
EXPLOITING TEMPORAL AND SPATIAL REDUNDANCIES FOR
VECTOR QUANTIZATION OF SPEECH AND IMAGES

A Thesis
Presented to

The Academic Faculty

by

Chu Meh Chu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2015

Copyright c© 2015 by Chu Meh Chu

EXPLOITING TEMPORAL AND SPATIAL REDUNDANCIES FOR
VECTOR QUANTIZATION OF SPEECH AND IMAGES

Approved by:

Professor David V. Anderson,
Committee Chair
School of ECE
Georgia Institute of Technology

Professor Elliot Moore II
School of ECE
Georgia Institute of Technology

Professor David V. Anderson, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Thomas Morley
School of Mathematics
Georgia Institute of Technology

Professor Justin K. Romberg
School of ECE
Georgia Institute of Technology

Professor Anthony Yezzi
School of ECE
Georgia Institute of Technology

Date Approved: November 11,2015

To my parents and to God who gives me the grace to do all things

iii

ACKNOWLEDGEMENTS

An African proverb goes “It takes a village to raise a child”. My journey to this particular

juncture in my life has been colored by many people, and punctuated by many phases of

growth in my academic, emotional, and spiritual growth that makes the aforementioned

statement not only valid but real. I remain forever grateful to all those who have been

in each of those phases of my life. A special thanks goes to my advisor, Dr. David V.

Anderson, who has always believed in me and encouraged me to be disciplined and open-

minded when it comes to approaching research and life in general. I particularly thank him

for being a man of fiath who always leaves every body whom he meets more encouraged

and hopeful. I also thank my peers at the Efficient Signal Processing Laboratory- Nathan

Parrish, Bradley Whiteley, Kaitlin Fair, Brandon Carroll, Dr. Devangi Parikh, and Dr.

Kenneth Chiu- with whom I have had the delight of discussing challenging academic rigors

as well as provided support to each other when needed.

I would be remiss if I don’t thank the various groups and entities who have sponsored

my academic journey up till this point. First, I am grateful to the National Science Foun-

dation Graduate Research Fellowship program for funding my first three years of graduate

school. I am also thankful to the ECE department at Georgia Tech for allowing me to be a

teaching assistant for two years. The McNair Achievement Program at my undergraduate

school (NJIT) and the Summer Undergraduate Research Experience at Georgia Tech pro-

vided me a safe platform to develop my research confidence and I am forever grateful to

them.

To my parents-Dr. Thomas Chu and Veronica Meh Chu- whom this dissertation is

dedicated to. I could not have done this endeavor without their unwavering support, love

and vote of confidence. I thank them from instilling in me from early on a genuine love

iv

of learning balanced with play so that I could someday rest on the shoulders of academic

giants. To my siblings- Dr. Geh, Buh, Ndjuoh, Enseng, and Zuh- I thank you all for

always checking on me and for the side discussions and the animated vacations you all

made possible during my tenure as doctoral student. Their serenity during this period has

been exemplary. I have also had an adopted family in Atlanta by the Tandongfor’s. Both

Ambrose and William Tandongfor have been instrumental in making me feel at home in

Atlanta. I thank these two men for their kindness and selflessness.

I have been blessed with a plethora of friends from all walks of life. I cannot name them

all but I will be remiss if I don’t thank Divine Mekande Ngome, Bonam Sakwe, Chiluwata

Lungu, Dr. Uzoma Onunkwo, Dr. Edem Wornyo, Dr. Brett Matthews, Innocent Wamey,

and Didier Melone. Each of these people have encouraged and pushed me to be a better

person in ways I could not have done by myself.

I have been blessed immensely by two church communities in Atlanta: the Georgia

Tech Catholic Center and the Cameroon Community of Catholics. These two communities

have been my spiritual anchors and have given me the much needed confidence and fel-

lowship to become a better human being in service of others. A special word goes out to

Fr. Mario Di Lella, Fr. Timothy Hepburn, Fr. Kevin Peek, and Fr. Henry Atem, and the

musical choirs whom I have sang and played instruments for. I am grateful for them all.

I must recognize the support of ASA, OMED, the Christian Order of Dynamic En-

gineers (CODE), Sacred Heart Ex-Students Association Network (SHESANS) for all the

relationships that were cultivated and nurtured through service and felloship within all these

organizations. A heartfelt thanks to Ms. Lillie McPhee at OMED for always having a lis-

tening ear. I also will like to thank all the other professors I have done a research project

for including Dr. Nikil Jayant, Dr. Yucel Altunbasak, and Dr. May Wang. Each of these

professors provided a learning platform from which my intellectual growth could blossom.

Last but not least, I thank God for His every flowing mercy and grace that allowed me to

persist through all the hurdles to witness this special moment. His grace alone is sufficient

v

indeed.

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiii

I INTRODUCTION . 1

II BACKGROUND OF VECTOR QUANTIZATION 3

2.1 Memory-less vector quantization . 4

2.1.1 Quantization . 4

2.1.2 Distortion . 6

2.1.3 Computational complexity . 7

2.1.4 Constrained Vector Quantization 7

2.2 Vector Quantization with Memory . 10

2.2.1 Vector Predictive Quantization 10

2.2.2 Finite-state Vector Quantization 10

2.3 Adaptive vector quantization . 12

2.3.1 Address-vector Quantization . 13

2.4 Lossless compression schemes . 14

2.4.1 Huffman coding . 14

2.4.2 Arithmetic coding . 16

2.4.3 Lempel-Zev-Welsh (LZW) compression 16

2.5 Entropy-constrained vector quantization 17

2.6 Summary of vector quantization schemes 18

III CODEBOOK REORDERING FOR VECTOR QUANTIZATION 20

3.1 Formulation of the concept of codebook reordering for vector quantization 20

3.2 Codebook post-processing techniques for vector quantization 21

vii

3.2.1 Dynamic codebook reordering vector quantization 23

3.3 Rate-distortion theory . 25

3.4 Conclusion . 26

IV LIKELIHOOD CODEBOOK REORDERING FOR VECTOR QUANTIZA-
TION . 27

4.1 Exploiting the transition probabilities between vectors 27

4.2 Likelihood codebook re-ordering vector quantization (LCRVQ) 29

4.3 LCR vector quantization algorithm . 31

4.3.1 VQ encoder with LCR . 33

4.3.2 VQ decoder with LCR . 33

4.4 Truncation of LCR Vector Quantization 33

4.5 Empirical observations of LCR algorithm on Gauss-Markov data 35

4.6 Computational complexity of LCRVQ 37

V APPLICATION OF LIKELIHOOD CODEBOOK REORDERING ON GAUSS-
MARKOV DATA . 39

5.1 One-dimensional Gauss-Markov data model 39

5.2 Experimental results on Gauss-Markov data 39

5.3 Conclusion on the application of LCR VQ on Gauss-Markov data 41

VI APPLICATION OF LIKELIHOOD CODEBOOK REORDERING ON SPEECH
LINE SPECTRAL PAIR SIGNALS . 44

6.1 Introduction to speech coding . 44

6.2 Coding of line spectral pairs of speech signals 45

6.3 Speech coders . 45

6.3.1 Code-excited linear prediction 46

6.4 Observations from previous speech coders 47

6.5 Experimental procedure of LCR on actual TIMIT speech data 47

6.6 Speech coding results . 49

VII APPLICATION OF LIKELIHOOD CODEBOOK REORDERING ON IM-
AGES . 53

7.1 Image compression using vector quantization 53

viii

7.2 Experimental procedure on Images . 54

7.3 Results . 56

7.3.1 Interpretation of results . 57

VIIIONLINE LEARNING FOR LIKELIHOOD CODEBOOK REORDERING
VECTOR QUANTIZATION . 64

8.1 Entropy estimates . 65

8.2 Adaptive Likelihood Codebook Re-ordering Vector Quantization 67

8.3 Results . 68

8.4 Conclusion . 75

IX CONCLUSIONS . 76

REFERENCES . 77

ix

LIST OF TABLES

1 Table of complexity and operation speed as function of dimension 7

2 Example 4 × 4 transition matrix for 30-element training sequence 29

3 Transition Matrix and Reordered Codebook 32

4 Voronoi regions . 38

5 Table of index entropies versus correlation in Synthetic data comparing
LBG, DCR, and LCR algorithms. Codebook of size 16, and training data
of dimension 100000 by 10 . 41

6 Table of bit rates for Gauss-Markov data. Best performing algorithms for
each codebook size are highlighted. S.E means sample entropy and P.E
means predicted entropy . 69

7 Table of Vector quantization errors for cross-training and testing of Gauss-
Markov sets . 74

x

LIST OF FIGURES

1 Vector quantization block diagram . 5

2 Tree-structured vector quantization . 8

3 (a) Predictive vector encoder and (b) decoder 11

4 Finite State Vector Quantization (a) Encoder and (b) decoder block diagram 12

5 Address vector quantization . 14

6 Huffman Coding Tree . 15

7 Variable rate communication system . 21

8 Histogram of VQ indices obtained from Gauss-Markov data sequence . . . 22

9 Plot of transition counts between between code vector 156 and other 255
vectors . 28

10 Entropy vs correlation of LCR and DCR algorithm 36

11 sample entropy vs dimension of LCR at different correlations 37

12 Voronoi region segmentation of the 2-D data space 38

13 Histogram plot of Gauss-Markov data quantized by LCR and DCR VQ . . 41

14 Semilog Histogram plot of Gauss-Markov data quantized by LCR and DCR
VQ . 42

15 Rate distortion curve of Gauss Markov Data with a) Huffman b) without
Huffman . 43

16 Block diagram of a CELP coder . 47

17 a) Rate-distortion curve of Speech vs distortion with Huffman coding b)
Rate-distortion curve of speech without Huffman 51

18 Rate-distortion plots of Speech LSF coefficients with Arithmetic coding . . 52

19 Rate-distortion plots of various VS schemes on Speech LSF with entropy
coding . 52

20 Rate-Distortion curve OF IMAGE VQ indices without Huffman 56

21 Rate-distortion curve of image indices with Huffman 57

22 ORIGINAL IMAGE WITHOUT COMPRESSION 59

23 ORIGINAL IMAGE WITH VQ COMPRESSION (0.625bpp) 60

24 ORIGINAL IMAGE WITH LCR VQ 1/4 COMPRESSION (0.5bpp) 61

xi

25 ORIGINAL IMAGE WITH LCR VQ 1/8 COMPRESSION (0.4375bpp) . . 62

26 ORIGINAL IMAGE WITH LCR VQ 1/16 COMPRESSION(0.375bpp) . . 63

27 Testing of ALCR algorithm on Gauss-Markov source of correlation factor
0.9 on an online basis. The entropy is calculated on a 256-entry codebook
and tested on 1-d Gauss-Markov data sources of correlation factors greater
than and smaller than the training correlation factor of 0.9. The transition
matrix is initialized to all 1’s . 70

28 Testing of ALCR algorithm on Gauss-Markov source of correlation factor
0.9. We observe the improve in bit rate savings for every codebook size for
each ALCR-VQ, DCR-VQ,LCR-VQ, and VQ schemes. Higher values on
the y-axis infer more compression. 71

29 Evaluation of the effect of different codebook sizes on the entropy of ALCR
on an online basis. Codebook sizes are 64, 128, and 256 and the testing
correlation factors of the 1-D Gauss-Markov sources are 0.65 and 0.9 . . . 72

30 Testing of ALCR algorithm on Gauss-Markov source of correlation factor
0.9. We change the initialize values of the transition matrix cells to equal
the numbers assigned on the legend where “T.M” stands for transition ma-
trix initial cell values. For example, for “T.M” equal to 40, all the transition
matrix values are assigned the value of 40 73

31 Cross-training and testing of ALCR algorithm on Gauss-Markov sources
with the same correlation factor α . 74

xii

SUMMARY

The objective of the proposed research is to compress data such as speech, audio,

and images using a new re-ordering vector quantization approach that exploits the transi-

tion probability between consecutive code vectors in a signal. Vector quantization is the

process of encoding blocks of samples from a data sequence by replacing every input vector

from a dictionary of reproduction vectors. Shannon’s rate-distortion theory states that sig-

nals encoded as blocks of samples have a better rate-distortion performance relative to when

encoded on a sample-to-sample basis. As such, vector quantization achieves a lower cod-

ing rate for a given distortion relative to scalar quantization for any given signal. Vector

quantization does not take advantage of the inter-vector correlation between successive in-

put vectors in data sequences. It has been demonstrated that real signals have significant

inter-vector correlation. This correlation has led to vector quantization approaches that

encode input vectors based on previously encoded vectors. Some methods have been

proposed in literature to exploit the dependence between successive code vectors. Predic-

tive vector quantization, dynamic codebook re-ordering, and finite-state vector quantization

are examples of vector quantization schemes that use inter-vector correlation. Predictive

vector quantization and finite-state vector quantization predict the reproduction vector for a

given input vector by using past input vectors. Dynamic codebook re-ordering vector quan-

tization has the same reproduction vectors as standard vector quantization. The dynamic

codebook re-ordering algorithm is based on the concept of re-ordering indices whereby

existing reproduction vectors are assigned new channel indices according a structure that

orders the reproduction vectors in an order of increasing dissimilarity. Hence, an input

vector encoded in the standard vector quantization method is transmitted through a chan-

nel with new indices such that 0 is assigned to the closest reproduction vector to the past

xiii

reproduction vector. Larger index values are assigned to reproduction vectors that have

larger distances from the previous reproduction vector. Dynamic codebook re-ordering

assumes that the reproduction vectors of two successive vectors of real signals are typically

close to each other according to a distance metric. Sometimes, two successively encoded

vectors may have relatively larger distances from each other. Our likelihood codebook re-

ordering vector quantization algorithm exploits the structure within a signal by exploiting

the non-uniformity in the reproduction vector transition probability in a data sequence. In-

put vectors that have higher probability of transition from prior reproduction vectors are

assigned indices of smaller values. The code vectors that are more likely to follow a given

vector are assigned indices closer to 0 while the less likely are given assigned indices of

higher value. This re-ordering provides the reproduction dictionary a structure suitable for

entropy coding such as Huffman and arithmetic coding. Since such transitions are common

in real signals, it is expected that our proposed algorithm when combined with entropy cod-

ing algorithms such binary arithmetic and Huffman coding, will result in lower bit rates for

the same distortion as a standard vector quantization algorithm. The re-ordering vector

quantization approach on quantized indices can be useful in speech, images, audio trans-

mission. By applying our re-ordering approach to these data types, we expect to achieve

lower coding rates for a given distortion or perceptual quality. This reduced coding rate

makes our proposed algorithm useful for transmission and storage of larger image, speech

streams for their respective communication channels. The use of truncation on the likeli-

hood codebook re-ordering scheme results in much lower compression rates without sig-

nificantly distorting the perceptual quality of the signals. Today, texts and other multimedia

signals may be benefit from this additional layer of likelihood re-ordering compression.

xiv

CHAPTER I

INTRODUCTION

Television, and telephone signals before the age of digitization were all transmitted as

analog signals. Digitization of analog signals such as speech, image and radar have pro-

liferated the communication domain with the advent of modern processors that can handle

digital data much more easily. This digitization is advantageous as it allows for more ma-

nipulation, communication, and compression. Scalar quantization (SQ) is the process of

assigning each sample to a finite amplitude. Scalar quantization is used widely in speech

communication standards such as ITU G.711, ITU G.722, ITU G.726, ITU G.727, but these

standards achieve good sound quality by using relatively high coding rate of 48kbps. Vec-

tor quantization is based on the rate-distortion principle that as the dimension of a vector

increases towards infinity, the coding rate of a given data sequence approaches a minimal

coding rate bound for a given distortion. Hence, the coding rate per sample reduces as the

dimension increases.

