of length ∆. Under this discretization, the travel time

from i to j is given by integer τij = τ̂ij/∆ periods and the usage rate per period at

customer i is given by ui = ûi∆. Under this discretization of time, we may safely re-

strict attention to solutions in which all deliveries to a customer occur and all vehicle

departures occur at times in T = {0, 1, . . . , T − 1}, where times are stated in units

of periods of length ∆. We assume all travel times are non-negative, allowing travel

time to be zero. In order to model waiting at a customer, and vehicles stationed at
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the depot between trips, we introduce waiting time τii = 1 for i ∈ N0. We take cii = 0

for all i ∈ N0.

We now construct a mixed integer linear programming formulation with vehicles

and product routed in a time-expanded network, with timed node setN T = {(0, T )}∪

(N0 × T ) and timed arc set

AT = {((i, s), (j, t)) ∈ N T ×N T : (i, j) ∈ N0 ×N0, s+ τij = t}.

For a given instance the network (N T ,AT ) may be reduced by preprocessing to

eliminate nodes and arcs that cannot appear in any feasible vehicle route. We use

the notation δ+(i, s) to represent the set of customers j ∈ N0 with ((i, s), (j, s +

τij)) ∈ AT . Similarly, δ−(j, t) is used to represent the set of customers i ∈ N0 with

((i, t− τij), (j, t)) ∈ AT .

For each ((i, t), (j, t+ τij)) ∈ AT , let binary variable xtij indicate whether a vehicle

travels from location i to j departing from i at time t or not, and let variable wtij
indicate the amount of product that is transported from i to j at time t (zero when

no vehicle travels from i to j departing from i at time t). Let variable yti indicate the

quantity of product delivered to customer i ∈ N at time t ∈ T and zti indicate the

inventory level at customer i at time t. If a delivery takes place at time t, then zti

indicates the inventory value after the delivery. The model includes the possibility of

customer deliveries at time 0, since we allow travel times that are zero. It is assumed

that the initial inventory at each customer is enough to sustain it until a vehicle can

arrive, i.e., I0
i ≥ τ0iui for all i ∈ N ; otherwise the problem is infeasible.

55



We can now define the formulation:

min
∑

(i,t)∈NT

∑
j∈δ+(i,t)

cijx
t
ij

s.t.
∑

j∈δ+(i,t)
xtij =

∑
j∈δ−(i,t)

x
t−τji
ji (i, t) ∈ N T \ {(0, 0), (0, T )} (3.2a)

∑
i∈δ−(0,T )

x
T−τi,0
i,0 = m (3.2b)

∑
j∈δ+(i,t)

xtij ≤ 1 (i, t) ∈ N T (3.2c)

∑
j∈δ−(i,t)

w
t−τji
ji −

∑
j∈δ+(i,t)

wtij = yti (i, t) ∈ N T , i 6= 0 (3.2d)

0 ≤ wtij ≤ Qxtij (i, t) ∈ N T , j ∈ δ+(i, t) (3.2e)

zti = zt−1
i + yti − ui i ∈ N, t ∈ T \ {0} (3.2f)

z0
i = I0

i + y0
i i ∈ N (3.2g)

ui ≤ zti ≤ Ci i ∈ N, t ∈ T (3.2h)

0 ≤ yti i ∈ N, t ∈ T

xtij ∈ {0, 1} ((i, t)(j, t+ τij)) ∈ AT .

Constraints (3.2a) and (3.2b) ensure vehicle flow balance and ensure that all m vehi-

cles are returned to the depot at the end of the planning horizon. Constraints (3.2c)

together with the requirement that each xtij variable is binary ensure that at most

one vehicle can be visiting a customer at any one time. Constraints (3.2d) ensure

product flow balance and enforce that product arriving in a vehicle at a customer is

either delivered at that customer or remains on the vehicle. Constraints (3.2e) link

the product flows to the vehicle flows. Constraints (3.2f) and (3.2g) model product

usage at a customer and inventory balance. Constraints (3.2h) ensure that inventory

at a customer is sufficient, after each delivery, to meet the customer demand in the

coming period and never exceeds the local storage capacity. When all travel times
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are strictly positive, the time-expanded network is acyclic. As a consequence, there is

no need to explicitly forbid subtours in the model, and the given vehicle flow balance

constraints ensure that the number of vehicles that are away from the depot at any

time does not exceed m. In the case that some travel times are zero, the situation is

more complicated: we discuss this further in Section 3.5. The relationship between

the model presented above and the model presented by [2] is discussed in Appendix

A.

This model has a nice structure, in the sense that for fixed x, the model is a

network flow model. As a consequence, when all data is integer, and the problem is

feasible, there must exist a solution in which all variables take on integer values.

Proposition 12. For fixed x, the above model (3.2) in the w, y and z variables takes

the form of a network flow problem.

Proof. For fixed x, the w, y and z variables in any feasible solution to the above

model are those that satisfy the constraints

∑
j∈N

w
t−τji
ji −

∑
j∈N

wtij = yti i ∈ N, t ∈ T (3.3a)

0 ≤ wtij ≤ Qxtij i ∈ N0, t ∈ T , j ∈ δ+(i, t) (3.3b)

zti = zt−1
i + yti − ui i ∈ N, t ∈ T \ {0} (3.3c)

z0
i = I0

i + y0
i − ui, i ∈ N (3.3d)

ui ≤ zti ≤ Ci i ∈ N, t ∈ T (3.3e)

0 ≤ yti i ∈ N, t ∈ T (3.3f)

These constraints can be shown to define a network flow polyhedron. The network

has two nodes for each pair (i, t) with i ∈ N0 and t ∈ T . Let nti denote the first and mt
i

denote the second such node. First nodes are linked by arcs in N0×N0, so there is a

subnetwork with arcs of the form (nti, n
t+τij
j ) for (i, j) ∈ N0×N0, with capacity range

57



[0, Qxtij] and flow on the arc given by the variable wtij. The flow capacity constraints

on these arcs are thus precisely constraints (3.3b). The first and second nodes for

each pair (i, t) are linked by arcs of the form (nti,mt
i), with flow lower bound zero,

carrying flow given by variable yti . First nodes are required to be transshipment nodes

(have zero net outflow), so the flow conservation equation at nodes nti are precisely

the equations (3.3a). There are also arcs between the second nodes, of the form

(mt
i,m

t+1
i ), with capacity range [ui, Ci], carrying flow given by variable zti . Thus the

arc capacity constraints are precisely the constraints (3.3e). The nodes of the form

mt
i are required to have net inflow of ui, if t ∈ T \ {0} and ui − I0

i if t = 0. Thus the

flow conservation constraints at second nodes of the form mt
i are precisely (3.3c) and

(3.3d). With the addition of appropriate dummy nodes and arcs to balance the flow,

the constraints above clearly define a network flow polyhedron.

Unfortunately, the time-expanded network formulation (3.2) may be prohibitively

large. Furthermore, while a correct discretization parameter, ∆, which guarantees

that an optimal solution to (3.2) gives an optimal solution to the continuous time

problem, must exist in theory, its value is, in practice, unknown. However, by selecting

a (possibly incorrect) value of ∆, a priori, and adjusting time related parameters

carefully, we can construct smaller, more manageable MIP formulations that provide

either a lower or an upper bound on the optimal value of the original formulation.

For example, if H = 24 and ∆ = 2, then the resulting formulation uses times T =

{0, 1, 2, . . . , 11}, stated in periods of length 2, and if ∆ = 4, the resulting formulation

uses times T = {0, 1, 2, . . . , 5}, stated in periods of length 4. When H is not divisible

by ∆, then we may use T = {0, 1, . . . , bH∆c}. When using a given time discretization,

the time related parameters need to be adjusted. For example, the usage rate ûi at

customer i has to be adjusted to ∆ûi, i.e., in each time interval of length ∆, ∆ûi

units of product are consumed. Adjusting the travel time is more involved as it

requires making choices. The two natural choices are bτ̂ij/∆c, which implies that the
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travel time may be decreased, and dτ̂ij/∆e, which implies that the travel time may

be increased. Depending on this choice, the resulting formulation produces either a

lower or an upper bound. The former is described in detail in Section 3.5.2 and the

latter in Section 3.6.1.

Before doing so, we introduce some notation that will be useful in the remainder

of the chapter. Recall that a route, r, specifies a sequence of customer deliveries,

starting and ending at the depot. If r specifies k deliveries to customers ij ∈ N ,

j = 1, . . . , k, in the sequence i1, . . . , ik, the cost of the route, which we denote by cr,

is given by cr = ∑k
j=0 cij ,ij+1 , where i0 = ik+1 = 0. We will sometimes write i ∈ r

to indicate customer i ∈ N is in route r. A route also specifies quantities delivered,

say qrj is the quantity delivered to customer ij at the jth delivery in route r, for

j = 1, . . . , k. For the route to be feasible, it must be that ∑k
j=1 q

r
j ≤ Q. Recalling

that there may be more than one delivery to a customer in the same route, when the

context ensures there is no chance of confusion, we also use qri = ∑
j∈{1,...,k}: ij=i q

r
j to

denote the total quantity delivered to customer i ∈ r on route r. Naturally, for r a

feasible route, ∑i∈r q
r
i ≤ Q also.

3.5 Lower bounds

We first describe a simple lower bound that can be calculated without the need to

solve an integer program, for instances in which the costs are symmetric and satisfy

the triangle inequality.

3.5.1 A simple lower bound

Proposition 13. Provided the costs (cij)i,j∈N0 are symmetric and satisfy the triangle

inequality, a lower bound on the optimal value of the CIRP is given by

2
∑
i∈N

(
Hûi − I0

i

Q

)
c0i.
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The proof relies on the following lemma.

Lemma 4. Assume that the costs are symmetric and satisfy the triangle inequality,

and consider a route r. Then for any λ ≥ 0 such that ∑i∈r λi ≤ 1, it must be that

cr ≥ 2
∑
i∈r

λic0i.

Proof. For any λ ≥ 0 with ∑
i∈r λi ≤ 1, it must be that ∑i∈r λic0i ≤ maxi∈r{c0i}.

Since the costs are symmetric, twice the latter value gives the cost of visiting the

customer in r that is farthest from the depot. Since the costs satisfy the triangle

inequality, visiting one customer of the route is cheaper than visiting all of them. It

follows that

cr ≥ 2 max
i∈r
{c0i} ≥ 2

∑
i∈r

λic0i

as required.

Proof of Proposition 13. During the planning horizon, customer i ∈ N consumes ûiH

units of product. Therefore, the amount delivered on the routes visiting customer i

during the planning horizon needs to be at least ûiH − I0
i . Let R be the set of routes

in an optimal solution and let qri be the quantity delivered to customer i ∈ N on

route r ∈ R. Thus, ∑r∈R: i∈r q
r
i ≥ ûiH − I0

i for all i ∈ N .

Next, we apply Lemma 4 using λi = qri
Q

for customer i ∈ r with r ∈ R. Since r

is feasible, ∑i∈r q
i
r ≤ Q so ∑i∈r λi ≤ 1. This implies that the optimal value of the
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CIRP, given by the sum of the costs of all routes, satisfies

∑
r∈R

cr ≥
∑
r∈R

2
∑
i∈r

qri
Q
c0i

= 2
∑
i∈N

c0i

Q

∑
r∈R: i∈r

qri

≥ 2
∑
i∈N

c0i

Q
(ûiH − I0

i ),

which completes the proof.

While this bound is very easy to calculate, we found that it is quite weak in

practice. Hence, stronger lower bounds are required. The next section discusses an

approach that, for more computational effort, can yield much stronger bounds.

3.5.2 A lower bound integer programming model

Our lower bound model is based on (3.2), in the sense that it uses the same variables

and parameter names for a given discretization parameter, ∆. Specifically, T =

dH/∆e, ui = ûi∆ for all i ∈ N , and τij = bτ̂ij/∆c for all i, j ∈ N0, i 6= j. It is

important to note that this may introduce travel times of length zero. We again

take τii = 1 for all i ∈ N0. To obtain a formulation that yields a lower bound

on the optimal value of the continuous time problem, (3.2) must be modified. The

modifications required are:

• the constraints ui ≤ zti ≤ Ci in (3.2h) must be relaxed to

ui ≤ zti ≤ Ci + ui, i ∈ N, t = 0, . . . , T − 2

(3.4a)
(H/∆− (T − 1))ui ≤ zT−1

i ≤ Ci + (H/∆− (T − 1))ui, i ∈ N, (3.4b)

where (H/∆−(T−1))ui is the number of units of product consumed by customer

i in the part of the planning horizon from ∆(T − 1) to H, and
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• more than one vehicle at a customer at a time must be allowed, which can be

effected by removing constraints (3.2c) and allowing each xtij variable to be a

non-negative integer, not necessarily binary.

Note that if ∆ divides evenly into H, then T = dH/∆e = H/∆ and so H/∆−(T−1) = 1.

Otherwise 0 ≤ H/∆− (T − 1) < 1 and so the first modification is indeed a relaxation.

We call the resulting model the Lower Bound Model (LBM).

3.5.3 Properties of the Lower Bound Model

We prove that the LBM indeed yields a lower bound on the value of the original, con-

tinuous time, problem (CIRP) by showing that any feasible solution for a continuous

time instance can be mapped to a feasible solution for LBM having the same cost.

Proposition 14. The optimal value of the Lower Bound Model is a lower bound on

the optimal value of the CIRP.

Proof. We will prove that any solution for the CIRP can be transformed into a feasible

solution for LBM, without any additional cost. First, we recall that a CIRP solution

consists of a finite set of deliveries to each customer, at a finite set of time points

during the planning horizon, delivered by the m vehicles, each undertaking a sequence

of routes, each of which starts and ends at the depot. The transformation “shifts” all

deliveries made in the time interval [∆t,∆(t + 1)) in the CIRP solution to occur at

LBM time index t ∈ T . Note that for any s ∈ [0, H) it must be that bs/∆c ∈ T . Now

observe that if, in the CIRP solution, any vehicle moves from i to j departing at time

s ∈ [0, H), where i, j ∈ N0, i 6= j, the time-expanded arc ((i, bs/∆c), (j, bs/∆c + τij))

must exist in AT . This holds since s+ τ̂ij ∈ [0, H] and

bs/∆c+ τij = bs/∆c+ bτ̂ij/∆c ≤ b(s+ τ̂ij)/∆c ∈ T

provided s + τ̂ij < H. Note that it may be that s + τ̂ij = H, in which case it must
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be that the vehicle is returning to the depot, so j = 0. In this case, bs/∆c + τij ≤

bH/∆c ∈ {T − 1, T} and certainly ((i, bs/∆c), (0, bs/∆c+ τij)) ∈ AT .

The transformation takes the variable xtij in the LBM model to be the number

of vehicles traveling from i to j departing at any time in [∆t,∆(t+ 1)) in the CIRP

solution. Similarly, the wtij variable in the LBM model will be taken to be the total

units of product carried on any vehicle traveling from i to j, departing at any time

in [∆t,∆(t+ 1)), in the CIRP solution. Feasibility of the CIRP solution ensures that

LBM constraints (3.2a), (3.2b) and (3.2e) are satisfied, and it is now clear why, due

to aggregation of multiple vehicle movements in the construction of the xtij variables,

these are relaxed in the LBM to allow non-binary integers and (3.2c) is omitted.

This construction of the xtij variables ensures that the cost of the LBM solution

is identical to the cost of the CIRP solution: each movement of a vehicle from i to j

in the latter adds one to some xtij variable, adding cij to the LBM objective function.

It remains to show that the customer inventory variables in the LBM can be set

correctly. We first use the deliveries and inventory at each customer over the horizon

[0, H] in the CIRP solution to set the yti and zti variables in the LMB and show

these are feasible in the LBM constraints (3.2f), (3.2g), (3.4a) and (3.4b). (Recall

that (3.4a) and (3.4b) replace (3.2h) in the LBM.) We then explain why they are

consistent with the vehicle routing variables defined above, ensuring (3.2d).

Given a CIRP solution, let Ji be a finite index set for the set of deliveries to

customer i ∈ N , let υij ∈ [0, H] denote the time at which delivery j ∈ Ji is made to

customer i and let ηij denote the number of units of product delivered to customer i

at this time.

From this data, the function ẑi(s), representing the inventory of customer i at time

∆s in the CIRP solution for each s ∈ [0,H/∆], can readily be constructed. (We define

ẑi(s) to be the inventory at time ∆s excluding any deliveries made at precisely this

time.) Note that for feasibility of the CIRP solution, it must be that 0 ≤ ẑi(s) ≤ Ci
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for all s ∈ [0,H/∆]. Since the LBM “rounds down” travel times, to create a feasible

solution for the LBM from the CIRP solution, we “shift” all deliveries made in the

time interval [∆t,∆(t + 1)) to occur at LBM time index t ∈ T . It is thus helpful to

define the index set of deliveries made in this interval: Ji(t) = {j ∈ Ji : bυij/∆c = t}

for each t ∈ T , i ∈ N . Thus in the CIRP solution, it must be that

ẑi(t) = ẑi(t− 1) +
∑

j∈Ji(t−1)
ηij − ui, ∀t ∈ T \ {0}, i ∈ N, (3.5)

and

ẑi(0) = I0
i , ∀i ∈ N. (3.6)

Also, since the CIRP solution is feasible,

0 ≤ ẑi(t) ≤ Ci, ∀t ∈ T , i ∈ N. (3.7)

and, since 0 ≤ ẑi(H/∆) ≤ Ci, it must be that

0 ≤ ẑi(T − 1) +
∑

j∈Ji(T−1)
ηij − (H/∆− (T − 1))ui ≤ Ci, ∀i ∈ N. (3.8)

Construction of the LBM solution is completed by setting yti = ∑
j∈Ji(t) η

i
j and

zti = ẑi(t) + yti for each t ∈ T , i ∈ N . Since Ji(t) includes the index for any delivery

made precisely at time ∆t in the CIRP solution, we see that zti is the inventory after

any deliveries made at t ∈ T in the LBM solution. Clearly, for each t ∈ T \ {0},

64



i ∈ N , we have, by (3.5), that

zti = ẑi(t) + yti

= ẑi(t− 1) +
∑

j∈Ji(t−1)
ηij − ui + yti

= ẑi(t− 1) + yt−1
i − ui + yti

= zt−1
i − ui + yti ,

ensuring (3.2f) holds. Also, for each i ∈ N , we have, by (3.6), that

z0
i = ẑi(0) + y0

i = I0
i + y0

i ,

ensuring (3.2g) holds. Now for all i ∈ N and t = 0, 1, . . . , T − 2, we have that

zti = ẑi(t) + yti = ẑi(t) +
∑

j∈Ji(t)
ηij = ẑi(t+ 1) + ui,

by (3.5), and so ẑ(
i t+ 1) = zti − ui. Hence, by (3.7), it must be that for all i ∈ N and

t = 0, 1, . . . , T − 2,

0 ≤ ẑi(t+ 1) ≤ Ci ⇐⇒ 0 ≤ zti − ui ≤ Ci

⇐⇒ ui ≤ zti ≤ Ci + ui,

ensuring (3.4a) holds. Finally, for all i ∈ N ,

zT−1
i = ẑi(T − 1) + yT−1

i = ẑi(T − 1) +
∑

j∈Ji(T−1)
ηij,
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and so by (3.8), it must be that

0 ≤ zT−1
i − (H/∆− (T − 1))ui ≤ Ci

⇐⇒

(H/∆− (T − 1))ui ≤ zT−1
i ≤ Ci + (H/∆− (T − 1))ui,

ensuring that (3.4b) holds.

To complete construction of the LBM feasible solution, we need to be sure that

for any vehicle route making a delivery to customer i at time s ∈ [0, H] in the CIRP

solution, there is a corresponding route feasible to the LBM that delivers at time index

bs/∆c. To see that this must be so, consider two consecutive customer deliveries in a

CIRP vehicle route, or a departure from the depot followed by a customer delivery, or

a customer delivery followed by departure from the depot. Suppose these two events

occur at times s1, s2 ∈ [0, H] with s1 ≤ s2, and at locations i1, i2 ∈ N0, respectively.

Since the CIRP solution is feasible, we have that s1 + τ̂i1i2 ≤ s2 in the case i1 6= i2

and s1 ≤ s2 otherwise. In the former case, we get

s1 + τ̂i1i2 ≤ s2 ⇐⇒ s1/∆ + τ̂i1i2/∆ ≤ s2/∆

=⇒ bs1/∆c+ bτ̂i1i2/∆c ≤ bs1/∆ + τ̂i1i2/∆c ≤ bs2/∆c

and hence bs1/∆c+ τi1i2 ≤ bs2/∆c. Thus the two events can occur consecutively in

a LBM feasible route, at bs1/∆c, bs2/∆c ∈ T , respectively. If i1 = i2, then obviously

s1 ≤ s2 implies bs1/∆c ≤ bs2/∆c, so the two events can also occur consecutively in an

LBM feasible route.

Having established that the LBM deserves its name, it is natural to ask whether or

not its value is guaranteed to approach the CIRP value as ∆ decreases towards zero.

Unfortunately, the omission of (3.2c) from the LBM means that it may not. The
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LBM solution can have two vehicles visiting a customer at the same time, in order to

move product from one vehicle to the other; doing so can reduce costs. This is a well

known issue in split delivery vehicle routing problems, which makes them challenging

to model. In split delivery routing, this issue is often resolved by a vehicle indexed

formulation. The same device may be used here: there is a natural alternative form of

the LBM based on routing variables indexed by vehicle. In practice, we found that the

potential bound improvement from use of a vehicle indexed version of the LBM did

not outweigh the extra computing time this much larger formulation required: even

for small instances, solving the vehicle indexed formulation exactly was not possible

in moderate time, and its best bound when stopped early did not match that of the

LBM above, computed in the same time.

3.5.4 Strengthening the Lower Bound Model

Eliminating Depot Subtours

When ∆ is relatively large, the LBM has another weakness. It occurs when for one or

more pairs (i, j) ∈ N0×N0, we have τij = bτ̂ij/∆c = 0, which induce cycles in the time-

expanded network (e.g., a cycle from i to j and back to i that takes up no time). The

LBM allows a vehicle to traverse such a zero travel time cycle even if it is disconnected

from the vehicle origin node, (0, 0). For some t ∈ T and some set S ⊆ N0 with τij = 0

for all distinct i, j ∈ S, the xtij variables may induce a cycle even if xt−τhihi = 0 for

all i ∈ S and all h ∈ δ−(i, t) \ S. This violates the property of any CIRP feasible

solution that, when transformed to an LBM solution with vehicle route variables

x, the subgraph in (N T ,AT ) induced by x decomposes into paths (not necessarily

simple) from (0, 0) to (0, T ). In the presence of a zero travel time cycle, the LBM

solution may violate this property. However, if the cycle does not include the depot,

then the product flow variables, wtij and the constraints (3.2d) and (3.2e) prevent the

cycle from being used to deliver product to customers, so there is no incentive for such
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a cycle to appear in the LBM solution. On the other hand, if the cycle does include

the depot, it can be used to deliver product to customers, without being part of a

path connecting the origin node, (0, 0), to the destination, (0, T ). Hence the vehicle

traversing the cycle is omitted from the vehicle count constraint (3.2b). We call such

a cycle in the LBM solution a depot subtour and illustrate its occurrence in Figure 3.4.

The example shown in Figure 3.4 has two customers, I0
1 = 2, C1 = 4, I0

2 = 1, C2 = 3,

ûi = 1 for i = 1, 2, cij = τ̂ij = 1 for all i, j ∈ {0, 1, 2}, i 6= j, a single vehicle, Q = 6,

and planning horizon H = 6. An optimal CIRP solution is for the vehicle to use

the time-expanded node sequence (0, 0), (2, 1), (1, 2), (0, 3), (2, 4), (1, 5), (0, 6), visiting

customer 2 then customer 1, returning to the depot, and repeating (shown on the

left in Figure 3.4). On the first route, the vehicle delivers 3 units to both customers,

and on the second route, delivers at least 2 units to customer 2 and at least 1 unit

to customer 1. The cost is 6. If we take ∆ = 2 and solve the LBM, the optimal

solution uses the time-expanded node sequence (0, 0), (2, 0), (2, 1), (2, 2), (0, 2), (0, 3)

and (0, 1), (1, 1), (0, 1), the latter being a depot subtour (shown on the right in Figure

3.4). On the first sequence the vehicle delivers a total of 5 units to customer 2,

delivering at least 1 unit on arrival. For example, it may deliver 2 units at time index

0, 2 units at time index 1 and the remaining 1 unit at time index 2. On the depot

subtour, it delivers 4 units to customer 1. This meets customer demand with a cost

of only 4. However, in the second period, at time index 1, the vehicle is apparently

in two places at once: a phantom vehicle has been used on a depot subtour.
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Figure 3.4: An example of a depot subtour.
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Depot subtours can be avoided by the use of a vehicle indexed formulation. How-

ever, as discussed earlier, such a formulation is not as effective in practice. Alterna-

tively, depot subtours can be avoided by ensuring that ∆ is small enough that no zero

travel time cycles including the depot occur in the time-expanded network. However,

this requirement may make it challenging to manage the size of the MIP formulation.

Instead, we introduce auxiliary variables and constraints to eliminate depot subtours.

The variable w̃tij represents integer flow of a commodity that must be transported

from node (0, 0) to node (0, T ), with at least one unit of flow carried by every vehicle

on every arc, and one unit of flow delivered to each location in N0 per vehicle entering

the location at any time t ∈ {1, . . . , T − 1}. The following depot subtour elimination

constraints are added to the LBM model:

∑
j∈δ−t (i)

w̃
t−τij
ji −

∑
j∈δ+

t (i)

w̃tij =
∑

j∈δ−t (i)

x
t−τji
ji ∀(i, t) ∈ N T \ {(0, 0), (0, T )} (3.9a)

xtij ≤ w̃tij ≤M t
ijx

t
ij ∀((i, t), (j, t+ τij)) ∈ AT , t+ τij 6= T,

(3.9b)

where M t
ij is a large number. These constraints ensure that the x variables induce a

subgraph in (N T ,AT ) that can be decomposed into (possibly non-elementary) paths

from (0, 0) to (0, T ). In the example, we see that constraints (3.9a) require that

w̃1
01 − w̃1

10 = 1 and w̃1
10 − w̃1

01 = 1, which is impossible. Thus the depot subtour

(0, 1), (1, 1), (0, 1) is eliminated.