Other forms of vector quantization capture the correlation between vectors but do not

exploit the inherent correlation that exists in the encoded vectors of a given data sequence.

Dynamic codebook re-ordering vector quantization (DCRVQ) is a vector quantization ap-

proach to explore redundancy in the vector-quantized data sequence. The DCR approach

attempts to model correlation as a function of the distance between dictionary vectors of

the vector quantizer codebook. This aforementioned approach falls short because the dis-

tance measure is a static metric and does not change if we have a fixed vector dictionary

codebook. Hence, once a dictionary codebook is obtained, no prior information about the

transition between two vectors is used to further lower the coding rate.

Our algorithm, likelihood codebook re-ordering vector quantization (LCR), exploits

1

this transitioning between the dictionary vectors in a data sequence. It is observed that

the transition between two dictionary vectors exhibit non-uniform probability distribution

function if the transition is treated as a random variable. The contributions of this disserta-

tion are as follows:

1. Introduction of the likelihood codebook re-ordering method to losslessly transmit

data following the vector quantization stage

2. Introduction of a truncation approach to LCR to achieve more significant coding

gains

3. Application of lossless coding method such as Huffman coding on the re-ordered

indices

4. Application of the LCR method to both speech and image data

5. Introduction of the an online and adaptive likelihood codebook re-ordering scheme

that yields more reduction in coding gains

The rest of the dissertation is arranged as follows: Chapter 2 highlights in detail the

other vector quantization schemes and their shortcomings that propel us to propose our new

algorithm. Chapter 3 elaborates on the contributions of our new method. Chapter 6 and

Chapter 7 discuss the application of our method to speech and image datasets respectively.

Chapter 9 concludes the results and findings of the dissertation.

2

CHAPTER II

BACKGROUND OF VECTOR QUANTIZATION

Data compression is a field that has been of primary importance because of the increased

need for transmission of digital data [25]. In the past, data was transmitted in analog

format as in telephone services, analog television, and the use of cameras prior to digi-

tal cameras [18]. Data is obtained in digital format in the two consecutive processes of

sampling and quantization. Sampling involves acquiring the signal in question at specified

times while quantization is the process of assigning pre-defined values from a given set to

these signal samples. The quantization stage just described is often called scalar quanti-

zation and is an essential building block for analog-to-digital conversion. Essentially, an

N point scalar (one-dimensional) quantizer, Q : R → C where R is the real line and

C = {y1, y2, y3, . . . , yN} ∈ R is the codebook of size N.

The output values, yi, are sometimes referred to as reproduction values. In differen-

tial encoding such as differential pulse code modulation, the difference signal between the

input signal between the input signal and its predicted version is encoded instead of the

actual input signal [33]. This difference signal has a reduced range compared to that of the

actual signal. This reduction in effect yields a smaller bit rate for the same signal-to-noise

ratio. Differential encoding exploits redundancy between successive scalar values of a data

sequence. This is greatly employed in speech processing applications, and is included in

coding standards. Adaptive pulse code modulation [2, 36, 41] adjusts the size of the quan-

tization step to allow further reductions of the coding rate for a given signal-to-noise ratio.

Speech pulse code modulation and its variants have been used in many coding standards

such as G.711, G.726, G.722, subband coding, voice over internet protocol (VoIP), DVD

and blu-ray players [17].

3

Vector quantization is an extension of scalar quantization with the difference that it en-

codes groups of samples at a time. Vector quantization is based on Shannon rate distortion

theorem. As the name implies, a vector of samples is encoded one sample at a time and

is represented by one of several dictionary vectors from a designed codebook. Shannon’s

rate-distortion theorem states that as the dimension of a vector increases and approaches

infinity, the rate-distortion function approaches the Shannon theoretical bound. The Shan-

non theoretical bound represents the minimum rate that can achieved for a given distortion

or the converse. The fruit of this principle is that vector quantization achieves lower com-

pression even if the source is memory-less, that is, the source is a sequence of identically

and independently distributed random variables.

In this chapter, we present the principles of vector quantization and the performance

metrics and/or criteria of evaluation. An information-theoretic presentation is also made to

highlight the importance of Shannon’s rate-information theory.

2.1 Memory-less vector quantization

Memory-less vector quantization was proposed in [28] to achieve a better compression rate

for a given distortion. This method is the foundational vector quantizer algorithm. In this

method, a vector of samples is represented by a dictionary or codebook of reproduction

vectors that divide the training vector space into separate Voronoi regions. The method

proposed by Gray, et al., assumes that the reproduction vector has the smallest distance to

a given input vector relative to other reproduction vectors in a codebook.

In this approach, each input vector is encoded independently of the previous data vector.

In this subsection, the concepts, properties, and design for memory-less vector quantization

which are elaborated in [28] are discussed.

2.1.1 Quantization

Every compression algorithm has an encoder and a decoder. Let us assume that an input

vector x ∈ Rk and an encoder α assigns to each input vector x = {x0, x1, . . . , xk−1} a

4

channel symbol in some set M and a decoder β maps every channel symbol u in M in a

reproduction alphabet Â. The channel symbol is often assumed to be a space of 2R binary

R-dimensional vectors. The reproduction alphabet may consist of real vectors of a different

dimension.

If M has M elements, then the quantity R = log2M is the rate of quantizer in bits per

vector and r = R/k is the rate in bits per symbol or when input is sampled waveform, it

represents bits per sample.

Figure 1: Vector quantization block diagram

The use of the quantizer system for data compression is illustrated in Figure 1. The

input data vectors can be parameter vectors in voice coding system, consecutive vectors

in image coding or features of biomedical images [19]. For the sake of simplicity, it is

assumed that the channel is noiseless. While real samples are rarely noiseless, error correc-

tion coding for noisy channels can effectively provide a noiseless transmission of the VQ

symbols. In short, the emphasis on the noiseless channel is to focus on the data compres-

sion and not reflect any real model. The goal of this memory-less scheme is to produce

5

the “best” possible reproduction code for a given rate R. The idea of “best” is incomplete

unless understood with reference to the distortion model.

2.1.2 Distortion

The distortion measure, d, is a cost function d(x, x̂) of reproducing any input vector x̂

from x where k is the dimension of the vector. With such a metric, we can quantify the

performance of a system by an average distortion between the input and final reproduction

vectors. Thus, a system is considered good if it produces a small average distortion. There

are two principal distortion measures to characterize fidelity of a reconstructed signal to

a given input signal. The distortion metric is computed typically in one of two ways as

described subsequently.

2.1.2.1 Squared error distortion measure

Here, the input and reproduction spaces are k-dimensional euclidean spaces. The distortion

d(x, x̂) = ‖x− x̂‖ =
k−1∑
i=0

(xi − x̂i)2

is the distortion between input vector, x, and reproduction vector, x̂, where xi, x̂i are the

ith components of the actual signal vector and reproduction vector respectively. This mea-

sure is commonly used for waveform coding. There are many times when the weighted

euclidean distance is used to quantify the distortion as shown below

d(x, x̂) = ‖x− x̂‖ =
k−1∑
i=0

wi(xi − x̂i)2

where wi is the individual weight per given vector dimension. It is also very common to

measure performance by the squared-error-distortion

SNR = 20 log10

E‖X‖
E(d(X, X̂))

.

6

2.1.3 Computational complexity

For a fixed coding resolution rate per unit vector component, the performance of vector

quantization increases as the dimension k increases [3]. This performance improvement

with dimension can be explained by recognizing that the statistical independence between

signal samples are increasingly exploited. The improvement in performance also comes

from the sphere packing gain. The required codebook storage space in words and search

complexity are both proportional to kN where k is the vector dimension and N is the

codebook size. N is typically equal to 2rk where r is the bits per vector sample. An

illustration of how the complexity of a vector scheme changes with dimensionality is shown

in table 2.1.3 below.

Table 1: Table of complexity and operation speed as function of dimension
Dimension Complexity Operations per vector
1 2 16k
4 64 128k
8 2048 2M
10 10240 8M
12 49152 33M

It is easy to discern from the above table that complexity increases as dimensionality

increases. Sometimes constraints are placed in the codebook structure such that computa-

tional complexity is reduced. These constraints oftentimes imply an increase in distortion.

The following subsection describes common approaches of exploiting structure in the code-

book while reducing computational complexity.

2.1.4 Constrained Vector Quantization

The vector quantization schemes that fall under this category have a reduced computational

cost at the price of a slightly increased distortion measure.

7

2.1.4.1 Tree-structured Vector Quantization

Tree structured vector quantizers were first proposed by Buzo, et al., [7] and are a bi-

product of decision trees based algorithm. In tree structured vector quantization (TSVQ),

the codebook is designed using a tree structure whereby each layer down the tree node

eliminates the need to search the non-traversed notes. The prime advantage is to reduce

the computational search cost. For an m-ary codebook of size N = md where d is the

number of layers in the codebook. Tree-structured VQ used md units to search the TSVQ

codebook unlike md for unstructured VQ. Overall, the distortion performance is poorer

relative to unconstrained VQ for a given codebook size.

Figure 2: Tree-structured vector quantization

2.1.4.2 Product-code Vector Quantization

An approach to reduce computational complexity for encoding data vectors is product code

vector quantization. In this approach, an input vector is decomposed into vectors of smaller

dimensions such that each sub-vector is encoded separately with a different codebook. This

method [37] yields much reduced computational complexity though it may be suboptimal

in performance. This reduction in coding distortion is a result of the fact that the sub-vectors

8

typically have vector-to-vector dependencies which are not exploited when the input vector

is decomposed into smaller sub-vectors.

2.1.4.3 Mean-removed Vector Quantization

In mean-removed VQ [5], the mean of an input vector is removed, followed by the quan-

tization of the mean and the resultant vector called mean-removed vector separately. The

technique is effective when source input vectors are similar to each other. For example,

mean-removed VQ is used for a set of similar images with differing amounts of background

illumination. The effect of the varying lighting conditions can be effectively reduced by re-

moving the mean of each before quantization. This method is an example of product vector

quantization where the vector is partitioned into a scalar and vector.

2.1.4.4 Gain-shape Vector Quantization

In applications such as speech, where the dynamic range of the source input is quite large,

gain-shape VQ [37] may be used. For such sources, a very large codebook is needed to

represent the various vectors from the source. This requirement is reduced through gain-

shape VQ, in which the source input vectors are normalized by a suitable normalization

factor. The normalized vector and the normalization factor are then quantized separately.

Memory-less VQ encodes each data vector individually and as such does not incorpo-

rate a priori knowledge of the previously encoded input vectors. In short, it does not use

memory of previously quantized input vectors to encode the current vector. Subsequent

research after the LBG algorithm demonstrated that performance can be improved by in-

troducing memory into the vector quantization scheme [11]. In a nutshell, exploiting the

correlation or redundancy that exists in previously encoded data vectors have been shown

to reduce coding rate.

9

2.2 Vector Quantization with Memory

Vector quantization with memory is introduced in the this section. Memory-less vector

quantization schemes such as LBG algorithms capture the correlation between dimensions

within a single vector. Further compression can be achieved for a given distortion by ex-

ploiting the correlation between input data vectors. This can be done by incorporating

memory into a vector quantization scheme by using different codebooks for each input

vector. The codebooks change depending on the past data input vectors. Thus, vector

quantization with memory is generally dubbed feedback vector quantization. Feedback

vector quantization (FVQ) is an extension of scalar adaptive quantization with backward

estimation [22]. In this section, 2 vector quantization schemes that encapsulate the idea of

using memory are briefly described.

2.2.1 Vector Predictive Quantization

In [11], Gersho and Cuperman proposed a predictive vector coder (PVQ) that is a vec-

tor generalization of differential pulse-code modulation (DPCM) [34]. Differential pulse-

code modulation is a scalar quantization algorithm in which the difference signal sample

between the data sample and its predicted estimate from previous data samples are quan-

tized using pulse-code modulation (PCM) [1]. The quantized difference signal has a much

smaller distortion than that of quantizing the original signal. The result of this predictive

vector quantization is a higher signal-to-noise ratio relative to LBG VQ. Figure 3 illustrates

the working of the encoding and decoding using predictive vector quantization.

2.2.2 Finite-state Vector Quantization

Foster and Gray introduced in [15] another quantization scheme with memory called finite-

state vector quantization (FSVQ). Unlike predictive vector quantization that has an infinite

number of reproducible vectors, FSVQ has a finite set of reproducible vectors. Finite-state

VQ uses a much simpler prediction rule than PVQ and hence is more computationally

10

(a) (b)

Figure 3: (a) Predictive vector encoder and (b) decoder

efficient than PVQ for a given coding rate and distortion.

A finite-state vector quantizer can be viewed as a collection of K separate memory-less

vector quantizers with a selection rule that determines which of the K codebooks is used

to encode the current input vector into a channel index. The advantage of using FSVQ is

that it explores the correlation between successive vectors by tracking its dependence on

previous vectors by means of a state. The state is tracked in both the encoder and decoder

and hence it is not encoded and quantized as the actual channel index is. Experiments on

real data and Gauss-Markov signals have demonstrated that FSVQ outperforms VQ for

a given coding rate in terms of signal-to-noise ratio (SNR) for sources with inter-vector

correlation. FSVQ’s encoder and decoder are shown in Figure 4.

We denote the state code books as Cs = {β(u, s); all u ∈ N, s ∈ S}. The next-state

function f(u, s) is a function of the current state s and the index of the quantized input

vector u. Both the state codebook and the next-state function are used to encode any input

vector at a given time.

11

(a) (b)

Figure 4: Finite State Vector Quantization (a) Encoder and (b) decoder block diagram

2.3 Adaptive vector quantization

Memoryless vector quantization typically maps input vectors into one of many predefined

code vectors. For a real signal, dictionary vectors are not identically and independently

distributed. The dictionary vector statistics may vary slowly temporally and hence exhibit

non-stationary behavior. Neighboring vectors in a real signal signals typically have a strong

correlation on each other. The correlation between neighboring vectors in a signal allows

one to measure the conditional distribution of the dictionary vector of an input vector to

the dictionary vector of a preceding vector in a data sequence. The conditional probability

distribution of a random variable has more information than its marginal distribution. The

more information we observe from a code vector, the more efficiently it can be encoded.

Using the conditional distribution to encode an input vector requires the encoder/quantizer

to adapt temporally and spatially to the local statistical characteristics of the neighboring

vectors of the signal to be encoded. The vector quantization scheme is hence adaptive

if the codebook changes in time to match the local statistics of the input sequence. It is

also important to know that feedback vector quantization schemes such as predictive vec-

tor quantization and finite-state vector quantization are not classified adaptive because they

12

possess the property of adapting codebook to neighboring vectors to the input vector to be

encoded.

Concatenating vectors to produce a “super vector” can yield substantial improvements

in coding gains at a cost of an impractical computational complexity. Adaptive vector

quantization reduces this imposed the imposed complexity from concatenating vectors by

exploiting statistical dependency of vectors from its surrounding vectors. Address vector

quantization is a classic example of adaptive vector quantization and it is discussed in the

proceeding subsection.

2.3.1 Address-vector Quantization

Address vector quantization is an adaptive vector quantization algorithm used primarily

for image coding [31]. This quantization method uses the fact that the neighboring image

blocks are correlated and follow a certain pattern. If an image block is 4×4, one can capture

the correlation between four 4 × 4 neighboring blocks by observing that some patterns of

quantization indices occur more frequently than others.

Consequently, groups of the quantization index can be encoded by an address-code

book that contains the indices of image blocks that occur more frequently. The group of

quantization indices for neighboring blocks in an image is called an address code vector.

The address codebook hence contains a collection of all possible address code vectors. It

is divided into active and inactive address codebooks. This is illustrated in figure 5.

The address-codebook is obtained by sorting the overall address code vectors accord-

ing to a scoring function. The scoring function is obtained from the probability-transition

matrices by multiplying (or summing) the horizontal, vertical, and diagonal probabilities

between the block represented by the address code vector and neighboring blocks as shown

in Figure 5.

score = P (1/A)× P (2/A)× P (1/B)× P (2/B)× P (1/C)× P (1/D)× P (3/D)×

P (1/E)× P (3/E)× P (2/F)× P (4/1)× P (4/2)× P (4/3)

13

(a) (b)

Figure 5: Address vector quantization

2.4 Lossless compression schemes

The aforementioned three types of vector quantization, which are memoryless VQ, VQ

with memory, and adaptive VQ, do not take into account the probability of occurrence of

each of the dictionary vectors. More compression may be achieved by exploiting the non-

uniformity of the distribution of the dictionary vectors in a training sequence. Lossless

encoding schemes such as Huffman coding [20, 21], arithmetic coding [27] , and LZW

coding schemes [4, 24, 38] capitalize on the non-uniform probability of occurrence of each

of the dictionary code vectors. The following subsections briefly highlight the operation of

these lossless encoding algorithms.

2.4.1 Huffman coding

Huffman coding is an efficient method of encoding a list of symbols to be transmitted when

we know the probabilities of occurrence in the messages to be encoded. In this approach,

the lengths of the codes assigned to the dictionary vector indices is inversely proportional

to the probability of occurrence. Hence a more probable dictionary vector gets assigned

a code that has smaller coding length while a less probable dictionary vector has a longer

coding length. The codes assigned to every vector is developed by using the idea of a

coding tree. The figure below shows the coding tree for the following example:

14

Figure 6: Huffman Coding Tree

Consider a set of symbols S = {A,B,C,D}with probability p = {0.333, 0.5, 0.083, 0.083}.

1. Remove from S the symbols with the smallest probabilities.

2. Combine the two symbols with smallest probabilities

3. Combine the probability of the two symbols to form a new node

4. Compute the probability of new node by adding probabilities from combined sym-

bols

5. Add new node to S where S = {A,B,CUD}, and p = {0.333, 0.5, 0.167}

6. Repeat steps 2 through 5 until S contains a single node.

The resulting is a variable-rate code for the given vector indices and probabilities. Huff-

man coding performs significantly better when some vectors are substantially more com-

mon than other vectors.

15

2.4.2 Arithmetic coding

Although Huffman’s original algorithm is optimal for a symbol-by-symbol coding (i.e., a

stream of unrelated symbols) with a known input probability distribution, it is not optimal

when the symbol-by-symbol restriction is dropped, or when the probability mass functions

are unknown. Arithmetic coding [42] is superior in many respects to the better-known

Huffman method for two main reasons. First, arithmetic coding assigns fractional bits per

data vector in contrast to Huffman coding which assigns whole bits. Secondly, arithmetic

coding better handles the coding of data vectors with unknown a prior ensemble proba-

bilities than Huffman coding. Arithmetic coding is a lossless coding that approaches the

Shannon theoretical bound.

2.4.3 Lempel-Zev-Welsh (LZW) compression

Entropy coders such as arithmetic and Huffman coding assume that the probabilities of

occurrence of dictionary vectors are known a priori. Huffman coding works best by first

estimating the histogram of the dictionary vectors from a training data sequence. The

estimation of the histogram of vectors in an a priori manner is computationally inefficient

and sub-optimal in encoding groups of vectors. Since vector probabilities are not fixed

as the data vector sequence is transmitted, a one-size-fits-all Huffman code does not fully

capture the patterns that exist in a sequence of vectors.

The approach proposed by Lempel, Ziv, and Welsh in [32] addresses the variable nature

of the histogram of dictionary vector indices. Typical variable length coders such as Huff-

man coding and arithmetic coding assign a unique codebook index for every dictionary vec-

tor. The one-to-one mappring between the input vector and the codebook index yields sig-

nificant reductions in coding rate. However, most signals have occurences of two or more

successive code vectors being transmitted through a communication channel. For exam-

ple, if a dictionary code vector {c1, c2, c3, c4} with sequence {c1, c2, c1, c2, c3, c4, c2, c1, c2},

we can observe that {c1, c2} occurs three times in the training of channel symbols. If we

16

include the two symbols c1 and c2 as one entity in the encoding table, then more copmres-

sion can be achieved. The LZW algorithm precisely uses this technique of creating a the

dictionary codebook that evolves instantaneously as opposed to the entropy coding such as

arithmetic and Huffman codes which are pre-assigned. This approach overall is very useful

when the initial dictionary alphabet has a small size such as that of the English alphabet.

Using LZW on larger codebook sizes such as 256 or more becomes intractable as there are

many permutations and combinations of dictionary vectors that could assigned to a given

data sequence. Hence though LZW proposes better compression for smaller dictionary

sizes, the computational complexity of assigning dictionaries for a given data sequence

becomes very large.

2.5 Entropy-constrained vector quantization

In memoryless vector quantization, each data vector is encoded by a binary vector of fixed

code length. For example, a data vector stream to be encoded by a codebook designed by

memoryless VQ is assigned 32 bits per vector. Many times, an index stream is appended

by the entropy coder to achieve more compression. One approach to combine both lossless

entropy coding and memoryless VQ in one step is to minimize average distortion for a

given entropy. Philip Chou in [9] introduced the entropy-constrained vector quantization

designed a codebook based on the joint criteria of distortion and entropy.

In entropy-constrained vector quantization, the optimal code vector for a given vector

is assigned by finding the input vector that minimizes the modified functional:

d = E(ρ(X, X̂) + λH(X̂)) (1)

whereH(X̂) is the entropy of the VQ output and λ can be viewed as a Lagrange multiplier.

If we let i(x̂) denote the index of the VQ reproduction vector x̂, then H(x̂) = H(i(X̂))

since the index and the reproduction vector exactly determine each other. ρ(X, X̂) is the

distortion between the input vector X and the encoded input vector X̂ .

17

2.6 Summary of vector quantization schemes

Vector quantization achieves compression by encoding groups of data samples at a time.

Rate-distortion theory [43] propounds that as the dimension of a vector approaches infinity,

the distortion for a given rate approaches a certain lower bound. Though memoryless VQ

achieves better compression than scalar quantization, it does not utilize the vector-to-vector

dependency in a data sequence.

Vector quantization with memory such as predictive vector quantization and finite-state

vector quantization address this vector-to-vector dependency by encoding a given input

vector based on the input vector that was previously transmitted in a given data vector se-

quence. Vector quantization with memory still however has a fixed codebook size. Adap-

tive vector quantization adapts the size of the codebook as the vectors are transmitted.

Memoryless VQ, VQ with memory, and adaptive VQ assign indices to each of their en-

coded vectors. The coding rate can be reduced significantly if these indices are encoded

losslessly such that there is no additional distortion to the data sequence. Lossless com-

pression schemes simply are variable-length compression algorithms that assign codes to

vectors according their probability of occurrence.

Entropy constrained vector quantization encodes an input vector by finding the code

vector that minimizes the average distortion between the vector and its reconstructed ver-

sion for a given entropy rate. This is unlike memoryless VQ which minimizes distortion

over a fixed coding bit rate. It has been shown in several literature [14, 26] that ordering

a dictionary codebook yields more compression without any addition in distortion when

appended by lossless entropy schemes. In today’s world of communication, there is a de-

mand to transmit huge amounts of data at smaller rates. The computational power available

today overrides the additional computational cost that appending a lossless encoder may in-

troduce to the compression algorithms that utilize reordering. No absolute ordering scheme

exists between code vectors of a signal. In the past, the ordering between code vectors was

done by assigning indices to vectors according to a distance measure. This is explained in

18

Chapter 3 while our major contribution is introduced in Chapter 4.

19

CHAPTER III

CODEBOOK REORDERING FOR VECTOR QUANTIZATION

3.1 Formulation of the concept of codebook reordering for vector quan-
tization

Every communication system consists of an encoder [9], a channel, and a decoder. The en-

coder is composed of a sequence of one or more lossy and/or lossless encoders. A lossless

encoder can be conceptualized as an injective function mapping from source element into

an encoded element. Because the function is injective, the signal may be decoded from the

encoded element using the inverse function, which exists by virtue of injectivity. Although

the target space must be at least as large as the source space, lossy encoders can still allow

compression by making use of low entropy in a system, as is the case in entropy coders.

In contrast, a lossy encoder can also be conceptualized as a function, but in this case the

function is not injective - i.e. any number of source elements map to a single encoded el-

ement. To form a decoder, typically a mapping, based on the preimage of the function, is

constructed which maps from each encoded element to a unique representative estimated

source element.

For clarity, sets are denoted using calligraphic capitals and random vectors and random

variables are denoted by capitalized, italicized letters.

For this particular case, consider a vector space E ⊂ Rn which contains the observed

random vectors indexed on t (which may represent temporal, spatial, or spatiotemporal in-

dexing). The random vectors are represented as X[t] = (X1[t], X2[t], . . . , Xn[t])T . Values

of X[t] are mapped to an index set I ⊂ N by a (non-injective) function I[t] = α(X[t]) :

E → I. Each of these indices I[t] ∈ I are mapped by a bijection to a set of representative

codebook vectors C ⊂ E ⊂ Rn, which will be denoted C[t] = α̂(I[t]) : I → C. The set

20

C is assumed to have a cardinality of M with dictionary values C = {c1, c2, . . . , cM}.

The indices are remapped by a bijection J [t] = β(I[t]) : I → I. Finally, a loss-

less entropy coder is used to map the reordered indices to a variable-length bitstream,

B[t] = γ(J [t]) : I → B∗ where B∗ represents the set composed of a sequence of bits

of variable length. Examples of possible entropy coders include the Huffman coder or the

arithmetic coder.

Source
Lossy Coder

Reordering

Encoder
Entropy Coder

Channel

Destination
Lossy Decoder Reordering

Decoder
Entropy Decoder

Figure 7: Variable rate communication system

Using this framework, the complete encoder can be considered as the composition of

functions B[t] = γ ◦ β ◦ α (X[t]) : E → B∗ and the decoder is taken to be a similar

composition Ci[t] = α̂ ◦ β−1 ◦ γ−1 (B[t]) : B∗ → C ⊂ E . In the adaptive system, it is

assumed that the mappings are able to change in t based on source information. Changing

functions are identified by a subscript t such as βt or γt.

Typically, vector quantization aims to spread code vectors within the subspace inhabited

by the training data. Thus, vector quantization typically results in a system where each

codebook entry is approximately equally likely; this results in a uniform distribution, giving

a maximal entropy.

3.2 Codebook post-processing techniques for vector quantization

In memoryless vector quantization, every input vector is mapped to one reproduction vector

as explained in the previous section. The mapping between between the input vector and

21

0 200 400 600 800 1000 1200 1400 1600 1800 2000

2

4

6

8

x 10
−4

code vector index

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

of
 in

de
x

Histogram of Gauss−Markov data samples with correlation of 0.9

Figure 8: Histogram of VQ indices obtained from Gauss-Markov data sequence

the reproduction vector is hence an injection. At data sequence is therefore mapped into a

sequence of reproduction vectors such that reproduction vector is assigned a corresponding

index. Most of the time, it is this index that is transmitted through communication to the

decoder to reconstruct the signal at the receiver end. This memoryless approach is good

but does not vector fully exploit the inter-vector correlation in a data sequence to yield

smaller data rates. Predictive VQ (PVQ) and finite-state vector quantization (FSVQ) ex-

ploit the inter-vector redundancy. In predictive vector quantization, the error vector instead

of input vector is quantized. Predictive VQ exploits linear dependency among neighboring

vectors while FSVQ approximates the nonlinear correlation. Both FSVQ and PVQ show

improvements in bits over memoryless VQ.

In FSVQ, a vector is quantized into one of many states with each state having its unique

codebook. FSVQ makes use of the next-state function to determine the state of an input

vector given the preceding input vector in data sequence. This determination of the next-

state function consumes a lot of computational power which can be reduced by properly

choosing a next-state function. The sub-codebook is generated by a next-state function that

22

uses the local statistics of the previously encoded blocks to dynamically select a number

of code vector from the super codebook. Though the next-state function encodes vectors

based on the preceding vectors, it does not not exploit the relationship between code vec-

tors. Dynamic codebook reordering vector quantization is discussed in the the following

subsection and addresses the issue of exploiting correlation between code vectors of an

input sequence.

3.2.1 Dynamic codebook reordering vector quantization

In the previous chapter, the need to exploit the non-uniformity of transition between succes-

sive vectors was introduced. In [14, 26], dynamic codebook re-ordering VQ (DCRVQ) is

introduced whereby the unequal distances between vectors in a vector dictionary is utilized

to produce an index stream that has smaller entropy rate. This aforementioned DCRVQ

method requires only knowledge of the dictionary and nothing else. We hypothesize that

more a-priori knowledge of a given input sequence can lead to more compression. While

DCRVQ uses only the vector dictionary, our likelihood codebook re-ordering approach

uses both the code vector dictionary and the transition probability matrix between succes-

sive dictionary vectors. This dissertation proposes a method that will yield smaller entropy

rate between successive input vectors at a slightly increased computational complexity.

Suppose that ~Xseq is a sequence of vectors where ~Xseq = {x1, x2, x3, . . . , xN} and

xk ∈ Rd where k ∈ {0, 1, 2, . . . , N}, N is the length of vector sequence ~Xseq, and d is

the dimension of the vector xk. The vector xk is encoded into one of the dictionary vectors

sk ∈ C = {c1, c2, c3, . . . , cM} where M is the size of the codebook. Thus a data sequence

~X is encoded into a sequence S = {s1, s2, s3, . . . , sN} where sk ∈ C as defined in Section

3.1. If we were to treat the transition between states as a random variable, then it can be

easily observed that this transition exhibits a non-uniform probability distribution function.

In other words, p(si|si−1) has a non-uniform probability distribution where si is the state of

the current vector, and si−1 is the state of the previously transmitted vector in a sequence.

23

Dynamic codebook re-ordering (DCR) [13] vector quantization captures correlation by

transmitting the index as an order of the distance between successive input vectors, while

the likelihood codebook re-ordering (LCR) vector quantization uses transition probability

to compute the order of the probability of occurence between successive input vectors. The

transition probability matrix offers information about the correlation between successive

input vectors. In our algorithm, the encoded input vector is transmitted in the order of

decreasing transition probability from the previously encoded input vector. Before intro-

ducing the likelihood codebook re-ordering vector quantizer, the concepts of entropy and

rate-distortion are introduced.