Determining a valid choice for M t
ij is not easy. It needs to be an upper bound on

the number of times a vehicle can arrive at customer i at some time point t′ in the set

{t + τij, . . . , T − 1}. In Appendix B, we suggest one approach to calculating a valid

choice.
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Valid Inequalities

We adapt several valid inequalities from the period inventory routing problem and

suggest one additional class.

Period inventory routing problems take a time discretization as part of the problem

description, with consumption of each customer in each time period a given parameter.

Vehicles start and end routes within a single time period, and it is assumed that only

the inventory at the end of each period, after any deliveries have been added and

demand subtracted, must be nonnegative and no greater than the customer’s storage

capacity. In this context, [71] present several valid inequalities. We adapt three classes

of valid inequality they present to our setting. In particular, we adapt inequalities

(18) [Theorem 2], (20) [Theorem 4] and (22) [Theorem 6].

First, a lower bound on the total number of visits to a customer over the planning

horizon is exploited. In the CIRP, we observe that customer i ∈ N requires ûH − I0
i

units of product in total to be delivered during the time, and thus requires at least⌈
ûiH−I0

i

Q

⌉
vehicle visits with an intervening return to the depot. Thus the inequalities

⌈
ûiH − I0

i

Q

⌉
≤
∑
t∈T

∑
j∈δ−(i,t)\{i}

x
t−τji
ji , i ∈ N. (3.10)

must be valid for the LBM. Note that the right-hand side of this constraint excludes

vehicles waiting at customer i, since a waiting vehicle will not have had an intervening

return to the depot. In the case that Ci < Q, a stronger lower bound on the number

of visits to customer i ∈ N is
⌈
ûiH−I0

i

Ci

⌉
, however in this case waiting vehicles must be

counted. Thus, in this case, we obtain another class of inequalities,

⌈
ûiH − I0

i

Ci

⌉
≤
∑
t∈T

∑
j∈δ−(i,t)

x
t−τji
ji , i ∈ N with Ci < Q. (3.11)

When Ci < Q, neither inequality from the class (3.10) or (3.11) may dominated the
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other; both may be useful.

[67] present inequalities similar to (3.10) and (3.11), but derive a lower bound on

the number of visits to a customer that must occur in a given time interval. In our

setting, their inequalities correspond to

⌈
ui(t2 − t1 + 1)− Ci

Q

⌉
≤

t2∑
t=t1+1

∑
j∈δ−(i,t)\{i}

x
t−τji
ji , i ∈ N, 0 ≤ t1 < t2 ≤ T − 1,

(3.12)

and,

⌈
ui(t2 − t1 + 1)− Ci

Ci

⌉
≤

t2∑
t=t1+1

∑
j∈δ−(i,t)

x
t−τji
ji , i ∈ N, 0 ≤ t1 < t2 ≤ T−1 with Ci < Q,

(3.13)

where to be valid for LBM, we have to replace Ci with Ci + ui for i ∈ N .

The observation that the inventory on hand at the start of a period must be

sufficient to sustain the customer until its next delivery can also be exploited. This

needs to be done carefully in the LBM model, since the deliveries in a CIRP solution

during the interval starting at time t∆ are “mapped to” deliveries at time point t ∈ T .

Thus, if there are no deliveries to customer i at any of time points t1 +1, t1 +2, . . . , t2,

in the LBM, the inventory after any delivery at t1 must be sufficient to meet demand

in the intervals starting at times t1∆, (t1 + 1)∆, . . . , t2∆, i.e., for a time duration of

(t2− t1 + 1)∆. Thus inventory at i must be at least ûi(t2− t1 + 1)∆ = ui(t2− t1 + 1),

and we have the valid inequality

zt1i ≥ ui(t2 − t1 + 1)
1−

t2∑
t=t1+1

∑
j∈δ−(i,t)

x
t−τji
ji

 , i ∈ N, 0 ≤ t1 < t2 ≤ T − 1.

(3.14)
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Using ideas from [67], we can strengthen (3.14) to

zt1i ≥ ui(t2 − t1 + 1)
1−min

{
min{Ci, Q}
ui(t2 − t2 + 1) , 1

}
t2∑

t=t1+1

∑
j∈δ−(i,t)

x
t−τji
ji

 ,
i ∈ N, 0 ≤ t1 < t2 ≤ T − 1,

(3.15)

where, again, we have to replace Ci with Ci + ui for i ∈ N to be valid for LBM.

Finally, we make use of the observation that whenever a vehicle arrives at a

customer it must have departed the depot at some time sufficiently beforehand. To

use this observation, we must take care concerning the triangle inequality for travel

times. In the context of our LBM, we note that, even though the original travel times,

τ̂ , are assumed to satisfy the triangle inequality, the travel times scaled to conform

to a discretization with parameter ∆ may not. For example, consider the case that

τ̂ij = τ̂jk = 3.2 and τ̂ik = 6, for three distinct customers i, j, k. The triangle inequality

is satisfied here, as τ̂ij + τ̂jk = 3.2 + 3.2 = 6.4 ≥ 6 = τ̂ik. However, if we take ∆ = 2,

then

tij + tjk = bτ̂ij/∆c+ bτ̂jk/∆c = b3.2/2c+ b3.2/2c

= b1.6c+ b1.6c = 1 + 1 = 2 6≥ 3 = b6/2c

= bτ̂ik/∆c = tik.

Thus we must adapt the statement of inequality to account for this. Letting τ 0i be

the length of the shortest path from 0 to i in the complete network on nodes N0, with

length of arc (j, k) taken to be τjk, we have that the class of constraints

∑
j∈δ−(i,t)

x
t−τji
ji ≤

t−τ0i∑
s=0

∑
j∈δ+(0,s),j 6=0

xs0j, (i, t) ∈ N T (3.16)

is valid for the LBM.
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3.6 Constructing feasible delivery plans

Next, we investigate optimization models that may produce feasible solutions to the

continuous time problem, CIRP. We consider two alternative approaches. The first is

to develop a different, upper bound, model, based on (3.2) with appropriate parameter

choices and modifications. The second is based on the solution to the LBM, and

attempts to adjust it to obtain a feasible CIRP solution.

3.6.1 An upper bound integer programming model

Like the LBM, our upper bound model is based on (3.2), using the same variables and

parameter names for a give discretization parameter, ∆. As for the LBM, T = dH/∆e

and ui = ûi∆ for all i ∈ N , but the travel times are now rounded up, rather than

down: τij = dτ̂ij/∆e for all i, j ∈ N0, i 6= j. To obtain a formulation that yields an

upper bound on the optimal value of the continuous time problem, (3.2) must be

modified. The modifications required are:

• the constraints ui ≤ zti ≤ Ci in (3.2h), for the case t = T − 1, must be replaced

by

(H/∆− (T − 1))ui ≤ zT−1
i ≤ Ci, ∀i ∈ N, (3.17)

where (H/∆−(T−1))ui is the number of units of product consumed by customer

i in the part of the planning horizon from (T − 1)∆ to H, and

• some arcs must be removed, according to

AT := AT \ {((i, t), (0, T )) : t∆ + τ̂i0 > H}. (3.18)

Both are modifications to (3.2) only if ∆ does not divide evenly into H. In this case,

for the final time interval induced by the discretization, [(T−1)∆, T∆], with T∆ > H,

the inventory on hand at each customer at the start of the interval only needs to be
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enough to supply the customer up to time H. Also, all vehicles must return to the

depot by time H, which is modeled by the sink node (0, T ) in the discretized problem,

and so arc ((i, t), (0, T )) ∈ AT should only be used if ∆t+ τ̂i0 ≤ H.

We call the resulting model the Upper Bound Model (UBM). That any feasible

solution to the UBM is also a feasible solution to the CIRP is quite obvious. A vehicle

visit to customer i (or the depot) at time point t ∈ T followed by a visit to customer

j (or the depot) at time point t+τij ∈ T in the UBM corresponds to a vehicle visit to

customer i at time t∆ ∈ [0, H] followed by travel to j, arriving at time t∆ + τ̂ij, and

waiting at j for time τij∆− τ̂ij > 0, by the definition of τij. The inventory constraints

ensure that the customer deliveries made at times t∆ for t ∈ T are sufficient to meet

the customer demand over the whole planning period [0, H]. The proposition below

follows.

Proposition 15. If the Upper Bound Model is feasible, then it provides a feasible

solution for the CIRP.

We note that constraints similar to those for strengthening the LBM may be used

to strengthen the UBM. Specifically, (3.10)–(3.13), and (3.15) may all be used as

stated, while, since the triangle inequality for τ̂ implies the triangle inequality for τ

in the UBM, (3.16) is applied simply as

∑
j∈δ−(i,t)

x
t−τji
ji ≤

t−τ0i∑
s=0

∑
j∈δ+(0,s)

xs0j, (i, t) ∈ N T . (3.19)

3.6.2 Converting solutions to LBM

In order to decide whether or not the solution to LBM is, in fact, an optimal to

CIRP, we seek to convert the discrete time solution to LBM into a continuous time

feasible solution of the same cost. If successful, then that solution must be an optimal

continuous time solution.
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Clearly any CIRP feasible solution that performs the same set of vehicle move-

ments as that implied by the LBM solution will do. So a natural approach is to seek

a CIRP feasible solution in which that occurs. We divide the process into two steps.

1. Step 1: extracting delivery routes. Recall that the LBM solution may not

uniquely specify routes for each vehicle, since more than one vehicle may visit

a customer at a time. Furthermore, the product quantities assigned to vehicle

movements may involve product exchange at a common customer location and

time, and so cannot be decomposed to match independent vehicle routes. Thus

our first step is to seek a decomposition of the LBM solution into independent

vehicle itineraries with associated product flows that provide inventory levels as

close as possible to LBM feasibility.

2. Step 2: revising customer visit times and quantities. The first step

yields a set of vehicle itineraries, each vehicle itinerary specifying a sequence of

customer (and depot) visits including the time of the visit and the quantity de-

livered. The time information implies a sequence of vehicle visits at a customer.

In case of multiple visits at the same time, we impose an arbitrary order. Our

second step is to revise the time of each visit and the quantity delivered during

the visit, while preserving both the vehicle and customer visit sequences and

ensuring each vehicle route’s timing is feasible. The goal is to ensure that the

first customer to run out of product does so as late as possible. If no customer

runs out during the planning horizon, then a CIRP solution of the same cost

has been found.

We accomplish the first step by solving a MIP and the second step by solving an LP

or an IP. Details are found below.

Extracting delivery routes. As discussed earlier, the LBM solution may not

uniquely specify routes (or itineraries) for each vehicle. Although this issue may
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be overcome with an alternative, vehicle indexed, formulation, we found that this

approach did not perform well in practice. Instead, we propose a heuristic for solving

the vehicle indexed formulation: first solve the LBM, and then, keeping some aspects

of the LBM solution fixed, seek a “nearby” solution to the vehicle indexed formula-

tion. Thus, given a solution to the LBM having vehicle movement variables x∗ say,

we seek a decomposition of it into independent vehicle itineraries with associated

product flows.

To do so, we use a MIP model in which vehicle movement, product flow and

delivery quantity variables, xtijv, wtijv and ytiv, respectively, are indexed by vehicle, v ∈

V := {1, . . . ,m}. The vehicle movement variables are required to decompose those

from the LBM solution in the sense that we require ∑v∈V x
t
ijv = x∗tij for all ((i, t), (j, t+

τij)) ∈ AT . As a consequence, many vehicle movement variables, specifically xtijv for

which x∗tij = 0, can be eliminated in preprocessing, ensuring that the MIP is not

difficult to solve in practice.

In other respects, the MIP is very similar to the LBM (adapted to use vehicle

indexed product flow and delivery variables). However, since the LBM solution may

implicitly require product exchange between vehicles that cannot be decomposed

into product flows on independent routes, we cannot guarantee that LBM-feasible

inventory levels at customers can be attained. We thus introduce slack and surplus

variables, ξ+
it and ξ−it , respectively, on the inventory level for each customer i ∈ N and

time point t ∈ T , and seek to minimize a weighted sum of these variables. Although

any positive weights would achieve a solution that is in some sense “close to” that of

the LBM, we put a higher weight on use of these variables at earlier time points. This

is a heuristic designed to maximize the time period over which the resulting routes

can feasibly supply customers in the CIRP solution we wish to attain after customer

visit times and quantities are revised, subsequently. We call the resulting MIP model
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the vehicle itinerary extraction (VIE) model:

min
∑
t∈T

(T − t)
∑
i∈N

(ξ+
it + ξ−it )

s.t.
∑

j∈δ+(i,t)
xtijv =

∑
j∈δ−(i,t)

x
t−τji
jiv (i, t) ∈ N T \ {(0, 0), (0, T )}, v ∈ V

(3.20a)∑
i∈δ−(0,T )

x
T−τi,0
i,0,v = 1 v ∈ V (3.20b)

∑
v∈V

xtijv = x∗tij ((i, t), (j, t+ τij)) ∈ AT (3.20c)

∑
j∈δ−(i,t)

w
t−τji
jiv −

∑
j∈δ+(i,t)

wtijv = ytiv (i, t) ∈ N T , i 6= 0, v ∈ V (3.20d)

0 ≤ wtijv ≤ Qxtijv (i, t) ∈ N T , j ∈ δ+(i, t), v ∈ V (3.20e)

zti = zt−1
i +

∑
v∈V

ytiv − ui + ξ+
it − ξ−it i ∈ N, t ∈ T \ {0} (3.20f)

z0
i = I0

i +
∑
v∈V

y0
iv + ξ+

i0 − ξ−i0 i ∈ N (3.20g)

ui ≤ zti ≤ Ci + ui ∀i ∈ N, t = 0, . . . , T − 2 (3.20h)

u′i ≤ zT−1
i ≤ Ci + u′i ∀i ∈ N, (3.20i)

ytiv ≥ 0 i ∈ N, t ∈ T , v ∈ V

xtijv integer ((i, t)(j, t+ τij)) ∈ AT , v ∈ V

ξ+
it , ξ

−
it ≥ 0, i ∈ N, t ∈ T ,

where u′i = (H/∆ − (T − 1))ui for each i ∈ N . Note that this formulation does not

require depot subtour elimination constraints, since we enforce that each route arrives

at the depot exactly once.

Revising Customer Visit Times and Quantities. Consider the routes and

customer visits specified by the solution to the VIE model. Let R denote the set

of routes and let ρ(r, k) ∈ N denote the kth customer visited in route r ∈ R,
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where nr (with nr ≥ 1) indicates the number of customers visited on route r and

ρ(r, 0) = ρ(r, nr + 1) = 0 (the route starts and ends at the depot). For each cus-

tomer i ∈ N , let ni (with ni ≥ 0) denote the number of deliveries at customer i. Let

n0 = 2∑r∈R nr denote the number of route departures and arrivals, which we will call

events, at the depot. Let φ(r, k) for k ∈ {1, . . . , nr} denote the visit index in the visit

sequence of the kth customer visited in route r. That is, if φ(r, k) = `, then the `th

delivery at customer ρ(r, k) is the kth delivery performed by route r. (If a customer

is visited by more than one vehicle at the same time, we arbitrarily order these visits

in the customer visit sequence.) For k = 0, φ(r, 0) = ` indicates that the departure

of route r from the depot is the `th event at the depot. Similarly, for k = nr + 1,

φ(r, nr + 1) = ` indicates that the arrival of route r at the depot is the `th event

at the depot. To account for the fact that a vehicles can perform multiple routes

in its itinerary, let rv1 , rv2 , . . . , rvnv denote the routes performed by vehicle v, where nv

denotes the number of routes performed by vehicle v.

We now construct a linear programming (LP) model to decide (revise) the time

of each delivery to a customer, and the quantity to be delivered at that time, while

preserving the visit sequence at each customer, the customer sequence on each route

and the route sequence in each itinerary. Preserving these sequences, which are

encoded in the route indices and the ρ(·, ·) and φ(·, ·) functions, enables the timing

and quantity decisions to be made using an LP, without the need for binary variables.

Naturally, it may be that no feasible CIRP solution using these sequences exists. The

LP may be infeasible; solving it is a primal heuristic, and may fail. The LP is

constructed so that if it is feasible, one of two cases must occur: (1) all its feasible

solutions require deliveries by more than one vehicle to a customer at the same time,

or (2) a feasible solution in which all vehicle delivery times at a customer are distinct.

In the former case, there, again, cannot be a feasible CIRP solution using these

sequences. In the latter case, a feasible CIRP solution has been found, and, since the
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cost of any solution is purely the sum of the route costs, which are preserved by the

model, its solution must be optimal for the CIRP. The LP is constructed as follows.

Let variable t`i indicate the time of the `th visit to customer i, while qli indicates

the quantity delivered in that visit (and t0i = 0). Inventory variables, I`i , denote the

inventory at customer i immediately after the `th delivery. (As before, I0
i is denotes

the initial inventory at i). Let variable t`0 denote the time of the `th event at the

depot. Finally, let variable ζ denote the minimum time between deliveries at any

customer. We define the LP as follows:

max ζ

s.t. t
φ(r,k)
ρ(r,k) + τ̂ρ(r,k)ρ(r,k+1) ≤ t

φ(r,k+1)
ρ(r,k+1) r ∈ R, k = 0, . . . , nr (3.21a)

t
φ(rvj ,nrvj +1)
0 ≤ t

φ(rvj+1,0)
0 v ∈ V, j = 1, . . . , nv − 1 (3.21b)

nr∑
k=1

q
φ(r,k)
ρ(r,k) ≤ Q r ∈ R (3.21c)

t`i ≥ t`−1
i + ζ i ∈ N, ` = 1, . . . , ni (3.21d)

I`i = I`−1
i − ûi

(
t`i − t`−1

i

)
+ q`i i ∈ N, ` = 1, . . . , ni (3.21e)

I i0 ≥ ûiH i ∈ N and ni = 0 (3.21f)

Inii − ûi(H − tnii ) ≥ 0 i ∈ N and ni > 0 (3.21g)

q`i ≤ I`i ≤ Ci i ∈ N, ` = 1, . . . , ni (3.21h)

0 ≤ q`i i ∈ N, ` = 1, . . . , ni

0 ≤ t`i ≤ H i ∈ N, ` = 1, . . . , ni.

Constraints (3.21a) and (3.21b) ensure that for each of the vehicles the visit times

at customers properly account for travel times between locations, and, in case a ve-

hicle performs multiple routes, for travel times to and from the depot in between

consecutive routes in its itinerary. Constraints (3.21c) ensure that the delivery quan-

tities on a route do not exceed the vehicle capacity. Constraints (3.21d) ensure that
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the visit times at customers occur in the same order as in the solution to the lower

bound model, and that consecutive deliveries occur at least ζ units of time apart.

Constraints (3.21e) ensure that the inventory at customers is accurately modeled.

Constraints (3.21f)– (3.21h) together ensure that inventory at each customer is suf-

ficient to meet demand at all points in time. Constraints (3.21f) and (3.21g) ensure

that inventory after the last delivery is sufficient to meet demand until the end of the

planning horizon, while (3.21h) guarantee that customer i does not run out of product

in period [t`−1
i , t`i) for ` = 1, . . . , ni. Constraints (3.21h) also ensure that inventory

does not exceed capacity at any customer. If the LP is feasible and has optimal value

ζ∗ > 0, then the LP solution provides a feasible solution to the CIRP with vehicle

movement cost the same as the cost of x∗ used in the VIE model. Hence, if x∗ is an

optimal solution to the LBM, the LP solution also gives an optimal solution to the

CIRP.

Theorem 1. Let the travel times, the storage and vehicle capacities, the initial in-

ventories and the usage rates of an instance of the CIRP be rational. Then, if the

CIRP instance is feasible, it has an optimal solution that is rational.

Proof. Since we have rational parameters, we know that the LP model (3.21) always

has a rational optimal solution when it is feasible. The model finds the best visit

times and delivery quantities for a given set of vehicle itineraries and customer visit

sequences. In particular, if we take the set of vehicle itineraries and customer visit

sequences to be those of an optimal solution to the CIRP, then we will get a rational

solution.

Note that this result implies that there exists a discretization of time such that

an optimal solution to a time-expanded network formulation using this discretization

results in a continuous time optimal solution, which is alluded to in Section 3.4.

A more powerful model is obtained when we only require that the sequence in
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which customers are visited in a route is maintained, i.e., when we allow the sequence

of routes visiting a customer to change, when we allow the sequence in which routes

are performed by a vehicle to change, and when we allow routes to be reassigned to

a different vehicle. Doing so, however, requires the introduction of binary variables.

Specifically, we let binary variable x`rk indicate whether the kth visit of route r, which

is a visit to customer ρ(r, k), is the `th visit at customer ρ(r, k), and let yrr̄ indicate

that route r and route r̄ are performed by the same vehicle and that route r̄ is

performed immediately after route r by that vehicle.

The visit times have to be viewed from two perspectives: a customer perspective

and a route perspective. Let t`i indicate the time of the `th visit to customer i and let

t̄kr indicate the time of the kth visit of route r. Similarly, let q`i indicate the quantity

delivered in the `th visit to customer i and q̄kr indicate the quantity delivered in the kth

visit of route r. We need to ensure that these time are consistent with the decisions

we make for the routes. We do so with the following constraints:

−H(1− x`rk) ≤ t`ρ(r,k) − t̄kr ≤ H(1− x`rk) r ∈ R, k = 1, . . . , nr, ` = 1, . . . , nρ(r,k),

−Q(1− x`rk) ≤ q`ρ(r,k) − q̄kr ≤ Q(1− x`rk) r ∈ R, k = 1, . . . , nr, ` = 1, . . . , nρ(r,k),

nρ(r,k)∑
`=1

x`rk = 1 r ∈ R, k = 1, . . . , nr,

∑
r∈R

∑
k=1,...,nr : ρ(r,k)=i

x`rk = 1 i ∈ N, ` = 1, . . . , ni.

Ensuring that each route is assigned to one of the m vehicles, that the routes

assigned to a vehicle are performed in sequence, and that a route departures from

the depot only after the immediately preceding route has returned to the depot is
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enforced by the following constraints

t̄nr+1
r ≤ t̄0r̄ +H(1− yrr̄) r ∈ R, r̄ ∈ R, r 6= r̄,∑

r̄∈R
yrr̄ ≤ 1 r ∈ R,

∑
r̄∈R

yr̄r ≤ 1 r ∈ R,

∑
r,r̄∈R

yrr̄ ≥ |R| −m,

where the last constraint ensures that at most m routes have no predecessor, which

implies that the routes are assigned to no more than m vehicles.

The complete route-preserving only (RPO) model can be found in Appendix C.

Similar to the previous LP model, if the RPO model is feasible and has an optimal

solution with positive value, then, since the cost of any solution is purely the sum

of the route costs, which are preserved by both the VIE model and the RPO model,

the solution to the latter must be optimal for the CIRP. Computational experiments

revealed that even though RPO is an integer program, on instances of interest, it can

often find a feasible solution in a short amount of time. Therefore, in our computa-

tional study, we have used RPO to try and extract a feasible delivery schedule from

a solution to LBM.

3.7 A computational study

The purpose of our computational study is two-fold. First, it is to establish the

potential of dynamic discretization discovery algorithms in contexts other than service

network design ([8]). Second, and certainly not less important, it is to demonstrate

that optimal solutions, or at least provably high-quality solutions, can be obtained for

non-trivial instances of one of the most challenging, but practically relevant, variants

of the inventory routing problem.
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3.7.1 Instances

We define two base instances and then alter those in a controlled way to create

additional instances. Based on preliminary experiments, we have seen that the largest

instances we can solve in a reasonable amount of time have 15 customers, therefore

the base instances have 15 customers. The customers in the two base instances have

the same usage rates and storage capacities, but differ in their locations, from which

travel times (and costs) are derived.

One of the base instances has customers located in the area [−5, 5]× [−5, 5] with

the company’s facility located in the center, so the depot has coordinates (x0, y0) =

(0, 0). Customer locations are chosen uniformly at random with the given area. The

other base instance has customers located in clusters, with locations chosen uniformly

at random within three subregions of the area: [2, 3] × [2, 3], [2, 3] × [−2,−3], and

[−2,−3]× [−2,−3].

The base usage rate, denoted by ubasei for customer i ∈ N , is a randomly generated

integer between 4 and 12 (each equally likely). The customer’s storage capacity is

an integer that depends on the customer’s usage rate: for each i ∈ N , Ci = f × ui,

where f is a randomly generated integer between 8 and 14 (each equally likely). The

locations, base usage rates, and storage capacities of the 15 customers are given in

Table 3.1. The travel time, τ̂ij, from location i to j, with i, j = 0, 1, . . . , 15, is taken

to be the Euclidean distance, ||(xi, yi)− (xj, yj)||, rounded to two decimal places, and

the cost, cij, is set equal to the travel time. We note that in all instances, the triangle

inequality still holds after rounding the travel times, and that there is sufficient time

for a vehicle to reach each customer before it runs out of product.

We generate instances by considering different numbers of customers n = |N |.

The smallest instance has 5 customers, then 7, 10, 12, and the largest instance has

15 customers. Each instance uses the first n customers in Table 3.1. So for example,

a clustered instance with 5 customers takes the first 5 customers using the location
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coordinates of fourth and fifth columns, while a non-clustered instance with 12 cus-

tomers takes the first 12 customers using the location coordinates of the second and

third columns.

Table 3.1: Customer data for the instances.