One of the fundamental results of the theory of coding developed by Claude Shannon is

that coding systems perform significantly better if symbols are operated on as a set rather

than as individual symbols. Let ~x be an N dimensional vector of samples or some discrete

features extracted from a signal. In chapter 2, the input vector ~x is quantized into one of K

pre-determined code vectors. The prototype vectors are designed by the Lloyd algorithm

[29] that seeks to minimize overall distortion in system.

Let ~x be quantized to one of K pre-determined code vectors that are stored in a code-

bookC. Let the codebookC contain the code vector ck where the index k ∈ {0, 1, 2, . . . , K−

1} indicates the location of ck in C and M is the codebook size. If we assume that the in-

put vector ~x is a random variable in a d-dimensional vector space V and let ζ be a set of

symbols. The vector quantization encoder can be defined as:

Q : ~x→ ci where Q maps ~x into a code vector ci where i ∈ ζ .

In traditional LBG VQ, the symbol i is selected to be the index k of ck that minimizes

a distortion measure d(~x; ck). Thus, in a traditional VQ system, i = k. The VQ decoder

reconstructs ~x using the code vector ck. The VQ of ~x to ck can be represented as a function

Q, Q(~x) = ck and the output of the encoder for the input ~x is k. If input vector derived

from real signals are considered as random variables, then we can associate a probability

24

p(i) with every i ∈ ζ . Let p denote the probability mass function of the symbols, then the

entropy of these symbols for a given signal source [8] is

H = −
∑
i

p(i) log2(p(i]))

For a well-designed vector quantizer, each code vector is equally likely to be chosen;

that is, a long-term histogram of the codebook indices generated from quantization process

is likely to be flat [23]. This maximizes the entropy of indices from quantized data frames.

Real-world signals such as speech, audio, and images have strong temporarily and spatially

correlated regions. Such strong correlations can be exploited such that adjacent code vec-

tors that are close to each other according some cost function may be assigned similar or

same symbols in the re-ordered index space.

3.3 Rate-distortion theory

A major goal in data compression is to minimize the bit rate for a desired level of distortion.

It is necessary to know the theoretical lower bound on the bit rate of any quantizer. The

knowledge of this bound enables one to design more complex quantizers that approach this

bound. Rate-distortion theory deals with this issue of obtaining lower bounds.

For a given distortion D, one can compute the rate-distortion function or one can con-

versely compute the distortion for a given bit rate. The latter is called a distortion-rate

function D(R). Rate-distortion theory applies to all forms of source coding including VQ.

In general, L vectors are coded by log2(L) bits per vector. This number represents the

upper bound of a VQ scheme. The minimum average rate to code the vectors is given by

the entropy H(y) defined as

H(y) = −
∑L

i=1 p(yi) log2 p(yi)

H(y) is the entropy of the discrete-amplitude variable y and p(y) is the discrete prob-

ability. Each vector is coded by Bi = − log2 p(yi) bits so that vectors with different prob-

abilities are assigned different code lengths. This results in variable-length coding with an

average bit rate equal to H(y).

25

Supposing an N-dimensional input vector ~x is quantized to ~y where y = q(x) and

y ∈ Y = {yi, 1 ≤ i ≤ L}. The average distortion between y and x is given by E(d(x, y))

where d(x, y) is the distortion per dimension. The vectors can be transmitted at an average

bit rate of R = H(y)/N bits per sample. The minimum achievable distortion DN(R) for a

given rate is given by

DN(R) = minq(x)E(d(x, y)) with H(y)/N ≤ R.

As N approaches infinity, DN(R) approaches D(R) where D(R) is the minimum at-

tainable distortion in coding the source x(n) as rate R approaches the lower bound. The

implication of the prior statement is that coding performance is enhanced as vector dimen-

sion increases.

3.4 Conclusion

In this chapter, we discuss the concept of codebook reordering and its origins. We ob-

serve that codebook reordering yields reduction in coding rate with a minimal increase in

computational complexity. The effectiveness of the codebook reordering procedure arises

from the fact that the entropy reduction is achieved without any increase in distortion as

compared to a standard VQ system. While incorporating the DCR in the encoder and the

decoder of the VQ will result in an increase in the complexity, some of it can be alleviated

by pre-calculating the reordering or by performing a partial reordering.

26

CHAPTER IV

LIKELIHOOD CODEBOOK REORDERING FOR VECTOR

QUANTIZATION

4.1 Exploiting the transition probabilities between vectors

In the previous chapter, the opportunity to exploit the non-uniformity of transition be-

tween successive vectors was introduced. In [14, 26], dynamic codebook re-ordering VQ

(DCRVQ) was introduced whereby the unequal distances between vectors in a vector dic-

tionary is utilized to produce an index stream that has smaller entropy rate. The DCRVQ

method requires only knowledge of the dictionary and nothing else. This dissertation pro-

poses a method that will yield smaller entropy rate between successive input vectors at

a slightly increased computational complexity. We hypothesize that more a-priori knowl-

edge of a given input sequence can lead to more compression. While DCRVQ uses only the

vector dictionary, our likelihood codebook re-ordering approach uses both the code vector

dictionary and a matrix of transition probabilities between successive dictionary vectors.

Suppose that ~X is a sequence of vectors where ~Xseq = {x1, x2, x3, . . . , xN} and xk ∈

Rd where k ∈ {0, 1, 2, . . . , N}, N is the length of vector sequence ~Xseq, and n is the

dimension of the vector xk. The vector xk is encoded into one of the dictionary vectors ck ∈

C = {c1, c2, c3, . . . , cM} where M is the size of the codebook. Thus a data sequence ~X is

encoded into a sequence S = {s1, s2, s3, . . . , sN} where sk ∈ C as defined in Section 3.1.

If we were to treat the transition between states as a random variable, then it can be easily

observed that this transition exhibits a non-uniform probability distribution function for a

correlated source. In other words, p(si|si−1) has a non-uniform probability distribution

where si is the state of the current vector, and si−1 is the state of the previously transmitted

vector in a sequence.

27

0 50 100 150 200 250 300
0

20

40

60

80
H

is
to

gr
am

 c
ou

nt

code vector index

Transition from code vector 156 to all 256 code vectors

Figure 9: Plot of transition counts between between code vector 156 and other 255 vectors

Figure 9 demonstrates the non-uniformity of the number of transitions between one

code vector and another for a given codebook. This figure is obtained by vector quan-

tizing a Gauss-Markov correlated sequence with a 256 code vector codebook and noting

the frequency of the vectors that follows vector 156. It does not display approximate uni-

formity. This non-uniformity of the probability distribution is beneficial especially when

the transitions are encoded with entropy coding. The transition matrix is the count of the

transitions between all possible combination of successive transitions between successive

dictionary vectors. For example, if there are 8 dictionary vectors, then the transition matrix

will be an 8 x 8 matrix of transition counts. The transition probability matrix is obtained

by normalizing the the transition matrix obtained from the a given input vector sequence.

Consider the encoded vectors as described below: S = {c2, c2, c1, c4, c1, c1, c2, c2, c2, c2, c2, c2, c2, c2, c1, c3, c2, c1, c4, c3, c2, c2, c2, c2, c1, c4, c3, c4, c3, c4},

the transition matrix is given below in table 2. When the transition probabilities are sorted,

the dictionary vector transitioned to with the highest transition probability is assigned 0;

the vector with the 2nd highest probability is assigned index 1, and the vector with the nth

highest probability is assigned index n− 1.

28

Table 2: Example 4 × 4 transition matrix for 30-element training sequence
c1 c2 c3 c4

c1 1 1 1 3
c2 4 11 0 0
c3 0 2 0 2
c4 1 0 3 0

4.2 Likelihood codebook re-ordering vector quantization (LCRVQ)

The vector-quantized estimates of successive input vectors in a correlated signal typically

produces reproduction vectors that are closer to each other in the L2 distance sense. This

property can be exploited by assigning new indices to each vector in the dictionary after a

vector is encoded; these indices are assigned, beginning at 0 and increasing in order of their

closeness (in an L2 sense) to the previously used dictionary vector. Since correlated signals

have successive dictionary vectors that are closer to each other than an ordinary Gaussian

signal, correlated signals will have more new indices with values closer to 0 compared

to an uncorrelated signal. This aligns the distribution of the new indices closer to zero

such that the indices closer to 0 occur more frequently. This approach is called reordering

vector quantization because the vectors are assigned new indices according to previously

transmitted vector.

The logic behind the likelihood codebook reordering vector quantization is that some

transitions between code vectors are more likely to occur than other transition. For a given

vector Xi, the proceeding vector Xi+1 is assigned indices closer to 0 when Q(Xi+1) more

frequently follows Q(Xi). In this case, Xi is the vector at time i and Q(Xa) is the code

vector of a vector Xa. After the reordering takes place, it is typically observed that the

conditional probability histogram of occurrence of the reordered index given a previously

transmitted signal is monotonically decreasing. The monotonic decay can benefit from

further lossless coding such as arithmetic coding and Huffman coding and hence result in

reduction in coding bit rate. The bit rate can be further reduced if we consider that for

a given vector, some code vectors are less likely to follow others in a training sequence.

29

In other words, the number of transitions for these “less likely” code vectors is smaller

than for the other dictionary vectors. The non-uniformity of transition of the code vec-

tors implies that the image can be encoded by a fractions of the codebook at the cost

of additional to the signal. For example, if we consider a codebook of size 8 given as

C = {c1, c2, c3, c4, c5, c6, c7, c8} where the vector Xi is transmitted as code vector c2, and

the following inequality is observed:

p(c7|c2) ≥ p(c5|c2) ≥ p(c3|c2) ≥ p(c2|c2) ≥ p(c4|c2) ≥ p(c1|c2) ≥ p(c6|c2) ≥ p(c0|c2).

For the inequality above the reordered codebook for vector Xi previously transmitted

as c2 is {c7, c5, c3, c2, c4, c1, c6, c0}. However, we may want to encode the data sequence

using half of the codebook to improve coding. The most reasonable approach will be to

encode the vector Xi+1 using the four most likely code vectors {c7, c5, c3, c2} and discard

the last four {c4, c1, c6, c0}. The process of selecting the Lth most frequent vector from the

reordered codebook is called truncation. This truncation consequently yields a much more

reduced bit rate for a slight increase in distortion. This distortion is negligible as the bulk of

the input signal is captured in the retained portion of the re-ordered dictionary codebook.

Our approach of truncation is one way of performing finite-state vector quantization. In

our approach, sub-codebook selection is coupled with reordering.

Let the matrix, Q, be the transition matrix that is composed of all possible transitions,

tij from code vector ci to code vector cj . To obtain this transition matrix, the input data

sequence is first encoded by the LBG vector quantization to obtain a sequence of dictionary

vectors. The transition probability matrix, P , is the matrix of the probability of transition

from one code vector to another. This matrix, P , is obtained by normalizing each row of

the transition matrix, Q. Equation 4 explains the preceding statement. To illustrate this,

consider a training data sequence encoded by the following dictionary vector sequence.

Consider a 2-bit codebook C = {c1, c2, c3, c4} that encodes a training data sequence to

give the following sequence:

30

S = {c1, c2, c3, c1, c2, c4, c4, c1, c2, c3, c2, c3, c3, c4, c1, c4,

c2, c3, c3, c4, c1, c3, c3, c4, c1, c3, c2, c2, c4, c4, c1, c1}
(2)

The training data consists of 32 vectors. The transition matrix is estimated from this

sequence of code vectors is shown below:

c1 c2 c3 c4

c1 1 3 2 1
c2 0 1 4 2
c3 1 2 3 3
c4 5 1 0 2

To estimate the transition probability from c1 to c2, P12

p(c1|c2) =
q(c1|c2)

q(c1|c1) + q(c1|c2) + q(c1|c3) + q(c1|c4)
(3)

To transition from ci to cj , Pij , we calculate

Pij = p(ci|cj) =
q(ci|cj)∑N
k=1 q(ci|ck)

=
Qij∑L
j=1Qij

(4)

where q(cm|cn) is the count of the transition from code vector cm to code vector cn.

When quantizing a source, each vector is assigned an index based on the transition

likelihood from the previously used code vector. The most likely code vector is assigned

0 and the next most likely vector is assigned index 1, and so forth. The result is that,

according to the transition likelihood, indices closer to zero will be more common, making

the index stream more amenable to further entropy coding such as Arithmetic or Huffman

coding.

4.3 LCR vector quantization algorithm

The input data is assumed to be a set of ordered vectors {xt ∈ <n} originating from some

source S where t is a discrete-time index. In other words, the input data ~Xseq can be

31

expressed as {x1, x2, x3, . . . , xL}. For every time instant, t, the vector xt is mapped to

one of the indices in the index set Iabs where Iabs = {i : i = 1, 2, 3, . . . , L} and L is the

number of vectors in dictionary codebook. The index train for the input data is given as

I = {I0, I1, I2, I3, . . . , IN} where It is the index of the dictionary vector that closest to

vector xt.

The dictionary codebook, C = {c1, . . . , cN}, is generated using the LBG algorithm

using the algorithm described in [29] from the training data set. These training vectors are

then used to estimate the transition matrix P . Each element of P , that is, Pij , represents

the likelihood of the code vector cj following the code vector ci, or in other words, the

likelihood of an input vector, xt−1, that is quantized to code vector i being followed by an

input vector, xt, that is quantized to code book vector j.

Table 3: Transition Matrix and Reordered Codebook

Likelihood of ci|cprev
cprev c0 c1 c2 c3

c0 0.15 0.17 0.33 0.35
c1 0.10 0.20 0.40 0.30
c2 0.35 0.25 0.10 0.30
c3 0.10 0.30 0.20 0.40

Re-ordered indices
cprev c0 c1 c2 c3

c0 3 2 1 0
c1 3 2 0 1
c2 0 2 3 1
c3 3 1 2 0

Let p represent the previously transmitted index, and m the re-ordered index to be

transmitted for the current input vector. Note that different variables other than i and j are

used to emphasize the fact that the transmitted or stored index is not the same as the absolute

index of the code vector. The reordering function, ϕ(i, j), has inputs i, and j. Therefore,

the transmitted index gets assigned the value obtained from the re-ordering function.

32

4.3.1 VQ encoder with LCR

The LCR encoder is described as follows:

1. We always assign the absolute index at the discrete-time, t = 0, to the re-ordered

index. In other words, m(t = 0) = I0 = i

2. Assign j = the previous i. For each discrete-time instant, t, in the training set, quan-

tize the vector, Xt, and note the corresponding absolute code vector index, i.

3. The transmitted index is m(t) = ϕ(i, j)

4.3.2 VQ decoder with LCR

After the re-ordered indices passes through the channel, it is decoded by the following

algorithm.

1. Absolute index at (t = 0) = m(t = 0)

2. For t=1, 2, 3 and above Ît = ϕ−1(j,m) where j is the absolute index, and m is the

re-ordered index, and ϕ−1 is the inverse dynamic map. The inverse dynamic maps

the absolute index at time instant t−1 and the reordered index at time instant t to the

absolute index at time instant t. Hence ϕ−1 : Z2 → Z.

3. The reconstructed vector at time t is cl where l = Ît

Tables 3 illustrate the concept of likelihood codebook re-ordering vector quantization. We

assume a codebook with 4 code vectors, and a codebook transition matrix as in Table 3.

Our algorithm is also presented in [10].

4.4 Truncation of LCR Vector Quantization

Suppose that the likelihood re-ordering vector quantization has been used to compress a

data sequence. Empirical observation of the transition matrix will show that some vectors

33

are more likely to be transmitted than other vectors given any previously transmitted vector.

For example, let us assume that a data sequence is quantized by four vectors {c1, c2, c3, c4}

and vector c1 is transmitted at time, t − 1. If the re-ordered codebook given the previous

vector c1 is {c4, c1, c2, c3}, and the vector c2 transmitted at time, t, will normally be assigned

the index 2 since it is the third most likely to be transmitted given the previous vector.

However, there might be a need to represent the four-vector codebook by a two-vector

codebook to avoid the need of entropy coding though at the cost of a slight increase in

distortion. For this example, by encoding the vector at time t using the two most likely

vectors, c4, and c1, one can avoid using an entropy coder.

The truncation procedure takes place after probability transition matrix is estimated.

Once the transition probability matrix, P , is estimated, the dictionary vectors are sorted

so that we have a re-ordered transition matrix P 1. If we consider that P = {Pij : 1 <

i < L, 1 < j < L}, then the re-ordered transition matrix T 1 = {p1
ij : 1 < i <

L, 1 < j < L}, where p1
ij is the jth most likely dictionary vector in transition vector

Pi = {Pi1, Pi2, Pi3, . . . , PiL}. Therefore to truncate an L-code vector codebook by 2, we

need to know the code vector previously transmitted and the re-ordered transition code-

book. For example, if the code vector cm is previously transmitted, the codebook truncated

by 2 is CT = {p1
m1, p

1
m2, p

1
m3, . . . , p

1
mL/2}. Consequently to encode any vector following

cm, we find the closest vector in CT that matches the vector to be encoded.

p1
i ∈ C

Generally, a codebook truncated from size L to K is based on the previously transmit-

ted code vector and the re-ordered codebook. In this case,

CT = {p1
m1, p

1
m2, p

1
m3, . . . , p

1
mL}.

The truncated encoded version of dictionary vector cj given that vector ci was previously

34

transmitted is determined by

min
l
‖cj − p1

mL‖2.

Truncation of the reordered codebook is a special case of the finite-state vector quantization

whereby the sub-codebook indices is selected based on the conditional probabilities of

transition rather than on the current“state” of the vector being quantized. Additionally

the histogram of the indices from finite-state vector quantization still tends to be uniform

with respect to the skewed nature of the reordered and truncated indices. Truncation is

beneficial because it captures the essence of a given signal at a much reduced coding rate

without yielding much increase in expected distortion. Decreasing the codebook size by

a factor of 2 decreases the rate by 1 bit per vector. Consequently, if the codebook size is

decreased by 2n we reduce the rate by n bits per vector. Thus, if we start with a large code

book, truncating back to some desired rate will yield much lower distortion than using a

non-truncated code book at the same rate as will be shown later.

4.5 Empirical observations of LCR algorithm on Gauss-Markov data

Likelihood codebook re-ordering is derived from dynamic codebook re-ordering. To un-

derstand its behavior properly, it is necessary to compare the performance of the LCR algo-

rithm to the DCR algorithm. Some analyses are made on Gauss-Markov data to illustrate

the relationship between the correlation between successive vectors and the coding bit rate

of a given re-ordering approach. In one experiment, a 300000 by 10 Gauss-Markov data

sequence is generated. The correlation is varied for this data while observing the change

in entropy. In another experiment, the effect of increasing the dimension of Gauss-Markov

vector on entropy rate is observed for different correlation coefficients. In both experi-

ments, a 300000 by 10 Gauss-Markov sequence is used to generate the codebook which

is subsequently used to generate the transition matrix for the testing data sequence.The

35

Gauss-Markov data is generated according to equation below:

yt = αyt−1 + (1− α)xt (5)

In our experiments, we assume the following generational model of our Gauss-Markov

data as in Equation 5 where xt is an identically independent Gaussian random variable,

α ∈ (−1, 1) is the correlation parameter, and yt is the source sample at time t. The vectors

are formed by grouping yi’s into groups of 10.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

correlation coefficient

E
nt

ro
py

plot of entropy versus correlation for LCR and DCR of Gauss−Markov data

VQ
LCRVQ
DCRVQ

Figure 10: Entropy vs correlation of LCR and DCR algorithm

In the second experiment, we have a 300000 vector sequence with dimensions that

change from 2 to 12. For both sets of experiments, we see that LCR indices have a smaller

entropy than DCR indices. This is illustrated in Figure 10. Figure 11 shows that the more

correlated signals produce smaller entropy coding rates than the less correlated counter-

parts. All these results and the results in subesequent chapters are significant because they

the prove that our algorithm exploits the correlation between successive dictionary vectors

better than any of the other existing methods such as finite-state vector quantization, and

dynamic codebook re-ordering.

36

2 4 6 8 10 12 14
3

4

5

6

7

8

9

dimension

E
nt

ro
py

Entropy vs dimension for different correlations

 Alpha= 0.3
Alpha= 0.5
Alpha= 0.7
Alpha= 0.9

Figure 11: sample entropy vs dimension of LCR at different correlations

4.6 Computational complexity of LCRVQ

The VQ codebook is usually found using the k-means algorithm on a given data sequence.

The k-means algorithm is a numerical method that calculates the centroids of a data se-

quence by dividing the data sequence space into Voronoi regions with each region being

mapped to a centroid. The training data sequence typically is a sequence of vectors with

a dimension greater than or equal to two. The two-dimensional data segmentation into

Voronoi regions is depicted in the Figure 12 below.

The computational complexity of the VQ algorithm is equal to the computational com-

plexity for the k-means algorithm. Reordering the memoryless VQ algorithm results in

a marginal increase in computational complexity relative to VQ. The Table 4 below de-

scribes the comparison between codebook reordering and other cardinal vector quantiza-

tion methodologies.

37

Figure 12: Voronoi region segmentation of the 2-D data space

Table 4: Voronoi regions

FSVQ VQ VQ+LCR VQ+LCR+truncation to L

O(iCKNd) O(iKNd) O(iKNd+KN +NKlogK) O(iKNd+ LN + LNlogL)

where i is the number of iterations, K is the number of vectors in codebook, N is the

number of data vectors, L is the number of elements to search in truncated codebook, d is

the dimension of data vector.

We can see from the Table 4 that LCR with VQ has a slightly increased computational

complexity compared to VQ. If we have the same number of code vectors per codebook

and more than one state, the FSVQ algorithm takes up more computational complexity

compared than VQ.

38

CHAPTER V

APPLICATION OF LIKELIHOOD CODEBOOK REORDERING

ON GAUSS-MARKOV DATA

5.1 One-dimensional Gauss-Markov data model

In many practical applications of signal processing methodologies, a newly developed

method is most often tested on a generic dataset to observe its qualitative performance.

These datasets have properties similar to the real dataset to be tested upon. In our specific

case of vector quantization, speech, image and video signals are three of the primary types

of data upon which we measure coding rate performance. The underlying relation between

the three types of data are the spatial and temporal correlation from sample to sample or

pixel to pixel values. This correlation can be easily mimicked by generating a sequence

that has a correlation from sample to sample. As described above, the Gauss-Markov data

is used in this dissertation to perform a preliminary test of our proposed likelihood code-

book reordering vector quantization scheme. In our experiment, the Gauss-Markov model

is described as

yt = αyt−1 + (1− α)Ut (6)

where yt is the Gauss-Markov sample at time t, α ∈ (−1, 1) is the correlation coefficient ,

and Ut is an identically independent Gaussian random variable.

This model has been used extensively in testing VQ algorithms such as FSVQ and PVQ.

5.2 Experimental results on Gauss-Markov data

Unless otherwise specified, we set L to 10 and α to 0.9. We use a training dataset of

M=500000 data vectors, and testing set ofN=100000 data vectors. We seek particularly to

39

compare the rate-distortion curves of LCR, DCR, FSVQ, LBG, truncated LCR, and trun-

cated DCR algorithms. As mentioned earlier, we also explored the result of changing the

correlation parameter on the entropy of synthetic data set. The result of changing the corre-

lation coefficient is demonstrated in Table 5.2. Table 5.2 shows that increasing correlation

coefficient between vectors decreases entropy for memoryless vector quantization, vector

quantization with LCR, and VQ with DCR. We also observe that LCR achieves lowest en-

tropy for a given correlation factor. Figures 13 and 14 are the histogram and log-histogram

of the re-ordered indices for both LCR and DCR algorithms. Both aforementioned figures

show that the LCR algorithm has a skewed histogram. Figure 14 highlights that the data

that is originally quantized by 2048 dictionary vectors can be represented effectively by

only 128 vectors. This representation is about 1/16 of the original size of the codebook.

The fact that the majority of the histogram is biased only towards the first 128 indices points

one to the opportunity for truncation of the dictionary codebook.

Truncation of the codebook allows one to represent a data sequence with smaller dis-

tortion for a given coding rate. The concept of truncation is explained in Section 4.4. The

skewed nature of the histogram also highlights that reordered indices will have a smaller

entropy than the un-reordered indices. The fact that the majority of the indices close to

zero have higher frequencies is an implication of the benefit that results if entropy coding

such as Arithmetic coding or Huffman coding is applied. We observed in Figure 31b that

Gauss-Markov data compressed by a 2048 codebook can be represented without significant

increase in distortion with a 128 code vector dictionary. This approach is very powerful as

it reduces entropy of a compression. When compared to FSVQ, the LCR algorithm has a

higher rate-distortion performance even when the dictionary of code vectors is truncated

by a factor of 1/16.

40

Table 5: Table of index entropies versus correlation in Synthetic data comparing LBG,
DCR, and LCR algorithms. Codebook of size 16, and training data of dimension 100000
by 10

Correlation LBG DCR LCR
0.85 2.9778 2.0430 1.2697
0.90 2.9663 1.8288 1.1681
0.95 2.9303 1.5019 0.9880
0.98 2.8823 1.2927 0.8573

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

0.02

0.025

re−ordered indices

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

of
 r

e−
or

de
re

d
in

di
ce

s

Histogram of re−ordering algorithms for Gauss−Markov data,size=2048

LCR
DCR

Figure 13: Histogram plot of Gauss-Markov data quantized by LCR and DCR VQ

5.3 Conclusion on the application of LCR VQ on Gauss-Markov data

Likelihood codebook reordering vector quantization results in more compressibility of a

signal if the signal has higher correlation. This is shown in Table 5.2as the entropy de-

creases as the correlation coefficient increases. We also observe that the LCR algorithms

have a better rate-distortion performance than the DCR algorithms for all levels of trunca-

tions. The results also demonstrate that the LCR has a higher rate-distortion performance

than FSVQ even when the codebook of the LCR scheme is truncated up to 1/8. Our LCR

methodology thus demonstrates superior performance in coding rates relative to other VQ

41

0 2 4 6 8 10 12
0

0.005

0.01

0.015

0.02

0.025

log
2
 of re−ordered indices

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

of
 r

e−
or

de
re

d
in

di
ce

s

semilog plot of Histogram of re−ordered indices , codebook size, 2048

LCR
DCR

Figure 14: Semilog Histogram plot of Gauss-Markov data quantized by LCR and DCR
VQ

schemes, especially when the codebook is truncated up till 1/8 for Gauss-Markov signals.

42

4 5 6 7 8 9 10 11
2

4

6

8

10

12

14

16

Bits per code vector (bits)

S
ig

na
l−

to
−

qu
an

tiz
at

io
n

no
is

e
(S

Q
N

R
)

(d
B

)
Rate−distortion plots of GAUSS−MARKOV DATA with Huffman coding: 300000 training samples

LCR rate: 1/1
DCR rate: 1/1
LCR rate: 1/2
DCR rate: 1/2
LCR rate: 1/4
DCR rate: 1/4
LCR rate: 1/8
DCR rate: 1/8
LCR rate: 1/16
DCR rate: 1/16
LCR rate: 1/32
DCR rate: 1/32
FSVQ

(a)

4 5 6 7 8 9 10 11
2

4

6

8

10

12

14

16

Bits per code vector (bits)

S
ig

na
l−

to
−

qu
an

tiz
at

io
n

no
is

e
(S

Q
N

R
)

(d
B

)

Rate−distortion plots of GAUSS−MARKOV coefficients: 300000 training samples

LCR rate: 1/1
DCR rate: 1/1
LCR rate: 1/2
DCR rate: 1/2
LCR rate: 1/4
DCR rate: 1/4
LCR rate: 1/8
DCR rate: 1/8
LCR rate: 1/16
DCR rate: 1/16
LCR rate: 1/32
DCR rate: 1/32
FSVQ

(b)

Figure 15: Rate distortion curve of Gauss Markov Data with a) Huffman b) without
Huffman

43

CHAPTER VI

APPLICATION OF LIKELIHOOD CODEBOOK REORDERING

ON SPEECH LINE SPECTRAL PAIR SIGNALS

6.1 Introduction to speech coding

Speech is a primary means of communication between humans. Due to the importance of

having speech transmitted at a quality level through a communication channel using a small

number of bits, it is very necessary that speech signals be compressed and transmitted with

low computational cost, coding rate, and minimal distortion. These three aforementioned

parameters of the computational cost, coding rate, and distortion are key indicators of how

good a compression algorithm is. Speech is a one-dimensional signal and historically has

high correlation between successive samples and consequently input vector samples. This

mutual information between successive input vectors translates into the quantized version

of these input vectors.

Speech coding can be classified into two main categories: waveform coders, and vocoders.

Waveform coders strive for a facsimile reproduction of the signal waveform. In principle,

they are designed to be signal-independent. They can equally code a broad spectrum of

signals- speech, music, tone, voice band data, images. These coders tend to be robust to

a wide variety of talker characteristics and for noisy environments. Waveform coders can

be optimized and made more signal-specific for greater coding efficiency. This typically

is done by observing statistics of a given signal set, so that the waveform coder yields sig-

nal coding error for a given class (speech in our case). This approach exploits statistical

characteristics of speech waveform.

The second class of speech coders depends on the description of speech using a prior

knowledge about the how the speech signal was generated [12, 39]. The idea is that certain

44

physical constraints of the signal generation can be quantified, and turned to advantage

in efficiently describing the signal. This implies that the speech signal must fit into a

model and characterized according to this model. The next two sections will introduce

fundamentals of waveform coding and vocoding.

6.2 Coding of line spectral pairs of speech signals

Most speech coding schemes at low bit rates (Less than 8000 bits/sec) make use of the linear

predictive model of speech. The parameters of this model are the linear predictive coef-

ficients (LPC) and these contain information abou the short-term spectrum of the speech

signal. A mathematically equivalent representation of the LPC coefficients is the line spec-

tral pair (LSP) parameters. The LSP features have many interesting properties that make

them more appropriate for efficient coding than LPC coefficients. The LSP parameters

have an ordering property which states that the (i + 1)th parameter is always greater than

the ith parameter. The different parameters within the speech frame are not independent

but correlated. Hence, it is more practical and efficient to vector quantize LSP coefficients

than LPC coefficients due to the robustness and lower of dynamic range relative to LPC

coefficients.

6.3 Speech coders

Speech vocoders utilize the formant and harmonic structure of speech to intelligently code

speech signals. In this method, the filter coefficients to model the formant and the har-

monic structure of speech are coded instead of the actual waveform as in waveform coding.