Customer locations
non-clustered clustered Three usage rate cases

i xi yi xi yi Ci ubasei ri 1.1ubasei ri 1.2ubasei ri
1 2.22 -1.53 2.18 2.77 132 11 2 12.1 2 13.2 3
2 3.16 3.67 2.42 -2.46 44 4 2 4.4 2 4.8 2
3 2.68 -2.41 2.98 2.55 64 8 2 8.8 3 9.6 3
4 -1.56 2.12 2.43 -2.75 65 5 1 5.5 2 6.0 2
5 -1.60 0.45 2.59 2.70 120 12 2 13.2 3 14.4 3
6 3.86 3.98 2.40 -2.97 140 10 2 11.0 2 12.0 2
7 -3.45 4.32 2.54 2.03 81 9 2 9.9 2 10.8 3
8 1.23 0.39 2.76 -2.49 44 4 2 4.4 2 4.8 2
9 3.68 -3.73 2.18 2.34 88 11 2 12.1 3 13.2 3
10 -1.86 -1.96 2.49 -2.01 70 7 2 7.7 2 8.4 2
11 3.92 1.97 -2.52 -2.06 100 10 2 11.0 2 12.0 3
12 -1.69 2.82 -2.85 -2.68 112 8 1 8.8 2 9.6 2
13 3.53 1.36 -2.75 -.2.17 132 11 2 12.1 2 13.2 3
14 -2.46 -3.05 -2.48 -2.90 44 4 2 4.4 2 4.8 2
15 -2.66 1.59 -2.74 -2.53 77 6 1 6.6 2 7.2 2
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Figure 3.5: Random customers

1

1

-1

-1

2

2

-2

-2

3

3

-3

-3

4

4

-4

-4

5

5

-5

-5

Figure 3.6: Clustered customers

Figures 3.5 and 3.6 plot customers and depot positions. Customers 1 to 5 are
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shown with a black circle, Customers 6 and 7 are shown with a triangle (up), Cus-

tomers 8 to 10 are shown with a square, Customers 11 and 12 are shown with a

triangle (down), and, finally, Customers 13 to 15 are shown with a star.

To decide the planning horizon, H, we first observe that the travel time from the

depot to any customer and back cannot exceed 15, since
√

52 + 52 ≈ 7.07. Thus if the

horizon is at least 15, we can be sure there is time to serve each customer once in the

planning horizon and return the vehicle to the depot. Also, for simplicity, we set the

initial inventory of each customer equal to its storage capacity, so all customers start

at full capacity at the start of the planning horizon. From the choice of Ci = fubasei

for f ≤ 14, we see that provided the horizon is more than 14, each customer will

require at least one visit during the planning horizon, using the base data. Since

we want a horizon in which some customers will be visited several times, we choose

H = 18 for all instances. (This is also a choice that enables several alternative integer

time discretizations.)

We alter base instances to obtain a larger set of instances by scaling up the usage

rates, using the scaling factors 1.1 and 1.2. In other words, we have instances with

ûi = ubasei for all i ∈ N , ûi = 1.1ubasei for all i ∈ N and ûi = 1.2ubasei for all i ∈ N ,

for each of the clustered and non-clustered customer locations and each number of

customers. The scaled usage rate cases are shown in the ninth and eleventh columns

of Table 3.1. We also observe that the number of visits to customer i over the time

horizon must be at least ri(ûi) = d(ûiH − I0
i )/min{Ci, Q}e. These lower bounds on

the number of visits to a customer, in each of the three usage rate cases, are shown in

the eighth, tenth and twelfth columns of Table 3.1, headed ri. So for the base case,

most customers require at least two visits and some require at least one. For the first

scaling of usage rates, most customers require at least two visits, while a few require

three visits. For the second scaling of usage rates, two or three visits are required, at

least, mixed about half and half.
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We take the vehicle capacity to be the expected value of the customer capacity,

which is the expected value of the base customer usage rate multiplied by the midpoint

of the random multiplier range, i.e., Q = 8 × 11 = 88. To investigate the impact of

the vehicle capacity, we introduce two variations, one in which we take the vehicle

capacity to be 0.75 × Q = 66 and one in which we take the vehicle capacity to be

1.25 × Q = 110. When we report results, we refer to these three variants as Q1

(Q = 66), Q2 (Q = 88), and Q3 (Q = 110).

Thus, we have 2 × 3 × 3 × 5 = 90 instances, for the two types of customer

location, the three usage rate scalings, the three vehicle capacities, and the five

different numbers of customers. Instances will be identified and referenced using

a 4-tuple (customer location type, number of customers, usage rate scaling factor,

and vehicle capacity scaling factor), e.g., (R,7,U2,Q1), abbreviated as R7U2Q1, in-

dicates an instance with random customer locations, 7 customers, usage rate scal-

ing U2, and vehicle capacity scaling Q1. All instances can be found at https:

//github.com/felipelagos/cirplib.

One of the challenges associated with the LBM is that travel times may be rounded

down to zero. In Table 3.2, we show the fraction of travel times in an instance

that are rounded to zero for different values ∆ (i.e., ∆ = H/2k for k = 1, ..., 9 and

∆ = H/6k for k = 4, ..., 10), where, for convenience, we also report the resulting

number of time points in the discretization (H/∆). Observe that for the random

instances and ∆ ≤ H/30, all the travel times are positive, which implies that depot

subtour elimination constraints are no longer needed.

Proposition 10 establishes that finding the minimum number of vehicles required

to guarantee the existence of a feasible delivery plan is strongly NP-hard. Therefore,

to determine the number of vehicles available in an instance, we use a modified version

of UBM. Instead of minimizing the total cost of the routes, we minimize the number

of vehicles m. We run the UBM with a time limit of 2 hours for each of two values
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Table 3.2: Percentage (%) of zero travel times for LBM for a given discretization
length.

Length ∆ (H/∆) Clustered Random
5 7 10 12 15 5 7 10 12 15

9.00 (2) 100.00 100.00 100.00 100.00 100.00 100.00 96.43 96.36 97.44 97.50
4.50 (4) 60.00 60.71 60.00 46.15 40.00 46.67 35.71 43.64 43.59 42.50
3.00 (6) 26.67 32.14 36.36 28.21 25.83 33.33 25.00 25.45 24.36 23.33
2.25 (8) 26.67 32.14 36.36 26.92 25.00 20.00 14.29 12.73 12.82 12.50
1.80 (10) 26.67 32.14 36.36 26.92 25.00 20.00 14.29 10.91 8.97 10.00
1.50 (12) 26.67 32.14 36.36 26.92 25.00 6.67 7.14 5.45 5.13 5.83
1.29 (14) 26.67 32.14 36.36 26.92 25.00 6.67 7.14 3.64 3.85 5.00
1.12 (16) 26.67 32.14 36.36 26.92 25.00 6.67 7.14 3.64 3.85 3.33
1.00 (18) 26.67 32.14 36.36 25.64 24.17 6.67 7.14 3.64 3.85 3.33
0.75 (24) 20.00 25.00 29.09 20.51 19.17 0.00 3.57 1.82 1.28 0.83
0.60 (30) 20.00 17.86 21.82 15.38 14.17 0.00 0.00 0.00 0.00 0.00
0.50 (36) 20.00 14.29 14.55 10.26 10.00 0.00 0.00 0.00 0.00 0.00
0.43 (42) 20.00 14.29 10.91 7.69 6.67 0.00 0.00 0.00 0.00 0.00
0.38 (48) 6.67 7.14 5.45 3.85 4.17 0.00 0.00 0.00 0.00 0.00
0.33 (54) 6.67 7.14 3.64 2.56 2.50 0.00 0.00 0.00 0.00 0.00
0.30 (60) 6.67 7.14 3.64 2.56 1.67 0.00 0.00 0.00 0.00 0.00

of ∆, H/9 and H/18, recording the best feasible solution found within the time limit.

Note that in all cases a feasible solution was found. We then take the minimum of

the number of vehicles used in the two solutions. The resulting number of vehicles

for each instance can be found in Tables 3.3 and 3.4.

Table 3.3: Minimum number of vehicles for the clustered instance.

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

C
us

to
m

er
s 5 3 3 3 4 3 3 4 4 3

7 4 3 3 5 4 4 6 5 4
10 6 5 4 7 6 5 8 7 6
12 7 6 5 8 7 6 10 8 7
15 8 7 6 9 8 7 11 9 8

3.7.2 Experiments

As mentioned above, the purpose of our experiments is to establish the potential of

dynamic discretization discovery algorithms and to demonstrate that optimal solu-

tions, or at least provably high-quality solutions, can be obtained for instances of

CIRP.
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Table 3.4: Minimum number of vehicles for the random instance.

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

C
us

to
m

er
s 5 3 3 3 4 3 3 4 3 3

7 5 4 3 6 5 4 6 5 5
10 7 6 5 8 7 6 9 8 7
12 8 7 6 9 8 7 11 9 8
15 9 8 7 11 9 8 13 11 9

In this proof-of-concept study, we simply experiment with different discretizations,

i.e., with different values of ∆, and analyze the results. In future research, we will

focus on dynamically discovering (location-dependent) discretizations. More specifi-

cally, here we solve LBM for ∆ = H/k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16,

18, 24, 30, 36, 42, 48, 54, 60, and UBM for ∆ = H/k for k = 9, 10, 12, 14, 16, 18,

24, 30, 36, 42, 48, 54, 60 (i.e., only finer discretizations). After solving LBM, we use

the route-preserving only (RPO) model to try and convert the solution into a CIRP

feasible solution. Each model is solved with a time limit of 2 hours.

The lower bound for an instance is the maximum value of best bound over all

values of ∆. The upper bound for an instance is the minimum value among all known

CIRP feasible solutions (found either when determining the number of vehicles for

the instance, or by the UBM, or by the RPO model applied to output of the LBM, for

some value of ∆). Tables 3.5 and 3.6 show the resulting optimality gap for each of the

instances. When the upper bound is associated with the feasible solution obtained

when determining the number of vehicles for the instance, the value of the gap is

presented in parentheses. When this happens, neither the UBM nor the RPO model

produced a feasible solution.

In Figure 3.7, we summarize these results by means of a histogram that shows

the percentage of instances for which a certain optimality gap was achieved. The

histogram demonstrates that for most instances, high-quality solutions are obtained,
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Table 3.5: Best optimality gap (%) for clustered instances.

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

C
us

to
m

er
s 5 0.00 0.00 0.00 0.00 1.16 0.00 1.94 0.00 0.00

7 1.12 4.43 0.94 0.00 1.75 1.44 0.00 0.00 1.82
10 0.00 2.14 2.47 0.71 2.09 3.29 0.84 1.25 2.39
12 0.00 0.87 2.24 3.13 1.78 2.15 0.51 8.54 6.82
15 0.00 3.04 7.02 (13.59) 3.21 5.94 3.65 7.74 (24.17)

Table 3.6: Best optimality gap (%) for random instances.

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

C
us

to
m

er
s 5 0.00 0.00 8.63 0.00 0.25 0.29 0.00 2.55 0.00

7 0.00 0.00 8.80 0.00 0.00 0.66 0.00 0.04 3.57
10 4.15 0.00 5.17 0.00 3.77 0.00 2.32 3.05 6.13
12 8.54 0.01 5.26 (11.09) 7.46 9.49 0.01 14.38 (24.16)
15 (18.36) 1.47 (17.62) (15.62) (20.25) (34.39) 7.06 (26.04) (18.19)

especially for clustered instances; one clustered instance with 15 customers was solved

to optimality. Twelve out of 90 instances have an optimality gap of more than 10%;

most of them random instances with 15 customers.

It is not surprising that when neither the UBM nor the RPO model finds a feasible

solution, the resulting gap is large (when we determine the number of vehicles for an

instance, we minimize the number of vehicles and do not consider costs). To assess the

impact of the available number of vehicles on the ability to obtain low cost solutions,

we solved the largest instances with random customer locations assuming one more

vehicle was available. The results can be found in Table 3.7. We see that for all

instances a feasible solution was obtained, and that except for Instance R15U2Q2

these solutions are either optimal or close to optimal.

In Figure 3.8, we focus on the impact of the discretization (i.e., the value of ∆/H)

on the bounds for a few select instances. For each value of ∆/H, we show the value of

the bound on the cost obtained by solving LBM (“Lower Bound” in the legend), the

cost of the feasible delivery schedule extracted by RPO from the solution to LBM,
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Figure 3.7: Histogram of instances achieving a certain optimality gap.

Table 3.7: Best optimality gap (%) for random instances with one more vehicle than
the best known minimum.

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Customers 15 2.05 0.01 0.12 1.62 14.12 0.98 0.72 2.18 9.45

if any (“LBM Feas” in the legend), and the cost of the feasible delivery schedule

obtained when solving UBM, if any (“UBM Feas” in the legend). In Appendix D, we

provide, for four of these instances, detailed solution statistics (column headings are

self-explanatory) for all values of H/∆.

The most striking observation is that for all these instances, the best lower bound

is obtained for the largest value of ∆, i.e., for the discretization with the fewest

number of time points. This is both disappointing, because one would expect that

a finer discretization should lead to a better bound, but also encouraging, because

it suggests that with carefully chosen time points, it may be possible to get good

bounds also for larger instances. We also observe that if successful, the RPO model

produces high-quality solutions, often optimal solutions, and that the UBM produces

many feasible solution, but that their quality is not always high.

To highlight the fact that these instances are non-trivial, we investigate the opti-
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Figure 3.8: Lower and upper bound value for different values of H
∆ .
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mal solution for Instance R7U2Q1. The vehicle itineraries can be found in Table 3.8

and the customer inventory profiles can be found in Figure 3.9. We see that three

Table 3.8: Vehicle itineraries in the optimal solution to Instance R7U2Q1.

Vehicle Route Visit 1 Visit 2 Visit 3
t0 tn+1 i ti qi i ti qi i ti qi

1 1 0.00 8.15 1 5.45 66.00
2 8.15 18.00 3 11.75 46.20 1 12.74 19.80

2 1 0.00 18.00 4 4.06 22.34 7 7.00 31.20 4 14.59 11.66
3 1 0.00 5.57 5 3.91 51.60

2 5.57 18.00 6 11.01 58.00
4 1 0.00 18.00 2 8.72 35.20
5 1 0.00 9.79 3 6.19 54.46

2 9.79 18.00 5 13.00 10.24 5 13.78 55.76
6 1 0.00 18.00 7 9.82 66.00

vehicles make multiple trips during the planning horizon and that one vehicle delivers

product at four customers on a single trip. Furthermore, we see that all customers

receive multiple deliveries during the planning horizon and that one customer receives

two consecutive deliveries from a vehicle that waits at its premises. We note that an

alternative optimal solution exists that combines the two deliveries into a single de-

livery (at the time of the first visit). This highlights one of the challenges in solving

CIRP instances. There may be many alternative solutions with the same cost.

We presented (and used) a number of valid inequalities to strengthen the linear

programming relaxations of both the LBM and the UBM. To show the importance of

using these valid inequalities, in Figure 3.10, we show for Instance R7U2Q1 the best

lower and upper bound value for different values of H/∆ when solving the LBM and

the UBM with and without the valid inequalities (a + in the legend is used to indicate

that the results are obtained when valid inequalities are added to the formulation).
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Figure 3.9: Customer inventory profiles in the optimal solution to Instance R7U2Q1.
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Figure 3.10: Assessing the value of the valid inequalities for Instance R7U2Q1.

We observe that incorporating the valid inequalities results in improved lower

and upper bounds for many values of H/∆. Furthermore, although not visible in the

figure, two more feasible delivery schedules were extracted by RPO when starting

from solutions to LBM with valid inequalities. (We note that for this particular

instance, an optimal solution was found even without using any valid inequalities.)

3.8 Discussion and future research

In this chapter, we have demonstrated that proven optimal solutions to instances

of the continuous time inventory routing problem can be obtained using relatively

simple time discretization ideas in combination with sophisticated integer program-

ming models. This achievement relies on an integer program that provides a lower

bound on the optimal solution value, an integer program that extracts a set of deliv-

ery routes from a solution to the lower bound model, and an integer program that

seeks to manipulate a set of extracted delivery routes so as to construct a feasible

continuous-time solution.

The computational study has revealed that the integer program that provides a

94



lower bound quickly becomes very difficult to solve as the number of time points in

the discretization increases. The best lower bounds are typically found for very coarse

time discretizations; for finer time discretizatons, the integer program does not solve

to optimality within the given time limit and only the best bound can be used. Thus,

at the moment, the best strategy for obtaining a lower bound for an instance of the

CIRP is to solve the integer program that provides a lower bound for a few values of

∆ = H/k with k ≤ 4.

This, of course, is not entirely satisfactory, which is why we are currently pur-

suing a full-fledged dynamic discretization discovery algorithm. The solution of the

integer program that provides a lower bound for a specific of ∆, can be viewed as a

single iteration of a dynamic discretization discovery algorithm. What is missing is a

component that analyzes why a set of extracted delivery routes cannot be converted

to a feasible (and therefore optimal) continuous-time solution, and uses the results of

that analysis to refine the time discretization.

To ensure that a computationally efficient dynamic discretization discovery algo-

rithm results, it is necessary that non-uniform time discretizations can be handled,

i.e., the set of time points associated with a location in the partially time-expanded

network can depend on the location and the time between two consecutive time points

associated with a location can vary. Fortunately, it is not too difficult to extend the

lower and upper bound models presented in Sections 3.5.2 and 3.6.1 to handle non-

uniform discretizations.

Thus, to develop a full-fledged dynamic discretization discovery algorithm that

can handle larger CIRP instances, what remains is the design and implementation of

a component that analyzes why a set of extracted delivery routes cannot be converted

to a feasible continuous-time solution, and uses the results of that analysis to identify

time points that can be added to the set of time points at one or more locations and

that ensure that the solution to the integer program that produces a lower bound
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improves. This is easier said than done, and is the focus of our current research.
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CHAPTER 4

AN EXACT ALGORITHM FOR THE CONTINUOUS TIME

INVENTORY ROUTING PROBLEM WITH OUT-AND-BACK

ROUTES

4.1 Introduction

The Inventory Routing Problem (IRP) integrates inventory management, vehicle

routing, and delivery scheduling decisions. The IRP arises in the context of Vendor

Managed Inventory (VMI), in which a supplier makes the replenishment decisions

for products delivered to its customers. The variant of interest in this chapter was

introduced in the seminal chapter by [2]. Critical characteristics of this variant are

that only transportation costs are considered and that the system evolves in contin-

uous time. That is, the amount of product that can be delivered to a customer at a

particular point in time depends on the storage capacity and inventory at that point

in time (which depends on the initial inventory, the product usage rate, and the time

elapsed since the start of the planning period, and on the amount of product deliv-

ered since the start of the planning period). As a consequence, delivery times have to

be scheduled carefully and vehicle travel times have to be accounted for accurately.

This contrasts with the majority of the variants of the IRP considered in the litera-

ture, where the planning horizon is partitioned into periods and where it is assumed

that delivery routes take place at the start of the period, product consumption takes

places at the end of the period, and that both happen instantaneously. For more

comprehensive introductions to and discussions of the IRP, see [62] and [5].

The variant considered in this chapter is motivated by the IRP encountered by

companies in the liquid gas industry, e.g., Air Liquide (www.airliquide.com), Air
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Products (www.airproducts.com), and Praxair (www.praxair.com). These compa-

nies produce liquefied gases, e.g., liquid oxygen, liquid nitrogen, or liquid argon, install

tanks on their customers’ premises, and guarantee minimum product availability at

any time. Customers use (consume) product at a certain rate (which can differ at

different times of the day) often 24 hours per day (e.g., liquid oxygen in hospitals.)

Thus, the amount of product that can be delivered to the tank changes at the same

rate. The companies continuously monitor product usage and tank inventory lev-

els so that they can produce cost-effective delivery schedules that meet their service

commitments (i.e., the guaranteed minimum product availabilities). In practice, the

companies tend to have customers that require multiple deliveries per day as well as

customers that require as few as one or two deliveries per week. As a consequence, the

use of a continuous time variant of the IRP is most appropriate in these settings be-

cause it provides the most accurate representation of the system. Also relevant is the

fact that the company contracts typically specify that the customers own/purchase

the product upon delivery, which means that the companies do not have to con-

sider product holding costs at the customer’s location. This variant of the IRP has

attracted attention in the past, e.g., [4], [63], and [64, 65], and, was recently consid-

ered interesting and challenging enough to form the ROADEF/EURO 2016 Challenge

(for more information, see www.roadef.org/challenge/2016/en/sujet.php) with

real-life data provided by Air Liquide.

Solving instances of any variant of the IRP is challenging [66]. Integer program-

ming techniques have been used for the “period” variants, e.g., branch-and-cut [67,

68] and branch-and-cut-and-price [67, 69]. The most advanced and successful of these

can now solve instances with up to 50 customers and up to 5 vehicles. For the “contin-

uous time” variant, lower bounding techniques for this problem have been developed

in [70]. The Continuous Time IRP (CIRP) was formally presented in [72], and com-

plex integer and linear models are studied to find provable optimal solutions for the
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problem.

The CIRP has been shown to be a difficult problem. In [72], instances with up

to 15 customers can be solved, but finding an optimal solution for the problem is not

always possible. Given the complexity of the ideas we study, we consider a simpler

setting for the continuous time IRP: the CIRP with out-and-back routes only (CIRP-

OB). In this problem, the vehicles depart from the depot, visit only one customer, and

then return. Only direct deliveries are allowed. For the IRP, it is natural that this

direct strategy is considered first because it is easy-to-implement and is frequently

used in industrial distribution systems. The IRP with direct deliveries has drawn

attention in the IRP literature [73, 74]. Studies show direct deliveries are effective

compared to any other feasible distribution strategy in the long-run [75, 76, 77]. In

[77], the authors derived an explicit formula for evaluating how effective the direct

delivery strategy is regarding the long-run average cost, concluding that it is at least

94% effective whenever the customer capacities exceed 71% of the vehicle capacity. In

[76], the effectiveness of the direct deliveries can be represented by a function of some

system parameters. Under some conditions on the usage rate and vehicle capacity,

direct deliveries is an optimal distribution strategy.

As we find in this study, modeling inventory in continuous time and accurately

modeling vehicle travel times make for a particularly challenging IRP. Indeed, opti-

mization problems over continuous time, in general, have been found to be difficult

to solve to optimality. Compact models that use continuous variables to model time

have weak linear programming (LP) relaxations. Their solution with current integer

programming solver technology is limited to only small instances. Extended formu-

lations, with binary variables indexed by time, have much stronger relaxations, but

(tend to) have a huge number of variables. Such formulations rely on a discretiza-

tion of time, which introduces approximation. Recently, [8] introduced a Dynamic

Discretization Discovery (DDD) algorithm for solving the continuous time service net-
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work design problem, which uses extended integer programming formulations. The

key to the approach is that it discovers exactly which times are needed to obtain an

optimal, continuous-time solution, in an efficient way, by solving a sequence of (small)

integer programs. The integer programs are constructed as a function of a subset of

times, with variables indexed by times in the subset. These IPs are carefully designed

to be tractable in practice and to yield a lower bound on the optimal continuous-time

value. Once the right (very small) subset of times is discovered, the resulting integer

programming model yields the continuous-time optimal value.

Our contributions in this chapter are both theoretical and algorithmic. We

• successfully develop and implement the DDD algorithm; adapt a mixed integer

program to yield lower bounds on the optimal CIRP-OB value, develop a mixed

integer program to repair solutions to the lower bound model, and put forward

routines to improve the time-expanded network when the lower bound solution

cannot be converted;

• show that the DDD algorithm is an exact algorithm for the CIRP-OB, proving

that for a feasible CIRP-OB instance, the algorithm finishes with an optimal

solution;

• derive conditions on the waiting times and arrival visit times that a subset of

CIPR-OB optimal solutions hold (so we restrict our search to that subset);

• show how to incorporate the previous conditions into the lower bound formula-

tion (strengthening the model); and,

• generate a new set of instances for the CIRP-OB to carry out a computational

study, and show that our DDD algorithm is able to produce provable optimal

solutions for instances with up to 30 customers.
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The remainder of the chapter is organized as follows. In Section 4.2, we formally

introduce the continuous time inventory routing problem with out-and-back routes

only, and we show that this problem is strongly NP-Hard. In Section 4.3, we provide a

mixed integer programming formulation for the CIRP-OB over a time discretization.

In Section 4.4, we present some conditions that a subset of CIRP-OB optimal solutions

hold. In Section 4.5, we show how the mixed integer programming formulation can

be modified to produce a lower bound on the cost of an optimal delivery plan and we

present valid inequalities that strength the formulation. In Section 4.6, we outline two

approaches for constructing feasible delivery plans. In Section 4.7, we describe the

DDD algorithm and show that it is an exact algorithm for the CIRP-OB. In Section

4.8, we present and discuss the results of an extensive computational study. Finally,

in Section 4.9, we discuss relevant aspects of the algorithm and models presented and

describe the next steps towards developing a DDD algorithm for the CIRP, i.e., in

which routes can visit more than one customer.

4.2 The Continuous Time Inventory Routing Problem with Out-and-

Back Routes

We consider a vendor managed resupply environment in which a company manages

the inventory of its customers, resupplying them from a single facility.

Each customer i in the set N = {1, . . . , n} of customers has local storage capacity

Ci, uses product at a constant rate ui, and has initial inventory I0
i at the start of

the planning period, which is assumed to be equal or less than Ci. The planning

horizon is H. The company deploys a fleet of m homogeneous vehicles, each with

capacity Q, to deliver product to its customers. We consider an out-and-back routes

only setting: a vehicle route starts at the depot visits a single customer and returns

to the depot. Travel times τi and travel costs ci, between the depot and a location

i ∈ N , are assumed to be symmetric. All parameters are strictly positive. The set of
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customers and the depot corresponds to N0 = N ∪ {0}.

We allow a vehicle to wait at a customer location and to make multiple deliveries

while at the customer’s premises. This may be beneficial as it allows delivery of

more than the customer’s storage capacity without the need for an intermediate trip

to the depot. In practice, a customer may have sufficient space for several vehicles

to wait at their premises, but usually at most one vehicle can deliver product at a

time. Although the time needed for a vehicle to deliver product may depend on the

quantity to be delivered, there is usually a substantial overhead time needed to engage

and disengage the delivery equipment. Thus the delivery time can be reasonably

well approximated by a constant (possibly customer-dependent) length of time. This

situation can be modeled by the use of two locations for each customer, one for parking

and one for making a delivery at the customer, with the latter constrained to allow

at most one vehicle at a time. However, given the complexity of the ideas we wish to

discuss in this chapter, we make the simplifying assumption that all locations have

the single-vehicle constraint: we assume that it is not possible for multiple vehicles to

visit the same customer at the same time. We further assume that product delivery

at a customer site is instantaneous. It is not difficult to extend the ideas we present

here to account for multiple vehicles waiting at a customer and constant delivery

time. We also assume that there is no cost for waiting.

Vehicles are assumed to be at the company’s facility at the start of the planning

period and have to be back at the company’s facility at the end of the planning period.

However, vehicles can make multiple trips during the planning period. We assume

that the loading of a vehicle at the company facility is instantaneous.