One of the most used application of speech vocoders is the code-excited linear prediction

(CELP) algorithm [39, 40]. CELP utilizes long-term and short-term prediction models of

speech synthesis to avoid the strict voiced/unvoiced classification of linear prediction coef-

ficients(LPC). The name of “code-excited” stems from the excitation codebook, containing

the “code” to “excite” the synthesis filters. The high complexity of CELP coders, was

45

previously thought to be impractical due to the computational complexity. Over the years,

researchers have found many approaches to accelerate the encoding process making CELP

a reality. CELP is used very often in speech coding and is the foundation of many stan-

dardized coders. CELP and its variant algebraic code-excited linear prediction (ACELP)

are used often in speech processing algorithms because of the ability to encode speech with

minimal perceptual distortion and coding rate.

6.3.1 Code-excited linear prediction

In general, a source encoder utilizes the mathematical model of the data source. The model

has certain parameters and the role of the encoder is to estimate those parameters. If the

original data is speech, the source coder used to estimate the unknown parameters is called

the vocoder (from “vocal coder”). The vocoder is illustrated in Figure 16.

In this model, the output is the sequence of speech signals s(n) coming out of the LPC

filter. The input x(n) to the model and filter is either a train of pulse when the sound is

voiced speech or white noise when the sound is unvoiced speech. The quantities x(n) are

also termed innovations (a train of pulses and white noise). The task of the speech coder is

to input samples s(n) of actual speech, use the LPC to determine the equivalent sequence

of innovations x(n) and output the innovation in compressed form. The main mathematical

model of the LPC estimation is given by the equation below:

s(n) =
L∑
i=1

ais(n− i) + x(n) (7)

Each speech sample s(n) is represented as a linear combination of the previous L samples

plus the innovation signal x(n). The weighting coefficients a1, a2, a . . . , aL are linear pre-

diction coefficients (LPC). The samples of the input speech are divided into blocks of N

samples called frames. Each frame is typically 10-20 ms long (that is N = 80-160). Each

frame is then divided into sub-frames of k samples (equal to the dimension of the VQ).

The LPCs are typically computed using the Levinson-Durbin algorithm [16, 35]. Vector

46

quantization is and be used to encode these LPC coefficients in the vocoder model instead

of scalar quantization. In this dissertation, we do not use vector quantization to encode the

innovation signals.

Figure 16: Block diagram of a CELP coder

6.4 Observations from previous speech coders

Waveform coders such as pulse code modulation, differential pulse code modulation, adap-

tive differential pulse code modulation and their variants [2, 17, 18, 33, 41] achieve high

speech quality and intelligibility at high coding rates of 48 kbps or more. Speech vocoders

yield smaller coding rates between 2 to 6 kbps though their perceptual quality is lower

than that of waveform coding. Vector quantization can be applied to both of these types of

speech coders to achieve the same kind of quality [6].

6.5 Experimental procedure of LCR on actual TIMIT speech data

Real speech corpi from the TIMIT database are used to test the LCR algorithm. The TIMIT

speech database is composed of male and female speakers from different dialect regions. In

our experiment, female speech samples were obtained from 25 different speakers belonging

to dialect region 1. Eight speech samples from each speaker were used for training of the

47

LBG codebook to be later used in our LCR algorithm. This is equivalent to 200 different

speech samples. Speech samples from 10 speakers from the same dialect region were used

to test the LCR algorithm. The main tool used to perform the simulation was MATLAB.

Both training and testing vectors are obtained as line spectral pair coefficients. Vectors

consisted of linear prediction data expressed as line spectral pairs. These were obtained

by breaking the speech into frames of 96 samples from which 10 line spectral pairs were

obtained. From these sets of speech corpi, an 247688 x 10 training and 107236 x 10 testing

dataset of line spectral pair (LSP) coefficients were obtained.

Having acquired LSP coefficients for speech, we set out to compare rate-distortion

performances of FSVQ, LCR, DCR, truncated LCR, and truncated DCR algorithms on real

speech data. We truncate the re-ordered codebooks down to 1/32 of the original codebook

size. We apply the following procedure to the speech dataset.

1. Codebooks are obtained from the training set of TIMIT speech and Gauss-Markov

data for a given codebook size ranging from values of 32 to 1024 as multiples of 2.

2. Once the codebook is generated, the training data is used to calculate the transition

matrix for both LCR and DCR algorithms.

3. For every given data vector, we find the absolute index of the previously encoded

data vector.

4. Truncation takes place by accepting the most likely (from LCR algorithm) or the

most similar (from DCR algorithm) components of the reordered codebooks re-

spectively. (see section 4.4)

5. Rate-distortion graphs are obtained for the truncated versions of LCR and DCR and

compared to FSVQ.

• Signal-to-quantization-noise (SQNR) (in dB) = 10 log10

σ
X2

seq

d

where d =
∑N

i=1
(Xseq(i)−Q(Xseq)(i))2

N
,

48

N=number of testing data vectors,

Xseq=sequence of input data in 1-d,

d is distortion per dimension.

σX2
seq

=variance of input data sequence = var(Xseq)

Q(Xseq(i)) is the encoded version of Xseq

• Rate r = log2Ct where Ct is the size of the number of code vectors in the

truncated codebook.

6. Total bit rates for the rate-distortion curves for both speech and Gauss-Markov data

are obtained as follows.

• Find the reordered indices for codebook size Ct

• Find the bits for size Ct, Be(k)= Huff (I(k)) where Huff(i) is the Huffman en-

coded bits assigned to i in the data reordered indices sequence

• Total bit rate per sample for entropy coding is
∑N

i=1
Be(k)
N∗d

7. Standard bit coding rate for LCR, DCR, without Huffman coding is Bs = log2 Ct

d

8. Apply ECVQ, FSVQ, on TIMIT speech data and observe rate-distortion curves

9. Apply Arithmetic coding on the VQ unreordered indices

6.6 Speech coding results

In Figures 31,17 and 19, the rate-distortion curves are obtained by observing the effect of

changing the code book size on the signal-to-quantization noise (SQNR) for real speech

data. All figures clearly highlight that LCR compresses better than DCR for all levels of

truncation as explained in section 4.4. More evident is the fact that the LCR codebook

truncated by a factor of 1
16

outperforms the state-of-the-art finite state vector quantization

algorithm. This practically means, we can save the computational complexity or just prac-

tical complexity of implementing an FSVQ algorithm by simply truncating an existing VQ

49

using the LCR scheme. This may be very useful for all forms of data especially speech

data.

Figure 18 compares Arithmetic coding, likelihood codebook reordering VQ, and dy-

namic codebook reordering VQ on speech LSF coefficients. It shows that LCR outperforms

DCR on re-ordered indices and Arithmetic coding on the absolute indices of the vector

quantization codebook in terms of rate-distortion performance. For a given signal-to-noise

ratio, our algorithm saves about 4 bits relative to Arithmetic coding on the un-reordered set

of indices.

Figure 19 is a comprehensive figure that compares 5 major vector quantization schemes:

vector quantization, finite-state vector quantization, likelihood codebook re-ordering vec-

tor quantization, dynamic codebook vector quantization, and entropy-constrained vector

quantization. In this figure 19, we observe the effect of entropy coding on rate-distortion

performance on the VQ indices as the size of the dictionary codebook is increased. Of all

the VQ schemes, Figure 19 LCR has the highest SQNR compared to DCRVQ, LCRVQ,

ECVQ, and FSVQ. The LCRVQ algorithm and all its truncated versions perform better

than Arithmetic coding on our LCR algorithm.

Summarily, LCR is a new method of loss less compression that yields great savings in

speech compression. It does so without introducing additional coding delays, or significant

increase in computational costs. The LCR algorithm compresses even better when the

codebook is truncated according to section 4.4 and Huffman encoded. We hope that this

method can be incorporated in coding standards that utilize code-exited linear predictions,

mixed-exited linear prediction and their variants.

50

3 4 5 6 7 8 9 10 11
23

23.5

24

24.5

25

25.5

26

26.5

27

Bits per code vector (bits)

S
ig

na
l−

to
−

qu
an

tiz
at

io
n

no
is

e
(S

Q
N

R
)

(d
B

)

Rate−distortion plots of TIMIT speech LSF coefficients with Huffman coding

LCR rate: 1/1
DCR rate: 1/1
LCR rate: 1/2
DCR rate: 1/2
LCR rate: 1/4
DCR rate: 1/4
LCR rate: 1/8
DCR rate: 1/8
LCR rate: 1/16
DCR rate: 1/16
LCR rate: 1/32
DCR rate: 1/32
FSVQ

(a)

5 6 7 8 9 10 11 12
23

23.5

24

24.5

25

25.5

26

26.5

27

Bits per code vector (bits)

S
ig

na
l−

to
−

qu
an

tiz
at

io
n

no
is

e
(S

Q
N

R
)

(d
B

)

Rate−distortion plots of TIMIT speech LSF coefficients

LCR rate: 1/1
DCR rate: 1/1
LCR rate: 1/2
DCR rate: 1/2
LCR rate: 1/4
DCR rate: 1/4
LCR rate: 1/8
DCR rate: 1/8
LCR rate: 1/16
DCR rate: 1/16
LCR rate: 1/32
DCR rate: 1/32
FSVQ

(b)

Figure 17: a) Rate-distortion curve of Speech vs distortion with Huffman coding b) Rate-
distortion curve of speech without Huffman

51

3 4 5 6 7 8 9 10
23

23.5

24

24.5

25

25.5

26

26.5

27

Bits per code vector(bits)

S
ig

na
l−

to
−

qu
an

tiz
at

io
n

no
is

e
(d

B
)

Rate distortion curve for TIMIT LSF COEFFICIENTS with Arithmetic coding

LCR
DCR
VQ

Figure 18: Rate-distortion plots of Speech LSF coefficients with Arithmetic coding

3 4 5 6 7 8 9
23

23.5

24

24.5

25

25.5

26

26.5

27

Bits per code vector (bits)

S
ig

na
l−

to
−

qu
an

tiz
at

io
n

no
is

e
(S

Q
N

R
)

(d
B

)

Rate−distortion plots of Speech LSF coefficients with Huffman coding: 247688 training samples

LCR rate: 1/1
DCR rate: 1/1
LCR rate: 1/2
DCR rate: 1/2
LCR rate: 1/4
DCR rate: 1/4
LCR rate: 1/8
DCR rate: 1/8
LCR rate: 1/16
DCR rate: 1/16
LCR rate: 1/32
DCR rate: 1/32
ECVQ, lambda=0.02
ECVQ, lambda=0.04
ECVQ, lambda=0.06
ARITH on VQ
VQ
FSVQ

Figure 19: Rate-distortion plots of various VS schemes on Speech LSF with entropy
coding

52

CHAPTER VII

APPLICATION OF LIKELIHOOD CODEBOOK REORDERING

ON IMAGES

7.1 Image compression using vector quantization

Image compression is vital for many applications such as TV transmission, video confer-

encing, facsimile transmission of graphic images, transmission of images from satellites

and reconnaissance air crafts. These application of image coding necessitate a need to

efficiently transmit and encode images at an optimal bit rate and minimal computational

complexity. A fundamental goal of data compression is to reduce the coding bit rate

for transmission or data storage while maintaining an acceptable level of image quality.

Many compression techniques have developed such as differential pulse code modulation,

transform coding, hybrid coding, and adaptive versions of these techniques in response to

the need compression images. These aforementioned methods usually exploit the psycho-

visual as well as statistical redundancies in the image data to reduce bit rate. One short-

coming with these methods is the quantization is performed on a sample-to-sample basis or

pixels for images. Since the neighboring image pixels are typically correlated, these scalar

quantization methods are not optimal. Shannon’s rate distortion theory propounds that a

better performance is always achievable in theory by coding vectors instead of scalars, even

though the data source is memory-less.

For any vector quantization algorithm, the following three criteria are used to evaluate

its performance:

• Coding rate

• Distortion, signal-to-noise ratio, or perceptual quality

53

• Computational complexity

When vector quantization schemes with memory are applied to speech or images, the

coding rate for a given signal-to-noise ration drops by approximately half. Finite-state

vector quantization and predictive vector quantization, for example, achieves a bit rate of

.375 bits per pixel instead of 0.7 bits per pixel as compared to vector quantization for a

reasonable level of image quality. Finite-state vector quantization, predictive vector quan-

tization, and adaptive finite-state vector quantization all achieve low coding rates but a price

of increased computational complexity. This stated fact is exacerbated especially when the

vector dimensions are greater than five.

Dynamic codebook re-ordering vector quantization was introduced whereby indices of

codebook vectors are re-ordered such that the majority of the new set of re-ordered indices

are close to 0. This DCR scheme is a post vector quantization method as it produces the

same image as a memory-less vector. DCR is advantageous because it minimizes both

computational cost and coding rate simultaneously for the same level of distortion. In

[10], the likelihood codebook re-ordering vector quantization approach was applied to both

Gauss-Markov data and TIMIT speech data. Results of this experiment showed that LCR

outperformed DCR in terms of entropy coding rate. In this chapter, we present the ex-

perimental procedure to apply likelihood codebook re-ordering for images. It is necessary

to observe the effect of this scheme on images because images are two-dimensional and

the concept of finding the next vector to be quantized is ambiguous since for every image

block, the next vector could be one of eight vectors as opposed to the one-dimensional

nature of speech signals.

7.2 Experimental procedure on Images

Images from the University of Southern California Signal and Image Processing Institute

(USC-SIPI) are used to build the training vector database for image vector quantization. To

obtain the transition matrix for the LCR algorithm, the transition matrices for each of the

54

10 images available in the training dataset are summed up. The re-ordering matrix for the

image dataset is consequently obtained from the overall transition matrix. This re-ordered

matrix is then used to obtain the re-ordered indices for our test image. For our experiments,

the images are operated on in the luminance-chrominance plane also otherwise know as the

YUV plane. Our codebook design, training and testing of LCR and DCR algorithms are

applied to the luminance component (Y) of the both the training and testing images.

The image training dataset has 40960 blocks, each of size 4 by 4 while our testing

dataset has 499392 blocks of the same 4 by 4 dimensions as the training dataset. Each of

these blocks are converted to vectors whereby the 4 by 4 blocks are converted to 16-by-1

vectors. The procedure used to experiment on our data is as follows:

1. Codebooks are obtained from the training set of the USC-SIPI images by using the

Luizo-Buzo-Gray codebook design algorithm.

• Given Xtrain={X1, X2, X3, . . . , XT} where Xtrain is training dataset, Xi is the

ith vector of the training set, and T is the size of the training dataset.

• Also assume xtest={x1, x2, x3, . . . , xL}whereL is the size of the testing dataset,

xtest is the testing dataset, and xtest is the testing dataset.

• The codebook C = {c1, c2, c3, . . . , cK} is the set of vectors that minimize the

following condition:

Dave=
∑T

i=1 ‖Xi−Q(Xi)‖
MK

where ck = Q(Xi),

Dave is the average distortion.

2. Once the codebook is obtained, the training data is used to calculate the transition

matrix for the re-ordering algorithm.

3. The absolute indices of the testing image blocks are obtained by finding the nearest

neighbor codebook vector closest to the testing image block. This is done as follows:

55

The distance between xi and ck , ‖xi − ck‖ , is calculated for all k code vectors, and

the index of k which corresponds to the smallest distance is assigned to the absolute

index of a given test image block.