We assume that the company does not incur any holding cost for product, either

at the company facility or at any of the customer sites. We also assume that the

company facility always has sufficient product to supply customers; it does not have

either production or storage capacity constraints.
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The goal is to find a minimum cost delivery plan that ensures that none of the

customers runs out of product during the planning period. A delivery plan specifies a

set of vehicle itineraries, each of which consists of a sequence of out-and-back routes

that start and end at the company facility within the time horizon, to be performed

by a single vehicle. Each route specifies a departure time from the facility, a visit to a

customer, the delivery times and quantities delivered to the customer at those times

and a departure time from the customer location. We refer to this problem as the

Continuous Time Inventory Routing Problem with Out-and-Back routes (CIRP-OB).

Next, even though we assume only out-and-back routes, we show that the problem is

still strongly NP-Hard.

Proposition 16. The CIRP-OB is strongly NP-Hard.

Proof. Reduction for 3-PARTITION. Given an instance of 3-PARTITION, i.e., a set

of items {a1, a2, . . . , a3n} with ∑3n
i=1 ai = nB and 1

4B < ai <
1
2B for i = 1, . . . , 3n,

construct the following instance of CIRP-OB. The instance has 3n customers. Cus-

tomer i is located at travel time τi = 1
2ai from the depot, has usage rate ui = 1,

storage capacity Ci = B, and initial inventory I0
i = BâĹŠε. There are n vehicles

with capacity Q = 3B. The planning horizon is H = B. Each customer needs at

least one delivery during the planning horizon, because the usage during the planning

horizon is B > BâĹŠε. Each vehicle can make at most 3 deliveries during the plan-

ning horizon, because the time required to make 4 deliveries is strictly greater than

4× 1
4B = B = H, which implies that the maximum number of deliveries that can be

made during the planning horizon is 3n (there are n vehicles). This implies that each

vehicle has to make 3 deliveries. Because ∑3n
i=1 ai = nB, this implies that each vehicle

k must have ∑i∈Sk ai = B, where Sk is the set of customers visited by vehicle k.

Thus, a feasible delivery schedule exists if and only if the instance of 3-PARTITION

is a yes-instance.
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4.3 Exact Time Indexed Formulation

In [72] the authors prove that a rational optimal solution always exists for a feasible

Continuous Time IRP (CIRP) instance. The CIRP-OB is a special case of the CIRP,

thus an optimal solution whose deliveries and decision times are rational is guaranteed

as long as a feasible solution exists. Then, there exists a time discretization sufficiently

fine in which a time indexed formulation finds an optimal solution. In this section

we assume a time discretization with the property just mentioned is given and we

present a time indexed formulation on it.

Let Ki + 1 be the number of time points in the time discretization of location

i ∈ N0, and let Ti = {0, ..., Ki} be the set of indexes. Let {tki }k∈Ti be the set of

time points and we assume the times are ordered, tk−1
i < tki , k ≥ 1. We also assume

that {0, H} ⊆ {tki }k∈Ti . Note that these time point sets can represent any time

discretization, i.e., the difference between two consecutive times, tk+1
i − tki , can be

any rational number, i ∈ N0, k ∈ Ti. We consider a time-expanded network that

preserves travel times, and so, the following conditions to all time points:

• for all i ∈ N and k ∈ T0 such that tk0 + τi ≤ H, then tk0 + τi ∈ {t`i}`∈Ti ;

• for all i ∈ N and k ∈ T0 such that tk0 − τi ≥ 0, then tk0 − τi ∈ {t`i}`∈Ti ;

• for all i ∈ N and k ∈ Ti such that tki + τi ≤ H, then tki + τi ∈ {t`0}`∈T0 ;

• for all i ∈ N and k ∈ Ti such that tki − τi ≥ 0, then tki − τi ∈ {t`0}`∈T0 .

Locations in N0 and times {tki }i∈N0,k∈Ti induce a time-expanded network. This

network consists of the nodes set N T = {(i, tki ) : i ∈ N0, k ∈ Ti} and the timed arcs
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set,

AT =


ak`ij :=

(
(i, tki ), (j, t`j)

)
∈ N T ×N T :

if i = 0 and j ∈ N then tk0 + τj = t`j

if i ∈ N and j = 0 then tki + τi = t`0

if i = j and k < Ki then t`j = tk+1
i


.

Let δ+(i, tki ) = {(j, `) : ∃`, ak`ij ∈ AT } be the set of locations and time indexes that

can be reached from i at time tki . Similarly, we define δ−(i, tki ) = {(j, `) : ∃`, a`kji ∈

AT }, as the set of locations and time indexes that reach the node (i, tki ) ∈ N T . To

simplify notation, we define ūki = ui(tki −tk−1
i ) as the product consumed by a customer

i ∈ N during the time interval [tk−1
i , tki ], for (i, tki ) ∈ N T and k ≥ 1.

We consider the binary variables xkij, representing whether a vehicle travels from

i to j at time tki , xkij = 1, or not, xkij = 0; for all arc ak`ij ∈ AT . The variable wkij
indicates the amount of product that flows for location i to j at time tki . Let the

variable yki be the delivered product and zki be the inventory level at customer i ∈ N

at time tki , (i, tki ) ∈ N T . We assume that zki is the inventory customer level after the

delivery, if any, takes place.
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min
∑
i∈N

∑
k∈T0

2cixk0i,

s.t. xki0 + xkii = xk−1
ii + x`0i, i ∈ N, k ∈ Ti, (0, `) ∈ δ−(i, tki ), (4.1a)

xk00 +
∑
i∈N

xk0i = xk−1
00 +

∑
(i,`)∈δ−(0,tk0)

x`i0, k ∈ T0 \ {0, K0}, (4.1b)

x0
00 +

∑
i∈N

x0
0i = m, (4.1c)

w`0i + wk−1
ii − wkii = yki , i ∈ N, k ∈ Ti, (0, `) ∈ δ−(i, tki ), (4.1d)

xkii + xki0 ≤ 1, i ∈ N, k ∈ Ti, (4.1e)

0 ≤ wkij ≤ Qxkij, ak`ij ∈ AT , (4.1f)

zki = zk−1
i + yki − ūki , i ∈ N, k ∈ Ti \ {0}, (4.1g)

z0
i = I0

i + y0
i , i ∈ N, (4.1h)

ūk+1
i ≤ zki ≤ Ci, i ∈ N, k ∈ Ti, (4.1i)

0 ≤ yki , i ∈ N, k ∈ Ti,

xkij ∈ {0, 1}, ak`ij ∈ AT .

Constraints (4.1a), (4.1b) and (4.1c) ensure vehicle flow balance and enforce that

all m vehicles are returned to the depot at the end of the planning horizon. Con-

straints (4.1d) impose product flow balance and ensure that the product arriving at

a customer is either delivered at that customer or remains on the vehicle. Note that

no product can come back to the depot. Constraints (4.1e) together with the require-

ment that each xtij variable is binary ensure that at most one vehicle can be visiting

a customer at any one time. Constraints (4.1f) link the product flows to the vehicle

flows. Constraints (4.1g) and (4.1h) model product usage at a customer and inven-

tory balance. Constraints (4.1i) ensure that inventory at a customer is sufficient, after

each delivery, to meet the customer demand in the coming period and never exceeds
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the local storage capacity.

A lower bound value to the linear relaxation of formulation (4.1) can be found

using the parameters of the problem. This value corresponds to the cost of the

minimum number of vehicles required (fractional) to deliver the product customers

need to cover their usage during the planning horizon. In proposition 18, next in

this section, we show that this lower bound is tight to the linear relaxation when the

number of vehicles is large: there exists a feasible solution whose cost is (4.2).

Proposition 17. A lower bound for the formulation (4.1) linear relaxation optimal

value is given by ∑
i∈N

2ci
(
Hui − I0

i

Q

)
. (4.2)

Proof. Note that the inventory balance constraints imply the following condition on

the total delivery for any i ∈ N ,

zKii = I0
i +

∑
k∈Ti

yki −Hui ≥ 0,

∑
k∈Ti

yki ≥ Hui − I0
i .

Also, note that summing up the product balance constraints (4.1d) leads to,

∑
`∈T0

w`0i =
∑
k∈Ti

yki ,

and since wkij ≤ Qxkij, we have,

Hui − I0
i ≤

∑
k∈Ti

yki =
∑
`∈T0

w`0i ≤ Q
∑
`∈T0

x`0i.

Multiplying by 2ci and summing up over all i ∈ N , we get that any feasible solution

to formulation (4.1) is greater than or equal to (4.2).
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Proposition 18. Consider a feasible CIRP-OB instance and m = ∑
i∈Nd(Ci − I0

i +

2τiui)/Qe. Also, assume that the time points H − Ci/ui and τi are in {tki }k, for all

i ∈ N . The optimal solution value to formulation (4.1) linear relaxation is equal to

(4.2), ∑i∈N 2ci
(
Hui−I0

i

Q

)
.

Proof. We show a feasible solution whose cost is equal to (4.2).

For all i ∈ N , consider k = k1, k1 + 1 . . . , k2, with tk1
i = τi and tk2

i = H − Ci/ui.

Also, let k̄ = argmink=k1,k1+1...,k2{I
0
i + Q(k + 1 − k1) − uitki > Ci}. We suggest the

following solution:

x`0i =



1, k = k1, . . . , k̄ − 1,

Ci−(I0
i +Q(k̄−k1)−uitk̄i )

Q
, k = k̄,

ūki
Q
, k = k̄ + 1, . . . , k2,

with ` ∈ δ−(i, tki ).

In this solution, each customer i ∈ N receives full vehicle deliveries at each time

tki , k = k1, . . . , k̄, until the inventory is equal to Ci and then, after time tk̄+1
i , the

deliveries are equal to what is consumed in a time interval ūki . There is no waiting,

thus all variables xkii are equal to zero. Constraints (4.1a)-(4.1b) are satisfied because

we have constructed the x variables as a flow. The number of vehicles constraint (4.1c)

is guaranteed by the number m we’ve assumed; the maximum number of vehicles a

customer needs in this solution is at most d(Ci− I0
i + 2τiui)/Qe, corresponding to the

product usage while a vehicle is traveling and the initial product needed to fill the

inventory level, Ci − I0
i .

Note that in this solution the inventory levels are feasible for all i ∈ N and

k = k1, . . . , k2,

zki =


zk−1
i +Q− ūki , k = k1, . . . , k̄ − 1,

Ci, k = k̄, . . . , k2,
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and since it also holds that tk2
i = H −C0

i /ui, then inventory levels are feasible for all

planning horizon.

We conclude this solution is feasible and its total cost is exactly (4.2),

∑
`∈T0

x`0i = (k1 − k̄) + Ci − I0
i −Q(k̄ − k1)− uitk̄i

Q
+ ui(tk2

i − tk̄i )
Q

,

= Ci − I0
i

Q
+ uit

k2
i

Q
,

= Ci − I0
i

Q
+ Hui − Ci

Q
,

= Hui − I0
i

Q
.

We expect that the previous proposition is true also without specifying a specific

number of vehicles, i.e., that the value of the linear relaxation is (4.2) even if the

number of vehicles is free and not specified in advance. This proposition shows that

the linear relaxation is weak: when the integrality condition on x variables is relaxed,

the optimal solution might contain several “fractional” vehicles that deliver only what

is consumed in a time interval, ūki , i ∈ N , k ∈ Ti.

This suggests that strengthening the formulation, by exploiting problem structure,

will be critical in the development of an effective solution approach. In the next section

we present some observations that can be used for strengthening the formulation (4.1).

4.4 Optimality Preserving Conditions (OPC)

In this section we present several conditions that can be used to limit the search for

an optimal solution for the CIPR-OB. We call these conditions optimality preserving,

and we refer to them as optimality preserving conditions (OPC), because there always

exists an optimal solution that satisfies all these conditions. In order to derive these

conditions, we first need to consider the following definitions.
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Definition 1. Depot-time set of a vehicle: For a CIRP-OB feasible solution, we

define the depot-time set Sv0 of a vehicle indexed by v ∈ {1, . . . ,m}, as the union of

time intervals in [0, H] the vehicle v stays at the depot.

Definition 2. Depot-time set of a solution: For a CIRP-OB feasible solution, we

define the depot-time set of the solution as the collection of depot-time sets of the

vehicles, Sv0 , v ∈ {1, . . . ,m}.

Definition 3. Maximal depot-time-set optimal solution (MDO): A MDO is an op-

timal solution to a CIRP-OB instance, with depot time set Sv∗0 , such that there is

no other optimal solution, with depot time set Sv0 , v ∈ {1, . . . ,m}, that satisfies the

following conditions:

• for all v = 1, . . . ,m, Sv∗0 ⊆ Sv0 ;

• and there exists a v′ ∈ {1, . . . ,m} such that Sv′∗0 ⊂ Sv
′

0 .

For the CIRP-OB several similar solutions might be optimal. Small perturbations

to an optimal solution in the time a vehicle waits at a customer location, or in the

delivered quantity, or in the time a vehicle stays at the depot, lead to different optimal

solutions. We restrict the search for optimal solutions to those that are MDO only.

In the following sections we present OPC conditions. Any MDO must satisfy all

the OPC conditions. If a solution does not satisfy any of the OPC conditions, then

it is not a MDO, since there exists another optimal solution whose depot-time set is

maximal. In Section 4.4.1, OPC that restrict the time or the conditions under which

vehicles wait at the customer locations are shown. In Section 4.4.2, we present OPC

that impose conditions on the visiting times or the delivery quantities when vehicles

arrive to a customer.
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4.4.1 Vehicle Waiting Conditions

Proposition 19. In an MDO, if a vehicle waits at customer i ∈ N before making a

delivery, then the inventory level after the delivery is Ci.

Proof. For contradiction, consider any MDO solution where a vehicle v ∈ {1, . . . ,m}

makes a delivery and the inventory level is strictly less than Ci, i ∈ N . Let Ii be the

customer inventory level before the delivery. Let 0 < q < Ci − Ii be the delivered

quantity and let r > 0 be the remaining quantity at the vehicle immediately after

the delivery. If Ii + q + r ≤ Ci, then the vehicle can deliver q + r and go back to

the depot. This is a contradiction; the solution cost is the same, so it maintains

optimality condition, and the depot-time set of the vehicle v, Sv0 , is superset since the

vehicle doesn’t wait at the customer location. If Ii+q+r > Ci, then we can make the

vehicle deliver Ci − Ii and wait at the customer location. The remaining quantity at

the vehicle is less than r and so the vehicle can return at time t+ q+r−Ci+Ii
ui

< t+ r
ui

,

with ui the customer usage rate and t the vehicle delivery time. The cost is the same

and the Sv0 is also superset, so again, this is a contradiction.

Proposition 20. In an MDO, if a vehicle waits at customer i ∈ N before making a

delivery, then the inventory level upon arrival is zero.

Proof. Let [t1, t2] be the time interval a vehicle v ∈ {1, . . . ,m} is waiting at the

customer location of a MDO solution. Let Ii be the inventory level at time t1 before

delivery and let ui be the usage rate, i ∈ N . For contradiction, assume Ii is positive.

Then, the vehicle can arrive at time t = min{Ii/ui + t1, t2}, instead of t1, and the

solution is still feasible. If t = t2, then there is no waiting; otherwise, the vehicle can

deliver Ci quantity (the maximum quantity possible to be delivered at time t), and

the depot-time set Sv0 is superset, since the vehicle v stays at the depot longer. The

solution is feasible and the cost remains the same, reaching the contradiction.
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Proposition 21. In an MDO, if a vehicle waits at customer i ∈ N before making a

delivery, then the waiting time is no more than max{Q−Ci,0}
ui

time.

Proof. For contradiction assume that the waiting time of a vehicle v ∈ {1, . . . ,m} is

strictly greater than max{Q−Ci,0}
ui

for a MDO solution. By proposition 20, we know

the inventory is zero when the vehicle v arrives. If Q ≤ Ci, the vehicle can deliver Q

and immediately after return to the depot. The waiting time at the customer is zero

so we get the contradiction. If Q > Ci, since the inventory is zero, the vehicle can

deliver Ci. Then it can stay until the customer consumes the difference Q − Ci and

return to the depot. In this case, the total waiting time is exactly Q−Ci
ui

, leading to

the contradiction.

4.4.2 Visit Time Conditions

Let N` ⊆ N be the set of customers whose inventory capacity is less than Q, Ci < Q,

and let Ng = N \N` be the set of customers whose capacity is greater than or equal

to, Ci ≥ Q.

Proposition 22. In an MDO, the delivered quantity at the time the vehicle arrives

to a customer i ∈ N is equal to the minimum between Ci − Ii and Q, where Ii is the

inventory level at the arrival time and Ci is the customer capacity.

Proof. Note that if the arriving vehicle waits after the delivery, then by proposition

19, the delivery must be equal to Ci − Ii. Consider a vehicle that doesn’t wait

after the delivery in a MDO solution. If the vehicle delivers the maximum quantity

possible, in this case the minimum between the vehicle capacity Q and the remaining

customer capacity Ci − Ii, then the solution cost is the same and the depot-time set

of the solution is at least the same. Indeed, since the maximum possible quantity was

delivered by the vehicle, any other vehicle v ∈ {1, . . . ,m} that makes a delivery after

can save time at the customer; less product must be delivered. Then, the vehicle v

can potentially stay at the depot longer, so the set Sv0 is superset.
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Proposition 23. In a MDO, if a customer i ∈ Ng has exactly ηi =
⌈
Hui−I0

i

Q

⌉
visits,

then the visit arrival times sk, k = 1 . . . , ηi must occur in the following intervals,

sk ∈
[
Hui − Ci − (ηi − k)Q

ui
,
I0
i + (k − 1)Q

ui

]
, k = 1, . . . , ηi. (4.3)

Proof. First we prove the intervals are correct. We know that Qηi ≥ Hui − I0
i , so

summing kQ both sides with k = 1, . . . , ηi, and noticing that Q ≤ Ci, we get,

Hui − I0
i + kQ ≤ Q(ηi + k),

Hui − (ηi − k)Q ≤ I0
i + kQ,

Hui − (ηi − k)Q− Ci ≤ I0
i + (k − 1)Q.

We prove that the visit times must be in the intervals. For contradiction, suppose

there is a visit k = 1, . . . , ηi whose time sk is not in the interval we defined. If the

time sk > I0
i +(k−1)Q

ui
, then the solution is not feasible since the maximum product

delivered by k − 1 visits is (k − 1)Q, so at time sk the inventory level is negative.

Then, it must be sk < Hui−Ci−(ηi−k)Q
ui

. Let q` be the total delivery done by the vehicle

at visit ` = 1, . . . , ηi. The total delivery ∑k
`=1 q` up to time sk satisfies,

k∑
`=1

q` ≤ uisk + Ci − I0
i ,

since for customer i no waiting is allowed (proposition 21). The total delivery by all
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visits holds,

ηi∑
`=1

q` =
k∑
`=1

q` +
ηi∑

`=k+1
q`

≤
k∑
`=1

q` + (ηi − k)Q

≤ uisk + Ci − I0
i + (ηi − k)Q,

< Hui − Ci − (ηi − k)Q+ Ci − I0
i + (ηi − k)Q,

= Hui − I0
i ,

but this contradicts the fact the solution is feasible.

Proposition 24. In a MDO, if a customer i ∈ N` has exactly ηi =
⌈
Hui−I0

i

Q

⌉
visits,

then the visit arrival times sk, k = 1 . . . , ηi must occur in the following intervals,

sk ∈
[
Hui − Ci + I0

i − (ηi − k + 1)Q
ui

,
I0
i + (k − 1)Q

ui

]
, k = 1, . . . , ηi. (4.4)

Proof. This proof is similar to proposition 23’s proof.

First we prove the intervals are correct. We know that Qηi ≥ Hui−I0
i , so summing

(k − 1)Q both sides with k = 1, . . . , ηi, and noticing that I0
i − Ci ≤ 0, we get,

Hui − I0
i + (k − 1)Q ≤ Q(ηi + k − 1),

Hui − (ηi − k + 1)Q ≤ I0
i + (k − 1)Q,

Hui − (ηi − k + 1)Q− Ci + I0
i ≤ I0

i + (k − 1)Q.

We prove that the visit times must be in the intervals. For contradiction, suppose

there is a visit k = 1, . . . , ηi whose time sk is not in the interval we defined. The

case sk > I0
i +(k−1)Q

ui
is equivalent to 23’s proof. Let q` be the total delivery done by

the vehicle at visit ` = 1, . . . , ηi. Suppose the time sk is before Hui−Ci+I0
i −(ηi−k+1)Q
ui

.

There are two cases, the vehicle during the visit kth waits or it doesn’t. If it waits,
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then the inventory level before the delivery at the arrival time is zero (proposition

20), so it must be ∑k−1
`=1 q` = uisk − I0

i . In this case, the total delivery up to time sk,∑k
`=1 q`, is at most uisk − I0

i +Q, then,

ηi∑
`=1

q` ≤ uisk − I0
i +Q+ (ηi − k)Q,

< Hui − Ci + I0
i − (ηi − k + 1)Q− I0

i +Q+ (ηi − k)Q,

= Hui − Ci,

≤ Hui − I0
i ,

which is a contradiction.

Let Iki be the inventory intermediately before the kth delivery. If the vehicle

doesn’t wait during the kth visit then, the inventory level after the delivery at time

sk is Ci (proposition 22), so the qk delivery is Ci − Iki and also,

k∑
`=1

q` =
k−1∑
`=1

q` + qk,

= Iki − I0
i + skui + Ci − Iki ,

= skui + Ci − I0
i .

Thus, the total delivery satisfies,

ηi∑
`=1

q` ≤ skui + Ci − I0
i + (ηi − k)Q,

< Hui − Ci + I0
i − (ηi − k + 1)Q+ Ci − I0

i + (ηi − k)Q,

= Hui −Q,

< Hui − Ci,

≤ Hui − I0
i .

leading to the contradiction.
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Proposition 25. In a MDO, if a customer i ∈ Ng has v visits, v > ηi =
⌈
Hui−I0

i

Q

⌉
,

then in at least one of the intervals,

[
kQ− (Ci − I0

i )
ui

,
I0
i + (k − 1)Q

ui

]
, k = 1, . . . , ηi, (4.5)

there are no arrivals.

Proof. For contradiction, assume the solution is MDO and all intervals have at least

one visit. Consider the following procedure: for each interval keep the latest visit

only by removing all the visits before within the same interval. Since each interval

k = 1, . . . , ηi is defined from time sk1 = kQ−(Ci−I0
i )

ui
, the visit we left is guaranteed to

delivery Q product. Indeed, the visit time t is greater than or equal to sk1 thus the

delivery qk in this visit is the minimum between the capacity Q and the difference

between the inventory before the visit and the capacity Ci,

qk = min{Ci − (tui − I0
i − (k − 1)Q), Q},

≥ min{Ci − (kQ− (Ci − I0
i )− I0

i − (k − 1)Q), Q},

= Q.

For each interval k the inventory is non-negative at the moment of the vehicle

arrival t. Indeed, for each ` = 1, . . . , k − 1 the delivery is Q, then the inventory is

non-negative at t ∈ [sk1, sk2], with sk2 = I0
i +(k−1)Q

ui
,

I0
i + (k − 1)Q− tui ≥ I0

i + (k − 1)Q− sk2,

≥ I0
i + (k − 1)Q− I0

i − (k − 1)Q,

≥ 0.

We conclude the solution we propose is feasible and its cost is less than the MDO
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solution cost, reaching the contradiction.

4.5 Lower Bound Model (LBM)

A formulation that provides a lower bound on the value of an optimal solution to an

instance of CIRP-OB can be obtained from formulation (4.1) by removing time points

from the discretization, i.e., removing one or more time points from the sets Ti for

i ∈ N , appropriately adjusting input parameters, and relaxing some of the constraints

(the time expanded network must satisfy {0, H} ⊆ {tki }k∈Ti for all i ∈ N0). More

specifically, consider the following modifications:

1. The travel time at time tki , i ∈ N0, k ∈ Ti, to a location j ∈ N0 is given according

to the following expression,

τ kij =



max`∈Tj{t`j : t`j ≤ tk0 + τj} − tk0 i = 0, j ∈ N,

max`∈T0{t`0 : t`0 ≤ tki + τi} − tki i ∈ N, j = 0,

tk+1
i − tki i = j, k < Ki.

(4.6)

The travel times are rounded down, which ensures that τ kij ≤ τj, for all i, j ∈ N0,

k ∈ Ti. Note that, depending on the time discretizations, some travel times τ kij
might be non-positive. Also for two different departure time points tk1

i and tk2
i ,

k1, k2 ∈ Ti, with k1 < k2, the arrival time at j ∈ N0 can be potentially the same,

i.e., tk1
i + τ k1

ij = tk2
i + τ k2

ij .

2. The customer storage capacity is enlarged by adding the amount ui(tk+1
i −tki ) =

ūk+1
i , i.e., the product consumption during the time interval [tki , tk+1

i ], with

i ∈ N , k ∈ Ti. We modify the z variables upper bound in (4.1i) as follows,

ūk+1
i ≤ zki ≤ Ci + ūk+1

i . (4.7)
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Note that the new storage capacity bounds depend on the customer time dis-

cretization; different time interval lengths have different inventory capacities.

3. Multiple vehicles can visit a customer at the same time. We remove one-visit-

at-the-time constraints (4.1e) and we also let the variables xkij be defined for

any non-negative integer, xkij ∈ Z+, ak`ij ∈ AT .

We call this model the Lower Bound Model (LBM), which is justified by the

following theorem.

Theorem 2. The optimal value of the LBM is a lower bound on the optimal value of

the CIRP-OB.

Proof. Consider any CIRP-OB feasible solution and any time discretization. Let

{υ`i}`∈Li be the sequence of decision times, namely, arrival to; departure from; or

delivery time of location i ∈ N0, with set index Li. Similarly, let η`i be the delivered

quantity to customer i ∈ N at time υ`i , ` ∈ Li. We show that this CIRP-OB solution

can be mapped to a LBM solution at no extra cost. Consider the following mapping

of a time υ`i to a LBM time Ti(υ`i ),

Ti(υ`i ) = max
k∈Ti

{
tki : tki ≤ υ`i

}
.

Every time point υ`i is mapped to the closest time tki in the time discretization,

with tki ≤ υ`i , i ∈ N0.

The travel times defined in (4.6) guarantee the LBM solution is feasible in time

dimension, i.e., the vehicle flow balance is preserved. Let υ`10 be any departure time

from the depot to some customer i ∈ N , `1 ∈ L0, and let υ`2i be the corresponding

arrival time to i, `2 ∈ Li in the CIRP-OB solution. Since the solution is feasible, it

holds υ`10 +τi ≤ υ`2i . Let k1 ∈ T0 and k2 ∈ Ti such that T0(υ`10 ) = tk1
0 and Ti(υ`2i ) = tk2

i ,
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then,
tk1
0 + τ k1

0i = max
k∈Ti
{tki : tki ≤ tk1

0 + τi}

≤ max
k∈Ti

{
tki : tki ≤ υ`10 + τi

}
≤ max

k∈Ti

{
tki : tki ≤ υ`2i

}
= tk2

i .

An equivalent argument can be used to show that departing from a customer i ∈ N

location to the depot in the LBM is time feasible.

If a vehicle is waiting at the customer i ∈ N location, then for any two consecutive

times υ`1i and υ`2i in the same vehicle itinerary, it holds either tk1
i = Ti(υ`1i ) = Ti(υ`2i ) =

tk2
i and there is no waiting in the LBM solution; or tk2

i = tk2
i +∑k2−1

k=k1 τ
k
ii.

So any decision time in the CIRP-OB solution is mapped to a time in the LBM

solution that is before in the time horizon. Since in the LBM waiting times at

customer place and more than one visit at the same time are allowed, the itinerary

given by the LBM times is feasible.

The LBM solution keeps the deliveries η`i values, for all i ∈ N and ` ∈ Li. The

CIRP-OB solution is product flow balanced, so we only show that the LBM solution

is feasible for inventory levels. Let Ii(t) be the inventory level at time t ∈ [0, H] in the

CIRP-OB solution, for a customer i ∈ N . Note that 0 ≤ Ii(t) ≤ Ci, for all t ∈ [0, H].

Consider any integer k < Ki and the interval given by [tki , tk+1
i ]. Let υ`i be the time

of the last visit to customer i in that interval, ` ∈ Li. Since the CIRP-OB solution is

feasible it must be that I(υ`i ) ≥ (tk+1
i − υ`i )ui. It also holds tki = T (υ`i ). It follows,

zki = I0
i +

∑̀
s=1

ηsi − uitki = I0
i +

∑̀
s=1

ηsi − uiυ`i + ui(υ`i − tki ) = Ii(υ`i ) + ui(υ`i − tki ),
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Combining the above, we get,

zki = Ii(υti) + ui(υti − tki ) ≥ (tk+1
i − υ`i )ui + ui(υti − tki ) = ui(tk+1

i − tki ) = ūk+1
i ,

and also,

zki ≤ Ci + ui(υti − tki ) ≤ Ci + ūk+1
i .

Thus, the inventory levels are feasible.

We conclude, the CIRP-OB solution can be mapped to a LBM solution with no

extra cost. In particular, this is true for an optimal CIRP-OB solution, so the LBM

is a valid lower bound model.

Figure 4.1 shows an example of a mapping of travel times in the LBM. Black

dots represent time points for the customer i ∈ N and the depot time discretization.

The solid line represents a CIRP-OB solution and the crosses are times at which the

customer is visited in that solution. This solution can be mapped as it is shown with

dashed lines. Note that in this mapping the vehicle in the LBM has to wait at the

customer location in order to maintain the CIRP-OB itinerary, even when the vehicle

in the CIRP-OB solution does not.

Time

L
o
c
a
ti
o
n
s

τi
τiτk0i

τ`i0

0

i

Figure 4.1: LBM Travel times example

Figure 4.2 shows an example of customer inventory level in a LBM solution

mapped from a CIRP-OB solution. The solid line represents the inventory level
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for a feasible CIRP-OB solution whose delivery times are υ and delivery quantities

are η. In this solution the inventory levels are always non-negative and below capacity

Ci. The mapped LBM solution is represented with a dashed line, with deliveries at

times t. The inventory levels in the LBM are above Ci at times tk−1
i and tki in order

to deliver the same CIRP-OB amount.

Time

In
v
e
n
to

ry

η`−1
i

η`i + η`+1
i

η`−1
i

η`i

η`+1
i

tk−1
i

tki tk+1
iυ`−1

i
υ`i υ`+1

i

Ci

Figure 4.2: Example of a LBM inventory levels

As mentioned above, the travel times are rounded down, which means that it is

possible that for two different time points in the departure location, the arrival time

at the destination is the same. This condition gives more symmetry to the LBM,

making it more difficult to solve in practice. We can remove some of the x variables

that are redundant in the LBM, as stated in the following proposition.

Proposition 26. In the LBM, if two points (0, t`10 ) and (0, t`20 ) in N T , with t`10 < t`20

have a timed arc connecting the same customer i ∈ N at the same time tki , k ∈ Ti,

then the variable x associated to the point (0, t`10 ) can be removed from the formulation.

Proof. This result follows from the observation that the LBM without the time point

(0, t`10 ) is still a lower bound model for the formulation, since the mapping Ti, i ∈ N ,

in proposition 17 considers the closest time point in the time-expanded network for

the CIPR-OB solution.

121



In the LBM the OPC conditions cannot be imposed directly. However, we can

check if the time-expanded network satisfies some conditions that allows to include

the OPC in the model.

4.5.1 Incorporating Vehicle Waiting Conditions into the LBM

In this section, we show how the conditions of Section 4.4.1 can be enforced by

constraints in the LBM. We call a LMDO to a solution in the LBM for which there

exists a MDO that can be mapped to the LBM solution.

Proposition 27. (Condition Proposition 19): Any LMDO satisfies the following

constraints,

Ciν
k
i ≤ zki ≤ (Ci + ūk+1

i )− ūk+1
i νki , i ∈ N, k ∈ Ti,

xkii ≤ mνki , i ∈ N, k ∈ Ti,

νki ∈ {0, 1}, i ∈ N, k ∈ Ti,

(4.8)

provided ūk+1
i ≤ Ci. The binary variable νki is equal to one if at least one vehicle is

waiting at the customer i ∈ N at time tki , k ∈ Ti; zero otherwise.

Proof. Let’s first consider the case with a single vehicle waiting at a customer location

i ∈ N . Then at some time tki , k ∈ Ti, we have xkii = 1. This means that for any CIRP-

OB feasible solution mapped to this LBM solution there must be a vehicle waiting

from some time t in [tki , tk+1
i ) to some time t′ in [tk+1

i , tk+2
i ). Given that ūk+1

i ≤ Ci,

we can assume w.l.o.g. that there are at most two deliveries in [t, tk+1
i ], one at time

t and another at time tk+1
i (we can consolidate small deliveries in that interval). The

proposition 19 holds that at any time after a delivery the inventory level must be

equal to Ci, in particular, this is true at t. In the LBM, the time t maps to tki so the

inventory at this time must be equal to Ci.

If xkii > 1 for the LBM solution, then more than vehicle is waiting at the customer
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i ∈ N location, but there is at most one doing deliveries, since the LBM is mapped

from a feasible CIRP-OB solution and at most one vehicle can deliver at the same

time. For the vehicle that is doing deliveries, using the previous result, every time xkii
is positive, the inventory must be equal to Ci.

Proposition 28. If for an index k ∈ Ti there exists a ` ∈ T0, such that t`0 + τ `0i = tki ,

then any LMDO satisfies the following constraints,

xk−1
ii ≤ 1, if i ∈ N`,

xk−1
ii = 0, if i ∈ Ng.

Proof. Consider a customer i ∈ N`. Every CIRP-OB feasible solution satisfies that

no more than one vehicle is waiting at some customer location. If the LBM solution

mapped from this solution has more than one vehicles are waiting at i at time tk−1
i ,

k ∈ Ti, means that at least v−1, with v = xk−1
ii > 1, vehicles make a delivery at some

time in [tki , H] and no delivery before time tki . Assume those v − 1 vehicles depart at

time t`′0 from the depot, then we can re-route them from time t`′0 to time t`0, arriving

at time tki to customer i. The time t`0 and travel time τ `0i guarantee this new itinerary

is feasible. We keep the same itinerary after this time tki . Therefore the constraint

xk−1
ii ≤ 1 is valid.

Consider a customer i ∈ Ng. A CIRP-OB feasible solution satisfies that waiting

vehicles is not allow for i. Similar to the case above, if v = xk−1
ii > 0 vehicles are

waiting we can re-route from time t`′0 to time t`0, arriving at time tki to customer i, so

the constraint xk−1
ii = 0 is valid.

Proposition 29. (Condition Proposition 20): If for some customer i ∈ N and k ∈ Ti

there exist indexes `1, `2 ∈ T0 such that t`10 + τ `10i = tki and t`20 + τ `20i = tk+1
i , then any

LMDO satisfies the following constraint,

(Ci − ūki )(2− x`1i0 − xkii) + ūk+1
i ≥ zk−1

i − ūki . (4.9)
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Proof. From Proposition 28, we know that the number of vehicles waiting from some

time in [tki , tk+1
i ) to some time in [tk+1

i , tk+2
i ) is at most one, since the depot time

discretization has a time t`20 such that t`20 + τ `20i = tk+1
i . Consider any optimal solution

to the CIPR-OB, then by proposition 20, any vehicle that arrives at some time in

[tki , tk+1
i ) and then waits, must get there when the customer is zero level inventory.

This means that any LBM optimal solution in which a vehicle visits a customer at

time tki and then waits, the customer can have at most ūk+1
i units in inventory.

Proposition 30. (Condition Proposition 21): Consider a customer i ∈ N`. For an

index k1 ≤ Ki − 1 and an index k2 = argmink∈Ti{tki ≤ tk1+1
i + Q−Ci

ui
} such that there

exists a ` ∈ T0, with t`0 + τ `0i = tk2
i . There exist a LMDO that satisfies the following

constraint,
k2∑

k=k1

xkii ≤ k2 − k1.

Proof. For any arrival time during the interval [tk1
i , t

k1+1
i ) the departure time cannot

be later than tk1+1
i + (Q − Ci)/ui since the waiting time is at most (Q − Ci)/ui for

customers i ∈ N` (Proposition 21). Thus, a vehicle can wait at most from time tk1
i to

tk2
i in the LBM.

4.5.2 Incorporating Visit Time Conditions into the LBM

Consider the condition given in Proposition 22: the delivery at time tki must be the

minimum of Q and Ci − Iki , where Iki is the inventory level before the delivery, for

any customer i ∈ N . Let vki be a binary variable that is equal to one if the minimum

of the vehicle capacity Q and Ci− Iki is Q; zero otherwise; for a customer i ∈ Ng and

a time tki , k ∈ k ∈ Ti. Any LMDO satisfies the following constraints,

yki ≥ (Ci + ūki )(x`0i − vki )− zk−1
i , (4.10a)

yki ≥ Q(x`0i + vki − 1). (4.10b)
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For customers i ∈ N`, the delivery is always Ci − Iki , so the following constraint

is satisfied by any LMDO at a time tki , k ∈ k ∈ Ti,

yki ≥ (Ci + ūki )x`0i − zk−1
i , i ∈ N`, k ∈ Ti. (4.11)

Note that Iki = Ci + ūki − zk−1
i , so when x`0i − vki = 1 for customers i ∈ Ng, or

when x`0i = 1 for customers i ∈ N`, the inventory level after the delivery is Ci.

Inputs for the inequalities in this section are a lower and an upper bound for the

number of visits to a customer. The lower bound ηi can be obtained computing the

total product must be delivered Hui−I0
i divided by the vehicle capacity Q (maximum

product can be carried by a vehicle), ηi =
⌈
Hui−I0

i

Q

⌉
, for all i ∈ N . An upper bound

Mi for the number of visits can be computed as the maximum total time that can be

assigned to customer i divided by the total time it takes to visit it, 2τi. We have,

Mi =
⌊
mH −∑j∈N :j 6=i 2τjηj

2τi

⌋
, i ∈ N.

For customers i ∈ N with storage capacity Ci > Q, a system of inequalities can

be derived from Propositions 23 and 25 for the LBM. Consider the following time

indexes:

sk1 = max{k ∈ Ti : uitki ≤ Hui − Ci − (ηi − k)Q} k = 1, . . . , ηi,

sk2 = max{k ∈ Ti : uitki ≤ I0
i + (k − 1)Q} k = 1, . . . , ηi,

sk3 = max{k ∈ Ti : uitki ≤ kQ− Ci + I0
i } k = 1, . . . , ηi,

sk4 = max{k ∈ Ti : uitki ≤ I0
i + (k − 1)Q− ε} k = 1, . . . , ηi,

with 0 < ε ≤ Ci−Q, given. Note that sk1 is the index in Ti that represents the lower

bound in the interval in (4.3) for the kth visit arrival time in the LBM, while sk2 is
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the index that represents the upper bound in the interval. The index s3 is the time

index for the lower bound in the interval in (4.5) in the LBM and the sk4 represents

the upper bound of that interval.

Let νi a binary variable that is equal to one if the number of visits to customer i

is ηi; zero otherwise. Let rki be a binary variable that is equal to one if the interval

given by [ts
k
3
i , t

sk4
i ] has at least one visit; zero otherwise; for k = 1, . . . , ηi. Any LMDO

satisfies the following system,

(ηi + 1)(1− νi) ≤
∑
`∈T0

x`0i ≤Mi − (Mi − ηi)νi, (4.12a)

νi ≤
sk2∑
s=sk1

∑
`:(0,`)∈δ−(i,tsi )

x`0i, k = 1, . . . , ηi (4.12b)

sk4∑
s=sk3

∑
`:(0,`)∈δ−(i,tsi )

x`0i ≤Mir
k
i , k = 1, . . . , ηi (4.12c)

η∑
k=1

rki ≤ η − 1 + νi. (4.12d)

provided the following conditions are satisfied in the time-expanded network,

1. there exists a index ` ∈ T0 such that t`0 + τ `0i = t
sk1
i ,

2. there exists a index ` ∈ T0 such that t`0 + τ `0i = t
sk3
i .

The two conditions, time points in {t`0}`∈T0 that permit to get to i at time ts
k
1
i and

at time ts
k
3
i , guarantee that a vehicle arriving at those times is not represented with a

waiting arc in the LBM.

For customers i ∈ N with storage capacity Ci ≤ Q, a system of inequalities can

be derived from Proposition 24. As before, we define time indexes representing the
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interval in (4.4) in the LBM:

sk1 = max{k ∈ Ti : uitki ≤ Hui − Ci + I0
i − (η − k + 1)Q} k = 1, . . . , ηi,

sk2 = max{k ∈ Ti : uitki ≤ I0
i + (k − 1)Q} k = 1, . . . , ηi.

Let νi be a binary variable that is equal to one if the number of visits to customer

i is ηi; zero otherwise. Any LMDO satisfies the following system,

(ηi + 1)(1− νi) ≤
∑
`∈T0

x`0i ≤Mi − (Mi − ηi)νi, (4.13a)

νi ≤
sk2∑
s=sk1

∑
`:(0,`)∈δ−(i,tsi )

x`0i, k = 1, . . . , ηi, (4.13b)

provided there exists a index ` ∈ T0 such that t`0 + τ `0i = t
sk1
i , so it is guaranteed the

arrival time at ts
k
1
i is represented with a direct arc in the LBM.

4.5.3 Valid Inequalities for the Number of Visits

In [72] the authors present several valid inequalities for the CIRP. A large class of

them corresponds to lower bounds on the number of visits to a customer, adaptations

of inequalities presented in [67] and [71]. In our setting, we keep the inequalities in

[67] and we adapt them to the CIPR-OB. We consider a lower bound on the number

of visits to a customer that must occur in an arbitrary time interval.

From a time t1 ∈ {tki }k∈Ti and to a time t2 ∈ {tki }k∈Ti with t1 < t2, the customer

i ∈ N consumption in that interval is ui(t2 − t1). At time t1 the customer has

at most Ci product in inventory, thus during [t1, t2] the customer requires at least

ui(t2 − t1) − Ci to be delivered. Since the maximum product that can be delivered

during a visit is Q, we can compute a lower bound for the number of visits to i.

127



Proposition 31. The following inequalities are valid for the LBM formulation,

⌈
ui(tk2+1

i − tk1
i )− Ci

Q

⌉
≤

k2∑
k=k1

∑
(0,`)∈δ−(i,tki )

x`0i, i ∈ Ng, k1 ∈ Ti, k1 < k2, (4.14)

⌈
ui(tk2+1

i − tk1
i )− Ci

Q

⌉
≤ xk1−1

ii +
k2∑

k=k1

∑
(0,`)∈δ−(i,tki )

x`0i, i ∈ N`, k1 ∈ Ti, k1 < k2.

(4.15)

Proof. For a customer i ∈ N , let k1 and k2 be any two indexes in Ti such that k1 < k2.

At time tk2
i , we know the inventory level is bounded from below as follows in the the

LBM,

zk2
i ≥ ūk2+1

i = ui(tk2+1
i − tk2

i ).

Also, summing up the inventory balance constraints from time tk1
i to tk2

i , we have,

zk2
i = zk1−1

i +
k2∑

k=k1

yki − ui(tk2
i − tk1−1

i ),

so combining both inequalities we get,

k2∑
k=k1

yki ≥ ui(tk2+1
i − tk1−1

i )− zk1−1
i ,

and noticing that at time tk1−1
i the inventory level is bounded from above by Ci +

ui(tk1
i − tk1−1

i ), we finally have,

k2∑
k=k1

yki ≥ ui(tk2+1
i − tk1−1

i )− (Ci + ui(tk1
i − tk1−1

i )),

k2∑
k=k1

yki ≥ ui(tk2+1
i − tk1

i )− Ci,

which is a valid inequality for any customer i ∈ N . We can use this expression in

order to get (4.14) and (4.15) by deriving an inequality for y and x variables. For
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customers i ∈ Ng, there is no waiting, so all the product that gets to a customer must

have arrival time at the interval [tk1
i , t

k2
i ], so,

k2∑
k=k1

yki =
k2∑

k=k1

∑
(0,`)∈δ−(i,tki )

w`i0 ≤ Q
k2∑

k=k1

∑
(0,`)∈δ−(i,tki )

x`i0,

then we have,
ui(tk2+1

i − tk1
i )− Ci

Q
≤

k2∑
k=k1

∑
(0,`)∈δ−(i,tki )

x`i0.

For customers i ∈ N`, waiting is allowed, so some product can come from a vehicle

waiting from the previous interval. We have,

k2∑
k=k1

yki = wk1−1
ii − wk2

ii +
k2∑

k=k1

∑
(0,`)∈δ−(i,tki )

w`i0 ≤ Qxk1−1
ii +Q

k2∑
k=k1

∑
(0,`)∈δ−(i,tki )

x`i0,

so we conclude,

ui(tk2+1
i − tk1

i )− Ci
Q

≤ xk1−1
ii +

k2∑
k=k1

∑
(0,`)∈δ−(i,tki )

x`i0.

Note that the previous inequalities are valid for any k1 < k2, with k1, k2 ∈ Ti and

i ∈ N , but not all valid inequalities for pairs of time indexes are useful in the LBM. If

the value of the lhs for a given interval is less or equal to zero, the inequality does not

strengthen the model. Thus, we only add inequalities with ui(tk2+1
i − tk1

i )− Ci > 0.

4.5.4 Branch-and-Bound Strategy

Consider the example in Figure 4.3. For this instance there is one customer c with

usage rate uc = 1, storage capacity Cc = 10 and initial inventory I0
c = 10. The
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time horizon is H = 11, so the customer needs at least one visit and the vehicle

must deliver at least one unit of product. The vehicle capacity is Q = 10. The cost

and travel times are equal, both with value 1. Assume that the time discretization

for the customer and the depot is the set {1, 2, . . . , 11}. For this instance and time

discretization is easy to check that there exists an optimal solution for formulation

(4.1).

If we solve the linear relaxation of the formulation, the solution has a fraction

1/10 of a vehicle, that delivers 1 unit of product at time t1c = 1. In order to get an

integer solution, we consider the following branching scheme. In one branch there is a

complete vehicle (x0
0i = 1) and the solution is integer. In the other branch, no vehicle

departs at time t00 from the depot (x0
0i = 0) and another fraction solution is optimal.

A 2/10 fractional vehicle arrives at time 2 and delivers 2 units of product (note that

2 units are delivered because of the OPC in Proposition 22: the inventory after the

delivery must be Ci). Again, it is needed to branch this solution: one branch finds

the optimal solution (x1
0i = 1), while another has a 3/10 fractional vehicle arriving

at time t = 3. Continuing in this fashion, after ten branchings a provable optimal

solution is found.

Time

L
o
c
a
ti
o
n
s

0 1 2 3 4 5 6 7 8 9 10 11

1/10

1

2/10

2 3

3/10

· · ·
1

10

0

c

Figure 4.3: Simple Branch-and-Bound for a one-customer instance

To avoid this behavior, we seek a branching scheme that results in a more balanced

search tree. We consider the variables x`0i that represent visits to a customer i ∈ N at
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time k ∈ Ti, with ` ∈ δ−(i, tki ). In the branching strategy we propose, the first value

we branch on is the total number of visits to i, i.e., we branch on the following sum,

S00
i =

Ki∑
k=0

∑
`∈δ−(i,tki )

x`i0.

When this sum is integer, the next step is branching on the following two sums,

S10
i =

dKi2 e−1∑
k=0

∑
`∈δ−(i,tki )

x`i0,

S11
i =

Ki∑
k=dKi2 e

∑
`∈δ−(i,tki )

x`i0.

Note that the value S00
i is the sum of the values S10

i and S11
i . Once the two sums S1

i

for this level have integer value, we continue branching on the following S2
i level. In

general, for a level n, the sum Sn,ki , k = 0, . . . , 2n − 1, corresponds to the following

expression,

Sn,ki =
k2∑

k′=k1

∑
`∈δ−(i,tk′i )

x`i0, (4.16)

with k1 = k
⌈
Ki
2n
⌉

and k2 = min
{

(k + 1)
⌈
Ki
2n
⌉
− 1, Ki

}
.

For the last level n, each value Sn,ki satisfies k2 − k1 ≤ 1. Thus, the number of

levels is n = dlog2(Ki)e − 1.

The branching rule we propose starts branching on S0
i at the first level and, once

it has integer value, the branching rule continues with S1
i . Then, it branches on S2

i ,

S3
i , and so on, up to level dlog2(Ki)e − 1. The level n is successfully branched when,

for each customer i ∈ N , the sums Sni , that define the number of visits for a particular

interval, have an integer value.
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4.5.5 Recovering Customer Storage Capacity Constraints

In order to get an LBM from the formulation (4.1), the travel times, customer storage

capacities and number of visits at the same time time are modified. If the time-

expended network is fine enough, the travel times will be correct and the number of

visits can be handled (as shown in section 4.7.3), but the customer inventory bounds

will be always Ci + ūki , with ūki > 0 for all i ∈ N , k ∈ Ti. Even if the number of time

points {tki }k∈Ti is large and they are no more than ε > 0 apart, maxk∈Ti{tk+1
i −tki } ≤ ε,

the inventory bound is strictly greater than Ci. How do we know LBM provides an

useful solution for the problem? Theorem 3 states that for a fine time discretization

the solution for x variables is the same for the LBM formulation with Ci + ūki and for

the LBM with Ci.

The analysis in this section assumes the time discretization for any location i ∈ N0

is ∆-homogeneous, i.e., for all k ∈ Ti, tk+1
i − tki = ∆. For notation, we represent by

LBM+(∆) the LBM over a ∆-homogeneous time discretization and customer inven-

tory capacity bounded by Ci + ui∆. Similarly, the LBM(∆) is the the LBM over a

∆-homogeneous time discretization and customer inventory capacity bounded by Ci.

Consider an optimal solution for the LBM+(∆). Let ωki,a(∆) be the kth arrival

time to location i ∈ N0 in the LBM solution, with k = 1, . . . , ηi, and ηi the number

of visits to i in the solution. Equivalently, let ωki,d(∆) the kth departure time from

the location i ∈ N0, with k = 1, . . . , ηi.

Consider an optimal solution for the LBM(∆). Let υki,a(∆) be the kth arrival time

to i ∈ N0, and let υki,d(∆) be the kth departure time from location i of the optimal

LBM solution, k = 1, . . . , ηi.

Theorem 3. There exist a ∆ > 0 and arrival and departure times ωki,a(∆), ωki,d(∆),

υki,a(∆), υki,d(∆), with the same number of visits ηi, such that ωki,a(∆) = υki,a(∆) and

ωki,d(∆) = υki,d(∆), for all i ∈ N0 and k = 1, . . . , ηi.
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Proof. For contradiction, we assume the following,
(A): There is no ∆ > 0 and there is no times ωki,j(∆) and υki,j(∆)

such that the number of visits ηi is the same and ωki,j(∆) = υki,j(∆),

for all i ∈ N0, j = a, d, k = 1, . . . , ηi.
Take any ∆ > 0 such that for all i ∈ N , τi/∆ ∈ Z and H/∆ ∈ Z (data is

rational, so there is a ∆ that satisfies those conditions). Let ∆` = ∆2−`, ` ≥ 0, be

an infinite sequence. Note that for all ` ≥ 0, in the LBM+(∆`), the number of visits

to a customer i ∈ N is bounded. Indeed, since for all ` ≥ 0, it also holds τi/∆` ∈ Z,

H/∆` ∈ Z, then dH/∆`e
2bτi/∆`c

≤ H
2τi for all i ∈ N .

Let η(∆`) = [η1(∆`), . . . , η|N |(∆`)] be a vector of number of visits to customers of

an optimal solution to LBM+(∆`), ` ≥ 0. Since the number of visits to each customer

is bounded, the set {η(∆`)}`∈L is finite. Also, there are a finite number of feasible

itineraries (i.e., the assignment of those visits to vehicles) for those visits. Then, we

can take an infinite subsequence {∆k}k∈K, with K ⊆ Z+, such that there is an optimal

solution to the LBM+(∆k) whose number of visits is the same η̄ = η(∆k) and those

visits occur in the same sequence, for all k ∈ K. For each LBM+(∆k), k ∈ K, we

consider an optimal solution (only one) whose number of visits η̄ and the itineraries

are the same, so we refer to the optimal solution to LBM+(∆k).

Note that the number of visits given by η̄ does not induce a feasible solution to

LBM(∆′), for all ∆′ > 0, because any feasible solution to the LBM with inventory

capacity Ci is a feasible solution to the LBM with inventory capacity Ci + ui∆′.