4. The re-ordered matrix is obtained by sorting the row of each transition matrix such

that the most likely codebook vectors are assigned index of 0. Subsequent code

vectors with smaller likelihoods are assigned indices of increasing order. Truncation

can be performed on this re-ordered codebook for both LCR and DCR algorithms.

5. Rate-distortion curves are obtained for the truncated versions of LCR, DCR, FSVQ,

and VQ algorithms.

6. Entropy-distortion plots are also obtained by calculating the sample entropy of the

coder at a given codebook size.

7.3 Results

4 5 6 7 8 9 10 11

7

8

9

10

11

12

13

14

15

16

17

Bits per vector (bits)

S
ig

na
l−

to
−

qu
an

tiz
at

io
n−

no
is

e
(d

B
)

Rate distortion curve for images without huffman

LCR rate: 1/1
DCR rate: 1/1
LCR rate: 1/2
DCR rate: 1/2
LCR rate: 1/4
DCR rate: 1/4
LCR rate: 1/8
DCR rate: 1/8
LCR rate: 1/16
DCR rate: 1/16
FSVQ

Figure 20: Rate-Distortion curve OF IMAGE VQ indices without Huffman

56

2 3 4 5 6 7 8 9

8

10

12

14

16

Bits per vector (Bits)

S
ig

na
l−

to
−

qu
an

tiz
at

io
n

no
is

er
at

io
 (

dB
)

Rate distortion curve for images with Huffman

LCR rate: 1/1
DCR rate: 1/1
LCR rate: 1/2
DCR rate: 1/2
LCR rate: 1/4
DCR rate: 1/4
LCR rate: 1/8
DCR rate: 1/8
LCR rate: 1/16
DCR rate: 1/16
FSVQ

Figure 21: Rate-distortion curve of image indices with Huffman

7.3.1 Interpretation of results

Section 7.2 explains the experimental procedure to obtain the rate-distortion plots for the

images. Figure 20 shows the relative performance of LCR vs DCR appended by Huffman

coding for different codebook sizes. It is observed that LCR clearly outperforms DCR

for all levels of truncation. The truncation is performed using the approach outlined in

section 4.4. Figure 20 shows that distortion increases as the truncation is increased for both

LCR and DCR. The distortion caused by DCR truncation increases much more than that

of DCR because the probability distribution of LCR for the re-ordered indices approaches

zero much faster than that of DCR. This simply means that more of the re-ordered indices

are closer to zero for LCR than DCR indices.

Without Huffman coding, truncating the codebook of an LCR scheme yields a bet-

ter rate-distortion performance while reducing the rate-distortion performance of its DCR

equivalent. This effect is shown in figure 21. In essence, the LCR truncated algorithm

achieves a smaller distortion and hence larger signal-to-noise ratio than DCR algorithm for

the same coding rate when the re-orderings are not appended by Huffman coding. It is

57

evident that LCR benefits more from truncation of images than the DCR algorithm.

Figures 22, 23, 24, 26 are figures that visually demonstrate the power of the LCR al-

gorithm. It can be seen that LCRVQ with truncation by 1/8 as shown in Figure 26 yields

almost the same picture as that of the originally VQ quantized image. This shows that our

algorithm in addition to reducing the compression rate preserves the perceptual quality of

the image signal for truncation up to 1/8. Truncating LCR by factors less than 1/8 yields

more visible degradation. Therefore, one can observe a trade-off between degradation in

perceptual quality and the coding rate.

58

Figure 22: ORIGINAL IMAGE WITHOUT COMPRESSION

59

Figure 23: ORIGINAL IMAGE WITH VQ COMPRESSION (0.625bpp)

60

Figure 24: ORIGINAL IMAGE WITH LCR VQ 1/4 COMPRESSION (0.5bpp)

61

Figure 25: ORIGINAL IMAGE WITH LCR VQ 1/8 COMPRESSION (0.4375bpp)

62

Figure 26: ORIGINAL IMAGE WITH LCR VQ 1/16 COMPRESSION(0.375bpp)

63

CHAPTER VIII

ONLINE LEARNING FOR LIKELIHOOD CODEBOOK

REORDERING VECTOR QUANTIZATION

In order to encode data using likelihood codebook reordering vector quantization, we need

to know the transition matrix of the data to be encoded. However, the transition matrix for

the data to be compressed is not available a priori. The transition matrix for encoding a test

data is different from the transition matrix obtained from an initial training data set. This

mismatch in the transition matrices requires one to either accurately estimate the true tran-

sition matrix of a given test vector sequence assuming knowledge of the transition matrix

from the training vector sequence. The process of estimating the true transition matrix on

an online basis is called adaptive likelihood codebook reordering vector quantization [30].

To accurately encode the test vector sequence, it is imperative to know the transition matrix

of the data vector sequence to be encoded. The challenge in most real encoding systems is

that data vector sequences are encoded one vector at a time. It is hence not possible to have

a real estimate of the transition matrix of the data to be encoded ahead of time.

The transition matrix T of the testing data sequence is initialized in one of two ways

1. The transition matrix is initialized by assigning all values of the transition matrix to

a single value. 1 is the default value though other positive numbers will perform the

same role. In a nutshell, the following is performed:

T (i, j) = a (8)

for all i, and j where a > 0

2. The transition matrix is initialized to the transition matrix obtained from the training

64

data set. T = Ttrain

where Ttrain is the transition matrix of the training data set. After the transition matrix is

initialized, the transition matrix is estimated for every encoded data vector as described in

Section 8.2.

8.1 Entropy estimates

In the ALCR-VQ compression scheme, each data vector is encoded by using the transition

matrix at a given time instant. Typically, entropy is calculated using the following equation:

e =
∑

i p(i) log2 p(i)

where p(i) is the probability of occurrence of the code vector with index i. This defini-

tion of entropy suffices when the probability distribution of the code vectors is known ahead

of time. In this chapter, we refer to this definition of entropy as sample entropy because it

is based on the actual count of the vectors that are trained and tested. In our ALCR-VQ

algorithm, the probability distribution of both the unordered and ordered indices are not

know a priori. It is important to have a sense of how well the ALCR-VQ is encoding the

data vectors and how close the transition matrix is approaching the real transition matrix

of a data set. To define the entropy for our adaptive likelihood codebook reordering vec-

tor quantization system, the concepts of short-term and long-term transition matrices are

introduced. The short-term transition matrix is the transition matrix estimated at a given

temporal or spatial instant of the test vector sequence. The short-term transition matrix is

obtained in the following way:

1. Short-term transition matrix Tshort(i, j, 0)= Ttrain or Tshort(i, j, 0) = a for a > 0.

2. For t=1 to N

Tshort(i, j, t) = Tshort(i, j, t) + δ where δ is the fixed increment in the transition

matrix element

65

The long-term transition matrix (LTTM) Tinf is obtained by assuming we can calculate the

transition matrix of the whole data vector sequence ahead of time. Hence, the LTTM is

obtained by performing the standard transition matrix evaluation for sequence.

When performing the ALCR-VQ algorithm, the short-term transition matrix gives us an

idea of how many transitions between code vectors have occurred for the past encoded data

vectors. We can get a sense of how well our adaptive approach is performing by entropy

coding the transitions between the code vectors. Our entropy evaluation is given below:

e(t) = −
N∑
j=1

N∑
i=1

Tinf (i, j) log2 Tshort(i, j, t), (9)

Tinf (i, j) =
mf (i, j)∑N

i=1

∑N
j=1m

f (i, j)
(10)

Tshort(i, j, t) =
m(i, j)∑N
i=1m(i, j)

(11)

where m(i, j) and mf (i, j) are counts of the transitions from dictionary vector ci, to vector

cj in the short-term and long-term transition matrices. Equation 9 is calculating the entropy,

the only difference being that the we use the long-term transitions as the real frequency of

transition between two code vectors instead of the short-term transitions. The short-term

transition matrix simply serve to give one an estimate of how many bits will be needed to

encode the transitions at given time instant. This is evident in Equation 9 as it has both

long-term and short-term matrices. Subsequent results will reveal the power of this tool

and logic in quantifying compression performance. When Equation 9 is used calculated

assuming that the short-term matrix is equal to the long-term matrix, we dub the entropy

estimate as predicted entropy. This term is coined as such because it based on solely on

the transition probabilities of the code vectors. The entropy estimate is not based on the

probability of occurrence of indices.

66

8.2 Adaptive Likelihood Codebook Re-ordering Vector Quantization

The algorithm of likelihood codebook reordering vector quantization (LCR-VQ) is de-

scribed in [10]. The adaptive likelihood codebook reordering vector quantization (ALCR-

VQ) addresses the mismatch in the transition matrices obtained from training and testing

datasets [30]. The testing datasets is typically streamed one vector at a time. There is

therefore no a priori knowledge of the transition matrix from vt−1 to vt. Therefore at every

given time, t, the transition matrix and its corresponding reordering matrix are updated.

The online estimation of the transition matrix of the testing data sets have the advantage

of reducing the coding rate per data vector relative to when there is no adaptation of tran-

sition matrix. The modern computational resources and the speed of the modern systems

overcompensate for the computational demand of the online estimation of the transition

and reordering matrices. The algorithm for performing ALCR-VQ is outlined in [30] and

below.

Consider the sequence of vectors X[t] exhibited as x[t]. Each input vector sequence

x[t] is most closely approximated by some codebook entry ci[t]. Thus a data sequence ~X

is encoded into a sequence C[t] = {c[0], c[1], c[3], . . . , c[K]} where ci ∈ C.

The procedure used for generating the likelihood codebook reordering framework is

summarized as follows:

1. Using a set of training vectors, create a codebook following established methods such

as k-means clustering.

2. For vectors X[t− 1] and X[t] in the training set, find the closest corresponding code

elements C[t− 1] = cit−1 and C[t] = cit , and note the corresponding indices.

3. Create an adaptive transition matrix M∆ and initialize to a random matrix. Some-

times, the adaptive transition matrix is initialized to the training transition matrix.

The reordered index is computed as follows for every the encoded version of vector

X[t] at time t.

67

1. Find the codebook entry cit that most closely resembles X[t] where Q(X[t]) = ci

and the codebook entry cit−1 that matches the vector X[t− 1].

2. Increment the appropriate transition entry (it−1, it) in M∆ by incrementing by some

∆ according to some policy, heuristic or analytical. ∆ is assigned 1 for our experi-

ments for simplicity. M∆(Q(X[t−1]), Q(X[t])) = M∆(Q(X[t−1]), Q(X[t]))+∆

3. Sort the (i − 1)th row of the transition matrix M∆ in decreasing order and find the

order of M∆(it−1, it) in the sorted row.

4. The reordered index Ir[t] is given by O(M∆(it−1, it))

8.3 Results

The adaptive likelihood codebook reordering vector quantization was first proposed in [30].

The VQ appach was applied to both Gauss-Markov data and speech samples from the

TIMIT database[44]. The results of this procedure will applied by assuming that the transi-

tion matrix is initialized to a uniform transition matrix of 1’s. The Gauss-Markov data used

in our experiments is generated according to the equation below:

Yt = αYt−1 + (1− α)Xt (12)

In our experiments, we assumed the preceding generational model of our Gauss-Markov

data as in Equation 5 where {Xt} are independent, identically-distributed Gaussian ran-

dom variables, α ∈ (−1, 1) is the correlation parameter, and Yt is the source sample at

time t. Training and testing vectors are obtained by generating 10 million one-dimensional

samples (10M) (10M × 1) which are grouped into ten-dimensinal vectors (d = 10). For

testing data rates, a transition matrix is generated using a large number of training samples

assuming that using a sufficiently large dataset should give a transition matrix which is a

close approximation of the ideal transition matrix. This dataset was composed of 80M× 1

training samples resulting in an 8M × 10 test vectors. This corpus is distinct from the one

68

Table 6: Table of bit rates for Gauss-Markov data. Best performing algorithms for each
codebook size are highlighted. S.E means sample entropy and P.E means predicted entropy

Cbk size VQ(S.E) LCR(S.E) LCR(P.E) ALCR(S.E) DCR(S.E)
25 4.74 4.52 4.50 3.9680 4.5322
26 5.76 5.477 5.44 4.8416 5.5379
27 6.76 6.414 6.38 5.7318 6.5471
28 7.83 7.38 7.34 6.7310 7.6206
29 8.90 8.35 8.30 7.9072 8.7457
210 9.97 9.41 9.40 9.3775 9.8890

used for training the encoder and is used to test the bit rate as the transition matrix adapts.

In order to remove the encoding algorithm as a variable, the data rate is calculated by find-

ing the average entropy using bit counts from the training matrix and using probabilities

from the more statistically-representative testing matrix.

For the Gauss-Markov samples used, the codebook size is varied in powers of 2 corre-

sponding to the number of bits to address the codebook. As the codebook size increases,

the encoding error decreases, but more bits are required for each vector. The aim is to im-

prove upon standard VQ by reducing the bit rate across all codebook sizes. The coding rate

for a given codebook size for LCR-VQ, ALCR-VQ, and DCR-VQ is calculated by entropy

coding the reordered indices of the reproduction vectors of the testing data using arithmetic

coding, while the coding rate of standard VQ is calculated by performing arithmetic coding

on the absolute indices of reproduction vector.

Figure 28 shows that for all codebook sizes ranging from 32 through 1024, the ALCR-

VQ method outperforms the LCR-VQ, DCR-VQ, and standard VQ compression approaches.

Since test data can vary statistically from the training set, ALCR is always able to slightly

outperform LCR as it is able to adapt to local, as well as global statistics. The same Figure

28 also shows that ALCR-VQ performs at its optimal performance at a codebook size of

256.

Figures 31, 27, 28, 30 are generated by estimating the entropy from the long-term and

short-term transition matrices. These aforementioned figures are obtained from a 256-entry

69

0 1 2 3 4 5 6 7 8 9 10
x 10

5

2

4

6

8

10

12

14

16

18

20
Graph of ALCR trained on Gauss−Markov data on α =0.9 in test vectors

test vector number

en
tr

op
y

α= 0.9
α= 0.65
α= 0.85
α= 0.95
α= 0.97
α= 0.98
α= 0.995

Figure 27: Testing of ALCR algorithm on Gauss-Markov source of correlation factor 0.9
on an online basis. The entropy is calculated on a 256-entry codebook and tested on 1-d
Gauss-Markov data sources of correlation factors greater than and smaller than the training
correlation factor of 0.9. The transition matrix is initialized to all 1’s

codebook from a training data set of the correlation factor of αtrain = 0.9. For every input

test vector, the short-term transition matrix is obtained by encoding the testing data set

with the codebook from the training dataset. The entropy of the encoding system at a

given instant is estimated from both the long-term transition matrix, M f , and the short-

term transition matrix, M . The entropy at vector time, t, is calculated instantaneously in

Equations 9, 10, 11.