This contradicts (A), since the number of visits is optimal for both LBM(∆′) and

LBM+(∆′) and the visit arrival and departure times are the same.

Let f `i (∆k) be the total delivery to i ∈ N during the `th visit of the LBM+(∆k)

optimal solution, k ∈ K, ` = 1, . . . , η̄i. Similarly, let z`i (∆k) be the inventory level
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before the delivery `th. Define,

f̄ `i = lim
k→∞

f `i (∆k),

z̄`i = lim
k→∞

z`i (∆k).

Note that f̄ `i and z̄`i represent feasible deliveries and inventory levels (in the limit

there is no extra inventory capacity).

We also define v̄`i = limk→∞ υ
`
i1(∆k), and w̄`i = limk→∞ υ

`
i2(∆k), ` = 1, . . . , η̄i,

i ∈ N .

There must be a i ∈ N and a ` = 1, . . . , η̄i such that either v̄`i or w̄`i is irrational.

If not, then all arrival and departure times are rational, so there must exist a ∆′ > 0

such that ∆′ is divisor for all times. The solution (f̄ `i , z̄`i , v̄`i , w̄`i ) represents a feasible

solution to LBM(∆′), but this is a contradiction: we know there is no feasible solution

to LBM(∆′) with number of visits given by η̄, for all ∆′ > 0.

Using the number of visits η̄ and the itineraries of LBM+(∆k) optimal solutions,

k ∈ K, we can construct a polytope. Let v`i be the `th visit arrival time and let w`i
be the `th visit departure time, i ∈ N . Let z`i be the inventory level immediately

before the `th visit and let f `i the total delivery made by the `th visit, i ∈ N . Let

s(i, `) = (j, k) ∈ N × {1, . . . , η̄j} be the customer j and the visit kth that goes after

the `th visit to i in the same vehicle itinerary, i ∈ N , ` = 1, . . . , η̄i. The polytope for
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(v`i , w`i , f `i , z`i ) variables is as follows,

w`−1
i ≤ v`i , i ∈ N, ` = 2, . . . , η̄i, (4.17a)

z1
i = I0

i − uiv1
i , i ∈ N, (4.17b)

z`i = z`−1
i + f `i − ui(v`i − v`−1

i ), i ∈ N, ` = 2, . . . , η̄i, (4.17c)

zη̄ii + f η̄ii ≥ ui(H − vη̄ii ), i ∈ N, (4.17d)

z`i + f `i ≤ Ci + ui(w`i − v`i ), i ∈ N, ` = 2, . . . , η̄i, (4.17e)

v`i ≥ wkj + τi + τj, i ∈ N, ` = 2, . . . , η̄i, (j, k) = s(i, `), (4.17f)

τi ≤ v`i ≤ w`i ≤ H − τi, i ∈ N, ` = 2, . . . , η̄i, (4.17g)

0 ≤ f `i ≤ Q, i ∈ N, ` = 2, . . . , η̄i, (4.17h)

z`i ≥ 0, i ∈ N, ` = 2, . . . , η̄i.

Constraints (4.17a) ensure that the visit times at customers occur sequentially.

Constraints (4.17b) and (4.17c) set the inventory levels just prior to each visit at a

customer. Constraints (4.17d) ensure that inventory after the last delivery is sufficient

to meet demand until the end of the planning horizon. Constraints (4.17e) enforce

that the vehicle remains long enough at the customer to deliver its whole load, while

not violating the capacity limit. Constraints (4.17f) ensure that for each of the vehicles

the visit times at customers properly account for travel times between locations, and,

in case a vehicle performs multiple routes, properly account for travel times to and

from the depot in between consecutive routes in its itinerary. Constraints (4.17g)

impose bounds on arrival and departure times. Finally, constraints (4.17h) enforce

deliveries cannot be more than the vehicle capacity Q.

Note that there cannot be a rational solution for the previous polytope (4.17)

since that solution would be feasible for LBM(∆′), for some ∆′ > 0, which again,

contradicts (A). However, the solution (f̄ `i , z̄`i , v̄`i , w̄`i ) is a feasible solution to that
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polytope, so it is not empty. Therefore, a non-empty polytope with rational data

does not have a rational point (solution), reaching a contradiction.

4.6 Finding Feasible Solutions for the CIRP-OB

In this section we present two different methods to get feasible solutions for a CIPR-

OB instance. First, we consider a MIP formulation that, if feasible, provides feasible

solutions for the continuous time problem for any time discretization. This formula-

tion is derived in a similar way to LBM: the formulation (4.1) is changed and then

we show the solution we get from the new formulation has a transportation cost that

is an upper bound for the problem. Then, we present a MIP formulation that finds

continuous visit times and deliveries for an optimal number of visits from the LBM;

thus, we can determine whether a LBM optimal solution is feasible for the CIPR-OB

or not.

4.6.1 Upper Bound Model (UBM)

An upper bound formulation for the CIRP-OB can be derived from formulation (4.1).

The model we propose contains the same variables and constraints defined for for-

mulation (4.1), but the travel times are modified: they are rounded up in the time-

expanded network. The travel time at a time tki , i ∈ N0, k ∈ Ti, to a location j ∈ N0,

is given according to the following expression,

τ kij =



min`∈Tj{t`j : t`j ≥ tk0 + τj} − tk0, i = 0, j ∈ N, tk0 + τj ≤ H

min`∈T0{t`0 : t`0 ≥ tki + τi} − tki , i ∈ N, j = 0, tki + τi ≤ H

tk+1
i − tki i = j, k < Ki.

(4.18)

We call this model the Upper Bound Model (UBM). Even though the formulation
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decision times are restricted to the location time discretizations, the UBM finds fea-

sible solutions for the CIRP-OB. Therefore, this model is a valid upper bound model

for the problem.

Proposition 32. Any feasible solution to the UBM is a feasible solution to the CIRP-

OB.

Proof. The UBM travel times ensure that a feasible solution for the model is feasible

for the continuous time problem. Any vehicle whose travel times are given by (4.18),

it gets to the destination after a vehicle traveling according to τi, i ∈ N . Note also

that the continuous time solution can keep the UBM solution customers itinerary: if

the continuous time vehicle gets too early to the customer, it can wait longer at the

depot before departure. The constraints in formulation (4.1) ensure the solution is

feasible for the CIRP-OB.

Even if a feasible solution to an instance of CIRP-OB exists, UBM may not find it.

The travel times and the constraints of the formulation might produce an infeasible

model. For a ∆-homogeneous time discretization for the UBM, i.e., time intervals

such that tk+1
i − tki = ∆ > 0, for all i ∈ N0 and k ∈ Ti, we show conditions on ∆ that

ensure a feasible model.

Proposition 33. If ∆ > 0 satisfies,

ui ≤
I0
i

∆
(⌈

Ci
Q

⌉
+
⌈
τi
∆

⌉) , (4.19)
⌈
Ci
Q

⌉
≤ H

∆ − 2
⌈
τi
∆

⌉
, (4.20)

for all i ∈ N , then the UBM with unlimited number of vehicles is feasible using a

∆-homogeneous time discretization.

Proof. We prove that the following solution is feasible: visit each customer i ∈ N

at any possible time delivering as much as possible. Since the number of vehicles is
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unrestricted, we need to check if the inventory level are non-negative during the all

time horizon for all customers. In particular, we show that for all i ∈ N the inventory

level is non-negative at time ∆dI0
i /(∆ui)e and the inventory is enough to cover the

time H −∆dτi/∆e to return to the depot.

For each i ∈ N , the first visit time in the solution is at ∆k1, with k1 = dτi/∆e

and the last visit time is at ∆k2, with k2 = bH/∆c− k1. Note that (4.20) guarantees

that,

k2 − k1 ≥
⌈
Ci
Q

⌉
.

Also, at time ∆k with k =
⌊
I0
i

ui∆

⌋
, the inventory level zki is equal to Ci since the

total delivery up to k is at least k∆ui. Indeed, using (4.19) we have,

k − k1 =
⌊
I0
i

ui∆

⌋
−
⌈
τi
∆

⌉
≥
⌈
Ci
Q

⌉
,

so,

(k − k1)Q ≥ Ci ≥ k∆ui.

The inventory level after time k∆ is also Ci and the delivery of each visit is at

most Q,

∆ui ≤
I0
i⌈

Ci
Q

⌉
+
⌈
τi
∆

⌉ ≤ Ci⌈
Ci
Q

⌉
+
⌈
τi
∆

⌉ < Ci⌈
Ci
Q

⌉ ≤ Q.

Finally, at time ∆k2 the inventory is Ci and it is enough to cover the customer
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usage up to time H,
H −∆k2 ≤ ∆ +

⌈
τi
∆

⌉
∆,

≤ ∆
(⌈

Ci
Q

⌉
+
⌈
τi
∆

⌉)
,

≤ I0
i

ui
,

≤ Ci
ui
,

so the product consumption while the last vehicle returns to the depot satisfies

ui(H −∆k2) ≤ Ci.

4.6.2 Feasibility Check Model (FCM)

An optimal solution to LBM specifies a number of visits to each customer. These

visits have a total transportation cost that is a lower bound for the CIRP-OB, but it

is unknown whether this number of visits leads to a solution that is feasible for the

continuous time problem or not.

In this section we present a model that allows us to determine whether a continuous-

time feasible solution with this number of visits exists. We formulate a model that

takes as an input the number of visits ni, i ∈ N , and finds new continuous visiting

times, defined in the interval [0, H], and delivered quantities, defined in [0, Q]. These

times and quantities must satisfy the CIRP-OB constraints, including the conditions

we relax for the LBM: the travel times are given by the parameter τi, i ∈ N ; the

customer inventory capacities are bounded by Ci, i ∈ N ; and the number of vehicles

waiting at the same time at the customer location is at most one. We construct a

mixed-integer programming (MIP) model to decide (revise) the visiting times and

delivered quantities, while preserving the number of visits to each customer. We call

this formulation Feasibility Check Model (FCM). Naturally, it may be that no feasible

CIRP-OB solution using these number of visits exists, in which case a new optimal

LBM solution is needed.
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Each visit to a customer is associated to an out-and-back route. LetR = {1, . . . ,∑i∈N ni}

be the index set of routes. For each customer i ∈ N , let Ri ⊆ R be the set of routes

that visit customer i ∈ N . Let c(r) ∈ N denote the customer visited on route r ∈ R.

We assume customers have at least one visit, ni ≥ 1 and, w.l.o.g., the routes in Ri

visit customer i in route index order, Ri = {ri1, ri2, . . . , rini} with rik−1 < rik for all

k = 2, . . . , ni. We have c(rik) = i for all k = 1, . . . , ni.

Let variable vr be the arrival time at customer c(r) and let wr be the departure

time from customer c(r) of route r ∈ R. Inventory variables, zr, denote the inventory

level at customer c(r) immediately prior to the first delivery on route r. Let yr1,r2
be a binary variable that is one if the same vehicle does route r and then r′: zero

otherwise. The variable ζ is the minimum slack time between any two consecutive

visits.
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max ζ,

s.t. ζ ≤ vri
k
− wri

k−1
, i ∈ N, k = 2, . . . , ni, (4.21a)

zri1 = I0
i − uivri1 , i ∈ N, (4.21b)

zri
k

= zri
k−1

+ fri
k−1
− ui(vri

k
− vri

k−1
), i ∈ N, k = 2, . . . , ni, (4.21c)

zrini
+ frini

≥ ui(H − vrini ), i ∈ N, (4.21d)

zr + fr ≤ Cc(r) + uc(r)(wr − vr), r ∈ R, (4.21e)

vr′ ≥ wr + τc(r) + τc(r′) −M(1− yr,r′), r, r′ ∈ R (4.21f)

τc(r) ≤ vr ≤ wr ≤ H − τc(r), r, r′ ∈ R, r 6= r′ (4.21g)

wr = vr, r ∈ R, c(r) ∈ Ng (4.21h)∑
r′∈R

yr,r′ ≤ 1, r ∈ R (4.21i)

∑
r′∈R

yr′,r ≤ 1, r ∈ R (4.21j)

∑
r∈R

∑
r′∈R

yr,r′ ≥ |R| −m (4.21k)

0 ≤ fr ≤ Q, r ∈ R (4.21l)

yr,r′ ∈ {0, 1}, r, r′ ∈ R,

zr ≥ 0, r ∈ R.

Constraints (4.21a) ensure that the visit times at customers occur sequentially

with at least ζ units of time apart. Constraints (4.21b) and (4.21c) set the inventory

levels just prior to each visit at a customer. Constraints (4.21d) ensure that inventory

after the last delivery is sufficient to meet demand until the end of the planning hori-

zon. Constraints (4.21e) enforce that the vehicle remains long enough at the customer

to deliver its whole load, while not violating the capacity limit. Constraints (4.21f)

ensure that for each of the vehicles the visit times at customers properly account for
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travel times between locations, and, in case a vehicle performs multiple routes, prop-

erly account for travel times to and from the depot in between consecutive routes in

its itinerary. Constraints (4.21g) impose bounds on arrival and departure times. Note

that the wr variables are only needed if c(r) ∈ N`, but for simplicity of exposition, we

include them for all r, and impose the constraints (4.21h) in the model. Constraints

(4.21i)-(4.21k) ensure a sequence of routes for each vehicle itinerary that satisfies the

vehicle availability m. Finally, constraints (4.21l) enforce deliveries cannot be more

than the vehicle capacity Q.

If the FCM is feasible and has optimal value ζ∗ > 0, then the solution provides a

feasible solution to the CIRP-OB with vehicle movement cost the same as the cost of

the LBM solution. If no feasible solution with positive ζ exists in the FCM, then for

the number of visits ni given as an input, i ∈ N , there are no visit times and deliver

quantities that result in a feasible CIRP-OB solution.

In order to guarantee the LBM solution is CIRP-OB feasible, we only need to

find a feasible solution to the FCM with ζ > 0. In our implementation we start with

the sequence provided by the LBM solution for the FCM model (initial solution for

binary y variables) and we run the solver until a solution with ζ > 0 is found.

In practice, we have seen this model solves very fast, even for large instances it

takes no more than few seconds. For the instances we present, there is no need of

including OPC into the FCM.

4.7 Dynamic Discovery Discretization Algorithm (DDD) for the CIRP-

OB

The DDD algorithm is presented in [8] for the continuous time service network design

problem. The central idea of the algorithm methodology is to work with a partial

time discretization, that is sequentially and precisely refined, so it is guaranteed an

optimal continuous time solution can be produced. This algorithm consists of the
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following steps:

1. find a lower bound solution for the continuous time problem in a time-expanded

network;

2. given a lower bound solution, determine whether it is feasible for the (original)

problem or can be converted into a feasible solution for the (original) problem

(which implies it is optimal);

3. if the solution cannot be converted, improve the LBM by adding time points to

the partial discretization.

In this section we develop the full algorithm for the CIRP-OB. Steps 1 (LBM)

and 2 (FCM) have been already presented in previous sections, so we describe Step

3 and the execution of the full algorithm.

With respect to the CIRP-OB, the LBM considers three relaxations: travel times

are rounded down; inventory capacity is enlarged by adding the consumption of the

next time interval; and multiple visits to a customer at the same time is allowed.

After checking that an optimal solution for the LBM is not feasible for the CIRP-

OB problem, we detect one or more of the mentioned relaxations to correct in the

time-expanded network, so the current optimal solution is no longer feasible for the

LBM.

4.7.1 Correcting Travel Times

Since the travel times in the LBM are shorter than τi, i ∈ N , some difficulties can arise

when trying to convert the LBM solution into a feasible continuous time solution: it is

not possible to get to a customer before it runs out of product since the out-and-back

route duration is too long, or the vehicle itinerary is larger than the total time H, or

both.
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Algorithm 3 takes as input the optimal LBM times at which vehicles depart from

a location. For each xkij > 0, ak`ij ∈ AT , this algorithm checks whether the travel times

starting at time tki are correct. If a shorter travel time to the depot, j = 0, is detected,

the algorithms adds the point tki + τi to the set {t`0}`, provided the new time point

satisfies tki + τi ≤ H. Equivalently, if a shorter travel time from the depot, i = 0, is

detected, the time point tki + τj is added to the set {t`j}`, provided tki + τj ≤ H.

1 forall xki0 > 0 do

2 set s1 = tki + τi;

3 if s1 6∈ {t`0}`∈T0 and s1 ≤ H then

4 add s1 to {t`0}`∈T0 ;

5 end

6 end

7 forall xk0j > 0 do

8 set s2 = tk0 + τj;

9 if s2 6∈ {t`j}`∈Tj and s2 ≤ H then

10 add s2 to {t`j}`∈Tj ;

11 end

12 end
Algorithm 3: Travel time correcting algorithm.

This algorithm refines the time-expanded network in order to get a LBM solution

whose travel times are not rounded down.

4.7.2 Correcting Customer Storage Capacities

Increasing the customer storage capacity in the LBM implies that vehicles can deliver

more than is possible when the inventory capacity is Ci, i ∈ N . More product can be

accommodated at the customer storage, so fewer out-and-back routes are necessary

to supply customers. Also, if a vehicle is waiting in the LBM solution, it can return
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to the depot before it is possible in continuous time since it doesn’t have to wait the

time needed for the delivery.

Algorithm 4 corrects the customer storage capacities. This algorithm checks

whether customer storage capacity Ci is being violated by vehicles deliveries in the

LBM solution, i ∈ N . If the inventory zki , k ∈ Ti, exceeds Ci for a large amount,

then the time interval given by [tki , tk+1
i ] is too long and a new time point is needed to

reduce it. A new time point in the middle of that interval, i.e., the time point tk+1
i +tki

2

is added to the set {tki }k. Since in the LBM the customer capacities are always larger

than Ci, we consider a ε > 0 tolerance. If [tki , tk+1
i ] ≤ ε, this interval is not split by

adding more time points.

input: ε > 0

1 forall i ∈ N do

2 forall k ∈ Ti do

3 if Ci < zki and tk+1
i − tki > ε then

4 add time point tk+1
i +tki

2 to the set {tli}l;

5 end

6 end

7 end
Algorithm 4: Inventory capacity correcting algo-

rithm.

Lemma 5. For a given ε > 0, the maximum number of points added by Algorithm 4

is |N |d2H/εe.

Proof. We show that in a interval [t, t+ε/2], t ∈ [0, H−ε/2], at most one point is added

by the algorithm. Suppose, for contradiction, in that interval there are two points

t1, t2 ∈ [t, t+ε/2], t1 < t2 and at least one of them is added by the algorithm. If t1 is in

the interval and then t2 is included by the algorithm, then there exists a t3 such that

t2 = t1 +(t3− t1)/2 ≤ t1 + ε/2, so t3− t1 ≤ ε. But t3− t1 > ε, otherwise the algorithm
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doesn’t consider that interval, reaching the contradiction. If t2 is in the interval and

then t1 is added, then there exists a t3 such that t1 = t3 + (t2 − t3)/2 ≥ t2 − ε/2, so

t2 − t3 ≤ ε. But t2 − t3 > ε, so we reach the contradiction.

We conclude by observing the maximum number of intervals of length ε/2 for a

given location i ∈ N is d2H/εe.

4.7.3 Correcting Number of Visits

In the CIRP-OB vehicles are allowed to wait at the customer location but there

must be at most one vehicle at the same time. In the LBM this constraint is relaxed.

Therefore, if the solutions we get from the LBM are not continuous time feasible, then

one possible problem is given by multiple vehicles waiting at a customer location at

the same time.

We consider a ε > 0 and a LBM solution as an input. Let Si be the set of indexes

for customer i ∈ N whose times tki , k ∈ Si, have more than one visit at the same

time. For all time points tki , k ∈ Si we add the time t = tki + ε, provided tk+1
i > t and

t ≤ H. Since at time tki there might be a vehicle that is waiting to do a delivery at

time tk+1
i or after, the travel times must also be corrected. We add the time t− τi to

{t`0}`∈T0 , provided t− τi ≥ 0.

The algorithm for correcting multiple visits at the customer is shown in Algorithm

5.
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input: ε > 0

1 detect time points {tki }i∈N,k∈Si with multiple visits;

2 forall {tki }i∈N,k∈Si do

3 add one-visit-at-the-time constraint for tki ;

4 add time tki + ε to {t`i}Ti ;

5 add time tki + ε− τi to {t`0}T0 ;

6 end
Algorithm 5: Correcting multiple visits at the same

time algorithm.
The following lemma and proposition state Algorithm 5 only adds a finite number

of time points and also preserves the valid lower bound condition of the LBM.

Lemma 6. For a given ε > 0, the maximum number of points added by Algorithm 5

is 2|N |d2H/εe.

Proof. Note that for any customer i ∈ N and any time interval [t, t + ε/2], with

t ∈ [0, H − ε] at most one time point can be added by the algorithm, so no more

than 2d2H/εe points are added to i. Since for each time t + ε added to i there is

a time t + ε − τi added to the depot discretization, the algorithm generates at most

2|N |d2H/εe time points.

Proposition 34. There exists a ε > 0 such that Algorithm 5 preserves the valid lower

bound condition of the LBM.

Proof. In [72] the authors prove that for any feasible instance of the CIRP there

exists a solution with visiting times and quantities rational. Since the CIRP-OB it

is a particular case, there exists a rational solution for this problem. In particular,

there exists a ε > 0 such that all visit times are at least ε apart. Thus, if the time-

expanded network is dense enough, such that for all i ∈ N and k ∈ Ti, tk+1
i − tki ≤ ε,

imposing the one-visit-at-the-time constraint at each (i, tki ) ∈ N T preserves at least

one optimal solution for the problem.
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4.7.4 DDD algorithm for the CIRP-OB

In this section we describe the DDD algorithm for the CIRP-OB, present properties

and guarantees of the algorithm and mention some implementation details. The

algorithm uses the correcting algorithms described in Sections 4.7.1, 4.7.2 and 4.7.3.

The DDD algorithm is shown in Algorithm 6.

input: ε > 0

1 set a initial time discretization {tki }k, for all i ∈ N0;

2 solve the LBM, get optimal number of visits;

3 solve FCM with LBM number of visits;

4 if FCM is feasible and ζ∗ > 0 then

5 return optimal solution;

6 else

7 add time points using travel time correcting algorithm 3;

8 add time points using inventory capacity correcting

algorithm 4 with ε;

9 add time points and constraints using visits correcting

algorithm 5 with ε;

10 end

11 if no time points are added to the time-expanded network

then

12 stop;

13 end

14 go to step 2;
Algorithm 6: DDD algorithm for the CIRP-OB

Algorithm 6 receives a ε > 0 tolerance and it starts with a initial time-expanded

network. It solves the LBM formulation and gets an optimal number of visits to

each customer. Then, the LBM solution is checked using the FCM model, so it is

148



determined whether it can be converted to a CIRP-OB feasible solution or not. If it

can, then the FCM solution is optimal. If it not, then the time-expanded network and

the LBM must be improved. The travel time, inventory capacity and visits correcting

algorithms are executed. The inventory and visits correcting algorithm are executed

using a ε-tolerance, i.e., time points are added if the time intervals are greater than

ε. If at least one time point is added to the time-expanded network in steps 7, 8 and

9, the LBM is solved in the new network. If no points are added, then the algorithm

stops.

The algorithm starts with time discretizations {tki }Ti , i ∈ N , such that for times 0

and H are contained in all sets, {0, H} ⊆ {tki }Ti . We also include time points needed

for the visit time conditions in Section 4.5.2.

For all i ∈ Ng, the set {tki }Ti has the following time points:

• ski,1 = H − Ci+(ηi−k)Q
ui

, for all k = 1, . . . , ηi;

• ski,2 = I0
i +(k−1)Q

ui
, for all k = 1, . . . , ηi;

• ski,3 = kQ−Ci+I0
i

ui
, for all k = 1, . . . , ηi;

• ski,4 = I0
i +(k−1)Q

ui
− ε, for all k = 1, . . . , ηi.

For all i ∈ N`, the set {tki }Ti has the following time points:

• ski,1 = H − Ci−I0
i +(ηi−k+1)Q

ui
, for all k = 1, . . . , ηi;

• ski,2 = I0
i +(k−1)Q

ui
, for all k = 1, . . . , ηi;

For the depot, the set {tk0}T0 has the following time points:

• sk0,i,1 = ski,1 − τi, for all i ∈ N and k = 1, . . . , ηi;

• sk0,i,2 = ski,2 − τi, for all i ∈ N and k = 1, . . . , ηi;
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Theorem 4 below states that the DDD algorithm is an exact algorithm for the

CIRP-OB, so for a feasible instance with rational data, it finds an optimal solution.

Before proving that theorem we need the following lemma and proposition.

Proposition 35. For a given ε > 0, Algorithm 6 finishes after a finite number of

steps.

Proof. We prove that for any ε > 0 tolerance, a finite number of time points are added

by algorithms 3, 4 and 5, so the algorithm finites in a finite number of iterations. We

assume the initial time discretization is {sk0,i}i∈N0,k∈Ti .

Since travel times are rational, there exists a η > 0 such that τi/η ∈ Z, for all

i ∈ N . This η guarantees that starting at any time tki , k ∈ Ti, the arriving times to

other locations j 6= i, are at times tki + pη, with p ∈ Z+. At a given iteration, the

algorithm 3 can correct the travel time starting from an initial time point, sk0,i; or

from a time point added by algorithm 3, sk1,i; or from a time point added by algorithm

4, sk2,i; i ∈ N , k ∈ Ti; or from a time point added by algorithm 5, sk3,i; i ∈ N , k ∈ Ti.

For each time sk0,i, sk1,i, sk2,i and sk3,i we consider all possible new times can be added

starting from that time, i.e., |N0|dH/ηe points. However, note that times sk1,i don’t

need to be counted, since they are already considered for some time point t`j, j ∈ N0,

` ∈ Tj, from where sk1,i was generated. Using lemma 5 at most |N |d2H/εe time

points are added by algorithm 4 and by lemma 6 at most 2|N |d2H/εe, so no more

than
(
3|N |d2H/εe+ |{ski }i∈N0,k∈Ti |

)
×|N0|dH/ηe are added by algorithm 6 for a given

ε.

Theorem 4. Consider a feasible CIRP-OB instance. There exists an ε > 0 such that

Algorithm 6 finds an optimal solution.

Proof. For any feasible instance of CIRP-OB there exists a rational solution, then

there must be a ε1 > 0 such that for any two consecutive visits to a customer i ∈ N ,

the time between those visits is at least ε1. In addition, by theorem 3, there exists a
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ε2 > 0 such that the optimal solution for the LBM doesn’t change after restoring the

customer storage capacity, i.e., changing the upper bound for inventory levels from

Ci + ūi ≤ Ci + uiε2 to Ci, i ∈ N . Consider ε = min{ε1, ε2}.

By proposition 35 we know the algorithm 6 finishes after a finite number of steps

with ε. If an optimal solution is found before the last iteration the algorithm stops.

If not, then a solution whose cost is a lower bound to the problem is provided by

the LBM. This solution has no multiple visits at the same time since the algorithm

5 includes constraints at each time there are more than one visit. The algorithm

maintains the valid lower bound condition of the LBM, since ε ≤ ε1. In addition, for

this solution, the travel times are all corrected and the customers storage capacity is

at most Ci + uiε, i ∈ N . Since ε ≤ ε2, the inventory levels can be changed to Ci and

the optimal solution is the same. Thus, the three relaxations for the LBM listed in

section 4.5 are corrected, so the LBM is feasible and also is an optimal solution for

the CIRP-OB.

In practice ε > 0 needed for Algorithm 5 might be too small and solving the LBM

with a time-expanded network whose intervals are less than ε can be intractable. In

the implementation the time-expanded network is refined using algorithms 3 and 4

(steps 7 and 8) only, and in case no points are added for those algorithms, it stops.

Note that in this variant, no matter how large or small the input ε is, the LBM is

always a lower bound model for the problem. This property allows us to use any

discretization. We have seen that solving the LBM in course time discretizations

leads to solution that are in many cases optimal. In addition, the model solves faster.

We start the algorithm with a ε tolerance and in case no more refinements are made

to the network, is reduced to ε/2. This allows us to adjust the number of time points

added by algorithm 4 as needed.

As the time expanded network is refined, the LBM finds better (less travel times

or capacity violations) integer solutions when running the branch-and-bound. We can
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take advantage of this exploration by running the FCM for each new integer solution

is found, so it is possible to get feasible solutions before the algorithm finishes.

4.8 Computational Experiments

4.8.1 Instances

For our computational experiments, there are parameters and conditions that are the

same for all generated instances. These are the following:

• vehicle capacity Q = 50;

• time horizon H = 20;

• initial inventory I0
i whose value is equal to customer storage capacity Ci for all

i ∈ N ;

• speed is equal to one;

• travel times are symmetric and equal to transportation costs.

The parameters that vary among the instances are determined in such a way that

we study the impact of four factors on the performance of the algorithm:

• number of customers;

• geographical distribution of locations;

• percentage of customers whose storage capacity is less than the vehicle capacity

Q, N`;

• customer usage rates.

The number of customers is a natural dimension to consider in our instances. We

consider instances with up to 30 customers and three different values: 10, 20 and 30.
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The customer locations with respect to the depot is a factor that impacts on the

algorithm performance. Note that in the CIRP-OB problem, only the distance to the

depot is relevant, so we consider that the customers are located in a line in which the

depot is at position 0. Customer locations are randomly generated with an average

distance from the depot of 5. The sample is given by a uniform Unif(5 − δ, 5 + δ)

distribution, and we consider three different values for δ = 0.5, 1.5, 2.5.

Another factor that is important to include is the number of customers whose

storage capacity is less than the vehicle capacity, since for these customers, vehicle

waiting is allowed. We generate instances with 25%, 50% and 75% of customers with

capacity Ci < Q. For each customer in N`, the value of Ci is an integer uniformly

distributed in the interval
[
Q
2 , Q

)
and for each customer in Ng, Ci is an integer

uniformly distributed in
[
Q, 3Q

2

)
.

Once the geographical distribution and the storage capacities are sampled, we

generate customer usage rates. For each i ∈ N , we define lowi = Ci
H

as the lower

limit for ui; a lower value for ui implies the customer needs no visits from the de-

pot. We also define an upper value for ui, upi = min{Ci,Q}
2τi . We consider three usage

levels for instance generation, each level determine the range from which we sam-

ple usage values. For instances with a low usage rate (level 1) we get usage rates

from Unif
(
lowi,

lowi+upi
2

)
; for instances with medium rate (level 2) we get rates from

Unif(lowi, upi); and for high rate (level 3) we get rates from Unif
(
lowi+upi

2 , upi
)
, for

all i ∈ N .

We generate 81 different instance types, each one is labeled N for the number of

customers, G for the geographical distribution, P for the percentage of customers in

N`, and U for the usage level. For example, an instance labeled N20G2P25U3 has

20 customers, the customer location distributions are sampled using Unif (3.5, 6.5),

it has 5 customers with storage capacity Ci < Q, and usage rates are sampled using

Unif
(
lowi+upi

2 , upi
)

for all customers i ∈ N .
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For each instance type, we generate three samples. In order to find the number

of vehicles m for each sample, we run the UBM (described in section 4.6.1) with

objective function minimizing the number of vehicles. The time discretization for

the UBM is homogeneous, ∆ = tki − tk−1
i , i ∈ N , k ∈ Ti, with ∆ > 0. Let ∆′ > 0

be the maximum value that satisfies conditions (4.19) and (4.20). We consider ∆ =

min{∆′, 0.25} for the UBM. The model runs for up to two hours, and the number

of vehicles m we set for the instance is the best value found. Then, we run the

DDD algorithm. We have seen that randomly generated instances likely result in

instances that are solved in one iteration of the DDD algorithm. We have identified

these instances before running our experiments and replaced them with re-sampled

instances that require more iterations. We repeat the procedure until we have 3

samples for each of the 81 instance types. The generated instances can be found at

https://github.com/felipelagos/cirplib.

4.8.2 Results

We generate three samples for each of the 81 types of instances, a total of 243 in-

stances. We run the DDD algorithm for each instance for up to 2 hours. The algorithm

starts with ε = 1, which is reduced by half (ε← ε/2) if no new time points are added

to the time-expanded network. The algorithm either finishes with a provable opti-

mal solution, with a feasible solution (and an optimality gap), or with no solution.

As mentioned in Section 4.7, the routine for correcting the number of visits is not

included in the algorithm. However we have seen, in our experiments, that no multi-

ple vehicles visit a customer at the same time in the final solution for the instances

with feasible solutions (no optimality proved in two hrs). In practice, for randomly

generated instances, multiple visits at the same time relaxation does not have to be

addressed.

Table 4.1 summarizes the results by different instance dimensions: number of
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Table 4.1: Results summary.

N U G P
10 20 30 1 2 3 1 2 3 25 50 75

Optimal 80 69 57 80 72 54 79 68 59 68 72 66
Feasible 1 10 14 0 8 17 2 9 14 5 8 12

No Solution 0 2 10 1 1 10 0 4 8 8 1 3
Vehicles 7.83 15.47 23.64 13.36 15.67 17.91 15.99 15.65 15.30 15.15 15.67 16.12

Visits 13.52 25.86 37.92 21.85 25.61 28.63 25.85 24.90 24.92 22.79 25.41 27.35
Time Points 23.22 36.07 42.09 34.43 33.16 33.79 29.20 33.61 38.56 37.42 32.61 31.35

Initial Points (%) 27.45 17.54 13.60 17.16 19.59 21.84 21.67 19.47 17.45 18.99 20.16 19.43

customers (N); usage rate level (U); geographical distribution (G); and percentage of

customers in N` (P). The table shows the number of instances for which the algorithm

finishes with an optimal solution (Optimal), with a feasible solution (Feasible), or with

no solution (No Solution). We also show the average number of vehicles (Vehicles) of

the instance and the average number of visits (Visits) of the found feasible solution.

Finally, we report the average number of time points added to a customer time

discretization (Time Points) and the percentage that represents the initial number

of time points (starting time-expanded network) with respect to the total number at

the last iteration (Initial Points).

Out of the 243 instances, the DDD algorithm optimally solves 206 of them (84.77%),

finds a feasible solution (with a positive gap) for 25 instances (10.29%), and finds no

solution for 12 instances (4.94%) (Recall that these instances were selected to be “dif-

ficult” for the DDD algorithm). In the detail for the number of customers, almost

all of the instances are optimally solved for N10, but only 57 instances out of 81

are optimally solved for N30. In general, we see that as we increase the number of

customers, the problem becomes more difficult to solve. We see a similar trend for

the usage rate: as the level increases, fewer instances are solved optimally, and more

instances have an optimality gap or no solution. When the geographical customer

distributions are analyzed, the clustered instances (G1: δ = 0.5, no more than 0.5

units of distance to the depot) are easier to solve than the non-clustered instances.

The percentage of customers in N` does not show a clear impact on the algorithm.

In Table 4.1, we also see that the number of vehicles needed for the instance is

155



related to the number of customers and the usage rate level. In both cases, as the

number increases (N10 to N30, U1 to U3), more vehicles are necessary. However, the

customer distribution (G) and the percentage of N` (P) have no clear impact on the

number of vehicles.

The number of visits in the feasible solution depends on N, U, and P, but not on

G. Note that if the instance has more customers in N`, then more visits have to be

made, independent of the usage rate level: instead of waiting, the vehicles make more

out-and-back trips to customers whose capacity Ci is less than Q.

For N10 instances, each customer has, on average, about 23 different time points in

its time discretization set when the algorithm stops. When the number of customers

is N20, the average is about 36, and for N30, about 42. This indicates that the more

customers that are in the instance, the more time points that are needed, possibly

because there is more flexibility in the vehicle itineraries (more options for how to

combine customer visits in a vehicle itinerary). Another dimension that affects the

number of visits is the geographical distribution: customers in clustered instances

(G1) need fewer time points than customers in non-clustered instances (G3). Note

that for clustered instances, the travel times τi are similar for all i ∈ N . Thus, the

vehicle visit customers at similar times, which is not true for non-clustered instances.

Figure 4.4 reports the experiments running time. For each dimension (N, U, G,

P), a plot with the percentage of instances solved for a given time, from 0 to 7200

seconds (2 hours), is set. The number of customers plot shows curves that are more

separated each other, confirming that this dimension is critical in order to explain the

difficulty of an instance. Most of the N10 instances are optimally solved in less than

20 minutes; about a 80% of the N20 instances are solved in less than one hour, while

70% of the N30 instances require two hours to be optimally solved. A similar trend is

seen for usage and geographical dimensions. Instances with levels U1 and U2 require

less solving time than U3 instances, while clustered instances are the fastest to solve
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Figure 4.4: Running Time

for G. When the number of customers N` varies, the running time of the instance is

not affected.

In Figure 4.5, we plot the optimality gap of the solution found by the DDD

algorithm in two hours. The curve corresponds to the percentage of instances whose

gap is less than a given value. For the number of customers (N) plot, the only

instance with 10 customers, N10, the algorithm doesn’t optimally solve in two hours

has a small gap. For N20 instances, about 95% have a gap of less than 5%, and for

N30 instances, about 85% have a gap of less than 10%. For the usage rate (U), almost

all of the U1 and U2 instances have a gap of less than 8%. The plot also shows that,

in general, the U3 instances have larger optimality gaps.

In Figure 4.6, we show the percentage of instances for which the DDD algorithm

finishes in less than or equal to a given number of iterations (independent of the

status of the solution). We see that a significant percentage of the instances requires
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Figure 4.5: Optimality Gap

more than 50 iterations. In general, the conclusions obtained from previous plots and

tables are confirmed when analyzing the number of iterations.

Table 4.2: Status for DDD algorithm without strengthenings.

All No Branch No Valid No Visits No Wait
Optimal 69 69 10 68 66
Feasible 10 9 69 9 11

No Solution 2 3 2 4 4

Table 4.2, which presents, in part, the impact of different strengthenings described

in Section 4.5, shows five different variants of the DDD algorithm:

• All: complete DDD algorithm;

• No branch: the branch-and-bound strategy in section 4.5.4 is not used;

• No Valid: the valid inequalities in section 4.5.3 are not included;
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Figure 4.6: Number of iterations

• No Visits: the conditions in section 4.5.2 for visits times in the LBM are not

used;

• No Wait: the conditions in section 4.5.1 for vehicles waiting in the LBM are

not included.

For each variant, the number of instances with an optimal, a feasible or no solution

status are computed for N20 instances (20 customers) after two hours running. All

strengthenings lead to improvement in the algorithm’s performance: for all the cases,

the full DDD algorithm (All) has more instances with a feasible or an optimal solution

when some variant does not. However, when the valid inequalities are turned off, the

impact is more significant on the number of instances with optimal solutions than it

is in any other case (not in the number of ’No Solution’ status).

In Figure 4.7, we consider the same DDD algorithm variants presented in Table
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Figure 4.7: Running time for the DDD algorithm without strengthenings.

4.2 in a running time plot, which shows the percentage of instances solved optimally

in a given time. The plot considers the first 20 minutes and validates the previous

observation: the valid inequalities impact the performance the most. We also see

that the waiting-vehicles and the visit times conditions (Section 4.5.1 and 4.5.2)

have a significant effect on the algorithm running times, especially during the first

10 minutes. Figure 4.7 also indicates that when the branch-and-bound strategy is

not included, the impact is not so relevant. One explanation for this is that the

improvement of this strategy is already implied by other strengthening components.
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Figure 4.8: DDD algorithm time discretization example.
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As an example of the DDD algorithm, we plot the time expanded network for

the instance N10G3P75U3-3 (the third sample of type N10G3P75U3) in Figure 4.8.

This instance is solved optimally by the algorithm, and the network is the time

discretization corresponding to the last iteration (54 iterations). The crosses represent

the time points for each location (0 corresponds to the depot), and the gray lines

indicate the time intervals in equations (4.14) and (4.15). These intervals are the

visit arrival times when the number of visits is the minimum to deliver the customer

usage during the time H. We first note that most of the time points are in the

intervals, which shows that these intervals are relevant and that the algorithm does

not need to fully discretize time in order to solve the problem. For Customer 9, for

example, the time interval that is relevant for the (only) visit to the customer is from

time 7 to 15. Customer 5 has two visits, one between time 3.5 and 9, another between

10 and 19.

The DDD algorithm efficiently and dynamically discretizes the time-expanded

network, focusing only on relevant time intervals.

4.9 Discussion and Future Research

In this work, we study a special case of the CIRP, the CIRP-OB, and we propose

a new and efficient algorithm for solving it. We successfully implement the DDD

algorithm, an algorithm that has been used to solve several continuous time problems,

and our computational experiments validate the potential of this algorithm. Out of

243 randomly generated CIRP-OB instances, the DDD algorithm finds a provable

optimal solution for 84% of them in less than two hours, and for 95%, the algorithm

returns a feasible solution with an optimality gap of less than 18%.

To the best of our knowledge, this is the first time a DDD algorithm has been

developed for a Continuous Time Inventory Routing Problem. [72], recently stud-

ied the CIRP and developed an algorithm that relies on an IP formulation over a
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time-expanded network, and can be viewed as a partial implementation of a DDD

algorithm. Their methodology used models constructed over homogeneous time

discretizations. In this work, we study complex models and algorithms in non-

homogeneous time expanded networks and show the power of using strategies that

dynamically discretize time.

However, the DDD algorithm implementation is not straightforward for the CIRP-

OB. The LBM formulation presents some challenges that need to be addressed. One

is that a very fine time discretization does not lead to an exact formulation for the

continuous time problem. In this formulation, the customer storage capacities are

always strictly greater than the real capacity Ci, i ∈ N . For other problems in which

the DDD algorithm has been studied (e.g. [8]), this does not happen, and the lower

bound model eventually becomes an exact model for the problem. Nevertheless, we

overcome this problem by using Theorem 3, which allows us to prove that the DDD

algorithm is an exact algorithm for the problem in that the DDD algorithm always

returns an optimal solution for a feasible CIRP-OB instance.

In our experiments, we study several instance dimensions: the number of cus-

tomers (N), the geographical distribution of the locations (G), the percentage of cus-

tomers in N` (P), and the usage rate level (U). Of these, variations on the number of

customers and the usage rate better explain the complexity of the problem (running

time, optimality gap, iterations). We also see that the percentage of customers in N`

(P) does not have a clear impact on the instance difficulty. The DDD algorithm can

optimally solve instances with up to 30 customers, random geographical locations,

and high usage rates. The algorithm efficiency results, in part, from the fact that the

time discretization is more intensive in particular time intervals, so not all of time

horizon H is considered.

In this work, we show the potential of using a dynamic discretization algorithm for

routing problems. Some ideas presented in this work can be extended to the CIRP;
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this is the first step in solving the CIRP. One problem that arises when solving IRP

problems is that exact time indexed formulations are weak (as shown in Section 4.3),

so the structure of the problem solution needs to be exploited. For future research,

several conditions and valid inequalities we propose for the LBM model can be used

for the CIRP.
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APPENDIX A

BRANCH-AND-PRICE FOR ROUTING WITH PROBABILISTIC

CUSTOMERS

We present three tables with additional results. Tables A.1 and A.2 are analogues of

Table 2.3 for p = 0.5 and p = 0.9, respectively. Table A.3 displays average running

times for B&P algorithms with UCA and FCA.

Table A.1: Average relative gap of solution expected cost for UCA, FCA and deter-
ministic problem, for realization probability 0.5.

Customers Steps (K) Type C Type R
UCA Exact

Best LB
FCA

Best LB
Deter

Best LB
UCA Exact

Best LB
FCA

Best LB
Deter

Best LB

15

0 2.75% 2.67%

2.91 %

1.79% 2.04%

2.21 %
1 1.43% 2.28% 1.24% 1.95%
2 1.01% 1.15% 1.23% 1.19%
3 0.92% 0.89% 1.14% 1.14%
4 0.78% 0.82% 1.28% 1.12%

25

0 4.15% 4.19%

5.32 %

3.17% 3.51%

3.54 %
1 4.44% 4.99% 2.66% 3.34%
2 3.83% 4.47% 2.45% 2.78%
3 3.1% 3.29% 1.6% 1.7%
4 1.35% 1.42% 1.65% 1.57%

40

0 6.42% 6.42%

7.43 %

4.49% 4.52%

4.66 %
1 7.43% 7.43% 4.22% 4.52%
2 7.25% 7.43% 3.76% 4.14%
3 7.25% 7.24% 2.29% 2.4%
4 5.29% 5.53% 1.79% 1.43%
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Table A.2: Average relative gap of solution expected cost for UCA, FCA and deter-
ministic problem, for realization probability 0.9.

Customers Steps (K) Type C Type R
UCA Exact

Best LB
FCA

Best LB
Deter

Best LB
UCA Exact

Best LB
FCA

Best LB
Deter

Best LB

15

0 0.52% 0.53%

0.55 %

0.11% 0.11%

0.11 %
1 0.31% 0.31% 0.04% 0.04%
2 0.31% 0.31% 0.04% 0.04%
3 0.31% 0.31% 0.04% 0.04%
4 0.31% 0.31% 0.04% 0.04%

25

0 0.97% 0.98%

2.1 %

0.43% 0.56%

0.58 %
1 2.1% 2.1% 0.51% 0.51%
2 2.1% 2.1% 0.39% 0.39%
3 1.67% 1.77% 0.11% 0.11%
4 0.56% 0.56% 0.11% 0.11%

40

0 2.46% 2.46%

3.51 %

0.77% 0.77%

0.89 %
1 3.13% 3.13% 0.77% 0.87%
2 3.13% 3.13% 0.45% 0.45%
3 1.76% 1.76% 0.49% 0.49%
4 2.29% 3.13% 0% 0%

Table A.3: Average running time for UCA and FCA in seconds.

Customers Steps (K) Type C Type R
UCA FCA UCA FCA

15

0 729 361 99 717
1 1552 878 838 1273
2 2842 2018 2021 1636
3 2803 2992 2488 1850
4 4545 4054 2968 1922

25

0 6909 4736 1497 2205
1 10622 8822 2945 2951
2 12714 11462 3700 3571
3 13715 13803 4989 5021
4 13794 13431 6691 5983

40

0 12474 8623 8124 3630
1 19704 16911 8282 7489
2 20190 20638 9374 9273
3 20669 21154 10214 9619
4 21600 20700 10490 9738
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APPENDIX B

THE CONTINUOUS TIME INVENTORY ROUTING PROBLEM

Appendix 1 – Relation to the model of [2]

In the model presented in [2], the customer inventory levels are managed by introduc-

ing lower and upper bounds on the (cumulative) delivery quantity based on customer

usage rates. This is equivalent to managing inventory levels imposing inventory flow

conservation. Indeed, in [2], the following constraints ensure that the total delivery

to customer i during the time interval from 0 to t is feasible,

dit ≤
∑
k∈Ri

∑
v∈Vk

∑
τ∈Tk:τ≤t−tcik

xikτv ≤ Dit, for all t and i ∈ A1,

where dit is the lower limit on the amount that must be delivered to customer i during

the interval from 0 to t, Dit is the upper limit on the amount that can be delivered

to customer i during the interval from 0 to t, and xikτv is a variable that represents

the amount delivered to customer i on route k by vehicle v starting at time τ (and Ri

the set of routes that visit i, Vk the set of vehicles that can driver route k, Tk the set

of time points at which route k can start, tcik the time after the start of route k until

delivery at customer i is completed, and A1 the set of customers that can receive any

number of deliveries). Note that ∑k∈Ri
∑
v∈Vk

∑
τ∈Tk,τ≤t−tcik xikτv represents the total

delivery to customer i up to time t.

In our setting, the total delivery to customer i from 0 to t is the following,

∑
s≤t

ysi =
∑

0<s≤t
(zsi − zs−1

i + ui) + (z0
i − I0

i ) = zti + ui(t− 1)− I0
i .
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Using the inventory bounds, ui ≤ zti ≤ Ci, we have

uit− I0
i ≤

∑
s≤t

ysi ≤ Ci − I0
i + ui(t− 1),

where uit− I0
i is the lower limit on the amount that must be delivered to i (i.e., dit),

and Ci − I0
i + ui(t− 1) is the upper limit (i.e., Dit).

Thus, the model presented in [2] has “substituted out” the inventory balance

constraints.

Appendix 2 – Calculating big-M values for depot subtour elimination

Here we consider some possible ways to determine the LBM parameter, M t
ij.

If all (original) travel times between pairs of customers are positive, say mini,j∈N0,i 6=j

τ̂ij =: ε > 0, then the number of vehicle arrivals from another customer (or the depot)

in the time remaining after the arrival at j (following a departure from i at time t∆),

may be at most (H − (t∆ + τ̂ij))/ε. Also, a vehicle can arrive by waiting, of which

there can be at most T − (t + τij) cases. However, if ∆ < ε, then depot subtours

cannot occur, and otherwise, the upper bound obtained by “using” an interval of

length ∆ to move between customers taking time ε is greater than 1, which is all that

can be “used” by waiting, so (H− (t∆+ τ̂ij))/ε is a valid upper bound on the number

of arrivals. Thus we may take M t
ij = 1 + b(H − (t∆ + τ̂ij))/εc. (The extra 1 is to

count the arrival at j after departure from i at time point t.)