We can observe from Figures 27 the approximately pronounced exponential decay of

the entropy plot for testing correlations lesser than 0.9. This is in sharp contrast to the

relatively flat entropy graphs for larger entropies. The aforementioned behavior is noticed

because if the testing correlation is smaller than the training correlation, there will be more

code vectors that exists outside the range of the testing input vector space. The peripheral

distribution of the code vectors obtained from training input vectors whose correlation is

greater than the testing correlation indicates that most of the testing vectors will be mapped

to code vectors within the input vector domain space. Consequently, the code vectors that

70

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Codebook address bits (log2 of codebook size)

Im
pr

ov
em

en
t i

n
bi

t r
at

e
bi

ts
/v

ec
to

r

Bit rate savings
 encoding: arithmetic δ type: median λ=1.000000 κ=0.998000

VQ
LCR
ALCR
DCR

Figure 28: Testing of ALCR algorithm on Gauss-Markov source of correlation factor 0.9.
We observe the improve in bit rate savings for every codebook size for each ALCR-VQ,
DCR-VQ,LCR-VQ, and VQ schemes. Higher values on the y-axis infer more compression.

are outside the input domain will rarely be mapped into. This sparsity of mapping yields

many entries of the transition matrix that are closer to 0 than not, which consequently

implies an increased entropy for the entries with low count. The exponential decay can

be explained by the fact that as more test vectors are encountered, there is an increased

likelihood of testing vectors being mapped into code vectors obtained from the training

data set of larger correlation. As a result, as more vectors are encountered, the cell entries

of the transition matrix that were once sparse become less sparse and are consequently

assigned less bits as observed from information theory.

For testing data sets whose correlations greater than the training correlation, we observe

that the entropy curves takes a far less time before it saturates to a steady value. This is so

because training data sets with smaller correlation than testing data set have their code book

concentrated on a much smaller range of the testing input vector space. This smaller range

of the code book implies that the code vectors are distributed across a smaller periphery

71

0 1 2 3 4 5 6 7 8 9 10
x 10

5

6

7

8

9

10

11

Entropy plot for different size codebooks (α
train

=0.9) used for ALCR algorithm

test vector number

en
tr

op
y

α
test

=0.9,cdbk=64

α
test

=0.65,cdbk=64

α
test

=0.9,cdbk=128

α
test

=0.65,cdbk=128

α
test

=0.9,cdbk=256

α
test

=0.65,cdbk=256

Figure 29: Evaluation of the effect of different codebook sizes on the entropy of ALCR
on an online basis. Codebook sizes are 64, 128, and 256 and the testing correlation factors
of the 1-D Gauss-Markov sources are 0.65 and 0.9

compared to when the correlation was larger than training vector correlation. The result of

this phenomenon is the fact that code vectors are more quickly mapped to. In short, for this

scenario, there are more non-zero transitions than zero transitions.

By observing the curves in Figure 31, it can be seen that there is an exponential-decay

type of convergence approaching an asymptotic limit. Also important to note is that the

entropy rate initially increases to nearly 16 bits per vector, which is nearly double the 8

bits required using a naive encoding method. This is because a small number of vector

transitions have been encountered causing them to have very low bit coding but all un-

encountered transitions require the new maximum entropy code size. As the transition

matrix becomes increasingly representative (requiring approximately 5× 105 vectors), the

bit rate continues to drop towards its asymptote.

Figure 29 also shows that for a matched data set with correlation αtrain of 0.9, the

computed entropy approaches its asymptotic entropy bound much more quickly. This is

expected since the vectors are mapped exactly into the domain of the training data set.

72

0 0.5 1 1.5 2
x 10

6

8

10

12

14

16

18

20

test vector number

en
tr

op
y

Graph of ALCR algorithm with transition matrix initialized at different values

 T.M 1
T.M 20
T.M 40
T.M 100

Figure 30: Testing of ALCR algorithm on Gauss-Markov source of correlation factor 0.9.
We change the initialize values of the transition matrix cells to equal the numbers assigned
on the legend where “T.M” stands for transition matrix initial cell values. For example, for
“T.M” equal to 40, all the transition matrix values are assigned the value of 40

For all codebooks of size 64, 128, 256, and a testing factor of 0.65, there exist more code

vectors that are outside the space of the input vectors. Consequently, many code vectors

either have 0 mappings from the input vector space to the code vector or have significantly

smaller number of mappings to the code vectors. The code vectors that are not mapped by

the source vectors are not mapped frequently. Subsequently, the entropy of the system is

increased.

In Figure 30, we observe the effect of initializing the transition matrix on the entropy

of the ALCR-VQ algorithm. A 256-vector codebook is used to encode the testing set of

the same correlation 0.9. The initial transition matrix M∆ is used to encode the testing set

of the same correlation 0.9. All elements of the initial transition matrix are set to values 1,

20, 40, and 100 as shown in Equation 13. For all values of i and j,

M∆(i, j) = 1, 20, 40, 100 (13)

Initializing the transition matrix at 1, the entropy takes a lot longer time to approach its

73

0 0.5 1 1.5 2 2.5 3 3.5
x 10

6

8

10

12

14

16

test vector number

en
tr

op
y

ALCR training of Gauss−Markov sources on the same dataset

α=0.9
α=0.85
α=0.65

Figure 31: Cross-training and testing of ALCR algorithm on Gauss-Markov sources with
the same correlation factor α

Table 7: Table of Vector quantization errors for cross-training and testing of Gauss-
Markov sets

α
tr
a
in

αtest
0.65 0.7 0.75 0.85 0.88 0.9

0.65 0.040 0.041 0.044 0.058 0.071 0.090
0.7 0.031 0.030 0.031 0.040 0.050 0.066
0.75 0.026 0.022 0.021 0.026 0.033 0.046
0.85 0.022 0.016 0.012 0.008 0.009 0.015
0.88 0.023 0.016 0.011 0.005 0.004 0.005
0.9 0.023 0.015 0.010 0.004 0.002 0.001

true entropy values as test values are trained on the ALCR algorithm. When the transition

matrix is initialized at larger values, the entropy plot approaches higher entropy values

more quickly because as the test vectors are encoded, the addition to the transition matrix

still leaves it fairly uniformly distributed.

Table 7 is obtained from codebooks of datasets of one correlation factor and applied

on a 1-D Gauss-Markov sequence of another correlation. We observe the effect of cross-

testing on the squared rates of the testing 1-D Gauss-Markov data sequence. It is observed

that the squared-error is least when the training and testing correlations match. The errors

74

increase the more the mismatch in the testing and training factors.

8.4 Conclusion

Because LCR Is based upon statistics rather than distance metrics, it has the capability

of improving upon existing DCR-based VQ techniques. Furthermore, allowing adaptation

of the transition matrix allows an even greater improvement. It can be observed from the

experiments that performing ALCR-VQ on test data vectors with correlation greater than

of the training vectors yields better compression rate than when the correlation is less than

the training correlation factor.

75

CHAPTER IX

CONCLUSIONS

Our algorithm performs better than our state-of-the-arts algorithms such as finite-state vec-
tor quantization for both speech and image data sets. It works especially well when it is
appended by an entropy code such as Huffman coding. This is so because the propor-
tion of re-ordered indices closer to zero is much greater than when indices are obtained
from memory-less vector quantization. The likelihood codebook re-ordering algorithm
also achieves small coding rates at a smaller computational complexity relative to the
Huffman-encoded truncation matrix approach mentioned in chapter 3. The introduction
of truncation as mentioned in section 4.4 also shows that the LCR algorithm outperforms
DCR and FSVQ for levels of truncation up to 1/8. We also demonstrate in the last chapter
the power of learning the transition matrix on an online basis taking in one vector at a time
and yielding a smaller entropy as a result of the online training.

76

REFERENCES

[1] “Pulse code modulation in the telephone industry,” Electrical Engineering, vol. 77,
pp. 769–770, Aug. 1958.

[2] ABATE, J., “Linear and adaptive delta modulation,” Proceedings of the IEEE, vol. 55,
pp. 298–308, March 1967.

[3] ABUT, H., GRAY, R., and REBOLLEDO, G., “Vector quantization of speech and
speech-like waveforms,” Acoustics, Speech and Signal Processing, IEEE Transac-
tions on, vol. 30, pp. 423–435, Jun 1982.

[4] ACHARYA, T. and MUKHERJEE, A., “A tree based binary encoding of text using lzw
algorithm,” in Data Compression Conference, 1995. DCC ’95. Proceedings, pp. 463–,
Mar 1995.

[5] BAKER, R. and GRAY, R., “Differential vector quantization of achromatic imagery,”
in Proceedings of International Picture Coding Symposium, Mar 1983.

[6] BUZO, A., GRAY, A., J., GRAY, R., and MARKEL, J., “Speech coding based upon
vector quantization,” in Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP ’80., vol. 5, pp. 15–18, Apr 1980.

[7] BUZO, A., GRAY, A, J., GRAY, R., and MARKEL, J., “Speech coding based upon
vector quantization,” Acoustics, Speech and Signal Processing, IEEE Transactions
on, vol. 28, pp. 562–574, Oct 1980.

[8] CHERRY, E. C., “A history of the theory of information,” Proceedings of the IEE -
Part III: Radio and Communication Engineering, vol. 98, pp. 383–393, Sept. 1951.

[9] CHOU, P., LOOKABAUGH, T., and GRAY, R., “Entropy-constrained vector quan-
tization,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 37,
pp. 31–42, Jan 1989.

[10] CHU, C. and ANDERSON, D., “Likelihood codebook reordering vector quantization,”
in International Conference on Acoustics, Speech and Signal Processing, pp. 5114–
5117, May 2013.

[11] CUPERMAN, V. and GERSHO, A., “Vector predictive coding of speech at 16 kbits/s,”
Communications, IEEE Transactions on, vol. 33, pp. 685–696, July 1985.

[12] DAVID, E., SCHROEDER, M., LOGAN, B., and PRESTIGIACOMO, A., “Voice-
excited vocoders for practical speech bandwidth reduction,” Information Theory, IRE
Transactions on, vol. 8, pp. 101–105, September 1962.

77

[13] FIORAVANTI, R., FIORAVANTI, S., and GIUSTO, D., “An efficient neural prediction
for vector quantization,” in Acoustics, Speech, and Signal Processing, 1994. ICASSP-
94., 1994 IEEE International Conference on, vol. v, pp. V/613–V/616 vol.5, Apr
1994.

[14] FIORAVANTI, S. and GIUSTO, D., “A prediction strategy for efficient entropy coding
of VQ addresses,” in 1994 IEEE International Symposium on Information Theory,
p. 240, July 1994.

[15] FOSTER, J., GRAY, R., and DUNHAM, M., “Finite-state vector quantization for
waveform coding,” IEEE Transactions on Information Theory, vol. 31, pp. 348 –
359, May 1985.

[16] FRANKE, J., “A levinson-durbin recursion for autoregressive-moving average pro-
cesses,” Biometrika, vol. 72, no. 3, pp. 573–581, 1985.

[17] GIBSON, J., “Speech coding methods, standards, and applications,” Circuits and Sys-
tems Magazine, IEEE, vol. 5, pp. 30–49, Fourth 2005.

[18] GOODALL, W., “Telephony by pulse code modulation,” Bell System Technical Jour-
nal, The, vol. 26, pp. 395–409, July 1947.

[19] GRAY, R., “Vector quantization,” IEEE ASSP Magazine, vol. 1, pp. 4 –29, Apr. 1984.

[20] HUFFMAN, D., “A method for the construction of minimum-redundancy codes,” Pro-
ceedings of the IRE, vol. 40, pp. 1098–1101, Sept 1952.

[21] JAS, A., GHOSH-DASTIDAR, J., NG, M.-E., and TOUBA, N., “An efficient test
vector compression scheme using selective huffman coding,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 22, pp. 797–806, June
2003.

[22] JAYANT, N. and NOLL, P., Digital Coding of Waveforms: Principles and Applica-
tions to Speech and Video. Prentice Hall Professional Technical Reference, 1990.

[23] JUANG, B., WONG, D., and GRAY, A., J., “Distortion performance of vector quanti-
zation for LPC voice coding,” Acoustics, Speech and Signal Processing, IEEE Trans-
actions on, vol. 30, pp. 294–304, Apr. 1982.

[24] KOTZE, H. and KUHN, G. J., “An evaluation of the lempel-ziv-welch data compres-
sion algorithm,” in Communications and Signal Processing, 1989. COMSIG 1989.
Proceedings., Southern African Conference on, pp. 65–69, Jun 1989.

[25] KOU, W., Digital Image Compression: Algorithms and Standards. Norwell, MA,
USA: Kluwer Academic Publishers, 1995.

[26] KRISHNAN, V., A framework for low bit-rate speech coding in noisy environment.
PhD thesis, Mar. 2005.

78

[27] LANGDON, G.G., J., “An introduction to arithmetic coding,” IBM Journal of Re-
search and Development, vol. 28, pp. 135–149, March 1984.

[28] LINDE, Y. and A. BUZO, R. G., “An algorithm for vector quantizer design,” IEEE
Transactions on Communications, pp. 84–95, Mar. 1980.

[29] LINDE, Y., BUZO, A., and GRAY, R., “An algorithm for vector quantizer design,”
Communications, IEEE Transactions on, vol. 28, pp. 84–95, Jan 1980.

[30] MEH CHU, C. and PARRISH, N. V., “Adaptive likelihood codebook reordering vector
quantization for 1-d data sources,” in IEEE Signal Processing and Signal Processing
Education Workshop, 2015.

[31] NASRABADI, N. and FENG, Y., “Image compression using address-vector quantiza-
tion,” Communications, IEEE Transactions on, vol. 38, pp. 2166–2173, Dec. 1990.

[32] NELSON, M. R., “Lzw data compression,” Dr. Dobb’s Journal, vol. 14, no. 10,
pp. 29–36, 1989.

[33] O’NEAL, J., J. and WOLF, C., “Quantizer levels for speech differential pcm sys-
tems,” Audio and Electroacoustics, IEEE Transactions on, vol. 18, pp. 315–316, Sep
1970.

[34] O’NEAL, J.B., J. and STROH, R., “Differential pcm for speech and data signals,”
Communications, IEEE Transactions on, vol. 20, pp. 900–912, Oct. 1972.

[35] PAULRAJ, A., ROY, R., and KAILATH, T., “A subspace rotation approach to signal
parameter estimation,” Proceedings of the IEEE, vol. 74, pp. 1044–1046, July 1986.

[36] PENNINGTON, H. and STEELE, R., “A-law pulse-code modulation by a delta-
modulation technique,” Electronics Letters, vol. 9, pp. 171–173, May 1973.

[37] SABIN, M. and GRAY, R., “Product code vector quantizers for waveform and voice
coding,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 32,
pp. 474–488, Jun 1984.

[38] SAVARI, S., “Redundancy of the lempel-ziv incremental parsing rule,” Information
Theory, IEEE Transactions on, vol. 43, pp. 9–21, Jan 1997.

[39] SCHROEDER, M., “Vocoders: Analysis and synthesis of speech,” Proceedings of the
IEEE, vol. 54, pp. 720–734, May 1966.

[40] SCHROEDER, M. and ATAL, B., “Code-excited linear prediction(celp): High-quality
speech at very low bit rates,” in Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP ’85., vol. 10, pp. 937–940, Apr. 1985.

[41] VIRUPAKSHA, K. and O’NEAL, J., “Entropy-coded adaptive differential pulse-code
modulation (dpcm) for speech,” Communications, IEEE Transactions on, vol. 22,
pp. 777–787, Jun 1974.

79

[42] WITTEN, I. H., NEAL, R. M., and CLEARY, J. G., “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, pp. 520–540, June 1987.

[43] YEUNG, R. W., “Rate-distortion theory,” in Information Theory and Network Coding,
pp. 183–210, Springer, 2008.

[44] ZUE, V., SENEFF, S., and GLASS, J., “Speech database development at mit: Timit
and beyond,” Speech Communication, vol. 9, no. 4, pp. 351–356, 1990.

80