Otherwise, if there are co-located customers, for example, so τ̂ij = 0 for some pair

i 6= j, then if all original parameters are integer, we may use the observation that the

exact MIP model has integer solutions, to see that all customer visits must deliver at

least 1 unit of product. So we may take M t
ij = 1 +∑

k∈N ûk(H − (t∆ + τ̂ij), which is

an upper bound on the number of units of product that can be delivered in the time

remaining.
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Appendix 3 – Route-preserving only (RPO) model

max ζ

s.t. t̄kr + τρ(r,k)ρ(r,k+1) ≤ t̄k+1
r r ∈ R, k = 0, . . . , nr

t̄nr+1
r ≤ t̄0r̄ +H(1− yrr̄) r ∈ R, r̄ ∈ R, r 6= r̄,∑

r̄∈R
yrr̄ ≤ 1 r ∈ R,

∑
r̄∈R

yr̄r ≤ 1 r ∈ R,

∑
r,r̄∈R

yrr̄ ≥ |R| −m,

nr∑
k=1

q̄kr ≤ Q r ∈ R

t`i ≥ t`−1
i + ζ i ∈ N0, ` = 1, . . . , ni

−H(1− xρ(r,k)`
rk ) ≤ t`ρ(r,k) − t̄

k
r ≤ H(1− xρ(r,k)`

rk ) r ∈ R, k = 1, . . . , nr, ` = 1, . . . , nρ(r,k),

−Q(1− xρ(r,k)`
rk ) ≤ q`ρ(r,k) − q̄

k
r ≤ Q(1− xρ(r,k)`

rk ) r ∈ R, k = 1, . . . , nr, ` = 1, . . . , nρ(r,k)

nρ(r,k)∑
`=1

x
ρ(r,k)`
rk = 1 r ∈ R, k = 1, . . . , nr

∑
r∈R

∑
k=1,...,nr : ρ(r,k)=i

x
ρ(r,k)`
rk = 1 i ∈ N, ` = 1, . . . , ni

I`i = I`−1
i − ui

(
t`i − t`−1

i

)
+ q`i i ∈ N, ` = 1, . . . , ni

Ii0 ≥ uiH i ∈ N and ni = 0

Inii − ui(H − I
ni
i ) ≥ 0 i ∈ N and ni > 0

q`i ≤ I`i ≤ Ci i ∈ N, ` = 1, . . . , ni

q`i ≥ 0 i ∈ N, ` = 1, . . . , ni

t`i ≥ 0 i ∈ N, ` = 1, . . . , ni
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Appendix 4 – Detailed computational results for a few instances

Note that the time limit is set to two hours of cpu time, using the equivalent in terms

of “ticks” (see CPLEX manual for details). However, we report the observed wall

clock time (which can be much more than the cpu time). Note too that UBM was

only run for values of H/∆ ≥ 9. Finally, we indicate that no feasible solution was

found with a dash (-); if no feasible solution to LBM is found, then it is not possible to

run RPO. Recall that when the objective function value for RPO is positive, a feasible

solution with value equal to the value of the solution to LBM has been constructed.
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R
5U

2Q
2

1 1.86 36.42 0.00 0.01 -

2 12.91 36.42 0.00 0.01 -

3 10.17 36.42 0.00 0.09 -

4 535.68 36.42 0.00 0.13 -

5 1997.23 36.42 0.00 0.07 -

6 8752.82 36.42 0.00 8.99 -

7 TL 33.68 8.13 0.45 -

8 TL 34.14 6.67 2.16 -

9 1751.35 36.42 0.00 0.05 - 10.20 39.23 0.00

10 TL 35.68 2.09 1.72 - 154.56 39.23 0.00

12 TL 34.81 4.63 2.68 - 6.93 - -

14 TL 34.54 5.46 0.16 - 15.86 - -

16 TL 32.91 10.67 14.82 - 48.40 39.32 0.00

18 TL 31.56 15.41 19.13 - 70.37 36.59 0.00

24 TL 32.46 12.21 8270.25 - 308.10 36.68 0.00

30 TL 31.57 15.35 24.17 - 7312.31 36.59 0.00

36 TL 31.51 15.88 0.01 0.43 17030.43 36.59 0.00

42 TL 31.52 15.81 TL - TL 36.59 6.73

48 TL 31.53 15.50 TL - TL 36.59 13.68

54 TL 31.48 15.99 0.02 0.15 TL 36.59 8.59

60 TL 31.48 15.99 127.35 0.29 TL 36.59 15.84
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10

U
1Q

2

1 26.61 64.02 0.00 0.02 -

2 482.30 64.02 0.00 0.02 -

3 TL 62.80 1.94 6.55 0.73

4 TL 62.16 3.00 5.92 -

5 TL 59.81 7.04 0.04 -

6 TL 58.83 8.82 297.88 -

7 TL 57.54 11.26 0.84 0.76

8 TL 56.99 12.34 78.54 0.12

9 TL 57.51 11.33 37.16 - 305.50 64.16 0.00

10 TL 57.11 12.10 11820.51 - 3157.92 64.30 0.00

12 TL 56.88 12.55 651.73 - TL 66.80 8.00

14 TL 60.46 5.89 0.02 0.79 1913.11 65.94 0.00

16 TL 59.18 8.18 0.02 0.84 TL 65.94 9.36

18 TL 59.18 8.19 398.85 - TL 64.11 5.60

24 TL 58.75 8.98 3.63 0.50 TL 64.02 8.92

30 TL 57.53 11.28 0.11 0.40 TL 64.16 9.69

36 TL 57.62 11.10 0.06 0.50 TL 64.11 11.30

42 TL 57.56 11.22 0.08 0.41 TL 65.85 14.97

48 TL 56.75 - - - TL 68.93 18.89

54 TL 56.72 12.88 0.23 0.42 TL - -

60 TL 56.72 - - - TL - -
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U
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2

1 8.60 82.71 0.00 0.01 -

2 TL 82.28 0.52 0.00 -

3 TL 78.10 5.91 0.01 -

4 TL 74.43 11.12 51.30 -

5 TL 74.36 11.22 68.61 -

6 TL 72.87 13.50 93.59 -

7 TL 72.41 14.23 0.01 -

8 TL 72.21 14.54 1.62 -

9 TL 72.66 13.83 8.82 - 1133.12 - -

10 TL 72.94 13.40 629.83 - TL 94.18 14.14

12 TL 72.08 14.74 44.13 - TL - -

14 TL 73.57 12.43 3486.23 - TL 98.56 12.66

16 TL 73.35 12.77 TL - TL 92.65 18.23

18 TL 73.62 12.35 TL - TL 87.92 11.32

24 TL 73.45 12.61 TL - TL - -

30 TL 72.22 14.53 TL - TL - -

36 TL 72.46 - - - TL - -

42 TL 72.19 - - - TL - -

48 TL 72.08 - - - TL - -

54 TL 72.11 - - - TL - -

60 TL 72.55 18.31 0.07 0.30 TL - -
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1 18.60 93.98 0.00 0.21 -

2 TL 90.42 3.93 0.02 -

3 TL 92.73 1.35 120.94 -

4 TL 86.58 8.55 2248.46 -

5 TL 86.47 8.68 80.82 -

6 TL 86.95 8.09 1998.54 -

7 TL 86.67 8.43 2403.24 -

8 TL 86.76 8.33 3383.00 -

9 TL 86.28 8.92 TL - 5.62 - -

10 TL 86.94 8.10 TL - 391.61 - -

12 TL 86.30 9.15 TL - 3.22 - -

14 TL 86.27 8.94 TL - TL - -

18 TL 86.33 9.28 TL - TL - -

24 TL 86.29 9.78 TL - TL 97.49 6.21

30 TL 86.27 10.36 TL - TL 97.00 12.44

36 TL 86.27 - - - TL - -

42 TL 86.27 - - - TL - -

48 TL 86.27 - - - TL - -

54 TL 86.27 - - - TL - -

60 TL 86.27 - - - TL - -
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APPENDIX C

AN EXACT ALGORITHM FOR THE CONTINUOUS TIME

INVENTORY ROUTING PROBLEM WITH OUT-AND-BACK

ROUTES

Appendix 1 – Result Details

In Tables C.1, C.2 and C.3 the result details are shown. The Instance column has

the instance name, corresponding to the type slash (-) sample number. The Lower

column shows the best lower bound value found and the Best column, the best feasible

solution value. The Runtime column indicates the running time of the DDD algorithm

and the Iterations column, the total number of iterations. The Points column shows

the total number of time points added to the time-expanded network (including all

locations in N0).
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Table C.1: Instances with 10 customers (N10).
Instance Lower Best Runtime Iterations Points

N10G1P25U1-1 110.08 110.08 4.79 33 220
N10G1P25U1-2 109.64 109.64 8.75 50 239
N10G1P25U1-3 110.98 110.98 3.64 30 183
N10G1P25U2-1 107.14 107.14 13.93 40 299
N10G1P25U2-2 109.36 109.36 7.20 35 252
N10G1P25U2-3 109.20 109.20 2.73 15 178
N10G1P25U3-1 107.20 107.20 0.90 3 98
N10G1P25U3-2 110.62 110.62 1.07 3 88
N10G1P25U3-3 110.92 110.92 2.27 10 154
N10G1P50U1-1 110.06 110.06 3.11 19 194
N10G1P50U1-2 110.56 110.56 14.01 55 296
N10G1P50U1-3 106.02 106.02 4.28 18 219
N10G1P50U2-1 108.62 108.62 1.79 8 133
N10G1P50U2-2 109.38 109.38 3.58 17 193
N10G1P50U2-3 109.44 109.44 2.80 17 174
N10G1P50U3-1 109.04 109.04 3.53 15 197
N10G1P50U3-2 107.30 107.30 2.77 13 171
N10G1P50U3-3 113.32 113.32 1.13 4 111
N10G1P75U1-1 109.02 109.02 12.61 53 311
N10G1P75U1-2 110.62 110.62 2.69 18 166
N10G1P75U1-3 108.74 108.74 4.82 35 224
N10G1P75U2-1 109.76 109.76 0.85 10 141
N10G1P75U2-2 98.90 98.90 1.92 18 174
N10G1P75U2-3 110.42 110.42 6.62 40 216
N10G1P75U3-1 106.90 106.90 2.07 16 180
N10G1P75U3-2 105.10 105.10 8.63 40 236
N10G1P75U3-3 105.02 105.02 0.35 3 90
N10G2P25U1-1 113.34 113.34 1.04 15 163
N10G2P25U1-2 112.04 112.04 3.21 25 238
N10G2P25U1-3 115.50 115.50 3.83 30 219
N10G2P25U2-1 110.38 110.38 2.33 24 183
N10G2P25U2-2 108.64 108.64 0.70 7 153
N10G2P25U2-3 108.96 108.96 20.45 37 314
N10G2P25U3-1 112.60 112.60 15.31 36 271
N10G2P25U3-2 123.18 123.18 721.17 85 565
N10G2P25U3-3 116.26 116.26 3.50 18 202
N10G2P50U1-1 100.98 100.98 1.46 13 190
N10G2P50U1-2 100.66 100.66 34.80 78 355
N10G2P50U1-3 111.62 111.62 0.78 11 143
N10G2P50U2-1 101.20 101.20 1.70 17 158
N10G2P50U2-2 110.08 110.08 1.65 10 188

Instance Lower Best Runtime Iterations Points
N10G2P50U2-3 118.70 118.70 3.13 25 183
N10G2P50U3-1 88.76 88.76 0.96 8 153
N10G2P50U3-2 115.38 115.38 0.41 4 102
N10G2P50U3-3 106.68 106.68 0.72 7 140
N10G2P75U1-1 104.78 104.78 3.89 28 199
N10G2P75U1-2 113.52 113.52 0.66 10 143
N10G2P75U1-3 103.46 103.46 3.15 24 218
N10G2P75U2-1 108.10 108.10 0.85 12 129
N10G2P75U2-2 109.64 109.64 4.13 29 216
N10G2P75U2-3 108.72 108.72 1.04 10 161
N10G2P75U3-1 119.64 119.64 91.83 60 365
N10G2P75U3-2 122.54 122.54 33.94 34 294
N10G2P75U3-3 109.78 109.78 0.32 3 81
N10G3P25U1-1 107.38 107.38 10.77 37 278
N10G3P25U1-2 111.18 111.18 3.72 28 210
N10G3P25U1-3 102.28 102.28 3.78 25 248
N10G3P25U2-1 116.80 116.80 1.07 8 157
N10G3P25U2-2 99.68 99.68 16.96 47 284
N10G3P25U2-3 101.58 101.58 252.07 76 428
N10G3P25U3-1 119.72 119.72 11.14 15 304
N10G3P25U3-2 114.14 114.14 10.75 29 261
N10G3P25U3-3 118.28 118.28 1.63 9 184
N10G3P50U1-1 119.30 119.30 0.89 10 142
N10G3P50U1-2 108.22 108.22 3.15 24 180
N10G3P50U1-3 84.80 84.80 5.74 28 235
N10G3P50U2-1 121.62 121.62 58.05 30 314
N10G3P50U2-2 122.82 122.82 0.36 3 82
N10G3P50U2-3 112.10 112.10 1.60 10 181
N10G3P50U3-1 120.16 120.16 102.02 48 366
N10G3P50U3-2 123.70 123.70 12.31 22 247
N10G3P50U3-3 127.44 127.44 31.01 35 291
N10G3P75U1-1 115.14 115.14 1.18 14 175
N10G3P75U1-2 100.22 100.22 1.12 10 171
N10G3P75U1-3 98.08 98.08 14.76 43 294
N10G3P75U2-1 118.96 118.96 1.30 11 166
N10G3P75U2-2 123.12 123.12 6.24 31 199
N10G3P75U2-3 108.34 108.34 0.35 4 78
N10G3P75U3-1 120.20 120.20 152.49 29 396
N10G3P75U3-2 124.54 124.82 7200.00 88 749
N10G3P75U3-3 146.80 146.80 663.58 54 516



Table C.2: Instances with 20 customers (N20).
Instance Lower Best Runtime Iterations Points

N20G1P25U1-1 214.48 214.48 317.91 163 757
N20G1P25U1-2 213.28 213.28 21.72 27 528
N20G1P25U1-3 208.16 208.16 90.14 71 701
N20G1P25U2-1 210.92 210.92 188.32 58 795
N20G1P25U2-2 211.22 211.22 35.95 30 535
N20G1P25U2-3 213.18 213.18 157.25 67 653
N20G1P25U3-1 208.92 208.92 19.59 16 313
N20G1P25U3-2 210.00 210.00 251.76 67 701
N20G1P25U3-3 215.44 215.44 20.07 14 370
N20G1P50U1-1 207.84 207.84 55.25 45 580
N20G1P50U1-2 208.56 208.56 130.29 69 721
N20G1P50U1-3 209.42 209.42 257.36 110 770
N20G1P50U2-1 214.10 214.10 55.02 43 545
N20G1P50U2-2 205.80 205.80 208.76 79 672
N20G1P50U2-3 210.22 210.22 44.02 34 543
N20G1P50U3-1 225.68 225.68 481.25 63 652
N20G1P50U3-2 208.86 208.86 17.89 13 293
N20G1P50U3-3 209.84 209.84 19.70 16 339
N20G1P75U1-1 214.62 214.62 32.40 43 451
N20G1P75U1-2 198.96 198.96 34.08 40 474
N20G1P75U1-3 212.02 212.02 7.60 22 423
N20G1P75U2-1 205.46 205.46 83.07 55 565
N20G1P75U2-2 225.30 225.30 314.99 71 714
N20G1P75U2-3 211.38 211.38 29.19 42 420
N20G1P75U3-1 209.20 209.20 26.05 32 399
N20G1P75U3-2 206.64 206.64 1.97 7 231
N20G1P75U3-3 209.60 209.60 1.57 5 222
N20G2P25U1-1 203.28 203.28 65.21 66 561
N20G2P25U1-2 215.58 215.58 77.60 57 672
N20G2P25U1-3 212.24 212.24 84.63 62 634
N20G2P25U2-1 217.68 217.68 55.30 43 532
N20G2P25U2-2 218.16 218.16 1624.73 116 989
N20G2P25U2-3 228.10 228.10 467.96 59 889
N20G2P25U3-1 221.50 221.50 152.75 41 624
N20G2P25U3-2 221.56 - 7200.00 182 1132
N20G2P25U3-3 220.64 220.64 907.96 67 803
N20G2P50U1-1 202.72 202.72 383.61 96 844
N20G2P50U1-2 198.30 198.30 445.96 91 823
N20G2P50U1-3 221.64 221.64 40.74 45 522
N20G2P50U2-1 230.54 230.54 7164.19 135 1113
N20G2P50U2-2 225.42 225.42 207.92 40 721

Instance Lower Best Runtime Iterations Points
N20G2P50U2-3 219.46 219.46 211.38 63 678
N20G2P50U3-1 230.50 230.50 675.38 58 810
N20G2P50U3-2 239.40 283.92 7200.00 114 1115
N20G2P50U3-3 224.06 224.06 974.09 80 764
N20G2P75U1-1 202.58 202.58 1.61 6 209
N20G2P75U1-2 205.24 205.24 539.34 101 906
N20G2P75U1-3 205.44 205.44 559.73 119 857
N20G2P75U2-1 202.68 202.68 4.11 9 272
N20G2P75U2-2 224.58 224.58 5.41 15 349
N20G2P75U2-3 218.58 218.58 12.89 27 372
N20G2P75U3-1 220.34 220.38 7200.00 103 951
N20G2P75U3-2 220.46 220.48 7200.00 117 1017
N20G2P75U3-3 211.58 211.58 1.82 6 244
N20G3P25U1-1 221.18 221.18 102.53 58 663
N20G3P25U1-2 189.56 189.56 431.48 96 843
N20G3P25U1-3 189.26 189.26 785.55 78 884
N20G3P25U2-1 209.94 209.94 81.29 41 579
N20G3P25U2-2 216.78 226.26 7200.00 109 1289
N20G3P25U2-3 228.32 228.32 1721.03 70 1070
N20G3P25U3-1 213.94 213.94 6739.51 117 1125
N20G3P25U3-2 238.22 - 7200.00 101 1136
N20G3P25U3-3 233.82 270.04 7200.00 113 1095
N20G3P50U1-1 199.52 199.52 33.47 39 513
N20G3P50U1-2 193.92 193.92 821.79 126 848
N20G3P50U1-3 200.52 200.52 1868.88 169 1210
N20G3P50U2-1 198.72 198.72 414.70 58 713
N20G3P50U2-2 257.66 257.68 7200.00 115 1104
N20G3P50U2-3 210.14 210.14 1306.51 60 872
N20G3P50U3-1 235.62 235.64 7200.00 128 1100
N20G3P50U3-2 231.50 231.50 26.43 19 399
N20G3P50U3-3 248.74 248.74 23.44 19 435
N20G3P75U1-1 156.96 156.96 180.76 74 633
N20G3P75U1-2 208.54 208.54 451.58 97 844
N20G3P75U1-3 191.74 191.74 46.35 35 582
N20G3P75U2-1 226.54 226.54 379.16 57 647
N20G3P75U2-2 206.52 213.18 7200.00 75 942
N20G3P75U2-3 236.56 242.12 7200.00 133 1048
N20G3P75U3-1 214.70 215.32 7200.00 139 898
N20G3P75U3-2 234.04 234.04 3158.80 64 905
N20G3P75U3-3 234.84 234.84 529.05 53 671



Table C.3: Instances with 30 customers (N30).
Instance Lower Best Runtime Iterations Points

N30G1P25U1-1 307.18 307.18 435.25 88 1165
N30G1P25U1-2 309.42 309.42 7077.08 231 2082
N30G1P25U1-3 310.52 310.52 2959.09 166 1767
N30G1P25U2-1 310.00 310.00 413.55 54 1093
N30G1P25U2-2 306.62 306.62 1418.79 96 1307
N30G1P25U2-3 321.04 321.04 1203.95 89 1306
N30G1P25U3-1 310.60 310.60 1040.41 96 995
N30G1P25U3-2 319.32 319.32 1956.07 68 1189
N30G1P25U3-3 304.54 313.70 7200.00 187 1529
N30G1P50U1-1 311.34 311.34 5647.27 219 1887
N30G1P50U1-2 301.48 301.48 789.43 120 1326
N30G1P50U1-3 310.54 310.54 4729.12 220 1613
N30G1P50U2-1 315.32 315.32 231.52 49 882
N30G1P50U2-2 320.22 320.22 552.07 60 1089
N30G1P50U2-3 312.18 312.18 300.87 49 1035
N30G1P50U3-1 313.48 313.48 83.43 23 638
N30G1P50U3-2 323.10 323.10 2084.87 90 1116
N30G1P50U3-3 309.22 309.22 29.26 11 461
N30G1P75U1-1 306.68 306.68 487.31 86 1088
N30G1P75U1-2 311.74 311.74 2261.30 163 1425
N30G1P75U1-3 296.98 296.98 422.31 84 1018
N30G1P75U2-1 312.36 312.36 19.98 17 507
N30G1P75U2-2 316.02 316.02 4233.20 187 1360
N30G1P75U2-3 316.24 316.24 3370.19 128 1207
N30G1P75U3-1 318.20 318.20 1166.61 78 891
N30G1P75U3-2 304.88 304.90 7200.00 149 1208
N30G1P75U3-3 308.38 308.38 10.12 10 389
N30G2P25U1-1 295.90 295.90 2335.74 126 1586
N30G2P25U1-2 319.74 319.74 733.21 86 1398
N30G2P25U1-3 314.22 314.22 579.88 90 1244
N30G2P25U2-1 309.66 309.66 1562.17 94 1388
N30G2P25U2-2 338.74 346.40 7200.00 113 1547
N30G2P25U2-3 309.40 309.40 1750.36 104 1346
N30G2P25U3-1 317.88 324.90 7200.00 104 1443
N30G2P25U3-2 340.06 - 7200.00 83 1435
N30G2P25U3-3 319.64 - 7200.00 76 1484
N30G2P50U1-1 286.36 286.36 730.75 95 1192
N30G2P50U1-2 330.86 330.86 106.11 38 915
N30G2P50U1-3 298.54 298.54 1463.70 111 1390
N30G2P50U2-1 322.46 322.46 2247.04 102 1182
N30G2P50U2-2 330.66 330.66 481.76 51 1008

Instance Lower Best Runtime Iterations Points
N30G2P50U2-3 301.02 308.02 7200.00 114 1311
N30G2P50U3-1 331.76 331.76 1549.20 67 986
N30G2P50U3-2 328.10 335.40 7200.00 74 1370
N30G2P50U3-3 314.76 353.38 7200.00 88 1330
N30G2P75U1-1 304.86 304.86 2100.89 134 1386
N30G2P75U1-2 302.94 302.94 1044.95 117 1132
N30G2P75U1-3 304.52 304.52 151.35 47 877
N30G2P75U2-1 310.26 310.26 3083.55 92 1207
N30G2P75U2-2 312.82 312.82 148.60 41 843
N30G2P75U2-3 315.44 315.44 953.23 76 1005
N30G2P75U3-1 320.60 320.72 7200.00 125 1192
N30G2P75U3-2 318.20 318.20 72.45 19 607
N30G2P75U3-3 315.78 - 7200.00 105 1167
N30G3P25U1-1 298.04 298.04 1593.19 94 1496
N30G3P25U1-2 311.88 311.88 143.00 52 914
N30G3P25U1-3 302.08 302.08 3123.85 105 1569
N30G3P25U2-1 326.92 - 7200.00 86 1602
N30G3P25U2-2 330.38 330.38 6575.17 128 1543
N30G3P25U2-3 325.92 325.92 5162.23 113 1506
N30G3P25U3-1 331.44 - 7200.00 69 1452
N30G3P25U3-2 342.44 - 7200.00 82 1380
N30G3P25U3-3 346.22 - 7200.00 63 1304
N30G3P50U1-1 273.32 273.32 2940.29 113 1452
N30G3P50U1-2 302.80 302.80 768.84 61 1244
N30G3P50U1-3 327.88 327.88 291.60 41 913
N30G3P50U2-1 339.96 339.96 2091.10 82 1129
N30G3P50U2-2 348.34 348.34 300.00 45 941
N30G3P50U2-3 349.44 349.44 3362.65 48 1240
N30G3P50U3-1 347.56 369.54 7200.00 60 1197
N30G3P50U3-2 334.46 - 7200.00 52 1144
N30G3P50U3-3 339.98 348.08 7200.00 92 1269
N30G3P75U1-1 283.22 283.22 2568.24 82 1263
N30G3P75U1-2 318.98 318.98 266.97 51 1056
N30G3P75U1-3 272.84 - 7200.00 114 1596
N30G3P75U2-1 332.68 362.10 7200.00 78 1308
N30G3P75U2-2 342.06 342.06 6811.06 104 1408
N30G3P75U2-3 321.84 327.30 7200.00 101 1422
N30G3P75U3-1 330.64 380.78 7200.00 59 1233
N30G3P75U3-2 357.79 - 7200.00 109 1348
N30G3P75U3-3 330.62 375.94 7200.00 65 1371



Appendix 2 – Iterations and Status Tables

In Table C.4 the average number of iterations are computed for each instance type.

Table C.4: Average number of iterations.

N10 N20 N30
U1 U2 U3 U1 U2 U3 U1 U2 U3

P25 38 30 5 87 52 32 162 80 117
G1 P50 31 14 11 75 52 31 186 53 41

P75 35 23 20 35 56 15 111 111 79
P25 23 23 46 62 73 97 101 104 88

G2 P50 34 17 6 77 79 84 81 89 76
P75 21 17 32 75 17 75 99 70 83
P25 30 44 18 77 73 110 84 109 71

G3 P50 21 14 35 111 78 55 72 58 68
P75 22 15 57 69 88 85 82 94 78

Tables C.5, C.6 and C.7 shows the number of instances with status Optimal, Fea-

sible or No Solution after 2 hours for the number of customers and usage, geographical

distribution and percentage.

Table C.5: Instance status for number of customers and usage rate

Customers 10 20 30
Usage U1 U2 U3 U1 U2 U3 U1 U2 U3

Optimal 27 27 26 27 23 19 26 22 9
Feasible 0 0 1 0 4 6 0 4 10

No Solution 0 0 0 0 0 2 1 1 8

Table C.6: Instance status for number of customers and geographical distribution

Customers 10 20 30
Distribution G1 G2 G3 G1 G2 G3 G1 G2 G3

Optimal 27 27 26 27 23 19 25 18 14
Feasible 0 0 1 0 3 7 2 6 6

No Solution 0 0 0 0 1 1 0 3 7
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Table C.7: Instance status for number of customers and percentage N` customers

Customers 10 20 30
Percentage P25 P50 P75 P25 P50 P75 P25 P50 P75

Optimal 27 27 26 23 24 22 18 21 18
Feasible 0 0 1 2 3 5 3 5 6

No Solution 0 0 0 2 0 0 6 1 3
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Appendix 3 – CIRP-OB Instances and Results for [72]

In [72] randomly generated instances are solved using lower and upper bound models.

We adapt those instances to the CIRP-OB and find new values for the number of

vehicles, using the same methodology is used for finding a number of vehicles for

CIRP instances. We run the lower bound model and the upper bound model with

a homogeneous discretization ∆ = 3 and ∆ = 1, respectively, for 2 hours. The

optimality gap is reported in Tables C.8 and C.9. Several instances do not have a

provable optimal solution, specially random instances with more than 10 customers.

Table C.8: Optimality gap (%) for clustered instances using LOWER(3) and UP-
PER(1) (2 hrs).

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

C
us

to
m

er
s 5 0.00 0.00 18.85 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.67 10.66
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.45 15.33
12 0.00 6.09 14.61 0.00 5.38 6.09 3.90 0.00 0.00
15 0.00 10.28 17.67 0.00 4.54 4.97 3.28 0.00 0.00

Table C.9: Optimality gap (%) for random instances using LOWER(3) and UP-
PER(1) (2 hrs).

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

C
us

to
m

er
s 5 0.00 15.80 17.50 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 6.28 0.00 0.00 0.00 0.00 0.00 0.00
10 12.79 3.03 8.27 2.26 12.79 21.89 1.86 2.37 8.14
12 6.25 7.80 15.27 1.86 10.38 7.80 1.58 5.89 6.51
15 8.97 6.54 10.45 4.68 17.51 15.28 4.08 8.17 13.14

The DDD algorithm runs for the same instances for up to 2 hours. In this case,

all the instances have an optimal solution. In Tables C.10 and C.11 the running time
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is shown for each instance.

Table C.10: Running time (seconds) for clustered instances.

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

C
us

to
m

er
s 5 0.19 0.19 0.73 0.20 0.19 0.19 0.22 0.20 0.18

7 0.21 0.20 0.20 0.22 0.21 0.20 0.24 0.21 0.21
10 1.14 0.99 1.11 1.14 1.08 1.07 1.33 1.09 1.05
12 1.20 1.04 2.94 1.28 1.31 1.05 1.28 1.22 1.12
15 1.29 1.24 4.36 0.33 0.32 0.24 0.37 0.29 0.25

Table C.11: Running time (seconds) for random instances.

Usage Level
U1 U2 U3

Capacity Capacity Capacity
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

C
us

to
m

er
s 5 0.24 49.42 44.79 0.25 0.21 0.23 0.23 0.23 0.21

7 0.26 0.21 5.34 0.25 0.23 0.22 0.26 0.23 0.21
10 141.04 33.81 102.25 0.26 4.84 262.97 0.34 0.25 6.72
12 0.28 101.49 115.75 0.32 71.58 1.98 0.34 15.02 88.13
15 0.31 596.33 645.91 0.34 434.38 1919.30 0.58 39.00 1159.75
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